drc: handle a corner case with SLT
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "emu_if.h" //emulator interface
41
42#define noinline __attribute__((noinline,noclone))
43#ifndef ARRAY_SIZE
44#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
45#endif
46
47//#define DISASM
48//#define assem_debug printf
49//#define inv_debug printf
50#define assem_debug(...)
51#define inv_debug(...)
52
53#ifdef __i386__
54#include "assem_x86.h"
55#endif
56#ifdef __x86_64__
57#include "assem_x64.h"
58#endif
59#ifdef __arm__
60#include "assem_arm.h"
61#endif
62#ifdef __aarch64__
63#include "assem_arm64.h"
64#endif
65
66#define MAXBLOCK 4096
67#define MAX_OUTPUT_BLOCK_SIZE 262144
68
69struct ndrc_mem
70{
71 u_char translation_cache[1 << TARGET_SIZE_2];
72 struct
73 {
74 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
75 const void *f[2048 / sizeof(void *)];
76 } tramp;
77};
78
79#ifdef BASE_ADDR_DYNAMIC
80static struct ndrc_mem *ndrc;
81#else
82static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
83static struct ndrc_mem *ndrc = &ndrc_;
84#endif
85
86// stubs
87enum stub_type {
88 CC_STUB = 1,
89 FP_STUB = 2,
90 LOADB_STUB = 3,
91 LOADH_STUB = 4,
92 LOADW_STUB = 5,
93 LOADD_STUB = 6,
94 LOADBU_STUB = 7,
95 LOADHU_STUB = 8,
96 STOREB_STUB = 9,
97 STOREH_STUB = 10,
98 STOREW_STUB = 11,
99 STORED_STUB = 12,
100 STORELR_STUB = 13,
101 INVCODE_STUB = 14,
102};
103
104struct regstat
105{
106 signed char regmap_entry[HOST_REGS];
107 signed char regmap[HOST_REGS];
108 uint64_t wasdirty;
109 uint64_t dirty;
110 uint64_t u;
111 u_int wasconst;
112 u_int isconst;
113 u_int loadedconst; // host regs that have constants loaded
114 u_int waswritten; // MIPS regs that were used as store base before
115};
116
117// note: asm depends on this layout
118struct ll_entry
119{
120 u_int vaddr;
121 u_int reg_sv_flags;
122 void *addr;
123 struct ll_entry *next;
124};
125
126struct ht_entry
127{
128 u_int vaddr[2];
129 void *tcaddr[2];
130};
131
132struct code_stub
133{
134 enum stub_type type;
135 void *addr;
136 void *retaddr;
137 u_int a;
138 uintptr_t b;
139 uintptr_t c;
140 u_int d;
141 u_int e;
142};
143
144struct link_entry
145{
146 void *addr;
147 u_int target;
148 u_int ext;
149};
150
151 // used by asm:
152 u_char *out;
153 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
154 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
155 struct ll_entry *jump_dirty[4096];
156
157 static struct ll_entry *jump_out[4096];
158 static u_int start;
159 static u_int *source;
160 static char insn[MAXBLOCK][10];
161 static u_char itype[MAXBLOCK];
162 static u_char opcode[MAXBLOCK];
163 static u_char opcode2[MAXBLOCK];
164 static u_char bt[MAXBLOCK];
165 static u_char rs1[MAXBLOCK];
166 static u_char rs2[MAXBLOCK];
167 static u_char rt1[MAXBLOCK];
168 static u_char rt2[MAXBLOCK];
169 static u_char dep1[MAXBLOCK];
170 static u_char dep2[MAXBLOCK];
171 static u_char lt1[MAXBLOCK];
172 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
173 static uint64_t gte_rt[MAXBLOCK];
174 static uint64_t gte_unneeded[MAXBLOCK];
175 static u_int smrv[32]; // speculated MIPS register values
176 static u_int smrv_strong; // mask or regs that are likely to have correct values
177 static u_int smrv_weak; // same, but somewhat less likely
178 static u_int smrv_strong_next; // same, but after current insn executes
179 static u_int smrv_weak_next;
180 static int imm[MAXBLOCK];
181 static u_int ba[MAXBLOCK];
182 static char likely[MAXBLOCK];
183 static char is_ds[MAXBLOCK];
184 static char ooo[MAXBLOCK];
185 static uint64_t unneeded_reg[MAXBLOCK];
186 static uint64_t branch_unneeded_reg[MAXBLOCK];
187 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
188 static uint64_t current_constmap[HOST_REGS];
189 static uint64_t constmap[MAXBLOCK][HOST_REGS];
190 static struct regstat regs[MAXBLOCK];
191 static struct regstat branch_regs[MAXBLOCK];
192 static signed char minimum_free_regs[MAXBLOCK];
193 static u_int needed_reg[MAXBLOCK];
194 static u_int wont_dirty[MAXBLOCK];
195 static u_int will_dirty[MAXBLOCK];
196 static int ccadj[MAXBLOCK];
197 static int slen;
198 static void *instr_addr[MAXBLOCK];
199 static struct link_entry link_addr[MAXBLOCK];
200 static int linkcount;
201 static struct code_stub stubs[MAXBLOCK*3];
202 static int stubcount;
203 static u_int literals[1024][2];
204 static int literalcount;
205 static int is_delayslot;
206 static char shadow[1048576] __attribute__((aligned(16)));
207 static void *copy;
208 static int expirep;
209 static u_int stop_after_jal;
210#ifndef RAM_FIXED
211 static uintptr_t ram_offset;
212#else
213 static const uintptr_t ram_offset=0;
214#endif
215
216 int new_dynarec_hacks;
217 int new_dynarec_did_compile;
218
219 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
220 extern int last_count; // last absolute target, often = next_interupt
221 extern int pcaddr;
222 extern int pending_exception;
223 extern int branch_target;
224 extern uintptr_t mini_ht[32][2];
225 extern u_char restore_candidate[512];
226
227 /* registers that may be allocated */
228 /* 1-31 gpr */
229#define LOREG 32 // lo
230#define HIREG 33 // hi
231//#define FSREG 34 // FPU status (FCSR)
232#define CSREG 35 // Coprocessor status
233#define CCREG 36 // Cycle count
234#define INVCP 37 // Pointer to invalid_code
235//#define MMREG 38 // Pointer to memory_map
236//#define ROREG 39 // ram offset (if rdram!=0x80000000)
237#define TEMPREG 40
238#define FTEMP 40 // FPU temporary register
239#define PTEMP 41 // Prefetch temporary register
240//#define TLREG 42 // TLB mapping offset
241#define RHASH 43 // Return address hash
242#define RHTBL 44 // Return address hash table address
243#define RTEMP 45 // JR/JALR address register
244#define MAXREG 45
245#define AGEN1 46 // Address generation temporary register
246//#define AGEN2 47 // Address generation temporary register
247//#define MGEN1 48 // Maptable address generation temporary register
248//#define MGEN2 49 // Maptable address generation temporary register
249#define BTREG 50 // Branch target temporary register
250
251 /* instruction types */
252#define NOP 0 // No operation
253#define LOAD 1 // Load
254#define STORE 2 // Store
255#define LOADLR 3 // Unaligned load
256#define STORELR 4 // Unaligned store
257#define MOV 5 // Move
258#define ALU 6 // Arithmetic/logic
259#define MULTDIV 7 // Multiply/divide
260#define SHIFT 8 // Shift by register
261#define SHIFTIMM 9// Shift by immediate
262#define IMM16 10 // 16-bit immediate
263#define RJUMP 11 // Unconditional jump to register
264#define UJUMP 12 // Unconditional jump
265#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
266#define SJUMP 14 // Conditional branch (regimm format)
267#define COP0 15 // Coprocessor 0
268#define COP1 16 // Coprocessor 1
269#define C1LS 17 // Coprocessor 1 load/store
270//#define FJUMP 18 // Conditional branch (floating point)
271//#define FLOAT 19 // Floating point unit
272//#define FCONV 20 // Convert integer to float
273//#define FCOMP 21 // Floating point compare (sets FSREG)
274#define SYSCALL 22// SYSCALL
275#define OTHER 23 // Other
276#define SPAN 24 // Branch/delay slot spans 2 pages
277#define NI 25 // Not implemented
278#define HLECALL 26// PCSX fake opcodes for HLE
279#define COP2 27 // Coprocessor 2 move
280#define C2LS 28 // Coprocessor 2 load/store
281#define C2OP 29 // Coprocessor 2 operation
282#define INTCALL 30// Call interpreter to handle rare corner cases
283
284 /* branch codes */
285#define TAKEN 1
286#define NOTTAKEN 2
287#define NULLDS 3
288
289#define DJT_1 (void *)1l // no function, just a label in assem_debug log
290#define DJT_2 (void *)2l
291
292// asm linkage
293int new_recompile_block(u_int addr);
294void *get_addr_ht(u_int vaddr);
295void invalidate_block(u_int block);
296void invalidate_addr(u_int addr);
297void remove_hash(int vaddr);
298void dyna_linker();
299void dyna_linker_ds();
300void verify_code();
301void verify_code_ds();
302void cc_interrupt();
303void fp_exception();
304void fp_exception_ds();
305void jump_to_new_pc();
306void new_dyna_leave();
307
308// Needed by assembler
309static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
310static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
311static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
312static void load_all_regs(signed char i_regmap[]);
313static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
314static void load_regs_entry(int t);
315static void load_all_consts(signed char regmap[],u_int dirty,int i);
316
317static int verify_dirty(const u_int *ptr);
318static int get_final_value(int hr, int i, int *value);
319static void add_stub(enum stub_type type, void *addr, void *retaddr,
320 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
321static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
322 int i, int addr_reg, struct regstat *i_regs, int ccadj, u_int reglist);
323static void add_to_linker(void *addr, u_int target, int ext);
324static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override);
325static void *get_direct_memhandler(void *table, u_int addr,
326 enum stub_type type, uintptr_t *addr_host);
327static void pass_args(int a0, int a1);
328static void emit_far_jump(const void *f);
329static void emit_far_call(const void *f);
330
331static void mprotect_w_x(void *start, void *end, int is_x)
332{
333#ifdef NO_WRITE_EXEC
334 #if defined(VITA)
335 // *Open* enables write on all memory that was
336 // allocated by sceKernelAllocMemBlockForVM()?
337 if (is_x)
338 sceKernelCloseVMDomain();
339 else
340 sceKernelOpenVMDomain();
341 #else
342 u_long mstart = (u_long)start & ~4095ul;
343 u_long mend = (u_long)end;
344 if (mprotect((void *)mstart, mend - mstart,
345 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
346 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
347 #endif
348#endif
349}
350
351static void start_tcache_write(void *start, void *end)
352{
353 mprotect_w_x(start, end, 0);
354}
355
356static void end_tcache_write(void *start, void *end)
357{
358#if defined(__arm__) || defined(__aarch64__)
359 size_t len = (char *)end - (char *)start;
360 #if defined(__BLACKBERRY_QNX__)
361 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
362 #elif defined(__MACH__)
363 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
364 #elif defined(VITA)
365 sceKernelSyncVMDomain(sceBlock, start, len);
366 #elif defined(_3DS)
367 ctr_flush_invalidate_cache();
368 #elif defined(__aarch64__)
369 // as of 2021, __clear_cache() is still broken on arm64
370 // so here is a custom one :(
371 clear_cache_arm64(start, end);
372 #else
373 __clear_cache(start, end);
374 #endif
375 (void)len;
376#endif
377
378 mprotect_w_x(start, end, 1);
379}
380
381static void *start_block(void)
382{
383 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
384 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
385 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
386 start_tcache_write(out, end);
387 return out;
388}
389
390static void end_block(void *start)
391{
392 end_tcache_write(start, out);
393}
394
395// also takes care of w^x mappings when patching code
396static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
397
398static void mark_clear_cache(void *target)
399{
400 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
401 u_int mask = 1u << ((offset >> 12) & 31);
402 if (!(needs_clear_cache[offset >> 17] & mask)) {
403 char *start = (char *)((uintptr_t)target & ~4095l);
404 start_tcache_write(start, start + 4095);
405 needs_clear_cache[offset >> 17] |= mask;
406 }
407}
408
409// Clearing the cache is rather slow on ARM Linux, so mark the areas
410// that need to be cleared, and then only clear these areas once.
411static void do_clear_cache(void)
412{
413 int i, j;
414 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
415 {
416 u_int bitmap = needs_clear_cache[i];
417 if (!bitmap)
418 continue;
419 for (j = 0; j < 32; j++)
420 {
421 u_char *start, *end;
422 if (!(bitmap & (1<<j)))
423 continue;
424
425 start = ndrc->translation_cache + i*131072 + j*4096;
426 end = start + 4095;
427 for (j++; j < 32; j++) {
428 if (!(bitmap & (1<<j)))
429 break;
430 end += 4096;
431 }
432 end_tcache_write(start, end);
433 }
434 needs_clear_cache[i] = 0;
435 }
436}
437
438//#define DEBUG_CYCLE_COUNT 1
439
440#define NO_CYCLE_PENALTY_THR 12
441
442int cycle_multiplier; // 100 for 1.0
443
444static int CLOCK_ADJUST(int x)
445{
446 int s=(x>>31)|1;
447 return (x * cycle_multiplier + s * 50) / 100;
448}
449
450static u_int get_page(u_int vaddr)
451{
452 u_int page=vaddr&~0xe0000000;
453 if (page < 0x1000000)
454 page &= ~0x0e00000; // RAM mirrors
455 page>>=12;
456 if(page>2048) page=2048+(page&2047);
457 return page;
458}
459
460// no virtual mem in PCSX
461static u_int get_vpage(u_int vaddr)
462{
463 return get_page(vaddr);
464}
465
466static struct ht_entry *hash_table_get(u_int vaddr)
467{
468 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
469}
470
471static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
472{
473 ht_bin->vaddr[1] = ht_bin->vaddr[0];
474 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
475 ht_bin->vaddr[0] = vaddr;
476 ht_bin->tcaddr[0] = tcaddr;
477}
478
479// some messy ari64's code, seems to rely on unsigned 32bit overflow
480static int doesnt_expire_soon(void *tcaddr)
481{
482 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
483 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
484}
485
486// Get address from virtual address
487// This is called from the recompiled JR/JALR instructions
488void noinline *get_addr(u_int vaddr)
489{
490 u_int page=get_page(vaddr);
491 u_int vpage=get_vpage(vaddr);
492 struct ll_entry *head;
493 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
494 head=jump_in[page];
495 while(head!=NULL) {
496 if(head->vaddr==vaddr) {
497 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
498 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
499 return head->addr;
500 }
501 head=head->next;
502 }
503 head=jump_dirty[vpage];
504 while(head!=NULL) {
505 if(head->vaddr==vaddr) {
506 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
507 // Don't restore blocks which are about to expire from the cache
508 if (doesnt_expire_soon(head->addr))
509 if (verify_dirty(head->addr)) {
510 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
511 invalid_code[vaddr>>12]=0;
512 inv_code_start=inv_code_end=~0;
513 if(vpage<2048) {
514 restore_candidate[vpage>>3]|=1<<(vpage&7);
515 }
516 else restore_candidate[page>>3]|=1<<(page&7);
517 struct ht_entry *ht_bin = hash_table_get(vaddr);
518 if (ht_bin->vaddr[0] == vaddr)
519 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
520 else
521 hash_table_add(ht_bin, vaddr, head->addr);
522
523 return head->addr;
524 }
525 }
526 head=head->next;
527 }
528 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
529 int r=new_recompile_block(vaddr);
530 if(r==0) return get_addr(vaddr);
531 // Execute in unmapped page, generate pagefault execption
532 Status|=2;
533 Cause=(vaddr<<31)|0x8;
534 EPC=(vaddr&1)?vaddr-5:vaddr;
535 BadVAddr=(vaddr&~1);
536 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
537 EntryHi=BadVAddr&0xFFFFE000;
538 return get_addr_ht(0x80000000);
539}
540// Look up address in hash table first
541void *get_addr_ht(u_int vaddr)
542{
543 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
544 const struct ht_entry *ht_bin = hash_table_get(vaddr);
545 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
546 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
547 return get_addr(vaddr);
548}
549
550void clear_all_regs(signed char regmap[])
551{
552 int hr;
553 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
554}
555
556static signed char get_reg(const signed char regmap[],int r)
557{
558 int hr;
559 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
560 return -1;
561}
562
563// Find a register that is available for two consecutive cycles
564static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
565{
566 int hr;
567 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
568 return -1;
569}
570
571int count_free_regs(signed char regmap[])
572{
573 int count=0;
574 int hr;
575 for(hr=0;hr<HOST_REGS;hr++)
576 {
577 if(hr!=EXCLUDE_REG) {
578 if(regmap[hr]<0) count++;
579 }
580 }
581 return count;
582}
583
584void dirty_reg(struct regstat *cur,signed char reg)
585{
586 int hr;
587 if(!reg) return;
588 for (hr=0;hr<HOST_REGS;hr++) {
589 if((cur->regmap[hr]&63)==reg) {
590 cur->dirty|=1<<hr;
591 }
592 }
593}
594
595void set_const(struct regstat *cur,signed char reg,uint64_t value)
596{
597 int hr;
598 if(!reg) return;
599 for (hr=0;hr<HOST_REGS;hr++) {
600 if(cur->regmap[hr]==reg) {
601 cur->isconst|=1<<hr;
602 current_constmap[hr]=value;
603 }
604 }
605}
606
607void clear_const(struct regstat *cur,signed char reg)
608{
609 int hr;
610 if(!reg) return;
611 for (hr=0;hr<HOST_REGS;hr++) {
612 if((cur->regmap[hr]&63)==reg) {
613 cur->isconst&=~(1<<hr);
614 }
615 }
616}
617
618int is_const(struct regstat *cur,signed char reg)
619{
620 int hr;
621 if(reg<0) return 0;
622 if(!reg) return 1;
623 for (hr=0;hr<HOST_REGS;hr++) {
624 if((cur->regmap[hr]&63)==reg) {
625 return (cur->isconst>>hr)&1;
626 }
627 }
628 return 0;
629}
630uint64_t get_const(struct regstat *cur,signed char reg)
631{
632 int hr;
633 if(!reg) return 0;
634 for (hr=0;hr<HOST_REGS;hr++) {
635 if(cur->regmap[hr]==reg) {
636 return current_constmap[hr];
637 }
638 }
639 SysPrintf("Unknown constant in r%d\n",reg);
640 abort();
641}
642
643// Least soon needed registers
644// Look at the next ten instructions and see which registers
645// will be used. Try not to reallocate these.
646void lsn(u_char hsn[], int i, int *preferred_reg)
647{
648 int j;
649 int b=-1;
650 for(j=0;j<9;j++)
651 {
652 if(i+j>=slen) {
653 j=slen-i-1;
654 break;
655 }
656 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
657 {
658 // Don't go past an unconditonal jump
659 j++;
660 break;
661 }
662 }
663 for(;j>=0;j--)
664 {
665 if(rs1[i+j]) hsn[rs1[i+j]]=j;
666 if(rs2[i+j]) hsn[rs2[i+j]]=j;
667 if(rt1[i+j]) hsn[rt1[i+j]]=j;
668 if(rt2[i+j]) hsn[rt2[i+j]]=j;
669 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
670 // Stores can allocate zero
671 hsn[rs1[i+j]]=j;
672 hsn[rs2[i+j]]=j;
673 }
674 // On some architectures stores need invc_ptr
675 #if defined(HOST_IMM8)
676 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
677 hsn[INVCP]=j;
678 }
679 #endif
680 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
681 {
682 hsn[CCREG]=j;
683 b=j;
684 }
685 }
686 if(b>=0)
687 {
688 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
689 {
690 // Follow first branch
691 int t=(ba[i+b]-start)>>2;
692 j=7-b;if(t+j>=slen) j=slen-t-1;
693 for(;j>=0;j--)
694 {
695 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
696 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
697 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
698 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
699 }
700 }
701 // TODO: preferred register based on backward branch
702 }
703 // Delay slot should preferably not overwrite branch conditions or cycle count
704 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)) {
705 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
706 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
707 hsn[CCREG]=1;
708 // ...or hash tables
709 hsn[RHASH]=1;
710 hsn[RHTBL]=1;
711 }
712 // Coprocessor load/store needs FTEMP, even if not declared
713 if(itype[i]==C1LS||itype[i]==C2LS) {
714 hsn[FTEMP]=0;
715 }
716 // Load L/R also uses FTEMP as a temporary register
717 if(itype[i]==LOADLR) {
718 hsn[FTEMP]=0;
719 }
720 // Also SWL/SWR/SDL/SDR
721 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
722 hsn[FTEMP]=0;
723 }
724 // Don't remove the miniht registers
725 if(itype[i]==UJUMP||itype[i]==RJUMP)
726 {
727 hsn[RHASH]=0;
728 hsn[RHTBL]=0;
729 }
730}
731
732// We only want to allocate registers if we're going to use them again soon
733int needed_again(int r, int i)
734{
735 int j;
736 int b=-1;
737 int rn=10;
738
739 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
740 {
741 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
742 return 0; // Don't need any registers if exiting the block
743 }
744 for(j=0;j<9;j++)
745 {
746 if(i+j>=slen) {
747 j=slen-i-1;
748 break;
749 }
750 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
751 {
752 // Don't go past an unconditonal jump
753 j++;
754 break;
755 }
756 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
757 {
758 break;
759 }
760 }
761 for(;j>=1;j--)
762 {
763 if(rs1[i+j]==r) rn=j;
764 if(rs2[i+j]==r) rn=j;
765 if((unneeded_reg[i+j]>>r)&1) rn=10;
766 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
767 {
768 b=j;
769 }
770 }
771 /*
772 if(b>=0)
773 {
774 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
775 {
776 // Follow first branch
777 int o=rn;
778 int t=(ba[i+b]-start)>>2;
779 j=7-b;if(t+j>=slen) j=slen-t-1;
780 for(;j>=0;j--)
781 {
782 if(!((unneeded_reg[t+j]>>r)&1)) {
783 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
784 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
785 }
786 else rn=o;
787 }
788 }
789 }*/
790 if(rn<10) return 1;
791 (void)b;
792 return 0;
793}
794
795// Try to match register allocations at the end of a loop with those
796// at the beginning
797int loop_reg(int i, int r, int hr)
798{
799 int j,k;
800 for(j=0;j<9;j++)
801 {
802 if(i+j>=slen) {
803 j=slen-i-1;
804 break;
805 }
806 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
807 {
808 // Don't go past an unconditonal jump
809 j++;
810 break;
811 }
812 }
813 k=0;
814 if(i>0){
815 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)
816 k--;
817 }
818 for(;k<j;k++)
819 {
820 assert(r < 64);
821 if((unneeded_reg[i+k]>>r)&1) return hr;
822 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP))
823 {
824 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
825 {
826 int t=(ba[i+k]-start)>>2;
827 int reg=get_reg(regs[t].regmap_entry,r);
828 if(reg>=0) return reg;
829 //reg=get_reg(regs[t+1].regmap_entry,r);
830 //if(reg>=0) return reg;
831 }
832 }
833 }
834 return hr;
835}
836
837
838// Allocate every register, preserving source/target regs
839void alloc_all(struct regstat *cur,int i)
840{
841 int hr;
842
843 for(hr=0;hr<HOST_REGS;hr++) {
844 if(hr!=EXCLUDE_REG) {
845 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
846 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
847 {
848 cur->regmap[hr]=-1;
849 cur->dirty&=~(1<<hr);
850 }
851 // Don't need zeros
852 if((cur->regmap[hr]&63)==0)
853 {
854 cur->regmap[hr]=-1;
855 cur->dirty&=~(1<<hr);
856 }
857 }
858 }
859}
860
861#ifndef NDEBUG
862static int host_tempreg_in_use;
863
864static void host_tempreg_acquire(void)
865{
866 assert(!host_tempreg_in_use);
867 host_tempreg_in_use = 1;
868}
869
870static void host_tempreg_release(void)
871{
872 host_tempreg_in_use = 0;
873}
874#else
875static void host_tempreg_acquire(void) {}
876static void host_tempreg_release(void) {}
877#endif
878
879#ifdef DRC_DBG
880extern void gen_interupt();
881extern void do_insn_cmp();
882#define FUNCNAME(f) { f, " " #f }
883static const struct {
884 void *addr;
885 const char *name;
886} function_names[] = {
887 FUNCNAME(cc_interrupt),
888 FUNCNAME(gen_interupt),
889 FUNCNAME(get_addr_ht),
890 FUNCNAME(get_addr),
891 FUNCNAME(jump_handler_read8),
892 FUNCNAME(jump_handler_read16),
893 FUNCNAME(jump_handler_read32),
894 FUNCNAME(jump_handler_write8),
895 FUNCNAME(jump_handler_write16),
896 FUNCNAME(jump_handler_write32),
897 FUNCNAME(invalidate_addr),
898 FUNCNAME(jump_to_new_pc),
899 FUNCNAME(new_dyna_leave),
900 FUNCNAME(pcsx_mtc0),
901 FUNCNAME(pcsx_mtc0_ds),
902 FUNCNAME(do_insn_cmp),
903#ifdef __arm__
904 FUNCNAME(verify_code),
905#endif
906};
907
908static const char *func_name(const void *a)
909{
910 int i;
911 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
912 if (function_names[i].addr == a)
913 return function_names[i].name;
914 return "";
915}
916#else
917#define func_name(x) ""
918#endif
919
920#ifdef __i386__
921#include "assem_x86.c"
922#endif
923#ifdef __x86_64__
924#include "assem_x64.c"
925#endif
926#ifdef __arm__
927#include "assem_arm.c"
928#endif
929#ifdef __aarch64__
930#include "assem_arm64.c"
931#endif
932
933static void *get_trampoline(const void *f)
934{
935 size_t i;
936
937 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
938 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
939 break;
940 }
941 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
942 SysPrintf("trampoline table is full, last func %p\n", f);
943 abort();
944 }
945 if (ndrc->tramp.f[i] == NULL) {
946 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
947 ndrc->tramp.f[i] = f;
948 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
949 }
950 return &ndrc->tramp.ops[i];
951}
952
953static void emit_far_jump(const void *f)
954{
955 if (can_jump_or_call(f)) {
956 emit_jmp(f);
957 return;
958 }
959
960 f = get_trampoline(f);
961 emit_jmp(f);
962}
963
964static void emit_far_call(const void *f)
965{
966 if (can_jump_or_call(f)) {
967 emit_call(f);
968 return;
969 }
970
971 f = get_trampoline(f);
972 emit_call(f);
973}
974
975// Add virtual address mapping to linked list
976void ll_add(struct ll_entry **head,int vaddr,void *addr)
977{
978 struct ll_entry *new_entry;
979 new_entry=malloc(sizeof(struct ll_entry));
980 assert(new_entry!=NULL);
981 new_entry->vaddr=vaddr;
982 new_entry->reg_sv_flags=0;
983 new_entry->addr=addr;
984 new_entry->next=*head;
985 *head=new_entry;
986}
987
988void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
989{
990 ll_add(head,vaddr,addr);
991 (*head)->reg_sv_flags=reg_sv_flags;
992}
993
994// Check if an address is already compiled
995// but don't return addresses which are about to expire from the cache
996void *check_addr(u_int vaddr)
997{
998 struct ht_entry *ht_bin = hash_table_get(vaddr);
999 size_t i;
1000 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1001 if (ht_bin->vaddr[i] == vaddr)
1002 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1003 if (isclean(ht_bin->tcaddr[i]))
1004 return ht_bin->tcaddr[i];
1005 }
1006 u_int page=get_page(vaddr);
1007 struct ll_entry *head;
1008 head=jump_in[page];
1009 while (head != NULL) {
1010 if (head->vaddr == vaddr) {
1011 if (doesnt_expire_soon(head->addr)) {
1012 // Update existing entry with current address
1013 if (ht_bin->vaddr[0] == vaddr) {
1014 ht_bin->tcaddr[0] = head->addr;
1015 return head->addr;
1016 }
1017 if (ht_bin->vaddr[1] == vaddr) {
1018 ht_bin->tcaddr[1] = head->addr;
1019 return head->addr;
1020 }
1021 // Insert into hash table with low priority.
1022 // Don't evict existing entries, as they are probably
1023 // addresses that are being accessed frequently.
1024 if (ht_bin->vaddr[0] == -1) {
1025 ht_bin->vaddr[0] = vaddr;
1026 ht_bin->tcaddr[0] = head->addr;
1027 }
1028 else if (ht_bin->vaddr[1] == -1) {
1029 ht_bin->vaddr[1] = vaddr;
1030 ht_bin->tcaddr[1] = head->addr;
1031 }
1032 return head->addr;
1033 }
1034 }
1035 head=head->next;
1036 }
1037 return 0;
1038}
1039
1040void remove_hash(int vaddr)
1041{
1042 //printf("remove hash: %x\n",vaddr);
1043 struct ht_entry *ht_bin = hash_table_get(vaddr);
1044 if (ht_bin->vaddr[1] == vaddr) {
1045 ht_bin->vaddr[1] = -1;
1046 ht_bin->tcaddr[1] = NULL;
1047 }
1048 if (ht_bin->vaddr[0] == vaddr) {
1049 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1050 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1051 ht_bin->vaddr[1] = -1;
1052 ht_bin->tcaddr[1] = NULL;
1053 }
1054}
1055
1056void ll_remove_matching_addrs(struct ll_entry **head,uintptr_t addr,int shift)
1057{
1058 struct ll_entry *next;
1059 while(*head) {
1060 if(((uintptr_t)((*head)->addr)>>shift)==(addr>>shift) ||
1061 ((uintptr_t)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1062 {
1063 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1064 remove_hash((*head)->vaddr);
1065 next=(*head)->next;
1066 free(*head);
1067 *head=next;
1068 }
1069 else
1070 {
1071 head=&((*head)->next);
1072 }
1073 }
1074}
1075
1076// Remove all entries from linked list
1077void ll_clear(struct ll_entry **head)
1078{
1079 struct ll_entry *cur;
1080 struct ll_entry *next;
1081 if((cur=*head)) {
1082 *head=0;
1083 while(cur) {
1084 next=cur->next;
1085 free(cur);
1086 cur=next;
1087 }
1088 }
1089}
1090
1091// Dereference the pointers and remove if it matches
1092static void ll_kill_pointers(struct ll_entry *head,uintptr_t addr,int shift)
1093{
1094 while(head) {
1095 uintptr_t ptr = (uintptr_t)get_pointer(head->addr);
1096 inv_debug("EXP: Lookup pointer to %lx at %p (%x)\n",(long)ptr,head->addr,head->vaddr);
1097 if(((ptr>>shift)==(addr>>shift)) ||
1098 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1099 {
1100 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1101 void *host_addr=find_extjump_insn(head->addr);
1102 mark_clear_cache(host_addr);
1103 set_jump_target(host_addr, head->addr);
1104 }
1105 head=head->next;
1106 }
1107}
1108
1109// This is called when we write to a compiled block (see do_invstub)
1110static void invalidate_page(u_int page)
1111{
1112 struct ll_entry *head;
1113 struct ll_entry *next;
1114 head=jump_in[page];
1115 jump_in[page]=0;
1116 while(head!=NULL) {
1117 inv_debug("INVALIDATE: %x\n",head->vaddr);
1118 remove_hash(head->vaddr);
1119 next=head->next;
1120 free(head);
1121 head=next;
1122 }
1123 head=jump_out[page];
1124 jump_out[page]=0;
1125 while(head!=NULL) {
1126 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1127 void *host_addr=find_extjump_insn(head->addr);
1128 mark_clear_cache(host_addr);
1129 set_jump_target(host_addr, head->addr);
1130 next=head->next;
1131 free(head);
1132 head=next;
1133 }
1134}
1135
1136static void invalidate_block_range(u_int block, u_int first, u_int last)
1137{
1138 u_int page=get_page(block<<12);
1139 //printf("first=%d last=%d\n",first,last);
1140 invalidate_page(page);
1141 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1142 assert(last<page+5);
1143 // Invalidate the adjacent pages if a block crosses a 4K boundary
1144 while(first<page) {
1145 invalidate_page(first);
1146 first++;
1147 }
1148 for(first=page+1;first<last;first++) {
1149 invalidate_page(first);
1150 }
1151 do_clear_cache();
1152
1153 // Don't trap writes
1154 invalid_code[block]=1;
1155
1156 #ifdef USE_MINI_HT
1157 memset(mini_ht,-1,sizeof(mini_ht));
1158 #endif
1159}
1160
1161void invalidate_block(u_int block)
1162{
1163 u_int page=get_page(block<<12);
1164 u_int vpage=get_vpage(block<<12);
1165 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1166 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1167 u_int first,last;
1168 first=last=page;
1169 struct ll_entry *head;
1170 head=jump_dirty[vpage];
1171 //printf("page=%d vpage=%d\n",page,vpage);
1172 while(head!=NULL) {
1173 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1174 u_char *start, *end;
1175 get_bounds(head->addr, &start, &end);
1176 //printf("start: %p end: %p\n", start, end);
1177 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1178 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1179 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1180 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1181 }
1182 }
1183 }
1184 head=head->next;
1185 }
1186 invalidate_block_range(block,first,last);
1187}
1188
1189void invalidate_addr(u_int addr)
1190{
1191 //static int rhits;
1192 // this check is done by the caller
1193 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1194 u_int page=get_vpage(addr);
1195 if(page<2048) { // RAM
1196 struct ll_entry *head;
1197 u_int addr_min=~0, addr_max=0;
1198 u_int mask=RAM_SIZE-1;
1199 u_int addr_main=0x80000000|(addr&mask);
1200 int pg1;
1201 inv_code_start=addr_main&~0xfff;
1202 inv_code_end=addr_main|0xfff;
1203 pg1=page;
1204 if (pg1>0) {
1205 // must check previous page too because of spans..
1206 pg1--;
1207 inv_code_start-=0x1000;
1208 }
1209 for(;pg1<=page;pg1++) {
1210 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1211 u_char *start_h, *end_h;
1212 u_int start, end;
1213 get_bounds(head->addr, &start_h, &end_h);
1214 start = (uintptr_t)start_h - ram_offset;
1215 end = (uintptr_t)end_h - ram_offset;
1216 if(start<=addr_main&&addr_main<end) {
1217 if(start<addr_min) addr_min=start;
1218 if(end>addr_max) addr_max=end;
1219 }
1220 else if(addr_main<start) {
1221 if(start<inv_code_end)
1222 inv_code_end=start-1;
1223 }
1224 else {
1225 if(end>inv_code_start)
1226 inv_code_start=end;
1227 }
1228 }
1229 }
1230 if (addr_min!=~0) {
1231 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1232 inv_code_start=inv_code_end=~0;
1233 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1234 return;
1235 }
1236 else {
1237 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1238 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1239 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1240 return;
1241 }
1242 }
1243 invalidate_block(addr>>12);
1244}
1245
1246// This is called when loading a save state.
1247// Anything could have changed, so invalidate everything.
1248void invalidate_all_pages(void)
1249{
1250 u_int page;
1251 for(page=0;page<4096;page++)
1252 invalidate_page(page);
1253 for(page=0;page<1048576;page++)
1254 if(!invalid_code[page]) {
1255 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1256 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1257 }
1258 #ifdef USE_MINI_HT
1259 memset(mini_ht,-1,sizeof(mini_ht));
1260 #endif
1261 do_clear_cache();
1262}
1263
1264static void do_invstub(int n)
1265{
1266 literal_pool(20);
1267 u_int reglist=stubs[n].a;
1268 set_jump_target(stubs[n].addr, out);
1269 save_regs(reglist);
1270 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1271 emit_far_call(invalidate_addr);
1272 restore_regs(reglist);
1273 emit_jmp(stubs[n].retaddr); // return address
1274}
1275
1276// Add an entry to jump_out after making a link
1277// src should point to code by emit_extjump2()
1278void add_link(u_int vaddr,void *src)
1279{
1280 u_int page=get_page(vaddr);
1281 inv_debug("add_link: %p -> %x (%d)\n",src,vaddr,page);
1282 check_extjump2(src);
1283 ll_add(jump_out+page,vaddr,src);
1284 //void *ptr=get_pointer(src);
1285 //inv_debug("add_link: Pointer is to %p\n",ptr);
1286}
1287
1288// If a code block was found to be unmodified (bit was set in
1289// restore_candidate) and it remains unmodified (bit is clear
1290// in invalid_code) then move the entries for that 4K page from
1291// the dirty list to the clean list.
1292void clean_blocks(u_int page)
1293{
1294 struct ll_entry *head;
1295 inv_debug("INV: clean_blocks page=%d\n",page);
1296 head=jump_dirty[page];
1297 while(head!=NULL) {
1298 if(!invalid_code[head->vaddr>>12]) {
1299 // Don't restore blocks which are about to expire from the cache
1300 if (doesnt_expire_soon(head->addr)) {
1301 if(verify_dirty(head->addr)) {
1302 u_char *start, *end;
1303 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1304 u_int i;
1305 u_int inv=0;
1306 get_bounds(head->addr, &start, &end);
1307 if (start - rdram < RAM_SIZE) {
1308 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1309 inv|=invalid_code[i];
1310 }
1311 }
1312 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1313 inv=1;
1314 }
1315 if(!inv) {
1316 void *clean_addr = get_clean_addr(head->addr);
1317 if (doesnt_expire_soon(clean_addr)) {
1318 u_int ppage=page;
1319 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1320 //printf("page=%x, addr=%x\n",page,head->vaddr);
1321 //assert(head->vaddr>>12==(page|0x80000));
1322 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1323 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1324 if (ht_bin->vaddr[0] == head->vaddr)
1325 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1326 if (ht_bin->vaddr[1] == head->vaddr)
1327 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1328 }
1329 }
1330 }
1331 }
1332 }
1333 head=head->next;
1334 }
1335}
1336
1337/* Register allocation */
1338
1339// Note: registers are allocated clean (unmodified state)
1340// if you intend to modify the register, you must call dirty_reg().
1341static void alloc_reg(struct regstat *cur,int i,signed char reg)
1342{
1343 int r,hr;
1344 int preferred_reg = (reg&7);
1345 if(reg==CCREG) preferred_reg=HOST_CCREG;
1346 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1347
1348 // Don't allocate unused registers
1349 if((cur->u>>reg)&1) return;
1350
1351 // see if it's already allocated
1352 for(hr=0;hr<HOST_REGS;hr++)
1353 {
1354 if(cur->regmap[hr]==reg) return;
1355 }
1356
1357 // Keep the same mapping if the register was already allocated in a loop
1358 preferred_reg = loop_reg(i,reg,preferred_reg);
1359
1360 // Try to allocate the preferred register
1361 if(cur->regmap[preferred_reg]==-1) {
1362 cur->regmap[preferred_reg]=reg;
1363 cur->dirty&=~(1<<preferred_reg);
1364 cur->isconst&=~(1<<preferred_reg);
1365 return;
1366 }
1367 r=cur->regmap[preferred_reg];
1368 assert(r < 64);
1369 if((cur->u>>r)&1) {
1370 cur->regmap[preferred_reg]=reg;
1371 cur->dirty&=~(1<<preferred_reg);
1372 cur->isconst&=~(1<<preferred_reg);
1373 return;
1374 }
1375
1376 // Clear any unneeded registers
1377 // We try to keep the mapping consistent, if possible, because it
1378 // makes branches easier (especially loops). So we try to allocate
1379 // first (see above) before removing old mappings. If this is not
1380 // possible then go ahead and clear out the registers that are no
1381 // longer needed.
1382 for(hr=0;hr<HOST_REGS;hr++)
1383 {
1384 r=cur->regmap[hr];
1385 if(r>=0) {
1386 assert(r < 64);
1387 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1388 }
1389 }
1390 // Try to allocate any available register, but prefer
1391 // registers that have not been used recently.
1392 if(i>0) {
1393 for(hr=0;hr<HOST_REGS;hr++) {
1394 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1395 if(regs[i-1].regmap[hr]!=rs1[i-1]&&regs[i-1].regmap[hr]!=rs2[i-1]&&regs[i-1].regmap[hr]!=rt1[i-1]&&regs[i-1].regmap[hr]!=rt2[i-1]) {
1396 cur->regmap[hr]=reg;
1397 cur->dirty&=~(1<<hr);
1398 cur->isconst&=~(1<<hr);
1399 return;
1400 }
1401 }
1402 }
1403 }
1404 // Try to allocate any available register
1405 for(hr=0;hr<HOST_REGS;hr++) {
1406 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1407 cur->regmap[hr]=reg;
1408 cur->dirty&=~(1<<hr);
1409 cur->isconst&=~(1<<hr);
1410 return;
1411 }
1412 }
1413
1414 // Ok, now we have to evict someone
1415 // Pick a register we hopefully won't need soon
1416 u_char hsn[MAXREG+1];
1417 memset(hsn,10,sizeof(hsn));
1418 int j;
1419 lsn(hsn,i,&preferred_reg);
1420 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1421 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1422 if(i>0) {
1423 // Don't evict the cycle count at entry points, otherwise the entry
1424 // stub will have to write it.
1425 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1426 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1427 for(j=10;j>=3;j--)
1428 {
1429 // Alloc preferred register if available
1430 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1431 for(hr=0;hr<HOST_REGS;hr++) {
1432 // Evict both parts of a 64-bit register
1433 if((cur->regmap[hr]&63)==r) {
1434 cur->regmap[hr]=-1;
1435 cur->dirty&=~(1<<hr);
1436 cur->isconst&=~(1<<hr);
1437 }
1438 }
1439 cur->regmap[preferred_reg]=reg;
1440 return;
1441 }
1442 for(r=1;r<=MAXREG;r++)
1443 {
1444 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1445 for(hr=0;hr<HOST_REGS;hr++) {
1446 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1447 if(cur->regmap[hr]==r) {
1448 cur->regmap[hr]=reg;
1449 cur->dirty&=~(1<<hr);
1450 cur->isconst&=~(1<<hr);
1451 return;
1452 }
1453 }
1454 }
1455 }
1456 }
1457 }
1458 }
1459 for(j=10;j>=0;j--)
1460 {
1461 for(r=1;r<=MAXREG;r++)
1462 {
1463 if(hsn[r]==j) {
1464 for(hr=0;hr<HOST_REGS;hr++) {
1465 if(cur->regmap[hr]==r) {
1466 cur->regmap[hr]=reg;
1467 cur->dirty&=~(1<<hr);
1468 cur->isconst&=~(1<<hr);
1469 return;
1470 }
1471 }
1472 }
1473 }
1474 }
1475 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1476}
1477
1478// Allocate a temporary register. This is done without regard to
1479// dirty status or whether the register we request is on the unneeded list
1480// Note: This will only allocate one register, even if called multiple times
1481static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1482{
1483 int r,hr;
1484 int preferred_reg = -1;
1485
1486 // see if it's already allocated
1487 for(hr=0;hr<HOST_REGS;hr++)
1488 {
1489 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1490 }
1491
1492 // Try to allocate any available register
1493 for(hr=HOST_REGS-1;hr>=0;hr--) {
1494 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1495 cur->regmap[hr]=reg;
1496 cur->dirty&=~(1<<hr);
1497 cur->isconst&=~(1<<hr);
1498 return;
1499 }
1500 }
1501
1502 // Find an unneeded register
1503 for(hr=HOST_REGS-1;hr>=0;hr--)
1504 {
1505 r=cur->regmap[hr];
1506 if(r>=0) {
1507 assert(r < 64);
1508 if((cur->u>>r)&1) {
1509 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1510 cur->regmap[hr]=reg;
1511 cur->dirty&=~(1<<hr);
1512 cur->isconst&=~(1<<hr);
1513 return;
1514 }
1515 }
1516 }
1517 }
1518
1519 // Ok, now we have to evict someone
1520 // Pick a register we hopefully won't need soon
1521 // TODO: we might want to follow unconditional jumps here
1522 // TODO: get rid of dupe code and make this into a function
1523 u_char hsn[MAXREG+1];
1524 memset(hsn,10,sizeof(hsn));
1525 int j;
1526 lsn(hsn,i,&preferred_reg);
1527 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1528 if(i>0) {
1529 // Don't evict the cycle count at entry points, otherwise the entry
1530 // stub will have to write it.
1531 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1532 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1533 for(j=10;j>=3;j--)
1534 {
1535 for(r=1;r<=MAXREG;r++)
1536 {
1537 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1538 for(hr=0;hr<HOST_REGS;hr++) {
1539 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1540 if(cur->regmap[hr]==r) {
1541 cur->regmap[hr]=reg;
1542 cur->dirty&=~(1<<hr);
1543 cur->isconst&=~(1<<hr);
1544 return;
1545 }
1546 }
1547 }
1548 }
1549 }
1550 }
1551 }
1552 for(j=10;j>=0;j--)
1553 {
1554 for(r=1;r<=MAXREG;r++)
1555 {
1556 if(hsn[r]==j) {
1557 for(hr=0;hr<HOST_REGS;hr++) {
1558 if(cur->regmap[hr]==r) {
1559 cur->regmap[hr]=reg;
1560 cur->dirty&=~(1<<hr);
1561 cur->isconst&=~(1<<hr);
1562 return;
1563 }
1564 }
1565 }
1566 }
1567 }
1568 SysPrintf("This shouldn't happen");abort();
1569}
1570
1571static void mov_alloc(struct regstat *current,int i)
1572{
1573 // Note: Don't need to actually alloc the source registers
1574 //alloc_reg(current,i,rs1[i]);
1575 alloc_reg(current,i,rt1[i]);
1576
1577 clear_const(current,rs1[i]);
1578 clear_const(current,rt1[i]);
1579 dirty_reg(current,rt1[i]);
1580}
1581
1582static void shiftimm_alloc(struct regstat *current,int i)
1583{
1584 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1585 {
1586 if(rt1[i]) {
1587 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1588 else lt1[i]=rs1[i];
1589 alloc_reg(current,i,rt1[i]);
1590 dirty_reg(current,rt1[i]);
1591 if(is_const(current,rs1[i])) {
1592 int v=get_const(current,rs1[i]);
1593 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1594 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1595 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1596 }
1597 else clear_const(current,rt1[i]);
1598 }
1599 }
1600 else
1601 {
1602 clear_const(current,rs1[i]);
1603 clear_const(current,rt1[i]);
1604 }
1605
1606 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1607 {
1608 assert(0);
1609 }
1610 if(opcode2[i]==0x3c) // DSLL32
1611 {
1612 assert(0);
1613 }
1614 if(opcode2[i]==0x3e) // DSRL32
1615 {
1616 assert(0);
1617 }
1618 if(opcode2[i]==0x3f) // DSRA32
1619 {
1620 assert(0);
1621 }
1622}
1623
1624static void shift_alloc(struct regstat *current,int i)
1625{
1626 if(rt1[i]) {
1627 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1628 {
1629 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1630 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1631 alloc_reg(current,i,rt1[i]);
1632 if(rt1[i]==rs2[i]) {
1633 alloc_reg_temp(current,i,-1);
1634 minimum_free_regs[i]=1;
1635 }
1636 } else { // DSLLV/DSRLV/DSRAV
1637 assert(0);
1638 }
1639 clear_const(current,rs1[i]);
1640 clear_const(current,rs2[i]);
1641 clear_const(current,rt1[i]);
1642 dirty_reg(current,rt1[i]);
1643 }
1644}
1645
1646static void alu_alloc(struct regstat *current,int i)
1647{
1648 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1649 if(rt1[i]) {
1650 if(rs1[i]&&rs2[i]) {
1651 alloc_reg(current,i,rs1[i]);
1652 alloc_reg(current,i,rs2[i]);
1653 }
1654 else {
1655 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1656 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1657 }
1658 alloc_reg(current,i,rt1[i]);
1659 }
1660 }
1661 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1662 if(rt1[i]) {
1663 alloc_reg(current,i,rs1[i]);
1664 alloc_reg(current,i,rs2[i]);
1665 alloc_reg(current,i,rt1[i]);
1666 }
1667 }
1668 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1669 if(rt1[i]) {
1670 if(rs1[i]&&rs2[i]) {
1671 alloc_reg(current,i,rs1[i]);
1672 alloc_reg(current,i,rs2[i]);
1673 }
1674 else
1675 {
1676 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1677 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1678 }
1679 alloc_reg(current,i,rt1[i]);
1680 }
1681 }
1682 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1683 assert(0);
1684 }
1685 clear_const(current,rs1[i]);
1686 clear_const(current,rs2[i]);
1687 clear_const(current,rt1[i]);
1688 dirty_reg(current,rt1[i]);
1689}
1690
1691static void imm16_alloc(struct regstat *current,int i)
1692{
1693 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1694 else lt1[i]=rs1[i];
1695 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1696 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1697 assert(0);
1698 }
1699 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1700 clear_const(current,rs1[i]);
1701 clear_const(current,rt1[i]);
1702 }
1703 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1704 if(is_const(current,rs1[i])) {
1705 int v=get_const(current,rs1[i]);
1706 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1707 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1708 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1709 }
1710 else clear_const(current,rt1[i]);
1711 }
1712 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1713 if(is_const(current,rs1[i])) {
1714 int v=get_const(current,rs1[i]);
1715 set_const(current,rt1[i],v+imm[i]);
1716 }
1717 else clear_const(current,rt1[i]);
1718 }
1719 else {
1720 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1721 }
1722 dirty_reg(current,rt1[i]);
1723}
1724
1725static void load_alloc(struct regstat *current,int i)
1726{
1727 clear_const(current,rt1[i]);
1728 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1729 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1730 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1731 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1732 alloc_reg(current,i,rt1[i]);
1733 assert(get_reg(current->regmap,rt1[i])>=0);
1734 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1735 {
1736 assert(0);
1737 }
1738 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1739 {
1740 assert(0);
1741 }
1742 dirty_reg(current,rt1[i]);
1743 // LWL/LWR need a temporary register for the old value
1744 if(opcode[i]==0x22||opcode[i]==0x26)
1745 {
1746 alloc_reg(current,i,FTEMP);
1747 alloc_reg_temp(current,i,-1);
1748 minimum_free_regs[i]=1;
1749 }
1750 }
1751 else
1752 {
1753 // Load to r0 or unneeded register (dummy load)
1754 // but we still need a register to calculate the address
1755 if(opcode[i]==0x22||opcode[i]==0x26)
1756 {
1757 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1758 }
1759 alloc_reg_temp(current,i,-1);
1760 minimum_free_regs[i]=1;
1761 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1762 {
1763 assert(0);
1764 }
1765 }
1766}
1767
1768void store_alloc(struct regstat *current,int i)
1769{
1770 clear_const(current,rs2[i]);
1771 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1772 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1773 alloc_reg(current,i,rs2[i]);
1774 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1775 assert(0);
1776 }
1777 #if defined(HOST_IMM8)
1778 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1779 else alloc_reg(current,i,INVCP);
1780 #endif
1781 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1782 alloc_reg(current,i,FTEMP);
1783 }
1784 // We need a temporary register for address generation
1785 alloc_reg_temp(current,i,-1);
1786 minimum_free_regs[i]=1;
1787}
1788
1789void c1ls_alloc(struct regstat *current,int i)
1790{
1791 //clear_const(current,rs1[i]); // FIXME
1792 clear_const(current,rt1[i]);
1793 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1794 alloc_reg(current,i,CSREG); // Status
1795 alloc_reg(current,i,FTEMP);
1796 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1797 assert(0);
1798 }
1799 #if defined(HOST_IMM8)
1800 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1801 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1802 alloc_reg(current,i,INVCP);
1803 #endif
1804 // We need a temporary register for address generation
1805 alloc_reg_temp(current,i,-1);
1806}
1807
1808void c2ls_alloc(struct regstat *current,int i)
1809{
1810 clear_const(current,rt1[i]);
1811 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1812 alloc_reg(current,i,FTEMP);
1813 #if defined(HOST_IMM8)
1814 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1815 if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1816 alloc_reg(current,i,INVCP);
1817 #endif
1818 // We need a temporary register for address generation
1819 alloc_reg_temp(current,i,-1);
1820 minimum_free_regs[i]=1;
1821}
1822
1823#ifndef multdiv_alloc
1824void multdiv_alloc(struct regstat *current,int i)
1825{
1826 // case 0x18: MULT
1827 // case 0x19: MULTU
1828 // case 0x1A: DIV
1829 // case 0x1B: DIVU
1830 // case 0x1C: DMULT
1831 // case 0x1D: DMULTU
1832 // case 0x1E: DDIV
1833 // case 0x1F: DDIVU
1834 clear_const(current,rs1[i]);
1835 clear_const(current,rs2[i]);
1836 if(rs1[i]&&rs2[i])
1837 {
1838 if((opcode2[i]&4)==0) // 32-bit
1839 {
1840 current->u&=~(1LL<<HIREG);
1841 current->u&=~(1LL<<LOREG);
1842 alloc_reg(current,i,HIREG);
1843 alloc_reg(current,i,LOREG);
1844 alloc_reg(current,i,rs1[i]);
1845 alloc_reg(current,i,rs2[i]);
1846 dirty_reg(current,HIREG);
1847 dirty_reg(current,LOREG);
1848 }
1849 else // 64-bit
1850 {
1851 assert(0);
1852 }
1853 }
1854 else
1855 {
1856 // Multiply by zero is zero.
1857 // MIPS does not have a divide by zero exception.
1858 // The result is undefined, we return zero.
1859 alloc_reg(current,i,HIREG);
1860 alloc_reg(current,i,LOREG);
1861 dirty_reg(current,HIREG);
1862 dirty_reg(current,LOREG);
1863 }
1864}
1865#endif
1866
1867void cop0_alloc(struct regstat *current,int i)
1868{
1869 if(opcode2[i]==0) // MFC0
1870 {
1871 if(rt1[i]) {
1872 clear_const(current,rt1[i]);
1873 alloc_all(current,i);
1874 alloc_reg(current,i,rt1[i]);
1875 dirty_reg(current,rt1[i]);
1876 }
1877 }
1878 else if(opcode2[i]==4) // MTC0
1879 {
1880 if(rs1[i]){
1881 clear_const(current,rs1[i]);
1882 alloc_reg(current,i,rs1[i]);
1883 alloc_all(current,i);
1884 }
1885 else {
1886 alloc_all(current,i); // FIXME: Keep r0
1887 current->u&=~1LL;
1888 alloc_reg(current,i,0);
1889 }
1890 }
1891 else
1892 {
1893 // TLBR/TLBWI/TLBWR/TLBP/ERET
1894 assert(opcode2[i]==0x10);
1895 alloc_all(current,i);
1896 }
1897 minimum_free_regs[i]=HOST_REGS;
1898}
1899
1900static void cop12_alloc(struct regstat *current,int i)
1901{
1902 alloc_reg(current,i,CSREG); // Load status
1903 if(opcode2[i]<3) // MFC1/CFC1
1904 {
1905 if(rt1[i]){
1906 clear_const(current,rt1[i]);
1907 alloc_reg(current,i,rt1[i]);
1908 dirty_reg(current,rt1[i]);
1909 }
1910 alloc_reg_temp(current,i,-1);
1911 }
1912 else if(opcode2[i]>3) // MTC1/CTC1
1913 {
1914 if(rs1[i]){
1915 clear_const(current,rs1[i]);
1916 alloc_reg(current,i,rs1[i]);
1917 }
1918 else {
1919 current->u&=~1LL;
1920 alloc_reg(current,i,0);
1921 }
1922 alloc_reg_temp(current,i,-1);
1923 }
1924 minimum_free_regs[i]=1;
1925}
1926
1927void c2op_alloc(struct regstat *current,int i)
1928{
1929 alloc_reg_temp(current,i,-1);
1930}
1931
1932void syscall_alloc(struct regstat *current,int i)
1933{
1934 alloc_cc(current,i);
1935 dirty_reg(current,CCREG);
1936 alloc_all(current,i);
1937 minimum_free_regs[i]=HOST_REGS;
1938 current->isconst=0;
1939}
1940
1941void delayslot_alloc(struct regstat *current,int i)
1942{
1943 switch(itype[i]) {
1944 case UJUMP:
1945 case CJUMP:
1946 case SJUMP:
1947 case RJUMP:
1948 case SYSCALL:
1949 case HLECALL:
1950 case SPAN:
1951 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
1952 SysPrintf("Disabled speculative precompilation\n");
1953 stop_after_jal=1;
1954 break;
1955 case IMM16:
1956 imm16_alloc(current,i);
1957 break;
1958 case LOAD:
1959 case LOADLR:
1960 load_alloc(current,i);
1961 break;
1962 case STORE:
1963 case STORELR:
1964 store_alloc(current,i);
1965 break;
1966 case ALU:
1967 alu_alloc(current,i);
1968 break;
1969 case SHIFT:
1970 shift_alloc(current,i);
1971 break;
1972 case MULTDIV:
1973 multdiv_alloc(current,i);
1974 break;
1975 case SHIFTIMM:
1976 shiftimm_alloc(current,i);
1977 break;
1978 case MOV:
1979 mov_alloc(current,i);
1980 break;
1981 case COP0:
1982 cop0_alloc(current,i);
1983 break;
1984 case COP1:
1985 case COP2:
1986 cop12_alloc(current,i);
1987 break;
1988 case C1LS:
1989 c1ls_alloc(current,i);
1990 break;
1991 case C2LS:
1992 c2ls_alloc(current,i);
1993 break;
1994 case C2OP:
1995 c2op_alloc(current,i);
1996 break;
1997 }
1998}
1999
2000// Special case where a branch and delay slot span two pages in virtual memory
2001static void pagespan_alloc(struct regstat *current,int i)
2002{
2003 current->isconst=0;
2004 current->wasconst=0;
2005 regs[i].wasconst=0;
2006 minimum_free_regs[i]=HOST_REGS;
2007 alloc_all(current,i);
2008 alloc_cc(current,i);
2009 dirty_reg(current,CCREG);
2010 if(opcode[i]==3) // JAL
2011 {
2012 alloc_reg(current,i,31);
2013 dirty_reg(current,31);
2014 }
2015 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2016 {
2017 alloc_reg(current,i,rs1[i]);
2018 if (rt1[i]!=0) {
2019 alloc_reg(current,i,rt1[i]);
2020 dirty_reg(current,rt1[i]);
2021 }
2022 }
2023 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2024 {
2025 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2026 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2027 }
2028 else
2029 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2030 {
2031 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2032 }
2033 //else ...
2034}
2035
2036static void add_stub(enum stub_type type, void *addr, void *retaddr,
2037 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2038{
2039 assert(stubcount < ARRAY_SIZE(stubs));
2040 stubs[stubcount].type = type;
2041 stubs[stubcount].addr = addr;
2042 stubs[stubcount].retaddr = retaddr;
2043 stubs[stubcount].a = a;
2044 stubs[stubcount].b = b;
2045 stubs[stubcount].c = c;
2046 stubs[stubcount].d = d;
2047 stubs[stubcount].e = e;
2048 stubcount++;
2049}
2050
2051static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2052 int i, int addr_reg, struct regstat *i_regs, int ccadj, u_int reglist)
2053{
2054 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2055}
2056
2057// Write out a single register
2058static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2059{
2060 int hr;
2061 for(hr=0;hr<HOST_REGS;hr++) {
2062 if(hr!=EXCLUDE_REG) {
2063 if((regmap[hr]&63)==r) {
2064 if((dirty>>hr)&1) {
2065 assert(regmap[hr]<64);
2066 emit_storereg(r,hr);
2067 }
2068 }
2069 }
2070 }
2071}
2072
2073static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2074{
2075 //if(dirty_pre==dirty) return;
2076 int hr,reg;
2077 for(hr=0;hr<HOST_REGS;hr++) {
2078 if(hr!=EXCLUDE_REG) {
2079 reg=pre[hr];
2080 if(((~u)>>(reg&63))&1) {
2081 if(reg>0) {
2082 if(((dirty_pre&~dirty)>>hr)&1) {
2083 if(reg>0&&reg<34) {
2084 emit_storereg(reg,hr);
2085 }
2086 else if(reg>=64) {
2087 assert(0);
2088 }
2089 }
2090 }
2091 }
2092 }
2093 }
2094}
2095
2096// trashes r2
2097static void pass_args(int a0, int a1)
2098{
2099 if(a0==1&&a1==0) {
2100 // must swap
2101 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2102 }
2103 else if(a0!=0&&a1==0) {
2104 emit_mov(a1,1);
2105 if (a0>=0) emit_mov(a0,0);
2106 }
2107 else {
2108 if(a0>=0&&a0!=0) emit_mov(a0,0);
2109 if(a1>=0&&a1!=1) emit_mov(a1,1);
2110 }
2111}
2112
2113static void alu_assemble(int i,struct regstat *i_regs)
2114{
2115 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2116 if(rt1[i]) {
2117 signed char s1,s2,t;
2118 t=get_reg(i_regs->regmap,rt1[i]);
2119 if(t>=0) {
2120 s1=get_reg(i_regs->regmap,rs1[i]);
2121 s2=get_reg(i_regs->regmap,rs2[i]);
2122 if(rs1[i]&&rs2[i]) {
2123 assert(s1>=0);
2124 assert(s2>=0);
2125 if(opcode2[i]&2) emit_sub(s1,s2,t);
2126 else emit_add(s1,s2,t);
2127 }
2128 else if(rs1[i]) {
2129 if(s1>=0) emit_mov(s1,t);
2130 else emit_loadreg(rs1[i],t);
2131 }
2132 else if(rs2[i]) {
2133 if(s2>=0) {
2134 if(opcode2[i]&2) emit_neg(s2,t);
2135 else emit_mov(s2,t);
2136 }
2137 else {
2138 emit_loadreg(rs2[i],t);
2139 if(opcode2[i]&2) emit_neg(t,t);
2140 }
2141 }
2142 else emit_zeroreg(t);
2143 }
2144 }
2145 }
2146 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2147 assert(0);
2148 }
2149 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2150 if(rt1[i]) {
2151 signed char s1l,s2l,t;
2152 {
2153 t=get_reg(i_regs->regmap,rt1[i]);
2154 //assert(t>=0);
2155 if(t>=0) {
2156 s1l=get_reg(i_regs->regmap,rs1[i]);
2157 s2l=get_reg(i_regs->regmap,rs2[i]);
2158 if(rs2[i]==0) // rx<r0
2159 {
2160 if(opcode2[i]==0x2a&&rs1[i]!=0) { // SLT
2161 assert(s1l>=0);
2162 emit_shrimm(s1l,31,t);
2163 }
2164 else // SLTU (unsigned can not be less than zero, 0<0)
2165 emit_zeroreg(t);
2166 }
2167 else if(rs1[i]==0) // r0<rx
2168 {
2169 assert(s2l>=0);
2170 if(opcode2[i]==0x2a) // SLT
2171 emit_set_gz32(s2l,t);
2172 else // SLTU (set if not zero)
2173 emit_set_nz32(s2l,t);
2174 }
2175 else{
2176 assert(s1l>=0);assert(s2l>=0);
2177 if(opcode2[i]==0x2a) // SLT
2178 emit_set_if_less32(s1l,s2l,t);
2179 else // SLTU
2180 emit_set_if_carry32(s1l,s2l,t);
2181 }
2182 }
2183 }
2184 }
2185 }
2186 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2187 if(rt1[i]) {
2188 signed char s1l,s2l,tl;
2189 tl=get_reg(i_regs->regmap,rt1[i]);
2190 {
2191 if(tl>=0) {
2192 s1l=get_reg(i_regs->regmap,rs1[i]);
2193 s2l=get_reg(i_regs->regmap,rs2[i]);
2194 if(rs1[i]&&rs2[i]) {
2195 assert(s1l>=0);
2196 assert(s2l>=0);
2197 if(opcode2[i]==0x24) { // AND
2198 emit_and(s1l,s2l,tl);
2199 } else
2200 if(opcode2[i]==0x25) { // OR
2201 emit_or(s1l,s2l,tl);
2202 } else
2203 if(opcode2[i]==0x26) { // XOR
2204 emit_xor(s1l,s2l,tl);
2205 } else
2206 if(opcode2[i]==0x27) { // NOR
2207 emit_or(s1l,s2l,tl);
2208 emit_not(tl,tl);
2209 }
2210 }
2211 else
2212 {
2213 if(opcode2[i]==0x24) { // AND
2214 emit_zeroreg(tl);
2215 } else
2216 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2217 if(rs1[i]){
2218 if(s1l>=0) emit_mov(s1l,tl);
2219 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2220 }
2221 else
2222 if(rs2[i]){
2223 if(s2l>=0) emit_mov(s2l,tl);
2224 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2225 }
2226 else emit_zeroreg(tl);
2227 } else
2228 if(opcode2[i]==0x27) { // NOR
2229 if(rs1[i]){
2230 if(s1l>=0) emit_not(s1l,tl);
2231 else {
2232 emit_loadreg(rs1[i],tl);
2233 emit_not(tl,tl);
2234 }
2235 }
2236 else
2237 if(rs2[i]){
2238 if(s2l>=0) emit_not(s2l,tl);
2239 else {
2240 emit_loadreg(rs2[i],tl);
2241 emit_not(tl,tl);
2242 }
2243 }
2244 else emit_movimm(-1,tl);
2245 }
2246 }
2247 }
2248 }
2249 }
2250 }
2251}
2252
2253void imm16_assemble(int i,struct regstat *i_regs)
2254{
2255 if (opcode[i]==0x0f) { // LUI
2256 if(rt1[i]) {
2257 signed char t;
2258 t=get_reg(i_regs->regmap,rt1[i]);
2259 //assert(t>=0);
2260 if(t>=0) {
2261 if(!((i_regs->isconst>>t)&1))
2262 emit_movimm(imm[i]<<16,t);
2263 }
2264 }
2265 }
2266 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2267 if(rt1[i]) {
2268 signed char s,t;
2269 t=get_reg(i_regs->regmap,rt1[i]);
2270 s=get_reg(i_regs->regmap,rs1[i]);
2271 if(rs1[i]) {
2272 //assert(t>=0);
2273 //assert(s>=0);
2274 if(t>=0) {
2275 if(!((i_regs->isconst>>t)&1)) {
2276 if(s<0) {
2277 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2278 emit_addimm(t,imm[i],t);
2279 }else{
2280 if(!((i_regs->wasconst>>s)&1))
2281 emit_addimm(s,imm[i],t);
2282 else
2283 emit_movimm(constmap[i][s]+imm[i],t);
2284 }
2285 }
2286 }
2287 } else {
2288 if(t>=0) {
2289 if(!((i_regs->isconst>>t)&1))
2290 emit_movimm(imm[i],t);
2291 }
2292 }
2293 }
2294 }
2295 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2296 if(rt1[i]) {
2297 signed char sl,tl;
2298 tl=get_reg(i_regs->regmap,rt1[i]);
2299 sl=get_reg(i_regs->regmap,rs1[i]);
2300 if(tl>=0) {
2301 if(rs1[i]) {
2302 assert(sl>=0);
2303 emit_addimm(sl,imm[i],tl);
2304 } else {
2305 emit_movimm(imm[i],tl);
2306 }
2307 }
2308 }
2309 }
2310 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2311 if(rt1[i]) {
2312 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2313 signed char sl,t;
2314 t=get_reg(i_regs->regmap,rt1[i]);
2315 sl=get_reg(i_regs->regmap,rs1[i]);
2316 //assert(t>=0);
2317 if(t>=0) {
2318 if(rs1[i]>0) {
2319 if(opcode[i]==0x0a) { // SLTI
2320 if(sl<0) {
2321 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2322 emit_slti32(t,imm[i],t);
2323 }else{
2324 emit_slti32(sl,imm[i],t);
2325 }
2326 }
2327 else { // SLTIU
2328 if(sl<0) {
2329 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2330 emit_sltiu32(t,imm[i],t);
2331 }else{
2332 emit_sltiu32(sl,imm[i],t);
2333 }
2334 }
2335 }else{
2336 // SLTI(U) with r0 is just stupid,
2337 // nonetheless examples can be found
2338 if(opcode[i]==0x0a) // SLTI
2339 if(0<imm[i]) emit_movimm(1,t);
2340 else emit_zeroreg(t);
2341 else // SLTIU
2342 {
2343 if(imm[i]) emit_movimm(1,t);
2344 else emit_zeroreg(t);
2345 }
2346 }
2347 }
2348 }
2349 }
2350 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2351 if(rt1[i]) {
2352 signed char sl,tl;
2353 tl=get_reg(i_regs->regmap,rt1[i]);
2354 sl=get_reg(i_regs->regmap,rs1[i]);
2355 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2356 if(opcode[i]==0x0c) //ANDI
2357 {
2358 if(rs1[i]) {
2359 if(sl<0) {
2360 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2361 emit_andimm(tl,imm[i],tl);
2362 }else{
2363 if(!((i_regs->wasconst>>sl)&1))
2364 emit_andimm(sl,imm[i],tl);
2365 else
2366 emit_movimm(constmap[i][sl]&imm[i],tl);
2367 }
2368 }
2369 else
2370 emit_zeroreg(tl);
2371 }
2372 else
2373 {
2374 if(rs1[i]) {
2375 if(sl<0) {
2376 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2377 }
2378 if(opcode[i]==0x0d) { // ORI
2379 if(sl<0) {
2380 emit_orimm(tl,imm[i],tl);
2381 }else{
2382 if(!((i_regs->wasconst>>sl)&1))
2383 emit_orimm(sl,imm[i],tl);
2384 else
2385 emit_movimm(constmap[i][sl]|imm[i],tl);
2386 }
2387 }
2388 if(opcode[i]==0x0e) { // XORI
2389 if(sl<0) {
2390 emit_xorimm(tl,imm[i],tl);
2391 }else{
2392 if(!((i_regs->wasconst>>sl)&1))
2393 emit_xorimm(sl,imm[i],tl);
2394 else
2395 emit_movimm(constmap[i][sl]^imm[i],tl);
2396 }
2397 }
2398 }
2399 else {
2400 emit_movimm(imm[i],tl);
2401 }
2402 }
2403 }
2404 }
2405 }
2406}
2407
2408void shiftimm_assemble(int i,struct regstat *i_regs)
2409{
2410 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2411 {
2412 if(rt1[i]) {
2413 signed char s,t;
2414 t=get_reg(i_regs->regmap,rt1[i]);
2415 s=get_reg(i_regs->regmap,rs1[i]);
2416 //assert(t>=0);
2417 if(t>=0&&!((i_regs->isconst>>t)&1)){
2418 if(rs1[i]==0)
2419 {
2420 emit_zeroreg(t);
2421 }
2422 else
2423 {
2424 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2425 if(imm[i]) {
2426 if(opcode2[i]==0) // SLL
2427 {
2428 emit_shlimm(s<0?t:s,imm[i],t);
2429 }
2430 if(opcode2[i]==2) // SRL
2431 {
2432 emit_shrimm(s<0?t:s,imm[i],t);
2433 }
2434 if(opcode2[i]==3) // SRA
2435 {
2436 emit_sarimm(s<0?t:s,imm[i],t);
2437 }
2438 }else{
2439 // Shift by zero
2440 if(s>=0 && s!=t) emit_mov(s,t);
2441 }
2442 }
2443 }
2444 //emit_storereg(rt1[i],t); //DEBUG
2445 }
2446 }
2447 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2448 {
2449 assert(0);
2450 }
2451 if(opcode2[i]==0x3c) // DSLL32
2452 {
2453 assert(0);
2454 }
2455 if(opcode2[i]==0x3e) // DSRL32
2456 {
2457 assert(0);
2458 }
2459 if(opcode2[i]==0x3f) // DSRA32
2460 {
2461 assert(0);
2462 }
2463}
2464
2465#ifndef shift_assemble
2466static void shift_assemble(int i,struct regstat *i_regs)
2467{
2468 signed char s,t,shift;
2469 if (rt1[i] == 0)
2470 return;
2471 assert(opcode2[i]<=0x07); // SLLV/SRLV/SRAV
2472 t = get_reg(i_regs->regmap, rt1[i]);
2473 s = get_reg(i_regs->regmap, rs1[i]);
2474 shift = get_reg(i_regs->regmap, rs2[i]);
2475 if (t < 0)
2476 return;
2477
2478 if(rs1[i]==0)
2479 emit_zeroreg(t);
2480 else if(rs2[i]==0) {
2481 assert(s>=0);
2482 if(s!=t) emit_mov(s,t);
2483 }
2484 else {
2485 host_tempreg_acquire();
2486 emit_andimm(shift,31,HOST_TEMPREG);
2487 switch(opcode2[i]) {
2488 case 4: // SLLV
2489 emit_shl(s,HOST_TEMPREG,t);
2490 break;
2491 case 6: // SRLV
2492 emit_shr(s,HOST_TEMPREG,t);
2493 break;
2494 case 7: // SRAV
2495 emit_sar(s,HOST_TEMPREG,t);
2496 break;
2497 default:
2498 assert(0);
2499 }
2500 host_tempreg_release();
2501 }
2502}
2503
2504#endif
2505
2506enum {
2507 MTYPE_8000 = 0,
2508 MTYPE_8020,
2509 MTYPE_0000,
2510 MTYPE_A000,
2511 MTYPE_1F80,
2512};
2513
2514static int get_ptr_mem_type(u_int a)
2515{
2516 if(a < 0x00200000) {
2517 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2518 // return wrong, must use memhandler for BIOS self-test to pass
2519 // 007 does similar stuff from a00 mirror, weird stuff
2520 return MTYPE_8000;
2521 return MTYPE_0000;
2522 }
2523 if(0x1f800000 <= a && a < 0x1f801000)
2524 return MTYPE_1F80;
2525 if(0x80200000 <= a && a < 0x80800000)
2526 return MTYPE_8020;
2527 if(0xa0000000 <= a && a < 0xa0200000)
2528 return MTYPE_A000;
2529 return MTYPE_8000;
2530}
2531
2532static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override)
2533{
2534 void *jaddr = NULL;
2535 int type=0;
2536 int mr=rs1[i];
2537 if(((smrv_strong|smrv_weak)>>mr)&1) {
2538 type=get_ptr_mem_type(smrv[mr]);
2539 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2540 }
2541 else {
2542 // use the mirror we are running on
2543 type=get_ptr_mem_type(start);
2544 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2545 }
2546
2547 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2548 host_tempreg_acquire();
2549 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2550 addr=*addr_reg_override=HOST_TEMPREG;
2551 type=0;
2552 }
2553 else if(type==MTYPE_0000) { // RAM 0 mirror
2554 host_tempreg_acquire();
2555 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2556 addr=*addr_reg_override=HOST_TEMPREG;
2557 type=0;
2558 }
2559 else if(type==MTYPE_A000) { // RAM A mirror
2560 host_tempreg_acquire();
2561 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2562 addr=*addr_reg_override=HOST_TEMPREG;
2563 type=0;
2564 }
2565 else if(type==MTYPE_1F80) { // scratchpad
2566 if (psxH == (void *)0x1f800000) {
2567 host_tempreg_acquire();
2568 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2569 emit_cmpimm(HOST_TEMPREG,0x1000);
2570 host_tempreg_release();
2571 jaddr=out;
2572 emit_jc(0);
2573 }
2574 else {
2575 // do the usual RAM check, jump will go to the right handler
2576 type=0;
2577 }
2578 }
2579
2580 if(type==0)
2581 {
2582 emit_cmpimm(addr,RAM_SIZE);
2583 jaddr=out;
2584 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2585 // Hint to branch predictor that the branch is unlikely to be taken
2586 if(rs1[i]>=28)
2587 emit_jno_unlikely(0);
2588 else
2589 #endif
2590 emit_jno(0);
2591 if(ram_offset!=0) {
2592 host_tempreg_acquire();
2593 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2594 addr=*addr_reg_override=HOST_TEMPREG;
2595 }
2596 }
2597
2598 return jaddr;
2599}
2600
2601// return memhandler, or get directly accessable address and return 0
2602static void *get_direct_memhandler(void *table, u_int addr,
2603 enum stub_type type, uintptr_t *addr_host)
2604{
2605 uintptr_t l1, l2 = 0;
2606 l1 = ((uintptr_t *)table)[addr>>12];
2607 if ((l1 & (1ul << (sizeof(l1)*8-1))) == 0) {
2608 uintptr_t v = l1 << 1;
2609 *addr_host = v + addr;
2610 return NULL;
2611 }
2612 else {
2613 l1 <<= 1;
2614 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2615 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2616 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2617 l2=((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2618 else
2619 l2=((uintptr_t *)l1)[(addr&0xfff)/4];
2620 if ((l2 & (1<<31)) == 0) {
2621 uintptr_t v = l2 << 1;
2622 *addr_host = v + (addr&0xfff);
2623 return NULL;
2624 }
2625 return (void *)(l2 << 1);
2626 }
2627}
2628
2629static void load_assemble(int i,struct regstat *i_regs)
2630{
2631 int s,tl,addr;
2632 int offset;
2633 void *jaddr=0;
2634 int memtarget=0,c=0;
2635 int fastio_reg_override=-1;
2636 u_int hr,reglist=0;
2637 tl=get_reg(i_regs->regmap,rt1[i]);
2638 s=get_reg(i_regs->regmap,rs1[i]);
2639 offset=imm[i];
2640 for(hr=0;hr<HOST_REGS;hr++) {
2641 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2642 }
2643 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2644 if(s>=0) {
2645 c=(i_regs->wasconst>>s)&1;
2646 if (c) {
2647 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2648 }
2649 }
2650 //printf("load_assemble: c=%d\n",c);
2651 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2652 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2653 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2654 ||rt1[i]==0) {
2655 // could be FIFO, must perform the read
2656 // ||dummy read
2657 assem_debug("(forced read)\n");
2658 tl=get_reg(i_regs->regmap,-1);
2659 assert(tl>=0);
2660 }
2661 if(offset||s<0||c) addr=tl;
2662 else addr=s;
2663 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2664 if(tl>=0) {
2665 //printf("load_assemble: c=%d\n",c);
2666 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2667 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2668 reglist&=~(1<<tl);
2669 if(!c) {
2670 #ifdef R29_HACK
2671 // Strmnnrmn's speed hack
2672 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2673 #endif
2674 {
2675 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2676 }
2677 }
2678 else if(ram_offset&&memtarget) {
2679 host_tempreg_acquire();
2680 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2681 fastio_reg_override=HOST_TEMPREG;
2682 }
2683 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2684 if (opcode[i]==0x20) { // LB
2685 if(!c||memtarget) {
2686 if(!dummy) {
2687 {
2688 int x=0,a=tl;
2689 if(!c) a=addr;
2690 if(fastio_reg_override>=0) a=fastio_reg_override;
2691
2692 emit_movsbl_indexed(x,a,tl);
2693 }
2694 }
2695 if(jaddr)
2696 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2697 }
2698 else
2699 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2700 }
2701 if (opcode[i]==0x21) { // LH
2702 if(!c||memtarget) {
2703 if(!dummy) {
2704 int x=0,a=tl;
2705 if(!c) a=addr;
2706 if(fastio_reg_override>=0) a=fastio_reg_override;
2707 emit_movswl_indexed(x,a,tl);
2708 }
2709 if(jaddr)
2710 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2711 }
2712 else
2713 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2714 }
2715 if (opcode[i]==0x23) { // LW
2716 if(!c||memtarget) {
2717 if(!dummy) {
2718 int a=addr;
2719 if(fastio_reg_override>=0) a=fastio_reg_override;
2720 emit_readword_indexed(0,a,tl);
2721 }
2722 if(jaddr)
2723 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2724 }
2725 else
2726 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2727 }
2728 if (opcode[i]==0x24) { // LBU
2729 if(!c||memtarget) {
2730 if(!dummy) {
2731 int x=0,a=tl;
2732 if(!c) a=addr;
2733 if(fastio_reg_override>=0) a=fastio_reg_override;
2734
2735 emit_movzbl_indexed(x,a,tl);
2736 }
2737 if(jaddr)
2738 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2739 }
2740 else
2741 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2742 }
2743 if (opcode[i]==0x25) { // LHU
2744 if(!c||memtarget) {
2745 if(!dummy) {
2746 int x=0,a=tl;
2747 if(!c) a=addr;
2748 if(fastio_reg_override>=0) a=fastio_reg_override;
2749 emit_movzwl_indexed(x,a,tl);
2750 }
2751 if(jaddr)
2752 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2753 }
2754 else
2755 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2756 }
2757 if (opcode[i]==0x27) { // LWU
2758 assert(0);
2759 }
2760 if (opcode[i]==0x37) { // LD
2761 assert(0);
2762 }
2763 }
2764 if (fastio_reg_override == HOST_TEMPREG)
2765 host_tempreg_release();
2766}
2767
2768#ifndef loadlr_assemble
2769static void loadlr_assemble(int i,struct regstat *i_regs)
2770{
2771 int s,tl,temp,temp2,addr;
2772 int offset;
2773 void *jaddr=0;
2774 int memtarget=0,c=0;
2775 int fastio_reg_override=-1;
2776 u_int hr,reglist=0;
2777 tl=get_reg(i_regs->regmap,rt1[i]);
2778 s=get_reg(i_regs->regmap,rs1[i]);
2779 temp=get_reg(i_regs->regmap,-1);
2780 temp2=get_reg(i_regs->regmap,FTEMP);
2781 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2782 assert(addr<0);
2783 offset=imm[i];
2784 for(hr=0;hr<HOST_REGS;hr++) {
2785 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2786 }
2787 reglist|=1<<temp;
2788 if(offset||s<0||c) addr=temp2;
2789 else addr=s;
2790 if(s>=0) {
2791 c=(i_regs->wasconst>>s)&1;
2792 if(c) {
2793 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2794 }
2795 }
2796 if(!c) {
2797 emit_shlimm(addr,3,temp);
2798 if (opcode[i]==0x22||opcode[i]==0x26) {
2799 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2800 }else{
2801 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2802 }
2803 jaddr=emit_fastpath_cmp_jump(i,temp2,&fastio_reg_override);
2804 }
2805 else {
2806 if(ram_offset&&memtarget) {
2807 host_tempreg_acquire();
2808 emit_addimm(temp2,ram_offset,HOST_TEMPREG);
2809 fastio_reg_override=HOST_TEMPREG;
2810 }
2811 if (opcode[i]==0x22||opcode[i]==0x26) {
2812 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2813 }else{
2814 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2815 }
2816 }
2817 if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
2818 if(!c||memtarget) {
2819 int a=temp2;
2820 if(fastio_reg_override>=0) a=fastio_reg_override;
2821 emit_readword_indexed(0,a,temp2);
2822 if(fastio_reg_override==HOST_TEMPREG) host_tempreg_release();
2823 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2824 }
2825 else
2826 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2827 if(rt1[i]) {
2828 assert(tl>=0);
2829 emit_andimm(temp,24,temp);
2830 if (opcode[i]==0x22) // LWL
2831 emit_xorimm(temp,24,temp);
2832 host_tempreg_acquire();
2833 emit_movimm(-1,HOST_TEMPREG);
2834 if (opcode[i]==0x26) {
2835 emit_shr(temp2,temp,temp2);
2836 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2837 }else{
2838 emit_shl(temp2,temp,temp2);
2839 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2840 }
2841 host_tempreg_release();
2842 emit_or(temp2,tl,tl);
2843 }
2844 //emit_storereg(rt1[i],tl); // DEBUG
2845 }
2846 if (opcode[i]==0x1A||opcode[i]==0x1B) { // LDL/LDR
2847 assert(0);
2848 }
2849}
2850#endif
2851
2852void store_assemble(int i,struct regstat *i_regs)
2853{
2854 int s,tl;
2855 int addr,temp;
2856 int offset;
2857 void *jaddr=0;
2858 enum stub_type type;
2859 int memtarget=0,c=0;
2860 int agr=AGEN1+(i&1);
2861 int fastio_reg_override=-1;
2862 u_int hr,reglist=0;
2863 tl=get_reg(i_regs->regmap,rs2[i]);
2864 s=get_reg(i_regs->regmap,rs1[i]);
2865 temp=get_reg(i_regs->regmap,agr);
2866 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2867 offset=imm[i];
2868 if(s>=0) {
2869 c=(i_regs->wasconst>>s)&1;
2870 if(c) {
2871 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2872 }
2873 }
2874 assert(tl>=0);
2875 assert(temp>=0);
2876 for(hr=0;hr<HOST_REGS;hr++) {
2877 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2878 }
2879 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2880 if(offset||s<0||c) addr=temp;
2881 else addr=s;
2882 if(!c) {
2883 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2884 }
2885 else if(ram_offset&&memtarget) {
2886 host_tempreg_acquire();
2887 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2888 fastio_reg_override=HOST_TEMPREG;
2889 }
2890
2891 if (opcode[i]==0x28) { // SB
2892 if(!c||memtarget) {
2893 int x=0,a=temp;
2894 if(!c) a=addr;
2895 if(fastio_reg_override>=0) a=fastio_reg_override;
2896 emit_writebyte_indexed(tl,x,a);
2897 }
2898 type=STOREB_STUB;
2899 }
2900 if (opcode[i]==0x29) { // SH
2901 if(!c||memtarget) {
2902 int x=0,a=temp;
2903 if(!c) a=addr;
2904 if(fastio_reg_override>=0) a=fastio_reg_override;
2905 emit_writehword_indexed(tl,x,a);
2906 }
2907 type=STOREH_STUB;
2908 }
2909 if (opcode[i]==0x2B) { // SW
2910 if(!c||memtarget) {
2911 int a=addr;
2912 if(fastio_reg_override>=0) a=fastio_reg_override;
2913 emit_writeword_indexed(tl,0,a);
2914 }
2915 type=STOREW_STUB;
2916 }
2917 if (opcode[i]==0x3F) { // SD
2918 assert(0);
2919 type=STORED_STUB;
2920 }
2921 if(fastio_reg_override==HOST_TEMPREG)
2922 host_tempreg_release();
2923 if(jaddr) {
2924 // PCSX store handlers don't check invcode again
2925 reglist|=1<<addr;
2926 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2927 jaddr=0;
2928 }
2929 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
2930 if(!c||memtarget) {
2931 #ifdef DESTRUCTIVE_SHIFT
2932 // The x86 shift operation is 'destructive'; it overwrites the
2933 // source register, so we need to make a copy first and use that.
2934 addr=temp;
2935 #endif
2936 #if defined(HOST_IMM8)
2937 int ir=get_reg(i_regs->regmap,INVCP);
2938 assert(ir>=0);
2939 emit_cmpmem_indexedsr12_reg(ir,addr,1);
2940 #else
2941 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
2942 #endif
2943 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2944 emit_callne(invalidate_addr_reg[addr]);
2945 #else
2946 void *jaddr2 = out;
2947 emit_jne(0);
2948 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
2949 #endif
2950 }
2951 }
2952 u_int addr_val=constmap[i][s]+offset;
2953 if(jaddr) {
2954 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2955 } else if(c&&!memtarget) {
2956 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
2957 }
2958 // basic current block modification detection..
2959 // not looking back as that should be in mips cache already
2960 // (see Spyro2 title->attract mode)
2961 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
2962 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
2963 assert(i_regs->regmap==regs[i].regmap); // not delay slot
2964 if(i_regs->regmap==regs[i].regmap) {
2965 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
2966 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
2967 emit_movimm(start+i*4+4,0);
2968 emit_writeword(0,&pcaddr);
2969 emit_addimm(HOST_CCREG,2,HOST_CCREG);
2970 emit_far_call(get_addr_ht);
2971 emit_jmpreg(0);
2972 }
2973 }
2974}
2975
2976static void storelr_assemble(int i,struct regstat *i_regs)
2977{
2978 int s,tl;
2979 int temp;
2980 int offset;
2981 void *jaddr=0;
2982 void *case1, *case2, *case3;
2983 void *done0, *done1, *done2;
2984 int memtarget=0,c=0;
2985 int agr=AGEN1+(i&1);
2986 u_int hr,reglist=0;
2987 tl=get_reg(i_regs->regmap,rs2[i]);
2988 s=get_reg(i_regs->regmap,rs1[i]);
2989 temp=get_reg(i_regs->regmap,agr);
2990 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2991 offset=imm[i];
2992 if(s>=0) {
2993 c=(i_regs->isconst>>s)&1;
2994 if(c) {
2995 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2996 }
2997 }
2998 assert(tl>=0);
2999 for(hr=0;hr<HOST_REGS;hr++) {
3000 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3001 }
3002 assert(temp>=0);
3003 if(!c) {
3004 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3005 if(!offset&&s!=temp) emit_mov(s,temp);
3006 jaddr=out;
3007 emit_jno(0);
3008 }
3009 else
3010 {
3011 if(!memtarget||!rs1[i]) {
3012 jaddr=out;
3013 emit_jmp(0);
3014 }
3015 }
3016 if(ram_offset)
3017 emit_addimm_no_flags(ram_offset,temp);
3018
3019 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3020 assert(0);
3021 }
3022
3023 emit_xorimm(temp,3,temp);
3024 emit_testimm(temp,2);
3025 case2=out;
3026 emit_jne(0);
3027 emit_testimm(temp,1);
3028 case1=out;
3029 emit_jne(0);
3030 // 0
3031 if (opcode[i]==0x2A) { // SWL
3032 emit_writeword_indexed(tl,0,temp);
3033 }
3034 else if (opcode[i]==0x2E) { // SWR
3035 emit_writebyte_indexed(tl,3,temp);
3036 }
3037 else
3038 assert(0);
3039 done0=out;
3040 emit_jmp(0);
3041 // 1
3042 set_jump_target(case1, out);
3043 if (opcode[i]==0x2A) { // SWL
3044 // Write 3 msb into three least significant bytes
3045 if(rs2[i]) emit_rorimm(tl,8,tl);
3046 emit_writehword_indexed(tl,-1,temp);
3047 if(rs2[i]) emit_rorimm(tl,16,tl);
3048 emit_writebyte_indexed(tl,1,temp);
3049 if(rs2[i]) emit_rorimm(tl,8,tl);
3050 }
3051 else if (opcode[i]==0x2E) { // SWR
3052 // Write two lsb into two most significant bytes
3053 emit_writehword_indexed(tl,1,temp);
3054 }
3055 done1=out;
3056 emit_jmp(0);
3057 // 2
3058 set_jump_target(case2, out);
3059 emit_testimm(temp,1);
3060 case3=out;
3061 emit_jne(0);
3062 if (opcode[i]==0x2A) { // SWL
3063 // Write two msb into two least significant bytes
3064 if(rs2[i]) emit_rorimm(tl,16,tl);
3065 emit_writehword_indexed(tl,-2,temp);
3066 if(rs2[i]) emit_rorimm(tl,16,tl);
3067 }
3068 else if (opcode[i]==0x2E) { // SWR
3069 // Write 3 lsb into three most significant bytes
3070 emit_writebyte_indexed(tl,-1,temp);
3071 if(rs2[i]) emit_rorimm(tl,8,tl);
3072 emit_writehword_indexed(tl,0,temp);
3073 if(rs2[i]) emit_rorimm(tl,24,tl);
3074 }
3075 done2=out;
3076 emit_jmp(0);
3077 // 3
3078 set_jump_target(case3, out);
3079 if (opcode[i]==0x2A) { // SWL
3080 // Write msb into least significant byte
3081 if(rs2[i]) emit_rorimm(tl,24,tl);
3082 emit_writebyte_indexed(tl,-3,temp);
3083 if(rs2[i]) emit_rorimm(tl,8,tl);
3084 }
3085 else if (opcode[i]==0x2E) { // SWR
3086 // Write entire word
3087 emit_writeword_indexed(tl,-3,temp);
3088 }
3089 set_jump_target(done0, out);
3090 set_jump_target(done1, out);
3091 set_jump_target(done2, out);
3092 if(!c||!memtarget)
3093 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3094 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3095 emit_addimm_no_flags(-ram_offset,temp);
3096 #if defined(HOST_IMM8)
3097 int ir=get_reg(i_regs->regmap,INVCP);
3098 assert(ir>=0);
3099 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3100 #else
3101 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3102 #endif
3103 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3104 emit_callne(invalidate_addr_reg[temp]);
3105 #else
3106 void *jaddr2 = out;
3107 emit_jne(0);
3108 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3109 #endif
3110 }
3111}
3112
3113static void cop0_assemble(int i,struct regstat *i_regs)
3114{
3115 if(opcode2[i]==0) // MFC0
3116 {
3117 signed char t=get_reg(i_regs->regmap,rt1[i]);
3118 u_int copr=(source[i]>>11)&0x1f;
3119 //assert(t>=0); // Why does this happen? OOT is weird
3120 if(t>=0&&rt1[i]!=0) {
3121 emit_readword(&reg_cop0[copr],t);
3122 }
3123 }
3124 else if(opcode2[i]==4) // MTC0
3125 {
3126 signed char s=get_reg(i_regs->regmap,rs1[i]);
3127 char copr=(source[i]>>11)&0x1f;
3128 assert(s>=0);
3129 wb_register(rs1[i],i_regs->regmap,i_regs->dirty);
3130 if(copr==9||copr==11||copr==12||copr==13) {
3131 emit_readword(&last_count,HOST_TEMPREG);
3132 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3133 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3134 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3135 emit_writeword(HOST_CCREG,&Count);
3136 }
3137 // What a mess. The status register (12) can enable interrupts,
3138 // so needs a special case to handle a pending interrupt.
3139 // The interrupt must be taken immediately, because a subsequent
3140 // instruction might disable interrupts again.
3141 if(copr==12||copr==13) {
3142 if (is_delayslot) {
3143 // burn cycles to cause cc_interrupt, which will
3144 // reschedule next_interupt. Relies on CCREG from above.
3145 assem_debug("MTC0 DS %d\n", copr);
3146 emit_writeword(HOST_CCREG,&last_count);
3147 emit_movimm(0,HOST_CCREG);
3148 emit_storereg(CCREG,HOST_CCREG);
3149 emit_loadreg(rs1[i],1);
3150 emit_movimm(copr,0);
3151 emit_far_call(pcsx_mtc0_ds);
3152 emit_loadreg(rs1[i],s);
3153 return;
3154 }
3155 emit_movimm(start+i*4+4,HOST_TEMPREG);
3156 emit_writeword(HOST_TEMPREG,&pcaddr);
3157 emit_movimm(0,HOST_TEMPREG);
3158 emit_writeword(HOST_TEMPREG,&pending_exception);
3159 }
3160 if(s==HOST_CCREG)
3161 emit_loadreg(rs1[i],1);
3162 else if(s!=1)
3163 emit_mov(s,1);
3164 emit_movimm(copr,0);
3165 emit_far_call(pcsx_mtc0);
3166 if(copr==9||copr==11||copr==12||copr==13) {
3167 emit_readword(&Count,HOST_CCREG);
3168 emit_readword(&next_interupt,HOST_TEMPREG);
3169 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3170 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3171 emit_writeword(HOST_TEMPREG,&last_count);
3172 emit_storereg(CCREG,HOST_CCREG);
3173 }
3174 if(copr==12||copr==13) {
3175 assert(!is_delayslot);
3176 emit_readword(&pending_exception,14);
3177 emit_test(14,14);
3178 void *jaddr = out;
3179 emit_jeq(0);
3180 emit_readword(&pcaddr, 0);
3181 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3182 emit_far_call(get_addr_ht);
3183 emit_jmpreg(0);
3184 set_jump_target(jaddr, out);
3185 }
3186 emit_loadreg(rs1[i],s);
3187 }
3188 else
3189 {
3190 assert(opcode2[i]==0x10);
3191 //if((source[i]&0x3f)==0x10) // RFE
3192 {
3193 emit_readword(&Status,0);
3194 emit_andimm(0,0x3c,1);
3195 emit_andimm(0,~0xf,0);
3196 emit_orrshr_imm(1,2,0);
3197 emit_writeword(0,&Status);
3198 }
3199 }
3200}
3201
3202static void cop1_unusable(int i,struct regstat *i_regs)
3203{
3204 // XXX: should just just do the exception instead
3205 //if(!cop1_usable)
3206 {
3207 void *jaddr=out;
3208 emit_jmp(0);
3209 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3210 }
3211}
3212
3213static void cop1_assemble(int i,struct regstat *i_regs)
3214{
3215 cop1_unusable(i, i_regs);
3216}
3217
3218static void c1ls_assemble(int i,struct regstat *i_regs)
3219{
3220 cop1_unusable(i, i_regs);
3221}
3222
3223// FP_STUB
3224static void do_cop1stub(int n)
3225{
3226 literal_pool(256);
3227 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3228 set_jump_target(stubs[n].addr, out);
3229 int i=stubs[n].a;
3230// int rs=stubs[n].b;
3231 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3232 int ds=stubs[n].d;
3233 if(!ds) {
3234 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3235 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3236 }
3237 //else {printf("fp exception in delay slot\n");}
3238 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3239 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3240 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3241 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3242 emit_far_jump(ds?fp_exception_ds:fp_exception);
3243}
3244
3245static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3246{
3247 switch (copr) {
3248 case 1:
3249 case 3:
3250 case 5:
3251 case 8:
3252 case 9:
3253 case 10:
3254 case 11:
3255 emit_readword(&reg_cop2d[copr],tl);
3256 emit_signextend16(tl,tl);
3257 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3258 break;
3259 case 7:
3260 case 16:
3261 case 17:
3262 case 18:
3263 case 19:
3264 emit_readword(&reg_cop2d[copr],tl);
3265 emit_andimm(tl,0xffff,tl);
3266 emit_writeword(tl,&reg_cop2d[copr]);
3267 break;
3268 case 15:
3269 emit_readword(&reg_cop2d[14],tl); // SXY2
3270 emit_writeword(tl,&reg_cop2d[copr]);
3271 break;
3272 case 28:
3273 case 29:
3274 c2op_mfc2_29_assemble(tl,temp);
3275 break;
3276 default:
3277 emit_readword(&reg_cop2d[copr],tl);
3278 break;
3279 }
3280}
3281
3282static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3283{
3284 switch (copr) {
3285 case 15:
3286 emit_readword(&reg_cop2d[13],temp); // SXY1
3287 emit_writeword(sl,&reg_cop2d[copr]);
3288 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3289 emit_readword(&reg_cop2d[14],temp); // SXY2
3290 emit_writeword(sl,&reg_cop2d[14]);
3291 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3292 break;
3293 case 28:
3294 emit_andimm(sl,0x001f,temp);
3295 emit_shlimm(temp,7,temp);
3296 emit_writeword(temp,&reg_cop2d[9]);
3297 emit_andimm(sl,0x03e0,temp);
3298 emit_shlimm(temp,2,temp);
3299 emit_writeword(temp,&reg_cop2d[10]);
3300 emit_andimm(sl,0x7c00,temp);
3301 emit_shrimm(temp,3,temp);
3302 emit_writeword(temp,&reg_cop2d[11]);
3303 emit_writeword(sl,&reg_cop2d[28]);
3304 break;
3305 case 30:
3306 emit_xorsar_imm(sl,sl,31,temp);
3307#if defined(HAVE_ARMV5) || defined(__aarch64__)
3308 emit_clz(temp,temp);
3309#else
3310 emit_movs(temp,HOST_TEMPREG);
3311 emit_movimm(0,temp);
3312 emit_jeq((int)out+4*4);
3313 emit_addpl_imm(temp,1,temp);
3314 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3315 emit_jns((int)out-2*4);
3316#endif
3317 emit_writeword(sl,&reg_cop2d[30]);
3318 emit_writeword(temp,&reg_cop2d[31]);
3319 break;
3320 case 31:
3321 break;
3322 default:
3323 emit_writeword(sl,&reg_cop2d[copr]);
3324 break;
3325 }
3326}
3327
3328static void c2ls_assemble(int i,struct regstat *i_regs)
3329{
3330 int s,tl;
3331 int ar;
3332 int offset;
3333 int memtarget=0,c=0;
3334 void *jaddr2=NULL;
3335 enum stub_type type;
3336 int agr=AGEN1+(i&1);
3337 int fastio_reg_override=-1;
3338 u_int hr,reglist=0;
3339 u_int copr=(source[i]>>16)&0x1f;
3340 s=get_reg(i_regs->regmap,rs1[i]);
3341 tl=get_reg(i_regs->regmap,FTEMP);
3342 offset=imm[i];
3343 assert(rs1[i]>0);
3344 assert(tl>=0);
3345
3346 for(hr=0;hr<HOST_REGS;hr++) {
3347 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3348 }
3349 if(i_regs->regmap[HOST_CCREG]==CCREG)
3350 reglist&=~(1<<HOST_CCREG);
3351
3352 // get the address
3353 if (opcode[i]==0x3a) { // SWC2
3354 ar=get_reg(i_regs->regmap,agr);
3355 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3356 reglist|=1<<ar;
3357 } else { // LWC2
3358 ar=tl;
3359 }
3360 if(s>=0) c=(i_regs->wasconst>>s)&1;
3361 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3362 if (!offset&&!c&&s>=0) ar=s;
3363 assert(ar>=0);
3364
3365 if (opcode[i]==0x3a) { // SWC2
3366 cop2_get_dreg(copr,tl,-1);
3367 type=STOREW_STUB;
3368 }
3369 else
3370 type=LOADW_STUB;
3371
3372 if(c&&!memtarget) {
3373 jaddr2=out;
3374 emit_jmp(0); // inline_readstub/inline_writestub?
3375 }
3376 else {
3377 if(!c) {
3378 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3379 }
3380 else if(ram_offset&&memtarget) {
3381 host_tempreg_acquire();
3382 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3383 fastio_reg_override=HOST_TEMPREG;
3384 }
3385 if (opcode[i]==0x32) { // LWC2
3386 int a=ar;
3387 if(fastio_reg_override>=0) a=fastio_reg_override;
3388 emit_readword_indexed(0,a,tl);
3389 }
3390 if (opcode[i]==0x3a) { // SWC2
3391 #ifdef DESTRUCTIVE_SHIFT
3392 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3393 #endif
3394 int a=ar;
3395 if(fastio_reg_override>=0) a=fastio_reg_override;
3396 emit_writeword_indexed(tl,0,a);
3397 }
3398 }
3399 if(fastio_reg_override==HOST_TEMPREG)
3400 host_tempreg_release();
3401 if(jaddr2)
3402 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3403 if(opcode[i]==0x3a) // SWC2
3404 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3405#if defined(HOST_IMM8)
3406 int ir=get_reg(i_regs->regmap,INVCP);
3407 assert(ir>=0);
3408 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3409#else
3410 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3411#endif
3412 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3413 emit_callne(invalidate_addr_reg[ar]);
3414 #else
3415 void *jaddr3 = out;
3416 emit_jne(0);
3417 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3418 #endif
3419 }
3420 if (opcode[i]==0x32) { // LWC2
3421 host_tempreg_acquire();
3422 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3423 host_tempreg_release();
3424 }
3425}
3426
3427static void cop2_assemble(int i,struct regstat *i_regs)
3428{
3429 u_int copr=(source[i]>>11)&0x1f;
3430 signed char temp=get_reg(i_regs->regmap,-1);
3431 if (opcode2[i]==0) { // MFC2
3432 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3433 if(tl>=0&&rt1[i]!=0)
3434 cop2_get_dreg(copr,tl,temp);
3435 }
3436 else if (opcode2[i]==4) { // MTC2
3437 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3438 cop2_put_dreg(copr,sl,temp);
3439 }
3440 else if (opcode2[i]==2) // CFC2
3441 {
3442 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3443 if(tl>=0&&rt1[i]!=0)
3444 emit_readword(&reg_cop2c[copr],tl);
3445 }
3446 else if (opcode2[i]==6) // CTC2
3447 {
3448 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3449 switch(copr) {
3450 case 4:
3451 case 12:
3452 case 20:
3453 case 26:
3454 case 27:
3455 case 29:
3456 case 30:
3457 emit_signextend16(sl,temp);
3458 break;
3459 case 31:
3460 c2op_ctc2_31_assemble(sl,temp);
3461 break;
3462 default:
3463 temp=sl;
3464 break;
3465 }
3466 emit_writeword(temp,&reg_cop2c[copr]);
3467 assert(sl>=0);
3468 }
3469}
3470
3471static void do_unalignedwritestub(int n)
3472{
3473 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3474 literal_pool(256);
3475 set_jump_target(stubs[n].addr, out);
3476
3477 int i=stubs[n].a;
3478 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3479 int addr=stubs[n].b;
3480 u_int reglist=stubs[n].e;
3481 signed char *i_regmap=i_regs->regmap;
3482 int temp2=get_reg(i_regmap,FTEMP);
3483 int rt;
3484 rt=get_reg(i_regmap,rs2[i]);
3485 assert(rt>=0);
3486 assert(addr>=0);
3487 assert(opcode[i]==0x2a||opcode[i]==0x2e); // SWL/SWR only implemented
3488 reglist|=(1<<addr);
3489 reglist&=~(1<<temp2);
3490
3491#if 1
3492 // don't bother with it and call write handler
3493 save_regs(reglist);
3494 pass_args(addr,rt);
3495 int cc=get_reg(i_regmap,CCREG);
3496 if(cc<0)
3497 emit_loadreg(CCREG,2);
3498 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3499 emit_far_call((opcode[i]==0x2a?jump_handle_swl:jump_handle_swr));
3500 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3501 if(cc<0)
3502 emit_storereg(CCREG,2);
3503 restore_regs(reglist);
3504 emit_jmp(stubs[n].retaddr); // return address
3505#else
3506 emit_andimm(addr,0xfffffffc,temp2);
3507 emit_writeword(temp2,&address);
3508
3509 save_regs(reglist);
3510 emit_shrimm(addr,16,1);
3511 int cc=get_reg(i_regmap,CCREG);
3512 if(cc<0) {
3513 emit_loadreg(CCREG,2);
3514 }
3515 emit_movimm((u_int)readmem,0);
3516 emit_addimm(cc<0?2:cc,2*stubs[n].d+2,2);
3517 emit_call((int)&indirect_jump_indexed);
3518 restore_regs(reglist);
3519
3520 emit_readword(&readmem_dword,temp2);
3521 int temp=addr; //hmh
3522 emit_shlimm(addr,3,temp);
3523 emit_andimm(temp,24,temp);
3524 if (opcode[i]==0x2a) // SWL
3525 emit_xorimm(temp,24,temp);
3526 emit_movimm(-1,HOST_TEMPREG);
3527 if (opcode[i]==0x2a) { // SWL
3528 emit_bic_lsr(temp2,HOST_TEMPREG,temp,temp2);
3529 emit_orrshr(rt,temp,temp2);
3530 }else{
3531 emit_bic_lsl(temp2,HOST_TEMPREG,temp,temp2);
3532 emit_orrshl(rt,temp,temp2);
3533 }
3534 emit_readword(&address,addr);
3535 emit_writeword(temp2,&word);
3536 //save_regs(reglist); // don't need to, no state changes
3537 emit_shrimm(addr,16,1);
3538 emit_movimm((u_int)writemem,0);
3539 //emit_call((int)&indirect_jump_indexed);
3540 emit_mov(15,14);
3541 emit_readword_dualindexedx4(0,1,15);
3542 emit_readword(&Count,HOST_TEMPREG);
3543 emit_readword(&next_interupt,2);
3544 emit_addimm(HOST_TEMPREG,-2*stubs[n].d-2,HOST_TEMPREG);
3545 emit_writeword(2,&last_count);
3546 emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc);
3547 if(cc<0) {
3548 emit_storereg(CCREG,HOST_TEMPREG);
3549 }
3550 restore_regs(reglist);
3551 emit_jmp(stubs[n].retaddr); // return address
3552#endif
3553}
3554
3555#ifndef multdiv_assemble
3556void multdiv_assemble(int i,struct regstat *i_regs)
3557{
3558 printf("Need multdiv_assemble for this architecture.\n");
3559 abort();
3560}
3561#endif
3562
3563static void mov_assemble(int i,struct regstat *i_regs)
3564{
3565 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3566 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3567 if(rt1[i]) {
3568 signed char sl,tl;
3569 tl=get_reg(i_regs->regmap,rt1[i]);
3570 //assert(tl>=0);
3571 if(tl>=0) {
3572 sl=get_reg(i_regs->regmap,rs1[i]);
3573 if(sl>=0) emit_mov(sl,tl);
3574 else emit_loadreg(rs1[i],tl);
3575 }
3576 }
3577}
3578
3579// call interpreter, exception handler, things that change pc/regs/cycles ...
3580static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3581{
3582 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3583 assert(ccreg==HOST_CCREG);
3584 assert(!is_delayslot);
3585 (void)ccreg;
3586
3587 emit_movimm(pc,3); // Get PC
3588 emit_readword(&last_count,2);
3589 emit_writeword(3,&psxRegs.pc);
3590 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3591 emit_add(2,HOST_CCREG,2);
3592 emit_writeword(2,&psxRegs.cycle);
3593 emit_far_call(func);
3594 emit_far_jump(jump_to_new_pc);
3595}
3596
3597static void syscall_assemble(int i,struct regstat *i_regs)
3598{
3599 emit_movimm(0x20,0); // cause code
3600 emit_movimm(0,1); // not in delay slot
3601 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3602}
3603
3604static void hlecall_assemble(int i,struct regstat *i_regs)
3605{
3606 void *hlefunc = psxNULL;
3607 uint32_t hleCode = source[i] & 0x03ffffff;
3608 if (hleCode < ARRAY_SIZE(psxHLEt))
3609 hlefunc = psxHLEt[hleCode];
3610
3611 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3612}
3613
3614static void intcall_assemble(int i,struct regstat *i_regs)
3615{
3616 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3617}
3618
3619static void speculate_mov(int rs,int rt)
3620{
3621 if(rt!=0) {
3622 smrv_strong_next|=1<<rt;
3623 smrv[rt]=smrv[rs];
3624 }
3625}
3626
3627static void speculate_mov_weak(int rs,int rt)
3628{
3629 if(rt!=0) {
3630 smrv_weak_next|=1<<rt;
3631 smrv[rt]=smrv[rs];
3632 }
3633}
3634
3635static void speculate_register_values(int i)
3636{
3637 if(i==0) {
3638 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3639 // gp,sp are likely to stay the same throughout the block
3640 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3641 smrv_weak_next=~smrv_strong_next;
3642 //printf(" llr %08x\n", smrv[4]);
3643 }
3644 smrv_strong=smrv_strong_next;
3645 smrv_weak=smrv_weak_next;
3646 switch(itype[i]) {
3647 case ALU:
3648 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3649 else if((smrv_strong>>rs2[i])&1) speculate_mov(rs2[i],rt1[i]);
3650 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3651 else if((smrv_weak>>rs2[i])&1) speculate_mov_weak(rs2[i],rt1[i]);
3652 else {
3653 smrv_strong_next&=~(1<<rt1[i]);
3654 smrv_weak_next&=~(1<<rt1[i]);
3655 }
3656 break;
3657 case SHIFTIMM:
3658 smrv_strong_next&=~(1<<rt1[i]);
3659 smrv_weak_next&=~(1<<rt1[i]);
3660 // fallthrough
3661 case IMM16:
3662 if(rt1[i]&&is_const(&regs[i],rt1[i])) {
3663 int value,hr=get_reg(regs[i].regmap,rt1[i]);
3664 if(hr>=0) {
3665 if(get_final_value(hr,i,&value))
3666 smrv[rt1[i]]=value;
3667 else smrv[rt1[i]]=constmap[i][hr];
3668 smrv_strong_next|=1<<rt1[i];
3669 }
3670 }
3671 else {
3672 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3673 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3674 }
3675 break;
3676 case LOAD:
3677 if(start<0x2000&&(rt1[i]==26||(smrv[rt1[i]]>>24)==0xa0)) {
3678 // special case for BIOS
3679 smrv[rt1[i]]=0xa0000000;
3680 smrv_strong_next|=1<<rt1[i];
3681 break;
3682 }
3683 // fallthrough
3684 case SHIFT:
3685 case LOADLR:
3686 case MOV:
3687 smrv_strong_next&=~(1<<rt1[i]);
3688 smrv_weak_next&=~(1<<rt1[i]);
3689 break;
3690 case COP0:
3691 case COP2:
3692 if(opcode2[i]==0||opcode2[i]==2) { // MFC/CFC
3693 smrv_strong_next&=~(1<<rt1[i]);
3694 smrv_weak_next&=~(1<<rt1[i]);
3695 }
3696 break;
3697 case C2LS:
3698 if (opcode[i]==0x32) { // LWC2
3699 smrv_strong_next&=~(1<<rt1[i]);
3700 smrv_weak_next&=~(1<<rt1[i]);
3701 }
3702 break;
3703 }
3704#if 0
3705 int r=4;
3706 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
3707 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
3708#endif
3709}
3710
3711static void ds_assemble(int i,struct regstat *i_regs)
3712{
3713 speculate_register_values(i);
3714 is_delayslot=1;
3715 switch(itype[i]) {
3716 case ALU:
3717 alu_assemble(i,i_regs);break;
3718 case IMM16:
3719 imm16_assemble(i,i_regs);break;
3720 case SHIFT:
3721 shift_assemble(i,i_regs);break;
3722 case SHIFTIMM:
3723 shiftimm_assemble(i,i_regs);break;
3724 case LOAD:
3725 load_assemble(i,i_regs);break;
3726 case LOADLR:
3727 loadlr_assemble(i,i_regs);break;
3728 case STORE:
3729 store_assemble(i,i_regs);break;
3730 case STORELR:
3731 storelr_assemble(i,i_regs);break;
3732 case COP0:
3733 cop0_assemble(i,i_regs);break;
3734 case COP1:
3735 cop1_assemble(i,i_regs);break;
3736 case C1LS:
3737 c1ls_assemble(i,i_regs);break;
3738 case COP2:
3739 cop2_assemble(i,i_regs);break;
3740 case C2LS:
3741 c2ls_assemble(i,i_regs);break;
3742 case C2OP:
3743 c2op_assemble(i,i_regs);break;
3744 case MULTDIV:
3745 multdiv_assemble(i,i_regs);break;
3746 case MOV:
3747 mov_assemble(i,i_regs);break;
3748 case SYSCALL:
3749 case HLECALL:
3750 case INTCALL:
3751 case SPAN:
3752 case UJUMP:
3753 case RJUMP:
3754 case CJUMP:
3755 case SJUMP:
3756 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
3757 }
3758 is_delayslot=0;
3759}
3760
3761// Is the branch target a valid internal jump?
3762static int internal_branch(int addr)
3763{
3764 if(addr&1) return 0; // Indirect (register) jump
3765 if(addr>=start && addr<start+slen*4-4)
3766 {
3767 return 1;
3768 }
3769 return 0;
3770}
3771
3772static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
3773{
3774 int hr;
3775 for(hr=0;hr<HOST_REGS;hr++) {
3776 if(hr!=EXCLUDE_REG) {
3777 if(pre[hr]!=entry[hr]) {
3778 if(pre[hr]>=0) {
3779 if((dirty>>hr)&1) {
3780 if(get_reg(entry,pre[hr])<0) {
3781 assert(pre[hr]<64);
3782 if(!((u>>pre[hr])&1))
3783 emit_storereg(pre[hr],hr);
3784 }
3785 }
3786 }
3787 }
3788 }
3789 }
3790 // Move from one register to another (no writeback)
3791 for(hr=0;hr<HOST_REGS;hr++) {
3792 if(hr!=EXCLUDE_REG) {
3793 if(pre[hr]!=entry[hr]) {
3794 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3795 int nr;
3796 if((nr=get_reg(entry,pre[hr]))>=0) {
3797 emit_mov(hr,nr);
3798 }
3799 }
3800 }
3801 }
3802 }
3803}
3804
3805// Load the specified registers
3806// This only loads the registers given as arguments because
3807// we don't want to load things that will be overwritten
3808static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
3809{
3810 int hr;
3811 // Load 32-bit regs
3812 for(hr=0;hr<HOST_REGS;hr++) {
3813 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3814 if(entry[hr]!=regmap[hr]) {
3815 if(regmap[hr]==rs1||regmap[hr]==rs2)
3816 {
3817 if(regmap[hr]==0) {
3818 emit_zeroreg(hr);
3819 }
3820 else
3821 {
3822 emit_loadreg(regmap[hr],hr);
3823 }
3824 }
3825 }
3826 }
3827 }
3828}
3829
3830// Load registers prior to the start of a loop
3831// so that they are not loaded within the loop
3832static void loop_preload(signed char pre[],signed char entry[])
3833{
3834 int hr;
3835 for(hr=0;hr<HOST_REGS;hr++) {
3836 if(hr!=EXCLUDE_REG) {
3837 if(pre[hr]!=entry[hr]) {
3838 if(entry[hr]>=0) {
3839 if(get_reg(pre,entry[hr])<0) {
3840 assem_debug("loop preload:\n");
3841 //printf("loop preload: %d\n",hr);
3842 if(entry[hr]==0) {
3843 emit_zeroreg(hr);
3844 }
3845 else if(entry[hr]<TEMPREG)
3846 {
3847 emit_loadreg(entry[hr],hr);
3848 }
3849 else if(entry[hr]-64<TEMPREG)
3850 {
3851 emit_loadreg(entry[hr],hr);
3852 }
3853 }
3854 }
3855 }
3856 }
3857 }
3858}
3859
3860// Generate address for load/store instruction
3861// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3862void address_generation(int i,struct regstat *i_regs,signed char entry[])
3863{
3864 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3865 int ra=-1;
3866 int agr=AGEN1+(i&1);
3867 if(itype[i]==LOAD) {
3868 ra=get_reg(i_regs->regmap,rt1[i]);
3869 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3870 assert(ra>=0);
3871 }
3872 if(itype[i]==LOADLR) {
3873 ra=get_reg(i_regs->regmap,FTEMP);
3874 }
3875 if(itype[i]==STORE||itype[i]==STORELR) {
3876 ra=get_reg(i_regs->regmap,agr);
3877 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3878 }
3879 if(itype[i]==C1LS||itype[i]==C2LS) {
3880 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3881 ra=get_reg(i_regs->regmap,FTEMP);
3882 else { // SWC1/SDC1/SWC2/SDC2
3883 ra=get_reg(i_regs->regmap,agr);
3884 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3885 }
3886 }
3887 int rs=get_reg(i_regs->regmap,rs1[i]);
3888 if(ra>=0) {
3889 int offset=imm[i];
3890 int c=(i_regs->wasconst>>rs)&1;
3891 if(rs1[i]==0) {
3892 // Using r0 as a base address
3893 if(!entry||entry[ra]!=agr) {
3894 if (opcode[i]==0x22||opcode[i]==0x26) {
3895 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3896 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3897 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3898 }else{
3899 emit_movimm(offset,ra);
3900 }
3901 } // else did it in the previous cycle
3902 }
3903 else if(rs<0) {
3904 if(!entry||entry[ra]!=rs1[i])
3905 emit_loadreg(rs1[i],ra);
3906 //if(!entry||entry[ra]!=rs1[i])
3907 // printf("poor load scheduling!\n");
3908 }
3909 else if(c) {
3910 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3911 if(!entry||entry[ra]!=agr) {
3912 if (opcode[i]==0x22||opcode[i]==0x26) {
3913 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3914 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3915 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3916 }else{
3917 emit_movimm(constmap[i][rs]+offset,ra);
3918 regs[i].loadedconst|=1<<ra;
3919 }
3920 } // else did it in the previous cycle
3921 } // else load_consts already did it
3922 }
3923 if(offset&&!c&&rs1[i]) {
3924 if(rs>=0) {
3925 emit_addimm(rs,offset,ra);
3926 }else{
3927 emit_addimm(ra,offset,ra);
3928 }
3929 }
3930 }
3931 }
3932 // Preload constants for next instruction
3933 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
3934 int agr,ra;
3935 // Actual address
3936 agr=AGEN1+((i+1)&1);
3937 ra=get_reg(i_regs->regmap,agr);
3938 if(ra>=0) {
3939 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3940 int offset=imm[i+1];
3941 int c=(regs[i+1].wasconst>>rs)&1;
3942 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3943 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3944 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3945 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3946 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3947 }else{
3948 emit_movimm(constmap[i+1][rs]+offset,ra);
3949 regs[i+1].loadedconst|=1<<ra;
3950 }
3951 }
3952 else if(rs1[i+1]==0) {
3953 // Using r0 as a base address
3954 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3955 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3956 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3957 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3958 }else{
3959 emit_movimm(offset,ra);
3960 }
3961 }
3962 }
3963 }
3964}
3965
3966static int get_final_value(int hr, int i, int *value)
3967{
3968 int reg=regs[i].regmap[hr];
3969 while(i<slen-1) {
3970 if(regs[i+1].regmap[hr]!=reg) break;
3971 if(!((regs[i+1].isconst>>hr)&1)) break;
3972 if(bt[i+1]) break;
3973 i++;
3974 }
3975 if(i<slen-1) {
3976 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3977 *value=constmap[i][hr];
3978 return 1;
3979 }
3980 if(!bt[i+1]) {
3981 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3982 // Load in delay slot, out-of-order execution
3983 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3984 {
3985 // Precompute load address
3986 *value=constmap[i][hr]+imm[i+2];
3987 return 1;
3988 }
3989 }
3990 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3991 {
3992 // Precompute load address
3993 *value=constmap[i][hr]+imm[i+1];
3994 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
3995 return 1;
3996 }
3997 }
3998 }
3999 *value=constmap[i][hr];
4000 //printf("c=%lx\n",(long)constmap[i][hr]);
4001 if(i==slen-1) return 1;
4002 assert(reg < 64);
4003 return !((unneeded_reg[i+1]>>reg)&1);
4004}
4005
4006// Load registers with known constants
4007static void load_consts(signed char pre[],signed char regmap[],int i)
4008{
4009 int hr,hr2;
4010 // propagate loaded constant flags
4011 if(i==0||bt[i])
4012 regs[i].loadedconst=0;
4013 else {
4014 for(hr=0;hr<HOST_REGS;hr++) {
4015 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4016 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4017 {
4018 regs[i].loadedconst|=1<<hr;
4019 }
4020 }
4021 }
4022 // Load 32-bit regs
4023 for(hr=0;hr<HOST_REGS;hr++) {
4024 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4025 //if(entry[hr]!=regmap[hr]) {
4026 if(!((regs[i].loadedconst>>hr)&1)) {
4027 assert(regmap[hr]<64);
4028 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4029 int value,similar=0;
4030 if(get_final_value(hr,i,&value)) {
4031 // see if some other register has similar value
4032 for(hr2=0;hr2<HOST_REGS;hr2++) {
4033 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4034 if(is_similar_value(value,constmap[i][hr2])) {
4035 similar=1;
4036 break;
4037 }
4038 }
4039 }
4040 if(similar) {
4041 int value2;
4042 if(get_final_value(hr2,i,&value2)) // is this needed?
4043 emit_movimm_from(value2,hr2,value,hr);
4044 else
4045 emit_movimm(value,hr);
4046 }
4047 else if(value==0) {
4048 emit_zeroreg(hr);
4049 }
4050 else {
4051 emit_movimm(value,hr);
4052 }
4053 }
4054 regs[i].loadedconst|=1<<hr;
4055 }
4056 }
4057 }
4058 }
4059}
4060
4061void load_all_consts(signed char regmap[], u_int dirty, int i)
4062{
4063 int hr;
4064 // Load 32-bit regs
4065 for(hr=0;hr<HOST_REGS;hr++) {
4066 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4067 assert(regmap[hr] < 64);
4068 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4069 int value=constmap[i][hr];
4070 if(value==0) {
4071 emit_zeroreg(hr);
4072 }
4073 else {
4074 emit_movimm(value,hr);
4075 }
4076 }
4077 }
4078 }
4079}
4080
4081// Write out all dirty registers (except cycle count)
4082static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4083{
4084 int hr;
4085 for(hr=0;hr<HOST_REGS;hr++) {
4086 if(hr!=EXCLUDE_REG) {
4087 if(i_regmap[hr]>0) {
4088 if(i_regmap[hr]!=CCREG) {
4089 if((i_dirty>>hr)&1) {
4090 assert(i_regmap[hr]<64);
4091 emit_storereg(i_regmap[hr],hr);
4092 }
4093 }
4094 }
4095 }
4096 }
4097}
4098
4099// Write out dirty registers that we need to reload (pair with load_needed_regs)
4100// This writes the registers not written by store_regs_bt
4101void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4102{
4103 int hr;
4104 int t=(addr-start)>>2;
4105 for(hr=0;hr<HOST_REGS;hr++) {
4106 if(hr!=EXCLUDE_REG) {
4107 if(i_regmap[hr]>0) {
4108 if(i_regmap[hr]!=CCREG) {
4109 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4110 if((i_dirty>>hr)&1) {
4111 assert(i_regmap[hr]<64);
4112 emit_storereg(i_regmap[hr],hr);
4113 }
4114 }
4115 }
4116 }
4117 }
4118 }
4119}
4120
4121// Load all registers (except cycle count)
4122void load_all_regs(signed char i_regmap[])
4123{
4124 int hr;
4125 for(hr=0;hr<HOST_REGS;hr++) {
4126 if(hr!=EXCLUDE_REG) {
4127 if(i_regmap[hr]==0) {
4128 emit_zeroreg(hr);
4129 }
4130 else
4131 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4132 {
4133 emit_loadreg(i_regmap[hr],hr);
4134 }
4135 }
4136 }
4137}
4138
4139// Load all current registers also needed by next instruction
4140void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4141{
4142 int hr;
4143 for(hr=0;hr<HOST_REGS;hr++) {
4144 if(hr!=EXCLUDE_REG) {
4145 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4146 if(i_regmap[hr]==0) {
4147 emit_zeroreg(hr);
4148 }
4149 else
4150 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4151 {
4152 emit_loadreg(i_regmap[hr],hr);
4153 }
4154 }
4155 }
4156 }
4157}
4158
4159// Load all regs, storing cycle count if necessary
4160void load_regs_entry(int t)
4161{
4162 int hr;
4163 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4164 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4165 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4166 emit_storereg(CCREG,HOST_CCREG);
4167 }
4168 // Load 32-bit regs
4169 for(hr=0;hr<HOST_REGS;hr++) {
4170 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4171 if(regs[t].regmap_entry[hr]==0) {
4172 emit_zeroreg(hr);
4173 }
4174 else if(regs[t].regmap_entry[hr]!=CCREG)
4175 {
4176 emit_loadreg(regs[t].regmap_entry[hr],hr);
4177 }
4178 }
4179 }
4180}
4181
4182// Store dirty registers prior to branch
4183void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4184{
4185 if(internal_branch(addr))
4186 {
4187 int t=(addr-start)>>2;
4188 int hr;
4189 for(hr=0;hr<HOST_REGS;hr++) {
4190 if(hr!=EXCLUDE_REG) {
4191 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4192 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4193 if((i_dirty>>hr)&1) {
4194 assert(i_regmap[hr]<64);
4195 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4196 emit_storereg(i_regmap[hr],hr);
4197 }
4198 }
4199 }
4200 }
4201 }
4202 }
4203 else
4204 {
4205 // Branch out of this block, write out all dirty regs
4206 wb_dirtys(i_regmap,i_dirty);
4207 }
4208}
4209
4210// Load all needed registers for branch target
4211static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4212{
4213 //if(addr>=start && addr<(start+slen*4))
4214 if(internal_branch(addr))
4215 {
4216 int t=(addr-start)>>2;
4217 int hr;
4218 // Store the cycle count before loading something else
4219 if(i_regmap[HOST_CCREG]!=CCREG) {
4220 assert(i_regmap[HOST_CCREG]==-1);
4221 }
4222 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4223 emit_storereg(CCREG,HOST_CCREG);
4224 }
4225 // Load 32-bit regs
4226 for(hr=0;hr<HOST_REGS;hr++) {
4227 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4228 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4229 if(regs[t].regmap_entry[hr]==0) {
4230 emit_zeroreg(hr);
4231 }
4232 else if(regs[t].regmap_entry[hr]!=CCREG)
4233 {
4234 emit_loadreg(regs[t].regmap_entry[hr],hr);
4235 }
4236 }
4237 }
4238 }
4239 }
4240}
4241
4242static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4243{
4244 if(addr>=start && addr<start+slen*4-4)
4245 {
4246 int t=(addr-start)>>2;
4247 int hr;
4248 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4249 for(hr=0;hr<HOST_REGS;hr++)
4250 {
4251 if(hr!=EXCLUDE_REG)
4252 {
4253 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4254 {
4255 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4256 {
4257 return 0;
4258 }
4259 else
4260 if((i_dirty>>hr)&1)
4261 {
4262 if(i_regmap[hr]<TEMPREG)
4263 {
4264 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4265 return 0;
4266 }
4267 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4268 {
4269 assert(0);
4270 }
4271 }
4272 }
4273 else // Same register but is it 32-bit or dirty?
4274 if(i_regmap[hr]>=0)
4275 {
4276 if(!((regs[t].dirty>>hr)&1))
4277 {
4278 if((i_dirty>>hr)&1)
4279 {
4280 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4281 {
4282 //printf("%x: dirty no match\n",addr);
4283 return 0;
4284 }
4285 }
4286 }
4287 }
4288 }
4289 }
4290 // Delay slots are not valid branch targets
4291 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP)) return 0;
4292 // Delay slots require additional processing, so do not match
4293 if(is_ds[t]) return 0;
4294 }
4295 else
4296 {
4297 int hr;
4298 for(hr=0;hr<HOST_REGS;hr++)
4299 {
4300 if(hr!=EXCLUDE_REG)
4301 {
4302 if(i_regmap[hr]>=0)
4303 {
4304 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4305 {
4306 if((i_dirty>>hr)&1)
4307 {
4308 return 0;
4309 }
4310 }
4311 }
4312 }
4313 }
4314 }
4315 return 1;
4316}
4317
4318#ifdef DRC_DBG
4319static void drc_dbg_emit_do_cmp(int i)
4320{
4321 extern void do_insn_cmp();
4322 //extern int cycle;
4323 u_int hr,reglist=0;
4324
4325 for(hr=0;hr<HOST_REGS;hr++)
4326 if(regs[i].regmap[hr]>=0) reglist|=1<<hr;
4327 save_regs(reglist);
4328 emit_movimm(start+i*4,0);
4329 emit_writeword(0,&pcaddr);
4330 emit_far_call(do_insn_cmp);
4331 //emit_readword(&cycle,0);
4332 //emit_addimm(0,2,0);
4333 //emit_writeword(0,&cycle);
4334 (void)get_reg2;
4335 restore_regs(reglist);
4336}
4337#else
4338#define drc_dbg_emit_do_cmp(x)
4339#endif
4340
4341// Used when a branch jumps into the delay slot of another branch
4342static void ds_assemble_entry(int i)
4343{
4344 int t=(ba[i]-start)>>2;
4345 if (!instr_addr[t])
4346 instr_addr[t] = out;
4347 assem_debug("Assemble delay slot at %x\n",ba[i]);
4348 assem_debug("<->\n");
4349 drc_dbg_emit_do_cmp(t);
4350 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4351 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4352 load_regs(regs[t].regmap_entry,regs[t].regmap,rs1[t],rs2[t]);
4353 address_generation(t,&regs[t],regs[t].regmap_entry);
4354 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4355 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4356 is_delayslot=0;
4357 switch(itype[t]) {
4358 case ALU:
4359 alu_assemble(t,&regs[t]);break;
4360 case IMM16:
4361 imm16_assemble(t,&regs[t]);break;
4362 case SHIFT:
4363 shift_assemble(t,&regs[t]);break;
4364 case SHIFTIMM:
4365 shiftimm_assemble(t,&regs[t]);break;
4366 case LOAD:
4367 load_assemble(t,&regs[t]);break;
4368 case LOADLR:
4369 loadlr_assemble(t,&regs[t]);break;
4370 case STORE:
4371 store_assemble(t,&regs[t]);break;
4372 case STORELR:
4373 storelr_assemble(t,&regs[t]);break;
4374 case COP0:
4375 cop0_assemble(t,&regs[t]);break;
4376 case COP1:
4377 cop1_assemble(t,&regs[t]);break;
4378 case C1LS:
4379 c1ls_assemble(t,&regs[t]);break;
4380 case COP2:
4381 cop2_assemble(t,&regs[t]);break;
4382 case C2LS:
4383 c2ls_assemble(t,&regs[t]);break;
4384 case C2OP:
4385 c2op_assemble(t,&regs[t]);break;
4386 case MULTDIV:
4387 multdiv_assemble(t,&regs[t]);break;
4388 case MOV:
4389 mov_assemble(t,&regs[t]);break;
4390 case SYSCALL:
4391 case HLECALL:
4392 case INTCALL:
4393 case SPAN:
4394 case UJUMP:
4395 case RJUMP:
4396 case CJUMP:
4397 case SJUMP:
4398 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4399 }
4400 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4401 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4402 if(internal_branch(ba[i]+4))
4403 assem_debug("branch: internal\n");
4404 else
4405 assem_debug("branch: external\n");
4406 assert(internal_branch(ba[i]+4));
4407 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4408 emit_jmp(0);
4409}
4410
4411static void emit_extjump(void *addr, u_int target)
4412{
4413 emit_extjump2(addr, target, dyna_linker);
4414}
4415
4416static void emit_extjump_ds(void *addr, u_int target)
4417{
4418 emit_extjump2(addr, target, dyna_linker_ds);
4419}
4420
4421// Load 2 immediates optimizing for small code size
4422static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4423{
4424 emit_movimm(imm1,rt1);
4425 emit_movimm_from(imm1,rt1,imm2,rt2);
4426}
4427
4428void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4429{
4430 int count;
4431 void *jaddr;
4432 void *idle=NULL;
4433 int t=0;
4434 if(itype[i]==RJUMP)
4435 {
4436 *adj=0;
4437 }
4438 //if(ba[i]>=start && ba[i]<(start+slen*4))
4439 if(internal_branch(ba[i]))
4440 {
4441 t=(ba[i]-start)>>2;
4442 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4443 else *adj=ccadj[t];
4444 }
4445 else
4446 {
4447 *adj=0;
4448 }
4449 count=ccadj[i];
4450 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4451 // Idle loop
4452 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4453 idle=out;
4454 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4455 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4456 jaddr=out;
4457 emit_jmp(0);
4458 }
4459 else if(*adj==0||invert) {
4460 int cycles=CLOCK_ADJUST(count+2);
4461 // faster loop HACK
4462 if (t&&*adj) {
4463 int rel=t-i;
4464 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4465 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4466 }
4467 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4468 jaddr=out;
4469 emit_jns(0);
4470 }
4471 else
4472 {
4473 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4474 jaddr=out;
4475 emit_jns(0);
4476 }
4477 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4478}
4479
4480static void do_ccstub(int n)
4481{
4482 literal_pool(256);
4483 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4484 set_jump_target(stubs[n].addr, out);
4485 int i=stubs[n].b;
4486 if(stubs[n].d==NULLDS) {
4487 // Delay slot instruction is nullified ("likely" branch)
4488 wb_dirtys(regs[i].regmap,regs[i].dirty);
4489 }
4490 else if(stubs[n].d!=TAKEN) {
4491 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4492 }
4493 else {
4494 if(internal_branch(ba[i]))
4495 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4496 }
4497 if(stubs[n].c!=-1)
4498 {
4499 // Save PC as return address
4500 emit_movimm(stubs[n].c,EAX);
4501 emit_writeword(EAX,&pcaddr);
4502 }
4503 else
4504 {
4505 // Return address depends on which way the branch goes
4506 if(itype[i]==CJUMP||itype[i]==SJUMP)
4507 {
4508 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4509 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4510 if(rs1[i]==0)
4511 {
4512 s1l=s2l;
4513 s2l=-1;
4514 }
4515 else if(rs2[i]==0)
4516 {
4517 s2l=-1;
4518 }
4519 assert(s1l>=0);
4520 #ifdef DESTRUCTIVE_WRITEBACK
4521 if(rs1[i]) {
4522 if((branch_regs[i].dirty>>s1l)&&1)
4523 emit_loadreg(rs1[i],s1l);
4524 }
4525 else {
4526 if((branch_regs[i].dirty>>s1l)&1)
4527 emit_loadreg(rs2[i],s1l);
4528 }
4529 if(s2l>=0)
4530 if((branch_regs[i].dirty>>s2l)&1)
4531 emit_loadreg(rs2[i],s2l);
4532 #endif
4533 int hr=0;
4534 int addr=-1,alt=-1,ntaddr=-1;
4535 while(hr<HOST_REGS)
4536 {
4537 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4538 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4539 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4540 {
4541 addr=hr++;break;
4542 }
4543 hr++;
4544 }
4545 while(hr<HOST_REGS)
4546 {
4547 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4548 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4549 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4550 {
4551 alt=hr++;break;
4552 }
4553 hr++;
4554 }
4555 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4556 {
4557 while(hr<HOST_REGS)
4558 {
4559 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4560 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4561 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4562 {
4563 ntaddr=hr;break;
4564 }
4565 hr++;
4566 }
4567 assert(hr<HOST_REGS);
4568 }
4569 if((opcode[i]&0x2f)==4) // BEQ
4570 {
4571 #ifdef HAVE_CMOV_IMM
4572 if(s2l>=0) emit_cmp(s1l,s2l);
4573 else emit_test(s1l,s1l);
4574 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4575 #else
4576 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4577 if(s2l>=0) emit_cmp(s1l,s2l);
4578 else emit_test(s1l,s1l);
4579 emit_cmovne_reg(alt,addr);
4580 #endif
4581 }
4582 if((opcode[i]&0x2f)==5) // BNE
4583 {
4584 #ifdef HAVE_CMOV_IMM
4585 if(s2l>=0) emit_cmp(s1l,s2l);
4586 else emit_test(s1l,s1l);
4587 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4588 #else
4589 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4590 if(s2l>=0) emit_cmp(s1l,s2l);
4591 else emit_test(s1l,s1l);
4592 emit_cmovne_reg(alt,addr);
4593 #endif
4594 }
4595 if((opcode[i]&0x2f)==6) // BLEZ
4596 {
4597 //emit_movimm(ba[i],alt);
4598 //emit_movimm(start+i*4+8,addr);
4599 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4600 emit_cmpimm(s1l,1);
4601 emit_cmovl_reg(alt,addr);
4602 }
4603 if((opcode[i]&0x2f)==7) // BGTZ
4604 {
4605 //emit_movimm(ba[i],addr);
4606 //emit_movimm(start+i*4+8,ntaddr);
4607 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4608 emit_cmpimm(s1l,1);
4609 emit_cmovl_reg(ntaddr,addr);
4610 }
4611 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4612 {
4613 //emit_movimm(ba[i],alt);
4614 //emit_movimm(start+i*4+8,addr);
4615 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4616 emit_test(s1l,s1l);
4617 emit_cmovs_reg(alt,addr);
4618 }
4619 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4620 {
4621 //emit_movimm(ba[i],addr);
4622 //emit_movimm(start+i*4+8,alt);
4623 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4624 emit_test(s1l,s1l);
4625 emit_cmovs_reg(alt,addr);
4626 }
4627 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4628 if(source[i]&0x10000) // BC1T
4629 {
4630 //emit_movimm(ba[i],alt);
4631 //emit_movimm(start+i*4+8,addr);
4632 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4633 emit_testimm(s1l,0x800000);
4634 emit_cmovne_reg(alt,addr);
4635 }
4636 else // BC1F
4637 {
4638 //emit_movimm(ba[i],addr);
4639 //emit_movimm(start+i*4+8,alt);
4640 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4641 emit_testimm(s1l,0x800000);
4642 emit_cmovne_reg(alt,addr);
4643 }
4644 }
4645 emit_writeword(addr,&pcaddr);
4646 }
4647 else
4648 if(itype[i]==RJUMP)
4649 {
4650 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4651 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4652 r=get_reg(branch_regs[i].regmap,RTEMP);
4653 }
4654 emit_writeword(r,&pcaddr);
4655 }
4656 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4657 }
4658 // Update cycle count
4659 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4660 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4661 emit_far_call(cc_interrupt);
4662 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4663 if(stubs[n].d==TAKEN) {
4664 if(internal_branch(ba[i]))
4665 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4666 else if(itype[i]==RJUMP) {
4667 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4668 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4669 else
4670 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4671 }
4672 }else if(stubs[n].d==NOTTAKEN) {
4673 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4674 else load_all_regs(branch_regs[i].regmap);
4675 }else if(stubs[n].d==NULLDS) {
4676 // Delay slot instruction is nullified ("likely" branch)
4677 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4678 else load_all_regs(regs[i].regmap);
4679 }else{
4680 load_all_regs(branch_regs[i].regmap);
4681 }
4682 if (stubs[n].retaddr)
4683 emit_jmp(stubs[n].retaddr);
4684 else
4685 do_jump_vaddr(stubs[n].e);
4686}
4687
4688static void add_to_linker(void *addr, u_int target, int ext)
4689{
4690 assert(linkcount < ARRAY_SIZE(link_addr));
4691 link_addr[linkcount].addr = addr;
4692 link_addr[linkcount].target = target;
4693 link_addr[linkcount].ext = ext;
4694 linkcount++;
4695}
4696
4697static void ujump_assemble_write_ra(int i)
4698{
4699 int rt;
4700 unsigned int return_address;
4701 rt=get_reg(branch_regs[i].regmap,31);
4702 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4703 //assert(rt>=0);
4704 return_address=start+i*4+8;
4705 if(rt>=0) {
4706 #ifdef USE_MINI_HT
4707 if(internal_branch(return_address)&&rt1[i+1]!=31) {
4708 int temp=-1; // note: must be ds-safe
4709 #ifdef HOST_TEMPREG
4710 temp=HOST_TEMPREG;
4711 #endif
4712 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4713 else emit_movimm(return_address,rt);
4714 }
4715 else
4716 #endif
4717 {
4718 #ifdef REG_PREFETCH
4719 if(temp>=0)
4720 {
4721 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4722 }
4723 #endif
4724 emit_movimm(return_address,rt); // PC into link register
4725 #ifdef IMM_PREFETCH
4726 emit_prefetch(hash_table_get(return_address));
4727 #endif
4728 }
4729 }
4730}
4731
4732static void ujump_assemble(int i,struct regstat *i_regs)
4733{
4734 int ra_done=0;
4735 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4736 address_generation(i+1,i_regs,regs[i].regmap_entry);
4737 #ifdef REG_PREFETCH
4738 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4739 if(rt1[i]==31&&temp>=0)
4740 {
4741 signed char *i_regmap=i_regs->regmap;
4742 int return_address=start+i*4+8;
4743 if(get_reg(branch_regs[i].regmap,31)>0)
4744 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4745 }
4746 #endif
4747 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4748 ujump_assemble_write_ra(i); // writeback ra for DS
4749 ra_done=1;
4750 }
4751 ds_assemble(i+1,i_regs);
4752 uint64_t bc_unneeded=branch_regs[i].u;
4753 bc_unneeded|=1|(1LL<<rt1[i]);
4754 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4755 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
4756 if(!ra_done&&rt1[i]==31)
4757 ujump_assemble_write_ra(i);
4758 int cc,adj;
4759 cc=get_reg(branch_regs[i].regmap,CCREG);
4760 assert(cc==HOST_CCREG);
4761 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4762 #ifdef REG_PREFETCH
4763 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4764 #endif
4765 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4766 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4767 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4768 if(internal_branch(ba[i]))
4769 assem_debug("branch: internal\n");
4770 else
4771 assem_debug("branch: external\n");
4772 if(internal_branch(ba[i])&&is_ds[(ba[i]-start)>>2]) {
4773 ds_assemble_entry(i);
4774 }
4775 else {
4776 add_to_linker(out,ba[i],internal_branch(ba[i]));
4777 emit_jmp(0);
4778 }
4779}
4780
4781static void rjump_assemble_write_ra(int i)
4782{
4783 int rt,return_address;
4784 assert(rt1[i+1]!=rt1[i]);
4785 assert(rt2[i+1]!=rt1[i]);
4786 rt=get_reg(branch_regs[i].regmap,rt1[i]);
4787 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4788 assert(rt>=0);
4789 return_address=start+i*4+8;
4790 #ifdef REG_PREFETCH
4791 if(temp>=0)
4792 {
4793 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4794 }
4795 #endif
4796 emit_movimm(return_address,rt); // PC into link register
4797 #ifdef IMM_PREFETCH
4798 emit_prefetch(hash_table_get(return_address));
4799 #endif
4800}
4801
4802static void rjump_assemble(int i,struct regstat *i_regs)
4803{
4804 int temp;
4805 int rs,cc;
4806 int ra_done=0;
4807 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4808 assert(rs>=0);
4809 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4810 // Delay slot abuse, make a copy of the branch address register
4811 temp=get_reg(branch_regs[i].regmap,RTEMP);
4812 assert(temp>=0);
4813 assert(regs[i].regmap[temp]==RTEMP);
4814 emit_mov(rs,temp);
4815 rs=temp;
4816 }
4817 address_generation(i+1,i_regs,regs[i].regmap_entry);
4818 #ifdef REG_PREFETCH
4819 if(rt1[i]==31)
4820 {
4821 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4822 signed char *i_regmap=i_regs->regmap;
4823 int return_address=start+i*4+8;
4824 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4825 }
4826 }
4827 #endif
4828 #ifdef USE_MINI_HT
4829 if(rs1[i]==31) {
4830 int rh=get_reg(regs[i].regmap,RHASH);
4831 if(rh>=0) do_preload_rhash(rh);
4832 }
4833 #endif
4834 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4835 rjump_assemble_write_ra(i);
4836 ra_done=1;
4837 }
4838 ds_assemble(i+1,i_regs);
4839 uint64_t bc_unneeded=branch_regs[i].u;
4840 bc_unneeded|=1|(1LL<<rt1[i]);
4841 bc_unneeded&=~(1LL<<rs1[i]);
4842 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4843 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],CCREG);
4844 if(!ra_done&&rt1[i]!=0)
4845 rjump_assemble_write_ra(i);
4846 cc=get_reg(branch_regs[i].regmap,CCREG);
4847 assert(cc==HOST_CCREG);
4848 (void)cc;
4849 #ifdef USE_MINI_HT
4850 int rh=get_reg(branch_regs[i].regmap,RHASH);
4851 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4852 if(rs1[i]==31) {
4853 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4854 do_preload_rhtbl(ht);
4855 do_rhash(rs,rh);
4856 }
4857 #endif
4858 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
4859 #ifdef DESTRUCTIVE_WRITEBACK
4860 if((branch_regs[i].dirty>>rs)&1) {
4861 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4862 emit_loadreg(rs1[i],rs);
4863 }
4864 }
4865 #endif
4866 #ifdef REG_PREFETCH
4867 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4868 #endif
4869 #ifdef USE_MINI_HT
4870 if(rs1[i]==31) {
4871 do_miniht_load(ht,rh);
4872 }
4873 #endif
4874 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4875 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4876 //assert(adj==0);
4877 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
4878 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
4879 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4880 // special case for RFE
4881 emit_jmp(0);
4882 else
4883 emit_jns(0);
4884 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
4885 #ifdef USE_MINI_HT
4886 if(rs1[i]==31) {
4887 do_miniht_jump(rs,rh,ht);
4888 }
4889 else
4890 #endif
4891 {
4892 do_jump_vaddr(rs);
4893 }
4894 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4895 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4896 #endif
4897}
4898
4899static void cjump_assemble(int i,struct regstat *i_regs)
4900{
4901 signed char *i_regmap=i_regs->regmap;
4902 int cc;
4903 int match;
4904 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4905 assem_debug("match=%d\n",match);
4906 int s1l,s2l;
4907 int unconditional=0,nop=0;
4908 int invert=0;
4909 int internal=internal_branch(ba[i]);
4910 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4911 if(!match) invert=1;
4912 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4913 if(i>(ba[i]-start)>>2) invert=1;
4914 #endif
4915 #ifdef __aarch64__
4916 invert=1; // because of near cond. branches
4917 #endif
4918
4919 if(ooo[i]) {
4920 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4921 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4922 }
4923 else {
4924 s1l=get_reg(i_regmap,rs1[i]);
4925 s2l=get_reg(i_regmap,rs2[i]);
4926 }
4927 if(rs1[i]==0&&rs2[i]==0)
4928 {
4929 if(opcode[i]&1) nop=1;
4930 else unconditional=1;
4931 //assert(opcode[i]!=5);
4932 //assert(opcode[i]!=7);
4933 //assert(opcode[i]!=0x15);
4934 //assert(opcode[i]!=0x17);
4935 }
4936 else if(rs1[i]==0)
4937 {
4938 s1l=s2l;
4939 s2l=-1;
4940 }
4941 else if(rs2[i]==0)
4942 {
4943 s2l=-1;
4944 }
4945
4946 if(ooo[i]) {
4947 // Out of order execution (delay slot first)
4948 //printf("OOOE\n");
4949 address_generation(i+1,i_regs,regs[i].regmap_entry);
4950 ds_assemble(i+1,i_regs);
4951 int adj;
4952 uint64_t bc_unneeded=branch_regs[i].u;
4953 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
4954 bc_unneeded|=1;
4955 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4956 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs2[i]);
4957 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
4958 cc=get_reg(branch_regs[i].regmap,CCREG);
4959 assert(cc==HOST_CCREG);
4960 if(unconditional)
4961 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4962 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
4963 //assem_debug("cycle count (adj)\n");
4964 if(unconditional) {
4965 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4966 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
4967 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4968 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4969 if(internal)
4970 assem_debug("branch: internal\n");
4971 else
4972 assem_debug("branch: external\n");
4973 if(internal&&is_ds[(ba[i]-start)>>2]) {
4974 ds_assemble_entry(i);
4975 }
4976 else {
4977 add_to_linker(out,ba[i],internal);
4978 emit_jmp(0);
4979 }
4980 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4981 if(((u_int)out)&7) emit_addnop(0);
4982 #endif
4983 }
4984 }
4985 else if(nop) {
4986 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
4987 void *jaddr=out;
4988 emit_jns(0);
4989 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
4990 }
4991 else {
4992 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
4993 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
4994 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4995
4996 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4997 assert(s1l>=0);
4998 if(opcode[i]==4) // BEQ
4999 {
5000 if(s2l>=0) emit_cmp(s1l,s2l);
5001 else emit_test(s1l,s1l);
5002 if(invert){
5003 nottaken=out;
5004 emit_jne(DJT_1);
5005 }else{
5006 add_to_linker(out,ba[i],internal);
5007 emit_jeq(0);
5008 }
5009 }
5010 if(opcode[i]==5) // BNE
5011 {
5012 if(s2l>=0) emit_cmp(s1l,s2l);
5013 else emit_test(s1l,s1l);
5014 if(invert){
5015 nottaken=out;
5016 emit_jeq(DJT_1);
5017 }else{
5018 add_to_linker(out,ba[i],internal);
5019 emit_jne(0);
5020 }
5021 }
5022 if(opcode[i]==6) // BLEZ
5023 {
5024 emit_cmpimm(s1l,1);
5025 if(invert){
5026 nottaken=out;
5027 emit_jge(DJT_1);
5028 }else{
5029 add_to_linker(out,ba[i],internal);
5030 emit_jl(0);
5031 }
5032 }
5033 if(opcode[i]==7) // BGTZ
5034 {
5035 emit_cmpimm(s1l,1);
5036 if(invert){
5037 nottaken=out;
5038 emit_jl(DJT_1);
5039 }else{
5040 add_to_linker(out,ba[i],internal);
5041 emit_jge(0);
5042 }
5043 }
5044 if(invert) {
5045 if(taken) set_jump_target(taken, out);
5046 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5047 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5048 if(adj) {
5049 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5050 add_to_linker(out,ba[i],internal);
5051 }else{
5052 emit_addnop(13);
5053 add_to_linker(out,ba[i],internal*2);
5054 }
5055 emit_jmp(0);
5056 }else
5057 #endif
5058 {
5059 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5060 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5061 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5062 if(internal)
5063 assem_debug("branch: internal\n");
5064 else
5065 assem_debug("branch: external\n");
5066 if(internal&&is_ds[(ba[i]-start)>>2]) {
5067 ds_assemble_entry(i);
5068 }
5069 else {
5070 add_to_linker(out,ba[i],internal);
5071 emit_jmp(0);
5072 }
5073 }
5074 set_jump_target(nottaken, out);
5075 }
5076
5077 if(nottaken1) set_jump_target(nottaken1, out);
5078 if(adj) {
5079 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5080 }
5081 } // (!unconditional)
5082 } // if(ooo)
5083 else
5084 {
5085 // In-order execution (branch first)
5086 //if(likely[i]) printf("IOL\n");
5087 //else
5088 //printf("IOE\n");
5089 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5090 if(!unconditional&&!nop) {
5091 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5092 assert(s1l>=0);
5093 if((opcode[i]&0x2f)==4) // BEQ
5094 {
5095 if(s2l>=0) emit_cmp(s1l,s2l);
5096 else emit_test(s1l,s1l);
5097 nottaken=out;
5098 emit_jne(DJT_2);
5099 }
5100 if((opcode[i]&0x2f)==5) // BNE
5101 {
5102 if(s2l>=0) emit_cmp(s1l,s2l);
5103 else emit_test(s1l,s1l);
5104 nottaken=out;
5105 emit_jeq(DJT_2);
5106 }
5107 if((opcode[i]&0x2f)==6) // BLEZ
5108 {
5109 emit_cmpimm(s1l,1);
5110 nottaken=out;
5111 emit_jge(DJT_2);
5112 }
5113 if((opcode[i]&0x2f)==7) // BGTZ
5114 {
5115 emit_cmpimm(s1l,1);
5116 nottaken=out;
5117 emit_jl(DJT_2);
5118 }
5119 } // if(!unconditional)
5120 int adj;
5121 uint64_t ds_unneeded=branch_regs[i].u;
5122 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5123 ds_unneeded|=1;
5124 // branch taken
5125 if(!nop) {
5126 if(taken) set_jump_target(taken, out);
5127 assem_debug("1:\n");
5128 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5129 // load regs
5130 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5131 address_generation(i+1,&branch_regs[i],0);
5132 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5133 ds_assemble(i+1,&branch_regs[i]);
5134 cc=get_reg(branch_regs[i].regmap,CCREG);
5135 if(cc==-1) {
5136 emit_loadreg(CCREG,cc=HOST_CCREG);
5137 // CHECK: Is the following instruction (fall thru) allocated ok?
5138 }
5139 assert(cc==HOST_CCREG);
5140 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5141 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5142 assem_debug("cycle count (adj)\n");
5143 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5144 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5145 if(internal)
5146 assem_debug("branch: internal\n");
5147 else
5148 assem_debug("branch: external\n");
5149 if(internal&&is_ds[(ba[i]-start)>>2]) {
5150 ds_assemble_entry(i);
5151 }
5152 else {
5153 add_to_linker(out,ba[i],internal);
5154 emit_jmp(0);
5155 }
5156 }
5157 // branch not taken
5158 if(!unconditional) {
5159 if(nottaken1) set_jump_target(nottaken1, out);
5160 set_jump_target(nottaken, out);
5161 assem_debug("2:\n");
5162 if(!likely[i]) {
5163 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5164 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5165 address_generation(i+1,&branch_regs[i],0);
5166 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5167 ds_assemble(i+1,&branch_regs[i]);
5168 }
5169 cc=get_reg(branch_regs[i].regmap,CCREG);
5170 if(cc==-1&&!likely[i]) {
5171 // Cycle count isn't in a register, temporarily load it then write it out
5172 emit_loadreg(CCREG,HOST_CCREG);
5173 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5174 void *jaddr=out;
5175 emit_jns(0);
5176 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5177 emit_storereg(CCREG,HOST_CCREG);
5178 }
5179 else{
5180 cc=get_reg(i_regmap,CCREG);
5181 assert(cc==HOST_CCREG);
5182 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5183 void *jaddr=out;
5184 emit_jns(0);
5185 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5186 }
5187 }
5188 }
5189}
5190
5191static void sjump_assemble(int i,struct regstat *i_regs)
5192{
5193 signed char *i_regmap=i_regs->regmap;
5194 int cc;
5195 int match;
5196 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5197 assem_debug("smatch=%d\n",match);
5198 int s1l;
5199 int unconditional=0,nevertaken=0;
5200 int invert=0;
5201 int internal=internal_branch(ba[i]);
5202 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5203 if(!match) invert=1;
5204 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5205 if(i>(ba[i]-start)>>2) invert=1;
5206 #endif
5207 #ifdef __aarch64__
5208 invert=1; // because of near cond. branches
5209 #endif
5210
5211 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5212 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5213
5214 if(ooo[i]) {
5215 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5216 }
5217 else {
5218 s1l=get_reg(i_regmap,rs1[i]);
5219 }
5220 if(rs1[i]==0)
5221 {
5222 if(opcode2[i]&1) unconditional=1;
5223 else nevertaken=1;
5224 // These are never taken (r0 is never less than zero)
5225 //assert(opcode2[i]!=0);
5226 //assert(opcode2[i]!=2);
5227 //assert(opcode2[i]!=0x10);
5228 //assert(opcode2[i]!=0x12);
5229 }
5230
5231 if(ooo[i]) {
5232 // Out of order execution (delay slot first)
5233 //printf("OOOE\n");
5234 address_generation(i+1,i_regs,regs[i].regmap_entry);
5235 ds_assemble(i+1,i_regs);
5236 int adj;
5237 uint64_t bc_unneeded=branch_regs[i].u;
5238 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5239 bc_unneeded|=1;
5240 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5241 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs1[i]);
5242 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5243 if(rt1[i]==31) {
5244 int rt,return_address;
5245 rt=get_reg(branch_regs[i].regmap,31);
5246 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5247 if(rt>=0) {
5248 // Save the PC even if the branch is not taken
5249 return_address=start+i*4+8;
5250 emit_movimm(return_address,rt); // PC into link register
5251 #ifdef IMM_PREFETCH
5252 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5253 #endif
5254 }
5255 }
5256 cc=get_reg(branch_regs[i].regmap,CCREG);
5257 assert(cc==HOST_CCREG);
5258 if(unconditional)
5259 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5260 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5261 assem_debug("cycle count (adj)\n");
5262 if(unconditional) {
5263 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5264 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5265 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5266 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5267 if(internal)
5268 assem_debug("branch: internal\n");
5269 else
5270 assem_debug("branch: external\n");
5271 if(internal&&is_ds[(ba[i]-start)>>2]) {
5272 ds_assemble_entry(i);
5273 }
5274 else {
5275 add_to_linker(out,ba[i],internal);
5276 emit_jmp(0);
5277 }
5278 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5279 if(((u_int)out)&7) emit_addnop(0);
5280 #endif
5281 }
5282 }
5283 else if(nevertaken) {
5284 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5285 void *jaddr=out;
5286 emit_jns(0);
5287 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5288 }
5289 else {
5290 void *nottaken = NULL;
5291 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5292 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5293 {
5294 assert(s1l>=0);
5295 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5296 {
5297 emit_test(s1l,s1l);
5298 if(invert){
5299 nottaken=out;
5300 emit_jns(DJT_1);
5301 }else{
5302 add_to_linker(out,ba[i],internal);
5303 emit_js(0);
5304 }
5305 }
5306 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5307 {
5308 emit_test(s1l,s1l);
5309 if(invert){
5310 nottaken=out;
5311 emit_js(DJT_1);
5312 }else{
5313 add_to_linker(out,ba[i],internal);
5314 emit_jns(0);
5315 }
5316 }
5317 }
5318
5319 if(invert) {
5320 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5321 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5322 if(adj) {
5323 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5324 add_to_linker(out,ba[i],internal);
5325 }else{
5326 emit_addnop(13);
5327 add_to_linker(out,ba[i],internal*2);
5328 }
5329 emit_jmp(0);
5330 }else
5331 #endif
5332 {
5333 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5334 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5335 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5336 if(internal)
5337 assem_debug("branch: internal\n");
5338 else
5339 assem_debug("branch: external\n");
5340 if(internal&&is_ds[(ba[i]-start)>>2]) {
5341 ds_assemble_entry(i);
5342 }
5343 else {
5344 add_to_linker(out,ba[i],internal);
5345 emit_jmp(0);
5346 }
5347 }
5348 set_jump_target(nottaken, out);
5349 }
5350
5351 if(adj) {
5352 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5353 }
5354 } // (!unconditional)
5355 } // if(ooo)
5356 else
5357 {
5358 // In-order execution (branch first)
5359 //printf("IOE\n");
5360 void *nottaken = NULL;
5361 if(rt1[i]==31) {
5362 int rt,return_address;
5363 rt=get_reg(branch_regs[i].regmap,31);
5364 if(rt>=0) {
5365 // Save the PC even if the branch is not taken
5366 return_address=start+i*4+8;
5367 emit_movimm(return_address,rt); // PC into link register
5368 #ifdef IMM_PREFETCH
5369 emit_prefetch(hash_table_get(return_address));
5370 #endif
5371 }
5372 }
5373 if(!unconditional) {
5374 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5375 assert(s1l>=0);
5376 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5377 {
5378 emit_test(s1l,s1l);
5379 nottaken=out;
5380 emit_jns(DJT_1);
5381 }
5382 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5383 {
5384 emit_test(s1l,s1l);
5385 nottaken=out;
5386 emit_js(DJT_1);
5387 }
5388 } // if(!unconditional)
5389 int adj;
5390 uint64_t ds_unneeded=branch_regs[i].u;
5391 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5392 ds_unneeded|=1;
5393 // branch taken
5394 if(!nevertaken) {
5395 //assem_debug("1:\n");
5396 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5397 // load regs
5398 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5399 address_generation(i+1,&branch_regs[i],0);
5400 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5401 ds_assemble(i+1,&branch_regs[i]);
5402 cc=get_reg(branch_regs[i].regmap,CCREG);
5403 if(cc==-1) {
5404 emit_loadreg(CCREG,cc=HOST_CCREG);
5405 // CHECK: Is the following instruction (fall thru) allocated ok?
5406 }
5407 assert(cc==HOST_CCREG);
5408 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5409 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5410 assem_debug("cycle count (adj)\n");
5411 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5412 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5413 if(internal)
5414 assem_debug("branch: internal\n");
5415 else
5416 assem_debug("branch: external\n");
5417 if(internal&&is_ds[(ba[i]-start)>>2]) {
5418 ds_assemble_entry(i);
5419 }
5420 else {
5421 add_to_linker(out,ba[i],internal);
5422 emit_jmp(0);
5423 }
5424 }
5425 // branch not taken
5426 if(!unconditional) {
5427 set_jump_target(nottaken, out);
5428 assem_debug("1:\n");
5429 if(!likely[i]) {
5430 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5431 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5432 address_generation(i+1,&branch_regs[i],0);
5433 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5434 ds_assemble(i+1,&branch_regs[i]);
5435 }
5436 cc=get_reg(branch_regs[i].regmap,CCREG);
5437 if(cc==-1&&!likely[i]) {
5438 // Cycle count isn't in a register, temporarily load it then write it out
5439 emit_loadreg(CCREG,HOST_CCREG);
5440 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5441 void *jaddr=out;
5442 emit_jns(0);
5443 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5444 emit_storereg(CCREG,HOST_CCREG);
5445 }
5446 else{
5447 cc=get_reg(i_regmap,CCREG);
5448 assert(cc==HOST_CCREG);
5449 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5450 void *jaddr=out;
5451 emit_jns(0);
5452 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5453 }
5454 }
5455 }
5456}
5457
5458static void pagespan_assemble(int i,struct regstat *i_regs)
5459{
5460 int s1l=get_reg(i_regs->regmap,rs1[i]);
5461 int s2l=get_reg(i_regs->regmap,rs2[i]);
5462 void *taken = NULL;
5463 void *nottaken = NULL;
5464 int unconditional=0;
5465 if(rs1[i]==0)
5466 {
5467 s1l=s2l;
5468 s2l=-1;
5469 }
5470 else if(rs2[i]==0)
5471 {
5472 s2l=-1;
5473 }
5474 int hr=0;
5475 int addr=-1,alt=-1,ntaddr=-1;
5476 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5477 else {
5478 while(hr<HOST_REGS)
5479 {
5480 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5481 (i_regs->regmap[hr]&63)!=rs1[i] &&
5482 (i_regs->regmap[hr]&63)!=rs2[i] )
5483 {
5484 addr=hr++;break;
5485 }
5486 hr++;
5487 }
5488 }
5489 while(hr<HOST_REGS)
5490 {
5491 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5492 (i_regs->regmap[hr]&63)!=rs1[i] &&
5493 (i_regs->regmap[hr]&63)!=rs2[i] )
5494 {
5495 alt=hr++;break;
5496 }
5497 hr++;
5498 }
5499 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5500 {
5501 while(hr<HOST_REGS)
5502 {
5503 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5504 (i_regs->regmap[hr]&63)!=rs1[i] &&
5505 (i_regs->regmap[hr]&63)!=rs2[i] )
5506 {
5507 ntaddr=hr;break;
5508 }
5509 hr++;
5510 }
5511 }
5512 assert(hr<HOST_REGS);
5513 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5514 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5515 }
5516 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5517 if(opcode[i]==2) // J
5518 {
5519 unconditional=1;
5520 }
5521 if(opcode[i]==3) // JAL
5522 {
5523 // TODO: mini_ht
5524 int rt=get_reg(i_regs->regmap,31);
5525 emit_movimm(start+i*4+8,rt);
5526 unconditional=1;
5527 }
5528 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5529 {
5530 emit_mov(s1l,addr);
5531 if(opcode2[i]==9) // JALR
5532 {
5533 int rt=get_reg(i_regs->regmap,rt1[i]);
5534 emit_movimm(start+i*4+8,rt);
5535 }
5536 }
5537 if((opcode[i]&0x3f)==4) // BEQ
5538 {
5539 if(rs1[i]==rs2[i])
5540 {
5541 unconditional=1;
5542 }
5543 else
5544 #ifdef HAVE_CMOV_IMM
5545 if(1) {
5546 if(s2l>=0) emit_cmp(s1l,s2l);
5547 else emit_test(s1l,s1l);
5548 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5549 }
5550 else
5551 #endif
5552 {
5553 assert(s1l>=0);
5554 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5555 if(s2l>=0) emit_cmp(s1l,s2l);
5556 else emit_test(s1l,s1l);
5557 emit_cmovne_reg(alt,addr);
5558 }
5559 }
5560 if((opcode[i]&0x3f)==5) // BNE
5561 {
5562 #ifdef HAVE_CMOV_IMM
5563 if(s2l>=0) emit_cmp(s1l,s2l);
5564 else emit_test(s1l,s1l);
5565 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5566 #else
5567 assert(s1l>=0);
5568 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5569 if(s2l>=0) emit_cmp(s1l,s2l);
5570 else emit_test(s1l,s1l);
5571 emit_cmovne_reg(alt,addr);
5572 #endif
5573 }
5574 if((opcode[i]&0x3f)==0x14) // BEQL
5575 {
5576 if(s2l>=0) emit_cmp(s1l,s2l);
5577 else emit_test(s1l,s1l);
5578 if(nottaken) set_jump_target(nottaken, out);
5579 nottaken=out;
5580 emit_jne(0);
5581 }
5582 if((opcode[i]&0x3f)==0x15) // BNEL
5583 {
5584 if(s2l>=0) emit_cmp(s1l,s2l);
5585 else emit_test(s1l,s1l);
5586 nottaken=out;
5587 emit_jeq(0);
5588 if(taken) set_jump_target(taken, out);
5589 }
5590 if((opcode[i]&0x3f)==6) // BLEZ
5591 {
5592 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5593 emit_cmpimm(s1l,1);
5594 emit_cmovl_reg(alt,addr);
5595 }
5596 if((opcode[i]&0x3f)==7) // BGTZ
5597 {
5598 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5599 emit_cmpimm(s1l,1);
5600 emit_cmovl_reg(ntaddr,addr);
5601 }
5602 if((opcode[i]&0x3f)==0x16) // BLEZL
5603 {
5604 assert((opcode[i]&0x3f)!=0x16);
5605 }
5606 if((opcode[i]&0x3f)==0x17) // BGTZL
5607 {
5608 assert((opcode[i]&0x3f)!=0x17);
5609 }
5610 assert(opcode[i]!=1); // BLTZ/BGEZ
5611
5612 //FIXME: Check CSREG
5613 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5614 if((source[i]&0x30000)==0) // BC1F
5615 {
5616 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5617 emit_testimm(s1l,0x800000);
5618 emit_cmovne_reg(alt,addr);
5619 }
5620 if((source[i]&0x30000)==0x10000) // BC1T
5621 {
5622 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5623 emit_testimm(s1l,0x800000);
5624 emit_cmovne_reg(alt,addr);
5625 }
5626 if((source[i]&0x30000)==0x20000) // BC1FL
5627 {
5628 emit_testimm(s1l,0x800000);
5629 nottaken=out;
5630 emit_jne(0);
5631 }
5632 if((source[i]&0x30000)==0x30000) // BC1TL
5633 {
5634 emit_testimm(s1l,0x800000);
5635 nottaken=out;
5636 emit_jeq(0);
5637 }
5638 }
5639
5640 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5641 wb_dirtys(regs[i].regmap,regs[i].dirty);
5642 if(likely[i]||unconditional)
5643 {
5644 emit_movimm(ba[i],HOST_BTREG);
5645 }
5646 else if(addr!=HOST_BTREG)
5647 {
5648 emit_mov(addr,HOST_BTREG);
5649 }
5650 void *branch_addr=out;
5651 emit_jmp(0);
5652 int target_addr=start+i*4+5;
5653 void *stub=out;
5654 void *compiled_target_addr=check_addr(target_addr);
5655 emit_extjump_ds(branch_addr, target_addr);
5656 if(compiled_target_addr) {
5657 set_jump_target(branch_addr, compiled_target_addr);
5658 add_link(target_addr,stub);
5659 }
5660 else set_jump_target(branch_addr, stub);
5661 if(likely[i]) {
5662 // Not-taken path
5663 set_jump_target(nottaken, out);
5664 wb_dirtys(regs[i].regmap,regs[i].dirty);
5665 void *branch_addr=out;
5666 emit_jmp(0);
5667 int target_addr=start+i*4+8;
5668 void *stub=out;
5669 void *compiled_target_addr=check_addr(target_addr);
5670 emit_extjump_ds(branch_addr, target_addr);
5671 if(compiled_target_addr) {
5672 set_jump_target(branch_addr, compiled_target_addr);
5673 add_link(target_addr,stub);
5674 }
5675 else set_jump_target(branch_addr, stub);
5676 }
5677}
5678
5679// Assemble the delay slot for the above
5680static void pagespan_ds()
5681{
5682 assem_debug("initial delay slot:\n");
5683 u_int vaddr=start+1;
5684 u_int page=get_page(vaddr);
5685 u_int vpage=get_vpage(vaddr);
5686 ll_add(jump_dirty+vpage,vaddr,(void *)out);
5687 do_dirty_stub_ds();
5688 ll_add(jump_in+page,vaddr,(void *)out);
5689 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
5690 if(regs[0].regmap[HOST_CCREG]!=CCREG)
5691 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
5692 if(regs[0].regmap[HOST_BTREG]!=BTREG)
5693 emit_writeword(HOST_BTREG,&branch_target);
5694 load_regs(regs[0].regmap_entry,regs[0].regmap,rs1[0],rs2[0]);
5695 address_generation(0,&regs[0],regs[0].regmap_entry);
5696 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
5697 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
5698 is_delayslot=0;
5699 switch(itype[0]) {
5700 case ALU:
5701 alu_assemble(0,&regs[0]);break;
5702 case IMM16:
5703 imm16_assemble(0,&regs[0]);break;
5704 case SHIFT:
5705 shift_assemble(0,&regs[0]);break;
5706 case SHIFTIMM:
5707 shiftimm_assemble(0,&regs[0]);break;
5708 case LOAD:
5709 load_assemble(0,&regs[0]);break;
5710 case LOADLR:
5711 loadlr_assemble(0,&regs[0]);break;
5712 case STORE:
5713 store_assemble(0,&regs[0]);break;
5714 case STORELR:
5715 storelr_assemble(0,&regs[0]);break;
5716 case COP0:
5717 cop0_assemble(0,&regs[0]);break;
5718 case COP1:
5719 cop1_assemble(0,&regs[0]);break;
5720 case C1LS:
5721 c1ls_assemble(0,&regs[0]);break;
5722 case COP2:
5723 cop2_assemble(0,&regs[0]);break;
5724 case C2LS:
5725 c2ls_assemble(0,&regs[0]);break;
5726 case C2OP:
5727 c2op_assemble(0,&regs[0]);break;
5728 case MULTDIV:
5729 multdiv_assemble(0,&regs[0]);break;
5730 case MOV:
5731 mov_assemble(0,&regs[0]);break;
5732 case SYSCALL:
5733 case HLECALL:
5734 case INTCALL:
5735 case SPAN:
5736 case UJUMP:
5737 case RJUMP:
5738 case CJUMP:
5739 case SJUMP:
5740 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
5741 }
5742 int btaddr=get_reg(regs[0].regmap,BTREG);
5743 if(btaddr<0) {
5744 btaddr=get_reg(regs[0].regmap,-1);
5745 emit_readword(&branch_target,btaddr);
5746 }
5747 assert(btaddr!=HOST_CCREG);
5748 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
5749#ifdef HOST_IMM8
5750 host_tempreg_acquire();
5751 emit_movimm(start+4,HOST_TEMPREG);
5752 emit_cmp(btaddr,HOST_TEMPREG);
5753 host_tempreg_release();
5754#else
5755 emit_cmpimm(btaddr,start+4);
5756#endif
5757 void *branch = out;
5758 emit_jeq(0);
5759 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
5760 do_jump_vaddr(btaddr);
5761 set_jump_target(branch, out);
5762 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5763 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5764}
5765
5766// Basic liveness analysis for MIPS registers
5767void unneeded_registers(int istart,int iend,int r)
5768{
5769 int i;
5770 uint64_t u,gte_u,b,gte_b;
5771 uint64_t temp_u,temp_gte_u=0;
5772 uint64_t gte_u_unknown=0;
5773 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
5774 gte_u_unknown=~0ll;
5775 if(iend==slen-1) {
5776 u=1;
5777 gte_u=gte_u_unknown;
5778 }else{
5779 //u=unneeded_reg[iend+1];
5780 u=1;
5781 gte_u=gte_unneeded[iend+1];
5782 }
5783
5784 for (i=iend;i>=istart;i--)
5785 {
5786 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
5787 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
5788 {
5789 // If subroutine call, flag return address as a possible branch target
5790 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
5791
5792 if(ba[i]<start || ba[i]>=(start+slen*4))
5793 {
5794 // Branch out of this block, flush all regs
5795 u=1;
5796 gte_u=gte_u_unknown;
5797 branch_unneeded_reg[i]=u;
5798 // Merge in delay slot
5799 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5800 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5801 u|=1;
5802 gte_u|=gte_rt[i+1];
5803 gte_u&=~gte_rs[i+1];
5804 // If branch is "likely" (and conditional)
5805 // then we skip the delay slot on the fall-thru path
5806 if(likely[i]) {
5807 if(i<slen-1) {
5808 u&=unneeded_reg[i+2];
5809 gte_u&=gte_unneeded[i+2];
5810 }
5811 else
5812 {
5813 u=1;
5814 gte_u=gte_u_unknown;
5815 }
5816 }
5817 }
5818 else
5819 {
5820 // Internal branch, flag target
5821 bt[(ba[i]-start)>>2]=1;
5822 if(ba[i]<=start+i*4) {
5823 // Backward branch
5824 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
5825 {
5826 // Unconditional branch
5827 temp_u=1;
5828 temp_gte_u=0;
5829 } else {
5830 // Conditional branch (not taken case)
5831 temp_u=unneeded_reg[i+2];
5832 temp_gte_u&=gte_unneeded[i+2];
5833 }
5834 // Merge in delay slot
5835 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5836 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5837 temp_u|=1;
5838 temp_gte_u|=gte_rt[i+1];
5839 temp_gte_u&=~gte_rs[i+1];
5840 // If branch is "likely" (and conditional)
5841 // then we skip the delay slot on the fall-thru path
5842 if(likely[i]) {
5843 if(i<slen-1) {
5844 temp_u&=unneeded_reg[i+2];
5845 temp_gte_u&=gte_unneeded[i+2];
5846 }
5847 else
5848 {
5849 temp_u=1;
5850 temp_gte_u=gte_u_unknown;
5851 }
5852 }
5853 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
5854 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5855 temp_u|=1;
5856 temp_gte_u|=gte_rt[i];
5857 temp_gte_u&=~gte_rs[i];
5858 unneeded_reg[i]=temp_u;
5859 gte_unneeded[i]=temp_gte_u;
5860 // Only go three levels deep. This recursion can take an
5861 // excessive amount of time if there are a lot of nested loops.
5862 if(r<2) {
5863 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
5864 }else{
5865 unneeded_reg[(ba[i]-start)>>2]=1;
5866 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
5867 }
5868 } /*else*/ if(1) {
5869 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
5870 {
5871 // Unconditional branch
5872 u=unneeded_reg[(ba[i]-start)>>2];
5873 gte_u=gte_unneeded[(ba[i]-start)>>2];
5874 branch_unneeded_reg[i]=u;
5875 // Merge in delay slot
5876 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5877 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5878 u|=1;
5879 gte_u|=gte_rt[i+1];
5880 gte_u&=~gte_rs[i+1];
5881 } else {
5882 // Conditional branch
5883 b=unneeded_reg[(ba[i]-start)>>2];
5884 gte_b=gte_unneeded[(ba[i]-start)>>2];
5885 branch_unneeded_reg[i]=b;
5886 // Branch delay slot
5887 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5888 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5889 b|=1;
5890 gte_b|=gte_rt[i+1];
5891 gte_b&=~gte_rs[i+1];
5892 // If branch is "likely" then we skip the
5893 // delay slot on the fall-thru path
5894 if(likely[i]) {
5895 u=b;
5896 gte_u=gte_b;
5897 if(i<slen-1) {
5898 u&=unneeded_reg[i+2];
5899 gte_u&=gte_unneeded[i+2];
5900 }
5901 } else {
5902 u&=b;
5903 gte_u&=gte_b;
5904 }
5905 if(i<slen-1) {
5906 branch_unneeded_reg[i]&=unneeded_reg[i+2];
5907 } else {
5908 branch_unneeded_reg[i]=1;
5909 }
5910 }
5911 }
5912 }
5913 }
5914 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
5915 {
5916 // SYSCALL instruction (software interrupt)
5917 u=1;
5918 }
5919 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
5920 {
5921 // ERET instruction (return from interrupt)
5922 u=1;
5923 }
5924 //u=1; // DEBUG
5925 // Written registers are unneeded
5926 u|=1LL<<rt1[i];
5927 u|=1LL<<rt2[i];
5928 gte_u|=gte_rt[i];
5929 // Accessed registers are needed
5930 u&=~(1LL<<rs1[i]);
5931 u&=~(1LL<<rs2[i]);
5932 gte_u&=~gte_rs[i];
5933 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
5934 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
5935 // Source-target dependencies
5936 // R0 is always unneeded
5937 u|=1;
5938 // Save it
5939 unneeded_reg[i]=u;
5940 gte_unneeded[i]=gte_u;
5941 /*
5942 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
5943 printf("U:");
5944 int r;
5945 for(r=1;r<=CCREG;r++) {
5946 if((unneeded_reg[i]>>r)&1) {
5947 if(r==HIREG) printf(" HI");
5948 else if(r==LOREG) printf(" LO");
5949 else printf(" r%d",r);
5950 }
5951 }
5952 printf("\n");
5953 */
5954 }
5955}
5956
5957// Write back dirty registers as soon as we will no longer modify them,
5958// so that we don't end up with lots of writes at the branches.
5959void clean_registers(int istart,int iend,int wr)
5960{
5961 int i;
5962 int r;
5963 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
5964 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
5965 if(iend==slen-1) {
5966 will_dirty_i=will_dirty_next=0;
5967 wont_dirty_i=wont_dirty_next=0;
5968 }else{
5969 will_dirty_i=will_dirty_next=will_dirty[iend+1];
5970 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
5971 }
5972 for (i=iend;i>=istart;i--)
5973 {
5974 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
5975 {
5976 if(ba[i]<start || ba[i]>=(start+slen*4))
5977 {
5978 // Branch out of this block, flush all regs
5979 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
5980 {
5981 // Unconditional branch
5982 will_dirty_i=0;
5983 wont_dirty_i=0;
5984 // Merge in delay slot (will dirty)
5985 for(r=0;r<HOST_REGS;r++) {
5986 if(r!=EXCLUDE_REG) {
5987 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
5988 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
5989 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
5990 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
5991 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
5992 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
5993 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
5994 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
5995 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
5996 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
5997 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
5998 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
5999 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6000 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6001 }
6002 }
6003 }
6004 else
6005 {
6006 // Conditional branch
6007 will_dirty_i=0;
6008 wont_dirty_i=wont_dirty_next;
6009 // Merge in delay slot (will dirty)
6010 for(r=0;r<HOST_REGS;r++) {
6011 if(r!=EXCLUDE_REG) {
6012 if(!likely[i]) {
6013 // Might not dirty if likely branch is not taken
6014 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6015 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6016 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6017 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6018 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6019 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6020 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6021 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6022 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6023 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6024 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6025 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6026 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6027 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6028 }
6029 }
6030 }
6031 }
6032 // Merge in delay slot (wont dirty)
6033 for(r=0;r<HOST_REGS;r++) {
6034 if(r!=EXCLUDE_REG) {
6035 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6036 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6037 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6038 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6039 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6040 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6041 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6042 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6043 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6044 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6045 }
6046 }
6047 if(wr) {
6048 #ifndef DESTRUCTIVE_WRITEBACK
6049 branch_regs[i].dirty&=wont_dirty_i;
6050 #endif
6051 branch_regs[i].dirty|=will_dirty_i;
6052 }
6053 }
6054 else
6055 {
6056 // Internal branch
6057 if(ba[i]<=start+i*4) {
6058 // Backward branch
6059 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6060 {
6061 // Unconditional branch
6062 temp_will_dirty=0;
6063 temp_wont_dirty=0;
6064 // Merge in delay slot (will dirty)
6065 for(r=0;r<HOST_REGS;r++) {
6066 if(r!=EXCLUDE_REG) {
6067 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6068 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6069 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6070 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6071 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6072 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6073 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6074 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6075 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6076 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6077 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6078 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6079 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6080 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6081 }
6082 }
6083 } else {
6084 // Conditional branch (not taken case)
6085 temp_will_dirty=will_dirty_next;
6086 temp_wont_dirty=wont_dirty_next;
6087 // Merge in delay slot (will dirty)
6088 for(r=0;r<HOST_REGS;r++) {
6089 if(r!=EXCLUDE_REG) {
6090 if(!likely[i]) {
6091 // Will not dirty if likely branch is not taken
6092 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6093 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6094 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6095 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6096 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6097 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6098 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6099 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6100 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6101 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6102 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6103 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6104 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6105 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6106 }
6107 }
6108 }
6109 }
6110 // Merge in delay slot (wont dirty)
6111 for(r=0;r<HOST_REGS;r++) {
6112 if(r!=EXCLUDE_REG) {
6113 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6114 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6115 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6116 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6117 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6118 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6119 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6120 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6121 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6122 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6123 }
6124 }
6125 // Deal with changed mappings
6126 if(i<iend) {
6127 for(r=0;r<HOST_REGS;r++) {
6128 if(r!=EXCLUDE_REG) {
6129 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6130 temp_will_dirty&=~(1<<r);
6131 temp_wont_dirty&=~(1<<r);
6132 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6133 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6134 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6135 } else {
6136 temp_will_dirty|=1<<r;
6137 temp_wont_dirty|=1<<r;
6138 }
6139 }
6140 }
6141 }
6142 }
6143 if(wr) {
6144 will_dirty[i]=temp_will_dirty;
6145 wont_dirty[i]=temp_wont_dirty;
6146 clean_registers((ba[i]-start)>>2,i-1,0);
6147 }else{
6148 // Limit recursion. It can take an excessive amount
6149 // of time if there are a lot of nested loops.
6150 will_dirty[(ba[i]-start)>>2]=0;
6151 wont_dirty[(ba[i]-start)>>2]=-1;
6152 }
6153 }
6154 /*else*/ if(1)
6155 {
6156 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6157 {
6158 // Unconditional branch
6159 will_dirty_i=0;
6160 wont_dirty_i=0;
6161 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6162 for(r=0;r<HOST_REGS;r++) {
6163 if(r!=EXCLUDE_REG) {
6164 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6165 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6166 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6167 }
6168 if(branch_regs[i].regmap[r]>=0) {
6169 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6170 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6171 }
6172 }
6173 }
6174 //}
6175 // Merge in delay slot
6176 for(r=0;r<HOST_REGS;r++) {
6177 if(r!=EXCLUDE_REG) {
6178 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6179 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6180 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6181 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6182 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6183 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6184 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6185 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6186 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6187 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6188 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6189 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6190 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6191 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6192 }
6193 }
6194 } else {
6195 // Conditional branch
6196 will_dirty_i=will_dirty_next;
6197 wont_dirty_i=wont_dirty_next;
6198 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6199 for(r=0;r<HOST_REGS;r++) {
6200 if(r!=EXCLUDE_REG) {
6201 signed char target_reg=branch_regs[i].regmap[r];
6202 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6203 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6204 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6205 }
6206 else if(target_reg>=0) {
6207 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6208 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6209 }
6210 // Treat delay slot as part of branch too
6211 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6212 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6213 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6214 }
6215 else
6216 {
6217 will_dirty[i+1]&=~(1<<r);
6218 }*/
6219 }
6220 }
6221 //}
6222 // Merge in delay slot
6223 for(r=0;r<HOST_REGS;r++) {
6224 if(r!=EXCLUDE_REG) {
6225 if(!likely[i]) {
6226 // Might not dirty if likely branch is not taken
6227 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6228 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6229 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6230 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6231 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6232 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6233 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6234 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6235 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6236 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6237 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6238 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6239 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6240 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6241 }
6242 }
6243 }
6244 }
6245 // Merge in delay slot (won't dirty)
6246 for(r=0;r<HOST_REGS;r++) {
6247 if(r!=EXCLUDE_REG) {
6248 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6249 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6250 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6251 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6252 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6253 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6254 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6255 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6256 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6257 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6258 }
6259 }
6260 if(wr) {
6261 #ifndef DESTRUCTIVE_WRITEBACK
6262 branch_regs[i].dirty&=wont_dirty_i;
6263 #endif
6264 branch_regs[i].dirty|=will_dirty_i;
6265 }
6266 }
6267 }
6268 }
6269 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6270 {
6271 // SYSCALL instruction (software interrupt)
6272 will_dirty_i=0;
6273 wont_dirty_i=0;
6274 }
6275 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6276 {
6277 // ERET instruction (return from interrupt)
6278 will_dirty_i=0;
6279 wont_dirty_i=0;
6280 }
6281 will_dirty_next=will_dirty_i;
6282 wont_dirty_next=wont_dirty_i;
6283 for(r=0;r<HOST_REGS;r++) {
6284 if(r!=EXCLUDE_REG) {
6285 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6286 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6287 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6288 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6289 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6290 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6291 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6292 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6293 if(i>istart) {
6294 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP)
6295 {
6296 // Don't store a register immediately after writing it,
6297 // may prevent dual-issue.
6298 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6299 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6300 }
6301 }
6302 }
6303 }
6304 // Save it
6305 will_dirty[i]=will_dirty_i;
6306 wont_dirty[i]=wont_dirty_i;
6307 // Mark registers that won't be dirtied as not dirty
6308 if(wr) {
6309 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6310 for(r=0;r<HOST_REGS;r++) {
6311 if((will_dirty_i>>r)&1) {
6312 printf(" r%d",r);
6313 }
6314 }
6315 printf("\n");*/
6316
6317 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP)) {
6318 regs[i].dirty|=will_dirty_i;
6319 #ifndef DESTRUCTIVE_WRITEBACK
6320 regs[i].dirty&=wont_dirty_i;
6321 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6322 {
6323 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6324 for(r=0;r<HOST_REGS;r++) {
6325 if(r!=EXCLUDE_REG) {
6326 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6327 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6328 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6329 }
6330 }
6331 }
6332 }
6333 else
6334 {
6335 if(i<iend) {
6336 for(r=0;r<HOST_REGS;r++) {
6337 if(r!=EXCLUDE_REG) {
6338 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6339 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6340 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6341 }
6342 }
6343 }
6344 }
6345 #endif
6346 //}
6347 }
6348 // Deal with changed mappings
6349 temp_will_dirty=will_dirty_i;
6350 temp_wont_dirty=wont_dirty_i;
6351 for(r=0;r<HOST_REGS;r++) {
6352 if(r!=EXCLUDE_REG) {
6353 int nr;
6354 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6355 if(wr) {
6356 #ifndef DESTRUCTIVE_WRITEBACK
6357 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6358 #endif
6359 regs[i].wasdirty|=will_dirty_i&(1<<r);
6360 }
6361 }
6362 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6363 // Register moved to a different register
6364 will_dirty_i&=~(1<<r);
6365 wont_dirty_i&=~(1<<r);
6366 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6367 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6368 if(wr) {
6369 #ifndef DESTRUCTIVE_WRITEBACK
6370 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6371 #endif
6372 regs[i].wasdirty|=will_dirty_i&(1<<r);
6373 }
6374 }
6375 else {
6376 will_dirty_i&=~(1<<r);
6377 wont_dirty_i&=~(1<<r);
6378 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6379 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6380 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6381 } else {
6382 wont_dirty_i|=1<<r;
6383 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6384 }
6385 }
6386 }
6387 }
6388 }
6389}
6390
6391#ifdef DISASM
6392 /* disassembly */
6393void disassemble_inst(int i)
6394{
6395 if (bt[i]) printf("*"); else printf(" ");
6396 switch(itype[i]) {
6397 case UJUMP:
6398 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6399 case CJUMP:
6400 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6401 case SJUMP:
6402 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6403 case RJUMP:
6404 if (opcode[i]==0x9&&rt1[i]!=31)
6405 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6406 else
6407 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6408 break;
6409 case SPAN:
6410 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6411 case IMM16:
6412 if(opcode[i]==0xf) //LUI
6413 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6414 else
6415 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6416 break;
6417 case LOAD:
6418 case LOADLR:
6419 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6420 break;
6421 case STORE:
6422 case STORELR:
6423 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6424 break;
6425 case ALU:
6426 case SHIFT:
6427 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6428 break;
6429 case MULTDIV:
6430 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6431 break;
6432 case SHIFTIMM:
6433 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6434 break;
6435 case MOV:
6436 if((opcode2[i]&0x1d)==0x10)
6437 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6438 else if((opcode2[i]&0x1d)==0x11)
6439 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6440 else
6441 printf (" %x: %s\n",start+i*4,insn[i]);
6442 break;
6443 case COP0:
6444 if(opcode2[i]==0)
6445 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6446 else if(opcode2[i]==4)
6447 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6448 else printf (" %x: %s\n",start+i*4,insn[i]);
6449 break;
6450 case COP1:
6451 if(opcode2[i]<3)
6452 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6453 else if(opcode2[i]>3)
6454 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6455 else printf (" %x: %s\n",start+i*4,insn[i]);
6456 break;
6457 case COP2:
6458 if(opcode2[i]<3)
6459 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6460 else if(opcode2[i]>3)
6461 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6462 else printf (" %x: %s\n",start+i*4,insn[i]);
6463 break;
6464 case C1LS:
6465 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6466 break;
6467 case C2LS:
6468 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6469 break;
6470 case INTCALL:
6471 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6472 break;
6473 default:
6474 //printf (" %s %8x\n",insn[i],source[i]);
6475 printf (" %x: %s\n",start+i*4,insn[i]);
6476 }
6477}
6478#else
6479static void disassemble_inst(int i) {}
6480#endif // DISASM
6481
6482#define DRC_TEST_VAL 0x74657374
6483
6484static void new_dynarec_test(void)
6485{
6486 int (*testfunc)(void);
6487 void *beginning;
6488 int ret[2];
6489 size_t i;
6490
6491 // check structure linkage
6492 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6493 {
6494 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6495 }
6496
6497 SysPrintf("testing if we can run recompiled code...\n");
6498 ((volatile u_int *)out)[0]++; // make cache dirty
6499
6500 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6501 out = ndrc->translation_cache;
6502 beginning = start_block();
6503 emit_movimm(DRC_TEST_VAL + i, 0); // test
6504 emit_ret();
6505 literal_pool(0);
6506 end_block(beginning);
6507 testfunc = beginning;
6508 ret[i] = testfunc();
6509 }
6510
6511 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6512 SysPrintf("test passed.\n");
6513 else
6514 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6515 out = ndrc->translation_cache;
6516}
6517
6518// clear the state completely, instead of just marking
6519// things invalid like invalidate_all_pages() does
6520void new_dynarec_clear_full(void)
6521{
6522 int n;
6523 out = ndrc->translation_cache;
6524 memset(invalid_code,1,sizeof(invalid_code));
6525 memset(hash_table,0xff,sizeof(hash_table));
6526 memset(mini_ht,-1,sizeof(mini_ht));
6527 memset(restore_candidate,0,sizeof(restore_candidate));
6528 memset(shadow,0,sizeof(shadow));
6529 copy=shadow;
6530 expirep=16384; // Expiry pointer, +2 blocks
6531 pending_exception=0;
6532 literalcount=0;
6533 stop_after_jal=0;
6534 inv_code_start=inv_code_end=~0;
6535 // TLB
6536 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6537 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6538 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6539}
6540
6541void new_dynarec_init(void)
6542{
6543 SysPrintf("Init new dynarec\n");
6544
6545#ifdef BASE_ADDR_DYNAMIC
6546 #ifdef VITA
6547 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6548 if (sceBlock < 0)
6549 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6550 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6551 if (ret < 0)
6552 SysPrintf("sceKernelGetMemBlockBase failed\n");
6553 #else
6554 uintptr_t desired_addr = 0;
6555 #ifdef __ELF__
6556 extern char _end;
6557 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6558 #endif
6559 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6560 PROT_READ | PROT_WRITE | PROT_EXEC,
6561 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6562 if (ndrc == MAP_FAILED) {
6563 SysPrintf("mmap() failed: %s\n", strerror(errno));
6564 abort();
6565 }
6566 #endif
6567#else
6568 #ifndef NO_WRITE_EXEC
6569 // not all systems allow execute in data segment by default
6570 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6571 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6572 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6573 #endif
6574#endif
6575 out = ndrc->translation_cache;
6576 cycle_multiplier=200;
6577 new_dynarec_clear_full();
6578#ifdef HOST_IMM8
6579 // Copy this into local area so we don't have to put it in every literal pool
6580 invc_ptr=invalid_code;
6581#endif
6582 arch_init();
6583 new_dynarec_test();
6584#ifndef RAM_FIXED
6585 ram_offset=(uintptr_t)rdram-0x80000000;
6586#endif
6587 if (ram_offset!=0)
6588 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6589}
6590
6591void new_dynarec_cleanup(void)
6592{
6593 int n;
6594#ifdef BASE_ADDR_DYNAMIC
6595 #ifdef VITA
6596 sceKernelFreeMemBlock(sceBlock);
6597 sceBlock = -1;
6598 #else
6599 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6600 SysPrintf("munmap() failed\n");
6601 #endif
6602#endif
6603 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6604 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6605 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6606 #ifdef ROM_COPY
6607 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6608 #endif
6609}
6610
6611static u_int *get_source_start(u_int addr, u_int *limit)
6612{
6613 if (addr < 0x00200000 ||
6614 (0xa0000000 <= addr && addr < 0xa0200000)) {
6615 // used for BIOS calls mostly?
6616 *limit = (addr&0xa0000000)|0x00200000;
6617 return (u_int *)(rdram + (addr&0x1fffff));
6618 }
6619 else if (!Config.HLE && (
6620 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6621 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
6622 // BIOS
6623 *limit = (addr & 0xfff00000) | 0x80000;
6624 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6625 }
6626 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6627 *limit = (addr & 0x80600000) + 0x00200000;
6628 return (u_int *)(rdram + (addr&0x1fffff));
6629 }
6630 return NULL;
6631}
6632
6633static u_int scan_for_ret(u_int addr)
6634{
6635 u_int limit = 0;
6636 u_int *mem;
6637
6638 mem = get_source_start(addr, &limit);
6639 if (mem == NULL)
6640 return addr;
6641
6642 if (limit > addr + 0x1000)
6643 limit = addr + 0x1000;
6644 for (; addr < limit; addr += 4, mem++) {
6645 if (*mem == 0x03e00008) // jr $ra
6646 return addr + 8;
6647 }
6648 return addr;
6649}
6650
6651struct savestate_block {
6652 uint32_t addr;
6653 uint32_t regflags;
6654};
6655
6656static int addr_cmp(const void *p1_, const void *p2_)
6657{
6658 const struct savestate_block *p1 = p1_, *p2 = p2_;
6659 return p1->addr - p2->addr;
6660}
6661
6662int new_dynarec_save_blocks(void *save, int size)
6663{
6664 struct savestate_block *blocks = save;
6665 int maxcount = size / sizeof(blocks[0]);
6666 struct savestate_block tmp_blocks[1024];
6667 struct ll_entry *head;
6668 int p, s, d, o, bcnt;
6669 u_int addr;
6670
6671 o = 0;
6672 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
6673 bcnt = 0;
6674 for (head = jump_in[p]; head != NULL; head = head->next) {
6675 tmp_blocks[bcnt].addr = head->vaddr;
6676 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
6677 bcnt++;
6678 }
6679 if (bcnt < 1)
6680 continue;
6681 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6682
6683 addr = tmp_blocks[0].addr;
6684 for (s = d = 0; s < bcnt; s++) {
6685 if (tmp_blocks[s].addr < addr)
6686 continue;
6687 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6688 tmp_blocks[d++] = tmp_blocks[s];
6689 addr = scan_for_ret(tmp_blocks[s].addr);
6690 }
6691
6692 if (o + d > maxcount)
6693 d = maxcount - o;
6694 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
6695 o += d;
6696 }
6697
6698 return o * sizeof(blocks[0]);
6699}
6700
6701void new_dynarec_load_blocks(const void *save, int size)
6702{
6703 const struct savestate_block *blocks = save;
6704 int count = size / sizeof(blocks[0]);
6705 u_int regs_save[32];
6706 uint32_t f;
6707 int i, b;
6708
6709 get_addr(psxRegs.pc);
6710
6711 // change GPRs for speculation to at least partially work..
6712 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6713 for (i = 1; i < 32; i++)
6714 psxRegs.GPR.r[i] = 0x80000000;
6715
6716 for (b = 0; b < count; b++) {
6717 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6718 if (f & 1)
6719 psxRegs.GPR.r[i] = 0x1f800000;
6720 }
6721
6722 get_addr(blocks[b].addr);
6723
6724 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6725 if (f & 1)
6726 psxRegs.GPR.r[i] = 0x80000000;
6727 }
6728 }
6729
6730 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6731}
6732
6733int new_recompile_block(u_int addr)
6734{
6735 u_int pagelimit = 0;
6736 u_int state_rflags = 0;
6737 int i;
6738
6739 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
6740 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
6741 //if(debug)
6742 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
6743
6744 // this is just for speculation
6745 for (i = 1; i < 32; i++) {
6746 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
6747 state_rflags |= 1 << i;
6748 }
6749
6750 start = (u_int)addr&~3;
6751 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
6752 new_dynarec_did_compile=1;
6753 if (Config.HLE && start == 0x80001000) // hlecall
6754 {
6755 // XXX: is this enough? Maybe check hleSoftCall?
6756 void *beginning=start_block();
6757 u_int page=get_page(start);
6758
6759 invalid_code[start>>12]=0;
6760 emit_movimm(start,0);
6761 emit_writeword(0,&pcaddr);
6762 emit_far_jump(new_dyna_leave);
6763 literal_pool(0);
6764 end_block(beginning);
6765 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
6766 return 0;
6767 }
6768
6769 source = get_source_start(start, &pagelimit);
6770 if (source == NULL) {
6771 SysPrintf("Compile at bogus memory address: %08x\n", addr);
6772 abort();
6773 }
6774
6775 /* Pass 1: disassemble */
6776 /* Pass 2: register dependencies, branch targets */
6777 /* Pass 3: register allocation */
6778 /* Pass 4: branch dependencies */
6779 /* Pass 5: pre-alloc */
6780 /* Pass 6: optimize clean/dirty state */
6781 /* Pass 7: flag 32-bit registers */
6782 /* Pass 8: assembly */
6783 /* Pass 9: linker */
6784 /* Pass 10: garbage collection / free memory */
6785
6786 int j;
6787 int done=0;
6788 unsigned int type,op,op2;
6789
6790 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
6791
6792 /* Pass 1 disassembly */
6793
6794 for(i=0;!done;i++) {
6795 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
6796 minimum_free_regs[i]=0;
6797 opcode[i]=op=source[i]>>26;
6798 switch(op)
6799 {
6800 case 0x00: strcpy(insn[i],"special"); type=NI;
6801 op2=source[i]&0x3f;
6802 switch(op2)
6803 {
6804 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
6805 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
6806 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
6807 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
6808 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
6809 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
6810 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
6811 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
6812 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
6813 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
6814 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
6815 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
6816 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
6817 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
6818 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
6819 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
6820 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
6821 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
6822 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
6823 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
6824 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
6825 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
6826 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
6827 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
6828 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
6829 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
6830 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
6831 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
6832 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
6833 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
6834 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
6835 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
6836 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
6837 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
6838 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
6839#if 0
6840 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
6841 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
6842 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
6843 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
6844 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
6845 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
6846 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
6847 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
6848 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
6849 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
6850 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
6851 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
6852 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
6853 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
6854 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
6855 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
6856 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
6857#endif
6858 }
6859 break;
6860 case 0x01: strcpy(insn[i],"regimm"); type=NI;
6861 op2=(source[i]>>16)&0x1f;
6862 switch(op2)
6863 {
6864 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
6865 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
6866 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
6867 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
6868 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
6869 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
6870 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
6871 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
6872 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
6873 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
6874 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
6875 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
6876 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
6877 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
6878 }
6879 break;
6880 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
6881 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
6882 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
6883 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
6884 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
6885 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
6886 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
6887 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
6888 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
6889 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
6890 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
6891 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
6892 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
6893 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
6894 case 0x10: strcpy(insn[i],"cop0"); type=NI;
6895 op2=(source[i]>>21)&0x1f;
6896 switch(op2)
6897 {
6898 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
6899 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
6900 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
6901 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
6902 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
6903 }
6904 break;
6905 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
6906 op2=(source[i]>>21)&0x1f;
6907 break;
6908#if 0
6909 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
6910 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
6911 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
6912 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
6913 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
6914 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
6915 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
6916 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
6917#endif
6918 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
6919 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
6920 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
6921 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
6922 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
6923 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
6924 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
6925#if 0
6926 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
6927#endif
6928 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
6929 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
6930 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
6931 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
6932#if 0
6933 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
6934 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
6935#endif
6936 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
6937 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
6938 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
6939 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
6940#if 0
6941 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
6942 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
6943 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
6944#endif
6945 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
6946 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
6947#if 0
6948 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
6949 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
6950 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
6951#endif
6952 case 0x12: strcpy(insn[i],"COP2"); type=NI;
6953 op2=(source[i]>>21)&0x1f;
6954 //if (op2 & 0x10)
6955 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
6956 if (gte_handlers[source[i]&0x3f]!=NULL) {
6957 if (gte_regnames[source[i]&0x3f]!=NULL)
6958 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
6959 else
6960 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
6961 type=C2OP;
6962 }
6963 }
6964 else switch(op2)
6965 {
6966 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
6967 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
6968 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
6969 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
6970 }
6971 break;
6972 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
6973 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
6974 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
6975 default: strcpy(insn[i],"???"); type=NI;
6976 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
6977 break;
6978 }
6979 itype[i]=type;
6980 opcode2[i]=op2;
6981 /* Get registers/immediates */
6982 lt1[i]=0;
6983 dep1[i]=0;
6984 dep2[i]=0;
6985 gte_rs[i]=gte_rt[i]=0;
6986 switch(type) {
6987 case LOAD:
6988 rs1[i]=(source[i]>>21)&0x1f;
6989 rs2[i]=0;
6990 rt1[i]=(source[i]>>16)&0x1f;
6991 rt2[i]=0;
6992 imm[i]=(short)source[i];
6993 break;
6994 case STORE:
6995 case STORELR:
6996 rs1[i]=(source[i]>>21)&0x1f;
6997 rs2[i]=(source[i]>>16)&0x1f;
6998 rt1[i]=0;
6999 rt2[i]=0;
7000 imm[i]=(short)source[i];
7001 break;
7002 case LOADLR:
7003 // LWL/LWR only load part of the register,
7004 // therefore the target register must be treated as a source too
7005 rs1[i]=(source[i]>>21)&0x1f;
7006 rs2[i]=(source[i]>>16)&0x1f;
7007 rt1[i]=(source[i]>>16)&0x1f;
7008 rt2[i]=0;
7009 imm[i]=(short)source[i];
7010 if(op==0x26) dep1[i]=rt1[i]; // LWR
7011 break;
7012 case IMM16:
7013 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7014 else rs1[i]=(source[i]>>21)&0x1f;
7015 rs2[i]=0;
7016 rt1[i]=(source[i]>>16)&0x1f;
7017 rt2[i]=0;
7018 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7019 imm[i]=(unsigned short)source[i];
7020 }else{
7021 imm[i]=(short)source[i];
7022 }
7023 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7024 break;
7025 case UJUMP:
7026 rs1[i]=0;
7027 rs2[i]=0;
7028 rt1[i]=0;
7029 rt2[i]=0;
7030 // The JAL instruction writes to r31.
7031 if (op&1) {
7032 rt1[i]=31;
7033 }
7034 rs2[i]=CCREG;
7035 break;
7036 case RJUMP:
7037 rs1[i]=(source[i]>>21)&0x1f;
7038 rs2[i]=0;
7039 rt1[i]=0;
7040 rt2[i]=0;
7041 // The JALR instruction writes to rd.
7042 if (op2&1) {
7043 rt1[i]=(source[i]>>11)&0x1f;
7044 }
7045 rs2[i]=CCREG;
7046 break;
7047 case CJUMP:
7048 rs1[i]=(source[i]>>21)&0x1f;
7049 rs2[i]=(source[i]>>16)&0x1f;
7050 rt1[i]=0;
7051 rt2[i]=0;
7052 if(op&2) { // BGTZ/BLEZ
7053 rs2[i]=0;
7054 }
7055 likely[i]=op>>4;
7056 break;
7057 case SJUMP:
7058 rs1[i]=(source[i]>>21)&0x1f;
7059 rs2[i]=CCREG;
7060 rt1[i]=0;
7061 rt2[i]=0;
7062 if(op2&0x10) { // BxxAL
7063 rt1[i]=31;
7064 // NOTE: If the branch is not taken, r31 is still overwritten
7065 }
7066 likely[i]=(op2&2)>>1;
7067 break;
7068 case ALU:
7069 rs1[i]=(source[i]>>21)&0x1f; // source
7070 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7071 rt1[i]=(source[i]>>11)&0x1f; // destination
7072 rt2[i]=0;
7073 if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7074 dep1[i]=rs1[i];dep2[i]=rs2[i];
7075 }
7076 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7077 dep1[i]=rs1[i];dep2[i]=rs2[i];
7078 }
7079 break;
7080 case MULTDIV:
7081 rs1[i]=(source[i]>>21)&0x1f; // source
7082 rs2[i]=(source[i]>>16)&0x1f; // divisor
7083 rt1[i]=HIREG;
7084 rt2[i]=LOREG;
7085 break;
7086 case MOV:
7087 rs1[i]=0;
7088 rs2[i]=0;
7089 rt1[i]=0;
7090 rt2[i]=0;
7091 if(op2==0x10) rs1[i]=HIREG; // MFHI
7092 if(op2==0x11) rt1[i]=HIREG; // MTHI
7093 if(op2==0x12) rs1[i]=LOREG; // MFLO
7094 if(op2==0x13) rt1[i]=LOREG; // MTLO
7095 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7096 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7097 dep1[i]=rs1[i];
7098 break;
7099 case SHIFT:
7100 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7101 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7102 rt1[i]=(source[i]>>11)&0x1f; // destination
7103 rt2[i]=0;
7104 break;
7105 case SHIFTIMM:
7106 rs1[i]=(source[i]>>16)&0x1f;
7107 rs2[i]=0;
7108 rt1[i]=(source[i]>>11)&0x1f;
7109 rt2[i]=0;
7110 imm[i]=(source[i]>>6)&0x1f;
7111 // DSxx32 instructions
7112 if(op2>=0x3c) imm[i]|=0x20;
7113 break;
7114 case COP0:
7115 rs1[i]=0;
7116 rs2[i]=0;
7117 rt1[i]=0;
7118 rt2[i]=0;
7119 if(op2==0||op2==2) rt1[i]=(source[i]>>16)&0x1F; // MFC0/CFC0
7120 if(op2==4||op2==6) rs1[i]=(source[i]>>16)&0x1F; // MTC0/CTC0
7121 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7122 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7123 break;
7124 case COP1:
7125 rs1[i]=0;
7126 rs2[i]=0;
7127 rt1[i]=0;
7128 rt2[i]=0;
7129 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7130 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7131 rs2[i]=CSREG;
7132 break;
7133 case COP2:
7134 rs1[i]=0;
7135 rs2[i]=0;
7136 rt1[i]=0;
7137 rt2[i]=0;
7138 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7139 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7140 rs2[i]=CSREG;
7141 int gr=(source[i]>>11)&0x1F;
7142 switch(op2)
7143 {
7144 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7145 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7146 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7147 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7148 }
7149 break;
7150 case C1LS:
7151 rs1[i]=(source[i]>>21)&0x1F;
7152 rs2[i]=CSREG;
7153 rt1[i]=0;
7154 rt2[i]=0;
7155 imm[i]=(short)source[i];
7156 break;
7157 case C2LS:
7158 rs1[i]=(source[i]>>21)&0x1F;
7159 rs2[i]=0;
7160 rt1[i]=0;
7161 rt2[i]=0;
7162 imm[i]=(short)source[i];
7163 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7164 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7165 break;
7166 case C2OP:
7167 rs1[i]=0;
7168 rs2[i]=0;
7169 rt1[i]=0;
7170 rt2[i]=0;
7171 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7172 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7173 gte_rt[i]|=1ll<<63; // every op changes flags
7174 if((source[i]&0x3f)==GTE_MVMVA) {
7175 int v = (source[i] >> 15) & 3;
7176 gte_rs[i]&=~0xe3fll;
7177 if(v==3) gte_rs[i]|=0xe00ll;
7178 else gte_rs[i]|=3ll<<(v*2);
7179 }
7180 break;
7181 case SYSCALL:
7182 case HLECALL:
7183 case INTCALL:
7184 rs1[i]=CCREG;
7185 rs2[i]=0;
7186 rt1[i]=0;
7187 rt2[i]=0;
7188 break;
7189 default:
7190 rs1[i]=0;
7191 rs2[i]=0;
7192 rt1[i]=0;
7193 rt2[i]=0;
7194 }
7195 /* Calculate branch target addresses */
7196 if(type==UJUMP)
7197 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7198 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7199 ba[i]=start+i*4+8; // Ignore never taken branch
7200 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7201 ba[i]=start+i*4+8; // Ignore never taken branch
7202 else if(type==CJUMP||type==SJUMP)
7203 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7204 else ba[i]=-1;
7205 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)) {
7206 int do_in_intrp=0;
7207 // branch in delay slot?
7208 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP) {
7209 // don't handle first branch and call interpreter if it's hit
7210 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7211 do_in_intrp=1;
7212 }
7213 // basic load delay detection
7214 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7215 int t=(ba[i-1]-start)/4;
7216 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7217 // jump target wants DS result - potential load delay effect
7218 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7219 do_in_intrp=1;
7220 bt[t+1]=1; // expected return from interpreter
7221 }
7222 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7223 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7224 // v0 overwrite like this is a sign of trouble, bail out
7225 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7226 do_in_intrp=1;
7227 }
7228 }
7229 if(do_in_intrp) {
7230 rs1[i-1]=CCREG;
7231 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7232 ba[i-1]=-1;
7233 itype[i-1]=INTCALL;
7234 done=2;
7235 i--; // don't compile the DS
7236 }
7237 }
7238 /* Is this the end of the block? */
7239 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
7240 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7241 done=2;
7242 }
7243 else {
7244 if(stop_after_jal) done=1;
7245 // Stop on BREAK
7246 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7247 }
7248 // Don't recompile stuff that's already compiled
7249 if(check_addr(start+i*4+4)) done=1;
7250 // Don't get too close to the limit
7251 if(i>MAXBLOCK/2) done=1;
7252 }
7253 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7254 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7255 if(done==2) {
7256 // Does the block continue due to a branch?
7257 for(j=i-1;j>=0;j--)
7258 {
7259 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7260 if(ba[j]==start+i*4+4) done=j=0;
7261 if(ba[j]==start+i*4+8) done=j=0;
7262 }
7263 }
7264 //assert(i<MAXBLOCK-1);
7265 if(start+i*4==pagelimit-4) done=1;
7266 assert(start+i*4<pagelimit);
7267 if (i==MAXBLOCK-1) done=1;
7268 // Stop if we're compiling junk
7269 if(itype[i]==NI&&opcode[i]==0x11) {
7270 done=stop_after_jal=1;
7271 SysPrintf("Disabled speculative precompilation\n");
7272 }
7273 }
7274 slen=i;
7275 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP) {
7276 if(start+i*4==pagelimit) {
7277 itype[i-1]=SPAN;
7278 }
7279 }
7280 assert(slen>0);
7281
7282 /* Pass 2 - Register dependencies and branch targets */
7283
7284 unneeded_registers(0,slen-1,0);
7285
7286 /* Pass 3 - Register allocation */
7287
7288 struct regstat current; // Current register allocations/status
7289 current.dirty=0;
7290 current.u=unneeded_reg[0];
7291 clear_all_regs(current.regmap);
7292 alloc_reg(&current,0,CCREG);
7293 dirty_reg(&current,CCREG);
7294 current.isconst=0;
7295 current.wasconst=0;
7296 current.waswritten=0;
7297 int ds=0;
7298 int cc=0;
7299 int hr=-1;
7300
7301 if((u_int)addr&1) {
7302 // First instruction is delay slot
7303 cc=-1;
7304 bt[1]=1;
7305 ds=1;
7306 unneeded_reg[0]=1;
7307 current.regmap[HOST_BTREG]=BTREG;
7308 }
7309
7310 for(i=0;i<slen;i++)
7311 {
7312 if(bt[i])
7313 {
7314 int hr;
7315 for(hr=0;hr<HOST_REGS;hr++)
7316 {
7317 // Is this really necessary?
7318 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7319 }
7320 current.isconst=0;
7321 current.waswritten=0;
7322 }
7323
7324 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7325 regs[i].wasconst=current.isconst;
7326 regs[i].wasdirty=current.dirty;
7327 regs[i].loadedconst=0;
7328 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP) {
7329 if(i+1<slen) {
7330 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7331 current.u|=1;
7332 } else {
7333 current.u=1;
7334 }
7335 } else {
7336 if(i+1<slen) {
7337 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7338 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7339 current.u|=1;
7340 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7341 }
7342 is_ds[i]=ds;
7343 if(ds) {
7344 ds=0; // Skip delay slot, already allocated as part of branch
7345 // ...but we need to alloc it in case something jumps here
7346 if(i+1<slen) {
7347 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7348 }else{
7349 current.u=branch_unneeded_reg[i-1];
7350 }
7351 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7352 current.u|=1;
7353 struct regstat temp;
7354 memcpy(&temp,&current,sizeof(current));
7355 temp.wasdirty=temp.dirty;
7356 // TODO: Take into account unconditional branches, as below
7357 delayslot_alloc(&temp,i);
7358 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7359 regs[i].wasdirty=temp.wasdirty;
7360 regs[i].dirty=temp.dirty;
7361 regs[i].isconst=0;
7362 regs[i].wasconst=0;
7363 current.isconst=0;
7364 // Create entry (branch target) regmap
7365 for(hr=0;hr<HOST_REGS;hr++)
7366 {
7367 int r=temp.regmap[hr];
7368 if(r>=0) {
7369 if(r!=regmap_pre[i][hr]) {
7370 regs[i].regmap_entry[hr]=-1;
7371 }
7372 else
7373 {
7374 assert(r < 64);
7375 if((current.u>>r)&1) {
7376 regs[i].regmap_entry[hr]=-1;
7377 regs[i].regmap[hr]=-1;
7378 //Don't clear regs in the delay slot as the branch might need them
7379 //current.regmap[hr]=-1;
7380 }else
7381 regs[i].regmap_entry[hr]=r;
7382 }
7383 } else {
7384 // First instruction expects CCREG to be allocated
7385 if(i==0&&hr==HOST_CCREG)
7386 regs[i].regmap_entry[hr]=CCREG;
7387 else
7388 regs[i].regmap_entry[hr]=-1;
7389 }
7390 }
7391 }
7392 else { // Not delay slot
7393 switch(itype[i]) {
7394 case UJUMP:
7395 //current.isconst=0; // DEBUG
7396 //current.wasconst=0; // DEBUG
7397 //regs[i].wasconst=0; // DEBUG
7398 clear_const(&current,rt1[i]);
7399 alloc_cc(&current,i);
7400 dirty_reg(&current,CCREG);
7401 if (rt1[i]==31) {
7402 alloc_reg(&current,i,31);
7403 dirty_reg(&current,31);
7404 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
7405 //assert(rt1[i+1]!=rt1[i]);
7406 #ifdef REG_PREFETCH
7407 alloc_reg(&current,i,PTEMP);
7408 #endif
7409 }
7410 ooo[i]=1;
7411 delayslot_alloc(&current,i+1);
7412 //current.isconst=0; // DEBUG
7413 ds=1;
7414 //printf("i=%d, isconst=%x\n",i,current.isconst);
7415 break;
7416 case RJUMP:
7417 //current.isconst=0;
7418 //current.wasconst=0;
7419 //regs[i].wasconst=0;
7420 clear_const(&current,rs1[i]);
7421 clear_const(&current,rt1[i]);
7422 alloc_cc(&current,i);
7423 dirty_reg(&current,CCREG);
7424 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
7425 alloc_reg(&current,i,rs1[i]);
7426 if (rt1[i]!=0) {
7427 alloc_reg(&current,i,rt1[i]);
7428 dirty_reg(&current,rt1[i]);
7429 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
7430 assert(rt1[i+1]!=rt1[i]);
7431 #ifdef REG_PREFETCH
7432 alloc_reg(&current,i,PTEMP);
7433 #endif
7434 }
7435 #ifdef USE_MINI_HT
7436 if(rs1[i]==31) { // JALR
7437 alloc_reg(&current,i,RHASH);
7438 alloc_reg(&current,i,RHTBL);
7439 }
7440 #endif
7441 delayslot_alloc(&current,i+1);
7442 } else {
7443 // The delay slot overwrites our source register,
7444 // allocate a temporary register to hold the old value.
7445 current.isconst=0;
7446 current.wasconst=0;
7447 regs[i].wasconst=0;
7448 delayslot_alloc(&current,i+1);
7449 current.isconst=0;
7450 alloc_reg(&current,i,RTEMP);
7451 }
7452 //current.isconst=0; // DEBUG
7453 ooo[i]=1;
7454 ds=1;
7455 break;
7456 case CJUMP:
7457 //current.isconst=0;
7458 //current.wasconst=0;
7459 //regs[i].wasconst=0;
7460 clear_const(&current,rs1[i]);
7461 clear_const(&current,rs2[i]);
7462 if((opcode[i]&0x3E)==4) // BEQ/BNE
7463 {
7464 alloc_cc(&current,i);
7465 dirty_reg(&current,CCREG);
7466 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7467 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7468 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
7469 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
7470 // The delay slot overwrites one of our conditions.
7471 // Allocate the branch condition registers instead.
7472 current.isconst=0;
7473 current.wasconst=0;
7474 regs[i].wasconst=0;
7475 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7476 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7477 }
7478 else
7479 {
7480 ooo[i]=1;
7481 delayslot_alloc(&current,i+1);
7482 }
7483 }
7484 else
7485 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
7486 {
7487 alloc_cc(&current,i);
7488 dirty_reg(&current,CCREG);
7489 alloc_reg(&current,i,rs1[i]);
7490 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
7491 // The delay slot overwrites one of our conditions.
7492 // Allocate the branch condition registers instead.
7493 current.isconst=0;
7494 current.wasconst=0;
7495 regs[i].wasconst=0;
7496 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7497 }
7498 else
7499 {
7500 ooo[i]=1;
7501 delayslot_alloc(&current,i+1);
7502 }
7503 }
7504 else
7505 // Don't alloc the delay slot yet because we might not execute it
7506 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
7507 {
7508 current.isconst=0;
7509 current.wasconst=0;
7510 regs[i].wasconst=0;
7511 alloc_cc(&current,i);
7512 dirty_reg(&current,CCREG);
7513 alloc_reg(&current,i,rs1[i]);
7514 alloc_reg(&current,i,rs2[i]);
7515 }
7516 else
7517 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
7518 {
7519 current.isconst=0;
7520 current.wasconst=0;
7521 regs[i].wasconst=0;
7522 alloc_cc(&current,i);
7523 dirty_reg(&current,CCREG);
7524 alloc_reg(&current,i,rs1[i]);
7525 }
7526 ds=1;
7527 //current.isconst=0;
7528 break;
7529 case SJUMP:
7530 //current.isconst=0;
7531 //current.wasconst=0;
7532 //regs[i].wasconst=0;
7533 clear_const(&current,rs1[i]);
7534 clear_const(&current,rt1[i]);
7535 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
7536 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
7537 {
7538 alloc_cc(&current,i);
7539 dirty_reg(&current,CCREG);
7540 alloc_reg(&current,i,rs1[i]);
7541 if (rt1[i]==31) { // BLTZAL/BGEZAL
7542 alloc_reg(&current,i,31);
7543 dirty_reg(&current,31);
7544 //#ifdef REG_PREFETCH
7545 //alloc_reg(&current,i,PTEMP);
7546 //#endif
7547 }
7548 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
7549 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
7550 // Allocate the branch condition registers instead.
7551 current.isconst=0;
7552 current.wasconst=0;
7553 regs[i].wasconst=0;
7554 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7555 }
7556 else
7557 {
7558 ooo[i]=1;
7559 delayslot_alloc(&current,i+1);
7560 }
7561 }
7562 else
7563 // Don't alloc the delay slot yet because we might not execute it
7564 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
7565 {
7566 current.isconst=0;
7567 current.wasconst=0;
7568 regs[i].wasconst=0;
7569 alloc_cc(&current,i);
7570 dirty_reg(&current,CCREG);
7571 alloc_reg(&current,i,rs1[i]);
7572 }
7573 ds=1;
7574 //current.isconst=0;
7575 break;
7576 case IMM16:
7577 imm16_alloc(&current,i);
7578 break;
7579 case LOAD:
7580 case LOADLR:
7581 load_alloc(&current,i);
7582 break;
7583 case STORE:
7584 case STORELR:
7585 store_alloc(&current,i);
7586 break;
7587 case ALU:
7588 alu_alloc(&current,i);
7589 break;
7590 case SHIFT:
7591 shift_alloc(&current,i);
7592 break;
7593 case MULTDIV:
7594 multdiv_alloc(&current,i);
7595 break;
7596 case SHIFTIMM:
7597 shiftimm_alloc(&current,i);
7598 break;
7599 case MOV:
7600 mov_alloc(&current,i);
7601 break;
7602 case COP0:
7603 cop0_alloc(&current,i);
7604 break;
7605 case COP1:
7606 case COP2:
7607 cop12_alloc(&current,i);
7608 break;
7609 case C1LS:
7610 c1ls_alloc(&current,i);
7611 break;
7612 case C2LS:
7613 c2ls_alloc(&current,i);
7614 break;
7615 case C2OP:
7616 c2op_alloc(&current,i);
7617 break;
7618 case SYSCALL:
7619 case HLECALL:
7620 case INTCALL:
7621 syscall_alloc(&current,i);
7622 break;
7623 case SPAN:
7624 pagespan_alloc(&current,i);
7625 break;
7626 }
7627
7628 // Create entry (branch target) regmap
7629 for(hr=0;hr<HOST_REGS;hr++)
7630 {
7631 int r,or;
7632 r=current.regmap[hr];
7633 if(r>=0) {
7634 if(r!=regmap_pre[i][hr]) {
7635 // TODO: delay slot (?)
7636 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7637 if(or<0||(r&63)>=TEMPREG){
7638 regs[i].regmap_entry[hr]=-1;
7639 }
7640 else
7641 {
7642 // Just move it to a different register
7643 regs[i].regmap_entry[hr]=r;
7644 // If it was dirty before, it's still dirty
7645 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7646 }
7647 }
7648 else
7649 {
7650 // Unneeded
7651 if(r==0){
7652 regs[i].regmap_entry[hr]=0;
7653 }
7654 else
7655 {
7656 assert(r<64);
7657 if((current.u>>r)&1) {
7658 regs[i].regmap_entry[hr]=-1;
7659 //regs[i].regmap[hr]=-1;
7660 current.regmap[hr]=-1;
7661 }else
7662 regs[i].regmap_entry[hr]=r;
7663 }
7664 }
7665 } else {
7666 // Branches expect CCREG to be allocated at the target
7667 if(regmap_pre[i][hr]==CCREG)
7668 regs[i].regmap_entry[hr]=CCREG;
7669 else
7670 regs[i].regmap_entry[hr]=-1;
7671 }
7672 }
7673 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7674 }
7675
7676 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
7677 current.waswritten|=1<<rs1[i-1];
7678 current.waswritten&=~(1<<rt1[i]);
7679 current.waswritten&=~(1<<rt2[i]);
7680 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
7681 current.waswritten&=~(1<<rs1[i]);
7682
7683 /* Branch post-alloc */
7684 if(i>0)
7685 {
7686 current.wasdirty=current.dirty;
7687 switch(itype[i-1]) {
7688 case UJUMP:
7689 memcpy(&branch_regs[i-1],&current,sizeof(current));
7690 branch_regs[i-1].isconst=0;
7691 branch_regs[i-1].wasconst=0;
7692 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
7693 alloc_cc(&branch_regs[i-1],i-1);
7694 dirty_reg(&branch_regs[i-1],CCREG);
7695 if(rt1[i-1]==31) { // JAL
7696 alloc_reg(&branch_regs[i-1],i-1,31);
7697 dirty_reg(&branch_regs[i-1],31);
7698 }
7699 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7700 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7701 break;
7702 case RJUMP:
7703 memcpy(&branch_regs[i-1],&current,sizeof(current));
7704 branch_regs[i-1].isconst=0;
7705 branch_regs[i-1].wasconst=0;
7706 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
7707 alloc_cc(&branch_regs[i-1],i-1);
7708 dirty_reg(&branch_regs[i-1],CCREG);
7709 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
7710 if(rt1[i-1]!=0) { // JALR
7711 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
7712 dirty_reg(&branch_regs[i-1],rt1[i-1]);
7713 }
7714 #ifdef USE_MINI_HT
7715 if(rs1[i-1]==31) { // JALR
7716 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7717 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7718 }
7719 #endif
7720 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7721 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7722 break;
7723 case CJUMP:
7724 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
7725 {
7726 alloc_cc(&current,i-1);
7727 dirty_reg(&current,CCREG);
7728 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
7729 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
7730 // The delay slot overwrote one of our conditions
7731 // Delay slot goes after the test (in order)
7732 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7733 current.u|=1;
7734 delayslot_alloc(&current,i);
7735 current.isconst=0;
7736 }
7737 else
7738 {
7739 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
7740 // Alloc the branch condition registers
7741 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
7742 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
7743 }
7744 memcpy(&branch_regs[i-1],&current,sizeof(current));
7745 branch_regs[i-1].isconst=0;
7746 branch_regs[i-1].wasconst=0;
7747 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7748 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7749 }
7750 else
7751 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
7752 {
7753 alloc_cc(&current,i-1);
7754 dirty_reg(&current,CCREG);
7755 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
7756 // The delay slot overwrote the branch condition
7757 // Delay slot goes after the test (in order)
7758 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7759 current.u|=1;
7760 delayslot_alloc(&current,i);
7761 current.isconst=0;
7762 }
7763 else
7764 {
7765 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
7766 // Alloc the branch condition register
7767 alloc_reg(&current,i-1,rs1[i-1]);
7768 }
7769 memcpy(&branch_regs[i-1],&current,sizeof(current));
7770 branch_regs[i-1].isconst=0;
7771 branch_regs[i-1].wasconst=0;
7772 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7773 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7774 }
7775 else
7776 // Alloc the delay slot in case the branch is taken
7777 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
7778 {
7779 memcpy(&branch_regs[i-1],&current,sizeof(current));
7780 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
7781 alloc_cc(&branch_regs[i-1],i);
7782 dirty_reg(&branch_regs[i-1],CCREG);
7783 delayslot_alloc(&branch_regs[i-1],i);
7784 branch_regs[i-1].isconst=0;
7785 alloc_reg(&current,i,CCREG); // Not taken path
7786 dirty_reg(&current,CCREG);
7787 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7788 }
7789 else
7790 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
7791 {
7792 memcpy(&branch_regs[i-1],&current,sizeof(current));
7793 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
7794 alloc_cc(&branch_regs[i-1],i);
7795 dirty_reg(&branch_regs[i-1],CCREG);
7796 delayslot_alloc(&branch_regs[i-1],i);
7797 branch_regs[i-1].isconst=0;
7798 alloc_reg(&current,i,CCREG); // Not taken path
7799 dirty_reg(&current,CCREG);
7800 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7801 }
7802 break;
7803 case SJUMP:
7804 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
7805 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
7806 {
7807 alloc_cc(&current,i-1);
7808 dirty_reg(&current,CCREG);
7809 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
7810 // The delay slot overwrote the branch condition
7811 // Delay slot goes after the test (in order)
7812 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7813 current.u|=1;
7814 delayslot_alloc(&current,i);
7815 current.isconst=0;
7816 }
7817 else
7818 {
7819 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
7820 // Alloc the branch condition register
7821 alloc_reg(&current,i-1,rs1[i-1]);
7822 }
7823 memcpy(&branch_regs[i-1],&current,sizeof(current));
7824 branch_regs[i-1].isconst=0;
7825 branch_regs[i-1].wasconst=0;
7826 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7827 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7828 }
7829 else
7830 // Alloc the delay slot in case the branch is taken
7831 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
7832 {
7833 memcpy(&branch_regs[i-1],&current,sizeof(current));
7834 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
7835 alloc_cc(&branch_regs[i-1],i);
7836 dirty_reg(&branch_regs[i-1],CCREG);
7837 delayslot_alloc(&branch_regs[i-1],i);
7838 branch_regs[i-1].isconst=0;
7839 alloc_reg(&current,i,CCREG); // Not taken path
7840 dirty_reg(&current,CCREG);
7841 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7842 }
7843 // FIXME: BLTZAL/BGEZAL
7844 if(opcode2[i-1]&0x10) { // BxxZAL
7845 alloc_reg(&branch_regs[i-1],i-1,31);
7846 dirty_reg(&branch_regs[i-1],31);
7847 }
7848 break;
7849 }
7850
7851 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7852 {
7853 if(rt1[i-1]==31) // JAL/JALR
7854 {
7855 // Subroutine call will return here, don't alloc any registers
7856 current.dirty=0;
7857 clear_all_regs(current.regmap);
7858 alloc_reg(&current,i,CCREG);
7859 dirty_reg(&current,CCREG);
7860 }
7861 else if(i+1<slen)
7862 {
7863 // Internal branch will jump here, match registers to caller
7864 current.dirty=0;
7865 clear_all_regs(current.regmap);
7866 alloc_reg(&current,i,CCREG);
7867 dirty_reg(&current,CCREG);
7868 for(j=i-1;j>=0;j--)
7869 {
7870 if(ba[j]==start+i*4+4) {
7871 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
7872 current.dirty=branch_regs[j].dirty;
7873 break;
7874 }
7875 }
7876 while(j>=0) {
7877 if(ba[j]==start+i*4+4) {
7878 for(hr=0;hr<HOST_REGS;hr++) {
7879 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
7880 current.regmap[hr]=-1;
7881 }
7882 current.dirty&=branch_regs[j].dirty;
7883 }
7884 }
7885 j--;
7886 }
7887 }
7888 }
7889 }
7890
7891 // Count cycles in between branches
7892 ccadj[i]=cc;
7893 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
7894 {
7895 cc=0;
7896 }
7897#if !defined(DRC_DBG)
7898 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
7899 {
7900 // GTE runs in parallel until accessed, divide by 2 for a rough guess
7901 cc+=gte_cycletab[source[i]&0x3f]/2;
7902 }
7903 else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
7904 {
7905 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
7906 }
7907 else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
7908 {
7909 cc+=4;
7910 }
7911 else if(itype[i]==C2LS)
7912 {
7913 cc+=4;
7914 }
7915#endif
7916 else
7917 {
7918 cc++;
7919 }
7920
7921 if(!is_ds[i]) {
7922 regs[i].dirty=current.dirty;
7923 regs[i].isconst=current.isconst;
7924 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
7925 }
7926 for(hr=0;hr<HOST_REGS;hr++) {
7927 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
7928 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
7929 regs[i].wasconst&=~(1<<hr);
7930 }
7931 }
7932 }
7933 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
7934 regs[i].waswritten=current.waswritten;
7935 }
7936
7937 /* Pass 4 - Cull unused host registers */
7938
7939 uint64_t nr=0;
7940
7941 for (i=slen-1;i>=0;i--)
7942 {
7943 int hr;
7944 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
7945 {
7946 if(ba[i]<start || ba[i]>=(start+slen*4))
7947 {
7948 // Branch out of this block, don't need anything
7949 nr=0;
7950 }
7951 else
7952 {
7953 // Internal branch
7954 // Need whatever matches the target
7955 nr=0;
7956 int t=(ba[i]-start)>>2;
7957 for(hr=0;hr<HOST_REGS;hr++)
7958 {
7959 if(regs[i].regmap_entry[hr]>=0) {
7960 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
7961 }
7962 }
7963 }
7964 // Conditional branch may need registers for following instructions
7965 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7966 {
7967 if(i<slen-2) {
7968 nr|=needed_reg[i+2];
7969 for(hr=0;hr<HOST_REGS;hr++)
7970 {
7971 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
7972 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
7973 }
7974 }
7975 }
7976 // Don't need stuff which is overwritten
7977 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7978 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7979 // Merge in delay slot
7980 for(hr=0;hr<HOST_REGS;hr++)
7981 {
7982 if(!likely[i]) {
7983 // These are overwritten unless the branch is "likely"
7984 // and the delay slot is nullified if not taken
7985 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
7986 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
7987 }
7988 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
7989 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
7990 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
7991 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
7992 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
7993 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
7994 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
7995 }
7996 }
7997 }
7998 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7999 {
8000 // SYSCALL instruction (software interrupt)
8001 nr=0;
8002 }
8003 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8004 {
8005 // ERET instruction (return from interrupt)
8006 nr=0;
8007 }
8008 else // Non-branch
8009 {
8010 if(i<slen-1) {
8011 for(hr=0;hr<HOST_REGS;hr++) {
8012 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8013 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8014 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8015 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8016 }
8017 }
8018 }
8019 for(hr=0;hr<HOST_REGS;hr++)
8020 {
8021 // Overwritten registers are not needed
8022 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8023 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8024 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8025 // Source registers are needed
8026 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8027 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8028 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8029 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8030 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8031 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8032 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8033 }
8034 // Don't store a register immediately after writing it,
8035 // may prevent dual-issue.
8036 // But do so if this is a branch target, otherwise we
8037 // might have to load the register before the branch.
8038 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8039 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8040 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8041 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8042 }
8043 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8044 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8045 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8046 }
8047 }
8048 }
8049 // Cycle count is needed at branches. Assume it is needed at the target too.
8050 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==SPAN) {
8051 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8052 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8053 }
8054 // Save it
8055 needed_reg[i]=nr;
8056
8057 // Deallocate unneeded registers
8058 for(hr=0;hr<HOST_REGS;hr++)
8059 {
8060 if(!((nr>>hr)&1)) {
8061 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8062 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8063 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8064 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8065 {
8066 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8067 {
8068 if(likely[i]) {
8069 regs[i].regmap[hr]=-1;
8070 regs[i].isconst&=~(1<<hr);
8071 if(i<slen-2) {
8072 regmap_pre[i+2][hr]=-1;
8073 regs[i+2].wasconst&=~(1<<hr);
8074 }
8075 }
8076 }
8077 }
8078 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8079 {
8080 int map=0,temp=0;
8081 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8082 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8083 map=INVCP;
8084 }
8085 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
8086 itype[i+1]==C1LS || itype[i+1]==C2LS)
8087 temp=FTEMP;
8088 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8089 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8090 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8091 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8092 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8093 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8094 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8095 regs[i].regmap[hr]!=map )
8096 {
8097 regs[i].regmap[hr]=-1;
8098 regs[i].isconst&=~(1<<hr);
8099 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8100 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8101 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8102 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8103 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8104 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8105 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8106 branch_regs[i].regmap[hr]!=map)
8107 {
8108 branch_regs[i].regmap[hr]=-1;
8109 branch_regs[i].regmap_entry[hr]=-1;
8110 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8111 {
8112 if(!likely[i]&&i<slen-2) {
8113 regmap_pre[i+2][hr]=-1;
8114 regs[i+2].wasconst&=~(1<<hr);
8115 }
8116 }
8117 }
8118 }
8119 }
8120 else
8121 {
8122 // Non-branch
8123 if(i>0)
8124 {
8125 int map=-1,temp=-1;
8126 if(itype[i]==STORE || itype[i]==STORELR ||
8127 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8128 map=INVCP;
8129 }
8130 if(itype[i]==LOADLR || itype[i]==STORELR ||
8131 itype[i]==C1LS || itype[i]==C2LS)
8132 temp=FTEMP;
8133 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8134 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
8135 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8136 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
8137 {
8138 if(i<slen-1&&!is_ds[i]) {
8139 assert(regs[i].regmap[hr]<64);
8140 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8141 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8142 {
8143 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8144 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8145 }
8146 regmap_pre[i+1][hr]=-1;
8147 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8148 regs[i+1].wasconst&=~(1<<hr);
8149 }
8150 regs[i].regmap[hr]=-1;
8151 regs[i].isconst&=~(1<<hr);
8152 }
8153 }
8154 }
8155 } // if needed
8156 } // for hr
8157 }
8158
8159 /* Pass 5 - Pre-allocate registers */
8160
8161 // If a register is allocated during a loop, try to allocate it for the
8162 // entire loop, if possible. This avoids loading/storing registers
8163 // inside of the loop.
8164
8165 signed char f_regmap[HOST_REGS];
8166 clear_all_regs(f_regmap);
8167 for(i=0;i<slen-1;i++)
8168 {
8169 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8170 {
8171 if(ba[i]>=start && ba[i]<(start+i*4))
8172 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
8173 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
8174 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
8175 ||itype[i+1]==SHIFT||itype[i+1]==COP1
8176 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
8177 {
8178 int t=(ba[i]-start)>>2;
8179 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP)) // loop_preload can't handle jumps into delay slots
8180 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
8181 for(hr=0;hr<HOST_REGS;hr++)
8182 {
8183 if(regs[i].regmap[hr]>=0) {
8184 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8185 // dealloc old register
8186 int n;
8187 for(n=0;n<HOST_REGS;n++)
8188 {
8189 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8190 }
8191 // and alloc new one
8192 f_regmap[hr]=regs[i].regmap[hr];
8193 }
8194 }
8195 if(branch_regs[i].regmap[hr]>=0) {
8196 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8197 // dealloc old register
8198 int n;
8199 for(n=0;n<HOST_REGS;n++)
8200 {
8201 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8202 }
8203 // and alloc new one
8204 f_regmap[hr]=branch_regs[i].regmap[hr];
8205 }
8206 }
8207 if(ooo[i]) {
8208 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8209 f_regmap[hr]=branch_regs[i].regmap[hr];
8210 }else{
8211 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8212 f_regmap[hr]=branch_regs[i].regmap[hr];
8213 }
8214 // Avoid dirty->clean transition
8215 #ifdef DESTRUCTIVE_WRITEBACK
8216 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8217 #endif
8218 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8219 // case above, however it's always a good idea. We can't hoist the
8220 // load if the register was already allocated, so there's no point
8221 // wasting time analyzing most of these cases. It only "succeeds"
8222 // when the mapping was different and the load can be replaced with
8223 // a mov, which is of negligible benefit. So such cases are
8224 // skipped below.
8225 if(f_regmap[hr]>0) {
8226 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8227 int r=f_regmap[hr];
8228 for(j=t;j<=i;j++)
8229 {
8230 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8231 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8232 assert(r < 64);
8233 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8234 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8235 int k;
8236 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8237 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8238 if(r>63) {
8239 if(get_reg(regs[i].regmap,r&63)<0) break;
8240 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8241 }
8242 k=i;
8243 while(k>1&&regs[k-1].regmap[hr]==-1) {
8244 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8245 //printf("no free regs for store %x\n",start+(k-1)*4);
8246 break;
8247 }
8248 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8249 //printf("no-match due to different register\n");
8250 break;
8251 }
8252 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP) {
8253 //printf("no-match due to branch\n");
8254 break;
8255 }
8256 // call/ret fast path assumes no registers allocated
8257 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
8258 break;
8259 }
8260 assert(r < 64);
8261 k--;
8262 }
8263 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8264 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8265 while(k<i) {
8266 regs[k].regmap_entry[hr]=f_regmap[hr];
8267 regs[k].regmap[hr]=f_regmap[hr];
8268 regmap_pre[k+1][hr]=f_regmap[hr];
8269 regs[k].wasdirty&=~(1<<hr);
8270 regs[k].dirty&=~(1<<hr);
8271 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8272 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8273 regs[k].wasconst&=~(1<<hr);
8274 regs[k].isconst&=~(1<<hr);
8275 k++;
8276 }
8277 }
8278 else {
8279 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8280 break;
8281 }
8282 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8283 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8284 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8285 regs[i].regmap_entry[hr]=f_regmap[hr];
8286 regs[i].regmap[hr]=f_regmap[hr];
8287 regs[i].wasdirty&=~(1<<hr);
8288 regs[i].dirty&=~(1<<hr);
8289 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8290 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8291 regs[i].wasconst&=~(1<<hr);
8292 regs[i].isconst&=~(1<<hr);
8293 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8294 branch_regs[i].wasdirty&=~(1<<hr);
8295 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8296 branch_regs[i].regmap[hr]=f_regmap[hr];
8297 branch_regs[i].dirty&=~(1<<hr);
8298 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8299 branch_regs[i].wasconst&=~(1<<hr);
8300 branch_regs[i].isconst&=~(1<<hr);
8301 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
8302 regmap_pre[i+2][hr]=f_regmap[hr];
8303 regs[i+2].wasdirty&=~(1<<hr);
8304 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8305 }
8306 }
8307 }
8308 for(k=t;k<j;k++) {
8309 // Alloc register clean at beginning of loop,
8310 // but may dirty it in pass 6
8311 regs[k].regmap_entry[hr]=f_regmap[hr];
8312 regs[k].regmap[hr]=f_regmap[hr];
8313 regs[k].dirty&=~(1<<hr);
8314 regs[k].wasconst&=~(1<<hr);
8315 regs[k].isconst&=~(1<<hr);
8316 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP) {
8317 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8318 branch_regs[k].regmap[hr]=f_regmap[hr];
8319 branch_regs[k].dirty&=~(1<<hr);
8320 branch_regs[k].wasconst&=~(1<<hr);
8321 branch_regs[k].isconst&=~(1<<hr);
8322 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
8323 regmap_pre[k+2][hr]=f_regmap[hr];
8324 regs[k+2].wasdirty&=~(1<<hr);
8325 }
8326 }
8327 else
8328 {
8329 regmap_pre[k+1][hr]=f_regmap[hr];
8330 regs[k+1].wasdirty&=~(1<<hr);
8331 }
8332 }
8333 if(regs[j].regmap[hr]==f_regmap[hr])
8334 regs[j].regmap_entry[hr]=f_regmap[hr];
8335 break;
8336 }
8337 if(j==i) break;
8338 if(regs[j].regmap[hr]>=0)
8339 break;
8340 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8341 //printf("no-match due to different register\n");
8342 break;
8343 }
8344 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
8345 {
8346 // Stop on unconditional branch
8347 break;
8348 }
8349 if(itype[j]==CJUMP||itype[j]==SJUMP)
8350 {
8351 if(ooo[j]) {
8352 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8353 break;
8354 }else{
8355 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8356 break;
8357 }
8358 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8359 //printf("no-match due to different register (branch)\n");
8360 break;
8361 }
8362 }
8363 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8364 //printf("No free regs for store %x\n",start+j*4);
8365 break;
8366 }
8367 assert(f_regmap[hr]<64);
8368 }
8369 }
8370 }
8371 }
8372 }
8373 }else{
8374 // Non branch or undetermined branch target
8375 for(hr=0;hr<HOST_REGS;hr++)
8376 {
8377 if(hr!=EXCLUDE_REG) {
8378 if(regs[i].regmap[hr]>=0) {
8379 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8380 // dealloc old register
8381 int n;
8382 for(n=0;n<HOST_REGS;n++)
8383 {
8384 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8385 }
8386 // and alloc new one
8387 f_regmap[hr]=regs[i].regmap[hr];
8388 }
8389 }
8390 }
8391 }
8392 // Try to restore cycle count at branch targets
8393 if(bt[i]) {
8394 for(j=i;j<slen-1;j++) {
8395 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8396 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8397 //printf("no free regs for store %x\n",start+j*4);
8398 break;
8399 }
8400 }
8401 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8402 int k=i;
8403 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8404 while(k<j) {
8405 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8406 regs[k].regmap[HOST_CCREG]=CCREG;
8407 regmap_pre[k+1][HOST_CCREG]=CCREG;
8408 regs[k+1].wasdirty|=1<<HOST_CCREG;
8409 regs[k].dirty|=1<<HOST_CCREG;
8410 regs[k].wasconst&=~(1<<HOST_CCREG);
8411 regs[k].isconst&=~(1<<HOST_CCREG);
8412 k++;
8413 }
8414 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8415 }
8416 // Work backwards from the branch target
8417 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8418 {
8419 //printf("Extend backwards\n");
8420 int k;
8421 k=i;
8422 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8423 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8424 //printf("no free regs for store %x\n",start+(k-1)*4);
8425 break;
8426 }
8427 k--;
8428 }
8429 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8430 //printf("Extend CC, %x ->\n",start+k*4);
8431 while(k<=i) {
8432 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8433 regs[k].regmap[HOST_CCREG]=CCREG;
8434 regmap_pre[k+1][HOST_CCREG]=CCREG;
8435 regs[k+1].wasdirty|=1<<HOST_CCREG;
8436 regs[k].dirty|=1<<HOST_CCREG;
8437 regs[k].wasconst&=~(1<<HOST_CCREG);
8438 regs[k].isconst&=~(1<<HOST_CCREG);
8439 k++;
8440 }
8441 }
8442 else {
8443 //printf("Fail Extend CC, %x ->\n",start+k*4);
8444 }
8445 }
8446 }
8447 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
8448 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
8449 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1)
8450 {
8451 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8452 }
8453 }
8454 }
8455
8456 // This allocates registers (if possible) one instruction prior
8457 // to use, which can avoid a load-use penalty on certain CPUs.
8458 for(i=0;i<slen-1;i++)
8459 {
8460 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP))
8461 {
8462 if(!bt[i+1])
8463 {
8464 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
8465 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
8466 {
8467 if(rs1[i+1]) {
8468 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
8469 {
8470 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8471 {
8472 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8473 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8474 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8475 regs[i].isconst&=~(1<<hr);
8476 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8477 constmap[i][hr]=constmap[i+1][hr];
8478 regs[i+1].wasdirty&=~(1<<hr);
8479 regs[i].dirty&=~(1<<hr);
8480 }
8481 }
8482 }
8483 if(rs2[i+1]) {
8484 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
8485 {
8486 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8487 {
8488 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8489 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8490 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8491 regs[i].isconst&=~(1<<hr);
8492 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8493 constmap[i][hr]=constmap[i+1][hr];
8494 regs[i+1].wasdirty&=~(1<<hr);
8495 regs[i].dirty&=~(1<<hr);
8496 }
8497 }
8498 }
8499 // Preload target address for load instruction (non-constant)
8500 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8501 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8502 {
8503 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8504 {
8505 regs[i].regmap[hr]=rs1[i+1];
8506 regmap_pre[i+1][hr]=rs1[i+1];
8507 regs[i+1].regmap_entry[hr]=rs1[i+1];
8508 regs[i].isconst&=~(1<<hr);
8509 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8510 constmap[i][hr]=constmap[i+1][hr];
8511 regs[i+1].wasdirty&=~(1<<hr);
8512 regs[i].dirty&=~(1<<hr);
8513 }
8514 }
8515 }
8516 // Load source into target register
8517 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8518 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8519 {
8520 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8521 {
8522 regs[i].regmap[hr]=rs1[i+1];
8523 regmap_pre[i+1][hr]=rs1[i+1];
8524 regs[i+1].regmap_entry[hr]=rs1[i+1];
8525 regs[i].isconst&=~(1<<hr);
8526 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8527 constmap[i][hr]=constmap[i+1][hr];
8528 regs[i+1].wasdirty&=~(1<<hr);
8529 regs[i].dirty&=~(1<<hr);
8530 }
8531 }
8532 }
8533 // Address for store instruction (non-constant)
8534 if(itype[i+1]==STORE||itype[i+1]==STORELR
8535 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8536 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8537 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8538 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8539 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8540 assert(hr>=0);
8541 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8542 {
8543 regs[i].regmap[hr]=rs1[i+1];
8544 regmap_pre[i+1][hr]=rs1[i+1];
8545 regs[i+1].regmap_entry[hr]=rs1[i+1];
8546 regs[i].isconst&=~(1<<hr);
8547 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8548 constmap[i][hr]=constmap[i+1][hr];
8549 regs[i+1].wasdirty&=~(1<<hr);
8550 regs[i].dirty&=~(1<<hr);
8551 }
8552 }
8553 }
8554 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8555 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8556 int nr;
8557 hr=get_reg(regs[i+1].regmap,FTEMP);
8558 assert(hr>=0);
8559 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8560 {
8561 regs[i].regmap[hr]=rs1[i+1];
8562 regmap_pre[i+1][hr]=rs1[i+1];
8563 regs[i+1].regmap_entry[hr]=rs1[i+1];
8564 regs[i].isconst&=~(1<<hr);
8565 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8566 constmap[i][hr]=constmap[i+1][hr];
8567 regs[i+1].wasdirty&=~(1<<hr);
8568 regs[i].dirty&=~(1<<hr);
8569 }
8570 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8571 {
8572 // move it to another register
8573 regs[i+1].regmap[hr]=-1;
8574 regmap_pre[i+2][hr]=-1;
8575 regs[i+1].regmap[nr]=FTEMP;
8576 regmap_pre[i+2][nr]=FTEMP;
8577 regs[i].regmap[nr]=rs1[i+1];
8578 regmap_pre[i+1][nr]=rs1[i+1];
8579 regs[i+1].regmap_entry[nr]=rs1[i+1];
8580 regs[i].isconst&=~(1<<nr);
8581 regs[i+1].isconst&=~(1<<nr);
8582 regs[i].dirty&=~(1<<nr);
8583 regs[i+1].wasdirty&=~(1<<nr);
8584 regs[i+1].dirty&=~(1<<nr);
8585 regs[i+2].wasdirty&=~(1<<nr);
8586 }
8587 }
8588 }
8589 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
8590 if(itype[i+1]==LOAD)
8591 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
8592 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8593 hr=get_reg(regs[i+1].regmap,FTEMP);
8594 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8595 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8596 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8597 }
8598 if(hr>=0&&regs[i].regmap[hr]<0) {
8599 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
8600 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8601 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8602 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8603 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8604 regs[i].isconst&=~(1<<hr);
8605 regs[i+1].wasdirty&=~(1<<hr);
8606 regs[i].dirty&=~(1<<hr);
8607 }
8608 }
8609 }
8610 }
8611 }
8612 }
8613 }
8614
8615 /* Pass 6 - Optimize clean/dirty state */
8616 clean_registers(0,slen-1,1);
8617
8618 /* Pass 7 - Identify 32-bit registers */
8619 for (i=slen-1;i>=0;i--)
8620 {
8621 if(itype[i]==CJUMP||itype[i]==SJUMP)
8622 {
8623 // Conditional branch
8624 if((source[i]>>16)!=0x1000&&i<slen-2) {
8625 // Mark this address as a branch target since it may be called
8626 // upon return from interrupt
8627 bt[i+2]=1;
8628 }
8629 }
8630 }
8631
8632 if(itype[slen-1]==SPAN) {
8633 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
8634 }
8635
8636#ifdef DISASM
8637 /* Debug/disassembly */
8638 for(i=0;i<slen;i++)
8639 {
8640 printf("U:");
8641 int r;
8642 for(r=1;r<=CCREG;r++) {
8643 if((unneeded_reg[i]>>r)&1) {
8644 if(r==HIREG) printf(" HI");
8645 else if(r==LOREG) printf(" LO");
8646 else printf(" r%d",r);
8647 }
8648 }
8649 printf("\n");
8650 #if defined(__i386__) || defined(__x86_64__)
8651 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8652 #endif
8653 #ifdef __arm__
8654 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8655 #endif
8656 #if defined(__i386__) || defined(__x86_64__)
8657 printf("needs: ");
8658 if(needed_reg[i]&1) printf("eax ");
8659 if((needed_reg[i]>>1)&1) printf("ecx ");
8660 if((needed_reg[i]>>2)&1) printf("edx ");
8661 if((needed_reg[i]>>3)&1) printf("ebx ");
8662 if((needed_reg[i]>>5)&1) printf("ebp ");
8663 if((needed_reg[i]>>6)&1) printf("esi ");
8664 if((needed_reg[i]>>7)&1) printf("edi ");
8665 printf("\n");
8666 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8667 printf("dirty: ");
8668 if(regs[i].wasdirty&1) printf("eax ");
8669 if((regs[i].wasdirty>>1)&1) printf("ecx ");
8670 if((regs[i].wasdirty>>2)&1) printf("edx ");
8671 if((regs[i].wasdirty>>3)&1) printf("ebx ");
8672 if((regs[i].wasdirty>>5)&1) printf("ebp ");
8673 if((regs[i].wasdirty>>6)&1) printf("esi ");
8674 if((regs[i].wasdirty>>7)&1) printf("edi ");
8675 #endif
8676 #ifdef __arm__
8677 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
8678 printf("dirty: ");
8679 if(regs[i].wasdirty&1) printf("r0 ");
8680 if((regs[i].wasdirty>>1)&1) printf("r1 ");
8681 if((regs[i].wasdirty>>2)&1) printf("r2 ");
8682 if((regs[i].wasdirty>>3)&1) printf("r3 ");
8683 if((regs[i].wasdirty>>4)&1) printf("r4 ");
8684 if((regs[i].wasdirty>>5)&1) printf("r5 ");
8685 if((regs[i].wasdirty>>6)&1) printf("r6 ");
8686 if((regs[i].wasdirty>>7)&1) printf("r7 ");
8687 if((regs[i].wasdirty>>8)&1) printf("r8 ");
8688 if((regs[i].wasdirty>>9)&1) printf("r9 ");
8689 if((regs[i].wasdirty>>10)&1) printf("r10 ");
8690 if((regs[i].wasdirty>>12)&1) printf("r12 ");
8691 #endif
8692 printf("\n");
8693 disassemble_inst(i);
8694 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
8695 #if defined(__i386__) || defined(__x86_64__)
8696 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
8697 if(regs[i].dirty&1) printf("eax ");
8698 if((regs[i].dirty>>1)&1) printf("ecx ");
8699 if((regs[i].dirty>>2)&1) printf("edx ");
8700 if((regs[i].dirty>>3)&1) printf("ebx ");
8701 if((regs[i].dirty>>5)&1) printf("ebp ");
8702 if((regs[i].dirty>>6)&1) printf("esi ");
8703 if((regs[i].dirty>>7)&1) printf("edi ");
8704 #endif
8705 #ifdef __arm__
8706 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
8707 if(regs[i].dirty&1) printf("r0 ");
8708 if((regs[i].dirty>>1)&1) printf("r1 ");
8709 if((regs[i].dirty>>2)&1) printf("r2 ");
8710 if((regs[i].dirty>>3)&1) printf("r3 ");
8711 if((regs[i].dirty>>4)&1) printf("r4 ");
8712 if((regs[i].dirty>>5)&1) printf("r5 ");
8713 if((regs[i].dirty>>6)&1) printf("r6 ");
8714 if((regs[i].dirty>>7)&1) printf("r7 ");
8715 if((regs[i].dirty>>8)&1) printf("r8 ");
8716 if((regs[i].dirty>>9)&1) printf("r9 ");
8717 if((regs[i].dirty>>10)&1) printf("r10 ");
8718 if((regs[i].dirty>>12)&1) printf("r12 ");
8719 #endif
8720 printf("\n");
8721 if(regs[i].isconst) {
8722 printf("constants: ");
8723 #if defined(__i386__) || defined(__x86_64__)
8724 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
8725 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
8726 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
8727 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
8728 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
8729 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
8730 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
8731 #endif
8732 #if defined(__arm__) || defined(__aarch64__)
8733 int r;
8734 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
8735 if ((regs[i].isconst >> r) & 1)
8736 printf(" r%d=%x", r, (u_int)constmap[i][r]);
8737 #endif
8738 printf("\n");
8739 }
8740 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
8741 #if defined(__i386__) || defined(__x86_64__)
8742 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
8743 if(branch_regs[i].dirty&1) printf("eax ");
8744 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
8745 if((branch_regs[i].dirty>>2)&1) printf("edx ");
8746 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
8747 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
8748 if((branch_regs[i].dirty>>6)&1) printf("esi ");
8749 if((branch_regs[i].dirty>>7)&1) printf("edi ");
8750 #endif
8751 #ifdef __arm__
8752 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
8753 if(branch_regs[i].dirty&1) printf("r0 ");
8754 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
8755 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
8756 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
8757 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
8758 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
8759 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
8760 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
8761 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
8762 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
8763 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
8764 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
8765 #endif
8766 }
8767 }
8768#endif // DISASM
8769
8770 /* Pass 8 - Assembly */
8771 linkcount=0;stubcount=0;
8772 ds=0;is_delayslot=0;
8773 u_int dirty_pre=0;
8774 void *beginning=start_block();
8775 if((u_int)addr&1) {
8776 ds=1;
8777 pagespan_ds();
8778 }
8779 void *instr_addr0_override = NULL;
8780
8781 if (start == 0x80030000) {
8782 // nasty hack for the fastbios thing
8783 // override block entry to this code
8784 instr_addr0_override = out;
8785 emit_movimm(start,0);
8786 // abuse io address var as a flag that we
8787 // have already returned here once
8788 emit_readword(&address,1);
8789 emit_writeword(0,&pcaddr);
8790 emit_writeword(0,&address);
8791 emit_cmp(0,1);
8792 #ifdef __aarch64__
8793 emit_jeq(out + 4*2);
8794 emit_far_jump(new_dyna_leave);
8795 #else
8796 emit_jne(new_dyna_leave);
8797 #endif
8798 }
8799 for(i=0;i<slen;i++)
8800 {
8801 //if(ds) printf("ds: ");
8802 disassemble_inst(i);
8803 if(ds) {
8804 ds=0; // Skip delay slot
8805 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
8806 instr_addr[i] = NULL;
8807 } else {
8808 speculate_register_values(i);
8809 #ifndef DESTRUCTIVE_WRITEBACK
8810 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
8811 {
8812 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
8813 }
8814 if((itype[i]==CJUMP||itype[i]==SJUMP)&&!likely[i]) {
8815 dirty_pre=branch_regs[i].dirty;
8816 }else{
8817 dirty_pre=regs[i].dirty;
8818 }
8819 #endif
8820 // write back
8821 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
8822 {
8823 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
8824 loop_preload(regmap_pre[i],regs[i].regmap_entry);
8825 }
8826 // branch target entry point
8827 instr_addr[i] = out;
8828 assem_debug("<->\n");
8829 drc_dbg_emit_do_cmp(i);
8830
8831 // load regs
8832 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
8833 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
8834 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i],rs2[i]);
8835 address_generation(i,&regs[i],regs[i].regmap_entry);
8836 load_consts(regmap_pre[i],regs[i].regmap,i);
8837 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8838 {
8839 // Load the delay slot registers if necessary
8840 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
8841 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
8842 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
8843 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
8844 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
8845 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
8846 }
8847 else if(i+1<slen)
8848 {
8849 // Preload registers for following instruction
8850 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
8851 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
8852 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
8853 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
8854 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
8855 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
8856 }
8857 // TODO: if(is_ooo(i)) address_generation(i+1);
8858 if(itype[i]==CJUMP)
8859 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
8860 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
8861 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
8862 // assemble
8863 switch(itype[i]) {
8864 case ALU:
8865 alu_assemble(i,&regs[i]);break;
8866 case IMM16:
8867 imm16_assemble(i,&regs[i]);break;
8868 case SHIFT:
8869 shift_assemble(i,&regs[i]);break;
8870 case SHIFTIMM:
8871 shiftimm_assemble(i,&regs[i]);break;
8872 case LOAD:
8873 load_assemble(i,&regs[i]);break;
8874 case LOADLR:
8875 loadlr_assemble(i,&regs[i]);break;
8876 case STORE:
8877 store_assemble(i,&regs[i]);break;
8878 case STORELR:
8879 storelr_assemble(i,&regs[i]);break;
8880 case COP0:
8881 cop0_assemble(i,&regs[i]);break;
8882 case COP1:
8883 cop1_assemble(i,&regs[i]);break;
8884 case C1LS:
8885 c1ls_assemble(i,&regs[i]);break;
8886 case COP2:
8887 cop2_assemble(i,&regs[i]);break;
8888 case C2LS:
8889 c2ls_assemble(i,&regs[i]);break;
8890 case C2OP:
8891 c2op_assemble(i,&regs[i]);break;
8892 case MULTDIV:
8893 multdiv_assemble(i,&regs[i]);break;
8894 case MOV:
8895 mov_assemble(i,&regs[i]);break;
8896 case SYSCALL:
8897 syscall_assemble(i,&regs[i]);break;
8898 case HLECALL:
8899 hlecall_assemble(i,&regs[i]);break;
8900 case INTCALL:
8901 intcall_assemble(i,&regs[i]);break;
8902 case UJUMP:
8903 ujump_assemble(i,&regs[i]);ds=1;break;
8904 case RJUMP:
8905 rjump_assemble(i,&regs[i]);ds=1;break;
8906 case CJUMP:
8907 cjump_assemble(i,&regs[i]);ds=1;break;
8908 case SJUMP:
8909 sjump_assemble(i,&regs[i]);ds=1;break;
8910 case SPAN:
8911 pagespan_assemble(i,&regs[i]);break;
8912 }
8913 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
8914 literal_pool(1024);
8915 else
8916 literal_pool_jumpover(256);
8917 }
8918 }
8919 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
8920 // If the block did not end with an unconditional branch,
8921 // add a jump to the next instruction.
8922 if(i>1) {
8923 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
8924 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
8925 assert(i==slen);
8926 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP) {
8927 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
8928 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
8929 emit_loadreg(CCREG,HOST_CCREG);
8930 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
8931 }
8932 else if(!likely[i-2])
8933 {
8934 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
8935 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
8936 }
8937 else
8938 {
8939 store_regs_bt(regs[i-2].regmap,regs[i-2].dirty,start+i*4);
8940 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
8941 }
8942 add_to_linker(out,start+i*4,0);
8943 emit_jmp(0);
8944 }
8945 }
8946 else
8947 {
8948 assert(i>0);
8949 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
8950 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
8951 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
8952 emit_loadreg(CCREG,HOST_CCREG);
8953 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
8954 add_to_linker(out,start+i*4,0);
8955 emit_jmp(0);
8956 }
8957
8958 // TODO: delay slot stubs?
8959 // Stubs
8960 for(i=0;i<stubcount;i++)
8961 {
8962 switch(stubs[i].type)
8963 {
8964 case LOADB_STUB:
8965 case LOADH_STUB:
8966 case LOADW_STUB:
8967 case LOADD_STUB:
8968 case LOADBU_STUB:
8969 case LOADHU_STUB:
8970 do_readstub(i);break;
8971 case STOREB_STUB:
8972 case STOREH_STUB:
8973 case STOREW_STUB:
8974 case STORED_STUB:
8975 do_writestub(i);break;
8976 case CC_STUB:
8977 do_ccstub(i);break;
8978 case INVCODE_STUB:
8979 do_invstub(i);break;
8980 case FP_STUB:
8981 do_cop1stub(i);break;
8982 case STORELR_STUB:
8983 do_unalignedwritestub(i);break;
8984 }
8985 }
8986
8987 if (instr_addr0_override)
8988 instr_addr[0] = instr_addr0_override;
8989
8990 /* Pass 9 - Linker */
8991 for(i=0;i<linkcount;i++)
8992 {
8993 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
8994 literal_pool(64);
8995 if (!link_addr[i].ext)
8996 {
8997 void *stub = out;
8998 void *addr = check_addr(link_addr[i].target);
8999 emit_extjump(link_addr[i].addr, link_addr[i].target);
9000 if (addr) {
9001 set_jump_target(link_addr[i].addr, addr);
9002 add_link(link_addr[i].target,stub);
9003 }
9004 else
9005 set_jump_target(link_addr[i].addr, stub);
9006 }
9007 else
9008 {
9009 // Internal branch
9010 int target=(link_addr[i].target-start)>>2;
9011 assert(target>=0&&target<slen);
9012 assert(instr_addr[target]);
9013 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9014 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9015 //#else
9016 set_jump_target(link_addr[i].addr, instr_addr[target]);
9017 //#endif
9018 }
9019 }
9020 // External Branch Targets (jump_in)
9021 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
9022 for(i=0;i<slen;i++)
9023 {
9024 if(bt[i]||i==0)
9025 {
9026 if(instr_addr[i]) // TODO - delay slots (=null)
9027 {
9028 u_int vaddr=start+i*4;
9029 u_int page=get_page(vaddr);
9030 u_int vpage=get_vpage(vaddr);
9031 literal_pool(256);
9032 {
9033 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9034 assem_debug("jump_in: %x\n",start+i*4);
9035 ll_add(jump_dirty+vpage,vaddr,out);
9036 void *entry_point = do_dirty_stub(i);
9037 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9038 // If there was an existing entry in the hash table,
9039 // replace it with the new address.
9040 // Don't add new entries. We'll insert the
9041 // ones that actually get used in check_addr().
9042 struct ht_entry *ht_bin = hash_table_get(vaddr);
9043 if (ht_bin->vaddr[0] == vaddr)
9044 ht_bin->tcaddr[0] = entry_point;
9045 if (ht_bin->vaddr[1] == vaddr)
9046 ht_bin->tcaddr[1] = entry_point;
9047 }
9048 }
9049 }
9050 }
9051 // Write out the literal pool if necessary
9052 literal_pool(0);
9053 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9054 // Align code
9055 if(((u_int)out)&7) emit_addnop(13);
9056 #endif
9057 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9058 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9059 memcpy(copy,source,slen*4);
9060 copy+=slen*4;
9061
9062 end_block(beginning);
9063
9064 // If we're within 256K of the end of the buffer,
9065 // start over from the beginning. (Is 256K enough?)
9066 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9067 out = ndrc->translation_cache;
9068
9069 // Trap writes to any of the pages we compiled
9070 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9071 invalid_code[i]=0;
9072 }
9073 inv_code_start=inv_code_end=~0;
9074
9075 // for PCSX we need to mark all mirrors too
9076 if(get_page(start)<(RAM_SIZE>>12))
9077 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9078 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9079 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9080 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9081
9082 /* Pass 10 - Free memory by expiring oldest blocks */
9083
9084 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9085 while(expirep!=end)
9086 {
9087 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9088 uintptr_t base=(uintptr_t)ndrc->translation_cache+((expirep>>13)<<shift); // Base address of this block
9089 inv_debug("EXP: Phase %d\n",expirep);
9090 switch((expirep>>11)&3)
9091 {
9092 case 0:
9093 // Clear jump_in and jump_dirty
9094 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
9095 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
9096 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
9097 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
9098 break;
9099 case 1:
9100 // Clear pointers
9101 ll_kill_pointers(jump_out[expirep&2047],base,shift);
9102 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
9103 break;
9104 case 2:
9105 // Clear hash table
9106 for(i=0;i<32;i++) {
9107 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9108 if (((uintptr_t)ht_bin->tcaddr[1]>>shift) == (base>>shift) ||
9109 (((uintptr_t)ht_bin->tcaddr[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
9110 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9111 ht_bin->vaddr[1] = -1;
9112 ht_bin->tcaddr[1] = NULL;
9113 }
9114 if (((uintptr_t)ht_bin->tcaddr[0]>>shift) == (base>>shift) ||
9115 (((uintptr_t)ht_bin->tcaddr[0]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
9116 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9117 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9118 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9119 ht_bin->vaddr[1] = -1;
9120 ht_bin->tcaddr[1] = NULL;
9121 }
9122 }
9123 break;
9124 case 3:
9125 // Clear jump_out
9126 if((expirep&2047)==0)
9127 do_clear_cache();
9128 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
9129 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
9130 break;
9131 }
9132 expirep=(expirep+1)&65535;
9133 }
9134 return 0;
9135}
9136
9137// vim:shiftwidth=2:expandtab