drc: drop 'likely' branch support, simplify
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42
43#define noinline __attribute__((noinline,noclone))
44#ifndef ARRAY_SIZE
45#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
46#endif
47#ifndef min
48#define min(a, b) ((b) < (a) ? (b) : (a))
49#endif
50#ifndef max
51#define max(a, b) ((b) > (a) ? (b) : (a))
52#endif
53
54//#define DISASM
55//#define ASSEM_PRINT
56
57#ifdef ASSEM_PRINT
58#define assem_debug printf
59#else
60#define assem_debug(...)
61#endif
62//#define inv_debug printf
63#define inv_debug(...)
64
65#ifdef __i386__
66#include "assem_x86.h"
67#endif
68#ifdef __x86_64__
69#include "assem_x64.h"
70#endif
71#ifdef __arm__
72#include "assem_arm.h"
73#endif
74#ifdef __aarch64__
75#include "assem_arm64.h"
76#endif
77
78#define RAM_SIZE 0x200000
79#define MAXBLOCK 4096
80#define MAX_OUTPUT_BLOCK_SIZE 262144
81
82struct ndrc_mem
83{
84 u_char translation_cache[1 << TARGET_SIZE_2];
85 struct
86 {
87 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
88 const void *f[2048 / sizeof(void *)];
89 } tramp;
90};
91
92#ifdef BASE_ADDR_DYNAMIC
93static struct ndrc_mem *ndrc;
94#else
95static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
96static struct ndrc_mem *ndrc = &ndrc_;
97#endif
98
99// stubs
100enum stub_type {
101 CC_STUB = 1,
102 FP_STUB = 2,
103 LOADB_STUB = 3,
104 LOADH_STUB = 4,
105 LOADW_STUB = 5,
106 LOADD_STUB = 6,
107 LOADBU_STUB = 7,
108 LOADHU_STUB = 8,
109 STOREB_STUB = 9,
110 STOREH_STUB = 10,
111 STOREW_STUB = 11,
112 STORED_STUB = 12,
113 STORELR_STUB = 13,
114 INVCODE_STUB = 14,
115};
116
117struct regstat
118{
119 signed char regmap_entry[HOST_REGS];
120 signed char regmap[HOST_REGS];
121 uint64_t wasdirty;
122 uint64_t dirty;
123 uint64_t u;
124 u_int wasconst;
125 u_int isconst;
126 u_int loadedconst; // host regs that have constants loaded
127 u_int waswritten; // MIPS regs that were used as store base before
128};
129
130// note: asm depends on this layout
131struct ll_entry
132{
133 u_int vaddr;
134 u_int reg_sv_flags;
135 void *addr;
136 struct ll_entry *next;
137};
138
139struct ht_entry
140{
141 u_int vaddr[2];
142 void *tcaddr[2];
143};
144
145struct code_stub
146{
147 enum stub_type type;
148 void *addr;
149 void *retaddr;
150 u_int a;
151 uintptr_t b;
152 uintptr_t c;
153 u_int d;
154 u_int e;
155};
156
157struct link_entry
158{
159 void *addr;
160 u_int target;
161 u_int ext;
162};
163
164static struct decoded_insn
165{
166 u_char itype;
167 u_char opcode;
168 u_char opcode2;
169 u_char rs1;
170 u_char rs2;
171 u_char rt1;
172 u_char rt2;
173 u_char lt1;
174 u_char bt:1;
175 u_char ooo:1;
176 u_char is_ds:1;
177 u_char is_jump:1;
178 u_char is_ujump:1;
179} dops[MAXBLOCK];
180
181 // used by asm:
182 u_char *out;
183 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
184 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
185 struct ll_entry *jump_dirty[4096];
186
187 static struct ll_entry *jump_out[4096];
188 static u_int start;
189 static u_int *source;
190 static char insn[MAXBLOCK][10];
191 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
192 static uint64_t gte_rt[MAXBLOCK];
193 static uint64_t gte_unneeded[MAXBLOCK];
194 static u_int smrv[32]; // speculated MIPS register values
195 static u_int smrv_strong; // mask or regs that are likely to have correct values
196 static u_int smrv_weak; // same, but somewhat less likely
197 static u_int smrv_strong_next; // same, but after current insn executes
198 static u_int smrv_weak_next;
199 static int imm[MAXBLOCK];
200 static u_int ba[MAXBLOCK];
201 static uint64_t unneeded_reg[MAXBLOCK];
202 static uint64_t branch_unneeded_reg[MAXBLOCK];
203 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
204 // contains 'real' consts at [i] insn, but may differ from what's actually
205 // loaded in host reg as 'final' value is always loaded, see get_final_value()
206 static uint32_t current_constmap[HOST_REGS];
207 static uint32_t constmap[MAXBLOCK][HOST_REGS];
208 static struct regstat regs[MAXBLOCK];
209 static struct regstat branch_regs[MAXBLOCK];
210 static signed char minimum_free_regs[MAXBLOCK];
211 static u_int needed_reg[MAXBLOCK];
212 static u_int wont_dirty[MAXBLOCK];
213 static u_int will_dirty[MAXBLOCK];
214 static int ccadj[MAXBLOCK];
215 static int slen;
216 static void *instr_addr[MAXBLOCK];
217 static struct link_entry link_addr[MAXBLOCK];
218 static int linkcount;
219 static struct code_stub stubs[MAXBLOCK*3];
220 static int stubcount;
221 static u_int literals[1024][2];
222 static int literalcount;
223 static int is_delayslot;
224 static char shadow[1048576] __attribute__((aligned(16)));
225 static void *copy;
226 static int expirep;
227 static u_int stop_after_jal;
228#ifndef RAM_FIXED
229 static uintptr_t ram_offset;
230#else
231 static const uintptr_t ram_offset=0;
232#endif
233
234 int new_dynarec_hacks;
235 int new_dynarec_hacks_pergame;
236 int new_dynarec_hacks_old;
237 int new_dynarec_did_compile;
238
239 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
240
241 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
242 extern int last_count; // last absolute target, often = next_interupt
243 extern int pcaddr;
244 extern int pending_exception;
245 extern int branch_target;
246 extern uintptr_t mini_ht[32][2];
247 extern u_char restore_candidate[512];
248
249 /* registers that may be allocated */
250 /* 1-31 gpr */
251#define LOREG 32 // lo
252#define HIREG 33 // hi
253//#define FSREG 34 // FPU status (FCSR)
254#define CSREG 35 // Coprocessor status
255#define CCREG 36 // Cycle count
256#define INVCP 37 // Pointer to invalid_code
257//#define MMREG 38 // Pointer to memory_map
258//#define ROREG 39 // ram offset (if rdram!=0x80000000)
259#define TEMPREG 40
260#define FTEMP 40 // FPU temporary register
261#define PTEMP 41 // Prefetch temporary register
262//#define TLREG 42 // TLB mapping offset
263#define RHASH 43 // Return address hash
264#define RHTBL 44 // Return address hash table address
265#define RTEMP 45 // JR/JALR address register
266#define MAXREG 45
267#define AGEN1 46 // Address generation temporary register
268//#define AGEN2 47 // Address generation temporary register
269//#define MGEN1 48 // Maptable address generation temporary register
270//#define MGEN2 49 // Maptable address generation temporary register
271#define BTREG 50 // Branch target temporary register
272
273 /* instruction types */
274#define NOP 0 // No operation
275#define LOAD 1 // Load
276#define STORE 2 // Store
277#define LOADLR 3 // Unaligned load
278#define STORELR 4 // Unaligned store
279#define MOV 5 // Move
280#define ALU 6 // Arithmetic/logic
281#define MULTDIV 7 // Multiply/divide
282#define SHIFT 8 // Shift by register
283#define SHIFTIMM 9// Shift by immediate
284#define IMM16 10 // 16-bit immediate
285#define RJUMP 11 // Unconditional jump to register
286#define UJUMP 12 // Unconditional jump
287#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
288#define SJUMP 14 // Conditional branch (regimm format)
289#define COP0 15 // Coprocessor 0
290#define COP1 16 // Coprocessor 1
291#define C1LS 17 // Coprocessor 1 load/store
292//#define FJUMP 18 // Conditional branch (floating point)
293//#define FLOAT 19 // Floating point unit
294//#define FCONV 20 // Convert integer to float
295//#define FCOMP 21 // Floating point compare (sets FSREG)
296#define SYSCALL 22// SYSCALL
297#define OTHER 23 // Other
298#define SPAN 24 // Branch/delay slot spans 2 pages
299#define NI 25 // Not implemented
300#define HLECALL 26// PCSX fake opcodes for HLE
301#define COP2 27 // Coprocessor 2 move
302#define C2LS 28 // Coprocessor 2 load/store
303#define C2OP 29 // Coprocessor 2 operation
304#define INTCALL 30// Call interpreter to handle rare corner cases
305
306 /* branch codes */
307#define TAKEN 1
308#define NOTTAKEN 2
309#define NULLDS 3
310
311#define DJT_1 (void *)1l // no function, just a label in assem_debug log
312#define DJT_2 (void *)2l
313
314// asm linkage
315int new_recompile_block(u_int addr);
316void *get_addr_ht(u_int vaddr);
317void invalidate_block(u_int block);
318void invalidate_addr(u_int addr);
319void remove_hash(int vaddr);
320void dyna_linker();
321void dyna_linker_ds();
322void verify_code();
323void verify_code_ds();
324void cc_interrupt();
325void fp_exception();
326void fp_exception_ds();
327void jump_to_new_pc();
328void call_gteStall();
329void new_dyna_leave();
330
331// Needed by assembler
332static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
333static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
334static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
335static void load_all_regs(signed char i_regmap[]);
336static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
337static void load_regs_entry(int t);
338static void load_all_consts(signed char regmap[],u_int dirty,int i);
339static u_int get_host_reglist(const signed char *regmap);
340
341static int verify_dirty(const u_int *ptr);
342static int get_final_value(int hr, int i, int *value);
343static void add_stub(enum stub_type type, void *addr, void *retaddr,
344 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
345static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
346 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
347static void add_to_linker(void *addr, u_int target, int ext);
348static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override);
349static void *get_direct_memhandler(void *table, u_int addr,
350 enum stub_type type, uintptr_t *addr_host);
351static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
352static void pass_args(int a0, int a1);
353static void emit_far_jump(const void *f);
354static void emit_far_call(const void *f);
355
356static void mprotect_w_x(void *start, void *end, int is_x)
357{
358#ifdef NO_WRITE_EXEC
359 #if defined(VITA)
360 // *Open* enables write on all memory that was
361 // allocated by sceKernelAllocMemBlockForVM()?
362 if (is_x)
363 sceKernelCloseVMDomain();
364 else
365 sceKernelOpenVMDomain();
366 #else
367 u_long mstart = (u_long)start & ~4095ul;
368 u_long mend = (u_long)end;
369 if (mprotect((void *)mstart, mend - mstart,
370 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
371 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
372 #endif
373#endif
374}
375
376static void start_tcache_write(void *start, void *end)
377{
378 mprotect_w_x(start, end, 0);
379}
380
381static void end_tcache_write(void *start, void *end)
382{
383#if defined(__arm__) || defined(__aarch64__)
384 size_t len = (char *)end - (char *)start;
385 #if defined(__BLACKBERRY_QNX__)
386 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
387 #elif defined(__MACH__)
388 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
389 #elif defined(VITA)
390 sceKernelSyncVMDomain(sceBlock, start, len);
391 #elif defined(_3DS)
392 ctr_flush_invalidate_cache();
393 #elif defined(__aarch64__)
394 // as of 2021, __clear_cache() is still broken on arm64
395 // so here is a custom one :(
396 clear_cache_arm64(start, end);
397 #else
398 __clear_cache(start, end);
399 #endif
400 (void)len;
401#endif
402
403 mprotect_w_x(start, end, 1);
404}
405
406static void *start_block(void)
407{
408 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
409 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
410 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
411 start_tcache_write(out, end);
412 return out;
413}
414
415static void end_block(void *start)
416{
417 end_tcache_write(start, out);
418}
419
420// also takes care of w^x mappings when patching code
421static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
422
423static void mark_clear_cache(void *target)
424{
425 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
426 u_int mask = 1u << ((offset >> 12) & 31);
427 if (!(needs_clear_cache[offset >> 17] & mask)) {
428 char *start = (char *)((uintptr_t)target & ~4095l);
429 start_tcache_write(start, start + 4095);
430 needs_clear_cache[offset >> 17] |= mask;
431 }
432}
433
434// Clearing the cache is rather slow on ARM Linux, so mark the areas
435// that need to be cleared, and then only clear these areas once.
436static void do_clear_cache(void)
437{
438 int i, j;
439 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
440 {
441 u_int bitmap = needs_clear_cache[i];
442 if (!bitmap)
443 continue;
444 for (j = 0; j < 32; j++)
445 {
446 u_char *start, *end;
447 if (!(bitmap & (1<<j)))
448 continue;
449
450 start = ndrc->translation_cache + i*131072 + j*4096;
451 end = start + 4095;
452 for (j++; j < 32; j++) {
453 if (!(bitmap & (1<<j)))
454 break;
455 end += 4096;
456 }
457 end_tcache_write(start, end);
458 }
459 needs_clear_cache[i] = 0;
460 }
461}
462
463//#define DEBUG_CYCLE_COUNT 1
464
465#define NO_CYCLE_PENALTY_THR 12
466
467int cycle_multiplier; // 100 for 1.0
468int cycle_multiplier_override;
469int cycle_multiplier_old;
470
471static int CLOCK_ADJUST(int x)
472{
473 int m = cycle_multiplier_override
474 ? cycle_multiplier_override : cycle_multiplier;
475 int s=(x>>31)|1;
476 return (x * m + s * 50) / 100;
477}
478
479static int ds_writes_rjump_rs(int i)
480{
481 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
482}
483
484static u_int get_page(u_int vaddr)
485{
486 u_int page=vaddr&~0xe0000000;
487 if (page < 0x1000000)
488 page &= ~0x0e00000; // RAM mirrors
489 page>>=12;
490 if(page>2048) page=2048+(page&2047);
491 return page;
492}
493
494// no virtual mem in PCSX
495static u_int get_vpage(u_int vaddr)
496{
497 return get_page(vaddr);
498}
499
500static struct ht_entry *hash_table_get(u_int vaddr)
501{
502 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
503}
504
505static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
506{
507 ht_bin->vaddr[1] = ht_bin->vaddr[0];
508 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
509 ht_bin->vaddr[0] = vaddr;
510 ht_bin->tcaddr[0] = tcaddr;
511}
512
513// some messy ari64's code, seems to rely on unsigned 32bit overflow
514static int doesnt_expire_soon(void *tcaddr)
515{
516 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
517 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
518}
519
520// Get address from virtual address
521// This is called from the recompiled JR/JALR instructions
522void noinline *get_addr(u_int vaddr)
523{
524 u_int page=get_page(vaddr);
525 u_int vpage=get_vpage(vaddr);
526 struct ll_entry *head;
527 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
528 head=jump_in[page];
529 while(head!=NULL) {
530 if(head->vaddr==vaddr) {
531 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
532 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
533 return head->addr;
534 }
535 head=head->next;
536 }
537 head=jump_dirty[vpage];
538 while(head!=NULL) {
539 if(head->vaddr==vaddr) {
540 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
541 // Don't restore blocks which are about to expire from the cache
542 if (doesnt_expire_soon(head->addr))
543 if (verify_dirty(head->addr)) {
544 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
545 invalid_code[vaddr>>12]=0;
546 inv_code_start=inv_code_end=~0;
547 if(vpage<2048) {
548 restore_candidate[vpage>>3]|=1<<(vpage&7);
549 }
550 else restore_candidate[page>>3]|=1<<(page&7);
551 struct ht_entry *ht_bin = hash_table_get(vaddr);
552 if (ht_bin->vaddr[0] == vaddr)
553 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
554 else
555 hash_table_add(ht_bin, vaddr, head->addr);
556
557 return head->addr;
558 }
559 }
560 head=head->next;
561 }
562 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
563 int r=new_recompile_block(vaddr);
564 if(r==0) return get_addr(vaddr);
565 // Execute in unmapped page, generate pagefault execption
566 Status|=2;
567 Cause=(vaddr<<31)|0x8;
568 EPC=(vaddr&1)?vaddr-5:vaddr;
569 BadVAddr=(vaddr&~1);
570 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
571 EntryHi=BadVAddr&0xFFFFE000;
572 return get_addr_ht(0x80000000);
573}
574// Look up address in hash table first
575void *get_addr_ht(u_int vaddr)
576{
577 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
578 const struct ht_entry *ht_bin = hash_table_get(vaddr);
579 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
580 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
581 return get_addr(vaddr);
582}
583
584void clear_all_regs(signed char regmap[])
585{
586 int hr;
587 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
588}
589
590static signed char get_reg(const signed char regmap[],int r)
591{
592 int hr;
593 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
594 return -1;
595}
596
597// Find a register that is available for two consecutive cycles
598static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
599{
600 int hr;
601 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
602 return -1;
603}
604
605int count_free_regs(signed char regmap[])
606{
607 int count=0;
608 int hr;
609 for(hr=0;hr<HOST_REGS;hr++)
610 {
611 if(hr!=EXCLUDE_REG) {
612 if(regmap[hr]<0) count++;
613 }
614 }
615 return count;
616}
617
618void dirty_reg(struct regstat *cur,signed char reg)
619{
620 int hr;
621 if(!reg) return;
622 for (hr=0;hr<HOST_REGS;hr++) {
623 if((cur->regmap[hr]&63)==reg) {
624 cur->dirty|=1<<hr;
625 }
626 }
627}
628
629static void set_const(struct regstat *cur, signed char reg, uint32_t value)
630{
631 int hr;
632 if(!reg) return;
633 for (hr=0;hr<HOST_REGS;hr++) {
634 if(cur->regmap[hr]==reg) {
635 cur->isconst|=1<<hr;
636 current_constmap[hr]=value;
637 }
638 }
639}
640
641static void clear_const(struct regstat *cur, signed char reg)
642{
643 int hr;
644 if(!reg) return;
645 for (hr=0;hr<HOST_REGS;hr++) {
646 if((cur->regmap[hr]&63)==reg) {
647 cur->isconst&=~(1<<hr);
648 }
649 }
650}
651
652static int is_const(struct regstat *cur, signed char reg)
653{
654 int hr;
655 if(reg<0) return 0;
656 if(!reg) return 1;
657 for (hr=0;hr<HOST_REGS;hr++) {
658 if((cur->regmap[hr]&63)==reg) {
659 return (cur->isconst>>hr)&1;
660 }
661 }
662 return 0;
663}
664
665static uint32_t get_const(struct regstat *cur, signed char reg)
666{
667 int hr;
668 if(!reg) return 0;
669 for (hr=0;hr<HOST_REGS;hr++) {
670 if(cur->regmap[hr]==reg) {
671 return current_constmap[hr];
672 }
673 }
674 SysPrintf("Unknown constant in r%d\n",reg);
675 abort();
676}
677
678// Least soon needed registers
679// Look at the next ten instructions and see which registers
680// will be used. Try not to reallocate these.
681void lsn(u_char hsn[], int i, int *preferred_reg)
682{
683 int j;
684 int b=-1;
685 for(j=0;j<9;j++)
686 {
687 if(i+j>=slen) {
688 j=slen-i-1;
689 break;
690 }
691 if (dops[i+j].is_ujump)
692 {
693 // Don't go past an unconditonal jump
694 j++;
695 break;
696 }
697 }
698 for(;j>=0;j--)
699 {
700 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
701 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
702 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
703 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
704 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
705 // Stores can allocate zero
706 hsn[dops[i+j].rs1]=j;
707 hsn[dops[i+j].rs2]=j;
708 }
709 // On some architectures stores need invc_ptr
710 #if defined(HOST_IMM8)
711 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR || (dops[i+j].opcode&0x3b)==0x39 || (dops[i+j].opcode&0x3b)==0x3a) {
712 hsn[INVCP]=j;
713 }
714 #endif
715 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
716 {
717 hsn[CCREG]=j;
718 b=j;
719 }
720 }
721 if(b>=0)
722 {
723 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
724 {
725 // Follow first branch
726 int t=(ba[i+b]-start)>>2;
727 j=7-b;if(t+j>=slen) j=slen-t-1;
728 for(;j>=0;j--)
729 {
730 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
731 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
732 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
733 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
734 }
735 }
736 // TODO: preferred register based on backward branch
737 }
738 // Delay slot should preferably not overwrite branch conditions or cycle count
739 if (i > 0 && dops[i-1].is_jump) {
740 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
741 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
742 hsn[CCREG]=1;
743 // ...or hash tables
744 hsn[RHASH]=1;
745 hsn[RHTBL]=1;
746 }
747 // Coprocessor load/store needs FTEMP, even if not declared
748 if(dops[i].itype==C1LS||dops[i].itype==C2LS) {
749 hsn[FTEMP]=0;
750 }
751 // Load L/R also uses FTEMP as a temporary register
752 if(dops[i].itype==LOADLR) {
753 hsn[FTEMP]=0;
754 }
755 // Also SWL/SWR/SDL/SDR
756 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
757 hsn[FTEMP]=0;
758 }
759 // Don't remove the miniht registers
760 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
761 {
762 hsn[RHASH]=0;
763 hsn[RHTBL]=0;
764 }
765}
766
767// We only want to allocate registers if we're going to use them again soon
768int needed_again(int r, int i)
769{
770 int j;
771 int b=-1;
772 int rn=10;
773
774 if (i > 0 && dops[i-1].is_ujump)
775 {
776 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
777 return 0; // Don't need any registers if exiting the block
778 }
779 for(j=0;j<9;j++)
780 {
781 if(i+j>=slen) {
782 j=slen-i-1;
783 break;
784 }
785 if (dops[i+j].is_ujump)
786 {
787 // Don't go past an unconditonal jump
788 j++;
789 break;
790 }
791 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
792 {
793 break;
794 }
795 }
796 for(;j>=1;j--)
797 {
798 if(dops[i+j].rs1==r) rn=j;
799 if(dops[i+j].rs2==r) rn=j;
800 if((unneeded_reg[i+j]>>r)&1) rn=10;
801 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
802 {
803 b=j;
804 }
805 }
806 if(rn<10) return 1;
807 (void)b;
808 return 0;
809}
810
811// Try to match register allocations at the end of a loop with those
812// at the beginning
813int loop_reg(int i, int r, int hr)
814{
815 int j,k;
816 for(j=0;j<9;j++)
817 {
818 if(i+j>=slen) {
819 j=slen-i-1;
820 break;
821 }
822 if (dops[i+j].is_ujump)
823 {
824 // Don't go past an unconditonal jump
825 j++;
826 break;
827 }
828 }
829 k=0;
830 if(i>0){
831 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
832 k--;
833 }
834 for(;k<j;k++)
835 {
836 assert(r < 64);
837 if((unneeded_reg[i+k]>>r)&1) return hr;
838 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
839 {
840 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
841 {
842 int t=(ba[i+k]-start)>>2;
843 int reg=get_reg(regs[t].regmap_entry,r);
844 if(reg>=0) return reg;
845 //reg=get_reg(regs[t+1].regmap_entry,r);
846 //if(reg>=0) return reg;
847 }
848 }
849 }
850 return hr;
851}
852
853
854// Allocate every register, preserving source/target regs
855void alloc_all(struct regstat *cur,int i)
856{
857 int hr;
858
859 for(hr=0;hr<HOST_REGS;hr++) {
860 if(hr!=EXCLUDE_REG) {
861 if(((cur->regmap[hr]&63)!=dops[i].rs1)&&((cur->regmap[hr]&63)!=dops[i].rs2)&&
862 ((cur->regmap[hr]&63)!=dops[i].rt1)&&((cur->regmap[hr]&63)!=dops[i].rt2))
863 {
864 cur->regmap[hr]=-1;
865 cur->dirty&=~(1<<hr);
866 }
867 // Don't need zeros
868 if((cur->regmap[hr]&63)==0)
869 {
870 cur->regmap[hr]=-1;
871 cur->dirty&=~(1<<hr);
872 }
873 }
874 }
875}
876
877#ifndef NDEBUG
878static int host_tempreg_in_use;
879
880static void host_tempreg_acquire(void)
881{
882 assert(!host_tempreg_in_use);
883 host_tempreg_in_use = 1;
884}
885
886static void host_tempreg_release(void)
887{
888 host_tempreg_in_use = 0;
889}
890#else
891static void host_tempreg_acquire(void) {}
892static void host_tempreg_release(void) {}
893#endif
894
895#ifdef ASSEM_PRINT
896extern void gen_interupt();
897extern void do_insn_cmp();
898#define FUNCNAME(f) { f, " " #f }
899static const struct {
900 void *addr;
901 const char *name;
902} function_names[] = {
903 FUNCNAME(cc_interrupt),
904 FUNCNAME(gen_interupt),
905 FUNCNAME(get_addr_ht),
906 FUNCNAME(get_addr),
907 FUNCNAME(jump_handler_read8),
908 FUNCNAME(jump_handler_read16),
909 FUNCNAME(jump_handler_read32),
910 FUNCNAME(jump_handler_write8),
911 FUNCNAME(jump_handler_write16),
912 FUNCNAME(jump_handler_write32),
913 FUNCNAME(invalidate_addr),
914 FUNCNAME(jump_to_new_pc),
915 FUNCNAME(call_gteStall),
916 FUNCNAME(new_dyna_leave),
917 FUNCNAME(pcsx_mtc0),
918 FUNCNAME(pcsx_mtc0_ds),
919#ifdef DRC_DBG
920 FUNCNAME(do_insn_cmp),
921#endif
922#ifdef __arm__
923 FUNCNAME(verify_code),
924#endif
925};
926
927static const char *func_name(const void *a)
928{
929 int i;
930 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
931 if (function_names[i].addr == a)
932 return function_names[i].name;
933 return "";
934}
935#else
936#define func_name(x) ""
937#endif
938
939#ifdef __i386__
940#include "assem_x86.c"
941#endif
942#ifdef __x86_64__
943#include "assem_x64.c"
944#endif
945#ifdef __arm__
946#include "assem_arm.c"
947#endif
948#ifdef __aarch64__
949#include "assem_arm64.c"
950#endif
951
952static void *get_trampoline(const void *f)
953{
954 size_t i;
955
956 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
957 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
958 break;
959 }
960 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
961 SysPrintf("trampoline table is full, last func %p\n", f);
962 abort();
963 }
964 if (ndrc->tramp.f[i] == NULL) {
965 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
966 ndrc->tramp.f[i] = f;
967 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
968 }
969 return &ndrc->tramp.ops[i];
970}
971
972static void emit_far_jump(const void *f)
973{
974 if (can_jump_or_call(f)) {
975 emit_jmp(f);
976 return;
977 }
978
979 f = get_trampoline(f);
980 emit_jmp(f);
981}
982
983static void emit_far_call(const void *f)
984{
985 if (can_jump_or_call(f)) {
986 emit_call(f);
987 return;
988 }
989
990 f = get_trampoline(f);
991 emit_call(f);
992}
993
994// Add virtual address mapping to linked list
995void ll_add(struct ll_entry **head,int vaddr,void *addr)
996{
997 struct ll_entry *new_entry;
998 new_entry=malloc(sizeof(struct ll_entry));
999 assert(new_entry!=NULL);
1000 new_entry->vaddr=vaddr;
1001 new_entry->reg_sv_flags=0;
1002 new_entry->addr=addr;
1003 new_entry->next=*head;
1004 *head=new_entry;
1005}
1006
1007void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1008{
1009 ll_add(head,vaddr,addr);
1010 (*head)->reg_sv_flags=reg_sv_flags;
1011}
1012
1013// Check if an address is already compiled
1014// but don't return addresses which are about to expire from the cache
1015void *check_addr(u_int vaddr)
1016{
1017 struct ht_entry *ht_bin = hash_table_get(vaddr);
1018 size_t i;
1019 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1020 if (ht_bin->vaddr[i] == vaddr)
1021 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1022 if (isclean(ht_bin->tcaddr[i]))
1023 return ht_bin->tcaddr[i];
1024 }
1025 u_int page=get_page(vaddr);
1026 struct ll_entry *head;
1027 head=jump_in[page];
1028 while (head != NULL) {
1029 if (head->vaddr == vaddr) {
1030 if (doesnt_expire_soon(head->addr)) {
1031 // Update existing entry with current address
1032 if (ht_bin->vaddr[0] == vaddr) {
1033 ht_bin->tcaddr[0] = head->addr;
1034 return head->addr;
1035 }
1036 if (ht_bin->vaddr[1] == vaddr) {
1037 ht_bin->tcaddr[1] = head->addr;
1038 return head->addr;
1039 }
1040 // Insert into hash table with low priority.
1041 // Don't evict existing entries, as they are probably
1042 // addresses that are being accessed frequently.
1043 if (ht_bin->vaddr[0] == -1) {
1044 ht_bin->vaddr[0] = vaddr;
1045 ht_bin->tcaddr[0] = head->addr;
1046 }
1047 else if (ht_bin->vaddr[1] == -1) {
1048 ht_bin->vaddr[1] = vaddr;
1049 ht_bin->tcaddr[1] = head->addr;
1050 }
1051 return head->addr;
1052 }
1053 }
1054 head=head->next;
1055 }
1056 return 0;
1057}
1058
1059void remove_hash(int vaddr)
1060{
1061 //printf("remove hash: %x\n",vaddr);
1062 struct ht_entry *ht_bin = hash_table_get(vaddr);
1063 if (ht_bin->vaddr[1] == vaddr) {
1064 ht_bin->vaddr[1] = -1;
1065 ht_bin->tcaddr[1] = NULL;
1066 }
1067 if (ht_bin->vaddr[0] == vaddr) {
1068 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1069 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1070 ht_bin->vaddr[1] = -1;
1071 ht_bin->tcaddr[1] = NULL;
1072 }
1073}
1074
1075static void ll_remove_matching_addrs(struct ll_entry **head,
1076 uintptr_t base_offs_s, int shift)
1077{
1078 struct ll_entry *next;
1079 while(*head) {
1080 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1081 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1082 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1083 {
1084 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1085 remove_hash((*head)->vaddr);
1086 next=(*head)->next;
1087 free(*head);
1088 *head=next;
1089 }
1090 else
1091 {
1092 head=&((*head)->next);
1093 }
1094 }
1095}
1096
1097// Remove all entries from linked list
1098void ll_clear(struct ll_entry **head)
1099{
1100 struct ll_entry *cur;
1101 struct ll_entry *next;
1102 if((cur=*head)) {
1103 *head=0;
1104 while(cur) {
1105 next=cur->next;
1106 free(cur);
1107 cur=next;
1108 }
1109 }
1110}
1111
1112// Dereference the pointers and remove if it matches
1113static void ll_kill_pointers(struct ll_entry *head,
1114 uintptr_t base_offs_s, int shift)
1115{
1116 while(head) {
1117 u_char *ptr = get_pointer(head->addr);
1118 uintptr_t o1 = ptr - ndrc->translation_cache;
1119 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1120 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1121 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1122 {
1123 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1124 void *host_addr=find_extjump_insn(head->addr);
1125 mark_clear_cache(host_addr);
1126 set_jump_target(host_addr, head->addr);
1127 }
1128 head=head->next;
1129 }
1130}
1131
1132// This is called when we write to a compiled block (see do_invstub)
1133static void invalidate_page(u_int page)
1134{
1135 struct ll_entry *head;
1136 struct ll_entry *next;
1137 head=jump_in[page];
1138 jump_in[page]=0;
1139 while(head!=NULL) {
1140 inv_debug("INVALIDATE: %x\n",head->vaddr);
1141 remove_hash(head->vaddr);
1142 next=head->next;
1143 free(head);
1144 head=next;
1145 }
1146 head=jump_out[page];
1147 jump_out[page]=0;
1148 while(head!=NULL) {
1149 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1150 void *host_addr=find_extjump_insn(head->addr);
1151 mark_clear_cache(host_addr);
1152 set_jump_target(host_addr, head->addr); // point back to dyna_linker
1153 next=head->next;
1154 free(head);
1155 head=next;
1156 }
1157}
1158
1159static void invalidate_block_range(u_int block, u_int first, u_int last)
1160{
1161 u_int page=get_page(block<<12);
1162 //printf("first=%d last=%d\n",first,last);
1163 invalidate_page(page);
1164 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1165 assert(last<page+5);
1166 // Invalidate the adjacent pages if a block crosses a 4K boundary
1167 while(first<page) {
1168 invalidate_page(first);
1169 first++;
1170 }
1171 for(first=page+1;first<last;first++) {
1172 invalidate_page(first);
1173 }
1174 do_clear_cache();
1175
1176 // Don't trap writes
1177 invalid_code[block]=1;
1178
1179 #ifdef USE_MINI_HT
1180 memset(mini_ht,-1,sizeof(mini_ht));
1181 #endif
1182}
1183
1184void invalidate_block(u_int block)
1185{
1186 u_int page=get_page(block<<12);
1187 u_int vpage=get_vpage(block<<12);
1188 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1189 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1190 u_int first,last;
1191 first=last=page;
1192 struct ll_entry *head;
1193 head=jump_dirty[vpage];
1194 //printf("page=%d vpage=%d\n",page,vpage);
1195 while(head!=NULL) {
1196 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1197 u_char *start, *end;
1198 get_bounds(head->addr, &start, &end);
1199 //printf("start: %p end: %p\n", start, end);
1200 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1201 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1202 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1203 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1204 }
1205 }
1206 }
1207 head=head->next;
1208 }
1209 invalidate_block_range(block,first,last);
1210}
1211
1212void invalidate_addr(u_int addr)
1213{
1214 //static int rhits;
1215 // this check is done by the caller
1216 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1217 u_int page=get_vpage(addr);
1218 if(page<2048) { // RAM
1219 struct ll_entry *head;
1220 u_int addr_min=~0, addr_max=0;
1221 u_int mask=RAM_SIZE-1;
1222 u_int addr_main=0x80000000|(addr&mask);
1223 int pg1;
1224 inv_code_start=addr_main&~0xfff;
1225 inv_code_end=addr_main|0xfff;
1226 pg1=page;
1227 if (pg1>0) {
1228 // must check previous page too because of spans..
1229 pg1--;
1230 inv_code_start-=0x1000;
1231 }
1232 for(;pg1<=page;pg1++) {
1233 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1234 u_char *start_h, *end_h;
1235 u_int start, end;
1236 get_bounds(head->addr, &start_h, &end_h);
1237 start = (uintptr_t)start_h - ram_offset;
1238 end = (uintptr_t)end_h - ram_offset;
1239 if(start<=addr_main&&addr_main<end) {
1240 if(start<addr_min) addr_min=start;
1241 if(end>addr_max) addr_max=end;
1242 }
1243 else if(addr_main<start) {
1244 if(start<inv_code_end)
1245 inv_code_end=start-1;
1246 }
1247 else {
1248 if(end>inv_code_start)
1249 inv_code_start=end;
1250 }
1251 }
1252 }
1253 if (addr_min!=~0) {
1254 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1255 inv_code_start=inv_code_end=~0;
1256 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1257 return;
1258 }
1259 else {
1260 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1261 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1262 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1263 return;
1264 }
1265 }
1266 invalidate_block(addr>>12);
1267}
1268
1269// This is called when loading a save state.
1270// Anything could have changed, so invalidate everything.
1271void invalidate_all_pages(void)
1272{
1273 u_int page;
1274 for(page=0;page<4096;page++)
1275 invalidate_page(page);
1276 for(page=0;page<1048576;page++)
1277 if(!invalid_code[page]) {
1278 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1279 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1280 }
1281 #ifdef USE_MINI_HT
1282 memset(mini_ht,-1,sizeof(mini_ht));
1283 #endif
1284 do_clear_cache();
1285}
1286
1287static void do_invstub(int n)
1288{
1289 literal_pool(20);
1290 u_int reglist=stubs[n].a;
1291 set_jump_target(stubs[n].addr, out);
1292 save_regs(reglist);
1293 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1294 emit_far_call(invalidate_addr);
1295 restore_regs(reglist);
1296 emit_jmp(stubs[n].retaddr); // return address
1297}
1298
1299// Add an entry to jump_out after making a link
1300// src should point to code by emit_extjump2()
1301void add_jump_out(u_int vaddr,void *src)
1302{
1303 u_int page=get_page(vaddr);
1304 inv_debug("add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1305 check_extjump2(src);
1306 ll_add(jump_out+page,vaddr,src);
1307 //inv_debug("add_jump_out: to %p\n",get_pointer(src));
1308}
1309
1310// If a code block was found to be unmodified (bit was set in
1311// restore_candidate) and it remains unmodified (bit is clear
1312// in invalid_code) then move the entries for that 4K page from
1313// the dirty list to the clean list.
1314void clean_blocks(u_int page)
1315{
1316 struct ll_entry *head;
1317 inv_debug("INV: clean_blocks page=%d\n",page);
1318 head=jump_dirty[page];
1319 while(head!=NULL) {
1320 if(!invalid_code[head->vaddr>>12]) {
1321 // Don't restore blocks which are about to expire from the cache
1322 if (doesnt_expire_soon(head->addr)) {
1323 if(verify_dirty(head->addr)) {
1324 u_char *start, *end;
1325 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1326 u_int i;
1327 u_int inv=0;
1328 get_bounds(head->addr, &start, &end);
1329 if (start - rdram < RAM_SIZE) {
1330 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1331 inv|=invalid_code[i];
1332 }
1333 }
1334 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1335 inv=1;
1336 }
1337 if(!inv) {
1338 void *clean_addr = get_clean_addr(head->addr);
1339 if (doesnt_expire_soon(clean_addr)) {
1340 u_int ppage=page;
1341 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1342 //printf("page=%x, addr=%x\n",page,head->vaddr);
1343 //assert(head->vaddr>>12==(page|0x80000));
1344 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1345 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1346 if (ht_bin->vaddr[0] == head->vaddr)
1347 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1348 if (ht_bin->vaddr[1] == head->vaddr)
1349 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1350 }
1351 }
1352 }
1353 }
1354 }
1355 head=head->next;
1356 }
1357}
1358
1359/* Register allocation */
1360
1361// Note: registers are allocated clean (unmodified state)
1362// if you intend to modify the register, you must call dirty_reg().
1363static void alloc_reg(struct regstat *cur,int i,signed char reg)
1364{
1365 int r,hr;
1366 int preferred_reg = (reg&7);
1367 if(reg==CCREG) preferred_reg=HOST_CCREG;
1368 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1369
1370 // Don't allocate unused registers
1371 if((cur->u>>reg)&1) return;
1372
1373 // see if it's already allocated
1374 for(hr=0;hr<HOST_REGS;hr++)
1375 {
1376 if(cur->regmap[hr]==reg) return;
1377 }
1378
1379 // Keep the same mapping if the register was already allocated in a loop
1380 preferred_reg = loop_reg(i,reg,preferred_reg);
1381
1382 // Try to allocate the preferred register
1383 if(cur->regmap[preferred_reg]==-1) {
1384 cur->regmap[preferred_reg]=reg;
1385 cur->dirty&=~(1<<preferred_reg);
1386 cur->isconst&=~(1<<preferred_reg);
1387 return;
1388 }
1389 r=cur->regmap[preferred_reg];
1390 assert(r < 64);
1391 if((cur->u>>r)&1) {
1392 cur->regmap[preferred_reg]=reg;
1393 cur->dirty&=~(1<<preferred_reg);
1394 cur->isconst&=~(1<<preferred_reg);
1395 return;
1396 }
1397
1398 // Clear any unneeded registers
1399 // We try to keep the mapping consistent, if possible, because it
1400 // makes branches easier (especially loops). So we try to allocate
1401 // first (see above) before removing old mappings. If this is not
1402 // possible then go ahead and clear out the registers that are no
1403 // longer needed.
1404 for(hr=0;hr<HOST_REGS;hr++)
1405 {
1406 r=cur->regmap[hr];
1407 if(r>=0) {
1408 assert(r < 64);
1409 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1410 }
1411 }
1412 // Try to allocate any available register, but prefer
1413 // registers that have not been used recently.
1414 if(i>0) {
1415 for(hr=0;hr<HOST_REGS;hr++) {
1416 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1417 if(regs[i-1].regmap[hr]!=dops[i-1].rs1&&regs[i-1].regmap[hr]!=dops[i-1].rs2&&regs[i-1].regmap[hr]!=dops[i-1].rt1&&regs[i-1].regmap[hr]!=dops[i-1].rt2) {
1418 cur->regmap[hr]=reg;
1419 cur->dirty&=~(1<<hr);
1420 cur->isconst&=~(1<<hr);
1421 return;
1422 }
1423 }
1424 }
1425 }
1426 // Try to allocate any available register
1427 for(hr=0;hr<HOST_REGS;hr++) {
1428 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1429 cur->regmap[hr]=reg;
1430 cur->dirty&=~(1<<hr);
1431 cur->isconst&=~(1<<hr);
1432 return;
1433 }
1434 }
1435
1436 // Ok, now we have to evict someone
1437 // Pick a register we hopefully won't need soon
1438 u_char hsn[MAXREG+1];
1439 memset(hsn,10,sizeof(hsn));
1440 int j;
1441 lsn(hsn,i,&preferred_reg);
1442 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1443 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1444 if(i>0) {
1445 // Don't evict the cycle count at entry points, otherwise the entry
1446 // stub will have to write it.
1447 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1448 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1449 for(j=10;j>=3;j--)
1450 {
1451 // Alloc preferred register if available
1452 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1453 for(hr=0;hr<HOST_REGS;hr++) {
1454 // Evict both parts of a 64-bit register
1455 if((cur->regmap[hr]&63)==r) {
1456 cur->regmap[hr]=-1;
1457 cur->dirty&=~(1<<hr);
1458 cur->isconst&=~(1<<hr);
1459 }
1460 }
1461 cur->regmap[preferred_reg]=reg;
1462 return;
1463 }
1464 for(r=1;r<=MAXREG;r++)
1465 {
1466 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1467 for(hr=0;hr<HOST_REGS;hr++) {
1468 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1469 if(cur->regmap[hr]==r) {
1470 cur->regmap[hr]=reg;
1471 cur->dirty&=~(1<<hr);
1472 cur->isconst&=~(1<<hr);
1473 return;
1474 }
1475 }
1476 }
1477 }
1478 }
1479 }
1480 }
1481 for(j=10;j>=0;j--)
1482 {
1483 for(r=1;r<=MAXREG;r++)
1484 {
1485 if(hsn[r]==j) {
1486 for(hr=0;hr<HOST_REGS;hr++) {
1487 if(cur->regmap[hr]==r) {
1488 cur->regmap[hr]=reg;
1489 cur->dirty&=~(1<<hr);
1490 cur->isconst&=~(1<<hr);
1491 return;
1492 }
1493 }
1494 }
1495 }
1496 }
1497 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1498}
1499
1500// Allocate a temporary register. This is done without regard to
1501// dirty status or whether the register we request is on the unneeded list
1502// Note: This will only allocate one register, even if called multiple times
1503static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1504{
1505 int r,hr;
1506 int preferred_reg = -1;
1507
1508 // see if it's already allocated
1509 for(hr=0;hr<HOST_REGS;hr++)
1510 {
1511 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1512 }
1513
1514 // Try to allocate any available register
1515 for(hr=HOST_REGS-1;hr>=0;hr--) {
1516 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1517 cur->regmap[hr]=reg;
1518 cur->dirty&=~(1<<hr);
1519 cur->isconst&=~(1<<hr);
1520 return;
1521 }
1522 }
1523
1524 // Find an unneeded register
1525 for(hr=HOST_REGS-1;hr>=0;hr--)
1526 {
1527 r=cur->regmap[hr];
1528 if(r>=0) {
1529 assert(r < 64);
1530 if((cur->u>>r)&1) {
1531 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1532 cur->regmap[hr]=reg;
1533 cur->dirty&=~(1<<hr);
1534 cur->isconst&=~(1<<hr);
1535 return;
1536 }
1537 }
1538 }
1539 }
1540
1541 // Ok, now we have to evict someone
1542 // Pick a register we hopefully won't need soon
1543 // TODO: we might want to follow unconditional jumps here
1544 // TODO: get rid of dupe code and make this into a function
1545 u_char hsn[MAXREG+1];
1546 memset(hsn,10,sizeof(hsn));
1547 int j;
1548 lsn(hsn,i,&preferred_reg);
1549 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1550 if(i>0) {
1551 // Don't evict the cycle count at entry points, otherwise the entry
1552 // stub will have to write it.
1553 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1554 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1555 for(j=10;j>=3;j--)
1556 {
1557 for(r=1;r<=MAXREG;r++)
1558 {
1559 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1560 for(hr=0;hr<HOST_REGS;hr++) {
1561 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1562 if(cur->regmap[hr]==r) {
1563 cur->regmap[hr]=reg;
1564 cur->dirty&=~(1<<hr);
1565 cur->isconst&=~(1<<hr);
1566 return;
1567 }
1568 }
1569 }
1570 }
1571 }
1572 }
1573 }
1574 for(j=10;j>=0;j--)
1575 {
1576 for(r=1;r<=MAXREG;r++)
1577 {
1578 if(hsn[r]==j) {
1579 for(hr=0;hr<HOST_REGS;hr++) {
1580 if(cur->regmap[hr]==r) {
1581 cur->regmap[hr]=reg;
1582 cur->dirty&=~(1<<hr);
1583 cur->isconst&=~(1<<hr);
1584 return;
1585 }
1586 }
1587 }
1588 }
1589 }
1590 SysPrintf("This shouldn't happen");abort();
1591}
1592
1593static void mov_alloc(struct regstat *current,int i)
1594{
1595 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1596 // logically this is needed but just won't work, no idea why
1597 //alloc_cc(current,i); // for stalls
1598 //dirty_reg(current,CCREG);
1599 }
1600
1601 // Note: Don't need to actually alloc the source registers
1602 //alloc_reg(current,i,dops[i].rs1);
1603 alloc_reg(current,i,dops[i].rt1);
1604
1605 clear_const(current,dops[i].rs1);
1606 clear_const(current,dops[i].rt1);
1607 dirty_reg(current,dops[i].rt1);
1608}
1609
1610static void shiftimm_alloc(struct regstat *current,int i)
1611{
1612 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1613 {
1614 if(dops[i].rt1) {
1615 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1616 else dops[i].lt1=dops[i].rs1;
1617 alloc_reg(current,i,dops[i].rt1);
1618 dirty_reg(current,dops[i].rt1);
1619 if(is_const(current,dops[i].rs1)) {
1620 int v=get_const(current,dops[i].rs1);
1621 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1622 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1623 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1624 }
1625 else clear_const(current,dops[i].rt1);
1626 }
1627 }
1628 else
1629 {
1630 clear_const(current,dops[i].rs1);
1631 clear_const(current,dops[i].rt1);
1632 }
1633
1634 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1635 {
1636 assert(0);
1637 }
1638 if(dops[i].opcode2==0x3c) // DSLL32
1639 {
1640 assert(0);
1641 }
1642 if(dops[i].opcode2==0x3e) // DSRL32
1643 {
1644 assert(0);
1645 }
1646 if(dops[i].opcode2==0x3f) // DSRA32
1647 {
1648 assert(0);
1649 }
1650}
1651
1652static void shift_alloc(struct regstat *current,int i)
1653{
1654 if(dops[i].rt1) {
1655 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1656 {
1657 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1658 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1659 alloc_reg(current,i,dops[i].rt1);
1660 if(dops[i].rt1==dops[i].rs2) {
1661 alloc_reg_temp(current,i,-1);
1662 minimum_free_regs[i]=1;
1663 }
1664 } else { // DSLLV/DSRLV/DSRAV
1665 assert(0);
1666 }
1667 clear_const(current,dops[i].rs1);
1668 clear_const(current,dops[i].rs2);
1669 clear_const(current,dops[i].rt1);
1670 dirty_reg(current,dops[i].rt1);
1671 }
1672}
1673
1674static void alu_alloc(struct regstat *current,int i)
1675{
1676 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1677 if(dops[i].rt1) {
1678 if(dops[i].rs1&&dops[i].rs2) {
1679 alloc_reg(current,i,dops[i].rs1);
1680 alloc_reg(current,i,dops[i].rs2);
1681 }
1682 else {
1683 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1684 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1685 }
1686 alloc_reg(current,i,dops[i].rt1);
1687 }
1688 }
1689 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1690 if(dops[i].rt1) {
1691 alloc_reg(current,i,dops[i].rs1);
1692 alloc_reg(current,i,dops[i].rs2);
1693 alloc_reg(current,i,dops[i].rt1);
1694 }
1695 }
1696 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1697 if(dops[i].rt1) {
1698 if(dops[i].rs1&&dops[i].rs2) {
1699 alloc_reg(current,i,dops[i].rs1);
1700 alloc_reg(current,i,dops[i].rs2);
1701 }
1702 else
1703 {
1704 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1705 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1706 }
1707 alloc_reg(current,i,dops[i].rt1);
1708 }
1709 }
1710 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1711 assert(0);
1712 }
1713 clear_const(current,dops[i].rs1);
1714 clear_const(current,dops[i].rs2);
1715 clear_const(current,dops[i].rt1);
1716 dirty_reg(current,dops[i].rt1);
1717}
1718
1719static void imm16_alloc(struct regstat *current,int i)
1720{
1721 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1722 else dops[i].lt1=dops[i].rs1;
1723 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1724 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1725 assert(0);
1726 }
1727 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1728 clear_const(current,dops[i].rs1);
1729 clear_const(current,dops[i].rt1);
1730 }
1731 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1732 if(is_const(current,dops[i].rs1)) {
1733 int v=get_const(current,dops[i].rs1);
1734 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1735 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1736 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1737 }
1738 else clear_const(current,dops[i].rt1);
1739 }
1740 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1741 if(is_const(current,dops[i].rs1)) {
1742 int v=get_const(current,dops[i].rs1);
1743 set_const(current,dops[i].rt1,v+imm[i]);
1744 }
1745 else clear_const(current,dops[i].rt1);
1746 }
1747 else {
1748 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1749 }
1750 dirty_reg(current,dops[i].rt1);
1751}
1752
1753static void load_alloc(struct regstat *current,int i)
1754{
1755 clear_const(current,dops[i].rt1);
1756 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1757 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1758 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1759 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1760 alloc_reg(current,i,dops[i].rt1);
1761 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1762 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1763 {
1764 assert(0);
1765 }
1766 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1767 {
1768 assert(0);
1769 }
1770 dirty_reg(current,dops[i].rt1);
1771 // LWL/LWR need a temporary register for the old value
1772 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1773 {
1774 alloc_reg(current,i,FTEMP);
1775 alloc_reg_temp(current,i,-1);
1776 minimum_free_regs[i]=1;
1777 }
1778 }
1779 else
1780 {
1781 // Load to r0 or unneeded register (dummy load)
1782 // but we still need a register to calculate the address
1783 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1784 {
1785 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1786 }
1787 alloc_reg_temp(current,i,-1);
1788 minimum_free_regs[i]=1;
1789 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1790 {
1791 assert(0);
1792 }
1793 }
1794}
1795
1796void store_alloc(struct regstat *current,int i)
1797{
1798 clear_const(current,dops[i].rs2);
1799 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1800 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1801 alloc_reg(current,i,dops[i].rs2);
1802 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1803 assert(0);
1804 }
1805 #if defined(HOST_IMM8)
1806 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1807 else alloc_reg(current,i,INVCP);
1808 #endif
1809 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1810 alloc_reg(current,i,FTEMP);
1811 }
1812 // We need a temporary register for address generation
1813 alloc_reg_temp(current,i,-1);
1814 minimum_free_regs[i]=1;
1815}
1816
1817void c1ls_alloc(struct regstat *current,int i)
1818{
1819 //clear_const(current,dops[i].rs1); // FIXME
1820 clear_const(current,dops[i].rt1);
1821 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1822 alloc_reg(current,i,CSREG); // Status
1823 alloc_reg(current,i,FTEMP);
1824 if(dops[i].opcode==0x35||dops[i].opcode==0x3d) { // 64-bit LDC1/SDC1
1825 assert(0);
1826 }
1827 #if defined(HOST_IMM8)
1828 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1829 else if((dops[i].opcode&0x3b)==0x39) // SWC1/SDC1
1830 alloc_reg(current,i,INVCP);
1831 #endif
1832 // We need a temporary register for address generation
1833 alloc_reg_temp(current,i,-1);
1834}
1835
1836void c2ls_alloc(struct regstat *current,int i)
1837{
1838 clear_const(current,dops[i].rt1);
1839 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1840 alloc_reg(current,i,FTEMP);
1841 #if defined(HOST_IMM8)
1842 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1843 if((dops[i].opcode&0x3b)==0x3a) // SWC2/SDC2
1844 alloc_reg(current,i,INVCP);
1845 #endif
1846 // We need a temporary register for address generation
1847 alloc_reg_temp(current,i,-1);
1848 minimum_free_regs[i]=1;
1849}
1850
1851#ifndef multdiv_alloc
1852void multdiv_alloc(struct regstat *current,int i)
1853{
1854 // case 0x18: MULT
1855 // case 0x19: MULTU
1856 // case 0x1A: DIV
1857 // case 0x1B: DIVU
1858 // case 0x1C: DMULT
1859 // case 0x1D: DMULTU
1860 // case 0x1E: DDIV
1861 // case 0x1F: DDIVU
1862 clear_const(current,dops[i].rs1);
1863 clear_const(current,dops[i].rs2);
1864 alloc_cc(current,i); // for stalls
1865 if(dops[i].rs1&&dops[i].rs2)
1866 {
1867 if((dops[i].opcode2&4)==0) // 32-bit
1868 {
1869 current->u&=~(1LL<<HIREG);
1870 current->u&=~(1LL<<LOREG);
1871 alloc_reg(current,i,HIREG);
1872 alloc_reg(current,i,LOREG);
1873 alloc_reg(current,i,dops[i].rs1);
1874 alloc_reg(current,i,dops[i].rs2);
1875 dirty_reg(current,HIREG);
1876 dirty_reg(current,LOREG);
1877 }
1878 else // 64-bit
1879 {
1880 assert(0);
1881 }
1882 }
1883 else
1884 {
1885 // Multiply by zero is zero.
1886 // MIPS does not have a divide by zero exception.
1887 // The result is undefined, we return zero.
1888 alloc_reg(current,i,HIREG);
1889 alloc_reg(current,i,LOREG);
1890 dirty_reg(current,HIREG);
1891 dirty_reg(current,LOREG);
1892 }
1893}
1894#endif
1895
1896void cop0_alloc(struct regstat *current,int i)
1897{
1898 if(dops[i].opcode2==0) // MFC0
1899 {
1900 if(dops[i].rt1) {
1901 clear_const(current,dops[i].rt1);
1902 alloc_all(current,i);
1903 alloc_reg(current,i,dops[i].rt1);
1904 dirty_reg(current,dops[i].rt1);
1905 }
1906 }
1907 else if(dops[i].opcode2==4) // MTC0
1908 {
1909 if(dops[i].rs1){
1910 clear_const(current,dops[i].rs1);
1911 alloc_reg(current,i,dops[i].rs1);
1912 alloc_all(current,i);
1913 }
1914 else {
1915 alloc_all(current,i); // FIXME: Keep r0
1916 current->u&=~1LL;
1917 alloc_reg(current,i,0);
1918 }
1919 }
1920 else
1921 {
1922 // TLBR/TLBWI/TLBWR/TLBP/ERET
1923 assert(dops[i].opcode2==0x10);
1924 alloc_all(current,i);
1925 }
1926 minimum_free_regs[i]=HOST_REGS;
1927}
1928
1929static void cop2_alloc(struct regstat *current,int i)
1930{
1931 if (dops[i].opcode2 < 3) // MFC2/CFC2
1932 {
1933 alloc_cc(current,i); // for stalls
1934 dirty_reg(current,CCREG);
1935 if(dops[i].rt1){
1936 clear_const(current,dops[i].rt1);
1937 alloc_reg(current,i,dops[i].rt1);
1938 dirty_reg(current,dops[i].rt1);
1939 }
1940 }
1941 else if (dops[i].opcode2 > 3) // MTC2/CTC2
1942 {
1943 if(dops[i].rs1){
1944 clear_const(current,dops[i].rs1);
1945 alloc_reg(current,i,dops[i].rs1);
1946 }
1947 else {
1948 current->u&=~1LL;
1949 alloc_reg(current,i,0);
1950 }
1951 }
1952 alloc_reg_temp(current,i,-1);
1953 minimum_free_regs[i]=1;
1954}
1955
1956void c2op_alloc(struct regstat *current,int i)
1957{
1958 alloc_cc(current,i); // for stalls
1959 dirty_reg(current,CCREG);
1960 alloc_reg_temp(current,i,-1);
1961}
1962
1963void syscall_alloc(struct regstat *current,int i)
1964{
1965 alloc_cc(current,i);
1966 dirty_reg(current,CCREG);
1967 alloc_all(current,i);
1968 minimum_free_regs[i]=HOST_REGS;
1969 current->isconst=0;
1970}
1971
1972void delayslot_alloc(struct regstat *current,int i)
1973{
1974 switch(dops[i].itype) {
1975 case UJUMP:
1976 case CJUMP:
1977 case SJUMP:
1978 case RJUMP:
1979 case SYSCALL:
1980 case HLECALL:
1981 case SPAN:
1982 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
1983 SysPrintf("Disabled speculative precompilation\n");
1984 stop_after_jal=1;
1985 break;
1986 case IMM16:
1987 imm16_alloc(current,i);
1988 break;
1989 case LOAD:
1990 case LOADLR:
1991 load_alloc(current,i);
1992 break;
1993 case STORE:
1994 case STORELR:
1995 store_alloc(current,i);
1996 break;
1997 case ALU:
1998 alu_alloc(current,i);
1999 break;
2000 case SHIFT:
2001 shift_alloc(current,i);
2002 break;
2003 case MULTDIV:
2004 multdiv_alloc(current,i);
2005 break;
2006 case SHIFTIMM:
2007 shiftimm_alloc(current,i);
2008 break;
2009 case MOV:
2010 mov_alloc(current,i);
2011 break;
2012 case COP0:
2013 cop0_alloc(current,i);
2014 break;
2015 case COP1:
2016 break;
2017 case COP2:
2018 cop2_alloc(current,i);
2019 break;
2020 case C1LS:
2021 c1ls_alloc(current,i);
2022 break;
2023 case C2LS:
2024 c2ls_alloc(current,i);
2025 break;
2026 case C2OP:
2027 c2op_alloc(current,i);
2028 break;
2029 }
2030}
2031
2032// Special case where a branch and delay slot span two pages in virtual memory
2033static void pagespan_alloc(struct regstat *current,int i)
2034{
2035 current->isconst=0;
2036 current->wasconst=0;
2037 regs[i].wasconst=0;
2038 minimum_free_regs[i]=HOST_REGS;
2039 alloc_all(current,i);
2040 alloc_cc(current,i);
2041 dirty_reg(current,CCREG);
2042 if(dops[i].opcode==3) // JAL
2043 {
2044 alloc_reg(current,i,31);
2045 dirty_reg(current,31);
2046 }
2047 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
2048 {
2049 alloc_reg(current,i,dops[i].rs1);
2050 if (dops[i].rt1!=0) {
2051 alloc_reg(current,i,dops[i].rt1);
2052 dirty_reg(current,dops[i].rt1);
2053 }
2054 }
2055 if((dops[i].opcode&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2056 {
2057 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2058 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
2059 }
2060 else
2061 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2062 {
2063 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2064 }
2065 //else ...
2066}
2067
2068static void add_stub(enum stub_type type, void *addr, void *retaddr,
2069 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2070{
2071 assert(stubcount < ARRAY_SIZE(stubs));
2072 stubs[stubcount].type = type;
2073 stubs[stubcount].addr = addr;
2074 stubs[stubcount].retaddr = retaddr;
2075 stubs[stubcount].a = a;
2076 stubs[stubcount].b = b;
2077 stubs[stubcount].c = c;
2078 stubs[stubcount].d = d;
2079 stubs[stubcount].e = e;
2080 stubcount++;
2081}
2082
2083static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2084 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2085{
2086 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2087}
2088
2089// Write out a single register
2090static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2091{
2092 int hr;
2093 for(hr=0;hr<HOST_REGS;hr++) {
2094 if(hr!=EXCLUDE_REG) {
2095 if((regmap[hr]&63)==r) {
2096 if((dirty>>hr)&1) {
2097 assert(regmap[hr]<64);
2098 emit_storereg(r,hr);
2099 }
2100 }
2101 }
2102 }
2103}
2104
2105static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2106{
2107 //if(dirty_pre==dirty) return;
2108 int hr,reg;
2109 for(hr=0;hr<HOST_REGS;hr++) {
2110 if(hr!=EXCLUDE_REG) {
2111 reg=pre[hr];
2112 if(((~u)>>(reg&63))&1) {
2113 if(reg>0) {
2114 if(((dirty_pre&~dirty)>>hr)&1) {
2115 if(reg>0&&reg<34) {
2116 emit_storereg(reg,hr);
2117 }
2118 else if(reg>=64) {
2119 assert(0);
2120 }
2121 }
2122 }
2123 }
2124 }
2125 }
2126}
2127
2128// trashes r2
2129static void pass_args(int a0, int a1)
2130{
2131 if(a0==1&&a1==0) {
2132 // must swap
2133 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2134 }
2135 else if(a0!=0&&a1==0) {
2136 emit_mov(a1,1);
2137 if (a0>=0) emit_mov(a0,0);
2138 }
2139 else {
2140 if(a0>=0&&a0!=0) emit_mov(a0,0);
2141 if(a1>=0&&a1!=1) emit_mov(a1,1);
2142 }
2143}
2144
2145static void alu_assemble(int i,struct regstat *i_regs)
2146{
2147 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2148 if(dops[i].rt1) {
2149 signed char s1,s2,t;
2150 t=get_reg(i_regs->regmap,dops[i].rt1);
2151 if(t>=0) {
2152 s1=get_reg(i_regs->regmap,dops[i].rs1);
2153 s2=get_reg(i_regs->regmap,dops[i].rs2);
2154 if(dops[i].rs1&&dops[i].rs2) {
2155 assert(s1>=0);
2156 assert(s2>=0);
2157 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2158 else emit_add(s1,s2,t);
2159 }
2160 else if(dops[i].rs1) {
2161 if(s1>=0) emit_mov(s1,t);
2162 else emit_loadreg(dops[i].rs1,t);
2163 }
2164 else if(dops[i].rs2) {
2165 if(s2>=0) {
2166 if(dops[i].opcode2&2) emit_neg(s2,t);
2167 else emit_mov(s2,t);
2168 }
2169 else {
2170 emit_loadreg(dops[i].rs2,t);
2171 if(dops[i].opcode2&2) emit_neg(t,t);
2172 }
2173 }
2174 else emit_zeroreg(t);
2175 }
2176 }
2177 }
2178 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2179 assert(0);
2180 }
2181 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2182 if(dops[i].rt1) {
2183 signed char s1l,s2l,t;
2184 {
2185 t=get_reg(i_regs->regmap,dops[i].rt1);
2186 //assert(t>=0);
2187 if(t>=0) {
2188 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2189 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2190 if(dops[i].rs2==0) // rx<r0
2191 {
2192 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2193 assert(s1l>=0);
2194 emit_shrimm(s1l,31,t);
2195 }
2196 else // SLTU (unsigned can not be less than zero, 0<0)
2197 emit_zeroreg(t);
2198 }
2199 else if(dops[i].rs1==0) // r0<rx
2200 {
2201 assert(s2l>=0);
2202 if(dops[i].opcode2==0x2a) // SLT
2203 emit_set_gz32(s2l,t);
2204 else // SLTU (set if not zero)
2205 emit_set_nz32(s2l,t);
2206 }
2207 else{
2208 assert(s1l>=0);assert(s2l>=0);
2209 if(dops[i].opcode2==0x2a) // SLT
2210 emit_set_if_less32(s1l,s2l,t);
2211 else // SLTU
2212 emit_set_if_carry32(s1l,s2l,t);
2213 }
2214 }
2215 }
2216 }
2217 }
2218 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2219 if(dops[i].rt1) {
2220 signed char s1l,s2l,tl;
2221 tl=get_reg(i_regs->regmap,dops[i].rt1);
2222 {
2223 if(tl>=0) {
2224 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2225 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2226 if(dops[i].rs1&&dops[i].rs2) {
2227 assert(s1l>=0);
2228 assert(s2l>=0);
2229 if(dops[i].opcode2==0x24) { // AND
2230 emit_and(s1l,s2l,tl);
2231 } else
2232 if(dops[i].opcode2==0x25) { // OR
2233 emit_or(s1l,s2l,tl);
2234 } else
2235 if(dops[i].opcode2==0x26) { // XOR
2236 emit_xor(s1l,s2l,tl);
2237 } else
2238 if(dops[i].opcode2==0x27) { // NOR
2239 emit_or(s1l,s2l,tl);
2240 emit_not(tl,tl);
2241 }
2242 }
2243 else
2244 {
2245 if(dops[i].opcode2==0x24) { // AND
2246 emit_zeroreg(tl);
2247 } else
2248 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2249 if(dops[i].rs1){
2250 if(s1l>=0) emit_mov(s1l,tl);
2251 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2252 }
2253 else
2254 if(dops[i].rs2){
2255 if(s2l>=0) emit_mov(s2l,tl);
2256 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2257 }
2258 else emit_zeroreg(tl);
2259 } else
2260 if(dops[i].opcode2==0x27) { // NOR
2261 if(dops[i].rs1){
2262 if(s1l>=0) emit_not(s1l,tl);
2263 else {
2264 emit_loadreg(dops[i].rs1,tl);
2265 emit_not(tl,tl);
2266 }
2267 }
2268 else
2269 if(dops[i].rs2){
2270 if(s2l>=0) emit_not(s2l,tl);
2271 else {
2272 emit_loadreg(dops[i].rs2,tl);
2273 emit_not(tl,tl);
2274 }
2275 }
2276 else emit_movimm(-1,tl);
2277 }
2278 }
2279 }
2280 }
2281 }
2282 }
2283}
2284
2285void imm16_assemble(int i,struct regstat *i_regs)
2286{
2287 if (dops[i].opcode==0x0f) { // LUI
2288 if(dops[i].rt1) {
2289 signed char t;
2290 t=get_reg(i_regs->regmap,dops[i].rt1);
2291 //assert(t>=0);
2292 if(t>=0) {
2293 if(!((i_regs->isconst>>t)&1))
2294 emit_movimm(imm[i]<<16,t);
2295 }
2296 }
2297 }
2298 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2299 if(dops[i].rt1) {
2300 signed char s,t;
2301 t=get_reg(i_regs->regmap,dops[i].rt1);
2302 s=get_reg(i_regs->regmap,dops[i].rs1);
2303 if(dops[i].rs1) {
2304 //assert(t>=0);
2305 //assert(s>=0);
2306 if(t>=0) {
2307 if(!((i_regs->isconst>>t)&1)) {
2308 if(s<0) {
2309 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2310 emit_addimm(t,imm[i],t);
2311 }else{
2312 if(!((i_regs->wasconst>>s)&1))
2313 emit_addimm(s,imm[i],t);
2314 else
2315 emit_movimm(constmap[i][s]+imm[i],t);
2316 }
2317 }
2318 }
2319 } else {
2320 if(t>=0) {
2321 if(!((i_regs->isconst>>t)&1))
2322 emit_movimm(imm[i],t);
2323 }
2324 }
2325 }
2326 }
2327 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2328 if(dops[i].rt1) {
2329 signed char sl,tl;
2330 tl=get_reg(i_regs->regmap,dops[i].rt1);
2331 sl=get_reg(i_regs->regmap,dops[i].rs1);
2332 if(tl>=0) {
2333 if(dops[i].rs1) {
2334 assert(sl>=0);
2335 emit_addimm(sl,imm[i],tl);
2336 } else {
2337 emit_movimm(imm[i],tl);
2338 }
2339 }
2340 }
2341 }
2342 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2343 if(dops[i].rt1) {
2344 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2345 signed char sl,t;
2346 t=get_reg(i_regs->regmap,dops[i].rt1);
2347 sl=get_reg(i_regs->regmap,dops[i].rs1);
2348 //assert(t>=0);
2349 if(t>=0) {
2350 if(dops[i].rs1>0) {
2351 if(dops[i].opcode==0x0a) { // SLTI
2352 if(sl<0) {
2353 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2354 emit_slti32(t,imm[i],t);
2355 }else{
2356 emit_slti32(sl,imm[i],t);
2357 }
2358 }
2359 else { // SLTIU
2360 if(sl<0) {
2361 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2362 emit_sltiu32(t,imm[i],t);
2363 }else{
2364 emit_sltiu32(sl,imm[i],t);
2365 }
2366 }
2367 }else{
2368 // SLTI(U) with r0 is just stupid,
2369 // nonetheless examples can be found
2370 if(dops[i].opcode==0x0a) // SLTI
2371 if(0<imm[i]) emit_movimm(1,t);
2372 else emit_zeroreg(t);
2373 else // SLTIU
2374 {
2375 if(imm[i]) emit_movimm(1,t);
2376 else emit_zeroreg(t);
2377 }
2378 }
2379 }
2380 }
2381 }
2382 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2383 if(dops[i].rt1) {
2384 signed char sl,tl;
2385 tl=get_reg(i_regs->regmap,dops[i].rt1);
2386 sl=get_reg(i_regs->regmap,dops[i].rs1);
2387 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2388 if(dops[i].opcode==0x0c) //ANDI
2389 {
2390 if(dops[i].rs1) {
2391 if(sl<0) {
2392 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2393 emit_andimm(tl,imm[i],tl);
2394 }else{
2395 if(!((i_regs->wasconst>>sl)&1))
2396 emit_andimm(sl,imm[i],tl);
2397 else
2398 emit_movimm(constmap[i][sl]&imm[i],tl);
2399 }
2400 }
2401 else
2402 emit_zeroreg(tl);
2403 }
2404 else
2405 {
2406 if(dops[i].rs1) {
2407 if(sl<0) {
2408 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2409 }
2410 if(dops[i].opcode==0x0d) { // ORI
2411 if(sl<0) {
2412 emit_orimm(tl,imm[i],tl);
2413 }else{
2414 if(!((i_regs->wasconst>>sl)&1))
2415 emit_orimm(sl,imm[i],tl);
2416 else
2417 emit_movimm(constmap[i][sl]|imm[i],tl);
2418 }
2419 }
2420 if(dops[i].opcode==0x0e) { // XORI
2421 if(sl<0) {
2422 emit_xorimm(tl,imm[i],tl);
2423 }else{
2424 if(!((i_regs->wasconst>>sl)&1))
2425 emit_xorimm(sl,imm[i],tl);
2426 else
2427 emit_movimm(constmap[i][sl]^imm[i],tl);
2428 }
2429 }
2430 }
2431 else {
2432 emit_movimm(imm[i],tl);
2433 }
2434 }
2435 }
2436 }
2437 }
2438}
2439
2440void shiftimm_assemble(int i,struct regstat *i_regs)
2441{
2442 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2443 {
2444 if(dops[i].rt1) {
2445 signed char s,t;
2446 t=get_reg(i_regs->regmap,dops[i].rt1);
2447 s=get_reg(i_regs->regmap,dops[i].rs1);
2448 //assert(t>=0);
2449 if(t>=0&&!((i_regs->isconst>>t)&1)){
2450 if(dops[i].rs1==0)
2451 {
2452 emit_zeroreg(t);
2453 }
2454 else
2455 {
2456 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2457 if(imm[i]) {
2458 if(dops[i].opcode2==0) // SLL
2459 {
2460 emit_shlimm(s<0?t:s,imm[i],t);
2461 }
2462 if(dops[i].opcode2==2) // SRL
2463 {
2464 emit_shrimm(s<0?t:s,imm[i],t);
2465 }
2466 if(dops[i].opcode2==3) // SRA
2467 {
2468 emit_sarimm(s<0?t:s,imm[i],t);
2469 }
2470 }else{
2471 // Shift by zero
2472 if(s>=0 && s!=t) emit_mov(s,t);
2473 }
2474 }
2475 }
2476 //emit_storereg(dops[i].rt1,t); //DEBUG
2477 }
2478 }
2479 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2480 {
2481 assert(0);
2482 }
2483 if(dops[i].opcode2==0x3c) // DSLL32
2484 {
2485 assert(0);
2486 }
2487 if(dops[i].opcode2==0x3e) // DSRL32
2488 {
2489 assert(0);
2490 }
2491 if(dops[i].opcode2==0x3f) // DSRA32
2492 {
2493 assert(0);
2494 }
2495}
2496
2497#ifndef shift_assemble
2498static void shift_assemble(int i,struct regstat *i_regs)
2499{
2500 signed char s,t,shift;
2501 if (dops[i].rt1 == 0)
2502 return;
2503 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2504 t = get_reg(i_regs->regmap, dops[i].rt1);
2505 s = get_reg(i_regs->regmap, dops[i].rs1);
2506 shift = get_reg(i_regs->regmap, dops[i].rs2);
2507 if (t < 0)
2508 return;
2509
2510 if(dops[i].rs1==0)
2511 emit_zeroreg(t);
2512 else if(dops[i].rs2==0) {
2513 assert(s>=0);
2514 if(s!=t) emit_mov(s,t);
2515 }
2516 else {
2517 host_tempreg_acquire();
2518 emit_andimm(shift,31,HOST_TEMPREG);
2519 switch(dops[i].opcode2) {
2520 case 4: // SLLV
2521 emit_shl(s,HOST_TEMPREG,t);
2522 break;
2523 case 6: // SRLV
2524 emit_shr(s,HOST_TEMPREG,t);
2525 break;
2526 case 7: // SRAV
2527 emit_sar(s,HOST_TEMPREG,t);
2528 break;
2529 default:
2530 assert(0);
2531 }
2532 host_tempreg_release();
2533 }
2534}
2535
2536#endif
2537
2538enum {
2539 MTYPE_8000 = 0,
2540 MTYPE_8020,
2541 MTYPE_0000,
2542 MTYPE_A000,
2543 MTYPE_1F80,
2544};
2545
2546static int get_ptr_mem_type(u_int a)
2547{
2548 if(a < 0x00200000) {
2549 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2550 // return wrong, must use memhandler for BIOS self-test to pass
2551 // 007 does similar stuff from a00 mirror, weird stuff
2552 return MTYPE_8000;
2553 return MTYPE_0000;
2554 }
2555 if(0x1f800000 <= a && a < 0x1f801000)
2556 return MTYPE_1F80;
2557 if(0x80200000 <= a && a < 0x80800000)
2558 return MTYPE_8020;
2559 if(0xa0000000 <= a && a < 0xa0200000)
2560 return MTYPE_A000;
2561 return MTYPE_8000;
2562}
2563
2564static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override)
2565{
2566 void *jaddr = NULL;
2567 int type=0;
2568 int mr=dops[i].rs1;
2569 if(((smrv_strong|smrv_weak)>>mr)&1) {
2570 type=get_ptr_mem_type(smrv[mr]);
2571 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2572 }
2573 else {
2574 // use the mirror we are running on
2575 type=get_ptr_mem_type(start);
2576 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2577 }
2578
2579 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2580 host_tempreg_acquire();
2581 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2582 addr=*addr_reg_override=HOST_TEMPREG;
2583 type=0;
2584 }
2585 else if(type==MTYPE_0000) { // RAM 0 mirror
2586 host_tempreg_acquire();
2587 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2588 addr=*addr_reg_override=HOST_TEMPREG;
2589 type=0;
2590 }
2591 else if(type==MTYPE_A000) { // RAM A mirror
2592 host_tempreg_acquire();
2593 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2594 addr=*addr_reg_override=HOST_TEMPREG;
2595 type=0;
2596 }
2597 else if(type==MTYPE_1F80) { // scratchpad
2598 if (psxH == (void *)0x1f800000) {
2599 host_tempreg_acquire();
2600 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2601 emit_cmpimm(HOST_TEMPREG,0x1000);
2602 host_tempreg_release();
2603 jaddr=out;
2604 emit_jc(0);
2605 }
2606 else {
2607 // do the usual RAM check, jump will go to the right handler
2608 type=0;
2609 }
2610 }
2611
2612 if(type==0)
2613 {
2614 emit_cmpimm(addr,RAM_SIZE);
2615 jaddr=out;
2616 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2617 // Hint to branch predictor that the branch is unlikely to be taken
2618 if(dops[i].rs1>=28)
2619 emit_jno_unlikely(0);
2620 else
2621 #endif
2622 emit_jno(0);
2623 if(ram_offset!=0) {
2624 host_tempreg_acquire();
2625 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2626 addr=*addr_reg_override=HOST_TEMPREG;
2627 }
2628 }
2629
2630 return jaddr;
2631}
2632
2633// return memhandler, or get directly accessable address and return 0
2634static void *get_direct_memhandler(void *table, u_int addr,
2635 enum stub_type type, uintptr_t *addr_host)
2636{
2637 uintptr_t l1, l2 = 0;
2638 l1 = ((uintptr_t *)table)[addr>>12];
2639 if ((l1 & (1ul << (sizeof(l1)*8-1))) == 0) {
2640 uintptr_t v = l1 << 1;
2641 *addr_host = v + addr;
2642 return NULL;
2643 }
2644 else {
2645 l1 <<= 1;
2646 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2647 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2648 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2649 l2=((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2650 else
2651 l2=((uintptr_t *)l1)[(addr&0xfff)/4];
2652 if ((l2 & (1<<31)) == 0) {
2653 uintptr_t v = l2 << 1;
2654 *addr_host = v + (addr&0xfff);
2655 return NULL;
2656 }
2657 return (void *)(l2 << 1);
2658 }
2659}
2660
2661static u_int get_host_reglist(const signed char *regmap)
2662{
2663 u_int reglist = 0, hr;
2664 for (hr = 0; hr < HOST_REGS; hr++) {
2665 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2666 reglist |= 1 << hr;
2667 }
2668 return reglist;
2669}
2670
2671static u_int reglist_exclude(u_int reglist, int r1, int r2)
2672{
2673 if (r1 >= 0)
2674 reglist &= ~(1u << r1);
2675 if (r2 >= 0)
2676 reglist &= ~(1u << r2);
2677 return reglist;
2678}
2679
2680// find a temp caller-saved register not in reglist (so assumed to be free)
2681static int reglist_find_free(u_int reglist)
2682{
2683 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2684 if (free_regs == 0)
2685 return -1;
2686 return __builtin_ctz(free_regs);
2687}
2688
2689static void load_assemble(int i, const struct regstat *i_regs)
2690{
2691 int s,tl,addr;
2692 int offset;
2693 void *jaddr=0;
2694 int memtarget=0,c=0;
2695 int fastio_reg_override=-1;
2696 u_int reglist=get_host_reglist(i_regs->regmap);
2697 tl=get_reg(i_regs->regmap,dops[i].rt1);
2698 s=get_reg(i_regs->regmap,dops[i].rs1);
2699 offset=imm[i];
2700 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2701 if(s>=0) {
2702 c=(i_regs->wasconst>>s)&1;
2703 if (c) {
2704 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2705 }
2706 }
2707 //printf("load_assemble: c=%d\n",c);
2708 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2709 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2710 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2711 ||dops[i].rt1==0) {
2712 // could be FIFO, must perform the read
2713 // ||dummy read
2714 assem_debug("(forced read)\n");
2715 tl=get_reg(i_regs->regmap,-1);
2716 assert(tl>=0);
2717 }
2718 if(offset||s<0||c) addr=tl;
2719 else addr=s;
2720 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2721 if(tl>=0) {
2722 //printf("load_assemble: c=%d\n",c);
2723 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2724 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2725 reglist&=~(1<<tl);
2726 if(!c) {
2727 #ifdef R29_HACK
2728 // Strmnnrmn's speed hack
2729 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2730 #endif
2731 {
2732 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2733 }
2734 }
2735 else if(ram_offset&&memtarget) {
2736 host_tempreg_acquire();
2737 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2738 fastio_reg_override=HOST_TEMPREG;
2739 }
2740 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2741 if (dops[i].opcode==0x20) { // LB
2742 if(!c||memtarget) {
2743 if(!dummy) {
2744 {
2745 int x=0,a=tl;
2746 if(!c) a=addr;
2747 if(fastio_reg_override>=0) a=fastio_reg_override;
2748
2749 emit_movsbl_indexed(x,a,tl);
2750 }
2751 }
2752 if(jaddr)
2753 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2754 }
2755 else
2756 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2757 }
2758 if (dops[i].opcode==0x21) { // LH
2759 if(!c||memtarget) {
2760 if(!dummy) {
2761 int x=0,a=tl;
2762 if(!c) a=addr;
2763 if(fastio_reg_override>=0) a=fastio_reg_override;
2764 emit_movswl_indexed(x,a,tl);
2765 }
2766 if(jaddr)
2767 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2768 }
2769 else
2770 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2771 }
2772 if (dops[i].opcode==0x23) { // LW
2773 if(!c||memtarget) {
2774 if(!dummy) {
2775 int a=addr;
2776 if(fastio_reg_override>=0) a=fastio_reg_override;
2777 emit_readword_indexed(0,a,tl);
2778 }
2779 if(jaddr)
2780 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2781 }
2782 else
2783 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2784 }
2785 if (dops[i].opcode==0x24) { // LBU
2786 if(!c||memtarget) {
2787 if(!dummy) {
2788 int x=0,a=tl;
2789 if(!c) a=addr;
2790 if(fastio_reg_override>=0) a=fastio_reg_override;
2791
2792 emit_movzbl_indexed(x,a,tl);
2793 }
2794 if(jaddr)
2795 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2796 }
2797 else
2798 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2799 }
2800 if (dops[i].opcode==0x25) { // LHU
2801 if(!c||memtarget) {
2802 if(!dummy) {
2803 int x=0,a=tl;
2804 if(!c) a=addr;
2805 if(fastio_reg_override>=0) a=fastio_reg_override;
2806 emit_movzwl_indexed(x,a,tl);
2807 }
2808 if(jaddr)
2809 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2810 }
2811 else
2812 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2813 }
2814 if (dops[i].opcode==0x27) { // LWU
2815 assert(0);
2816 }
2817 if (dops[i].opcode==0x37) { // LD
2818 assert(0);
2819 }
2820 }
2821 if (fastio_reg_override == HOST_TEMPREG)
2822 host_tempreg_release();
2823}
2824
2825#ifndef loadlr_assemble
2826static void loadlr_assemble(int i, const struct regstat *i_regs)
2827{
2828 int s,tl,temp,temp2,addr;
2829 int offset;
2830 void *jaddr=0;
2831 int memtarget=0,c=0;
2832 int fastio_reg_override=-1;
2833 u_int reglist=get_host_reglist(i_regs->regmap);
2834 tl=get_reg(i_regs->regmap,dops[i].rt1);
2835 s=get_reg(i_regs->regmap,dops[i].rs1);
2836 temp=get_reg(i_regs->regmap,-1);
2837 temp2=get_reg(i_regs->regmap,FTEMP);
2838 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2839 assert(addr<0);
2840 offset=imm[i];
2841 reglist|=1<<temp;
2842 if(offset||s<0||c) addr=temp2;
2843 else addr=s;
2844 if(s>=0) {
2845 c=(i_regs->wasconst>>s)&1;
2846 if(c) {
2847 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2848 }
2849 }
2850 if(!c) {
2851 emit_shlimm(addr,3,temp);
2852 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2853 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2854 }else{
2855 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2856 }
2857 jaddr=emit_fastpath_cmp_jump(i,temp2,&fastio_reg_override);
2858 }
2859 else {
2860 if(ram_offset&&memtarget) {
2861 host_tempreg_acquire();
2862 emit_addimm(temp2,ram_offset,HOST_TEMPREG);
2863 fastio_reg_override=HOST_TEMPREG;
2864 }
2865 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2866 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2867 }else{
2868 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2869 }
2870 }
2871 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
2872 if(!c||memtarget) {
2873 int a=temp2;
2874 if(fastio_reg_override>=0) a=fastio_reg_override;
2875 emit_readword_indexed(0,a,temp2);
2876 if(fastio_reg_override==HOST_TEMPREG) host_tempreg_release();
2877 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2878 }
2879 else
2880 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2881 if(dops[i].rt1) {
2882 assert(tl>=0);
2883 emit_andimm(temp,24,temp);
2884 if (dops[i].opcode==0x22) // LWL
2885 emit_xorimm(temp,24,temp);
2886 host_tempreg_acquire();
2887 emit_movimm(-1,HOST_TEMPREG);
2888 if (dops[i].opcode==0x26) {
2889 emit_shr(temp2,temp,temp2);
2890 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2891 }else{
2892 emit_shl(temp2,temp,temp2);
2893 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2894 }
2895 host_tempreg_release();
2896 emit_or(temp2,tl,tl);
2897 }
2898 //emit_storereg(dops[i].rt1,tl); // DEBUG
2899 }
2900 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
2901 assert(0);
2902 }
2903}
2904#endif
2905
2906void store_assemble(int i, const struct regstat *i_regs)
2907{
2908 int s,tl;
2909 int addr,temp;
2910 int offset;
2911 void *jaddr=0;
2912 enum stub_type type;
2913 int memtarget=0,c=0;
2914 int agr=AGEN1+(i&1);
2915 int fastio_reg_override=-1;
2916 u_int reglist=get_host_reglist(i_regs->regmap);
2917 tl=get_reg(i_regs->regmap,dops[i].rs2);
2918 s=get_reg(i_regs->regmap,dops[i].rs1);
2919 temp=get_reg(i_regs->regmap,agr);
2920 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2921 offset=imm[i];
2922 if(s>=0) {
2923 c=(i_regs->wasconst>>s)&1;
2924 if(c) {
2925 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2926 }
2927 }
2928 assert(tl>=0);
2929 assert(temp>=0);
2930 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2931 if(offset||s<0||c) addr=temp;
2932 else addr=s;
2933 if(!c) {
2934 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2935 }
2936 else if(ram_offset&&memtarget) {
2937 host_tempreg_acquire();
2938 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2939 fastio_reg_override=HOST_TEMPREG;
2940 }
2941
2942 if (dops[i].opcode==0x28) { // SB
2943 if(!c||memtarget) {
2944 int x=0,a=temp;
2945 if(!c) a=addr;
2946 if(fastio_reg_override>=0) a=fastio_reg_override;
2947 emit_writebyte_indexed(tl,x,a);
2948 }
2949 type=STOREB_STUB;
2950 }
2951 if (dops[i].opcode==0x29) { // SH
2952 if(!c||memtarget) {
2953 int x=0,a=temp;
2954 if(!c) a=addr;
2955 if(fastio_reg_override>=0) a=fastio_reg_override;
2956 emit_writehword_indexed(tl,x,a);
2957 }
2958 type=STOREH_STUB;
2959 }
2960 if (dops[i].opcode==0x2B) { // SW
2961 if(!c||memtarget) {
2962 int a=addr;
2963 if(fastio_reg_override>=0) a=fastio_reg_override;
2964 emit_writeword_indexed(tl,0,a);
2965 }
2966 type=STOREW_STUB;
2967 }
2968 if (dops[i].opcode==0x3F) { // SD
2969 assert(0);
2970 type=STORED_STUB;
2971 }
2972 if(fastio_reg_override==HOST_TEMPREG)
2973 host_tempreg_release();
2974 if(jaddr) {
2975 // PCSX store handlers don't check invcode again
2976 reglist|=1<<addr;
2977 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2978 jaddr=0;
2979 }
2980 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
2981 if(!c||memtarget) {
2982 #ifdef DESTRUCTIVE_SHIFT
2983 // The x86 shift operation is 'destructive'; it overwrites the
2984 // source register, so we need to make a copy first and use that.
2985 addr=temp;
2986 #endif
2987 #if defined(HOST_IMM8)
2988 int ir=get_reg(i_regs->regmap,INVCP);
2989 assert(ir>=0);
2990 emit_cmpmem_indexedsr12_reg(ir,addr,1);
2991 #else
2992 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
2993 #endif
2994 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2995 emit_callne(invalidate_addr_reg[addr]);
2996 #else
2997 void *jaddr2 = out;
2998 emit_jne(0);
2999 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3000 #endif
3001 }
3002 }
3003 u_int addr_val=constmap[i][s]+offset;
3004 if(jaddr) {
3005 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3006 } else if(c&&!memtarget) {
3007 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj[i],reglist);
3008 }
3009 // basic current block modification detection..
3010 // not looking back as that should be in mips cache already
3011 // (see Spyro2 title->attract mode)
3012 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3013 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3014 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3015 if(i_regs->regmap==regs[i].regmap) {
3016 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3017 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3018 emit_movimm(start+i*4+4,0);
3019 emit_writeword(0,&pcaddr);
3020 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3021 emit_far_call(get_addr_ht);
3022 emit_jmpreg(0);
3023 }
3024 }
3025}
3026
3027static void storelr_assemble(int i, const struct regstat *i_regs)
3028{
3029 int s,tl;
3030 int temp;
3031 int offset;
3032 void *jaddr=0;
3033 void *case1, *case2, *case3;
3034 void *done0, *done1, *done2;
3035 int memtarget=0,c=0;
3036 int agr=AGEN1+(i&1);
3037 u_int reglist=get_host_reglist(i_regs->regmap);
3038 tl=get_reg(i_regs->regmap,dops[i].rs2);
3039 s=get_reg(i_regs->regmap,dops[i].rs1);
3040 temp=get_reg(i_regs->regmap,agr);
3041 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3042 offset=imm[i];
3043 if(s>=0) {
3044 c=(i_regs->isconst>>s)&1;
3045 if(c) {
3046 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3047 }
3048 }
3049 assert(tl>=0);
3050 assert(temp>=0);
3051 if(!c) {
3052 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3053 if(!offset&&s!=temp) emit_mov(s,temp);
3054 jaddr=out;
3055 emit_jno(0);
3056 }
3057 else
3058 {
3059 if(!memtarget||!dops[i].rs1) {
3060 jaddr=out;
3061 emit_jmp(0);
3062 }
3063 }
3064 if(ram_offset)
3065 emit_addimm_no_flags(ram_offset,temp);
3066
3067 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3068 assert(0);
3069 }
3070
3071 emit_xorimm(temp,3,temp);
3072 emit_testimm(temp,2);
3073 case2=out;
3074 emit_jne(0);
3075 emit_testimm(temp,1);
3076 case1=out;
3077 emit_jne(0);
3078 // 0
3079 if (dops[i].opcode==0x2A) { // SWL
3080 emit_writeword_indexed(tl,0,temp);
3081 }
3082 else if (dops[i].opcode==0x2E) { // SWR
3083 emit_writebyte_indexed(tl,3,temp);
3084 }
3085 else
3086 assert(0);
3087 done0=out;
3088 emit_jmp(0);
3089 // 1
3090 set_jump_target(case1, out);
3091 if (dops[i].opcode==0x2A) { // SWL
3092 // Write 3 msb into three least significant bytes
3093 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3094 emit_writehword_indexed(tl,-1,temp);
3095 if(dops[i].rs2) emit_rorimm(tl,16,tl);
3096 emit_writebyte_indexed(tl,1,temp);
3097 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3098 }
3099 else if (dops[i].opcode==0x2E) { // SWR
3100 // Write two lsb into two most significant bytes
3101 emit_writehword_indexed(tl,1,temp);
3102 }
3103 done1=out;
3104 emit_jmp(0);
3105 // 2
3106 set_jump_target(case2, out);
3107 emit_testimm(temp,1);
3108 case3=out;
3109 emit_jne(0);
3110 if (dops[i].opcode==0x2A) { // SWL
3111 // Write two msb into two least significant bytes
3112 if(dops[i].rs2) emit_rorimm(tl,16,tl);
3113 emit_writehword_indexed(tl,-2,temp);
3114 if(dops[i].rs2) emit_rorimm(tl,16,tl);
3115 }
3116 else if (dops[i].opcode==0x2E) { // SWR
3117 // Write 3 lsb into three most significant bytes
3118 emit_writebyte_indexed(tl,-1,temp);
3119 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3120 emit_writehword_indexed(tl,0,temp);
3121 if(dops[i].rs2) emit_rorimm(tl,24,tl);
3122 }
3123 done2=out;
3124 emit_jmp(0);
3125 // 3
3126 set_jump_target(case3, out);
3127 if (dops[i].opcode==0x2A) { // SWL
3128 // Write msb into least significant byte
3129 if(dops[i].rs2) emit_rorimm(tl,24,tl);
3130 emit_writebyte_indexed(tl,-3,temp);
3131 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3132 }
3133 else if (dops[i].opcode==0x2E) { // SWR
3134 // Write entire word
3135 emit_writeword_indexed(tl,-3,temp);
3136 }
3137 set_jump_target(done0, out);
3138 set_jump_target(done1, out);
3139 set_jump_target(done2, out);
3140 if(!c||!memtarget)
3141 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3142 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3143 emit_addimm_no_flags(-ram_offset,temp);
3144 #if defined(HOST_IMM8)
3145 int ir=get_reg(i_regs->regmap,INVCP);
3146 assert(ir>=0);
3147 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3148 #else
3149 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3150 #endif
3151 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3152 emit_callne(invalidate_addr_reg[temp]);
3153 #else
3154 void *jaddr2 = out;
3155 emit_jne(0);
3156 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3157 #endif
3158 }
3159}
3160
3161static void cop0_assemble(int i,struct regstat *i_regs)
3162{
3163 if(dops[i].opcode2==0) // MFC0
3164 {
3165 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3166 u_int copr=(source[i]>>11)&0x1f;
3167 //assert(t>=0); // Why does this happen? OOT is weird
3168 if(t>=0&&dops[i].rt1!=0) {
3169 emit_readword(&reg_cop0[copr],t);
3170 }
3171 }
3172 else if(dops[i].opcode2==4) // MTC0
3173 {
3174 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3175 char copr=(source[i]>>11)&0x1f;
3176 assert(s>=0);
3177 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3178 if(copr==9||copr==11||copr==12||copr==13) {
3179 emit_readword(&last_count,HOST_TEMPREG);
3180 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3181 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3182 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3183 emit_writeword(HOST_CCREG,&Count);
3184 }
3185 // What a mess. The status register (12) can enable interrupts,
3186 // so needs a special case to handle a pending interrupt.
3187 // The interrupt must be taken immediately, because a subsequent
3188 // instruction might disable interrupts again.
3189 if(copr==12||copr==13) {
3190 if (is_delayslot) {
3191 // burn cycles to cause cc_interrupt, which will
3192 // reschedule next_interupt. Relies on CCREG from above.
3193 assem_debug("MTC0 DS %d\n", copr);
3194 emit_writeword(HOST_CCREG,&last_count);
3195 emit_movimm(0,HOST_CCREG);
3196 emit_storereg(CCREG,HOST_CCREG);
3197 emit_loadreg(dops[i].rs1,1);
3198 emit_movimm(copr,0);
3199 emit_far_call(pcsx_mtc0_ds);
3200 emit_loadreg(dops[i].rs1,s);
3201 return;
3202 }
3203 emit_movimm(start+i*4+4,HOST_TEMPREG);
3204 emit_writeword(HOST_TEMPREG,&pcaddr);
3205 emit_movimm(0,HOST_TEMPREG);
3206 emit_writeword(HOST_TEMPREG,&pending_exception);
3207 }
3208 if(s==HOST_CCREG)
3209 emit_loadreg(dops[i].rs1,1);
3210 else if(s!=1)
3211 emit_mov(s,1);
3212 emit_movimm(copr,0);
3213 emit_far_call(pcsx_mtc0);
3214 if(copr==9||copr==11||copr==12||copr==13) {
3215 emit_readword(&Count,HOST_CCREG);
3216 emit_readword(&next_interupt,HOST_TEMPREG);
3217 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3218 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3219 emit_writeword(HOST_TEMPREG,&last_count);
3220 emit_storereg(CCREG,HOST_CCREG);
3221 }
3222 if(copr==12||copr==13) {
3223 assert(!is_delayslot);
3224 emit_readword(&pending_exception,14);
3225 emit_test(14,14);
3226 void *jaddr = out;
3227 emit_jeq(0);
3228 emit_readword(&pcaddr, 0);
3229 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3230 emit_far_call(get_addr_ht);
3231 emit_jmpreg(0);
3232 set_jump_target(jaddr, out);
3233 }
3234 emit_loadreg(dops[i].rs1,s);
3235 }
3236 else
3237 {
3238 assert(dops[i].opcode2==0x10);
3239 //if((source[i]&0x3f)==0x10) // RFE
3240 {
3241 emit_readword(&Status,0);
3242 emit_andimm(0,0x3c,1);
3243 emit_andimm(0,~0xf,0);
3244 emit_orrshr_imm(1,2,0);
3245 emit_writeword(0,&Status);
3246 }
3247 }
3248}
3249
3250static void cop1_unusable(int i,struct regstat *i_regs)
3251{
3252 // XXX: should just just do the exception instead
3253 //if(!cop1_usable)
3254 {
3255 void *jaddr=out;
3256 emit_jmp(0);
3257 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3258 }
3259}
3260
3261static void cop1_assemble(int i,struct regstat *i_regs)
3262{
3263 cop1_unusable(i, i_regs);
3264}
3265
3266static void c1ls_assemble(int i,struct regstat *i_regs)
3267{
3268 cop1_unusable(i, i_regs);
3269}
3270
3271// FP_STUB
3272static void do_cop1stub(int n)
3273{
3274 literal_pool(256);
3275 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3276 set_jump_target(stubs[n].addr, out);
3277 int i=stubs[n].a;
3278// int rs=stubs[n].b;
3279 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3280 int ds=stubs[n].d;
3281 if(!ds) {
3282 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3283 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3284 }
3285 //else {printf("fp exception in delay slot\n");}
3286 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3287 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3288 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3289 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3290 emit_far_jump(ds?fp_exception_ds:fp_exception);
3291}
3292
3293static int cop2_is_stalling_op(int i, int *cycles)
3294{
3295 if (dops[i].opcode == 0x3a) { // SWC2
3296 *cycles = 0;
3297 return 1;
3298 }
3299 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3300 *cycles = 0;
3301 return 1;
3302 }
3303 if (dops[i].itype == C2OP) {
3304 *cycles = gte_cycletab[source[i] & 0x3f];
3305 return 1;
3306 }
3307 // ... what about MTC2/CTC2/LWC2?
3308 return 0;
3309}
3310
3311#if 0
3312static void log_gte_stall(int stall, u_int cycle)
3313{
3314 if ((u_int)stall <= 44)
3315 printf("x stall %2d %u\n", stall, cycle + last_count);
3316}
3317
3318static void emit_log_gte_stall(int i, int stall, u_int reglist)
3319{
3320 save_regs(reglist);
3321 if (stall > 0)
3322 emit_movimm(stall, 0);
3323 else
3324 emit_mov(HOST_TEMPREG, 0);
3325 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3326 emit_far_call(log_gte_stall);
3327 restore_regs(reglist);
3328}
3329#endif
3330
3331static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3332{
3333 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3334 int rtmp = reglist_find_free(reglist);
3335
3336 if (HACK_ENABLED(NDHACK_NO_STALLS))
3337 return;
3338 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3339 // happens occasionally... cc evicted? Don't bother then
3340 //printf("no cc %08x\n", start + i*4);
3341 return;
3342 }
3343 if (!dops[i].bt) {
3344 for (j = i - 1; j >= 0; j--) {
3345 //if (dops[j].is_ds) break;
3346 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3347 break;
3348 }
3349 j = max(j, 0);
3350 }
3351 cycles_passed = CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3352 if (other_gte_op_cycles >= 0)
3353 stall = other_gte_op_cycles - cycles_passed;
3354 else if (cycles_passed >= 44)
3355 stall = 0; // can't stall
3356 if (stall == -MAXBLOCK && rtmp >= 0) {
3357 // unknown stall, do the expensive runtime check
3358 assem_debug("; cop2_do_stall_check\n");
3359#if 0 // too slow
3360 save_regs(reglist);
3361 emit_movimm(gte_cycletab[op], 0);
3362 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3363 emit_far_call(call_gteStall);
3364 restore_regs(reglist);
3365#else
3366 host_tempreg_acquire();
3367 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3368 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3369 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3370 emit_cmpimm(HOST_TEMPREG, 44);
3371 emit_cmovb_reg(rtmp, HOST_CCREG);
3372 //emit_log_gte_stall(i, 0, reglist);
3373 host_tempreg_release();
3374#endif
3375 }
3376 else if (stall > 0) {
3377 //emit_log_gte_stall(i, stall, reglist);
3378 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3379 }
3380
3381 // save gteBusyCycle, if needed
3382 if (gte_cycletab[op] == 0)
3383 return;
3384 other_gte_op_cycles = -1;
3385 for (j = i + 1; j < slen; j++) {
3386 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3387 break;
3388 if (dops[j].is_jump) {
3389 // check ds
3390 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3391 j++;
3392 break;
3393 }
3394 }
3395 if (other_gte_op_cycles >= 0)
3396 // will handle stall when assembling that op
3397 return;
3398 cycles_passed = CLOCK_ADJUST(ccadj[min(j, slen -1)] - ccadj[i]);
3399 if (cycles_passed >= 44)
3400 return;
3401 assem_debug("; save gteBusyCycle\n");
3402 host_tempreg_acquire();
3403#if 0
3404 emit_readword(&last_count, HOST_TEMPREG);
3405 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3406 emit_addimm(HOST_TEMPREG, CLOCK_ADJUST(ccadj[i]), HOST_TEMPREG);
3407 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3408 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3409#else
3410 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + gte_cycletab[op], HOST_TEMPREG);
3411 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3412#endif
3413 host_tempreg_release();
3414}
3415
3416static int is_mflohi(int i)
3417{
3418 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3419}
3420
3421static int check_multdiv(int i, int *cycles)
3422{
3423 if (dops[i].itype != MULTDIV)
3424 return 0;
3425 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3426 *cycles = 11; // approx from 7 11 14
3427 else
3428 *cycles = 37;
3429 return 1;
3430}
3431
3432static void multdiv_prepare_stall(int i, const struct regstat *i_regs)
3433{
3434 int j, found = 0, c = 0;
3435 if (HACK_ENABLED(NDHACK_NO_STALLS))
3436 return;
3437 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3438 // happens occasionally... cc evicted? Don't bother then
3439 return;
3440 }
3441 for (j = i + 1; j < slen; j++) {
3442 if (dops[j].bt)
3443 break;
3444 if ((found = is_mflohi(j)))
3445 break;
3446 if (dops[j].is_jump) {
3447 // check ds
3448 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3449 j++;
3450 break;
3451 }
3452 }
3453 if (found)
3454 // handle all in multdiv_do_stall()
3455 return;
3456 check_multdiv(i, &c);
3457 assert(c > 0);
3458 assem_debug("; muldiv prepare stall %d\n", c);
3459 host_tempreg_acquire();
3460 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + c, HOST_TEMPREG);
3461 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3462 host_tempreg_release();
3463}
3464
3465static void multdiv_do_stall(int i, const struct regstat *i_regs)
3466{
3467 int j, known_cycles = 0;
3468 u_int reglist = get_host_reglist(i_regs->regmap);
3469 int rtmp = get_reg(i_regs->regmap, -1);
3470 if (rtmp < 0)
3471 rtmp = reglist_find_free(reglist);
3472 if (HACK_ENABLED(NDHACK_NO_STALLS))
3473 return;
3474 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3475 // happens occasionally... cc evicted? Don't bother then
3476 //printf("no cc/rtmp %08x\n", start + i*4);
3477 return;
3478 }
3479 if (!dops[i].bt) {
3480 for (j = i - 1; j >= 0; j--) {
3481 if (dops[j].is_ds) break;
3482 if (check_multdiv(j, &known_cycles) || dops[j].bt)
3483 break;
3484 if (is_mflohi(j))
3485 // already handled by this op
3486 return;
3487 }
3488 j = max(j, 0);
3489 }
3490 if (known_cycles > 0) {
3491 known_cycles -= CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3492 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3493 if (known_cycles > 0)
3494 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3495 return;
3496 }
3497 assem_debug("; muldiv stall unresolved\n");
3498 host_tempreg_acquire();
3499 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3500 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3501 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3502 emit_cmpimm(HOST_TEMPREG, 37);
3503 emit_cmovb_reg(rtmp, HOST_CCREG);
3504 //emit_log_gte_stall(i, 0, reglist);
3505 host_tempreg_release();
3506}
3507
3508static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3509{
3510 switch (copr) {
3511 case 1:
3512 case 3:
3513 case 5:
3514 case 8:
3515 case 9:
3516 case 10:
3517 case 11:
3518 emit_readword(&reg_cop2d[copr],tl);
3519 emit_signextend16(tl,tl);
3520 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3521 break;
3522 case 7:
3523 case 16:
3524 case 17:
3525 case 18:
3526 case 19:
3527 emit_readword(&reg_cop2d[copr],tl);
3528 emit_andimm(tl,0xffff,tl);
3529 emit_writeword(tl,&reg_cop2d[copr]);
3530 break;
3531 case 15:
3532 emit_readword(&reg_cop2d[14],tl); // SXY2
3533 emit_writeword(tl,&reg_cop2d[copr]);
3534 break;
3535 case 28:
3536 case 29:
3537 c2op_mfc2_29_assemble(tl,temp);
3538 break;
3539 default:
3540 emit_readword(&reg_cop2d[copr],tl);
3541 break;
3542 }
3543}
3544
3545static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3546{
3547 switch (copr) {
3548 case 15:
3549 emit_readword(&reg_cop2d[13],temp); // SXY1
3550 emit_writeword(sl,&reg_cop2d[copr]);
3551 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3552 emit_readword(&reg_cop2d[14],temp); // SXY2
3553 emit_writeword(sl,&reg_cop2d[14]);
3554 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3555 break;
3556 case 28:
3557 emit_andimm(sl,0x001f,temp);
3558 emit_shlimm(temp,7,temp);
3559 emit_writeword(temp,&reg_cop2d[9]);
3560 emit_andimm(sl,0x03e0,temp);
3561 emit_shlimm(temp,2,temp);
3562 emit_writeword(temp,&reg_cop2d[10]);
3563 emit_andimm(sl,0x7c00,temp);
3564 emit_shrimm(temp,3,temp);
3565 emit_writeword(temp,&reg_cop2d[11]);
3566 emit_writeword(sl,&reg_cop2d[28]);
3567 break;
3568 case 30:
3569 emit_xorsar_imm(sl,sl,31,temp);
3570#if defined(HAVE_ARMV5) || defined(__aarch64__)
3571 emit_clz(temp,temp);
3572#else
3573 emit_movs(temp,HOST_TEMPREG);
3574 emit_movimm(0,temp);
3575 emit_jeq((int)out+4*4);
3576 emit_addpl_imm(temp,1,temp);
3577 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3578 emit_jns((int)out-2*4);
3579#endif
3580 emit_writeword(sl,&reg_cop2d[30]);
3581 emit_writeword(temp,&reg_cop2d[31]);
3582 break;
3583 case 31:
3584 break;
3585 default:
3586 emit_writeword(sl,&reg_cop2d[copr]);
3587 break;
3588 }
3589}
3590
3591static void c2ls_assemble(int i, const struct regstat *i_regs)
3592{
3593 int s,tl;
3594 int ar;
3595 int offset;
3596 int memtarget=0,c=0;
3597 void *jaddr2=NULL;
3598 enum stub_type type;
3599 int agr=AGEN1+(i&1);
3600 int fastio_reg_override=-1;
3601 u_int reglist=get_host_reglist(i_regs->regmap);
3602 u_int copr=(source[i]>>16)&0x1f;
3603 s=get_reg(i_regs->regmap,dops[i].rs1);
3604 tl=get_reg(i_regs->regmap,FTEMP);
3605 offset=imm[i];
3606 assert(dops[i].rs1>0);
3607 assert(tl>=0);
3608
3609 if(i_regs->regmap[HOST_CCREG]==CCREG)
3610 reglist&=~(1<<HOST_CCREG);
3611
3612 // get the address
3613 if (dops[i].opcode==0x3a) { // SWC2
3614 ar=get_reg(i_regs->regmap,agr);
3615 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3616 reglist|=1<<ar;
3617 } else { // LWC2
3618 ar=tl;
3619 }
3620 if(s>=0) c=(i_regs->wasconst>>s)&1;
3621 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3622 if (!offset&&!c&&s>=0) ar=s;
3623 assert(ar>=0);
3624
3625 cop2_do_stall_check(0, i, i_regs, reglist);
3626
3627 if (dops[i].opcode==0x3a) { // SWC2
3628 cop2_get_dreg(copr,tl,-1);
3629 type=STOREW_STUB;
3630 }
3631 else
3632 type=LOADW_STUB;
3633
3634 if(c&&!memtarget) {
3635 jaddr2=out;
3636 emit_jmp(0); // inline_readstub/inline_writestub?
3637 }
3638 else {
3639 if(!c) {
3640 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3641 }
3642 else if(ram_offset&&memtarget) {
3643 host_tempreg_acquire();
3644 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3645 fastio_reg_override=HOST_TEMPREG;
3646 }
3647 if (dops[i].opcode==0x32) { // LWC2
3648 int a=ar;
3649 if(fastio_reg_override>=0) a=fastio_reg_override;
3650 emit_readword_indexed(0,a,tl);
3651 }
3652 if (dops[i].opcode==0x3a) { // SWC2
3653 #ifdef DESTRUCTIVE_SHIFT
3654 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3655 #endif
3656 int a=ar;
3657 if(fastio_reg_override>=0) a=fastio_reg_override;
3658 emit_writeword_indexed(tl,0,a);
3659 }
3660 }
3661 if(fastio_reg_override==HOST_TEMPREG)
3662 host_tempreg_release();
3663 if(jaddr2)
3664 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3665 if(dops[i].opcode==0x3a) // SWC2
3666 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3667#if defined(HOST_IMM8)
3668 int ir=get_reg(i_regs->regmap,INVCP);
3669 assert(ir>=0);
3670 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3671#else
3672 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3673#endif
3674 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3675 emit_callne(invalidate_addr_reg[ar]);
3676 #else
3677 void *jaddr3 = out;
3678 emit_jne(0);
3679 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3680 #endif
3681 }
3682 if (dops[i].opcode==0x32) { // LWC2
3683 host_tempreg_acquire();
3684 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3685 host_tempreg_release();
3686 }
3687}
3688
3689static void cop2_assemble(int i, const struct regstat *i_regs)
3690{
3691 u_int copr = (source[i]>>11) & 0x1f;
3692 signed char temp = get_reg(i_regs->regmap, -1);
3693
3694 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3695 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3696 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3697 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3698 reglist = reglist_exclude(reglist, tl, -1);
3699 }
3700 cop2_do_stall_check(0, i, i_regs, reglist);
3701 }
3702 if (dops[i].opcode2==0) { // MFC2
3703 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3704 if(tl>=0&&dops[i].rt1!=0)
3705 cop2_get_dreg(copr,tl,temp);
3706 }
3707 else if (dops[i].opcode2==4) { // MTC2
3708 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3709 cop2_put_dreg(copr,sl,temp);
3710 }
3711 else if (dops[i].opcode2==2) // CFC2
3712 {
3713 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3714 if(tl>=0&&dops[i].rt1!=0)
3715 emit_readword(&reg_cop2c[copr],tl);
3716 }
3717 else if (dops[i].opcode2==6) // CTC2
3718 {
3719 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3720 switch(copr) {
3721 case 4:
3722 case 12:
3723 case 20:
3724 case 26:
3725 case 27:
3726 case 29:
3727 case 30:
3728 emit_signextend16(sl,temp);
3729 break;
3730 case 31:
3731 c2op_ctc2_31_assemble(sl,temp);
3732 break;
3733 default:
3734 temp=sl;
3735 break;
3736 }
3737 emit_writeword(temp,&reg_cop2c[copr]);
3738 assert(sl>=0);
3739 }
3740}
3741
3742static void do_unalignedwritestub(int n)
3743{
3744 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3745 literal_pool(256);
3746 set_jump_target(stubs[n].addr, out);
3747
3748 int i=stubs[n].a;
3749 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3750 int addr=stubs[n].b;
3751 u_int reglist=stubs[n].e;
3752 signed char *i_regmap=i_regs->regmap;
3753 int temp2=get_reg(i_regmap,FTEMP);
3754 int rt;
3755 rt=get_reg(i_regmap,dops[i].rs2);
3756 assert(rt>=0);
3757 assert(addr>=0);
3758 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3759 reglist|=(1<<addr);
3760 reglist&=~(1<<temp2);
3761
3762 // don't bother with it and call write handler
3763 save_regs(reglist);
3764 pass_args(addr,rt);
3765 int cc=get_reg(i_regmap,CCREG);
3766 if(cc<0)
3767 emit_loadreg(CCREG,2);
3768 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3769 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3770 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3771 if(cc<0)
3772 emit_storereg(CCREG,2);
3773 restore_regs(reglist);
3774 emit_jmp(stubs[n].retaddr); // return address
3775}
3776
3777#ifndef multdiv_assemble
3778void multdiv_assemble(int i,struct regstat *i_regs)
3779{
3780 printf("Need multdiv_assemble for this architecture.\n");
3781 abort();
3782}
3783#endif
3784
3785static void mov_assemble(int i,struct regstat *i_regs)
3786{
3787 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3788 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3789 if(dops[i].rt1) {
3790 signed char sl,tl;
3791 tl=get_reg(i_regs->regmap,dops[i].rt1);
3792 //assert(tl>=0);
3793 if(tl>=0) {
3794 sl=get_reg(i_regs->regmap,dops[i].rs1);
3795 if(sl>=0) emit_mov(sl,tl);
3796 else emit_loadreg(dops[i].rs1,tl);
3797 }
3798 }
3799 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3800 multdiv_do_stall(i, i_regs);
3801}
3802
3803// call interpreter, exception handler, things that change pc/regs/cycles ...
3804static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3805{
3806 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3807 assert(ccreg==HOST_CCREG);
3808 assert(!is_delayslot);
3809 (void)ccreg;
3810
3811 emit_movimm(pc,3); // Get PC
3812 emit_readword(&last_count,2);
3813 emit_writeword(3,&psxRegs.pc);
3814 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3815 emit_add(2,HOST_CCREG,2);
3816 emit_writeword(2,&psxRegs.cycle);
3817 emit_far_call(func);
3818 emit_far_jump(jump_to_new_pc);
3819}
3820
3821static void syscall_assemble(int i,struct regstat *i_regs)
3822{
3823 emit_movimm(0x20,0); // cause code
3824 emit_movimm(0,1); // not in delay slot
3825 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3826}
3827
3828static void hlecall_assemble(int i,struct regstat *i_regs)
3829{
3830 void *hlefunc = psxNULL;
3831 uint32_t hleCode = source[i] & 0x03ffffff;
3832 if (hleCode < ARRAY_SIZE(psxHLEt))
3833 hlefunc = psxHLEt[hleCode];
3834
3835 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3836}
3837
3838static void intcall_assemble(int i,struct regstat *i_regs)
3839{
3840 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3841}
3842
3843static void speculate_mov(int rs,int rt)
3844{
3845 if(rt!=0) {
3846 smrv_strong_next|=1<<rt;
3847 smrv[rt]=smrv[rs];
3848 }
3849}
3850
3851static void speculate_mov_weak(int rs,int rt)
3852{
3853 if(rt!=0) {
3854 smrv_weak_next|=1<<rt;
3855 smrv[rt]=smrv[rs];
3856 }
3857}
3858
3859static void speculate_register_values(int i)
3860{
3861 if(i==0) {
3862 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3863 // gp,sp are likely to stay the same throughout the block
3864 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3865 smrv_weak_next=~smrv_strong_next;
3866 //printf(" llr %08x\n", smrv[4]);
3867 }
3868 smrv_strong=smrv_strong_next;
3869 smrv_weak=smrv_weak_next;
3870 switch(dops[i].itype) {
3871 case ALU:
3872 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
3873 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
3874 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
3875 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
3876 else {
3877 smrv_strong_next&=~(1<<dops[i].rt1);
3878 smrv_weak_next&=~(1<<dops[i].rt1);
3879 }
3880 break;
3881 case SHIFTIMM:
3882 smrv_strong_next&=~(1<<dops[i].rt1);
3883 smrv_weak_next&=~(1<<dops[i].rt1);
3884 // fallthrough
3885 case IMM16:
3886 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
3887 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
3888 if(hr>=0) {
3889 if(get_final_value(hr,i,&value))
3890 smrv[dops[i].rt1]=value;
3891 else smrv[dops[i].rt1]=constmap[i][hr];
3892 smrv_strong_next|=1<<dops[i].rt1;
3893 }
3894 }
3895 else {
3896 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
3897 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
3898 }
3899 break;
3900 case LOAD:
3901 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
3902 // special case for BIOS
3903 smrv[dops[i].rt1]=0xa0000000;
3904 smrv_strong_next|=1<<dops[i].rt1;
3905 break;
3906 }
3907 // fallthrough
3908 case SHIFT:
3909 case LOADLR:
3910 case MOV:
3911 smrv_strong_next&=~(1<<dops[i].rt1);
3912 smrv_weak_next&=~(1<<dops[i].rt1);
3913 break;
3914 case COP0:
3915 case COP2:
3916 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
3917 smrv_strong_next&=~(1<<dops[i].rt1);
3918 smrv_weak_next&=~(1<<dops[i].rt1);
3919 }
3920 break;
3921 case C2LS:
3922 if (dops[i].opcode==0x32) { // LWC2
3923 smrv_strong_next&=~(1<<dops[i].rt1);
3924 smrv_weak_next&=~(1<<dops[i].rt1);
3925 }
3926 break;
3927 }
3928#if 0
3929 int r=4;
3930 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
3931 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
3932#endif
3933}
3934
3935static void ds_assemble(int i,struct regstat *i_regs)
3936{
3937 speculate_register_values(i);
3938 is_delayslot=1;
3939 switch(dops[i].itype) {
3940 case ALU:
3941 alu_assemble(i,i_regs);break;
3942 case IMM16:
3943 imm16_assemble(i,i_regs);break;
3944 case SHIFT:
3945 shift_assemble(i,i_regs);break;
3946 case SHIFTIMM:
3947 shiftimm_assemble(i,i_regs);break;
3948 case LOAD:
3949 load_assemble(i,i_regs);break;
3950 case LOADLR:
3951 loadlr_assemble(i,i_regs);break;
3952 case STORE:
3953 store_assemble(i,i_regs);break;
3954 case STORELR:
3955 storelr_assemble(i,i_regs);break;
3956 case COP0:
3957 cop0_assemble(i,i_regs);break;
3958 case COP1:
3959 cop1_assemble(i,i_regs);break;
3960 case C1LS:
3961 c1ls_assemble(i,i_regs);break;
3962 case COP2:
3963 cop2_assemble(i,i_regs);break;
3964 case C2LS:
3965 c2ls_assemble(i,i_regs);break;
3966 case C2OP:
3967 c2op_assemble(i,i_regs);break;
3968 case MULTDIV:
3969 multdiv_assemble(i,i_regs);
3970 multdiv_prepare_stall(i,i_regs);
3971 break;
3972 case MOV:
3973 mov_assemble(i,i_regs);break;
3974 case SYSCALL:
3975 case HLECALL:
3976 case INTCALL:
3977 case SPAN:
3978 case UJUMP:
3979 case RJUMP:
3980 case CJUMP:
3981 case SJUMP:
3982 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
3983 }
3984 is_delayslot=0;
3985}
3986
3987// Is the branch target a valid internal jump?
3988static int internal_branch(int addr)
3989{
3990 if(addr&1) return 0; // Indirect (register) jump
3991 if(addr>=start && addr<start+slen*4-4)
3992 {
3993 return 1;
3994 }
3995 return 0;
3996}
3997
3998static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
3999{
4000 int hr;
4001 for(hr=0;hr<HOST_REGS;hr++) {
4002 if(hr!=EXCLUDE_REG) {
4003 if(pre[hr]!=entry[hr]) {
4004 if(pre[hr]>=0) {
4005 if((dirty>>hr)&1) {
4006 if(get_reg(entry,pre[hr])<0) {
4007 assert(pre[hr]<64);
4008 if(!((u>>pre[hr])&1))
4009 emit_storereg(pre[hr],hr);
4010 }
4011 }
4012 }
4013 }
4014 }
4015 }
4016 // Move from one register to another (no writeback)
4017 for(hr=0;hr<HOST_REGS;hr++) {
4018 if(hr!=EXCLUDE_REG) {
4019 if(pre[hr]!=entry[hr]) {
4020 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4021 int nr;
4022 if((nr=get_reg(entry,pre[hr]))>=0) {
4023 emit_mov(hr,nr);
4024 }
4025 }
4026 }
4027 }
4028 }
4029}
4030
4031// Load the specified registers
4032// This only loads the registers given as arguments because
4033// we don't want to load things that will be overwritten
4034static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4035{
4036 int hr;
4037 // Load 32-bit regs
4038 for(hr=0;hr<HOST_REGS;hr++) {
4039 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4040 if(entry[hr]!=regmap[hr]) {
4041 if(regmap[hr]==rs1||regmap[hr]==rs2)
4042 {
4043 if(regmap[hr]==0) {
4044 emit_zeroreg(hr);
4045 }
4046 else
4047 {
4048 emit_loadreg(regmap[hr],hr);
4049 }
4050 }
4051 }
4052 }
4053 }
4054}
4055
4056// Load registers prior to the start of a loop
4057// so that they are not loaded within the loop
4058static void loop_preload(signed char pre[],signed char entry[])
4059{
4060 int hr;
4061 for(hr=0;hr<HOST_REGS;hr++) {
4062 if(hr!=EXCLUDE_REG) {
4063 if(pre[hr]!=entry[hr]) {
4064 if(entry[hr]>=0) {
4065 if(get_reg(pre,entry[hr])<0) {
4066 assem_debug("loop preload:\n");
4067 //printf("loop preload: %d\n",hr);
4068 if(entry[hr]==0) {
4069 emit_zeroreg(hr);
4070 }
4071 else if(entry[hr]<TEMPREG)
4072 {
4073 emit_loadreg(entry[hr],hr);
4074 }
4075 else if(entry[hr]-64<TEMPREG)
4076 {
4077 emit_loadreg(entry[hr],hr);
4078 }
4079 }
4080 }
4081 }
4082 }
4083 }
4084}
4085
4086// Generate address for load/store instruction
4087// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4088void address_generation(int i,struct regstat *i_regs,signed char entry[])
4089{
4090 if(dops[i].itype==LOAD||dops[i].itype==LOADLR||dops[i].itype==STORE||dops[i].itype==STORELR||dops[i].itype==C1LS||dops[i].itype==C2LS) {
4091 int ra=-1;
4092 int agr=AGEN1+(i&1);
4093 if(dops[i].itype==LOAD) {
4094 ra=get_reg(i_regs->regmap,dops[i].rt1);
4095 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4096 assert(ra>=0);
4097 }
4098 if(dops[i].itype==LOADLR) {
4099 ra=get_reg(i_regs->regmap,FTEMP);
4100 }
4101 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4102 ra=get_reg(i_regs->regmap,agr);
4103 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4104 }
4105 if(dops[i].itype==C1LS||dops[i].itype==C2LS) {
4106 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4107 ra=get_reg(i_regs->regmap,FTEMP);
4108 else { // SWC1/SDC1/SWC2/SDC2
4109 ra=get_reg(i_regs->regmap,agr);
4110 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4111 }
4112 }
4113 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4114 if(ra>=0) {
4115 int offset=imm[i];
4116 int c=(i_regs->wasconst>>rs)&1;
4117 if(dops[i].rs1==0) {
4118 // Using r0 as a base address
4119 if(!entry||entry[ra]!=agr) {
4120 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4121 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4122 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4123 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4124 }else{
4125 emit_movimm(offset,ra);
4126 }
4127 } // else did it in the previous cycle
4128 }
4129 else if(rs<0) {
4130 if(!entry||entry[ra]!=dops[i].rs1)
4131 emit_loadreg(dops[i].rs1,ra);
4132 //if(!entry||entry[ra]!=dops[i].rs1)
4133 // printf("poor load scheduling!\n");
4134 }
4135 else if(c) {
4136 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4137 if(!entry||entry[ra]!=agr) {
4138 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4139 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4140 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4141 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4142 }else{
4143 emit_movimm(constmap[i][rs]+offset,ra);
4144 regs[i].loadedconst|=1<<ra;
4145 }
4146 } // else did it in the previous cycle
4147 } // else load_consts already did it
4148 }
4149 if(offset&&!c&&dops[i].rs1) {
4150 if(rs>=0) {
4151 emit_addimm(rs,offset,ra);
4152 }else{
4153 emit_addimm(ra,offset,ra);
4154 }
4155 }
4156 }
4157 }
4158 // Preload constants for next instruction
4159 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS||dops[i+1].itype==C2LS) {
4160 int agr,ra;
4161 // Actual address
4162 agr=AGEN1+((i+1)&1);
4163 ra=get_reg(i_regs->regmap,agr);
4164 if(ra>=0) {
4165 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4166 int offset=imm[i+1];
4167 int c=(regs[i+1].wasconst>>rs)&1;
4168 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4169 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4170 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4171 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4172 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4173 }else{
4174 emit_movimm(constmap[i+1][rs]+offset,ra);
4175 regs[i+1].loadedconst|=1<<ra;
4176 }
4177 }
4178 else if(dops[i+1].rs1==0) {
4179 // Using r0 as a base address
4180 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4181 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4182 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4183 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4184 }else{
4185 emit_movimm(offset,ra);
4186 }
4187 }
4188 }
4189 }
4190}
4191
4192static int get_final_value(int hr, int i, int *value)
4193{
4194 int reg=regs[i].regmap[hr];
4195 while(i<slen-1) {
4196 if(regs[i+1].regmap[hr]!=reg) break;
4197 if(!((regs[i+1].isconst>>hr)&1)) break;
4198 if(dops[i+1].bt) break;
4199 i++;
4200 }
4201 if(i<slen-1) {
4202 if (dops[i].is_jump) {
4203 *value=constmap[i][hr];
4204 return 1;
4205 }
4206 if(!dops[i+1].bt) {
4207 if (dops[i+1].is_jump) {
4208 // Load in delay slot, out-of-order execution
4209 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4210 {
4211 // Precompute load address
4212 *value=constmap[i][hr]+imm[i+2];
4213 return 1;
4214 }
4215 }
4216 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4217 {
4218 // Precompute load address
4219 *value=constmap[i][hr]+imm[i+1];
4220 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4221 return 1;
4222 }
4223 }
4224 }
4225 *value=constmap[i][hr];
4226 //printf("c=%lx\n",(long)constmap[i][hr]);
4227 if(i==slen-1) return 1;
4228 assert(reg < 64);
4229 return !((unneeded_reg[i+1]>>reg)&1);
4230}
4231
4232// Load registers with known constants
4233static void load_consts(signed char pre[],signed char regmap[],int i)
4234{
4235 int hr,hr2;
4236 // propagate loaded constant flags
4237 if(i==0||dops[i].bt)
4238 regs[i].loadedconst=0;
4239 else {
4240 for(hr=0;hr<HOST_REGS;hr++) {
4241 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4242 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4243 {
4244 regs[i].loadedconst|=1<<hr;
4245 }
4246 }
4247 }
4248 // Load 32-bit regs
4249 for(hr=0;hr<HOST_REGS;hr++) {
4250 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4251 //if(entry[hr]!=regmap[hr]) {
4252 if(!((regs[i].loadedconst>>hr)&1)) {
4253 assert(regmap[hr]<64);
4254 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4255 int value,similar=0;
4256 if(get_final_value(hr,i,&value)) {
4257 // see if some other register has similar value
4258 for(hr2=0;hr2<HOST_REGS;hr2++) {
4259 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4260 if(is_similar_value(value,constmap[i][hr2])) {
4261 similar=1;
4262 break;
4263 }
4264 }
4265 }
4266 if(similar) {
4267 int value2;
4268 if(get_final_value(hr2,i,&value2)) // is this needed?
4269 emit_movimm_from(value2,hr2,value,hr);
4270 else
4271 emit_movimm(value,hr);
4272 }
4273 else if(value==0) {
4274 emit_zeroreg(hr);
4275 }
4276 else {
4277 emit_movimm(value,hr);
4278 }
4279 }
4280 regs[i].loadedconst|=1<<hr;
4281 }
4282 }
4283 }
4284 }
4285}
4286
4287void load_all_consts(signed char regmap[], u_int dirty, int i)
4288{
4289 int hr;
4290 // Load 32-bit regs
4291 for(hr=0;hr<HOST_REGS;hr++) {
4292 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4293 assert(regmap[hr] < 64);
4294 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4295 int value=constmap[i][hr];
4296 if(value==0) {
4297 emit_zeroreg(hr);
4298 }
4299 else {
4300 emit_movimm(value,hr);
4301 }
4302 }
4303 }
4304 }
4305}
4306
4307// Write out all dirty registers (except cycle count)
4308static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4309{
4310 int hr;
4311 for(hr=0;hr<HOST_REGS;hr++) {
4312 if(hr!=EXCLUDE_REG) {
4313 if(i_regmap[hr]>0) {
4314 if(i_regmap[hr]!=CCREG) {
4315 if((i_dirty>>hr)&1) {
4316 assert(i_regmap[hr]<64);
4317 emit_storereg(i_regmap[hr],hr);
4318 }
4319 }
4320 }
4321 }
4322 }
4323}
4324
4325// Write out dirty registers that we need to reload (pair with load_needed_regs)
4326// This writes the registers not written by store_regs_bt
4327void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4328{
4329 int hr;
4330 int t=(addr-start)>>2;
4331 for(hr=0;hr<HOST_REGS;hr++) {
4332 if(hr!=EXCLUDE_REG) {
4333 if(i_regmap[hr]>0) {
4334 if(i_regmap[hr]!=CCREG) {
4335 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4336 if((i_dirty>>hr)&1) {
4337 assert(i_regmap[hr]<64);
4338 emit_storereg(i_regmap[hr],hr);
4339 }
4340 }
4341 }
4342 }
4343 }
4344 }
4345}
4346
4347// Load all registers (except cycle count)
4348void load_all_regs(signed char i_regmap[])
4349{
4350 int hr;
4351 for(hr=0;hr<HOST_REGS;hr++) {
4352 if(hr!=EXCLUDE_REG) {
4353 if(i_regmap[hr]==0) {
4354 emit_zeroreg(hr);
4355 }
4356 else
4357 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4358 {
4359 emit_loadreg(i_regmap[hr],hr);
4360 }
4361 }
4362 }
4363}
4364
4365// Load all current registers also needed by next instruction
4366void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4367{
4368 int hr;
4369 for(hr=0;hr<HOST_REGS;hr++) {
4370 if(hr!=EXCLUDE_REG) {
4371 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4372 if(i_regmap[hr]==0) {
4373 emit_zeroreg(hr);
4374 }
4375 else
4376 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4377 {
4378 emit_loadreg(i_regmap[hr],hr);
4379 }
4380 }
4381 }
4382 }
4383}
4384
4385// Load all regs, storing cycle count if necessary
4386void load_regs_entry(int t)
4387{
4388 int hr;
4389 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4390 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4391 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4392 emit_storereg(CCREG,HOST_CCREG);
4393 }
4394 // Load 32-bit regs
4395 for(hr=0;hr<HOST_REGS;hr++) {
4396 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4397 if(regs[t].regmap_entry[hr]==0) {
4398 emit_zeroreg(hr);
4399 }
4400 else if(regs[t].regmap_entry[hr]!=CCREG)
4401 {
4402 emit_loadreg(regs[t].regmap_entry[hr],hr);
4403 }
4404 }
4405 }
4406}
4407
4408// Store dirty registers prior to branch
4409void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4410{
4411 if(internal_branch(addr))
4412 {
4413 int t=(addr-start)>>2;
4414 int hr;
4415 for(hr=0;hr<HOST_REGS;hr++) {
4416 if(hr!=EXCLUDE_REG) {
4417 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4418 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4419 if((i_dirty>>hr)&1) {
4420 assert(i_regmap[hr]<64);
4421 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4422 emit_storereg(i_regmap[hr],hr);
4423 }
4424 }
4425 }
4426 }
4427 }
4428 }
4429 else
4430 {
4431 // Branch out of this block, write out all dirty regs
4432 wb_dirtys(i_regmap,i_dirty);
4433 }
4434}
4435
4436// Load all needed registers for branch target
4437static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4438{
4439 //if(addr>=start && addr<(start+slen*4))
4440 if(internal_branch(addr))
4441 {
4442 int t=(addr-start)>>2;
4443 int hr;
4444 // Store the cycle count before loading something else
4445 if(i_regmap[HOST_CCREG]!=CCREG) {
4446 assert(i_regmap[HOST_CCREG]==-1);
4447 }
4448 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4449 emit_storereg(CCREG,HOST_CCREG);
4450 }
4451 // Load 32-bit regs
4452 for(hr=0;hr<HOST_REGS;hr++) {
4453 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4454 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4455 if(regs[t].regmap_entry[hr]==0) {
4456 emit_zeroreg(hr);
4457 }
4458 else if(regs[t].regmap_entry[hr]!=CCREG)
4459 {
4460 emit_loadreg(regs[t].regmap_entry[hr],hr);
4461 }
4462 }
4463 }
4464 }
4465 }
4466}
4467
4468static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4469{
4470 if(addr>=start && addr<start+slen*4-4)
4471 {
4472 int t=(addr-start)>>2;
4473 int hr;
4474 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4475 for(hr=0;hr<HOST_REGS;hr++)
4476 {
4477 if(hr!=EXCLUDE_REG)
4478 {
4479 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4480 {
4481 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4482 {
4483 return 0;
4484 }
4485 else
4486 if((i_dirty>>hr)&1)
4487 {
4488 if(i_regmap[hr]<TEMPREG)
4489 {
4490 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4491 return 0;
4492 }
4493 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4494 {
4495 assert(0);
4496 }
4497 }
4498 }
4499 else // Same register but is it 32-bit or dirty?
4500 if(i_regmap[hr]>=0)
4501 {
4502 if(!((regs[t].dirty>>hr)&1))
4503 {
4504 if((i_dirty>>hr)&1)
4505 {
4506 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4507 {
4508 //printf("%x: dirty no match\n",addr);
4509 return 0;
4510 }
4511 }
4512 }
4513 }
4514 }
4515 }
4516 // Delay slots are not valid branch targets
4517 //if(t>0&&(dops[t-1].is_jump) return 0;
4518 // Delay slots require additional processing, so do not match
4519 if(dops[t].is_ds) return 0;
4520 }
4521 else
4522 {
4523 int hr;
4524 for(hr=0;hr<HOST_REGS;hr++)
4525 {
4526 if(hr!=EXCLUDE_REG)
4527 {
4528 if(i_regmap[hr]>=0)
4529 {
4530 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4531 {
4532 if((i_dirty>>hr)&1)
4533 {
4534 return 0;
4535 }
4536 }
4537 }
4538 }
4539 }
4540 }
4541 return 1;
4542}
4543
4544#ifdef DRC_DBG
4545static void drc_dbg_emit_do_cmp(int i)
4546{
4547 extern void do_insn_cmp();
4548 //extern int cycle;
4549 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4550
4551 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4552 save_regs(reglist);
4553 // write out changed consts to match the interpreter
4554 if (i > 0 && !dops[i].bt) {
4555 for (hr = 0; hr < HOST_REGS; hr++) {
4556 int reg = regs[i-1].regmap[hr];
4557 if (hr == EXCLUDE_REG || reg < 0)
4558 continue;
4559 if (!((regs[i-1].isconst >> hr) & 1))
4560 continue;
4561 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4562 continue;
4563 emit_movimm(constmap[i-1][hr],0);
4564 emit_storereg(reg, 0);
4565 }
4566 }
4567 emit_movimm(start+i*4,0);
4568 emit_writeword(0,&pcaddr);
4569 emit_far_call(do_insn_cmp);
4570 //emit_readword(&cycle,0);
4571 //emit_addimm(0,2,0);
4572 //emit_writeword(0,&cycle);
4573 (void)get_reg2;
4574 restore_regs(reglist);
4575 assem_debug("\\\\do_insn_cmp\n");
4576}
4577#else
4578#define drc_dbg_emit_do_cmp(x)
4579#endif
4580
4581// Used when a branch jumps into the delay slot of another branch
4582static void ds_assemble_entry(int i)
4583{
4584 int t=(ba[i]-start)>>2;
4585 if (!instr_addr[t])
4586 instr_addr[t] = out;
4587 assem_debug("Assemble delay slot at %x\n",ba[i]);
4588 assem_debug("<->\n");
4589 drc_dbg_emit_do_cmp(t);
4590 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4591 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4592 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4593 address_generation(t,&regs[t],regs[t].regmap_entry);
4594 if(dops[t].itype==STORE||dops[t].itype==STORELR||(dops[t].opcode&0x3b)==0x39||(dops[t].opcode&0x3b)==0x3a)
4595 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4596 is_delayslot=0;
4597 switch(dops[t].itype) {
4598 case ALU:
4599 alu_assemble(t,&regs[t]);break;
4600 case IMM16:
4601 imm16_assemble(t,&regs[t]);break;
4602 case SHIFT:
4603 shift_assemble(t,&regs[t]);break;
4604 case SHIFTIMM:
4605 shiftimm_assemble(t,&regs[t]);break;
4606 case LOAD:
4607 load_assemble(t,&regs[t]);break;
4608 case LOADLR:
4609 loadlr_assemble(t,&regs[t]);break;
4610 case STORE:
4611 store_assemble(t,&regs[t]);break;
4612 case STORELR:
4613 storelr_assemble(t,&regs[t]);break;
4614 case COP0:
4615 cop0_assemble(t,&regs[t]);break;
4616 case COP1:
4617 cop1_assemble(t,&regs[t]);break;
4618 case C1LS:
4619 c1ls_assemble(t,&regs[t]);break;
4620 case COP2:
4621 cop2_assemble(t,&regs[t]);break;
4622 case C2LS:
4623 c2ls_assemble(t,&regs[t]);break;
4624 case C2OP:
4625 c2op_assemble(t,&regs[t]);break;
4626 case MULTDIV:
4627 multdiv_assemble(t,&regs[t]);
4628 multdiv_prepare_stall(i,&regs[t]);
4629 break;
4630 case MOV:
4631 mov_assemble(t,&regs[t]);break;
4632 case SYSCALL:
4633 case HLECALL:
4634 case INTCALL:
4635 case SPAN:
4636 case UJUMP:
4637 case RJUMP:
4638 case CJUMP:
4639 case SJUMP:
4640 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4641 }
4642 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4643 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4644 if(internal_branch(ba[i]+4))
4645 assem_debug("branch: internal\n");
4646 else
4647 assem_debug("branch: external\n");
4648 assert(internal_branch(ba[i]+4));
4649 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4650 emit_jmp(0);
4651}
4652
4653static void emit_extjump(void *addr, u_int target)
4654{
4655 emit_extjump2(addr, target, dyna_linker);
4656}
4657
4658static void emit_extjump_ds(void *addr, u_int target)
4659{
4660 emit_extjump2(addr, target, dyna_linker_ds);
4661}
4662
4663// Load 2 immediates optimizing for small code size
4664static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4665{
4666 emit_movimm(imm1,rt1);
4667 emit_movimm_from(imm1,rt1,imm2,rt2);
4668}
4669
4670void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4671{
4672 int count;
4673 void *jaddr;
4674 void *idle=NULL;
4675 int t=0;
4676 if(dops[i].itype==RJUMP)
4677 {
4678 *adj=0;
4679 }
4680 //if(ba[i]>=start && ba[i]<(start+slen*4))
4681 if(internal_branch(ba[i]))
4682 {
4683 t=(ba[i]-start)>>2;
4684 if(dops[t].is_ds) *adj=-1; // Branch into delay slot adds an extra cycle
4685 else *adj=ccadj[t];
4686 }
4687 else
4688 {
4689 *adj=0;
4690 }
4691 count=ccadj[i];
4692 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4693 // Idle loop
4694 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4695 idle=out;
4696 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4697 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4698 jaddr=out;
4699 emit_jmp(0);
4700 }
4701 else if(*adj==0||invert) {
4702 int cycles=CLOCK_ADJUST(count+2);
4703 // faster loop HACK
4704#if 0
4705 if (t&&*adj) {
4706 int rel=t-i;
4707 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4708 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4709 }
4710#endif
4711 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4712 jaddr=out;
4713 emit_jns(0);
4714 }
4715 else
4716 {
4717 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4718 jaddr=out;
4719 emit_jns(0);
4720 }
4721 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4722}
4723
4724static void do_ccstub(int n)
4725{
4726 literal_pool(256);
4727 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4728 set_jump_target(stubs[n].addr, out);
4729 int i=stubs[n].b;
4730 if(stubs[n].d==NULLDS) {
4731 // Delay slot instruction is nullified ("likely" branch)
4732 wb_dirtys(regs[i].regmap,regs[i].dirty);
4733 }
4734 else if(stubs[n].d!=TAKEN) {
4735 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4736 }
4737 else {
4738 if(internal_branch(ba[i]))
4739 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4740 }
4741 if(stubs[n].c!=-1)
4742 {
4743 // Save PC as return address
4744 emit_movimm(stubs[n].c,EAX);
4745 emit_writeword(EAX,&pcaddr);
4746 }
4747 else
4748 {
4749 // Return address depends on which way the branch goes
4750 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4751 {
4752 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4753 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4754 if(dops[i].rs1==0)
4755 {
4756 s1l=s2l;
4757 s2l=-1;
4758 }
4759 else if(dops[i].rs2==0)
4760 {
4761 s2l=-1;
4762 }
4763 assert(s1l>=0);
4764 #ifdef DESTRUCTIVE_WRITEBACK
4765 if(dops[i].rs1) {
4766 if((branch_regs[i].dirty>>s1l)&&1)
4767 emit_loadreg(dops[i].rs1,s1l);
4768 }
4769 else {
4770 if((branch_regs[i].dirty>>s1l)&1)
4771 emit_loadreg(dops[i].rs2,s1l);
4772 }
4773 if(s2l>=0)
4774 if((branch_regs[i].dirty>>s2l)&1)
4775 emit_loadreg(dops[i].rs2,s2l);
4776 #endif
4777 int hr=0;
4778 int addr=-1,alt=-1,ntaddr=-1;
4779 while(hr<HOST_REGS)
4780 {
4781 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4782 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4783 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4784 {
4785 addr=hr++;break;
4786 }
4787 hr++;
4788 }
4789 while(hr<HOST_REGS)
4790 {
4791 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4792 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4793 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4794 {
4795 alt=hr++;break;
4796 }
4797 hr++;
4798 }
4799 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
4800 {
4801 while(hr<HOST_REGS)
4802 {
4803 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4804 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4805 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4806 {
4807 ntaddr=hr;break;
4808 }
4809 hr++;
4810 }
4811 assert(hr<HOST_REGS);
4812 }
4813 if((dops[i].opcode&0x2f)==4) // BEQ
4814 {
4815 #ifdef HAVE_CMOV_IMM
4816 if(s2l>=0) emit_cmp(s1l,s2l);
4817 else emit_test(s1l,s1l);
4818 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4819 #else
4820 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4821 if(s2l>=0) emit_cmp(s1l,s2l);
4822 else emit_test(s1l,s1l);
4823 emit_cmovne_reg(alt,addr);
4824 #endif
4825 }
4826 if((dops[i].opcode&0x2f)==5) // BNE
4827 {
4828 #ifdef HAVE_CMOV_IMM
4829 if(s2l>=0) emit_cmp(s1l,s2l);
4830 else emit_test(s1l,s1l);
4831 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4832 #else
4833 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4834 if(s2l>=0) emit_cmp(s1l,s2l);
4835 else emit_test(s1l,s1l);
4836 emit_cmovne_reg(alt,addr);
4837 #endif
4838 }
4839 if((dops[i].opcode&0x2f)==6) // BLEZ
4840 {
4841 //emit_movimm(ba[i],alt);
4842 //emit_movimm(start+i*4+8,addr);
4843 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4844 emit_cmpimm(s1l,1);
4845 emit_cmovl_reg(alt,addr);
4846 }
4847 if((dops[i].opcode&0x2f)==7) // BGTZ
4848 {
4849 //emit_movimm(ba[i],addr);
4850 //emit_movimm(start+i*4+8,ntaddr);
4851 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4852 emit_cmpimm(s1l,1);
4853 emit_cmovl_reg(ntaddr,addr);
4854 }
4855 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
4856 {
4857 //emit_movimm(ba[i],alt);
4858 //emit_movimm(start+i*4+8,addr);
4859 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4860 emit_test(s1l,s1l);
4861 emit_cmovs_reg(alt,addr);
4862 }
4863 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
4864 {
4865 //emit_movimm(ba[i],addr);
4866 //emit_movimm(start+i*4+8,alt);
4867 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4868 emit_test(s1l,s1l);
4869 emit_cmovs_reg(alt,addr);
4870 }
4871 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
4872 if(source[i]&0x10000) // BC1T
4873 {
4874 //emit_movimm(ba[i],alt);
4875 //emit_movimm(start+i*4+8,addr);
4876 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4877 emit_testimm(s1l,0x800000);
4878 emit_cmovne_reg(alt,addr);
4879 }
4880 else // BC1F
4881 {
4882 //emit_movimm(ba[i],addr);
4883 //emit_movimm(start+i*4+8,alt);
4884 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4885 emit_testimm(s1l,0x800000);
4886 emit_cmovne_reg(alt,addr);
4887 }
4888 }
4889 emit_writeword(addr,&pcaddr);
4890 }
4891 else
4892 if(dops[i].itype==RJUMP)
4893 {
4894 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
4895 if (ds_writes_rjump_rs(i)) {
4896 r=get_reg(branch_regs[i].regmap,RTEMP);
4897 }
4898 emit_writeword(r,&pcaddr);
4899 }
4900 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4901 }
4902 // Update cycle count
4903 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4904 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4905 emit_far_call(cc_interrupt);
4906 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4907 if(stubs[n].d==TAKEN) {
4908 if(internal_branch(ba[i]))
4909 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4910 else if(dops[i].itype==RJUMP) {
4911 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4912 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4913 else
4914 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
4915 }
4916 }else if(stubs[n].d==NOTTAKEN) {
4917 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4918 else load_all_regs(branch_regs[i].regmap);
4919 }else if(stubs[n].d==NULLDS) {
4920 // Delay slot instruction is nullified ("likely" branch)
4921 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4922 else load_all_regs(regs[i].regmap);
4923 }else{
4924 load_all_regs(branch_regs[i].regmap);
4925 }
4926 if (stubs[n].retaddr)
4927 emit_jmp(stubs[n].retaddr);
4928 else
4929 do_jump_vaddr(stubs[n].e);
4930}
4931
4932static void add_to_linker(void *addr, u_int target, int ext)
4933{
4934 assert(linkcount < ARRAY_SIZE(link_addr));
4935 link_addr[linkcount].addr = addr;
4936 link_addr[linkcount].target = target;
4937 link_addr[linkcount].ext = ext;
4938 linkcount++;
4939}
4940
4941static void ujump_assemble_write_ra(int i)
4942{
4943 int rt;
4944 unsigned int return_address;
4945 rt=get_reg(branch_regs[i].regmap,31);
4946 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4947 //assert(rt>=0);
4948 return_address=start+i*4+8;
4949 if(rt>=0) {
4950 #ifdef USE_MINI_HT
4951 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
4952 int temp=-1; // note: must be ds-safe
4953 #ifdef HOST_TEMPREG
4954 temp=HOST_TEMPREG;
4955 #endif
4956 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4957 else emit_movimm(return_address,rt);
4958 }
4959 else
4960 #endif
4961 {
4962 #ifdef REG_PREFETCH
4963 if(temp>=0)
4964 {
4965 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4966 }
4967 #endif
4968 emit_movimm(return_address,rt); // PC into link register
4969 #ifdef IMM_PREFETCH
4970 emit_prefetch(hash_table_get(return_address));
4971 #endif
4972 }
4973 }
4974}
4975
4976static void ujump_assemble(int i,struct regstat *i_regs)
4977{
4978 int ra_done=0;
4979 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4980 address_generation(i+1,i_regs,regs[i].regmap_entry);
4981 #ifdef REG_PREFETCH
4982 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4983 if(dops[i].rt1==31&&temp>=0)
4984 {
4985 signed char *i_regmap=i_regs->regmap;
4986 int return_address=start+i*4+8;
4987 if(get_reg(branch_regs[i].regmap,31)>0)
4988 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4989 }
4990 #endif
4991 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
4992 ujump_assemble_write_ra(i); // writeback ra for DS
4993 ra_done=1;
4994 }
4995 ds_assemble(i+1,i_regs);
4996 uint64_t bc_unneeded=branch_regs[i].u;
4997 bc_unneeded|=1|(1LL<<dops[i].rt1);
4998 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4999 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5000 if(!ra_done&&dops[i].rt1==31)
5001 ujump_assemble_write_ra(i);
5002 int cc,adj;
5003 cc=get_reg(branch_regs[i].regmap,CCREG);
5004 assert(cc==HOST_CCREG);
5005 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5006 #ifdef REG_PREFETCH
5007 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5008 #endif
5009 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5010 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5011 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5012 if(internal_branch(ba[i]))
5013 assem_debug("branch: internal\n");
5014 else
5015 assem_debug("branch: external\n");
5016 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5017 ds_assemble_entry(i);
5018 }
5019 else {
5020 add_to_linker(out,ba[i],internal_branch(ba[i]));
5021 emit_jmp(0);
5022 }
5023}
5024
5025static void rjump_assemble_write_ra(int i)
5026{
5027 int rt,return_address;
5028 assert(dops[i+1].rt1!=dops[i].rt1);
5029 assert(dops[i+1].rt2!=dops[i].rt1);
5030 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5031 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5032 assert(rt>=0);
5033 return_address=start+i*4+8;
5034 #ifdef REG_PREFETCH
5035 if(temp>=0)
5036 {
5037 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5038 }
5039 #endif
5040 emit_movimm(return_address,rt); // PC into link register
5041 #ifdef IMM_PREFETCH
5042 emit_prefetch(hash_table_get(return_address));
5043 #endif
5044}
5045
5046static void rjump_assemble(int i,struct regstat *i_regs)
5047{
5048 int temp;
5049 int rs,cc;
5050 int ra_done=0;
5051 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5052 assert(rs>=0);
5053 if (ds_writes_rjump_rs(i)) {
5054 // Delay slot abuse, make a copy of the branch address register
5055 temp=get_reg(branch_regs[i].regmap,RTEMP);
5056 assert(temp>=0);
5057 assert(regs[i].regmap[temp]==RTEMP);
5058 emit_mov(rs,temp);
5059 rs=temp;
5060 }
5061 address_generation(i+1,i_regs,regs[i].regmap_entry);
5062 #ifdef REG_PREFETCH
5063 if(dops[i].rt1==31)
5064 {
5065 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5066 signed char *i_regmap=i_regs->regmap;
5067 int return_address=start+i*4+8;
5068 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5069 }
5070 }
5071 #endif
5072 #ifdef USE_MINI_HT
5073 if(dops[i].rs1==31) {
5074 int rh=get_reg(regs[i].regmap,RHASH);
5075 if(rh>=0) do_preload_rhash(rh);
5076 }
5077 #endif
5078 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5079 rjump_assemble_write_ra(i);
5080 ra_done=1;
5081 }
5082 ds_assemble(i+1,i_regs);
5083 uint64_t bc_unneeded=branch_regs[i].u;
5084 bc_unneeded|=1|(1LL<<dops[i].rt1);
5085 bc_unneeded&=~(1LL<<dops[i].rs1);
5086 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5087 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5088 if(!ra_done&&dops[i].rt1!=0)
5089 rjump_assemble_write_ra(i);
5090 cc=get_reg(branch_regs[i].regmap,CCREG);
5091 assert(cc==HOST_CCREG);
5092 (void)cc;
5093 #ifdef USE_MINI_HT
5094 int rh=get_reg(branch_regs[i].regmap,RHASH);
5095 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5096 if(dops[i].rs1==31) {
5097 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5098 do_preload_rhtbl(ht);
5099 do_rhash(rs,rh);
5100 }
5101 #endif
5102 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5103 #ifdef DESTRUCTIVE_WRITEBACK
5104 if((branch_regs[i].dirty>>rs)&1) {
5105 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5106 emit_loadreg(dops[i].rs1,rs);
5107 }
5108 }
5109 #endif
5110 #ifdef REG_PREFETCH
5111 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5112 #endif
5113 #ifdef USE_MINI_HT
5114 if(dops[i].rs1==31) {
5115 do_miniht_load(ht,rh);
5116 }
5117 #endif
5118 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5119 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5120 //assert(adj==0);
5121 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5122 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5123 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5124 // special case for RFE
5125 emit_jmp(0);
5126 else
5127 emit_jns(0);
5128 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5129 #ifdef USE_MINI_HT
5130 if(dops[i].rs1==31) {
5131 do_miniht_jump(rs,rh,ht);
5132 }
5133 else
5134 #endif
5135 {
5136 do_jump_vaddr(rs);
5137 }
5138 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5139 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5140 #endif
5141}
5142
5143static void cjump_assemble(int i,struct regstat *i_regs)
5144{
5145 signed char *i_regmap=i_regs->regmap;
5146 int cc;
5147 int match;
5148 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5149 assem_debug("match=%d\n",match);
5150 int s1l,s2l;
5151 int unconditional=0,nop=0;
5152 int invert=0;
5153 int internal=internal_branch(ba[i]);
5154 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5155 if(!match) invert=1;
5156 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5157 if(i>(ba[i]-start)>>2) invert=1;
5158 #endif
5159 #ifdef __aarch64__
5160 invert=1; // because of near cond. branches
5161 #endif
5162
5163 if(dops[i].ooo) {
5164 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5165 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5166 }
5167 else {
5168 s1l=get_reg(i_regmap,dops[i].rs1);
5169 s2l=get_reg(i_regmap,dops[i].rs2);
5170 }
5171 if(dops[i].rs1==0&&dops[i].rs2==0)
5172 {
5173 if(dops[i].opcode&1) nop=1;
5174 else unconditional=1;
5175 //assert(dops[i].opcode!=5);
5176 //assert(dops[i].opcode!=7);
5177 //assert(dops[i].opcode!=0x15);
5178 //assert(dops[i].opcode!=0x17);
5179 }
5180 else if(dops[i].rs1==0)
5181 {
5182 s1l=s2l;
5183 s2l=-1;
5184 }
5185 else if(dops[i].rs2==0)
5186 {
5187 s2l=-1;
5188 }
5189
5190 if(dops[i].ooo) {
5191 // Out of order execution (delay slot first)
5192 //printf("OOOE\n");
5193 address_generation(i+1,i_regs,regs[i].regmap_entry);
5194 ds_assemble(i+1,i_regs);
5195 int adj;
5196 uint64_t bc_unneeded=branch_regs[i].u;
5197 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5198 bc_unneeded|=1;
5199 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5200 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5201 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5202 cc=get_reg(branch_regs[i].regmap,CCREG);
5203 assert(cc==HOST_CCREG);
5204 if(unconditional)
5205 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5206 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5207 //assem_debug("cycle count (adj)\n");
5208 if(unconditional) {
5209 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5210 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5211 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5212 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5213 if(internal)
5214 assem_debug("branch: internal\n");
5215 else
5216 assem_debug("branch: external\n");
5217 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5218 ds_assemble_entry(i);
5219 }
5220 else {
5221 add_to_linker(out,ba[i],internal);
5222 emit_jmp(0);
5223 }
5224 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5225 if(((u_int)out)&7) emit_addnop(0);
5226 #endif
5227 }
5228 }
5229 else if(nop) {
5230 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5231 void *jaddr=out;
5232 emit_jns(0);
5233 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5234 }
5235 else {
5236 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5237 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5238 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5239
5240 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5241 assert(s1l>=0);
5242 if(dops[i].opcode==4) // BEQ
5243 {
5244 if(s2l>=0) emit_cmp(s1l,s2l);
5245 else emit_test(s1l,s1l);
5246 if(invert){
5247 nottaken=out;
5248 emit_jne(DJT_1);
5249 }else{
5250 add_to_linker(out,ba[i],internal);
5251 emit_jeq(0);
5252 }
5253 }
5254 if(dops[i].opcode==5) // BNE
5255 {
5256 if(s2l>=0) emit_cmp(s1l,s2l);
5257 else emit_test(s1l,s1l);
5258 if(invert){
5259 nottaken=out;
5260 emit_jeq(DJT_1);
5261 }else{
5262 add_to_linker(out,ba[i],internal);
5263 emit_jne(0);
5264 }
5265 }
5266 if(dops[i].opcode==6) // BLEZ
5267 {
5268 emit_cmpimm(s1l,1);
5269 if(invert){
5270 nottaken=out;
5271 emit_jge(DJT_1);
5272 }else{
5273 add_to_linker(out,ba[i],internal);
5274 emit_jl(0);
5275 }
5276 }
5277 if(dops[i].opcode==7) // BGTZ
5278 {
5279 emit_cmpimm(s1l,1);
5280 if(invert){
5281 nottaken=out;
5282 emit_jl(DJT_1);
5283 }else{
5284 add_to_linker(out,ba[i],internal);
5285 emit_jge(0);
5286 }
5287 }
5288 if(invert) {
5289 if(taken) set_jump_target(taken, out);
5290 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5291 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5292 if(adj) {
5293 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5294 add_to_linker(out,ba[i],internal);
5295 }else{
5296 emit_addnop(13);
5297 add_to_linker(out,ba[i],internal*2);
5298 }
5299 emit_jmp(0);
5300 }else
5301 #endif
5302 {
5303 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5304 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5305 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5306 if(internal)
5307 assem_debug("branch: internal\n");
5308 else
5309 assem_debug("branch: external\n");
5310 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5311 ds_assemble_entry(i);
5312 }
5313 else {
5314 add_to_linker(out,ba[i],internal);
5315 emit_jmp(0);
5316 }
5317 }
5318 set_jump_target(nottaken, out);
5319 }
5320
5321 if(nottaken1) set_jump_target(nottaken1, out);
5322 if(adj) {
5323 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5324 }
5325 } // (!unconditional)
5326 } // if(ooo)
5327 else
5328 {
5329 // In-order execution (branch first)
5330 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5331 if(!unconditional&&!nop) {
5332 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5333 assert(s1l>=0);
5334 if((dops[i].opcode&0x2f)==4) // BEQ
5335 {
5336 if(s2l>=0) emit_cmp(s1l,s2l);
5337 else emit_test(s1l,s1l);
5338 nottaken=out;
5339 emit_jne(DJT_2);
5340 }
5341 if((dops[i].opcode&0x2f)==5) // BNE
5342 {
5343 if(s2l>=0) emit_cmp(s1l,s2l);
5344 else emit_test(s1l,s1l);
5345 nottaken=out;
5346 emit_jeq(DJT_2);
5347 }
5348 if((dops[i].opcode&0x2f)==6) // BLEZ
5349 {
5350 emit_cmpimm(s1l,1);
5351 nottaken=out;
5352 emit_jge(DJT_2);
5353 }
5354 if((dops[i].opcode&0x2f)==7) // BGTZ
5355 {
5356 emit_cmpimm(s1l,1);
5357 nottaken=out;
5358 emit_jl(DJT_2);
5359 }
5360 } // if(!unconditional)
5361 int adj;
5362 uint64_t ds_unneeded=branch_regs[i].u;
5363 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5364 ds_unneeded|=1;
5365 // branch taken
5366 if(!nop) {
5367 if(taken) set_jump_target(taken, out);
5368 assem_debug("1:\n");
5369 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5370 // load regs
5371 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5372 address_generation(i+1,&branch_regs[i],0);
5373 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5374 ds_assemble(i+1,&branch_regs[i]);
5375 cc=get_reg(branch_regs[i].regmap,CCREG);
5376 if(cc==-1) {
5377 emit_loadreg(CCREG,cc=HOST_CCREG);
5378 // CHECK: Is the following instruction (fall thru) allocated ok?
5379 }
5380 assert(cc==HOST_CCREG);
5381 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5382 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5383 assem_debug("cycle count (adj)\n");
5384 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5385 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5386 if(internal)
5387 assem_debug("branch: internal\n");
5388 else
5389 assem_debug("branch: external\n");
5390 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5391 ds_assemble_entry(i);
5392 }
5393 else {
5394 add_to_linker(out,ba[i],internal);
5395 emit_jmp(0);
5396 }
5397 }
5398 // branch not taken
5399 if(!unconditional) {
5400 if(nottaken1) set_jump_target(nottaken1, out);
5401 set_jump_target(nottaken, out);
5402 assem_debug("2:\n");
5403 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5404 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5405 address_generation(i+1,&branch_regs[i],0);
5406 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5407 ds_assemble(i+1,&branch_regs[i]);
5408 cc=get_reg(branch_regs[i].regmap,CCREG);
5409 if (cc == -1) {
5410 // Cycle count isn't in a register, temporarily load it then write it out
5411 emit_loadreg(CCREG,HOST_CCREG);
5412 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5413 void *jaddr=out;
5414 emit_jns(0);
5415 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5416 emit_storereg(CCREG,HOST_CCREG);
5417 }
5418 else{
5419 cc=get_reg(i_regmap,CCREG);
5420 assert(cc==HOST_CCREG);
5421 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5422 void *jaddr=out;
5423 emit_jns(0);
5424 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5425 }
5426 }
5427 }
5428}
5429
5430static void sjump_assemble(int i,struct regstat *i_regs)
5431{
5432 signed char *i_regmap=i_regs->regmap;
5433 int cc;
5434 int match;
5435 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5436 assem_debug("smatch=%d\n",match);
5437 int s1l;
5438 int unconditional=0,nevertaken=0;
5439 int invert=0;
5440 int internal=internal_branch(ba[i]);
5441 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5442 if(!match) invert=1;
5443 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5444 if(i>(ba[i]-start)>>2) invert=1;
5445 #endif
5446 #ifdef __aarch64__
5447 invert=1; // because of near cond. branches
5448 #endif
5449
5450 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5451 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5452
5453 if(dops[i].ooo) {
5454 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5455 }
5456 else {
5457 s1l=get_reg(i_regmap,dops[i].rs1);
5458 }
5459 if(dops[i].rs1==0)
5460 {
5461 if(dops[i].opcode2&1) unconditional=1;
5462 else nevertaken=1;
5463 // These are never taken (r0 is never less than zero)
5464 //assert(dops[i].opcode2!=0);
5465 //assert(dops[i].opcode2!=2);
5466 //assert(dops[i].opcode2!=0x10);
5467 //assert(dops[i].opcode2!=0x12);
5468 }
5469
5470 if(dops[i].ooo) {
5471 // Out of order execution (delay slot first)
5472 //printf("OOOE\n");
5473 address_generation(i+1,i_regs,regs[i].regmap_entry);
5474 ds_assemble(i+1,i_regs);
5475 int adj;
5476 uint64_t bc_unneeded=branch_regs[i].u;
5477 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5478 bc_unneeded|=1;
5479 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5480 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5481 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5482 if(dops[i].rt1==31) {
5483 int rt,return_address;
5484 rt=get_reg(branch_regs[i].regmap,31);
5485 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5486 if(rt>=0) {
5487 // Save the PC even if the branch is not taken
5488 return_address=start+i*4+8;
5489 emit_movimm(return_address,rt); // PC into link register
5490 #ifdef IMM_PREFETCH
5491 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5492 #endif
5493 }
5494 }
5495 cc=get_reg(branch_regs[i].regmap,CCREG);
5496 assert(cc==HOST_CCREG);
5497 if(unconditional)
5498 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5499 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5500 assem_debug("cycle count (adj)\n");
5501 if(unconditional) {
5502 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5503 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5504 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5505 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5506 if(internal)
5507 assem_debug("branch: internal\n");
5508 else
5509 assem_debug("branch: external\n");
5510 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5511 ds_assemble_entry(i);
5512 }
5513 else {
5514 add_to_linker(out,ba[i],internal);
5515 emit_jmp(0);
5516 }
5517 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5518 if(((u_int)out)&7) emit_addnop(0);
5519 #endif
5520 }
5521 }
5522 else if(nevertaken) {
5523 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5524 void *jaddr=out;
5525 emit_jns(0);
5526 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5527 }
5528 else {
5529 void *nottaken = NULL;
5530 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5531 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5532 {
5533 assert(s1l>=0);
5534 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5535 {
5536 emit_test(s1l,s1l);
5537 if(invert){
5538 nottaken=out;
5539 emit_jns(DJT_1);
5540 }else{
5541 add_to_linker(out,ba[i],internal);
5542 emit_js(0);
5543 }
5544 }
5545 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5546 {
5547 emit_test(s1l,s1l);
5548 if(invert){
5549 nottaken=out;
5550 emit_js(DJT_1);
5551 }else{
5552 add_to_linker(out,ba[i],internal);
5553 emit_jns(0);
5554 }
5555 }
5556 }
5557
5558 if(invert) {
5559 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5560 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5561 if(adj) {
5562 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5563 add_to_linker(out,ba[i],internal);
5564 }else{
5565 emit_addnop(13);
5566 add_to_linker(out,ba[i],internal*2);
5567 }
5568 emit_jmp(0);
5569 }else
5570 #endif
5571 {
5572 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5573 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5574 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5575 if(internal)
5576 assem_debug("branch: internal\n");
5577 else
5578 assem_debug("branch: external\n");
5579 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5580 ds_assemble_entry(i);
5581 }
5582 else {
5583 add_to_linker(out,ba[i],internal);
5584 emit_jmp(0);
5585 }
5586 }
5587 set_jump_target(nottaken, out);
5588 }
5589
5590 if(adj) {
5591 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5592 }
5593 } // (!unconditional)
5594 } // if(ooo)
5595 else
5596 {
5597 // In-order execution (branch first)
5598 //printf("IOE\n");
5599 void *nottaken = NULL;
5600 if(dops[i].rt1==31) {
5601 int rt,return_address;
5602 rt=get_reg(branch_regs[i].regmap,31);
5603 if(rt>=0) {
5604 // Save the PC even if the branch is not taken
5605 return_address=start+i*4+8;
5606 emit_movimm(return_address,rt); // PC into link register
5607 #ifdef IMM_PREFETCH
5608 emit_prefetch(hash_table_get(return_address));
5609 #endif
5610 }
5611 }
5612 if(!unconditional) {
5613 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5614 assert(s1l>=0);
5615 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5616 {
5617 emit_test(s1l,s1l);
5618 nottaken=out;
5619 emit_jns(DJT_1);
5620 }
5621 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5622 {
5623 emit_test(s1l,s1l);
5624 nottaken=out;
5625 emit_js(DJT_1);
5626 }
5627 } // if(!unconditional)
5628 int adj;
5629 uint64_t ds_unneeded=branch_regs[i].u;
5630 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5631 ds_unneeded|=1;
5632 // branch taken
5633 if(!nevertaken) {
5634 //assem_debug("1:\n");
5635 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5636 // load regs
5637 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5638 address_generation(i+1,&branch_regs[i],0);
5639 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5640 ds_assemble(i+1,&branch_regs[i]);
5641 cc=get_reg(branch_regs[i].regmap,CCREG);
5642 if(cc==-1) {
5643 emit_loadreg(CCREG,cc=HOST_CCREG);
5644 // CHECK: Is the following instruction (fall thru) allocated ok?
5645 }
5646 assert(cc==HOST_CCREG);
5647 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5648 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5649 assem_debug("cycle count (adj)\n");
5650 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5651 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5652 if(internal)
5653 assem_debug("branch: internal\n");
5654 else
5655 assem_debug("branch: external\n");
5656 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5657 ds_assemble_entry(i);
5658 }
5659 else {
5660 add_to_linker(out,ba[i],internal);
5661 emit_jmp(0);
5662 }
5663 }
5664 // branch not taken
5665 if(!unconditional) {
5666 set_jump_target(nottaken, out);
5667 assem_debug("1:\n");
5668 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5669 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5670 address_generation(i+1,&branch_regs[i],0);
5671 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5672 ds_assemble(i+1,&branch_regs[i]);
5673 cc=get_reg(branch_regs[i].regmap,CCREG);
5674 if (cc == -1) {
5675 // Cycle count isn't in a register, temporarily load it then write it out
5676 emit_loadreg(CCREG,HOST_CCREG);
5677 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5678 void *jaddr=out;
5679 emit_jns(0);
5680 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5681 emit_storereg(CCREG,HOST_CCREG);
5682 }
5683 else{
5684 cc=get_reg(i_regmap,CCREG);
5685 assert(cc==HOST_CCREG);
5686 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5687 void *jaddr=out;
5688 emit_jns(0);
5689 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5690 }
5691 }
5692 }
5693}
5694
5695static void pagespan_assemble(int i,struct regstat *i_regs)
5696{
5697 int s1l=get_reg(i_regs->regmap,dops[i].rs1);
5698 int s2l=get_reg(i_regs->regmap,dops[i].rs2);
5699 void *taken = NULL;
5700 void *nottaken = NULL;
5701 int unconditional=0;
5702 if(dops[i].rs1==0)
5703 {
5704 s1l=s2l;
5705 s2l=-1;
5706 }
5707 else if(dops[i].rs2==0)
5708 {
5709 s2l=-1;
5710 }
5711 int hr=0;
5712 int addr=-1,alt=-1,ntaddr=-1;
5713 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5714 else {
5715 while(hr<HOST_REGS)
5716 {
5717 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5718 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5719 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5720 {
5721 addr=hr++;break;
5722 }
5723 hr++;
5724 }
5725 }
5726 while(hr<HOST_REGS)
5727 {
5728 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5729 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5730 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5731 {
5732 alt=hr++;break;
5733 }
5734 hr++;
5735 }
5736 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5737 {
5738 while(hr<HOST_REGS)
5739 {
5740 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5741 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5742 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5743 {
5744 ntaddr=hr;break;
5745 }
5746 hr++;
5747 }
5748 }
5749 assert(hr<HOST_REGS);
5750 if((dops[i].opcode&0x2e)==4||dops[i].opcode==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5751 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5752 }
5753 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5754 if(dops[i].opcode==2) // J
5755 {
5756 unconditional=1;
5757 }
5758 if(dops[i].opcode==3) // JAL
5759 {
5760 // TODO: mini_ht
5761 int rt=get_reg(i_regs->regmap,31);
5762 emit_movimm(start+i*4+8,rt);
5763 unconditional=1;
5764 }
5765 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
5766 {
5767 emit_mov(s1l,addr);
5768 if(dops[i].opcode2==9) // JALR
5769 {
5770 int rt=get_reg(i_regs->regmap,dops[i].rt1);
5771 emit_movimm(start+i*4+8,rt);
5772 }
5773 }
5774 if((dops[i].opcode&0x3f)==4) // BEQ
5775 {
5776 if(dops[i].rs1==dops[i].rs2)
5777 {
5778 unconditional=1;
5779 }
5780 else
5781 #ifdef HAVE_CMOV_IMM
5782 if(1) {
5783 if(s2l>=0) emit_cmp(s1l,s2l);
5784 else emit_test(s1l,s1l);
5785 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5786 }
5787 else
5788 #endif
5789 {
5790 assert(s1l>=0);
5791 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5792 if(s2l>=0) emit_cmp(s1l,s2l);
5793 else emit_test(s1l,s1l);
5794 emit_cmovne_reg(alt,addr);
5795 }
5796 }
5797 if((dops[i].opcode&0x3f)==5) // BNE
5798 {
5799 #ifdef HAVE_CMOV_IMM
5800 if(s2l>=0) emit_cmp(s1l,s2l);
5801 else emit_test(s1l,s1l);
5802 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5803 #else
5804 assert(s1l>=0);
5805 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5806 if(s2l>=0) emit_cmp(s1l,s2l);
5807 else emit_test(s1l,s1l);
5808 emit_cmovne_reg(alt,addr);
5809 #endif
5810 }
5811 if((dops[i].opcode&0x3f)==0x14) // BEQL
5812 {
5813 if(s2l>=0) emit_cmp(s1l,s2l);
5814 else emit_test(s1l,s1l);
5815 if(nottaken) set_jump_target(nottaken, out);
5816 nottaken=out;
5817 emit_jne(0);
5818 }
5819 if((dops[i].opcode&0x3f)==0x15) // BNEL
5820 {
5821 if(s2l>=0) emit_cmp(s1l,s2l);
5822 else emit_test(s1l,s1l);
5823 nottaken=out;
5824 emit_jeq(0);
5825 if(taken) set_jump_target(taken, out);
5826 }
5827 if((dops[i].opcode&0x3f)==6) // BLEZ
5828 {
5829 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5830 emit_cmpimm(s1l,1);
5831 emit_cmovl_reg(alt,addr);
5832 }
5833 if((dops[i].opcode&0x3f)==7) // BGTZ
5834 {
5835 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5836 emit_cmpimm(s1l,1);
5837 emit_cmovl_reg(ntaddr,addr);
5838 }
5839 if((dops[i].opcode&0x3f)==0x16) // BLEZL
5840 {
5841 assert((dops[i].opcode&0x3f)!=0x16);
5842 }
5843 if((dops[i].opcode&0x3f)==0x17) // BGTZL
5844 {
5845 assert((dops[i].opcode&0x3f)!=0x17);
5846 }
5847 assert(dops[i].opcode!=1); // BLTZ/BGEZ
5848
5849 //FIXME: Check CSREG
5850 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5851 if((source[i]&0x30000)==0) // BC1F
5852 {
5853 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5854 emit_testimm(s1l,0x800000);
5855 emit_cmovne_reg(alt,addr);
5856 }
5857 if((source[i]&0x30000)==0x10000) // BC1T
5858 {
5859 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5860 emit_testimm(s1l,0x800000);
5861 emit_cmovne_reg(alt,addr);
5862 }
5863 if((source[i]&0x30000)==0x20000) // BC1FL
5864 {
5865 emit_testimm(s1l,0x800000);
5866 nottaken=out;
5867 emit_jne(0);
5868 }
5869 if((source[i]&0x30000)==0x30000) // BC1TL
5870 {
5871 emit_testimm(s1l,0x800000);
5872 nottaken=out;
5873 emit_jeq(0);
5874 }
5875 }
5876
5877 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5878 wb_dirtys(regs[i].regmap,regs[i].dirty);
5879 if(unconditional)
5880 {
5881 emit_movimm(ba[i],HOST_BTREG);
5882 }
5883 else if(addr!=HOST_BTREG)
5884 {
5885 emit_mov(addr,HOST_BTREG);
5886 }
5887 void *branch_addr=out;
5888 emit_jmp(0);
5889 int target_addr=start+i*4+5;
5890 void *stub=out;
5891 void *compiled_target_addr=check_addr(target_addr);
5892 emit_extjump_ds(branch_addr, target_addr);
5893 if(compiled_target_addr) {
5894 set_jump_target(branch_addr, compiled_target_addr);
5895 add_jump_out(target_addr,stub);
5896 }
5897 else set_jump_target(branch_addr, stub);
5898}
5899
5900// Assemble the delay slot for the above
5901static void pagespan_ds()
5902{
5903 assem_debug("initial delay slot:\n");
5904 u_int vaddr=start+1;
5905 u_int page=get_page(vaddr);
5906 u_int vpage=get_vpage(vaddr);
5907 ll_add(jump_dirty+vpage,vaddr,(void *)out);
5908 do_dirty_stub_ds(slen*4);
5909 ll_add(jump_in+page,vaddr,(void *)out);
5910 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
5911 if(regs[0].regmap[HOST_CCREG]!=CCREG)
5912 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
5913 if(regs[0].regmap[HOST_BTREG]!=BTREG)
5914 emit_writeword(HOST_BTREG,&branch_target);
5915 load_regs(regs[0].regmap_entry,regs[0].regmap,dops[0].rs1,dops[0].rs2);
5916 address_generation(0,&regs[0],regs[0].regmap_entry);
5917 if(dops[0].itype==STORE||dops[0].itype==STORELR||(dops[0].opcode&0x3b)==0x39||(dops[0].opcode&0x3b)==0x3a)
5918 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
5919 is_delayslot=0;
5920 switch(dops[0].itype) {
5921 case ALU:
5922 alu_assemble(0,&regs[0]);break;
5923 case IMM16:
5924 imm16_assemble(0,&regs[0]);break;
5925 case SHIFT:
5926 shift_assemble(0,&regs[0]);break;
5927 case SHIFTIMM:
5928 shiftimm_assemble(0,&regs[0]);break;
5929 case LOAD:
5930 load_assemble(0,&regs[0]);break;
5931 case LOADLR:
5932 loadlr_assemble(0,&regs[0]);break;
5933 case STORE:
5934 store_assemble(0,&regs[0]);break;
5935 case STORELR:
5936 storelr_assemble(0,&regs[0]);break;
5937 case COP0:
5938 cop0_assemble(0,&regs[0]);break;
5939 case COP1:
5940 cop1_assemble(0,&regs[0]);break;
5941 case C1LS:
5942 c1ls_assemble(0,&regs[0]);break;
5943 case COP2:
5944 cop2_assemble(0,&regs[0]);break;
5945 case C2LS:
5946 c2ls_assemble(0,&regs[0]);break;
5947 case C2OP:
5948 c2op_assemble(0,&regs[0]);break;
5949 case MULTDIV:
5950 multdiv_assemble(0,&regs[0]);
5951 multdiv_prepare_stall(0,&regs[0]);
5952 break;
5953 case MOV:
5954 mov_assemble(0,&regs[0]);break;
5955 case SYSCALL:
5956 case HLECALL:
5957 case INTCALL:
5958 case SPAN:
5959 case UJUMP:
5960 case RJUMP:
5961 case CJUMP:
5962 case SJUMP:
5963 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
5964 }
5965 int btaddr=get_reg(regs[0].regmap,BTREG);
5966 if(btaddr<0) {
5967 btaddr=get_reg(regs[0].regmap,-1);
5968 emit_readword(&branch_target,btaddr);
5969 }
5970 assert(btaddr!=HOST_CCREG);
5971 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
5972#ifdef HOST_IMM8
5973 host_tempreg_acquire();
5974 emit_movimm(start+4,HOST_TEMPREG);
5975 emit_cmp(btaddr,HOST_TEMPREG);
5976 host_tempreg_release();
5977#else
5978 emit_cmpimm(btaddr,start+4);
5979#endif
5980 void *branch = out;
5981 emit_jeq(0);
5982 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
5983 do_jump_vaddr(btaddr);
5984 set_jump_target(branch, out);
5985 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5986 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5987}
5988
5989// Basic liveness analysis for MIPS registers
5990void unneeded_registers(int istart,int iend,int r)
5991{
5992 int i;
5993 uint64_t u,gte_u,b,gte_b;
5994 uint64_t temp_u,temp_gte_u=0;
5995 uint64_t gte_u_unknown=0;
5996 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
5997 gte_u_unknown=~0ll;
5998 if(iend==slen-1) {
5999 u=1;
6000 gte_u=gte_u_unknown;
6001 }else{
6002 //u=unneeded_reg[iend+1];
6003 u=1;
6004 gte_u=gte_unneeded[iend+1];
6005 }
6006
6007 for (i=iend;i>=istart;i--)
6008 {
6009 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6010 if(dops[i].is_jump)
6011 {
6012 // If subroutine call, flag return address as a possible branch target
6013 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6014
6015 if(ba[i]<start || ba[i]>=(start+slen*4))
6016 {
6017 // Branch out of this block, flush all regs
6018 u=1;
6019 gte_u=gte_u_unknown;
6020 branch_unneeded_reg[i]=u;
6021 // Merge in delay slot
6022 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6023 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6024 u|=1;
6025 gte_u|=gte_rt[i+1];
6026 gte_u&=~gte_rs[i+1];
6027 }
6028 else
6029 {
6030 // Internal branch, flag target
6031 dops[(ba[i]-start)>>2].bt=1;
6032 if(ba[i]<=start+i*4) {
6033 // Backward branch
6034 if(dops[i].is_ujump)
6035 {
6036 // Unconditional branch
6037 temp_u=1;
6038 temp_gte_u=0;
6039 } else {
6040 // Conditional branch (not taken case)
6041 temp_u=unneeded_reg[i+2];
6042 temp_gte_u&=gte_unneeded[i+2];
6043 }
6044 // Merge in delay slot
6045 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6046 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6047 temp_u|=1;
6048 temp_gte_u|=gte_rt[i+1];
6049 temp_gte_u&=~gte_rs[i+1];
6050 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6051 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6052 temp_u|=1;
6053 temp_gte_u|=gte_rt[i];
6054 temp_gte_u&=~gte_rs[i];
6055 unneeded_reg[i]=temp_u;
6056 gte_unneeded[i]=temp_gte_u;
6057 // Only go three levels deep. This recursion can take an
6058 // excessive amount of time if there are a lot of nested loops.
6059 if(r<2) {
6060 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6061 }else{
6062 unneeded_reg[(ba[i]-start)>>2]=1;
6063 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6064 }
6065 } /*else*/ if(1) {
6066 if (dops[i].is_ujump)
6067 {
6068 // Unconditional branch
6069 u=unneeded_reg[(ba[i]-start)>>2];
6070 gte_u=gte_unneeded[(ba[i]-start)>>2];
6071 branch_unneeded_reg[i]=u;
6072 // Merge in delay slot
6073 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6074 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6075 u|=1;
6076 gte_u|=gte_rt[i+1];
6077 gte_u&=~gte_rs[i+1];
6078 } else {
6079 // Conditional branch
6080 b=unneeded_reg[(ba[i]-start)>>2];
6081 gte_b=gte_unneeded[(ba[i]-start)>>2];
6082 branch_unneeded_reg[i]=b;
6083 // Branch delay slot
6084 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6085 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6086 b|=1;
6087 gte_b|=gte_rt[i+1];
6088 gte_b&=~gte_rs[i+1];
6089 u&=b;
6090 gte_u&=gte_b;
6091 if(i<slen-1) {
6092 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6093 } else {
6094 branch_unneeded_reg[i]=1;
6095 }
6096 }
6097 }
6098 }
6099 }
6100 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6101 {
6102 // SYSCALL instruction (software interrupt)
6103 u=1;
6104 }
6105 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6106 {
6107 // ERET instruction (return from interrupt)
6108 u=1;
6109 }
6110 //u=1; // DEBUG
6111 // Written registers are unneeded
6112 u|=1LL<<dops[i].rt1;
6113 u|=1LL<<dops[i].rt2;
6114 gte_u|=gte_rt[i];
6115 // Accessed registers are needed
6116 u&=~(1LL<<dops[i].rs1);
6117 u&=~(1LL<<dops[i].rs2);
6118 gte_u&=~gte_rs[i];
6119 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
6120 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6121 // Source-target dependencies
6122 // R0 is always unneeded
6123 u|=1;
6124 // Save it
6125 unneeded_reg[i]=u;
6126 gte_unneeded[i]=gte_u;
6127 /*
6128 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6129 printf("U:");
6130 int r;
6131 for(r=1;r<=CCREG;r++) {
6132 if((unneeded_reg[i]>>r)&1) {
6133 if(r==HIREG) printf(" HI");
6134 else if(r==LOREG) printf(" LO");
6135 else printf(" r%d",r);
6136 }
6137 }
6138 printf("\n");
6139 */
6140 }
6141}
6142
6143// Write back dirty registers as soon as we will no longer modify them,
6144// so that we don't end up with lots of writes at the branches.
6145void clean_registers(int istart,int iend,int wr)
6146{
6147 int i;
6148 int r;
6149 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6150 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6151 if(iend==slen-1) {
6152 will_dirty_i=will_dirty_next=0;
6153 wont_dirty_i=wont_dirty_next=0;
6154 }else{
6155 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6156 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6157 }
6158 for (i=iend;i>=istart;i--)
6159 {
6160 if(dops[i].is_jump)
6161 {
6162 if(ba[i]<start || ba[i]>=(start+slen*4))
6163 {
6164 // Branch out of this block, flush all regs
6165 if (dops[i].is_ujump)
6166 {
6167 // Unconditional branch
6168 will_dirty_i=0;
6169 wont_dirty_i=0;
6170 // Merge in delay slot (will dirty)
6171 for(r=0;r<HOST_REGS;r++) {
6172 if(r!=EXCLUDE_REG) {
6173 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6174 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6175 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6176 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6177 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6178 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6179 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6180 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6181 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6182 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6183 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6184 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6185 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6186 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6187 }
6188 }
6189 }
6190 else
6191 {
6192 // Conditional branch
6193 will_dirty_i=0;
6194 wont_dirty_i=wont_dirty_next;
6195 // Merge in delay slot (will dirty)
6196 for(r=0;r<HOST_REGS;r++) {
6197 if(r!=EXCLUDE_REG) {
6198 if (1) { // !dops[i].likely) {
6199 // Might not dirty if likely branch is not taken
6200 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6201 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6202 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6203 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6204 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6205 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6206 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6207 //if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6208 //if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6209 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6210 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6211 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6212 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6213 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6214 }
6215 }
6216 }
6217 }
6218 // Merge in delay slot (wont dirty)
6219 for(r=0;r<HOST_REGS;r++) {
6220 if(r!=EXCLUDE_REG) {
6221 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6222 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6223 if((regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6224 if((regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6225 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6226 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6227 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6228 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6229 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6230 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6231 }
6232 }
6233 if(wr) {
6234 #ifndef DESTRUCTIVE_WRITEBACK
6235 branch_regs[i].dirty&=wont_dirty_i;
6236 #endif
6237 branch_regs[i].dirty|=will_dirty_i;
6238 }
6239 }
6240 else
6241 {
6242 // Internal branch
6243 if(ba[i]<=start+i*4) {
6244 // Backward branch
6245 if (dops[i].is_ujump)
6246 {
6247 // Unconditional branch
6248 temp_will_dirty=0;
6249 temp_wont_dirty=0;
6250 // Merge in delay slot (will dirty)
6251 for(r=0;r<HOST_REGS;r++) {
6252 if(r!=EXCLUDE_REG) {
6253 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6254 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6255 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6256 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6257 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6258 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6259 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6260 if((regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6261 if((regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6262 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6263 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6264 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6265 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6266 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6267 }
6268 }
6269 } else {
6270 // Conditional branch (not taken case)
6271 temp_will_dirty=will_dirty_next;
6272 temp_wont_dirty=wont_dirty_next;
6273 // Merge in delay slot (will dirty)
6274 for(r=0;r<HOST_REGS;r++) {
6275 if(r!=EXCLUDE_REG) {
6276 if (1) { // !dops[i].likely) {
6277 // Will not dirty if likely branch is not taken
6278 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6279 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6280 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6281 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6282 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6283 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6284 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6285 //if((regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6286 //if((regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6287 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6288 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6289 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6290 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6291 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6292 }
6293 }
6294 }
6295 }
6296 // Merge in delay slot (wont dirty)
6297 for(r=0;r<HOST_REGS;r++) {
6298 if(r!=EXCLUDE_REG) {
6299 if((regs[i].regmap[r]&63)==dops[i].rt1) temp_wont_dirty|=1<<r;
6300 if((regs[i].regmap[r]&63)==dops[i].rt2) temp_wont_dirty|=1<<r;
6301 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6302 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6303 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6304 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_wont_dirty|=1<<r;
6305 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_wont_dirty|=1<<r;
6306 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6307 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6308 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6309 }
6310 }
6311 // Deal with changed mappings
6312 if(i<iend) {
6313 for(r=0;r<HOST_REGS;r++) {
6314 if(r!=EXCLUDE_REG) {
6315 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6316 temp_will_dirty&=~(1<<r);
6317 temp_wont_dirty&=~(1<<r);
6318 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6319 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6320 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6321 } else {
6322 temp_will_dirty|=1<<r;
6323 temp_wont_dirty|=1<<r;
6324 }
6325 }
6326 }
6327 }
6328 }
6329 if(wr) {
6330 will_dirty[i]=temp_will_dirty;
6331 wont_dirty[i]=temp_wont_dirty;
6332 clean_registers((ba[i]-start)>>2,i-1,0);
6333 }else{
6334 // Limit recursion. It can take an excessive amount
6335 // of time if there are a lot of nested loops.
6336 will_dirty[(ba[i]-start)>>2]=0;
6337 wont_dirty[(ba[i]-start)>>2]=-1;
6338 }
6339 }
6340 /*else*/ if(1)
6341 {
6342 if (dops[i].is_ujump)
6343 {
6344 // Unconditional branch
6345 will_dirty_i=0;
6346 wont_dirty_i=0;
6347 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6348 for(r=0;r<HOST_REGS;r++) {
6349 if(r!=EXCLUDE_REG) {
6350 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6351 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6352 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6353 }
6354 if(branch_regs[i].regmap[r]>=0) {
6355 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6356 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6357 }
6358 }
6359 }
6360 //}
6361 // Merge in delay slot
6362 for(r=0;r<HOST_REGS;r++) {
6363 if(r!=EXCLUDE_REG) {
6364 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6365 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6366 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6367 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6368 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6369 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6370 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6371 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6372 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6373 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6374 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6375 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6376 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6377 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6378 }
6379 }
6380 } else {
6381 // Conditional branch
6382 will_dirty_i=will_dirty_next;
6383 wont_dirty_i=wont_dirty_next;
6384 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6385 for(r=0;r<HOST_REGS;r++) {
6386 if(r!=EXCLUDE_REG) {
6387 signed char target_reg=branch_regs[i].regmap[r];
6388 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6389 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6390 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6391 }
6392 else if(target_reg>=0) {
6393 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6394 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6395 }
6396 }
6397 }
6398 //}
6399 // Merge in delay slot
6400 for(r=0;r<HOST_REGS;r++) {
6401 if(r!=EXCLUDE_REG) {
6402 if (1) { // !dops[i].likely) {
6403 // Might not dirty if likely branch is not taken
6404 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6405 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6406 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6407 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6408 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6409 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6410 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6411 //if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6412 //if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6413 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6414 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6415 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6416 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6417 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6418 }
6419 }
6420 }
6421 }
6422 // Merge in delay slot (won't dirty)
6423 for(r=0;r<HOST_REGS;r++) {
6424 if(r!=EXCLUDE_REG) {
6425 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6426 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6427 if((regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6428 if((regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6429 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6430 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6431 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6432 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6433 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6434 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6435 }
6436 }
6437 if(wr) {
6438 #ifndef DESTRUCTIVE_WRITEBACK
6439 branch_regs[i].dirty&=wont_dirty_i;
6440 #endif
6441 branch_regs[i].dirty|=will_dirty_i;
6442 }
6443 }
6444 }
6445 }
6446 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6447 {
6448 // SYSCALL instruction (software interrupt)
6449 will_dirty_i=0;
6450 wont_dirty_i=0;
6451 }
6452 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6453 {
6454 // ERET instruction (return from interrupt)
6455 will_dirty_i=0;
6456 wont_dirty_i=0;
6457 }
6458 will_dirty_next=will_dirty_i;
6459 wont_dirty_next=wont_dirty_i;
6460 for(r=0;r<HOST_REGS;r++) {
6461 if(r!=EXCLUDE_REG) {
6462 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6463 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6464 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6465 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6466 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6467 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6468 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6469 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6470 if(i>istart) {
6471 if (!dops[i].is_jump)
6472 {
6473 // Don't store a register immediately after writing it,
6474 // may prevent dual-issue.
6475 if((regs[i].regmap[r]&63)==dops[i-1].rt1) wont_dirty_i|=1<<r;
6476 if((regs[i].regmap[r]&63)==dops[i-1].rt2) wont_dirty_i|=1<<r;
6477 }
6478 }
6479 }
6480 }
6481 // Save it
6482 will_dirty[i]=will_dirty_i;
6483 wont_dirty[i]=wont_dirty_i;
6484 // Mark registers that won't be dirtied as not dirty
6485 if(wr) {
6486 regs[i].dirty|=will_dirty_i;
6487 #ifndef DESTRUCTIVE_WRITEBACK
6488 regs[i].dirty&=wont_dirty_i;
6489 if(dops[i].is_jump)
6490 {
6491 if (i < iend-1 && !dops[i].is_ujump) {
6492 for(r=0;r<HOST_REGS;r++) {
6493 if(r!=EXCLUDE_REG) {
6494 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6495 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6496 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6497 }
6498 }
6499 }
6500 }
6501 else
6502 {
6503 if(i<iend) {
6504 for(r=0;r<HOST_REGS;r++) {
6505 if(r!=EXCLUDE_REG) {
6506 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6507 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6508 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6509 }
6510 }
6511 }
6512 }
6513 #endif
6514 //}
6515 }
6516 // Deal with changed mappings
6517 temp_will_dirty=will_dirty_i;
6518 temp_wont_dirty=wont_dirty_i;
6519 for(r=0;r<HOST_REGS;r++) {
6520 if(r!=EXCLUDE_REG) {
6521 int nr;
6522 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6523 if(wr) {
6524 #ifndef DESTRUCTIVE_WRITEBACK
6525 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6526 #endif
6527 regs[i].wasdirty|=will_dirty_i&(1<<r);
6528 }
6529 }
6530 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6531 // Register moved to a different register
6532 will_dirty_i&=~(1<<r);
6533 wont_dirty_i&=~(1<<r);
6534 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6535 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6536 if(wr) {
6537 #ifndef DESTRUCTIVE_WRITEBACK
6538 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6539 #endif
6540 regs[i].wasdirty|=will_dirty_i&(1<<r);
6541 }
6542 }
6543 else {
6544 will_dirty_i&=~(1<<r);
6545 wont_dirty_i&=~(1<<r);
6546 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6547 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6548 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6549 } else {
6550 wont_dirty_i|=1<<r;
6551 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6552 }
6553 }
6554 }
6555 }
6556 }
6557}
6558
6559#ifdef DISASM
6560 /* disassembly */
6561void disassemble_inst(int i)
6562{
6563 if (dops[i].bt) printf("*"); else printf(" ");
6564 switch(dops[i].itype) {
6565 case UJUMP:
6566 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6567 case CJUMP:
6568 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6569 case SJUMP:
6570 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6571 case RJUMP:
6572 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
6573 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6574 else
6575 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6576 break;
6577 case SPAN:
6578 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,ba[i]);break;
6579 case IMM16:
6580 if(dops[i].opcode==0xf) //LUI
6581 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
6582 else
6583 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6584 break;
6585 case LOAD:
6586 case LOADLR:
6587 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6588 break;
6589 case STORE:
6590 case STORELR:
6591 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
6592 break;
6593 case ALU:
6594 case SHIFT:
6595 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6596 break;
6597 case MULTDIV:
6598 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6599 break;
6600 case SHIFTIMM:
6601 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6602 break;
6603 case MOV:
6604 if((dops[i].opcode2&0x1d)==0x10)
6605 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6606 else if((dops[i].opcode2&0x1d)==0x11)
6607 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6608 else
6609 printf (" %x: %s\n",start+i*4,insn[i]);
6610 break;
6611 case COP0:
6612 if(dops[i].opcode2==0)
6613 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6614 else if(dops[i].opcode2==4)
6615 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6616 else printf (" %x: %s\n",start+i*4,insn[i]);
6617 break;
6618 case COP1:
6619 if(dops[i].opcode2<3)
6620 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
6621 else if(dops[i].opcode2>3)
6622 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
6623 else printf (" %x: %s\n",start+i*4,insn[i]);
6624 break;
6625 case COP2:
6626 if(dops[i].opcode2<3)
6627 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6628 else if(dops[i].opcode2>3)
6629 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6630 else printf (" %x: %s\n",start+i*4,insn[i]);
6631 break;
6632 case C1LS:
6633 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6634 break;
6635 case C2LS:
6636 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6637 break;
6638 case INTCALL:
6639 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6640 break;
6641 default:
6642 //printf (" %s %8x\n",insn[i],source[i]);
6643 printf (" %x: %s\n",start+i*4,insn[i]);
6644 }
6645}
6646#else
6647static void disassemble_inst(int i) {}
6648#endif // DISASM
6649
6650#define DRC_TEST_VAL 0x74657374
6651
6652static void new_dynarec_test(void)
6653{
6654 int (*testfunc)(void);
6655 void *beginning;
6656 int ret[2];
6657 size_t i;
6658
6659 // check structure linkage
6660 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6661 {
6662 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6663 }
6664
6665 SysPrintf("testing if we can run recompiled code...\n");
6666 ((volatile u_int *)out)[0]++; // make cache dirty
6667
6668 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6669 out = ndrc->translation_cache;
6670 beginning = start_block();
6671 emit_movimm(DRC_TEST_VAL + i, 0); // test
6672 emit_ret();
6673 literal_pool(0);
6674 end_block(beginning);
6675 testfunc = beginning;
6676 ret[i] = testfunc();
6677 }
6678
6679 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6680 SysPrintf("test passed.\n");
6681 else
6682 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6683 out = ndrc->translation_cache;
6684}
6685
6686// clear the state completely, instead of just marking
6687// things invalid like invalidate_all_pages() does
6688void new_dynarec_clear_full(void)
6689{
6690 int n;
6691 out = ndrc->translation_cache;
6692 memset(invalid_code,1,sizeof(invalid_code));
6693 memset(hash_table,0xff,sizeof(hash_table));
6694 memset(mini_ht,-1,sizeof(mini_ht));
6695 memset(restore_candidate,0,sizeof(restore_candidate));
6696 memset(shadow,0,sizeof(shadow));
6697 copy=shadow;
6698 expirep=16384; // Expiry pointer, +2 blocks
6699 pending_exception=0;
6700 literalcount=0;
6701 stop_after_jal=0;
6702 inv_code_start=inv_code_end=~0;
6703 // TLB
6704 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6705 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6706 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6707
6708 cycle_multiplier_old = cycle_multiplier;
6709 new_dynarec_hacks_old = new_dynarec_hacks;
6710}
6711
6712void new_dynarec_init(void)
6713{
6714 SysPrintf("Init new dynarec\n");
6715
6716#ifdef BASE_ADDR_DYNAMIC
6717 #ifdef VITA
6718 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6719 if (sceBlock < 0)
6720 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6721 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6722 if (ret < 0)
6723 SysPrintf("sceKernelGetMemBlockBase failed\n");
6724 #else
6725 uintptr_t desired_addr = 0;
6726 #ifdef __ELF__
6727 extern char _end;
6728 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6729 #endif
6730 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6731 PROT_READ | PROT_WRITE | PROT_EXEC,
6732 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6733 if (ndrc == MAP_FAILED) {
6734 SysPrintf("mmap() failed: %s\n", strerror(errno));
6735 abort();
6736 }
6737 #endif
6738#else
6739 #ifndef NO_WRITE_EXEC
6740 // not all systems allow execute in data segment by default
6741 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6742 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6743 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6744 #endif
6745#endif
6746 out = ndrc->translation_cache;
6747 cycle_multiplier=200;
6748 new_dynarec_clear_full();
6749#ifdef HOST_IMM8
6750 // Copy this into local area so we don't have to put it in every literal pool
6751 invc_ptr=invalid_code;
6752#endif
6753 arch_init();
6754 new_dynarec_test();
6755#ifndef RAM_FIXED
6756 ram_offset=(uintptr_t)rdram-0x80000000;
6757#endif
6758 if (ram_offset!=0)
6759 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6760}
6761
6762void new_dynarec_cleanup(void)
6763{
6764 int n;
6765#ifdef BASE_ADDR_DYNAMIC
6766 #ifdef VITA
6767 sceKernelFreeMemBlock(sceBlock);
6768 sceBlock = -1;
6769 #else
6770 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6771 SysPrintf("munmap() failed\n");
6772 #endif
6773#endif
6774 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6775 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6776 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6777 #ifdef ROM_COPY
6778 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6779 #endif
6780}
6781
6782static u_int *get_source_start(u_int addr, u_int *limit)
6783{
6784 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6785 cycle_multiplier_override = 0;
6786
6787 if (addr < 0x00200000 ||
6788 (0xa0000000 <= addr && addr < 0xa0200000))
6789 {
6790 // used for BIOS calls mostly?
6791 *limit = (addr&0xa0000000)|0x00200000;
6792 return (u_int *)(rdram + (addr&0x1fffff));
6793 }
6794 else if (!Config.HLE && (
6795 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6796 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6797 {
6798 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6799 // but timings in PCSX are too tied to the interpreter's BIAS
6800 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6801 cycle_multiplier_override = 200;
6802
6803 *limit = (addr & 0xfff00000) | 0x80000;
6804 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6805 }
6806 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6807 *limit = (addr & 0x80600000) + 0x00200000;
6808 return (u_int *)(rdram + (addr&0x1fffff));
6809 }
6810 return NULL;
6811}
6812
6813static u_int scan_for_ret(u_int addr)
6814{
6815 u_int limit = 0;
6816 u_int *mem;
6817
6818 mem = get_source_start(addr, &limit);
6819 if (mem == NULL)
6820 return addr;
6821
6822 if (limit > addr + 0x1000)
6823 limit = addr + 0x1000;
6824 for (; addr < limit; addr += 4, mem++) {
6825 if (*mem == 0x03e00008) // jr $ra
6826 return addr + 8;
6827 }
6828 return addr;
6829}
6830
6831struct savestate_block {
6832 uint32_t addr;
6833 uint32_t regflags;
6834};
6835
6836static int addr_cmp(const void *p1_, const void *p2_)
6837{
6838 const struct savestate_block *p1 = p1_, *p2 = p2_;
6839 return p1->addr - p2->addr;
6840}
6841
6842int new_dynarec_save_blocks(void *save, int size)
6843{
6844 struct savestate_block *blocks = save;
6845 int maxcount = size / sizeof(blocks[0]);
6846 struct savestate_block tmp_blocks[1024];
6847 struct ll_entry *head;
6848 int p, s, d, o, bcnt;
6849 u_int addr;
6850
6851 o = 0;
6852 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
6853 bcnt = 0;
6854 for (head = jump_in[p]; head != NULL; head = head->next) {
6855 tmp_blocks[bcnt].addr = head->vaddr;
6856 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
6857 bcnt++;
6858 }
6859 if (bcnt < 1)
6860 continue;
6861 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6862
6863 addr = tmp_blocks[0].addr;
6864 for (s = d = 0; s < bcnt; s++) {
6865 if (tmp_blocks[s].addr < addr)
6866 continue;
6867 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6868 tmp_blocks[d++] = tmp_blocks[s];
6869 addr = scan_for_ret(tmp_blocks[s].addr);
6870 }
6871
6872 if (o + d > maxcount)
6873 d = maxcount - o;
6874 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
6875 o += d;
6876 }
6877
6878 return o * sizeof(blocks[0]);
6879}
6880
6881void new_dynarec_load_blocks(const void *save, int size)
6882{
6883 const struct savestate_block *blocks = save;
6884 int count = size / sizeof(blocks[0]);
6885 u_int regs_save[32];
6886 uint32_t f;
6887 int i, b;
6888
6889 get_addr(psxRegs.pc);
6890
6891 // change GPRs for speculation to at least partially work..
6892 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6893 for (i = 1; i < 32; i++)
6894 psxRegs.GPR.r[i] = 0x80000000;
6895
6896 for (b = 0; b < count; b++) {
6897 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6898 if (f & 1)
6899 psxRegs.GPR.r[i] = 0x1f800000;
6900 }
6901
6902 get_addr(blocks[b].addr);
6903
6904 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6905 if (f & 1)
6906 psxRegs.GPR.r[i] = 0x80000000;
6907 }
6908 }
6909
6910 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6911}
6912
6913int new_recompile_block(u_int addr)
6914{
6915 u_int pagelimit = 0;
6916 u_int state_rflags = 0;
6917 int i;
6918
6919 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
6920 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
6921 //if(debug)
6922 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
6923
6924 // this is just for speculation
6925 for (i = 1; i < 32; i++) {
6926 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
6927 state_rflags |= 1 << i;
6928 }
6929
6930 start = (u_int)addr&~3;
6931 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
6932 new_dynarec_did_compile=1;
6933 if (Config.HLE && start == 0x80001000) // hlecall
6934 {
6935 // XXX: is this enough? Maybe check hleSoftCall?
6936 void *beginning=start_block();
6937 u_int page=get_page(start);
6938
6939 invalid_code[start>>12]=0;
6940 emit_movimm(start,0);
6941 emit_writeword(0,&pcaddr);
6942 emit_far_jump(new_dyna_leave);
6943 literal_pool(0);
6944 end_block(beginning);
6945 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
6946 return 0;
6947 }
6948
6949 source = get_source_start(start, &pagelimit);
6950 if (source == NULL) {
6951 SysPrintf("Compile at bogus memory address: %08x\n", addr);
6952 abort();
6953 }
6954
6955 /* Pass 1: disassemble */
6956 /* Pass 2: register dependencies, branch targets */
6957 /* Pass 3: register allocation */
6958 /* Pass 4: branch dependencies */
6959 /* Pass 5: pre-alloc */
6960 /* Pass 6: optimize clean/dirty state */
6961 /* Pass 7: flag 32-bit registers */
6962 /* Pass 8: assembly */
6963 /* Pass 9: linker */
6964 /* Pass 10: garbage collection / free memory */
6965
6966 int j;
6967 int done=0;
6968 unsigned int type,op,op2;
6969
6970 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
6971
6972 /* Pass 1 disassembly */
6973
6974 for(i=0;!done;i++) {
6975 dops[i].bt=0;
6976 dops[i].ooo=0;
6977 op2=0;
6978 minimum_free_regs[i]=0;
6979 dops[i].opcode=op=source[i]>>26;
6980 switch(op)
6981 {
6982 case 0x00: strcpy(insn[i],"special"); type=NI;
6983 op2=source[i]&0x3f;
6984 switch(op2)
6985 {
6986 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
6987 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
6988 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
6989 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
6990 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
6991 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
6992 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
6993 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
6994 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
6995 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
6996 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
6997 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
6998 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
6999 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7000 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7001 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7002 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7003 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7004 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7005 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7006 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7007 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7008 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7009 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7010 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7011 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7012 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7013 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7014 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7015 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7016 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7017 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7018 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7019 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7020 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7021#if 0
7022 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7023 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7024 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7025 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7026 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7027 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7028 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7029 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7030 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7031 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7032 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7033 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7034 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7035 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7036 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7037 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7038 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7039#endif
7040 }
7041 break;
7042 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7043 op2=(source[i]>>16)&0x1f;
7044 switch(op2)
7045 {
7046 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7047 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7048 //case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7049 //case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7050 //case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7051 //case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7052 //case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7053 //case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7054 //case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7055 //case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7056 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7057 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7058 //case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7059 //case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7060 }
7061 break;
7062 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7063 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7064 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7065 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7066 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7067 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7068 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7069 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7070 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7071 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7072 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7073 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7074 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7075 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7076 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7077 op2=(source[i]>>21)&0x1f;
7078 switch(op2)
7079 {
7080 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7081 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
7082 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7083 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
7084 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7085 }
7086 break;
7087 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
7088 op2=(source[i]>>21)&0x1f;
7089 break;
7090#if 0
7091 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7092 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7093 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7094 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7095 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7096 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7097 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7098 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7099#endif
7100 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7101 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7102 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7103 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7104 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7105 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7106 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7107#if 0
7108 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7109#endif
7110 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7111 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7112 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7113 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7114#if 0
7115 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7116 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7117#endif
7118 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7119 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7120 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7121 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7122#if 0
7123 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7124 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7125 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7126#endif
7127 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7128 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7129#if 0
7130 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7131 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7132 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7133#endif
7134 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7135 op2=(source[i]>>21)&0x1f;
7136 //if (op2 & 0x10)
7137 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7138 if (gte_handlers[source[i]&0x3f]!=NULL) {
7139 if (gte_regnames[source[i]&0x3f]!=NULL)
7140 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7141 else
7142 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7143 type=C2OP;
7144 }
7145 }
7146 else switch(op2)
7147 {
7148 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7149 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7150 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7151 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7152 }
7153 break;
7154 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7155 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7156 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7157 default: strcpy(insn[i],"???"); type=NI;
7158 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7159 break;
7160 }
7161 dops[i].itype=type;
7162 dops[i].opcode2=op2;
7163 /* Get registers/immediates */
7164 dops[i].lt1=0;
7165 gte_rs[i]=gte_rt[i]=0;
7166 switch(type) {
7167 case LOAD:
7168 dops[i].rs1=(source[i]>>21)&0x1f;
7169 dops[i].rs2=0;
7170 dops[i].rt1=(source[i]>>16)&0x1f;
7171 dops[i].rt2=0;
7172 imm[i]=(short)source[i];
7173 break;
7174 case STORE:
7175 case STORELR:
7176 dops[i].rs1=(source[i]>>21)&0x1f;
7177 dops[i].rs2=(source[i]>>16)&0x1f;
7178 dops[i].rt1=0;
7179 dops[i].rt2=0;
7180 imm[i]=(short)source[i];
7181 break;
7182 case LOADLR:
7183 // LWL/LWR only load part of the register,
7184 // therefore the target register must be treated as a source too
7185 dops[i].rs1=(source[i]>>21)&0x1f;
7186 dops[i].rs2=(source[i]>>16)&0x1f;
7187 dops[i].rt1=(source[i]>>16)&0x1f;
7188 dops[i].rt2=0;
7189 imm[i]=(short)source[i];
7190 break;
7191 case IMM16:
7192 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
7193 else dops[i].rs1=(source[i]>>21)&0x1f;
7194 dops[i].rs2=0;
7195 dops[i].rt1=(source[i]>>16)&0x1f;
7196 dops[i].rt2=0;
7197 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7198 imm[i]=(unsigned short)source[i];
7199 }else{
7200 imm[i]=(short)source[i];
7201 }
7202 break;
7203 case UJUMP:
7204 dops[i].rs1=0;
7205 dops[i].rs2=0;
7206 dops[i].rt1=0;
7207 dops[i].rt2=0;
7208 // The JAL instruction writes to r31.
7209 if (op&1) {
7210 dops[i].rt1=31;
7211 }
7212 dops[i].rs2=CCREG;
7213 break;
7214 case RJUMP:
7215 dops[i].rs1=(source[i]>>21)&0x1f;
7216 dops[i].rs2=0;
7217 dops[i].rt1=0;
7218 dops[i].rt2=0;
7219 // The JALR instruction writes to rd.
7220 if (op2&1) {
7221 dops[i].rt1=(source[i]>>11)&0x1f;
7222 }
7223 dops[i].rs2=CCREG;
7224 break;
7225 case CJUMP:
7226 dops[i].rs1=(source[i]>>21)&0x1f;
7227 dops[i].rs2=(source[i]>>16)&0x1f;
7228 dops[i].rt1=0;
7229 dops[i].rt2=0;
7230 if(op&2) { // BGTZ/BLEZ
7231 dops[i].rs2=0;
7232 }
7233 break;
7234 case SJUMP:
7235 dops[i].rs1=(source[i]>>21)&0x1f;
7236 dops[i].rs2=CCREG;
7237 dops[i].rt1=0;
7238 dops[i].rt2=0;
7239 if(op2&0x10) { // BxxAL
7240 dops[i].rt1=31;
7241 // NOTE: If the branch is not taken, r31 is still overwritten
7242 }
7243 break;
7244 case ALU:
7245 dops[i].rs1=(source[i]>>21)&0x1f; // source
7246 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
7247 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7248 dops[i].rt2=0;
7249 break;
7250 case MULTDIV:
7251 dops[i].rs1=(source[i]>>21)&0x1f; // source
7252 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
7253 dops[i].rt1=HIREG;
7254 dops[i].rt2=LOREG;
7255 break;
7256 case MOV:
7257 dops[i].rs1=0;
7258 dops[i].rs2=0;
7259 dops[i].rt1=0;
7260 dops[i].rt2=0;
7261 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
7262 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
7263 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
7264 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
7265 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
7266 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
7267 break;
7268 case SHIFT:
7269 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
7270 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
7271 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7272 dops[i].rt2=0;
7273 break;
7274 case SHIFTIMM:
7275 dops[i].rs1=(source[i]>>16)&0x1f;
7276 dops[i].rs2=0;
7277 dops[i].rt1=(source[i]>>11)&0x1f;
7278 dops[i].rt2=0;
7279 imm[i]=(source[i]>>6)&0x1f;
7280 // DSxx32 instructions
7281 if(op2>=0x3c) imm[i]|=0x20;
7282 break;
7283 case COP0:
7284 dops[i].rs1=0;
7285 dops[i].rs2=0;
7286 dops[i].rt1=0;
7287 dops[i].rt2=0;
7288 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
7289 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
7290 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
7291 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
7292 break;
7293 case COP1:
7294 dops[i].rs1=0;
7295 dops[i].rs2=0;
7296 dops[i].rt1=0;
7297 dops[i].rt2=0;
7298 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7299 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7300 dops[i].rs2=CSREG;
7301 break;
7302 case COP2:
7303 dops[i].rs1=0;
7304 dops[i].rs2=0;
7305 dops[i].rt1=0;
7306 dops[i].rt2=0;
7307 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
7308 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
7309 dops[i].rs2=CSREG;
7310 int gr=(source[i]>>11)&0x1F;
7311 switch(op2)
7312 {
7313 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7314 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7315 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7316 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7317 }
7318 break;
7319 case C1LS:
7320 dops[i].rs1=(source[i]>>21)&0x1F;
7321 dops[i].rs2=CSREG;
7322 dops[i].rt1=0;
7323 dops[i].rt2=0;
7324 imm[i]=(short)source[i];
7325 break;
7326 case C2LS:
7327 dops[i].rs1=(source[i]>>21)&0x1F;
7328 dops[i].rs2=0;
7329 dops[i].rt1=0;
7330 dops[i].rt2=0;
7331 imm[i]=(short)source[i];
7332 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7333 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7334 break;
7335 case C2OP:
7336 dops[i].rs1=0;
7337 dops[i].rs2=0;
7338 dops[i].rt1=0;
7339 dops[i].rt2=0;
7340 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7341 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7342 gte_rt[i]|=1ll<<63; // every op changes flags
7343 if((source[i]&0x3f)==GTE_MVMVA) {
7344 int v = (source[i] >> 15) & 3;
7345 gte_rs[i]&=~0xe3fll;
7346 if(v==3) gte_rs[i]|=0xe00ll;
7347 else gte_rs[i]|=3ll<<(v*2);
7348 }
7349 break;
7350 case SYSCALL:
7351 case HLECALL:
7352 case INTCALL:
7353 dops[i].rs1=CCREG;
7354 dops[i].rs2=0;
7355 dops[i].rt1=0;
7356 dops[i].rt2=0;
7357 break;
7358 default:
7359 dops[i].rs1=0;
7360 dops[i].rs2=0;
7361 dops[i].rt1=0;
7362 dops[i].rt2=0;
7363 }
7364 /* Calculate branch target addresses */
7365 if(type==UJUMP)
7366 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7367 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
7368 ba[i]=start+i*4+8; // Ignore never taken branch
7369 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
7370 ba[i]=start+i*4+8; // Ignore never taken branch
7371 else if(type==CJUMP||type==SJUMP)
7372 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7373 else ba[i]=-1;
7374
7375 /* simplify always (not)taken branches */
7376 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
7377 dops[i].rs1 = dops[i].rs2 = 0;
7378 if (!(op & 1)) {
7379 dops[i].itype = type = UJUMP;
7380 dops[i].rs2 = CCREG;
7381 }
7382 }
7383 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
7384 dops[i].itype = type = UJUMP;
7385
7386 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
7387 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
7388
7389 /* messy cases to just pass over to the interpreter */
7390 if (i > 0 && dops[i-1].is_jump) {
7391 int do_in_intrp=0;
7392 // branch in delay slot?
7393 if (dops[i].is_jump) {
7394 // don't handle first branch and call interpreter if it's hit
7395 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7396 do_in_intrp=1;
7397 }
7398 // basic load delay detection
7399 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
7400 int t=(ba[i-1]-start)/4;
7401 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
7402 // jump target wants DS result - potential load delay effect
7403 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7404 do_in_intrp=1;
7405 dops[t+1].bt=1; // expected return from interpreter
7406 }
7407 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
7408 !(i>=3&&dops[i-3].is_jump)) {
7409 // v0 overwrite like this is a sign of trouble, bail out
7410 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7411 do_in_intrp=1;
7412 }
7413 }
7414 if(do_in_intrp) {
7415 dops[i-1].rs1=CCREG;
7416 dops[i-1].rs2=dops[i-1].rt1=dops[i-1].rt2=0;
7417 ba[i-1]=-1;
7418 dops[i-1].itype=INTCALL;
7419 done=2;
7420 i--; // don't compile the DS
7421 }
7422 }
7423
7424 /* Is this the end of the block? */
7425 if (i > 0 && dops[i-1].is_ujump) {
7426 if(dops[i-1].rt1==0) { // Continue past subroutine call (JAL)
7427 done=2;
7428 }
7429 else {
7430 if(stop_after_jal) done=1;
7431 // Stop on BREAK
7432 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7433 }
7434 // Don't recompile stuff that's already compiled
7435 if(check_addr(start+i*4+4)) done=1;
7436 // Don't get too close to the limit
7437 if(i>MAXBLOCK/2) done=1;
7438 }
7439 if(dops[i].itype==SYSCALL&&stop_after_jal) done=1;
7440 if(dops[i].itype==HLECALL||dops[i].itype==INTCALL) done=2;
7441 if(done==2) {
7442 // Does the block continue due to a branch?
7443 for(j=i-1;j>=0;j--)
7444 {
7445 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7446 if(ba[j]==start+i*4+4) done=j=0;
7447 if(ba[j]==start+i*4+8) done=j=0;
7448 }
7449 }
7450 //assert(i<MAXBLOCK-1);
7451 if(start+i*4==pagelimit-4) done=1;
7452 assert(start+i*4<pagelimit);
7453 if (i==MAXBLOCK-1) done=1;
7454 // Stop if we're compiling junk
7455 if(dops[i].itype==NI&&dops[i].opcode==0x11) {
7456 done=stop_after_jal=1;
7457 SysPrintf("Disabled speculative precompilation\n");
7458 }
7459 }
7460 slen=i;
7461 if (dops[i-1].is_jump) {
7462 if(start+i*4==pagelimit) {
7463 dops[i-1].itype=SPAN;
7464 }
7465 }
7466 assert(slen>0);
7467
7468 /* Pass 2 - Register dependencies and branch targets */
7469
7470 unneeded_registers(0,slen-1,0);
7471
7472 /* Pass 3 - Register allocation */
7473
7474 struct regstat current; // Current register allocations/status
7475 current.dirty=0;
7476 current.u=unneeded_reg[0];
7477 clear_all_regs(current.regmap);
7478 alloc_reg(&current,0,CCREG);
7479 dirty_reg(&current,CCREG);
7480 current.isconst=0;
7481 current.wasconst=0;
7482 current.waswritten=0;
7483 int ds=0;
7484 int cc=0;
7485 int hr=-1;
7486
7487 if((u_int)addr&1) {
7488 // First instruction is delay slot
7489 cc=-1;
7490 dops[1].bt=1;
7491 ds=1;
7492 unneeded_reg[0]=1;
7493 current.regmap[HOST_BTREG]=BTREG;
7494 }
7495
7496 for(i=0;i<slen;i++)
7497 {
7498 if(dops[i].bt)
7499 {
7500 int hr;
7501 for(hr=0;hr<HOST_REGS;hr++)
7502 {
7503 // Is this really necessary?
7504 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7505 }
7506 current.isconst=0;
7507 current.waswritten=0;
7508 }
7509
7510 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7511 regs[i].wasconst=current.isconst;
7512 regs[i].wasdirty=current.dirty;
7513 regs[i].loadedconst=0;
7514 if (!dops[i].is_jump) {
7515 if(i+1<slen) {
7516 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7517 current.u|=1;
7518 } else {
7519 current.u=1;
7520 }
7521 } else {
7522 if(i+1<slen) {
7523 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7524 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7525 current.u|=1;
7526 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7527 }
7528 dops[i].is_ds=ds;
7529 if(ds) {
7530 ds=0; // Skip delay slot, already allocated as part of branch
7531 // ...but we need to alloc it in case something jumps here
7532 if(i+1<slen) {
7533 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7534 }else{
7535 current.u=branch_unneeded_reg[i-1];
7536 }
7537 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7538 current.u|=1;
7539 struct regstat temp;
7540 memcpy(&temp,&current,sizeof(current));
7541 temp.wasdirty=temp.dirty;
7542 // TODO: Take into account unconditional branches, as below
7543 delayslot_alloc(&temp,i);
7544 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7545 regs[i].wasdirty=temp.wasdirty;
7546 regs[i].dirty=temp.dirty;
7547 regs[i].isconst=0;
7548 regs[i].wasconst=0;
7549 current.isconst=0;
7550 // Create entry (branch target) regmap
7551 for(hr=0;hr<HOST_REGS;hr++)
7552 {
7553 int r=temp.regmap[hr];
7554 if(r>=0) {
7555 if(r!=regmap_pre[i][hr]) {
7556 regs[i].regmap_entry[hr]=-1;
7557 }
7558 else
7559 {
7560 assert(r < 64);
7561 if((current.u>>r)&1) {
7562 regs[i].regmap_entry[hr]=-1;
7563 regs[i].regmap[hr]=-1;
7564 //Don't clear regs in the delay slot as the branch might need them
7565 //current.regmap[hr]=-1;
7566 }else
7567 regs[i].regmap_entry[hr]=r;
7568 }
7569 } else {
7570 // First instruction expects CCREG to be allocated
7571 if(i==0&&hr==HOST_CCREG)
7572 regs[i].regmap_entry[hr]=CCREG;
7573 else
7574 regs[i].regmap_entry[hr]=-1;
7575 }
7576 }
7577 }
7578 else { // Not delay slot
7579 switch(dops[i].itype) {
7580 case UJUMP:
7581 //current.isconst=0; // DEBUG
7582 //current.wasconst=0; // DEBUG
7583 //regs[i].wasconst=0; // DEBUG
7584 clear_const(&current,dops[i].rt1);
7585 alloc_cc(&current,i);
7586 dirty_reg(&current,CCREG);
7587 if (dops[i].rt1==31) {
7588 alloc_reg(&current,i,31);
7589 dirty_reg(&current,31);
7590 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7591 //assert(dops[i+1].rt1!=dops[i].rt1);
7592 #ifdef REG_PREFETCH
7593 alloc_reg(&current,i,PTEMP);
7594 #endif
7595 }
7596 dops[i].ooo=1;
7597 delayslot_alloc(&current,i+1);
7598 //current.isconst=0; // DEBUG
7599 ds=1;
7600 //printf("i=%d, isconst=%x\n",i,current.isconst);
7601 break;
7602 case RJUMP:
7603 //current.isconst=0;
7604 //current.wasconst=0;
7605 //regs[i].wasconst=0;
7606 clear_const(&current,dops[i].rs1);
7607 clear_const(&current,dops[i].rt1);
7608 alloc_cc(&current,i);
7609 dirty_reg(&current,CCREG);
7610 if (!ds_writes_rjump_rs(i)) {
7611 alloc_reg(&current,i,dops[i].rs1);
7612 if (dops[i].rt1!=0) {
7613 alloc_reg(&current,i,dops[i].rt1);
7614 dirty_reg(&current,dops[i].rt1);
7615 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7616 assert(dops[i+1].rt1!=dops[i].rt1);
7617 #ifdef REG_PREFETCH
7618 alloc_reg(&current,i,PTEMP);
7619 #endif
7620 }
7621 #ifdef USE_MINI_HT
7622 if(dops[i].rs1==31) { // JALR
7623 alloc_reg(&current,i,RHASH);
7624 alloc_reg(&current,i,RHTBL);
7625 }
7626 #endif
7627 delayslot_alloc(&current,i+1);
7628 } else {
7629 // The delay slot overwrites our source register,
7630 // allocate a temporary register to hold the old value.
7631 current.isconst=0;
7632 current.wasconst=0;
7633 regs[i].wasconst=0;
7634 delayslot_alloc(&current,i+1);
7635 current.isconst=0;
7636 alloc_reg(&current,i,RTEMP);
7637 }
7638 //current.isconst=0; // DEBUG
7639 dops[i].ooo=1;
7640 ds=1;
7641 break;
7642 case CJUMP:
7643 //current.isconst=0;
7644 //current.wasconst=0;
7645 //regs[i].wasconst=0;
7646 clear_const(&current,dops[i].rs1);
7647 clear_const(&current,dops[i].rs2);
7648 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7649 {
7650 alloc_cc(&current,i);
7651 dirty_reg(&current,CCREG);
7652 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7653 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7654 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7655 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7656 // The delay slot overwrites one of our conditions.
7657 // Allocate the branch condition registers instead.
7658 current.isconst=0;
7659 current.wasconst=0;
7660 regs[i].wasconst=0;
7661 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7662 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7663 }
7664 else
7665 {
7666 dops[i].ooo=1;
7667 delayslot_alloc(&current,i+1);
7668 }
7669 }
7670 else
7671 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7672 {
7673 alloc_cc(&current,i);
7674 dirty_reg(&current,CCREG);
7675 alloc_reg(&current,i,dops[i].rs1);
7676 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7677 // The delay slot overwrites one of our conditions.
7678 // Allocate the branch condition registers instead.
7679 current.isconst=0;
7680 current.wasconst=0;
7681 regs[i].wasconst=0;
7682 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7683 }
7684 else
7685 {
7686 dops[i].ooo=1;
7687 delayslot_alloc(&current,i+1);
7688 }
7689 }
7690 else
7691 // Don't alloc the delay slot yet because we might not execute it
7692 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7693 {
7694 current.isconst=0;
7695 current.wasconst=0;
7696 regs[i].wasconst=0;
7697 alloc_cc(&current,i);
7698 dirty_reg(&current,CCREG);
7699 alloc_reg(&current,i,dops[i].rs1);
7700 alloc_reg(&current,i,dops[i].rs2);
7701 }
7702 else
7703 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7704 {
7705 current.isconst=0;
7706 current.wasconst=0;
7707 regs[i].wasconst=0;
7708 alloc_cc(&current,i);
7709 dirty_reg(&current,CCREG);
7710 alloc_reg(&current,i,dops[i].rs1);
7711 }
7712 ds=1;
7713 //current.isconst=0;
7714 break;
7715 case SJUMP:
7716 //current.isconst=0;
7717 //current.wasconst=0;
7718 //regs[i].wasconst=0;
7719 clear_const(&current,dops[i].rs1);
7720 clear_const(&current,dops[i].rt1);
7721 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
7722 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
7723 {
7724 alloc_cc(&current,i);
7725 dirty_reg(&current,CCREG);
7726 alloc_reg(&current,i,dops[i].rs1);
7727 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
7728 alloc_reg(&current,i,31);
7729 dirty_reg(&current,31);
7730 //#ifdef REG_PREFETCH
7731 //alloc_reg(&current,i,PTEMP);
7732 //#endif
7733 }
7734 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7735 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7736 // Allocate the branch condition registers instead.
7737 current.isconst=0;
7738 current.wasconst=0;
7739 regs[i].wasconst=0;
7740 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7741 }
7742 else
7743 {
7744 dops[i].ooo=1;
7745 delayslot_alloc(&current,i+1);
7746 }
7747 }
7748 else
7749 // Don't alloc the delay slot yet because we might not execute it
7750 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
7751 {
7752 current.isconst=0;
7753 current.wasconst=0;
7754 regs[i].wasconst=0;
7755 alloc_cc(&current,i);
7756 dirty_reg(&current,CCREG);
7757 alloc_reg(&current,i,dops[i].rs1);
7758 }
7759 ds=1;
7760 //current.isconst=0;
7761 break;
7762 case IMM16:
7763 imm16_alloc(&current,i);
7764 break;
7765 case LOAD:
7766 case LOADLR:
7767 load_alloc(&current,i);
7768 break;
7769 case STORE:
7770 case STORELR:
7771 store_alloc(&current,i);
7772 break;
7773 case ALU:
7774 alu_alloc(&current,i);
7775 break;
7776 case SHIFT:
7777 shift_alloc(&current,i);
7778 break;
7779 case MULTDIV:
7780 multdiv_alloc(&current,i);
7781 break;
7782 case SHIFTIMM:
7783 shiftimm_alloc(&current,i);
7784 break;
7785 case MOV:
7786 mov_alloc(&current,i);
7787 break;
7788 case COP0:
7789 cop0_alloc(&current,i);
7790 break;
7791 case COP1:
7792 break;
7793 case COP2:
7794 cop2_alloc(&current,i);
7795 break;
7796 case C1LS:
7797 c1ls_alloc(&current,i);
7798 break;
7799 case C2LS:
7800 c2ls_alloc(&current,i);
7801 break;
7802 case C2OP:
7803 c2op_alloc(&current,i);
7804 break;
7805 case SYSCALL:
7806 case HLECALL:
7807 case INTCALL:
7808 syscall_alloc(&current,i);
7809 break;
7810 case SPAN:
7811 pagespan_alloc(&current,i);
7812 break;
7813 }
7814
7815 // Create entry (branch target) regmap
7816 for(hr=0;hr<HOST_REGS;hr++)
7817 {
7818 int r,or;
7819 r=current.regmap[hr];
7820 if(r>=0) {
7821 if(r!=regmap_pre[i][hr]) {
7822 // TODO: delay slot (?)
7823 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7824 if(or<0||(r&63)>=TEMPREG){
7825 regs[i].regmap_entry[hr]=-1;
7826 }
7827 else
7828 {
7829 // Just move it to a different register
7830 regs[i].regmap_entry[hr]=r;
7831 // If it was dirty before, it's still dirty
7832 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7833 }
7834 }
7835 else
7836 {
7837 // Unneeded
7838 if(r==0){
7839 regs[i].regmap_entry[hr]=0;
7840 }
7841 else
7842 {
7843 assert(r<64);
7844 if((current.u>>r)&1) {
7845 regs[i].regmap_entry[hr]=-1;
7846 //regs[i].regmap[hr]=-1;
7847 current.regmap[hr]=-1;
7848 }else
7849 regs[i].regmap_entry[hr]=r;
7850 }
7851 }
7852 } else {
7853 // Branches expect CCREG to be allocated at the target
7854 if(regmap_pre[i][hr]==CCREG)
7855 regs[i].regmap_entry[hr]=CCREG;
7856 else
7857 regs[i].regmap_entry[hr]=-1;
7858 }
7859 }
7860 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7861 }
7862
7863 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
7864 current.waswritten|=1<<dops[i-1].rs1;
7865 current.waswritten&=~(1<<dops[i].rt1);
7866 current.waswritten&=~(1<<dops[i].rt2);
7867 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
7868 current.waswritten&=~(1<<dops[i].rs1);
7869
7870 /* Branch post-alloc */
7871 if(i>0)
7872 {
7873 current.wasdirty=current.dirty;
7874 switch(dops[i-1].itype) {
7875 case UJUMP:
7876 memcpy(&branch_regs[i-1],&current,sizeof(current));
7877 branch_regs[i-1].isconst=0;
7878 branch_regs[i-1].wasconst=0;
7879 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7880 alloc_cc(&branch_regs[i-1],i-1);
7881 dirty_reg(&branch_regs[i-1],CCREG);
7882 if(dops[i-1].rt1==31) { // JAL
7883 alloc_reg(&branch_regs[i-1],i-1,31);
7884 dirty_reg(&branch_regs[i-1],31);
7885 }
7886 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7887 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7888 break;
7889 case RJUMP:
7890 memcpy(&branch_regs[i-1],&current,sizeof(current));
7891 branch_regs[i-1].isconst=0;
7892 branch_regs[i-1].wasconst=0;
7893 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7894 alloc_cc(&branch_regs[i-1],i-1);
7895 dirty_reg(&branch_regs[i-1],CCREG);
7896 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
7897 if(dops[i-1].rt1!=0) { // JALR
7898 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
7899 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
7900 }
7901 #ifdef USE_MINI_HT
7902 if(dops[i-1].rs1==31) { // JALR
7903 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7904 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7905 }
7906 #endif
7907 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7908 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7909 break;
7910 case CJUMP:
7911 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
7912 {
7913 alloc_cc(&current,i-1);
7914 dirty_reg(&current,CCREG);
7915 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
7916 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
7917 // The delay slot overwrote one of our conditions
7918 // Delay slot goes after the test (in order)
7919 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7920 current.u|=1;
7921 delayslot_alloc(&current,i);
7922 current.isconst=0;
7923 }
7924 else
7925 {
7926 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7927 // Alloc the branch condition registers
7928 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
7929 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
7930 }
7931 memcpy(&branch_regs[i-1],&current,sizeof(current));
7932 branch_regs[i-1].isconst=0;
7933 branch_regs[i-1].wasconst=0;
7934 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7935 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7936 }
7937 else
7938 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
7939 {
7940 alloc_cc(&current,i-1);
7941 dirty_reg(&current,CCREG);
7942 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7943 // The delay slot overwrote the branch condition
7944 // Delay slot goes after the test (in order)
7945 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7946 current.u|=1;
7947 delayslot_alloc(&current,i);
7948 current.isconst=0;
7949 }
7950 else
7951 {
7952 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7953 // Alloc the branch condition register
7954 alloc_reg(&current,i-1,dops[i-1].rs1);
7955 }
7956 memcpy(&branch_regs[i-1],&current,sizeof(current));
7957 branch_regs[i-1].isconst=0;
7958 branch_regs[i-1].wasconst=0;
7959 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7960 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7961 }
7962 else
7963 // Alloc the delay slot in case the branch is taken
7964 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
7965 {
7966 memcpy(&branch_regs[i-1],&current,sizeof(current));
7967 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7968 alloc_cc(&branch_regs[i-1],i);
7969 dirty_reg(&branch_regs[i-1],CCREG);
7970 delayslot_alloc(&branch_regs[i-1],i);
7971 branch_regs[i-1].isconst=0;
7972 alloc_reg(&current,i,CCREG); // Not taken path
7973 dirty_reg(&current,CCREG);
7974 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7975 }
7976 else
7977 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
7978 {
7979 memcpy(&branch_regs[i-1],&current,sizeof(current));
7980 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7981 alloc_cc(&branch_regs[i-1],i);
7982 dirty_reg(&branch_regs[i-1],CCREG);
7983 delayslot_alloc(&branch_regs[i-1],i);
7984 branch_regs[i-1].isconst=0;
7985 alloc_reg(&current,i,CCREG); // Not taken path
7986 dirty_reg(&current,CCREG);
7987 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7988 }
7989 break;
7990 case SJUMP:
7991 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
7992 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
7993 {
7994 alloc_cc(&current,i-1);
7995 dirty_reg(&current,CCREG);
7996 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7997 // The delay slot overwrote the branch condition
7998 // Delay slot goes after the test (in order)
7999 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8000 current.u|=1;
8001 delayslot_alloc(&current,i);
8002 current.isconst=0;
8003 }
8004 else
8005 {
8006 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8007 // Alloc the branch condition register
8008 alloc_reg(&current,i-1,dops[i-1].rs1);
8009 }
8010 memcpy(&branch_regs[i-1],&current,sizeof(current));
8011 branch_regs[i-1].isconst=0;
8012 branch_regs[i-1].wasconst=0;
8013 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8014 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8015 }
8016 else
8017 // Alloc the delay slot in case the branch is taken
8018 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
8019 {
8020 memcpy(&branch_regs[i-1],&current,sizeof(current));
8021 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8022 alloc_cc(&branch_regs[i-1],i);
8023 dirty_reg(&branch_regs[i-1],CCREG);
8024 delayslot_alloc(&branch_regs[i-1],i);
8025 branch_regs[i-1].isconst=0;
8026 alloc_reg(&current,i,CCREG); // Not taken path
8027 dirty_reg(&current,CCREG);
8028 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8029 }
8030 // FIXME: BLTZAL/BGEZAL
8031 if(dops[i-1].opcode2&0x10) { // BxxZAL
8032 alloc_reg(&branch_regs[i-1],i-1,31);
8033 dirty_reg(&branch_regs[i-1],31);
8034 }
8035 break;
8036 }
8037
8038 if (dops[i-1].is_ujump)
8039 {
8040 if(dops[i-1].rt1==31) // JAL/JALR
8041 {
8042 // Subroutine call will return here, don't alloc any registers
8043 current.dirty=0;
8044 clear_all_regs(current.regmap);
8045 alloc_reg(&current,i,CCREG);
8046 dirty_reg(&current,CCREG);
8047 }
8048 else if(i+1<slen)
8049 {
8050 // Internal branch will jump here, match registers to caller
8051 current.dirty=0;
8052 clear_all_regs(current.regmap);
8053 alloc_reg(&current,i,CCREG);
8054 dirty_reg(&current,CCREG);
8055 for(j=i-1;j>=0;j--)
8056 {
8057 if(ba[j]==start+i*4+4) {
8058 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8059 current.dirty=branch_regs[j].dirty;
8060 break;
8061 }
8062 }
8063 while(j>=0) {
8064 if(ba[j]==start+i*4+4) {
8065 for(hr=0;hr<HOST_REGS;hr++) {
8066 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8067 current.regmap[hr]=-1;
8068 }
8069 current.dirty&=branch_regs[j].dirty;
8070 }
8071 }
8072 j--;
8073 }
8074 }
8075 }
8076 }
8077
8078 // Count cycles in between branches
8079 ccadj[i]=cc;
8080 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
8081 {
8082 cc=0;
8083 }
8084#if !defined(DRC_DBG)
8085 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8086 {
8087 // this should really be removed since the real stalls have been implemented,
8088 // but doing so causes sizeable perf regression against the older version
8089 u_int gtec = gte_cycletab[source[i] & 0x3f];
8090 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8091 }
8092 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
8093 {
8094 cc+=4;
8095 }
8096 else if(dops[i].itype==C2LS)
8097 {
8098 // same as with C2OP
8099 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8100 }
8101#endif
8102 else
8103 {
8104 cc++;
8105 }
8106
8107 if(!dops[i].is_ds) {
8108 regs[i].dirty=current.dirty;
8109 regs[i].isconst=current.isconst;
8110 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8111 }
8112 for(hr=0;hr<HOST_REGS;hr++) {
8113 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8114 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8115 regs[i].wasconst&=~(1<<hr);
8116 }
8117 }
8118 }
8119 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8120 regs[i].waswritten=current.waswritten;
8121 }
8122
8123 /* Pass 4 - Cull unused host registers */
8124
8125 uint64_t nr=0;
8126
8127 for (i=slen-1;i>=0;i--)
8128 {
8129 int hr;
8130 if(dops[i].is_jump)
8131 {
8132 if(ba[i]<start || ba[i]>=(start+slen*4))
8133 {
8134 // Branch out of this block, don't need anything
8135 nr=0;
8136 }
8137 else
8138 {
8139 // Internal branch
8140 // Need whatever matches the target
8141 nr=0;
8142 int t=(ba[i]-start)>>2;
8143 for(hr=0;hr<HOST_REGS;hr++)
8144 {
8145 if(regs[i].regmap_entry[hr]>=0) {
8146 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8147 }
8148 }
8149 }
8150 // Conditional branch may need registers for following instructions
8151 if (!dops[i].is_ujump)
8152 {
8153 if(i<slen-2) {
8154 nr|=needed_reg[i+2];
8155 for(hr=0;hr<HOST_REGS;hr++)
8156 {
8157 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8158 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8159 }
8160 }
8161 }
8162 // Don't need stuff which is overwritten
8163 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8164 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8165 // Merge in delay slot
8166 for(hr=0;hr<HOST_REGS;hr++)
8167 {
8168 if(dops[i+1].rt1&&dops[i+1].rt1==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8169 if(dops[i+1].rt2&&dops[i+1].rt2==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8170 if(dops[i+1].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8171 if(dops[i+1].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8172 if(dops[i+1].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8173 if(dops[i+1].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8174 if(dops[i+1].itype==STORE || dops[i+1].itype==STORELR || (dops[i+1].opcode&0x3b)==0x39 || (dops[i+1].opcode&0x3b)==0x3a) {
8175 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8176 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8177 }
8178 }
8179 }
8180 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8181 {
8182 // SYSCALL instruction (software interrupt)
8183 nr=0;
8184 }
8185 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8186 {
8187 // ERET instruction (return from interrupt)
8188 nr=0;
8189 }
8190 else // Non-branch
8191 {
8192 if(i<slen-1) {
8193 for(hr=0;hr<HOST_REGS;hr++) {
8194 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8195 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8196 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8197 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8198 }
8199 }
8200 }
8201 for(hr=0;hr<HOST_REGS;hr++)
8202 {
8203 // Overwritten registers are not needed
8204 if(dops[i].rt1&&dops[i].rt1==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8205 if(dops[i].rt2&&dops[i].rt2==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8206 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8207 // Source registers are needed
8208 if(dops[i].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8209 if(dops[i].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8210 if(dops[i].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8211 if(dops[i].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8212 if(dops[i].itype==STORE || dops[i].itype==STORELR || (dops[i].opcode&0x3b)==0x39 || (dops[i].opcode&0x3b)==0x3a) {
8213 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8214 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8215 }
8216 // Don't store a register immediately after writing it,
8217 // may prevent dual-issue.
8218 // But do so if this is a branch target, otherwise we
8219 // might have to load the register before the branch.
8220 if(i>0&&!dops[i].bt&&((regs[i].wasdirty>>hr)&1)) {
8221 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8222 if(dops[i-1].rt1==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8223 if(dops[i-1].rt2==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8224 }
8225 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8226 if(dops[i-1].rt1==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8227 if(dops[i-1].rt2==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8228 }
8229 }
8230 }
8231 // Cycle count is needed at branches. Assume it is needed at the target too.
8232 if(i==0||dops[i].bt||dops[i].itype==CJUMP||dops[i].itype==SPAN) {
8233 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8234 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8235 }
8236 // Save it
8237 needed_reg[i]=nr;
8238
8239 // Deallocate unneeded registers
8240 for(hr=0;hr<HOST_REGS;hr++)
8241 {
8242 if(!((nr>>hr)&1)) {
8243 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8244 if(dops[i].is_jump)
8245 {
8246 int map=0,temp=0;
8247 if(dops[i+1].itype==STORE || dops[i+1].itype==STORELR ||
8248 (dops[i+1].opcode&0x3b)==0x39 || (dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8249 map=INVCP;
8250 }
8251 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR ||
8252 dops[i+1].itype==C1LS || dops[i+1].itype==C2LS)
8253 temp=FTEMP;
8254 if((regs[i].regmap[hr]&63)!=dops[i].rs1 && (regs[i].regmap[hr]&63)!=dops[i].rs2 &&
8255 (regs[i].regmap[hr]&63)!=dops[i].rt1 && (regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8256 (regs[i].regmap[hr]&63)!=dops[i+1].rt1 && (regs[i].regmap[hr]&63)!=dops[i+1].rt2 &&
8257 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
8258 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8259 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8260 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8261 regs[i].regmap[hr]!=map )
8262 {
8263 regs[i].regmap[hr]=-1;
8264 regs[i].isconst&=~(1<<hr);
8265 if((branch_regs[i].regmap[hr]&63)!=dops[i].rs1 && (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 &&
8266 (branch_regs[i].regmap[hr]&63)!=dops[i].rt1 && (branch_regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8267 (branch_regs[i].regmap[hr]&63)!=dops[i+1].rt1 && (branch_regs[i].regmap[hr]&63)!=dops[i+1].rt2 &&
8268 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
8269 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8270 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8271 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8272 branch_regs[i].regmap[hr]!=map)
8273 {
8274 branch_regs[i].regmap[hr]=-1;
8275 branch_regs[i].regmap_entry[hr]=-1;
8276 if (!dops[i].is_ujump)
8277 {
8278 if (i < slen-2) {
8279 regmap_pre[i+2][hr]=-1;
8280 regs[i+2].wasconst&=~(1<<hr);
8281 }
8282 }
8283 }
8284 }
8285 }
8286 else
8287 {
8288 // Non-branch
8289 if(i>0)
8290 {
8291 int map=-1,temp=-1;
8292 if(dops[i].itype==STORE || dops[i].itype==STORELR ||
8293 (dops[i].opcode&0x3b)==0x39 || (dops[i].opcode&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8294 map=INVCP;
8295 }
8296 if(dops[i].itype==LOADLR || dops[i].itype==STORELR ||
8297 dops[i].itype==C1LS || dops[i].itype==C2LS)
8298 temp=FTEMP;
8299 if((regs[i].regmap[hr]&63)!=dops[i].rt1 && (regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8300 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8301 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8302 (dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG))
8303 {
8304 if(i<slen-1&&!dops[i].is_ds) {
8305 assert(regs[i].regmap[hr]<64);
8306 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8307 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8308 {
8309 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8310 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8311 }
8312 regmap_pre[i+1][hr]=-1;
8313 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8314 regs[i+1].wasconst&=~(1<<hr);
8315 }
8316 regs[i].regmap[hr]=-1;
8317 regs[i].isconst&=~(1<<hr);
8318 }
8319 }
8320 }
8321 } // if needed
8322 } // for hr
8323 }
8324
8325 /* Pass 5 - Pre-allocate registers */
8326
8327 // If a register is allocated during a loop, try to allocate it for the
8328 // entire loop, if possible. This avoids loading/storing registers
8329 // inside of the loop.
8330
8331 signed char f_regmap[HOST_REGS];
8332 clear_all_regs(f_regmap);
8333 for(i=0;i<slen-1;i++)
8334 {
8335 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8336 {
8337 if(ba[i]>=start && ba[i]<(start+i*4))
8338 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8339 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8340 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
8341 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
8342 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8343 {
8344 int t=(ba[i]-start)>>2;
8345 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8346 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8347 for(hr=0;hr<HOST_REGS;hr++)
8348 {
8349 if(regs[i].regmap[hr]>=0) {
8350 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8351 // dealloc old register
8352 int n;
8353 for(n=0;n<HOST_REGS;n++)
8354 {
8355 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8356 }
8357 // and alloc new one
8358 f_regmap[hr]=regs[i].regmap[hr];
8359 }
8360 }
8361 if(branch_regs[i].regmap[hr]>=0) {
8362 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8363 // dealloc old register
8364 int n;
8365 for(n=0;n<HOST_REGS;n++)
8366 {
8367 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8368 }
8369 // and alloc new one
8370 f_regmap[hr]=branch_regs[i].regmap[hr];
8371 }
8372 }
8373 if(dops[i].ooo) {
8374 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8375 f_regmap[hr]=branch_regs[i].regmap[hr];
8376 }else{
8377 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8378 f_regmap[hr]=branch_regs[i].regmap[hr];
8379 }
8380 // Avoid dirty->clean transition
8381 #ifdef DESTRUCTIVE_WRITEBACK
8382 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8383 #endif
8384 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8385 // case above, however it's always a good idea. We can't hoist the
8386 // load if the register was already allocated, so there's no point
8387 // wasting time analyzing most of these cases. It only "succeeds"
8388 // when the mapping was different and the load can be replaced with
8389 // a mov, which is of negligible benefit. So such cases are
8390 // skipped below.
8391 if(f_regmap[hr]>0) {
8392 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8393 int r=f_regmap[hr];
8394 for(j=t;j<=i;j++)
8395 {
8396 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8397 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8398 assert(r < 64);
8399 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8400 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8401 int k;
8402 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8403 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8404 if(r>63) {
8405 if(get_reg(regs[i].regmap,r&63)<0) break;
8406 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8407 }
8408 k=i;
8409 while(k>1&&regs[k-1].regmap[hr]==-1) {
8410 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8411 //printf("no free regs for store %x\n",start+(k-1)*4);
8412 break;
8413 }
8414 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8415 //printf("no-match due to different register\n");
8416 break;
8417 }
8418 if (dops[k-2].is_jump) {
8419 //printf("no-match due to branch\n");
8420 break;
8421 }
8422 // call/ret fast path assumes no registers allocated
8423 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8424 break;
8425 }
8426 assert(r < 64);
8427 k--;
8428 }
8429 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8430 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8431 while(k<i) {
8432 regs[k].regmap_entry[hr]=f_regmap[hr];
8433 regs[k].regmap[hr]=f_regmap[hr];
8434 regmap_pre[k+1][hr]=f_regmap[hr];
8435 regs[k].wasdirty&=~(1<<hr);
8436 regs[k].dirty&=~(1<<hr);
8437 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8438 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8439 regs[k].wasconst&=~(1<<hr);
8440 regs[k].isconst&=~(1<<hr);
8441 k++;
8442 }
8443 }
8444 else {
8445 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8446 break;
8447 }
8448 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8449 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8450 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8451 regs[i].regmap_entry[hr]=f_regmap[hr];
8452 regs[i].regmap[hr]=f_regmap[hr];
8453 regs[i].wasdirty&=~(1<<hr);
8454 regs[i].dirty&=~(1<<hr);
8455 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8456 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8457 regs[i].wasconst&=~(1<<hr);
8458 regs[i].isconst&=~(1<<hr);
8459 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8460 branch_regs[i].wasdirty&=~(1<<hr);
8461 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8462 branch_regs[i].regmap[hr]=f_regmap[hr];
8463 branch_regs[i].dirty&=~(1<<hr);
8464 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8465 branch_regs[i].wasconst&=~(1<<hr);
8466 branch_regs[i].isconst&=~(1<<hr);
8467 if (!dops[i].is_ujump) {
8468 regmap_pre[i+2][hr]=f_regmap[hr];
8469 regs[i+2].wasdirty&=~(1<<hr);
8470 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8471 }
8472 }
8473 }
8474 for(k=t;k<j;k++) {
8475 // Alloc register clean at beginning of loop,
8476 // but may dirty it in pass 6
8477 regs[k].regmap_entry[hr]=f_regmap[hr];
8478 regs[k].regmap[hr]=f_regmap[hr];
8479 regs[k].dirty&=~(1<<hr);
8480 regs[k].wasconst&=~(1<<hr);
8481 regs[k].isconst&=~(1<<hr);
8482 if (dops[k].is_jump) {
8483 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8484 branch_regs[k].regmap[hr]=f_regmap[hr];
8485 branch_regs[k].dirty&=~(1<<hr);
8486 branch_regs[k].wasconst&=~(1<<hr);
8487 branch_regs[k].isconst&=~(1<<hr);
8488 if (!dops[k].is_ujump) {
8489 regmap_pre[k+2][hr]=f_regmap[hr];
8490 regs[k+2].wasdirty&=~(1<<hr);
8491 }
8492 }
8493 else
8494 {
8495 regmap_pre[k+1][hr]=f_regmap[hr];
8496 regs[k+1].wasdirty&=~(1<<hr);
8497 }
8498 }
8499 if(regs[j].regmap[hr]==f_regmap[hr])
8500 regs[j].regmap_entry[hr]=f_regmap[hr];
8501 break;
8502 }
8503 if(j==i) break;
8504 if(regs[j].regmap[hr]>=0)
8505 break;
8506 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8507 //printf("no-match due to different register\n");
8508 break;
8509 }
8510 if (dops[j].is_ujump)
8511 {
8512 // Stop on unconditional branch
8513 break;
8514 }
8515 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8516 {
8517 if(dops[j].ooo) {
8518 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8519 break;
8520 }else{
8521 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8522 break;
8523 }
8524 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8525 //printf("no-match due to different register (branch)\n");
8526 break;
8527 }
8528 }
8529 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8530 //printf("No free regs for store %x\n",start+j*4);
8531 break;
8532 }
8533 assert(f_regmap[hr]<64);
8534 }
8535 }
8536 }
8537 }
8538 }
8539 }else{
8540 // Non branch or undetermined branch target
8541 for(hr=0;hr<HOST_REGS;hr++)
8542 {
8543 if(hr!=EXCLUDE_REG) {
8544 if(regs[i].regmap[hr]>=0) {
8545 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8546 // dealloc old register
8547 int n;
8548 for(n=0;n<HOST_REGS;n++)
8549 {
8550 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8551 }
8552 // and alloc new one
8553 f_regmap[hr]=regs[i].regmap[hr];
8554 }
8555 }
8556 }
8557 }
8558 // Try to restore cycle count at branch targets
8559 if(dops[i].bt) {
8560 for(j=i;j<slen-1;j++) {
8561 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8562 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8563 //printf("no free regs for store %x\n",start+j*4);
8564 break;
8565 }
8566 }
8567 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8568 int k=i;
8569 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8570 while(k<j) {
8571 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8572 regs[k].regmap[HOST_CCREG]=CCREG;
8573 regmap_pre[k+1][HOST_CCREG]=CCREG;
8574 regs[k+1].wasdirty|=1<<HOST_CCREG;
8575 regs[k].dirty|=1<<HOST_CCREG;
8576 regs[k].wasconst&=~(1<<HOST_CCREG);
8577 regs[k].isconst&=~(1<<HOST_CCREG);
8578 k++;
8579 }
8580 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8581 }
8582 // Work backwards from the branch target
8583 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8584 {
8585 //printf("Extend backwards\n");
8586 int k;
8587 k=i;
8588 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8589 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8590 //printf("no free regs for store %x\n",start+(k-1)*4);
8591 break;
8592 }
8593 k--;
8594 }
8595 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8596 //printf("Extend CC, %x ->\n",start+k*4);
8597 while(k<=i) {
8598 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8599 regs[k].regmap[HOST_CCREG]=CCREG;
8600 regmap_pre[k+1][HOST_CCREG]=CCREG;
8601 regs[k+1].wasdirty|=1<<HOST_CCREG;
8602 regs[k].dirty|=1<<HOST_CCREG;
8603 regs[k].wasconst&=~(1<<HOST_CCREG);
8604 regs[k].isconst&=~(1<<HOST_CCREG);
8605 k++;
8606 }
8607 }
8608 else {
8609 //printf("Fail Extend CC, %x ->\n",start+k*4);
8610 }
8611 }
8612 }
8613 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8614 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8615 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8616 {
8617 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8618 }
8619 }
8620 }
8621
8622 // This allocates registers (if possible) one instruction prior
8623 // to use, which can avoid a load-use penalty on certain CPUs.
8624 for(i=0;i<slen-1;i++)
8625 {
8626 if (!i || !dops[i-1].is_jump)
8627 {
8628 if(!dops[i+1].bt)
8629 {
8630 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8631 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8632 {
8633 if(dops[i+1].rs1) {
8634 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8635 {
8636 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8637 {
8638 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8639 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8640 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8641 regs[i].isconst&=~(1<<hr);
8642 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8643 constmap[i][hr]=constmap[i+1][hr];
8644 regs[i+1].wasdirty&=~(1<<hr);
8645 regs[i].dirty&=~(1<<hr);
8646 }
8647 }
8648 }
8649 if(dops[i+1].rs2) {
8650 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8651 {
8652 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8653 {
8654 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8655 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8656 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8657 regs[i].isconst&=~(1<<hr);
8658 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8659 constmap[i][hr]=constmap[i+1][hr];
8660 regs[i+1].wasdirty&=~(1<<hr);
8661 regs[i].dirty&=~(1<<hr);
8662 }
8663 }
8664 }
8665 // Preload target address for load instruction (non-constant)
8666 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8667 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8668 {
8669 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8670 {
8671 regs[i].regmap[hr]=dops[i+1].rs1;
8672 regmap_pre[i+1][hr]=dops[i+1].rs1;
8673 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8674 regs[i].isconst&=~(1<<hr);
8675 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8676 constmap[i][hr]=constmap[i+1][hr];
8677 regs[i+1].wasdirty&=~(1<<hr);
8678 regs[i].dirty&=~(1<<hr);
8679 }
8680 }
8681 }
8682 // Load source into target register
8683 if(dops[i+1].lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8684 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8685 {
8686 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8687 {
8688 regs[i].regmap[hr]=dops[i+1].rs1;
8689 regmap_pre[i+1][hr]=dops[i+1].rs1;
8690 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8691 regs[i].isconst&=~(1<<hr);
8692 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8693 constmap[i][hr]=constmap[i+1][hr];
8694 regs[i+1].wasdirty&=~(1<<hr);
8695 regs[i].dirty&=~(1<<hr);
8696 }
8697 }
8698 }
8699 // Address for store instruction (non-constant)
8700 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8701 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8702 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8703 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8704 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8705 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8706 assert(hr>=0);
8707 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8708 {
8709 regs[i].regmap[hr]=dops[i+1].rs1;
8710 regmap_pre[i+1][hr]=dops[i+1].rs1;
8711 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8712 regs[i].isconst&=~(1<<hr);
8713 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8714 constmap[i][hr]=constmap[i+1][hr];
8715 regs[i+1].wasdirty&=~(1<<hr);
8716 regs[i].dirty&=~(1<<hr);
8717 }
8718 }
8719 }
8720 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8721 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8722 int nr;
8723 hr=get_reg(regs[i+1].regmap,FTEMP);
8724 assert(hr>=0);
8725 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8726 {
8727 regs[i].regmap[hr]=dops[i+1].rs1;
8728 regmap_pre[i+1][hr]=dops[i+1].rs1;
8729 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8730 regs[i].isconst&=~(1<<hr);
8731 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8732 constmap[i][hr]=constmap[i+1][hr];
8733 regs[i+1].wasdirty&=~(1<<hr);
8734 regs[i].dirty&=~(1<<hr);
8735 }
8736 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8737 {
8738 // move it to another register
8739 regs[i+1].regmap[hr]=-1;
8740 regmap_pre[i+2][hr]=-1;
8741 regs[i+1].regmap[nr]=FTEMP;
8742 regmap_pre[i+2][nr]=FTEMP;
8743 regs[i].regmap[nr]=dops[i+1].rs1;
8744 regmap_pre[i+1][nr]=dops[i+1].rs1;
8745 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8746 regs[i].isconst&=~(1<<nr);
8747 regs[i+1].isconst&=~(1<<nr);
8748 regs[i].dirty&=~(1<<nr);
8749 regs[i+1].wasdirty&=~(1<<nr);
8750 regs[i+1].dirty&=~(1<<nr);
8751 regs[i+2].wasdirty&=~(1<<nr);
8752 }
8753 }
8754 }
8755 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
8756 if(dops[i+1].itype==LOAD)
8757 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
8758 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8759 hr=get_reg(regs[i+1].regmap,FTEMP);
8760 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8761 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8762 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8763 }
8764 if(hr>=0&&regs[i].regmap[hr]<0) {
8765 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8766 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8767 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8768 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8769 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8770 regs[i].isconst&=~(1<<hr);
8771 regs[i+1].wasdirty&=~(1<<hr);
8772 regs[i].dirty&=~(1<<hr);
8773 }
8774 }
8775 }
8776 }
8777 }
8778 }
8779 }
8780
8781 /* Pass 6 - Optimize clean/dirty state */
8782 clean_registers(0,slen-1,1);
8783
8784 /* Pass 7 - Identify 32-bit registers */
8785 for (i=slen-1;i>=0;i--)
8786 {
8787 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8788 {
8789 // Conditional branch
8790 if((source[i]>>16)!=0x1000&&i<slen-2) {
8791 // Mark this address as a branch target since it may be called
8792 // upon return from interrupt
8793 dops[i+2].bt=1;
8794 }
8795 }
8796 }
8797
8798 if(dops[slen-1].itype==SPAN) {
8799 dops[slen-1].bt=1; // Mark as a branch target so instruction can restart after exception
8800 }
8801
8802#ifdef DISASM
8803 /* Debug/disassembly */
8804 for(i=0;i<slen;i++)
8805 {
8806 printf("U:");
8807 int r;
8808 for(r=1;r<=CCREG;r++) {
8809 if((unneeded_reg[i]>>r)&1) {
8810 if(r==HIREG) printf(" HI");
8811 else if(r==LOREG) printf(" LO");
8812 else printf(" r%d",r);
8813 }
8814 }
8815 printf("\n");
8816 #if defined(__i386__) || defined(__x86_64__)
8817 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8818 #endif
8819 #ifdef __arm__
8820 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8821 #endif
8822 #if defined(__i386__) || defined(__x86_64__)
8823 printf("needs: ");
8824 if(needed_reg[i]&1) printf("eax ");
8825 if((needed_reg[i]>>1)&1) printf("ecx ");
8826 if((needed_reg[i]>>2)&1) printf("edx ");
8827 if((needed_reg[i]>>3)&1) printf("ebx ");
8828 if((needed_reg[i]>>5)&1) printf("ebp ");
8829 if((needed_reg[i]>>6)&1) printf("esi ");
8830 if((needed_reg[i]>>7)&1) printf("edi ");
8831 printf("\n");
8832 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8833 printf("dirty: ");
8834 if(regs[i].wasdirty&1) printf("eax ");
8835 if((regs[i].wasdirty>>1)&1) printf("ecx ");
8836 if((regs[i].wasdirty>>2)&1) printf("edx ");
8837 if((regs[i].wasdirty>>3)&1) printf("ebx ");
8838 if((regs[i].wasdirty>>5)&1) printf("ebp ");
8839 if((regs[i].wasdirty>>6)&1) printf("esi ");
8840 if((regs[i].wasdirty>>7)&1) printf("edi ");
8841 #endif
8842 #ifdef __arm__
8843 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
8844 printf("dirty: ");
8845 if(regs[i].wasdirty&1) printf("r0 ");
8846 if((regs[i].wasdirty>>1)&1) printf("r1 ");
8847 if((regs[i].wasdirty>>2)&1) printf("r2 ");
8848 if((regs[i].wasdirty>>3)&1) printf("r3 ");
8849 if((regs[i].wasdirty>>4)&1) printf("r4 ");
8850 if((regs[i].wasdirty>>5)&1) printf("r5 ");
8851 if((regs[i].wasdirty>>6)&1) printf("r6 ");
8852 if((regs[i].wasdirty>>7)&1) printf("r7 ");
8853 if((regs[i].wasdirty>>8)&1) printf("r8 ");
8854 if((regs[i].wasdirty>>9)&1) printf("r9 ");
8855 if((regs[i].wasdirty>>10)&1) printf("r10 ");
8856 if((regs[i].wasdirty>>12)&1) printf("r12 ");
8857 #endif
8858 printf("\n");
8859 disassemble_inst(i);
8860 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
8861 #if defined(__i386__) || defined(__x86_64__)
8862 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
8863 if(regs[i].dirty&1) printf("eax ");
8864 if((regs[i].dirty>>1)&1) printf("ecx ");
8865 if((regs[i].dirty>>2)&1) printf("edx ");
8866 if((regs[i].dirty>>3)&1) printf("ebx ");
8867 if((regs[i].dirty>>5)&1) printf("ebp ");
8868 if((regs[i].dirty>>6)&1) printf("esi ");
8869 if((regs[i].dirty>>7)&1) printf("edi ");
8870 #endif
8871 #ifdef __arm__
8872 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
8873 if(regs[i].dirty&1) printf("r0 ");
8874 if((regs[i].dirty>>1)&1) printf("r1 ");
8875 if((regs[i].dirty>>2)&1) printf("r2 ");
8876 if((regs[i].dirty>>3)&1) printf("r3 ");
8877 if((regs[i].dirty>>4)&1) printf("r4 ");
8878 if((regs[i].dirty>>5)&1) printf("r5 ");
8879 if((regs[i].dirty>>6)&1) printf("r6 ");
8880 if((regs[i].dirty>>7)&1) printf("r7 ");
8881 if((regs[i].dirty>>8)&1) printf("r8 ");
8882 if((regs[i].dirty>>9)&1) printf("r9 ");
8883 if((regs[i].dirty>>10)&1) printf("r10 ");
8884 if((regs[i].dirty>>12)&1) printf("r12 ");
8885 #endif
8886 printf("\n");
8887 if(regs[i].isconst) {
8888 printf("constants: ");
8889 #if defined(__i386__) || defined(__x86_64__)
8890 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
8891 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
8892 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
8893 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
8894 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
8895 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
8896 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
8897 #endif
8898 #if defined(__arm__) || defined(__aarch64__)
8899 int r;
8900 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
8901 if ((regs[i].isconst >> r) & 1)
8902 printf(" r%d=%x", r, (u_int)constmap[i][r]);
8903 #endif
8904 printf("\n");
8905 }
8906 if(dops[i].is_jump) {
8907 #if defined(__i386__) || defined(__x86_64__)
8908 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
8909 if(branch_regs[i].dirty&1) printf("eax ");
8910 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
8911 if((branch_regs[i].dirty>>2)&1) printf("edx ");
8912 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
8913 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
8914 if((branch_regs[i].dirty>>6)&1) printf("esi ");
8915 if((branch_regs[i].dirty>>7)&1) printf("edi ");
8916 #endif
8917 #ifdef __arm__
8918 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
8919 if(branch_regs[i].dirty&1) printf("r0 ");
8920 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
8921 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
8922 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
8923 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
8924 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
8925 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
8926 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
8927 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
8928 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
8929 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
8930 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
8931 #endif
8932 }
8933 }
8934#endif // DISASM
8935
8936 /* Pass 8 - Assembly */
8937 linkcount=0;stubcount=0;
8938 ds=0;is_delayslot=0;
8939 u_int dirty_pre=0;
8940 void *beginning=start_block();
8941 if((u_int)addr&1) {
8942 ds=1;
8943 pagespan_ds();
8944 }
8945 void *instr_addr0_override = NULL;
8946
8947 if (start == 0x80030000) {
8948 // nasty hack for the fastbios thing
8949 // override block entry to this code
8950 instr_addr0_override = out;
8951 emit_movimm(start,0);
8952 // abuse io address var as a flag that we
8953 // have already returned here once
8954 emit_readword(&address,1);
8955 emit_writeword(0,&pcaddr);
8956 emit_writeword(0,&address);
8957 emit_cmp(0,1);
8958 #ifdef __aarch64__
8959 emit_jeq(out + 4*2);
8960 emit_far_jump(new_dyna_leave);
8961 #else
8962 emit_jne(new_dyna_leave);
8963 #endif
8964 }
8965 for(i=0;i<slen;i++)
8966 {
8967 //if(ds) printf("ds: ");
8968 disassemble_inst(i);
8969 if(ds) {
8970 ds=0; // Skip delay slot
8971 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
8972 instr_addr[i] = NULL;
8973 } else {
8974 speculate_register_values(i);
8975 #ifndef DESTRUCTIVE_WRITEBACK
8976 if (i < 2 || !dops[i-2].is_ujump)
8977 {
8978 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
8979 }
8980 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
8981 dirty_pre=branch_regs[i].dirty;
8982 }else{
8983 dirty_pre=regs[i].dirty;
8984 }
8985 #endif
8986 // write back
8987 if (i < 2 || !dops[i-2].is_ujump)
8988 {
8989 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
8990 loop_preload(regmap_pre[i],regs[i].regmap_entry);
8991 }
8992 // branch target entry point
8993 instr_addr[i] = out;
8994 assem_debug("<->\n");
8995 drc_dbg_emit_do_cmp(i);
8996
8997 // load regs
8998 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
8999 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9000 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9001 address_generation(i,&regs[i],regs[i].regmap_entry);
9002 load_consts(regmap_pre[i],regs[i].regmap,i);
9003 if(dops[i].is_jump)
9004 {
9005 // Load the delay slot registers if necessary
9006 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9007 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9008 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9009 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9010 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a)
9011 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9012 }
9013 else if(i+1<slen)
9014 {
9015 // Preload registers for following instruction
9016 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9017 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9018 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9019 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9020 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9021 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9022 }
9023 // TODO: if(is_ooo(i)) address_generation(i+1);
9024 if(dops[i].itype==CJUMP)
9025 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9026 if(dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].opcode&0x3b)==0x39||(dops[i].opcode&0x3b)==0x3a)
9027 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9028 // assemble
9029 switch(dops[i].itype) {
9030 case ALU:
9031 alu_assemble(i,&regs[i]);break;
9032 case IMM16:
9033 imm16_assemble(i,&regs[i]);break;
9034 case SHIFT:
9035 shift_assemble(i,&regs[i]);break;
9036 case SHIFTIMM:
9037 shiftimm_assemble(i,&regs[i]);break;
9038 case LOAD:
9039 load_assemble(i,&regs[i]);break;
9040 case LOADLR:
9041 loadlr_assemble(i,&regs[i]);break;
9042 case STORE:
9043 store_assemble(i,&regs[i]);break;
9044 case STORELR:
9045 storelr_assemble(i,&regs[i]);break;
9046 case COP0:
9047 cop0_assemble(i,&regs[i]);break;
9048 case COP1:
9049 cop1_assemble(i,&regs[i]);break;
9050 case C1LS:
9051 c1ls_assemble(i,&regs[i]);break;
9052 case COP2:
9053 cop2_assemble(i,&regs[i]);break;
9054 case C2LS:
9055 c2ls_assemble(i,&regs[i]);break;
9056 case C2OP:
9057 c2op_assemble(i,&regs[i]);break;
9058 case MULTDIV:
9059 multdiv_assemble(i,&regs[i]);
9060 multdiv_prepare_stall(i,&regs[i]);
9061 break;
9062 case MOV:
9063 mov_assemble(i,&regs[i]);break;
9064 case SYSCALL:
9065 syscall_assemble(i,&regs[i]);break;
9066 case HLECALL:
9067 hlecall_assemble(i,&regs[i]);break;
9068 case INTCALL:
9069 intcall_assemble(i,&regs[i]);break;
9070 case UJUMP:
9071 ujump_assemble(i,&regs[i]);ds=1;break;
9072 case RJUMP:
9073 rjump_assemble(i,&regs[i]);ds=1;break;
9074 case CJUMP:
9075 cjump_assemble(i,&regs[i]);ds=1;break;
9076 case SJUMP:
9077 sjump_assemble(i,&regs[i]);ds=1;break;
9078 case SPAN:
9079 pagespan_assemble(i,&regs[i]);break;
9080 }
9081 if (dops[i].is_ujump)
9082 literal_pool(1024);
9083 else
9084 literal_pool_jumpover(256);
9085 }
9086 }
9087
9088 assert(slen > 0);
9089 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9090 // no ending needed for this block since INTCALL never returns
9091 }
9092 // If the block did not end with an unconditional branch,
9093 // add a jump to the next instruction.
9094 else if (i > 1) {
9095 if (!dops[i-2].is_ujump && dops[i-1].itype != SPAN) {
9096 assert(!dops[i-1].is_jump);
9097 assert(i==slen);
9098 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9099 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9100 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9101 emit_loadreg(CCREG,HOST_CCREG);
9102 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9103 }
9104 else
9105 {
9106 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9107 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9108 }
9109 add_to_linker(out,start+i*4,0);
9110 emit_jmp(0);
9111 }
9112 }
9113 else
9114 {
9115 assert(i>0);
9116 assert(!dops[i-1].is_jump);
9117 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9118 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9119 emit_loadreg(CCREG,HOST_CCREG);
9120 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9121 add_to_linker(out,start+i*4,0);
9122 emit_jmp(0);
9123 }
9124
9125 // TODO: delay slot stubs?
9126 // Stubs
9127 for(i=0;i<stubcount;i++)
9128 {
9129 switch(stubs[i].type)
9130 {
9131 case LOADB_STUB:
9132 case LOADH_STUB:
9133 case LOADW_STUB:
9134 case LOADD_STUB:
9135 case LOADBU_STUB:
9136 case LOADHU_STUB:
9137 do_readstub(i);break;
9138 case STOREB_STUB:
9139 case STOREH_STUB:
9140 case STOREW_STUB:
9141 case STORED_STUB:
9142 do_writestub(i);break;
9143 case CC_STUB:
9144 do_ccstub(i);break;
9145 case INVCODE_STUB:
9146 do_invstub(i);break;
9147 case FP_STUB:
9148 do_cop1stub(i);break;
9149 case STORELR_STUB:
9150 do_unalignedwritestub(i);break;
9151 }
9152 }
9153
9154 if (instr_addr0_override)
9155 instr_addr[0] = instr_addr0_override;
9156
9157 /* Pass 9 - Linker */
9158 for(i=0;i<linkcount;i++)
9159 {
9160 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9161 literal_pool(64);
9162 if (!link_addr[i].ext)
9163 {
9164 void *stub = out;
9165 void *addr = check_addr(link_addr[i].target);
9166 emit_extjump(link_addr[i].addr, link_addr[i].target);
9167 if (addr) {
9168 set_jump_target(link_addr[i].addr, addr);
9169 add_jump_out(link_addr[i].target,stub);
9170 }
9171 else
9172 set_jump_target(link_addr[i].addr, stub);
9173 }
9174 else
9175 {
9176 // Internal branch
9177 int target=(link_addr[i].target-start)>>2;
9178 assert(target>=0&&target<slen);
9179 assert(instr_addr[target]);
9180 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9181 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9182 //#else
9183 set_jump_target(link_addr[i].addr, instr_addr[target]);
9184 //#endif
9185 }
9186 }
9187
9188 u_int source_len = slen*4;
9189 if (dops[slen-1].itype == INTCALL && source_len > 4)
9190 // no need to treat the last instruction as compiled
9191 // as interpreter fully handles it
9192 source_len -= 4;
9193
9194 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9195 copy = shadow;
9196
9197 // External Branch Targets (jump_in)
9198 for(i=0;i<slen;i++)
9199 {
9200 if(dops[i].bt||i==0)
9201 {
9202 if(instr_addr[i]) // TODO - delay slots (=null)
9203 {
9204 u_int vaddr=start+i*4;
9205 u_int page=get_page(vaddr);
9206 u_int vpage=get_vpage(vaddr);
9207 literal_pool(256);
9208 {
9209 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9210 assem_debug("jump_in: %x\n",start+i*4);
9211 ll_add(jump_dirty+vpage,vaddr,out);
9212 void *entry_point = do_dirty_stub(i, source_len);
9213 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9214 // If there was an existing entry in the hash table,
9215 // replace it with the new address.
9216 // Don't add new entries. We'll insert the
9217 // ones that actually get used in check_addr().
9218 struct ht_entry *ht_bin = hash_table_get(vaddr);
9219 if (ht_bin->vaddr[0] == vaddr)
9220 ht_bin->tcaddr[0] = entry_point;
9221 if (ht_bin->vaddr[1] == vaddr)
9222 ht_bin->tcaddr[1] = entry_point;
9223 }
9224 }
9225 }
9226 }
9227 // Write out the literal pool if necessary
9228 literal_pool(0);
9229 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9230 // Align code
9231 if(((u_int)out)&7) emit_addnop(13);
9232 #endif
9233 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9234 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9235 memcpy(copy, source, source_len);
9236 copy += source_len;
9237
9238 end_block(beginning);
9239
9240 // If we're within 256K of the end of the buffer,
9241 // start over from the beginning. (Is 256K enough?)
9242 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9243 out = ndrc->translation_cache;
9244
9245 // Trap writes to any of the pages we compiled
9246 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9247 invalid_code[i]=0;
9248 }
9249 inv_code_start=inv_code_end=~0;
9250
9251 // for PCSX we need to mark all mirrors too
9252 if(get_page(start)<(RAM_SIZE>>12))
9253 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9254 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9255 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9256 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9257
9258 /* Pass 10 - Free memory by expiring oldest blocks */
9259
9260 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9261 while(expirep!=end)
9262 {
9263 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9264 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
9265 uintptr_t base_offs_s = base_offs >> shift;
9266 inv_debug("EXP: Phase %d\n",expirep);
9267 switch((expirep>>11)&3)
9268 {
9269 case 0:
9270 // Clear jump_in and jump_dirty
9271 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
9272 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
9273 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
9274 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
9275 break;
9276 case 1:
9277 // Clear pointers
9278 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
9279 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
9280 break;
9281 case 2:
9282 // Clear hash table
9283 for(i=0;i<32;i++) {
9284 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9285 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
9286 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9287 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9288 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9289 ht_bin->vaddr[1] = -1;
9290 ht_bin->tcaddr[1] = NULL;
9291 }
9292 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
9293 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9294 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9295 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9296 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9297 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9298 ht_bin->vaddr[1] = -1;
9299 ht_bin->tcaddr[1] = NULL;
9300 }
9301 }
9302 break;
9303 case 3:
9304 // Clear jump_out
9305 if((expirep&2047)==0)
9306 do_clear_cache();
9307 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
9308 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
9309 break;
9310 }
9311 expirep=(expirep+1)&65535;
9312 }
9313 return 0;
9314}
9315
9316// vim:shiftwidth=2:expandtab