psxinterpreter: yet more exceptions, new config option
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef HAVE_LIBNX
33#include <switch.h>
34static Jit g_jit;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42#include "arm_features.h"
43
44#define unused __attribute__((unused))
45#ifdef __clang__
46#define noinline __attribute__((noinline))
47#else
48#define noinline __attribute__((noinline,noclone))
49#endif
50#ifndef ARRAY_SIZE
51#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
52#endif
53#ifndef min
54#define min(a, b) ((b) < (a) ? (b) : (a))
55#endif
56#ifndef max
57#define max(a, b) ((b) > (a) ? (b) : (a))
58#endif
59
60//#define DISASM
61//#define ASSEM_PRINT
62//#define INV_DEBUG_W
63//#define STAT_PRINT
64
65#ifdef ASSEM_PRINT
66#define assem_debug printf
67#else
68#define assem_debug(...)
69#endif
70//#define inv_debug printf
71#define inv_debug(...)
72
73#ifdef __i386__
74#include "assem_x86.h"
75#endif
76#ifdef __x86_64__
77#include "assem_x64.h"
78#endif
79#ifdef __arm__
80#include "assem_arm.h"
81#endif
82#ifdef __aarch64__
83#include "assem_arm64.h"
84#endif
85
86#define RAM_SIZE 0x200000
87#define MAXBLOCK 4096
88#define MAX_OUTPUT_BLOCK_SIZE 262144
89#define EXPIRITY_OFFSET (MAX_OUTPUT_BLOCK_SIZE * 2)
90#define PAGE_COUNT 1024
91
92#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
93#define INVALIDATE_USE_COND_CALL
94#endif
95
96#ifdef VITA
97// apparently Vita has a 16MB limit, so either we cut tc in half,
98// or use this hack (it's a hack because tc size was designed to be power-of-2)
99#define TC_REDUCE_BYTES 4096
100#else
101#define TC_REDUCE_BYTES 0
102#endif
103
104struct ndrc_tramp
105{
106 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
107 const void *f[2048 / sizeof(void *)];
108};
109
110struct ndrc_mem
111{
112 u_char translation_cache[(1 << TARGET_SIZE_2) - TC_REDUCE_BYTES];
113 struct ndrc_tramp tramp;
114};
115
116#ifdef BASE_ADDR_DYNAMIC
117static struct ndrc_mem *ndrc;
118#else
119static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
120static struct ndrc_mem *ndrc = &ndrc_;
121#endif
122#ifdef TC_WRITE_OFFSET
123# ifdef __GLIBC__
124# include <sys/types.h>
125# include <sys/stat.h>
126# include <fcntl.h>
127# include <unistd.h>
128# endif
129static long ndrc_write_ofs;
130#define NDRC_WRITE_OFFSET(x) (void *)((char *)(x) + ndrc_write_ofs)
131#else
132#define NDRC_WRITE_OFFSET(x) (x)
133#endif
134
135// stubs
136enum stub_type {
137 CC_STUB = 1,
138 FP_STUB = 2,
139 LOADB_STUB = 3,
140 LOADH_STUB = 4,
141 LOADW_STUB = 5,
142 LOADD_STUB = 6,
143 LOADBU_STUB = 7,
144 LOADHU_STUB = 8,
145 STOREB_STUB = 9,
146 STOREH_STUB = 10,
147 STOREW_STUB = 11,
148 STORED_STUB = 12,
149 STORELR_STUB = 13,
150 INVCODE_STUB = 14,
151};
152
153// regmap_pre[i] - regs before [i] insn starts; dirty things here that
154// don't match .regmap will be written back
155// [i].regmap_entry - regs that must be set up if someone jumps here
156// [i].regmap - regs [i] insn will read/(over)write
157// branch_regs[i].* - same as above but for branches, takes delay slot into account
158struct regstat
159{
160 signed char regmap_entry[HOST_REGS];
161 signed char regmap[HOST_REGS];
162 uint64_t wasdirty;
163 uint64_t dirty;
164 uint64_t u;
165 u_int wasconst; // before; for example 'lw r2, (r2)' wasconst is true
166 u_int isconst; // ... but isconst is false when r2 is known
167 u_int loadedconst; // host regs that have constants loaded
168 //u_int waswritten; // MIPS regs that were used as store base before
169};
170
171struct ht_entry
172{
173 u_int vaddr[2];
174 void *tcaddr[2];
175};
176
177struct code_stub
178{
179 enum stub_type type;
180 void *addr;
181 void *retaddr;
182 u_int a;
183 uintptr_t b;
184 uintptr_t c;
185 u_int d;
186 u_int e;
187};
188
189struct link_entry
190{
191 void *addr;
192 u_int target;
193 u_int internal;
194};
195
196struct block_info
197{
198 struct block_info *next;
199 const void *source;
200 const void *copy;
201 u_int start; // vaddr of the block start
202 u_int len; // of the whole block source
203 u_int tc_offs;
204 //u_int tc_len;
205 u_int reg_sv_flags;
206 u_char is_dirty;
207 u_char inv_near_misses;
208 u_short jump_in_cnt;
209 struct {
210 u_int vaddr;
211 void *addr;
212 } jump_in[0];
213};
214
215struct jump_info
216{
217 int alloc;
218 int count;
219 struct {
220 u_int target_vaddr;
221 void *stub;
222 } e[0];
223};
224
225static struct decoded_insn
226{
227 u_char itype;
228 u_char opcode;
229 u_char opcode2;
230 u_char rs1;
231 u_char rs2;
232 u_char rt1;
233 u_char rt2;
234 u_char use_lt1:1;
235 u_char bt:1;
236 u_char ooo:1;
237 u_char is_ds:1;
238 u_char is_jump:1;
239 u_char is_ujump:1;
240 u_char is_load:1;
241 u_char is_store:1;
242} dops[MAXBLOCK];
243
244 static u_char *out;
245 static char invalid_code[0x100000];
246 static struct ht_entry hash_table[65536];
247 static struct block_info *blocks[PAGE_COUNT];
248 static struct jump_info *jumps[PAGE_COUNT];
249 static u_int start;
250 static u_int *source;
251 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
252 static uint64_t gte_rt[MAXBLOCK];
253 static uint64_t gte_unneeded[MAXBLOCK];
254 static u_int smrv[32]; // speculated MIPS register values
255 static u_int smrv_strong; // mask or regs that are likely to have correct values
256 static u_int smrv_weak; // same, but somewhat less likely
257 static u_int smrv_strong_next; // same, but after current insn executes
258 static u_int smrv_weak_next;
259 static int imm[MAXBLOCK];
260 static u_int ba[MAXBLOCK];
261 static uint64_t unneeded_reg[MAXBLOCK];
262 static uint64_t branch_unneeded_reg[MAXBLOCK];
263 // see 'struct regstat' for a description
264 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
265 // contains 'real' consts at [i] insn, but may differ from what's actually
266 // loaded in host reg as 'final' value is always loaded, see get_final_value()
267 static uint32_t current_constmap[HOST_REGS];
268 static uint32_t constmap[MAXBLOCK][HOST_REGS];
269 static struct regstat regs[MAXBLOCK];
270 static struct regstat branch_regs[MAXBLOCK];
271 static signed char minimum_free_regs[MAXBLOCK];
272 static int ccadj[MAXBLOCK];
273 static int slen;
274 static void *instr_addr[MAXBLOCK];
275 static struct link_entry link_addr[MAXBLOCK];
276 static int linkcount;
277 static struct code_stub stubs[MAXBLOCK*3];
278 static int stubcount;
279 static u_int literals[1024][2];
280 static int literalcount;
281 static int is_delayslot;
282 static char shadow[1048576] __attribute__((aligned(16)));
283 static void *copy;
284 static u_int expirep;
285 static u_int stop_after_jal;
286 static u_int f1_hack;
287#ifdef STAT_PRINT
288 static int stat_bc_direct;
289 static int stat_bc_pre;
290 static int stat_bc_restore;
291 static int stat_ht_lookups;
292 static int stat_jump_in_lookups;
293 static int stat_restore_tries;
294 static int stat_restore_compares;
295 static int stat_inv_addr_calls;
296 static int stat_inv_hits;
297 static int stat_blocks;
298 static int stat_links;
299 #define stat_inc(s) s++
300 #define stat_dec(s) s--
301 #define stat_clear(s) s = 0
302#else
303 #define stat_inc(s)
304 #define stat_dec(s)
305 #define stat_clear(s)
306#endif
307
308 int new_dynarec_hacks;
309 int new_dynarec_hacks_pergame;
310 int new_dynarec_hacks_old;
311 int new_dynarec_did_compile;
312
313 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
314
315 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
316 extern int last_count; // last absolute target, often = next_interupt
317 extern int pcaddr;
318 extern int pending_exception;
319 extern int branch_target;
320 extern uintptr_t ram_offset;
321 extern uintptr_t mini_ht[32][2];
322
323 /* registers that may be allocated */
324 /* 1-31 gpr */
325#define LOREG 32 // lo
326#define HIREG 33 // hi
327//#define FSREG 34 // FPU status (FCSR)
328#define CSREG 35 // Coprocessor status
329#define CCREG 36 // Cycle count
330#define INVCP 37 // Pointer to invalid_code
331//#define MMREG 38 // Pointer to memory_map
332#define ROREG 39 // ram offset (if rdram!=0x80000000)
333#define TEMPREG 40
334#define FTEMP 40 // FPU temporary register
335#define PTEMP 41 // Prefetch temporary register
336//#define TLREG 42 // TLB mapping offset
337#define RHASH 43 // Return address hash
338#define RHTBL 44 // Return address hash table address
339#define RTEMP 45 // JR/JALR address register
340#define MAXREG 45
341#define AGEN1 46 // Address generation temporary register
342//#define AGEN2 47 // Address generation temporary register
343//#define MGEN1 48 // Maptable address generation temporary register
344//#define MGEN2 49 // Maptable address generation temporary register
345#define BTREG 50 // Branch target temporary register
346
347 /* instruction types */
348#define NOP 0 // No operation
349#define LOAD 1 // Load
350#define STORE 2 // Store
351#define LOADLR 3 // Unaligned load
352#define STORELR 4 // Unaligned store
353#define MOV 5 // Move
354#define ALU 6 // Arithmetic/logic
355#define MULTDIV 7 // Multiply/divide
356#define SHIFT 8 // Shift by register
357#define SHIFTIMM 9// Shift by immediate
358#define IMM16 10 // 16-bit immediate
359#define RJUMP 11 // Unconditional jump to register
360#define UJUMP 12 // Unconditional jump
361#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
362#define SJUMP 14 // Conditional branch (regimm format)
363#define COP0 15 // Coprocessor 0
364#define COP1 16 // Coprocessor 1
365#define C1LS 17 // Coprocessor 1 load/store
366//#define FJUMP 18 // Conditional branch (floating point)
367//#define FLOAT 19 // Floating point unit
368//#define FCONV 20 // Convert integer to float
369//#define FCOMP 21 // Floating point compare (sets FSREG)
370#define SYSCALL 22// SYSCALL,BREAK
371#define OTHER 23 // Other
372//#define SPAN 24 // Branch/delay slot spans 2 pages
373#define NI 25 // Not implemented
374#define HLECALL 26// PCSX fake opcodes for HLE
375#define COP2 27 // Coprocessor 2 move
376#define C2LS 28 // Coprocessor 2 load/store
377#define C2OP 29 // Coprocessor 2 operation
378#define INTCALL 30// Call interpreter to handle rare corner cases
379
380 /* branch codes */
381#define TAKEN 1
382#define NOTTAKEN 2
383#define NULLDS 3
384
385#define DJT_1 (void *)1l // no function, just a label in assem_debug log
386#define DJT_2 (void *)2l
387
388// asm linkage
389void dyna_linker();
390void cc_interrupt();
391void fp_exception();
392void fp_exception_ds();
393void jump_syscall (u_int u0, u_int u1, u_int pc);
394void jump_syscall_ds(u_int u0, u_int u1, u_int pc);
395void jump_break (u_int u0, u_int u1, u_int pc);
396void jump_break_ds(u_int u0, u_int u1, u_int pc);
397void jump_to_new_pc();
398void call_gteStall();
399void new_dyna_leave();
400
401void *ndrc_get_addr_ht_param(u_int vaddr, int can_compile);
402void *ndrc_get_addr_ht(u_int vaddr);
403void ndrc_add_jump_out(u_int vaddr, void *src);
404void ndrc_write_invalidate_one(u_int addr);
405static void ndrc_write_invalidate_many(u_int addr, u_int end);
406
407static int new_recompile_block(u_int addr);
408static void invalidate_block(struct block_info *block);
409
410// Needed by assembler
411static void wb_register(signed char r, const signed char regmap[], uint64_t dirty);
412static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty);
413static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr);
414static void load_all_regs(const signed char i_regmap[]);
415static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[]);
416static void load_regs_entry(int t);
417static void load_all_consts(const signed char regmap[], u_int dirty, int i);
418static u_int get_host_reglist(const signed char *regmap);
419
420static int get_final_value(int hr, int i, int *value);
421static void add_stub(enum stub_type type, void *addr, void *retaddr,
422 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
423static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
424 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
425static void add_to_linker(void *addr, u_int target, int ext);
426static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
427 int addr, int *offset_reg, int *addr_reg_override);
428static void *get_direct_memhandler(void *table, u_int addr,
429 enum stub_type type, uintptr_t *addr_host);
430static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
431static void pass_args(int a0, int a1);
432static void emit_far_jump(const void *f);
433static void emit_far_call(const void *f);
434
435#ifdef VITA
436#include <psp2/kernel/sysmem.h>
437static int sceBlock;
438// note: this interacts with RetroArch's Vita bootstrap code: bootstrap/vita/sbrk.c
439extern int getVMBlock();
440int _newlib_vm_size_user = sizeof(*ndrc);
441#endif
442
443static void mprotect_w_x(void *start, void *end, int is_x)
444{
445#ifdef NO_WRITE_EXEC
446 #if defined(VITA)
447 // *Open* enables write on all memory that was
448 // allocated by sceKernelAllocMemBlockForVM()?
449 if (is_x)
450 sceKernelCloseVMDomain();
451 else
452 sceKernelOpenVMDomain();
453 #elif defined(HAVE_LIBNX)
454 Result rc;
455 // check to avoid the full flush in jitTransitionToExecutable()
456 if (g_jit.type != JitType_CodeMemory) {
457 if (is_x)
458 rc = jitTransitionToExecutable(&g_jit);
459 else
460 rc = jitTransitionToWritable(&g_jit);
461 if (R_FAILED(rc))
462 ;//SysPrintf("jitTransition %d %08x\n", is_x, rc);
463 }
464 #elif defined(TC_WRITE_OFFSET)
465 // separated rx and rw areas are always available
466 #else
467 u_long mstart = (u_long)start & ~4095ul;
468 u_long mend = (u_long)end;
469 if (mprotect((void *)mstart, mend - mstart,
470 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
471 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
472 #endif
473#endif
474}
475
476static void start_tcache_write(void *start, void *end)
477{
478 mprotect_w_x(start, end, 0);
479}
480
481static void end_tcache_write(void *start, void *end)
482{
483#if defined(__arm__) || defined(__aarch64__)
484 size_t len = (char *)end - (char *)start;
485 #if defined(__BLACKBERRY_QNX__)
486 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
487 #elif defined(__MACH__)
488 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
489 #elif defined(VITA)
490 sceKernelSyncVMDomain(sceBlock, start, len);
491 #elif defined(_3DS)
492 ctr_flush_invalidate_cache();
493 #elif defined(HAVE_LIBNX)
494 if (g_jit.type == JitType_CodeMemory) {
495 armDCacheClean(start, len);
496 armICacheInvalidate((char *)start - ndrc_write_ofs, len);
497 // as of v4.2.1 libnx lacks isb
498 __asm__ volatile("isb" ::: "memory");
499 }
500 #elif defined(__aarch64__)
501 // as of 2021, __clear_cache() is still broken on arm64
502 // so here is a custom one :(
503 clear_cache_arm64(start, end);
504 #else
505 __clear_cache(start, end);
506 #endif
507 (void)len;
508#endif
509
510 mprotect_w_x(start, end, 1);
511}
512
513static void *start_block(void)
514{
515 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
516 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
517 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
518 start_tcache_write(NDRC_WRITE_OFFSET(out), NDRC_WRITE_OFFSET(end));
519 return out;
520}
521
522static void end_block(void *start)
523{
524 end_tcache_write(NDRC_WRITE_OFFSET(start), NDRC_WRITE_OFFSET(out));
525}
526
527#ifdef NDRC_CACHE_FLUSH_ALL
528
529static int needs_clear_cache;
530
531static void mark_clear_cache(void *target)
532{
533 if (!needs_clear_cache) {
534 start_tcache_write(NDRC_WRITE_OFFSET(ndrc), NDRC_WRITE_OFFSET(ndrc + 1));
535 needs_clear_cache = 1;
536 }
537}
538
539static void do_clear_cache(void)
540{
541 if (needs_clear_cache) {
542 end_tcache_write(NDRC_WRITE_OFFSET(ndrc), NDRC_WRITE_OFFSET(ndrc + 1));
543 needs_clear_cache = 0;
544 }
545}
546
547#else
548
549// also takes care of w^x mappings when patching code
550static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
551
552static void mark_clear_cache(void *target)
553{
554 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
555 u_int mask = 1u << ((offset >> 12) & 31);
556 if (!(needs_clear_cache[offset >> 17] & mask)) {
557 char *start = (char *)NDRC_WRITE_OFFSET((uintptr_t)target & ~4095l);
558 start_tcache_write(start, start + 4095);
559 needs_clear_cache[offset >> 17] |= mask;
560 }
561}
562
563// Clearing the cache is rather slow on ARM Linux, so mark the areas
564// that need to be cleared, and then only clear these areas once.
565static void do_clear_cache(void)
566{
567 int i, j;
568 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
569 {
570 u_int bitmap = needs_clear_cache[i];
571 if (!bitmap)
572 continue;
573 for (j = 0; j < 32; j++)
574 {
575 u_char *start, *end;
576 if (!(bitmap & (1u << j)))
577 continue;
578
579 start = ndrc->translation_cache + i*131072 + j*4096;
580 end = start + 4095;
581 for (j++; j < 32; j++) {
582 if (!(bitmap & (1u << j)))
583 break;
584 end += 4096;
585 }
586 end_tcache_write(NDRC_WRITE_OFFSET(start), NDRC_WRITE_OFFSET(end));
587 }
588 needs_clear_cache[i] = 0;
589 }
590}
591
592#endif // NDRC_CACHE_FLUSH_ALL
593
594#define NO_CYCLE_PENALTY_THR 12
595
596int cycle_multiplier_old;
597static int cycle_multiplier_active;
598
599static int CLOCK_ADJUST(int x)
600{
601 int m = cycle_multiplier_active;
602 int s = (x >> 31) | 1;
603 return (x * m + s * 50) / 100;
604}
605
606static int ds_writes_rjump_rs(int i)
607{
608 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
609}
610
611// psx addr mirror masking (for invalidation)
612static u_int pmmask(u_int vaddr)
613{
614 vaddr &= ~0xe0000000;
615 if (vaddr < 0x01000000)
616 vaddr &= ~0x00e00000; // RAM mirrors
617 return vaddr;
618}
619
620static u_int get_page(u_int vaddr)
621{
622 u_int page = pmmask(vaddr) >> 12;
623 if (page >= PAGE_COUNT / 2)
624 page = PAGE_COUNT / 2 + (page & (PAGE_COUNT / 2 - 1));
625 return page;
626}
627
628// get a page for looking for a block that has vaddr
629// (needed because the block may start in previous page)
630static u_int get_page_prev(u_int vaddr)
631{
632 assert(MAXBLOCK <= (1 << 12));
633 u_int page = get_page(vaddr);
634 if (page & 511)
635 page--;
636 return page;
637}
638
639static struct ht_entry *hash_table_get(u_int vaddr)
640{
641 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
642}
643
644static void hash_table_add(u_int vaddr, void *tcaddr)
645{
646 struct ht_entry *ht_bin = hash_table_get(vaddr);
647 assert(tcaddr);
648 ht_bin->vaddr[1] = ht_bin->vaddr[0];
649 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
650 ht_bin->vaddr[0] = vaddr;
651 ht_bin->tcaddr[0] = tcaddr;
652}
653
654static void hash_table_remove(int vaddr)
655{
656 //printf("remove hash: %x\n",vaddr);
657 struct ht_entry *ht_bin = hash_table_get(vaddr);
658 if (ht_bin->vaddr[1] == vaddr) {
659 ht_bin->vaddr[1] = -1;
660 ht_bin->tcaddr[1] = NULL;
661 }
662 if (ht_bin->vaddr[0] == vaddr) {
663 ht_bin->vaddr[0] = ht_bin->vaddr[1];
664 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
665 ht_bin->vaddr[1] = -1;
666 ht_bin->tcaddr[1] = NULL;
667 }
668}
669
670static void mark_invalid_code(u_int vaddr, u_int len, char invalid)
671{
672 u_int vaddr_m = vaddr & 0x1fffffff;
673 u_int i, j;
674 for (i = vaddr_m & ~0xfff; i < vaddr_m + len; i += 0x1000) {
675 // ram mirrors, but should not hurt bios
676 for (j = 0; j < 0x800000; j += 0x200000) {
677 invalid_code[(i|j) >> 12] =
678 invalid_code[(i|j|0x80000000u) >> 12] =
679 invalid_code[(i|j|0xa0000000u) >> 12] = invalid;
680 }
681 }
682 if (!invalid && vaddr + len > inv_code_start && vaddr <= inv_code_end)
683 inv_code_start = inv_code_end = ~0;
684}
685
686static int doesnt_expire_soon(u_char *tcaddr)
687{
688 u_int diff = (u_int)(tcaddr - out) & ((1u << TARGET_SIZE_2) - 1u);
689 return diff > EXPIRITY_OFFSET + MAX_OUTPUT_BLOCK_SIZE;
690}
691
692static unused void check_for_block_changes(u_int start, u_int end)
693{
694 u_int start_page = get_page_prev(start);
695 u_int end_page = get_page(end - 1);
696 u_int page;
697
698 for (page = start_page; page <= end_page; page++) {
699 struct block_info *block;
700 for (block = blocks[page]; block != NULL; block = block->next) {
701 if (block->is_dirty)
702 continue;
703 if (memcmp(block->source, block->copy, block->len)) {
704 printf("bad block %08x-%08x %016llx %016llx @%08x\n",
705 block->start, block->start + block->len,
706 *(long long *)block->source, *(long long *)block->copy, psxRegs.pc);
707 fflush(stdout);
708 abort();
709 }
710 }
711 }
712}
713
714static void *try_restore_block(u_int vaddr, u_int start_page, u_int end_page)
715{
716 void *found_clean = NULL;
717 u_int i, page;
718
719 stat_inc(stat_restore_tries);
720 for (page = start_page; page <= end_page; page++) {
721 struct block_info *block;
722 for (block = blocks[page]; block != NULL; block = block->next) {
723 if (vaddr < block->start)
724 break;
725 if (!block->is_dirty || vaddr >= block->start + block->len)
726 continue;
727 for (i = 0; i < block->jump_in_cnt; i++)
728 if (block->jump_in[i].vaddr == vaddr)
729 break;
730 if (i == block->jump_in_cnt)
731 continue;
732 assert(block->source && block->copy);
733 stat_inc(stat_restore_compares);
734 if (memcmp(block->source, block->copy, block->len))
735 continue;
736
737 block->is_dirty = block->inv_near_misses = 0;
738 found_clean = block->jump_in[i].addr;
739 hash_table_add(vaddr, found_clean);
740 mark_invalid_code(block->start, block->len, 0);
741 stat_inc(stat_bc_restore);
742 inv_debug("INV: restored %08x %p (%d)\n", vaddr, found_clean, block->jump_in_cnt);
743 return found_clean;
744 }
745 }
746 return NULL;
747}
748
749// Get address from virtual address
750// This is called from the recompiled JR/JALR instructions
751static void noinline *get_addr(u_int vaddr, int can_compile)
752{
753 u_int start_page = get_page_prev(vaddr);
754 u_int i, page, end_page = get_page(vaddr);
755 void *found_clean = NULL;
756
757 stat_inc(stat_jump_in_lookups);
758 for (page = start_page; page <= end_page; page++) {
759 const struct block_info *block;
760 for (block = blocks[page]; block != NULL; block = block->next) {
761 if (vaddr < block->start)
762 break;
763 if (block->is_dirty || vaddr >= block->start + block->len)
764 continue;
765 for (i = 0; i < block->jump_in_cnt; i++)
766 if (block->jump_in[i].vaddr == vaddr)
767 break;
768 if (i == block->jump_in_cnt)
769 continue;
770 found_clean = block->jump_in[i].addr;
771 hash_table_add(vaddr, found_clean);
772 return found_clean;
773 }
774 }
775 found_clean = try_restore_block(vaddr, start_page, end_page);
776 if (found_clean)
777 return found_clean;
778
779 if (!can_compile)
780 return NULL;
781
782 int r = new_recompile_block(vaddr);
783 if (r == 0)
784 return ndrc_get_addr_ht(vaddr);
785
786 // generate an address error
787 psxRegs.CP0.n.SR |= 2;
788 psxRegs.CP0.n.Cause = (vaddr<<31) | (4<<2);
789 psxRegs.CP0.n.EPC = (vaddr&1) ? vaddr-5 : vaddr;
790 psxRegs.CP0.n.BadVAddr = vaddr & ~1;
791 return ndrc_get_addr_ht(0x80000080);
792}
793
794// Look up address in hash table first
795void *ndrc_get_addr_ht_param(u_int vaddr, int can_compile)
796{
797 //check_for_block_changes(vaddr, vaddr + MAXBLOCK);
798 const struct ht_entry *ht_bin = hash_table_get(vaddr);
799 stat_inc(stat_ht_lookups);
800 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
801 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
802 return get_addr(vaddr, can_compile);
803}
804
805void *ndrc_get_addr_ht(u_int vaddr)
806{
807 return ndrc_get_addr_ht_param(vaddr, 1);
808}
809
810static void clear_all_regs(signed char regmap[])
811{
812 memset(regmap, -1, sizeof(regmap[0]) * HOST_REGS);
813}
814
815// get_reg: get allocated host reg from mips reg
816// returns -1 if no such mips reg was allocated
817#if defined(__arm__) && defined(HAVE_ARMV6) && HOST_REGS == 13 && EXCLUDE_REG == 11
818
819extern signed char get_reg(const signed char regmap[], signed char r);
820
821#else
822
823static signed char get_reg(const signed char regmap[], signed char r)
824{
825 int hr;
826 for (hr = 0; hr < HOST_REGS; hr++) {
827 if (hr == EXCLUDE_REG)
828 continue;
829 if (regmap[hr] == r)
830 return hr;
831 }
832 return -1;
833}
834
835#endif
836
837// get reg as mask bit (1 << hr)
838static u_int get_regm(const signed char regmap[], signed char r)
839{
840 return (1u << (get_reg(regmap, r) & 31)) & ~(1u << 31);
841}
842
843static signed char get_reg_temp(const signed char regmap[])
844{
845 int hr;
846 for (hr = 0; hr < HOST_REGS; hr++) {
847 if (hr == EXCLUDE_REG)
848 continue;
849 if (regmap[hr] == (signed char)-1)
850 return hr;
851 }
852 return -1;
853}
854
855// Find a register that is available for two consecutive cycles
856static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
857{
858 int hr;
859 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
860 return -1;
861}
862
863// reverse reg map: mips -> host
864#define RRMAP_SIZE 64
865static void make_rregs(const signed char regmap[], signed char rrmap[RRMAP_SIZE],
866 u_int *regs_can_change)
867{
868 u_int r, hr, hr_can_change = 0;
869 memset(rrmap, -1, RRMAP_SIZE);
870 for (hr = 0; hr < HOST_REGS; )
871 {
872 r = regmap[hr];
873 rrmap[r & (RRMAP_SIZE - 1)] = hr;
874 // only add mips $1-$31+$lo, others shifted out
875 hr_can_change |= (uint64_t)1 << (hr + ((r - 1) & 32));
876 hr++;
877 if (hr == EXCLUDE_REG)
878 hr++;
879 }
880 hr_can_change |= 1u << (rrmap[33] & 31);
881 hr_can_change |= 1u << (rrmap[CCREG] & 31);
882 hr_can_change &= ~(1u << 31);
883 *regs_can_change = hr_can_change;
884}
885
886// same as get_reg, but takes rrmap
887static signed char get_rreg(signed char rrmap[RRMAP_SIZE], signed char r)
888{
889 assert(0 <= r && r < RRMAP_SIZE);
890 return rrmap[r];
891}
892
893static int count_free_regs(const signed char regmap[])
894{
895 int count=0;
896 int hr;
897 for(hr=0;hr<HOST_REGS;hr++)
898 {
899 if(hr!=EXCLUDE_REG) {
900 if(regmap[hr]<0) count++;
901 }
902 }
903 return count;
904}
905
906static void dirty_reg(struct regstat *cur, signed char reg)
907{
908 int hr;
909 if (!reg) return;
910 hr = get_reg(cur->regmap, reg);
911 if (hr >= 0)
912 cur->dirty |= 1<<hr;
913}
914
915static void set_const(struct regstat *cur, signed char reg, uint32_t value)
916{
917 int hr;
918 if (!reg) return;
919 hr = get_reg(cur->regmap, reg);
920 if (hr >= 0) {
921 cur->isconst |= 1<<hr;
922 current_constmap[hr] = value;
923 }
924}
925
926static void clear_const(struct regstat *cur, signed char reg)
927{
928 int hr;
929 if (!reg) return;
930 hr = get_reg(cur->regmap, reg);
931 if (hr >= 0)
932 cur->isconst &= ~(1<<hr);
933}
934
935static int is_const(const struct regstat *cur, signed char reg)
936{
937 int hr;
938 if (reg < 0) return 0;
939 if (!reg) return 1;
940 hr = get_reg(cur->regmap, reg);
941 if (hr >= 0)
942 return (cur->isconst>>hr)&1;
943 return 0;
944}
945
946static uint32_t get_const(const struct regstat *cur, signed char reg)
947{
948 int hr;
949 if (!reg) return 0;
950 hr = get_reg(cur->regmap, reg);
951 if (hr >= 0)
952 return current_constmap[hr];
953
954 SysPrintf("Unknown constant in r%d\n", reg);
955 abort();
956}
957
958// Least soon needed registers
959// Look at the next ten instructions and see which registers
960// will be used. Try not to reallocate these.
961static void lsn(u_char hsn[], int i, int *preferred_reg)
962{
963 int j;
964 int b=-1;
965 for(j=0;j<9;j++)
966 {
967 if(i+j>=slen) {
968 j=slen-i-1;
969 break;
970 }
971 if (dops[i+j].is_ujump)
972 {
973 // Don't go past an unconditonal jump
974 j++;
975 break;
976 }
977 }
978 for(;j>=0;j--)
979 {
980 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
981 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
982 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
983 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
984 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
985 // Stores can allocate zero
986 hsn[dops[i+j].rs1]=j;
987 hsn[dops[i+j].rs2]=j;
988 }
989 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
990 hsn[ROREG] = j;
991 // On some architectures stores need invc_ptr
992 #if defined(HOST_IMM8)
993 if (dops[i+j].is_store)
994 hsn[INVCP] = j;
995 #endif
996 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
997 {
998 hsn[CCREG]=j;
999 b=j;
1000 }
1001 }
1002 if(b>=0)
1003 {
1004 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
1005 {
1006 // Follow first branch
1007 int t=(ba[i+b]-start)>>2;
1008 j=7-b;if(t+j>=slen) j=slen-t-1;
1009 for(;j>=0;j--)
1010 {
1011 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
1012 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
1013 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
1014 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
1015 }
1016 }
1017 // TODO: preferred register based on backward branch
1018 }
1019 // Delay slot should preferably not overwrite branch conditions or cycle count
1020 if (i > 0 && dops[i-1].is_jump) {
1021 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
1022 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
1023 hsn[CCREG]=1;
1024 // ...or hash tables
1025 hsn[RHASH]=1;
1026 hsn[RHTBL]=1;
1027 }
1028 // Coprocessor load/store needs FTEMP, even if not declared
1029 if(dops[i].itype==C2LS) {
1030 hsn[FTEMP]=0;
1031 }
1032 // Load L/R also uses FTEMP as a temporary register
1033 if(dops[i].itype==LOADLR) {
1034 hsn[FTEMP]=0;
1035 }
1036 // Also SWL/SWR/SDL/SDR
1037 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
1038 hsn[FTEMP]=0;
1039 }
1040 // Don't remove the miniht registers
1041 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
1042 {
1043 hsn[RHASH]=0;
1044 hsn[RHTBL]=0;
1045 }
1046}
1047
1048// We only want to allocate registers if we're going to use them again soon
1049static int needed_again(int r, int i)
1050{
1051 int j;
1052 int b=-1;
1053 int rn=10;
1054
1055 if (i > 0 && dops[i-1].is_ujump)
1056 {
1057 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
1058 return 0; // Don't need any registers if exiting the block
1059 }
1060 for(j=0;j<9;j++)
1061 {
1062 if(i+j>=slen) {
1063 j=slen-i-1;
1064 break;
1065 }
1066 if (dops[i+j].is_ujump)
1067 {
1068 // Don't go past an unconditonal jump
1069 j++;
1070 break;
1071 }
1072 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
1073 {
1074 break;
1075 }
1076 }
1077 for(;j>=1;j--)
1078 {
1079 if(dops[i+j].rs1==r) rn=j;
1080 if(dops[i+j].rs2==r) rn=j;
1081 if((unneeded_reg[i+j]>>r)&1) rn=10;
1082 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
1083 {
1084 b=j;
1085 }
1086 }
1087 if(rn<10) return 1;
1088 (void)b;
1089 return 0;
1090}
1091
1092// Try to match register allocations at the end of a loop with those
1093// at the beginning
1094static int loop_reg(int i, int r, int hr)
1095{
1096 int j,k;
1097 for(j=0;j<9;j++)
1098 {
1099 if(i+j>=slen) {
1100 j=slen-i-1;
1101 break;
1102 }
1103 if (dops[i+j].is_ujump)
1104 {
1105 // Don't go past an unconditonal jump
1106 j++;
1107 break;
1108 }
1109 }
1110 k=0;
1111 if(i>0){
1112 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
1113 k--;
1114 }
1115 for(;k<j;k++)
1116 {
1117 assert(r < 64);
1118 if((unneeded_reg[i+k]>>r)&1) return hr;
1119 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
1120 {
1121 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
1122 {
1123 int t=(ba[i+k]-start)>>2;
1124 int reg=get_reg(regs[t].regmap_entry,r);
1125 if(reg>=0) return reg;
1126 //reg=get_reg(regs[t+1].regmap_entry,r);
1127 //if(reg>=0) return reg;
1128 }
1129 }
1130 }
1131 return hr;
1132}
1133
1134
1135// Allocate every register, preserving source/target regs
1136static void alloc_all(struct regstat *cur,int i)
1137{
1138 int hr;
1139
1140 for(hr=0;hr<HOST_REGS;hr++) {
1141 if(hr!=EXCLUDE_REG) {
1142 if((cur->regmap[hr]!=dops[i].rs1)&&(cur->regmap[hr]!=dops[i].rs2)&&
1143 (cur->regmap[hr]!=dops[i].rt1)&&(cur->regmap[hr]!=dops[i].rt2))
1144 {
1145 cur->regmap[hr]=-1;
1146 cur->dirty&=~(1<<hr);
1147 }
1148 // Don't need zeros
1149 if(cur->regmap[hr]==0)
1150 {
1151 cur->regmap[hr]=-1;
1152 cur->dirty&=~(1<<hr);
1153 }
1154 }
1155 }
1156}
1157
1158#ifndef NDEBUG
1159static int host_tempreg_in_use;
1160
1161static void host_tempreg_acquire(void)
1162{
1163 assert(!host_tempreg_in_use);
1164 host_tempreg_in_use = 1;
1165}
1166
1167static void host_tempreg_release(void)
1168{
1169 host_tempreg_in_use = 0;
1170}
1171#else
1172static void host_tempreg_acquire(void) {}
1173static void host_tempreg_release(void) {}
1174#endif
1175
1176#ifdef ASSEM_PRINT
1177extern void gen_interupt();
1178extern void do_insn_cmp();
1179#define FUNCNAME(f) { f, " " #f }
1180static const struct {
1181 void *addr;
1182 const char *name;
1183} function_names[] = {
1184 FUNCNAME(cc_interrupt),
1185 FUNCNAME(gen_interupt),
1186 FUNCNAME(ndrc_get_addr_ht),
1187 FUNCNAME(jump_handler_read8),
1188 FUNCNAME(jump_handler_read16),
1189 FUNCNAME(jump_handler_read32),
1190 FUNCNAME(jump_handler_write8),
1191 FUNCNAME(jump_handler_write16),
1192 FUNCNAME(jump_handler_write32),
1193 FUNCNAME(ndrc_write_invalidate_one),
1194 FUNCNAME(ndrc_write_invalidate_many),
1195 FUNCNAME(jump_to_new_pc),
1196 FUNCNAME(jump_break),
1197 FUNCNAME(jump_break_ds),
1198 FUNCNAME(jump_syscall),
1199 FUNCNAME(jump_syscall_ds),
1200 FUNCNAME(call_gteStall),
1201 FUNCNAME(new_dyna_leave),
1202 FUNCNAME(pcsx_mtc0),
1203 FUNCNAME(pcsx_mtc0_ds),
1204#ifdef DRC_DBG
1205 FUNCNAME(do_insn_cmp),
1206#endif
1207};
1208
1209static const char *func_name(const void *a)
1210{
1211 int i;
1212 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
1213 if (function_names[i].addr == a)
1214 return function_names[i].name;
1215 return "";
1216}
1217#else
1218#define func_name(x) ""
1219#endif
1220
1221#ifdef __i386__
1222#include "assem_x86.c"
1223#endif
1224#ifdef __x86_64__
1225#include "assem_x64.c"
1226#endif
1227#ifdef __arm__
1228#include "assem_arm.c"
1229#endif
1230#ifdef __aarch64__
1231#include "assem_arm64.c"
1232#endif
1233
1234static void *get_trampoline(const void *f)
1235{
1236 struct ndrc_tramp *tramp = NDRC_WRITE_OFFSET(&ndrc->tramp);
1237 size_t i;
1238
1239 for (i = 0; i < ARRAY_SIZE(tramp->f); i++) {
1240 if (tramp->f[i] == f || tramp->f[i] == NULL)
1241 break;
1242 }
1243 if (i == ARRAY_SIZE(tramp->f)) {
1244 SysPrintf("trampoline table is full, last func %p\n", f);
1245 abort();
1246 }
1247 if (tramp->f[i] == NULL) {
1248 start_tcache_write(&tramp->f[i], &tramp->f[i + 1]);
1249 tramp->f[i] = f;
1250 end_tcache_write(&tramp->f[i], &tramp->f[i + 1]);
1251#ifdef HAVE_LIBNX
1252 // invalidate the RX mirror (unsure if necessary, but just in case...)
1253 armDCacheFlush(&ndrc->tramp.f[i], sizeof(ndrc->tramp.f[i]));
1254#endif
1255 }
1256 return &ndrc->tramp.ops[i];
1257}
1258
1259static void emit_far_jump(const void *f)
1260{
1261 if (can_jump_or_call(f)) {
1262 emit_jmp(f);
1263 return;
1264 }
1265
1266 f = get_trampoline(f);
1267 emit_jmp(f);
1268}
1269
1270static void emit_far_call(const void *f)
1271{
1272 if (can_jump_or_call(f)) {
1273 emit_call(f);
1274 return;
1275 }
1276
1277 f = get_trampoline(f);
1278 emit_call(f);
1279}
1280
1281// Check if an address is already compiled
1282// but don't return addresses which are about to expire from the cache
1283static void *check_addr(u_int vaddr)
1284{
1285 struct ht_entry *ht_bin = hash_table_get(vaddr);
1286 size_t i;
1287 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1288 if (ht_bin->vaddr[i] == vaddr)
1289 if (doesnt_expire_soon(ht_bin->tcaddr[i]))
1290 return ht_bin->tcaddr[i];
1291 }
1292
1293 // refactor to get_addr_nocompile?
1294 u_int start_page = get_page_prev(vaddr);
1295 u_int page, end_page = get_page(vaddr);
1296
1297 stat_inc(stat_jump_in_lookups);
1298 for (page = start_page; page <= end_page; page++) {
1299 const struct block_info *block;
1300 for (block = blocks[page]; block != NULL; block = block->next) {
1301 if (vaddr < block->start)
1302 break;
1303 if (block->is_dirty || vaddr >= block->start + block->len)
1304 continue;
1305 if (!doesnt_expire_soon(ndrc->translation_cache + block->tc_offs))
1306 continue;
1307 for (i = 0; i < block->jump_in_cnt; i++)
1308 if (block->jump_in[i].vaddr == vaddr)
1309 break;
1310 if (i == block->jump_in_cnt)
1311 continue;
1312
1313 // Update existing entry with current address
1314 void *addr = block->jump_in[i].addr;
1315 if (ht_bin->vaddr[0] == vaddr) {
1316 ht_bin->tcaddr[0] = addr;
1317 return addr;
1318 }
1319 if (ht_bin->vaddr[1] == vaddr) {
1320 ht_bin->tcaddr[1] = addr;
1321 return addr;
1322 }
1323 // Insert into hash table with low priority.
1324 // Don't evict existing entries, as they are probably
1325 // addresses that are being accessed frequently.
1326 if (ht_bin->vaddr[0] == -1) {
1327 ht_bin->vaddr[0] = vaddr;
1328 ht_bin->tcaddr[0] = addr;
1329 }
1330 else if (ht_bin->vaddr[1] == -1) {
1331 ht_bin->vaddr[1] = vaddr;
1332 ht_bin->tcaddr[1] = addr;
1333 }
1334 return addr;
1335 }
1336 }
1337 return NULL;
1338}
1339
1340static void blocks_clear(struct block_info **head)
1341{
1342 struct block_info *cur, *next;
1343
1344 if ((cur = *head)) {
1345 *head = NULL;
1346 while (cur) {
1347 next = cur->next;
1348 free(cur);
1349 cur = next;
1350 }
1351 }
1352}
1353
1354static int blocks_remove_matching_addrs(struct block_info **head,
1355 u_int base_offs, int shift)
1356{
1357 struct block_info *next;
1358 int hit = 0;
1359 while (*head) {
1360 if ((((*head)->tc_offs ^ base_offs) >> shift) == 0) {
1361 inv_debug("EXP: rm block %08x (tc_offs %x)\n", (*head)->start, (*head)->tc_offs);
1362 invalidate_block(*head);
1363 next = (*head)->next;
1364 free(*head);
1365 *head = next;
1366 stat_dec(stat_blocks);
1367 hit = 1;
1368 }
1369 else
1370 {
1371 head = &((*head)->next);
1372 }
1373 }
1374 return hit;
1375}
1376
1377// This is called when we write to a compiled block (see do_invstub)
1378static void unlink_jumps_vaddr_range(u_int start, u_int end)
1379{
1380 u_int page, start_page = get_page(start), end_page = get_page(end - 1);
1381 int i;
1382
1383 for (page = start_page; page <= end_page; page++) {
1384 struct jump_info *ji = jumps[page];
1385 if (ji == NULL)
1386 continue;
1387 for (i = 0; i < ji->count; ) {
1388 if (ji->e[i].target_vaddr < start || ji->e[i].target_vaddr >= end) {
1389 i++;
1390 continue;
1391 }
1392
1393 inv_debug("INV: rm link to %08x (tc_offs %zx)\n", ji->e[i].target_vaddr,
1394 (u_char *)ji->e[i].stub - ndrc->translation_cache);
1395 void *host_addr = find_extjump_insn(ji->e[i].stub);
1396 mark_clear_cache(host_addr);
1397 set_jump_target(host_addr, ji->e[i].stub); // point back to dyna_linker stub
1398
1399 stat_dec(stat_links);
1400 ji->count--;
1401 if (i < ji->count) {
1402 ji->e[i] = ji->e[ji->count];
1403 continue;
1404 }
1405 i++;
1406 }
1407 }
1408}
1409
1410static void unlink_jumps_tc_range(struct jump_info *ji, u_int base_offs, int shift)
1411{
1412 int i;
1413 if (ji == NULL)
1414 return;
1415 for (i = 0; i < ji->count; ) {
1416 u_int tc_offs = (u_char *)ji->e[i].stub - ndrc->translation_cache;
1417 if (((tc_offs ^ base_offs) >> shift) != 0) {
1418 i++;
1419 continue;
1420 }
1421
1422 inv_debug("EXP: rm link to %08x (tc_offs %x)\n", ji->e[i].target_vaddr, tc_offs);
1423 stat_dec(stat_links);
1424 ji->count--;
1425 if (i < ji->count) {
1426 ji->e[i] = ji->e[ji->count];
1427 continue;
1428 }
1429 i++;
1430 }
1431}
1432
1433static void invalidate_block(struct block_info *block)
1434{
1435 u_int i;
1436
1437 block->is_dirty = 1;
1438 unlink_jumps_vaddr_range(block->start, block->start + block->len);
1439 for (i = 0; i < block->jump_in_cnt; i++)
1440 hash_table_remove(block->jump_in[i].vaddr);
1441}
1442
1443static int invalidate_range(u_int start, u_int end,
1444 u32 *inv_start_ret, u32 *inv_end_ret)
1445{
1446 struct block_info *last_block = NULL;
1447 u_int start_page = get_page_prev(start);
1448 u_int end_page = get_page(end - 1);
1449 u_int start_m = pmmask(start);
1450 u_int end_m = pmmask(end - 1);
1451 u_int inv_start, inv_end;
1452 u_int blk_start_m, blk_end_m;
1453 u_int page;
1454 int hit = 0;
1455
1456 // additional area without code (to supplement invalid_code[]), [start, end)
1457 // avoids excessive ndrc_write_invalidate*() calls
1458 inv_start = start_m & ~0xfff;
1459 inv_end = end_m | 0xfff;
1460
1461 for (page = start_page; page <= end_page; page++) {
1462 struct block_info *block;
1463 for (block = blocks[page]; block != NULL; block = block->next) {
1464 if (block->is_dirty)
1465 continue;
1466 last_block = block;
1467 blk_end_m = pmmask(block->start + block->len);
1468 if (blk_end_m <= start_m) {
1469 inv_start = max(inv_start, blk_end_m);
1470 continue;
1471 }
1472 blk_start_m = pmmask(block->start);
1473 if (end_m <= blk_start_m) {
1474 inv_end = min(inv_end, blk_start_m - 1);
1475 continue;
1476 }
1477 if (!block->source) // "hack" block - leave it alone
1478 continue;
1479
1480 hit++;
1481 invalidate_block(block);
1482 stat_inc(stat_inv_hits);
1483 }
1484 }
1485
1486 if (!hit && last_block && last_block->source) {
1487 // could be some leftover unused block, uselessly trapping writes
1488 last_block->inv_near_misses++;
1489 if (last_block->inv_near_misses > 128) {
1490 invalidate_block(last_block);
1491 stat_inc(stat_inv_hits);
1492 hit++;
1493 }
1494 }
1495 if (hit) {
1496 do_clear_cache();
1497#ifdef USE_MINI_HT
1498 memset(mini_ht, -1, sizeof(mini_ht));
1499#endif
1500 }
1501
1502 if (inv_start <= (start_m & ~0xfff) && inv_end >= (start_m | 0xfff))
1503 // the whole page is empty now
1504 mark_invalid_code(start, 1, 1);
1505
1506 if (inv_start_ret) *inv_start_ret = inv_start | (start & 0xe0000000);
1507 if (inv_end_ret) *inv_end_ret = inv_end | (end & 0xe0000000);
1508 return hit;
1509}
1510
1511void new_dynarec_invalidate_range(unsigned int start, unsigned int end)
1512{
1513 invalidate_range(start, end, NULL, NULL);
1514}
1515
1516static void ndrc_write_invalidate_many(u_int start, u_int end)
1517{
1518 // this check is done by the caller
1519 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1520 int ret = invalidate_range(start, end, &inv_code_start, &inv_code_end);
1521#ifdef INV_DEBUG_W
1522 int invc = invalid_code[start >> 12];
1523 u_int len = end - start;
1524 if (ret)
1525 printf("INV ADDR: %08x/%02x hit %d blocks\n", start, len, ret);
1526 else
1527 printf("INV ADDR: %08x/%02x miss, inv %08x-%08x invc %d->%d\n", start, len,
1528 inv_code_start, inv_code_end, invc, invalid_code[start >> 12]);
1529 check_for_block_changes(start, end);
1530#endif
1531 stat_inc(stat_inv_addr_calls);
1532 (void)ret;
1533}
1534
1535void ndrc_write_invalidate_one(u_int addr)
1536{
1537 ndrc_write_invalidate_many(addr, addr + 4);
1538}
1539
1540// This is called when loading a save state.
1541// Anything could have changed, so invalidate everything.
1542void new_dynarec_invalidate_all_pages(void)
1543{
1544 struct block_info *block;
1545 u_int page;
1546 for (page = 0; page < ARRAY_SIZE(blocks); page++) {
1547 for (block = blocks[page]; block != NULL; block = block->next) {
1548 if (block->is_dirty)
1549 continue;
1550 if (!block->source) // hack block?
1551 continue;
1552 invalidate_block(block);
1553 }
1554 }
1555
1556 #ifdef USE_MINI_HT
1557 memset(mini_ht, -1, sizeof(mini_ht));
1558 #endif
1559 do_clear_cache();
1560}
1561
1562// Add an entry to jump_out after making a link
1563// src should point to code by emit_extjump()
1564void ndrc_add_jump_out(u_int vaddr, void *src)
1565{
1566 inv_debug("ndrc_add_jump_out: %p -> %x\n", src, vaddr);
1567 u_int page = get_page(vaddr);
1568 struct jump_info *ji;
1569
1570 stat_inc(stat_links);
1571 check_extjump2(src);
1572 ji = jumps[page];
1573 if (ji == NULL) {
1574 ji = malloc(sizeof(*ji) + sizeof(ji->e[0]) * 16);
1575 ji->alloc = 16;
1576 ji->count = 0;
1577 }
1578 else if (ji->count >= ji->alloc) {
1579 ji->alloc += 16;
1580 ji = realloc(ji, sizeof(*ji) + sizeof(ji->e[0]) * ji->alloc);
1581 }
1582 jumps[page] = ji;
1583 ji->e[ji->count].target_vaddr = vaddr;
1584 ji->e[ji->count].stub = src;
1585 ji->count++;
1586}
1587
1588/* Register allocation */
1589
1590// Note: registers are allocated clean (unmodified state)
1591// if you intend to modify the register, you must call dirty_reg().
1592static void alloc_reg(struct regstat *cur,int i,signed char reg)
1593{
1594 int r,hr;
1595 int preferred_reg = PREFERRED_REG_FIRST
1596 + reg % (PREFERRED_REG_LAST - PREFERRED_REG_FIRST + 1);
1597 if (reg == CCREG) preferred_reg = HOST_CCREG;
1598 if (reg == PTEMP || reg == FTEMP) preferred_reg = 12;
1599 assert(PREFERRED_REG_FIRST != EXCLUDE_REG && EXCLUDE_REG != HOST_REGS);
1600 assert(reg >= 0);
1601
1602 // Don't allocate unused registers
1603 if((cur->u>>reg)&1) return;
1604
1605 // see if it's already allocated
1606 if (get_reg(cur->regmap, reg) >= 0)
1607 return;
1608
1609 // Keep the same mapping if the register was already allocated in a loop
1610 preferred_reg = loop_reg(i,reg,preferred_reg);
1611
1612 // Try to allocate the preferred register
1613 if(cur->regmap[preferred_reg]==-1) {
1614 cur->regmap[preferred_reg]=reg;
1615 cur->dirty&=~(1<<preferred_reg);
1616 cur->isconst&=~(1<<preferred_reg);
1617 return;
1618 }
1619 r=cur->regmap[preferred_reg];
1620 assert(r < 64);
1621 if((cur->u>>r)&1) {
1622 cur->regmap[preferred_reg]=reg;
1623 cur->dirty&=~(1<<preferred_reg);
1624 cur->isconst&=~(1<<preferred_reg);
1625 return;
1626 }
1627
1628 // Clear any unneeded registers
1629 // We try to keep the mapping consistent, if possible, because it
1630 // makes branches easier (especially loops). So we try to allocate
1631 // first (see above) before removing old mappings. If this is not
1632 // possible then go ahead and clear out the registers that are no
1633 // longer needed.
1634 for(hr=0;hr<HOST_REGS;hr++)
1635 {
1636 r=cur->regmap[hr];
1637 if(r>=0) {
1638 assert(r < 64);
1639 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1640 }
1641 }
1642
1643 // Try to allocate any available register, but prefer
1644 // registers that have not been used recently.
1645 if (i > 0) {
1646 for (hr = PREFERRED_REG_FIRST; ; ) {
1647 if (cur->regmap[hr] < 0) {
1648 int oldreg = regs[i-1].regmap[hr];
1649 if (oldreg < 0 || (oldreg != dops[i-1].rs1 && oldreg != dops[i-1].rs2
1650 && oldreg != dops[i-1].rt1 && oldreg != dops[i-1].rt2))
1651 {
1652 cur->regmap[hr]=reg;
1653 cur->dirty&=~(1<<hr);
1654 cur->isconst&=~(1<<hr);
1655 return;
1656 }
1657 }
1658 hr++;
1659 if (hr == EXCLUDE_REG)
1660 hr++;
1661 if (hr == HOST_REGS)
1662 hr = 0;
1663 if (hr == PREFERRED_REG_FIRST)
1664 break;
1665 }
1666 }
1667
1668 // Try to allocate any available register
1669 for (hr = PREFERRED_REG_FIRST; ; ) {
1670 if (cur->regmap[hr] < 0) {
1671 cur->regmap[hr]=reg;
1672 cur->dirty&=~(1<<hr);
1673 cur->isconst&=~(1<<hr);
1674 return;
1675 }
1676 hr++;
1677 if (hr == EXCLUDE_REG)
1678 hr++;
1679 if (hr == HOST_REGS)
1680 hr = 0;
1681 if (hr == PREFERRED_REG_FIRST)
1682 break;
1683 }
1684
1685 // Ok, now we have to evict someone
1686 // Pick a register we hopefully won't need soon
1687 u_char hsn[MAXREG+1];
1688 memset(hsn,10,sizeof(hsn));
1689 int j;
1690 lsn(hsn,i,&preferred_reg);
1691 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1692 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1693 if(i>0) {
1694 // Don't evict the cycle count at entry points, otherwise the entry
1695 // stub will have to write it.
1696 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1697 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1698 for(j=10;j>=3;j--)
1699 {
1700 // Alloc preferred register if available
1701 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1702 for(hr=0;hr<HOST_REGS;hr++) {
1703 // Evict both parts of a 64-bit register
1704 if(cur->regmap[hr]==r) {
1705 cur->regmap[hr]=-1;
1706 cur->dirty&=~(1<<hr);
1707 cur->isconst&=~(1<<hr);
1708 }
1709 }
1710 cur->regmap[preferred_reg]=reg;
1711 return;
1712 }
1713 for(r=1;r<=MAXREG;r++)
1714 {
1715 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1716 for(hr=0;hr<HOST_REGS;hr++) {
1717 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1718 if(cur->regmap[hr]==r) {
1719 cur->regmap[hr]=reg;
1720 cur->dirty&=~(1<<hr);
1721 cur->isconst&=~(1<<hr);
1722 return;
1723 }
1724 }
1725 }
1726 }
1727 }
1728 }
1729 }
1730 for(j=10;j>=0;j--)
1731 {
1732 for(r=1;r<=MAXREG;r++)
1733 {
1734 if(hsn[r]==j) {
1735 for(hr=0;hr<HOST_REGS;hr++) {
1736 if(cur->regmap[hr]==r) {
1737 cur->regmap[hr]=reg;
1738 cur->dirty&=~(1<<hr);
1739 cur->isconst&=~(1<<hr);
1740 return;
1741 }
1742 }
1743 }
1744 }
1745 }
1746 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1747}
1748
1749// Allocate a temporary register. This is done without regard to
1750// dirty status or whether the register we request is on the unneeded list
1751// Note: This will only allocate one register, even if called multiple times
1752static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1753{
1754 int r,hr;
1755 int preferred_reg = -1;
1756
1757 // see if it's already allocated
1758 for(hr=0;hr<HOST_REGS;hr++)
1759 {
1760 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1761 }
1762
1763 // Try to allocate any available register
1764 for(hr=HOST_REGS-1;hr>=0;hr--) {
1765 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1766 cur->regmap[hr]=reg;
1767 cur->dirty&=~(1<<hr);
1768 cur->isconst&=~(1<<hr);
1769 return;
1770 }
1771 }
1772
1773 // Find an unneeded register
1774 for(hr=HOST_REGS-1;hr>=0;hr--)
1775 {
1776 r=cur->regmap[hr];
1777 if(r>=0) {
1778 assert(r < 64);
1779 if((cur->u>>r)&1) {
1780 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1781 cur->regmap[hr]=reg;
1782 cur->dirty&=~(1<<hr);
1783 cur->isconst&=~(1<<hr);
1784 return;
1785 }
1786 }
1787 }
1788 }
1789
1790 // Ok, now we have to evict someone
1791 // Pick a register we hopefully won't need soon
1792 // TODO: we might want to follow unconditional jumps here
1793 // TODO: get rid of dupe code and make this into a function
1794 u_char hsn[MAXREG+1];
1795 memset(hsn,10,sizeof(hsn));
1796 int j;
1797 lsn(hsn,i,&preferred_reg);
1798 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1799 if(i>0) {
1800 // Don't evict the cycle count at entry points, otherwise the entry
1801 // stub will have to write it.
1802 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1803 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1804 for(j=10;j>=3;j--)
1805 {
1806 for(r=1;r<=MAXREG;r++)
1807 {
1808 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1809 for(hr=0;hr<HOST_REGS;hr++) {
1810 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1811 if(cur->regmap[hr]==r) {
1812 cur->regmap[hr]=reg;
1813 cur->dirty&=~(1<<hr);
1814 cur->isconst&=~(1<<hr);
1815 return;
1816 }
1817 }
1818 }
1819 }
1820 }
1821 }
1822 }
1823 for(j=10;j>=0;j--)
1824 {
1825 for(r=1;r<=MAXREG;r++)
1826 {
1827 if(hsn[r]==j) {
1828 for(hr=0;hr<HOST_REGS;hr++) {
1829 if(cur->regmap[hr]==r) {
1830 cur->regmap[hr]=reg;
1831 cur->dirty&=~(1<<hr);
1832 cur->isconst&=~(1<<hr);
1833 return;
1834 }
1835 }
1836 }
1837 }
1838 }
1839 SysPrintf("This shouldn't happen");abort();
1840}
1841
1842static void mov_alloc(struct regstat *current,int i)
1843{
1844 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1845 alloc_cc(current,i); // for stalls
1846 dirty_reg(current,CCREG);
1847 }
1848
1849 // Note: Don't need to actually alloc the source registers
1850 //alloc_reg(current,i,dops[i].rs1);
1851 alloc_reg(current,i,dops[i].rt1);
1852
1853 clear_const(current,dops[i].rs1);
1854 clear_const(current,dops[i].rt1);
1855 dirty_reg(current,dops[i].rt1);
1856}
1857
1858static void shiftimm_alloc(struct regstat *current,int i)
1859{
1860 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1861 {
1862 if(dops[i].rt1) {
1863 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1864 else dops[i].use_lt1=!!dops[i].rs1;
1865 alloc_reg(current,i,dops[i].rt1);
1866 dirty_reg(current,dops[i].rt1);
1867 if(is_const(current,dops[i].rs1)) {
1868 int v=get_const(current,dops[i].rs1);
1869 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1870 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1871 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1872 }
1873 else clear_const(current,dops[i].rt1);
1874 }
1875 }
1876 else
1877 {
1878 clear_const(current,dops[i].rs1);
1879 clear_const(current,dops[i].rt1);
1880 }
1881
1882 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1883 {
1884 assert(0);
1885 }
1886 if(dops[i].opcode2==0x3c) // DSLL32
1887 {
1888 assert(0);
1889 }
1890 if(dops[i].opcode2==0x3e) // DSRL32
1891 {
1892 assert(0);
1893 }
1894 if(dops[i].opcode2==0x3f) // DSRA32
1895 {
1896 assert(0);
1897 }
1898}
1899
1900static void shift_alloc(struct regstat *current,int i)
1901{
1902 if(dops[i].rt1) {
1903 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1904 {
1905 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1906 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1907 alloc_reg(current,i,dops[i].rt1);
1908 if(dops[i].rt1==dops[i].rs2) {
1909 alloc_reg_temp(current,i,-1);
1910 minimum_free_regs[i]=1;
1911 }
1912 } else { // DSLLV/DSRLV/DSRAV
1913 assert(0);
1914 }
1915 clear_const(current,dops[i].rs1);
1916 clear_const(current,dops[i].rs2);
1917 clear_const(current,dops[i].rt1);
1918 dirty_reg(current,dops[i].rt1);
1919 }
1920}
1921
1922static void alu_alloc(struct regstat *current,int i)
1923{
1924 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1925 if(dops[i].rt1) {
1926 if(dops[i].rs1&&dops[i].rs2) {
1927 alloc_reg(current,i,dops[i].rs1);
1928 alloc_reg(current,i,dops[i].rs2);
1929 }
1930 else {
1931 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1932 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1933 }
1934 alloc_reg(current,i,dops[i].rt1);
1935 }
1936 }
1937 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1938 if(dops[i].rt1) {
1939 alloc_reg(current,i,dops[i].rs1);
1940 alloc_reg(current,i,dops[i].rs2);
1941 alloc_reg(current,i,dops[i].rt1);
1942 }
1943 }
1944 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1945 if(dops[i].rt1) {
1946 if(dops[i].rs1&&dops[i].rs2) {
1947 alloc_reg(current,i,dops[i].rs1);
1948 alloc_reg(current,i,dops[i].rs2);
1949 }
1950 else
1951 {
1952 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1953 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1954 }
1955 alloc_reg(current,i,dops[i].rt1);
1956 }
1957 }
1958 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1959 assert(0);
1960 }
1961 clear_const(current,dops[i].rs1);
1962 clear_const(current,dops[i].rs2);
1963 clear_const(current,dops[i].rt1);
1964 dirty_reg(current,dops[i].rt1);
1965}
1966
1967static void imm16_alloc(struct regstat *current,int i)
1968{
1969 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1970 else dops[i].use_lt1=!!dops[i].rs1;
1971 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1972 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1973 assert(0);
1974 }
1975 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1976 clear_const(current,dops[i].rs1);
1977 clear_const(current,dops[i].rt1);
1978 }
1979 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1980 if(is_const(current,dops[i].rs1)) {
1981 int v=get_const(current,dops[i].rs1);
1982 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1983 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1984 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1985 }
1986 else clear_const(current,dops[i].rt1);
1987 }
1988 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1989 if(is_const(current,dops[i].rs1)) {
1990 int v=get_const(current,dops[i].rs1);
1991 set_const(current,dops[i].rt1,v+imm[i]);
1992 }
1993 else clear_const(current,dops[i].rt1);
1994 }
1995 else {
1996 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1997 }
1998 dirty_reg(current,dops[i].rt1);
1999}
2000
2001static void load_alloc(struct regstat *current,int i)
2002{
2003 clear_const(current,dops[i].rt1);
2004 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
2005 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
2006 if (needed_again(dops[i].rs1, i))
2007 alloc_reg(current, i, dops[i].rs1);
2008 if (ram_offset)
2009 alloc_reg(current, i, ROREG);
2010 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
2011 alloc_reg(current,i,dops[i].rt1);
2012 assert(get_reg(current->regmap,dops[i].rt1)>=0);
2013 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
2014 {
2015 assert(0);
2016 }
2017 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
2018 {
2019 assert(0);
2020 }
2021 dirty_reg(current,dops[i].rt1);
2022 // LWL/LWR need a temporary register for the old value
2023 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
2024 {
2025 alloc_reg(current,i,FTEMP);
2026 alloc_reg_temp(current,i,-1);
2027 minimum_free_regs[i]=1;
2028 }
2029 }
2030 else
2031 {
2032 // Load to r0 or unneeded register (dummy load)
2033 // but we still need a register to calculate the address
2034 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
2035 {
2036 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
2037 }
2038 alloc_reg_temp(current,i,-1);
2039 minimum_free_regs[i]=1;
2040 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
2041 {
2042 assert(0);
2043 }
2044 }
2045}
2046
2047static void store_alloc(struct regstat *current,int i)
2048{
2049 clear_const(current,dops[i].rs2);
2050 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
2051 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
2052 alloc_reg(current,i,dops[i].rs2);
2053 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
2054 assert(0);
2055 }
2056 if (ram_offset)
2057 alloc_reg(current, i, ROREG);
2058 #if defined(HOST_IMM8)
2059 // On CPUs without 32-bit immediates we need a pointer to invalid_code
2060 alloc_reg(current, i, INVCP);
2061 #endif
2062 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
2063 alloc_reg(current,i,FTEMP);
2064 }
2065 // We need a temporary register for address generation
2066 alloc_reg_temp(current,i,-1);
2067 minimum_free_regs[i]=1;
2068}
2069
2070static void c1ls_alloc(struct regstat *current,int i)
2071{
2072 clear_const(current,dops[i].rt1);
2073 alloc_reg(current,i,CSREG); // Status
2074}
2075
2076static void c2ls_alloc(struct regstat *current,int i)
2077{
2078 clear_const(current,dops[i].rt1);
2079 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
2080 alloc_reg(current,i,FTEMP);
2081 if (ram_offset)
2082 alloc_reg(current, i, ROREG);
2083 #if defined(HOST_IMM8)
2084 // On CPUs without 32-bit immediates we need a pointer to invalid_code
2085 if (dops[i].opcode == 0x3a) // SWC2
2086 alloc_reg(current,i,INVCP);
2087 #endif
2088 // We need a temporary register for address generation
2089 alloc_reg_temp(current,i,-1);
2090 minimum_free_regs[i]=1;
2091}
2092
2093#ifndef multdiv_alloc
2094static void multdiv_alloc(struct regstat *current,int i)
2095{
2096 // case 0x18: MULT
2097 // case 0x19: MULTU
2098 // case 0x1A: DIV
2099 // case 0x1B: DIVU
2100 // case 0x1C: DMULT
2101 // case 0x1D: DMULTU
2102 // case 0x1E: DDIV
2103 // case 0x1F: DDIVU
2104 clear_const(current,dops[i].rs1);
2105 clear_const(current,dops[i].rs2);
2106 alloc_cc(current,i); // for stalls
2107 if(dops[i].rs1&&dops[i].rs2)
2108 {
2109 if((dops[i].opcode2&4)==0) // 32-bit
2110 {
2111 current->u&=~(1LL<<HIREG);
2112 current->u&=~(1LL<<LOREG);
2113 alloc_reg(current,i,HIREG);
2114 alloc_reg(current,i,LOREG);
2115 alloc_reg(current,i,dops[i].rs1);
2116 alloc_reg(current,i,dops[i].rs2);
2117 dirty_reg(current,HIREG);
2118 dirty_reg(current,LOREG);
2119 }
2120 else // 64-bit
2121 {
2122 assert(0);
2123 }
2124 }
2125 else
2126 {
2127 // Multiply by zero is zero.
2128 // MIPS does not have a divide by zero exception.
2129 // The result is undefined, we return zero.
2130 alloc_reg(current,i,HIREG);
2131 alloc_reg(current,i,LOREG);
2132 dirty_reg(current,HIREG);
2133 dirty_reg(current,LOREG);
2134 }
2135}
2136#endif
2137
2138static void cop0_alloc(struct regstat *current,int i)
2139{
2140 if(dops[i].opcode2==0) // MFC0
2141 {
2142 if(dops[i].rt1) {
2143 clear_const(current,dops[i].rt1);
2144 alloc_all(current,i);
2145 alloc_reg(current,i,dops[i].rt1);
2146 dirty_reg(current,dops[i].rt1);
2147 }
2148 }
2149 else if(dops[i].opcode2==4) // MTC0
2150 {
2151 if(dops[i].rs1){
2152 clear_const(current,dops[i].rs1);
2153 alloc_reg(current,i,dops[i].rs1);
2154 alloc_all(current,i);
2155 }
2156 else {
2157 alloc_all(current,i); // FIXME: Keep r0
2158 current->u&=~1LL;
2159 alloc_reg(current,i,0);
2160 }
2161 }
2162 else
2163 {
2164 // RFE
2165 assert(dops[i].opcode2==0x10);
2166 alloc_all(current,i);
2167 }
2168 minimum_free_regs[i]=HOST_REGS;
2169}
2170
2171static void cop2_alloc(struct regstat *current,int i)
2172{
2173 if (dops[i].opcode2 < 3) // MFC2/CFC2
2174 {
2175 alloc_cc(current,i); // for stalls
2176 dirty_reg(current,CCREG);
2177 if(dops[i].rt1){
2178 clear_const(current,dops[i].rt1);
2179 alloc_reg(current,i,dops[i].rt1);
2180 dirty_reg(current,dops[i].rt1);
2181 }
2182 }
2183 else if (dops[i].opcode2 > 3) // MTC2/CTC2
2184 {
2185 if(dops[i].rs1){
2186 clear_const(current,dops[i].rs1);
2187 alloc_reg(current,i,dops[i].rs1);
2188 }
2189 else {
2190 current->u&=~1LL;
2191 alloc_reg(current,i,0);
2192 }
2193 }
2194 alloc_reg_temp(current,i,-1);
2195 minimum_free_regs[i]=1;
2196}
2197
2198static void c2op_alloc(struct regstat *current,int i)
2199{
2200 alloc_cc(current,i); // for stalls
2201 dirty_reg(current,CCREG);
2202 alloc_reg_temp(current,i,-1);
2203}
2204
2205static void syscall_alloc(struct regstat *current,int i)
2206{
2207 alloc_cc(current,i);
2208 dirty_reg(current,CCREG);
2209 alloc_all(current,i);
2210 minimum_free_regs[i]=HOST_REGS;
2211 current->isconst=0;
2212}
2213
2214static void delayslot_alloc(struct regstat *current,int i)
2215{
2216 switch(dops[i].itype) {
2217 case UJUMP:
2218 case CJUMP:
2219 case SJUMP:
2220 case RJUMP:
2221 case SYSCALL:
2222 case HLECALL:
2223 case IMM16:
2224 imm16_alloc(current,i);
2225 break;
2226 case LOAD:
2227 case LOADLR:
2228 load_alloc(current,i);
2229 break;
2230 case STORE:
2231 case STORELR:
2232 store_alloc(current,i);
2233 break;
2234 case ALU:
2235 alu_alloc(current,i);
2236 break;
2237 case SHIFT:
2238 shift_alloc(current,i);
2239 break;
2240 case MULTDIV:
2241 multdiv_alloc(current,i);
2242 break;
2243 case SHIFTIMM:
2244 shiftimm_alloc(current,i);
2245 break;
2246 case MOV:
2247 mov_alloc(current,i);
2248 break;
2249 case COP0:
2250 cop0_alloc(current,i);
2251 break;
2252 case COP1:
2253 break;
2254 case COP2:
2255 cop2_alloc(current,i);
2256 break;
2257 case C1LS:
2258 c1ls_alloc(current,i);
2259 break;
2260 case C2LS:
2261 c2ls_alloc(current,i);
2262 break;
2263 case C2OP:
2264 c2op_alloc(current,i);
2265 break;
2266 }
2267}
2268
2269static void add_stub(enum stub_type type, void *addr, void *retaddr,
2270 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2271{
2272 assert(stubcount < ARRAY_SIZE(stubs));
2273 stubs[stubcount].type = type;
2274 stubs[stubcount].addr = addr;
2275 stubs[stubcount].retaddr = retaddr;
2276 stubs[stubcount].a = a;
2277 stubs[stubcount].b = b;
2278 stubs[stubcount].c = c;
2279 stubs[stubcount].d = d;
2280 stubs[stubcount].e = e;
2281 stubcount++;
2282}
2283
2284static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2285 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2286{
2287 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2288}
2289
2290// Write out a single register
2291static void wb_register(signed char r, const signed char regmap[], uint64_t dirty)
2292{
2293 int hr;
2294 for(hr=0;hr<HOST_REGS;hr++) {
2295 if(hr!=EXCLUDE_REG) {
2296 if(regmap[hr]==r) {
2297 if((dirty>>hr)&1) {
2298 assert(regmap[hr]<64);
2299 emit_storereg(r,hr);
2300 }
2301 }
2302 }
2303 }
2304}
2305
2306static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2307{
2308 //if(dirty_pre==dirty) return;
2309 int hr, r;
2310 for (hr = 0; hr < HOST_REGS; hr++) {
2311 r = pre[hr];
2312 if (r < 1 || r > 33 || ((u >> r) & 1))
2313 continue;
2314 if (((dirty_pre & ~dirty) >> hr) & 1)
2315 emit_storereg(r, hr);
2316 }
2317}
2318
2319// trashes r2
2320static void pass_args(int a0, int a1)
2321{
2322 if(a0==1&&a1==0) {
2323 // must swap
2324 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2325 }
2326 else if(a0!=0&&a1==0) {
2327 emit_mov(a1,1);
2328 if (a0>=0) emit_mov(a0,0);
2329 }
2330 else {
2331 if(a0>=0&&a0!=0) emit_mov(a0,0);
2332 if(a1>=0&&a1!=1) emit_mov(a1,1);
2333 }
2334}
2335
2336static void alu_assemble(int i, const struct regstat *i_regs)
2337{
2338 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2339 if(dops[i].rt1) {
2340 signed char s1,s2,t;
2341 t=get_reg(i_regs->regmap,dops[i].rt1);
2342 if(t>=0) {
2343 s1=get_reg(i_regs->regmap,dops[i].rs1);
2344 s2=get_reg(i_regs->regmap,dops[i].rs2);
2345 if(dops[i].rs1&&dops[i].rs2) {
2346 assert(s1>=0);
2347 assert(s2>=0);
2348 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2349 else emit_add(s1,s2,t);
2350 }
2351 else if(dops[i].rs1) {
2352 if(s1>=0) emit_mov(s1,t);
2353 else emit_loadreg(dops[i].rs1,t);
2354 }
2355 else if(dops[i].rs2) {
2356 if(s2>=0) {
2357 if(dops[i].opcode2&2) emit_neg(s2,t);
2358 else emit_mov(s2,t);
2359 }
2360 else {
2361 emit_loadreg(dops[i].rs2,t);
2362 if(dops[i].opcode2&2) emit_neg(t,t);
2363 }
2364 }
2365 else emit_zeroreg(t);
2366 }
2367 }
2368 }
2369 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2370 assert(0);
2371 }
2372 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2373 if(dops[i].rt1) {
2374 signed char s1l,s2l,t;
2375 {
2376 t=get_reg(i_regs->regmap,dops[i].rt1);
2377 //assert(t>=0);
2378 if(t>=0) {
2379 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2380 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2381 if(dops[i].rs2==0) // rx<r0
2382 {
2383 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2384 assert(s1l>=0);
2385 emit_shrimm(s1l,31,t);
2386 }
2387 else // SLTU (unsigned can not be less than zero, 0<0)
2388 emit_zeroreg(t);
2389 }
2390 else if(dops[i].rs1==0) // r0<rx
2391 {
2392 assert(s2l>=0);
2393 if(dops[i].opcode2==0x2a) // SLT
2394 emit_set_gz32(s2l,t);
2395 else // SLTU (set if not zero)
2396 emit_set_nz32(s2l,t);
2397 }
2398 else{
2399 assert(s1l>=0);assert(s2l>=0);
2400 if(dops[i].opcode2==0x2a) // SLT
2401 emit_set_if_less32(s1l,s2l,t);
2402 else // SLTU
2403 emit_set_if_carry32(s1l,s2l,t);
2404 }
2405 }
2406 }
2407 }
2408 }
2409 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2410 if(dops[i].rt1) {
2411 signed char s1l,s2l,tl;
2412 tl=get_reg(i_regs->regmap,dops[i].rt1);
2413 {
2414 if(tl>=0) {
2415 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2416 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2417 if(dops[i].rs1&&dops[i].rs2) {
2418 assert(s1l>=0);
2419 assert(s2l>=0);
2420 if(dops[i].opcode2==0x24) { // AND
2421 emit_and(s1l,s2l,tl);
2422 } else
2423 if(dops[i].opcode2==0x25) { // OR
2424 emit_or(s1l,s2l,tl);
2425 } else
2426 if(dops[i].opcode2==0x26) { // XOR
2427 emit_xor(s1l,s2l,tl);
2428 } else
2429 if(dops[i].opcode2==0x27) { // NOR
2430 emit_or(s1l,s2l,tl);
2431 emit_not(tl,tl);
2432 }
2433 }
2434 else
2435 {
2436 if(dops[i].opcode2==0x24) { // AND
2437 emit_zeroreg(tl);
2438 } else
2439 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2440 if(dops[i].rs1){
2441 if(s1l>=0) emit_mov(s1l,tl);
2442 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2443 }
2444 else
2445 if(dops[i].rs2){
2446 if(s2l>=0) emit_mov(s2l,tl);
2447 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2448 }
2449 else emit_zeroreg(tl);
2450 } else
2451 if(dops[i].opcode2==0x27) { // NOR
2452 if(dops[i].rs1){
2453 if(s1l>=0) emit_not(s1l,tl);
2454 else {
2455 emit_loadreg(dops[i].rs1,tl);
2456 emit_not(tl,tl);
2457 }
2458 }
2459 else
2460 if(dops[i].rs2){
2461 if(s2l>=0) emit_not(s2l,tl);
2462 else {
2463 emit_loadreg(dops[i].rs2,tl);
2464 emit_not(tl,tl);
2465 }
2466 }
2467 else emit_movimm(-1,tl);
2468 }
2469 }
2470 }
2471 }
2472 }
2473 }
2474}
2475
2476static void imm16_assemble(int i, const struct regstat *i_regs)
2477{
2478 if (dops[i].opcode==0x0f) { // LUI
2479 if(dops[i].rt1) {
2480 signed char t;
2481 t=get_reg(i_regs->regmap,dops[i].rt1);
2482 //assert(t>=0);
2483 if(t>=0) {
2484 if(!((i_regs->isconst>>t)&1))
2485 emit_movimm(imm[i]<<16,t);
2486 }
2487 }
2488 }
2489 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2490 if(dops[i].rt1) {
2491 signed char s,t;
2492 t=get_reg(i_regs->regmap,dops[i].rt1);
2493 s=get_reg(i_regs->regmap,dops[i].rs1);
2494 if(dops[i].rs1) {
2495 //assert(t>=0);
2496 //assert(s>=0);
2497 if(t>=0) {
2498 if(!((i_regs->isconst>>t)&1)) {
2499 if(s<0) {
2500 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2501 emit_addimm(t,imm[i],t);
2502 }else{
2503 if(!((i_regs->wasconst>>s)&1))
2504 emit_addimm(s,imm[i],t);
2505 else
2506 emit_movimm(constmap[i][s]+imm[i],t);
2507 }
2508 }
2509 }
2510 } else {
2511 if(t>=0) {
2512 if(!((i_regs->isconst>>t)&1))
2513 emit_movimm(imm[i],t);
2514 }
2515 }
2516 }
2517 }
2518 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2519 if(dops[i].rt1) {
2520 signed char sl,tl;
2521 tl=get_reg(i_regs->regmap,dops[i].rt1);
2522 sl=get_reg(i_regs->regmap,dops[i].rs1);
2523 if(tl>=0) {
2524 if(dops[i].rs1) {
2525 assert(sl>=0);
2526 emit_addimm(sl,imm[i],tl);
2527 } else {
2528 emit_movimm(imm[i],tl);
2529 }
2530 }
2531 }
2532 }
2533 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2534 if(dops[i].rt1) {
2535 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2536 signed char sl,t;
2537 t=get_reg(i_regs->regmap,dops[i].rt1);
2538 sl=get_reg(i_regs->regmap,dops[i].rs1);
2539 //assert(t>=0);
2540 if(t>=0) {
2541 if(dops[i].rs1>0) {
2542 if(dops[i].opcode==0x0a) { // SLTI
2543 if(sl<0) {
2544 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2545 emit_slti32(t,imm[i],t);
2546 }else{
2547 emit_slti32(sl,imm[i],t);
2548 }
2549 }
2550 else { // SLTIU
2551 if(sl<0) {
2552 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2553 emit_sltiu32(t,imm[i],t);
2554 }else{
2555 emit_sltiu32(sl,imm[i],t);
2556 }
2557 }
2558 }else{
2559 // SLTI(U) with r0 is just stupid,
2560 // nonetheless examples can be found
2561 if(dops[i].opcode==0x0a) // SLTI
2562 if(0<imm[i]) emit_movimm(1,t);
2563 else emit_zeroreg(t);
2564 else // SLTIU
2565 {
2566 if(imm[i]) emit_movimm(1,t);
2567 else emit_zeroreg(t);
2568 }
2569 }
2570 }
2571 }
2572 }
2573 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2574 if(dops[i].rt1) {
2575 signed char sl,tl;
2576 tl=get_reg(i_regs->regmap,dops[i].rt1);
2577 sl=get_reg(i_regs->regmap,dops[i].rs1);
2578 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2579 if(dops[i].opcode==0x0c) //ANDI
2580 {
2581 if(dops[i].rs1) {
2582 if(sl<0) {
2583 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2584 emit_andimm(tl,imm[i],tl);
2585 }else{
2586 if(!((i_regs->wasconst>>sl)&1))
2587 emit_andimm(sl,imm[i],tl);
2588 else
2589 emit_movimm(constmap[i][sl]&imm[i],tl);
2590 }
2591 }
2592 else
2593 emit_zeroreg(tl);
2594 }
2595 else
2596 {
2597 if(dops[i].rs1) {
2598 if(sl<0) {
2599 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2600 }
2601 if(dops[i].opcode==0x0d) { // ORI
2602 if(sl<0) {
2603 emit_orimm(tl,imm[i],tl);
2604 }else{
2605 if(!((i_regs->wasconst>>sl)&1))
2606 emit_orimm(sl,imm[i],tl);
2607 else
2608 emit_movimm(constmap[i][sl]|imm[i],tl);
2609 }
2610 }
2611 if(dops[i].opcode==0x0e) { // XORI
2612 if(sl<0) {
2613 emit_xorimm(tl,imm[i],tl);
2614 }else{
2615 if(!((i_regs->wasconst>>sl)&1))
2616 emit_xorimm(sl,imm[i],tl);
2617 else
2618 emit_movimm(constmap[i][sl]^imm[i],tl);
2619 }
2620 }
2621 }
2622 else {
2623 emit_movimm(imm[i],tl);
2624 }
2625 }
2626 }
2627 }
2628 }
2629}
2630
2631static void shiftimm_assemble(int i, const struct regstat *i_regs)
2632{
2633 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2634 {
2635 if(dops[i].rt1) {
2636 signed char s,t;
2637 t=get_reg(i_regs->regmap,dops[i].rt1);
2638 s=get_reg(i_regs->regmap,dops[i].rs1);
2639 //assert(t>=0);
2640 if(t>=0&&!((i_regs->isconst>>t)&1)){
2641 if(dops[i].rs1==0)
2642 {
2643 emit_zeroreg(t);
2644 }
2645 else
2646 {
2647 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2648 if(imm[i]) {
2649 if(dops[i].opcode2==0) // SLL
2650 {
2651 emit_shlimm(s<0?t:s,imm[i],t);
2652 }
2653 if(dops[i].opcode2==2) // SRL
2654 {
2655 emit_shrimm(s<0?t:s,imm[i],t);
2656 }
2657 if(dops[i].opcode2==3) // SRA
2658 {
2659 emit_sarimm(s<0?t:s,imm[i],t);
2660 }
2661 }else{
2662 // Shift by zero
2663 if(s>=0 && s!=t) emit_mov(s,t);
2664 }
2665 }
2666 }
2667 //emit_storereg(dops[i].rt1,t); //DEBUG
2668 }
2669 }
2670 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2671 {
2672 assert(0);
2673 }
2674 if(dops[i].opcode2==0x3c) // DSLL32
2675 {
2676 assert(0);
2677 }
2678 if(dops[i].opcode2==0x3e) // DSRL32
2679 {
2680 assert(0);
2681 }
2682 if(dops[i].opcode2==0x3f) // DSRA32
2683 {
2684 assert(0);
2685 }
2686}
2687
2688#ifndef shift_assemble
2689static void shift_assemble(int i, const struct regstat *i_regs)
2690{
2691 signed char s,t,shift;
2692 if (dops[i].rt1 == 0)
2693 return;
2694 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2695 t = get_reg(i_regs->regmap, dops[i].rt1);
2696 s = get_reg(i_regs->regmap, dops[i].rs1);
2697 shift = get_reg(i_regs->regmap, dops[i].rs2);
2698 if (t < 0)
2699 return;
2700
2701 if(dops[i].rs1==0)
2702 emit_zeroreg(t);
2703 else if(dops[i].rs2==0) {
2704 assert(s>=0);
2705 if(s!=t) emit_mov(s,t);
2706 }
2707 else {
2708 host_tempreg_acquire();
2709 emit_andimm(shift,31,HOST_TEMPREG);
2710 switch(dops[i].opcode2) {
2711 case 4: // SLLV
2712 emit_shl(s,HOST_TEMPREG,t);
2713 break;
2714 case 6: // SRLV
2715 emit_shr(s,HOST_TEMPREG,t);
2716 break;
2717 case 7: // SRAV
2718 emit_sar(s,HOST_TEMPREG,t);
2719 break;
2720 default:
2721 assert(0);
2722 }
2723 host_tempreg_release();
2724 }
2725}
2726
2727#endif
2728
2729enum {
2730 MTYPE_8000 = 0,
2731 MTYPE_8020,
2732 MTYPE_0000,
2733 MTYPE_A000,
2734 MTYPE_1F80,
2735};
2736
2737static int get_ptr_mem_type(u_int a)
2738{
2739 if(a < 0x00200000) {
2740 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2741 // return wrong, must use memhandler for BIOS self-test to pass
2742 // 007 does similar stuff from a00 mirror, weird stuff
2743 return MTYPE_8000;
2744 return MTYPE_0000;
2745 }
2746 if(0x1f800000 <= a && a < 0x1f801000)
2747 return MTYPE_1F80;
2748 if(0x80200000 <= a && a < 0x80800000)
2749 return MTYPE_8020;
2750 if(0xa0000000 <= a && a < 0xa0200000)
2751 return MTYPE_A000;
2752 return MTYPE_8000;
2753}
2754
2755static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2756{
2757 int r = get_reg(i_regs->regmap, ROREG);
2758 if (r < 0 && host_tempreg_free) {
2759 host_tempreg_acquire();
2760 emit_loadreg(ROREG, r = HOST_TEMPREG);
2761 }
2762 if (r < 0)
2763 abort();
2764 return r;
2765}
2766
2767static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2768 int addr, int *offset_reg, int *addr_reg_override)
2769{
2770 void *jaddr = NULL;
2771 int type = 0;
2772 int mr = dops[i].rs1;
2773 *offset_reg = -1;
2774 if(((smrv_strong|smrv_weak)>>mr)&1) {
2775 type=get_ptr_mem_type(smrv[mr]);
2776 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2777 }
2778 else {
2779 // use the mirror we are running on
2780 type=get_ptr_mem_type(start);
2781 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2782 }
2783
2784 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2785 host_tempreg_acquire();
2786 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2787 addr=*addr_reg_override=HOST_TEMPREG;
2788 type=0;
2789 }
2790 else if(type==MTYPE_0000) { // RAM 0 mirror
2791 host_tempreg_acquire();
2792 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2793 addr=*addr_reg_override=HOST_TEMPREG;
2794 type=0;
2795 }
2796 else if(type==MTYPE_A000) { // RAM A mirror
2797 host_tempreg_acquire();
2798 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2799 addr=*addr_reg_override=HOST_TEMPREG;
2800 type=0;
2801 }
2802 else if(type==MTYPE_1F80) { // scratchpad
2803 if (psxH == (void *)0x1f800000) {
2804 host_tempreg_acquire();
2805 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2806 emit_cmpimm(HOST_TEMPREG,0x1000);
2807 host_tempreg_release();
2808 jaddr=out;
2809 emit_jc(0);
2810 }
2811 else {
2812 // do the usual RAM check, jump will go to the right handler
2813 type=0;
2814 }
2815 }
2816
2817 if (type == 0) // need ram check
2818 {
2819 emit_cmpimm(addr,RAM_SIZE);
2820 jaddr = out;
2821 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2822 // Hint to branch predictor that the branch is unlikely to be taken
2823 if (dops[i].rs1 >= 28)
2824 emit_jno_unlikely(0);
2825 else
2826 #endif
2827 emit_jno(0);
2828 if (ram_offset != 0)
2829 *offset_reg = get_ro_reg(i_regs, 0);
2830 }
2831
2832 return jaddr;
2833}
2834
2835// return memhandler, or get directly accessable address and return 0
2836static void *get_direct_memhandler(void *table, u_int addr,
2837 enum stub_type type, uintptr_t *addr_host)
2838{
2839 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2840 uintptr_t l1, l2 = 0;
2841 l1 = ((uintptr_t *)table)[addr>>12];
2842 if (!(l1 & msb)) {
2843 uintptr_t v = l1 << 1;
2844 *addr_host = v + addr;
2845 return NULL;
2846 }
2847 else {
2848 l1 <<= 1;
2849 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2850 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2851 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2852 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2853 else
2854 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2855 if (!(l2 & msb)) {
2856 uintptr_t v = l2 << 1;
2857 *addr_host = v + (addr&0xfff);
2858 return NULL;
2859 }
2860 return (void *)(l2 << 1);
2861 }
2862}
2863
2864static u_int get_host_reglist(const signed char *regmap)
2865{
2866 u_int reglist = 0, hr;
2867 for (hr = 0; hr < HOST_REGS; hr++) {
2868 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2869 reglist |= 1 << hr;
2870 }
2871 return reglist;
2872}
2873
2874static u_int reglist_exclude(u_int reglist, int r1, int r2)
2875{
2876 if (r1 >= 0)
2877 reglist &= ~(1u << r1);
2878 if (r2 >= 0)
2879 reglist &= ~(1u << r2);
2880 return reglist;
2881}
2882
2883// find a temp caller-saved register not in reglist (so assumed to be free)
2884static int reglist_find_free(u_int reglist)
2885{
2886 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2887 if (free_regs == 0)
2888 return -1;
2889 return __builtin_ctz(free_regs);
2890}
2891
2892static void do_load_word(int a, int rt, int offset_reg)
2893{
2894 if (offset_reg >= 0)
2895 emit_ldr_dualindexed(offset_reg, a, rt);
2896 else
2897 emit_readword_indexed(0, a, rt);
2898}
2899
2900static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2901{
2902 if (offset_reg < 0) {
2903 emit_writeword_indexed(rt, ofs, a);
2904 return;
2905 }
2906 if (ofs != 0)
2907 emit_addimm(a, ofs, a);
2908 emit_str_dualindexed(offset_reg, a, rt);
2909 if (ofs != 0 && preseve_a)
2910 emit_addimm(a, -ofs, a);
2911}
2912
2913static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2914{
2915 if (offset_reg < 0) {
2916 emit_writehword_indexed(rt, ofs, a);
2917 return;
2918 }
2919 if (ofs != 0)
2920 emit_addimm(a, ofs, a);
2921 emit_strh_dualindexed(offset_reg, a, rt);
2922 if (ofs != 0 && preseve_a)
2923 emit_addimm(a, -ofs, a);
2924}
2925
2926static void do_store_byte(int a, int rt, int offset_reg)
2927{
2928 if (offset_reg >= 0)
2929 emit_strb_dualindexed(offset_reg, a, rt);
2930 else
2931 emit_writebyte_indexed(rt, 0, a);
2932}
2933
2934static void load_assemble(int i, const struct regstat *i_regs, int ccadj_)
2935{
2936 int s,tl,addr;
2937 int offset;
2938 void *jaddr=0;
2939 int memtarget=0,c=0;
2940 int offset_reg = -1;
2941 int fastio_reg_override = -1;
2942 u_int reglist=get_host_reglist(i_regs->regmap);
2943 tl=get_reg(i_regs->regmap,dops[i].rt1);
2944 s=get_reg(i_regs->regmap,dops[i].rs1);
2945 offset=imm[i];
2946 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2947 if(s>=0) {
2948 c=(i_regs->wasconst>>s)&1;
2949 if (c) {
2950 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2951 }
2952 }
2953 //printf("load_assemble: c=%d\n",c);
2954 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2955 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2956 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2957 ||dops[i].rt1==0) {
2958 // could be FIFO, must perform the read
2959 // ||dummy read
2960 assem_debug("(forced read)\n");
2961 tl=get_reg_temp(i_regs->regmap);
2962 assert(tl>=0);
2963 }
2964 if(offset||s<0||c) addr=tl;
2965 else addr=s;
2966 //if(tl<0) tl=get_reg_temp(i_regs->regmap);
2967 if(tl>=0) {
2968 //printf("load_assemble: c=%d\n",c);
2969 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2970 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2971 reglist&=~(1<<tl);
2972 if(!c) {
2973 #ifdef R29_HACK
2974 // Strmnnrmn's speed hack
2975 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2976 #endif
2977 {
2978 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
2979 &offset_reg, &fastio_reg_override);
2980 }
2981 }
2982 else if (ram_offset && memtarget) {
2983 offset_reg = get_ro_reg(i_regs, 0);
2984 }
2985 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2986 switch (dops[i].opcode) {
2987 case 0x20: // LB
2988 if(!c||memtarget) {
2989 if(!dummy) {
2990 int a = tl;
2991 if (!c) a = addr;
2992 if (fastio_reg_override >= 0)
2993 a = fastio_reg_override;
2994
2995 if (offset_reg >= 0)
2996 emit_ldrsb_dualindexed(offset_reg, a, tl);
2997 else
2998 emit_movsbl_indexed(0, a, tl);
2999 }
3000 if(jaddr)
3001 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3002 }
3003 else
3004 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3005 break;
3006 case 0x21: // LH
3007 if(!c||memtarget) {
3008 if(!dummy) {
3009 int a = tl;
3010 if (!c) a = addr;
3011 if (fastio_reg_override >= 0)
3012 a = fastio_reg_override;
3013 if (offset_reg >= 0)
3014 emit_ldrsh_dualindexed(offset_reg, a, tl);
3015 else
3016 emit_movswl_indexed(0, a, tl);
3017 }
3018 if(jaddr)
3019 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3020 }
3021 else
3022 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3023 break;
3024 case 0x23: // LW
3025 if(!c||memtarget) {
3026 if(!dummy) {
3027 int a = addr;
3028 if (fastio_reg_override >= 0)
3029 a = fastio_reg_override;
3030 do_load_word(a, tl, offset_reg);
3031 }
3032 if(jaddr)
3033 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3034 }
3035 else
3036 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3037 break;
3038 case 0x24: // LBU
3039 if(!c||memtarget) {
3040 if(!dummy) {
3041 int a = tl;
3042 if (!c) a = addr;
3043 if (fastio_reg_override >= 0)
3044 a = fastio_reg_override;
3045
3046 if (offset_reg >= 0)
3047 emit_ldrb_dualindexed(offset_reg, a, tl);
3048 else
3049 emit_movzbl_indexed(0, a, tl);
3050 }
3051 if(jaddr)
3052 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3053 }
3054 else
3055 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3056 break;
3057 case 0x25: // LHU
3058 if(!c||memtarget) {
3059 if(!dummy) {
3060 int a = tl;
3061 if(!c) a = addr;
3062 if (fastio_reg_override >= 0)
3063 a = fastio_reg_override;
3064 if (offset_reg >= 0)
3065 emit_ldrh_dualindexed(offset_reg, a, tl);
3066 else
3067 emit_movzwl_indexed(0, a, tl);
3068 }
3069 if(jaddr)
3070 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3071 }
3072 else
3073 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3074 break;
3075 case 0x27: // LWU
3076 case 0x37: // LD
3077 default:
3078 assert(0);
3079 }
3080 }
3081 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3082 host_tempreg_release();
3083}
3084
3085#ifndef loadlr_assemble
3086static void loadlr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3087{
3088 int s,tl,temp,temp2,addr;
3089 int offset;
3090 void *jaddr=0;
3091 int memtarget=0,c=0;
3092 int offset_reg = -1;
3093 int fastio_reg_override = -1;
3094 u_int reglist=get_host_reglist(i_regs->regmap);
3095 tl=get_reg(i_regs->regmap,dops[i].rt1);
3096 s=get_reg(i_regs->regmap,dops[i].rs1);
3097 temp=get_reg_temp(i_regs->regmap);
3098 temp2=get_reg(i_regs->regmap,FTEMP);
3099 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
3100 assert(addr<0);
3101 offset=imm[i];
3102 reglist|=1<<temp;
3103 if(offset||s<0||c) addr=temp2;
3104 else addr=s;
3105 if(s>=0) {
3106 c=(i_regs->wasconst>>s)&1;
3107 if(c) {
3108 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3109 }
3110 }
3111 if(!c) {
3112 emit_shlimm(addr,3,temp);
3113 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3114 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
3115 }else{
3116 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
3117 }
3118 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
3119 &offset_reg, &fastio_reg_override);
3120 }
3121 else {
3122 if (ram_offset && memtarget) {
3123 offset_reg = get_ro_reg(i_regs, 0);
3124 }
3125 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3126 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
3127 }else{
3128 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
3129 }
3130 }
3131 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
3132 if(!c||memtarget) {
3133 int a = temp2;
3134 if (fastio_reg_override >= 0)
3135 a = fastio_reg_override;
3136 do_load_word(a, temp2, offset_reg);
3137 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3138 host_tempreg_release();
3139 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj_,reglist);
3140 }
3141 else
3142 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj_,reglist);
3143 if(dops[i].rt1) {
3144 assert(tl>=0);
3145 emit_andimm(temp,24,temp);
3146 if (dops[i].opcode==0x22) // LWL
3147 emit_xorimm(temp,24,temp);
3148 host_tempreg_acquire();
3149 emit_movimm(-1,HOST_TEMPREG);
3150 if (dops[i].opcode==0x26) {
3151 emit_shr(temp2,temp,temp2);
3152 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
3153 }else{
3154 emit_shl(temp2,temp,temp2);
3155 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
3156 }
3157 host_tempreg_release();
3158 emit_or(temp2,tl,tl);
3159 }
3160 //emit_storereg(dops[i].rt1,tl); // DEBUG
3161 }
3162 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
3163 assert(0);
3164 }
3165}
3166#endif
3167
3168static void do_invstub(int n)
3169{
3170 literal_pool(20);
3171 assem_debug("do_invstub\n");
3172 u_int reglist = stubs[n].a;
3173 u_int addrr = stubs[n].b;
3174 int ofs_start = stubs[n].c;
3175 int ofs_end = stubs[n].d;
3176 int len = ofs_end - ofs_start;
3177 u_int rightr = 0;
3178
3179 set_jump_target(stubs[n].addr, out);
3180 save_regs(reglist);
3181 if (addrr != 0 || ofs_start != 0)
3182 emit_addimm(addrr, ofs_start, 0);
3183 emit_readword(&inv_code_start, 2);
3184 emit_readword(&inv_code_end, 3);
3185 if (len != 0)
3186 emit_addimm(0, len + 4, (rightr = 1));
3187 emit_cmp(0, 2);
3188 emit_cmpcs(3, rightr);
3189 void *jaddr = out;
3190 emit_jc(0);
3191 void *func = (len != 0)
3192 ? (void *)ndrc_write_invalidate_many
3193 : (void *)ndrc_write_invalidate_one;
3194 emit_far_call(func);
3195 set_jump_target(jaddr, out);
3196 restore_regs(reglist);
3197 emit_jmp(stubs[n].retaddr);
3198}
3199
3200static void do_store_smc_check(int i, const struct regstat *i_regs, u_int reglist, int addr)
3201{
3202 if (HACK_ENABLED(NDHACK_NO_SMC_CHECK))
3203 return;
3204 // this can't be used any more since we started to check exact
3205 // block boundaries in invalidate_range()
3206 //if (i_regs->waswritten & (1<<dops[i].rs1))
3207 // return;
3208 // (naively) assume nobody will run code from stack
3209 if (dops[i].rs1 == 29)
3210 return;
3211
3212 int j, imm_maxdiff = 32, imm_min = imm[i], imm_max = imm[i], count = 1;
3213 if (i < slen - 1 && dops[i+1].is_store && dops[i+1].rs1 == dops[i].rs1
3214 && abs(imm[i+1] - imm[i]) <= imm_maxdiff)
3215 return;
3216 for (j = i - 1; j >= 0; j--) {
3217 if (!dops[j].is_store || dops[j].rs1 != dops[i].rs1
3218 || abs(imm[j] - imm[j+1]) > imm_maxdiff)
3219 break;
3220 count++;
3221 if (imm_min > imm[j])
3222 imm_min = imm[j];
3223 if (imm_max < imm[j])
3224 imm_max = imm[j];
3225 }
3226#if defined(HOST_IMM8)
3227 int ir = get_reg(i_regs->regmap, INVCP);
3228 assert(ir >= 0);
3229 host_tempreg_acquire();
3230 emit_ldrb_indexedsr12_reg(ir, addr, HOST_TEMPREG);
3231#else
3232 emit_cmpmem_indexedsr12_imm(invalid_code, addr, 1);
3233 #error not handled
3234#endif
3235#ifdef INVALIDATE_USE_COND_CALL
3236 if (count == 1) {
3237 emit_cmpimm(HOST_TEMPREG, 1);
3238 emit_callne(invalidate_addr_reg[addr]);
3239 host_tempreg_release();
3240 return;
3241 }
3242#endif
3243 void *jaddr = emit_cbz(HOST_TEMPREG, 0);
3244 host_tempreg_release();
3245 imm_min -= imm[i];
3246 imm_max -= imm[i];
3247 add_stub(INVCODE_STUB, jaddr, out, reglist|(1<<HOST_CCREG),
3248 addr, imm_min, imm_max, 0);
3249}
3250
3251static void store_assemble(int i, const struct regstat *i_regs, int ccadj_)
3252{
3253 int s,tl;
3254 int addr,temp;
3255 int offset;
3256 void *jaddr=0;
3257 enum stub_type type=0;
3258 int memtarget=0,c=0;
3259 int agr=AGEN1+(i&1);
3260 int offset_reg = -1;
3261 int fastio_reg_override = -1;
3262 u_int reglist=get_host_reglist(i_regs->regmap);
3263 tl=get_reg(i_regs->regmap,dops[i].rs2);
3264 s=get_reg(i_regs->regmap,dops[i].rs1);
3265 temp=get_reg(i_regs->regmap,agr);
3266 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3267 offset=imm[i];
3268 if(s>=0) {
3269 c=(i_regs->wasconst>>s)&1;
3270 if(c) {
3271 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3272 }
3273 }
3274 assert(tl>=0);
3275 assert(temp>=0);
3276 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3277 if(offset||s<0||c) addr=temp;
3278 else addr=s;
3279 if (!c) {
3280 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3281 &offset_reg, &fastio_reg_override);
3282 }
3283 else if (ram_offset && memtarget) {
3284 offset_reg = get_ro_reg(i_regs, 0);
3285 }
3286
3287 switch (dops[i].opcode) {
3288 case 0x28: // SB
3289 if(!c||memtarget) {
3290 int a = temp;
3291 if (!c) a = addr;
3292 if (fastio_reg_override >= 0)
3293 a = fastio_reg_override;
3294 do_store_byte(a, tl, offset_reg);
3295 }
3296 type = STOREB_STUB;
3297 break;
3298 case 0x29: // SH
3299 if(!c||memtarget) {
3300 int a = temp;
3301 if (!c) a = addr;
3302 if (fastio_reg_override >= 0)
3303 a = fastio_reg_override;
3304 do_store_hword(a, 0, tl, offset_reg, 1);
3305 }
3306 type = STOREH_STUB;
3307 break;
3308 case 0x2B: // SW
3309 if(!c||memtarget) {
3310 int a = addr;
3311 if (fastio_reg_override >= 0)
3312 a = fastio_reg_override;
3313 do_store_word(a, 0, tl, offset_reg, 1);
3314 }
3315 type = STOREW_STUB;
3316 break;
3317 case 0x3F: // SD
3318 default:
3319 assert(0);
3320 }
3321 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3322 host_tempreg_release();
3323 if(jaddr) {
3324 // PCSX store handlers don't check invcode again
3325 reglist|=1<<addr;
3326 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3327 jaddr=0;
3328 }
3329 {
3330 if(!c||memtarget) {
3331 #ifdef DESTRUCTIVE_SHIFT
3332 // The x86 shift operation is 'destructive'; it overwrites the
3333 // source register, so we need to make a copy first and use that.
3334 addr=temp;
3335 #endif
3336 do_store_smc_check(i, i_regs, reglist, addr);
3337 }
3338 }
3339 u_int addr_val=constmap[i][s]+offset;
3340 if(jaddr) {
3341 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3342 } else if(c&&!memtarget) {
3343 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj_,reglist);
3344 }
3345 // basic current block modification detection..
3346 // not looking back as that should be in mips cache already
3347 // (see Spyro2 title->attract mode)
3348 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3349 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3350 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3351 if(i_regs->regmap==regs[i].regmap) {
3352 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3353 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3354 emit_movimm(start+i*4+4,0);
3355 emit_writeword(0,&pcaddr);
3356 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3357 emit_far_call(ndrc_get_addr_ht);
3358 emit_jmpreg(0);
3359 }
3360 }
3361}
3362
3363static void storelr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3364{
3365 int s,tl;
3366 int temp;
3367 int offset;
3368 void *jaddr=0;
3369 void *case1, *case23, *case3;
3370 void *done0, *done1, *done2;
3371 int memtarget=0,c=0;
3372 int agr=AGEN1+(i&1);
3373 int offset_reg = -1;
3374 u_int reglist=get_host_reglist(i_regs->regmap);
3375 tl=get_reg(i_regs->regmap,dops[i].rs2);
3376 s=get_reg(i_regs->regmap,dops[i].rs1);
3377 temp=get_reg(i_regs->regmap,agr);
3378 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3379 offset=imm[i];
3380 if(s>=0) {
3381 c=(i_regs->isconst>>s)&1;
3382 if(c) {
3383 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3384 }
3385 }
3386 assert(tl>=0);
3387 assert(temp>=0);
3388 if(!c) {
3389 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3390 if(!offset&&s!=temp) emit_mov(s,temp);
3391 jaddr=out;
3392 emit_jno(0);
3393 }
3394 else
3395 {
3396 if(!memtarget||!dops[i].rs1) {
3397 jaddr=out;
3398 emit_jmp(0);
3399 }
3400 }
3401 if (ram_offset)
3402 offset_reg = get_ro_reg(i_regs, 0);
3403
3404 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3405 assert(0);
3406 }
3407
3408 emit_testimm(temp,2);
3409 case23=out;
3410 emit_jne(0);
3411 emit_testimm(temp,1);
3412 case1=out;
3413 emit_jne(0);
3414 // 0
3415 if (dops[i].opcode == 0x2A) { // SWL
3416 // Write msb into least significant byte
3417 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3418 do_store_byte(temp, tl, offset_reg);
3419 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3420 }
3421 else if (dops[i].opcode == 0x2E) { // SWR
3422 // Write entire word
3423 do_store_word(temp, 0, tl, offset_reg, 1);
3424 }
3425 done0 = out;
3426 emit_jmp(0);
3427 // 1
3428 set_jump_target(case1, out);
3429 if (dops[i].opcode == 0x2A) { // SWL
3430 // Write two msb into two least significant bytes
3431 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3432 do_store_hword(temp, -1, tl, offset_reg, 0);
3433 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3434 }
3435 else if (dops[i].opcode == 0x2E) { // SWR
3436 // Write 3 lsb into three most significant bytes
3437 do_store_byte(temp, tl, offset_reg);
3438 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3439 do_store_hword(temp, 1, tl, offset_reg, 0);
3440 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3441 }
3442 done1=out;
3443 emit_jmp(0);
3444 // 2,3
3445 set_jump_target(case23, out);
3446 emit_testimm(temp,1);
3447 case3 = out;
3448 emit_jne(0);
3449 // 2
3450 if (dops[i].opcode==0x2A) { // SWL
3451 // Write 3 msb into three least significant bytes
3452 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3453 do_store_hword(temp, -2, tl, offset_reg, 1);
3454 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3455 do_store_byte(temp, tl, offset_reg);
3456 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3457 }
3458 else if (dops[i].opcode == 0x2E) { // SWR
3459 // Write two lsb into two most significant bytes
3460 do_store_hword(temp, 0, tl, offset_reg, 1);
3461 }
3462 done2 = out;
3463 emit_jmp(0);
3464 // 3
3465 set_jump_target(case3, out);
3466 if (dops[i].opcode == 0x2A) { // SWL
3467 do_store_word(temp, -3, tl, offset_reg, 0);
3468 }
3469 else if (dops[i].opcode == 0x2E) { // SWR
3470 do_store_byte(temp, tl, offset_reg);
3471 }
3472 set_jump_target(done0, out);
3473 set_jump_target(done1, out);
3474 set_jump_target(done2, out);
3475 if (offset_reg == HOST_TEMPREG)
3476 host_tempreg_release();
3477 if(!c||!memtarget)
3478 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj_,reglist);
3479 do_store_smc_check(i, i_regs, reglist, temp);
3480}
3481
3482static void cop0_assemble(int i, const struct regstat *i_regs, int ccadj_)
3483{
3484 if(dops[i].opcode2==0) // MFC0
3485 {
3486 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3487 u_int copr=(source[i]>>11)&0x1f;
3488 //assert(t>=0); // Why does this happen? OOT is weird
3489 if(t>=0&&dops[i].rt1!=0) {
3490 emit_readword(&reg_cop0[copr],t);
3491 }
3492 }
3493 else if(dops[i].opcode2==4) // MTC0
3494 {
3495 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3496 char copr=(source[i]>>11)&0x1f;
3497 assert(s>=0);
3498 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3499 if(copr==9||copr==11||copr==12||copr==13) {
3500 emit_readword(&last_count,HOST_TEMPREG);
3501 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3502 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3503 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3504 emit_writeword(HOST_CCREG,&psxRegs.cycle);
3505 }
3506 // What a mess. The status register (12) can enable interrupts,
3507 // so needs a special case to handle a pending interrupt.
3508 // The interrupt must be taken immediately, because a subsequent
3509 // instruction might disable interrupts again.
3510 if(copr==12||copr==13) {
3511 if (is_delayslot) {
3512 // burn cycles to cause cc_interrupt, which will
3513 // reschedule next_interupt. Relies on CCREG from above.
3514 assem_debug("MTC0 DS %d\n", copr);
3515 emit_writeword(HOST_CCREG,&last_count);
3516 emit_movimm(0,HOST_CCREG);
3517 emit_storereg(CCREG,HOST_CCREG);
3518 emit_loadreg(dops[i].rs1,1);
3519 emit_movimm(copr,0);
3520 emit_far_call(pcsx_mtc0_ds);
3521 emit_loadreg(dops[i].rs1,s);
3522 return;
3523 }
3524 emit_movimm(start+i*4+4,HOST_TEMPREG);
3525 emit_writeword(HOST_TEMPREG,&pcaddr);
3526 emit_movimm(0,HOST_TEMPREG);
3527 emit_writeword(HOST_TEMPREG,&pending_exception);
3528 }
3529 if(s==HOST_CCREG)
3530 emit_loadreg(dops[i].rs1,1);
3531 else if(s!=1)
3532 emit_mov(s,1);
3533 emit_movimm(copr,0);
3534 emit_far_call(pcsx_mtc0);
3535 if(copr==9||copr==11||copr==12||copr==13) {
3536 emit_readword(&psxRegs.cycle,HOST_CCREG);
3537 emit_readword(&next_interupt,HOST_TEMPREG);
3538 emit_addimm(HOST_CCREG,-ccadj_,HOST_CCREG);
3539 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3540 emit_writeword(HOST_TEMPREG,&last_count);
3541 emit_storereg(CCREG,HOST_CCREG);
3542 }
3543 if(copr==12||copr==13) {
3544 assert(!is_delayslot);
3545 emit_readword(&pending_exception,HOST_TEMPREG);
3546 emit_test(HOST_TEMPREG,HOST_TEMPREG);
3547 void *jaddr = out;
3548 emit_jeq(0);
3549 emit_readword(&pcaddr, 0);
3550 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3551 emit_far_call(ndrc_get_addr_ht);
3552 emit_jmpreg(0);
3553 set_jump_target(jaddr, out);
3554 }
3555 emit_loadreg(dops[i].rs1,s);
3556 }
3557 else
3558 {
3559 assert(dops[i].opcode2==0x10);
3560 //if((source[i]&0x3f)==0x10) // RFE
3561 {
3562 emit_readword(&psxRegs.CP0.n.SR,0);
3563 emit_andimm(0,0x3c,1);
3564 emit_andimm(0,~0xf,0);
3565 emit_orrshr_imm(1,2,0);
3566 emit_writeword(0,&psxRegs.CP0.n.SR);
3567 }
3568 }
3569}
3570
3571static void cop1_unusable(int i, const struct regstat *i_regs)
3572{
3573 // XXX: should just just do the exception instead
3574 //if(!cop1_usable)
3575 {
3576 void *jaddr=out;
3577 emit_jmp(0);
3578 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3579 }
3580}
3581
3582static void cop1_assemble(int i, const struct regstat *i_regs)
3583{
3584 cop1_unusable(i, i_regs);
3585}
3586
3587static void c1ls_assemble(int i, const struct regstat *i_regs)
3588{
3589 cop1_unusable(i, i_regs);
3590}
3591
3592// FP_STUB
3593static void do_cop1stub(int n)
3594{
3595 literal_pool(256);
3596 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3597 set_jump_target(stubs[n].addr, out);
3598 int i=stubs[n].a;
3599// int rs=stubs[n].b;
3600 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3601 int ds=stubs[n].d;
3602 if(!ds) {
3603 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3604 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3605 }
3606 //else {printf("fp exception in delay slot\n");}
3607 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3608 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3609 emit_movimm(start+(i-ds)*4,0); // Get PC
3610 emit_addimm(HOST_CCREG,ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3611 emit_far_jump(ds?fp_exception_ds:fp_exception);
3612}
3613
3614static int cop2_is_stalling_op(int i, int *cycles)
3615{
3616 if (dops[i].opcode == 0x3a) { // SWC2
3617 *cycles = 0;
3618 return 1;
3619 }
3620 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3621 *cycles = 0;
3622 return 1;
3623 }
3624 if (dops[i].itype == C2OP) {
3625 *cycles = gte_cycletab[source[i] & 0x3f];
3626 return 1;
3627 }
3628 // ... what about MTC2/CTC2/LWC2?
3629 return 0;
3630}
3631
3632#if 0
3633static void log_gte_stall(int stall, u_int cycle)
3634{
3635 if ((u_int)stall <= 44)
3636 printf("x stall %2d %u\n", stall, cycle + last_count);
3637}
3638
3639static void emit_log_gte_stall(int i, int stall, u_int reglist)
3640{
3641 save_regs(reglist);
3642 if (stall > 0)
3643 emit_movimm(stall, 0);
3644 else
3645 emit_mov(HOST_TEMPREG, 0);
3646 emit_addimm(HOST_CCREG, ccadj[i], 1);
3647 emit_far_call(log_gte_stall);
3648 restore_regs(reglist);
3649}
3650#endif
3651
3652static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3653{
3654 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3655 int rtmp = reglist_find_free(reglist);
3656
3657 if (HACK_ENABLED(NDHACK_NO_STALLS))
3658 return;
3659 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3660 // happens occasionally... cc evicted? Don't bother then
3661 //printf("no cc %08x\n", start + i*4);
3662 return;
3663 }
3664 if (!dops[i].bt) {
3665 for (j = i - 1; j >= 0; j--) {
3666 //if (dops[j].is_ds) break;
3667 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3668 break;
3669 if (j > 0 && ccadj[j - 1] > ccadj[j])
3670 break;
3671 }
3672 j = max(j, 0);
3673 }
3674 cycles_passed = ccadj[i] - ccadj[j];
3675 if (other_gte_op_cycles >= 0)
3676 stall = other_gte_op_cycles - cycles_passed;
3677 else if (cycles_passed >= 44)
3678 stall = 0; // can't stall
3679 if (stall == -MAXBLOCK && rtmp >= 0) {
3680 // unknown stall, do the expensive runtime check
3681 assem_debug("; cop2_do_stall_check\n");
3682#if 0 // too slow
3683 save_regs(reglist);
3684 emit_movimm(gte_cycletab[op], 0);
3685 emit_addimm(HOST_CCREG, ccadj[i], 1);
3686 emit_far_call(call_gteStall);
3687 restore_regs(reglist);
3688#else
3689 host_tempreg_acquire();
3690 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3691 emit_addimm(rtmp, -ccadj[i], rtmp);
3692 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3693 emit_cmpimm(HOST_TEMPREG, 44);
3694 emit_cmovb_reg(rtmp, HOST_CCREG);
3695 //emit_log_gte_stall(i, 0, reglist);
3696 host_tempreg_release();
3697#endif
3698 }
3699 else if (stall > 0) {
3700 //emit_log_gte_stall(i, stall, reglist);
3701 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3702 }
3703
3704 // save gteBusyCycle, if needed
3705 if (gte_cycletab[op] == 0)
3706 return;
3707 other_gte_op_cycles = -1;
3708 for (j = i + 1; j < slen; j++) {
3709 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3710 break;
3711 if (dops[j].is_jump) {
3712 // check ds
3713 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3714 j++;
3715 break;
3716 }
3717 }
3718 if (other_gte_op_cycles >= 0)
3719 // will handle stall when assembling that op
3720 return;
3721 cycles_passed = ccadj[min(j, slen -1)] - ccadj[i];
3722 if (cycles_passed >= 44)
3723 return;
3724 assem_debug("; save gteBusyCycle\n");
3725 host_tempreg_acquire();
3726#if 0
3727 emit_readword(&last_count, HOST_TEMPREG);
3728 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3729 emit_addimm(HOST_TEMPREG, ccadj[i], HOST_TEMPREG);
3730 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3731 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3732#else
3733 emit_addimm(HOST_CCREG, ccadj[i] + gte_cycletab[op], HOST_TEMPREG);
3734 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3735#endif
3736 host_tempreg_release();
3737}
3738
3739static int is_mflohi(int i)
3740{
3741 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3742}
3743
3744static int check_multdiv(int i, int *cycles)
3745{
3746 if (dops[i].itype != MULTDIV)
3747 return 0;
3748 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3749 *cycles = 11; // approx from 7 11 14
3750 else
3751 *cycles = 37;
3752 return 1;
3753}
3754
3755static void multdiv_prepare_stall(int i, const struct regstat *i_regs, int ccadj_)
3756{
3757 int j, found = 0, c = 0;
3758 if (HACK_ENABLED(NDHACK_NO_STALLS))
3759 return;
3760 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3761 // happens occasionally... cc evicted? Don't bother then
3762 return;
3763 }
3764 for (j = i + 1; j < slen; j++) {
3765 if (dops[j].bt)
3766 break;
3767 if ((found = is_mflohi(j)))
3768 break;
3769 if (dops[j].is_jump) {
3770 // check ds
3771 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3772 j++;
3773 break;
3774 }
3775 }
3776 if (found)
3777 // handle all in multdiv_do_stall()
3778 return;
3779 check_multdiv(i, &c);
3780 assert(c > 0);
3781 assem_debug("; muldiv prepare stall %d\n", c);
3782 host_tempreg_acquire();
3783 emit_addimm(HOST_CCREG, ccadj_ + c, HOST_TEMPREG);
3784 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3785 host_tempreg_release();
3786}
3787
3788static void multdiv_do_stall(int i, const struct regstat *i_regs)
3789{
3790 int j, known_cycles = 0;
3791 u_int reglist = get_host_reglist(i_regs->regmap);
3792 int rtmp = get_reg_temp(i_regs->regmap);
3793 if (rtmp < 0)
3794 rtmp = reglist_find_free(reglist);
3795 if (HACK_ENABLED(NDHACK_NO_STALLS))
3796 return;
3797 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3798 // happens occasionally... cc evicted? Don't bother then
3799 //printf("no cc/rtmp %08x\n", start + i*4);
3800 return;
3801 }
3802 if (!dops[i].bt) {
3803 for (j = i - 1; j >= 0; j--) {
3804 if (dops[j].is_ds) break;
3805 if (check_multdiv(j, &known_cycles))
3806 break;
3807 if (is_mflohi(j))
3808 // already handled by this op
3809 return;
3810 if (dops[j].bt || (j > 0 && ccadj[j - 1] > ccadj[j]))
3811 break;
3812 }
3813 j = max(j, 0);
3814 }
3815 if (known_cycles > 0) {
3816 known_cycles -= ccadj[i] - ccadj[j];
3817 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3818 if (known_cycles > 0)
3819 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3820 return;
3821 }
3822 assem_debug("; muldiv stall unresolved\n");
3823 host_tempreg_acquire();
3824 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3825 emit_addimm(rtmp, -ccadj[i], rtmp);
3826 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3827 emit_cmpimm(HOST_TEMPREG, 37);
3828 emit_cmovb_reg(rtmp, HOST_CCREG);
3829 //emit_log_gte_stall(i, 0, reglist);
3830 host_tempreg_release();
3831}
3832
3833static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3834{
3835 switch (copr) {
3836 case 1:
3837 case 3:
3838 case 5:
3839 case 8:
3840 case 9:
3841 case 10:
3842 case 11:
3843 emit_readword(&reg_cop2d[copr],tl);
3844 emit_signextend16(tl,tl);
3845 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3846 break;
3847 case 7:
3848 case 16:
3849 case 17:
3850 case 18:
3851 case 19:
3852 emit_readword(&reg_cop2d[copr],tl);
3853 emit_andimm(tl,0xffff,tl);
3854 emit_writeword(tl,&reg_cop2d[copr]);
3855 break;
3856 case 15:
3857 emit_readword(&reg_cop2d[14],tl); // SXY2
3858 emit_writeword(tl,&reg_cop2d[copr]);
3859 break;
3860 case 28:
3861 case 29:
3862 c2op_mfc2_29_assemble(tl,temp);
3863 break;
3864 default:
3865 emit_readword(&reg_cop2d[copr],tl);
3866 break;
3867 }
3868}
3869
3870static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3871{
3872 switch (copr) {
3873 case 15:
3874 emit_readword(&reg_cop2d[13],temp); // SXY1
3875 emit_writeword(sl,&reg_cop2d[copr]);
3876 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3877 emit_readword(&reg_cop2d[14],temp); // SXY2
3878 emit_writeword(sl,&reg_cop2d[14]);
3879 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3880 break;
3881 case 28:
3882 emit_andimm(sl,0x001f,temp);
3883 emit_shlimm(temp,7,temp);
3884 emit_writeword(temp,&reg_cop2d[9]);
3885 emit_andimm(sl,0x03e0,temp);
3886 emit_shlimm(temp,2,temp);
3887 emit_writeword(temp,&reg_cop2d[10]);
3888 emit_andimm(sl,0x7c00,temp);
3889 emit_shrimm(temp,3,temp);
3890 emit_writeword(temp,&reg_cop2d[11]);
3891 emit_writeword(sl,&reg_cop2d[28]);
3892 break;
3893 case 30:
3894 emit_xorsar_imm(sl,sl,31,temp);
3895#if defined(HAVE_ARMV5) || defined(__aarch64__)
3896 emit_clz(temp,temp);
3897#else
3898 emit_movs(temp,HOST_TEMPREG);
3899 emit_movimm(0,temp);
3900 emit_jeq((int)out+4*4);
3901 emit_addpl_imm(temp,1,temp);
3902 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3903 emit_jns((int)out-2*4);
3904#endif
3905 emit_writeword(sl,&reg_cop2d[30]);
3906 emit_writeword(temp,&reg_cop2d[31]);
3907 break;
3908 case 31:
3909 break;
3910 default:
3911 emit_writeword(sl,&reg_cop2d[copr]);
3912 break;
3913 }
3914}
3915
3916static void c2ls_assemble(int i, const struct regstat *i_regs, int ccadj_)
3917{
3918 int s,tl;
3919 int ar;
3920 int offset;
3921 int memtarget=0,c=0;
3922 void *jaddr2=NULL;
3923 enum stub_type type;
3924 int agr=AGEN1+(i&1);
3925 int offset_reg = -1;
3926 int fastio_reg_override = -1;
3927 u_int reglist=get_host_reglist(i_regs->regmap);
3928 u_int copr=(source[i]>>16)&0x1f;
3929 s=get_reg(i_regs->regmap,dops[i].rs1);
3930 tl=get_reg(i_regs->regmap,FTEMP);
3931 offset=imm[i];
3932 assert(dops[i].rs1>0);
3933 assert(tl>=0);
3934
3935 if(i_regs->regmap[HOST_CCREG]==CCREG)
3936 reglist&=~(1<<HOST_CCREG);
3937
3938 // get the address
3939 if (dops[i].opcode==0x3a) { // SWC2
3940 ar=get_reg(i_regs->regmap,agr);
3941 if(ar<0) ar=get_reg_temp(i_regs->regmap);
3942 reglist|=1<<ar;
3943 } else { // LWC2
3944 ar=tl;
3945 }
3946 if(s>=0) c=(i_regs->wasconst>>s)&1;
3947 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3948 if (!offset&&!c&&s>=0) ar=s;
3949 assert(ar>=0);
3950
3951 cop2_do_stall_check(0, i, i_regs, reglist);
3952
3953 if (dops[i].opcode==0x3a) { // SWC2
3954 cop2_get_dreg(copr,tl,-1);
3955 type=STOREW_STUB;
3956 }
3957 else
3958 type=LOADW_STUB;
3959
3960 if(c&&!memtarget) {
3961 jaddr2=out;
3962 emit_jmp(0); // inline_readstub/inline_writestub?
3963 }
3964 else {
3965 if(!c) {
3966 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3967 &offset_reg, &fastio_reg_override);
3968 }
3969 else if (ram_offset && memtarget) {
3970 offset_reg = get_ro_reg(i_regs, 0);
3971 }
3972 switch (dops[i].opcode) {
3973 case 0x32: { // LWC2
3974 int a = ar;
3975 if (fastio_reg_override >= 0)
3976 a = fastio_reg_override;
3977 do_load_word(a, tl, offset_reg);
3978 break;
3979 }
3980 case 0x3a: { // SWC2
3981 #ifdef DESTRUCTIVE_SHIFT
3982 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3983 #endif
3984 int a = ar;
3985 if (fastio_reg_override >= 0)
3986 a = fastio_reg_override;
3987 do_store_word(a, 0, tl, offset_reg, 1);
3988 break;
3989 }
3990 default:
3991 assert(0);
3992 }
3993 }
3994 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3995 host_tempreg_release();
3996 if(jaddr2)
3997 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj_,reglist);
3998 if(dops[i].opcode==0x3a) // SWC2
3999 do_store_smc_check(i, i_regs, reglist, ar);
4000 if (dops[i].opcode==0x32) { // LWC2
4001 host_tempreg_acquire();
4002 cop2_put_dreg(copr,tl,HOST_TEMPREG);
4003 host_tempreg_release();
4004 }
4005}
4006
4007static void cop2_assemble(int i, const struct regstat *i_regs)
4008{
4009 u_int copr = (source[i]>>11) & 0x1f;
4010 signed char temp = get_reg_temp(i_regs->regmap);
4011
4012 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
4013 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
4014 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
4015 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
4016 reglist = reglist_exclude(reglist, tl, -1);
4017 }
4018 cop2_do_stall_check(0, i, i_regs, reglist);
4019 }
4020 if (dops[i].opcode2==0) { // MFC2
4021 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
4022 if(tl>=0&&dops[i].rt1!=0)
4023 cop2_get_dreg(copr,tl,temp);
4024 }
4025 else if (dops[i].opcode2==4) { // MTC2
4026 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
4027 cop2_put_dreg(copr,sl,temp);
4028 }
4029 else if (dops[i].opcode2==2) // CFC2
4030 {
4031 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
4032 if(tl>=0&&dops[i].rt1!=0)
4033 emit_readword(&reg_cop2c[copr],tl);
4034 }
4035 else if (dops[i].opcode2==6) // CTC2
4036 {
4037 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
4038 switch(copr) {
4039 case 4:
4040 case 12:
4041 case 20:
4042 case 26:
4043 case 27:
4044 case 29:
4045 case 30:
4046 emit_signextend16(sl,temp);
4047 break;
4048 case 31:
4049 c2op_ctc2_31_assemble(sl,temp);
4050 break;
4051 default:
4052 temp=sl;
4053 break;
4054 }
4055 emit_writeword(temp,&reg_cop2c[copr]);
4056 assert(sl>=0);
4057 }
4058}
4059
4060static void do_unalignedwritestub(int n)
4061{
4062 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
4063 literal_pool(256);
4064 set_jump_target(stubs[n].addr, out);
4065
4066 int i=stubs[n].a;
4067 struct regstat *i_regs=(struct regstat *)stubs[n].c;
4068 int addr=stubs[n].b;
4069 u_int reglist=stubs[n].e;
4070 signed char *i_regmap=i_regs->regmap;
4071 int temp2=get_reg(i_regmap,FTEMP);
4072 int rt;
4073 rt=get_reg(i_regmap,dops[i].rs2);
4074 assert(rt>=0);
4075 assert(addr>=0);
4076 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
4077 reglist|=(1<<addr);
4078 reglist&=~(1<<temp2);
4079
4080 // don't bother with it and call write handler
4081 save_regs(reglist);
4082 pass_args(addr,rt);
4083 int cc=get_reg(i_regmap,CCREG);
4084 if(cc<0)
4085 emit_loadreg(CCREG,2);
4086 emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
4087 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
4088 emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
4089 if(cc<0)
4090 emit_storereg(CCREG,2);
4091 restore_regs(reglist);
4092 emit_jmp(stubs[n].retaddr); // return address
4093}
4094
4095#ifndef multdiv_assemble
4096void multdiv_assemble(int i,struct regstat *i_regs)
4097{
4098 printf("Need multdiv_assemble for this architecture.\n");
4099 abort();
4100}
4101#endif
4102
4103static void mov_assemble(int i, const struct regstat *i_regs)
4104{
4105 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
4106 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
4107 if(dops[i].rt1) {
4108 signed char sl,tl;
4109 tl=get_reg(i_regs->regmap,dops[i].rt1);
4110 //assert(tl>=0);
4111 if(tl>=0) {
4112 sl=get_reg(i_regs->regmap,dops[i].rs1);
4113 if(sl>=0) emit_mov(sl,tl);
4114 else emit_loadreg(dops[i].rs1,tl);
4115 }
4116 }
4117 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
4118 multdiv_do_stall(i, i_regs);
4119}
4120
4121// call interpreter, exception handler, things that change pc/regs/cycles ...
4122static void call_c_cpu_handler(int i, const struct regstat *i_regs, int ccadj_, u_int pc, void *func)
4123{
4124 signed char ccreg=get_reg(i_regs->regmap,CCREG);
4125 assert(ccreg==HOST_CCREG);
4126 assert(!is_delayslot);
4127 (void)ccreg;
4128
4129 emit_movimm(pc,3); // Get PC
4130 emit_readword(&last_count,2);
4131 emit_writeword(3,&psxRegs.pc);
4132 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
4133 emit_add(2,HOST_CCREG,2);
4134 emit_writeword(2,&psxRegs.cycle);
4135 emit_addimm_ptr(FP,(u_char *)&psxRegs - (u_char *)&dynarec_local,0);
4136 emit_far_call(func);
4137 emit_far_jump(jump_to_new_pc);
4138}
4139
4140static void syscall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4141{
4142 // 'break' tends to be littered around to catch things like
4143 // division by 0 and is almost never executed, so don't emit much code here
4144 void *func = (dops[i].opcode2 == 0x0C)
4145 ? (is_delayslot ? jump_syscall_ds : jump_syscall)
4146 : (is_delayslot ? jump_break_ds : jump_break);
4147 assert(get_reg(i_regs->regmap, CCREG) == HOST_CCREG);
4148 emit_movimm(start + i*4, 2); // pc
4149 emit_addimm(HOST_CCREG, ccadj_ + CLOCK_ADJUST(1), HOST_CCREG);
4150 emit_far_jump(func);
4151}
4152
4153static void hlecall_bad()
4154{
4155 SysPrintf("bad hlecall\n");
4156}
4157
4158static void hlecall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4159{
4160 void *hlefunc = hlecall_bad;
4161 uint32_t hleCode = source[i] & 0x03ffffff;
4162 if (hleCode < ARRAY_SIZE(psxHLEt))
4163 hlefunc = psxHLEt[hleCode];
4164
4165 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4+4, hlefunc);
4166}
4167
4168static void intcall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4169{
4170 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4, execI);
4171}
4172
4173static void speculate_mov(int rs,int rt)
4174{
4175 if(rt!=0) {
4176 smrv_strong_next|=1<<rt;
4177 smrv[rt]=smrv[rs];
4178 }
4179}
4180
4181static void speculate_mov_weak(int rs,int rt)
4182{
4183 if(rt!=0) {
4184 smrv_weak_next|=1<<rt;
4185 smrv[rt]=smrv[rs];
4186 }
4187}
4188
4189static void speculate_register_values(int i)
4190{
4191 if(i==0) {
4192 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
4193 // gp,sp are likely to stay the same throughout the block
4194 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
4195 smrv_weak_next=~smrv_strong_next;
4196 //printf(" llr %08x\n", smrv[4]);
4197 }
4198 smrv_strong=smrv_strong_next;
4199 smrv_weak=smrv_weak_next;
4200 switch(dops[i].itype) {
4201 case ALU:
4202 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4203 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
4204 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4205 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
4206 else {
4207 smrv_strong_next&=~(1<<dops[i].rt1);
4208 smrv_weak_next&=~(1<<dops[i].rt1);
4209 }
4210 break;
4211 case SHIFTIMM:
4212 smrv_strong_next&=~(1<<dops[i].rt1);
4213 smrv_weak_next&=~(1<<dops[i].rt1);
4214 // fallthrough
4215 case IMM16:
4216 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
4217 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
4218 if(hr>=0) {
4219 if(get_final_value(hr,i,&value))
4220 smrv[dops[i].rt1]=value;
4221 else smrv[dops[i].rt1]=constmap[i][hr];
4222 smrv_strong_next|=1<<dops[i].rt1;
4223 }
4224 }
4225 else {
4226 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4227 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4228 }
4229 break;
4230 case LOAD:
4231 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
4232 // special case for BIOS
4233 smrv[dops[i].rt1]=0xa0000000;
4234 smrv_strong_next|=1<<dops[i].rt1;
4235 break;
4236 }
4237 // fallthrough
4238 case SHIFT:
4239 case LOADLR:
4240 case MOV:
4241 smrv_strong_next&=~(1<<dops[i].rt1);
4242 smrv_weak_next&=~(1<<dops[i].rt1);
4243 break;
4244 case COP0:
4245 case COP2:
4246 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
4247 smrv_strong_next&=~(1<<dops[i].rt1);
4248 smrv_weak_next&=~(1<<dops[i].rt1);
4249 }
4250 break;
4251 case C2LS:
4252 if (dops[i].opcode==0x32) { // LWC2
4253 smrv_strong_next&=~(1<<dops[i].rt1);
4254 smrv_weak_next&=~(1<<dops[i].rt1);
4255 }
4256 break;
4257 }
4258#if 0
4259 int r=4;
4260 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4261 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4262#endif
4263}
4264
4265static void ujump_assemble(int i, const struct regstat *i_regs);
4266static void rjump_assemble(int i, const struct regstat *i_regs);
4267static void cjump_assemble(int i, const struct regstat *i_regs);
4268static void sjump_assemble(int i, const struct regstat *i_regs);
4269
4270static int assemble(int i, const struct regstat *i_regs, int ccadj_)
4271{
4272 int ds = 0;
4273 switch (dops[i].itype) {
4274 case ALU:
4275 alu_assemble(i, i_regs);
4276 break;
4277 case IMM16:
4278 imm16_assemble(i, i_regs);
4279 break;
4280 case SHIFT:
4281 shift_assemble(i, i_regs);
4282 break;
4283 case SHIFTIMM:
4284 shiftimm_assemble(i, i_regs);
4285 break;
4286 case LOAD:
4287 load_assemble(i, i_regs, ccadj_);
4288 break;
4289 case LOADLR:
4290 loadlr_assemble(i, i_regs, ccadj_);
4291 break;
4292 case STORE:
4293 store_assemble(i, i_regs, ccadj_);
4294 break;
4295 case STORELR:
4296 storelr_assemble(i, i_regs, ccadj_);
4297 break;
4298 case COP0:
4299 cop0_assemble(i, i_regs, ccadj_);
4300 break;
4301 case COP1:
4302 cop1_assemble(i, i_regs);
4303 break;
4304 case C1LS:
4305 c1ls_assemble(i, i_regs);
4306 break;
4307 case COP2:
4308 cop2_assemble(i, i_regs);
4309 break;
4310 case C2LS:
4311 c2ls_assemble(i, i_regs, ccadj_);
4312 break;
4313 case C2OP:
4314 c2op_assemble(i, i_regs);
4315 break;
4316 case MULTDIV:
4317 multdiv_assemble(i, i_regs);
4318 multdiv_prepare_stall(i, i_regs, ccadj_);
4319 break;
4320 case MOV:
4321 mov_assemble(i, i_regs);
4322 break;
4323 case SYSCALL:
4324 syscall_assemble(i, i_regs, ccadj_);
4325 break;
4326 case HLECALL:
4327 hlecall_assemble(i, i_regs, ccadj_);
4328 break;
4329 case INTCALL:
4330 intcall_assemble(i, i_regs, ccadj_);
4331 break;
4332 case UJUMP:
4333 ujump_assemble(i, i_regs);
4334 ds = 1;
4335 break;
4336 case RJUMP:
4337 rjump_assemble(i, i_regs);
4338 ds = 1;
4339 break;
4340 case CJUMP:
4341 cjump_assemble(i, i_regs);
4342 ds = 1;
4343 break;
4344 case SJUMP:
4345 sjump_assemble(i, i_regs);
4346 ds = 1;
4347 break;
4348 case NOP:
4349 case OTHER:
4350 case NI:
4351 // not handled, just skip
4352 break;
4353 default:
4354 assert(0);
4355 }
4356 return ds;
4357}
4358
4359static void ds_assemble(int i, const struct regstat *i_regs)
4360{
4361 speculate_register_values(i);
4362 is_delayslot = 1;
4363 switch (dops[i].itype) {
4364 case SYSCALL:
4365 case HLECALL:
4366 case INTCALL:
4367 case UJUMP:
4368 case RJUMP:
4369 case CJUMP:
4370 case SJUMP:
4371 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4372 break;
4373 default:
4374 assemble(i, i_regs, ccadj[i]);
4375 }
4376 is_delayslot = 0;
4377}
4378
4379// Is the branch target a valid internal jump?
4380static int internal_branch(int addr)
4381{
4382 if(addr&1) return 0; // Indirect (register) jump
4383 if(addr>=start && addr<start+slen*4-4)
4384 {
4385 return 1;
4386 }
4387 return 0;
4388}
4389
4390static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4391{
4392 int hr;
4393 for(hr=0;hr<HOST_REGS;hr++) {
4394 if(hr!=EXCLUDE_REG) {
4395 if(pre[hr]!=entry[hr]) {
4396 if(pre[hr]>=0) {
4397 if((dirty>>hr)&1) {
4398 if(get_reg(entry,pre[hr])<0) {
4399 assert(pre[hr]<64);
4400 if(!((u>>pre[hr])&1))
4401 emit_storereg(pre[hr],hr);
4402 }
4403 }
4404 }
4405 }
4406 }
4407 }
4408 // Move from one register to another (no writeback)
4409 for(hr=0;hr<HOST_REGS;hr++) {
4410 if(hr!=EXCLUDE_REG) {
4411 if(pre[hr]!=entry[hr]) {
4412 if(pre[hr]>=0&&pre[hr]<TEMPREG) {
4413 int nr;
4414 if((nr=get_reg(entry,pre[hr]))>=0) {
4415 emit_mov(hr,nr);
4416 }
4417 }
4418 }
4419 }
4420 }
4421}
4422
4423// Load the specified registers
4424// This only loads the registers given as arguments because
4425// we don't want to load things that will be overwritten
4426static inline void load_reg(signed char entry[], signed char regmap[], int rs)
4427{
4428 int hr = get_reg(regmap, rs);
4429 if (hr >= 0 && entry[hr] != regmap[hr])
4430 emit_loadreg(regmap[hr], hr);
4431}
4432
4433static void load_regs(signed char entry[], signed char regmap[], int rs1, int rs2)
4434{
4435 load_reg(entry, regmap, rs1);
4436 if (rs1 != rs2)
4437 load_reg(entry, regmap, rs2);
4438}
4439
4440// Load registers prior to the start of a loop
4441// so that they are not loaded within the loop
4442static void loop_preload(signed char pre[],signed char entry[])
4443{
4444 int hr;
4445 for (hr = 0; hr < HOST_REGS; hr++) {
4446 int r = entry[hr];
4447 if (r >= 0 && pre[hr] != r && get_reg(pre, r) < 0) {
4448 assem_debug("loop preload:\n");
4449 if (r < TEMPREG)
4450 emit_loadreg(r, hr);
4451 }
4452 }
4453}
4454
4455// Generate address for load/store instruction
4456// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4457static void address_generation(int i, const struct regstat *i_regs, signed char entry[])
4458{
4459 if (dops[i].is_load || dops[i].is_store) {
4460 int ra=-1;
4461 int agr=AGEN1+(i&1);
4462 if(dops[i].itype==LOAD) {
4463 ra=get_reg(i_regs->regmap,dops[i].rt1);
4464 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4465 assert(ra>=0);
4466 }
4467 if(dops[i].itype==LOADLR) {
4468 ra=get_reg(i_regs->regmap,FTEMP);
4469 }
4470 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4471 ra=get_reg(i_regs->regmap,agr);
4472 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4473 }
4474 if(dops[i].itype==C2LS) {
4475 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4476 ra=get_reg(i_regs->regmap,FTEMP);
4477 else { // SWC1/SDC1/SWC2/SDC2
4478 ra=get_reg(i_regs->regmap,agr);
4479 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4480 }
4481 }
4482 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4483 if(ra>=0) {
4484 int offset=imm[i];
4485 int c=(i_regs->wasconst>>rs)&1;
4486 if(dops[i].rs1==0) {
4487 // Using r0 as a base address
4488 if(!entry||entry[ra]!=agr) {
4489 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4490 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4491 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4492 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4493 }else{
4494 emit_movimm(offset,ra);
4495 }
4496 } // else did it in the previous cycle
4497 }
4498 else if(rs<0) {
4499 if(!entry||entry[ra]!=dops[i].rs1)
4500 emit_loadreg(dops[i].rs1,ra);
4501 //if(!entry||entry[ra]!=dops[i].rs1)
4502 // printf("poor load scheduling!\n");
4503 }
4504 else if(c) {
4505 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4506 if(!entry||entry[ra]!=agr) {
4507 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4508 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4509 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4510 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4511 }else{
4512 emit_movimm(constmap[i][rs]+offset,ra);
4513 regs[i].loadedconst|=1<<ra;
4514 }
4515 } // else did it in the previous cycle
4516 } // else load_consts already did it
4517 }
4518 if(offset&&!c&&dops[i].rs1) {
4519 if(rs>=0) {
4520 emit_addimm(rs,offset,ra);
4521 }else{
4522 emit_addimm(ra,offset,ra);
4523 }
4524 }
4525 }
4526 }
4527 // Preload constants for next instruction
4528 if (dops[i+1].is_load || dops[i+1].is_store) {
4529 int agr,ra;
4530 // Actual address
4531 agr=AGEN1+((i+1)&1);
4532 ra=get_reg(i_regs->regmap,agr);
4533 if(ra>=0) {
4534 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4535 int offset=imm[i+1];
4536 int c=(regs[i+1].wasconst>>rs)&1;
4537 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4538 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4539 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4540 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4541 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4542 }else{
4543 emit_movimm(constmap[i+1][rs]+offset,ra);
4544 regs[i+1].loadedconst|=1<<ra;
4545 }
4546 }
4547 else if(dops[i+1].rs1==0) {
4548 // Using r0 as a base address
4549 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4550 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4551 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4552 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4553 }else{
4554 emit_movimm(offset,ra);
4555 }
4556 }
4557 }
4558 }
4559}
4560
4561static int get_final_value(int hr, int i, int *value)
4562{
4563 int reg=regs[i].regmap[hr];
4564 while(i<slen-1) {
4565 if(regs[i+1].regmap[hr]!=reg) break;
4566 if(!((regs[i+1].isconst>>hr)&1)) break;
4567 if(dops[i+1].bt) break;
4568 i++;
4569 }
4570 if(i<slen-1) {
4571 if (dops[i].is_jump) {
4572 *value=constmap[i][hr];
4573 return 1;
4574 }
4575 if(!dops[i+1].bt) {
4576 if (dops[i+1].is_jump) {
4577 // Load in delay slot, out-of-order execution
4578 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4579 {
4580 // Precompute load address
4581 *value=constmap[i][hr]+imm[i+2];
4582 return 1;
4583 }
4584 }
4585 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4586 {
4587 // Precompute load address
4588 *value=constmap[i][hr]+imm[i+1];
4589 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4590 return 1;
4591 }
4592 }
4593 }
4594 *value=constmap[i][hr];
4595 //printf("c=%lx\n",(long)constmap[i][hr]);
4596 if(i==slen-1) return 1;
4597 assert(reg < 64);
4598 return !((unneeded_reg[i+1]>>reg)&1);
4599}
4600
4601// Load registers with known constants
4602static void load_consts(signed char pre[],signed char regmap[],int i)
4603{
4604 int hr,hr2;
4605 // propagate loaded constant flags
4606 if(i==0||dops[i].bt)
4607 regs[i].loadedconst=0;
4608 else {
4609 for(hr=0;hr<HOST_REGS;hr++) {
4610 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4611 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4612 {
4613 regs[i].loadedconst|=1<<hr;
4614 }
4615 }
4616 }
4617 // Load 32-bit regs
4618 for(hr=0;hr<HOST_REGS;hr++) {
4619 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4620 //if(entry[hr]!=regmap[hr]) {
4621 if(!((regs[i].loadedconst>>hr)&1)) {
4622 assert(regmap[hr]<64);
4623 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4624 int value,similar=0;
4625 if(get_final_value(hr,i,&value)) {
4626 // see if some other register has similar value
4627 for(hr2=0;hr2<HOST_REGS;hr2++) {
4628 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4629 if(is_similar_value(value,constmap[i][hr2])) {
4630 similar=1;
4631 break;
4632 }
4633 }
4634 }
4635 if(similar) {
4636 int value2;
4637 if(get_final_value(hr2,i,&value2)) // is this needed?
4638 emit_movimm_from(value2,hr2,value,hr);
4639 else
4640 emit_movimm(value,hr);
4641 }
4642 else if(value==0) {
4643 emit_zeroreg(hr);
4644 }
4645 else {
4646 emit_movimm(value,hr);
4647 }
4648 }
4649 regs[i].loadedconst|=1<<hr;
4650 }
4651 }
4652 }
4653 }
4654}
4655
4656static void load_all_consts(const signed char regmap[], u_int dirty, int i)
4657{
4658 int hr;
4659 // Load 32-bit regs
4660 for(hr=0;hr<HOST_REGS;hr++) {
4661 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4662 assert(regmap[hr] < 64);
4663 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4664 int value=constmap[i][hr];
4665 if(value==0) {
4666 emit_zeroreg(hr);
4667 }
4668 else {
4669 emit_movimm(value,hr);
4670 }
4671 }
4672 }
4673 }
4674}
4675
4676// Write out all dirty registers (except cycle count)
4677static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty)
4678{
4679 int hr;
4680 for(hr=0;hr<HOST_REGS;hr++) {
4681 if(hr!=EXCLUDE_REG) {
4682 if(i_regmap[hr]>0) {
4683 if(i_regmap[hr]!=CCREG) {
4684 if((i_dirty>>hr)&1) {
4685 assert(i_regmap[hr]<64);
4686 emit_storereg(i_regmap[hr],hr);
4687 }
4688 }
4689 }
4690 }
4691 }
4692}
4693
4694// Write out dirty registers that we need to reload (pair with load_needed_regs)
4695// This writes the registers not written by store_regs_bt
4696static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr)
4697{
4698 int hr;
4699 int t=(addr-start)>>2;
4700 for(hr=0;hr<HOST_REGS;hr++) {
4701 if(hr!=EXCLUDE_REG) {
4702 if(i_regmap[hr]>0) {
4703 if(i_regmap[hr]!=CCREG) {
4704 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4705 if((i_dirty>>hr)&1) {
4706 assert(i_regmap[hr]<64);
4707 emit_storereg(i_regmap[hr],hr);
4708 }
4709 }
4710 }
4711 }
4712 }
4713 }
4714}
4715
4716// Load all registers (except cycle count)
4717static void load_all_regs(const signed char i_regmap[])
4718{
4719 int hr;
4720 for(hr=0;hr<HOST_REGS;hr++) {
4721 if(hr!=EXCLUDE_REG) {
4722 if(i_regmap[hr]==0) {
4723 emit_zeroreg(hr);
4724 }
4725 else
4726 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4727 {
4728 emit_loadreg(i_regmap[hr],hr);
4729 }
4730 }
4731 }
4732}
4733
4734// Load all current registers also needed by next instruction
4735static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[])
4736{
4737 int hr;
4738 for(hr=0;hr<HOST_REGS;hr++) {
4739 if(hr!=EXCLUDE_REG) {
4740 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4741 if(i_regmap[hr]==0) {
4742 emit_zeroreg(hr);
4743 }
4744 else
4745 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4746 {
4747 emit_loadreg(i_regmap[hr],hr);
4748 }
4749 }
4750 }
4751 }
4752}
4753
4754// Load all regs, storing cycle count if necessary
4755static void load_regs_entry(int t)
4756{
4757 int hr;
4758 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4759 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t],HOST_CCREG);
4760 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4761 emit_storereg(CCREG,HOST_CCREG);
4762 }
4763 // Load 32-bit regs
4764 for(hr=0;hr<HOST_REGS;hr++) {
4765 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4766 if(regs[t].regmap_entry[hr]==0) {
4767 emit_zeroreg(hr);
4768 }
4769 else if(regs[t].regmap_entry[hr]!=CCREG)
4770 {
4771 emit_loadreg(regs[t].regmap_entry[hr],hr);
4772 }
4773 }
4774 }
4775}
4776
4777// Store dirty registers prior to branch
4778static void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4779{
4780 if(internal_branch(addr))
4781 {
4782 int t=(addr-start)>>2;
4783 int hr;
4784 for(hr=0;hr<HOST_REGS;hr++) {
4785 if(hr!=EXCLUDE_REG) {
4786 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4787 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4788 if((i_dirty>>hr)&1) {
4789 assert(i_regmap[hr]<64);
4790 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4791 emit_storereg(i_regmap[hr],hr);
4792 }
4793 }
4794 }
4795 }
4796 }
4797 }
4798 else
4799 {
4800 // Branch out of this block, write out all dirty regs
4801 wb_dirtys(i_regmap,i_dirty);
4802 }
4803}
4804
4805// Load all needed registers for branch target
4806static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4807{
4808 //if(addr>=start && addr<(start+slen*4))
4809 if(internal_branch(addr))
4810 {
4811 int t=(addr-start)>>2;
4812 int hr;
4813 // Store the cycle count before loading something else
4814 if(i_regmap[HOST_CCREG]!=CCREG) {
4815 assert(i_regmap[HOST_CCREG]==-1);
4816 }
4817 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4818 emit_storereg(CCREG,HOST_CCREG);
4819 }
4820 // Load 32-bit regs
4821 for(hr=0;hr<HOST_REGS;hr++) {
4822 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4823 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4824 if(regs[t].regmap_entry[hr]==0) {
4825 emit_zeroreg(hr);
4826 }
4827 else if(regs[t].regmap_entry[hr]!=CCREG)
4828 {
4829 emit_loadreg(regs[t].regmap_entry[hr],hr);
4830 }
4831 }
4832 }
4833 }
4834 }
4835}
4836
4837static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4838{
4839 if(addr>=start && addr<start+slen*4-4)
4840 {
4841 int t=(addr-start)>>2;
4842 int hr;
4843 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4844 for(hr=0;hr<HOST_REGS;hr++)
4845 {
4846 if(hr!=EXCLUDE_REG)
4847 {
4848 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4849 {
4850 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4851 {
4852 return 0;
4853 }
4854 else
4855 if((i_dirty>>hr)&1)
4856 {
4857 if(i_regmap[hr]<TEMPREG)
4858 {
4859 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4860 return 0;
4861 }
4862 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4863 {
4864 assert(0);
4865 }
4866 }
4867 }
4868 else // Same register but is it 32-bit or dirty?
4869 if(i_regmap[hr]>=0)
4870 {
4871 if(!((regs[t].dirty>>hr)&1))
4872 {
4873 if((i_dirty>>hr)&1)
4874 {
4875 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4876 {
4877 //printf("%x: dirty no match\n",addr);
4878 return 0;
4879 }
4880 }
4881 }
4882 }
4883 }
4884 }
4885 // Delay slots are not valid branch targets
4886 //if(t>0&&(dops[t-1].is_jump) return 0;
4887 // Delay slots require additional processing, so do not match
4888 if(dops[t].is_ds) return 0;
4889 }
4890 else
4891 {
4892 int hr;
4893 for(hr=0;hr<HOST_REGS;hr++)
4894 {
4895 if(hr!=EXCLUDE_REG)
4896 {
4897 if(i_regmap[hr]>=0)
4898 {
4899 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4900 {
4901 if((i_dirty>>hr)&1)
4902 {
4903 return 0;
4904 }
4905 }
4906 }
4907 }
4908 }
4909 }
4910 return 1;
4911}
4912
4913#ifdef DRC_DBG
4914static void drc_dbg_emit_do_cmp(int i, int ccadj_)
4915{
4916 extern void do_insn_cmp();
4917 //extern int cycle;
4918 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4919
4920 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4921 save_regs(reglist);
4922 // write out changed consts to match the interpreter
4923 if (i > 0 && !dops[i].bt) {
4924 for (hr = 0; hr < HOST_REGS; hr++) {
4925 int reg = regs[i].regmap_entry[hr]; // regs[i-1].regmap[hr];
4926 if (hr == EXCLUDE_REG || reg < 0)
4927 continue;
4928 if (!((regs[i-1].isconst >> hr) & 1))
4929 continue;
4930 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4931 continue;
4932 emit_movimm(constmap[i-1][hr],0);
4933 emit_storereg(reg, 0);
4934 }
4935 }
4936 emit_movimm(start+i*4,0);
4937 emit_writeword(0,&pcaddr);
4938 int cc = get_reg(regs[i].regmap_entry, CCREG);
4939 if (cc < 0)
4940 emit_loadreg(CCREG, cc = 0);
4941 emit_addimm(cc, ccadj_, 0);
4942 emit_writeword(0, &psxRegs.cycle);
4943 emit_far_call(do_insn_cmp);
4944 //emit_readword(&cycle,0);
4945 //emit_addimm(0,2,0);
4946 //emit_writeword(0,&cycle);
4947 (void)get_reg2;
4948 restore_regs(reglist);
4949 assem_debug("\\\\do_insn_cmp\n");
4950}
4951#else
4952#define drc_dbg_emit_do_cmp(x,y)
4953#endif
4954
4955// Used when a branch jumps into the delay slot of another branch
4956static void ds_assemble_entry(int i)
4957{
4958 int t = (ba[i] - start) >> 2;
4959 int ccadj_ = -CLOCK_ADJUST(1);
4960 if (!instr_addr[t])
4961 instr_addr[t] = out;
4962 assem_debug("Assemble delay slot at %x\n",ba[i]);
4963 assem_debug("<->\n");
4964 drc_dbg_emit_do_cmp(t, ccadj_);
4965 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4966 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4967 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4968 address_generation(t,&regs[t],regs[t].regmap_entry);
4969 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4970 load_reg(regs[t].regmap_entry,regs[t].regmap,ROREG);
4971 if (dops[t].is_store)
4972 load_reg(regs[t].regmap_entry,regs[t].regmap,INVCP);
4973 is_delayslot=0;
4974 switch (dops[t].itype) {
4975 case SYSCALL:
4976 case HLECALL:
4977 case INTCALL:
4978 case UJUMP:
4979 case RJUMP:
4980 case CJUMP:
4981 case SJUMP:
4982 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4983 break;
4984 default:
4985 assemble(t, &regs[t], ccadj_);
4986 }
4987 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4988 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4989 if(internal_branch(ba[i]+4))
4990 assem_debug("branch: internal\n");
4991 else
4992 assem_debug("branch: external\n");
4993 assert(internal_branch(ba[i]+4));
4994 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4995 emit_jmp(0);
4996}
4997
4998// Load 2 immediates optimizing for small code size
4999static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
5000{
5001 emit_movimm(imm1,rt1);
5002 emit_movimm_from(imm1,rt1,imm2,rt2);
5003}
5004
5005static void do_cc(int i, const signed char i_regmap[], int *adj,
5006 int addr, int taken, int invert)
5007{
5008 int count, count_plus2;
5009 void *jaddr;
5010 void *idle=NULL;
5011 int t=0;
5012 if(dops[i].itype==RJUMP)
5013 {
5014 *adj=0;
5015 }
5016 //if(ba[i]>=start && ba[i]<(start+slen*4))
5017 if(internal_branch(ba[i]))
5018 {
5019 t=(ba[i]-start)>>2;
5020 if(dops[t].is_ds) *adj=-CLOCK_ADJUST(1); // Branch into delay slot adds an extra cycle
5021 else *adj=ccadj[t];
5022 }
5023 else
5024 {
5025 *adj=0;
5026 }
5027 count = ccadj[i];
5028 count_plus2 = count + CLOCK_ADJUST(2);
5029 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
5030 // Idle loop
5031 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
5032 idle=out;
5033 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
5034 emit_andimm(HOST_CCREG,3,HOST_CCREG);
5035 jaddr=out;
5036 emit_jmp(0);
5037 }
5038 else if(*adj==0||invert) {
5039 int cycles = count_plus2;
5040 // faster loop HACK
5041#if 0
5042 if (t&&*adj) {
5043 int rel=t-i;
5044 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
5045 cycles=*adj+count+2-*adj;
5046 }
5047#endif
5048 emit_addimm_and_set_flags(cycles, HOST_CCREG);
5049 jaddr = out;
5050 emit_jns(0);
5051 }
5052 else
5053 {
5054 emit_cmpimm(HOST_CCREG, -count_plus2);
5055 jaddr = out;
5056 emit_jns(0);
5057 }
5058 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:count_plus2,i,addr,taken,0);
5059}
5060
5061static void do_ccstub(int n)
5062{
5063 literal_pool(256);
5064 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
5065 set_jump_target(stubs[n].addr, out);
5066 int i=stubs[n].b;
5067 if(stubs[n].d==NULLDS) {
5068 // Delay slot instruction is nullified ("likely" branch)
5069 wb_dirtys(regs[i].regmap,regs[i].dirty);
5070 }
5071 else if(stubs[n].d!=TAKEN) {
5072 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
5073 }
5074 else {
5075 if(internal_branch(ba[i]))
5076 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5077 }
5078 if(stubs[n].c!=-1)
5079 {
5080 // Save PC as return address
5081 emit_movimm(stubs[n].c,0);
5082 emit_writeword(0,&pcaddr);
5083 }
5084 else
5085 {
5086 // Return address depends on which way the branch goes
5087 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
5088 {
5089 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5090 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5091 if(dops[i].rs1==0)
5092 {
5093 s1l=s2l;
5094 s2l=-1;
5095 }
5096 else if(dops[i].rs2==0)
5097 {
5098 s2l=-1;
5099 }
5100 assert(s1l>=0);
5101 #ifdef DESTRUCTIVE_WRITEBACK
5102 if(dops[i].rs1) {
5103 if((branch_regs[i].dirty>>s1l)&&1)
5104 emit_loadreg(dops[i].rs1,s1l);
5105 }
5106 else {
5107 if((branch_regs[i].dirty>>s1l)&1)
5108 emit_loadreg(dops[i].rs2,s1l);
5109 }
5110 if(s2l>=0)
5111 if((branch_regs[i].dirty>>s2l)&1)
5112 emit_loadreg(dops[i].rs2,s2l);
5113 #endif
5114 int hr=0;
5115 int addr=-1,alt=-1,ntaddr=-1;
5116 while(hr<HOST_REGS)
5117 {
5118 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5119 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5120 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5121 {
5122 addr=hr++;break;
5123 }
5124 hr++;
5125 }
5126 while(hr<HOST_REGS)
5127 {
5128 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5129 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5130 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5131 {
5132 alt=hr++;break;
5133 }
5134 hr++;
5135 }
5136 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5137 {
5138 while(hr<HOST_REGS)
5139 {
5140 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5141 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5142 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5143 {
5144 ntaddr=hr;break;
5145 }
5146 hr++;
5147 }
5148 assert(hr<HOST_REGS);
5149 }
5150 if((dops[i].opcode&0x2f)==4) // BEQ
5151 {
5152 #ifdef HAVE_CMOV_IMM
5153 if(s2l>=0) emit_cmp(s1l,s2l);
5154 else emit_test(s1l,s1l);
5155 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5156 #else
5157 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5158 if(s2l>=0) emit_cmp(s1l,s2l);
5159 else emit_test(s1l,s1l);
5160 emit_cmovne_reg(alt,addr);
5161 #endif
5162 }
5163 if((dops[i].opcode&0x2f)==5) // BNE
5164 {
5165 #ifdef HAVE_CMOV_IMM
5166 if(s2l>=0) emit_cmp(s1l,s2l);
5167 else emit_test(s1l,s1l);
5168 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5169 #else
5170 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5171 if(s2l>=0) emit_cmp(s1l,s2l);
5172 else emit_test(s1l,s1l);
5173 emit_cmovne_reg(alt,addr);
5174 #endif
5175 }
5176 if((dops[i].opcode&0x2f)==6) // BLEZ
5177 {
5178 //emit_movimm(ba[i],alt);
5179 //emit_movimm(start+i*4+8,addr);
5180 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5181 emit_cmpimm(s1l,1);
5182 emit_cmovl_reg(alt,addr);
5183 }
5184 if((dops[i].opcode&0x2f)==7) // BGTZ
5185 {
5186 //emit_movimm(ba[i],addr);
5187 //emit_movimm(start+i*4+8,ntaddr);
5188 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5189 emit_cmpimm(s1l,1);
5190 emit_cmovl_reg(ntaddr,addr);
5191 }
5192 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
5193 {
5194 //emit_movimm(ba[i],alt);
5195 //emit_movimm(start+i*4+8,addr);
5196 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5197 emit_test(s1l,s1l);
5198 emit_cmovs_reg(alt,addr);
5199 }
5200 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
5201 {
5202 //emit_movimm(ba[i],addr);
5203 //emit_movimm(start+i*4+8,alt);
5204 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5205 emit_test(s1l,s1l);
5206 emit_cmovs_reg(alt,addr);
5207 }
5208 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5209 if(source[i]&0x10000) // BC1T
5210 {
5211 //emit_movimm(ba[i],alt);
5212 //emit_movimm(start+i*4+8,addr);
5213 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5214 emit_testimm(s1l,0x800000);
5215 emit_cmovne_reg(alt,addr);
5216 }
5217 else // BC1F
5218 {
5219 //emit_movimm(ba[i],addr);
5220 //emit_movimm(start+i*4+8,alt);
5221 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5222 emit_testimm(s1l,0x800000);
5223 emit_cmovne_reg(alt,addr);
5224 }
5225 }
5226 emit_writeword(addr,&pcaddr);
5227 }
5228 else
5229 if(dops[i].itype==RJUMP)
5230 {
5231 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
5232 if (ds_writes_rjump_rs(i)) {
5233 r=get_reg(branch_regs[i].regmap,RTEMP);
5234 }
5235 emit_writeword(r,&pcaddr);
5236 }
5237 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
5238 }
5239 // Update cycle count
5240 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5241 if(stubs[n].a) emit_addimm(HOST_CCREG,(int)stubs[n].a,HOST_CCREG);
5242 emit_far_call(cc_interrupt);
5243 if(stubs[n].a) emit_addimm(HOST_CCREG,-(int)stubs[n].a,HOST_CCREG);
5244 if(stubs[n].d==TAKEN) {
5245 if(internal_branch(ba[i]))
5246 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5247 else if(dops[i].itype==RJUMP) {
5248 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5249 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5250 else
5251 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
5252 }
5253 }else if(stubs[n].d==NOTTAKEN) {
5254 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5255 else load_all_regs(branch_regs[i].regmap);
5256 }else if(stubs[n].d==NULLDS) {
5257 // Delay slot instruction is nullified ("likely" branch)
5258 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5259 else load_all_regs(regs[i].regmap);
5260 }else{
5261 load_all_regs(branch_regs[i].regmap);
5262 }
5263 if (stubs[n].retaddr)
5264 emit_jmp(stubs[n].retaddr);
5265 else
5266 do_jump_vaddr(stubs[n].e);
5267}
5268
5269static void add_to_linker(void *addr, u_int target, int is_internal)
5270{
5271 assert(linkcount < ARRAY_SIZE(link_addr));
5272 link_addr[linkcount].addr = addr;
5273 link_addr[linkcount].target = target;
5274 link_addr[linkcount].internal = is_internal;
5275 linkcount++;
5276}
5277
5278static void ujump_assemble_write_ra(int i)
5279{
5280 int rt;
5281 unsigned int return_address;
5282 rt=get_reg(branch_regs[i].regmap,31);
5283 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5284 //assert(rt>=0);
5285 return_address=start+i*4+8;
5286 if(rt>=0) {
5287 #ifdef USE_MINI_HT
5288 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5289 int temp=-1; // note: must be ds-safe
5290 #ifdef HOST_TEMPREG
5291 temp=HOST_TEMPREG;
5292 #endif
5293 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5294 else emit_movimm(return_address,rt);
5295 }
5296 else
5297 #endif
5298 {
5299 #ifdef REG_PREFETCH
5300 if(temp>=0)
5301 {
5302 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5303 }
5304 #endif
5305 emit_movimm(return_address,rt); // PC into link register
5306 #ifdef IMM_PREFETCH
5307 emit_prefetch(hash_table_get(return_address));
5308 #endif
5309 }
5310 }
5311}
5312
5313static void ujump_assemble(int i, const struct regstat *i_regs)
5314{
5315 int ra_done=0;
5316 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5317 address_generation(i+1,i_regs,regs[i].regmap_entry);
5318 #ifdef REG_PREFETCH
5319 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5320 if(dops[i].rt1==31&&temp>=0)
5321 {
5322 signed char *i_regmap=i_regs->regmap;
5323 int return_address=start+i*4+8;
5324 if(get_reg(branch_regs[i].regmap,31)>0)
5325 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5326 }
5327 #endif
5328 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5329 ujump_assemble_write_ra(i); // writeback ra for DS
5330 ra_done=1;
5331 }
5332 ds_assemble(i+1,i_regs);
5333 uint64_t bc_unneeded=branch_regs[i].u;
5334 bc_unneeded|=1|(1LL<<dops[i].rt1);
5335 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5336 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5337 if(!ra_done&&dops[i].rt1==31)
5338 ujump_assemble_write_ra(i);
5339 int cc,adj;
5340 cc=get_reg(branch_regs[i].regmap,CCREG);
5341 assert(cc==HOST_CCREG);
5342 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5343 #ifdef REG_PREFETCH
5344 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5345 #endif
5346 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5347 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5348 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5349 if(internal_branch(ba[i]))
5350 assem_debug("branch: internal\n");
5351 else
5352 assem_debug("branch: external\n");
5353 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5354 ds_assemble_entry(i);
5355 }
5356 else {
5357 add_to_linker(out,ba[i],internal_branch(ba[i]));
5358 emit_jmp(0);
5359 }
5360}
5361
5362static void rjump_assemble_write_ra(int i)
5363{
5364 int rt,return_address;
5365 assert(dops[i+1].rt1!=dops[i].rt1);
5366 assert(dops[i+1].rt2!=dops[i].rt1);
5367 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5368 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5369 assert(rt>=0);
5370 return_address=start+i*4+8;
5371 #ifdef REG_PREFETCH
5372 if(temp>=0)
5373 {
5374 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5375 }
5376 #endif
5377 emit_movimm(return_address,rt); // PC into link register
5378 #ifdef IMM_PREFETCH
5379 emit_prefetch(hash_table_get(return_address));
5380 #endif
5381}
5382
5383static void rjump_assemble(int i, const struct regstat *i_regs)
5384{
5385 int temp;
5386 int rs,cc;
5387 int ra_done=0;
5388 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5389 assert(rs>=0);
5390 if (ds_writes_rjump_rs(i)) {
5391 // Delay slot abuse, make a copy of the branch address register
5392 temp=get_reg(branch_regs[i].regmap,RTEMP);
5393 assert(temp>=0);
5394 assert(regs[i].regmap[temp]==RTEMP);
5395 emit_mov(rs,temp);
5396 rs=temp;
5397 }
5398 address_generation(i+1,i_regs,regs[i].regmap_entry);
5399 #ifdef REG_PREFETCH
5400 if(dops[i].rt1==31)
5401 {
5402 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5403 signed char *i_regmap=i_regs->regmap;
5404 int return_address=start+i*4+8;
5405 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5406 }
5407 }
5408 #endif
5409 #ifdef USE_MINI_HT
5410 if(dops[i].rs1==31) {
5411 int rh=get_reg(regs[i].regmap,RHASH);
5412 if(rh>=0) do_preload_rhash(rh);
5413 }
5414 #endif
5415 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5416 rjump_assemble_write_ra(i);
5417 ra_done=1;
5418 }
5419 ds_assemble(i+1,i_regs);
5420 uint64_t bc_unneeded=branch_regs[i].u;
5421 bc_unneeded|=1|(1LL<<dops[i].rt1);
5422 bc_unneeded&=~(1LL<<dops[i].rs1);
5423 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5424 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5425 if(!ra_done&&dops[i].rt1!=0)
5426 rjump_assemble_write_ra(i);
5427 cc=get_reg(branch_regs[i].regmap,CCREG);
5428 assert(cc==HOST_CCREG);
5429 (void)cc;
5430 #ifdef USE_MINI_HT
5431 int rh=get_reg(branch_regs[i].regmap,RHASH);
5432 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5433 if(dops[i].rs1==31) {
5434 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5435 do_preload_rhtbl(ht);
5436 do_rhash(rs,rh);
5437 }
5438 #endif
5439 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5440 #ifdef DESTRUCTIVE_WRITEBACK
5441 if((branch_regs[i].dirty>>rs)&1) {
5442 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5443 emit_loadreg(dops[i].rs1,rs);
5444 }
5445 }
5446 #endif
5447 #ifdef REG_PREFETCH
5448 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5449 #endif
5450 #ifdef USE_MINI_HT
5451 if(dops[i].rs1==31) {
5452 do_miniht_load(ht,rh);
5453 }
5454 #endif
5455 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5456 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5457 //assert(adj==0);
5458 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5459 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5460 if(dops[i+1].itype==COP0 && dops[i+1].opcode2==0x10)
5461 // special case for RFE
5462 emit_jmp(0);
5463 else
5464 emit_jns(0);
5465 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5466 #ifdef USE_MINI_HT
5467 if(dops[i].rs1==31) {
5468 do_miniht_jump(rs,rh,ht);
5469 }
5470 else
5471 #endif
5472 {
5473 do_jump_vaddr(rs);
5474 }
5475 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5476 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5477 #endif
5478}
5479
5480static void cjump_assemble(int i, const struct regstat *i_regs)
5481{
5482 const signed char *i_regmap = i_regs->regmap;
5483 int cc;
5484 int match;
5485 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5486 assem_debug("match=%d\n",match);
5487 int s1l,s2l;
5488 int unconditional=0,nop=0;
5489 int invert=0;
5490 int internal=internal_branch(ba[i]);
5491 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5492 if(!match) invert=1;
5493 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5494 if(i>(ba[i]-start)>>2) invert=1;
5495 #endif
5496 #ifdef __aarch64__
5497 invert=1; // because of near cond. branches
5498 #endif
5499
5500 if(dops[i].ooo) {
5501 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5502 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5503 }
5504 else {
5505 s1l=get_reg(i_regmap,dops[i].rs1);
5506 s2l=get_reg(i_regmap,dops[i].rs2);
5507 }
5508 if(dops[i].rs1==0&&dops[i].rs2==0)
5509 {
5510 if(dops[i].opcode&1) nop=1;
5511 else unconditional=1;
5512 //assert(dops[i].opcode!=5);
5513 //assert(dops[i].opcode!=7);
5514 //assert(dops[i].opcode!=0x15);
5515 //assert(dops[i].opcode!=0x17);
5516 }
5517 else if(dops[i].rs1==0)
5518 {
5519 s1l=s2l;
5520 s2l=-1;
5521 }
5522 else if(dops[i].rs2==0)
5523 {
5524 s2l=-1;
5525 }
5526
5527 if(dops[i].ooo) {
5528 // Out of order execution (delay slot first)
5529 //printf("OOOE\n");
5530 address_generation(i+1,i_regs,regs[i].regmap_entry);
5531 ds_assemble(i+1,i_regs);
5532 int adj;
5533 uint64_t bc_unneeded=branch_regs[i].u;
5534 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5535 bc_unneeded|=1;
5536 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5537 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5538 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5539 cc=get_reg(branch_regs[i].regmap,CCREG);
5540 assert(cc==HOST_CCREG);
5541 if(unconditional)
5542 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5543 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5544 //assem_debug("cycle count (adj)\n");
5545 if(unconditional) {
5546 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5547 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5548 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5549 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5550 if(internal)
5551 assem_debug("branch: internal\n");
5552 else
5553 assem_debug("branch: external\n");
5554 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5555 ds_assemble_entry(i);
5556 }
5557 else {
5558 add_to_linker(out,ba[i],internal);
5559 emit_jmp(0);
5560 }
5561 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5562 if(((u_int)out)&7) emit_addnop(0);
5563 #endif
5564 }
5565 }
5566 else if(nop) {
5567 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5568 void *jaddr=out;
5569 emit_jns(0);
5570 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5571 }
5572 else {
5573 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5574 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5575 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5576
5577 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5578 assert(s1l>=0);
5579 if(dops[i].opcode==4) // BEQ
5580 {
5581 if(s2l>=0) emit_cmp(s1l,s2l);
5582 else emit_test(s1l,s1l);
5583 if(invert){
5584 nottaken=out;
5585 emit_jne(DJT_1);
5586 }else{
5587 add_to_linker(out,ba[i],internal);
5588 emit_jeq(0);
5589 }
5590 }
5591 if(dops[i].opcode==5) // BNE
5592 {
5593 if(s2l>=0) emit_cmp(s1l,s2l);
5594 else emit_test(s1l,s1l);
5595 if(invert){
5596 nottaken=out;
5597 emit_jeq(DJT_1);
5598 }else{
5599 add_to_linker(out,ba[i],internal);
5600 emit_jne(0);
5601 }
5602 }
5603 if(dops[i].opcode==6) // BLEZ
5604 {
5605 emit_cmpimm(s1l,1);
5606 if(invert){
5607 nottaken=out;
5608 emit_jge(DJT_1);
5609 }else{
5610 add_to_linker(out,ba[i],internal);
5611 emit_jl(0);
5612 }
5613 }
5614 if(dops[i].opcode==7) // BGTZ
5615 {
5616 emit_cmpimm(s1l,1);
5617 if(invert){
5618 nottaken=out;
5619 emit_jl(DJT_1);
5620 }else{
5621 add_to_linker(out,ba[i],internal);
5622 emit_jge(0);
5623 }
5624 }
5625 if(invert) {
5626 if(taken) set_jump_target(taken, out);
5627 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5628 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5629 if(adj) {
5630 emit_addimm(cc,-adj,cc);
5631 add_to_linker(out,ba[i],internal);
5632 }else{
5633 emit_addnop(13);
5634 add_to_linker(out,ba[i],internal*2);
5635 }
5636 emit_jmp(0);
5637 }else
5638 #endif
5639 {
5640 if(adj) emit_addimm(cc,-adj,cc);
5641 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5642 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5643 if(internal)
5644 assem_debug("branch: internal\n");
5645 else
5646 assem_debug("branch: external\n");
5647 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5648 ds_assemble_entry(i);
5649 }
5650 else {
5651 add_to_linker(out,ba[i],internal);
5652 emit_jmp(0);
5653 }
5654 }
5655 set_jump_target(nottaken, out);
5656 }
5657
5658 if(nottaken1) set_jump_target(nottaken1, out);
5659 if(adj) {
5660 if(!invert) emit_addimm(cc,adj,cc);
5661 }
5662 } // (!unconditional)
5663 } // if(ooo)
5664 else
5665 {
5666 // In-order execution (branch first)
5667 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5668 if(!unconditional&&!nop) {
5669 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5670 assert(s1l>=0);
5671 if((dops[i].opcode&0x2f)==4) // BEQ
5672 {
5673 if(s2l>=0) emit_cmp(s1l,s2l);
5674 else emit_test(s1l,s1l);
5675 nottaken=out;
5676 emit_jne(DJT_2);
5677 }
5678 if((dops[i].opcode&0x2f)==5) // BNE
5679 {
5680 if(s2l>=0) emit_cmp(s1l,s2l);
5681 else emit_test(s1l,s1l);
5682 nottaken=out;
5683 emit_jeq(DJT_2);
5684 }
5685 if((dops[i].opcode&0x2f)==6) // BLEZ
5686 {
5687 emit_cmpimm(s1l,1);
5688 nottaken=out;
5689 emit_jge(DJT_2);
5690 }
5691 if((dops[i].opcode&0x2f)==7) // BGTZ
5692 {
5693 emit_cmpimm(s1l,1);
5694 nottaken=out;
5695 emit_jl(DJT_2);
5696 }
5697 } // if(!unconditional)
5698 int adj;
5699 uint64_t ds_unneeded=branch_regs[i].u;
5700 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5701 ds_unneeded|=1;
5702 // branch taken
5703 if(!nop) {
5704 if(taken) set_jump_target(taken, out);
5705 assem_debug("1:\n");
5706 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5707 // load regs
5708 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5709 address_generation(i+1,&branch_regs[i],0);
5710 if (ram_offset)
5711 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5712 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5713 ds_assemble(i+1,&branch_regs[i]);
5714 cc=get_reg(branch_regs[i].regmap,CCREG);
5715 if(cc==-1) {
5716 emit_loadreg(CCREG,cc=HOST_CCREG);
5717 // CHECK: Is the following instruction (fall thru) allocated ok?
5718 }
5719 assert(cc==HOST_CCREG);
5720 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5721 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5722 assem_debug("cycle count (adj)\n");
5723 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5724 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5725 if(internal)
5726 assem_debug("branch: internal\n");
5727 else
5728 assem_debug("branch: external\n");
5729 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5730 ds_assemble_entry(i);
5731 }
5732 else {
5733 add_to_linker(out,ba[i],internal);
5734 emit_jmp(0);
5735 }
5736 }
5737 // branch not taken
5738 if(!unconditional) {
5739 if(nottaken1) set_jump_target(nottaken1, out);
5740 set_jump_target(nottaken, out);
5741 assem_debug("2:\n");
5742 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5743 // load regs
5744 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5745 address_generation(i+1,&branch_regs[i],0);
5746 if (ram_offset)
5747 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5748 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5749 ds_assemble(i+1,&branch_regs[i]);
5750 cc=get_reg(branch_regs[i].regmap,CCREG);
5751 if (cc == -1) {
5752 // Cycle count isn't in a register, temporarily load it then write it out
5753 emit_loadreg(CCREG,HOST_CCREG);
5754 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5755 void *jaddr=out;
5756 emit_jns(0);
5757 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5758 emit_storereg(CCREG,HOST_CCREG);
5759 }
5760 else{
5761 cc=get_reg(i_regmap,CCREG);
5762 assert(cc==HOST_CCREG);
5763 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5764 void *jaddr=out;
5765 emit_jns(0);
5766 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5767 }
5768 }
5769 }
5770}
5771
5772static void sjump_assemble(int i, const struct regstat *i_regs)
5773{
5774 const signed char *i_regmap = i_regs->regmap;
5775 int cc;
5776 int match;
5777 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5778 assem_debug("smatch=%d ooo=%d\n", match, dops[i].ooo);
5779 int s1l;
5780 int unconditional=0,nevertaken=0;
5781 int invert=0;
5782 int internal=internal_branch(ba[i]);
5783 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5784 if(!match) invert=1;
5785 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5786 if(i>(ba[i]-start)>>2) invert=1;
5787 #endif
5788 #ifdef __aarch64__
5789 invert=1; // because of near cond. branches
5790 #endif
5791
5792 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5793 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5794
5795 if(dops[i].ooo) {
5796 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5797 }
5798 else {
5799 s1l=get_reg(i_regmap,dops[i].rs1);
5800 }
5801 if(dops[i].rs1==0)
5802 {
5803 if(dops[i].opcode2&1) unconditional=1;
5804 else nevertaken=1;
5805 // These are never taken (r0 is never less than zero)
5806 //assert(dops[i].opcode2!=0);
5807 //assert(dops[i].opcode2!=2);
5808 //assert(dops[i].opcode2!=0x10);
5809 //assert(dops[i].opcode2!=0x12);
5810 }
5811
5812 if(dops[i].ooo) {
5813 // Out of order execution (delay slot first)
5814 //printf("OOOE\n");
5815 address_generation(i+1,i_regs,regs[i].regmap_entry);
5816 ds_assemble(i+1,i_regs);
5817 int adj;
5818 uint64_t bc_unneeded=branch_regs[i].u;
5819 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5820 bc_unneeded|=1;
5821 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5822 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5823 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5824 if(dops[i].rt1==31) {
5825 int rt,return_address;
5826 rt=get_reg(branch_regs[i].regmap,31);
5827 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5828 if(rt>=0) {
5829 // Save the PC even if the branch is not taken
5830 return_address=start+i*4+8;
5831 emit_movimm(return_address,rt); // PC into link register
5832 #ifdef IMM_PREFETCH
5833 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5834 #endif
5835 }
5836 }
5837 cc=get_reg(branch_regs[i].regmap,CCREG);
5838 assert(cc==HOST_CCREG);
5839 if(unconditional)
5840 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5841 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5842 assem_debug("cycle count (adj)\n");
5843 if(unconditional) {
5844 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5845 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5846 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5847 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5848 if(internal)
5849 assem_debug("branch: internal\n");
5850 else
5851 assem_debug("branch: external\n");
5852 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5853 ds_assemble_entry(i);
5854 }
5855 else {
5856 add_to_linker(out,ba[i],internal);
5857 emit_jmp(0);
5858 }
5859 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5860 if(((u_int)out)&7) emit_addnop(0);
5861 #endif
5862 }
5863 }
5864 else if(nevertaken) {
5865 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5866 void *jaddr=out;
5867 emit_jns(0);
5868 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5869 }
5870 else {
5871 void *nottaken = NULL;
5872 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5873 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5874 {
5875 assert(s1l>=0);
5876 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5877 {
5878 emit_test(s1l,s1l);
5879 if(invert){
5880 nottaken=out;
5881 emit_jns(DJT_1);
5882 }else{
5883 add_to_linker(out,ba[i],internal);
5884 emit_js(0);
5885 }
5886 }
5887 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5888 {
5889 emit_test(s1l,s1l);
5890 if(invert){
5891 nottaken=out;
5892 emit_js(DJT_1);
5893 }else{
5894 add_to_linker(out,ba[i],internal);
5895 emit_jns(0);
5896 }
5897 }
5898 }
5899
5900 if(invert) {
5901 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5902 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5903 if(adj) {
5904 emit_addimm(cc,-adj,cc);
5905 add_to_linker(out,ba[i],internal);
5906 }else{
5907 emit_addnop(13);
5908 add_to_linker(out,ba[i],internal*2);
5909 }
5910 emit_jmp(0);
5911 }else
5912 #endif
5913 {
5914 if(adj) emit_addimm(cc,-adj,cc);
5915 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5916 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5917 if(internal)
5918 assem_debug("branch: internal\n");
5919 else
5920 assem_debug("branch: external\n");
5921 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5922 ds_assemble_entry(i);
5923 }
5924 else {
5925 add_to_linker(out,ba[i],internal);
5926 emit_jmp(0);
5927 }
5928 }
5929 set_jump_target(nottaken, out);
5930 }
5931
5932 if(adj) {
5933 if(!invert) emit_addimm(cc,adj,cc);
5934 }
5935 } // (!unconditional)
5936 } // if(ooo)
5937 else
5938 {
5939 // In-order execution (branch first)
5940 //printf("IOE\n");
5941 void *nottaken = NULL;
5942 if(dops[i].rt1==31) {
5943 int rt,return_address;
5944 rt=get_reg(branch_regs[i].regmap,31);
5945 if(rt>=0) {
5946 // Save the PC even if the branch is not taken
5947 return_address=start+i*4+8;
5948 emit_movimm(return_address,rt); // PC into link register
5949 #ifdef IMM_PREFETCH
5950 emit_prefetch(hash_table_get(return_address));
5951 #endif
5952 }
5953 }
5954 if(!unconditional) {
5955 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5956 assert(s1l>=0);
5957 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5958 {
5959 emit_test(s1l,s1l);
5960 nottaken=out;
5961 emit_jns(DJT_1);
5962 }
5963 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5964 {
5965 emit_test(s1l,s1l);
5966 nottaken=out;
5967 emit_js(DJT_1);
5968 }
5969 } // if(!unconditional)
5970 int adj;
5971 uint64_t ds_unneeded=branch_regs[i].u;
5972 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5973 ds_unneeded|=1;
5974 // branch taken
5975 if(!nevertaken) {
5976 //assem_debug("1:\n");
5977 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5978 // load regs
5979 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5980 address_generation(i+1,&branch_regs[i],0);
5981 if (ram_offset)
5982 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5983 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5984 ds_assemble(i+1,&branch_regs[i]);
5985 cc=get_reg(branch_regs[i].regmap,CCREG);
5986 if(cc==-1) {
5987 emit_loadreg(CCREG,cc=HOST_CCREG);
5988 // CHECK: Is the following instruction (fall thru) allocated ok?
5989 }
5990 assert(cc==HOST_CCREG);
5991 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5992 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5993 assem_debug("cycle count (adj)\n");
5994 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5995 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5996 if(internal)
5997 assem_debug("branch: internal\n");
5998 else
5999 assem_debug("branch: external\n");
6000 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
6001 ds_assemble_entry(i);
6002 }
6003 else {
6004 add_to_linker(out,ba[i],internal);
6005 emit_jmp(0);
6006 }
6007 }
6008 // branch not taken
6009 if(!unconditional) {
6010 set_jump_target(nottaken, out);
6011 assem_debug("1:\n");
6012 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
6013 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
6014 address_generation(i+1,&branch_regs[i],0);
6015 if (ram_offset)
6016 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
6017 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
6018 ds_assemble(i+1,&branch_regs[i]);
6019 cc=get_reg(branch_regs[i].regmap,CCREG);
6020 if (cc == -1) {
6021 // Cycle count isn't in a register, temporarily load it then write it out
6022 emit_loadreg(CCREG,HOST_CCREG);
6023 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
6024 void *jaddr=out;
6025 emit_jns(0);
6026 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
6027 emit_storereg(CCREG,HOST_CCREG);
6028 }
6029 else{
6030 cc=get_reg(i_regmap,CCREG);
6031 assert(cc==HOST_CCREG);
6032 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
6033 void *jaddr=out;
6034 emit_jns(0);
6035 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
6036 }
6037 }
6038 }
6039}
6040
6041static void check_regmap(signed char *regmap)
6042{
6043#ifndef NDEBUG
6044 int i,j;
6045 for (i = 0; i < HOST_REGS; i++) {
6046 if (regmap[i] < 0)
6047 continue;
6048 for (j = i + 1; j < HOST_REGS; j++)
6049 assert(regmap[i] != regmap[j]);
6050 }
6051#endif
6052}
6053
6054#ifdef DISASM
6055#include <inttypes.h>
6056static char insn[MAXBLOCK][10];
6057
6058#define set_mnemonic(i_, n_) \
6059 strcpy(insn[i_], n_)
6060
6061void print_regmap(const char *name, const signed char *regmap)
6062{
6063 char buf[5];
6064 int i, l;
6065 fputs(name, stdout);
6066 for (i = 0; i < HOST_REGS; i++) {
6067 l = 0;
6068 if (regmap[i] >= 0)
6069 l = snprintf(buf, sizeof(buf), "$%d", regmap[i]);
6070 for (; l < 3; l++)
6071 buf[l] = ' ';
6072 buf[l] = 0;
6073 printf(" r%d=%s", i, buf);
6074 }
6075 fputs("\n", stdout);
6076}
6077
6078 /* disassembly */
6079void disassemble_inst(int i)
6080{
6081 if (dops[i].bt) printf("*"); else printf(" ");
6082 switch(dops[i].itype) {
6083 case UJUMP:
6084 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6085 case CJUMP:
6086 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6087 case SJUMP:
6088 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6089 case RJUMP:
6090 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
6091 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6092 else
6093 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6094 break;
6095 case IMM16:
6096 if(dops[i].opcode==0xf) //LUI
6097 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
6098 else
6099 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6100 break;
6101 case LOAD:
6102 case LOADLR:
6103 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6104 break;
6105 case STORE:
6106 case STORELR:
6107 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
6108 break;
6109 case ALU:
6110 case SHIFT:
6111 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6112 break;
6113 case MULTDIV:
6114 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6115 break;
6116 case SHIFTIMM:
6117 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6118 break;
6119 case MOV:
6120 if((dops[i].opcode2&0x1d)==0x10)
6121 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6122 else if((dops[i].opcode2&0x1d)==0x11)
6123 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6124 else
6125 printf (" %x: %s\n",start+i*4,insn[i]);
6126 break;
6127 case COP0:
6128 if(dops[i].opcode2==0)
6129 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6130 else if(dops[i].opcode2==4)
6131 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6132 else printf (" %x: %s\n",start+i*4,insn[i]);
6133 break;
6134 case COP1:
6135 if(dops[i].opcode2<3)
6136 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
6137 else if(dops[i].opcode2>3)
6138 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
6139 else printf (" %x: %s\n",start+i*4,insn[i]);
6140 break;
6141 case COP2:
6142 if(dops[i].opcode2<3)
6143 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6144 else if(dops[i].opcode2>3)
6145 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6146 else printf (" %x: %s\n",start+i*4,insn[i]);
6147 break;
6148 case C1LS:
6149 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6150 break;
6151 case C2LS:
6152 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6153 break;
6154 case INTCALL:
6155 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6156 break;
6157 default:
6158 //printf (" %s %8x\n",insn[i],source[i]);
6159 printf (" %x: %s\n",start+i*4,insn[i]);
6160 }
6161 return;
6162 printf("D: %"PRIu64" WD: %"PRIu64" U: %"PRIu64"\n",
6163 regs[i].dirty, regs[i].wasdirty, unneeded_reg[i]);
6164 print_regmap("pre: ", regmap_pre[i]);
6165 print_regmap("entry: ", regs[i].regmap_entry);
6166 print_regmap("map: ", regs[i].regmap);
6167 if (dops[i].is_jump) {
6168 print_regmap("bentry:", branch_regs[i].regmap_entry);
6169 print_regmap("bmap: ", branch_regs[i].regmap);
6170 }
6171}
6172#else
6173#define set_mnemonic(i_, n_)
6174static void disassemble_inst(int i) {}
6175#endif // DISASM
6176
6177#define DRC_TEST_VAL 0x74657374
6178
6179static noinline void new_dynarec_test(void)
6180{
6181 int (*testfunc)(void);
6182 void *beginning;
6183 int ret[2];
6184 size_t i;
6185
6186 // check structure linkage
6187 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6188 {
6189 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6190 }
6191
6192 SysPrintf("(%p) testing if we can run recompiled code @%p...\n",
6193 new_dynarec_test, out);
6194 ((volatile u_int *)NDRC_WRITE_OFFSET(out))[0]++; // make the cache dirty
6195
6196 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6197 out = ndrc->translation_cache;
6198 beginning = start_block();
6199 emit_movimm(DRC_TEST_VAL + i, 0); // test
6200 emit_ret();
6201 literal_pool(0);
6202 end_block(beginning);
6203 testfunc = beginning;
6204 ret[i] = testfunc();
6205 }
6206
6207 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6208 SysPrintf("test passed.\n");
6209 else
6210 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6211 out = ndrc->translation_cache;
6212}
6213
6214// clear the state completely, instead of just marking
6215// things invalid like invalidate_all_pages() does
6216void new_dynarec_clear_full(void)
6217{
6218 int n;
6219 out = ndrc->translation_cache;
6220 memset(invalid_code,1,sizeof(invalid_code));
6221 memset(hash_table,0xff,sizeof(hash_table));
6222 memset(mini_ht,-1,sizeof(mini_ht));
6223 memset(shadow,0,sizeof(shadow));
6224 copy=shadow;
6225 expirep = EXPIRITY_OFFSET;
6226 pending_exception=0;
6227 literalcount=0;
6228 stop_after_jal=0;
6229 inv_code_start=inv_code_end=~0;
6230 hack_addr=0;
6231 f1_hack=0;
6232 for (n = 0; n < ARRAY_SIZE(blocks); n++)
6233 blocks_clear(&blocks[n]);
6234 for (n = 0; n < ARRAY_SIZE(jumps); n++) {
6235 free(jumps[n]);
6236 jumps[n] = NULL;
6237 }
6238 stat_clear(stat_blocks);
6239 stat_clear(stat_links);
6240
6241 cycle_multiplier_old = Config.cycle_multiplier;
6242 new_dynarec_hacks_old = new_dynarec_hacks;
6243}
6244
6245void new_dynarec_init(void)
6246{
6247 SysPrintf("Init new dynarec, ndrc size %x\n", (int)sizeof(*ndrc));
6248
6249#ifdef _3DS
6250 check_rosalina();
6251#endif
6252#ifdef BASE_ADDR_DYNAMIC
6253 #ifdef VITA
6254 sceBlock = getVMBlock(); //sceKernelAllocMemBlockForVM("code", sizeof(*ndrc));
6255 if (sceBlock <= 0)
6256 SysPrintf("sceKernelAllocMemBlockForVM failed: %x\n", sceBlock);
6257 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6258 if (ret < 0)
6259 SysPrintf("sceKernelGetMemBlockBase failed: %x\n", ret);
6260 sceKernelOpenVMDomain();
6261 sceClibPrintf("translation_cache = 0x%08lx\n ", (long)ndrc->translation_cache);
6262 #elif defined(_MSC_VER)
6263 ndrc = VirtualAlloc(NULL, sizeof(*ndrc), MEM_COMMIT | MEM_RESERVE,
6264 PAGE_EXECUTE_READWRITE);
6265 #elif defined(HAVE_LIBNX)
6266 Result rc = jitCreate(&g_jit, sizeof(*ndrc));
6267 if (R_FAILED(rc))
6268 SysPrintf("jitCreate failed: %08x\n", rc);
6269 SysPrintf("jitCreate: RX: %p RW: %p type: %d\n", g_jit.rx_addr, g_jit.rw_addr, g_jit.type);
6270 jitTransitionToWritable(&g_jit);
6271 ndrc = g_jit.rx_addr;
6272 ndrc_write_ofs = (char *)g_jit.rw_addr - (char *)ndrc;
6273 memset(NDRC_WRITE_OFFSET(&ndrc->tramp), 0, sizeof(ndrc->tramp));
6274 #else
6275 uintptr_t desired_addr = 0;
6276 int prot = PROT_READ | PROT_WRITE | PROT_EXEC;
6277 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
6278 int fd = -1;
6279 #ifdef __ELF__
6280 extern char _end;
6281 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6282 #endif
6283 #ifdef TC_WRITE_OFFSET
6284 // mostly for testing
6285 fd = open("/dev/shm/pcsxr", O_CREAT | O_RDWR, 0600);
6286 ftruncate(fd, sizeof(*ndrc));
6287 void *mw = mmap(NULL, sizeof(*ndrc), PROT_READ | PROT_WRITE,
6288 (flags = MAP_SHARED), fd, 0);
6289 assert(mw != MAP_FAILED);
6290 prot = PROT_READ | PROT_EXEC;
6291 #endif
6292 ndrc = mmap((void *)desired_addr, sizeof(*ndrc), prot, flags, fd, 0);
6293 if (ndrc == MAP_FAILED) {
6294 SysPrintf("mmap() failed: %s\n", strerror(errno));
6295 abort();
6296 }
6297 #ifdef TC_WRITE_OFFSET
6298 ndrc_write_ofs = (char *)mw - (char *)ndrc;
6299 #endif
6300 #endif
6301#else
6302 #ifndef NO_WRITE_EXEC
6303 // not all systems allow execute in data segment by default
6304 // size must be 4K aligned for 3DS?
6305 if (mprotect(ndrc, sizeof(*ndrc),
6306 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6307 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6308 #endif
6309#endif
6310 out = ndrc->translation_cache;
6311 new_dynarec_clear_full();
6312#ifdef HOST_IMM8
6313 // Copy this into local area so we don't have to put it in every literal pool
6314 invc_ptr=invalid_code;
6315#endif
6316 arch_init();
6317 new_dynarec_test();
6318 ram_offset=(uintptr_t)rdram-0x80000000;
6319 if (ram_offset!=0)
6320 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6321 SysPrintf("Mapped (RAM/scrp/ROM/LUTs/TC):\n");
6322 SysPrintf("%p/%p/%p/%p/%p\n", psxM, psxH, psxR, mem_rtab, out);
6323}
6324
6325void new_dynarec_cleanup(void)
6326{
6327 int n;
6328#ifdef BASE_ADDR_DYNAMIC
6329 #ifdef VITA
6330 // sceBlock is managed by retroarch's bootstrap code
6331 //sceKernelFreeMemBlock(sceBlock);
6332 //sceBlock = -1;
6333 #elif defined(HAVE_LIBNX)
6334 jitClose(&g_jit);
6335 ndrc = NULL;
6336 #else
6337 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6338 SysPrintf("munmap() failed\n");
6339 ndrc = NULL;
6340 #endif
6341#endif
6342 for (n = 0; n < ARRAY_SIZE(blocks); n++)
6343 blocks_clear(&blocks[n]);
6344 for (n = 0; n < ARRAY_SIZE(jumps); n++) {
6345 free(jumps[n]);
6346 jumps[n] = NULL;
6347 }
6348 stat_clear(stat_blocks);
6349 stat_clear(stat_links);
6350 new_dynarec_print_stats();
6351}
6352
6353static u_int *get_source_start(u_int addr, u_int *limit)
6354{
6355 if (addr < 0x00200000 ||
6356 (0xa0000000 <= addr && addr < 0xa0200000))
6357 {
6358 // used for BIOS calls mostly?
6359 *limit = (addr&0xa0000000)|0x00200000;
6360 return (u_int *)(rdram + (addr&0x1fffff));
6361 }
6362 else if (!Config.HLE && (
6363 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6364 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6365 {
6366 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6367 // but timings in PCSX are too tied to the interpreter's 2-per-insn assumption
6368 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6369 cycle_multiplier_active = 200;
6370
6371 *limit = (addr & 0xfff00000) | 0x80000;
6372 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6373 }
6374 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6375 *limit = (addr & 0x80600000) + 0x00200000;
6376 return (u_int *)(rdram + (addr&0x1fffff));
6377 }
6378 return NULL;
6379}
6380
6381static u_int scan_for_ret(u_int addr)
6382{
6383 u_int limit = 0;
6384 u_int *mem;
6385
6386 mem = get_source_start(addr, &limit);
6387 if (mem == NULL)
6388 return addr;
6389
6390 if (limit > addr + 0x1000)
6391 limit = addr + 0x1000;
6392 for (; addr < limit; addr += 4, mem++) {
6393 if (*mem == 0x03e00008) // jr $ra
6394 return addr + 8;
6395 }
6396 return addr;
6397}
6398
6399struct savestate_block {
6400 uint32_t addr;
6401 uint32_t regflags;
6402};
6403
6404static int addr_cmp(const void *p1_, const void *p2_)
6405{
6406 const struct savestate_block *p1 = p1_, *p2 = p2_;
6407 return p1->addr - p2->addr;
6408}
6409
6410int new_dynarec_save_blocks(void *save, int size)
6411{
6412 struct savestate_block *sblocks = save;
6413 int maxcount = size / sizeof(sblocks[0]);
6414 struct savestate_block tmp_blocks[1024];
6415 struct block_info *block;
6416 int p, s, d, o, bcnt;
6417 u_int addr;
6418
6419 o = 0;
6420 for (p = 0; p < ARRAY_SIZE(blocks); p++) {
6421 bcnt = 0;
6422 for (block = blocks[p]; block != NULL; block = block->next) {
6423 if (block->is_dirty)
6424 continue;
6425 tmp_blocks[bcnt].addr = block->start;
6426 tmp_blocks[bcnt].regflags = block->reg_sv_flags;
6427 bcnt++;
6428 }
6429 if (bcnt < 1)
6430 continue;
6431 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6432
6433 addr = tmp_blocks[0].addr;
6434 for (s = d = 0; s < bcnt; s++) {
6435 if (tmp_blocks[s].addr < addr)
6436 continue;
6437 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6438 tmp_blocks[d++] = tmp_blocks[s];
6439 addr = scan_for_ret(tmp_blocks[s].addr);
6440 }
6441
6442 if (o + d > maxcount)
6443 d = maxcount - o;
6444 memcpy(&sblocks[o], tmp_blocks, d * sizeof(sblocks[0]));
6445 o += d;
6446 }
6447
6448 return o * sizeof(sblocks[0]);
6449}
6450
6451void new_dynarec_load_blocks(const void *save, int size)
6452{
6453 const struct savestate_block *sblocks = save;
6454 int count = size / sizeof(sblocks[0]);
6455 struct block_info *block;
6456 u_int regs_save[32];
6457 u_int page;
6458 uint32_t f;
6459 int i, b;
6460
6461 // restore clean blocks, if any
6462 for (page = 0, b = i = 0; page < ARRAY_SIZE(blocks); page++) {
6463 for (block = blocks[page]; block != NULL; block = block->next, b++) {
6464 if (!block->is_dirty)
6465 continue;
6466 assert(block->source && block->copy);
6467 if (memcmp(block->source, block->copy, block->len))
6468 continue;
6469
6470 // see try_restore_block
6471 block->is_dirty = 0;
6472 mark_invalid_code(block->start, block->len, 0);
6473 i++;
6474 }
6475 }
6476 inv_debug("load_blocks: %d/%d clean blocks\n", i, b);
6477
6478 // change GPRs for speculation to at least partially work..
6479 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6480 for (i = 1; i < 32; i++)
6481 psxRegs.GPR.r[i] = 0x80000000;
6482
6483 for (b = 0; b < count; b++) {
6484 for (f = sblocks[b].regflags, i = 0; f; f >>= 1, i++) {
6485 if (f & 1)
6486 psxRegs.GPR.r[i] = 0x1f800000;
6487 }
6488
6489 ndrc_get_addr_ht(sblocks[b].addr);
6490
6491 for (f = sblocks[b].regflags, i = 0; f; f >>= 1, i++) {
6492 if (f & 1)
6493 psxRegs.GPR.r[i] = 0x80000000;
6494 }
6495 }
6496
6497 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6498}
6499
6500void new_dynarec_print_stats(void)
6501{
6502#ifdef STAT_PRINT
6503 printf("cc %3d,%3d,%3d lu%6d,%3d,%3d c%3d inv%3d,%3d tc_offs %zu b %u,%u\n",
6504 stat_bc_pre, stat_bc_direct, stat_bc_restore,
6505 stat_ht_lookups, stat_jump_in_lookups, stat_restore_tries,
6506 stat_restore_compares, stat_inv_addr_calls, stat_inv_hits,
6507 out - ndrc->translation_cache, stat_blocks, stat_links);
6508 stat_bc_direct = stat_bc_pre = stat_bc_restore =
6509 stat_ht_lookups = stat_jump_in_lookups = stat_restore_tries =
6510 stat_restore_compares = stat_inv_addr_calls = stat_inv_hits = 0;
6511#endif
6512}
6513
6514static int apply_hacks(void)
6515{
6516 int i;
6517 if (HACK_ENABLED(NDHACK_NO_COMPAT_HACKS))
6518 return 0;
6519 /* special hack(s) */
6520 for (i = 0; i < slen - 4; i++)
6521 {
6522 // lui a4, 0xf200; jal <rcnt_read>; addu a0, 2; slti v0, 28224
6523 if (source[i] == 0x3c04f200 && dops[i+1].itype == UJUMP
6524 && source[i+2] == 0x34840002 && dops[i+3].opcode == 0x0a
6525 && imm[i+3] == 0x6e40 && dops[i+3].rs1 == 2)
6526 {
6527 SysPrintf("PE2 hack @%08x\n", start + (i+3)*4);
6528 dops[i + 3].itype = NOP;
6529 }
6530 }
6531 i = slen;
6532 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
6533 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
6534 && dops[i-7].itype == STORE)
6535 {
6536 i = i-8;
6537 if (dops[i].itype == IMM16)
6538 i--;
6539 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
6540 if (dops[i].itype == STORELR && dops[i].rs1 == 6
6541 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
6542 {
6543 SysPrintf("F1 hack from %08x, old dst %08x\n", start, hack_addr);
6544 f1_hack = 1;
6545 return 1;
6546 }
6547 }
6548 return 0;
6549}
6550
6551static noinline void pass1_disassemble(u_int pagelimit)
6552{
6553 int i, j, done = 0, ni_count = 0;
6554 unsigned int type,op,op2;
6555
6556 for (i = 0; !done; i++)
6557 {
6558 memset(&dops[i], 0, sizeof(dops[i]));
6559 op2=0;
6560 minimum_free_regs[i]=0;
6561 dops[i].opcode=op=source[i]>>26;
6562 switch(op)
6563 {
6564 case 0x00: set_mnemonic(i, "special"); type=NI;
6565 op2=source[i]&0x3f;
6566 switch(op2)
6567 {
6568 case 0x00: set_mnemonic(i, "SLL"); type=SHIFTIMM; break;
6569 case 0x02: set_mnemonic(i, "SRL"); type=SHIFTIMM; break;
6570 case 0x03: set_mnemonic(i, "SRA"); type=SHIFTIMM; break;
6571 case 0x04: set_mnemonic(i, "SLLV"); type=SHIFT; break;
6572 case 0x06: set_mnemonic(i, "SRLV"); type=SHIFT; break;
6573 case 0x07: set_mnemonic(i, "SRAV"); type=SHIFT; break;
6574 case 0x08: set_mnemonic(i, "JR"); type=RJUMP; break;
6575 case 0x09: set_mnemonic(i, "JALR"); type=RJUMP; break;
6576 case 0x0C: set_mnemonic(i, "SYSCALL"); type=SYSCALL; break;
6577 case 0x0D: set_mnemonic(i, "BREAK"); type=SYSCALL; break;
6578 case 0x0F: set_mnemonic(i, "SYNC"); type=OTHER; break;
6579 case 0x10: set_mnemonic(i, "MFHI"); type=MOV; break;
6580 case 0x11: set_mnemonic(i, "MTHI"); type=MOV; break;
6581 case 0x12: set_mnemonic(i, "MFLO"); type=MOV; break;
6582 case 0x13: set_mnemonic(i, "MTLO"); type=MOV; break;
6583 case 0x18: set_mnemonic(i, "MULT"); type=MULTDIV; break;
6584 case 0x19: set_mnemonic(i, "MULTU"); type=MULTDIV; break;
6585 case 0x1A: set_mnemonic(i, "DIV"); type=MULTDIV; break;
6586 case 0x1B: set_mnemonic(i, "DIVU"); type=MULTDIV; break;
6587 case 0x20: set_mnemonic(i, "ADD"); type=ALU; break;
6588 case 0x21: set_mnemonic(i, "ADDU"); type=ALU; break;
6589 case 0x22: set_mnemonic(i, "SUB"); type=ALU; break;
6590 case 0x23: set_mnemonic(i, "SUBU"); type=ALU; break;
6591 case 0x24: set_mnemonic(i, "AND"); type=ALU; break;
6592 case 0x25: set_mnemonic(i, "OR"); type=ALU; break;
6593 case 0x26: set_mnemonic(i, "XOR"); type=ALU; break;
6594 case 0x27: set_mnemonic(i, "NOR"); type=ALU; break;
6595 case 0x2A: set_mnemonic(i, "SLT"); type=ALU; break;
6596 case 0x2B: set_mnemonic(i, "SLTU"); type=ALU; break;
6597 case 0x30: set_mnemonic(i, "TGE"); type=NI; break;
6598 case 0x31: set_mnemonic(i, "TGEU"); type=NI; break;
6599 case 0x32: set_mnemonic(i, "TLT"); type=NI; break;
6600 case 0x33: set_mnemonic(i, "TLTU"); type=NI; break;
6601 case 0x34: set_mnemonic(i, "TEQ"); type=NI; break;
6602 case 0x36: set_mnemonic(i, "TNE"); type=NI; break;
6603#if 0
6604 case 0x14: set_mnemonic(i, "DSLLV"); type=SHIFT; break;
6605 case 0x16: set_mnemonic(i, "DSRLV"); type=SHIFT; break;
6606 case 0x17: set_mnemonic(i, "DSRAV"); type=SHIFT; break;
6607 case 0x1C: set_mnemonic(i, "DMULT"); type=MULTDIV; break;
6608 case 0x1D: set_mnemonic(i, "DMULTU"); type=MULTDIV; break;
6609 case 0x1E: set_mnemonic(i, "DDIV"); type=MULTDIV; break;
6610 case 0x1F: set_mnemonic(i, "DDIVU"); type=MULTDIV; break;
6611 case 0x2C: set_mnemonic(i, "DADD"); type=ALU; break;
6612 case 0x2D: set_mnemonic(i, "DADDU"); type=ALU; break;
6613 case 0x2E: set_mnemonic(i, "DSUB"); type=ALU; break;
6614 case 0x2F: set_mnemonic(i, "DSUBU"); type=ALU; break;
6615 case 0x38: set_mnemonic(i, "DSLL"); type=SHIFTIMM; break;
6616 case 0x3A: set_mnemonic(i, "DSRL"); type=SHIFTIMM; break;
6617 case 0x3B: set_mnemonic(i, "DSRA"); type=SHIFTIMM; break;
6618 case 0x3C: set_mnemonic(i, "DSLL32"); type=SHIFTIMM; break;
6619 case 0x3E: set_mnemonic(i, "DSRL32"); type=SHIFTIMM; break;
6620 case 0x3F: set_mnemonic(i, "DSRA32"); type=SHIFTIMM; break;
6621#endif
6622 }
6623 break;
6624 case 0x01: set_mnemonic(i, "regimm"); type=NI;
6625 op2=(source[i]>>16)&0x1f;
6626 switch(op2)
6627 {
6628 case 0x00: set_mnemonic(i, "BLTZ"); type=SJUMP; break;
6629 case 0x01: set_mnemonic(i, "BGEZ"); type=SJUMP; break;
6630 //case 0x02: set_mnemonic(i, "BLTZL"); type=SJUMP; break;
6631 //case 0x03: set_mnemonic(i, "BGEZL"); type=SJUMP; break;
6632 //case 0x08: set_mnemonic(i, "TGEI"); type=NI; break;
6633 //case 0x09: set_mnemonic(i, "TGEIU"); type=NI; break;
6634 //case 0x0A: set_mnemonic(i, "TLTI"); type=NI; break;
6635 //case 0x0B: set_mnemonic(i, "TLTIU"); type=NI; break;
6636 //case 0x0C: set_mnemonic(i, "TEQI"); type=NI; break;
6637 //case 0x0E: set_mnemonic(i, "TNEI"); type=NI; break;
6638 case 0x10: set_mnemonic(i, "BLTZAL"); type=SJUMP; break;
6639 case 0x11: set_mnemonic(i, "BGEZAL"); type=SJUMP; break;
6640 //case 0x12: set_mnemonic(i, "BLTZALL"); type=SJUMP; break;
6641 //case 0x13: set_mnemonic(i, "BGEZALL"); type=SJUMP; break;
6642 }
6643 break;
6644 case 0x02: set_mnemonic(i, "J"); type=UJUMP; break;
6645 case 0x03: set_mnemonic(i, "JAL"); type=UJUMP; break;
6646 case 0x04: set_mnemonic(i, "BEQ"); type=CJUMP; break;
6647 case 0x05: set_mnemonic(i, "BNE"); type=CJUMP; break;
6648 case 0x06: set_mnemonic(i, "BLEZ"); type=CJUMP; break;
6649 case 0x07: set_mnemonic(i, "BGTZ"); type=CJUMP; break;
6650 case 0x08: set_mnemonic(i, "ADDI"); type=IMM16; break;
6651 case 0x09: set_mnemonic(i, "ADDIU"); type=IMM16; break;
6652 case 0x0A: set_mnemonic(i, "SLTI"); type=IMM16; break;
6653 case 0x0B: set_mnemonic(i, "SLTIU"); type=IMM16; break;
6654 case 0x0C: set_mnemonic(i, "ANDI"); type=IMM16; break;
6655 case 0x0D: set_mnemonic(i, "ORI"); type=IMM16; break;
6656 case 0x0E: set_mnemonic(i, "XORI"); type=IMM16; break;
6657 case 0x0F: set_mnemonic(i, "LUI"); type=IMM16; break;
6658 case 0x10: set_mnemonic(i, "cop0"); type=NI;
6659 op2=(source[i]>>21)&0x1f;
6660 switch(op2)
6661 {
6662 case 0x00: set_mnemonic(i, "MFC0"); type=COP0; break;
6663 case 0x02: set_mnemonic(i, "CFC0"); type=COP0; break;
6664 case 0x04: set_mnemonic(i, "MTC0"); type=COP0; break;
6665 case 0x06: set_mnemonic(i, "CTC0"); type=COP0; break;
6666 case 0x10: set_mnemonic(i, "RFE"); type=COP0; break;
6667 }
6668 break;
6669 case 0x11: set_mnemonic(i, "cop1"); type=COP1;
6670 op2=(source[i]>>21)&0x1f;
6671 break;
6672#if 0
6673 case 0x14: set_mnemonic(i, "BEQL"); type=CJUMP; break;
6674 case 0x15: set_mnemonic(i, "BNEL"); type=CJUMP; break;
6675 case 0x16: set_mnemonic(i, "BLEZL"); type=CJUMP; break;
6676 case 0x17: set_mnemonic(i, "BGTZL"); type=CJUMP; break;
6677 case 0x18: set_mnemonic(i, "DADDI"); type=IMM16; break;
6678 case 0x19: set_mnemonic(i, "DADDIU"); type=IMM16; break;
6679 case 0x1A: set_mnemonic(i, "LDL"); type=LOADLR; break;
6680 case 0x1B: set_mnemonic(i, "LDR"); type=LOADLR; break;
6681#endif
6682 case 0x20: set_mnemonic(i, "LB"); type=LOAD; break;
6683 case 0x21: set_mnemonic(i, "LH"); type=LOAD; break;
6684 case 0x22: set_mnemonic(i, "LWL"); type=LOADLR; break;
6685 case 0x23: set_mnemonic(i, "LW"); type=LOAD; break;
6686 case 0x24: set_mnemonic(i, "LBU"); type=LOAD; break;
6687 case 0x25: set_mnemonic(i, "LHU"); type=LOAD; break;
6688 case 0x26: set_mnemonic(i, "LWR"); type=LOADLR; break;
6689#if 0
6690 case 0x27: set_mnemonic(i, "LWU"); type=LOAD; break;
6691#endif
6692 case 0x28: set_mnemonic(i, "SB"); type=STORE; break;
6693 case 0x29: set_mnemonic(i, "SH"); type=STORE; break;
6694 case 0x2A: set_mnemonic(i, "SWL"); type=STORELR; break;
6695 case 0x2B: set_mnemonic(i, "SW"); type=STORE; break;
6696#if 0
6697 case 0x2C: set_mnemonic(i, "SDL"); type=STORELR; break;
6698 case 0x2D: set_mnemonic(i, "SDR"); type=STORELR; break;
6699#endif
6700 case 0x2E: set_mnemonic(i, "SWR"); type=STORELR; break;
6701 case 0x2F: set_mnemonic(i, "CACHE"); type=NOP; break;
6702 case 0x30: set_mnemonic(i, "LL"); type=NI; break;
6703 case 0x31: set_mnemonic(i, "LWC1"); type=C1LS; break;
6704#if 0
6705 case 0x34: set_mnemonic(i, "LLD"); type=NI; break;
6706 case 0x35: set_mnemonic(i, "LDC1"); type=C1LS; break;
6707 case 0x37: set_mnemonic(i, "LD"); type=LOAD; break;
6708#endif
6709 case 0x38: set_mnemonic(i, "SC"); type=NI; break;
6710 case 0x39: set_mnemonic(i, "SWC1"); type=C1LS; break;
6711#if 0
6712 case 0x3C: set_mnemonic(i, "SCD"); type=NI; break;
6713 case 0x3D: set_mnemonic(i, "SDC1"); type=C1LS; break;
6714 case 0x3F: set_mnemonic(i, "SD"); type=STORE; break;
6715#endif
6716 case 0x12: set_mnemonic(i, "COP2"); type=NI;
6717 op2=(source[i]>>21)&0x1f;
6718 //if (op2 & 0x10)
6719 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
6720 if (gte_handlers[source[i]&0x3f]!=NULL) {
6721#ifdef DISASM
6722 if (gte_regnames[source[i]&0x3f]!=NULL)
6723 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
6724 else
6725 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
6726#endif
6727 type=C2OP;
6728 }
6729 }
6730 else switch(op2)
6731 {
6732 case 0x00: set_mnemonic(i, "MFC2"); type=COP2; break;
6733 case 0x02: set_mnemonic(i, "CFC2"); type=COP2; break;
6734 case 0x04: set_mnemonic(i, "MTC2"); type=COP2; break;
6735 case 0x06: set_mnemonic(i, "CTC2"); type=COP2; break;
6736 }
6737 break;
6738 case 0x32: set_mnemonic(i, "LWC2"); type=C2LS; break;
6739 case 0x3A: set_mnemonic(i, "SWC2"); type=C2LS; break;
6740 case 0x3B: set_mnemonic(i, "HLECALL"); type=HLECALL; break;
6741 default: set_mnemonic(i, "???"); type=NI;
6742 SysPrintf("NI %08x @%08x (%08x)\n", source[i], start + i*4, start);
6743 break;
6744 }
6745 dops[i].itype=type;
6746 dops[i].opcode2=op2;
6747 /* Get registers/immediates */
6748 dops[i].use_lt1=0;
6749 gte_rs[i]=gte_rt[i]=0;
6750 switch(type) {
6751 case LOAD:
6752 dops[i].rs1=(source[i]>>21)&0x1f;
6753 dops[i].rs2=0;
6754 dops[i].rt1=(source[i]>>16)&0x1f;
6755 dops[i].rt2=0;
6756 imm[i]=(short)source[i];
6757 break;
6758 case STORE:
6759 case STORELR:
6760 dops[i].rs1=(source[i]>>21)&0x1f;
6761 dops[i].rs2=(source[i]>>16)&0x1f;
6762 dops[i].rt1=0;
6763 dops[i].rt2=0;
6764 imm[i]=(short)source[i];
6765 break;
6766 case LOADLR:
6767 // LWL/LWR only load part of the register,
6768 // therefore the target register must be treated as a source too
6769 dops[i].rs1=(source[i]>>21)&0x1f;
6770 dops[i].rs2=(source[i]>>16)&0x1f;
6771 dops[i].rt1=(source[i]>>16)&0x1f;
6772 dops[i].rt2=0;
6773 imm[i]=(short)source[i];
6774 break;
6775 case IMM16:
6776 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
6777 else dops[i].rs1=(source[i]>>21)&0x1f;
6778 dops[i].rs2=0;
6779 dops[i].rt1=(source[i]>>16)&0x1f;
6780 dops[i].rt2=0;
6781 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
6782 imm[i]=(unsigned short)source[i];
6783 }else{
6784 imm[i]=(short)source[i];
6785 }
6786 break;
6787 case UJUMP:
6788 dops[i].rs1=0;
6789 dops[i].rs2=0;
6790 dops[i].rt1=0;
6791 dops[i].rt2=0;
6792 // The JAL instruction writes to r31.
6793 if (op&1) {
6794 dops[i].rt1=31;
6795 }
6796 dops[i].rs2=CCREG;
6797 break;
6798 case RJUMP:
6799 dops[i].rs1=(source[i]>>21)&0x1f;
6800 dops[i].rs2=0;
6801 dops[i].rt1=0;
6802 dops[i].rt2=0;
6803 // The JALR instruction writes to rd.
6804 if (op2&1) {
6805 dops[i].rt1=(source[i]>>11)&0x1f;
6806 }
6807 dops[i].rs2=CCREG;
6808 break;
6809 case CJUMP:
6810 dops[i].rs1=(source[i]>>21)&0x1f;
6811 dops[i].rs2=(source[i]>>16)&0x1f;
6812 dops[i].rt1=0;
6813 dops[i].rt2=0;
6814 if(op&2) { // BGTZ/BLEZ
6815 dops[i].rs2=0;
6816 }
6817 break;
6818 case SJUMP:
6819 dops[i].rs1=(source[i]>>21)&0x1f;
6820 dops[i].rs2=CCREG;
6821 dops[i].rt1=0;
6822 dops[i].rt2=0;
6823 if(op2&0x10) { // BxxAL
6824 dops[i].rt1=31;
6825 // NOTE: If the branch is not taken, r31 is still overwritten
6826 }
6827 break;
6828 case ALU:
6829 dops[i].rs1=(source[i]>>21)&0x1f; // source
6830 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
6831 dops[i].rt1=(source[i]>>11)&0x1f; // destination
6832 dops[i].rt2=0;
6833 break;
6834 case MULTDIV:
6835 dops[i].rs1=(source[i]>>21)&0x1f; // source
6836 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
6837 dops[i].rt1=HIREG;
6838 dops[i].rt2=LOREG;
6839 break;
6840 case MOV:
6841 dops[i].rs1=0;
6842 dops[i].rs2=0;
6843 dops[i].rt1=0;
6844 dops[i].rt2=0;
6845 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
6846 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
6847 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
6848 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
6849 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
6850 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
6851 break;
6852 case SHIFT:
6853 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
6854 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
6855 dops[i].rt1=(source[i]>>11)&0x1f; // destination
6856 dops[i].rt2=0;
6857 break;
6858 case SHIFTIMM:
6859 dops[i].rs1=(source[i]>>16)&0x1f;
6860 dops[i].rs2=0;
6861 dops[i].rt1=(source[i]>>11)&0x1f;
6862 dops[i].rt2=0;
6863 imm[i]=(source[i]>>6)&0x1f;
6864 // DSxx32 instructions
6865 if(op2>=0x3c) imm[i]|=0x20;
6866 break;
6867 case COP0:
6868 dops[i].rs1=0;
6869 dops[i].rs2=0;
6870 dops[i].rt1=0;
6871 dops[i].rt2=0;
6872 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
6873 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
6874 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
6875 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
6876 break;
6877 case COP1:
6878 dops[i].rs1=0;
6879 dops[i].rs2=0;
6880 dops[i].rt1=0;
6881 dops[i].rt2=0;
6882 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
6883 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
6884 dops[i].rs2=CSREG;
6885 break;
6886 case COP2:
6887 dops[i].rs1=0;
6888 dops[i].rs2=0;
6889 dops[i].rt1=0;
6890 dops[i].rt2=0;
6891 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
6892 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
6893 dops[i].rs2=CSREG;
6894 int gr=(source[i]>>11)&0x1F;
6895 switch(op2)
6896 {
6897 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
6898 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
6899 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
6900 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
6901 }
6902 break;
6903 case C1LS:
6904 dops[i].rs1=(source[i]>>21)&0x1F;
6905 dops[i].rs2=CSREG;
6906 dops[i].rt1=0;
6907 dops[i].rt2=0;
6908 imm[i]=(short)source[i];
6909 break;
6910 case C2LS:
6911 dops[i].rs1=(source[i]>>21)&0x1F;
6912 dops[i].rs2=0;
6913 dops[i].rt1=0;
6914 dops[i].rt2=0;
6915 imm[i]=(short)source[i];
6916 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
6917 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
6918 break;
6919 case C2OP:
6920 dops[i].rs1=0;
6921 dops[i].rs2=0;
6922 dops[i].rt1=0;
6923 dops[i].rt2=0;
6924 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
6925 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
6926 gte_rt[i]|=1ll<<63; // every op changes flags
6927 if((source[i]&0x3f)==GTE_MVMVA) {
6928 int v = (source[i] >> 15) & 3;
6929 gte_rs[i]&=~0xe3fll;
6930 if(v==3) gte_rs[i]|=0xe00ll;
6931 else gte_rs[i]|=3ll<<(v*2);
6932 }
6933 break;
6934 case SYSCALL:
6935 case HLECALL:
6936 case INTCALL:
6937 dops[i].rs1=CCREG;
6938 dops[i].rs2=0;
6939 dops[i].rt1=0;
6940 dops[i].rt2=0;
6941 break;
6942 default:
6943 dops[i].rs1=0;
6944 dops[i].rs2=0;
6945 dops[i].rt1=0;
6946 dops[i].rt2=0;
6947 }
6948 /* Calculate branch target addresses */
6949 if(type==UJUMP)
6950 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
6951 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
6952 ba[i]=start+i*4+8; // Ignore never taken branch
6953 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
6954 ba[i]=start+i*4+8; // Ignore never taken branch
6955 else if(type==CJUMP||type==SJUMP)
6956 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
6957 else ba[i]=-1;
6958
6959 /* simplify always (not)taken branches */
6960 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
6961 dops[i].rs1 = dops[i].rs2 = 0;
6962 if (!(op & 1)) {
6963 dops[i].itype = type = UJUMP;
6964 dops[i].rs2 = CCREG;
6965 }
6966 }
6967 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
6968 dops[i].itype = type = UJUMP;
6969
6970 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
6971 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
6972 dops[i].is_load = (dops[i].itype == LOAD || dops[i].itype == LOADLR || op == 0x32); // LWC2
6973 dops[i].is_store = (dops[i].itype == STORE || dops[i].itype == STORELR || op == 0x3a); // SWC2
6974
6975 /* messy cases to just pass over to the interpreter */
6976 if (i > 0 && dops[i-1].is_jump) {
6977 int do_in_intrp=0;
6978 // branch in delay slot?
6979 if (dops[i].is_jump) {
6980 // don't handle first branch and call interpreter if it's hit
6981 SysPrintf("branch in delay slot @%08x (%08x)\n", start + i*4, start);
6982 do_in_intrp=1;
6983 }
6984 // basic load delay detection
6985 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
6986 int t=(ba[i-1]-start)/4;
6987 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
6988 // jump target wants DS result - potential load delay effect
6989 SysPrintf("load delay @%08x (%08x)\n", start + i*4, start);
6990 do_in_intrp=1;
6991 dops[t+1].bt=1; // expected return from interpreter
6992 }
6993 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
6994 !(i>=3&&dops[i-3].is_jump)) {
6995 // v0 overwrite like this is a sign of trouble, bail out
6996 SysPrintf("v0 overwrite @%08x (%08x)\n", start + i*4, start);
6997 do_in_intrp=1;
6998 }
6999 }
7000 if (do_in_intrp) {
7001 memset(&dops[i-1], 0, sizeof(dops[i-1]));
7002 dops[i-1].itype = INTCALL;
7003 dops[i-1].rs1 = CCREG;
7004 ba[i-1] = -1;
7005 done = 2;
7006 i--; // don't compile the DS
7007 }
7008 }
7009
7010 /* Is this the end of the block? */
7011 if (i > 0 && dops[i-1].is_ujump) {
7012 if (dops[i-1].rt1 == 0) { // not jal
7013 int found_bbranch = 0, t = (ba[i-1] - start) / 4;
7014 if ((u_int)(t - i) < 64 && start + (t+64)*4 < pagelimit) {
7015 // scan for a branch back to i+1
7016 for (j = t; j < t + 64; j++) {
7017 int tmpop = source[j] >> 26;
7018 if (tmpop == 1 || ((tmpop & ~3) == 4)) {
7019 int t2 = j + 1 + (int)(signed short)source[j];
7020 if (t2 == i + 1) {
7021 //printf("blk expand %08x<-%08x\n", start + (i+1)*4, start + j*4);
7022 found_bbranch = 1;
7023 break;
7024 }
7025 }
7026 }
7027 }
7028 if (!found_bbranch)
7029 done = 2;
7030 }
7031 else {
7032 if(stop_after_jal) done=1;
7033 // Stop on BREAK
7034 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7035 }
7036 // Don't recompile stuff that's already compiled
7037 if(check_addr(start+i*4+4)) done=1;
7038 // Don't get too close to the limit
7039 if(i>MAXBLOCK/2) done=1;
7040 }
7041 if (dops[i].itype == SYSCALL || dops[i].itype == HLECALL || dops[i].itype == INTCALL)
7042 done = stop_after_jal ? 1 : 2;
7043 if (done == 2) {
7044 // Does the block continue due to a branch?
7045 for(j=i-1;j>=0;j--)
7046 {
7047 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7048 if(ba[j]==start+i*4+4) done=j=0;
7049 if(ba[j]==start+i*4+8) done=j=0;
7050 }
7051 }
7052 //assert(i<MAXBLOCK-1);
7053 if(start+i*4==pagelimit-4) done=1;
7054 assert(start+i*4<pagelimit);
7055 if (i==MAXBLOCK-1) done=1;
7056 // Stop if we're compiling junk
7057 if(dops[i].itype == NI && (++ni_count > 8 || dops[i].opcode == 0x11)) {
7058 done=stop_after_jal=1;
7059 SysPrintf("Disabled speculative precompilation\n");
7060 }
7061 }
7062 while (i > 0 && dops[i-1].is_jump)
7063 i--;
7064 assert(i > 0);
7065 assert(!dops[i-1].is_jump);
7066 slen = i;
7067}
7068
7069// Basic liveness analysis for MIPS registers
7070static noinline void pass2_unneeded_regs(int istart,int iend,int r)
7071{
7072 int i;
7073 uint64_t u,gte_u,b,gte_b;
7074 uint64_t temp_u,temp_gte_u=0;
7075 uint64_t gte_u_unknown=0;
7076 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
7077 gte_u_unknown=~0ll;
7078 if(iend==slen-1) {
7079 u=1;
7080 gte_u=gte_u_unknown;
7081 }else{
7082 //u=unneeded_reg[iend+1];
7083 u=1;
7084 gte_u=gte_unneeded[iend+1];
7085 }
7086
7087 for (i=iend;i>=istart;i--)
7088 {
7089 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
7090 if(dops[i].is_jump)
7091 {
7092 // If subroutine call, flag return address as a possible branch target
7093 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
7094
7095 if(ba[i]<start || ba[i]>=(start+slen*4))
7096 {
7097 // Branch out of this block, flush all regs
7098 u=1;
7099 gte_u=gte_u_unknown;
7100 branch_unneeded_reg[i]=u;
7101 // Merge in delay slot
7102 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7103 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7104 u|=1;
7105 gte_u|=gte_rt[i+1];
7106 gte_u&=~gte_rs[i+1];
7107 }
7108 else
7109 {
7110 // Internal branch, flag target
7111 dops[(ba[i]-start)>>2].bt=1;
7112 if(ba[i]<=start+i*4) {
7113 // Backward branch
7114 if(dops[i].is_ujump)
7115 {
7116 // Unconditional branch
7117 temp_u=1;
7118 temp_gte_u=0;
7119 } else {
7120 // Conditional branch (not taken case)
7121 temp_u=unneeded_reg[i+2];
7122 temp_gte_u&=gte_unneeded[i+2];
7123 }
7124 // Merge in delay slot
7125 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7126 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7127 temp_u|=1;
7128 temp_gte_u|=gte_rt[i+1];
7129 temp_gte_u&=~gte_rs[i+1];
7130 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
7131 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7132 temp_u|=1;
7133 temp_gte_u|=gte_rt[i];
7134 temp_gte_u&=~gte_rs[i];
7135 unneeded_reg[i]=temp_u;
7136 gte_unneeded[i]=temp_gte_u;
7137 // Only go three levels deep. This recursion can take an
7138 // excessive amount of time if there are a lot of nested loops.
7139 if(r<2) {
7140 pass2_unneeded_regs((ba[i]-start)>>2,i-1,r+1);
7141 }else{
7142 unneeded_reg[(ba[i]-start)>>2]=1;
7143 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
7144 }
7145 } /*else*/ if(1) {
7146 if (dops[i].is_ujump)
7147 {
7148 // Unconditional branch
7149 u=unneeded_reg[(ba[i]-start)>>2];
7150 gte_u=gte_unneeded[(ba[i]-start)>>2];
7151 branch_unneeded_reg[i]=u;
7152 // Merge in delay slot
7153 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7154 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7155 u|=1;
7156 gte_u|=gte_rt[i+1];
7157 gte_u&=~gte_rs[i+1];
7158 } else {
7159 // Conditional branch
7160 b=unneeded_reg[(ba[i]-start)>>2];
7161 gte_b=gte_unneeded[(ba[i]-start)>>2];
7162 branch_unneeded_reg[i]=b;
7163 // Branch delay slot
7164 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7165 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7166 b|=1;
7167 gte_b|=gte_rt[i+1];
7168 gte_b&=~gte_rs[i+1];
7169 u&=b;
7170 gte_u&=gte_b;
7171 if(i<slen-1) {
7172 branch_unneeded_reg[i]&=unneeded_reg[i+2];
7173 } else {
7174 branch_unneeded_reg[i]=1;
7175 }
7176 }
7177 }
7178 }
7179 }
7180 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
7181 {
7182 // SYSCALL instruction (software interrupt)
7183 u=1;
7184 }
7185 else if(dops[i].itype==COP0 && dops[i].opcode2==0x10)
7186 {
7187 // RFE
7188 u=1;
7189 }
7190 //u=1; // DEBUG
7191 // Written registers are unneeded
7192 u|=1LL<<dops[i].rt1;
7193 u|=1LL<<dops[i].rt2;
7194 gte_u|=gte_rt[i];
7195 // Accessed registers are needed
7196 u&=~(1LL<<dops[i].rs1);
7197 u&=~(1LL<<dops[i].rs2);
7198 gte_u&=~gte_rs[i];
7199 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
7200 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
7201 // Source-target dependencies
7202 // R0 is always unneeded
7203 u|=1;
7204 // Save it
7205 unneeded_reg[i]=u;
7206 gte_unneeded[i]=gte_u;
7207 /*
7208 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7209 printf("U:");
7210 int r;
7211 for(r=1;r<=CCREG;r++) {
7212 if((unneeded_reg[i]>>r)&1) {
7213 if(r==HIREG) printf(" HI");
7214 else if(r==LOREG) printf(" LO");
7215 else printf(" r%d",r);
7216 }
7217 }
7218 printf("\n");
7219 */
7220 }
7221}
7222
7223static noinline void pass3_register_alloc(u_int addr)
7224{
7225 struct regstat current; // Current register allocations/status
7226 clear_all_regs(current.regmap_entry);
7227 clear_all_regs(current.regmap);
7228 current.wasdirty = current.dirty = 0;
7229 current.u = unneeded_reg[0];
7230 alloc_reg(&current, 0, CCREG);
7231 dirty_reg(&current, CCREG);
7232 current.wasconst = 0;
7233 current.isconst = 0;
7234 current.loadedconst = 0;
7235 //current.waswritten = 0;
7236 int ds=0;
7237 int cc=0;
7238 int hr;
7239 int i, j;
7240
7241 if (addr & 1) {
7242 // First instruction is delay slot
7243 cc=-1;
7244 dops[1].bt=1;
7245 ds=1;
7246 unneeded_reg[0]=1;
7247 current.regmap[HOST_BTREG]=BTREG;
7248 }
7249
7250 for(i=0;i<slen;i++)
7251 {
7252 if(dops[i].bt)
7253 {
7254 for(hr=0;hr<HOST_REGS;hr++)
7255 {
7256 // Is this really necessary?
7257 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7258 }
7259 current.isconst=0;
7260 //current.waswritten=0;
7261 }
7262
7263 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7264 regs[i].wasconst=current.isconst;
7265 regs[i].wasdirty=current.dirty;
7266 regs[i].dirty=0;
7267 regs[i].u=0;
7268 regs[i].isconst=0;
7269 regs[i].loadedconst=0;
7270 if (!dops[i].is_jump) {
7271 if(i+1<slen) {
7272 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7273 current.u|=1;
7274 } else {
7275 current.u=1;
7276 }
7277 } else {
7278 if(i+1<slen) {
7279 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7280 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7281 current.u|=1;
7282 } else {
7283 SysPrintf("oops, branch at end of block with no delay slot @%08x\n", start + i*4);
7284 abort();
7285 }
7286 }
7287 dops[i].is_ds=ds;
7288 if(ds) {
7289 ds=0; // Skip delay slot, already allocated as part of branch
7290 // ...but we need to alloc it in case something jumps here
7291 if(i+1<slen) {
7292 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7293 }else{
7294 current.u=branch_unneeded_reg[i-1];
7295 }
7296 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7297 current.u|=1;
7298 struct regstat temp;
7299 memcpy(&temp,&current,sizeof(current));
7300 temp.wasdirty=temp.dirty;
7301 // TODO: Take into account unconditional branches, as below
7302 delayslot_alloc(&temp,i);
7303 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7304 regs[i].wasdirty=temp.wasdirty;
7305 regs[i].dirty=temp.dirty;
7306 regs[i].isconst=0;
7307 regs[i].wasconst=0;
7308 current.isconst=0;
7309 // Create entry (branch target) regmap
7310 for(hr=0;hr<HOST_REGS;hr++)
7311 {
7312 int r=temp.regmap[hr];
7313 if(r>=0) {
7314 if(r!=regmap_pre[i][hr]) {
7315 regs[i].regmap_entry[hr]=-1;
7316 }
7317 else
7318 {
7319 assert(r < 64);
7320 if((current.u>>r)&1) {
7321 regs[i].regmap_entry[hr]=-1;
7322 regs[i].regmap[hr]=-1;
7323 //Don't clear regs in the delay slot as the branch might need them
7324 //current.regmap[hr]=-1;
7325 }else
7326 regs[i].regmap_entry[hr]=r;
7327 }
7328 } else {
7329 // First instruction expects CCREG to be allocated
7330 if(i==0&&hr==HOST_CCREG)
7331 regs[i].regmap_entry[hr]=CCREG;
7332 else
7333 regs[i].regmap_entry[hr]=-1;
7334 }
7335 }
7336 }
7337 else { // Not delay slot
7338 switch(dops[i].itype) {
7339 case UJUMP:
7340 //current.isconst=0; // DEBUG
7341 //current.wasconst=0; // DEBUG
7342 //regs[i].wasconst=0; // DEBUG
7343 clear_const(&current,dops[i].rt1);
7344 alloc_cc(&current,i);
7345 dirty_reg(&current,CCREG);
7346 if (dops[i].rt1==31) {
7347 alloc_reg(&current,i,31);
7348 dirty_reg(&current,31);
7349 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7350 //assert(dops[i+1].rt1!=dops[i].rt1);
7351 #ifdef REG_PREFETCH
7352 alloc_reg(&current,i,PTEMP);
7353 #endif
7354 }
7355 dops[i].ooo=1;
7356 delayslot_alloc(&current,i+1);
7357 //current.isconst=0; // DEBUG
7358 ds=1;
7359 //printf("i=%d, isconst=%x\n",i,current.isconst);
7360 break;
7361 case RJUMP:
7362 //current.isconst=0;
7363 //current.wasconst=0;
7364 //regs[i].wasconst=0;
7365 clear_const(&current,dops[i].rs1);
7366 clear_const(&current,dops[i].rt1);
7367 alloc_cc(&current,i);
7368 dirty_reg(&current,CCREG);
7369 if (!ds_writes_rjump_rs(i)) {
7370 alloc_reg(&current,i,dops[i].rs1);
7371 if (dops[i].rt1!=0) {
7372 alloc_reg(&current,i,dops[i].rt1);
7373 dirty_reg(&current,dops[i].rt1);
7374 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7375 assert(dops[i+1].rt1!=dops[i].rt1);
7376 #ifdef REG_PREFETCH
7377 alloc_reg(&current,i,PTEMP);
7378 #endif
7379 }
7380 #ifdef USE_MINI_HT
7381 if(dops[i].rs1==31) { // JALR
7382 alloc_reg(&current,i,RHASH);
7383 alloc_reg(&current,i,RHTBL);
7384 }
7385 #endif
7386 delayslot_alloc(&current,i+1);
7387 } else {
7388 // The delay slot overwrites our source register,
7389 // allocate a temporary register to hold the old value.
7390 current.isconst=0;
7391 current.wasconst=0;
7392 regs[i].wasconst=0;
7393 delayslot_alloc(&current,i+1);
7394 current.isconst=0;
7395 alloc_reg(&current,i,RTEMP);
7396 }
7397 //current.isconst=0; // DEBUG
7398 dops[i].ooo=1;
7399 ds=1;
7400 break;
7401 case CJUMP:
7402 //current.isconst=0;
7403 //current.wasconst=0;
7404 //regs[i].wasconst=0;
7405 clear_const(&current,dops[i].rs1);
7406 clear_const(&current,dops[i].rs2);
7407 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7408 {
7409 alloc_cc(&current,i);
7410 dirty_reg(&current,CCREG);
7411 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7412 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7413 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7414 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7415 // The delay slot overwrites one of our conditions.
7416 // Allocate the branch condition registers instead.
7417 current.isconst=0;
7418 current.wasconst=0;
7419 regs[i].wasconst=0;
7420 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7421 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7422 }
7423 else
7424 {
7425 dops[i].ooo=1;
7426 delayslot_alloc(&current,i+1);
7427 }
7428 }
7429 else
7430 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7431 {
7432 alloc_cc(&current,i);
7433 dirty_reg(&current,CCREG);
7434 alloc_reg(&current,i,dops[i].rs1);
7435 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7436 // The delay slot overwrites one of our conditions.
7437 // Allocate the branch condition registers instead.
7438 current.isconst=0;
7439 current.wasconst=0;
7440 regs[i].wasconst=0;
7441 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7442 }
7443 else
7444 {
7445 dops[i].ooo=1;
7446 delayslot_alloc(&current,i+1);
7447 }
7448 }
7449 else
7450 // Don't alloc the delay slot yet because we might not execute it
7451 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7452 {
7453 current.isconst=0;
7454 current.wasconst=0;
7455 regs[i].wasconst=0;
7456 alloc_cc(&current,i);
7457 dirty_reg(&current,CCREG);
7458 alloc_reg(&current,i,dops[i].rs1);
7459 alloc_reg(&current,i,dops[i].rs2);
7460 }
7461 else
7462 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7463 {
7464 current.isconst=0;
7465 current.wasconst=0;
7466 regs[i].wasconst=0;
7467 alloc_cc(&current,i);
7468 dirty_reg(&current,CCREG);
7469 alloc_reg(&current,i,dops[i].rs1);
7470 }
7471 ds=1;
7472 //current.isconst=0;
7473 break;
7474 case SJUMP:
7475 //current.isconst=0;
7476 //current.wasconst=0;
7477 //regs[i].wasconst=0;
7478 clear_const(&current,dops[i].rs1);
7479 clear_const(&current,dops[i].rt1);
7480 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
7481 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
7482 {
7483 alloc_cc(&current,i);
7484 dirty_reg(&current,CCREG);
7485 alloc_reg(&current,i,dops[i].rs1);
7486 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
7487 alloc_reg(&current,i,31);
7488 dirty_reg(&current,31);
7489 //#ifdef REG_PREFETCH
7490 //alloc_reg(&current,i,PTEMP);
7491 //#endif
7492 }
7493 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7494 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7495 // Allocate the branch condition registers instead.
7496 current.isconst=0;
7497 current.wasconst=0;
7498 regs[i].wasconst=0;
7499 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7500 }
7501 else
7502 {
7503 dops[i].ooo=1;
7504 delayslot_alloc(&current,i+1);
7505 }
7506 }
7507 else
7508 // Don't alloc the delay slot yet because we might not execute it
7509 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
7510 {
7511 current.isconst=0;
7512 current.wasconst=0;
7513 regs[i].wasconst=0;
7514 alloc_cc(&current,i);
7515 dirty_reg(&current,CCREG);
7516 alloc_reg(&current,i,dops[i].rs1);
7517 }
7518 ds=1;
7519 //current.isconst=0;
7520 break;
7521 case IMM16:
7522 imm16_alloc(&current,i);
7523 break;
7524 case LOAD:
7525 case LOADLR:
7526 load_alloc(&current,i);
7527 break;
7528 case STORE:
7529 case STORELR:
7530 store_alloc(&current,i);
7531 break;
7532 case ALU:
7533 alu_alloc(&current,i);
7534 break;
7535 case SHIFT:
7536 shift_alloc(&current,i);
7537 break;
7538 case MULTDIV:
7539 multdiv_alloc(&current,i);
7540 break;
7541 case SHIFTIMM:
7542 shiftimm_alloc(&current,i);
7543 break;
7544 case MOV:
7545 mov_alloc(&current,i);
7546 break;
7547 case COP0:
7548 cop0_alloc(&current,i);
7549 break;
7550 case COP1:
7551 break;
7552 case COP2:
7553 cop2_alloc(&current,i);
7554 break;
7555 case C1LS:
7556 c1ls_alloc(&current,i);
7557 break;
7558 case C2LS:
7559 c2ls_alloc(&current,i);
7560 break;
7561 case C2OP:
7562 c2op_alloc(&current,i);
7563 break;
7564 case SYSCALL:
7565 case HLECALL:
7566 case INTCALL:
7567 syscall_alloc(&current,i);
7568 break;
7569 }
7570
7571 // Create entry (branch target) regmap
7572 for(hr=0;hr<HOST_REGS;hr++)
7573 {
7574 int r,or;
7575 r=current.regmap[hr];
7576 if(r>=0) {
7577 if(r!=regmap_pre[i][hr]) {
7578 // TODO: delay slot (?)
7579 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7580 if(or<0||r>=TEMPREG){
7581 regs[i].regmap_entry[hr]=-1;
7582 }
7583 else
7584 {
7585 // Just move it to a different register
7586 regs[i].regmap_entry[hr]=r;
7587 // If it was dirty before, it's still dirty
7588 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r);
7589 }
7590 }
7591 else
7592 {
7593 // Unneeded
7594 if(r==0){
7595 regs[i].regmap_entry[hr]=0;
7596 }
7597 else
7598 {
7599 assert(r<64);
7600 if((current.u>>r)&1) {
7601 regs[i].regmap_entry[hr]=-1;
7602 //regs[i].regmap[hr]=-1;
7603 current.regmap[hr]=-1;
7604 }else
7605 regs[i].regmap_entry[hr]=r;
7606 }
7607 }
7608 } else {
7609 // Branches expect CCREG to be allocated at the target
7610 if(regmap_pre[i][hr]==CCREG)
7611 regs[i].regmap_entry[hr]=CCREG;
7612 else
7613 regs[i].regmap_entry[hr]=-1;
7614 }
7615 }
7616 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7617 }
7618
7619#if 0 // see do_store_smc_check()
7620 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
7621 current.waswritten|=1<<dops[i-1].rs1;
7622 current.waswritten&=~(1<<dops[i].rt1);
7623 current.waswritten&=~(1<<dops[i].rt2);
7624 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
7625 current.waswritten&=~(1<<dops[i].rs1);
7626#endif
7627
7628 /* Branch post-alloc */
7629 if(i>0)
7630 {
7631 current.wasdirty=current.dirty;
7632 switch(dops[i-1].itype) {
7633 case UJUMP:
7634 memcpy(&branch_regs[i-1],&current,sizeof(current));
7635 branch_regs[i-1].isconst=0;
7636 branch_regs[i-1].wasconst=0;
7637 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7638 alloc_cc(&branch_regs[i-1],i-1);
7639 dirty_reg(&branch_regs[i-1],CCREG);
7640 if(dops[i-1].rt1==31) { // JAL
7641 alloc_reg(&branch_regs[i-1],i-1,31);
7642 dirty_reg(&branch_regs[i-1],31);
7643 }
7644 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7645 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7646 break;
7647 case RJUMP:
7648 memcpy(&branch_regs[i-1],&current,sizeof(current));
7649 branch_regs[i-1].isconst=0;
7650 branch_regs[i-1].wasconst=0;
7651 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7652 alloc_cc(&branch_regs[i-1],i-1);
7653 dirty_reg(&branch_regs[i-1],CCREG);
7654 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
7655 if(dops[i-1].rt1!=0) { // JALR
7656 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
7657 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
7658 }
7659 #ifdef USE_MINI_HT
7660 if(dops[i-1].rs1==31) { // JALR
7661 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7662 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7663 }
7664 #endif
7665 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7666 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7667 break;
7668 case CJUMP:
7669 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
7670 {
7671 alloc_cc(&current,i-1);
7672 dirty_reg(&current,CCREG);
7673 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
7674 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
7675 // The delay slot overwrote one of our conditions
7676 // Delay slot goes after the test (in order)
7677 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7678 current.u|=1;
7679 delayslot_alloc(&current,i);
7680 current.isconst=0;
7681 }
7682 else
7683 {
7684 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7685 // Alloc the branch condition registers
7686 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
7687 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
7688 }
7689 memcpy(&branch_regs[i-1],&current,sizeof(current));
7690 branch_regs[i-1].isconst=0;
7691 branch_regs[i-1].wasconst=0;
7692 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7693 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7694 }
7695 else
7696 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
7697 {
7698 alloc_cc(&current,i-1);
7699 dirty_reg(&current,CCREG);
7700 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7701 // The delay slot overwrote the branch condition
7702 // Delay slot goes after the test (in order)
7703 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7704 current.u|=1;
7705 delayslot_alloc(&current,i);
7706 current.isconst=0;
7707 }
7708 else
7709 {
7710 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7711 // Alloc the branch condition register
7712 alloc_reg(&current,i-1,dops[i-1].rs1);
7713 }
7714 memcpy(&branch_regs[i-1],&current,sizeof(current));
7715 branch_regs[i-1].isconst=0;
7716 branch_regs[i-1].wasconst=0;
7717 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7718 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7719 }
7720 else
7721 // Alloc the delay slot in case the branch is taken
7722 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
7723 {
7724 memcpy(&branch_regs[i-1],&current,sizeof(current));
7725 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7726 alloc_cc(&branch_regs[i-1],i);
7727 dirty_reg(&branch_regs[i-1],CCREG);
7728 delayslot_alloc(&branch_regs[i-1],i);
7729 branch_regs[i-1].isconst=0;
7730 alloc_reg(&current,i,CCREG); // Not taken path
7731 dirty_reg(&current,CCREG);
7732 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7733 }
7734 else
7735 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
7736 {
7737 memcpy(&branch_regs[i-1],&current,sizeof(current));
7738 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7739 alloc_cc(&branch_regs[i-1],i);
7740 dirty_reg(&branch_regs[i-1],CCREG);
7741 delayslot_alloc(&branch_regs[i-1],i);
7742 branch_regs[i-1].isconst=0;
7743 alloc_reg(&current,i,CCREG); // Not taken path
7744 dirty_reg(&current,CCREG);
7745 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7746 }
7747 break;
7748 case SJUMP:
7749 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
7750 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
7751 {
7752 alloc_cc(&current,i-1);
7753 dirty_reg(&current,CCREG);
7754 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7755 // The delay slot overwrote the branch condition
7756 // Delay slot goes after the test (in order)
7757 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7758 current.u|=1;
7759 delayslot_alloc(&current,i);
7760 current.isconst=0;
7761 }
7762 else
7763 {
7764 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7765 // Alloc the branch condition register
7766 alloc_reg(&current,i-1,dops[i-1].rs1);
7767 }
7768 memcpy(&branch_regs[i-1],&current,sizeof(current));
7769 branch_regs[i-1].isconst=0;
7770 branch_regs[i-1].wasconst=0;
7771 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7772 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7773 }
7774 else
7775 // Alloc the delay slot in case the branch is taken
7776 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
7777 {
7778 memcpy(&branch_regs[i-1],&current,sizeof(current));
7779 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7780 alloc_cc(&branch_regs[i-1],i);
7781 dirty_reg(&branch_regs[i-1],CCREG);
7782 delayslot_alloc(&branch_regs[i-1],i);
7783 branch_regs[i-1].isconst=0;
7784 alloc_reg(&current,i,CCREG); // Not taken path
7785 dirty_reg(&current,CCREG);
7786 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7787 }
7788 // FIXME: BLTZAL/BGEZAL
7789 if(dops[i-1].opcode2&0x10) { // BxxZAL
7790 alloc_reg(&branch_regs[i-1],i-1,31);
7791 dirty_reg(&branch_regs[i-1],31);
7792 }
7793 break;
7794 }
7795
7796 if (dops[i-1].is_ujump)
7797 {
7798 if(dops[i-1].rt1==31) // JAL/JALR
7799 {
7800 // Subroutine call will return here, don't alloc any registers
7801 current.dirty=0;
7802 clear_all_regs(current.regmap);
7803 alloc_reg(&current,i,CCREG);
7804 dirty_reg(&current,CCREG);
7805 }
7806 else if(i+1<slen)
7807 {
7808 // Internal branch will jump here, match registers to caller
7809 current.dirty=0;
7810 clear_all_regs(current.regmap);
7811 alloc_reg(&current,i,CCREG);
7812 dirty_reg(&current,CCREG);
7813 for(j=i-1;j>=0;j--)
7814 {
7815 if(ba[j]==start+i*4+4) {
7816 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
7817 current.dirty=branch_regs[j].dirty;
7818 break;
7819 }
7820 }
7821 while(j>=0) {
7822 if(ba[j]==start+i*4+4) {
7823 for(hr=0;hr<HOST_REGS;hr++) {
7824 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
7825 current.regmap[hr]=-1;
7826 }
7827 current.dirty&=branch_regs[j].dirty;
7828 }
7829 }
7830 j--;
7831 }
7832 }
7833 }
7834 }
7835
7836 // Count cycles in between branches
7837 ccadj[i] = CLOCK_ADJUST(cc);
7838 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
7839 {
7840 cc=0;
7841 }
7842#if !defined(DRC_DBG)
7843 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
7844 {
7845 // this should really be removed since the real stalls have been implemented,
7846 // but doing so causes sizeable perf regression against the older version
7847 u_int gtec = gte_cycletab[source[i] & 0x3f];
7848 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
7849 }
7850 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
7851 {
7852 cc+=4;
7853 }
7854 else if(dops[i].itype==C2LS)
7855 {
7856 // same as with C2OP
7857 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
7858 }
7859#endif
7860 else
7861 {
7862 cc++;
7863 }
7864
7865 if(!dops[i].is_ds) {
7866 regs[i].dirty=current.dirty;
7867 regs[i].isconst=current.isconst;
7868 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
7869 }
7870 for(hr=0;hr<HOST_REGS;hr++) {
7871 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
7872 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
7873 regs[i].wasconst&=~(1<<hr);
7874 }
7875 }
7876 }
7877 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
7878 //regs[i].waswritten=current.waswritten;
7879 }
7880}
7881
7882static noinline void pass4_cull_unused_regs(void)
7883{
7884 u_int last_needed_regs[4] = {0,0,0,0};
7885 u_int nr=0;
7886 int i;
7887
7888 for (i=slen-1;i>=0;i--)
7889 {
7890 int hr;
7891 __builtin_prefetch(regs[i-2].regmap);
7892 if(dops[i].is_jump)
7893 {
7894 if(ba[i]<start || ba[i]>=(start+slen*4))
7895 {
7896 // Branch out of this block, don't need anything
7897 nr=0;
7898 }
7899 else
7900 {
7901 // Internal branch
7902 // Need whatever matches the target
7903 nr=0;
7904 int t=(ba[i]-start)>>2;
7905 for(hr=0;hr<HOST_REGS;hr++)
7906 {
7907 if(regs[i].regmap_entry[hr]>=0) {
7908 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
7909 }
7910 }
7911 }
7912 // Conditional branch may need registers for following instructions
7913 if (!dops[i].is_ujump)
7914 {
7915 if(i<slen-2) {
7916 nr |= last_needed_regs[(i+2) & 3];
7917 for(hr=0;hr<HOST_REGS;hr++)
7918 {
7919 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
7920 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
7921 }
7922 }
7923 }
7924 // Don't need stuff which is overwritten
7925 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7926 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7927 // Merge in delay slot
7928 if (dops[i+1].rt1) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt1);
7929 if (dops[i+1].rt2) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt2);
7930 nr |= get_regm(regmap_pre[i], dops[i+1].rs1);
7931 nr |= get_regm(regmap_pre[i], dops[i+1].rs2);
7932 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs1);
7933 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs2);
7934 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
7935 nr |= get_regm(regmap_pre[i], ROREG);
7936 nr |= get_regm(regs[i].regmap_entry, ROREG);
7937 }
7938 if (dops[i+1].is_store) {
7939 nr |= get_regm(regmap_pre[i], INVCP);
7940 nr |= get_regm(regs[i].regmap_entry, INVCP);
7941 }
7942 }
7943 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
7944 {
7945 // SYSCALL instruction (software interrupt)
7946 nr=0;
7947 }
7948 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
7949 {
7950 // ERET instruction (return from interrupt)
7951 nr=0;
7952 }
7953 else // Non-branch
7954 {
7955 if(i<slen-1) {
7956 for(hr=0;hr<HOST_REGS;hr++) {
7957 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
7958 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
7959 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7960 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7961 }
7962 }
7963 }
7964 // Overwritten registers are not needed
7965 if (dops[i].rt1) nr &= ~get_regm(regs[i].regmap, dops[i].rt1);
7966 if (dops[i].rt2) nr &= ~get_regm(regs[i].regmap, dops[i].rt2);
7967 nr &= ~get_regm(regs[i].regmap, FTEMP);
7968 // Source registers are needed
7969 nr |= get_regm(regmap_pre[i], dops[i].rs1);
7970 nr |= get_regm(regmap_pre[i], dops[i].rs2);
7971 nr |= get_regm(regs[i].regmap_entry, dops[i].rs1);
7972 nr |= get_regm(regs[i].regmap_entry, dops[i].rs2);
7973 if (ram_offset && (dops[i].is_load || dops[i].is_store)) {
7974 nr |= get_regm(regmap_pre[i], ROREG);
7975 nr |= get_regm(regs[i].regmap_entry, ROREG);
7976 }
7977 if (dops[i].is_store) {
7978 nr |= get_regm(regmap_pre[i], INVCP);
7979 nr |= get_regm(regs[i].regmap_entry, INVCP);
7980 }
7981
7982 if (i > 0 && !dops[i].bt && regs[i].wasdirty)
7983 for(hr=0;hr<HOST_REGS;hr++)
7984 {
7985 // Don't store a register immediately after writing it,
7986 // may prevent dual-issue.
7987 // But do so if this is a branch target, otherwise we
7988 // might have to load the register before the branch.
7989 if((regs[i].wasdirty>>hr)&1) {
7990 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
7991 if(dops[i-1].rt1==regmap_pre[i][hr]) nr|=1<<hr;
7992 if(dops[i-1].rt2==regmap_pre[i][hr]) nr|=1<<hr;
7993 }
7994 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
7995 if(dops[i-1].rt1==regs[i].regmap_entry[hr]) nr|=1<<hr;
7996 if(dops[i-1].rt2==regs[i].regmap_entry[hr]) nr|=1<<hr;
7997 }
7998 }
7999 }
8000 // Cycle count is needed at branches. Assume it is needed at the target too.
8001 if(i==0||dops[i].bt||dops[i].itype==CJUMP) {
8002 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8003 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8004 }
8005 // Save it
8006 last_needed_regs[i & 3] = nr;
8007
8008 // Deallocate unneeded registers
8009 for(hr=0;hr<HOST_REGS;hr++)
8010 {
8011 if(!((nr>>hr)&1)) {
8012 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8013 if(dops[i].is_jump)
8014 {
8015 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
8016 if (dops[i+1].is_load || dops[i+1].is_store)
8017 map1 = ROREG;
8018 if (dops[i+1].is_store)
8019 map2 = INVCP;
8020 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
8021 temp = FTEMP;
8022 if(regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8023 regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
8024 regs[i].regmap[hr]!=dops[i+1].rt1 && regs[i].regmap[hr]!=dops[i+1].rt2 &&
8025 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
8026 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=PTEMP &&
8027 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8028 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8029 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
8030 {
8031 regs[i].regmap[hr]=-1;
8032 regs[i].isconst&=~(1<<hr);
8033 regs[i].dirty&=~(1<<hr);
8034 regs[i+1].wasdirty&=~(1<<hr);
8035 if(branch_regs[i].regmap[hr]!=dops[i].rs1 && branch_regs[i].regmap[hr]!=dops[i].rs2 &&
8036 branch_regs[i].regmap[hr]!=dops[i].rt1 && branch_regs[i].regmap[hr]!=dops[i].rt2 &&
8037 branch_regs[i].regmap[hr]!=dops[i+1].rt1 && branch_regs[i].regmap[hr]!=dops[i+1].rt2 &&
8038 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
8039 branch_regs[i].regmap[hr]!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8040 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8041 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8042 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
8043 {
8044 branch_regs[i].regmap[hr]=-1;
8045 branch_regs[i].regmap_entry[hr]=-1;
8046 if (!dops[i].is_ujump)
8047 {
8048 if (i < slen-2) {
8049 regmap_pre[i+2][hr]=-1;
8050 regs[i+2].wasconst&=~(1<<hr);
8051 }
8052 }
8053 }
8054 }
8055 }
8056 else
8057 {
8058 // Non-branch
8059 if(i>0)
8060 {
8061 int map1 = -1, map2 = -1, temp=-1;
8062 if (dops[i].is_load || dops[i].is_store)
8063 map1 = ROREG;
8064 if (dops[i].is_store)
8065 map2 = INVCP;
8066 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
8067 temp = FTEMP;
8068 if(regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
8069 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8070 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
8071 //(dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG)
8072 regs[i].regmap[hr] != CCREG)
8073 {
8074 if(i<slen-1&&!dops[i].is_ds) {
8075 assert(regs[i].regmap[hr]<64);
8076 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8077 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8078 {
8079 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8080 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8081 }
8082 regmap_pre[i+1][hr]=-1;
8083 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8084 regs[i+1].wasconst&=~(1<<hr);
8085 }
8086 regs[i].regmap[hr]=-1;
8087 regs[i].isconst&=~(1<<hr);
8088 regs[i].dirty&=~(1<<hr);
8089 regs[i+1].wasdirty&=~(1<<hr);
8090 }
8091 }
8092 }
8093 } // if needed
8094 } // for hr
8095 }
8096}
8097
8098// If a register is allocated during a loop, try to allocate it for the
8099// entire loop, if possible. This avoids loading/storing registers
8100// inside of the loop.
8101static noinline void pass5a_preallocate1(void)
8102{
8103 int i, j, hr;
8104 signed char f_regmap[HOST_REGS];
8105 clear_all_regs(f_regmap);
8106 for(i=0;i<slen-1;i++)
8107 {
8108 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8109 {
8110 if(ba[i]>=start && ba[i]<(start+i*4))
8111 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8112 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8113 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
8114 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
8115 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8116 {
8117 int t=(ba[i]-start)>>2;
8118 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8119 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8120 for(hr=0;hr<HOST_REGS;hr++)
8121 {
8122 if(regs[i].regmap[hr]>=0) {
8123 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8124 // dealloc old register
8125 int n;
8126 for(n=0;n<HOST_REGS;n++)
8127 {
8128 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8129 }
8130 // and alloc new one
8131 f_regmap[hr]=regs[i].regmap[hr];
8132 }
8133 }
8134 if(branch_regs[i].regmap[hr]>=0) {
8135 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8136 // dealloc old register
8137 int n;
8138 for(n=0;n<HOST_REGS;n++)
8139 {
8140 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8141 }
8142 // and alloc new one
8143 f_regmap[hr]=branch_regs[i].regmap[hr];
8144 }
8145 }
8146 if(dops[i].ooo) {
8147 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8148 f_regmap[hr]=branch_regs[i].regmap[hr];
8149 }else{
8150 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8151 f_regmap[hr]=branch_regs[i].regmap[hr];
8152 }
8153 // Avoid dirty->clean transition
8154 #ifdef DESTRUCTIVE_WRITEBACK
8155 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8156 #endif
8157 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8158 // case above, however it's always a good idea. We can't hoist the
8159 // load if the register was already allocated, so there's no point
8160 // wasting time analyzing most of these cases. It only "succeeds"
8161 // when the mapping was different and the load can be replaced with
8162 // a mov, which is of negligible benefit. So such cases are
8163 // skipped below.
8164 if(f_regmap[hr]>0) {
8165 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8166 int r=f_regmap[hr];
8167 for(j=t;j<=i;j++)
8168 {
8169 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8170 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8171 assert(r < 64);
8172 if(regs[j].regmap[hr]==f_regmap[hr]&&f_regmap[hr]<TEMPREG) {
8173 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8174 int k;
8175 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8176 if(get_reg(regs[i].regmap,f_regmap[hr])>=0) break;
8177 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8178 k=i;
8179 while(k>1&&regs[k-1].regmap[hr]==-1) {
8180 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8181 //printf("no free regs for store %x\n",start+(k-1)*4);
8182 break;
8183 }
8184 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8185 //printf("no-match due to different register\n");
8186 break;
8187 }
8188 if (dops[k-2].is_jump) {
8189 //printf("no-match due to branch\n");
8190 break;
8191 }
8192 // call/ret fast path assumes no registers allocated
8193 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8194 break;
8195 }
8196 k--;
8197 }
8198 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8199 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8200 while(k<i) {
8201 regs[k].regmap_entry[hr]=f_regmap[hr];
8202 regs[k].regmap[hr]=f_regmap[hr];
8203 regmap_pre[k+1][hr]=f_regmap[hr];
8204 regs[k].wasdirty&=~(1<<hr);
8205 regs[k].dirty&=~(1<<hr);
8206 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8207 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8208 regs[k].wasconst&=~(1<<hr);
8209 regs[k].isconst&=~(1<<hr);
8210 k++;
8211 }
8212 }
8213 else {
8214 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8215 break;
8216 }
8217 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8218 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8219 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8220 regs[i].regmap_entry[hr]=f_regmap[hr];
8221 regs[i].regmap[hr]=f_regmap[hr];
8222 regs[i].wasdirty&=~(1<<hr);
8223 regs[i].dirty&=~(1<<hr);
8224 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8225 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8226 regs[i].wasconst&=~(1<<hr);
8227 regs[i].isconst&=~(1<<hr);
8228 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8229 branch_regs[i].wasdirty&=~(1<<hr);
8230 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8231 branch_regs[i].regmap[hr]=f_regmap[hr];
8232 branch_regs[i].dirty&=~(1<<hr);
8233 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8234 branch_regs[i].wasconst&=~(1<<hr);
8235 branch_regs[i].isconst&=~(1<<hr);
8236 if (!dops[i].is_ujump) {
8237 regmap_pre[i+2][hr]=f_regmap[hr];
8238 regs[i+2].wasdirty&=~(1<<hr);
8239 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8240 }
8241 }
8242 }
8243 for(k=t;k<j;k++) {
8244 // Alloc register clean at beginning of loop,
8245 // but may dirty it in pass 6
8246 regs[k].regmap_entry[hr]=f_regmap[hr];
8247 regs[k].regmap[hr]=f_regmap[hr];
8248 regs[k].dirty&=~(1<<hr);
8249 regs[k].wasconst&=~(1<<hr);
8250 regs[k].isconst&=~(1<<hr);
8251 if (dops[k].is_jump) {
8252 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8253 branch_regs[k].regmap[hr]=f_regmap[hr];
8254 branch_regs[k].dirty&=~(1<<hr);
8255 branch_regs[k].wasconst&=~(1<<hr);
8256 branch_regs[k].isconst&=~(1<<hr);
8257 if (!dops[k].is_ujump) {
8258 regmap_pre[k+2][hr]=f_regmap[hr];
8259 regs[k+2].wasdirty&=~(1<<hr);
8260 }
8261 }
8262 else
8263 {
8264 regmap_pre[k+1][hr]=f_regmap[hr];
8265 regs[k+1].wasdirty&=~(1<<hr);
8266 }
8267 }
8268 if(regs[j].regmap[hr]==f_regmap[hr])
8269 regs[j].regmap_entry[hr]=f_regmap[hr];
8270 break;
8271 }
8272 if(j==i) break;
8273 if(regs[j].regmap[hr]>=0)
8274 break;
8275 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8276 //printf("no-match due to different register\n");
8277 break;
8278 }
8279 if (dops[j].is_ujump)
8280 {
8281 // Stop on unconditional branch
8282 break;
8283 }
8284 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8285 {
8286 if(dops[j].ooo) {
8287 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8288 break;
8289 }else{
8290 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8291 break;
8292 }
8293 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8294 //printf("no-match due to different register (branch)\n");
8295 break;
8296 }
8297 }
8298 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8299 //printf("No free regs for store %x\n",start+j*4);
8300 break;
8301 }
8302 assert(f_regmap[hr]<64);
8303 }
8304 }
8305 }
8306 }
8307 }
8308 }else{
8309 // Non branch or undetermined branch target
8310 for(hr=0;hr<HOST_REGS;hr++)
8311 {
8312 if(hr!=EXCLUDE_REG) {
8313 if(regs[i].regmap[hr]>=0) {
8314 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8315 // dealloc old register
8316 int n;
8317 for(n=0;n<HOST_REGS;n++)
8318 {
8319 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8320 }
8321 // and alloc new one
8322 f_regmap[hr]=regs[i].regmap[hr];
8323 }
8324 }
8325 }
8326 }
8327 // Try to restore cycle count at branch targets
8328 if(dops[i].bt) {
8329 for(j=i;j<slen-1;j++) {
8330 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8331 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8332 //printf("no free regs for store %x\n",start+j*4);
8333 break;
8334 }
8335 }
8336 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8337 int k=i;
8338 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8339 while(k<j) {
8340 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8341 regs[k].regmap[HOST_CCREG]=CCREG;
8342 regmap_pre[k+1][HOST_CCREG]=CCREG;
8343 regs[k+1].wasdirty|=1<<HOST_CCREG;
8344 regs[k].dirty|=1<<HOST_CCREG;
8345 regs[k].wasconst&=~(1<<HOST_CCREG);
8346 regs[k].isconst&=~(1<<HOST_CCREG);
8347 k++;
8348 }
8349 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8350 }
8351 // Work backwards from the branch target
8352 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8353 {
8354 //printf("Extend backwards\n");
8355 int k;
8356 k=i;
8357 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8358 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8359 //printf("no free regs for store %x\n",start+(k-1)*4);
8360 break;
8361 }
8362 k--;
8363 }
8364 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8365 //printf("Extend CC, %x ->\n",start+k*4);
8366 while(k<=i) {
8367 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8368 regs[k].regmap[HOST_CCREG]=CCREG;
8369 regmap_pre[k+1][HOST_CCREG]=CCREG;
8370 regs[k+1].wasdirty|=1<<HOST_CCREG;
8371 regs[k].dirty|=1<<HOST_CCREG;
8372 regs[k].wasconst&=~(1<<HOST_CCREG);
8373 regs[k].isconst&=~(1<<HOST_CCREG);
8374 k++;
8375 }
8376 }
8377 else {
8378 //printf("Fail Extend CC, %x ->\n",start+k*4);
8379 }
8380 }
8381 }
8382 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8383 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8384 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8385 {
8386 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8387 }
8388 }
8389 }
8390}
8391
8392// This allocates registers (if possible) one instruction prior
8393// to use, which can avoid a load-use penalty on certain CPUs.
8394static noinline void pass5b_preallocate2(void)
8395{
8396 int i, hr;
8397 for(i=0;i<slen-1;i++)
8398 {
8399 if (!i || !dops[i-1].is_jump)
8400 {
8401 if(!dops[i+1].bt)
8402 {
8403 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8404 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8405 {
8406 if(dops[i+1].rs1) {
8407 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8408 {
8409 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8410 {
8411 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8412 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8413 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8414 regs[i].isconst&=~(1<<hr);
8415 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8416 constmap[i][hr]=constmap[i+1][hr];
8417 regs[i+1].wasdirty&=~(1<<hr);
8418 regs[i].dirty&=~(1<<hr);
8419 }
8420 }
8421 }
8422 if(dops[i+1].rs2) {
8423 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8424 {
8425 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8426 {
8427 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8428 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8429 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8430 regs[i].isconst&=~(1<<hr);
8431 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8432 constmap[i][hr]=constmap[i+1][hr];
8433 regs[i+1].wasdirty&=~(1<<hr);
8434 regs[i].dirty&=~(1<<hr);
8435 }
8436 }
8437 }
8438 // Preload target address for load instruction (non-constant)
8439 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8440 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8441 {
8442 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8443 {
8444 regs[i].regmap[hr]=dops[i+1].rs1;
8445 regmap_pre[i+1][hr]=dops[i+1].rs1;
8446 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8447 regs[i].isconst&=~(1<<hr);
8448 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8449 constmap[i][hr]=constmap[i+1][hr];
8450 regs[i+1].wasdirty&=~(1<<hr);
8451 regs[i].dirty&=~(1<<hr);
8452 }
8453 }
8454 }
8455 // Load source into target register
8456 if(dops[i+1].use_lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8457 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8458 {
8459 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8460 {
8461 regs[i].regmap[hr]=dops[i+1].rs1;
8462 regmap_pre[i+1][hr]=dops[i+1].rs1;
8463 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8464 regs[i].isconst&=~(1<<hr);
8465 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8466 constmap[i][hr]=constmap[i+1][hr];
8467 regs[i+1].wasdirty&=~(1<<hr);
8468 regs[i].dirty&=~(1<<hr);
8469 }
8470 }
8471 }
8472 // Address for store instruction (non-constant)
8473 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8474 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8475 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8476 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8477 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8478 else {
8479 regs[i+1].regmap[hr]=AGEN1+((i+1)&1);
8480 regs[i+1].isconst&=~(1<<hr);
8481 }
8482 assert(hr>=0);
8483 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8484 {
8485 regs[i].regmap[hr]=dops[i+1].rs1;
8486 regmap_pre[i+1][hr]=dops[i+1].rs1;
8487 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8488 regs[i].isconst&=~(1<<hr);
8489 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8490 constmap[i][hr]=constmap[i+1][hr];
8491 regs[i+1].wasdirty&=~(1<<hr);
8492 regs[i].dirty&=~(1<<hr);
8493 }
8494 }
8495 }
8496 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8497 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8498 int nr;
8499 hr=get_reg(regs[i+1].regmap,FTEMP);
8500 assert(hr>=0);
8501 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8502 {
8503 regs[i].regmap[hr]=dops[i+1].rs1;
8504 regmap_pre[i+1][hr]=dops[i+1].rs1;
8505 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8506 regs[i].isconst&=~(1<<hr);
8507 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8508 constmap[i][hr]=constmap[i+1][hr];
8509 regs[i+1].wasdirty&=~(1<<hr);
8510 regs[i].dirty&=~(1<<hr);
8511 }
8512 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8513 {
8514 // move it to another register
8515 regs[i+1].regmap[hr]=-1;
8516 regmap_pre[i+2][hr]=-1;
8517 regs[i+1].regmap[nr]=FTEMP;
8518 regmap_pre[i+2][nr]=FTEMP;
8519 regs[i].regmap[nr]=dops[i+1].rs1;
8520 regmap_pre[i+1][nr]=dops[i+1].rs1;
8521 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8522 regs[i].isconst&=~(1<<nr);
8523 regs[i+1].isconst&=~(1<<nr);
8524 regs[i].dirty&=~(1<<nr);
8525 regs[i+1].wasdirty&=~(1<<nr);
8526 regs[i+1].dirty&=~(1<<nr);
8527 regs[i+2].wasdirty&=~(1<<nr);
8528 }
8529 }
8530 }
8531 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
8532 hr = -1;
8533 if(dops[i+1].itype==LOAD)
8534 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
8535 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8536 hr=get_reg(regs[i+1].regmap,FTEMP);
8537 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8538 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8539 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8540 }
8541 if(hr>=0&&regs[i].regmap[hr]<0) {
8542 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8543 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8544 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8545 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8546 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8547 regs[i].isconst&=~(1<<hr);
8548 regs[i+1].wasdirty&=~(1<<hr);
8549 regs[i].dirty&=~(1<<hr);
8550 }
8551 }
8552 }
8553 }
8554 }
8555 }
8556 }
8557}
8558
8559// Write back dirty registers as soon as we will no longer modify them,
8560// so that we don't end up with lots of writes at the branches.
8561static noinline void pass6_clean_registers(int istart, int iend, int wr)
8562{
8563 static u_int wont_dirty[MAXBLOCK];
8564 static u_int will_dirty[MAXBLOCK];
8565 int i;
8566 int r;
8567 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
8568 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
8569 if(iend==slen-1) {
8570 will_dirty_i=will_dirty_next=0;
8571 wont_dirty_i=wont_dirty_next=0;
8572 }else{
8573 will_dirty_i=will_dirty_next=will_dirty[iend+1];
8574 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
8575 }
8576 for (i=iend;i>=istart;i--)
8577 {
8578 signed char rregmap_i[RRMAP_SIZE];
8579 u_int hr_candirty = 0;
8580 assert(HOST_REGS < 32);
8581 make_rregs(regs[i].regmap, rregmap_i, &hr_candirty);
8582 __builtin_prefetch(regs[i-1].regmap);
8583 if(dops[i].is_jump)
8584 {
8585 signed char branch_rregmap_i[RRMAP_SIZE];
8586 u_int branch_hr_candirty = 0;
8587 make_rregs(branch_regs[i].regmap, branch_rregmap_i, &branch_hr_candirty);
8588 if(ba[i]<start || ba[i]>=(start+slen*4))
8589 {
8590 // Branch out of this block, flush all regs
8591 will_dirty_i = 0;
8592 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8593 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8594 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8595 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8596 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8597 will_dirty_i &= branch_hr_candirty;
8598 if (dops[i].is_ujump)
8599 {
8600 // Unconditional branch
8601 wont_dirty_i = 0;
8602 // Merge in delay slot (will dirty)
8603 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8604 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8605 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8606 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8607 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8608 will_dirty_i &= hr_candirty;
8609 }
8610 else
8611 {
8612 // Conditional branch
8613 wont_dirty_i = wont_dirty_next;
8614 // Merge in delay slot (will dirty)
8615 // (the original code had no explanation why these 2 are commented out)
8616 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8617 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8618 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8619 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8620 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8621 will_dirty_i &= hr_candirty;
8622 }
8623 // Merge in delay slot (wont dirty)
8624 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8625 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8626 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8627 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8628 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8629 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8630 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8631 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8632 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8633 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8634 wont_dirty_i &= ~(1u << 31);
8635 if(wr) {
8636 #ifndef DESTRUCTIVE_WRITEBACK
8637 branch_regs[i].dirty&=wont_dirty_i;
8638 #endif
8639 branch_regs[i].dirty|=will_dirty_i;
8640 }
8641 }
8642 else
8643 {
8644 // Internal branch
8645 if(ba[i]<=start+i*4) {
8646 // Backward branch
8647 if (dops[i].is_ujump)
8648 {
8649 // Unconditional branch
8650 temp_will_dirty=0;
8651 temp_wont_dirty=0;
8652 // Merge in delay slot (will dirty)
8653 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8654 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8655 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8656 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8657 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8658 temp_will_dirty &= branch_hr_candirty;
8659 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8660 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8661 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8662 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8663 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8664 temp_will_dirty &= hr_candirty;
8665 } else {
8666 // Conditional branch (not taken case)
8667 temp_will_dirty=will_dirty_next;
8668 temp_wont_dirty=wont_dirty_next;
8669 // Merge in delay slot (will dirty)
8670 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8671 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8672 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8673 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8674 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8675 temp_will_dirty &= branch_hr_candirty;
8676 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8677 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8678 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8679 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8680 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8681 temp_will_dirty &= hr_candirty;
8682 }
8683 // Merge in delay slot (wont dirty)
8684 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8685 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8686 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8687 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8688 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8689 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8690 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8691 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8692 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8693 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8694 temp_wont_dirty &= ~(1u << 31);
8695 // Deal with changed mappings
8696 if(i<iend) {
8697 for(r=0;r<HOST_REGS;r++) {
8698 if(r!=EXCLUDE_REG) {
8699 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
8700 temp_will_dirty&=~(1<<r);
8701 temp_wont_dirty&=~(1<<r);
8702 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8703 temp_will_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8704 temp_wont_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8705 } else {
8706 temp_will_dirty|=1<<r;
8707 temp_wont_dirty|=1<<r;
8708 }
8709 }
8710 }
8711 }
8712 }
8713 if(wr) {
8714 will_dirty[i]=temp_will_dirty;
8715 wont_dirty[i]=temp_wont_dirty;
8716 pass6_clean_registers((ba[i]-start)>>2,i-1,0);
8717 }else{
8718 // Limit recursion. It can take an excessive amount
8719 // of time if there are a lot of nested loops.
8720 will_dirty[(ba[i]-start)>>2]=0;
8721 wont_dirty[(ba[i]-start)>>2]=-1;
8722 }
8723 }
8724 /*else*/ if(1)
8725 {
8726 if (dops[i].is_ujump)
8727 {
8728 // Unconditional branch
8729 will_dirty_i=0;
8730 wont_dirty_i=0;
8731 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
8732 for(r=0;r<HOST_REGS;r++) {
8733 if(r!=EXCLUDE_REG) {
8734 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
8735 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
8736 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
8737 }
8738 if(branch_regs[i].regmap[r]>=0) {
8739 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8740 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8741 }
8742 }
8743 }
8744 //}
8745 // Merge in delay slot
8746 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8747 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8748 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8749 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8750 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8751 will_dirty_i &= branch_hr_candirty;
8752 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8753 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8754 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8755 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8756 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8757 will_dirty_i &= hr_candirty;
8758 } else {
8759 // Conditional branch
8760 will_dirty_i=will_dirty_next;
8761 wont_dirty_i=wont_dirty_next;
8762 //if(ba[i]>start+i*4) // Disable recursion (for debugging)
8763 for(r=0;r<HOST_REGS;r++) {
8764 if(r!=EXCLUDE_REG) {
8765 signed char target_reg=branch_regs[i].regmap[r];
8766 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
8767 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
8768 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
8769 }
8770 else if(target_reg>=0) {
8771 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
8772 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
8773 }
8774 }
8775 }
8776 // Merge in delay slot
8777 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8778 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8779 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8780 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8781 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8782 will_dirty_i &= branch_hr_candirty;
8783 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8784 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8785 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8786 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8787 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8788 will_dirty_i &= hr_candirty;
8789 }
8790 // Merge in delay slot (won't dirty)
8791 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8792 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8793 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8794 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8795 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8796 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8797 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8798 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8799 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8800 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8801 wont_dirty_i &= ~(1u << 31);
8802 if(wr) {
8803 #ifndef DESTRUCTIVE_WRITEBACK
8804 branch_regs[i].dirty&=wont_dirty_i;
8805 #endif
8806 branch_regs[i].dirty|=will_dirty_i;
8807 }
8808 }
8809 }
8810 }
8811 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8812 {
8813 // SYSCALL instruction (software interrupt)
8814 will_dirty_i=0;
8815 wont_dirty_i=0;
8816 }
8817 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8818 {
8819 // ERET instruction (return from interrupt)
8820 will_dirty_i=0;
8821 wont_dirty_i=0;
8822 }
8823 will_dirty_next=will_dirty_i;
8824 wont_dirty_next=wont_dirty_i;
8825 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8826 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8827 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8828 will_dirty_i &= hr_candirty;
8829 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8830 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8831 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8832 wont_dirty_i &= ~(1u << 31);
8833 if (i > istart && !dops[i].is_jump) {
8834 // Don't store a register immediately after writing it,
8835 // may prevent dual-issue.
8836 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt1) & 31);
8837 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt2) & 31);
8838 }
8839 // Save it
8840 will_dirty[i]=will_dirty_i;
8841 wont_dirty[i]=wont_dirty_i;
8842 // Mark registers that won't be dirtied as not dirty
8843 if(wr) {
8844 regs[i].dirty|=will_dirty_i;
8845 #ifndef DESTRUCTIVE_WRITEBACK
8846 regs[i].dirty&=wont_dirty_i;
8847 if(dops[i].is_jump)
8848 {
8849 if (i < iend-1 && !dops[i].is_ujump) {
8850 for(r=0;r<HOST_REGS;r++) {
8851 if(r!=EXCLUDE_REG) {
8852 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
8853 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
8854 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8855 }
8856 }
8857 }
8858 }
8859 else
8860 {
8861 if(i<iend) {
8862 for(r=0;r<HOST_REGS;r++) {
8863 if(r!=EXCLUDE_REG) {
8864 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
8865 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
8866 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8867 }
8868 }
8869 }
8870 }
8871 #endif
8872 }
8873 // Deal with changed mappings
8874 temp_will_dirty=will_dirty_i;
8875 temp_wont_dirty=wont_dirty_i;
8876 for(r=0;r<HOST_REGS;r++) {
8877 if(r!=EXCLUDE_REG) {
8878 int nr;
8879 if(regs[i].regmap[r]==regmap_pre[i][r]) {
8880 if(wr) {
8881 #ifndef DESTRUCTIVE_WRITEBACK
8882 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8883 #endif
8884 regs[i].wasdirty|=will_dirty_i&(1<<r);
8885 }
8886 }
8887 else if(regmap_pre[i][r]>=0&&(nr=get_rreg(rregmap_i,regmap_pre[i][r]))>=0) {
8888 // Register moved to a different register
8889 will_dirty_i&=~(1<<r);
8890 wont_dirty_i&=~(1<<r);
8891 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
8892 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
8893 if(wr) {
8894 #ifndef DESTRUCTIVE_WRITEBACK
8895 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8896 #endif
8897 regs[i].wasdirty|=will_dirty_i&(1<<r);
8898 }
8899 }
8900 else {
8901 will_dirty_i&=~(1<<r);
8902 wont_dirty_i&=~(1<<r);
8903 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8904 will_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8905 wont_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8906 } else {
8907 wont_dirty_i|=1<<r;
8908 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
8909 }
8910 }
8911 }
8912 }
8913 }
8914}
8915
8916static noinline void pass10_expire_blocks(void)
8917{
8918 u_int step = MAX_OUTPUT_BLOCK_SIZE / PAGE_COUNT / 2;
8919 // not sizeof(ndrc->translation_cache) due to vita hack
8920 u_int step_mask = ((1u << TARGET_SIZE_2) - 1u) & ~(step - 1u);
8921 u_int end = (out - ndrc->translation_cache + EXPIRITY_OFFSET) & step_mask;
8922 u_int base_shift = __builtin_ctz(MAX_OUTPUT_BLOCK_SIZE);
8923 int hit;
8924
8925 for (; expirep != end; expirep = ((expirep + step) & step_mask))
8926 {
8927 u_int base_offs = expirep & ~(MAX_OUTPUT_BLOCK_SIZE - 1);
8928 u_int block_i = expirep / step & (PAGE_COUNT - 1);
8929 u_int phase = (expirep >> (base_shift - 1)) & 1u;
8930 if (!(expirep & (MAX_OUTPUT_BLOCK_SIZE / 2 - 1))) {
8931 inv_debug("EXP: base_offs %x/%lx phase %u\n", base_offs,
8932 (long)(out - ndrc->translation_cache), phase);
8933 }
8934
8935 if (!phase) {
8936 hit = blocks_remove_matching_addrs(&blocks[block_i], base_offs, base_shift);
8937 if (hit) {
8938 do_clear_cache();
8939 #ifdef USE_MINI_HT
8940 memset(mini_ht, -1, sizeof(mini_ht));
8941 #endif
8942 }
8943 }
8944 else
8945 unlink_jumps_tc_range(jumps[block_i], base_offs, base_shift);
8946 }
8947}
8948
8949static struct block_info *new_block_info(u_int start, u_int len,
8950 const void *source, const void *copy, u_char *beginning, u_short jump_in_count)
8951{
8952 struct block_info **b_pptr;
8953 struct block_info *block;
8954 u_int page = get_page(start);
8955
8956 block = malloc(sizeof(*block) + jump_in_count * sizeof(block->jump_in[0]));
8957 assert(block);
8958 assert(jump_in_count > 0);
8959 block->source = source;
8960 block->copy = copy;
8961 block->start = start;
8962 block->len = len;
8963 block->reg_sv_flags = 0;
8964 block->tc_offs = beginning - ndrc->translation_cache;
8965 //block->tc_len = out - beginning;
8966 block->is_dirty = 0;
8967 block->inv_near_misses = 0;
8968 block->jump_in_cnt = jump_in_count;
8969
8970 // insert sorted by start mirror-unmasked vaddr
8971 for (b_pptr = &blocks[page]; ; b_pptr = &((*b_pptr)->next)) {
8972 if (*b_pptr == NULL || (*b_pptr)->start >= start) {
8973 block->next = *b_pptr;
8974 *b_pptr = block;
8975 break;
8976 }
8977 }
8978 stat_inc(stat_blocks);
8979 return block;
8980}
8981
8982static int new_recompile_block(u_int addr)
8983{
8984 u_int pagelimit = 0;
8985 u_int state_rflags = 0;
8986 int i;
8987
8988 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
8989
8990 // this is just for speculation
8991 for (i = 1; i < 32; i++) {
8992 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
8993 state_rflags |= 1 << i;
8994 }
8995
8996 assert(!(addr & 3));
8997 start = addr & ~3;
8998 new_dynarec_did_compile=1;
8999 if (Config.HLE && start == 0x80001000) // hlecall
9000 {
9001 // XXX: is this enough? Maybe check hleSoftCall?
9002 void *beginning = start_block();
9003
9004 emit_movimm(start,0);
9005 emit_writeword(0,&pcaddr);
9006 emit_far_jump(new_dyna_leave);
9007 literal_pool(0);
9008 end_block(beginning);
9009 struct block_info *block = new_block_info(start, 4, NULL, NULL, beginning, 1);
9010 block->jump_in[0].vaddr = start;
9011 block->jump_in[0].addr = beginning;
9012 return 0;
9013 }
9014 else if (f1_hack && hack_addr == 0) {
9015 void *beginning = start_block();
9016 emit_movimm(start, 0);
9017 emit_writeword(0, &hack_addr);
9018 emit_readword(&psxRegs.GPR.n.sp, 0);
9019 emit_readptr(&mem_rtab, 1);
9020 emit_shrimm(0, 12, 2);
9021 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
9022 emit_addimm(0, 0x18, 0);
9023 emit_adds_ptr(1, 1, 1);
9024 emit_ldr_dualindexed(1, 0, 0);
9025 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
9026 emit_far_call(ndrc_get_addr_ht);
9027 emit_jmpreg(0); // jr k0
9028 literal_pool(0);
9029 end_block(beginning);
9030
9031 struct block_info *block = new_block_info(start, 4, NULL, NULL, beginning, 1);
9032 block->jump_in[0].vaddr = start;
9033 block->jump_in[0].addr = beginning;
9034 SysPrintf("F1 hack to %08x\n", start);
9035 return 0;
9036 }
9037
9038 cycle_multiplier_active = Config.cycle_multiplier_override && Config.cycle_multiplier == CYCLE_MULT_DEFAULT
9039 ? Config.cycle_multiplier_override : Config.cycle_multiplier;
9040
9041 source = get_source_start(start, &pagelimit);
9042 if (source == NULL) {
9043 if (addr != hack_addr) {
9044 SysPrintf("Compile at bogus memory address: %08x\n", addr);
9045 hack_addr = addr;
9046 }
9047 //abort();
9048 return -1;
9049 }
9050
9051 /* Pass 1: disassemble */
9052 /* Pass 2: register dependencies, branch targets */
9053 /* Pass 3: register allocation */
9054 /* Pass 4: branch dependencies */
9055 /* Pass 5: pre-alloc */
9056 /* Pass 6: optimize clean/dirty state */
9057 /* Pass 7: flag 32-bit registers */
9058 /* Pass 8: assembly */
9059 /* Pass 9: linker */
9060 /* Pass 10: garbage collection / free memory */
9061
9062 /* Pass 1 disassembly */
9063
9064 pass1_disassemble(pagelimit);
9065
9066 int clear_hack_addr = apply_hacks();
9067
9068 /* Pass 2 - Register dependencies and branch targets */
9069
9070 pass2_unneeded_regs(0,slen-1,0);
9071
9072 /* Pass 3 - Register allocation */
9073
9074 pass3_register_alloc(addr);
9075
9076 /* Pass 4 - Cull unused host registers */
9077
9078 pass4_cull_unused_regs();
9079
9080 /* Pass 5 - Pre-allocate registers */
9081
9082 pass5a_preallocate1();
9083 pass5b_preallocate2();
9084
9085 /* Pass 6 - Optimize clean/dirty state */
9086 pass6_clean_registers(0, slen-1, 1);
9087
9088 /* Pass 7 - Identify 32-bit registers */
9089 for (i=slen-1;i>=0;i--)
9090 {
9091 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
9092 {
9093 // Conditional branch
9094 if((source[i]>>16)!=0x1000&&i<slen-2) {
9095 // Mark this address as a branch target since it may be called
9096 // upon return from interrupt
9097 dops[i+2].bt=1;
9098 }
9099 }
9100 }
9101
9102 /* Pass 8 - Assembly */
9103 linkcount=0;stubcount=0;
9104 is_delayslot=0;
9105 u_int dirty_pre=0;
9106 void *beginning=start_block();
9107 void *instr_addr0_override = NULL;
9108 int ds = 0;
9109
9110 if (start == 0x80030000) {
9111 // nasty hack for the fastbios thing
9112 // override block entry to this code
9113 instr_addr0_override = out;
9114 emit_movimm(start,0);
9115 // abuse io address var as a flag that we
9116 // have already returned here once
9117 emit_readword(&address,1);
9118 emit_writeword(0,&pcaddr);
9119 emit_writeword(0,&address);
9120 emit_cmp(0,1);
9121 #ifdef __aarch64__
9122 emit_jeq(out + 4*2);
9123 emit_far_jump(new_dyna_leave);
9124 #else
9125 emit_jne(new_dyna_leave);
9126 #endif
9127 }
9128 for(i=0;i<slen;i++)
9129 {
9130 __builtin_prefetch(regs[i+1].regmap);
9131 check_regmap(regmap_pre[i]);
9132 check_regmap(regs[i].regmap_entry);
9133 check_regmap(regs[i].regmap);
9134 //if(ds) printf("ds: ");
9135 disassemble_inst(i);
9136 if(ds) {
9137 ds=0; // Skip delay slot
9138 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
9139 instr_addr[i] = NULL;
9140 } else {
9141 speculate_register_values(i);
9142 #ifndef DESTRUCTIVE_WRITEBACK
9143 if (i < 2 || !dops[i-2].is_ujump)
9144 {
9145 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9146 }
9147 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
9148 dirty_pre=branch_regs[i].dirty;
9149 }else{
9150 dirty_pre=regs[i].dirty;
9151 }
9152 #endif
9153 // write back
9154 if (i < 2 || !dops[i-2].is_ujump)
9155 {
9156 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9157 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9158 }
9159 // branch target entry point
9160 instr_addr[i] = out;
9161 assem_debug("<->\n");
9162 drc_dbg_emit_do_cmp(i, ccadj[i]);
9163 if (clear_hack_addr) {
9164 emit_movimm(0, 0);
9165 emit_writeword(0, &hack_addr);
9166 clear_hack_addr = 0;
9167 }
9168
9169 // load regs
9170 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9171 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9172 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9173 address_generation(i,&regs[i],regs[i].regmap_entry);
9174 load_consts(regmap_pre[i],regs[i].regmap,i);
9175 if(dops[i].is_jump)
9176 {
9177 // Load the delay slot registers if necessary
9178 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9179 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9180 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9181 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9182 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
9183 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
9184 if (dops[i+1].is_store)
9185 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
9186 }
9187 else if(i+1<slen)
9188 {
9189 // Preload registers for following instruction
9190 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9191 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9192 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9193 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9194 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9195 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9196 }
9197 // TODO: if(is_ooo(i)) address_generation(i+1);
9198 if (!dops[i].is_jump || dops[i].itype == CJUMP)
9199 load_reg(regs[i].regmap_entry,regs[i].regmap,CCREG);
9200 if (ram_offset && (dops[i].is_load || dops[i].is_store))
9201 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
9202 if (dops[i].is_store)
9203 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
9204
9205 ds = assemble(i, &regs[i], ccadj[i]);
9206
9207 if (dops[i].is_ujump)
9208 literal_pool(1024);
9209 else
9210 literal_pool_jumpover(256);
9211 }
9212 }
9213
9214 assert(slen > 0);
9215 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9216 // no ending needed for this block since INTCALL never returns
9217 }
9218 // If the block did not end with an unconditional branch,
9219 // add a jump to the next instruction.
9220 else if (i > 1) {
9221 if (!dops[i-2].is_ujump) {
9222 assert(!dops[i-1].is_jump);
9223 assert(i==slen);
9224 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9225 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9226 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9227 emit_loadreg(CCREG,HOST_CCREG);
9228 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9229 }
9230 else
9231 {
9232 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9233 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9234 }
9235 add_to_linker(out,start+i*4,0);
9236 emit_jmp(0);
9237 }
9238 }
9239 else
9240 {
9241 assert(i>0);
9242 assert(!dops[i-1].is_jump);
9243 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9244 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9245 emit_loadreg(CCREG,HOST_CCREG);
9246 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9247 add_to_linker(out,start+i*4,0);
9248 emit_jmp(0);
9249 }
9250
9251 // TODO: delay slot stubs?
9252 // Stubs
9253 for(i=0;i<stubcount;i++)
9254 {
9255 switch(stubs[i].type)
9256 {
9257 case LOADB_STUB:
9258 case LOADH_STUB:
9259 case LOADW_STUB:
9260 case LOADD_STUB:
9261 case LOADBU_STUB:
9262 case LOADHU_STUB:
9263 do_readstub(i);break;
9264 case STOREB_STUB:
9265 case STOREH_STUB:
9266 case STOREW_STUB:
9267 case STORED_STUB:
9268 do_writestub(i);break;
9269 case CC_STUB:
9270 do_ccstub(i);break;
9271 case INVCODE_STUB:
9272 do_invstub(i);break;
9273 case FP_STUB:
9274 do_cop1stub(i);break;
9275 case STORELR_STUB:
9276 do_unalignedwritestub(i);break;
9277 }
9278 }
9279
9280 if (instr_addr0_override)
9281 instr_addr[0] = instr_addr0_override;
9282
9283#if 0
9284 /* check for improper expiration */
9285 for (i = 0; i < ARRAY_SIZE(jumps); i++) {
9286 int j;
9287 if (!jumps[i])
9288 continue;
9289 for (j = 0; j < jumps[i]->count; j++)
9290 assert(jumps[i]->e[j].stub < beginning || (u_char *)jumps[i]->e[j].stub > out);
9291 }
9292#endif
9293
9294 /* Pass 9 - Linker */
9295 for(i=0;i<linkcount;i++)
9296 {
9297 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9298 literal_pool(64);
9299 if (!link_addr[i].internal)
9300 {
9301 void *stub = out;
9302 void *addr = check_addr(link_addr[i].target);
9303 emit_extjump(link_addr[i].addr, link_addr[i].target);
9304 if (addr) {
9305 set_jump_target(link_addr[i].addr, addr);
9306 ndrc_add_jump_out(link_addr[i].target,stub);
9307 }
9308 else
9309 set_jump_target(link_addr[i].addr, stub);
9310 }
9311 else
9312 {
9313 // Internal branch
9314 int target=(link_addr[i].target-start)>>2;
9315 assert(target>=0&&target<slen);
9316 assert(instr_addr[target]);
9317 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9318 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9319 //#else
9320 set_jump_target(link_addr[i].addr, instr_addr[target]);
9321 //#endif
9322 }
9323 }
9324
9325 u_int source_len = slen*4;
9326 if (dops[slen-1].itype == INTCALL && source_len > 4)
9327 // no need to treat the last instruction as compiled
9328 // as interpreter fully handles it
9329 source_len -= 4;
9330
9331 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9332 copy = shadow;
9333
9334 // External Branch Targets (jump_in)
9335 int jump_in_count = 1;
9336 assert(instr_addr[0]);
9337 for (i = 1; i < slen; i++)
9338 {
9339 if (dops[i].bt && instr_addr[i])
9340 jump_in_count++;
9341 }
9342
9343 struct block_info *block =
9344 new_block_info(start, slen * 4, source, copy, beginning, jump_in_count);
9345 block->reg_sv_flags = state_rflags;
9346
9347 int jump_in_i = 0;
9348 for (i = 0; i < slen; i++)
9349 {
9350 if ((i == 0 || dops[i].bt) && instr_addr[i])
9351 {
9352 assem_debug("%p (%d) <- %8x\n", instr_addr[i], i, start + i*4);
9353 u_int vaddr = start + i*4;
9354
9355 literal_pool(256);
9356 void *entry = out;
9357 load_regs_entry(i);
9358 if (entry == out)
9359 entry = instr_addr[i];
9360 else
9361 emit_jmp(instr_addr[i]);
9362
9363 block->jump_in[jump_in_i].vaddr = vaddr;
9364 block->jump_in[jump_in_i].addr = entry;
9365 jump_in_i++;
9366 }
9367 }
9368 assert(jump_in_i == jump_in_count);
9369 hash_table_add(block->jump_in[0].vaddr, block->jump_in[0].addr);
9370 // Write out the literal pool if necessary
9371 literal_pool(0);
9372 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9373 // Align code
9374 if(((u_int)out)&7) emit_addnop(13);
9375 #endif
9376 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9377 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9378 memcpy(copy, source, source_len);
9379 copy += source_len;
9380
9381 end_block(beginning);
9382
9383 // If we're within 256K of the end of the buffer,
9384 // start over from the beginning. (Is 256K enough?)
9385 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9386 out = ndrc->translation_cache;
9387
9388 // Trap writes to any of the pages we compiled
9389 mark_invalid_code(start, slen*4, 0);
9390
9391 /* Pass 10 - Free memory by expiring oldest blocks */
9392
9393 pass10_expire_blocks();
9394
9395#ifdef ASSEM_PRINT
9396 fflush(stdout);
9397#endif
9398 stat_inc(stat_bc_direct);
9399 return 0;
9400}
9401
9402// vim:shiftwidth=2:expandtab