spu: cleanup build a bit
[pcsx_rearmed.git] / plugins / dfsound / spu.c
CommitLineData
ef79bbde
P
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7 ***************************************************************************/
8/***************************************************************************
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License as published by *
12 * the Free Software Foundation; either version 2 of the License, or *
13 * (at your option) any later version. See also the license.txt file for *
14 * additional informations. *
15 * *
16 ***************************************************************************/
17
18#include "stdafx.h"
19
20#define _IN_SPU
21
22#include "externals.h"
23#include "cfg.h"
24#include "dsoundoss.h"
25#include "regs.h"
26
27#ifdef ENABLE_NLS
28#include <libintl.h>
29#include <locale.h>
30#define _(x) gettext(x)
31#define N_(x) (x)
32#else
33#define _(x) (x)
34#define N_(x) (x)
35#endif
36
37#if defined (USEMACOSX)
38static char * libraryName = N_("Mac OS X Sound");
39#elif defined (USEALSA)
40static char * libraryName = N_("ALSA Sound");
41#elif defined (USEOSS)
42static char * libraryName = N_("OSS Sound");
43#elif defined (USESDL)
44static char * libraryName = N_("SDL Sound");
45#elif defined (USEPULSEAUDIO)
46static char * libraryName = N_("PulseAudio Sound");
47#else
48static char * libraryName = N_("NULL Sound");
49#endif
50
51static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
52
53// globals
54
55// psx buffer / addresses
56
57unsigned short regArea[10000];
58unsigned short spuMem[256*1024];
59unsigned char * spuMemC;
60unsigned char * pSpuIrq=0;
61unsigned char * pSpuBuffer;
62unsigned char * pMixIrq=0;
63
64// user settings
65
66int iVolume=3;
67int iXAPitch=1;
68int iUseTimer=2;
69int iSPUIRQWait=1;
70int iDebugMode=0;
71int iRecordMode=0;
72int iUseReverb=2;
73int iUseInterpolation=2;
74int iDisStereo=0;
75
76// MAIN infos struct for each channel
77
78SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
79REVERBInfo rvb;
80
81unsigned long dwNoiseVal=1; // global noise generator
82int iSpuAsyncWait=0;
83
84unsigned short spuCtrl=0; // some vars to store psx reg infos
85unsigned short spuStat=0;
86unsigned short spuIrq=0;
87unsigned long spuAddr=0xffffffff; // address into spu mem
88int bEndThread=0; // thread handlers
89int bThreadEnded=0;
90int bSpuInit=0;
91int bSPUIsOpen=0;
92
93static pthread_t thread = (pthread_t)-1; // thread id (linux)
94
95unsigned long dwNewChannel=0; // flags for faster testing, if new channel starts
96
97void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq
98void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0;
99
100// certain globals (were local before, but with the new timeproc I need em global)
101
102static const int f[5][2] = { { 0, 0 },
103 { 60, 0 },
104 { 115, -52 },
105 { 98, -55 },
106 { 122, -60 } };
107int SSumR[NSSIZE];
108int SSumL[NSSIZE];
109int iFMod[NSSIZE];
110int iCycle = 0;
111short * pS;
112
113int lastch=-1; // last channel processed on spu irq in timer mode
114static int lastns=0; // last ns pos
115static int iSecureStart=0; // secure start counter
116
117////////////////////////////////////////////////////////////////////////
118// CODE AREA
119////////////////////////////////////////////////////////////////////////
120
121// dirty inline func includes
122
123#include "reverb.c"
124#include "adsr.c"
125
126////////////////////////////////////////////////////////////////////////
127// helpers for simple interpolation
128
129//
130// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
131//
132// instead of having n equal sample values in a row like:
133// ____
134// |____
135//
136// we compare the current delta change with the next delta change.
137//
138// if curr_delta is positive,
139//
140// - and next delta is smaller (or changing direction):
141// \.
142// -__
143//
144// - and next delta significant (at least twice) bigger:
145// --_
146// \.
147//
148// - and next delta is nearly same:
149// \.
150// \.
151//
152//
153// if curr_delta is negative,
154//
155// - and next delta is smaller (or changing direction):
156// _--
157// /
158//
159// - and next delta significant (at least twice) bigger:
160// /
161// __-
162//
163// - and next delta is nearly same:
164// /
165// /
166//
167
168
169INLINE void InterpolateUp(int ch)
170{
171 if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
172 {
173 const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val
174 const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :)
175
176 s_chan[ch].SB[32]=0;
177
178 if(id1>0) // curr delta positive
179 {
180 if(id2<id1)
181 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
182 else
183 if(id2<(id1<<1))
184 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
185 else
186 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
187 }
188 else // curr delta negative
189 {
190 if(id2>id1)
191 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
192 else
193 if(id2>(id1<<1))
194 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
195 else
196 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
197 }
198 }
199 else
200 if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
201 {
202 s_chan[ch].SB[32]=0;
203
204 s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L;
205 if(s_chan[ch].sinc<=0x8000)
206 s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1));
207 else s_chan[ch].SB[29]+=s_chan[ch].SB[28];
208 }
209 else // no flags? add bigger val (if possible), calc smaller step, set flag1
210 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
211}
212
213//
214// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
215//
216
217INLINE void InterpolateDown(int ch)
218{
219 if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val?
220 {
221 s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight
222 if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals?
223 s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight
224 }
225}
226
227////////////////////////////////////////////////////////////////////////
228// helpers for gauss interpolation
229
230#define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos])
231#define gval(x) (((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3])
232
233#include "gauss_i.h"
234
235////////////////////////////////////////////////////////////////////////
236
237#include "xa.c"
238
239////////////////////////////////////////////////////////////////////////
240// START SOUND... called by main thread to setup a new sound on a channel
241////////////////////////////////////////////////////////////////////////
242
243INLINE void StartSound(int ch)
244{
245 StartADSR(ch);
246 StartREVERB(ch);
247
248 s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start
249
250 s_chan[ch].s_1=0; // init mixing vars
251 s_chan[ch].s_2=0;
252 s_chan[ch].iSBPos=28;
253
254 s_chan[ch].bNew=0; // init channel flags
255 s_chan[ch].bStop=0;
256 s_chan[ch].bOn=1;
257
258 s_chan[ch].SB[29]=0; // init our interpolation helpers
259 s_chan[ch].SB[30]=0;
260
261 if(iUseInterpolation>=2) // gauss interpolation?
262 {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding
263 else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding
264
265 dwNewChannel&=~(1<<ch); // clear new channel bit
266}
267
268////////////////////////////////////////////////////////////////////////
269// ALL KIND OF HELPERS
270////////////////////////////////////////////////////////////////////////
271
272INLINE void VoiceChangeFrequency(int ch)
273{
274 s_chan[ch].iUsedFreq=s_chan[ch].iActFreq; // -> take it and calc steps
275 s_chan[ch].sinc=s_chan[ch].iRawPitch<<4;
276 if(!s_chan[ch].sinc) s_chan[ch].sinc=1;
277 if(iUseInterpolation==1) s_chan[ch].SB[32]=1; // -> freq change in simle imterpolation mode: set flag
278}
279
280////////////////////////////////////////////////////////////////////////
281
282INLINE void FModChangeFrequency(int ch,int ns)
283{
284 int NP=s_chan[ch].iRawPitch;
285
286 NP=((32768L+iFMod[ns])*NP)/32768L;
287
288 if(NP>0x3fff) NP=0x3fff;
289 if(NP<0x1) NP=0x1;
290
291 NP=(44100L*NP)/(4096L); // calc frequency
292
293 s_chan[ch].iActFreq=NP;
294 s_chan[ch].iUsedFreq=NP;
295 s_chan[ch].sinc=(((NP/10)<<16)/4410);
296 if(!s_chan[ch].sinc) s_chan[ch].sinc=1;
297 if(iUseInterpolation==1) // freq change in simple interpolation mode
298 s_chan[ch].SB[32]=1;
299 iFMod[ns]=0;
300}
301
302////////////////////////////////////////////////////////////////////////
303
304// noise handler... just produces some noise data
305// surely wrong... and no noise frequency (spuCtrl&0x3f00) will be used...
306// and sometimes the noise will be used as fmod modulation... pfff
307
308INLINE int iGetNoiseVal(int ch)
309{
310 int fa;
311
312 if((dwNoiseVal<<=1)&0x80000000L)
313 {
314 dwNoiseVal^=0x0040001L;
315 fa=((dwNoiseVal>>2)&0x7fff);
316 fa=-fa;
317 }
318 else fa=(dwNoiseVal>>2)&0x7fff;
319
320 // mmm... depending on the noise freq we allow bigger/smaller changes to the previous val
321 fa=s_chan[ch].iOldNoise+((fa-s_chan[ch].iOldNoise)/((0x001f-((spuCtrl&0x3f00)>>9))+1));
322 if(fa>32767L) fa=32767L;
323 if(fa<-32767L) fa=-32767L;
324 s_chan[ch].iOldNoise=fa;
325
326 if(iUseInterpolation<2) // no gauss/cubic interpolation?
327 s_chan[ch].SB[29] = fa; // -> store noise val in "current sample" slot
328 return fa;
329}
330
331////////////////////////////////////////////////////////////////////////
332
333INLINE void StoreInterpolationVal(int ch,int fa)
334{
335 if(s_chan[ch].bFMod==2) // fmod freq channel
336 s_chan[ch].SB[29]=fa;
337 else
338 {
339 if((spuCtrl&0x4000)==0) fa=0; // muted?
340 else // else adjust
341 {
342 if(fa>32767L) fa=32767L;
343 if(fa<-32767L) fa=-32767L;
344 }
345
346 if(iUseInterpolation>=2) // gauss/cubic interpolation
347 {
348 int gpos = s_chan[ch].SB[28];
349 gval0 = fa;
350 gpos = (gpos+1) & 3;
351 s_chan[ch].SB[28] = gpos;
352 }
353 else
354 if(iUseInterpolation==1) // simple interpolation
355 {
356 s_chan[ch].SB[28] = 0;
357 s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
358 s_chan[ch].SB[30] = s_chan[ch].SB[31];
359 s_chan[ch].SB[31] = fa;
360 s_chan[ch].SB[32] = 1; // -> flag: calc new interolation
361 }
362 else s_chan[ch].SB[29]=fa; // no interpolation
363 }
364}
365
366////////////////////////////////////////////////////////////////////////
367
368INLINE int iGetInterpolationVal(int ch)
369{
370 int fa;
371
372 if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29];
373
374 switch(iUseInterpolation)
375 {
376 //--------------------------------------------------//
377 case 3: // cubic interpolation
378 {
379 long xd;int gpos;
380 xd = ((s_chan[ch].spos) >> 1)+1;
381 gpos = s_chan[ch].SB[28];
382
383 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
384 fa *= (xd - (2<<15)) / 6;
385 fa >>= 15;
386 fa += gval(2) - gval(1) - gval(1) + gval0;
387 fa *= (xd - (1<<15)) >> 1;
388 fa >>= 15;
389 fa += gval(1) - gval0;
390 fa *= xd;
391 fa >>= 15;
392 fa = fa + gval0;
393
394 } break;
395 //--------------------------------------------------//
396 case 2: // gauss interpolation
397 {
398 int vl, vr;int gpos;
399 vl = (s_chan[ch].spos >> 6) & ~3;
400 gpos = s_chan[ch].SB[28];
401 vr=(gauss[vl]*gval0)&~2047;
402 vr+=(gauss[vl+1]*gval(1))&~2047;
403 vr+=(gauss[vl+2]*gval(2))&~2047;
404 vr+=(gauss[vl+3]*gval(3))&~2047;
405 fa = vr>>11;
406 } break;
407 //--------------------------------------------------//
408 case 1: // simple interpolation
409 {
410 if(s_chan[ch].sinc<0x10000L) // -> upsampling?
411 InterpolateUp(ch); // --> interpolate up
412 else InterpolateDown(ch); // --> else down
413 fa=s_chan[ch].SB[29];
414 } break;
415 //--------------------------------------------------//
416 default: // no interpolation
417 {
418 fa=s_chan[ch].SB[29];
419 } break;
420 //--------------------------------------------------//
421 }
422
423 return fa;
424}
425
426////////////////////////////////////////////////////////////////////////
427// MAIN SPU FUNCTION
428// here is the main job handler... thread, timer or direct func call
429// basically the whole sound processing is done in this fat func!
430////////////////////////////////////////////////////////////////////////
431
432// 5 ms waiting phase, if buffer is full and no new sound has to get started
433// .. can be made smaller (smallest val: 1 ms), but bigger waits give
434// better performance
435
436#define PAUSE_W 5
437#define PAUSE_L 5000
438
439////////////////////////////////////////////////////////////////////////
440
441static void *MAINThread(void *arg)
442{
443 int s_1,s_2,fa,ns;
cfe71c00 444#if !defined(_MACOSX) && !defined(__arm__)
ef79bbde
P
445 int voldiv = iVolume;
446#else
447 const int voldiv = 2;
448#endif
449 unsigned char * start;unsigned int nSample;
450 int ch,predict_nr,shift_factor,flags,d,s;
451 int bIRQReturn=0;
452
453 while(!bEndThread) // until we are shutting down
454 {
455 // ok, at the beginning we are looking if there is
456 // enuff free place in the dsound/oss buffer to
457 // fill in new data, or if there is a new channel to start.
458 // if not, we wait (thread) or return (timer/spuasync)
459 // until enuff free place is available/a new channel gets
460 // started
461
462 if(dwNewChannel) // new channel should start immedately?
463 { // (at least one bit 0 ... MAXCHANNEL is set?)
464 iSecureStart++; // -> set iSecure
465 if(iSecureStart>5) iSecureStart=0; // (if it is set 5 times - that means on 5 tries a new samples has been started - in a row, we will reset it, to give the sound update a chance)
466 }
467 else iSecureStart=0; // 0: no new channel should start
468
469 while(!iSecureStart && !bEndThread && // no new start? no thread end?
470 (SoundGetBytesBuffered()>TESTSIZE)) // and still enuff data in sound buffer?
471 {
472 iSecureStart=0; // reset secure
473
474 if(iUseTimer) return 0; // linux no-thread mode? bye
475 usleep(PAUSE_L); // else sleep for x ms (linux)
476
477 if(dwNewChannel) iSecureStart=1; // if a new channel kicks in (or, of course, sound buffer runs low), we will leave the loop
478 }
479
480 //--------------------------------------------------// continue from irq handling in timer mode?
481
482 if(lastch>=0) // will be -1 if no continue is pending
483 {
484 ch=lastch; ns=lastns; lastch=-1; // -> setup all kind of vars to continue
485 goto GOON; // -> directly jump to the continue point
486 }
487
488 //--------------------------------------------------//
489 //- main channel loop -//
490 //--------------------------------------------------//
491 {
492 for(ch=0;ch<MAXCHAN;ch++) // loop em all... we will collect 1 ms of sound of each playing channel
493 {
494 if(s_chan[ch].bNew) StartSound(ch); // start new sound
495 if(!s_chan[ch].bOn) continue; // channel not playing? next
496
497 if(s_chan[ch].iActFreq!=s_chan[ch].iUsedFreq) // new psx frequency?
498 VoiceChangeFrequency(ch);
499
500 ns=0;
501 while(ns<NSSIZE) // loop until 1 ms of data is reached
502 {
503 if(s_chan[ch].bFMod==1 && iFMod[ns]) // fmod freq channel
504 FModChangeFrequency(ch,ns);
505
506 while(s_chan[ch].spos>=0x10000L)
507 {
508 if(s_chan[ch].iSBPos==28) // 28 reached?
509 {
510 start=s_chan[ch].pCurr; // set up the current pos
511
512 if (start == (unsigned char*)-1) // special "stop" sign
513 {
514 s_chan[ch].bOn=0; // -> turn everything off
515 s_chan[ch].ADSRX.lVolume=0;
516 s_chan[ch].ADSRX.EnvelopeVol=0;
517 goto ENDX; // -> and done for this channel
518 }
519
520 s_chan[ch].iSBPos=0;
521
522 //////////////////////////////////////////// spu irq handler here? mmm... do it later
523
524 s_1=s_chan[ch].s_1;
525 s_2=s_chan[ch].s_2;
526
527 predict_nr=(int)*start;start++;
528 shift_factor=predict_nr&0xf;
529 predict_nr >>= 4;
530 flags=(int)*start;start++;
531
532 // -------------------------------------- //
533
534 for (nSample=0;nSample<28;start++)
535 {
536 d=(int)*start;
537 s=((d&0xf)<<12);
538 if(s&0x8000) s|=0xffff0000;
539
540 fa=(s >> shift_factor);
541 fa=fa + ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
542 s_2=s_1;s_1=fa;
543 s=((d & 0xf0) << 8);
544
545 s_chan[ch].SB[nSample++]=fa;
546
547 if(s&0x8000) s|=0xffff0000;
548 fa=(s>>shift_factor);
549 fa=fa + ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
550 s_2=s_1;s_1=fa;
551
552 s_chan[ch].SB[nSample++]=fa;
553 }
554
555 //////////////////////////////////////////// irq check
556
557 if(irqCallback && (spuCtrl&0x40)) // some callback and irq active?
558 {
559 if((pSpuIrq > start-16 && // irq address reached?
560 pSpuIrq <= start) ||
561 ((flags&1) && // special: irq on looping addr, when stop/loop flag is set
562 (pSpuIrq > s_chan[ch].pLoop-16 &&
563 pSpuIrq <= s_chan[ch].pLoop)))
564 {
565 s_chan[ch].iIrqDone=1; // -> debug flag
566 irqCallback(); // -> call main emu
567
568 if(iSPUIRQWait) // -> option: wait after irq for main emu
569 {
570 iSpuAsyncWait=1;
571 bIRQReturn=1;
572 }
573 }
574 }
575
576 //////////////////////////////////////////// flag handler
577
578 if((flags&4) && (!s_chan[ch].bIgnoreLoop))
579 s_chan[ch].pLoop=start-16; // loop adress
580
581 if(flags&1) // 1: stop/loop
582 {
583 // We play this block out first...
584 //if(!(flags&2)) // 1+2: do loop... otherwise: stop
585 if(flags!=3 || s_chan[ch].pLoop==NULL) // PETE: if we don't check exactly for 3, loop hang ups will happen (DQ4, for example)
586 { // and checking if pLoop is set avoids crashes, yeah
587 start = (unsigned char*)-1;
588 }
589 else
590 {
591 start = s_chan[ch].pLoop;
592 }
593 }
594
595 s_chan[ch].pCurr=start; // store values for next cycle
596 s_chan[ch].s_1=s_1;
597 s_chan[ch].s_2=s_2;
598
599 if(bIRQReturn) // special return for "spu irq - wait for cpu action"
600 {
601 bIRQReturn=0;
602 if(iUseTimer!=2)
603 {
604 DWORD dwWatchTime=timeGetTime_spu()+2500;
605
606 while(iSpuAsyncWait && !bEndThread &&
607 timeGetTime_spu()<dwWatchTime)
608 usleep(1000L);
609 }
610 else
611 {
612 lastch=ch;
613 lastns=ns;
614
615 return 0;
616 }
617 }
618
619GOON: ;
620 }
621
622 fa=s_chan[ch].SB[s_chan[ch].iSBPos++]; // get sample data
623
624 StoreInterpolationVal(ch,fa); // store val for later interpolation
625
626 s_chan[ch].spos -= 0x10000L;
627 }
628
629 if(s_chan[ch].bNoise)
630 fa=iGetNoiseVal(ch); // get noise val
631 else fa=iGetInterpolationVal(ch); // get sample val
632
633 s_chan[ch].sval = (MixADSR(ch) * fa) / 1023; // mix adsr
634
635 if(s_chan[ch].bFMod==2) // fmod freq channel
636 iFMod[ns]=s_chan[ch].sval; // -> store 1T sample data, use that to do fmod on next channel
637 else // no fmod freq channel
638 {
639 //////////////////////////////////////////////
640 // ok, left/right sound volume (psx volume goes from 0 ... 0x3fff)
641
642 if(s_chan[ch].iMute)
643 s_chan[ch].sval=0; // debug mute
644 else
645 {
646 SSumL[ns]+=(s_chan[ch].sval*s_chan[ch].iLeftVolume)/0x4000L;
647 SSumR[ns]+=(s_chan[ch].sval*s_chan[ch].iRightVolume)/0x4000L;
648 }
649
650 //////////////////////////////////////////////
651 // now let us store sound data for reverb
652
653 if(s_chan[ch].bRVBActive) StoreREVERB(ch,ns);
654 }
655
656 ////////////////////////////////////////////////
657 // ok, go on until 1 ms data of this channel is collected
658
659 ns++;
660 s_chan[ch].spos += s_chan[ch].sinc;
661
662 }
663ENDX: ;
664 }
665 }
666
667 //---------------------------------------------------//
668 //- here we have another 1 ms of sound data
669 //---------------------------------------------------//
670 // mix XA infos (if any)
671
672 MixXA();
673
674 ///////////////////////////////////////////////////////
675 // mix all channels (including reverb) into one buffer
676
677 if(iDisStereo) // no stereo?
678 {
679 int dl, dr;
680 for (ns = 0; ns < NSSIZE; ns++)
681 {
682 SSumL[ns] += MixREVERBLeft(ns);
683
684 dl = SSumL[ns] / voldiv; SSumL[ns] = 0;
685 if (dl < -32767) dl = -32767; if (dl > 32767) dl = 32767;
686
687 SSumR[ns] += MixREVERBRight();
688
689 dr = SSumR[ns] / voldiv; SSumR[ns] = 0;
690 if (dr < -32767) dr = -32767; if (dr > 32767) dr = 32767;
691 *pS++ = (dl + dr) / 2;
692 }
693 }
694 else // stereo:
695 for (ns = 0; ns < NSSIZE; ns++)
696 {
697 SSumL[ns] += MixREVERBLeft(ns);
698
699 d = SSumL[ns] / voldiv; SSumL[ns] = 0;
700 if (d < -32767) d = -32767; if (d > 32767) d = 32767;
701 *pS++ = d;
702
703 SSumR[ns] += MixREVERBRight();
704
705 d = SSumR[ns] / voldiv; SSumR[ns] = 0;
706 if(d < -32767) d = -32767; if(d > 32767) d = 32767;
707 *pS++ = d;
708 }
709
710 //////////////////////////////////////////////////////
711 // special irq handling in the decode buffers (0x0000-0x1000)
712 // we know:
713 // the decode buffers are located in spu memory in the following way:
714 // 0x0000-0x03ff CD audio left
715 // 0x0400-0x07ff CD audio right
716 // 0x0800-0x0bff Voice 1
717 // 0x0c00-0x0fff Voice 3
718 // and decoded data is 16 bit for one sample
719 // we assume:
720 // even if voices 1/3 are off or no cd audio is playing, the internal
721 // play positions will move on and wrap after 0x400 bytes.
722 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
723 // increase this pointer on each sample by 2 bytes. If this pointer
724 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
725 // an IRQ. Only problem: the "wait for cpu" option is kinda hard to do here
726 // in some of Peops timer modes. So: we ignore this option here (for now).
727
728 if(pMixIrq && irqCallback)
729 {
730 for(ns=0;ns<NSSIZE;ns++)
731 {
732 if((spuCtrl&0x40) && pSpuIrq && pSpuIrq<spuMemC+0x1000)
733 {
734 for(ch=0;ch<4;ch++)
735 {
736 if(pSpuIrq>=pMixIrq+(ch*0x400) && pSpuIrq<pMixIrq+(ch*0x400)+2)
737 {irqCallback();s_chan[ch].iIrqDone=1;}
738 }
739 }
740 pMixIrq+=2;if(pMixIrq>spuMemC+0x3ff) pMixIrq=spuMemC;
741 }
742 }
743
744 InitREVERB();
745
746 // feed the sound
747 // wanna have around 1/60 sec (16.666 ms) updates
748 if (iCycle++ > 16)
749 {
750 SoundFeedStreamData((unsigned char *)pSpuBuffer,
751 ((unsigned char *)pS) - ((unsigned char *)pSpuBuffer));
752 pS = (short *)pSpuBuffer;
753 iCycle = 0;
754 }
755 }
756
757 // end of big main loop...
758
759 bThreadEnded = 1;
760
761 return 0;
762}
763
764// SPU ASYNC... even newer epsxe func
765// 1 time every 'cycle' cycles... harhar
766
767void CALLBACK SPUasync(unsigned long cycle)
768{
769 if(iSpuAsyncWait)
770 {
771 iSpuAsyncWait++;
772 if(iSpuAsyncWait<=64) return;
773 iSpuAsyncWait=0;
774 }
775
776 if(iUseTimer==2) // special mode, only used in Linux by this spu (or if you enable the experimental Windows mode)
777 {
778 if(!bSpuInit) return; // -> no init, no call
779
780 MAINThread(0); // -> linux high-compat mode
781 }
782}
783
784// SPU UPDATE... new epsxe func
785// 1 time every 32 hsync lines
786// (312/32)x50 in pal
787// (262/32)x60 in ntsc
788
789// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
790// leave that func in the linux port, until epsxe linux is using
791// the async function as well
792
793void CALLBACK SPUupdate(void)
794{
795 SPUasync(0);
796}
797
798// XA AUDIO
799
800void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
801{
802 if(!xap) return;
803 if(!xap->freq) return; // no xa freq ? bye
804
805 FeedXA(xap); // call main XA feeder
806}
807
808// CDDA AUDIO
809void CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
810{
811 if (!pcm) return;
812 if (nbytes<=0) return;
813
814 FeedCDDA((unsigned char *)pcm, nbytes);
815}
816
817// SETUPTIMER: init of certain buffers and threads/timers
818void SetupTimer(void)
819{
820 memset(SSumR,0,NSSIZE*sizeof(int)); // init some mixing buffers
821 memset(SSumL,0,NSSIZE*sizeof(int));
822 memset(iFMod,0,NSSIZE*sizeof(int));
823 pS=(short *)pSpuBuffer; // setup soundbuffer pointer
824
825 bEndThread=0; // init thread vars
826 bThreadEnded=0;
827 bSpuInit=1; // flag: we are inited
828
829 if(!iUseTimer) // linux: use thread
830 {
831 pthread_create(&thread, NULL, MAINThread, NULL);
832 }
833}
834
835// REMOVETIMER: kill threads/timers
836void RemoveTimer(void)
837{
838 bEndThread=1; // raise flag to end thread
839
840 if(!iUseTimer) // linux tread?
841 {
842 int i=0;
843 while(!bThreadEnded && i<2000) {usleep(1000L);i++;} // -> wait until thread has ended
844 if(thread!=(pthread_t)-1) {pthread_cancel(thread);thread=(pthread_t)-1;} // -> cancel thread anyway
845 }
846
847 bThreadEnded=0; // no more spu is running
848 bSpuInit=0;
849}
850
851// SETUPSTREAMS: init most of the spu buffers
852void SetupStreams(void)
853{
854 int i;
855
856 pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer
857
858 if(iUseReverb==1) i=88200*2;
859 else i=NSSIZE*2;
860
861 sRVBStart = (int *)malloc(i*4); // alloc reverb buffer
862 memset(sRVBStart,0,i*4);
863 sRVBEnd = sRVBStart + i;
864 sRVBPlay = sRVBStart;
865
866 XAStart = // alloc xa buffer
867 (uint32_t *)malloc(44100 * sizeof(uint32_t));
868 XAEnd = XAStart + 44100;
869 XAPlay = XAStart;
870 XAFeed = XAStart;
871
872 CDDAStart = // alloc cdda buffer
873 (uint32_t *)malloc(16384 * sizeof(uint32_t));
874 CDDAEnd = CDDAStart + 16384;
875 CDDAPlay = CDDAStart;
876 CDDAFeed = CDDAStart + 1;
877
878 for(i=0;i<MAXCHAN;i++) // loop sound channels
879 {
880// we don't use mutex sync... not needed, would only
881// slow us down:
882// s_chan[i].hMutex=CreateMutex(NULL,FALSE,NULL);
883 s_chan[i].ADSRX.SustainLevel = 1024; // -> init sustain
884 s_chan[i].iMute=0;
885 s_chan[i].iIrqDone=0;
886 s_chan[i].pLoop=spuMemC;
887 s_chan[i].pStart=spuMemC;
888 s_chan[i].pCurr=spuMemC;
889 }
890
891 pMixIrq=spuMemC; // enable decoded buffer irqs by setting the address
892}
893
894// REMOVESTREAMS: free most buffer
895void RemoveStreams(void)
896{
897 free(pSpuBuffer); // free mixing buffer
898 pSpuBuffer = NULL;
899 free(sRVBStart); // free reverb buffer
900 sRVBStart = NULL;
901 free(XAStart); // free XA buffer
902 XAStart = NULL;
903 free(CDDAStart); // free CDDA buffer
904 CDDAStart = NULL;
905}
906
907// INIT/EXIT STUFF
908
909// SPUINIT: this func will be called first by the main emu
910long CALLBACK SPUinit(void)
911{
912 spuMemC = (unsigned char *)spuMem; // just small setup
913 memset((void *)&rvb, 0, sizeof(REVERBInfo));
914 InitADSR();
915
916 iVolume = 3;
917 iReverbOff = -1;
918 spuIrq = 0;
919 spuAddr = 0xffffffff;
920 bEndThread = 0;
921 bThreadEnded = 0;
922 spuMemC = (unsigned char *)spuMem;
923 pMixIrq = 0;
924 memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN));
925 pSpuIrq = 0;
367b1b93 926 iSPUIRQWait = 0;
ef79bbde
P
927 lastch = -1;
928
d7296e10 929 //ReadConfigSPU(); // read user stuff
ef79bbde
P
930 SetupStreams(); // prepare streaming
931
932 return 0;
933}
934
935// SPUOPEN: called by main emu after init
936long CALLBACK SPUopen(void)
937{
938 if (bSPUIsOpen) return 0; // security for some stupid main emus
939
940 SetupSound(); // setup sound (before init!)
941 SetupTimer(); // timer for feeding data
942
943 bSPUIsOpen = 1;
944
945 return PSE_SPU_ERR_SUCCESS;
946}
947
948// SPUCLOSE: called before shutdown
949long CALLBACK SPUclose(void)
950{
951 if (!bSPUIsOpen) return 0; // some security
952
953 bSPUIsOpen = 0; // no more open
954
955 RemoveTimer(); // no more feeding
956 RemoveSound(); // no more sound handling
957
958 return 0;
959}
960
961// SPUSHUTDOWN: called by main emu on final exit
962long CALLBACK SPUshutdown(void)
963{
964 SPUclose();
965 RemoveStreams(); // no more streaming
966
967 return 0;
968}
969
970// SPUTEST: we don't test, we are always fine ;)
971long CALLBACK SPUtest(void)
972{
973 return 0;
974}
975
976// SPUCONFIGURE: call config dialog
977long CALLBACK SPUconfigure(void)
978{
979#ifdef _MACOSX
980 DoConfiguration();
981#else
ee849648 982// StartCfgTool("CFG");
ef79bbde
P
983#endif
984 return 0;
985}
986
987// SPUABOUT: show about window
988void CALLBACK SPUabout(void)
989{
990#ifdef _MACOSX
991 DoAbout();
992#else
ee849648 993// StartCfgTool("ABOUT");
ef79bbde
P
994#endif
995}
996
997// SETUP CALLBACKS
998// this functions will be called once,
999// passes a callback that should be called on SPU-IRQ/cdda volume change
1000void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1001{
1002 irqCallback = callback;
1003}
1004
1005void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1006{
1007 cddavCallback = CDDAVcallback;
1008}
1009
1010// COMMON PLUGIN INFO FUNCS
e906c010 1011/*
ef79bbde
P
1012char * CALLBACK PSEgetLibName(void)
1013{
1014 return _(libraryName);
1015}
1016
1017unsigned long CALLBACK PSEgetLibType(void)
1018{
1019 return PSE_LT_SPU;
1020}
1021
1022unsigned long CALLBACK PSEgetLibVersion(void)
1023{
1024 return (1 << 16) | (6 << 8);
1025}
1026
1027char * SPUgetLibInfos(void)
1028{
1029 return _(libraryInfo);
1030}
e906c010 1031*/