drc: botched msb bit check
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42
43#define noinline __attribute__((noinline,noclone))
44#ifndef ARRAY_SIZE
45#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
46#endif
47#ifndef min
48#define min(a, b) ((b) < (a) ? (b) : (a))
49#endif
50#ifndef max
51#define max(a, b) ((b) > (a) ? (b) : (a))
52#endif
53
54//#define DISASM
55//#define ASSEM_PRINT
56
57#ifdef ASSEM_PRINT
58#define assem_debug printf
59#else
60#define assem_debug(...)
61#endif
62//#define inv_debug printf
63#define inv_debug(...)
64
65#ifdef __i386__
66#include "assem_x86.h"
67#endif
68#ifdef __x86_64__
69#include "assem_x64.h"
70#endif
71#ifdef __arm__
72#include "assem_arm.h"
73#endif
74#ifdef __aarch64__
75#include "assem_arm64.h"
76#endif
77
78#define RAM_SIZE 0x200000
79#define MAXBLOCK 4096
80#define MAX_OUTPUT_BLOCK_SIZE 262144
81
82struct ndrc_mem
83{
84 u_char translation_cache[1 << TARGET_SIZE_2];
85 struct
86 {
87 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
88 const void *f[2048 / sizeof(void *)];
89 } tramp;
90};
91
92#ifdef BASE_ADDR_DYNAMIC
93static struct ndrc_mem *ndrc;
94#else
95static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
96static struct ndrc_mem *ndrc = &ndrc_;
97#endif
98
99// stubs
100enum stub_type {
101 CC_STUB = 1,
102 FP_STUB = 2,
103 LOADB_STUB = 3,
104 LOADH_STUB = 4,
105 LOADW_STUB = 5,
106 LOADD_STUB = 6,
107 LOADBU_STUB = 7,
108 LOADHU_STUB = 8,
109 STOREB_STUB = 9,
110 STOREH_STUB = 10,
111 STOREW_STUB = 11,
112 STORED_STUB = 12,
113 STORELR_STUB = 13,
114 INVCODE_STUB = 14,
115};
116
117struct regstat
118{
119 signed char regmap_entry[HOST_REGS];
120 signed char regmap[HOST_REGS];
121 uint64_t wasdirty;
122 uint64_t dirty;
123 uint64_t u;
124 u_int wasconst;
125 u_int isconst;
126 u_int loadedconst; // host regs that have constants loaded
127 u_int waswritten; // MIPS regs that were used as store base before
128};
129
130// note: asm depends on this layout
131struct ll_entry
132{
133 u_int vaddr;
134 u_int reg_sv_flags;
135 void *addr;
136 struct ll_entry *next;
137};
138
139struct ht_entry
140{
141 u_int vaddr[2];
142 void *tcaddr[2];
143};
144
145struct code_stub
146{
147 enum stub_type type;
148 void *addr;
149 void *retaddr;
150 u_int a;
151 uintptr_t b;
152 uintptr_t c;
153 u_int d;
154 u_int e;
155};
156
157struct link_entry
158{
159 void *addr;
160 u_int target;
161 u_int ext;
162};
163
164static struct decoded_insn
165{
166 u_char itype;
167 u_char opcode;
168 u_char opcode2;
169 u_char rs1;
170 u_char rs2;
171 u_char rt1;
172 u_char rt2;
173 u_char lt1;
174 u_char bt:1;
175 u_char ooo:1;
176 u_char is_ds:1;
177 u_char is_jump:1;
178 u_char is_ujump:1;
179} dops[MAXBLOCK];
180
181 // used by asm:
182 u_char *out;
183 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
184 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
185 struct ll_entry *jump_dirty[4096];
186
187 static struct ll_entry *jump_out[4096];
188 static u_int start;
189 static u_int *source;
190 static char insn[MAXBLOCK][10];
191 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
192 static uint64_t gte_rt[MAXBLOCK];
193 static uint64_t gte_unneeded[MAXBLOCK];
194 static u_int smrv[32]; // speculated MIPS register values
195 static u_int smrv_strong; // mask or regs that are likely to have correct values
196 static u_int smrv_weak; // same, but somewhat less likely
197 static u_int smrv_strong_next; // same, but after current insn executes
198 static u_int smrv_weak_next;
199 static int imm[MAXBLOCK];
200 static u_int ba[MAXBLOCK];
201 static uint64_t unneeded_reg[MAXBLOCK];
202 static uint64_t branch_unneeded_reg[MAXBLOCK];
203 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
204 // contains 'real' consts at [i] insn, but may differ from what's actually
205 // loaded in host reg as 'final' value is always loaded, see get_final_value()
206 static uint32_t current_constmap[HOST_REGS];
207 static uint32_t constmap[MAXBLOCK][HOST_REGS];
208 static struct regstat regs[MAXBLOCK];
209 static struct regstat branch_regs[MAXBLOCK];
210 static signed char minimum_free_regs[MAXBLOCK];
211 static u_int needed_reg[MAXBLOCK];
212 static u_int wont_dirty[MAXBLOCK];
213 static u_int will_dirty[MAXBLOCK];
214 static int ccadj[MAXBLOCK];
215 static int slen;
216 static void *instr_addr[MAXBLOCK];
217 static struct link_entry link_addr[MAXBLOCK];
218 static int linkcount;
219 static struct code_stub stubs[MAXBLOCK*3];
220 static int stubcount;
221 static u_int literals[1024][2];
222 static int literalcount;
223 static int is_delayslot;
224 static char shadow[1048576] __attribute__((aligned(16)));
225 static void *copy;
226 static int expirep;
227 static u_int stop_after_jal;
228 static u_int f1_hack; // 0 - off, ~0 - capture address, else addr
229#ifndef RAM_FIXED
230 static uintptr_t ram_offset;
231#else
232 static const uintptr_t ram_offset=0;
233#endif
234
235 int new_dynarec_hacks;
236 int new_dynarec_hacks_pergame;
237 int new_dynarec_hacks_old;
238 int new_dynarec_did_compile;
239
240 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
241
242 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
243 extern int last_count; // last absolute target, often = next_interupt
244 extern int pcaddr;
245 extern int pending_exception;
246 extern int branch_target;
247 extern uintptr_t mini_ht[32][2];
248 extern u_char restore_candidate[512];
249
250 /* registers that may be allocated */
251 /* 1-31 gpr */
252#define LOREG 32 // lo
253#define HIREG 33 // hi
254//#define FSREG 34 // FPU status (FCSR)
255#define CSREG 35 // Coprocessor status
256#define CCREG 36 // Cycle count
257#define INVCP 37 // Pointer to invalid_code
258//#define MMREG 38 // Pointer to memory_map
259//#define ROREG 39 // ram offset (if rdram!=0x80000000)
260#define TEMPREG 40
261#define FTEMP 40 // FPU temporary register
262#define PTEMP 41 // Prefetch temporary register
263//#define TLREG 42 // TLB mapping offset
264#define RHASH 43 // Return address hash
265#define RHTBL 44 // Return address hash table address
266#define RTEMP 45 // JR/JALR address register
267#define MAXREG 45
268#define AGEN1 46 // Address generation temporary register
269//#define AGEN2 47 // Address generation temporary register
270//#define MGEN1 48 // Maptable address generation temporary register
271//#define MGEN2 49 // Maptable address generation temporary register
272#define BTREG 50 // Branch target temporary register
273
274 /* instruction types */
275#define NOP 0 // No operation
276#define LOAD 1 // Load
277#define STORE 2 // Store
278#define LOADLR 3 // Unaligned load
279#define STORELR 4 // Unaligned store
280#define MOV 5 // Move
281#define ALU 6 // Arithmetic/logic
282#define MULTDIV 7 // Multiply/divide
283#define SHIFT 8 // Shift by register
284#define SHIFTIMM 9// Shift by immediate
285#define IMM16 10 // 16-bit immediate
286#define RJUMP 11 // Unconditional jump to register
287#define UJUMP 12 // Unconditional jump
288#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
289#define SJUMP 14 // Conditional branch (regimm format)
290#define COP0 15 // Coprocessor 0
291#define COP1 16 // Coprocessor 1
292#define C1LS 17 // Coprocessor 1 load/store
293//#define FJUMP 18 // Conditional branch (floating point)
294//#define FLOAT 19 // Floating point unit
295//#define FCONV 20 // Convert integer to float
296//#define FCOMP 21 // Floating point compare (sets FSREG)
297#define SYSCALL 22// SYSCALL
298#define OTHER 23 // Other
299#define SPAN 24 // Branch/delay slot spans 2 pages
300#define NI 25 // Not implemented
301#define HLECALL 26// PCSX fake opcodes for HLE
302#define COP2 27 // Coprocessor 2 move
303#define C2LS 28 // Coprocessor 2 load/store
304#define C2OP 29 // Coprocessor 2 operation
305#define INTCALL 30// Call interpreter to handle rare corner cases
306
307 /* branch codes */
308#define TAKEN 1
309#define NOTTAKEN 2
310#define NULLDS 3
311
312#define DJT_1 (void *)1l // no function, just a label in assem_debug log
313#define DJT_2 (void *)2l
314
315// asm linkage
316int new_recompile_block(u_int addr);
317void *get_addr_ht(u_int vaddr);
318void invalidate_block(u_int block);
319void invalidate_addr(u_int addr);
320void remove_hash(int vaddr);
321void dyna_linker();
322void dyna_linker_ds();
323void verify_code();
324void verify_code_ds();
325void cc_interrupt();
326void fp_exception();
327void fp_exception_ds();
328void jump_to_new_pc();
329void call_gteStall();
330void new_dyna_leave();
331
332// Needed by assembler
333static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
334static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
335static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
336static void load_all_regs(signed char i_regmap[]);
337static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
338static void load_regs_entry(int t);
339static void load_all_consts(signed char regmap[],u_int dirty,int i);
340static u_int get_host_reglist(const signed char *regmap);
341
342static int verify_dirty(const u_int *ptr);
343static int get_final_value(int hr, int i, int *value);
344static void add_stub(enum stub_type type, void *addr, void *retaddr,
345 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
346static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
347 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
348static void add_to_linker(void *addr, u_int target, int ext);
349static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override);
350static void *get_direct_memhandler(void *table, u_int addr,
351 enum stub_type type, uintptr_t *addr_host);
352static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
353static void pass_args(int a0, int a1);
354static void emit_far_jump(const void *f);
355static void emit_far_call(const void *f);
356
357static void mprotect_w_x(void *start, void *end, int is_x)
358{
359#ifdef NO_WRITE_EXEC
360 #if defined(VITA)
361 // *Open* enables write on all memory that was
362 // allocated by sceKernelAllocMemBlockForVM()?
363 if (is_x)
364 sceKernelCloseVMDomain();
365 else
366 sceKernelOpenVMDomain();
367 #else
368 u_long mstart = (u_long)start & ~4095ul;
369 u_long mend = (u_long)end;
370 if (mprotect((void *)mstart, mend - mstart,
371 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
372 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
373 #endif
374#endif
375}
376
377static void start_tcache_write(void *start, void *end)
378{
379 mprotect_w_x(start, end, 0);
380}
381
382static void end_tcache_write(void *start, void *end)
383{
384#if defined(__arm__) || defined(__aarch64__)
385 size_t len = (char *)end - (char *)start;
386 #if defined(__BLACKBERRY_QNX__)
387 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
388 #elif defined(__MACH__)
389 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
390 #elif defined(VITA)
391 sceKernelSyncVMDomain(sceBlock, start, len);
392 #elif defined(_3DS)
393 ctr_flush_invalidate_cache();
394 #elif defined(__aarch64__)
395 // as of 2021, __clear_cache() is still broken on arm64
396 // so here is a custom one :(
397 clear_cache_arm64(start, end);
398 #else
399 __clear_cache(start, end);
400 #endif
401 (void)len;
402#endif
403
404 mprotect_w_x(start, end, 1);
405}
406
407static void *start_block(void)
408{
409 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
410 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
411 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
412 start_tcache_write(out, end);
413 return out;
414}
415
416static void end_block(void *start)
417{
418 end_tcache_write(start, out);
419}
420
421// also takes care of w^x mappings when patching code
422static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
423
424static void mark_clear_cache(void *target)
425{
426 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
427 u_int mask = 1u << ((offset >> 12) & 31);
428 if (!(needs_clear_cache[offset >> 17] & mask)) {
429 char *start = (char *)((uintptr_t)target & ~4095l);
430 start_tcache_write(start, start + 4095);
431 needs_clear_cache[offset >> 17] |= mask;
432 }
433}
434
435// Clearing the cache is rather slow on ARM Linux, so mark the areas
436// that need to be cleared, and then only clear these areas once.
437static void do_clear_cache(void)
438{
439 int i, j;
440 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
441 {
442 u_int bitmap = needs_clear_cache[i];
443 if (!bitmap)
444 continue;
445 for (j = 0; j < 32; j++)
446 {
447 u_char *start, *end;
448 if (!(bitmap & (1<<j)))
449 continue;
450
451 start = ndrc->translation_cache + i*131072 + j*4096;
452 end = start + 4095;
453 for (j++; j < 32; j++) {
454 if (!(bitmap & (1<<j)))
455 break;
456 end += 4096;
457 }
458 end_tcache_write(start, end);
459 }
460 needs_clear_cache[i] = 0;
461 }
462}
463
464//#define DEBUG_CYCLE_COUNT 1
465
466#define NO_CYCLE_PENALTY_THR 12
467
468int cycle_multiplier = CYCLE_MULT_DEFAULT; // 100 for 1.0
469int cycle_multiplier_override;
470int cycle_multiplier_old;
471
472static int CLOCK_ADJUST(int x)
473{
474 int m = cycle_multiplier_override && cycle_multiplier == CYCLE_MULT_DEFAULT
475 ? cycle_multiplier_override : cycle_multiplier;
476 int s=(x>>31)|1;
477 return (x * m + s * 50) / 100;
478}
479
480static int ds_writes_rjump_rs(int i)
481{
482 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
483}
484
485static u_int get_page(u_int vaddr)
486{
487 u_int page=vaddr&~0xe0000000;
488 if (page < 0x1000000)
489 page &= ~0x0e00000; // RAM mirrors
490 page>>=12;
491 if(page>2048) page=2048+(page&2047);
492 return page;
493}
494
495// no virtual mem in PCSX
496static u_int get_vpage(u_int vaddr)
497{
498 return get_page(vaddr);
499}
500
501static struct ht_entry *hash_table_get(u_int vaddr)
502{
503 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
504}
505
506static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
507{
508 ht_bin->vaddr[1] = ht_bin->vaddr[0];
509 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
510 ht_bin->vaddr[0] = vaddr;
511 ht_bin->tcaddr[0] = tcaddr;
512}
513
514// some messy ari64's code, seems to rely on unsigned 32bit overflow
515static int doesnt_expire_soon(void *tcaddr)
516{
517 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
518 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
519}
520
521// Get address from virtual address
522// This is called from the recompiled JR/JALR instructions
523void noinline *get_addr(u_int vaddr)
524{
525 u_int page=get_page(vaddr);
526 u_int vpage=get_vpage(vaddr);
527 struct ll_entry *head;
528 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
529 head=jump_in[page];
530 while(head!=NULL) {
531 if(head->vaddr==vaddr) {
532 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
533 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
534 return head->addr;
535 }
536 head=head->next;
537 }
538 head=jump_dirty[vpage];
539 while(head!=NULL) {
540 if(head->vaddr==vaddr) {
541 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
542 // Don't restore blocks which are about to expire from the cache
543 if (doesnt_expire_soon(head->addr))
544 if (verify_dirty(head->addr)) {
545 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
546 invalid_code[vaddr>>12]=0;
547 inv_code_start=inv_code_end=~0;
548 if(vpage<2048) {
549 restore_candidate[vpage>>3]|=1<<(vpage&7);
550 }
551 else restore_candidate[page>>3]|=1<<(page&7);
552 struct ht_entry *ht_bin = hash_table_get(vaddr);
553 if (ht_bin->vaddr[0] == vaddr)
554 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
555 else
556 hash_table_add(ht_bin, vaddr, head->addr);
557
558 return head->addr;
559 }
560 }
561 head=head->next;
562 }
563 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
564 int r=new_recompile_block(vaddr);
565 if(r==0) return get_addr(vaddr);
566 // Execute in unmapped page, generate pagefault execption
567 Status|=2;
568 Cause=(vaddr<<31)|0x8;
569 EPC=(vaddr&1)?vaddr-5:vaddr;
570 BadVAddr=(vaddr&~1);
571 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
572 EntryHi=BadVAddr&0xFFFFE000;
573 return get_addr_ht(0x80000000);
574}
575// Look up address in hash table first
576void *get_addr_ht(u_int vaddr)
577{
578 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
579 const struct ht_entry *ht_bin = hash_table_get(vaddr);
580 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
581 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
582 return get_addr(vaddr);
583}
584
585void clear_all_regs(signed char regmap[])
586{
587 int hr;
588 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
589}
590
591static signed char get_reg(const signed char regmap[],int r)
592{
593 int hr;
594 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
595 return -1;
596}
597
598// Find a register that is available for two consecutive cycles
599static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
600{
601 int hr;
602 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
603 return -1;
604}
605
606int count_free_regs(signed char regmap[])
607{
608 int count=0;
609 int hr;
610 for(hr=0;hr<HOST_REGS;hr++)
611 {
612 if(hr!=EXCLUDE_REG) {
613 if(regmap[hr]<0) count++;
614 }
615 }
616 return count;
617}
618
619void dirty_reg(struct regstat *cur,signed char reg)
620{
621 int hr;
622 if(!reg) return;
623 for (hr=0;hr<HOST_REGS;hr++) {
624 if((cur->regmap[hr]&63)==reg) {
625 cur->dirty|=1<<hr;
626 }
627 }
628}
629
630static void set_const(struct regstat *cur, signed char reg, uint32_t value)
631{
632 int hr;
633 if(!reg) return;
634 for (hr=0;hr<HOST_REGS;hr++) {
635 if(cur->regmap[hr]==reg) {
636 cur->isconst|=1<<hr;
637 current_constmap[hr]=value;
638 }
639 }
640}
641
642static void clear_const(struct regstat *cur, signed char reg)
643{
644 int hr;
645 if(!reg) return;
646 for (hr=0;hr<HOST_REGS;hr++) {
647 if((cur->regmap[hr]&63)==reg) {
648 cur->isconst&=~(1<<hr);
649 }
650 }
651}
652
653static int is_const(struct regstat *cur, signed char reg)
654{
655 int hr;
656 if(reg<0) return 0;
657 if(!reg) return 1;
658 for (hr=0;hr<HOST_REGS;hr++) {
659 if((cur->regmap[hr]&63)==reg) {
660 return (cur->isconst>>hr)&1;
661 }
662 }
663 return 0;
664}
665
666static uint32_t get_const(struct regstat *cur, signed char reg)
667{
668 int hr;
669 if(!reg) return 0;
670 for (hr=0;hr<HOST_REGS;hr++) {
671 if(cur->regmap[hr]==reg) {
672 return current_constmap[hr];
673 }
674 }
675 SysPrintf("Unknown constant in r%d\n",reg);
676 abort();
677}
678
679// Least soon needed registers
680// Look at the next ten instructions and see which registers
681// will be used. Try not to reallocate these.
682void lsn(u_char hsn[], int i, int *preferred_reg)
683{
684 int j;
685 int b=-1;
686 for(j=0;j<9;j++)
687 {
688 if(i+j>=slen) {
689 j=slen-i-1;
690 break;
691 }
692 if (dops[i+j].is_ujump)
693 {
694 // Don't go past an unconditonal jump
695 j++;
696 break;
697 }
698 }
699 for(;j>=0;j--)
700 {
701 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
702 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
703 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
704 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
705 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
706 // Stores can allocate zero
707 hsn[dops[i+j].rs1]=j;
708 hsn[dops[i+j].rs2]=j;
709 }
710 // On some architectures stores need invc_ptr
711 #if defined(HOST_IMM8)
712 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR || (dops[i+j].opcode&0x3b)==0x39 || (dops[i+j].opcode&0x3b)==0x3a) {
713 hsn[INVCP]=j;
714 }
715 #endif
716 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
717 {
718 hsn[CCREG]=j;
719 b=j;
720 }
721 }
722 if(b>=0)
723 {
724 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
725 {
726 // Follow first branch
727 int t=(ba[i+b]-start)>>2;
728 j=7-b;if(t+j>=slen) j=slen-t-1;
729 for(;j>=0;j--)
730 {
731 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
732 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
733 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
734 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
735 }
736 }
737 // TODO: preferred register based on backward branch
738 }
739 // Delay slot should preferably not overwrite branch conditions or cycle count
740 if (i > 0 && dops[i-1].is_jump) {
741 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
742 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
743 hsn[CCREG]=1;
744 // ...or hash tables
745 hsn[RHASH]=1;
746 hsn[RHTBL]=1;
747 }
748 // Coprocessor load/store needs FTEMP, even if not declared
749 if(dops[i].itype==C1LS||dops[i].itype==C2LS) {
750 hsn[FTEMP]=0;
751 }
752 // Load L/R also uses FTEMP as a temporary register
753 if(dops[i].itype==LOADLR) {
754 hsn[FTEMP]=0;
755 }
756 // Also SWL/SWR/SDL/SDR
757 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
758 hsn[FTEMP]=0;
759 }
760 // Don't remove the miniht registers
761 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
762 {
763 hsn[RHASH]=0;
764 hsn[RHTBL]=0;
765 }
766}
767
768// We only want to allocate registers if we're going to use them again soon
769int needed_again(int r, int i)
770{
771 int j;
772 int b=-1;
773 int rn=10;
774
775 if (i > 0 && dops[i-1].is_ujump)
776 {
777 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
778 return 0; // Don't need any registers if exiting the block
779 }
780 for(j=0;j<9;j++)
781 {
782 if(i+j>=slen) {
783 j=slen-i-1;
784 break;
785 }
786 if (dops[i+j].is_ujump)
787 {
788 // Don't go past an unconditonal jump
789 j++;
790 break;
791 }
792 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
793 {
794 break;
795 }
796 }
797 for(;j>=1;j--)
798 {
799 if(dops[i+j].rs1==r) rn=j;
800 if(dops[i+j].rs2==r) rn=j;
801 if((unneeded_reg[i+j]>>r)&1) rn=10;
802 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
803 {
804 b=j;
805 }
806 }
807 if(rn<10) return 1;
808 (void)b;
809 return 0;
810}
811
812// Try to match register allocations at the end of a loop with those
813// at the beginning
814int loop_reg(int i, int r, int hr)
815{
816 int j,k;
817 for(j=0;j<9;j++)
818 {
819 if(i+j>=slen) {
820 j=slen-i-1;
821 break;
822 }
823 if (dops[i+j].is_ujump)
824 {
825 // Don't go past an unconditonal jump
826 j++;
827 break;
828 }
829 }
830 k=0;
831 if(i>0){
832 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
833 k--;
834 }
835 for(;k<j;k++)
836 {
837 assert(r < 64);
838 if((unneeded_reg[i+k]>>r)&1) return hr;
839 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
840 {
841 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
842 {
843 int t=(ba[i+k]-start)>>2;
844 int reg=get_reg(regs[t].regmap_entry,r);
845 if(reg>=0) return reg;
846 //reg=get_reg(regs[t+1].regmap_entry,r);
847 //if(reg>=0) return reg;
848 }
849 }
850 }
851 return hr;
852}
853
854
855// Allocate every register, preserving source/target regs
856void alloc_all(struct regstat *cur,int i)
857{
858 int hr;
859
860 for(hr=0;hr<HOST_REGS;hr++) {
861 if(hr!=EXCLUDE_REG) {
862 if(((cur->regmap[hr]&63)!=dops[i].rs1)&&((cur->regmap[hr]&63)!=dops[i].rs2)&&
863 ((cur->regmap[hr]&63)!=dops[i].rt1)&&((cur->regmap[hr]&63)!=dops[i].rt2))
864 {
865 cur->regmap[hr]=-1;
866 cur->dirty&=~(1<<hr);
867 }
868 // Don't need zeros
869 if((cur->regmap[hr]&63)==0)
870 {
871 cur->regmap[hr]=-1;
872 cur->dirty&=~(1<<hr);
873 }
874 }
875 }
876}
877
878#ifndef NDEBUG
879static int host_tempreg_in_use;
880
881static void host_tempreg_acquire(void)
882{
883 assert(!host_tempreg_in_use);
884 host_tempreg_in_use = 1;
885}
886
887static void host_tempreg_release(void)
888{
889 host_tempreg_in_use = 0;
890}
891#else
892static void host_tempreg_acquire(void) {}
893static void host_tempreg_release(void) {}
894#endif
895
896#ifdef ASSEM_PRINT
897extern void gen_interupt();
898extern void do_insn_cmp();
899#define FUNCNAME(f) { f, " " #f }
900static const struct {
901 void *addr;
902 const char *name;
903} function_names[] = {
904 FUNCNAME(cc_interrupt),
905 FUNCNAME(gen_interupt),
906 FUNCNAME(get_addr_ht),
907 FUNCNAME(get_addr),
908 FUNCNAME(jump_handler_read8),
909 FUNCNAME(jump_handler_read16),
910 FUNCNAME(jump_handler_read32),
911 FUNCNAME(jump_handler_write8),
912 FUNCNAME(jump_handler_write16),
913 FUNCNAME(jump_handler_write32),
914 FUNCNAME(invalidate_addr),
915 FUNCNAME(jump_to_new_pc),
916 FUNCNAME(call_gteStall),
917 FUNCNAME(new_dyna_leave),
918 FUNCNAME(pcsx_mtc0),
919 FUNCNAME(pcsx_mtc0_ds),
920#ifdef DRC_DBG
921 FUNCNAME(do_insn_cmp),
922#endif
923#ifdef __arm__
924 FUNCNAME(verify_code),
925#endif
926};
927
928static const char *func_name(const void *a)
929{
930 int i;
931 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
932 if (function_names[i].addr == a)
933 return function_names[i].name;
934 return "";
935}
936#else
937#define func_name(x) ""
938#endif
939
940#ifdef __i386__
941#include "assem_x86.c"
942#endif
943#ifdef __x86_64__
944#include "assem_x64.c"
945#endif
946#ifdef __arm__
947#include "assem_arm.c"
948#endif
949#ifdef __aarch64__
950#include "assem_arm64.c"
951#endif
952
953static void *get_trampoline(const void *f)
954{
955 size_t i;
956
957 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
958 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
959 break;
960 }
961 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
962 SysPrintf("trampoline table is full, last func %p\n", f);
963 abort();
964 }
965 if (ndrc->tramp.f[i] == NULL) {
966 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
967 ndrc->tramp.f[i] = f;
968 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
969 }
970 return &ndrc->tramp.ops[i];
971}
972
973static void emit_far_jump(const void *f)
974{
975 if (can_jump_or_call(f)) {
976 emit_jmp(f);
977 return;
978 }
979
980 f = get_trampoline(f);
981 emit_jmp(f);
982}
983
984static void emit_far_call(const void *f)
985{
986 if (can_jump_or_call(f)) {
987 emit_call(f);
988 return;
989 }
990
991 f = get_trampoline(f);
992 emit_call(f);
993}
994
995// Add virtual address mapping to linked list
996void ll_add(struct ll_entry **head,int vaddr,void *addr)
997{
998 struct ll_entry *new_entry;
999 new_entry=malloc(sizeof(struct ll_entry));
1000 assert(new_entry!=NULL);
1001 new_entry->vaddr=vaddr;
1002 new_entry->reg_sv_flags=0;
1003 new_entry->addr=addr;
1004 new_entry->next=*head;
1005 *head=new_entry;
1006}
1007
1008void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1009{
1010 ll_add(head,vaddr,addr);
1011 (*head)->reg_sv_flags=reg_sv_flags;
1012}
1013
1014// Check if an address is already compiled
1015// but don't return addresses which are about to expire from the cache
1016void *check_addr(u_int vaddr)
1017{
1018 struct ht_entry *ht_bin = hash_table_get(vaddr);
1019 size_t i;
1020 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1021 if (ht_bin->vaddr[i] == vaddr)
1022 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1023 if (isclean(ht_bin->tcaddr[i]))
1024 return ht_bin->tcaddr[i];
1025 }
1026 u_int page=get_page(vaddr);
1027 struct ll_entry *head;
1028 head=jump_in[page];
1029 while (head != NULL) {
1030 if (head->vaddr == vaddr) {
1031 if (doesnt_expire_soon(head->addr)) {
1032 // Update existing entry with current address
1033 if (ht_bin->vaddr[0] == vaddr) {
1034 ht_bin->tcaddr[0] = head->addr;
1035 return head->addr;
1036 }
1037 if (ht_bin->vaddr[1] == vaddr) {
1038 ht_bin->tcaddr[1] = head->addr;
1039 return head->addr;
1040 }
1041 // Insert into hash table with low priority.
1042 // Don't evict existing entries, as they are probably
1043 // addresses that are being accessed frequently.
1044 if (ht_bin->vaddr[0] == -1) {
1045 ht_bin->vaddr[0] = vaddr;
1046 ht_bin->tcaddr[0] = head->addr;
1047 }
1048 else if (ht_bin->vaddr[1] == -1) {
1049 ht_bin->vaddr[1] = vaddr;
1050 ht_bin->tcaddr[1] = head->addr;
1051 }
1052 return head->addr;
1053 }
1054 }
1055 head=head->next;
1056 }
1057 return 0;
1058}
1059
1060void remove_hash(int vaddr)
1061{
1062 //printf("remove hash: %x\n",vaddr);
1063 struct ht_entry *ht_bin = hash_table_get(vaddr);
1064 if (ht_bin->vaddr[1] == vaddr) {
1065 ht_bin->vaddr[1] = -1;
1066 ht_bin->tcaddr[1] = NULL;
1067 }
1068 if (ht_bin->vaddr[0] == vaddr) {
1069 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1070 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1071 ht_bin->vaddr[1] = -1;
1072 ht_bin->tcaddr[1] = NULL;
1073 }
1074}
1075
1076static void ll_remove_matching_addrs(struct ll_entry **head,
1077 uintptr_t base_offs_s, int shift)
1078{
1079 struct ll_entry *next;
1080 while(*head) {
1081 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1082 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1083 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1084 {
1085 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1086 remove_hash((*head)->vaddr);
1087 next=(*head)->next;
1088 free(*head);
1089 *head=next;
1090 }
1091 else
1092 {
1093 head=&((*head)->next);
1094 }
1095 }
1096}
1097
1098// Remove all entries from linked list
1099void ll_clear(struct ll_entry **head)
1100{
1101 struct ll_entry *cur;
1102 struct ll_entry *next;
1103 if((cur=*head)) {
1104 *head=0;
1105 while(cur) {
1106 next=cur->next;
1107 free(cur);
1108 cur=next;
1109 }
1110 }
1111}
1112
1113// Dereference the pointers and remove if it matches
1114static void ll_kill_pointers(struct ll_entry *head,
1115 uintptr_t base_offs_s, int shift)
1116{
1117 while(head) {
1118 u_char *ptr = get_pointer(head->addr);
1119 uintptr_t o1 = ptr - ndrc->translation_cache;
1120 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1121 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1122 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1123 {
1124 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1125 void *host_addr=find_extjump_insn(head->addr);
1126 mark_clear_cache(host_addr);
1127 set_jump_target(host_addr, head->addr);
1128 }
1129 head=head->next;
1130 }
1131}
1132
1133// This is called when we write to a compiled block (see do_invstub)
1134static void invalidate_page(u_int page)
1135{
1136 struct ll_entry *head;
1137 struct ll_entry *next;
1138 head=jump_in[page];
1139 jump_in[page]=0;
1140 while(head!=NULL) {
1141 inv_debug("INVALIDATE: %x\n",head->vaddr);
1142 remove_hash(head->vaddr);
1143 next=head->next;
1144 free(head);
1145 head=next;
1146 }
1147 head=jump_out[page];
1148 jump_out[page]=0;
1149 while(head!=NULL) {
1150 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1151 void *host_addr=find_extjump_insn(head->addr);
1152 mark_clear_cache(host_addr);
1153 set_jump_target(host_addr, head->addr); // point back to dyna_linker
1154 next=head->next;
1155 free(head);
1156 head=next;
1157 }
1158}
1159
1160static void invalidate_block_range(u_int block, u_int first, u_int last)
1161{
1162 u_int page=get_page(block<<12);
1163 //printf("first=%d last=%d\n",first,last);
1164 invalidate_page(page);
1165 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1166 assert(last<page+5);
1167 // Invalidate the adjacent pages if a block crosses a 4K boundary
1168 while(first<page) {
1169 invalidate_page(first);
1170 first++;
1171 }
1172 for(first=page+1;first<last;first++) {
1173 invalidate_page(first);
1174 }
1175 do_clear_cache();
1176
1177 // Don't trap writes
1178 invalid_code[block]=1;
1179
1180 #ifdef USE_MINI_HT
1181 memset(mini_ht,-1,sizeof(mini_ht));
1182 #endif
1183}
1184
1185void invalidate_block(u_int block)
1186{
1187 u_int page=get_page(block<<12);
1188 u_int vpage=get_vpage(block<<12);
1189 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1190 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1191 u_int first,last;
1192 first=last=page;
1193 struct ll_entry *head;
1194 head=jump_dirty[vpage];
1195 //printf("page=%d vpage=%d\n",page,vpage);
1196 while(head!=NULL) {
1197 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1198 u_char *start, *end;
1199 get_bounds(head->addr, &start, &end);
1200 //printf("start: %p end: %p\n", start, end);
1201 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1202 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1203 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1204 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1205 }
1206 }
1207 }
1208 head=head->next;
1209 }
1210 invalidate_block_range(block,first,last);
1211}
1212
1213void invalidate_addr(u_int addr)
1214{
1215 //static int rhits;
1216 // this check is done by the caller
1217 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1218 u_int page=get_vpage(addr);
1219 if(page<2048) { // RAM
1220 struct ll_entry *head;
1221 u_int addr_min=~0, addr_max=0;
1222 u_int mask=RAM_SIZE-1;
1223 u_int addr_main=0x80000000|(addr&mask);
1224 int pg1;
1225 inv_code_start=addr_main&~0xfff;
1226 inv_code_end=addr_main|0xfff;
1227 pg1=page;
1228 if (pg1>0) {
1229 // must check previous page too because of spans..
1230 pg1--;
1231 inv_code_start-=0x1000;
1232 }
1233 for(;pg1<=page;pg1++) {
1234 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1235 u_char *start_h, *end_h;
1236 u_int start, end;
1237 get_bounds(head->addr, &start_h, &end_h);
1238 start = (uintptr_t)start_h - ram_offset;
1239 end = (uintptr_t)end_h - ram_offset;
1240 if(start<=addr_main&&addr_main<end) {
1241 if(start<addr_min) addr_min=start;
1242 if(end>addr_max) addr_max=end;
1243 }
1244 else if(addr_main<start) {
1245 if(start<inv_code_end)
1246 inv_code_end=start-1;
1247 }
1248 else {
1249 if(end>inv_code_start)
1250 inv_code_start=end;
1251 }
1252 }
1253 }
1254 if (addr_min!=~0) {
1255 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1256 inv_code_start=inv_code_end=~0;
1257 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1258 return;
1259 }
1260 else {
1261 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1262 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1263 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1264 return;
1265 }
1266 }
1267 invalidate_block(addr>>12);
1268}
1269
1270// This is called when loading a save state.
1271// Anything could have changed, so invalidate everything.
1272void invalidate_all_pages(void)
1273{
1274 u_int page;
1275 for(page=0;page<4096;page++)
1276 invalidate_page(page);
1277 for(page=0;page<1048576;page++)
1278 if(!invalid_code[page]) {
1279 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1280 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1281 }
1282 #ifdef USE_MINI_HT
1283 memset(mini_ht,-1,sizeof(mini_ht));
1284 #endif
1285 do_clear_cache();
1286}
1287
1288static void do_invstub(int n)
1289{
1290 literal_pool(20);
1291 u_int reglist=stubs[n].a;
1292 set_jump_target(stubs[n].addr, out);
1293 save_regs(reglist);
1294 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1295 emit_far_call(invalidate_addr);
1296 restore_regs(reglist);
1297 emit_jmp(stubs[n].retaddr); // return address
1298}
1299
1300// Add an entry to jump_out after making a link
1301// src should point to code by emit_extjump2()
1302void add_jump_out(u_int vaddr,void *src)
1303{
1304 u_int page=get_page(vaddr);
1305 inv_debug("add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1306 check_extjump2(src);
1307 ll_add(jump_out+page,vaddr,src);
1308 //inv_debug("add_jump_out: to %p\n",get_pointer(src));
1309}
1310
1311// If a code block was found to be unmodified (bit was set in
1312// restore_candidate) and it remains unmodified (bit is clear
1313// in invalid_code) then move the entries for that 4K page from
1314// the dirty list to the clean list.
1315void clean_blocks(u_int page)
1316{
1317 struct ll_entry *head;
1318 inv_debug("INV: clean_blocks page=%d\n",page);
1319 head=jump_dirty[page];
1320 while(head!=NULL) {
1321 if(!invalid_code[head->vaddr>>12]) {
1322 // Don't restore blocks which are about to expire from the cache
1323 if (doesnt_expire_soon(head->addr)) {
1324 if(verify_dirty(head->addr)) {
1325 u_char *start, *end;
1326 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1327 u_int i;
1328 u_int inv=0;
1329 get_bounds(head->addr, &start, &end);
1330 if (start - rdram < RAM_SIZE) {
1331 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1332 inv|=invalid_code[i];
1333 }
1334 }
1335 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1336 inv=1;
1337 }
1338 if(!inv) {
1339 void *clean_addr = get_clean_addr(head->addr);
1340 if (doesnt_expire_soon(clean_addr)) {
1341 u_int ppage=page;
1342 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1343 //printf("page=%x, addr=%x\n",page,head->vaddr);
1344 //assert(head->vaddr>>12==(page|0x80000));
1345 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1346 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1347 if (ht_bin->vaddr[0] == head->vaddr)
1348 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1349 if (ht_bin->vaddr[1] == head->vaddr)
1350 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1351 }
1352 }
1353 }
1354 }
1355 }
1356 head=head->next;
1357 }
1358}
1359
1360/* Register allocation */
1361
1362// Note: registers are allocated clean (unmodified state)
1363// if you intend to modify the register, you must call dirty_reg().
1364static void alloc_reg(struct regstat *cur,int i,signed char reg)
1365{
1366 int r,hr;
1367 int preferred_reg = (reg&7);
1368 if(reg==CCREG) preferred_reg=HOST_CCREG;
1369 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1370
1371 // Don't allocate unused registers
1372 if((cur->u>>reg)&1) return;
1373
1374 // see if it's already allocated
1375 for(hr=0;hr<HOST_REGS;hr++)
1376 {
1377 if(cur->regmap[hr]==reg) return;
1378 }
1379
1380 // Keep the same mapping if the register was already allocated in a loop
1381 preferred_reg = loop_reg(i,reg,preferred_reg);
1382
1383 // Try to allocate the preferred register
1384 if(cur->regmap[preferred_reg]==-1) {
1385 cur->regmap[preferred_reg]=reg;
1386 cur->dirty&=~(1<<preferred_reg);
1387 cur->isconst&=~(1<<preferred_reg);
1388 return;
1389 }
1390 r=cur->regmap[preferred_reg];
1391 assert(r < 64);
1392 if((cur->u>>r)&1) {
1393 cur->regmap[preferred_reg]=reg;
1394 cur->dirty&=~(1<<preferred_reg);
1395 cur->isconst&=~(1<<preferred_reg);
1396 return;
1397 }
1398
1399 // Clear any unneeded registers
1400 // We try to keep the mapping consistent, if possible, because it
1401 // makes branches easier (especially loops). So we try to allocate
1402 // first (see above) before removing old mappings. If this is not
1403 // possible then go ahead and clear out the registers that are no
1404 // longer needed.
1405 for(hr=0;hr<HOST_REGS;hr++)
1406 {
1407 r=cur->regmap[hr];
1408 if(r>=0) {
1409 assert(r < 64);
1410 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1411 }
1412 }
1413 // Try to allocate any available register, but prefer
1414 // registers that have not been used recently.
1415 if(i>0) {
1416 for(hr=0;hr<HOST_REGS;hr++) {
1417 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1418 if(regs[i-1].regmap[hr]!=dops[i-1].rs1&&regs[i-1].regmap[hr]!=dops[i-1].rs2&&regs[i-1].regmap[hr]!=dops[i-1].rt1&&regs[i-1].regmap[hr]!=dops[i-1].rt2) {
1419 cur->regmap[hr]=reg;
1420 cur->dirty&=~(1<<hr);
1421 cur->isconst&=~(1<<hr);
1422 return;
1423 }
1424 }
1425 }
1426 }
1427 // Try to allocate any available register
1428 for(hr=0;hr<HOST_REGS;hr++) {
1429 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1430 cur->regmap[hr]=reg;
1431 cur->dirty&=~(1<<hr);
1432 cur->isconst&=~(1<<hr);
1433 return;
1434 }
1435 }
1436
1437 // Ok, now we have to evict someone
1438 // Pick a register we hopefully won't need soon
1439 u_char hsn[MAXREG+1];
1440 memset(hsn,10,sizeof(hsn));
1441 int j;
1442 lsn(hsn,i,&preferred_reg);
1443 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1444 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1445 if(i>0) {
1446 // Don't evict the cycle count at entry points, otherwise the entry
1447 // stub will have to write it.
1448 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1449 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1450 for(j=10;j>=3;j--)
1451 {
1452 // Alloc preferred register if available
1453 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1454 for(hr=0;hr<HOST_REGS;hr++) {
1455 // Evict both parts of a 64-bit register
1456 if((cur->regmap[hr]&63)==r) {
1457 cur->regmap[hr]=-1;
1458 cur->dirty&=~(1<<hr);
1459 cur->isconst&=~(1<<hr);
1460 }
1461 }
1462 cur->regmap[preferred_reg]=reg;
1463 return;
1464 }
1465 for(r=1;r<=MAXREG;r++)
1466 {
1467 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1468 for(hr=0;hr<HOST_REGS;hr++) {
1469 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1470 if(cur->regmap[hr]==r) {
1471 cur->regmap[hr]=reg;
1472 cur->dirty&=~(1<<hr);
1473 cur->isconst&=~(1<<hr);
1474 return;
1475 }
1476 }
1477 }
1478 }
1479 }
1480 }
1481 }
1482 for(j=10;j>=0;j--)
1483 {
1484 for(r=1;r<=MAXREG;r++)
1485 {
1486 if(hsn[r]==j) {
1487 for(hr=0;hr<HOST_REGS;hr++) {
1488 if(cur->regmap[hr]==r) {
1489 cur->regmap[hr]=reg;
1490 cur->dirty&=~(1<<hr);
1491 cur->isconst&=~(1<<hr);
1492 return;
1493 }
1494 }
1495 }
1496 }
1497 }
1498 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1499}
1500
1501// Allocate a temporary register. This is done without regard to
1502// dirty status or whether the register we request is on the unneeded list
1503// Note: This will only allocate one register, even if called multiple times
1504static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1505{
1506 int r,hr;
1507 int preferred_reg = -1;
1508
1509 // see if it's already allocated
1510 for(hr=0;hr<HOST_REGS;hr++)
1511 {
1512 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1513 }
1514
1515 // Try to allocate any available register
1516 for(hr=HOST_REGS-1;hr>=0;hr--) {
1517 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1518 cur->regmap[hr]=reg;
1519 cur->dirty&=~(1<<hr);
1520 cur->isconst&=~(1<<hr);
1521 return;
1522 }
1523 }
1524
1525 // Find an unneeded register
1526 for(hr=HOST_REGS-1;hr>=0;hr--)
1527 {
1528 r=cur->regmap[hr];
1529 if(r>=0) {
1530 assert(r < 64);
1531 if((cur->u>>r)&1) {
1532 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1533 cur->regmap[hr]=reg;
1534 cur->dirty&=~(1<<hr);
1535 cur->isconst&=~(1<<hr);
1536 return;
1537 }
1538 }
1539 }
1540 }
1541
1542 // Ok, now we have to evict someone
1543 // Pick a register we hopefully won't need soon
1544 // TODO: we might want to follow unconditional jumps here
1545 // TODO: get rid of dupe code and make this into a function
1546 u_char hsn[MAXREG+1];
1547 memset(hsn,10,sizeof(hsn));
1548 int j;
1549 lsn(hsn,i,&preferred_reg);
1550 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1551 if(i>0) {
1552 // Don't evict the cycle count at entry points, otherwise the entry
1553 // stub will have to write it.
1554 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1555 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1556 for(j=10;j>=3;j--)
1557 {
1558 for(r=1;r<=MAXREG;r++)
1559 {
1560 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1561 for(hr=0;hr<HOST_REGS;hr++) {
1562 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1563 if(cur->regmap[hr]==r) {
1564 cur->regmap[hr]=reg;
1565 cur->dirty&=~(1<<hr);
1566 cur->isconst&=~(1<<hr);
1567 return;
1568 }
1569 }
1570 }
1571 }
1572 }
1573 }
1574 }
1575 for(j=10;j>=0;j--)
1576 {
1577 for(r=1;r<=MAXREG;r++)
1578 {
1579 if(hsn[r]==j) {
1580 for(hr=0;hr<HOST_REGS;hr++) {
1581 if(cur->regmap[hr]==r) {
1582 cur->regmap[hr]=reg;
1583 cur->dirty&=~(1<<hr);
1584 cur->isconst&=~(1<<hr);
1585 return;
1586 }
1587 }
1588 }
1589 }
1590 }
1591 SysPrintf("This shouldn't happen");abort();
1592}
1593
1594static void mov_alloc(struct regstat *current,int i)
1595{
1596 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1597 // logically this is needed but just won't work, no idea why
1598 //alloc_cc(current,i); // for stalls
1599 //dirty_reg(current,CCREG);
1600 }
1601
1602 // Note: Don't need to actually alloc the source registers
1603 //alloc_reg(current,i,dops[i].rs1);
1604 alloc_reg(current,i,dops[i].rt1);
1605
1606 clear_const(current,dops[i].rs1);
1607 clear_const(current,dops[i].rt1);
1608 dirty_reg(current,dops[i].rt1);
1609}
1610
1611static void shiftimm_alloc(struct regstat *current,int i)
1612{
1613 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1614 {
1615 if(dops[i].rt1) {
1616 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1617 else dops[i].lt1=dops[i].rs1;
1618 alloc_reg(current,i,dops[i].rt1);
1619 dirty_reg(current,dops[i].rt1);
1620 if(is_const(current,dops[i].rs1)) {
1621 int v=get_const(current,dops[i].rs1);
1622 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1623 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1624 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1625 }
1626 else clear_const(current,dops[i].rt1);
1627 }
1628 }
1629 else
1630 {
1631 clear_const(current,dops[i].rs1);
1632 clear_const(current,dops[i].rt1);
1633 }
1634
1635 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1636 {
1637 assert(0);
1638 }
1639 if(dops[i].opcode2==0x3c) // DSLL32
1640 {
1641 assert(0);
1642 }
1643 if(dops[i].opcode2==0x3e) // DSRL32
1644 {
1645 assert(0);
1646 }
1647 if(dops[i].opcode2==0x3f) // DSRA32
1648 {
1649 assert(0);
1650 }
1651}
1652
1653static void shift_alloc(struct regstat *current,int i)
1654{
1655 if(dops[i].rt1) {
1656 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1657 {
1658 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1659 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1660 alloc_reg(current,i,dops[i].rt1);
1661 if(dops[i].rt1==dops[i].rs2) {
1662 alloc_reg_temp(current,i,-1);
1663 minimum_free_regs[i]=1;
1664 }
1665 } else { // DSLLV/DSRLV/DSRAV
1666 assert(0);
1667 }
1668 clear_const(current,dops[i].rs1);
1669 clear_const(current,dops[i].rs2);
1670 clear_const(current,dops[i].rt1);
1671 dirty_reg(current,dops[i].rt1);
1672 }
1673}
1674
1675static void alu_alloc(struct regstat *current,int i)
1676{
1677 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1678 if(dops[i].rt1) {
1679 if(dops[i].rs1&&dops[i].rs2) {
1680 alloc_reg(current,i,dops[i].rs1);
1681 alloc_reg(current,i,dops[i].rs2);
1682 }
1683 else {
1684 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1685 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1686 }
1687 alloc_reg(current,i,dops[i].rt1);
1688 }
1689 }
1690 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1691 if(dops[i].rt1) {
1692 alloc_reg(current,i,dops[i].rs1);
1693 alloc_reg(current,i,dops[i].rs2);
1694 alloc_reg(current,i,dops[i].rt1);
1695 }
1696 }
1697 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1698 if(dops[i].rt1) {
1699 if(dops[i].rs1&&dops[i].rs2) {
1700 alloc_reg(current,i,dops[i].rs1);
1701 alloc_reg(current,i,dops[i].rs2);
1702 }
1703 else
1704 {
1705 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1706 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1707 }
1708 alloc_reg(current,i,dops[i].rt1);
1709 }
1710 }
1711 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1712 assert(0);
1713 }
1714 clear_const(current,dops[i].rs1);
1715 clear_const(current,dops[i].rs2);
1716 clear_const(current,dops[i].rt1);
1717 dirty_reg(current,dops[i].rt1);
1718}
1719
1720static void imm16_alloc(struct regstat *current,int i)
1721{
1722 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1723 else dops[i].lt1=dops[i].rs1;
1724 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1725 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1726 assert(0);
1727 }
1728 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1729 clear_const(current,dops[i].rs1);
1730 clear_const(current,dops[i].rt1);
1731 }
1732 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1733 if(is_const(current,dops[i].rs1)) {
1734 int v=get_const(current,dops[i].rs1);
1735 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1736 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1737 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1738 }
1739 else clear_const(current,dops[i].rt1);
1740 }
1741 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1742 if(is_const(current,dops[i].rs1)) {
1743 int v=get_const(current,dops[i].rs1);
1744 set_const(current,dops[i].rt1,v+imm[i]);
1745 }
1746 else clear_const(current,dops[i].rt1);
1747 }
1748 else {
1749 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1750 }
1751 dirty_reg(current,dops[i].rt1);
1752}
1753
1754static void load_alloc(struct regstat *current,int i)
1755{
1756 clear_const(current,dops[i].rt1);
1757 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1758 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1759 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1760 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1761 alloc_reg(current,i,dops[i].rt1);
1762 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1763 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1764 {
1765 assert(0);
1766 }
1767 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1768 {
1769 assert(0);
1770 }
1771 dirty_reg(current,dops[i].rt1);
1772 // LWL/LWR need a temporary register for the old value
1773 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1774 {
1775 alloc_reg(current,i,FTEMP);
1776 alloc_reg_temp(current,i,-1);
1777 minimum_free_regs[i]=1;
1778 }
1779 }
1780 else
1781 {
1782 // Load to r0 or unneeded register (dummy load)
1783 // but we still need a register to calculate the address
1784 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1785 {
1786 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1787 }
1788 alloc_reg_temp(current,i,-1);
1789 minimum_free_regs[i]=1;
1790 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1791 {
1792 assert(0);
1793 }
1794 }
1795}
1796
1797void store_alloc(struct regstat *current,int i)
1798{
1799 clear_const(current,dops[i].rs2);
1800 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1801 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1802 alloc_reg(current,i,dops[i].rs2);
1803 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1804 assert(0);
1805 }
1806 #if defined(HOST_IMM8)
1807 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1808 else alloc_reg(current,i,INVCP);
1809 #endif
1810 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1811 alloc_reg(current,i,FTEMP);
1812 }
1813 // We need a temporary register for address generation
1814 alloc_reg_temp(current,i,-1);
1815 minimum_free_regs[i]=1;
1816}
1817
1818void c1ls_alloc(struct regstat *current,int i)
1819{
1820 //clear_const(current,dops[i].rs1); // FIXME
1821 clear_const(current,dops[i].rt1);
1822 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1823 alloc_reg(current,i,CSREG); // Status
1824 alloc_reg(current,i,FTEMP);
1825 if(dops[i].opcode==0x35||dops[i].opcode==0x3d) { // 64-bit LDC1/SDC1
1826 assert(0);
1827 }
1828 #if defined(HOST_IMM8)
1829 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1830 else if((dops[i].opcode&0x3b)==0x39) // SWC1/SDC1
1831 alloc_reg(current,i,INVCP);
1832 #endif
1833 // We need a temporary register for address generation
1834 alloc_reg_temp(current,i,-1);
1835}
1836
1837void c2ls_alloc(struct regstat *current,int i)
1838{
1839 clear_const(current,dops[i].rt1);
1840 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1841 alloc_reg(current,i,FTEMP);
1842 #if defined(HOST_IMM8)
1843 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1844 if((dops[i].opcode&0x3b)==0x3a) // SWC2/SDC2
1845 alloc_reg(current,i,INVCP);
1846 #endif
1847 // We need a temporary register for address generation
1848 alloc_reg_temp(current,i,-1);
1849 minimum_free_regs[i]=1;
1850}
1851
1852#ifndef multdiv_alloc
1853void multdiv_alloc(struct regstat *current,int i)
1854{
1855 // case 0x18: MULT
1856 // case 0x19: MULTU
1857 // case 0x1A: DIV
1858 // case 0x1B: DIVU
1859 // case 0x1C: DMULT
1860 // case 0x1D: DMULTU
1861 // case 0x1E: DDIV
1862 // case 0x1F: DDIVU
1863 clear_const(current,dops[i].rs1);
1864 clear_const(current,dops[i].rs2);
1865 alloc_cc(current,i); // for stalls
1866 if(dops[i].rs1&&dops[i].rs2)
1867 {
1868 if((dops[i].opcode2&4)==0) // 32-bit
1869 {
1870 current->u&=~(1LL<<HIREG);
1871 current->u&=~(1LL<<LOREG);
1872 alloc_reg(current,i,HIREG);
1873 alloc_reg(current,i,LOREG);
1874 alloc_reg(current,i,dops[i].rs1);
1875 alloc_reg(current,i,dops[i].rs2);
1876 dirty_reg(current,HIREG);
1877 dirty_reg(current,LOREG);
1878 }
1879 else // 64-bit
1880 {
1881 assert(0);
1882 }
1883 }
1884 else
1885 {
1886 // Multiply by zero is zero.
1887 // MIPS does not have a divide by zero exception.
1888 // The result is undefined, we return zero.
1889 alloc_reg(current,i,HIREG);
1890 alloc_reg(current,i,LOREG);
1891 dirty_reg(current,HIREG);
1892 dirty_reg(current,LOREG);
1893 }
1894}
1895#endif
1896
1897void cop0_alloc(struct regstat *current,int i)
1898{
1899 if(dops[i].opcode2==0) // MFC0
1900 {
1901 if(dops[i].rt1) {
1902 clear_const(current,dops[i].rt1);
1903 alloc_all(current,i);
1904 alloc_reg(current,i,dops[i].rt1);
1905 dirty_reg(current,dops[i].rt1);
1906 }
1907 }
1908 else if(dops[i].opcode2==4) // MTC0
1909 {
1910 if(dops[i].rs1){
1911 clear_const(current,dops[i].rs1);
1912 alloc_reg(current,i,dops[i].rs1);
1913 alloc_all(current,i);
1914 }
1915 else {
1916 alloc_all(current,i); // FIXME: Keep r0
1917 current->u&=~1LL;
1918 alloc_reg(current,i,0);
1919 }
1920 }
1921 else
1922 {
1923 // TLBR/TLBWI/TLBWR/TLBP/ERET
1924 assert(dops[i].opcode2==0x10);
1925 alloc_all(current,i);
1926 }
1927 minimum_free_regs[i]=HOST_REGS;
1928}
1929
1930static void cop2_alloc(struct regstat *current,int i)
1931{
1932 if (dops[i].opcode2 < 3) // MFC2/CFC2
1933 {
1934 alloc_cc(current,i); // for stalls
1935 dirty_reg(current,CCREG);
1936 if(dops[i].rt1){
1937 clear_const(current,dops[i].rt1);
1938 alloc_reg(current,i,dops[i].rt1);
1939 dirty_reg(current,dops[i].rt1);
1940 }
1941 }
1942 else if (dops[i].opcode2 > 3) // MTC2/CTC2
1943 {
1944 if(dops[i].rs1){
1945 clear_const(current,dops[i].rs1);
1946 alloc_reg(current,i,dops[i].rs1);
1947 }
1948 else {
1949 current->u&=~1LL;
1950 alloc_reg(current,i,0);
1951 }
1952 }
1953 alloc_reg_temp(current,i,-1);
1954 minimum_free_regs[i]=1;
1955}
1956
1957void c2op_alloc(struct regstat *current,int i)
1958{
1959 alloc_cc(current,i); // for stalls
1960 dirty_reg(current,CCREG);
1961 alloc_reg_temp(current,i,-1);
1962}
1963
1964void syscall_alloc(struct regstat *current,int i)
1965{
1966 alloc_cc(current,i);
1967 dirty_reg(current,CCREG);
1968 alloc_all(current,i);
1969 minimum_free_regs[i]=HOST_REGS;
1970 current->isconst=0;
1971}
1972
1973void delayslot_alloc(struct regstat *current,int i)
1974{
1975 switch(dops[i].itype) {
1976 case UJUMP:
1977 case CJUMP:
1978 case SJUMP:
1979 case RJUMP:
1980 case SYSCALL:
1981 case HLECALL:
1982 case SPAN:
1983 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
1984 SysPrintf("Disabled speculative precompilation\n");
1985 stop_after_jal=1;
1986 break;
1987 case IMM16:
1988 imm16_alloc(current,i);
1989 break;
1990 case LOAD:
1991 case LOADLR:
1992 load_alloc(current,i);
1993 break;
1994 case STORE:
1995 case STORELR:
1996 store_alloc(current,i);
1997 break;
1998 case ALU:
1999 alu_alloc(current,i);
2000 break;
2001 case SHIFT:
2002 shift_alloc(current,i);
2003 break;
2004 case MULTDIV:
2005 multdiv_alloc(current,i);
2006 break;
2007 case SHIFTIMM:
2008 shiftimm_alloc(current,i);
2009 break;
2010 case MOV:
2011 mov_alloc(current,i);
2012 break;
2013 case COP0:
2014 cop0_alloc(current,i);
2015 break;
2016 case COP1:
2017 break;
2018 case COP2:
2019 cop2_alloc(current,i);
2020 break;
2021 case C1LS:
2022 c1ls_alloc(current,i);
2023 break;
2024 case C2LS:
2025 c2ls_alloc(current,i);
2026 break;
2027 case C2OP:
2028 c2op_alloc(current,i);
2029 break;
2030 }
2031}
2032
2033// Special case where a branch and delay slot span two pages in virtual memory
2034static void pagespan_alloc(struct regstat *current,int i)
2035{
2036 current->isconst=0;
2037 current->wasconst=0;
2038 regs[i].wasconst=0;
2039 minimum_free_regs[i]=HOST_REGS;
2040 alloc_all(current,i);
2041 alloc_cc(current,i);
2042 dirty_reg(current,CCREG);
2043 if(dops[i].opcode==3) // JAL
2044 {
2045 alloc_reg(current,i,31);
2046 dirty_reg(current,31);
2047 }
2048 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
2049 {
2050 alloc_reg(current,i,dops[i].rs1);
2051 if (dops[i].rt1!=0) {
2052 alloc_reg(current,i,dops[i].rt1);
2053 dirty_reg(current,dops[i].rt1);
2054 }
2055 }
2056 if((dops[i].opcode&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2057 {
2058 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2059 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
2060 }
2061 else
2062 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2063 {
2064 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2065 }
2066 //else ...
2067}
2068
2069static void add_stub(enum stub_type type, void *addr, void *retaddr,
2070 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2071{
2072 assert(stubcount < ARRAY_SIZE(stubs));
2073 stubs[stubcount].type = type;
2074 stubs[stubcount].addr = addr;
2075 stubs[stubcount].retaddr = retaddr;
2076 stubs[stubcount].a = a;
2077 stubs[stubcount].b = b;
2078 stubs[stubcount].c = c;
2079 stubs[stubcount].d = d;
2080 stubs[stubcount].e = e;
2081 stubcount++;
2082}
2083
2084static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2085 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2086{
2087 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2088}
2089
2090// Write out a single register
2091static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2092{
2093 int hr;
2094 for(hr=0;hr<HOST_REGS;hr++) {
2095 if(hr!=EXCLUDE_REG) {
2096 if((regmap[hr]&63)==r) {
2097 if((dirty>>hr)&1) {
2098 assert(regmap[hr]<64);
2099 emit_storereg(r,hr);
2100 }
2101 }
2102 }
2103 }
2104}
2105
2106static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2107{
2108 //if(dirty_pre==dirty) return;
2109 int hr,reg;
2110 for(hr=0;hr<HOST_REGS;hr++) {
2111 if(hr!=EXCLUDE_REG) {
2112 reg=pre[hr];
2113 if(((~u)>>(reg&63))&1) {
2114 if(reg>0) {
2115 if(((dirty_pre&~dirty)>>hr)&1) {
2116 if(reg>0&&reg<34) {
2117 emit_storereg(reg,hr);
2118 }
2119 else if(reg>=64) {
2120 assert(0);
2121 }
2122 }
2123 }
2124 }
2125 }
2126 }
2127}
2128
2129// trashes r2
2130static void pass_args(int a0, int a1)
2131{
2132 if(a0==1&&a1==0) {
2133 // must swap
2134 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2135 }
2136 else if(a0!=0&&a1==0) {
2137 emit_mov(a1,1);
2138 if (a0>=0) emit_mov(a0,0);
2139 }
2140 else {
2141 if(a0>=0&&a0!=0) emit_mov(a0,0);
2142 if(a1>=0&&a1!=1) emit_mov(a1,1);
2143 }
2144}
2145
2146static void alu_assemble(int i,struct regstat *i_regs)
2147{
2148 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2149 if(dops[i].rt1) {
2150 signed char s1,s2,t;
2151 t=get_reg(i_regs->regmap,dops[i].rt1);
2152 if(t>=0) {
2153 s1=get_reg(i_regs->regmap,dops[i].rs1);
2154 s2=get_reg(i_regs->regmap,dops[i].rs2);
2155 if(dops[i].rs1&&dops[i].rs2) {
2156 assert(s1>=0);
2157 assert(s2>=0);
2158 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2159 else emit_add(s1,s2,t);
2160 }
2161 else if(dops[i].rs1) {
2162 if(s1>=0) emit_mov(s1,t);
2163 else emit_loadreg(dops[i].rs1,t);
2164 }
2165 else if(dops[i].rs2) {
2166 if(s2>=0) {
2167 if(dops[i].opcode2&2) emit_neg(s2,t);
2168 else emit_mov(s2,t);
2169 }
2170 else {
2171 emit_loadreg(dops[i].rs2,t);
2172 if(dops[i].opcode2&2) emit_neg(t,t);
2173 }
2174 }
2175 else emit_zeroreg(t);
2176 }
2177 }
2178 }
2179 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2180 assert(0);
2181 }
2182 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2183 if(dops[i].rt1) {
2184 signed char s1l,s2l,t;
2185 {
2186 t=get_reg(i_regs->regmap,dops[i].rt1);
2187 //assert(t>=0);
2188 if(t>=0) {
2189 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2190 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2191 if(dops[i].rs2==0) // rx<r0
2192 {
2193 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2194 assert(s1l>=0);
2195 emit_shrimm(s1l,31,t);
2196 }
2197 else // SLTU (unsigned can not be less than zero, 0<0)
2198 emit_zeroreg(t);
2199 }
2200 else if(dops[i].rs1==0) // r0<rx
2201 {
2202 assert(s2l>=0);
2203 if(dops[i].opcode2==0x2a) // SLT
2204 emit_set_gz32(s2l,t);
2205 else // SLTU (set if not zero)
2206 emit_set_nz32(s2l,t);
2207 }
2208 else{
2209 assert(s1l>=0);assert(s2l>=0);
2210 if(dops[i].opcode2==0x2a) // SLT
2211 emit_set_if_less32(s1l,s2l,t);
2212 else // SLTU
2213 emit_set_if_carry32(s1l,s2l,t);
2214 }
2215 }
2216 }
2217 }
2218 }
2219 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2220 if(dops[i].rt1) {
2221 signed char s1l,s2l,tl;
2222 tl=get_reg(i_regs->regmap,dops[i].rt1);
2223 {
2224 if(tl>=0) {
2225 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2226 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2227 if(dops[i].rs1&&dops[i].rs2) {
2228 assert(s1l>=0);
2229 assert(s2l>=0);
2230 if(dops[i].opcode2==0x24) { // AND
2231 emit_and(s1l,s2l,tl);
2232 } else
2233 if(dops[i].opcode2==0x25) { // OR
2234 emit_or(s1l,s2l,tl);
2235 } else
2236 if(dops[i].opcode2==0x26) { // XOR
2237 emit_xor(s1l,s2l,tl);
2238 } else
2239 if(dops[i].opcode2==0x27) { // NOR
2240 emit_or(s1l,s2l,tl);
2241 emit_not(tl,tl);
2242 }
2243 }
2244 else
2245 {
2246 if(dops[i].opcode2==0x24) { // AND
2247 emit_zeroreg(tl);
2248 } else
2249 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2250 if(dops[i].rs1){
2251 if(s1l>=0) emit_mov(s1l,tl);
2252 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2253 }
2254 else
2255 if(dops[i].rs2){
2256 if(s2l>=0) emit_mov(s2l,tl);
2257 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2258 }
2259 else emit_zeroreg(tl);
2260 } else
2261 if(dops[i].opcode2==0x27) { // NOR
2262 if(dops[i].rs1){
2263 if(s1l>=0) emit_not(s1l,tl);
2264 else {
2265 emit_loadreg(dops[i].rs1,tl);
2266 emit_not(tl,tl);
2267 }
2268 }
2269 else
2270 if(dops[i].rs2){
2271 if(s2l>=0) emit_not(s2l,tl);
2272 else {
2273 emit_loadreg(dops[i].rs2,tl);
2274 emit_not(tl,tl);
2275 }
2276 }
2277 else emit_movimm(-1,tl);
2278 }
2279 }
2280 }
2281 }
2282 }
2283 }
2284}
2285
2286void imm16_assemble(int i,struct regstat *i_regs)
2287{
2288 if (dops[i].opcode==0x0f) { // LUI
2289 if(dops[i].rt1) {
2290 signed char t;
2291 t=get_reg(i_regs->regmap,dops[i].rt1);
2292 //assert(t>=0);
2293 if(t>=0) {
2294 if(!((i_regs->isconst>>t)&1))
2295 emit_movimm(imm[i]<<16,t);
2296 }
2297 }
2298 }
2299 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2300 if(dops[i].rt1) {
2301 signed char s,t;
2302 t=get_reg(i_regs->regmap,dops[i].rt1);
2303 s=get_reg(i_regs->regmap,dops[i].rs1);
2304 if(dops[i].rs1) {
2305 //assert(t>=0);
2306 //assert(s>=0);
2307 if(t>=0) {
2308 if(!((i_regs->isconst>>t)&1)) {
2309 if(s<0) {
2310 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2311 emit_addimm(t,imm[i],t);
2312 }else{
2313 if(!((i_regs->wasconst>>s)&1))
2314 emit_addimm(s,imm[i],t);
2315 else
2316 emit_movimm(constmap[i][s]+imm[i],t);
2317 }
2318 }
2319 }
2320 } else {
2321 if(t>=0) {
2322 if(!((i_regs->isconst>>t)&1))
2323 emit_movimm(imm[i],t);
2324 }
2325 }
2326 }
2327 }
2328 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2329 if(dops[i].rt1) {
2330 signed char sl,tl;
2331 tl=get_reg(i_regs->regmap,dops[i].rt1);
2332 sl=get_reg(i_regs->regmap,dops[i].rs1);
2333 if(tl>=0) {
2334 if(dops[i].rs1) {
2335 assert(sl>=0);
2336 emit_addimm(sl,imm[i],tl);
2337 } else {
2338 emit_movimm(imm[i],tl);
2339 }
2340 }
2341 }
2342 }
2343 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2344 if(dops[i].rt1) {
2345 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2346 signed char sl,t;
2347 t=get_reg(i_regs->regmap,dops[i].rt1);
2348 sl=get_reg(i_regs->regmap,dops[i].rs1);
2349 //assert(t>=0);
2350 if(t>=0) {
2351 if(dops[i].rs1>0) {
2352 if(dops[i].opcode==0x0a) { // SLTI
2353 if(sl<0) {
2354 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2355 emit_slti32(t,imm[i],t);
2356 }else{
2357 emit_slti32(sl,imm[i],t);
2358 }
2359 }
2360 else { // SLTIU
2361 if(sl<0) {
2362 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2363 emit_sltiu32(t,imm[i],t);
2364 }else{
2365 emit_sltiu32(sl,imm[i],t);
2366 }
2367 }
2368 }else{
2369 // SLTI(U) with r0 is just stupid,
2370 // nonetheless examples can be found
2371 if(dops[i].opcode==0x0a) // SLTI
2372 if(0<imm[i]) emit_movimm(1,t);
2373 else emit_zeroreg(t);
2374 else // SLTIU
2375 {
2376 if(imm[i]) emit_movimm(1,t);
2377 else emit_zeroreg(t);
2378 }
2379 }
2380 }
2381 }
2382 }
2383 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2384 if(dops[i].rt1) {
2385 signed char sl,tl;
2386 tl=get_reg(i_regs->regmap,dops[i].rt1);
2387 sl=get_reg(i_regs->regmap,dops[i].rs1);
2388 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2389 if(dops[i].opcode==0x0c) //ANDI
2390 {
2391 if(dops[i].rs1) {
2392 if(sl<0) {
2393 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2394 emit_andimm(tl,imm[i],tl);
2395 }else{
2396 if(!((i_regs->wasconst>>sl)&1))
2397 emit_andimm(sl,imm[i],tl);
2398 else
2399 emit_movimm(constmap[i][sl]&imm[i],tl);
2400 }
2401 }
2402 else
2403 emit_zeroreg(tl);
2404 }
2405 else
2406 {
2407 if(dops[i].rs1) {
2408 if(sl<0) {
2409 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2410 }
2411 if(dops[i].opcode==0x0d) { // ORI
2412 if(sl<0) {
2413 emit_orimm(tl,imm[i],tl);
2414 }else{
2415 if(!((i_regs->wasconst>>sl)&1))
2416 emit_orimm(sl,imm[i],tl);
2417 else
2418 emit_movimm(constmap[i][sl]|imm[i],tl);
2419 }
2420 }
2421 if(dops[i].opcode==0x0e) { // XORI
2422 if(sl<0) {
2423 emit_xorimm(tl,imm[i],tl);
2424 }else{
2425 if(!((i_regs->wasconst>>sl)&1))
2426 emit_xorimm(sl,imm[i],tl);
2427 else
2428 emit_movimm(constmap[i][sl]^imm[i],tl);
2429 }
2430 }
2431 }
2432 else {
2433 emit_movimm(imm[i],tl);
2434 }
2435 }
2436 }
2437 }
2438 }
2439}
2440
2441void shiftimm_assemble(int i,struct regstat *i_regs)
2442{
2443 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2444 {
2445 if(dops[i].rt1) {
2446 signed char s,t;
2447 t=get_reg(i_regs->regmap,dops[i].rt1);
2448 s=get_reg(i_regs->regmap,dops[i].rs1);
2449 //assert(t>=0);
2450 if(t>=0&&!((i_regs->isconst>>t)&1)){
2451 if(dops[i].rs1==0)
2452 {
2453 emit_zeroreg(t);
2454 }
2455 else
2456 {
2457 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2458 if(imm[i]) {
2459 if(dops[i].opcode2==0) // SLL
2460 {
2461 emit_shlimm(s<0?t:s,imm[i],t);
2462 }
2463 if(dops[i].opcode2==2) // SRL
2464 {
2465 emit_shrimm(s<0?t:s,imm[i],t);
2466 }
2467 if(dops[i].opcode2==3) // SRA
2468 {
2469 emit_sarimm(s<0?t:s,imm[i],t);
2470 }
2471 }else{
2472 // Shift by zero
2473 if(s>=0 && s!=t) emit_mov(s,t);
2474 }
2475 }
2476 }
2477 //emit_storereg(dops[i].rt1,t); //DEBUG
2478 }
2479 }
2480 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2481 {
2482 assert(0);
2483 }
2484 if(dops[i].opcode2==0x3c) // DSLL32
2485 {
2486 assert(0);
2487 }
2488 if(dops[i].opcode2==0x3e) // DSRL32
2489 {
2490 assert(0);
2491 }
2492 if(dops[i].opcode2==0x3f) // DSRA32
2493 {
2494 assert(0);
2495 }
2496}
2497
2498#ifndef shift_assemble
2499static void shift_assemble(int i,struct regstat *i_regs)
2500{
2501 signed char s,t,shift;
2502 if (dops[i].rt1 == 0)
2503 return;
2504 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2505 t = get_reg(i_regs->regmap, dops[i].rt1);
2506 s = get_reg(i_regs->regmap, dops[i].rs1);
2507 shift = get_reg(i_regs->regmap, dops[i].rs2);
2508 if (t < 0)
2509 return;
2510
2511 if(dops[i].rs1==0)
2512 emit_zeroreg(t);
2513 else if(dops[i].rs2==0) {
2514 assert(s>=0);
2515 if(s!=t) emit_mov(s,t);
2516 }
2517 else {
2518 host_tempreg_acquire();
2519 emit_andimm(shift,31,HOST_TEMPREG);
2520 switch(dops[i].opcode2) {
2521 case 4: // SLLV
2522 emit_shl(s,HOST_TEMPREG,t);
2523 break;
2524 case 6: // SRLV
2525 emit_shr(s,HOST_TEMPREG,t);
2526 break;
2527 case 7: // SRAV
2528 emit_sar(s,HOST_TEMPREG,t);
2529 break;
2530 default:
2531 assert(0);
2532 }
2533 host_tempreg_release();
2534 }
2535}
2536
2537#endif
2538
2539enum {
2540 MTYPE_8000 = 0,
2541 MTYPE_8020,
2542 MTYPE_0000,
2543 MTYPE_A000,
2544 MTYPE_1F80,
2545};
2546
2547static int get_ptr_mem_type(u_int a)
2548{
2549 if(a < 0x00200000) {
2550 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2551 // return wrong, must use memhandler for BIOS self-test to pass
2552 // 007 does similar stuff from a00 mirror, weird stuff
2553 return MTYPE_8000;
2554 return MTYPE_0000;
2555 }
2556 if(0x1f800000 <= a && a < 0x1f801000)
2557 return MTYPE_1F80;
2558 if(0x80200000 <= a && a < 0x80800000)
2559 return MTYPE_8020;
2560 if(0xa0000000 <= a && a < 0xa0200000)
2561 return MTYPE_A000;
2562 return MTYPE_8000;
2563}
2564
2565static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override)
2566{
2567 void *jaddr = NULL;
2568 int type=0;
2569 int mr=dops[i].rs1;
2570 if(((smrv_strong|smrv_weak)>>mr)&1) {
2571 type=get_ptr_mem_type(smrv[mr]);
2572 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2573 }
2574 else {
2575 // use the mirror we are running on
2576 type=get_ptr_mem_type(start);
2577 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2578 }
2579
2580 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2581 host_tempreg_acquire();
2582 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2583 addr=*addr_reg_override=HOST_TEMPREG;
2584 type=0;
2585 }
2586 else if(type==MTYPE_0000) { // RAM 0 mirror
2587 host_tempreg_acquire();
2588 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2589 addr=*addr_reg_override=HOST_TEMPREG;
2590 type=0;
2591 }
2592 else if(type==MTYPE_A000) { // RAM A mirror
2593 host_tempreg_acquire();
2594 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2595 addr=*addr_reg_override=HOST_TEMPREG;
2596 type=0;
2597 }
2598 else if(type==MTYPE_1F80) { // scratchpad
2599 if (psxH == (void *)0x1f800000) {
2600 host_tempreg_acquire();
2601 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2602 emit_cmpimm(HOST_TEMPREG,0x1000);
2603 host_tempreg_release();
2604 jaddr=out;
2605 emit_jc(0);
2606 }
2607 else {
2608 // do the usual RAM check, jump will go to the right handler
2609 type=0;
2610 }
2611 }
2612
2613 if(type==0)
2614 {
2615 emit_cmpimm(addr,RAM_SIZE);
2616 jaddr=out;
2617 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2618 // Hint to branch predictor that the branch is unlikely to be taken
2619 if(dops[i].rs1>=28)
2620 emit_jno_unlikely(0);
2621 else
2622 #endif
2623 emit_jno(0);
2624 if(ram_offset!=0) {
2625 host_tempreg_acquire();
2626 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2627 addr=*addr_reg_override=HOST_TEMPREG;
2628 }
2629 }
2630
2631 return jaddr;
2632}
2633
2634// return memhandler, or get directly accessable address and return 0
2635static void *get_direct_memhandler(void *table, u_int addr,
2636 enum stub_type type, uintptr_t *addr_host)
2637{
2638 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2639 uintptr_t l1, l2 = 0;
2640 l1 = ((uintptr_t *)table)[addr>>12];
2641 if (!(l1 & msb)) {
2642 uintptr_t v = l1 << 1;
2643 *addr_host = v + addr;
2644 return NULL;
2645 }
2646 else {
2647 l1 <<= 1;
2648 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2649 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2650 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2651 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2652 else
2653 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2654 if (!(l2 & msb)) {
2655 uintptr_t v = l2 << 1;
2656 *addr_host = v + (addr&0xfff);
2657 return NULL;
2658 }
2659 return (void *)(l2 << 1);
2660 }
2661}
2662
2663static u_int get_host_reglist(const signed char *regmap)
2664{
2665 u_int reglist = 0, hr;
2666 for (hr = 0; hr < HOST_REGS; hr++) {
2667 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2668 reglist |= 1 << hr;
2669 }
2670 return reglist;
2671}
2672
2673static u_int reglist_exclude(u_int reglist, int r1, int r2)
2674{
2675 if (r1 >= 0)
2676 reglist &= ~(1u << r1);
2677 if (r2 >= 0)
2678 reglist &= ~(1u << r2);
2679 return reglist;
2680}
2681
2682// find a temp caller-saved register not in reglist (so assumed to be free)
2683static int reglist_find_free(u_int reglist)
2684{
2685 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2686 if (free_regs == 0)
2687 return -1;
2688 return __builtin_ctz(free_regs);
2689}
2690
2691static void load_assemble(int i, const struct regstat *i_regs)
2692{
2693 int s,tl,addr;
2694 int offset;
2695 void *jaddr=0;
2696 int memtarget=0,c=0;
2697 int fastio_reg_override=-1;
2698 u_int reglist=get_host_reglist(i_regs->regmap);
2699 tl=get_reg(i_regs->regmap,dops[i].rt1);
2700 s=get_reg(i_regs->regmap,dops[i].rs1);
2701 offset=imm[i];
2702 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2703 if(s>=0) {
2704 c=(i_regs->wasconst>>s)&1;
2705 if (c) {
2706 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2707 }
2708 }
2709 //printf("load_assemble: c=%d\n",c);
2710 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2711 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2712 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2713 ||dops[i].rt1==0) {
2714 // could be FIFO, must perform the read
2715 // ||dummy read
2716 assem_debug("(forced read)\n");
2717 tl=get_reg(i_regs->regmap,-1);
2718 assert(tl>=0);
2719 }
2720 if(offset||s<0||c) addr=tl;
2721 else addr=s;
2722 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2723 if(tl>=0) {
2724 //printf("load_assemble: c=%d\n",c);
2725 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2726 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2727 reglist&=~(1<<tl);
2728 if(!c) {
2729 #ifdef R29_HACK
2730 // Strmnnrmn's speed hack
2731 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2732 #endif
2733 {
2734 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2735 }
2736 }
2737 else if(ram_offset&&memtarget) {
2738 host_tempreg_acquire();
2739 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2740 fastio_reg_override=HOST_TEMPREG;
2741 }
2742 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2743 if (dops[i].opcode==0x20) { // LB
2744 if(!c||memtarget) {
2745 if(!dummy) {
2746 {
2747 int x=0,a=tl;
2748 if(!c) a=addr;
2749 if(fastio_reg_override>=0) a=fastio_reg_override;
2750
2751 emit_movsbl_indexed(x,a,tl);
2752 }
2753 }
2754 if(jaddr)
2755 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2756 }
2757 else
2758 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2759 }
2760 if (dops[i].opcode==0x21) { // LH
2761 if(!c||memtarget) {
2762 if(!dummy) {
2763 int x=0,a=tl;
2764 if(!c) a=addr;
2765 if(fastio_reg_override>=0) a=fastio_reg_override;
2766 emit_movswl_indexed(x,a,tl);
2767 }
2768 if(jaddr)
2769 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2770 }
2771 else
2772 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2773 }
2774 if (dops[i].opcode==0x23) { // LW
2775 if(!c||memtarget) {
2776 if(!dummy) {
2777 int a=addr;
2778 if(fastio_reg_override>=0) a=fastio_reg_override;
2779 emit_readword_indexed(0,a,tl);
2780 }
2781 if(jaddr)
2782 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2783 }
2784 else
2785 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2786 }
2787 if (dops[i].opcode==0x24) { // LBU
2788 if(!c||memtarget) {
2789 if(!dummy) {
2790 int x=0,a=tl;
2791 if(!c) a=addr;
2792 if(fastio_reg_override>=0) a=fastio_reg_override;
2793
2794 emit_movzbl_indexed(x,a,tl);
2795 }
2796 if(jaddr)
2797 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2798 }
2799 else
2800 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2801 }
2802 if (dops[i].opcode==0x25) { // LHU
2803 if(!c||memtarget) {
2804 if(!dummy) {
2805 int x=0,a=tl;
2806 if(!c) a=addr;
2807 if(fastio_reg_override>=0) a=fastio_reg_override;
2808 emit_movzwl_indexed(x,a,tl);
2809 }
2810 if(jaddr)
2811 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2812 }
2813 else
2814 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2815 }
2816 if (dops[i].opcode==0x27) { // LWU
2817 assert(0);
2818 }
2819 if (dops[i].opcode==0x37) { // LD
2820 assert(0);
2821 }
2822 }
2823 if (fastio_reg_override == HOST_TEMPREG)
2824 host_tempreg_release();
2825}
2826
2827#ifndef loadlr_assemble
2828static void loadlr_assemble(int i, const struct regstat *i_regs)
2829{
2830 int s,tl,temp,temp2,addr;
2831 int offset;
2832 void *jaddr=0;
2833 int memtarget=0,c=0;
2834 int fastio_reg_override=-1;
2835 u_int reglist=get_host_reglist(i_regs->regmap);
2836 tl=get_reg(i_regs->regmap,dops[i].rt1);
2837 s=get_reg(i_regs->regmap,dops[i].rs1);
2838 temp=get_reg(i_regs->regmap,-1);
2839 temp2=get_reg(i_regs->regmap,FTEMP);
2840 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2841 assert(addr<0);
2842 offset=imm[i];
2843 reglist|=1<<temp;
2844 if(offset||s<0||c) addr=temp2;
2845 else addr=s;
2846 if(s>=0) {
2847 c=(i_regs->wasconst>>s)&1;
2848 if(c) {
2849 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2850 }
2851 }
2852 if(!c) {
2853 emit_shlimm(addr,3,temp);
2854 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2855 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2856 }else{
2857 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2858 }
2859 jaddr=emit_fastpath_cmp_jump(i,temp2,&fastio_reg_override);
2860 }
2861 else {
2862 if(ram_offset&&memtarget) {
2863 host_tempreg_acquire();
2864 emit_addimm(temp2,ram_offset,HOST_TEMPREG);
2865 fastio_reg_override=HOST_TEMPREG;
2866 }
2867 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2868 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2869 }else{
2870 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2871 }
2872 }
2873 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
2874 if(!c||memtarget) {
2875 int a=temp2;
2876 if(fastio_reg_override>=0) a=fastio_reg_override;
2877 emit_readword_indexed(0,a,temp2);
2878 if(fastio_reg_override==HOST_TEMPREG) host_tempreg_release();
2879 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2880 }
2881 else
2882 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2883 if(dops[i].rt1) {
2884 assert(tl>=0);
2885 emit_andimm(temp,24,temp);
2886 if (dops[i].opcode==0x22) // LWL
2887 emit_xorimm(temp,24,temp);
2888 host_tempreg_acquire();
2889 emit_movimm(-1,HOST_TEMPREG);
2890 if (dops[i].opcode==0x26) {
2891 emit_shr(temp2,temp,temp2);
2892 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2893 }else{
2894 emit_shl(temp2,temp,temp2);
2895 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2896 }
2897 host_tempreg_release();
2898 emit_or(temp2,tl,tl);
2899 }
2900 //emit_storereg(dops[i].rt1,tl); // DEBUG
2901 }
2902 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
2903 assert(0);
2904 }
2905}
2906#endif
2907
2908void store_assemble(int i, const struct regstat *i_regs)
2909{
2910 int s,tl;
2911 int addr,temp;
2912 int offset;
2913 void *jaddr=0;
2914 enum stub_type type;
2915 int memtarget=0,c=0;
2916 int agr=AGEN1+(i&1);
2917 int fastio_reg_override=-1;
2918 u_int reglist=get_host_reglist(i_regs->regmap);
2919 tl=get_reg(i_regs->regmap,dops[i].rs2);
2920 s=get_reg(i_regs->regmap,dops[i].rs1);
2921 temp=get_reg(i_regs->regmap,agr);
2922 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2923 offset=imm[i];
2924 if(s>=0) {
2925 c=(i_regs->wasconst>>s)&1;
2926 if(c) {
2927 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2928 }
2929 }
2930 assert(tl>=0);
2931 assert(temp>=0);
2932 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2933 if(offset||s<0||c) addr=temp;
2934 else addr=s;
2935 if(!c) {
2936 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2937 }
2938 else if(ram_offset&&memtarget) {
2939 host_tempreg_acquire();
2940 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2941 fastio_reg_override=HOST_TEMPREG;
2942 }
2943
2944 if (dops[i].opcode==0x28) { // SB
2945 if(!c||memtarget) {
2946 int x=0,a=temp;
2947 if(!c) a=addr;
2948 if(fastio_reg_override>=0) a=fastio_reg_override;
2949 emit_writebyte_indexed(tl,x,a);
2950 }
2951 type=STOREB_STUB;
2952 }
2953 if (dops[i].opcode==0x29) { // SH
2954 if(!c||memtarget) {
2955 int x=0,a=temp;
2956 if(!c) a=addr;
2957 if(fastio_reg_override>=0) a=fastio_reg_override;
2958 emit_writehword_indexed(tl,x,a);
2959 }
2960 type=STOREH_STUB;
2961 }
2962 if (dops[i].opcode==0x2B) { // SW
2963 if(!c||memtarget) {
2964 int a=addr;
2965 if(fastio_reg_override>=0) a=fastio_reg_override;
2966 emit_writeword_indexed(tl,0,a);
2967 }
2968 type=STOREW_STUB;
2969 }
2970 if (dops[i].opcode==0x3F) { // SD
2971 assert(0);
2972 type=STORED_STUB;
2973 }
2974 if(fastio_reg_override==HOST_TEMPREG)
2975 host_tempreg_release();
2976 if(jaddr) {
2977 // PCSX store handlers don't check invcode again
2978 reglist|=1<<addr;
2979 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2980 jaddr=0;
2981 }
2982 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
2983 if(!c||memtarget) {
2984 #ifdef DESTRUCTIVE_SHIFT
2985 // The x86 shift operation is 'destructive'; it overwrites the
2986 // source register, so we need to make a copy first and use that.
2987 addr=temp;
2988 #endif
2989 #if defined(HOST_IMM8)
2990 int ir=get_reg(i_regs->regmap,INVCP);
2991 assert(ir>=0);
2992 emit_cmpmem_indexedsr12_reg(ir,addr,1);
2993 #else
2994 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
2995 #endif
2996 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2997 emit_callne(invalidate_addr_reg[addr]);
2998 #else
2999 void *jaddr2 = out;
3000 emit_jne(0);
3001 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3002 #endif
3003 }
3004 }
3005 u_int addr_val=constmap[i][s]+offset;
3006 if(jaddr) {
3007 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3008 } else if(c&&!memtarget) {
3009 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj[i],reglist);
3010 }
3011 // basic current block modification detection..
3012 // not looking back as that should be in mips cache already
3013 // (see Spyro2 title->attract mode)
3014 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3015 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3016 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3017 if(i_regs->regmap==regs[i].regmap) {
3018 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3019 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3020 emit_movimm(start+i*4+4,0);
3021 emit_writeword(0,&pcaddr);
3022 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3023 emit_far_call(get_addr_ht);
3024 emit_jmpreg(0);
3025 }
3026 }
3027}
3028
3029static void storelr_assemble(int i, const struct regstat *i_regs)
3030{
3031 int s,tl;
3032 int temp;
3033 int offset;
3034 void *jaddr=0;
3035 void *case1, *case2, *case3;
3036 void *done0, *done1, *done2;
3037 int memtarget=0,c=0;
3038 int agr=AGEN1+(i&1);
3039 u_int reglist=get_host_reglist(i_regs->regmap);
3040 tl=get_reg(i_regs->regmap,dops[i].rs2);
3041 s=get_reg(i_regs->regmap,dops[i].rs1);
3042 temp=get_reg(i_regs->regmap,agr);
3043 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3044 offset=imm[i];
3045 if(s>=0) {
3046 c=(i_regs->isconst>>s)&1;
3047 if(c) {
3048 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3049 }
3050 }
3051 assert(tl>=0);
3052 assert(temp>=0);
3053 if(!c) {
3054 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3055 if(!offset&&s!=temp) emit_mov(s,temp);
3056 jaddr=out;
3057 emit_jno(0);
3058 }
3059 else
3060 {
3061 if(!memtarget||!dops[i].rs1) {
3062 jaddr=out;
3063 emit_jmp(0);
3064 }
3065 }
3066 if(ram_offset)
3067 emit_addimm_no_flags(ram_offset,temp);
3068
3069 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3070 assert(0);
3071 }
3072
3073 emit_xorimm(temp,3,temp);
3074 emit_testimm(temp,2);
3075 case2=out;
3076 emit_jne(0);
3077 emit_testimm(temp,1);
3078 case1=out;
3079 emit_jne(0);
3080 // 0
3081 if (dops[i].opcode==0x2A) { // SWL
3082 emit_writeword_indexed(tl,0,temp);
3083 }
3084 else if (dops[i].opcode==0x2E) { // SWR
3085 emit_writebyte_indexed(tl,3,temp);
3086 }
3087 else
3088 assert(0);
3089 done0=out;
3090 emit_jmp(0);
3091 // 1
3092 set_jump_target(case1, out);
3093 if (dops[i].opcode==0x2A) { // SWL
3094 // Write 3 msb into three least significant bytes
3095 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3096 emit_writehword_indexed(tl,-1,temp);
3097 if(dops[i].rs2) emit_rorimm(tl,16,tl);
3098 emit_writebyte_indexed(tl,1,temp);
3099 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3100 }
3101 else if (dops[i].opcode==0x2E) { // SWR
3102 // Write two lsb into two most significant bytes
3103 emit_writehword_indexed(tl,1,temp);
3104 }
3105 done1=out;
3106 emit_jmp(0);
3107 // 2
3108 set_jump_target(case2, out);
3109 emit_testimm(temp,1);
3110 case3=out;
3111 emit_jne(0);
3112 if (dops[i].opcode==0x2A) { // SWL
3113 // Write two msb into two least significant bytes
3114 if(dops[i].rs2) emit_rorimm(tl,16,tl);
3115 emit_writehword_indexed(tl,-2,temp);
3116 if(dops[i].rs2) emit_rorimm(tl,16,tl);
3117 }
3118 else if (dops[i].opcode==0x2E) { // SWR
3119 // Write 3 lsb into three most significant bytes
3120 emit_writebyte_indexed(tl,-1,temp);
3121 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3122 emit_writehword_indexed(tl,0,temp);
3123 if(dops[i].rs2) emit_rorimm(tl,24,tl);
3124 }
3125 done2=out;
3126 emit_jmp(0);
3127 // 3
3128 set_jump_target(case3, out);
3129 if (dops[i].opcode==0x2A) { // SWL
3130 // Write msb into least significant byte
3131 if(dops[i].rs2) emit_rorimm(tl,24,tl);
3132 emit_writebyte_indexed(tl,-3,temp);
3133 if(dops[i].rs2) emit_rorimm(tl,8,tl);
3134 }
3135 else if (dops[i].opcode==0x2E) { // SWR
3136 // Write entire word
3137 emit_writeword_indexed(tl,-3,temp);
3138 }
3139 set_jump_target(done0, out);
3140 set_jump_target(done1, out);
3141 set_jump_target(done2, out);
3142 if(!c||!memtarget)
3143 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3144 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3145 emit_addimm_no_flags(-ram_offset,temp);
3146 #if defined(HOST_IMM8)
3147 int ir=get_reg(i_regs->regmap,INVCP);
3148 assert(ir>=0);
3149 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3150 #else
3151 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3152 #endif
3153 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3154 emit_callne(invalidate_addr_reg[temp]);
3155 #else
3156 void *jaddr2 = out;
3157 emit_jne(0);
3158 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3159 #endif
3160 }
3161}
3162
3163static void cop0_assemble(int i,struct regstat *i_regs)
3164{
3165 if(dops[i].opcode2==0) // MFC0
3166 {
3167 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3168 u_int copr=(source[i]>>11)&0x1f;
3169 //assert(t>=0); // Why does this happen? OOT is weird
3170 if(t>=0&&dops[i].rt1!=0) {
3171 emit_readword(&reg_cop0[copr],t);
3172 }
3173 }
3174 else if(dops[i].opcode2==4) // MTC0
3175 {
3176 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3177 char copr=(source[i]>>11)&0x1f;
3178 assert(s>=0);
3179 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3180 if(copr==9||copr==11||copr==12||copr==13) {
3181 emit_readword(&last_count,HOST_TEMPREG);
3182 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3183 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3184 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3185 emit_writeword(HOST_CCREG,&Count);
3186 }
3187 // What a mess. The status register (12) can enable interrupts,
3188 // so needs a special case to handle a pending interrupt.
3189 // The interrupt must be taken immediately, because a subsequent
3190 // instruction might disable interrupts again.
3191 if(copr==12||copr==13) {
3192 if (is_delayslot) {
3193 // burn cycles to cause cc_interrupt, which will
3194 // reschedule next_interupt. Relies on CCREG from above.
3195 assem_debug("MTC0 DS %d\n", copr);
3196 emit_writeword(HOST_CCREG,&last_count);
3197 emit_movimm(0,HOST_CCREG);
3198 emit_storereg(CCREG,HOST_CCREG);
3199 emit_loadreg(dops[i].rs1,1);
3200 emit_movimm(copr,0);
3201 emit_far_call(pcsx_mtc0_ds);
3202 emit_loadreg(dops[i].rs1,s);
3203 return;
3204 }
3205 emit_movimm(start+i*4+4,HOST_TEMPREG);
3206 emit_writeword(HOST_TEMPREG,&pcaddr);
3207 emit_movimm(0,HOST_TEMPREG);
3208 emit_writeword(HOST_TEMPREG,&pending_exception);
3209 }
3210 if(s==HOST_CCREG)
3211 emit_loadreg(dops[i].rs1,1);
3212 else if(s!=1)
3213 emit_mov(s,1);
3214 emit_movimm(copr,0);
3215 emit_far_call(pcsx_mtc0);
3216 if(copr==9||copr==11||copr==12||copr==13) {
3217 emit_readword(&Count,HOST_CCREG);
3218 emit_readword(&next_interupt,HOST_TEMPREG);
3219 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3220 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3221 emit_writeword(HOST_TEMPREG,&last_count);
3222 emit_storereg(CCREG,HOST_CCREG);
3223 }
3224 if(copr==12||copr==13) {
3225 assert(!is_delayslot);
3226 emit_readword(&pending_exception,14);
3227 emit_test(14,14);
3228 void *jaddr = out;
3229 emit_jeq(0);
3230 emit_readword(&pcaddr, 0);
3231 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3232 emit_far_call(get_addr_ht);
3233 emit_jmpreg(0);
3234 set_jump_target(jaddr, out);
3235 }
3236 emit_loadreg(dops[i].rs1,s);
3237 }
3238 else
3239 {
3240 assert(dops[i].opcode2==0x10);
3241 //if((source[i]&0x3f)==0x10) // RFE
3242 {
3243 emit_readword(&Status,0);
3244 emit_andimm(0,0x3c,1);
3245 emit_andimm(0,~0xf,0);
3246 emit_orrshr_imm(1,2,0);
3247 emit_writeword(0,&Status);
3248 }
3249 }
3250}
3251
3252static void cop1_unusable(int i,struct regstat *i_regs)
3253{
3254 // XXX: should just just do the exception instead
3255 //if(!cop1_usable)
3256 {
3257 void *jaddr=out;
3258 emit_jmp(0);
3259 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3260 }
3261}
3262
3263static void cop1_assemble(int i,struct regstat *i_regs)
3264{
3265 cop1_unusable(i, i_regs);
3266}
3267
3268static void c1ls_assemble(int i,struct regstat *i_regs)
3269{
3270 cop1_unusable(i, i_regs);
3271}
3272
3273// FP_STUB
3274static void do_cop1stub(int n)
3275{
3276 literal_pool(256);
3277 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3278 set_jump_target(stubs[n].addr, out);
3279 int i=stubs[n].a;
3280// int rs=stubs[n].b;
3281 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3282 int ds=stubs[n].d;
3283 if(!ds) {
3284 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3285 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3286 }
3287 //else {printf("fp exception in delay slot\n");}
3288 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3289 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3290 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3291 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3292 emit_far_jump(ds?fp_exception_ds:fp_exception);
3293}
3294
3295static int cop2_is_stalling_op(int i, int *cycles)
3296{
3297 if (dops[i].opcode == 0x3a) { // SWC2
3298 *cycles = 0;
3299 return 1;
3300 }
3301 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3302 *cycles = 0;
3303 return 1;
3304 }
3305 if (dops[i].itype == C2OP) {
3306 *cycles = gte_cycletab[source[i] & 0x3f];
3307 return 1;
3308 }
3309 // ... what about MTC2/CTC2/LWC2?
3310 return 0;
3311}
3312
3313#if 0
3314static void log_gte_stall(int stall, u_int cycle)
3315{
3316 if ((u_int)stall <= 44)
3317 printf("x stall %2d %u\n", stall, cycle + last_count);
3318}
3319
3320static void emit_log_gte_stall(int i, int stall, u_int reglist)
3321{
3322 save_regs(reglist);
3323 if (stall > 0)
3324 emit_movimm(stall, 0);
3325 else
3326 emit_mov(HOST_TEMPREG, 0);
3327 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3328 emit_far_call(log_gte_stall);
3329 restore_regs(reglist);
3330}
3331#endif
3332
3333static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3334{
3335 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3336 int rtmp = reglist_find_free(reglist);
3337
3338 if (HACK_ENABLED(NDHACK_NO_STALLS))
3339 return;
3340 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3341 // happens occasionally... cc evicted? Don't bother then
3342 //printf("no cc %08x\n", start + i*4);
3343 return;
3344 }
3345 if (!dops[i].bt) {
3346 for (j = i - 1; j >= 0; j--) {
3347 //if (dops[j].is_ds) break;
3348 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3349 break;
3350 }
3351 j = max(j, 0);
3352 }
3353 cycles_passed = CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3354 if (other_gte_op_cycles >= 0)
3355 stall = other_gte_op_cycles - cycles_passed;
3356 else if (cycles_passed >= 44)
3357 stall = 0; // can't stall
3358 if (stall == -MAXBLOCK && rtmp >= 0) {
3359 // unknown stall, do the expensive runtime check
3360 assem_debug("; cop2_do_stall_check\n");
3361#if 0 // too slow
3362 save_regs(reglist);
3363 emit_movimm(gte_cycletab[op], 0);
3364 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3365 emit_far_call(call_gteStall);
3366 restore_regs(reglist);
3367#else
3368 host_tempreg_acquire();
3369 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3370 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3371 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3372 emit_cmpimm(HOST_TEMPREG, 44);
3373 emit_cmovb_reg(rtmp, HOST_CCREG);
3374 //emit_log_gte_stall(i, 0, reglist);
3375 host_tempreg_release();
3376#endif
3377 }
3378 else if (stall > 0) {
3379 //emit_log_gte_stall(i, stall, reglist);
3380 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3381 }
3382
3383 // save gteBusyCycle, if needed
3384 if (gte_cycletab[op] == 0)
3385 return;
3386 other_gte_op_cycles = -1;
3387 for (j = i + 1; j < slen; j++) {
3388 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3389 break;
3390 if (dops[j].is_jump) {
3391 // check ds
3392 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3393 j++;
3394 break;
3395 }
3396 }
3397 if (other_gte_op_cycles >= 0)
3398 // will handle stall when assembling that op
3399 return;
3400 cycles_passed = CLOCK_ADJUST(ccadj[min(j, slen -1)] - ccadj[i]);
3401 if (cycles_passed >= 44)
3402 return;
3403 assem_debug("; save gteBusyCycle\n");
3404 host_tempreg_acquire();
3405#if 0
3406 emit_readword(&last_count, HOST_TEMPREG);
3407 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3408 emit_addimm(HOST_TEMPREG, CLOCK_ADJUST(ccadj[i]), HOST_TEMPREG);
3409 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3410 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3411#else
3412 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + gte_cycletab[op], HOST_TEMPREG);
3413 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3414#endif
3415 host_tempreg_release();
3416}
3417
3418static int is_mflohi(int i)
3419{
3420 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3421}
3422
3423static int check_multdiv(int i, int *cycles)
3424{
3425 if (dops[i].itype != MULTDIV)
3426 return 0;
3427 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3428 *cycles = 11; // approx from 7 11 14
3429 else
3430 *cycles = 37;
3431 return 1;
3432}
3433
3434static void multdiv_prepare_stall(int i, const struct regstat *i_regs)
3435{
3436 int j, found = 0, c = 0;
3437 if (HACK_ENABLED(NDHACK_NO_STALLS))
3438 return;
3439 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3440 // happens occasionally... cc evicted? Don't bother then
3441 return;
3442 }
3443 for (j = i + 1; j < slen; j++) {
3444 if (dops[j].bt)
3445 break;
3446 if ((found = is_mflohi(j)))
3447 break;
3448 if (dops[j].is_jump) {
3449 // check ds
3450 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3451 j++;
3452 break;
3453 }
3454 }
3455 if (found)
3456 // handle all in multdiv_do_stall()
3457 return;
3458 check_multdiv(i, &c);
3459 assert(c > 0);
3460 assem_debug("; muldiv prepare stall %d\n", c);
3461 host_tempreg_acquire();
3462 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + c, HOST_TEMPREG);
3463 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3464 host_tempreg_release();
3465}
3466
3467static void multdiv_do_stall(int i, const struct regstat *i_regs)
3468{
3469 int j, known_cycles = 0;
3470 u_int reglist = get_host_reglist(i_regs->regmap);
3471 int rtmp = get_reg(i_regs->regmap, -1);
3472 if (rtmp < 0)
3473 rtmp = reglist_find_free(reglist);
3474 if (HACK_ENABLED(NDHACK_NO_STALLS))
3475 return;
3476 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3477 // happens occasionally... cc evicted? Don't bother then
3478 //printf("no cc/rtmp %08x\n", start + i*4);
3479 return;
3480 }
3481 if (!dops[i].bt) {
3482 for (j = i - 1; j >= 0; j--) {
3483 if (dops[j].is_ds) break;
3484 if (check_multdiv(j, &known_cycles) || dops[j].bt)
3485 break;
3486 if (is_mflohi(j))
3487 // already handled by this op
3488 return;
3489 }
3490 j = max(j, 0);
3491 }
3492 if (known_cycles > 0) {
3493 known_cycles -= CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3494 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3495 if (known_cycles > 0)
3496 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3497 return;
3498 }
3499 assem_debug("; muldiv stall unresolved\n");
3500 host_tempreg_acquire();
3501 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3502 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3503 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3504 emit_cmpimm(HOST_TEMPREG, 37);
3505 emit_cmovb_reg(rtmp, HOST_CCREG);
3506 //emit_log_gte_stall(i, 0, reglist);
3507 host_tempreg_release();
3508}
3509
3510static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3511{
3512 switch (copr) {
3513 case 1:
3514 case 3:
3515 case 5:
3516 case 8:
3517 case 9:
3518 case 10:
3519 case 11:
3520 emit_readword(&reg_cop2d[copr],tl);
3521 emit_signextend16(tl,tl);
3522 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3523 break;
3524 case 7:
3525 case 16:
3526 case 17:
3527 case 18:
3528 case 19:
3529 emit_readword(&reg_cop2d[copr],tl);
3530 emit_andimm(tl,0xffff,tl);
3531 emit_writeword(tl,&reg_cop2d[copr]);
3532 break;
3533 case 15:
3534 emit_readword(&reg_cop2d[14],tl); // SXY2
3535 emit_writeword(tl,&reg_cop2d[copr]);
3536 break;
3537 case 28:
3538 case 29:
3539 c2op_mfc2_29_assemble(tl,temp);
3540 break;
3541 default:
3542 emit_readword(&reg_cop2d[copr],tl);
3543 break;
3544 }
3545}
3546
3547static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3548{
3549 switch (copr) {
3550 case 15:
3551 emit_readword(&reg_cop2d[13],temp); // SXY1
3552 emit_writeword(sl,&reg_cop2d[copr]);
3553 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3554 emit_readword(&reg_cop2d[14],temp); // SXY2
3555 emit_writeword(sl,&reg_cop2d[14]);
3556 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3557 break;
3558 case 28:
3559 emit_andimm(sl,0x001f,temp);
3560 emit_shlimm(temp,7,temp);
3561 emit_writeword(temp,&reg_cop2d[9]);
3562 emit_andimm(sl,0x03e0,temp);
3563 emit_shlimm(temp,2,temp);
3564 emit_writeword(temp,&reg_cop2d[10]);
3565 emit_andimm(sl,0x7c00,temp);
3566 emit_shrimm(temp,3,temp);
3567 emit_writeword(temp,&reg_cop2d[11]);
3568 emit_writeword(sl,&reg_cop2d[28]);
3569 break;
3570 case 30:
3571 emit_xorsar_imm(sl,sl,31,temp);
3572#if defined(HAVE_ARMV5) || defined(__aarch64__)
3573 emit_clz(temp,temp);
3574#else
3575 emit_movs(temp,HOST_TEMPREG);
3576 emit_movimm(0,temp);
3577 emit_jeq((int)out+4*4);
3578 emit_addpl_imm(temp,1,temp);
3579 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3580 emit_jns((int)out-2*4);
3581#endif
3582 emit_writeword(sl,&reg_cop2d[30]);
3583 emit_writeword(temp,&reg_cop2d[31]);
3584 break;
3585 case 31:
3586 break;
3587 default:
3588 emit_writeword(sl,&reg_cop2d[copr]);
3589 break;
3590 }
3591}
3592
3593static void c2ls_assemble(int i, const struct regstat *i_regs)
3594{
3595 int s,tl;
3596 int ar;
3597 int offset;
3598 int memtarget=0,c=0;
3599 void *jaddr2=NULL;
3600 enum stub_type type;
3601 int agr=AGEN1+(i&1);
3602 int fastio_reg_override=-1;
3603 u_int reglist=get_host_reglist(i_regs->regmap);
3604 u_int copr=(source[i]>>16)&0x1f;
3605 s=get_reg(i_regs->regmap,dops[i].rs1);
3606 tl=get_reg(i_regs->regmap,FTEMP);
3607 offset=imm[i];
3608 assert(dops[i].rs1>0);
3609 assert(tl>=0);
3610
3611 if(i_regs->regmap[HOST_CCREG]==CCREG)
3612 reglist&=~(1<<HOST_CCREG);
3613
3614 // get the address
3615 if (dops[i].opcode==0x3a) { // SWC2
3616 ar=get_reg(i_regs->regmap,agr);
3617 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3618 reglist|=1<<ar;
3619 } else { // LWC2
3620 ar=tl;
3621 }
3622 if(s>=0) c=(i_regs->wasconst>>s)&1;
3623 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3624 if (!offset&&!c&&s>=0) ar=s;
3625 assert(ar>=0);
3626
3627 cop2_do_stall_check(0, i, i_regs, reglist);
3628
3629 if (dops[i].opcode==0x3a) { // SWC2
3630 cop2_get_dreg(copr,tl,-1);
3631 type=STOREW_STUB;
3632 }
3633 else
3634 type=LOADW_STUB;
3635
3636 if(c&&!memtarget) {
3637 jaddr2=out;
3638 emit_jmp(0); // inline_readstub/inline_writestub?
3639 }
3640 else {
3641 if(!c) {
3642 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3643 }
3644 else if(ram_offset&&memtarget) {
3645 host_tempreg_acquire();
3646 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3647 fastio_reg_override=HOST_TEMPREG;
3648 }
3649 if (dops[i].opcode==0x32) { // LWC2
3650 int a=ar;
3651 if(fastio_reg_override>=0) a=fastio_reg_override;
3652 emit_readword_indexed(0,a,tl);
3653 }
3654 if (dops[i].opcode==0x3a) { // SWC2
3655 #ifdef DESTRUCTIVE_SHIFT
3656 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3657 #endif
3658 int a=ar;
3659 if(fastio_reg_override>=0) a=fastio_reg_override;
3660 emit_writeword_indexed(tl,0,a);
3661 }
3662 }
3663 if(fastio_reg_override==HOST_TEMPREG)
3664 host_tempreg_release();
3665 if(jaddr2)
3666 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3667 if(dops[i].opcode==0x3a) // SWC2
3668 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3669#if defined(HOST_IMM8)
3670 int ir=get_reg(i_regs->regmap,INVCP);
3671 assert(ir>=0);
3672 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3673#else
3674 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3675#endif
3676 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3677 emit_callne(invalidate_addr_reg[ar]);
3678 #else
3679 void *jaddr3 = out;
3680 emit_jne(0);
3681 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3682 #endif
3683 }
3684 if (dops[i].opcode==0x32) { // LWC2
3685 host_tempreg_acquire();
3686 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3687 host_tempreg_release();
3688 }
3689}
3690
3691static void cop2_assemble(int i, const struct regstat *i_regs)
3692{
3693 u_int copr = (source[i]>>11) & 0x1f;
3694 signed char temp = get_reg(i_regs->regmap, -1);
3695
3696 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3697 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3698 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3699 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3700 reglist = reglist_exclude(reglist, tl, -1);
3701 }
3702 cop2_do_stall_check(0, i, i_regs, reglist);
3703 }
3704 if (dops[i].opcode2==0) { // MFC2
3705 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3706 if(tl>=0&&dops[i].rt1!=0)
3707 cop2_get_dreg(copr,tl,temp);
3708 }
3709 else if (dops[i].opcode2==4) { // MTC2
3710 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3711 cop2_put_dreg(copr,sl,temp);
3712 }
3713 else if (dops[i].opcode2==2) // CFC2
3714 {
3715 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3716 if(tl>=0&&dops[i].rt1!=0)
3717 emit_readword(&reg_cop2c[copr],tl);
3718 }
3719 else if (dops[i].opcode2==6) // CTC2
3720 {
3721 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3722 switch(copr) {
3723 case 4:
3724 case 12:
3725 case 20:
3726 case 26:
3727 case 27:
3728 case 29:
3729 case 30:
3730 emit_signextend16(sl,temp);
3731 break;
3732 case 31:
3733 c2op_ctc2_31_assemble(sl,temp);
3734 break;
3735 default:
3736 temp=sl;
3737 break;
3738 }
3739 emit_writeword(temp,&reg_cop2c[copr]);
3740 assert(sl>=0);
3741 }
3742}
3743
3744static void do_unalignedwritestub(int n)
3745{
3746 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3747 literal_pool(256);
3748 set_jump_target(stubs[n].addr, out);
3749
3750 int i=stubs[n].a;
3751 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3752 int addr=stubs[n].b;
3753 u_int reglist=stubs[n].e;
3754 signed char *i_regmap=i_regs->regmap;
3755 int temp2=get_reg(i_regmap,FTEMP);
3756 int rt;
3757 rt=get_reg(i_regmap,dops[i].rs2);
3758 assert(rt>=0);
3759 assert(addr>=0);
3760 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3761 reglist|=(1<<addr);
3762 reglist&=~(1<<temp2);
3763
3764 // don't bother with it and call write handler
3765 save_regs(reglist);
3766 pass_args(addr,rt);
3767 int cc=get_reg(i_regmap,CCREG);
3768 if(cc<0)
3769 emit_loadreg(CCREG,2);
3770 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3771 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3772 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3773 if(cc<0)
3774 emit_storereg(CCREG,2);
3775 restore_regs(reglist);
3776 emit_jmp(stubs[n].retaddr); // return address
3777}
3778
3779#ifndef multdiv_assemble
3780void multdiv_assemble(int i,struct regstat *i_regs)
3781{
3782 printf("Need multdiv_assemble for this architecture.\n");
3783 abort();
3784}
3785#endif
3786
3787static void mov_assemble(int i,struct regstat *i_regs)
3788{
3789 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3790 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3791 if(dops[i].rt1) {
3792 signed char sl,tl;
3793 tl=get_reg(i_regs->regmap,dops[i].rt1);
3794 //assert(tl>=0);
3795 if(tl>=0) {
3796 sl=get_reg(i_regs->regmap,dops[i].rs1);
3797 if(sl>=0) emit_mov(sl,tl);
3798 else emit_loadreg(dops[i].rs1,tl);
3799 }
3800 }
3801 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3802 multdiv_do_stall(i, i_regs);
3803}
3804
3805// call interpreter, exception handler, things that change pc/regs/cycles ...
3806static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3807{
3808 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3809 assert(ccreg==HOST_CCREG);
3810 assert(!is_delayslot);
3811 (void)ccreg;
3812
3813 emit_movimm(pc,3); // Get PC
3814 emit_readword(&last_count,2);
3815 emit_writeword(3,&psxRegs.pc);
3816 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3817 emit_add(2,HOST_CCREG,2);
3818 emit_writeword(2,&psxRegs.cycle);
3819 emit_far_call(func);
3820 emit_far_jump(jump_to_new_pc);
3821}
3822
3823static void syscall_assemble(int i,struct regstat *i_regs)
3824{
3825 emit_movimm(0x20,0); // cause code
3826 emit_movimm(0,1); // not in delay slot
3827 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3828}
3829
3830static void hlecall_assemble(int i,struct regstat *i_regs)
3831{
3832 void *hlefunc = psxNULL;
3833 uint32_t hleCode = source[i] & 0x03ffffff;
3834 if (hleCode < ARRAY_SIZE(psxHLEt))
3835 hlefunc = psxHLEt[hleCode];
3836
3837 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3838}
3839
3840static void intcall_assemble(int i,struct regstat *i_regs)
3841{
3842 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3843}
3844
3845static void speculate_mov(int rs,int rt)
3846{
3847 if(rt!=0) {
3848 smrv_strong_next|=1<<rt;
3849 smrv[rt]=smrv[rs];
3850 }
3851}
3852
3853static void speculate_mov_weak(int rs,int rt)
3854{
3855 if(rt!=0) {
3856 smrv_weak_next|=1<<rt;
3857 smrv[rt]=smrv[rs];
3858 }
3859}
3860
3861static void speculate_register_values(int i)
3862{
3863 if(i==0) {
3864 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3865 // gp,sp are likely to stay the same throughout the block
3866 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3867 smrv_weak_next=~smrv_strong_next;
3868 //printf(" llr %08x\n", smrv[4]);
3869 }
3870 smrv_strong=smrv_strong_next;
3871 smrv_weak=smrv_weak_next;
3872 switch(dops[i].itype) {
3873 case ALU:
3874 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
3875 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
3876 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
3877 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
3878 else {
3879 smrv_strong_next&=~(1<<dops[i].rt1);
3880 smrv_weak_next&=~(1<<dops[i].rt1);
3881 }
3882 break;
3883 case SHIFTIMM:
3884 smrv_strong_next&=~(1<<dops[i].rt1);
3885 smrv_weak_next&=~(1<<dops[i].rt1);
3886 // fallthrough
3887 case IMM16:
3888 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
3889 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
3890 if(hr>=0) {
3891 if(get_final_value(hr,i,&value))
3892 smrv[dops[i].rt1]=value;
3893 else smrv[dops[i].rt1]=constmap[i][hr];
3894 smrv_strong_next|=1<<dops[i].rt1;
3895 }
3896 }
3897 else {
3898 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
3899 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
3900 }
3901 break;
3902 case LOAD:
3903 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
3904 // special case for BIOS
3905 smrv[dops[i].rt1]=0xa0000000;
3906 smrv_strong_next|=1<<dops[i].rt1;
3907 break;
3908 }
3909 // fallthrough
3910 case SHIFT:
3911 case LOADLR:
3912 case MOV:
3913 smrv_strong_next&=~(1<<dops[i].rt1);
3914 smrv_weak_next&=~(1<<dops[i].rt1);
3915 break;
3916 case COP0:
3917 case COP2:
3918 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
3919 smrv_strong_next&=~(1<<dops[i].rt1);
3920 smrv_weak_next&=~(1<<dops[i].rt1);
3921 }
3922 break;
3923 case C2LS:
3924 if (dops[i].opcode==0x32) { // LWC2
3925 smrv_strong_next&=~(1<<dops[i].rt1);
3926 smrv_weak_next&=~(1<<dops[i].rt1);
3927 }
3928 break;
3929 }
3930#if 0
3931 int r=4;
3932 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
3933 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
3934#endif
3935}
3936
3937static void ds_assemble(int i,struct regstat *i_regs)
3938{
3939 speculate_register_values(i);
3940 is_delayslot=1;
3941 switch(dops[i].itype) {
3942 case ALU:
3943 alu_assemble(i,i_regs);break;
3944 case IMM16:
3945 imm16_assemble(i,i_regs);break;
3946 case SHIFT:
3947 shift_assemble(i,i_regs);break;
3948 case SHIFTIMM:
3949 shiftimm_assemble(i,i_regs);break;
3950 case LOAD:
3951 load_assemble(i,i_regs);break;
3952 case LOADLR:
3953 loadlr_assemble(i,i_regs);break;
3954 case STORE:
3955 store_assemble(i,i_regs);break;
3956 case STORELR:
3957 storelr_assemble(i,i_regs);break;
3958 case COP0:
3959 cop0_assemble(i,i_regs);break;
3960 case COP1:
3961 cop1_assemble(i,i_regs);break;
3962 case C1LS:
3963 c1ls_assemble(i,i_regs);break;
3964 case COP2:
3965 cop2_assemble(i,i_regs);break;
3966 case C2LS:
3967 c2ls_assemble(i,i_regs);break;
3968 case C2OP:
3969 c2op_assemble(i,i_regs);break;
3970 case MULTDIV:
3971 multdiv_assemble(i,i_regs);
3972 multdiv_prepare_stall(i,i_regs);
3973 break;
3974 case MOV:
3975 mov_assemble(i,i_regs);break;
3976 case SYSCALL:
3977 case HLECALL:
3978 case INTCALL:
3979 case SPAN:
3980 case UJUMP:
3981 case RJUMP:
3982 case CJUMP:
3983 case SJUMP:
3984 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
3985 }
3986 is_delayslot=0;
3987}
3988
3989// Is the branch target a valid internal jump?
3990static int internal_branch(int addr)
3991{
3992 if(addr&1) return 0; // Indirect (register) jump
3993 if(addr>=start && addr<start+slen*4-4)
3994 {
3995 return 1;
3996 }
3997 return 0;
3998}
3999
4000static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4001{
4002 int hr;
4003 for(hr=0;hr<HOST_REGS;hr++) {
4004 if(hr!=EXCLUDE_REG) {
4005 if(pre[hr]!=entry[hr]) {
4006 if(pre[hr]>=0) {
4007 if((dirty>>hr)&1) {
4008 if(get_reg(entry,pre[hr])<0) {
4009 assert(pre[hr]<64);
4010 if(!((u>>pre[hr])&1))
4011 emit_storereg(pre[hr],hr);
4012 }
4013 }
4014 }
4015 }
4016 }
4017 }
4018 // Move from one register to another (no writeback)
4019 for(hr=0;hr<HOST_REGS;hr++) {
4020 if(hr!=EXCLUDE_REG) {
4021 if(pre[hr]!=entry[hr]) {
4022 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4023 int nr;
4024 if((nr=get_reg(entry,pre[hr]))>=0) {
4025 emit_mov(hr,nr);
4026 }
4027 }
4028 }
4029 }
4030 }
4031}
4032
4033// Load the specified registers
4034// This only loads the registers given as arguments because
4035// we don't want to load things that will be overwritten
4036static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4037{
4038 int hr;
4039 // Load 32-bit regs
4040 for(hr=0;hr<HOST_REGS;hr++) {
4041 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4042 if(entry[hr]!=regmap[hr]) {
4043 if(regmap[hr]==rs1||regmap[hr]==rs2)
4044 {
4045 if(regmap[hr]==0) {
4046 emit_zeroreg(hr);
4047 }
4048 else
4049 {
4050 emit_loadreg(regmap[hr],hr);
4051 }
4052 }
4053 }
4054 }
4055 }
4056}
4057
4058// Load registers prior to the start of a loop
4059// so that they are not loaded within the loop
4060static void loop_preload(signed char pre[],signed char entry[])
4061{
4062 int hr;
4063 for(hr=0;hr<HOST_REGS;hr++) {
4064 if(hr!=EXCLUDE_REG) {
4065 if(pre[hr]!=entry[hr]) {
4066 if(entry[hr]>=0) {
4067 if(get_reg(pre,entry[hr])<0) {
4068 assem_debug("loop preload:\n");
4069 //printf("loop preload: %d\n",hr);
4070 if(entry[hr]==0) {
4071 emit_zeroreg(hr);
4072 }
4073 else if(entry[hr]<TEMPREG)
4074 {
4075 emit_loadreg(entry[hr],hr);
4076 }
4077 else if(entry[hr]-64<TEMPREG)
4078 {
4079 emit_loadreg(entry[hr],hr);
4080 }
4081 }
4082 }
4083 }
4084 }
4085 }
4086}
4087
4088// Generate address for load/store instruction
4089// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4090void address_generation(int i,struct regstat *i_regs,signed char entry[])
4091{
4092 if(dops[i].itype==LOAD||dops[i].itype==LOADLR||dops[i].itype==STORE||dops[i].itype==STORELR||dops[i].itype==C1LS||dops[i].itype==C2LS) {
4093 int ra=-1;
4094 int agr=AGEN1+(i&1);
4095 if(dops[i].itype==LOAD) {
4096 ra=get_reg(i_regs->regmap,dops[i].rt1);
4097 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4098 assert(ra>=0);
4099 }
4100 if(dops[i].itype==LOADLR) {
4101 ra=get_reg(i_regs->regmap,FTEMP);
4102 }
4103 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4104 ra=get_reg(i_regs->regmap,agr);
4105 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4106 }
4107 if(dops[i].itype==C1LS||dops[i].itype==C2LS) {
4108 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4109 ra=get_reg(i_regs->regmap,FTEMP);
4110 else { // SWC1/SDC1/SWC2/SDC2
4111 ra=get_reg(i_regs->regmap,agr);
4112 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4113 }
4114 }
4115 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4116 if(ra>=0) {
4117 int offset=imm[i];
4118 int c=(i_regs->wasconst>>rs)&1;
4119 if(dops[i].rs1==0) {
4120 // Using r0 as a base address
4121 if(!entry||entry[ra]!=agr) {
4122 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4123 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4124 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4125 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4126 }else{
4127 emit_movimm(offset,ra);
4128 }
4129 } // else did it in the previous cycle
4130 }
4131 else if(rs<0) {
4132 if(!entry||entry[ra]!=dops[i].rs1)
4133 emit_loadreg(dops[i].rs1,ra);
4134 //if(!entry||entry[ra]!=dops[i].rs1)
4135 // printf("poor load scheduling!\n");
4136 }
4137 else if(c) {
4138 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4139 if(!entry||entry[ra]!=agr) {
4140 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4141 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4142 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4143 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4144 }else{
4145 emit_movimm(constmap[i][rs]+offset,ra);
4146 regs[i].loadedconst|=1<<ra;
4147 }
4148 } // else did it in the previous cycle
4149 } // else load_consts already did it
4150 }
4151 if(offset&&!c&&dops[i].rs1) {
4152 if(rs>=0) {
4153 emit_addimm(rs,offset,ra);
4154 }else{
4155 emit_addimm(ra,offset,ra);
4156 }
4157 }
4158 }
4159 }
4160 // Preload constants for next instruction
4161 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS||dops[i+1].itype==C2LS) {
4162 int agr,ra;
4163 // Actual address
4164 agr=AGEN1+((i+1)&1);
4165 ra=get_reg(i_regs->regmap,agr);
4166 if(ra>=0) {
4167 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4168 int offset=imm[i+1];
4169 int c=(regs[i+1].wasconst>>rs)&1;
4170 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4171 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4172 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4173 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4174 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4175 }else{
4176 emit_movimm(constmap[i+1][rs]+offset,ra);
4177 regs[i+1].loadedconst|=1<<ra;
4178 }
4179 }
4180 else if(dops[i+1].rs1==0) {
4181 // Using r0 as a base address
4182 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4183 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4184 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4185 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4186 }else{
4187 emit_movimm(offset,ra);
4188 }
4189 }
4190 }
4191 }
4192}
4193
4194static int get_final_value(int hr, int i, int *value)
4195{
4196 int reg=regs[i].regmap[hr];
4197 while(i<slen-1) {
4198 if(regs[i+1].regmap[hr]!=reg) break;
4199 if(!((regs[i+1].isconst>>hr)&1)) break;
4200 if(dops[i+1].bt) break;
4201 i++;
4202 }
4203 if(i<slen-1) {
4204 if (dops[i].is_jump) {
4205 *value=constmap[i][hr];
4206 return 1;
4207 }
4208 if(!dops[i+1].bt) {
4209 if (dops[i+1].is_jump) {
4210 // Load in delay slot, out-of-order execution
4211 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4212 {
4213 // Precompute load address
4214 *value=constmap[i][hr]+imm[i+2];
4215 return 1;
4216 }
4217 }
4218 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4219 {
4220 // Precompute load address
4221 *value=constmap[i][hr]+imm[i+1];
4222 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4223 return 1;
4224 }
4225 }
4226 }
4227 *value=constmap[i][hr];
4228 //printf("c=%lx\n",(long)constmap[i][hr]);
4229 if(i==slen-1) return 1;
4230 assert(reg < 64);
4231 return !((unneeded_reg[i+1]>>reg)&1);
4232}
4233
4234// Load registers with known constants
4235static void load_consts(signed char pre[],signed char regmap[],int i)
4236{
4237 int hr,hr2;
4238 // propagate loaded constant flags
4239 if(i==0||dops[i].bt)
4240 regs[i].loadedconst=0;
4241 else {
4242 for(hr=0;hr<HOST_REGS;hr++) {
4243 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4244 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4245 {
4246 regs[i].loadedconst|=1<<hr;
4247 }
4248 }
4249 }
4250 // Load 32-bit regs
4251 for(hr=0;hr<HOST_REGS;hr++) {
4252 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4253 //if(entry[hr]!=regmap[hr]) {
4254 if(!((regs[i].loadedconst>>hr)&1)) {
4255 assert(regmap[hr]<64);
4256 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4257 int value,similar=0;
4258 if(get_final_value(hr,i,&value)) {
4259 // see if some other register has similar value
4260 for(hr2=0;hr2<HOST_REGS;hr2++) {
4261 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4262 if(is_similar_value(value,constmap[i][hr2])) {
4263 similar=1;
4264 break;
4265 }
4266 }
4267 }
4268 if(similar) {
4269 int value2;
4270 if(get_final_value(hr2,i,&value2)) // is this needed?
4271 emit_movimm_from(value2,hr2,value,hr);
4272 else
4273 emit_movimm(value,hr);
4274 }
4275 else if(value==0) {
4276 emit_zeroreg(hr);
4277 }
4278 else {
4279 emit_movimm(value,hr);
4280 }
4281 }
4282 regs[i].loadedconst|=1<<hr;
4283 }
4284 }
4285 }
4286 }
4287}
4288
4289void load_all_consts(signed char regmap[], u_int dirty, int i)
4290{
4291 int hr;
4292 // Load 32-bit regs
4293 for(hr=0;hr<HOST_REGS;hr++) {
4294 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4295 assert(regmap[hr] < 64);
4296 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4297 int value=constmap[i][hr];
4298 if(value==0) {
4299 emit_zeroreg(hr);
4300 }
4301 else {
4302 emit_movimm(value,hr);
4303 }
4304 }
4305 }
4306 }
4307}
4308
4309// Write out all dirty registers (except cycle count)
4310static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4311{
4312 int hr;
4313 for(hr=0;hr<HOST_REGS;hr++) {
4314 if(hr!=EXCLUDE_REG) {
4315 if(i_regmap[hr]>0) {
4316 if(i_regmap[hr]!=CCREG) {
4317 if((i_dirty>>hr)&1) {
4318 assert(i_regmap[hr]<64);
4319 emit_storereg(i_regmap[hr],hr);
4320 }
4321 }
4322 }
4323 }
4324 }
4325}
4326
4327// Write out dirty registers that we need to reload (pair with load_needed_regs)
4328// This writes the registers not written by store_regs_bt
4329void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4330{
4331 int hr;
4332 int t=(addr-start)>>2;
4333 for(hr=0;hr<HOST_REGS;hr++) {
4334 if(hr!=EXCLUDE_REG) {
4335 if(i_regmap[hr]>0) {
4336 if(i_regmap[hr]!=CCREG) {
4337 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4338 if((i_dirty>>hr)&1) {
4339 assert(i_regmap[hr]<64);
4340 emit_storereg(i_regmap[hr],hr);
4341 }
4342 }
4343 }
4344 }
4345 }
4346 }
4347}
4348
4349// Load all registers (except cycle count)
4350void load_all_regs(signed char i_regmap[])
4351{
4352 int hr;
4353 for(hr=0;hr<HOST_REGS;hr++) {
4354 if(hr!=EXCLUDE_REG) {
4355 if(i_regmap[hr]==0) {
4356 emit_zeroreg(hr);
4357 }
4358 else
4359 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4360 {
4361 emit_loadreg(i_regmap[hr],hr);
4362 }
4363 }
4364 }
4365}
4366
4367// Load all current registers also needed by next instruction
4368void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4369{
4370 int hr;
4371 for(hr=0;hr<HOST_REGS;hr++) {
4372 if(hr!=EXCLUDE_REG) {
4373 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4374 if(i_regmap[hr]==0) {
4375 emit_zeroreg(hr);
4376 }
4377 else
4378 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4379 {
4380 emit_loadreg(i_regmap[hr],hr);
4381 }
4382 }
4383 }
4384 }
4385}
4386
4387// Load all regs, storing cycle count if necessary
4388void load_regs_entry(int t)
4389{
4390 int hr;
4391 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4392 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4393 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4394 emit_storereg(CCREG,HOST_CCREG);
4395 }
4396 // Load 32-bit regs
4397 for(hr=0;hr<HOST_REGS;hr++) {
4398 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4399 if(regs[t].regmap_entry[hr]==0) {
4400 emit_zeroreg(hr);
4401 }
4402 else if(regs[t].regmap_entry[hr]!=CCREG)
4403 {
4404 emit_loadreg(regs[t].regmap_entry[hr],hr);
4405 }
4406 }
4407 }
4408}
4409
4410// Store dirty registers prior to branch
4411void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4412{
4413 if(internal_branch(addr))
4414 {
4415 int t=(addr-start)>>2;
4416 int hr;
4417 for(hr=0;hr<HOST_REGS;hr++) {
4418 if(hr!=EXCLUDE_REG) {
4419 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4420 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4421 if((i_dirty>>hr)&1) {
4422 assert(i_regmap[hr]<64);
4423 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4424 emit_storereg(i_regmap[hr],hr);
4425 }
4426 }
4427 }
4428 }
4429 }
4430 }
4431 else
4432 {
4433 // Branch out of this block, write out all dirty regs
4434 wb_dirtys(i_regmap,i_dirty);
4435 }
4436}
4437
4438// Load all needed registers for branch target
4439static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4440{
4441 //if(addr>=start && addr<(start+slen*4))
4442 if(internal_branch(addr))
4443 {
4444 int t=(addr-start)>>2;
4445 int hr;
4446 // Store the cycle count before loading something else
4447 if(i_regmap[HOST_CCREG]!=CCREG) {
4448 assert(i_regmap[HOST_CCREG]==-1);
4449 }
4450 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4451 emit_storereg(CCREG,HOST_CCREG);
4452 }
4453 // Load 32-bit regs
4454 for(hr=0;hr<HOST_REGS;hr++) {
4455 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4456 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4457 if(regs[t].regmap_entry[hr]==0) {
4458 emit_zeroreg(hr);
4459 }
4460 else if(regs[t].regmap_entry[hr]!=CCREG)
4461 {
4462 emit_loadreg(regs[t].regmap_entry[hr],hr);
4463 }
4464 }
4465 }
4466 }
4467 }
4468}
4469
4470static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4471{
4472 if(addr>=start && addr<start+slen*4-4)
4473 {
4474 int t=(addr-start)>>2;
4475 int hr;
4476 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4477 for(hr=0;hr<HOST_REGS;hr++)
4478 {
4479 if(hr!=EXCLUDE_REG)
4480 {
4481 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4482 {
4483 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4484 {
4485 return 0;
4486 }
4487 else
4488 if((i_dirty>>hr)&1)
4489 {
4490 if(i_regmap[hr]<TEMPREG)
4491 {
4492 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4493 return 0;
4494 }
4495 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4496 {
4497 assert(0);
4498 }
4499 }
4500 }
4501 else // Same register but is it 32-bit or dirty?
4502 if(i_regmap[hr]>=0)
4503 {
4504 if(!((regs[t].dirty>>hr)&1))
4505 {
4506 if((i_dirty>>hr)&1)
4507 {
4508 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4509 {
4510 //printf("%x: dirty no match\n",addr);
4511 return 0;
4512 }
4513 }
4514 }
4515 }
4516 }
4517 }
4518 // Delay slots are not valid branch targets
4519 //if(t>0&&(dops[t-1].is_jump) return 0;
4520 // Delay slots require additional processing, so do not match
4521 if(dops[t].is_ds) return 0;
4522 }
4523 else
4524 {
4525 int hr;
4526 for(hr=0;hr<HOST_REGS;hr++)
4527 {
4528 if(hr!=EXCLUDE_REG)
4529 {
4530 if(i_regmap[hr]>=0)
4531 {
4532 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4533 {
4534 if((i_dirty>>hr)&1)
4535 {
4536 return 0;
4537 }
4538 }
4539 }
4540 }
4541 }
4542 }
4543 return 1;
4544}
4545
4546#ifdef DRC_DBG
4547static void drc_dbg_emit_do_cmp(int i)
4548{
4549 extern void do_insn_cmp();
4550 //extern int cycle;
4551 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4552
4553 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4554 save_regs(reglist);
4555 // write out changed consts to match the interpreter
4556 if (i > 0 && !dops[i].bt) {
4557 for (hr = 0; hr < HOST_REGS; hr++) {
4558 int reg = regs[i-1].regmap[hr];
4559 if (hr == EXCLUDE_REG || reg < 0)
4560 continue;
4561 if (!((regs[i-1].isconst >> hr) & 1))
4562 continue;
4563 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4564 continue;
4565 emit_movimm(constmap[i-1][hr],0);
4566 emit_storereg(reg, 0);
4567 }
4568 }
4569 emit_movimm(start+i*4,0);
4570 emit_writeword(0,&pcaddr);
4571 emit_far_call(do_insn_cmp);
4572 //emit_readword(&cycle,0);
4573 //emit_addimm(0,2,0);
4574 //emit_writeword(0,&cycle);
4575 (void)get_reg2;
4576 restore_regs(reglist);
4577 assem_debug("\\\\do_insn_cmp\n");
4578}
4579#else
4580#define drc_dbg_emit_do_cmp(x)
4581#endif
4582
4583// Used when a branch jumps into the delay slot of another branch
4584static void ds_assemble_entry(int i)
4585{
4586 int t=(ba[i]-start)>>2;
4587 if (!instr_addr[t])
4588 instr_addr[t] = out;
4589 assem_debug("Assemble delay slot at %x\n",ba[i]);
4590 assem_debug("<->\n");
4591 drc_dbg_emit_do_cmp(t);
4592 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4593 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4594 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4595 address_generation(t,&regs[t],regs[t].regmap_entry);
4596 if(dops[t].itype==STORE||dops[t].itype==STORELR||(dops[t].opcode&0x3b)==0x39||(dops[t].opcode&0x3b)==0x3a)
4597 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4598 is_delayslot=0;
4599 switch(dops[t].itype) {
4600 case ALU:
4601 alu_assemble(t,&regs[t]);break;
4602 case IMM16:
4603 imm16_assemble(t,&regs[t]);break;
4604 case SHIFT:
4605 shift_assemble(t,&regs[t]);break;
4606 case SHIFTIMM:
4607 shiftimm_assemble(t,&regs[t]);break;
4608 case LOAD:
4609 load_assemble(t,&regs[t]);break;
4610 case LOADLR:
4611 loadlr_assemble(t,&regs[t]);break;
4612 case STORE:
4613 store_assemble(t,&regs[t]);break;
4614 case STORELR:
4615 storelr_assemble(t,&regs[t]);break;
4616 case COP0:
4617 cop0_assemble(t,&regs[t]);break;
4618 case COP1:
4619 cop1_assemble(t,&regs[t]);break;
4620 case C1LS:
4621 c1ls_assemble(t,&regs[t]);break;
4622 case COP2:
4623 cop2_assemble(t,&regs[t]);break;
4624 case C2LS:
4625 c2ls_assemble(t,&regs[t]);break;
4626 case C2OP:
4627 c2op_assemble(t,&regs[t]);break;
4628 case MULTDIV:
4629 multdiv_assemble(t,&regs[t]);
4630 multdiv_prepare_stall(i,&regs[t]);
4631 break;
4632 case MOV:
4633 mov_assemble(t,&regs[t]);break;
4634 case SYSCALL:
4635 case HLECALL:
4636 case INTCALL:
4637 case SPAN:
4638 case UJUMP:
4639 case RJUMP:
4640 case CJUMP:
4641 case SJUMP:
4642 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4643 }
4644 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4645 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4646 if(internal_branch(ba[i]+4))
4647 assem_debug("branch: internal\n");
4648 else
4649 assem_debug("branch: external\n");
4650 assert(internal_branch(ba[i]+4));
4651 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4652 emit_jmp(0);
4653}
4654
4655static void emit_extjump(void *addr, u_int target)
4656{
4657 emit_extjump2(addr, target, dyna_linker);
4658}
4659
4660static void emit_extjump_ds(void *addr, u_int target)
4661{
4662 emit_extjump2(addr, target, dyna_linker_ds);
4663}
4664
4665// Load 2 immediates optimizing for small code size
4666static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4667{
4668 emit_movimm(imm1,rt1);
4669 emit_movimm_from(imm1,rt1,imm2,rt2);
4670}
4671
4672void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4673{
4674 int count;
4675 void *jaddr;
4676 void *idle=NULL;
4677 int t=0;
4678 if(dops[i].itype==RJUMP)
4679 {
4680 *adj=0;
4681 }
4682 //if(ba[i]>=start && ba[i]<(start+slen*4))
4683 if(internal_branch(ba[i]))
4684 {
4685 t=(ba[i]-start)>>2;
4686 if(dops[t].is_ds) *adj=-1; // Branch into delay slot adds an extra cycle
4687 else *adj=ccadj[t];
4688 }
4689 else
4690 {
4691 *adj=0;
4692 }
4693 count=ccadj[i];
4694 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4695 // Idle loop
4696 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4697 idle=out;
4698 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4699 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4700 jaddr=out;
4701 emit_jmp(0);
4702 }
4703 else if(*adj==0||invert) {
4704 int cycles=CLOCK_ADJUST(count+2);
4705 // faster loop HACK
4706#if 0
4707 if (t&&*adj) {
4708 int rel=t-i;
4709 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4710 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4711 }
4712#endif
4713 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4714 jaddr=out;
4715 emit_jns(0);
4716 }
4717 else
4718 {
4719 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4720 jaddr=out;
4721 emit_jns(0);
4722 }
4723 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4724}
4725
4726static void do_ccstub(int n)
4727{
4728 literal_pool(256);
4729 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4730 set_jump_target(stubs[n].addr, out);
4731 int i=stubs[n].b;
4732 if(stubs[n].d==NULLDS) {
4733 // Delay slot instruction is nullified ("likely" branch)
4734 wb_dirtys(regs[i].regmap,regs[i].dirty);
4735 }
4736 else if(stubs[n].d!=TAKEN) {
4737 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4738 }
4739 else {
4740 if(internal_branch(ba[i]))
4741 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4742 }
4743 if(stubs[n].c!=-1)
4744 {
4745 // Save PC as return address
4746 emit_movimm(stubs[n].c,EAX);
4747 emit_writeword(EAX,&pcaddr);
4748 }
4749 else
4750 {
4751 // Return address depends on which way the branch goes
4752 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4753 {
4754 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4755 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4756 if(dops[i].rs1==0)
4757 {
4758 s1l=s2l;
4759 s2l=-1;
4760 }
4761 else if(dops[i].rs2==0)
4762 {
4763 s2l=-1;
4764 }
4765 assert(s1l>=0);
4766 #ifdef DESTRUCTIVE_WRITEBACK
4767 if(dops[i].rs1) {
4768 if((branch_regs[i].dirty>>s1l)&&1)
4769 emit_loadreg(dops[i].rs1,s1l);
4770 }
4771 else {
4772 if((branch_regs[i].dirty>>s1l)&1)
4773 emit_loadreg(dops[i].rs2,s1l);
4774 }
4775 if(s2l>=0)
4776 if((branch_regs[i].dirty>>s2l)&1)
4777 emit_loadreg(dops[i].rs2,s2l);
4778 #endif
4779 int hr=0;
4780 int addr=-1,alt=-1,ntaddr=-1;
4781 while(hr<HOST_REGS)
4782 {
4783 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4784 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4785 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4786 {
4787 addr=hr++;break;
4788 }
4789 hr++;
4790 }
4791 while(hr<HOST_REGS)
4792 {
4793 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4794 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4795 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4796 {
4797 alt=hr++;break;
4798 }
4799 hr++;
4800 }
4801 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
4802 {
4803 while(hr<HOST_REGS)
4804 {
4805 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4806 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4807 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4808 {
4809 ntaddr=hr;break;
4810 }
4811 hr++;
4812 }
4813 assert(hr<HOST_REGS);
4814 }
4815 if((dops[i].opcode&0x2f)==4) // BEQ
4816 {
4817 #ifdef HAVE_CMOV_IMM
4818 if(s2l>=0) emit_cmp(s1l,s2l);
4819 else emit_test(s1l,s1l);
4820 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4821 #else
4822 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4823 if(s2l>=0) emit_cmp(s1l,s2l);
4824 else emit_test(s1l,s1l);
4825 emit_cmovne_reg(alt,addr);
4826 #endif
4827 }
4828 if((dops[i].opcode&0x2f)==5) // BNE
4829 {
4830 #ifdef HAVE_CMOV_IMM
4831 if(s2l>=0) emit_cmp(s1l,s2l);
4832 else emit_test(s1l,s1l);
4833 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4834 #else
4835 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4836 if(s2l>=0) emit_cmp(s1l,s2l);
4837 else emit_test(s1l,s1l);
4838 emit_cmovne_reg(alt,addr);
4839 #endif
4840 }
4841 if((dops[i].opcode&0x2f)==6) // BLEZ
4842 {
4843 //emit_movimm(ba[i],alt);
4844 //emit_movimm(start+i*4+8,addr);
4845 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4846 emit_cmpimm(s1l,1);
4847 emit_cmovl_reg(alt,addr);
4848 }
4849 if((dops[i].opcode&0x2f)==7) // BGTZ
4850 {
4851 //emit_movimm(ba[i],addr);
4852 //emit_movimm(start+i*4+8,ntaddr);
4853 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4854 emit_cmpimm(s1l,1);
4855 emit_cmovl_reg(ntaddr,addr);
4856 }
4857 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
4858 {
4859 //emit_movimm(ba[i],alt);
4860 //emit_movimm(start+i*4+8,addr);
4861 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4862 emit_test(s1l,s1l);
4863 emit_cmovs_reg(alt,addr);
4864 }
4865 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
4866 {
4867 //emit_movimm(ba[i],addr);
4868 //emit_movimm(start+i*4+8,alt);
4869 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4870 emit_test(s1l,s1l);
4871 emit_cmovs_reg(alt,addr);
4872 }
4873 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
4874 if(source[i]&0x10000) // BC1T
4875 {
4876 //emit_movimm(ba[i],alt);
4877 //emit_movimm(start+i*4+8,addr);
4878 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4879 emit_testimm(s1l,0x800000);
4880 emit_cmovne_reg(alt,addr);
4881 }
4882 else // BC1F
4883 {
4884 //emit_movimm(ba[i],addr);
4885 //emit_movimm(start+i*4+8,alt);
4886 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4887 emit_testimm(s1l,0x800000);
4888 emit_cmovne_reg(alt,addr);
4889 }
4890 }
4891 emit_writeword(addr,&pcaddr);
4892 }
4893 else
4894 if(dops[i].itype==RJUMP)
4895 {
4896 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
4897 if (ds_writes_rjump_rs(i)) {
4898 r=get_reg(branch_regs[i].regmap,RTEMP);
4899 }
4900 emit_writeword(r,&pcaddr);
4901 }
4902 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4903 }
4904 // Update cycle count
4905 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4906 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4907 emit_far_call(cc_interrupt);
4908 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4909 if(stubs[n].d==TAKEN) {
4910 if(internal_branch(ba[i]))
4911 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4912 else if(dops[i].itype==RJUMP) {
4913 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4914 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4915 else
4916 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
4917 }
4918 }else if(stubs[n].d==NOTTAKEN) {
4919 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4920 else load_all_regs(branch_regs[i].regmap);
4921 }else if(stubs[n].d==NULLDS) {
4922 // Delay slot instruction is nullified ("likely" branch)
4923 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4924 else load_all_regs(regs[i].regmap);
4925 }else{
4926 load_all_regs(branch_regs[i].regmap);
4927 }
4928 if (stubs[n].retaddr)
4929 emit_jmp(stubs[n].retaddr);
4930 else
4931 do_jump_vaddr(stubs[n].e);
4932}
4933
4934static void add_to_linker(void *addr, u_int target, int ext)
4935{
4936 assert(linkcount < ARRAY_SIZE(link_addr));
4937 link_addr[linkcount].addr = addr;
4938 link_addr[linkcount].target = target;
4939 link_addr[linkcount].ext = ext;
4940 linkcount++;
4941}
4942
4943static void ujump_assemble_write_ra(int i)
4944{
4945 int rt;
4946 unsigned int return_address;
4947 rt=get_reg(branch_regs[i].regmap,31);
4948 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4949 //assert(rt>=0);
4950 return_address=start+i*4+8;
4951 if(rt>=0) {
4952 #ifdef USE_MINI_HT
4953 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
4954 int temp=-1; // note: must be ds-safe
4955 #ifdef HOST_TEMPREG
4956 temp=HOST_TEMPREG;
4957 #endif
4958 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4959 else emit_movimm(return_address,rt);
4960 }
4961 else
4962 #endif
4963 {
4964 #ifdef REG_PREFETCH
4965 if(temp>=0)
4966 {
4967 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4968 }
4969 #endif
4970 emit_movimm(return_address,rt); // PC into link register
4971 #ifdef IMM_PREFETCH
4972 emit_prefetch(hash_table_get(return_address));
4973 #endif
4974 }
4975 }
4976}
4977
4978static void ujump_assemble(int i,struct regstat *i_regs)
4979{
4980 int ra_done=0;
4981 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4982 address_generation(i+1,i_regs,regs[i].regmap_entry);
4983 #ifdef REG_PREFETCH
4984 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4985 if(dops[i].rt1==31&&temp>=0)
4986 {
4987 signed char *i_regmap=i_regs->regmap;
4988 int return_address=start+i*4+8;
4989 if(get_reg(branch_regs[i].regmap,31)>0)
4990 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4991 }
4992 #endif
4993 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
4994 ujump_assemble_write_ra(i); // writeback ra for DS
4995 ra_done=1;
4996 }
4997 ds_assemble(i+1,i_regs);
4998 uint64_t bc_unneeded=branch_regs[i].u;
4999 bc_unneeded|=1|(1LL<<dops[i].rt1);
5000 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5001 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5002 if(!ra_done&&dops[i].rt1==31)
5003 ujump_assemble_write_ra(i);
5004 int cc,adj;
5005 cc=get_reg(branch_regs[i].regmap,CCREG);
5006 assert(cc==HOST_CCREG);
5007 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5008 #ifdef REG_PREFETCH
5009 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5010 #endif
5011 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5012 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5013 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5014 if(internal_branch(ba[i]))
5015 assem_debug("branch: internal\n");
5016 else
5017 assem_debug("branch: external\n");
5018 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5019 ds_assemble_entry(i);
5020 }
5021 else {
5022 add_to_linker(out,ba[i],internal_branch(ba[i]));
5023 emit_jmp(0);
5024 }
5025}
5026
5027static void rjump_assemble_write_ra(int i)
5028{
5029 int rt,return_address;
5030 assert(dops[i+1].rt1!=dops[i].rt1);
5031 assert(dops[i+1].rt2!=dops[i].rt1);
5032 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5033 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5034 assert(rt>=0);
5035 return_address=start+i*4+8;
5036 #ifdef REG_PREFETCH
5037 if(temp>=0)
5038 {
5039 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5040 }
5041 #endif
5042 emit_movimm(return_address,rt); // PC into link register
5043 #ifdef IMM_PREFETCH
5044 emit_prefetch(hash_table_get(return_address));
5045 #endif
5046}
5047
5048static void rjump_assemble(int i,struct regstat *i_regs)
5049{
5050 int temp;
5051 int rs,cc;
5052 int ra_done=0;
5053 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5054 assert(rs>=0);
5055 if (ds_writes_rjump_rs(i)) {
5056 // Delay slot abuse, make a copy of the branch address register
5057 temp=get_reg(branch_regs[i].regmap,RTEMP);
5058 assert(temp>=0);
5059 assert(regs[i].regmap[temp]==RTEMP);
5060 emit_mov(rs,temp);
5061 rs=temp;
5062 }
5063 address_generation(i+1,i_regs,regs[i].regmap_entry);
5064 #ifdef REG_PREFETCH
5065 if(dops[i].rt1==31)
5066 {
5067 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5068 signed char *i_regmap=i_regs->regmap;
5069 int return_address=start+i*4+8;
5070 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5071 }
5072 }
5073 #endif
5074 #ifdef USE_MINI_HT
5075 if(dops[i].rs1==31) {
5076 int rh=get_reg(regs[i].regmap,RHASH);
5077 if(rh>=0) do_preload_rhash(rh);
5078 }
5079 #endif
5080 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5081 rjump_assemble_write_ra(i);
5082 ra_done=1;
5083 }
5084 ds_assemble(i+1,i_regs);
5085 uint64_t bc_unneeded=branch_regs[i].u;
5086 bc_unneeded|=1|(1LL<<dops[i].rt1);
5087 bc_unneeded&=~(1LL<<dops[i].rs1);
5088 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5089 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5090 if(!ra_done&&dops[i].rt1!=0)
5091 rjump_assemble_write_ra(i);
5092 cc=get_reg(branch_regs[i].regmap,CCREG);
5093 assert(cc==HOST_CCREG);
5094 (void)cc;
5095 #ifdef USE_MINI_HT
5096 int rh=get_reg(branch_regs[i].regmap,RHASH);
5097 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5098 if(dops[i].rs1==31) {
5099 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5100 do_preload_rhtbl(ht);
5101 do_rhash(rs,rh);
5102 }
5103 #endif
5104 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5105 #ifdef DESTRUCTIVE_WRITEBACK
5106 if((branch_regs[i].dirty>>rs)&1) {
5107 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5108 emit_loadreg(dops[i].rs1,rs);
5109 }
5110 }
5111 #endif
5112 #ifdef REG_PREFETCH
5113 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5114 #endif
5115 #ifdef USE_MINI_HT
5116 if(dops[i].rs1==31) {
5117 do_miniht_load(ht,rh);
5118 }
5119 #endif
5120 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5121 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5122 //assert(adj==0);
5123 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5124 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5125 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5126 // special case for RFE
5127 emit_jmp(0);
5128 else
5129 emit_jns(0);
5130 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5131 #ifdef USE_MINI_HT
5132 if(dops[i].rs1==31) {
5133 do_miniht_jump(rs,rh,ht);
5134 }
5135 else
5136 #endif
5137 {
5138 do_jump_vaddr(rs);
5139 }
5140 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5141 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5142 #endif
5143}
5144
5145static void cjump_assemble(int i,struct regstat *i_regs)
5146{
5147 signed char *i_regmap=i_regs->regmap;
5148 int cc;
5149 int match;
5150 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5151 assem_debug("match=%d\n",match);
5152 int s1l,s2l;
5153 int unconditional=0,nop=0;
5154 int invert=0;
5155 int internal=internal_branch(ba[i]);
5156 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5157 if(!match) invert=1;
5158 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5159 if(i>(ba[i]-start)>>2) invert=1;
5160 #endif
5161 #ifdef __aarch64__
5162 invert=1; // because of near cond. branches
5163 #endif
5164
5165 if(dops[i].ooo) {
5166 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5167 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5168 }
5169 else {
5170 s1l=get_reg(i_regmap,dops[i].rs1);
5171 s2l=get_reg(i_regmap,dops[i].rs2);
5172 }
5173 if(dops[i].rs1==0&&dops[i].rs2==0)
5174 {
5175 if(dops[i].opcode&1) nop=1;
5176 else unconditional=1;
5177 //assert(dops[i].opcode!=5);
5178 //assert(dops[i].opcode!=7);
5179 //assert(dops[i].opcode!=0x15);
5180 //assert(dops[i].opcode!=0x17);
5181 }
5182 else if(dops[i].rs1==0)
5183 {
5184 s1l=s2l;
5185 s2l=-1;
5186 }
5187 else if(dops[i].rs2==0)
5188 {
5189 s2l=-1;
5190 }
5191
5192 if(dops[i].ooo) {
5193 // Out of order execution (delay slot first)
5194 //printf("OOOE\n");
5195 address_generation(i+1,i_regs,regs[i].regmap_entry);
5196 ds_assemble(i+1,i_regs);
5197 int adj;
5198 uint64_t bc_unneeded=branch_regs[i].u;
5199 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5200 bc_unneeded|=1;
5201 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5202 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5203 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5204 cc=get_reg(branch_regs[i].regmap,CCREG);
5205 assert(cc==HOST_CCREG);
5206 if(unconditional)
5207 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5208 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5209 //assem_debug("cycle count (adj)\n");
5210 if(unconditional) {
5211 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5212 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5213 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5214 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5215 if(internal)
5216 assem_debug("branch: internal\n");
5217 else
5218 assem_debug("branch: external\n");
5219 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5220 ds_assemble_entry(i);
5221 }
5222 else {
5223 add_to_linker(out,ba[i],internal);
5224 emit_jmp(0);
5225 }
5226 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5227 if(((u_int)out)&7) emit_addnop(0);
5228 #endif
5229 }
5230 }
5231 else if(nop) {
5232 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5233 void *jaddr=out;
5234 emit_jns(0);
5235 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5236 }
5237 else {
5238 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5239 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5240 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5241
5242 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5243 assert(s1l>=0);
5244 if(dops[i].opcode==4) // BEQ
5245 {
5246 if(s2l>=0) emit_cmp(s1l,s2l);
5247 else emit_test(s1l,s1l);
5248 if(invert){
5249 nottaken=out;
5250 emit_jne(DJT_1);
5251 }else{
5252 add_to_linker(out,ba[i],internal);
5253 emit_jeq(0);
5254 }
5255 }
5256 if(dops[i].opcode==5) // BNE
5257 {
5258 if(s2l>=0) emit_cmp(s1l,s2l);
5259 else emit_test(s1l,s1l);
5260 if(invert){
5261 nottaken=out;
5262 emit_jeq(DJT_1);
5263 }else{
5264 add_to_linker(out,ba[i],internal);
5265 emit_jne(0);
5266 }
5267 }
5268 if(dops[i].opcode==6) // BLEZ
5269 {
5270 emit_cmpimm(s1l,1);
5271 if(invert){
5272 nottaken=out;
5273 emit_jge(DJT_1);
5274 }else{
5275 add_to_linker(out,ba[i],internal);
5276 emit_jl(0);
5277 }
5278 }
5279 if(dops[i].opcode==7) // BGTZ
5280 {
5281 emit_cmpimm(s1l,1);
5282 if(invert){
5283 nottaken=out;
5284 emit_jl(DJT_1);
5285 }else{
5286 add_to_linker(out,ba[i],internal);
5287 emit_jge(0);
5288 }
5289 }
5290 if(invert) {
5291 if(taken) set_jump_target(taken, out);
5292 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5293 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5294 if(adj) {
5295 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5296 add_to_linker(out,ba[i],internal);
5297 }else{
5298 emit_addnop(13);
5299 add_to_linker(out,ba[i],internal*2);
5300 }
5301 emit_jmp(0);
5302 }else
5303 #endif
5304 {
5305 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5306 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5307 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5308 if(internal)
5309 assem_debug("branch: internal\n");
5310 else
5311 assem_debug("branch: external\n");
5312 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5313 ds_assemble_entry(i);
5314 }
5315 else {
5316 add_to_linker(out,ba[i],internal);
5317 emit_jmp(0);
5318 }
5319 }
5320 set_jump_target(nottaken, out);
5321 }
5322
5323 if(nottaken1) set_jump_target(nottaken1, out);
5324 if(adj) {
5325 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5326 }
5327 } // (!unconditional)
5328 } // if(ooo)
5329 else
5330 {
5331 // In-order execution (branch first)
5332 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5333 if(!unconditional&&!nop) {
5334 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5335 assert(s1l>=0);
5336 if((dops[i].opcode&0x2f)==4) // BEQ
5337 {
5338 if(s2l>=0) emit_cmp(s1l,s2l);
5339 else emit_test(s1l,s1l);
5340 nottaken=out;
5341 emit_jne(DJT_2);
5342 }
5343 if((dops[i].opcode&0x2f)==5) // BNE
5344 {
5345 if(s2l>=0) emit_cmp(s1l,s2l);
5346 else emit_test(s1l,s1l);
5347 nottaken=out;
5348 emit_jeq(DJT_2);
5349 }
5350 if((dops[i].opcode&0x2f)==6) // BLEZ
5351 {
5352 emit_cmpimm(s1l,1);
5353 nottaken=out;
5354 emit_jge(DJT_2);
5355 }
5356 if((dops[i].opcode&0x2f)==7) // BGTZ
5357 {
5358 emit_cmpimm(s1l,1);
5359 nottaken=out;
5360 emit_jl(DJT_2);
5361 }
5362 } // if(!unconditional)
5363 int adj;
5364 uint64_t ds_unneeded=branch_regs[i].u;
5365 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5366 ds_unneeded|=1;
5367 // branch taken
5368 if(!nop) {
5369 if(taken) set_jump_target(taken, out);
5370 assem_debug("1:\n");
5371 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5372 // load regs
5373 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5374 address_generation(i+1,&branch_regs[i],0);
5375 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5376 ds_assemble(i+1,&branch_regs[i]);
5377 cc=get_reg(branch_regs[i].regmap,CCREG);
5378 if(cc==-1) {
5379 emit_loadreg(CCREG,cc=HOST_CCREG);
5380 // CHECK: Is the following instruction (fall thru) allocated ok?
5381 }
5382 assert(cc==HOST_CCREG);
5383 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5384 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5385 assem_debug("cycle count (adj)\n");
5386 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5387 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5388 if(internal)
5389 assem_debug("branch: internal\n");
5390 else
5391 assem_debug("branch: external\n");
5392 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5393 ds_assemble_entry(i);
5394 }
5395 else {
5396 add_to_linker(out,ba[i],internal);
5397 emit_jmp(0);
5398 }
5399 }
5400 // branch not taken
5401 if(!unconditional) {
5402 if(nottaken1) set_jump_target(nottaken1, out);
5403 set_jump_target(nottaken, out);
5404 assem_debug("2:\n");
5405 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5406 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5407 address_generation(i+1,&branch_regs[i],0);
5408 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5409 ds_assemble(i+1,&branch_regs[i]);
5410 cc=get_reg(branch_regs[i].regmap,CCREG);
5411 if (cc == -1) {
5412 // Cycle count isn't in a register, temporarily load it then write it out
5413 emit_loadreg(CCREG,HOST_CCREG);
5414 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5415 void *jaddr=out;
5416 emit_jns(0);
5417 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5418 emit_storereg(CCREG,HOST_CCREG);
5419 }
5420 else{
5421 cc=get_reg(i_regmap,CCREG);
5422 assert(cc==HOST_CCREG);
5423 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5424 void *jaddr=out;
5425 emit_jns(0);
5426 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5427 }
5428 }
5429 }
5430}
5431
5432static void sjump_assemble(int i,struct regstat *i_regs)
5433{
5434 signed char *i_regmap=i_regs->regmap;
5435 int cc;
5436 int match;
5437 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5438 assem_debug("smatch=%d\n",match);
5439 int s1l;
5440 int unconditional=0,nevertaken=0;
5441 int invert=0;
5442 int internal=internal_branch(ba[i]);
5443 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5444 if(!match) invert=1;
5445 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5446 if(i>(ba[i]-start)>>2) invert=1;
5447 #endif
5448 #ifdef __aarch64__
5449 invert=1; // because of near cond. branches
5450 #endif
5451
5452 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5453 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5454
5455 if(dops[i].ooo) {
5456 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5457 }
5458 else {
5459 s1l=get_reg(i_regmap,dops[i].rs1);
5460 }
5461 if(dops[i].rs1==0)
5462 {
5463 if(dops[i].opcode2&1) unconditional=1;
5464 else nevertaken=1;
5465 // These are never taken (r0 is never less than zero)
5466 //assert(dops[i].opcode2!=0);
5467 //assert(dops[i].opcode2!=2);
5468 //assert(dops[i].opcode2!=0x10);
5469 //assert(dops[i].opcode2!=0x12);
5470 }
5471
5472 if(dops[i].ooo) {
5473 // Out of order execution (delay slot first)
5474 //printf("OOOE\n");
5475 address_generation(i+1,i_regs,regs[i].regmap_entry);
5476 ds_assemble(i+1,i_regs);
5477 int adj;
5478 uint64_t bc_unneeded=branch_regs[i].u;
5479 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5480 bc_unneeded|=1;
5481 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5482 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5483 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5484 if(dops[i].rt1==31) {
5485 int rt,return_address;
5486 rt=get_reg(branch_regs[i].regmap,31);
5487 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5488 if(rt>=0) {
5489 // Save the PC even if the branch is not taken
5490 return_address=start+i*4+8;
5491 emit_movimm(return_address,rt); // PC into link register
5492 #ifdef IMM_PREFETCH
5493 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5494 #endif
5495 }
5496 }
5497 cc=get_reg(branch_regs[i].regmap,CCREG);
5498 assert(cc==HOST_CCREG);
5499 if(unconditional)
5500 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5501 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5502 assem_debug("cycle count (adj)\n");
5503 if(unconditional) {
5504 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5505 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5506 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5507 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5508 if(internal)
5509 assem_debug("branch: internal\n");
5510 else
5511 assem_debug("branch: external\n");
5512 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5513 ds_assemble_entry(i);
5514 }
5515 else {
5516 add_to_linker(out,ba[i],internal);
5517 emit_jmp(0);
5518 }
5519 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5520 if(((u_int)out)&7) emit_addnop(0);
5521 #endif
5522 }
5523 }
5524 else if(nevertaken) {
5525 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5526 void *jaddr=out;
5527 emit_jns(0);
5528 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5529 }
5530 else {
5531 void *nottaken = NULL;
5532 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5533 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5534 {
5535 assert(s1l>=0);
5536 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5537 {
5538 emit_test(s1l,s1l);
5539 if(invert){
5540 nottaken=out;
5541 emit_jns(DJT_1);
5542 }else{
5543 add_to_linker(out,ba[i],internal);
5544 emit_js(0);
5545 }
5546 }
5547 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5548 {
5549 emit_test(s1l,s1l);
5550 if(invert){
5551 nottaken=out;
5552 emit_js(DJT_1);
5553 }else{
5554 add_to_linker(out,ba[i],internal);
5555 emit_jns(0);
5556 }
5557 }
5558 }
5559
5560 if(invert) {
5561 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5562 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5563 if(adj) {
5564 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5565 add_to_linker(out,ba[i],internal);
5566 }else{
5567 emit_addnop(13);
5568 add_to_linker(out,ba[i],internal*2);
5569 }
5570 emit_jmp(0);
5571 }else
5572 #endif
5573 {
5574 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5575 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5576 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5577 if(internal)
5578 assem_debug("branch: internal\n");
5579 else
5580 assem_debug("branch: external\n");
5581 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5582 ds_assemble_entry(i);
5583 }
5584 else {
5585 add_to_linker(out,ba[i],internal);
5586 emit_jmp(0);
5587 }
5588 }
5589 set_jump_target(nottaken, out);
5590 }
5591
5592 if(adj) {
5593 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5594 }
5595 } // (!unconditional)
5596 } // if(ooo)
5597 else
5598 {
5599 // In-order execution (branch first)
5600 //printf("IOE\n");
5601 void *nottaken = NULL;
5602 if(dops[i].rt1==31) {
5603 int rt,return_address;
5604 rt=get_reg(branch_regs[i].regmap,31);
5605 if(rt>=0) {
5606 // Save the PC even if the branch is not taken
5607 return_address=start+i*4+8;
5608 emit_movimm(return_address,rt); // PC into link register
5609 #ifdef IMM_PREFETCH
5610 emit_prefetch(hash_table_get(return_address));
5611 #endif
5612 }
5613 }
5614 if(!unconditional) {
5615 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5616 assert(s1l>=0);
5617 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5618 {
5619 emit_test(s1l,s1l);
5620 nottaken=out;
5621 emit_jns(DJT_1);
5622 }
5623 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5624 {
5625 emit_test(s1l,s1l);
5626 nottaken=out;
5627 emit_js(DJT_1);
5628 }
5629 } // if(!unconditional)
5630 int adj;
5631 uint64_t ds_unneeded=branch_regs[i].u;
5632 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5633 ds_unneeded|=1;
5634 // branch taken
5635 if(!nevertaken) {
5636 //assem_debug("1:\n");
5637 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5638 // load regs
5639 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5640 address_generation(i+1,&branch_regs[i],0);
5641 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5642 ds_assemble(i+1,&branch_regs[i]);
5643 cc=get_reg(branch_regs[i].regmap,CCREG);
5644 if(cc==-1) {
5645 emit_loadreg(CCREG,cc=HOST_CCREG);
5646 // CHECK: Is the following instruction (fall thru) allocated ok?
5647 }
5648 assert(cc==HOST_CCREG);
5649 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5650 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5651 assem_debug("cycle count (adj)\n");
5652 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5653 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5654 if(internal)
5655 assem_debug("branch: internal\n");
5656 else
5657 assem_debug("branch: external\n");
5658 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5659 ds_assemble_entry(i);
5660 }
5661 else {
5662 add_to_linker(out,ba[i],internal);
5663 emit_jmp(0);
5664 }
5665 }
5666 // branch not taken
5667 if(!unconditional) {
5668 set_jump_target(nottaken, out);
5669 assem_debug("1:\n");
5670 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5671 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5672 address_generation(i+1,&branch_regs[i],0);
5673 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5674 ds_assemble(i+1,&branch_regs[i]);
5675 cc=get_reg(branch_regs[i].regmap,CCREG);
5676 if (cc == -1) {
5677 // Cycle count isn't in a register, temporarily load it then write it out
5678 emit_loadreg(CCREG,HOST_CCREG);
5679 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5680 void *jaddr=out;
5681 emit_jns(0);
5682 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5683 emit_storereg(CCREG,HOST_CCREG);
5684 }
5685 else{
5686 cc=get_reg(i_regmap,CCREG);
5687 assert(cc==HOST_CCREG);
5688 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5689 void *jaddr=out;
5690 emit_jns(0);
5691 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5692 }
5693 }
5694 }
5695}
5696
5697static void pagespan_assemble(int i,struct regstat *i_regs)
5698{
5699 int s1l=get_reg(i_regs->regmap,dops[i].rs1);
5700 int s2l=get_reg(i_regs->regmap,dops[i].rs2);
5701 void *taken = NULL;
5702 void *nottaken = NULL;
5703 int unconditional=0;
5704 if(dops[i].rs1==0)
5705 {
5706 s1l=s2l;
5707 s2l=-1;
5708 }
5709 else if(dops[i].rs2==0)
5710 {
5711 s2l=-1;
5712 }
5713 int hr=0;
5714 int addr=-1,alt=-1,ntaddr=-1;
5715 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5716 else {
5717 while(hr<HOST_REGS)
5718 {
5719 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5720 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5721 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5722 {
5723 addr=hr++;break;
5724 }
5725 hr++;
5726 }
5727 }
5728 while(hr<HOST_REGS)
5729 {
5730 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5731 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5732 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5733 {
5734 alt=hr++;break;
5735 }
5736 hr++;
5737 }
5738 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5739 {
5740 while(hr<HOST_REGS)
5741 {
5742 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5743 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5744 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5745 {
5746 ntaddr=hr;break;
5747 }
5748 hr++;
5749 }
5750 }
5751 assert(hr<HOST_REGS);
5752 if((dops[i].opcode&0x2e)==4||dops[i].opcode==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5753 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5754 }
5755 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5756 if(dops[i].opcode==2) // J
5757 {
5758 unconditional=1;
5759 }
5760 if(dops[i].opcode==3) // JAL
5761 {
5762 // TODO: mini_ht
5763 int rt=get_reg(i_regs->regmap,31);
5764 emit_movimm(start+i*4+8,rt);
5765 unconditional=1;
5766 }
5767 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
5768 {
5769 emit_mov(s1l,addr);
5770 if(dops[i].opcode2==9) // JALR
5771 {
5772 int rt=get_reg(i_regs->regmap,dops[i].rt1);
5773 emit_movimm(start+i*4+8,rt);
5774 }
5775 }
5776 if((dops[i].opcode&0x3f)==4) // BEQ
5777 {
5778 if(dops[i].rs1==dops[i].rs2)
5779 {
5780 unconditional=1;
5781 }
5782 else
5783 #ifdef HAVE_CMOV_IMM
5784 if(1) {
5785 if(s2l>=0) emit_cmp(s1l,s2l);
5786 else emit_test(s1l,s1l);
5787 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5788 }
5789 else
5790 #endif
5791 {
5792 assert(s1l>=0);
5793 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5794 if(s2l>=0) emit_cmp(s1l,s2l);
5795 else emit_test(s1l,s1l);
5796 emit_cmovne_reg(alt,addr);
5797 }
5798 }
5799 if((dops[i].opcode&0x3f)==5) // BNE
5800 {
5801 #ifdef HAVE_CMOV_IMM
5802 if(s2l>=0) emit_cmp(s1l,s2l);
5803 else emit_test(s1l,s1l);
5804 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5805 #else
5806 assert(s1l>=0);
5807 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5808 if(s2l>=0) emit_cmp(s1l,s2l);
5809 else emit_test(s1l,s1l);
5810 emit_cmovne_reg(alt,addr);
5811 #endif
5812 }
5813 if((dops[i].opcode&0x3f)==0x14) // BEQL
5814 {
5815 if(s2l>=0) emit_cmp(s1l,s2l);
5816 else emit_test(s1l,s1l);
5817 if(nottaken) set_jump_target(nottaken, out);
5818 nottaken=out;
5819 emit_jne(0);
5820 }
5821 if((dops[i].opcode&0x3f)==0x15) // BNEL
5822 {
5823 if(s2l>=0) emit_cmp(s1l,s2l);
5824 else emit_test(s1l,s1l);
5825 nottaken=out;
5826 emit_jeq(0);
5827 if(taken) set_jump_target(taken, out);
5828 }
5829 if((dops[i].opcode&0x3f)==6) // BLEZ
5830 {
5831 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5832 emit_cmpimm(s1l,1);
5833 emit_cmovl_reg(alt,addr);
5834 }
5835 if((dops[i].opcode&0x3f)==7) // BGTZ
5836 {
5837 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5838 emit_cmpimm(s1l,1);
5839 emit_cmovl_reg(ntaddr,addr);
5840 }
5841 if((dops[i].opcode&0x3f)==0x16) // BLEZL
5842 {
5843 assert((dops[i].opcode&0x3f)!=0x16);
5844 }
5845 if((dops[i].opcode&0x3f)==0x17) // BGTZL
5846 {
5847 assert((dops[i].opcode&0x3f)!=0x17);
5848 }
5849 assert(dops[i].opcode!=1); // BLTZ/BGEZ
5850
5851 //FIXME: Check CSREG
5852 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5853 if((source[i]&0x30000)==0) // BC1F
5854 {
5855 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5856 emit_testimm(s1l,0x800000);
5857 emit_cmovne_reg(alt,addr);
5858 }
5859 if((source[i]&0x30000)==0x10000) // BC1T
5860 {
5861 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5862 emit_testimm(s1l,0x800000);
5863 emit_cmovne_reg(alt,addr);
5864 }
5865 if((source[i]&0x30000)==0x20000) // BC1FL
5866 {
5867 emit_testimm(s1l,0x800000);
5868 nottaken=out;
5869 emit_jne(0);
5870 }
5871 if((source[i]&0x30000)==0x30000) // BC1TL
5872 {
5873 emit_testimm(s1l,0x800000);
5874 nottaken=out;
5875 emit_jeq(0);
5876 }
5877 }
5878
5879 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5880 wb_dirtys(regs[i].regmap,regs[i].dirty);
5881 if(unconditional)
5882 {
5883 emit_movimm(ba[i],HOST_BTREG);
5884 }
5885 else if(addr!=HOST_BTREG)
5886 {
5887 emit_mov(addr,HOST_BTREG);
5888 }
5889 void *branch_addr=out;
5890 emit_jmp(0);
5891 int target_addr=start+i*4+5;
5892 void *stub=out;
5893 void *compiled_target_addr=check_addr(target_addr);
5894 emit_extjump_ds(branch_addr, target_addr);
5895 if(compiled_target_addr) {
5896 set_jump_target(branch_addr, compiled_target_addr);
5897 add_jump_out(target_addr,stub);
5898 }
5899 else set_jump_target(branch_addr, stub);
5900}
5901
5902// Assemble the delay slot for the above
5903static void pagespan_ds()
5904{
5905 assem_debug("initial delay slot:\n");
5906 u_int vaddr=start+1;
5907 u_int page=get_page(vaddr);
5908 u_int vpage=get_vpage(vaddr);
5909 ll_add(jump_dirty+vpage,vaddr,(void *)out);
5910 do_dirty_stub_ds(slen*4);
5911 ll_add(jump_in+page,vaddr,(void *)out);
5912 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
5913 if(regs[0].regmap[HOST_CCREG]!=CCREG)
5914 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
5915 if(regs[0].regmap[HOST_BTREG]!=BTREG)
5916 emit_writeword(HOST_BTREG,&branch_target);
5917 load_regs(regs[0].regmap_entry,regs[0].regmap,dops[0].rs1,dops[0].rs2);
5918 address_generation(0,&regs[0],regs[0].regmap_entry);
5919 if(dops[0].itype==STORE||dops[0].itype==STORELR||(dops[0].opcode&0x3b)==0x39||(dops[0].opcode&0x3b)==0x3a)
5920 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
5921 is_delayslot=0;
5922 switch(dops[0].itype) {
5923 case ALU:
5924 alu_assemble(0,&regs[0]);break;
5925 case IMM16:
5926 imm16_assemble(0,&regs[0]);break;
5927 case SHIFT:
5928 shift_assemble(0,&regs[0]);break;
5929 case SHIFTIMM:
5930 shiftimm_assemble(0,&regs[0]);break;
5931 case LOAD:
5932 load_assemble(0,&regs[0]);break;
5933 case LOADLR:
5934 loadlr_assemble(0,&regs[0]);break;
5935 case STORE:
5936 store_assemble(0,&regs[0]);break;
5937 case STORELR:
5938 storelr_assemble(0,&regs[0]);break;
5939 case COP0:
5940 cop0_assemble(0,&regs[0]);break;
5941 case COP1:
5942 cop1_assemble(0,&regs[0]);break;
5943 case C1LS:
5944 c1ls_assemble(0,&regs[0]);break;
5945 case COP2:
5946 cop2_assemble(0,&regs[0]);break;
5947 case C2LS:
5948 c2ls_assemble(0,&regs[0]);break;
5949 case C2OP:
5950 c2op_assemble(0,&regs[0]);break;
5951 case MULTDIV:
5952 multdiv_assemble(0,&regs[0]);
5953 multdiv_prepare_stall(0,&regs[0]);
5954 break;
5955 case MOV:
5956 mov_assemble(0,&regs[0]);break;
5957 case SYSCALL:
5958 case HLECALL:
5959 case INTCALL:
5960 case SPAN:
5961 case UJUMP:
5962 case RJUMP:
5963 case CJUMP:
5964 case SJUMP:
5965 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
5966 }
5967 int btaddr=get_reg(regs[0].regmap,BTREG);
5968 if(btaddr<0) {
5969 btaddr=get_reg(regs[0].regmap,-1);
5970 emit_readword(&branch_target,btaddr);
5971 }
5972 assert(btaddr!=HOST_CCREG);
5973 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
5974#ifdef HOST_IMM8
5975 host_tempreg_acquire();
5976 emit_movimm(start+4,HOST_TEMPREG);
5977 emit_cmp(btaddr,HOST_TEMPREG);
5978 host_tempreg_release();
5979#else
5980 emit_cmpimm(btaddr,start+4);
5981#endif
5982 void *branch = out;
5983 emit_jeq(0);
5984 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
5985 do_jump_vaddr(btaddr);
5986 set_jump_target(branch, out);
5987 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5988 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5989}
5990
5991// Basic liveness analysis for MIPS registers
5992void unneeded_registers(int istart,int iend,int r)
5993{
5994 int i;
5995 uint64_t u,gte_u,b,gte_b;
5996 uint64_t temp_u,temp_gte_u=0;
5997 uint64_t gte_u_unknown=0;
5998 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
5999 gte_u_unknown=~0ll;
6000 if(iend==slen-1) {
6001 u=1;
6002 gte_u=gte_u_unknown;
6003 }else{
6004 //u=unneeded_reg[iend+1];
6005 u=1;
6006 gte_u=gte_unneeded[iend+1];
6007 }
6008
6009 for (i=iend;i>=istart;i--)
6010 {
6011 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6012 if(dops[i].is_jump)
6013 {
6014 // If subroutine call, flag return address as a possible branch target
6015 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6016
6017 if(ba[i]<start || ba[i]>=(start+slen*4))
6018 {
6019 // Branch out of this block, flush all regs
6020 u=1;
6021 gte_u=gte_u_unknown;
6022 branch_unneeded_reg[i]=u;
6023 // Merge in delay slot
6024 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6025 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6026 u|=1;
6027 gte_u|=gte_rt[i+1];
6028 gte_u&=~gte_rs[i+1];
6029 }
6030 else
6031 {
6032 // Internal branch, flag target
6033 dops[(ba[i]-start)>>2].bt=1;
6034 if(ba[i]<=start+i*4) {
6035 // Backward branch
6036 if(dops[i].is_ujump)
6037 {
6038 // Unconditional branch
6039 temp_u=1;
6040 temp_gte_u=0;
6041 } else {
6042 // Conditional branch (not taken case)
6043 temp_u=unneeded_reg[i+2];
6044 temp_gte_u&=gte_unneeded[i+2];
6045 }
6046 // Merge in delay slot
6047 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6048 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6049 temp_u|=1;
6050 temp_gte_u|=gte_rt[i+1];
6051 temp_gte_u&=~gte_rs[i+1];
6052 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6053 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6054 temp_u|=1;
6055 temp_gte_u|=gte_rt[i];
6056 temp_gte_u&=~gte_rs[i];
6057 unneeded_reg[i]=temp_u;
6058 gte_unneeded[i]=temp_gte_u;
6059 // Only go three levels deep. This recursion can take an
6060 // excessive amount of time if there are a lot of nested loops.
6061 if(r<2) {
6062 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6063 }else{
6064 unneeded_reg[(ba[i]-start)>>2]=1;
6065 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6066 }
6067 } /*else*/ if(1) {
6068 if (dops[i].is_ujump)
6069 {
6070 // Unconditional branch
6071 u=unneeded_reg[(ba[i]-start)>>2];
6072 gte_u=gte_unneeded[(ba[i]-start)>>2];
6073 branch_unneeded_reg[i]=u;
6074 // Merge in delay slot
6075 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6076 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6077 u|=1;
6078 gte_u|=gte_rt[i+1];
6079 gte_u&=~gte_rs[i+1];
6080 } else {
6081 // Conditional branch
6082 b=unneeded_reg[(ba[i]-start)>>2];
6083 gte_b=gte_unneeded[(ba[i]-start)>>2];
6084 branch_unneeded_reg[i]=b;
6085 // Branch delay slot
6086 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6087 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6088 b|=1;
6089 gte_b|=gte_rt[i+1];
6090 gte_b&=~gte_rs[i+1];
6091 u&=b;
6092 gte_u&=gte_b;
6093 if(i<slen-1) {
6094 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6095 } else {
6096 branch_unneeded_reg[i]=1;
6097 }
6098 }
6099 }
6100 }
6101 }
6102 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6103 {
6104 // SYSCALL instruction (software interrupt)
6105 u=1;
6106 }
6107 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6108 {
6109 // ERET instruction (return from interrupt)
6110 u=1;
6111 }
6112 //u=1; // DEBUG
6113 // Written registers are unneeded
6114 u|=1LL<<dops[i].rt1;
6115 u|=1LL<<dops[i].rt2;
6116 gte_u|=gte_rt[i];
6117 // Accessed registers are needed
6118 u&=~(1LL<<dops[i].rs1);
6119 u&=~(1LL<<dops[i].rs2);
6120 gte_u&=~gte_rs[i];
6121 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
6122 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6123 // Source-target dependencies
6124 // R0 is always unneeded
6125 u|=1;
6126 // Save it
6127 unneeded_reg[i]=u;
6128 gte_unneeded[i]=gte_u;
6129 /*
6130 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6131 printf("U:");
6132 int r;
6133 for(r=1;r<=CCREG;r++) {
6134 if((unneeded_reg[i]>>r)&1) {
6135 if(r==HIREG) printf(" HI");
6136 else if(r==LOREG) printf(" LO");
6137 else printf(" r%d",r);
6138 }
6139 }
6140 printf("\n");
6141 */
6142 }
6143}
6144
6145// Write back dirty registers as soon as we will no longer modify them,
6146// so that we don't end up with lots of writes at the branches.
6147void clean_registers(int istart,int iend,int wr)
6148{
6149 int i;
6150 int r;
6151 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6152 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6153 if(iend==slen-1) {
6154 will_dirty_i=will_dirty_next=0;
6155 wont_dirty_i=wont_dirty_next=0;
6156 }else{
6157 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6158 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6159 }
6160 for (i=iend;i>=istart;i--)
6161 {
6162 if(dops[i].is_jump)
6163 {
6164 if(ba[i]<start || ba[i]>=(start+slen*4))
6165 {
6166 // Branch out of this block, flush all regs
6167 if (dops[i].is_ujump)
6168 {
6169 // Unconditional branch
6170 will_dirty_i=0;
6171 wont_dirty_i=0;
6172 // Merge in delay slot (will dirty)
6173 for(r=0;r<HOST_REGS;r++) {
6174 if(r!=EXCLUDE_REG) {
6175 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6176 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6177 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6178 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6179 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6180 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6181 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6182 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6183 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6184 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6185 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6186 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6187 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6188 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6189 }
6190 }
6191 }
6192 else
6193 {
6194 // Conditional branch
6195 will_dirty_i=0;
6196 wont_dirty_i=wont_dirty_next;
6197 // Merge in delay slot (will dirty)
6198 for(r=0;r<HOST_REGS;r++) {
6199 if(r!=EXCLUDE_REG) {
6200 if (1) { // !dops[i].likely) {
6201 // Might not dirty if likely branch is not taken
6202 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6203 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6204 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6205 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6206 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6207 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6208 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6209 //if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6210 //if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6211 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6212 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6213 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6214 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6215 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6216 }
6217 }
6218 }
6219 }
6220 // Merge in delay slot (wont dirty)
6221 for(r=0;r<HOST_REGS;r++) {
6222 if(r!=EXCLUDE_REG) {
6223 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6224 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6225 if((regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6226 if((regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6227 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6228 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6229 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6230 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6231 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6232 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6233 }
6234 }
6235 if(wr) {
6236 #ifndef DESTRUCTIVE_WRITEBACK
6237 branch_regs[i].dirty&=wont_dirty_i;
6238 #endif
6239 branch_regs[i].dirty|=will_dirty_i;
6240 }
6241 }
6242 else
6243 {
6244 // Internal branch
6245 if(ba[i]<=start+i*4) {
6246 // Backward branch
6247 if (dops[i].is_ujump)
6248 {
6249 // Unconditional branch
6250 temp_will_dirty=0;
6251 temp_wont_dirty=0;
6252 // Merge in delay slot (will dirty)
6253 for(r=0;r<HOST_REGS;r++) {
6254 if(r!=EXCLUDE_REG) {
6255 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6256 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6257 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6258 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6259 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6260 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6261 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6262 if((regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6263 if((regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6264 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6265 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6266 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6267 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6268 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6269 }
6270 }
6271 } else {
6272 // Conditional branch (not taken case)
6273 temp_will_dirty=will_dirty_next;
6274 temp_wont_dirty=wont_dirty_next;
6275 // Merge in delay slot (will dirty)
6276 for(r=0;r<HOST_REGS;r++) {
6277 if(r!=EXCLUDE_REG) {
6278 if (1) { // !dops[i].likely) {
6279 // Will not dirty if likely branch is not taken
6280 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6281 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6282 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6283 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6284 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6285 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6286 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6287 //if((regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6288 //if((regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6289 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6290 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6291 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6292 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6293 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6294 }
6295 }
6296 }
6297 }
6298 // Merge in delay slot (wont dirty)
6299 for(r=0;r<HOST_REGS;r++) {
6300 if(r!=EXCLUDE_REG) {
6301 if((regs[i].regmap[r]&63)==dops[i].rt1) temp_wont_dirty|=1<<r;
6302 if((regs[i].regmap[r]&63)==dops[i].rt2) temp_wont_dirty|=1<<r;
6303 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6304 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6305 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6306 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_wont_dirty|=1<<r;
6307 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_wont_dirty|=1<<r;
6308 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6309 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6310 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6311 }
6312 }
6313 // Deal with changed mappings
6314 if(i<iend) {
6315 for(r=0;r<HOST_REGS;r++) {
6316 if(r!=EXCLUDE_REG) {
6317 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6318 temp_will_dirty&=~(1<<r);
6319 temp_wont_dirty&=~(1<<r);
6320 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6321 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6322 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6323 } else {
6324 temp_will_dirty|=1<<r;
6325 temp_wont_dirty|=1<<r;
6326 }
6327 }
6328 }
6329 }
6330 }
6331 if(wr) {
6332 will_dirty[i]=temp_will_dirty;
6333 wont_dirty[i]=temp_wont_dirty;
6334 clean_registers((ba[i]-start)>>2,i-1,0);
6335 }else{
6336 // Limit recursion. It can take an excessive amount
6337 // of time if there are a lot of nested loops.
6338 will_dirty[(ba[i]-start)>>2]=0;
6339 wont_dirty[(ba[i]-start)>>2]=-1;
6340 }
6341 }
6342 /*else*/ if(1)
6343 {
6344 if (dops[i].is_ujump)
6345 {
6346 // Unconditional branch
6347 will_dirty_i=0;
6348 wont_dirty_i=0;
6349 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6350 for(r=0;r<HOST_REGS;r++) {
6351 if(r!=EXCLUDE_REG) {
6352 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6353 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6354 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6355 }
6356 if(branch_regs[i].regmap[r]>=0) {
6357 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6358 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6359 }
6360 }
6361 }
6362 //}
6363 // Merge in delay slot
6364 for(r=0;r<HOST_REGS;r++) {
6365 if(r!=EXCLUDE_REG) {
6366 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6367 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6368 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6369 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6370 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6371 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6372 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6373 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6374 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6375 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6376 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6377 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6378 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6379 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6380 }
6381 }
6382 } else {
6383 // Conditional branch
6384 will_dirty_i=will_dirty_next;
6385 wont_dirty_i=wont_dirty_next;
6386 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6387 for(r=0;r<HOST_REGS;r++) {
6388 if(r!=EXCLUDE_REG) {
6389 signed char target_reg=branch_regs[i].regmap[r];
6390 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6391 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6392 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6393 }
6394 else if(target_reg>=0) {
6395 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6396 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6397 }
6398 }
6399 }
6400 //}
6401 // Merge in delay slot
6402 for(r=0;r<HOST_REGS;r++) {
6403 if(r!=EXCLUDE_REG) {
6404 if (1) { // !dops[i].likely) {
6405 // Might not dirty if likely branch is not taken
6406 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6407 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6408 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6409 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6410 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6411 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6412 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6413 //if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6414 //if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6415 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6416 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6417 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6418 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6419 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6420 }
6421 }
6422 }
6423 }
6424 // Merge in delay slot (won't dirty)
6425 for(r=0;r<HOST_REGS;r++) {
6426 if(r!=EXCLUDE_REG) {
6427 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6428 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6429 if((regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6430 if((regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6431 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6432 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6433 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6434 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6435 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6436 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6437 }
6438 }
6439 if(wr) {
6440 #ifndef DESTRUCTIVE_WRITEBACK
6441 branch_regs[i].dirty&=wont_dirty_i;
6442 #endif
6443 branch_regs[i].dirty|=will_dirty_i;
6444 }
6445 }
6446 }
6447 }
6448 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6449 {
6450 // SYSCALL instruction (software interrupt)
6451 will_dirty_i=0;
6452 wont_dirty_i=0;
6453 }
6454 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6455 {
6456 // ERET instruction (return from interrupt)
6457 will_dirty_i=0;
6458 wont_dirty_i=0;
6459 }
6460 will_dirty_next=will_dirty_i;
6461 wont_dirty_next=wont_dirty_i;
6462 for(r=0;r<HOST_REGS;r++) {
6463 if(r!=EXCLUDE_REG) {
6464 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6465 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6466 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6467 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6468 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6469 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6470 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6471 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6472 if(i>istart) {
6473 if (!dops[i].is_jump)
6474 {
6475 // Don't store a register immediately after writing it,
6476 // may prevent dual-issue.
6477 if((regs[i].regmap[r]&63)==dops[i-1].rt1) wont_dirty_i|=1<<r;
6478 if((regs[i].regmap[r]&63)==dops[i-1].rt2) wont_dirty_i|=1<<r;
6479 }
6480 }
6481 }
6482 }
6483 // Save it
6484 will_dirty[i]=will_dirty_i;
6485 wont_dirty[i]=wont_dirty_i;
6486 // Mark registers that won't be dirtied as not dirty
6487 if(wr) {
6488 regs[i].dirty|=will_dirty_i;
6489 #ifndef DESTRUCTIVE_WRITEBACK
6490 regs[i].dirty&=wont_dirty_i;
6491 if(dops[i].is_jump)
6492 {
6493 if (i < iend-1 && !dops[i].is_ujump) {
6494 for(r=0;r<HOST_REGS;r++) {
6495 if(r!=EXCLUDE_REG) {
6496 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6497 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6498 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6499 }
6500 }
6501 }
6502 }
6503 else
6504 {
6505 if(i<iend) {
6506 for(r=0;r<HOST_REGS;r++) {
6507 if(r!=EXCLUDE_REG) {
6508 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6509 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6510 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6511 }
6512 }
6513 }
6514 }
6515 #endif
6516 //}
6517 }
6518 // Deal with changed mappings
6519 temp_will_dirty=will_dirty_i;
6520 temp_wont_dirty=wont_dirty_i;
6521 for(r=0;r<HOST_REGS;r++) {
6522 if(r!=EXCLUDE_REG) {
6523 int nr;
6524 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6525 if(wr) {
6526 #ifndef DESTRUCTIVE_WRITEBACK
6527 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6528 #endif
6529 regs[i].wasdirty|=will_dirty_i&(1<<r);
6530 }
6531 }
6532 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6533 // Register moved to a different register
6534 will_dirty_i&=~(1<<r);
6535 wont_dirty_i&=~(1<<r);
6536 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6537 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6538 if(wr) {
6539 #ifndef DESTRUCTIVE_WRITEBACK
6540 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6541 #endif
6542 regs[i].wasdirty|=will_dirty_i&(1<<r);
6543 }
6544 }
6545 else {
6546 will_dirty_i&=~(1<<r);
6547 wont_dirty_i&=~(1<<r);
6548 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6549 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6550 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6551 } else {
6552 wont_dirty_i|=1<<r;
6553 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6554 }
6555 }
6556 }
6557 }
6558 }
6559}
6560
6561#ifdef DISASM
6562 /* disassembly */
6563void disassemble_inst(int i)
6564{
6565 if (dops[i].bt) printf("*"); else printf(" ");
6566 switch(dops[i].itype) {
6567 case UJUMP:
6568 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6569 case CJUMP:
6570 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6571 case SJUMP:
6572 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6573 case RJUMP:
6574 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
6575 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6576 else
6577 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6578 break;
6579 case SPAN:
6580 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,ba[i]);break;
6581 case IMM16:
6582 if(dops[i].opcode==0xf) //LUI
6583 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
6584 else
6585 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6586 break;
6587 case LOAD:
6588 case LOADLR:
6589 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6590 break;
6591 case STORE:
6592 case STORELR:
6593 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
6594 break;
6595 case ALU:
6596 case SHIFT:
6597 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6598 break;
6599 case MULTDIV:
6600 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6601 break;
6602 case SHIFTIMM:
6603 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6604 break;
6605 case MOV:
6606 if((dops[i].opcode2&0x1d)==0x10)
6607 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6608 else if((dops[i].opcode2&0x1d)==0x11)
6609 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6610 else
6611 printf (" %x: %s\n",start+i*4,insn[i]);
6612 break;
6613 case COP0:
6614 if(dops[i].opcode2==0)
6615 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6616 else if(dops[i].opcode2==4)
6617 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6618 else printf (" %x: %s\n",start+i*4,insn[i]);
6619 break;
6620 case COP1:
6621 if(dops[i].opcode2<3)
6622 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
6623 else if(dops[i].opcode2>3)
6624 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
6625 else printf (" %x: %s\n",start+i*4,insn[i]);
6626 break;
6627 case COP2:
6628 if(dops[i].opcode2<3)
6629 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6630 else if(dops[i].opcode2>3)
6631 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6632 else printf (" %x: %s\n",start+i*4,insn[i]);
6633 break;
6634 case C1LS:
6635 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6636 break;
6637 case C2LS:
6638 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6639 break;
6640 case INTCALL:
6641 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6642 break;
6643 default:
6644 //printf (" %s %8x\n",insn[i],source[i]);
6645 printf (" %x: %s\n",start+i*4,insn[i]);
6646 }
6647}
6648#else
6649static void disassemble_inst(int i) {}
6650#endif // DISASM
6651
6652#define DRC_TEST_VAL 0x74657374
6653
6654static void new_dynarec_test(void)
6655{
6656 int (*testfunc)(void);
6657 void *beginning;
6658 int ret[2];
6659 size_t i;
6660
6661 // check structure linkage
6662 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6663 {
6664 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6665 }
6666
6667 SysPrintf("testing if we can run recompiled code...\n");
6668 ((volatile u_int *)out)[0]++; // make cache dirty
6669
6670 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6671 out = ndrc->translation_cache;
6672 beginning = start_block();
6673 emit_movimm(DRC_TEST_VAL + i, 0); // test
6674 emit_ret();
6675 literal_pool(0);
6676 end_block(beginning);
6677 testfunc = beginning;
6678 ret[i] = testfunc();
6679 }
6680
6681 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6682 SysPrintf("test passed.\n");
6683 else
6684 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6685 out = ndrc->translation_cache;
6686}
6687
6688// clear the state completely, instead of just marking
6689// things invalid like invalidate_all_pages() does
6690void new_dynarec_clear_full(void)
6691{
6692 int n;
6693 out = ndrc->translation_cache;
6694 memset(invalid_code,1,sizeof(invalid_code));
6695 memset(hash_table,0xff,sizeof(hash_table));
6696 memset(mini_ht,-1,sizeof(mini_ht));
6697 memset(restore_candidate,0,sizeof(restore_candidate));
6698 memset(shadow,0,sizeof(shadow));
6699 copy=shadow;
6700 expirep=16384; // Expiry pointer, +2 blocks
6701 pending_exception=0;
6702 literalcount=0;
6703 stop_after_jal=0;
6704 inv_code_start=inv_code_end=~0;
6705 f1_hack=0;
6706 // TLB
6707 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6708 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6709 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6710
6711 cycle_multiplier_old = cycle_multiplier;
6712 new_dynarec_hacks_old = new_dynarec_hacks;
6713}
6714
6715void new_dynarec_init(void)
6716{
6717 SysPrintf("Init new dynarec\n");
6718
6719#ifdef BASE_ADDR_DYNAMIC
6720 #ifdef VITA
6721 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6722 if (sceBlock < 0)
6723 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6724 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6725 if (ret < 0)
6726 SysPrintf("sceKernelGetMemBlockBase failed\n");
6727 #else
6728 uintptr_t desired_addr = 0;
6729 #ifdef __ELF__
6730 extern char _end;
6731 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6732 #endif
6733 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6734 PROT_READ | PROT_WRITE | PROT_EXEC,
6735 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6736 if (ndrc == MAP_FAILED) {
6737 SysPrintf("mmap() failed: %s\n", strerror(errno));
6738 abort();
6739 }
6740 #endif
6741#else
6742 #ifndef NO_WRITE_EXEC
6743 // not all systems allow execute in data segment by default
6744 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6745 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6746 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6747 #endif
6748#endif
6749 out = ndrc->translation_cache;
6750 cycle_multiplier=200;
6751 new_dynarec_clear_full();
6752#ifdef HOST_IMM8
6753 // Copy this into local area so we don't have to put it in every literal pool
6754 invc_ptr=invalid_code;
6755#endif
6756 arch_init();
6757 new_dynarec_test();
6758#ifndef RAM_FIXED
6759 ram_offset=(uintptr_t)rdram-0x80000000;
6760#endif
6761 if (ram_offset!=0)
6762 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6763}
6764
6765void new_dynarec_cleanup(void)
6766{
6767 int n;
6768#ifdef BASE_ADDR_DYNAMIC
6769 #ifdef VITA
6770 sceKernelFreeMemBlock(sceBlock);
6771 sceBlock = -1;
6772 #else
6773 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6774 SysPrintf("munmap() failed\n");
6775 #endif
6776#endif
6777 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6778 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6779 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6780 #ifdef ROM_COPY
6781 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6782 #endif
6783}
6784
6785static u_int *get_source_start(u_int addr, u_int *limit)
6786{
6787 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6788 cycle_multiplier_override = 0;
6789
6790 if (addr < 0x00200000 ||
6791 (0xa0000000 <= addr && addr < 0xa0200000))
6792 {
6793 // used for BIOS calls mostly?
6794 *limit = (addr&0xa0000000)|0x00200000;
6795 return (u_int *)(rdram + (addr&0x1fffff));
6796 }
6797 else if (!Config.HLE && (
6798 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6799 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6800 {
6801 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6802 // but timings in PCSX are too tied to the interpreter's BIAS
6803 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6804 cycle_multiplier_override = 200;
6805
6806 *limit = (addr & 0xfff00000) | 0x80000;
6807 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6808 }
6809 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6810 *limit = (addr & 0x80600000) + 0x00200000;
6811 return (u_int *)(rdram + (addr&0x1fffff));
6812 }
6813 return NULL;
6814}
6815
6816static u_int scan_for_ret(u_int addr)
6817{
6818 u_int limit = 0;
6819 u_int *mem;
6820
6821 mem = get_source_start(addr, &limit);
6822 if (mem == NULL)
6823 return addr;
6824
6825 if (limit > addr + 0x1000)
6826 limit = addr + 0x1000;
6827 for (; addr < limit; addr += 4, mem++) {
6828 if (*mem == 0x03e00008) // jr $ra
6829 return addr + 8;
6830 }
6831 return addr;
6832}
6833
6834struct savestate_block {
6835 uint32_t addr;
6836 uint32_t regflags;
6837};
6838
6839static int addr_cmp(const void *p1_, const void *p2_)
6840{
6841 const struct savestate_block *p1 = p1_, *p2 = p2_;
6842 return p1->addr - p2->addr;
6843}
6844
6845int new_dynarec_save_blocks(void *save, int size)
6846{
6847 struct savestate_block *blocks = save;
6848 int maxcount = size / sizeof(blocks[0]);
6849 struct savestate_block tmp_blocks[1024];
6850 struct ll_entry *head;
6851 int p, s, d, o, bcnt;
6852 u_int addr;
6853
6854 o = 0;
6855 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
6856 bcnt = 0;
6857 for (head = jump_in[p]; head != NULL; head = head->next) {
6858 tmp_blocks[bcnt].addr = head->vaddr;
6859 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
6860 bcnt++;
6861 }
6862 if (bcnt < 1)
6863 continue;
6864 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6865
6866 addr = tmp_blocks[0].addr;
6867 for (s = d = 0; s < bcnt; s++) {
6868 if (tmp_blocks[s].addr < addr)
6869 continue;
6870 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6871 tmp_blocks[d++] = tmp_blocks[s];
6872 addr = scan_for_ret(tmp_blocks[s].addr);
6873 }
6874
6875 if (o + d > maxcount)
6876 d = maxcount - o;
6877 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
6878 o += d;
6879 }
6880
6881 return o * sizeof(blocks[0]);
6882}
6883
6884void new_dynarec_load_blocks(const void *save, int size)
6885{
6886 const struct savestate_block *blocks = save;
6887 int count = size / sizeof(blocks[0]);
6888 u_int regs_save[32];
6889 uint32_t f;
6890 int i, b;
6891
6892 get_addr(psxRegs.pc);
6893
6894 // change GPRs for speculation to at least partially work..
6895 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6896 for (i = 1; i < 32; i++)
6897 psxRegs.GPR.r[i] = 0x80000000;
6898
6899 for (b = 0; b < count; b++) {
6900 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6901 if (f & 1)
6902 psxRegs.GPR.r[i] = 0x1f800000;
6903 }
6904
6905 get_addr(blocks[b].addr);
6906
6907 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6908 if (f & 1)
6909 psxRegs.GPR.r[i] = 0x80000000;
6910 }
6911 }
6912
6913 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6914}
6915
6916int new_recompile_block(u_int addr)
6917{
6918 u_int pagelimit = 0;
6919 u_int state_rflags = 0;
6920 int i;
6921
6922 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
6923 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
6924 //if(debug)
6925 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
6926
6927 // this is just for speculation
6928 for (i = 1; i < 32; i++) {
6929 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
6930 state_rflags |= 1 << i;
6931 }
6932
6933 start = (u_int)addr&~3;
6934 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
6935 new_dynarec_did_compile=1;
6936 if (Config.HLE && start == 0x80001000) // hlecall
6937 {
6938 // XXX: is this enough? Maybe check hleSoftCall?
6939 void *beginning=start_block();
6940 u_int page=get_page(start);
6941
6942 invalid_code[start>>12]=0;
6943 emit_movimm(start,0);
6944 emit_writeword(0,&pcaddr);
6945 emit_far_jump(new_dyna_leave);
6946 literal_pool(0);
6947 end_block(beginning);
6948 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
6949 return 0;
6950 }
6951 else if (f1_hack == ~0u || (f1_hack != 0 && start == f1_hack)) {
6952 void *beginning = start_block();
6953 u_int page = get_page(start);
6954 emit_readword(&psxRegs.GPR.n.sp, 0);
6955 emit_readptr(&mem_rtab, 1);
6956 emit_shrimm(0, 12, 2);
6957 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
6958 emit_addimm(0, 0x18, 0);
6959 emit_adds_ptr(1, 1, 1);
6960 emit_ldr_dualindexed(1, 0, 0);
6961 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
6962 emit_far_call(get_addr_ht);
6963 emit_jmpreg(0); // jr k0
6964 literal_pool(0);
6965 end_block(beginning);
6966
6967 ll_add_flags(jump_in + page, start, state_rflags, beginning);
6968 SysPrintf("F1 hack to %08x\n", start);
6969 f1_hack = start;
6970 return 0;
6971 }
6972
6973 source = get_source_start(start, &pagelimit);
6974 if (source == NULL) {
6975 SysPrintf("Compile at bogus memory address: %08x\n", addr);
6976 abort();
6977 }
6978
6979 /* Pass 1: disassemble */
6980 /* Pass 2: register dependencies, branch targets */
6981 /* Pass 3: register allocation */
6982 /* Pass 4: branch dependencies */
6983 /* Pass 5: pre-alloc */
6984 /* Pass 6: optimize clean/dirty state */
6985 /* Pass 7: flag 32-bit registers */
6986 /* Pass 8: assembly */
6987 /* Pass 9: linker */
6988 /* Pass 10: garbage collection / free memory */
6989
6990 int j;
6991 int done=0;
6992 unsigned int type,op,op2;
6993
6994 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
6995
6996 /* Pass 1 disassembly */
6997
6998 for(i=0;!done;i++) {
6999 dops[i].bt=0;
7000 dops[i].ooo=0;
7001 op2=0;
7002 minimum_free_regs[i]=0;
7003 dops[i].opcode=op=source[i]>>26;
7004 switch(op)
7005 {
7006 case 0x00: strcpy(insn[i],"special"); type=NI;
7007 op2=source[i]&0x3f;
7008 switch(op2)
7009 {
7010 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7011 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7012 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7013 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7014 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7015 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7016 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7017 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7018 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7019 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7020 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7021 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7022 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7023 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7024 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7025 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7026 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7027 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7028 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7029 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7030 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7031 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7032 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7033 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7034 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7035 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7036 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7037 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7038 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7039 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7040 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7041 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7042 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7043 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7044 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7045#if 0
7046 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7047 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7048 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7049 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7050 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7051 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7052 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7053 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7054 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7055 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7056 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7057 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7058 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7059 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7060 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7061 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7062 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7063#endif
7064 }
7065 break;
7066 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7067 op2=(source[i]>>16)&0x1f;
7068 switch(op2)
7069 {
7070 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7071 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7072 //case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7073 //case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7074 //case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7075 //case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7076 //case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7077 //case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7078 //case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7079 //case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7080 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7081 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7082 //case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7083 //case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7084 }
7085 break;
7086 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7087 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7088 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7089 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7090 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7091 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7092 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7093 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7094 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7095 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7096 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7097 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7098 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7099 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7100 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7101 op2=(source[i]>>21)&0x1f;
7102 switch(op2)
7103 {
7104 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7105 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
7106 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7107 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
7108 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7109 }
7110 break;
7111 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
7112 op2=(source[i]>>21)&0x1f;
7113 break;
7114#if 0
7115 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7116 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7117 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7118 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7119 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7120 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7121 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7122 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7123#endif
7124 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7125 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7126 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7127 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7128 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7129 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7130 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7131#if 0
7132 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7133#endif
7134 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7135 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7136 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7137 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7138#if 0
7139 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7140 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7141#endif
7142 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7143 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7144 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7145 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7146#if 0
7147 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7148 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7149 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7150#endif
7151 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7152 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7153#if 0
7154 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7155 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7156 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7157#endif
7158 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7159 op2=(source[i]>>21)&0x1f;
7160 //if (op2 & 0x10)
7161 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7162 if (gte_handlers[source[i]&0x3f]!=NULL) {
7163 if (gte_regnames[source[i]&0x3f]!=NULL)
7164 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7165 else
7166 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7167 type=C2OP;
7168 }
7169 }
7170 else switch(op2)
7171 {
7172 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7173 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7174 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7175 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7176 }
7177 break;
7178 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7179 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7180 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7181 default: strcpy(insn[i],"???"); type=NI;
7182 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7183 break;
7184 }
7185 dops[i].itype=type;
7186 dops[i].opcode2=op2;
7187 /* Get registers/immediates */
7188 dops[i].lt1=0;
7189 gte_rs[i]=gte_rt[i]=0;
7190 switch(type) {
7191 case LOAD:
7192 dops[i].rs1=(source[i]>>21)&0x1f;
7193 dops[i].rs2=0;
7194 dops[i].rt1=(source[i]>>16)&0x1f;
7195 dops[i].rt2=0;
7196 imm[i]=(short)source[i];
7197 break;
7198 case STORE:
7199 case STORELR:
7200 dops[i].rs1=(source[i]>>21)&0x1f;
7201 dops[i].rs2=(source[i]>>16)&0x1f;
7202 dops[i].rt1=0;
7203 dops[i].rt2=0;
7204 imm[i]=(short)source[i];
7205 break;
7206 case LOADLR:
7207 // LWL/LWR only load part of the register,
7208 // therefore the target register must be treated as a source too
7209 dops[i].rs1=(source[i]>>21)&0x1f;
7210 dops[i].rs2=(source[i]>>16)&0x1f;
7211 dops[i].rt1=(source[i]>>16)&0x1f;
7212 dops[i].rt2=0;
7213 imm[i]=(short)source[i];
7214 break;
7215 case IMM16:
7216 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
7217 else dops[i].rs1=(source[i]>>21)&0x1f;
7218 dops[i].rs2=0;
7219 dops[i].rt1=(source[i]>>16)&0x1f;
7220 dops[i].rt2=0;
7221 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7222 imm[i]=(unsigned short)source[i];
7223 }else{
7224 imm[i]=(short)source[i];
7225 }
7226 break;
7227 case UJUMP:
7228 dops[i].rs1=0;
7229 dops[i].rs2=0;
7230 dops[i].rt1=0;
7231 dops[i].rt2=0;
7232 // The JAL instruction writes to r31.
7233 if (op&1) {
7234 dops[i].rt1=31;
7235 }
7236 dops[i].rs2=CCREG;
7237 break;
7238 case RJUMP:
7239 dops[i].rs1=(source[i]>>21)&0x1f;
7240 dops[i].rs2=0;
7241 dops[i].rt1=0;
7242 dops[i].rt2=0;
7243 // The JALR instruction writes to rd.
7244 if (op2&1) {
7245 dops[i].rt1=(source[i]>>11)&0x1f;
7246 }
7247 dops[i].rs2=CCREG;
7248 break;
7249 case CJUMP:
7250 dops[i].rs1=(source[i]>>21)&0x1f;
7251 dops[i].rs2=(source[i]>>16)&0x1f;
7252 dops[i].rt1=0;
7253 dops[i].rt2=0;
7254 if(op&2) { // BGTZ/BLEZ
7255 dops[i].rs2=0;
7256 }
7257 break;
7258 case SJUMP:
7259 dops[i].rs1=(source[i]>>21)&0x1f;
7260 dops[i].rs2=CCREG;
7261 dops[i].rt1=0;
7262 dops[i].rt2=0;
7263 if(op2&0x10) { // BxxAL
7264 dops[i].rt1=31;
7265 // NOTE: If the branch is not taken, r31 is still overwritten
7266 }
7267 break;
7268 case ALU:
7269 dops[i].rs1=(source[i]>>21)&0x1f; // source
7270 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
7271 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7272 dops[i].rt2=0;
7273 break;
7274 case MULTDIV:
7275 dops[i].rs1=(source[i]>>21)&0x1f; // source
7276 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
7277 dops[i].rt1=HIREG;
7278 dops[i].rt2=LOREG;
7279 break;
7280 case MOV:
7281 dops[i].rs1=0;
7282 dops[i].rs2=0;
7283 dops[i].rt1=0;
7284 dops[i].rt2=0;
7285 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
7286 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
7287 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
7288 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
7289 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
7290 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
7291 break;
7292 case SHIFT:
7293 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
7294 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
7295 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7296 dops[i].rt2=0;
7297 break;
7298 case SHIFTIMM:
7299 dops[i].rs1=(source[i]>>16)&0x1f;
7300 dops[i].rs2=0;
7301 dops[i].rt1=(source[i]>>11)&0x1f;
7302 dops[i].rt2=0;
7303 imm[i]=(source[i]>>6)&0x1f;
7304 // DSxx32 instructions
7305 if(op2>=0x3c) imm[i]|=0x20;
7306 break;
7307 case COP0:
7308 dops[i].rs1=0;
7309 dops[i].rs2=0;
7310 dops[i].rt1=0;
7311 dops[i].rt2=0;
7312 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
7313 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
7314 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
7315 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
7316 break;
7317 case COP1:
7318 dops[i].rs1=0;
7319 dops[i].rs2=0;
7320 dops[i].rt1=0;
7321 dops[i].rt2=0;
7322 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7323 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7324 dops[i].rs2=CSREG;
7325 break;
7326 case COP2:
7327 dops[i].rs1=0;
7328 dops[i].rs2=0;
7329 dops[i].rt1=0;
7330 dops[i].rt2=0;
7331 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
7332 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
7333 dops[i].rs2=CSREG;
7334 int gr=(source[i]>>11)&0x1F;
7335 switch(op2)
7336 {
7337 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7338 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7339 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7340 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7341 }
7342 break;
7343 case C1LS:
7344 dops[i].rs1=(source[i]>>21)&0x1F;
7345 dops[i].rs2=CSREG;
7346 dops[i].rt1=0;
7347 dops[i].rt2=0;
7348 imm[i]=(short)source[i];
7349 break;
7350 case C2LS:
7351 dops[i].rs1=(source[i]>>21)&0x1F;
7352 dops[i].rs2=0;
7353 dops[i].rt1=0;
7354 dops[i].rt2=0;
7355 imm[i]=(short)source[i];
7356 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7357 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7358 break;
7359 case C2OP:
7360 dops[i].rs1=0;
7361 dops[i].rs2=0;
7362 dops[i].rt1=0;
7363 dops[i].rt2=0;
7364 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7365 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7366 gte_rt[i]|=1ll<<63; // every op changes flags
7367 if((source[i]&0x3f)==GTE_MVMVA) {
7368 int v = (source[i] >> 15) & 3;
7369 gte_rs[i]&=~0xe3fll;
7370 if(v==3) gte_rs[i]|=0xe00ll;
7371 else gte_rs[i]|=3ll<<(v*2);
7372 }
7373 break;
7374 case SYSCALL:
7375 case HLECALL:
7376 case INTCALL:
7377 dops[i].rs1=CCREG;
7378 dops[i].rs2=0;
7379 dops[i].rt1=0;
7380 dops[i].rt2=0;
7381 break;
7382 default:
7383 dops[i].rs1=0;
7384 dops[i].rs2=0;
7385 dops[i].rt1=0;
7386 dops[i].rt2=0;
7387 }
7388 /* Calculate branch target addresses */
7389 if(type==UJUMP)
7390 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7391 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
7392 ba[i]=start+i*4+8; // Ignore never taken branch
7393 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
7394 ba[i]=start+i*4+8; // Ignore never taken branch
7395 else if(type==CJUMP||type==SJUMP)
7396 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7397 else ba[i]=-1;
7398
7399 /* simplify always (not)taken branches */
7400 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
7401 dops[i].rs1 = dops[i].rs2 = 0;
7402 if (!(op & 1)) {
7403 dops[i].itype = type = UJUMP;
7404 dops[i].rs2 = CCREG;
7405 }
7406 }
7407 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
7408 dops[i].itype = type = UJUMP;
7409
7410 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
7411 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
7412
7413 /* messy cases to just pass over to the interpreter */
7414 if (i > 0 && dops[i-1].is_jump) {
7415 int do_in_intrp=0;
7416 // branch in delay slot?
7417 if (dops[i].is_jump) {
7418 // don't handle first branch and call interpreter if it's hit
7419 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7420 do_in_intrp=1;
7421 }
7422 // basic load delay detection
7423 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
7424 int t=(ba[i-1]-start)/4;
7425 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
7426 // jump target wants DS result - potential load delay effect
7427 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7428 do_in_intrp=1;
7429 dops[t+1].bt=1; // expected return from interpreter
7430 }
7431 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
7432 !(i>=3&&dops[i-3].is_jump)) {
7433 // v0 overwrite like this is a sign of trouble, bail out
7434 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7435 do_in_intrp=1;
7436 }
7437 }
7438 if(do_in_intrp) {
7439 dops[i-1].rs1=CCREG;
7440 dops[i-1].rs2=dops[i-1].rt1=dops[i-1].rt2=0;
7441 ba[i-1]=-1;
7442 dops[i-1].itype=INTCALL;
7443 done=2;
7444 i--; // don't compile the DS
7445 }
7446 }
7447
7448 /* Is this the end of the block? */
7449 if (i > 0 && dops[i-1].is_ujump) {
7450 if(dops[i-1].rt1==0) { // Continue past subroutine call (JAL)
7451 done=2;
7452 }
7453 else {
7454 if(stop_after_jal) done=1;
7455 // Stop on BREAK
7456 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7457 }
7458 // Don't recompile stuff that's already compiled
7459 if(check_addr(start+i*4+4)) done=1;
7460 // Don't get too close to the limit
7461 if(i>MAXBLOCK/2) done=1;
7462 }
7463 if(dops[i].itype==SYSCALL&&stop_after_jal) done=1;
7464 if(dops[i].itype==HLECALL||dops[i].itype==INTCALL) done=2;
7465 if(done==2) {
7466 // Does the block continue due to a branch?
7467 for(j=i-1;j>=0;j--)
7468 {
7469 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7470 if(ba[j]==start+i*4+4) done=j=0;
7471 if(ba[j]==start+i*4+8) done=j=0;
7472 }
7473 }
7474 //assert(i<MAXBLOCK-1);
7475 if(start+i*4==pagelimit-4) done=1;
7476 assert(start+i*4<pagelimit);
7477 if (i==MAXBLOCK-1) done=1;
7478 // Stop if we're compiling junk
7479 if(dops[i].itype==NI&&dops[i].opcode==0x11) {
7480 done=stop_after_jal=1;
7481 SysPrintf("Disabled speculative precompilation\n");
7482 }
7483 }
7484 slen=i;
7485 if (dops[i-1].is_jump) {
7486 if(start+i*4==pagelimit) {
7487 dops[i-1].itype=SPAN;
7488 }
7489 }
7490 assert(slen>0);
7491
7492 /* spacial hack(s) */
7493 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
7494 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
7495 && dops[i-7].itype == STORE)
7496 {
7497 i = i-8;
7498 if (dops[i].itype == IMM16)
7499 i--;
7500 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
7501 if (dops[i].itype == STORELR && dops[i].rs1 == 6
7502 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
7503 {
7504 SysPrintf("F1 hack from %08x\n", start);
7505 if (f1_hack == 0)
7506 f1_hack = ~0u;
7507 }
7508 }
7509
7510 /* Pass 2 - Register dependencies and branch targets */
7511
7512 unneeded_registers(0,slen-1,0);
7513
7514 /* Pass 3 - Register allocation */
7515
7516 struct regstat current; // Current register allocations/status
7517 current.dirty=0;
7518 current.u=unneeded_reg[0];
7519 clear_all_regs(current.regmap);
7520 alloc_reg(&current,0,CCREG);
7521 dirty_reg(&current,CCREG);
7522 current.isconst=0;
7523 current.wasconst=0;
7524 current.waswritten=0;
7525 int ds=0;
7526 int cc=0;
7527 int hr=-1;
7528
7529 if((u_int)addr&1) {
7530 // First instruction is delay slot
7531 cc=-1;
7532 dops[1].bt=1;
7533 ds=1;
7534 unneeded_reg[0]=1;
7535 current.regmap[HOST_BTREG]=BTREG;
7536 }
7537
7538 for(i=0;i<slen;i++)
7539 {
7540 if(dops[i].bt)
7541 {
7542 int hr;
7543 for(hr=0;hr<HOST_REGS;hr++)
7544 {
7545 // Is this really necessary?
7546 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7547 }
7548 current.isconst=0;
7549 current.waswritten=0;
7550 }
7551
7552 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7553 regs[i].wasconst=current.isconst;
7554 regs[i].wasdirty=current.dirty;
7555 regs[i].loadedconst=0;
7556 if (!dops[i].is_jump) {
7557 if(i+1<slen) {
7558 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7559 current.u|=1;
7560 } else {
7561 current.u=1;
7562 }
7563 } else {
7564 if(i+1<slen) {
7565 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7566 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7567 current.u|=1;
7568 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7569 }
7570 dops[i].is_ds=ds;
7571 if(ds) {
7572 ds=0; // Skip delay slot, already allocated as part of branch
7573 // ...but we need to alloc it in case something jumps here
7574 if(i+1<slen) {
7575 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7576 }else{
7577 current.u=branch_unneeded_reg[i-1];
7578 }
7579 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7580 current.u|=1;
7581 struct regstat temp;
7582 memcpy(&temp,&current,sizeof(current));
7583 temp.wasdirty=temp.dirty;
7584 // TODO: Take into account unconditional branches, as below
7585 delayslot_alloc(&temp,i);
7586 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7587 regs[i].wasdirty=temp.wasdirty;
7588 regs[i].dirty=temp.dirty;
7589 regs[i].isconst=0;
7590 regs[i].wasconst=0;
7591 current.isconst=0;
7592 // Create entry (branch target) regmap
7593 for(hr=0;hr<HOST_REGS;hr++)
7594 {
7595 int r=temp.regmap[hr];
7596 if(r>=0) {
7597 if(r!=regmap_pre[i][hr]) {
7598 regs[i].regmap_entry[hr]=-1;
7599 }
7600 else
7601 {
7602 assert(r < 64);
7603 if((current.u>>r)&1) {
7604 regs[i].regmap_entry[hr]=-1;
7605 regs[i].regmap[hr]=-1;
7606 //Don't clear regs in the delay slot as the branch might need them
7607 //current.regmap[hr]=-1;
7608 }else
7609 regs[i].regmap_entry[hr]=r;
7610 }
7611 } else {
7612 // First instruction expects CCREG to be allocated
7613 if(i==0&&hr==HOST_CCREG)
7614 regs[i].regmap_entry[hr]=CCREG;
7615 else
7616 regs[i].regmap_entry[hr]=-1;
7617 }
7618 }
7619 }
7620 else { // Not delay slot
7621 switch(dops[i].itype) {
7622 case UJUMP:
7623 //current.isconst=0; // DEBUG
7624 //current.wasconst=0; // DEBUG
7625 //regs[i].wasconst=0; // DEBUG
7626 clear_const(&current,dops[i].rt1);
7627 alloc_cc(&current,i);
7628 dirty_reg(&current,CCREG);
7629 if (dops[i].rt1==31) {
7630 alloc_reg(&current,i,31);
7631 dirty_reg(&current,31);
7632 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7633 //assert(dops[i+1].rt1!=dops[i].rt1);
7634 #ifdef REG_PREFETCH
7635 alloc_reg(&current,i,PTEMP);
7636 #endif
7637 }
7638 dops[i].ooo=1;
7639 delayslot_alloc(&current,i+1);
7640 //current.isconst=0; // DEBUG
7641 ds=1;
7642 //printf("i=%d, isconst=%x\n",i,current.isconst);
7643 break;
7644 case RJUMP:
7645 //current.isconst=0;
7646 //current.wasconst=0;
7647 //regs[i].wasconst=0;
7648 clear_const(&current,dops[i].rs1);
7649 clear_const(&current,dops[i].rt1);
7650 alloc_cc(&current,i);
7651 dirty_reg(&current,CCREG);
7652 if (!ds_writes_rjump_rs(i)) {
7653 alloc_reg(&current,i,dops[i].rs1);
7654 if (dops[i].rt1!=0) {
7655 alloc_reg(&current,i,dops[i].rt1);
7656 dirty_reg(&current,dops[i].rt1);
7657 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7658 assert(dops[i+1].rt1!=dops[i].rt1);
7659 #ifdef REG_PREFETCH
7660 alloc_reg(&current,i,PTEMP);
7661 #endif
7662 }
7663 #ifdef USE_MINI_HT
7664 if(dops[i].rs1==31) { // JALR
7665 alloc_reg(&current,i,RHASH);
7666 alloc_reg(&current,i,RHTBL);
7667 }
7668 #endif
7669 delayslot_alloc(&current,i+1);
7670 } else {
7671 // The delay slot overwrites our source register,
7672 // allocate a temporary register to hold the old value.
7673 current.isconst=0;
7674 current.wasconst=0;
7675 regs[i].wasconst=0;
7676 delayslot_alloc(&current,i+1);
7677 current.isconst=0;
7678 alloc_reg(&current,i,RTEMP);
7679 }
7680 //current.isconst=0; // DEBUG
7681 dops[i].ooo=1;
7682 ds=1;
7683 break;
7684 case CJUMP:
7685 //current.isconst=0;
7686 //current.wasconst=0;
7687 //regs[i].wasconst=0;
7688 clear_const(&current,dops[i].rs1);
7689 clear_const(&current,dops[i].rs2);
7690 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7691 {
7692 alloc_cc(&current,i);
7693 dirty_reg(&current,CCREG);
7694 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7695 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7696 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7697 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7698 // The delay slot overwrites one of our conditions.
7699 // Allocate the branch condition registers instead.
7700 current.isconst=0;
7701 current.wasconst=0;
7702 regs[i].wasconst=0;
7703 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7704 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7705 }
7706 else
7707 {
7708 dops[i].ooo=1;
7709 delayslot_alloc(&current,i+1);
7710 }
7711 }
7712 else
7713 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7714 {
7715 alloc_cc(&current,i);
7716 dirty_reg(&current,CCREG);
7717 alloc_reg(&current,i,dops[i].rs1);
7718 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7719 // The delay slot overwrites one of our conditions.
7720 // Allocate the branch condition registers instead.
7721 current.isconst=0;
7722 current.wasconst=0;
7723 regs[i].wasconst=0;
7724 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7725 }
7726 else
7727 {
7728 dops[i].ooo=1;
7729 delayslot_alloc(&current,i+1);
7730 }
7731 }
7732 else
7733 // Don't alloc the delay slot yet because we might not execute it
7734 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7735 {
7736 current.isconst=0;
7737 current.wasconst=0;
7738 regs[i].wasconst=0;
7739 alloc_cc(&current,i);
7740 dirty_reg(&current,CCREG);
7741 alloc_reg(&current,i,dops[i].rs1);
7742 alloc_reg(&current,i,dops[i].rs2);
7743 }
7744 else
7745 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7746 {
7747 current.isconst=0;
7748 current.wasconst=0;
7749 regs[i].wasconst=0;
7750 alloc_cc(&current,i);
7751 dirty_reg(&current,CCREG);
7752 alloc_reg(&current,i,dops[i].rs1);
7753 }
7754 ds=1;
7755 //current.isconst=0;
7756 break;
7757 case SJUMP:
7758 //current.isconst=0;
7759 //current.wasconst=0;
7760 //regs[i].wasconst=0;
7761 clear_const(&current,dops[i].rs1);
7762 clear_const(&current,dops[i].rt1);
7763 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
7764 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
7765 {
7766 alloc_cc(&current,i);
7767 dirty_reg(&current,CCREG);
7768 alloc_reg(&current,i,dops[i].rs1);
7769 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
7770 alloc_reg(&current,i,31);
7771 dirty_reg(&current,31);
7772 //#ifdef REG_PREFETCH
7773 //alloc_reg(&current,i,PTEMP);
7774 //#endif
7775 }
7776 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7777 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7778 // Allocate the branch condition registers instead.
7779 current.isconst=0;
7780 current.wasconst=0;
7781 regs[i].wasconst=0;
7782 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7783 }
7784 else
7785 {
7786 dops[i].ooo=1;
7787 delayslot_alloc(&current,i+1);
7788 }
7789 }
7790 else
7791 // Don't alloc the delay slot yet because we might not execute it
7792 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
7793 {
7794 current.isconst=0;
7795 current.wasconst=0;
7796 regs[i].wasconst=0;
7797 alloc_cc(&current,i);
7798 dirty_reg(&current,CCREG);
7799 alloc_reg(&current,i,dops[i].rs1);
7800 }
7801 ds=1;
7802 //current.isconst=0;
7803 break;
7804 case IMM16:
7805 imm16_alloc(&current,i);
7806 break;
7807 case LOAD:
7808 case LOADLR:
7809 load_alloc(&current,i);
7810 break;
7811 case STORE:
7812 case STORELR:
7813 store_alloc(&current,i);
7814 break;
7815 case ALU:
7816 alu_alloc(&current,i);
7817 break;
7818 case SHIFT:
7819 shift_alloc(&current,i);
7820 break;
7821 case MULTDIV:
7822 multdiv_alloc(&current,i);
7823 break;
7824 case SHIFTIMM:
7825 shiftimm_alloc(&current,i);
7826 break;
7827 case MOV:
7828 mov_alloc(&current,i);
7829 break;
7830 case COP0:
7831 cop0_alloc(&current,i);
7832 break;
7833 case COP1:
7834 break;
7835 case COP2:
7836 cop2_alloc(&current,i);
7837 break;
7838 case C1LS:
7839 c1ls_alloc(&current,i);
7840 break;
7841 case C2LS:
7842 c2ls_alloc(&current,i);
7843 break;
7844 case C2OP:
7845 c2op_alloc(&current,i);
7846 break;
7847 case SYSCALL:
7848 case HLECALL:
7849 case INTCALL:
7850 syscall_alloc(&current,i);
7851 break;
7852 case SPAN:
7853 pagespan_alloc(&current,i);
7854 break;
7855 }
7856
7857 // Create entry (branch target) regmap
7858 for(hr=0;hr<HOST_REGS;hr++)
7859 {
7860 int r,or;
7861 r=current.regmap[hr];
7862 if(r>=0) {
7863 if(r!=regmap_pre[i][hr]) {
7864 // TODO: delay slot (?)
7865 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7866 if(or<0||(r&63)>=TEMPREG){
7867 regs[i].regmap_entry[hr]=-1;
7868 }
7869 else
7870 {
7871 // Just move it to a different register
7872 regs[i].regmap_entry[hr]=r;
7873 // If it was dirty before, it's still dirty
7874 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7875 }
7876 }
7877 else
7878 {
7879 // Unneeded
7880 if(r==0){
7881 regs[i].regmap_entry[hr]=0;
7882 }
7883 else
7884 {
7885 assert(r<64);
7886 if((current.u>>r)&1) {
7887 regs[i].regmap_entry[hr]=-1;
7888 //regs[i].regmap[hr]=-1;
7889 current.regmap[hr]=-1;
7890 }else
7891 regs[i].regmap_entry[hr]=r;
7892 }
7893 }
7894 } else {
7895 // Branches expect CCREG to be allocated at the target
7896 if(regmap_pre[i][hr]==CCREG)
7897 regs[i].regmap_entry[hr]=CCREG;
7898 else
7899 regs[i].regmap_entry[hr]=-1;
7900 }
7901 }
7902 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7903 }
7904
7905 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
7906 current.waswritten|=1<<dops[i-1].rs1;
7907 current.waswritten&=~(1<<dops[i].rt1);
7908 current.waswritten&=~(1<<dops[i].rt2);
7909 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
7910 current.waswritten&=~(1<<dops[i].rs1);
7911
7912 /* Branch post-alloc */
7913 if(i>0)
7914 {
7915 current.wasdirty=current.dirty;
7916 switch(dops[i-1].itype) {
7917 case UJUMP:
7918 memcpy(&branch_regs[i-1],&current,sizeof(current));
7919 branch_regs[i-1].isconst=0;
7920 branch_regs[i-1].wasconst=0;
7921 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7922 alloc_cc(&branch_regs[i-1],i-1);
7923 dirty_reg(&branch_regs[i-1],CCREG);
7924 if(dops[i-1].rt1==31) { // JAL
7925 alloc_reg(&branch_regs[i-1],i-1,31);
7926 dirty_reg(&branch_regs[i-1],31);
7927 }
7928 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7929 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7930 break;
7931 case RJUMP:
7932 memcpy(&branch_regs[i-1],&current,sizeof(current));
7933 branch_regs[i-1].isconst=0;
7934 branch_regs[i-1].wasconst=0;
7935 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7936 alloc_cc(&branch_regs[i-1],i-1);
7937 dirty_reg(&branch_regs[i-1],CCREG);
7938 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
7939 if(dops[i-1].rt1!=0) { // JALR
7940 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
7941 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
7942 }
7943 #ifdef USE_MINI_HT
7944 if(dops[i-1].rs1==31) { // JALR
7945 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7946 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7947 }
7948 #endif
7949 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7950 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7951 break;
7952 case CJUMP:
7953 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
7954 {
7955 alloc_cc(&current,i-1);
7956 dirty_reg(&current,CCREG);
7957 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
7958 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
7959 // The delay slot overwrote one of our conditions
7960 // Delay slot goes after the test (in order)
7961 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7962 current.u|=1;
7963 delayslot_alloc(&current,i);
7964 current.isconst=0;
7965 }
7966 else
7967 {
7968 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7969 // Alloc the branch condition registers
7970 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
7971 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
7972 }
7973 memcpy(&branch_regs[i-1],&current,sizeof(current));
7974 branch_regs[i-1].isconst=0;
7975 branch_regs[i-1].wasconst=0;
7976 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7977 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7978 }
7979 else
7980 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
7981 {
7982 alloc_cc(&current,i-1);
7983 dirty_reg(&current,CCREG);
7984 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7985 // The delay slot overwrote the branch condition
7986 // Delay slot goes after the test (in order)
7987 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7988 current.u|=1;
7989 delayslot_alloc(&current,i);
7990 current.isconst=0;
7991 }
7992 else
7993 {
7994 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7995 // Alloc the branch condition register
7996 alloc_reg(&current,i-1,dops[i-1].rs1);
7997 }
7998 memcpy(&branch_regs[i-1],&current,sizeof(current));
7999 branch_regs[i-1].isconst=0;
8000 branch_regs[i-1].wasconst=0;
8001 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8002 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8003 }
8004 else
8005 // Alloc the delay slot in case the branch is taken
8006 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
8007 {
8008 memcpy(&branch_regs[i-1],&current,sizeof(current));
8009 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8010 alloc_cc(&branch_regs[i-1],i);
8011 dirty_reg(&branch_regs[i-1],CCREG);
8012 delayslot_alloc(&branch_regs[i-1],i);
8013 branch_regs[i-1].isconst=0;
8014 alloc_reg(&current,i,CCREG); // Not taken path
8015 dirty_reg(&current,CCREG);
8016 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8017 }
8018 else
8019 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
8020 {
8021 memcpy(&branch_regs[i-1],&current,sizeof(current));
8022 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8023 alloc_cc(&branch_regs[i-1],i);
8024 dirty_reg(&branch_regs[i-1],CCREG);
8025 delayslot_alloc(&branch_regs[i-1],i);
8026 branch_regs[i-1].isconst=0;
8027 alloc_reg(&current,i,CCREG); // Not taken path
8028 dirty_reg(&current,CCREG);
8029 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8030 }
8031 break;
8032 case SJUMP:
8033 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
8034 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
8035 {
8036 alloc_cc(&current,i-1);
8037 dirty_reg(&current,CCREG);
8038 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8039 // The delay slot overwrote the branch condition
8040 // Delay slot goes after the test (in order)
8041 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8042 current.u|=1;
8043 delayslot_alloc(&current,i);
8044 current.isconst=0;
8045 }
8046 else
8047 {
8048 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8049 // Alloc the branch condition register
8050 alloc_reg(&current,i-1,dops[i-1].rs1);
8051 }
8052 memcpy(&branch_regs[i-1],&current,sizeof(current));
8053 branch_regs[i-1].isconst=0;
8054 branch_regs[i-1].wasconst=0;
8055 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8056 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8057 }
8058 else
8059 // Alloc the delay slot in case the branch is taken
8060 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
8061 {
8062 memcpy(&branch_regs[i-1],&current,sizeof(current));
8063 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8064 alloc_cc(&branch_regs[i-1],i);
8065 dirty_reg(&branch_regs[i-1],CCREG);
8066 delayslot_alloc(&branch_regs[i-1],i);
8067 branch_regs[i-1].isconst=0;
8068 alloc_reg(&current,i,CCREG); // Not taken path
8069 dirty_reg(&current,CCREG);
8070 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8071 }
8072 // FIXME: BLTZAL/BGEZAL
8073 if(dops[i-1].opcode2&0x10) { // BxxZAL
8074 alloc_reg(&branch_regs[i-1],i-1,31);
8075 dirty_reg(&branch_regs[i-1],31);
8076 }
8077 break;
8078 }
8079
8080 if (dops[i-1].is_ujump)
8081 {
8082 if(dops[i-1].rt1==31) // JAL/JALR
8083 {
8084 // Subroutine call will return here, don't alloc any registers
8085 current.dirty=0;
8086 clear_all_regs(current.regmap);
8087 alloc_reg(&current,i,CCREG);
8088 dirty_reg(&current,CCREG);
8089 }
8090 else if(i+1<slen)
8091 {
8092 // Internal branch will jump here, match registers to caller
8093 current.dirty=0;
8094 clear_all_regs(current.regmap);
8095 alloc_reg(&current,i,CCREG);
8096 dirty_reg(&current,CCREG);
8097 for(j=i-1;j>=0;j--)
8098 {
8099 if(ba[j]==start+i*4+4) {
8100 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8101 current.dirty=branch_regs[j].dirty;
8102 break;
8103 }
8104 }
8105 while(j>=0) {
8106 if(ba[j]==start+i*4+4) {
8107 for(hr=0;hr<HOST_REGS;hr++) {
8108 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8109 current.regmap[hr]=-1;
8110 }
8111 current.dirty&=branch_regs[j].dirty;
8112 }
8113 }
8114 j--;
8115 }
8116 }
8117 }
8118 }
8119
8120 // Count cycles in between branches
8121 ccadj[i]=cc;
8122 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
8123 {
8124 cc=0;
8125 }
8126#if !defined(DRC_DBG)
8127 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8128 {
8129 // this should really be removed since the real stalls have been implemented,
8130 // but doing so causes sizeable perf regression against the older version
8131 u_int gtec = gte_cycletab[source[i] & 0x3f];
8132 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8133 }
8134 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
8135 {
8136 cc+=4;
8137 }
8138 else if(dops[i].itype==C2LS)
8139 {
8140 // same as with C2OP
8141 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8142 }
8143#endif
8144 else
8145 {
8146 cc++;
8147 }
8148
8149 if(!dops[i].is_ds) {
8150 regs[i].dirty=current.dirty;
8151 regs[i].isconst=current.isconst;
8152 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8153 }
8154 for(hr=0;hr<HOST_REGS;hr++) {
8155 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8156 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8157 regs[i].wasconst&=~(1<<hr);
8158 }
8159 }
8160 }
8161 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8162 regs[i].waswritten=current.waswritten;
8163 }
8164
8165 /* Pass 4 - Cull unused host registers */
8166
8167 uint64_t nr=0;
8168
8169 for (i=slen-1;i>=0;i--)
8170 {
8171 int hr;
8172 if(dops[i].is_jump)
8173 {
8174 if(ba[i]<start || ba[i]>=(start+slen*4))
8175 {
8176 // Branch out of this block, don't need anything
8177 nr=0;
8178 }
8179 else
8180 {
8181 // Internal branch
8182 // Need whatever matches the target
8183 nr=0;
8184 int t=(ba[i]-start)>>2;
8185 for(hr=0;hr<HOST_REGS;hr++)
8186 {
8187 if(regs[i].regmap_entry[hr]>=0) {
8188 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8189 }
8190 }
8191 }
8192 // Conditional branch may need registers for following instructions
8193 if (!dops[i].is_ujump)
8194 {
8195 if(i<slen-2) {
8196 nr|=needed_reg[i+2];
8197 for(hr=0;hr<HOST_REGS;hr++)
8198 {
8199 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8200 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8201 }
8202 }
8203 }
8204 // Don't need stuff which is overwritten
8205 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8206 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8207 // Merge in delay slot
8208 for(hr=0;hr<HOST_REGS;hr++)
8209 {
8210 if(dops[i+1].rt1&&dops[i+1].rt1==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8211 if(dops[i+1].rt2&&dops[i+1].rt2==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8212 if(dops[i+1].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8213 if(dops[i+1].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8214 if(dops[i+1].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8215 if(dops[i+1].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8216 if(dops[i+1].itype==STORE || dops[i+1].itype==STORELR || (dops[i+1].opcode&0x3b)==0x39 || (dops[i+1].opcode&0x3b)==0x3a) {
8217 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8218 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8219 }
8220 }
8221 }
8222 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8223 {
8224 // SYSCALL instruction (software interrupt)
8225 nr=0;
8226 }
8227 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8228 {
8229 // ERET instruction (return from interrupt)
8230 nr=0;
8231 }
8232 else // Non-branch
8233 {
8234 if(i<slen-1) {
8235 for(hr=0;hr<HOST_REGS;hr++) {
8236 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8237 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8238 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8239 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8240 }
8241 }
8242 }
8243 for(hr=0;hr<HOST_REGS;hr++)
8244 {
8245 // Overwritten registers are not needed
8246 if(dops[i].rt1&&dops[i].rt1==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8247 if(dops[i].rt2&&dops[i].rt2==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8248 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8249 // Source registers are needed
8250 if(dops[i].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8251 if(dops[i].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8252 if(dops[i].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8253 if(dops[i].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8254 if(dops[i].itype==STORE || dops[i].itype==STORELR || (dops[i].opcode&0x3b)==0x39 || (dops[i].opcode&0x3b)==0x3a) {
8255 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8256 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8257 }
8258 // Don't store a register immediately after writing it,
8259 // may prevent dual-issue.
8260 // But do so if this is a branch target, otherwise we
8261 // might have to load the register before the branch.
8262 if(i>0&&!dops[i].bt&&((regs[i].wasdirty>>hr)&1)) {
8263 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8264 if(dops[i-1].rt1==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8265 if(dops[i-1].rt2==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8266 }
8267 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8268 if(dops[i-1].rt1==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8269 if(dops[i-1].rt2==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8270 }
8271 }
8272 }
8273 // Cycle count is needed at branches. Assume it is needed at the target too.
8274 if(i==0||dops[i].bt||dops[i].itype==CJUMP||dops[i].itype==SPAN) {
8275 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8276 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8277 }
8278 // Save it
8279 needed_reg[i]=nr;
8280
8281 // Deallocate unneeded registers
8282 for(hr=0;hr<HOST_REGS;hr++)
8283 {
8284 if(!((nr>>hr)&1)) {
8285 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8286 if(dops[i].is_jump)
8287 {
8288 int map=0,temp=0;
8289 if(dops[i+1].itype==STORE || dops[i+1].itype==STORELR ||
8290 (dops[i+1].opcode&0x3b)==0x39 || (dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8291 map=INVCP;
8292 }
8293 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR ||
8294 dops[i+1].itype==C1LS || dops[i+1].itype==C2LS)
8295 temp=FTEMP;
8296 if((regs[i].regmap[hr]&63)!=dops[i].rs1 && (regs[i].regmap[hr]&63)!=dops[i].rs2 &&
8297 (regs[i].regmap[hr]&63)!=dops[i].rt1 && (regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8298 (regs[i].regmap[hr]&63)!=dops[i+1].rt1 && (regs[i].regmap[hr]&63)!=dops[i+1].rt2 &&
8299 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
8300 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8301 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8302 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8303 regs[i].regmap[hr]!=map )
8304 {
8305 regs[i].regmap[hr]=-1;
8306 regs[i].isconst&=~(1<<hr);
8307 if((branch_regs[i].regmap[hr]&63)!=dops[i].rs1 && (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 &&
8308 (branch_regs[i].regmap[hr]&63)!=dops[i].rt1 && (branch_regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8309 (branch_regs[i].regmap[hr]&63)!=dops[i+1].rt1 && (branch_regs[i].regmap[hr]&63)!=dops[i+1].rt2 &&
8310 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
8311 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8312 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8313 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8314 branch_regs[i].regmap[hr]!=map)
8315 {
8316 branch_regs[i].regmap[hr]=-1;
8317 branch_regs[i].regmap_entry[hr]=-1;
8318 if (!dops[i].is_ujump)
8319 {
8320 if (i < slen-2) {
8321 regmap_pre[i+2][hr]=-1;
8322 regs[i+2].wasconst&=~(1<<hr);
8323 }
8324 }
8325 }
8326 }
8327 }
8328 else
8329 {
8330 // Non-branch
8331 if(i>0)
8332 {
8333 int map=-1,temp=-1;
8334 if(dops[i].itype==STORE || dops[i].itype==STORELR ||
8335 (dops[i].opcode&0x3b)==0x39 || (dops[i].opcode&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8336 map=INVCP;
8337 }
8338 if(dops[i].itype==LOADLR || dops[i].itype==STORELR ||
8339 dops[i].itype==C1LS || dops[i].itype==C2LS)
8340 temp=FTEMP;
8341 if((regs[i].regmap[hr]&63)!=dops[i].rt1 && (regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8342 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8343 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8344 (dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG))
8345 {
8346 if(i<slen-1&&!dops[i].is_ds) {
8347 assert(regs[i].regmap[hr]<64);
8348 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8349 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8350 {
8351 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8352 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8353 }
8354 regmap_pre[i+1][hr]=-1;
8355 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8356 regs[i+1].wasconst&=~(1<<hr);
8357 }
8358 regs[i].regmap[hr]=-1;
8359 regs[i].isconst&=~(1<<hr);
8360 }
8361 }
8362 }
8363 } // if needed
8364 } // for hr
8365 }
8366
8367 /* Pass 5 - Pre-allocate registers */
8368
8369 // If a register is allocated during a loop, try to allocate it for the
8370 // entire loop, if possible. This avoids loading/storing registers
8371 // inside of the loop.
8372
8373 signed char f_regmap[HOST_REGS];
8374 clear_all_regs(f_regmap);
8375 for(i=0;i<slen-1;i++)
8376 {
8377 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8378 {
8379 if(ba[i]>=start && ba[i]<(start+i*4))
8380 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8381 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8382 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
8383 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
8384 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8385 {
8386 int t=(ba[i]-start)>>2;
8387 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8388 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8389 for(hr=0;hr<HOST_REGS;hr++)
8390 {
8391 if(regs[i].regmap[hr]>=0) {
8392 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8393 // dealloc old register
8394 int n;
8395 for(n=0;n<HOST_REGS;n++)
8396 {
8397 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8398 }
8399 // and alloc new one
8400 f_regmap[hr]=regs[i].regmap[hr];
8401 }
8402 }
8403 if(branch_regs[i].regmap[hr]>=0) {
8404 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8405 // dealloc old register
8406 int n;
8407 for(n=0;n<HOST_REGS;n++)
8408 {
8409 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8410 }
8411 // and alloc new one
8412 f_regmap[hr]=branch_regs[i].regmap[hr];
8413 }
8414 }
8415 if(dops[i].ooo) {
8416 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8417 f_regmap[hr]=branch_regs[i].regmap[hr];
8418 }else{
8419 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8420 f_regmap[hr]=branch_regs[i].regmap[hr];
8421 }
8422 // Avoid dirty->clean transition
8423 #ifdef DESTRUCTIVE_WRITEBACK
8424 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8425 #endif
8426 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8427 // case above, however it's always a good idea. We can't hoist the
8428 // load if the register was already allocated, so there's no point
8429 // wasting time analyzing most of these cases. It only "succeeds"
8430 // when the mapping was different and the load can be replaced with
8431 // a mov, which is of negligible benefit. So such cases are
8432 // skipped below.
8433 if(f_regmap[hr]>0) {
8434 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8435 int r=f_regmap[hr];
8436 for(j=t;j<=i;j++)
8437 {
8438 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8439 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8440 assert(r < 64);
8441 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8442 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8443 int k;
8444 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8445 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8446 if(r>63) {
8447 if(get_reg(regs[i].regmap,r&63)<0) break;
8448 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8449 }
8450 k=i;
8451 while(k>1&&regs[k-1].regmap[hr]==-1) {
8452 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8453 //printf("no free regs for store %x\n",start+(k-1)*4);
8454 break;
8455 }
8456 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8457 //printf("no-match due to different register\n");
8458 break;
8459 }
8460 if (dops[k-2].is_jump) {
8461 //printf("no-match due to branch\n");
8462 break;
8463 }
8464 // call/ret fast path assumes no registers allocated
8465 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8466 break;
8467 }
8468 assert(r < 64);
8469 k--;
8470 }
8471 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8472 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8473 while(k<i) {
8474 regs[k].regmap_entry[hr]=f_regmap[hr];
8475 regs[k].regmap[hr]=f_regmap[hr];
8476 regmap_pre[k+1][hr]=f_regmap[hr];
8477 regs[k].wasdirty&=~(1<<hr);
8478 regs[k].dirty&=~(1<<hr);
8479 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8480 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8481 regs[k].wasconst&=~(1<<hr);
8482 regs[k].isconst&=~(1<<hr);
8483 k++;
8484 }
8485 }
8486 else {
8487 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8488 break;
8489 }
8490 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8491 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8492 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8493 regs[i].regmap_entry[hr]=f_regmap[hr];
8494 regs[i].regmap[hr]=f_regmap[hr];
8495 regs[i].wasdirty&=~(1<<hr);
8496 regs[i].dirty&=~(1<<hr);
8497 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8498 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8499 regs[i].wasconst&=~(1<<hr);
8500 regs[i].isconst&=~(1<<hr);
8501 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8502 branch_regs[i].wasdirty&=~(1<<hr);
8503 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8504 branch_regs[i].regmap[hr]=f_regmap[hr];
8505 branch_regs[i].dirty&=~(1<<hr);
8506 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8507 branch_regs[i].wasconst&=~(1<<hr);
8508 branch_regs[i].isconst&=~(1<<hr);
8509 if (!dops[i].is_ujump) {
8510 regmap_pre[i+2][hr]=f_regmap[hr];
8511 regs[i+2].wasdirty&=~(1<<hr);
8512 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8513 }
8514 }
8515 }
8516 for(k=t;k<j;k++) {
8517 // Alloc register clean at beginning of loop,
8518 // but may dirty it in pass 6
8519 regs[k].regmap_entry[hr]=f_regmap[hr];
8520 regs[k].regmap[hr]=f_regmap[hr];
8521 regs[k].dirty&=~(1<<hr);
8522 regs[k].wasconst&=~(1<<hr);
8523 regs[k].isconst&=~(1<<hr);
8524 if (dops[k].is_jump) {
8525 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8526 branch_regs[k].regmap[hr]=f_regmap[hr];
8527 branch_regs[k].dirty&=~(1<<hr);
8528 branch_regs[k].wasconst&=~(1<<hr);
8529 branch_regs[k].isconst&=~(1<<hr);
8530 if (!dops[k].is_ujump) {
8531 regmap_pre[k+2][hr]=f_regmap[hr];
8532 regs[k+2].wasdirty&=~(1<<hr);
8533 }
8534 }
8535 else
8536 {
8537 regmap_pre[k+1][hr]=f_regmap[hr];
8538 regs[k+1].wasdirty&=~(1<<hr);
8539 }
8540 }
8541 if(regs[j].regmap[hr]==f_regmap[hr])
8542 regs[j].regmap_entry[hr]=f_regmap[hr];
8543 break;
8544 }
8545 if(j==i) break;
8546 if(regs[j].regmap[hr]>=0)
8547 break;
8548 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8549 //printf("no-match due to different register\n");
8550 break;
8551 }
8552 if (dops[j].is_ujump)
8553 {
8554 // Stop on unconditional branch
8555 break;
8556 }
8557 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8558 {
8559 if(dops[j].ooo) {
8560 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8561 break;
8562 }else{
8563 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8564 break;
8565 }
8566 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8567 //printf("no-match due to different register (branch)\n");
8568 break;
8569 }
8570 }
8571 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8572 //printf("No free regs for store %x\n",start+j*4);
8573 break;
8574 }
8575 assert(f_regmap[hr]<64);
8576 }
8577 }
8578 }
8579 }
8580 }
8581 }else{
8582 // Non branch or undetermined branch target
8583 for(hr=0;hr<HOST_REGS;hr++)
8584 {
8585 if(hr!=EXCLUDE_REG) {
8586 if(regs[i].regmap[hr]>=0) {
8587 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8588 // dealloc old register
8589 int n;
8590 for(n=0;n<HOST_REGS;n++)
8591 {
8592 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8593 }
8594 // and alloc new one
8595 f_regmap[hr]=regs[i].regmap[hr];
8596 }
8597 }
8598 }
8599 }
8600 // Try to restore cycle count at branch targets
8601 if(dops[i].bt) {
8602 for(j=i;j<slen-1;j++) {
8603 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8604 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8605 //printf("no free regs for store %x\n",start+j*4);
8606 break;
8607 }
8608 }
8609 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8610 int k=i;
8611 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8612 while(k<j) {
8613 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8614 regs[k].regmap[HOST_CCREG]=CCREG;
8615 regmap_pre[k+1][HOST_CCREG]=CCREG;
8616 regs[k+1].wasdirty|=1<<HOST_CCREG;
8617 regs[k].dirty|=1<<HOST_CCREG;
8618 regs[k].wasconst&=~(1<<HOST_CCREG);
8619 regs[k].isconst&=~(1<<HOST_CCREG);
8620 k++;
8621 }
8622 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8623 }
8624 // Work backwards from the branch target
8625 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8626 {
8627 //printf("Extend backwards\n");
8628 int k;
8629 k=i;
8630 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8631 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8632 //printf("no free regs for store %x\n",start+(k-1)*4);
8633 break;
8634 }
8635 k--;
8636 }
8637 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8638 //printf("Extend CC, %x ->\n",start+k*4);
8639 while(k<=i) {
8640 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8641 regs[k].regmap[HOST_CCREG]=CCREG;
8642 regmap_pre[k+1][HOST_CCREG]=CCREG;
8643 regs[k+1].wasdirty|=1<<HOST_CCREG;
8644 regs[k].dirty|=1<<HOST_CCREG;
8645 regs[k].wasconst&=~(1<<HOST_CCREG);
8646 regs[k].isconst&=~(1<<HOST_CCREG);
8647 k++;
8648 }
8649 }
8650 else {
8651 //printf("Fail Extend CC, %x ->\n",start+k*4);
8652 }
8653 }
8654 }
8655 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8656 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8657 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8658 {
8659 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8660 }
8661 }
8662 }
8663
8664 // This allocates registers (if possible) one instruction prior
8665 // to use, which can avoid a load-use penalty on certain CPUs.
8666 for(i=0;i<slen-1;i++)
8667 {
8668 if (!i || !dops[i-1].is_jump)
8669 {
8670 if(!dops[i+1].bt)
8671 {
8672 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8673 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8674 {
8675 if(dops[i+1].rs1) {
8676 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8677 {
8678 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8679 {
8680 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8681 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8682 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8683 regs[i].isconst&=~(1<<hr);
8684 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8685 constmap[i][hr]=constmap[i+1][hr];
8686 regs[i+1].wasdirty&=~(1<<hr);
8687 regs[i].dirty&=~(1<<hr);
8688 }
8689 }
8690 }
8691 if(dops[i+1].rs2) {
8692 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8693 {
8694 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8695 {
8696 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8697 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8698 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8699 regs[i].isconst&=~(1<<hr);
8700 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8701 constmap[i][hr]=constmap[i+1][hr];
8702 regs[i+1].wasdirty&=~(1<<hr);
8703 regs[i].dirty&=~(1<<hr);
8704 }
8705 }
8706 }
8707 // Preload target address for load instruction (non-constant)
8708 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8709 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8710 {
8711 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8712 {
8713 regs[i].regmap[hr]=dops[i+1].rs1;
8714 regmap_pre[i+1][hr]=dops[i+1].rs1;
8715 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8716 regs[i].isconst&=~(1<<hr);
8717 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8718 constmap[i][hr]=constmap[i+1][hr];
8719 regs[i+1].wasdirty&=~(1<<hr);
8720 regs[i].dirty&=~(1<<hr);
8721 }
8722 }
8723 }
8724 // Load source into target register
8725 if(dops[i+1].lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8726 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8727 {
8728 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8729 {
8730 regs[i].regmap[hr]=dops[i+1].rs1;
8731 regmap_pre[i+1][hr]=dops[i+1].rs1;
8732 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8733 regs[i].isconst&=~(1<<hr);
8734 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8735 constmap[i][hr]=constmap[i+1][hr];
8736 regs[i+1].wasdirty&=~(1<<hr);
8737 regs[i].dirty&=~(1<<hr);
8738 }
8739 }
8740 }
8741 // Address for store instruction (non-constant)
8742 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8743 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8744 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8745 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8746 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8747 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8748 assert(hr>=0);
8749 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8750 {
8751 regs[i].regmap[hr]=dops[i+1].rs1;
8752 regmap_pre[i+1][hr]=dops[i+1].rs1;
8753 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8754 regs[i].isconst&=~(1<<hr);
8755 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8756 constmap[i][hr]=constmap[i+1][hr];
8757 regs[i+1].wasdirty&=~(1<<hr);
8758 regs[i].dirty&=~(1<<hr);
8759 }
8760 }
8761 }
8762 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8763 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8764 int nr;
8765 hr=get_reg(regs[i+1].regmap,FTEMP);
8766 assert(hr>=0);
8767 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8768 {
8769 regs[i].regmap[hr]=dops[i+1].rs1;
8770 regmap_pre[i+1][hr]=dops[i+1].rs1;
8771 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8772 regs[i].isconst&=~(1<<hr);
8773 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8774 constmap[i][hr]=constmap[i+1][hr];
8775 regs[i+1].wasdirty&=~(1<<hr);
8776 regs[i].dirty&=~(1<<hr);
8777 }
8778 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8779 {
8780 // move it to another register
8781 regs[i+1].regmap[hr]=-1;
8782 regmap_pre[i+2][hr]=-1;
8783 regs[i+1].regmap[nr]=FTEMP;
8784 regmap_pre[i+2][nr]=FTEMP;
8785 regs[i].regmap[nr]=dops[i+1].rs1;
8786 regmap_pre[i+1][nr]=dops[i+1].rs1;
8787 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8788 regs[i].isconst&=~(1<<nr);
8789 regs[i+1].isconst&=~(1<<nr);
8790 regs[i].dirty&=~(1<<nr);
8791 regs[i+1].wasdirty&=~(1<<nr);
8792 regs[i+1].dirty&=~(1<<nr);
8793 regs[i+2].wasdirty&=~(1<<nr);
8794 }
8795 }
8796 }
8797 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
8798 if(dops[i+1].itype==LOAD)
8799 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
8800 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8801 hr=get_reg(regs[i+1].regmap,FTEMP);
8802 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8803 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8804 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8805 }
8806 if(hr>=0&&regs[i].regmap[hr]<0) {
8807 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8808 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8809 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8810 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8811 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8812 regs[i].isconst&=~(1<<hr);
8813 regs[i+1].wasdirty&=~(1<<hr);
8814 regs[i].dirty&=~(1<<hr);
8815 }
8816 }
8817 }
8818 }
8819 }
8820 }
8821 }
8822
8823 /* Pass 6 - Optimize clean/dirty state */
8824 clean_registers(0,slen-1,1);
8825
8826 /* Pass 7 - Identify 32-bit registers */
8827 for (i=slen-1;i>=0;i--)
8828 {
8829 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8830 {
8831 // Conditional branch
8832 if((source[i]>>16)!=0x1000&&i<slen-2) {
8833 // Mark this address as a branch target since it may be called
8834 // upon return from interrupt
8835 dops[i+2].bt=1;
8836 }
8837 }
8838 }
8839
8840 if(dops[slen-1].itype==SPAN) {
8841 dops[slen-1].bt=1; // Mark as a branch target so instruction can restart after exception
8842 }
8843
8844#ifdef DISASM
8845 /* Debug/disassembly */
8846 for(i=0;i<slen;i++)
8847 {
8848 printf("U:");
8849 int r;
8850 for(r=1;r<=CCREG;r++) {
8851 if((unneeded_reg[i]>>r)&1) {
8852 if(r==HIREG) printf(" HI");
8853 else if(r==LOREG) printf(" LO");
8854 else printf(" r%d",r);
8855 }
8856 }
8857 printf("\n");
8858 #if defined(__i386__) || defined(__x86_64__)
8859 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8860 #endif
8861 #ifdef __arm__
8862 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8863 #endif
8864 #if defined(__i386__) || defined(__x86_64__)
8865 printf("needs: ");
8866 if(needed_reg[i]&1) printf("eax ");
8867 if((needed_reg[i]>>1)&1) printf("ecx ");
8868 if((needed_reg[i]>>2)&1) printf("edx ");
8869 if((needed_reg[i]>>3)&1) printf("ebx ");
8870 if((needed_reg[i]>>5)&1) printf("ebp ");
8871 if((needed_reg[i]>>6)&1) printf("esi ");
8872 if((needed_reg[i]>>7)&1) printf("edi ");
8873 printf("\n");
8874 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8875 printf("dirty: ");
8876 if(regs[i].wasdirty&1) printf("eax ");
8877 if((regs[i].wasdirty>>1)&1) printf("ecx ");
8878 if((regs[i].wasdirty>>2)&1) printf("edx ");
8879 if((regs[i].wasdirty>>3)&1) printf("ebx ");
8880 if((regs[i].wasdirty>>5)&1) printf("ebp ");
8881 if((regs[i].wasdirty>>6)&1) printf("esi ");
8882 if((regs[i].wasdirty>>7)&1) printf("edi ");
8883 #endif
8884 #ifdef __arm__
8885 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
8886 printf("dirty: ");
8887 if(regs[i].wasdirty&1) printf("r0 ");
8888 if((regs[i].wasdirty>>1)&1) printf("r1 ");
8889 if((regs[i].wasdirty>>2)&1) printf("r2 ");
8890 if((regs[i].wasdirty>>3)&1) printf("r3 ");
8891 if((regs[i].wasdirty>>4)&1) printf("r4 ");
8892 if((regs[i].wasdirty>>5)&1) printf("r5 ");
8893 if((regs[i].wasdirty>>6)&1) printf("r6 ");
8894 if((regs[i].wasdirty>>7)&1) printf("r7 ");
8895 if((regs[i].wasdirty>>8)&1) printf("r8 ");
8896 if((regs[i].wasdirty>>9)&1) printf("r9 ");
8897 if((regs[i].wasdirty>>10)&1) printf("r10 ");
8898 if((regs[i].wasdirty>>12)&1) printf("r12 ");
8899 #endif
8900 printf("\n");
8901 disassemble_inst(i);
8902 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
8903 #if defined(__i386__) || defined(__x86_64__)
8904 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
8905 if(regs[i].dirty&1) printf("eax ");
8906 if((regs[i].dirty>>1)&1) printf("ecx ");
8907 if((regs[i].dirty>>2)&1) printf("edx ");
8908 if((regs[i].dirty>>3)&1) printf("ebx ");
8909 if((regs[i].dirty>>5)&1) printf("ebp ");
8910 if((regs[i].dirty>>6)&1) printf("esi ");
8911 if((regs[i].dirty>>7)&1) printf("edi ");
8912 #endif
8913 #ifdef __arm__
8914 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
8915 if(regs[i].dirty&1) printf("r0 ");
8916 if((regs[i].dirty>>1)&1) printf("r1 ");
8917 if((regs[i].dirty>>2)&1) printf("r2 ");
8918 if((regs[i].dirty>>3)&1) printf("r3 ");
8919 if((regs[i].dirty>>4)&1) printf("r4 ");
8920 if((regs[i].dirty>>5)&1) printf("r5 ");
8921 if((regs[i].dirty>>6)&1) printf("r6 ");
8922 if((regs[i].dirty>>7)&1) printf("r7 ");
8923 if((regs[i].dirty>>8)&1) printf("r8 ");
8924 if((regs[i].dirty>>9)&1) printf("r9 ");
8925 if((regs[i].dirty>>10)&1) printf("r10 ");
8926 if((regs[i].dirty>>12)&1) printf("r12 ");
8927 #endif
8928 printf("\n");
8929 if(regs[i].isconst) {
8930 printf("constants: ");
8931 #if defined(__i386__) || defined(__x86_64__)
8932 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
8933 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
8934 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
8935 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
8936 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
8937 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
8938 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
8939 #endif
8940 #if defined(__arm__) || defined(__aarch64__)
8941 int r;
8942 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
8943 if ((regs[i].isconst >> r) & 1)
8944 printf(" r%d=%x", r, (u_int)constmap[i][r]);
8945 #endif
8946 printf("\n");
8947 }
8948 if(dops[i].is_jump) {
8949 #if defined(__i386__) || defined(__x86_64__)
8950 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
8951 if(branch_regs[i].dirty&1) printf("eax ");
8952 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
8953 if((branch_regs[i].dirty>>2)&1) printf("edx ");
8954 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
8955 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
8956 if((branch_regs[i].dirty>>6)&1) printf("esi ");
8957 if((branch_regs[i].dirty>>7)&1) printf("edi ");
8958 #endif
8959 #ifdef __arm__
8960 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
8961 if(branch_regs[i].dirty&1) printf("r0 ");
8962 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
8963 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
8964 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
8965 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
8966 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
8967 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
8968 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
8969 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
8970 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
8971 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
8972 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
8973 #endif
8974 }
8975 }
8976#endif // DISASM
8977
8978 /* Pass 8 - Assembly */
8979 linkcount=0;stubcount=0;
8980 ds=0;is_delayslot=0;
8981 u_int dirty_pre=0;
8982 void *beginning=start_block();
8983 if((u_int)addr&1) {
8984 ds=1;
8985 pagespan_ds();
8986 }
8987 void *instr_addr0_override = NULL;
8988
8989 if (start == 0x80030000) {
8990 // nasty hack for the fastbios thing
8991 // override block entry to this code
8992 instr_addr0_override = out;
8993 emit_movimm(start,0);
8994 // abuse io address var as a flag that we
8995 // have already returned here once
8996 emit_readword(&address,1);
8997 emit_writeword(0,&pcaddr);
8998 emit_writeword(0,&address);
8999 emit_cmp(0,1);
9000 #ifdef __aarch64__
9001 emit_jeq(out + 4*2);
9002 emit_far_jump(new_dyna_leave);
9003 #else
9004 emit_jne(new_dyna_leave);
9005 #endif
9006 }
9007 for(i=0;i<slen;i++)
9008 {
9009 //if(ds) printf("ds: ");
9010 disassemble_inst(i);
9011 if(ds) {
9012 ds=0; // Skip delay slot
9013 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
9014 instr_addr[i] = NULL;
9015 } else {
9016 speculate_register_values(i);
9017 #ifndef DESTRUCTIVE_WRITEBACK
9018 if (i < 2 || !dops[i-2].is_ujump)
9019 {
9020 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9021 }
9022 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
9023 dirty_pre=branch_regs[i].dirty;
9024 }else{
9025 dirty_pre=regs[i].dirty;
9026 }
9027 #endif
9028 // write back
9029 if (i < 2 || !dops[i-2].is_ujump)
9030 {
9031 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9032 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9033 }
9034 // branch target entry point
9035 instr_addr[i] = out;
9036 assem_debug("<->\n");
9037 drc_dbg_emit_do_cmp(i);
9038
9039 // load regs
9040 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9041 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9042 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9043 address_generation(i,&regs[i],regs[i].regmap_entry);
9044 load_consts(regmap_pre[i],regs[i].regmap,i);
9045 if(dops[i].is_jump)
9046 {
9047 // Load the delay slot registers if necessary
9048 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9049 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9050 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9051 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9052 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a)
9053 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9054 }
9055 else if(i+1<slen)
9056 {
9057 // Preload registers for following instruction
9058 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9059 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9060 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9061 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9062 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9063 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9064 }
9065 // TODO: if(is_ooo(i)) address_generation(i+1);
9066 if(dops[i].itype==CJUMP)
9067 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9068 if(dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].opcode&0x3b)==0x39||(dops[i].opcode&0x3b)==0x3a)
9069 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9070 // assemble
9071 switch(dops[i].itype) {
9072 case ALU:
9073 alu_assemble(i,&regs[i]);break;
9074 case IMM16:
9075 imm16_assemble(i,&regs[i]);break;
9076 case SHIFT:
9077 shift_assemble(i,&regs[i]);break;
9078 case SHIFTIMM:
9079 shiftimm_assemble(i,&regs[i]);break;
9080 case LOAD:
9081 load_assemble(i,&regs[i]);break;
9082 case LOADLR:
9083 loadlr_assemble(i,&regs[i]);break;
9084 case STORE:
9085 store_assemble(i,&regs[i]);break;
9086 case STORELR:
9087 storelr_assemble(i,&regs[i]);break;
9088 case COP0:
9089 cop0_assemble(i,&regs[i]);break;
9090 case COP1:
9091 cop1_assemble(i,&regs[i]);break;
9092 case C1LS:
9093 c1ls_assemble(i,&regs[i]);break;
9094 case COP2:
9095 cop2_assemble(i,&regs[i]);break;
9096 case C2LS:
9097 c2ls_assemble(i,&regs[i]);break;
9098 case C2OP:
9099 c2op_assemble(i,&regs[i]);break;
9100 case MULTDIV:
9101 multdiv_assemble(i,&regs[i]);
9102 multdiv_prepare_stall(i,&regs[i]);
9103 break;
9104 case MOV:
9105 mov_assemble(i,&regs[i]);break;
9106 case SYSCALL:
9107 syscall_assemble(i,&regs[i]);break;
9108 case HLECALL:
9109 hlecall_assemble(i,&regs[i]);break;
9110 case INTCALL:
9111 intcall_assemble(i,&regs[i]);break;
9112 case UJUMP:
9113 ujump_assemble(i,&regs[i]);ds=1;break;
9114 case RJUMP:
9115 rjump_assemble(i,&regs[i]);ds=1;break;
9116 case CJUMP:
9117 cjump_assemble(i,&regs[i]);ds=1;break;
9118 case SJUMP:
9119 sjump_assemble(i,&regs[i]);ds=1;break;
9120 case SPAN:
9121 pagespan_assemble(i,&regs[i]);break;
9122 }
9123 if (dops[i].is_ujump)
9124 literal_pool(1024);
9125 else
9126 literal_pool_jumpover(256);
9127 }
9128 }
9129
9130 assert(slen > 0);
9131 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9132 // no ending needed for this block since INTCALL never returns
9133 }
9134 // If the block did not end with an unconditional branch,
9135 // add a jump to the next instruction.
9136 else if (i > 1) {
9137 if (!dops[i-2].is_ujump && dops[i-1].itype != SPAN) {
9138 assert(!dops[i-1].is_jump);
9139 assert(i==slen);
9140 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9141 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9142 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9143 emit_loadreg(CCREG,HOST_CCREG);
9144 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9145 }
9146 else
9147 {
9148 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9149 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9150 }
9151 add_to_linker(out,start+i*4,0);
9152 emit_jmp(0);
9153 }
9154 }
9155 else
9156 {
9157 assert(i>0);
9158 assert(!dops[i-1].is_jump);
9159 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9160 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9161 emit_loadreg(CCREG,HOST_CCREG);
9162 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9163 add_to_linker(out,start+i*4,0);
9164 emit_jmp(0);
9165 }
9166
9167 // TODO: delay slot stubs?
9168 // Stubs
9169 for(i=0;i<stubcount;i++)
9170 {
9171 switch(stubs[i].type)
9172 {
9173 case LOADB_STUB:
9174 case LOADH_STUB:
9175 case LOADW_STUB:
9176 case LOADD_STUB:
9177 case LOADBU_STUB:
9178 case LOADHU_STUB:
9179 do_readstub(i);break;
9180 case STOREB_STUB:
9181 case STOREH_STUB:
9182 case STOREW_STUB:
9183 case STORED_STUB:
9184 do_writestub(i);break;
9185 case CC_STUB:
9186 do_ccstub(i);break;
9187 case INVCODE_STUB:
9188 do_invstub(i);break;
9189 case FP_STUB:
9190 do_cop1stub(i);break;
9191 case STORELR_STUB:
9192 do_unalignedwritestub(i);break;
9193 }
9194 }
9195
9196 if (instr_addr0_override)
9197 instr_addr[0] = instr_addr0_override;
9198
9199 /* Pass 9 - Linker */
9200 for(i=0;i<linkcount;i++)
9201 {
9202 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9203 literal_pool(64);
9204 if (!link_addr[i].ext)
9205 {
9206 void *stub = out;
9207 void *addr = check_addr(link_addr[i].target);
9208 emit_extjump(link_addr[i].addr, link_addr[i].target);
9209 if (addr) {
9210 set_jump_target(link_addr[i].addr, addr);
9211 add_jump_out(link_addr[i].target,stub);
9212 }
9213 else
9214 set_jump_target(link_addr[i].addr, stub);
9215 }
9216 else
9217 {
9218 // Internal branch
9219 int target=(link_addr[i].target-start)>>2;
9220 assert(target>=0&&target<slen);
9221 assert(instr_addr[target]);
9222 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9223 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9224 //#else
9225 set_jump_target(link_addr[i].addr, instr_addr[target]);
9226 //#endif
9227 }
9228 }
9229
9230 u_int source_len = slen*4;
9231 if (dops[slen-1].itype == INTCALL && source_len > 4)
9232 // no need to treat the last instruction as compiled
9233 // as interpreter fully handles it
9234 source_len -= 4;
9235
9236 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9237 copy = shadow;
9238
9239 // External Branch Targets (jump_in)
9240 for(i=0;i<slen;i++)
9241 {
9242 if(dops[i].bt||i==0)
9243 {
9244 if(instr_addr[i]) // TODO - delay slots (=null)
9245 {
9246 u_int vaddr=start+i*4;
9247 u_int page=get_page(vaddr);
9248 u_int vpage=get_vpage(vaddr);
9249 literal_pool(256);
9250 {
9251 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9252 assem_debug("jump_in: %x\n",start+i*4);
9253 ll_add(jump_dirty+vpage,vaddr,out);
9254 void *entry_point = do_dirty_stub(i, source_len);
9255 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9256 // If there was an existing entry in the hash table,
9257 // replace it with the new address.
9258 // Don't add new entries. We'll insert the
9259 // ones that actually get used in check_addr().
9260 struct ht_entry *ht_bin = hash_table_get(vaddr);
9261 if (ht_bin->vaddr[0] == vaddr)
9262 ht_bin->tcaddr[0] = entry_point;
9263 if (ht_bin->vaddr[1] == vaddr)
9264 ht_bin->tcaddr[1] = entry_point;
9265 }
9266 }
9267 }
9268 }
9269 // Write out the literal pool if necessary
9270 literal_pool(0);
9271 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9272 // Align code
9273 if(((u_int)out)&7) emit_addnop(13);
9274 #endif
9275 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9276 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9277 memcpy(copy, source, source_len);
9278 copy += source_len;
9279
9280 end_block(beginning);
9281
9282 // If we're within 256K of the end of the buffer,
9283 // start over from the beginning. (Is 256K enough?)
9284 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9285 out = ndrc->translation_cache;
9286
9287 // Trap writes to any of the pages we compiled
9288 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9289 invalid_code[i]=0;
9290 }
9291 inv_code_start=inv_code_end=~0;
9292
9293 // for PCSX we need to mark all mirrors too
9294 if(get_page(start)<(RAM_SIZE>>12))
9295 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9296 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9297 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9298 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9299
9300 /* Pass 10 - Free memory by expiring oldest blocks */
9301
9302 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9303 while(expirep!=end)
9304 {
9305 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9306 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
9307 uintptr_t base_offs_s = base_offs >> shift;
9308 inv_debug("EXP: Phase %d\n",expirep);
9309 switch((expirep>>11)&3)
9310 {
9311 case 0:
9312 // Clear jump_in and jump_dirty
9313 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
9314 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
9315 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
9316 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
9317 break;
9318 case 1:
9319 // Clear pointers
9320 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
9321 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
9322 break;
9323 case 2:
9324 // Clear hash table
9325 for(i=0;i<32;i++) {
9326 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9327 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
9328 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9329 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9330 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9331 ht_bin->vaddr[1] = -1;
9332 ht_bin->tcaddr[1] = NULL;
9333 }
9334 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
9335 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9336 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9337 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9338 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9339 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9340 ht_bin->vaddr[1] = -1;
9341 ht_bin->tcaddr[1] = NULL;
9342 }
9343 }
9344 break;
9345 case 3:
9346 // Clear jump_out
9347 if((expirep&2047)==0)
9348 do_clear_cache();
9349 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
9350 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
9351 break;
9352 }
9353 expirep=(expirep+1)&65535;
9354 }
9355 return 0;
9356}
9357
9358// vim:shiftwidth=2:expandtab