frontend: remove src alignment requirements in asm
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42
43#define noinline __attribute__((noinline,noclone))
44#ifndef ARRAY_SIZE
45#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
46#endif
47#ifndef min
48#define min(a, b) ((b) < (a) ? (b) : (a))
49#endif
50#ifndef max
51#define max(a, b) ((b) > (a) ? (b) : (a))
52#endif
53
54//#define DISASM
55//#define ASSEM_PRINT
56
57#ifdef ASSEM_PRINT
58#define assem_debug printf
59#else
60#define assem_debug(...)
61#endif
62//#define inv_debug printf
63#define inv_debug(...)
64
65#ifdef __i386__
66#include "assem_x86.h"
67#endif
68#ifdef __x86_64__
69#include "assem_x64.h"
70#endif
71#ifdef __arm__
72#include "assem_arm.h"
73#endif
74#ifdef __aarch64__
75#include "assem_arm64.h"
76#endif
77
78#define RAM_SIZE 0x200000
79#define MAXBLOCK 4096
80#define MAX_OUTPUT_BLOCK_SIZE 262144
81
82struct ndrc_mem
83{
84 u_char translation_cache[1 << TARGET_SIZE_2];
85 struct
86 {
87 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
88 const void *f[2048 / sizeof(void *)];
89 } tramp;
90};
91
92#ifdef BASE_ADDR_DYNAMIC
93static struct ndrc_mem *ndrc;
94#else
95static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
96static struct ndrc_mem *ndrc = &ndrc_;
97#endif
98
99// stubs
100enum stub_type {
101 CC_STUB = 1,
102 FP_STUB = 2,
103 LOADB_STUB = 3,
104 LOADH_STUB = 4,
105 LOADW_STUB = 5,
106 LOADD_STUB = 6,
107 LOADBU_STUB = 7,
108 LOADHU_STUB = 8,
109 STOREB_STUB = 9,
110 STOREH_STUB = 10,
111 STOREW_STUB = 11,
112 STORED_STUB = 12,
113 STORELR_STUB = 13,
114 INVCODE_STUB = 14,
115};
116
117struct regstat
118{
119 signed char regmap_entry[HOST_REGS];
120 signed char regmap[HOST_REGS];
121 uint64_t wasdirty;
122 uint64_t dirty;
123 uint64_t u;
124 u_int wasconst;
125 u_int isconst;
126 u_int loadedconst; // host regs that have constants loaded
127 u_int waswritten; // MIPS regs that were used as store base before
128};
129
130// note: asm depends on this layout
131struct ll_entry
132{
133 u_int vaddr;
134 u_int reg_sv_flags;
135 void *addr;
136 struct ll_entry *next;
137};
138
139struct ht_entry
140{
141 u_int vaddr[2];
142 void *tcaddr[2];
143};
144
145struct code_stub
146{
147 enum stub_type type;
148 void *addr;
149 void *retaddr;
150 u_int a;
151 uintptr_t b;
152 uintptr_t c;
153 u_int d;
154 u_int e;
155};
156
157struct link_entry
158{
159 void *addr;
160 u_int target;
161 u_int ext;
162};
163
164 // used by asm:
165 u_char *out;
166 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
167 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
168 struct ll_entry *jump_dirty[4096];
169
170 static struct ll_entry *jump_out[4096];
171 static u_int start;
172 static u_int *source;
173 static char insn[MAXBLOCK][10];
174 static u_char itype[MAXBLOCK];
175 static u_char opcode[MAXBLOCK];
176 static u_char opcode2[MAXBLOCK];
177 static u_char bt[MAXBLOCK];
178 static u_char rs1[MAXBLOCK];
179 static u_char rs2[MAXBLOCK];
180 static u_char rt1[MAXBLOCK];
181 static u_char rt2[MAXBLOCK];
182 static u_char dep1[MAXBLOCK];
183 static u_char dep2[MAXBLOCK];
184 static u_char lt1[MAXBLOCK];
185 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
186 static uint64_t gte_rt[MAXBLOCK];
187 static uint64_t gte_unneeded[MAXBLOCK];
188 static u_int smrv[32]; // speculated MIPS register values
189 static u_int smrv_strong; // mask or regs that are likely to have correct values
190 static u_int smrv_weak; // same, but somewhat less likely
191 static u_int smrv_strong_next; // same, but after current insn executes
192 static u_int smrv_weak_next;
193 static int imm[MAXBLOCK];
194 static u_int ba[MAXBLOCK];
195 static char likely[MAXBLOCK];
196 static char is_ds[MAXBLOCK];
197 static char ooo[MAXBLOCK];
198 static uint64_t unneeded_reg[MAXBLOCK];
199 static uint64_t branch_unneeded_reg[MAXBLOCK];
200 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
201 // contains 'real' consts at [i] insn, but may differ from what's actually
202 // loaded in host reg as 'final' value is always loaded, see get_final_value()
203 static uint32_t current_constmap[HOST_REGS];
204 static uint32_t constmap[MAXBLOCK][HOST_REGS];
205 static struct regstat regs[MAXBLOCK];
206 static struct regstat branch_regs[MAXBLOCK];
207 static signed char minimum_free_regs[MAXBLOCK];
208 static u_int needed_reg[MAXBLOCK];
209 static u_int wont_dirty[MAXBLOCK];
210 static u_int will_dirty[MAXBLOCK];
211 static int ccadj[MAXBLOCK];
212 static int slen;
213 static void *instr_addr[MAXBLOCK];
214 static struct link_entry link_addr[MAXBLOCK];
215 static int linkcount;
216 static struct code_stub stubs[MAXBLOCK*3];
217 static int stubcount;
218 static u_int literals[1024][2];
219 static int literalcount;
220 static int is_delayslot;
221 static char shadow[1048576] __attribute__((aligned(16)));
222 static void *copy;
223 static int expirep;
224 static u_int stop_after_jal;
225#ifndef RAM_FIXED
226 static uintptr_t ram_offset;
227#else
228 static const uintptr_t ram_offset=0;
229#endif
230
231 int new_dynarec_hacks;
232 int new_dynarec_hacks_pergame;
233 int new_dynarec_hacks_old;
234 int new_dynarec_did_compile;
235
236 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
237
238 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
239 extern int last_count; // last absolute target, often = next_interupt
240 extern int pcaddr;
241 extern int pending_exception;
242 extern int branch_target;
243 extern uintptr_t mini_ht[32][2];
244 extern u_char restore_candidate[512];
245
246 /* registers that may be allocated */
247 /* 1-31 gpr */
248#define LOREG 32 // lo
249#define HIREG 33 // hi
250//#define FSREG 34 // FPU status (FCSR)
251#define CSREG 35 // Coprocessor status
252#define CCREG 36 // Cycle count
253#define INVCP 37 // Pointer to invalid_code
254//#define MMREG 38 // Pointer to memory_map
255//#define ROREG 39 // ram offset (if rdram!=0x80000000)
256#define TEMPREG 40
257#define FTEMP 40 // FPU temporary register
258#define PTEMP 41 // Prefetch temporary register
259//#define TLREG 42 // TLB mapping offset
260#define RHASH 43 // Return address hash
261#define RHTBL 44 // Return address hash table address
262#define RTEMP 45 // JR/JALR address register
263#define MAXREG 45
264#define AGEN1 46 // Address generation temporary register
265//#define AGEN2 47 // Address generation temporary register
266//#define MGEN1 48 // Maptable address generation temporary register
267//#define MGEN2 49 // Maptable address generation temporary register
268#define BTREG 50 // Branch target temporary register
269
270 /* instruction types */
271#define NOP 0 // No operation
272#define LOAD 1 // Load
273#define STORE 2 // Store
274#define LOADLR 3 // Unaligned load
275#define STORELR 4 // Unaligned store
276#define MOV 5 // Move
277#define ALU 6 // Arithmetic/logic
278#define MULTDIV 7 // Multiply/divide
279#define SHIFT 8 // Shift by register
280#define SHIFTIMM 9// Shift by immediate
281#define IMM16 10 // 16-bit immediate
282#define RJUMP 11 // Unconditional jump to register
283#define UJUMP 12 // Unconditional jump
284#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
285#define SJUMP 14 // Conditional branch (regimm format)
286#define COP0 15 // Coprocessor 0
287#define COP1 16 // Coprocessor 1
288#define C1LS 17 // Coprocessor 1 load/store
289//#define FJUMP 18 // Conditional branch (floating point)
290//#define FLOAT 19 // Floating point unit
291//#define FCONV 20 // Convert integer to float
292//#define FCOMP 21 // Floating point compare (sets FSREG)
293#define SYSCALL 22// SYSCALL
294#define OTHER 23 // Other
295#define SPAN 24 // Branch/delay slot spans 2 pages
296#define NI 25 // Not implemented
297#define HLECALL 26// PCSX fake opcodes for HLE
298#define COP2 27 // Coprocessor 2 move
299#define C2LS 28 // Coprocessor 2 load/store
300#define C2OP 29 // Coprocessor 2 operation
301#define INTCALL 30// Call interpreter to handle rare corner cases
302
303 /* branch codes */
304#define TAKEN 1
305#define NOTTAKEN 2
306#define NULLDS 3
307
308#define DJT_1 (void *)1l // no function, just a label in assem_debug log
309#define DJT_2 (void *)2l
310
311// asm linkage
312int new_recompile_block(u_int addr);
313void *get_addr_ht(u_int vaddr);
314void invalidate_block(u_int block);
315void invalidate_addr(u_int addr);
316void remove_hash(int vaddr);
317void dyna_linker();
318void dyna_linker_ds();
319void verify_code();
320void verify_code_ds();
321void cc_interrupt();
322void fp_exception();
323void fp_exception_ds();
324void jump_to_new_pc();
325void call_gteStall();
326void new_dyna_leave();
327
328// Needed by assembler
329static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
330static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
331static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
332static void load_all_regs(signed char i_regmap[]);
333static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
334static void load_regs_entry(int t);
335static void load_all_consts(signed char regmap[],u_int dirty,int i);
336static u_int get_host_reglist(const signed char *regmap);
337
338static int verify_dirty(const u_int *ptr);
339static int get_final_value(int hr, int i, int *value);
340static void add_stub(enum stub_type type, void *addr, void *retaddr,
341 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
342static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
343 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
344static void add_to_linker(void *addr, u_int target, int ext);
345static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override);
346static void *get_direct_memhandler(void *table, u_int addr,
347 enum stub_type type, uintptr_t *addr_host);
348static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
349static void pass_args(int a0, int a1);
350static void emit_far_jump(const void *f);
351static void emit_far_call(const void *f);
352
353static void mprotect_w_x(void *start, void *end, int is_x)
354{
355#ifdef NO_WRITE_EXEC
356 #if defined(VITA)
357 // *Open* enables write on all memory that was
358 // allocated by sceKernelAllocMemBlockForVM()?
359 if (is_x)
360 sceKernelCloseVMDomain();
361 else
362 sceKernelOpenVMDomain();
363 #else
364 u_long mstart = (u_long)start & ~4095ul;
365 u_long mend = (u_long)end;
366 if (mprotect((void *)mstart, mend - mstart,
367 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
368 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
369 #endif
370#endif
371}
372
373static void start_tcache_write(void *start, void *end)
374{
375 mprotect_w_x(start, end, 0);
376}
377
378static void end_tcache_write(void *start, void *end)
379{
380#if defined(__arm__) || defined(__aarch64__)
381 size_t len = (char *)end - (char *)start;
382 #if defined(__BLACKBERRY_QNX__)
383 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
384 #elif defined(__MACH__)
385 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
386 #elif defined(VITA)
387 sceKernelSyncVMDomain(sceBlock, start, len);
388 #elif defined(_3DS)
389 ctr_flush_invalidate_cache();
390 #elif defined(__aarch64__)
391 // as of 2021, __clear_cache() is still broken on arm64
392 // so here is a custom one :(
393 clear_cache_arm64(start, end);
394 #else
395 __clear_cache(start, end);
396 #endif
397 (void)len;
398#endif
399
400 mprotect_w_x(start, end, 1);
401}
402
403static void *start_block(void)
404{
405 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
406 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
407 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
408 start_tcache_write(out, end);
409 return out;
410}
411
412static void end_block(void *start)
413{
414 end_tcache_write(start, out);
415}
416
417// also takes care of w^x mappings when patching code
418static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
419
420static void mark_clear_cache(void *target)
421{
422 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
423 u_int mask = 1u << ((offset >> 12) & 31);
424 if (!(needs_clear_cache[offset >> 17] & mask)) {
425 char *start = (char *)((uintptr_t)target & ~4095l);
426 start_tcache_write(start, start + 4095);
427 needs_clear_cache[offset >> 17] |= mask;
428 }
429}
430
431// Clearing the cache is rather slow on ARM Linux, so mark the areas
432// that need to be cleared, and then only clear these areas once.
433static void do_clear_cache(void)
434{
435 int i, j;
436 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
437 {
438 u_int bitmap = needs_clear_cache[i];
439 if (!bitmap)
440 continue;
441 for (j = 0; j < 32; j++)
442 {
443 u_char *start, *end;
444 if (!(bitmap & (1<<j)))
445 continue;
446
447 start = ndrc->translation_cache + i*131072 + j*4096;
448 end = start + 4095;
449 for (j++; j < 32; j++) {
450 if (!(bitmap & (1<<j)))
451 break;
452 end += 4096;
453 }
454 end_tcache_write(start, end);
455 }
456 needs_clear_cache[i] = 0;
457 }
458}
459
460//#define DEBUG_CYCLE_COUNT 1
461
462#define NO_CYCLE_PENALTY_THR 12
463
464int cycle_multiplier; // 100 for 1.0
465int cycle_multiplier_override;
466int cycle_multiplier_old;
467
468static int CLOCK_ADJUST(int x)
469{
470 int m = cycle_multiplier_override
471 ? cycle_multiplier_override : cycle_multiplier;
472 int s=(x>>31)|1;
473 return (x * m + s * 50) / 100;
474}
475
476// is the op an unconditional jump?
477static int is_ujump(int i)
478{
479 return itype[i] == UJUMP || itype[i] == RJUMP
480 || (source[i] >> 16) == 0x1000; // beq r0, r0, offset // b offset
481}
482
483static int is_jump(int i)
484{
485 return itype[i] == RJUMP || itype[i] == UJUMP || itype[i] == CJUMP || itype[i] == SJUMP;
486}
487
488static u_int get_page(u_int vaddr)
489{
490 u_int page=vaddr&~0xe0000000;
491 if (page < 0x1000000)
492 page &= ~0x0e00000; // RAM mirrors
493 page>>=12;
494 if(page>2048) page=2048+(page&2047);
495 return page;
496}
497
498// no virtual mem in PCSX
499static u_int get_vpage(u_int vaddr)
500{
501 return get_page(vaddr);
502}
503
504static struct ht_entry *hash_table_get(u_int vaddr)
505{
506 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
507}
508
509static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
510{
511 ht_bin->vaddr[1] = ht_bin->vaddr[0];
512 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
513 ht_bin->vaddr[0] = vaddr;
514 ht_bin->tcaddr[0] = tcaddr;
515}
516
517// some messy ari64's code, seems to rely on unsigned 32bit overflow
518static int doesnt_expire_soon(void *tcaddr)
519{
520 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
521 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
522}
523
524// Get address from virtual address
525// This is called from the recompiled JR/JALR instructions
526void noinline *get_addr(u_int vaddr)
527{
528 u_int page=get_page(vaddr);
529 u_int vpage=get_vpage(vaddr);
530 struct ll_entry *head;
531 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
532 head=jump_in[page];
533 while(head!=NULL) {
534 if(head->vaddr==vaddr) {
535 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
536 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
537 return head->addr;
538 }
539 head=head->next;
540 }
541 head=jump_dirty[vpage];
542 while(head!=NULL) {
543 if(head->vaddr==vaddr) {
544 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
545 // Don't restore blocks which are about to expire from the cache
546 if (doesnt_expire_soon(head->addr))
547 if (verify_dirty(head->addr)) {
548 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
549 invalid_code[vaddr>>12]=0;
550 inv_code_start=inv_code_end=~0;
551 if(vpage<2048) {
552 restore_candidate[vpage>>3]|=1<<(vpage&7);
553 }
554 else restore_candidate[page>>3]|=1<<(page&7);
555 struct ht_entry *ht_bin = hash_table_get(vaddr);
556 if (ht_bin->vaddr[0] == vaddr)
557 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
558 else
559 hash_table_add(ht_bin, vaddr, head->addr);
560
561 return head->addr;
562 }
563 }
564 head=head->next;
565 }
566 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
567 int r=new_recompile_block(vaddr);
568 if(r==0) return get_addr(vaddr);
569 // Execute in unmapped page, generate pagefault execption
570 Status|=2;
571 Cause=(vaddr<<31)|0x8;
572 EPC=(vaddr&1)?vaddr-5:vaddr;
573 BadVAddr=(vaddr&~1);
574 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
575 EntryHi=BadVAddr&0xFFFFE000;
576 return get_addr_ht(0x80000000);
577}
578// Look up address in hash table first
579void *get_addr_ht(u_int vaddr)
580{
581 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
582 const struct ht_entry *ht_bin = hash_table_get(vaddr);
583 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
584 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
585 return get_addr(vaddr);
586}
587
588void clear_all_regs(signed char regmap[])
589{
590 int hr;
591 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
592}
593
594static signed char get_reg(const signed char regmap[],int r)
595{
596 int hr;
597 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
598 return -1;
599}
600
601// Find a register that is available for two consecutive cycles
602static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
603{
604 int hr;
605 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
606 return -1;
607}
608
609int count_free_regs(signed char regmap[])
610{
611 int count=0;
612 int hr;
613 for(hr=0;hr<HOST_REGS;hr++)
614 {
615 if(hr!=EXCLUDE_REG) {
616 if(regmap[hr]<0) count++;
617 }
618 }
619 return count;
620}
621
622void dirty_reg(struct regstat *cur,signed char reg)
623{
624 int hr;
625 if(!reg) return;
626 for (hr=0;hr<HOST_REGS;hr++) {
627 if((cur->regmap[hr]&63)==reg) {
628 cur->dirty|=1<<hr;
629 }
630 }
631}
632
633static void set_const(struct regstat *cur, signed char reg, uint32_t value)
634{
635 int hr;
636 if(!reg) return;
637 for (hr=0;hr<HOST_REGS;hr++) {
638 if(cur->regmap[hr]==reg) {
639 cur->isconst|=1<<hr;
640 current_constmap[hr]=value;
641 }
642 }
643}
644
645static void clear_const(struct regstat *cur, signed char reg)
646{
647 int hr;
648 if(!reg) return;
649 for (hr=0;hr<HOST_REGS;hr++) {
650 if((cur->regmap[hr]&63)==reg) {
651 cur->isconst&=~(1<<hr);
652 }
653 }
654}
655
656static int is_const(struct regstat *cur, signed char reg)
657{
658 int hr;
659 if(reg<0) return 0;
660 if(!reg) return 1;
661 for (hr=0;hr<HOST_REGS;hr++) {
662 if((cur->regmap[hr]&63)==reg) {
663 return (cur->isconst>>hr)&1;
664 }
665 }
666 return 0;
667}
668
669static uint32_t get_const(struct regstat *cur, signed char reg)
670{
671 int hr;
672 if(!reg) return 0;
673 for (hr=0;hr<HOST_REGS;hr++) {
674 if(cur->regmap[hr]==reg) {
675 return current_constmap[hr];
676 }
677 }
678 SysPrintf("Unknown constant in r%d\n",reg);
679 abort();
680}
681
682// Least soon needed registers
683// Look at the next ten instructions and see which registers
684// will be used. Try not to reallocate these.
685void lsn(u_char hsn[], int i, int *preferred_reg)
686{
687 int j;
688 int b=-1;
689 for(j=0;j<9;j++)
690 {
691 if(i+j>=slen) {
692 j=slen-i-1;
693 break;
694 }
695 if (is_ujump(i+j))
696 {
697 // Don't go past an unconditonal jump
698 j++;
699 break;
700 }
701 }
702 for(;j>=0;j--)
703 {
704 if(rs1[i+j]) hsn[rs1[i+j]]=j;
705 if(rs2[i+j]) hsn[rs2[i+j]]=j;
706 if(rt1[i+j]) hsn[rt1[i+j]]=j;
707 if(rt2[i+j]) hsn[rt2[i+j]]=j;
708 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
709 // Stores can allocate zero
710 hsn[rs1[i+j]]=j;
711 hsn[rs2[i+j]]=j;
712 }
713 // On some architectures stores need invc_ptr
714 #if defined(HOST_IMM8)
715 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
716 hsn[INVCP]=j;
717 }
718 #endif
719 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
720 {
721 hsn[CCREG]=j;
722 b=j;
723 }
724 }
725 if(b>=0)
726 {
727 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
728 {
729 // Follow first branch
730 int t=(ba[i+b]-start)>>2;
731 j=7-b;if(t+j>=slen) j=slen-t-1;
732 for(;j>=0;j--)
733 {
734 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
735 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
736 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
737 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
738 }
739 }
740 // TODO: preferred register based on backward branch
741 }
742 // Delay slot should preferably not overwrite branch conditions or cycle count
743 if (i > 0 && is_jump(i-1)) {
744 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
745 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
746 hsn[CCREG]=1;
747 // ...or hash tables
748 hsn[RHASH]=1;
749 hsn[RHTBL]=1;
750 }
751 // Coprocessor load/store needs FTEMP, even if not declared
752 if(itype[i]==C1LS||itype[i]==C2LS) {
753 hsn[FTEMP]=0;
754 }
755 // Load L/R also uses FTEMP as a temporary register
756 if(itype[i]==LOADLR) {
757 hsn[FTEMP]=0;
758 }
759 // Also SWL/SWR/SDL/SDR
760 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
761 hsn[FTEMP]=0;
762 }
763 // Don't remove the miniht registers
764 if(itype[i]==UJUMP||itype[i]==RJUMP)
765 {
766 hsn[RHASH]=0;
767 hsn[RHTBL]=0;
768 }
769}
770
771// We only want to allocate registers if we're going to use them again soon
772int needed_again(int r, int i)
773{
774 int j;
775 int b=-1;
776 int rn=10;
777
778 if (i > 0 && is_ujump(i-1))
779 {
780 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
781 return 0; // Don't need any registers if exiting the block
782 }
783 for(j=0;j<9;j++)
784 {
785 if(i+j>=slen) {
786 j=slen-i-1;
787 break;
788 }
789 if (is_ujump(i+j))
790 {
791 // Don't go past an unconditonal jump
792 j++;
793 break;
794 }
795 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
796 {
797 break;
798 }
799 }
800 for(;j>=1;j--)
801 {
802 if(rs1[i+j]==r) rn=j;
803 if(rs2[i+j]==r) rn=j;
804 if((unneeded_reg[i+j]>>r)&1) rn=10;
805 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
806 {
807 b=j;
808 }
809 }
810 /*
811 if(b>=0)
812 {
813 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
814 {
815 // Follow first branch
816 int o=rn;
817 int t=(ba[i+b]-start)>>2;
818 j=7-b;if(t+j>=slen) j=slen-t-1;
819 for(;j>=0;j--)
820 {
821 if(!((unneeded_reg[t+j]>>r)&1)) {
822 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
823 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
824 }
825 else rn=o;
826 }
827 }
828 }*/
829 if(rn<10) return 1;
830 (void)b;
831 return 0;
832}
833
834// Try to match register allocations at the end of a loop with those
835// at the beginning
836int loop_reg(int i, int r, int hr)
837{
838 int j,k;
839 for(j=0;j<9;j++)
840 {
841 if(i+j>=slen) {
842 j=slen-i-1;
843 break;
844 }
845 if (is_ujump(i+j))
846 {
847 // Don't go past an unconditonal jump
848 j++;
849 break;
850 }
851 }
852 k=0;
853 if(i>0){
854 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)
855 k--;
856 }
857 for(;k<j;k++)
858 {
859 assert(r < 64);
860 if((unneeded_reg[i+k]>>r)&1) return hr;
861 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP))
862 {
863 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
864 {
865 int t=(ba[i+k]-start)>>2;
866 int reg=get_reg(regs[t].regmap_entry,r);
867 if(reg>=0) return reg;
868 //reg=get_reg(regs[t+1].regmap_entry,r);
869 //if(reg>=0) return reg;
870 }
871 }
872 }
873 return hr;
874}
875
876
877// Allocate every register, preserving source/target regs
878void alloc_all(struct regstat *cur,int i)
879{
880 int hr;
881
882 for(hr=0;hr<HOST_REGS;hr++) {
883 if(hr!=EXCLUDE_REG) {
884 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
885 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
886 {
887 cur->regmap[hr]=-1;
888 cur->dirty&=~(1<<hr);
889 }
890 // Don't need zeros
891 if((cur->regmap[hr]&63)==0)
892 {
893 cur->regmap[hr]=-1;
894 cur->dirty&=~(1<<hr);
895 }
896 }
897 }
898}
899
900#ifndef NDEBUG
901static int host_tempreg_in_use;
902
903static void host_tempreg_acquire(void)
904{
905 assert(!host_tempreg_in_use);
906 host_tempreg_in_use = 1;
907}
908
909static void host_tempreg_release(void)
910{
911 host_tempreg_in_use = 0;
912}
913#else
914static void host_tempreg_acquire(void) {}
915static void host_tempreg_release(void) {}
916#endif
917
918#ifdef ASSEM_PRINT
919extern void gen_interupt();
920extern void do_insn_cmp();
921#define FUNCNAME(f) { f, " " #f }
922static const struct {
923 void *addr;
924 const char *name;
925} function_names[] = {
926 FUNCNAME(cc_interrupt),
927 FUNCNAME(gen_interupt),
928 FUNCNAME(get_addr_ht),
929 FUNCNAME(get_addr),
930 FUNCNAME(jump_handler_read8),
931 FUNCNAME(jump_handler_read16),
932 FUNCNAME(jump_handler_read32),
933 FUNCNAME(jump_handler_write8),
934 FUNCNAME(jump_handler_write16),
935 FUNCNAME(jump_handler_write32),
936 FUNCNAME(invalidate_addr),
937 FUNCNAME(jump_to_new_pc),
938 FUNCNAME(call_gteStall),
939 FUNCNAME(new_dyna_leave),
940 FUNCNAME(pcsx_mtc0),
941 FUNCNAME(pcsx_mtc0_ds),
942#ifdef DRC_DBG
943 FUNCNAME(do_insn_cmp),
944#endif
945#ifdef __arm__
946 FUNCNAME(verify_code),
947#endif
948};
949
950static const char *func_name(const void *a)
951{
952 int i;
953 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
954 if (function_names[i].addr == a)
955 return function_names[i].name;
956 return "";
957}
958#else
959#define func_name(x) ""
960#endif
961
962#ifdef __i386__
963#include "assem_x86.c"
964#endif
965#ifdef __x86_64__
966#include "assem_x64.c"
967#endif
968#ifdef __arm__
969#include "assem_arm.c"
970#endif
971#ifdef __aarch64__
972#include "assem_arm64.c"
973#endif
974
975static void *get_trampoline(const void *f)
976{
977 size_t i;
978
979 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
980 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
981 break;
982 }
983 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
984 SysPrintf("trampoline table is full, last func %p\n", f);
985 abort();
986 }
987 if (ndrc->tramp.f[i] == NULL) {
988 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
989 ndrc->tramp.f[i] = f;
990 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
991 }
992 return &ndrc->tramp.ops[i];
993}
994
995static void emit_far_jump(const void *f)
996{
997 if (can_jump_or_call(f)) {
998 emit_jmp(f);
999 return;
1000 }
1001
1002 f = get_trampoline(f);
1003 emit_jmp(f);
1004}
1005
1006static void emit_far_call(const void *f)
1007{
1008 if (can_jump_or_call(f)) {
1009 emit_call(f);
1010 return;
1011 }
1012
1013 f = get_trampoline(f);
1014 emit_call(f);
1015}
1016
1017// Add virtual address mapping to linked list
1018void ll_add(struct ll_entry **head,int vaddr,void *addr)
1019{
1020 struct ll_entry *new_entry;
1021 new_entry=malloc(sizeof(struct ll_entry));
1022 assert(new_entry!=NULL);
1023 new_entry->vaddr=vaddr;
1024 new_entry->reg_sv_flags=0;
1025 new_entry->addr=addr;
1026 new_entry->next=*head;
1027 *head=new_entry;
1028}
1029
1030void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1031{
1032 ll_add(head,vaddr,addr);
1033 (*head)->reg_sv_flags=reg_sv_flags;
1034}
1035
1036// Check if an address is already compiled
1037// but don't return addresses which are about to expire from the cache
1038void *check_addr(u_int vaddr)
1039{
1040 struct ht_entry *ht_bin = hash_table_get(vaddr);
1041 size_t i;
1042 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1043 if (ht_bin->vaddr[i] == vaddr)
1044 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1045 if (isclean(ht_bin->tcaddr[i]))
1046 return ht_bin->tcaddr[i];
1047 }
1048 u_int page=get_page(vaddr);
1049 struct ll_entry *head;
1050 head=jump_in[page];
1051 while (head != NULL) {
1052 if (head->vaddr == vaddr) {
1053 if (doesnt_expire_soon(head->addr)) {
1054 // Update existing entry with current address
1055 if (ht_bin->vaddr[0] == vaddr) {
1056 ht_bin->tcaddr[0] = head->addr;
1057 return head->addr;
1058 }
1059 if (ht_bin->vaddr[1] == vaddr) {
1060 ht_bin->tcaddr[1] = head->addr;
1061 return head->addr;
1062 }
1063 // Insert into hash table with low priority.
1064 // Don't evict existing entries, as they are probably
1065 // addresses that are being accessed frequently.
1066 if (ht_bin->vaddr[0] == -1) {
1067 ht_bin->vaddr[0] = vaddr;
1068 ht_bin->tcaddr[0] = head->addr;
1069 }
1070 else if (ht_bin->vaddr[1] == -1) {
1071 ht_bin->vaddr[1] = vaddr;
1072 ht_bin->tcaddr[1] = head->addr;
1073 }
1074 return head->addr;
1075 }
1076 }
1077 head=head->next;
1078 }
1079 return 0;
1080}
1081
1082void remove_hash(int vaddr)
1083{
1084 //printf("remove hash: %x\n",vaddr);
1085 struct ht_entry *ht_bin = hash_table_get(vaddr);
1086 if (ht_bin->vaddr[1] == vaddr) {
1087 ht_bin->vaddr[1] = -1;
1088 ht_bin->tcaddr[1] = NULL;
1089 }
1090 if (ht_bin->vaddr[0] == vaddr) {
1091 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1092 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1093 ht_bin->vaddr[1] = -1;
1094 ht_bin->tcaddr[1] = NULL;
1095 }
1096}
1097
1098void ll_remove_matching_addrs(struct ll_entry **head,uintptr_t addr,int shift)
1099{
1100 struct ll_entry *next;
1101 while(*head) {
1102 if(((uintptr_t)((*head)->addr)>>shift)==(addr>>shift) ||
1103 ((uintptr_t)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1104 {
1105 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1106 remove_hash((*head)->vaddr);
1107 next=(*head)->next;
1108 free(*head);
1109 *head=next;
1110 }
1111 else
1112 {
1113 head=&((*head)->next);
1114 }
1115 }
1116}
1117
1118// Remove all entries from linked list
1119void ll_clear(struct ll_entry **head)
1120{
1121 struct ll_entry *cur;
1122 struct ll_entry *next;
1123 if((cur=*head)) {
1124 *head=0;
1125 while(cur) {
1126 next=cur->next;
1127 free(cur);
1128 cur=next;
1129 }
1130 }
1131}
1132
1133// Dereference the pointers and remove if it matches
1134static void ll_kill_pointers(struct ll_entry *head,uintptr_t addr,int shift)
1135{
1136 while(head) {
1137 uintptr_t ptr = (uintptr_t)get_pointer(head->addr);
1138 inv_debug("EXP: Lookup pointer to %lx at %p (%x)\n",(long)ptr,head->addr,head->vaddr);
1139 if(((ptr>>shift)==(addr>>shift)) ||
1140 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1141 {
1142 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1143 void *host_addr=find_extjump_insn(head->addr);
1144 mark_clear_cache(host_addr);
1145 set_jump_target(host_addr, head->addr);
1146 }
1147 head=head->next;
1148 }
1149}
1150
1151// This is called when we write to a compiled block (see do_invstub)
1152static void invalidate_page(u_int page)
1153{
1154 struct ll_entry *head;
1155 struct ll_entry *next;
1156 head=jump_in[page];
1157 jump_in[page]=0;
1158 while(head!=NULL) {
1159 inv_debug("INVALIDATE: %x\n",head->vaddr);
1160 remove_hash(head->vaddr);
1161 next=head->next;
1162 free(head);
1163 head=next;
1164 }
1165 head=jump_out[page];
1166 jump_out[page]=0;
1167 while(head!=NULL) {
1168 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1169 void *host_addr=find_extjump_insn(head->addr);
1170 mark_clear_cache(host_addr);
1171 set_jump_target(host_addr, head->addr);
1172 next=head->next;
1173 free(head);
1174 head=next;
1175 }
1176}
1177
1178static void invalidate_block_range(u_int block, u_int first, u_int last)
1179{
1180 u_int page=get_page(block<<12);
1181 //printf("first=%d last=%d\n",first,last);
1182 invalidate_page(page);
1183 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1184 assert(last<page+5);
1185 // Invalidate the adjacent pages if a block crosses a 4K boundary
1186 while(first<page) {
1187 invalidate_page(first);
1188 first++;
1189 }
1190 for(first=page+1;first<last;first++) {
1191 invalidate_page(first);
1192 }
1193 do_clear_cache();
1194
1195 // Don't trap writes
1196 invalid_code[block]=1;
1197
1198 #ifdef USE_MINI_HT
1199 memset(mini_ht,-1,sizeof(mini_ht));
1200 #endif
1201}
1202
1203void invalidate_block(u_int block)
1204{
1205 u_int page=get_page(block<<12);
1206 u_int vpage=get_vpage(block<<12);
1207 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1208 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1209 u_int first,last;
1210 first=last=page;
1211 struct ll_entry *head;
1212 head=jump_dirty[vpage];
1213 //printf("page=%d vpage=%d\n",page,vpage);
1214 while(head!=NULL) {
1215 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1216 u_char *start, *end;
1217 get_bounds(head->addr, &start, &end);
1218 //printf("start: %p end: %p\n", start, end);
1219 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1220 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1221 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1222 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1223 }
1224 }
1225 }
1226 head=head->next;
1227 }
1228 invalidate_block_range(block,first,last);
1229}
1230
1231void invalidate_addr(u_int addr)
1232{
1233 //static int rhits;
1234 // this check is done by the caller
1235 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1236 u_int page=get_vpage(addr);
1237 if(page<2048) { // RAM
1238 struct ll_entry *head;
1239 u_int addr_min=~0, addr_max=0;
1240 u_int mask=RAM_SIZE-1;
1241 u_int addr_main=0x80000000|(addr&mask);
1242 int pg1;
1243 inv_code_start=addr_main&~0xfff;
1244 inv_code_end=addr_main|0xfff;
1245 pg1=page;
1246 if (pg1>0) {
1247 // must check previous page too because of spans..
1248 pg1--;
1249 inv_code_start-=0x1000;
1250 }
1251 for(;pg1<=page;pg1++) {
1252 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1253 u_char *start_h, *end_h;
1254 u_int start, end;
1255 get_bounds(head->addr, &start_h, &end_h);
1256 start = (uintptr_t)start_h - ram_offset;
1257 end = (uintptr_t)end_h - ram_offset;
1258 if(start<=addr_main&&addr_main<end) {
1259 if(start<addr_min) addr_min=start;
1260 if(end>addr_max) addr_max=end;
1261 }
1262 else if(addr_main<start) {
1263 if(start<inv_code_end)
1264 inv_code_end=start-1;
1265 }
1266 else {
1267 if(end>inv_code_start)
1268 inv_code_start=end;
1269 }
1270 }
1271 }
1272 if (addr_min!=~0) {
1273 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1274 inv_code_start=inv_code_end=~0;
1275 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1276 return;
1277 }
1278 else {
1279 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1280 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1281 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1282 return;
1283 }
1284 }
1285 invalidate_block(addr>>12);
1286}
1287
1288// This is called when loading a save state.
1289// Anything could have changed, so invalidate everything.
1290void invalidate_all_pages(void)
1291{
1292 u_int page;
1293 for(page=0;page<4096;page++)
1294 invalidate_page(page);
1295 for(page=0;page<1048576;page++)
1296 if(!invalid_code[page]) {
1297 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1298 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1299 }
1300 #ifdef USE_MINI_HT
1301 memset(mini_ht,-1,sizeof(mini_ht));
1302 #endif
1303 do_clear_cache();
1304}
1305
1306static void do_invstub(int n)
1307{
1308 literal_pool(20);
1309 u_int reglist=stubs[n].a;
1310 set_jump_target(stubs[n].addr, out);
1311 save_regs(reglist);
1312 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1313 emit_far_call(invalidate_addr);
1314 restore_regs(reglist);
1315 emit_jmp(stubs[n].retaddr); // return address
1316}
1317
1318// Add an entry to jump_out after making a link
1319// src should point to code by emit_extjump2()
1320void add_link(u_int vaddr,void *src)
1321{
1322 u_int page=get_page(vaddr);
1323 inv_debug("add_link: %p -> %x (%d)\n",src,vaddr,page);
1324 check_extjump2(src);
1325 ll_add(jump_out+page,vaddr,src);
1326 //void *ptr=get_pointer(src);
1327 //inv_debug("add_link: Pointer is to %p\n",ptr);
1328}
1329
1330// If a code block was found to be unmodified (bit was set in
1331// restore_candidate) and it remains unmodified (bit is clear
1332// in invalid_code) then move the entries for that 4K page from
1333// the dirty list to the clean list.
1334void clean_blocks(u_int page)
1335{
1336 struct ll_entry *head;
1337 inv_debug("INV: clean_blocks page=%d\n",page);
1338 head=jump_dirty[page];
1339 while(head!=NULL) {
1340 if(!invalid_code[head->vaddr>>12]) {
1341 // Don't restore blocks which are about to expire from the cache
1342 if (doesnt_expire_soon(head->addr)) {
1343 if(verify_dirty(head->addr)) {
1344 u_char *start, *end;
1345 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1346 u_int i;
1347 u_int inv=0;
1348 get_bounds(head->addr, &start, &end);
1349 if (start - rdram < RAM_SIZE) {
1350 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1351 inv|=invalid_code[i];
1352 }
1353 }
1354 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1355 inv=1;
1356 }
1357 if(!inv) {
1358 void *clean_addr = get_clean_addr(head->addr);
1359 if (doesnt_expire_soon(clean_addr)) {
1360 u_int ppage=page;
1361 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1362 //printf("page=%x, addr=%x\n",page,head->vaddr);
1363 //assert(head->vaddr>>12==(page|0x80000));
1364 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1365 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1366 if (ht_bin->vaddr[0] == head->vaddr)
1367 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1368 if (ht_bin->vaddr[1] == head->vaddr)
1369 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1370 }
1371 }
1372 }
1373 }
1374 }
1375 head=head->next;
1376 }
1377}
1378
1379/* Register allocation */
1380
1381// Note: registers are allocated clean (unmodified state)
1382// if you intend to modify the register, you must call dirty_reg().
1383static void alloc_reg(struct regstat *cur,int i,signed char reg)
1384{
1385 int r,hr;
1386 int preferred_reg = (reg&7);
1387 if(reg==CCREG) preferred_reg=HOST_CCREG;
1388 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1389
1390 // Don't allocate unused registers
1391 if((cur->u>>reg)&1) return;
1392
1393 // see if it's already allocated
1394 for(hr=0;hr<HOST_REGS;hr++)
1395 {
1396 if(cur->regmap[hr]==reg) return;
1397 }
1398
1399 // Keep the same mapping if the register was already allocated in a loop
1400 preferred_reg = loop_reg(i,reg,preferred_reg);
1401
1402 // Try to allocate the preferred register
1403 if(cur->regmap[preferred_reg]==-1) {
1404 cur->regmap[preferred_reg]=reg;
1405 cur->dirty&=~(1<<preferred_reg);
1406 cur->isconst&=~(1<<preferred_reg);
1407 return;
1408 }
1409 r=cur->regmap[preferred_reg];
1410 assert(r < 64);
1411 if((cur->u>>r)&1) {
1412 cur->regmap[preferred_reg]=reg;
1413 cur->dirty&=~(1<<preferred_reg);
1414 cur->isconst&=~(1<<preferred_reg);
1415 return;
1416 }
1417
1418 // Clear any unneeded registers
1419 // We try to keep the mapping consistent, if possible, because it
1420 // makes branches easier (especially loops). So we try to allocate
1421 // first (see above) before removing old mappings. If this is not
1422 // possible then go ahead and clear out the registers that are no
1423 // longer needed.
1424 for(hr=0;hr<HOST_REGS;hr++)
1425 {
1426 r=cur->regmap[hr];
1427 if(r>=0) {
1428 assert(r < 64);
1429 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1430 }
1431 }
1432 // Try to allocate any available register, but prefer
1433 // registers that have not been used recently.
1434 if(i>0) {
1435 for(hr=0;hr<HOST_REGS;hr++) {
1436 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1437 if(regs[i-1].regmap[hr]!=rs1[i-1]&&regs[i-1].regmap[hr]!=rs2[i-1]&&regs[i-1].regmap[hr]!=rt1[i-1]&&regs[i-1].regmap[hr]!=rt2[i-1]) {
1438 cur->regmap[hr]=reg;
1439 cur->dirty&=~(1<<hr);
1440 cur->isconst&=~(1<<hr);
1441 return;
1442 }
1443 }
1444 }
1445 }
1446 // Try to allocate any available register
1447 for(hr=0;hr<HOST_REGS;hr++) {
1448 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1449 cur->regmap[hr]=reg;
1450 cur->dirty&=~(1<<hr);
1451 cur->isconst&=~(1<<hr);
1452 return;
1453 }
1454 }
1455
1456 // Ok, now we have to evict someone
1457 // Pick a register we hopefully won't need soon
1458 u_char hsn[MAXREG+1];
1459 memset(hsn,10,sizeof(hsn));
1460 int j;
1461 lsn(hsn,i,&preferred_reg);
1462 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1463 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1464 if(i>0) {
1465 // Don't evict the cycle count at entry points, otherwise the entry
1466 // stub will have to write it.
1467 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1468 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1469 for(j=10;j>=3;j--)
1470 {
1471 // Alloc preferred register if available
1472 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1473 for(hr=0;hr<HOST_REGS;hr++) {
1474 // Evict both parts of a 64-bit register
1475 if((cur->regmap[hr]&63)==r) {
1476 cur->regmap[hr]=-1;
1477 cur->dirty&=~(1<<hr);
1478 cur->isconst&=~(1<<hr);
1479 }
1480 }
1481 cur->regmap[preferred_reg]=reg;
1482 return;
1483 }
1484 for(r=1;r<=MAXREG;r++)
1485 {
1486 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1487 for(hr=0;hr<HOST_REGS;hr++) {
1488 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1489 if(cur->regmap[hr]==r) {
1490 cur->regmap[hr]=reg;
1491 cur->dirty&=~(1<<hr);
1492 cur->isconst&=~(1<<hr);
1493 return;
1494 }
1495 }
1496 }
1497 }
1498 }
1499 }
1500 }
1501 for(j=10;j>=0;j--)
1502 {
1503 for(r=1;r<=MAXREG;r++)
1504 {
1505 if(hsn[r]==j) {
1506 for(hr=0;hr<HOST_REGS;hr++) {
1507 if(cur->regmap[hr]==r) {
1508 cur->regmap[hr]=reg;
1509 cur->dirty&=~(1<<hr);
1510 cur->isconst&=~(1<<hr);
1511 return;
1512 }
1513 }
1514 }
1515 }
1516 }
1517 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1518}
1519
1520// Allocate a temporary register. This is done without regard to
1521// dirty status or whether the register we request is on the unneeded list
1522// Note: This will only allocate one register, even if called multiple times
1523static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1524{
1525 int r,hr;
1526 int preferred_reg = -1;
1527
1528 // see if it's already allocated
1529 for(hr=0;hr<HOST_REGS;hr++)
1530 {
1531 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1532 }
1533
1534 // Try to allocate any available register
1535 for(hr=HOST_REGS-1;hr>=0;hr--) {
1536 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1537 cur->regmap[hr]=reg;
1538 cur->dirty&=~(1<<hr);
1539 cur->isconst&=~(1<<hr);
1540 return;
1541 }
1542 }
1543
1544 // Find an unneeded register
1545 for(hr=HOST_REGS-1;hr>=0;hr--)
1546 {
1547 r=cur->regmap[hr];
1548 if(r>=0) {
1549 assert(r < 64);
1550 if((cur->u>>r)&1) {
1551 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1552 cur->regmap[hr]=reg;
1553 cur->dirty&=~(1<<hr);
1554 cur->isconst&=~(1<<hr);
1555 return;
1556 }
1557 }
1558 }
1559 }
1560
1561 // Ok, now we have to evict someone
1562 // Pick a register we hopefully won't need soon
1563 // TODO: we might want to follow unconditional jumps here
1564 // TODO: get rid of dupe code and make this into a function
1565 u_char hsn[MAXREG+1];
1566 memset(hsn,10,sizeof(hsn));
1567 int j;
1568 lsn(hsn,i,&preferred_reg);
1569 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1570 if(i>0) {
1571 // Don't evict the cycle count at entry points, otherwise the entry
1572 // stub will have to write it.
1573 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1574 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1575 for(j=10;j>=3;j--)
1576 {
1577 for(r=1;r<=MAXREG;r++)
1578 {
1579 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1580 for(hr=0;hr<HOST_REGS;hr++) {
1581 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1582 if(cur->regmap[hr]==r) {
1583 cur->regmap[hr]=reg;
1584 cur->dirty&=~(1<<hr);
1585 cur->isconst&=~(1<<hr);
1586 return;
1587 }
1588 }
1589 }
1590 }
1591 }
1592 }
1593 }
1594 for(j=10;j>=0;j--)
1595 {
1596 for(r=1;r<=MAXREG;r++)
1597 {
1598 if(hsn[r]==j) {
1599 for(hr=0;hr<HOST_REGS;hr++) {
1600 if(cur->regmap[hr]==r) {
1601 cur->regmap[hr]=reg;
1602 cur->dirty&=~(1<<hr);
1603 cur->isconst&=~(1<<hr);
1604 return;
1605 }
1606 }
1607 }
1608 }
1609 }
1610 SysPrintf("This shouldn't happen");abort();
1611}
1612
1613static void mov_alloc(struct regstat *current,int i)
1614{
1615 if (rs1[i] == HIREG || rs1[i] == LOREG) {
1616 // logically this is needed but just won't work, no idea why
1617 //alloc_cc(current,i); // for stalls
1618 //dirty_reg(current,CCREG);
1619 }
1620
1621 // Note: Don't need to actually alloc the source registers
1622 //alloc_reg(current,i,rs1[i]);
1623 alloc_reg(current,i,rt1[i]);
1624
1625 clear_const(current,rs1[i]);
1626 clear_const(current,rt1[i]);
1627 dirty_reg(current,rt1[i]);
1628}
1629
1630static void shiftimm_alloc(struct regstat *current,int i)
1631{
1632 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1633 {
1634 if(rt1[i]) {
1635 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1636 else lt1[i]=rs1[i];
1637 alloc_reg(current,i,rt1[i]);
1638 dirty_reg(current,rt1[i]);
1639 if(is_const(current,rs1[i])) {
1640 int v=get_const(current,rs1[i]);
1641 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1642 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1643 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1644 }
1645 else clear_const(current,rt1[i]);
1646 }
1647 }
1648 else
1649 {
1650 clear_const(current,rs1[i]);
1651 clear_const(current,rt1[i]);
1652 }
1653
1654 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1655 {
1656 assert(0);
1657 }
1658 if(opcode2[i]==0x3c) // DSLL32
1659 {
1660 assert(0);
1661 }
1662 if(opcode2[i]==0x3e) // DSRL32
1663 {
1664 assert(0);
1665 }
1666 if(opcode2[i]==0x3f) // DSRA32
1667 {
1668 assert(0);
1669 }
1670}
1671
1672static void shift_alloc(struct regstat *current,int i)
1673{
1674 if(rt1[i]) {
1675 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1676 {
1677 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1678 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1679 alloc_reg(current,i,rt1[i]);
1680 if(rt1[i]==rs2[i]) {
1681 alloc_reg_temp(current,i,-1);
1682 minimum_free_regs[i]=1;
1683 }
1684 } else { // DSLLV/DSRLV/DSRAV
1685 assert(0);
1686 }
1687 clear_const(current,rs1[i]);
1688 clear_const(current,rs2[i]);
1689 clear_const(current,rt1[i]);
1690 dirty_reg(current,rt1[i]);
1691 }
1692}
1693
1694static void alu_alloc(struct regstat *current,int i)
1695{
1696 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1697 if(rt1[i]) {
1698 if(rs1[i]&&rs2[i]) {
1699 alloc_reg(current,i,rs1[i]);
1700 alloc_reg(current,i,rs2[i]);
1701 }
1702 else {
1703 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1704 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1705 }
1706 alloc_reg(current,i,rt1[i]);
1707 }
1708 }
1709 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1710 if(rt1[i]) {
1711 alloc_reg(current,i,rs1[i]);
1712 alloc_reg(current,i,rs2[i]);
1713 alloc_reg(current,i,rt1[i]);
1714 }
1715 }
1716 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1717 if(rt1[i]) {
1718 if(rs1[i]&&rs2[i]) {
1719 alloc_reg(current,i,rs1[i]);
1720 alloc_reg(current,i,rs2[i]);
1721 }
1722 else
1723 {
1724 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1725 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1726 }
1727 alloc_reg(current,i,rt1[i]);
1728 }
1729 }
1730 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1731 assert(0);
1732 }
1733 clear_const(current,rs1[i]);
1734 clear_const(current,rs2[i]);
1735 clear_const(current,rt1[i]);
1736 dirty_reg(current,rt1[i]);
1737}
1738
1739static void imm16_alloc(struct regstat *current,int i)
1740{
1741 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1742 else lt1[i]=rs1[i];
1743 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1744 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1745 assert(0);
1746 }
1747 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1748 clear_const(current,rs1[i]);
1749 clear_const(current,rt1[i]);
1750 }
1751 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1752 if(is_const(current,rs1[i])) {
1753 int v=get_const(current,rs1[i]);
1754 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1755 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1756 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1757 }
1758 else clear_const(current,rt1[i]);
1759 }
1760 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1761 if(is_const(current,rs1[i])) {
1762 int v=get_const(current,rs1[i]);
1763 set_const(current,rt1[i],v+imm[i]);
1764 }
1765 else clear_const(current,rt1[i]);
1766 }
1767 else {
1768 set_const(current,rt1[i],imm[i]<<16); // LUI
1769 }
1770 dirty_reg(current,rt1[i]);
1771}
1772
1773static void load_alloc(struct regstat *current,int i)
1774{
1775 clear_const(current,rt1[i]);
1776 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1777 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1778 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1779 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1780 alloc_reg(current,i,rt1[i]);
1781 assert(get_reg(current->regmap,rt1[i])>=0);
1782 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1783 {
1784 assert(0);
1785 }
1786 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1787 {
1788 assert(0);
1789 }
1790 dirty_reg(current,rt1[i]);
1791 // LWL/LWR need a temporary register for the old value
1792 if(opcode[i]==0x22||opcode[i]==0x26)
1793 {
1794 alloc_reg(current,i,FTEMP);
1795 alloc_reg_temp(current,i,-1);
1796 minimum_free_regs[i]=1;
1797 }
1798 }
1799 else
1800 {
1801 // Load to r0 or unneeded register (dummy load)
1802 // but we still need a register to calculate the address
1803 if(opcode[i]==0x22||opcode[i]==0x26)
1804 {
1805 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1806 }
1807 alloc_reg_temp(current,i,-1);
1808 minimum_free_regs[i]=1;
1809 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1810 {
1811 assert(0);
1812 }
1813 }
1814}
1815
1816void store_alloc(struct regstat *current,int i)
1817{
1818 clear_const(current,rs2[i]);
1819 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1820 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1821 alloc_reg(current,i,rs2[i]);
1822 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1823 assert(0);
1824 }
1825 #if defined(HOST_IMM8)
1826 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1827 else alloc_reg(current,i,INVCP);
1828 #endif
1829 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1830 alloc_reg(current,i,FTEMP);
1831 }
1832 // We need a temporary register for address generation
1833 alloc_reg_temp(current,i,-1);
1834 minimum_free_regs[i]=1;
1835}
1836
1837void c1ls_alloc(struct regstat *current,int i)
1838{
1839 //clear_const(current,rs1[i]); // FIXME
1840 clear_const(current,rt1[i]);
1841 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1842 alloc_reg(current,i,CSREG); // Status
1843 alloc_reg(current,i,FTEMP);
1844 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1845 assert(0);
1846 }
1847 #if defined(HOST_IMM8)
1848 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1849 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1850 alloc_reg(current,i,INVCP);
1851 #endif
1852 // We need a temporary register for address generation
1853 alloc_reg_temp(current,i,-1);
1854}
1855
1856void c2ls_alloc(struct regstat *current,int i)
1857{
1858 clear_const(current,rt1[i]);
1859 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1860 alloc_reg(current,i,FTEMP);
1861 #if defined(HOST_IMM8)
1862 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1863 if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1864 alloc_reg(current,i,INVCP);
1865 #endif
1866 // We need a temporary register for address generation
1867 alloc_reg_temp(current,i,-1);
1868 minimum_free_regs[i]=1;
1869}
1870
1871#ifndef multdiv_alloc
1872void multdiv_alloc(struct regstat *current,int i)
1873{
1874 // case 0x18: MULT
1875 // case 0x19: MULTU
1876 // case 0x1A: DIV
1877 // case 0x1B: DIVU
1878 // case 0x1C: DMULT
1879 // case 0x1D: DMULTU
1880 // case 0x1E: DDIV
1881 // case 0x1F: DDIVU
1882 clear_const(current,rs1[i]);
1883 clear_const(current,rs2[i]);
1884 alloc_cc(current,i); // for stalls
1885 if(rs1[i]&&rs2[i])
1886 {
1887 if((opcode2[i]&4)==0) // 32-bit
1888 {
1889 current->u&=~(1LL<<HIREG);
1890 current->u&=~(1LL<<LOREG);
1891 alloc_reg(current,i,HIREG);
1892 alloc_reg(current,i,LOREG);
1893 alloc_reg(current,i,rs1[i]);
1894 alloc_reg(current,i,rs2[i]);
1895 dirty_reg(current,HIREG);
1896 dirty_reg(current,LOREG);
1897 }
1898 else // 64-bit
1899 {
1900 assert(0);
1901 }
1902 }
1903 else
1904 {
1905 // Multiply by zero is zero.
1906 // MIPS does not have a divide by zero exception.
1907 // The result is undefined, we return zero.
1908 alloc_reg(current,i,HIREG);
1909 alloc_reg(current,i,LOREG);
1910 dirty_reg(current,HIREG);
1911 dirty_reg(current,LOREG);
1912 }
1913}
1914#endif
1915
1916void cop0_alloc(struct regstat *current,int i)
1917{
1918 if(opcode2[i]==0) // MFC0
1919 {
1920 if(rt1[i]) {
1921 clear_const(current,rt1[i]);
1922 alloc_all(current,i);
1923 alloc_reg(current,i,rt1[i]);
1924 dirty_reg(current,rt1[i]);
1925 }
1926 }
1927 else if(opcode2[i]==4) // MTC0
1928 {
1929 if(rs1[i]){
1930 clear_const(current,rs1[i]);
1931 alloc_reg(current,i,rs1[i]);
1932 alloc_all(current,i);
1933 }
1934 else {
1935 alloc_all(current,i); // FIXME: Keep r0
1936 current->u&=~1LL;
1937 alloc_reg(current,i,0);
1938 }
1939 }
1940 else
1941 {
1942 // TLBR/TLBWI/TLBWR/TLBP/ERET
1943 assert(opcode2[i]==0x10);
1944 alloc_all(current,i);
1945 }
1946 minimum_free_regs[i]=HOST_REGS;
1947}
1948
1949static void cop2_alloc(struct regstat *current,int i)
1950{
1951 if (opcode2[i] < 3) // MFC2/CFC2
1952 {
1953 alloc_cc(current,i); // for stalls
1954 dirty_reg(current,CCREG);
1955 if(rt1[i]){
1956 clear_const(current,rt1[i]);
1957 alloc_reg(current,i,rt1[i]);
1958 dirty_reg(current,rt1[i]);
1959 }
1960 }
1961 else if (opcode2[i] > 3) // MTC2/CTC2
1962 {
1963 if(rs1[i]){
1964 clear_const(current,rs1[i]);
1965 alloc_reg(current,i,rs1[i]);
1966 }
1967 else {
1968 current->u&=~1LL;
1969 alloc_reg(current,i,0);
1970 }
1971 }
1972 alloc_reg_temp(current,i,-1);
1973 minimum_free_regs[i]=1;
1974}
1975
1976void c2op_alloc(struct regstat *current,int i)
1977{
1978 alloc_cc(current,i); // for stalls
1979 dirty_reg(current,CCREG);
1980 alloc_reg_temp(current,i,-1);
1981}
1982
1983void syscall_alloc(struct regstat *current,int i)
1984{
1985 alloc_cc(current,i);
1986 dirty_reg(current,CCREG);
1987 alloc_all(current,i);
1988 minimum_free_regs[i]=HOST_REGS;
1989 current->isconst=0;
1990}
1991
1992void delayslot_alloc(struct regstat *current,int i)
1993{
1994 switch(itype[i]) {
1995 case UJUMP:
1996 case CJUMP:
1997 case SJUMP:
1998 case RJUMP:
1999 case SYSCALL:
2000 case HLECALL:
2001 case SPAN:
2002 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
2003 SysPrintf("Disabled speculative precompilation\n");
2004 stop_after_jal=1;
2005 break;
2006 case IMM16:
2007 imm16_alloc(current,i);
2008 break;
2009 case LOAD:
2010 case LOADLR:
2011 load_alloc(current,i);
2012 break;
2013 case STORE:
2014 case STORELR:
2015 store_alloc(current,i);
2016 break;
2017 case ALU:
2018 alu_alloc(current,i);
2019 break;
2020 case SHIFT:
2021 shift_alloc(current,i);
2022 break;
2023 case MULTDIV:
2024 multdiv_alloc(current,i);
2025 break;
2026 case SHIFTIMM:
2027 shiftimm_alloc(current,i);
2028 break;
2029 case MOV:
2030 mov_alloc(current,i);
2031 break;
2032 case COP0:
2033 cop0_alloc(current,i);
2034 break;
2035 case COP1:
2036 break;
2037 case COP2:
2038 cop2_alloc(current,i);
2039 break;
2040 case C1LS:
2041 c1ls_alloc(current,i);
2042 break;
2043 case C2LS:
2044 c2ls_alloc(current,i);
2045 break;
2046 case C2OP:
2047 c2op_alloc(current,i);
2048 break;
2049 }
2050}
2051
2052// Special case where a branch and delay slot span two pages in virtual memory
2053static void pagespan_alloc(struct regstat *current,int i)
2054{
2055 current->isconst=0;
2056 current->wasconst=0;
2057 regs[i].wasconst=0;
2058 minimum_free_regs[i]=HOST_REGS;
2059 alloc_all(current,i);
2060 alloc_cc(current,i);
2061 dirty_reg(current,CCREG);
2062 if(opcode[i]==3) // JAL
2063 {
2064 alloc_reg(current,i,31);
2065 dirty_reg(current,31);
2066 }
2067 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2068 {
2069 alloc_reg(current,i,rs1[i]);
2070 if (rt1[i]!=0) {
2071 alloc_reg(current,i,rt1[i]);
2072 dirty_reg(current,rt1[i]);
2073 }
2074 }
2075 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2076 {
2077 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2078 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2079 }
2080 else
2081 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2082 {
2083 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2084 }
2085 //else ...
2086}
2087
2088static void add_stub(enum stub_type type, void *addr, void *retaddr,
2089 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2090{
2091 assert(stubcount < ARRAY_SIZE(stubs));
2092 stubs[stubcount].type = type;
2093 stubs[stubcount].addr = addr;
2094 stubs[stubcount].retaddr = retaddr;
2095 stubs[stubcount].a = a;
2096 stubs[stubcount].b = b;
2097 stubs[stubcount].c = c;
2098 stubs[stubcount].d = d;
2099 stubs[stubcount].e = e;
2100 stubcount++;
2101}
2102
2103static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2104 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2105{
2106 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2107}
2108
2109// Write out a single register
2110static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2111{
2112 int hr;
2113 for(hr=0;hr<HOST_REGS;hr++) {
2114 if(hr!=EXCLUDE_REG) {
2115 if((regmap[hr]&63)==r) {
2116 if((dirty>>hr)&1) {
2117 assert(regmap[hr]<64);
2118 emit_storereg(r,hr);
2119 }
2120 }
2121 }
2122 }
2123}
2124
2125static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2126{
2127 //if(dirty_pre==dirty) return;
2128 int hr,reg;
2129 for(hr=0;hr<HOST_REGS;hr++) {
2130 if(hr!=EXCLUDE_REG) {
2131 reg=pre[hr];
2132 if(((~u)>>(reg&63))&1) {
2133 if(reg>0) {
2134 if(((dirty_pre&~dirty)>>hr)&1) {
2135 if(reg>0&&reg<34) {
2136 emit_storereg(reg,hr);
2137 }
2138 else if(reg>=64) {
2139 assert(0);
2140 }
2141 }
2142 }
2143 }
2144 }
2145 }
2146}
2147
2148// trashes r2
2149static void pass_args(int a0, int a1)
2150{
2151 if(a0==1&&a1==0) {
2152 // must swap
2153 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2154 }
2155 else if(a0!=0&&a1==0) {
2156 emit_mov(a1,1);
2157 if (a0>=0) emit_mov(a0,0);
2158 }
2159 else {
2160 if(a0>=0&&a0!=0) emit_mov(a0,0);
2161 if(a1>=0&&a1!=1) emit_mov(a1,1);
2162 }
2163}
2164
2165static void alu_assemble(int i,struct regstat *i_regs)
2166{
2167 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2168 if(rt1[i]) {
2169 signed char s1,s2,t;
2170 t=get_reg(i_regs->regmap,rt1[i]);
2171 if(t>=0) {
2172 s1=get_reg(i_regs->regmap,rs1[i]);
2173 s2=get_reg(i_regs->regmap,rs2[i]);
2174 if(rs1[i]&&rs2[i]) {
2175 assert(s1>=0);
2176 assert(s2>=0);
2177 if(opcode2[i]&2) emit_sub(s1,s2,t);
2178 else emit_add(s1,s2,t);
2179 }
2180 else if(rs1[i]) {
2181 if(s1>=0) emit_mov(s1,t);
2182 else emit_loadreg(rs1[i],t);
2183 }
2184 else if(rs2[i]) {
2185 if(s2>=0) {
2186 if(opcode2[i]&2) emit_neg(s2,t);
2187 else emit_mov(s2,t);
2188 }
2189 else {
2190 emit_loadreg(rs2[i],t);
2191 if(opcode2[i]&2) emit_neg(t,t);
2192 }
2193 }
2194 else emit_zeroreg(t);
2195 }
2196 }
2197 }
2198 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2199 assert(0);
2200 }
2201 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2202 if(rt1[i]) {
2203 signed char s1l,s2l,t;
2204 {
2205 t=get_reg(i_regs->regmap,rt1[i]);
2206 //assert(t>=0);
2207 if(t>=0) {
2208 s1l=get_reg(i_regs->regmap,rs1[i]);
2209 s2l=get_reg(i_regs->regmap,rs2[i]);
2210 if(rs2[i]==0) // rx<r0
2211 {
2212 if(opcode2[i]==0x2a&&rs1[i]!=0) { // SLT
2213 assert(s1l>=0);
2214 emit_shrimm(s1l,31,t);
2215 }
2216 else // SLTU (unsigned can not be less than zero, 0<0)
2217 emit_zeroreg(t);
2218 }
2219 else if(rs1[i]==0) // r0<rx
2220 {
2221 assert(s2l>=0);
2222 if(opcode2[i]==0x2a) // SLT
2223 emit_set_gz32(s2l,t);
2224 else // SLTU (set if not zero)
2225 emit_set_nz32(s2l,t);
2226 }
2227 else{
2228 assert(s1l>=0);assert(s2l>=0);
2229 if(opcode2[i]==0x2a) // SLT
2230 emit_set_if_less32(s1l,s2l,t);
2231 else // SLTU
2232 emit_set_if_carry32(s1l,s2l,t);
2233 }
2234 }
2235 }
2236 }
2237 }
2238 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2239 if(rt1[i]) {
2240 signed char s1l,s2l,tl;
2241 tl=get_reg(i_regs->regmap,rt1[i]);
2242 {
2243 if(tl>=0) {
2244 s1l=get_reg(i_regs->regmap,rs1[i]);
2245 s2l=get_reg(i_regs->regmap,rs2[i]);
2246 if(rs1[i]&&rs2[i]) {
2247 assert(s1l>=0);
2248 assert(s2l>=0);
2249 if(opcode2[i]==0x24) { // AND
2250 emit_and(s1l,s2l,tl);
2251 } else
2252 if(opcode2[i]==0x25) { // OR
2253 emit_or(s1l,s2l,tl);
2254 } else
2255 if(opcode2[i]==0x26) { // XOR
2256 emit_xor(s1l,s2l,tl);
2257 } else
2258 if(opcode2[i]==0x27) { // NOR
2259 emit_or(s1l,s2l,tl);
2260 emit_not(tl,tl);
2261 }
2262 }
2263 else
2264 {
2265 if(opcode2[i]==0x24) { // AND
2266 emit_zeroreg(tl);
2267 } else
2268 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2269 if(rs1[i]){
2270 if(s1l>=0) emit_mov(s1l,tl);
2271 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2272 }
2273 else
2274 if(rs2[i]){
2275 if(s2l>=0) emit_mov(s2l,tl);
2276 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2277 }
2278 else emit_zeroreg(tl);
2279 } else
2280 if(opcode2[i]==0x27) { // NOR
2281 if(rs1[i]){
2282 if(s1l>=0) emit_not(s1l,tl);
2283 else {
2284 emit_loadreg(rs1[i],tl);
2285 emit_not(tl,tl);
2286 }
2287 }
2288 else
2289 if(rs2[i]){
2290 if(s2l>=0) emit_not(s2l,tl);
2291 else {
2292 emit_loadreg(rs2[i],tl);
2293 emit_not(tl,tl);
2294 }
2295 }
2296 else emit_movimm(-1,tl);
2297 }
2298 }
2299 }
2300 }
2301 }
2302 }
2303}
2304
2305void imm16_assemble(int i,struct regstat *i_regs)
2306{
2307 if (opcode[i]==0x0f) { // LUI
2308 if(rt1[i]) {
2309 signed char t;
2310 t=get_reg(i_regs->regmap,rt1[i]);
2311 //assert(t>=0);
2312 if(t>=0) {
2313 if(!((i_regs->isconst>>t)&1))
2314 emit_movimm(imm[i]<<16,t);
2315 }
2316 }
2317 }
2318 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2319 if(rt1[i]) {
2320 signed char s,t;
2321 t=get_reg(i_regs->regmap,rt1[i]);
2322 s=get_reg(i_regs->regmap,rs1[i]);
2323 if(rs1[i]) {
2324 //assert(t>=0);
2325 //assert(s>=0);
2326 if(t>=0) {
2327 if(!((i_regs->isconst>>t)&1)) {
2328 if(s<0) {
2329 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2330 emit_addimm(t,imm[i],t);
2331 }else{
2332 if(!((i_regs->wasconst>>s)&1))
2333 emit_addimm(s,imm[i],t);
2334 else
2335 emit_movimm(constmap[i][s]+imm[i],t);
2336 }
2337 }
2338 }
2339 } else {
2340 if(t>=0) {
2341 if(!((i_regs->isconst>>t)&1))
2342 emit_movimm(imm[i],t);
2343 }
2344 }
2345 }
2346 }
2347 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2348 if(rt1[i]) {
2349 signed char sl,tl;
2350 tl=get_reg(i_regs->regmap,rt1[i]);
2351 sl=get_reg(i_regs->regmap,rs1[i]);
2352 if(tl>=0) {
2353 if(rs1[i]) {
2354 assert(sl>=0);
2355 emit_addimm(sl,imm[i],tl);
2356 } else {
2357 emit_movimm(imm[i],tl);
2358 }
2359 }
2360 }
2361 }
2362 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2363 if(rt1[i]) {
2364 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2365 signed char sl,t;
2366 t=get_reg(i_regs->regmap,rt1[i]);
2367 sl=get_reg(i_regs->regmap,rs1[i]);
2368 //assert(t>=0);
2369 if(t>=0) {
2370 if(rs1[i]>0) {
2371 if(opcode[i]==0x0a) { // SLTI
2372 if(sl<0) {
2373 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2374 emit_slti32(t,imm[i],t);
2375 }else{
2376 emit_slti32(sl,imm[i],t);
2377 }
2378 }
2379 else { // SLTIU
2380 if(sl<0) {
2381 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2382 emit_sltiu32(t,imm[i],t);
2383 }else{
2384 emit_sltiu32(sl,imm[i],t);
2385 }
2386 }
2387 }else{
2388 // SLTI(U) with r0 is just stupid,
2389 // nonetheless examples can be found
2390 if(opcode[i]==0x0a) // SLTI
2391 if(0<imm[i]) emit_movimm(1,t);
2392 else emit_zeroreg(t);
2393 else // SLTIU
2394 {
2395 if(imm[i]) emit_movimm(1,t);
2396 else emit_zeroreg(t);
2397 }
2398 }
2399 }
2400 }
2401 }
2402 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2403 if(rt1[i]) {
2404 signed char sl,tl;
2405 tl=get_reg(i_regs->regmap,rt1[i]);
2406 sl=get_reg(i_regs->regmap,rs1[i]);
2407 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2408 if(opcode[i]==0x0c) //ANDI
2409 {
2410 if(rs1[i]) {
2411 if(sl<0) {
2412 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2413 emit_andimm(tl,imm[i],tl);
2414 }else{
2415 if(!((i_regs->wasconst>>sl)&1))
2416 emit_andimm(sl,imm[i],tl);
2417 else
2418 emit_movimm(constmap[i][sl]&imm[i],tl);
2419 }
2420 }
2421 else
2422 emit_zeroreg(tl);
2423 }
2424 else
2425 {
2426 if(rs1[i]) {
2427 if(sl<0) {
2428 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2429 }
2430 if(opcode[i]==0x0d) { // ORI
2431 if(sl<0) {
2432 emit_orimm(tl,imm[i],tl);
2433 }else{
2434 if(!((i_regs->wasconst>>sl)&1))
2435 emit_orimm(sl,imm[i],tl);
2436 else
2437 emit_movimm(constmap[i][sl]|imm[i],tl);
2438 }
2439 }
2440 if(opcode[i]==0x0e) { // XORI
2441 if(sl<0) {
2442 emit_xorimm(tl,imm[i],tl);
2443 }else{
2444 if(!((i_regs->wasconst>>sl)&1))
2445 emit_xorimm(sl,imm[i],tl);
2446 else
2447 emit_movimm(constmap[i][sl]^imm[i],tl);
2448 }
2449 }
2450 }
2451 else {
2452 emit_movimm(imm[i],tl);
2453 }
2454 }
2455 }
2456 }
2457 }
2458}
2459
2460void shiftimm_assemble(int i,struct regstat *i_regs)
2461{
2462 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2463 {
2464 if(rt1[i]) {
2465 signed char s,t;
2466 t=get_reg(i_regs->regmap,rt1[i]);
2467 s=get_reg(i_regs->regmap,rs1[i]);
2468 //assert(t>=0);
2469 if(t>=0&&!((i_regs->isconst>>t)&1)){
2470 if(rs1[i]==0)
2471 {
2472 emit_zeroreg(t);
2473 }
2474 else
2475 {
2476 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2477 if(imm[i]) {
2478 if(opcode2[i]==0) // SLL
2479 {
2480 emit_shlimm(s<0?t:s,imm[i],t);
2481 }
2482 if(opcode2[i]==2) // SRL
2483 {
2484 emit_shrimm(s<0?t:s,imm[i],t);
2485 }
2486 if(opcode2[i]==3) // SRA
2487 {
2488 emit_sarimm(s<0?t:s,imm[i],t);
2489 }
2490 }else{
2491 // Shift by zero
2492 if(s>=0 && s!=t) emit_mov(s,t);
2493 }
2494 }
2495 }
2496 //emit_storereg(rt1[i],t); //DEBUG
2497 }
2498 }
2499 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2500 {
2501 assert(0);
2502 }
2503 if(opcode2[i]==0x3c) // DSLL32
2504 {
2505 assert(0);
2506 }
2507 if(opcode2[i]==0x3e) // DSRL32
2508 {
2509 assert(0);
2510 }
2511 if(opcode2[i]==0x3f) // DSRA32
2512 {
2513 assert(0);
2514 }
2515}
2516
2517#ifndef shift_assemble
2518static void shift_assemble(int i,struct regstat *i_regs)
2519{
2520 signed char s,t,shift;
2521 if (rt1[i] == 0)
2522 return;
2523 assert(opcode2[i]<=0x07); // SLLV/SRLV/SRAV
2524 t = get_reg(i_regs->regmap, rt1[i]);
2525 s = get_reg(i_regs->regmap, rs1[i]);
2526 shift = get_reg(i_regs->regmap, rs2[i]);
2527 if (t < 0)
2528 return;
2529
2530 if(rs1[i]==0)
2531 emit_zeroreg(t);
2532 else if(rs2[i]==0) {
2533 assert(s>=0);
2534 if(s!=t) emit_mov(s,t);
2535 }
2536 else {
2537 host_tempreg_acquire();
2538 emit_andimm(shift,31,HOST_TEMPREG);
2539 switch(opcode2[i]) {
2540 case 4: // SLLV
2541 emit_shl(s,HOST_TEMPREG,t);
2542 break;
2543 case 6: // SRLV
2544 emit_shr(s,HOST_TEMPREG,t);
2545 break;
2546 case 7: // SRAV
2547 emit_sar(s,HOST_TEMPREG,t);
2548 break;
2549 default:
2550 assert(0);
2551 }
2552 host_tempreg_release();
2553 }
2554}
2555
2556#endif
2557
2558enum {
2559 MTYPE_8000 = 0,
2560 MTYPE_8020,
2561 MTYPE_0000,
2562 MTYPE_A000,
2563 MTYPE_1F80,
2564};
2565
2566static int get_ptr_mem_type(u_int a)
2567{
2568 if(a < 0x00200000) {
2569 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2570 // return wrong, must use memhandler for BIOS self-test to pass
2571 // 007 does similar stuff from a00 mirror, weird stuff
2572 return MTYPE_8000;
2573 return MTYPE_0000;
2574 }
2575 if(0x1f800000 <= a && a < 0x1f801000)
2576 return MTYPE_1F80;
2577 if(0x80200000 <= a && a < 0x80800000)
2578 return MTYPE_8020;
2579 if(0xa0000000 <= a && a < 0xa0200000)
2580 return MTYPE_A000;
2581 return MTYPE_8000;
2582}
2583
2584static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override)
2585{
2586 void *jaddr = NULL;
2587 int type=0;
2588 int mr=rs1[i];
2589 if(((smrv_strong|smrv_weak)>>mr)&1) {
2590 type=get_ptr_mem_type(smrv[mr]);
2591 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2592 }
2593 else {
2594 // use the mirror we are running on
2595 type=get_ptr_mem_type(start);
2596 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2597 }
2598
2599 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2600 host_tempreg_acquire();
2601 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2602 addr=*addr_reg_override=HOST_TEMPREG;
2603 type=0;
2604 }
2605 else if(type==MTYPE_0000) { // RAM 0 mirror
2606 host_tempreg_acquire();
2607 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2608 addr=*addr_reg_override=HOST_TEMPREG;
2609 type=0;
2610 }
2611 else if(type==MTYPE_A000) { // RAM A mirror
2612 host_tempreg_acquire();
2613 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2614 addr=*addr_reg_override=HOST_TEMPREG;
2615 type=0;
2616 }
2617 else if(type==MTYPE_1F80) { // scratchpad
2618 if (psxH == (void *)0x1f800000) {
2619 host_tempreg_acquire();
2620 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2621 emit_cmpimm(HOST_TEMPREG,0x1000);
2622 host_tempreg_release();
2623 jaddr=out;
2624 emit_jc(0);
2625 }
2626 else {
2627 // do the usual RAM check, jump will go to the right handler
2628 type=0;
2629 }
2630 }
2631
2632 if(type==0)
2633 {
2634 emit_cmpimm(addr,RAM_SIZE);
2635 jaddr=out;
2636 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2637 // Hint to branch predictor that the branch is unlikely to be taken
2638 if(rs1[i]>=28)
2639 emit_jno_unlikely(0);
2640 else
2641 #endif
2642 emit_jno(0);
2643 if(ram_offset!=0) {
2644 host_tempreg_acquire();
2645 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2646 addr=*addr_reg_override=HOST_TEMPREG;
2647 }
2648 }
2649
2650 return jaddr;
2651}
2652
2653// return memhandler, or get directly accessable address and return 0
2654static void *get_direct_memhandler(void *table, u_int addr,
2655 enum stub_type type, uintptr_t *addr_host)
2656{
2657 uintptr_t l1, l2 = 0;
2658 l1 = ((uintptr_t *)table)[addr>>12];
2659 if ((l1 & (1ul << (sizeof(l1)*8-1))) == 0) {
2660 uintptr_t v = l1 << 1;
2661 *addr_host = v + addr;
2662 return NULL;
2663 }
2664 else {
2665 l1 <<= 1;
2666 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2667 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2668 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2669 l2=((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2670 else
2671 l2=((uintptr_t *)l1)[(addr&0xfff)/4];
2672 if ((l2 & (1<<31)) == 0) {
2673 uintptr_t v = l2 << 1;
2674 *addr_host = v + (addr&0xfff);
2675 return NULL;
2676 }
2677 return (void *)(l2 << 1);
2678 }
2679}
2680
2681static u_int get_host_reglist(const signed char *regmap)
2682{
2683 u_int reglist = 0, hr;
2684 for (hr = 0; hr < HOST_REGS; hr++) {
2685 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2686 reglist |= 1 << hr;
2687 }
2688 return reglist;
2689}
2690
2691static u_int reglist_exclude(u_int reglist, int r1, int r2)
2692{
2693 if (r1 >= 0)
2694 reglist &= ~(1u << r1);
2695 if (r2 >= 0)
2696 reglist &= ~(1u << r2);
2697 return reglist;
2698}
2699
2700// find a temp caller-saved register not in reglist (so assumed to be free)
2701static int reglist_find_free(u_int reglist)
2702{
2703 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2704 if (free_regs == 0)
2705 return -1;
2706 return __builtin_ctz(free_regs);
2707}
2708
2709static void load_assemble(int i, const struct regstat *i_regs)
2710{
2711 int s,tl,addr;
2712 int offset;
2713 void *jaddr=0;
2714 int memtarget=0,c=0;
2715 int fastio_reg_override=-1;
2716 u_int reglist=get_host_reglist(i_regs->regmap);
2717 tl=get_reg(i_regs->regmap,rt1[i]);
2718 s=get_reg(i_regs->regmap,rs1[i]);
2719 offset=imm[i];
2720 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2721 if(s>=0) {
2722 c=(i_regs->wasconst>>s)&1;
2723 if (c) {
2724 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2725 }
2726 }
2727 //printf("load_assemble: c=%d\n",c);
2728 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2729 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2730 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2731 ||rt1[i]==0) {
2732 // could be FIFO, must perform the read
2733 // ||dummy read
2734 assem_debug("(forced read)\n");
2735 tl=get_reg(i_regs->regmap,-1);
2736 assert(tl>=0);
2737 }
2738 if(offset||s<0||c) addr=tl;
2739 else addr=s;
2740 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2741 if(tl>=0) {
2742 //printf("load_assemble: c=%d\n",c);
2743 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2744 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2745 reglist&=~(1<<tl);
2746 if(!c) {
2747 #ifdef R29_HACK
2748 // Strmnnrmn's speed hack
2749 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2750 #endif
2751 {
2752 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2753 }
2754 }
2755 else if(ram_offset&&memtarget) {
2756 host_tempreg_acquire();
2757 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2758 fastio_reg_override=HOST_TEMPREG;
2759 }
2760 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2761 if (opcode[i]==0x20) { // LB
2762 if(!c||memtarget) {
2763 if(!dummy) {
2764 {
2765 int x=0,a=tl;
2766 if(!c) a=addr;
2767 if(fastio_reg_override>=0) a=fastio_reg_override;
2768
2769 emit_movsbl_indexed(x,a,tl);
2770 }
2771 }
2772 if(jaddr)
2773 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2774 }
2775 else
2776 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2777 }
2778 if (opcode[i]==0x21) { // LH
2779 if(!c||memtarget) {
2780 if(!dummy) {
2781 int x=0,a=tl;
2782 if(!c) a=addr;
2783 if(fastio_reg_override>=0) a=fastio_reg_override;
2784 emit_movswl_indexed(x,a,tl);
2785 }
2786 if(jaddr)
2787 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2788 }
2789 else
2790 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2791 }
2792 if (opcode[i]==0x23) { // LW
2793 if(!c||memtarget) {
2794 if(!dummy) {
2795 int a=addr;
2796 if(fastio_reg_override>=0) a=fastio_reg_override;
2797 emit_readword_indexed(0,a,tl);
2798 }
2799 if(jaddr)
2800 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2801 }
2802 else
2803 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2804 }
2805 if (opcode[i]==0x24) { // LBU
2806 if(!c||memtarget) {
2807 if(!dummy) {
2808 int x=0,a=tl;
2809 if(!c) a=addr;
2810 if(fastio_reg_override>=0) a=fastio_reg_override;
2811
2812 emit_movzbl_indexed(x,a,tl);
2813 }
2814 if(jaddr)
2815 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2816 }
2817 else
2818 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2819 }
2820 if (opcode[i]==0x25) { // LHU
2821 if(!c||memtarget) {
2822 if(!dummy) {
2823 int x=0,a=tl;
2824 if(!c) a=addr;
2825 if(fastio_reg_override>=0) a=fastio_reg_override;
2826 emit_movzwl_indexed(x,a,tl);
2827 }
2828 if(jaddr)
2829 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2830 }
2831 else
2832 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2833 }
2834 if (opcode[i]==0x27) { // LWU
2835 assert(0);
2836 }
2837 if (opcode[i]==0x37) { // LD
2838 assert(0);
2839 }
2840 }
2841 if (fastio_reg_override == HOST_TEMPREG)
2842 host_tempreg_release();
2843}
2844
2845#ifndef loadlr_assemble
2846static void loadlr_assemble(int i, const struct regstat *i_regs)
2847{
2848 int s,tl,temp,temp2,addr;
2849 int offset;
2850 void *jaddr=0;
2851 int memtarget=0,c=0;
2852 int fastio_reg_override=-1;
2853 u_int reglist=get_host_reglist(i_regs->regmap);
2854 tl=get_reg(i_regs->regmap,rt1[i]);
2855 s=get_reg(i_regs->regmap,rs1[i]);
2856 temp=get_reg(i_regs->regmap,-1);
2857 temp2=get_reg(i_regs->regmap,FTEMP);
2858 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2859 assert(addr<0);
2860 offset=imm[i];
2861 reglist|=1<<temp;
2862 if(offset||s<0||c) addr=temp2;
2863 else addr=s;
2864 if(s>=0) {
2865 c=(i_regs->wasconst>>s)&1;
2866 if(c) {
2867 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2868 }
2869 }
2870 if(!c) {
2871 emit_shlimm(addr,3,temp);
2872 if (opcode[i]==0x22||opcode[i]==0x26) {
2873 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2874 }else{
2875 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2876 }
2877 jaddr=emit_fastpath_cmp_jump(i,temp2,&fastio_reg_override);
2878 }
2879 else {
2880 if(ram_offset&&memtarget) {
2881 host_tempreg_acquire();
2882 emit_addimm(temp2,ram_offset,HOST_TEMPREG);
2883 fastio_reg_override=HOST_TEMPREG;
2884 }
2885 if (opcode[i]==0x22||opcode[i]==0x26) {
2886 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2887 }else{
2888 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2889 }
2890 }
2891 if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
2892 if(!c||memtarget) {
2893 int a=temp2;
2894 if(fastio_reg_override>=0) a=fastio_reg_override;
2895 emit_readword_indexed(0,a,temp2);
2896 if(fastio_reg_override==HOST_TEMPREG) host_tempreg_release();
2897 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2898 }
2899 else
2900 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2901 if(rt1[i]) {
2902 assert(tl>=0);
2903 emit_andimm(temp,24,temp);
2904 if (opcode[i]==0x22) // LWL
2905 emit_xorimm(temp,24,temp);
2906 host_tempreg_acquire();
2907 emit_movimm(-1,HOST_TEMPREG);
2908 if (opcode[i]==0x26) {
2909 emit_shr(temp2,temp,temp2);
2910 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2911 }else{
2912 emit_shl(temp2,temp,temp2);
2913 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2914 }
2915 host_tempreg_release();
2916 emit_or(temp2,tl,tl);
2917 }
2918 //emit_storereg(rt1[i],tl); // DEBUG
2919 }
2920 if (opcode[i]==0x1A||opcode[i]==0x1B) { // LDL/LDR
2921 assert(0);
2922 }
2923}
2924#endif
2925
2926void store_assemble(int i, const struct regstat *i_regs)
2927{
2928 int s,tl;
2929 int addr,temp;
2930 int offset;
2931 void *jaddr=0;
2932 enum stub_type type;
2933 int memtarget=0,c=0;
2934 int agr=AGEN1+(i&1);
2935 int fastio_reg_override=-1;
2936 u_int reglist=get_host_reglist(i_regs->regmap);
2937 tl=get_reg(i_regs->regmap,rs2[i]);
2938 s=get_reg(i_regs->regmap,rs1[i]);
2939 temp=get_reg(i_regs->regmap,agr);
2940 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2941 offset=imm[i];
2942 if(s>=0) {
2943 c=(i_regs->wasconst>>s)&1;
2944 if(c) {
2945 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2946 }
2947 }
2948 assert(tl>=0);
2949 assert(temp>=0);
2950 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2951 if(offset||s<0||c) addr=temp;
2952 else addr=s;
2953 if(!c) {
2954 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2955 }
2956 else if(ram_offset&&memtarget) {
2957 host_tempreg_acquire();
2958 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2959 fastio_reg_override=HOST_TEMPREG;
2960 }
2961
2962 if (opcode[i]==0x28) { // SB
2963 if(!c||memtarget) {
2964 int x=0,a=temp;
2965 if(!c) a=addr;
2966 if(fastio_reg_override>=0) a=fastio_reg_override;
2967 emit_writebyte_indexed(tl,x,a);
2968 }
2969 type=STOREB_STUB;
2970 }
2971 if (opcode[i]==0x29) { // SH
2972 if(!c||memtarget) {
2973 int x=0,a=temp;
2974 if(!c) a=addr;
2975 if(fastio_reg_override>=0) a=fastio_reg_override;
2976 emit_writehword_indexed(tl,x,a);
2977 }
2978 type=STOREH_STUB;
2979 }
2980 if (opcode[i]==0x2B) { // SW
2981 if(!c||memtarget) {
2982 int a=addr;
2983 if(fastio_reg_override>=0) a=fastio_reg_override;
2984 emit_writeword_indexed(tl,0,a);
2985 }
2986 type=STOREW_STUB;
2987 }
2988 if (opcode[i]==0x3F) { // SD
2989 assert(0);
2990 type=STORED_STUB;
2991 }
2992 if(fastio_reg_override==HOST_TEMPREG)
2993 host_tempreg_release();
2994 if(jaddr) {
2995 // PCSX store handlers don't check invcode again
2996 reglist|=1<<addr;
2997 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2998 jaddr=0;
2999 }
3000 if(!(i_regs->waswritten&(1<<rs1[i])) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3001 if(!c||memtarget) {
3002 #ifdef DESTRUCTIVE_SHIFT
3003 // The x86 shift operation is 'destructive'; it overwrites the
3004 // source register, so we need to make a copy first and use that.
3005 addr=temp;
3006 #endif
3007 #if defined(HOST_IMM8)
3008 int ir=get_reg(i_regs->regmap,INVCP);
3009 assert(ir>=0);
3010 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3011 #else
3012 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3013 #endif
3014 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3015 emit_callne(invalidate_addr_reg[addr]);
3016 #else
3017 void *jaddr2 = out;
3018 emit_jne(0);
3019 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3020 #endif
3021 }
3022 }
3023 u_int addr_val=constmap[i][s]+offset;
3024 if(jaddr) {
3025 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3026 } else if(c&&!memtarget) {
3027 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3028 }
3029 // basic current block modification detection..
3030 // not looking back as that should be in mips cache already
3031 // (see Spyro2 title->attract mode)
3032 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3033 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3034 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3035 if(i_regs->regmap==regs[i].regmap) {
3036 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3037 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3038 emit_movimm(start+i*4+4,0);
3039 emit_writeword(0,&pcaddr);
3040 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3041 emit_far_call(get_addr_ht);
3042 emit_jmpreg(0);
3043 }
3044 }
3045}
3046
3047static void storelr_assemble(int i, const struct regstat *i_regs)
3048{
3049 int s,tl;
3050 int temp;
3051 int offset;
3052 void *jaddr=0;
3053 void *case1, *case2, *case3;
3054 void *done0, *done1, *done2;
3055 int memtarget=0,c=0;
3056 int agr=AGEN1+(i&1);
3057 u_int reglist=get_host_reglist(i_regs->regmap);
3058 tl=get_reg(i_regs->regmap,rs2[i]);
3059 s=get_reg(i_regs->regmap,rs1[i]);
3060 temp=get_reg(i_regs->regmap,agr);
3061 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3062 offset=imm[i];
3063 if(s>=0) {
3064 c=(i_regs->isconst>>s)&1;
3065 if(c) {
3066 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3067 }
3068 }
3069 assert(tl>=0);
3070 assert(temp>=0);
3071 if(!c) {
3072 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3073 if(!offset&&s!=temp) emit_mov(s,temp);
3074 jaddr=out;
3075 emit_jno(0);
3076 }
3077 else
3078 {
3079 if(!memtarget||!rs1[i]) {
3080 jaddr=out;
3081 emit_jmp(0);
3082 }
3083 }
3084 if(ram_offset)
3085 emit_addimm_no_flags(ram_offset,temp);
3086
3087 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3088 assert(0);
3089 }
3090
3091 emit_xorimm(temp,3,temp);
3092 emit_testimm(temp,2);
3093 case2=out;
3094 emit_jne(0);
3095 emit_testimm(temp,1);
3096 case1=out;
3097 emit_jne(0);
3098 // 0
3099 if (opcode[i]==0x2A) { // SWL
3100 emit_writeword_indexed(tl,0,temp);
3101 }
3102 else if (opcode[i]==0x2E) { // SWR
3103 emit_writebyte_indexed(tl,3,temp);
3104 }
3105 else
3106 assert(0);
3107 done0=out;
3108 emit_jmp(0);
3109 // 1
3110 set_jump_target(case1, out);
3111 if (opcode[i]==0x2A) { // SWL
3112 // Write 3 msb into three least significant bytes
3113 if(rs2[i]) emit_rorimm(tl,8,tl);
3114 emit_writehword_indexed(tl,-1,temp);
3115 if(rs2[i]) emit_rorimm(tl,16,tl);
3116 emit_writebyte_indexed(tl,1,temp);
3117 if(rs2[i]) emit_rorimm(tl,8,tl);
3118 }
3119 else if (opcode[i]==0x2E) { // SWR
3120 // Write two lsb into two most significant bytes
3121 emit_writehword_indexed(tl,1,temp);
3122 }
3123 done1=out;
3124 emit_jmp(0);
3125 // 2
3126 set_jump_target(case2, out);
3127 emit_testimm(temp,1);
3128 case3=out;
3129 emit_jne(0);
3130 if (opcode[i]==0x2A) { // SWL
3131 // Write two msb into two least significant bytes
3132 if(rs2[i]) emit_rorimm(tl,16,tl);
3133 emit_writehword_indexed(tl,-2,temp);
3134 if(rs2[i]) emit_rorimm(tl,16,tl);
3135 }
3136 else if (opcode[i]==0x2E) { // SWR
3137 // Write 3 lsb into three most significant bytes
3138 emit_writebyte_indexed(tl,-1,temp);
3139 if(rs2[i]) emit_rorimm(tl,8,tl);
3140 emit_writehword_indexed(tl,0,temp);
3141 if(rs2[i]) emit_rorimm(tl,24,tl);
3142 }
3143 done2=out;
3144 emit_jmp(0);
3145 // 3
3146 set_jump_target(case3, out);
3147 if (opcode[i]==0x2A) { // SWL
3148 // Write msb into least significant byte
3149 if(rs2[i]) emit_rorimm(tl,24,tl);
3150 emit_writebyte_indexed(tl,-3,temp);
3151 if(rs2[i]) emit_rorimm(tl,8,tl);
3152 }
3153 else if (opcode[i]==0x2E) { // SWR
3154 // Write entire word
3155 emit_writeword_indexed(tl,-3,temp);
3156 }
3157 set_jump_target(done0, out);
3158 set_jump_target(done1, out);
3159 set_jump_target(done2, out);
3160 if(!c||!memtarget)
3161 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3162 if(!(i_regs->waswritten&(1<<rs1[i])) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3163 emit_addimm_no_flags(-ram_offset,temp);
3164 #if defined(HOST_IMM8)
3165 int ir=get_reg(i_regs->regmap,INVCP);
3166 assert(ir>=0);
3167 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3168 #else
3169 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3170 #endif
3171 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3172 emit_callne(invalidate_addr_reg[temp]);
3173 #else
3174 void *jaddr2 = out;
3175 emit_jne(0);
3176 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3177 #endif
3178 }
3179}
3180
3181static void cop0_assemble(int i,struct regstat *i_regs)
3182{
3183 if(opcode2[i]==0) // MFC0
3184 {
3185 signed char t=get_reg(i_regs->regmap,rt1[i]);
3186 u_int copr=(source[i]>>11)&0x1f;
3187 //assert(t>=0); // Why does this happen? OOT is weird
3188 if(t>=0&&rt1[i]!=0) {
3189 emit_readword(&reg_cop0[copr],t);
3190 }
3191 }
3192 else if(opcode2[i]==4) // MTC0
3193 {
3194 signed char s=get_reg(i_regs->regmap,rs1[i]);
3195 char copr=(source[i]>>11)&0x1f;
3196 assert(s>=0);
3197 wb_register(rs1[i],i_regs->regmap,i_regs->dirty);
3198 if(copr==9||copr==11||copr==12||copr==13) {
3199 emit_readword(&last_count,HOST_TEMPREG);
3200 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3201 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3202 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3203 emit_writeword(HOST_CCREG,&Count);
3204 }
3205 // What a mess. The status register (12) can enable interrupts,
3206 // so needs a special case to handle a pending interrupt.
3207 // The interrupt must be taken immediately, because a subsequent
3208 // instruction might disable interrupts again.
3209 if(copr==12||copr==13) {
3210 if (is_delayslot) {
3211 // burn cycles to cause cc_interrupt, which will
3212 // reschedule next_interupt. Relies on CCREG from above.
3213 assem_debug("MTC0 DS %d\n", copr);
3214 emit_writeword(HOST_CCREG,&last_count);
3215 emit_movimm(0,HOST_CCREG);
3216 emit_storereg(CCREG,HOST_CCREG);
3217 emit_loadreg(rs1[i],1);
3218 emit_movimm(copr,0);
3219 emit_far_call(pcsx_mtc0_ds);
3220 emit_loadreg(rs1[i],s);
3221 return;
3222 }
3223 emit_movimm(start+i*4+4,HOST_TEMPREG);
3224 emit_writeword(HOST_TEMPREG,&pcaddr);
3225 emit_movimm(0,HOST_TEMPREG);
3226 emit_writeword(HOST_TEMPREG,&pending_exception);
3227 }
3228 if(s==HOST_CCREG)
3229 emit_loadreg(rs1[i],1);
3230 else if(s!=1)
3231 emit_mov(s,1);
3232 emit_movimm(copr,0);
3233 emit_far_call(pcsx_mtc0);
3234 if(copr==9||copr==11||copr==12||copr==13) {
3235 emit_readword(&Count,HOST_CCREG);
3236 emit_readword(&next_interupt,HOST_TEMPREG);
3237 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3238 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3239 emit_writeword(HOST_TEMPREG,&last_count);
3240 emit_storereg(CCREG,HOST_CCREG);
3241 }
3242 if(copr==12||copr==13) {
3243 assert(!is_delayslot);
3244 emit_readword(&pending_exception,14);
3245 emit_test(14,14);
3246 void *jaddr = out;
3247 emit_jeq(0);
3248 emit_readword(&pcaddr, 0);
3249 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3250 emit_far_call(get_addr_ht);
3251 emit_jmpreg(0);
3252 set_jump_target(jaddr, out);
3253 }
3254 emit_loadreg(rs1[i],s);
3255 }
3256 else
3257 {
3258 assert(opcode2[i]==0x10);
3259 //if((source[i]&0x3f)==0x10) // RFE
3260 {
3261 emit_readword(&Status,0);
3262 emit_andimm(0,0x3c,1);
3263 emit_andimm(0,~0xf,0);
3264 emit_orrshr_imm(1,2,0);
3265 emit_writeword(0,&Status);
3266 }
3267 }
3268}
3269
3270static void cop1_unusable(int i,struct regstat *i_regs)
3271{
3272 // XXX: should just just do the exception instead
3273 //if(!cop1_usable)
3274 {
3275 void *jaddr=out;
3276 emit_jmp(0);
3277 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3278 }
3279}
3280
3281static void cop1_assemble(int i,struct regstat *i_regs)
3282{
3283 cop1_unusable(i, i_regs);
3284}
3285
3286static void c1ls_assemble(int i,struct regstat *i_regs)
3287{
3288 cop1_unusable(i, i_regs);
3289}
3290
3291// FP_STUB
3292static void do_cop1stub(int n)
3293{
3294 literal_pool(256);
3295 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3296 set_jump_target(stubs[n].addr, out);
3297 int i=stubs[n].a;
3298// int rs=stubs[n].b;
3299 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3300 int ds=stubs[n].d;
3301 if(!ds) {
3302 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3303 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3304 }
3305 //else {printf("fp exception in delay slot\n");}
3306 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3307 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3308 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3309 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3310 emit_far_jump(ds?fp_exception_ds:fp_exception);
3311}
3312
3313static int cop2_is_stalling_op(int i, int *cycles)
3314{
3315 if (opcode[i] == 0x3a) { // SWC2
3316 *cycles = 0;
3317 return 1;
3318 }
3319 if (itype[i] == COP2 && (opcode2[i] == 0 || opcode2[i] == 2)) { // MFC2/CFC2
3320 *cycles = 0;
3321 return 1;
3322 }
3323 if (itype[i] == C2OP) {
3324 *cycles = gte_cycletab[source[i] & 0x3f];
3325 return 1;
3326 }
3327 // ... what about MTC2/CTC2/LWC2?
3328 return 0;
3329}
3330
3331#if 0
3332static void log_gte_stall(int stall, u_int cycle)
3333{
3334 if ((u_int)stall <= 44)
3335 printf("x stall %2d %u\n", stall, cycle + last_count);
3336}
3337
3338static void emit_log_gte_stall(int i, int stall, u_int reglist)
3339{
3340 save_regs(reglist);
3341 if (stall > 0)
3342 emit_movimm(stall, 0);
3343 else
3344 emit_mov(HOST_TEMPREG, 0);
3345 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3346 emit_far_call(log_gte_stall);
3347 restore_regs(reglist);
3348}
3349#endif
3350
3351static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3352{
3353 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3354 int rtmp = reglist_find_free(reglist);
3355
3356 if (HACK_ENABLED(NDHACK_NO_STALLS))
3357 return;
3358 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3359 // happens occasionally... cc evicted? Don't bother then
3360 //printf("no cc %08x\n", start + i*4);
3361 return;
3362 }
3363 if (!bt[i]) {
3364 for (j = i - 1; j >= 0; j--) {
3365 //if (is_ds[j]) break;
3366 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || bt[j])
3367 break;
3368 }
3369 j = max(j, 0);
3370 }
3371 cycles_passed = CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3372 if (other_gte_op_cycles >= 0)
3373 stall = other_gte_op_cycles - cycles_passed;
3374 else if (cycles_passed >= 44)
3375 stall = 0; // can't stall
3376 if (stall == -MAXBLOCK && rtmp >= 0) {
3377 // unknown stall, do the expensive runtime check
3378 assem_debug("; cop2_do_stall_check\n");
3379#if 0 // too slow
3380 save_regs(reglist);
3381 emit_movimm(gte_cycletab[op], 0);
3382 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3383 emit_far_call(call_gteStall);
3384 restore_regs(reglist);
3385#else
3386 host_tempreg_acquire();
3387 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3388 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3389 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3390 emit_cmpimm(HOST_TEMPREG, 44);
3391 emit_cmovb_reg(rtmp, HOST_CCREG);
3392 //emit_log_gte_stall(i, 0, reglist);
3393 host_tempreg_release();
3394#endif
3395 }
3396 else if (stall > 0) {
3397 //emit_log_gte_stall(i, stall, reglist);
3398 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3399 }
3400
3401 // save gteBusyCycle, if needed
3402 if (gte_cycletab[op] == 0)
3403 return;
3404 other_gte_op_cycles = -1;
3405 for (j = i + 1; j < slen; j++) {
3406 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3407 break;
3408 if (is_jump(j)) {
3409 // check ds
3410 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3411 j++;
3412 break;
3413 }
3414 }
3415 if (other_gte_op_cycles >= 0)
3416 // will handle stall when assembling that op
3417 return;
3418 cycles_passed = CLOCK_ADJUST(ccadj[min(j, slen -1)] - ccadj[i]);
3419 if (cycles_passed >= 44)
3420 return;
3421 assem_debug("; save gteBusyCycle\n");
3422 host_tempreg_acquire();
3423#if 0
3424 emit_readword(&last_count, HOST_TEMPREG);
3425 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3426 emit_addimm(HOST_TEMPREG, CLOCK_ADJUST(ccadj[i]), HOST_TEMPREG);
3427 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3428 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3429#else
3430 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + gte_cycletab[op], HOST_TEMPREG);
3431 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3432#endif
3433 host_tempreg_release();
3434}
3435
3436static int is_mflohi(int i)
3437{
3438 return (itype[i] == MOV && (rs1[i] == HIREG || rs1[i] == LOREG));
3439}
3440
3441static int check_multdiv(int i, int *cycles)
3442{
3443 if (itype[i] != MULTDIV)
3444 return 0;
3445 if (opcode2[i] == 0x18 || opcode2[i] == 0x19) // MULT(U)
3446 *cycles = 11; // approx from 7 11 14
3447 else
3448 *cycles = 37;
3449 return 1;
3450}
3451
3452static void multdiv_prepare_stall(int i, const struct regstat *i_regs)
3453{
3454 int j, found = 0, c = 0;
3455 if (HACK_ENABLED(NDHACK_NO_STALLS))
3456 return;
3457 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3458 // happens occasionally... cc evicted? Don't bother then
3459 return;
3460 }
3461 for (j = i + 1; j < slen; j++) {
3462 if (bt[j])
3463 break;
3464 if ((found = is_mflohi(j)))
3465 break;
3466 if (is_jump(j)) {
3467 // check ds
3468 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3469 j++;
3470 break;
3471 }
3472 }
3473 if (found)
3474 // handle all in multdiv_do_stall()
3475 return;
3476 check_multdiv(i, &c);
3477 assert(c > 0);
3478 assem_debug("; muldiv prepare stall %d\n", c);
3479 host_tempreg_acquire();
3480 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + c, HOST_TEMPREG);
3481 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3482 host_tempreg_release();
3483}
3484
3485static void multdiv_do_stall(int i, const struct regstat *i_regs)
3486{
3487 int j, known_cycles = 0;
3488 u_int reglist = get_host_reglist(i_regs->regmap);
3489 int rtmp = get_reg(i_regs->regmap, -1);
3490 if (rtmp < 0)
3491 rtmp = reglist_find_free(reglist);
3492 if (HACK_ENABLED(NDHACK_NO_STALLS))
3493 return;
3494 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3495 // happens occasionally... cc evicted? Don't bother then
3496 //printf("no cc/rtmp %08x\n", start + i*4);
3497 return;
3498 }
3499 if (!bt[i]) {
3500 for (j = i - 1; j >= 0; j--) {
3501 if (is_ds[j]) break;
3502 if (check_multdiv(j, &known_cycles) || bt[j])
3503 break;
3504 if (is_mflohi(j))
3505 // already handled by this op
3506 return;
3507 }
3508 j = max(j, 0);
3509 }
3510 if (known_cycles > 0) {
3511 known_cycles -= CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3512 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3513 if (known_cycles > 0)
3514 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3515 return;
3516 }
3517 assem_debug("; muldiv stall unresolved\n");
3518 host_tempreg_acquire();
3519 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3520 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3521 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3522 emit_cmpimm(HOST_TEMPREG, 37);
3523 emit_cmovb_reg(rtmp, HOST_CCREG);
3524 //emit_log_gte_stall(i, 0, reglist);
3525 host_tempreg_release();
3526}
3527
3528static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3529{
3530 switch (copr) {
3531 case 1:
3532 case 3:
3533 case 5:
3534 case 8:
3535 case 9:
3536 case 10:
3537 case 11:
3538 emit_readword(&reg_cop2d[copr],tl);
3539 emit_signextend16(tl,tl);
3540 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3541 break;
3542 case 7:
3543 case 16:
3544 case 17:
3545 case 18:
3546 case 19:
3547 emit_readword(&reg_cop2d[copr],tl);
3548 emit_andimm(tl,0xffff,tl);
3549 emit_writeword(tl,&reg_cop2d[copr]);
3550 break;
3551 case 15:
3552 emit_readword(&reg_cop2d[14],tl); // SXY2
3553 emit_writeword(tl,&reg_cop2d[copr]);
3554 break;
3555 case 28:
3556 case 29:
3557 c2op_mfc2_29_assemble(tl,temp);
3558 break;
3559 default:
3560 emit_readword(&reg_cop2d[copr],tl);
3561 break;
3562 }
3563}
3564
3565static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3566{
3567 switch (copr) {
3568 case 15:
3569 emit_readword(&reg_cop2d[13],temp); // SXY1
3570 emit_writeword(sl,&reg_cop2d[copr]);
3571 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3572 emit_readword(&reg_cop2d[14],temp); // SXY2
3573 emit_writeword(sl,&reg_cop2d[14]);
3574 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3575 break;
3576 case 28:
3577 emit_andimm(sl,0x001f,temp);
3578 emit_shlimm(temp,7,temp);
3579 emit_writeword(temp,&reg_cop2d[9]);
3580 emit_andimm(sl,0x03e0,temp);
3581 emit_shlimm(temp,2,temp);
3582 emit_writeword(temp,&reg_cop2d[10]);
3583 emit_andimm(sl,0x7c00,temp);
3584 emit_shrimm(temp,3,temp);
3585 emit_writeword(temp,&reg_cop2d[11]);
3586 emit_writeword(sl,&reg_cop2d[28]);
3587 break;
3588 case 30:
3589 emit_xorsar_imm(sl,sl,31,temp);
3590#if defined(HAVE_ARMV5) || defined(__aarch64__)
3591 emit_clz(temp,temp);
3592#else
3593 emit_movs(temp,HOST_TEMPREG);
3594 emit_movimm(0,temp);
3595 emit_jeq((int)out+4*4);
3596 emit_addpl_imm(temp,1,temp);
3597 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3598 emit_jns((int)out-2*4);
3599#endif
3600 emit_writeword(sl,&reg_cop2d[30]);
3601 emit_writeword(temp,&reg_cop2d[31]);
3602 break;
3603 case 31:
3604 break;
3605 default:
3606 emit_writeword(sl,&reg_cop2d[copr]);
3607 break;
3608 }
3609}
3610
3611static void c2ls_assemble(int i, const struct regstat *i_regs)
3612{
3613 int s,tl;
3614 int ar;
3615 int offset;
3616 int memtarget=0,c=0;
3617 void *jaddr2=NULL;
3618 enum stub_type type;
3619 int agr=AGEN1+(i&1);
3620 int fastio_reg_override=-1;
3621 u_int reglist=get_host_reglist(i_regs->regmap);
3622 u_int copr=(source[i]>>16)&0x1f;
3623 s=get_reg(i_regs->regmap,rs1[i]);
3624 tl=get_reg(i_regs->regmap,FTEMP);
3625 offset=imm[i];
3626 assert(rs1[i]>0);
3627 assert(tl>=0);
3628
3629 if(i_regs->regmap[HOST_CCREG]==CCREG)
3630 reglist&=~(1<<HOST_CCREG);
3631
3632 // get the address
3633 if (opcode[i]==0x3a) { // SWC2
3634 ar=get_reg(i_regs->regmap,agr);
3635 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3636 reglist|=1<<ar;
3637 } else { // LWC2
3638 ar=tl;
3639 }
3640 if(s>=0) c=(i_regs->wasconst>>s)&1;
3641 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3642 if (!offset&&!c&&s>=0) ar=s;
3643 assert(ar>=0);
3644
3645 cop2_do_stall_check(0, i, i_regs, reglist);
3646
3647 if (opcode[i]==0x3a) { // SWC2
3648 cop2_get_dreg(copr,tl,-1);
3649 type=STOREW_STUB;
3650 }
3651 else
3652 type=LOADW_STUB;
3653
3654 if(c&&!memtarget) {
3655 jaddr2=out;
3656 emit_jmp(0); // inline_readstub/inline_writestub?
3657 }
3658 else {
3659 if(!c) {
3660 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3661 }
3662 else if(ram_offset&&memtarget) {
3663 host_tempreg_acquire();
3664 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3665 fastio_reg_override=HOST_TEMPREG;
3666 }
3667 if (opcode[i]==0x32) { // LWC2
3668 int a=ar;
3669 if(fastio_reg_override>=0) a=fastio_reg_override;
3670 emit_readword_indexed(0,a,tl);
3671 }
3672 if (opcode[i]==0x3a) { // SWC2
3673 #ifdef DESTRUCTIVE_SHIFT
3674 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3675 #endif
3676 int a=ar;
3677 if(fastio_reg_override>=0) a=fastio_reg_override;
3678 emit_writeword_indexed(tl,0,a);
3679 }
3680 }
3681 if(fastio_reg_override==HOST_TEMPREG)
3682 host_tempreg_release();
3683 if(jaddr2)
3684 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3685 if(opcode[i]==0x3a) // SWC2
3686 if(!(i_regs->waswritten&(1<<rs1[i])) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3687#if defined(HOST_IMM8)
3688 int ir=get_reg(i_regs->regmap,INVCP);
3689 assert(ir>=0);
3690 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3691#else
3692 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3693#endif
3694 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3695 emit_callne(invalidate_addr_reg[ar]);
3696 #else
3697 void *jaddr3 = out;
3698 emit_jne(0);
3699 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3700 #endif
3701 }
3702 if (opcode[i]==0x32) { // LWC2
3703 host_tempreg_acquire();
3704 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3705 host_tempreg_release();
3706 }
3707}
3708
3709static void cop2_assemble(int i, const struct regstat *i_regs)
3710{
3711 u_int copr = (source[i]>>11) & 0x1f;
3712 signed char temp = get_reg(i_regs->regmap, -1);
3713
3714 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3715 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3716 if (opcode2[i] == 0 || opcode2[i] == 2) { // MFC2/CFC2
3717 signed char tl = get_reg(i_regs->regmap, rt1[i]);
3718 reglist = reglist_exclude(reglist, tl, -1);
3719 }
3720 cop2_do_stall_check(0, i, i_regs, reglist);
3721 }
3722 if (opcode2[i]==0) { // MFC2
3723 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3724 if(tl>=0&&rt1[i]!=0)
3725 cop2_get_dreg(copr,tl,temp);
3726 }
3727 else if (opcode2[i]==4) { // MTC2
3728 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3729 cop2_put_dreg(copr,sl,temp);
3730 }
3731 else if (opcode2[i]==2) // CFC2
3732 {
3733 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3734 if(tl>=0&&rt1[i]!=0)
3735 emit_readword(&reg_cop2c[copr],tl);
3736 }
3737 else if (opcode2[i]==6) // CTC2
3738 {
3739 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3740 switch(copr) {
3741 case 4:
3742 case 12:
3743 case 20:
3744 case 26:
3745 case 27:
3746 case 29:
3747 case 30:
3748 emit_signextend16(sl,temp);
3749 break;
3750 case 31:
3751 c2op_ctc2_31_assemble(sl,temp);
3752 break;
3753 default:
3754 temp=sl;
3755 break;
3756 }
3757 emit_writeword(temp,&reg_cop2c[copr]);
3758 assert(sl>=0);
3759 }
3760}
3761
3762static void do_unalignedwritestub(int n)
3763{
3764 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3765 literal_pool(256);
3766 set_jump_target(stubs[n].addr, out);
3767
3768 int i=stubs[n].a;
3769 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3770 int addr=stubs[n].b;
3771 u_int reglist=stubs[n].e;
3772 signed char *i_regmap=i_regs->regmap;
3773 int temp2=get_reg(i_regmap,FTEMP);
3774 int rt;
3775 rt=get_reg(i_regmap,rs2[i]);
3776 assert(rt>=0);
3777 assert(addr>=0);
3778 assert(opcode[i]==0x2a||opcode[i]==0x2e); // SWL/SWR only implemented
3779 reglist|=(1<<addr);
3780 reglist&=~(1<<temp2);
3781
3782#if 1
3783 // don't bother with it and call write handler
3784 save_regs(reglist);
3785 pass_args(addr,rt);
3786 int cc=get_reg(i_regmap,CCREG);
3787 if(cc<0)
3788 emit_loadreg(CCREG,2);
3789 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3790 emit_far_call((opcode[i]==0x2a?jump_handle_swl:jump_handle_swr));
3791 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3792 if(cc<0)
3793 emit_storereg(CCREG,2);
3794 restore_regs(reglist);
3795 emit_jmp(stubs[n].retaddr); // return address
3796#else
3797 emit_andimm(addr,0xfffffffc,temp2);
3798 emit_writeword(temp2,&address);
3799
3800 save_regs(reglist);
3801 emit_shrimm(addr,16,1);
3802 int cc=get_reg(i_regmap,CCREG);
3803 if(cc<0) {
3804 emit_loadreg(CCREG,2);
3805 }
3806 emit_movimm((u_int)readmem,0);
3807 emit_addimm(cc<0?2:cc,2*stubs[n].d+2,2);
3808 emit_call((int)&indirect_jump_indexed);
3809 restore_regs(reglist);
3810
3811 emit_readword(&readmem_dword,temp2);
3812 int temp=addr; //hmh
3813 emit_shlimm(addr,3,temp);
3814 emit_andimm(temp,24,temp);
3815 if (opcode[i]==0x2a) // SWL
3816 emit_xorimm(temp,24,temp);
3817 emit_movimm(-1,HOST_TEMPREG);
3818 if (opcode[i]==0x2a) { // SWL
3819 emit_bic_lsr(temp2,HOST_TEMPREG,temp,temp2);
3820 emit_orrshr(rt,temp,temp2);
3821 }else{
3822 emit_bic_lsl(temp2,HOST_TEMPREG,temp,temp2);
3823 emit_orrshl(rt,temp,temp2);
3824 }
3825 emit_readword(&address,addr);
3826 emit_writeword(temp2,&word);
3827 //save_regs(reglist); // don't need to, no state changes
3828 emit_shrimm(addr,16,1);
3829 emit_movimm((u_int)writemem,0);
3830 //emit_call((int)&indirect_jump_indexed);
3831 emit_mov(15,14);
3832 emit_readword_dualindexedx4(0,1,15);
3833 emit_readword(&Count,HOST_TEMPREG);
3834 emit_readword(&next_interupt,2);
3835 emit_addimm(HOST_TEMPREG,-2*stubs[n].d-2,HOST_TEMPREG);
3836 emit_writeword(2,&last_count);
3837 emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc);
3838 if(cc<0) {
3839 emit_storereg(CCREG,HOST_TEMPREG);
3840 }
3841 restore_regs(reglist);
3842 emit_jmp(stubs[n].retaddr); // return address
3843#endif
3844}
3845
3846#ifndef multdiv_assemble
3847void multdiv_assemble(int i,struct regstat *i_regs)
3848{
3849 printf("Need multdiv_assemble for this architecture.\n");
3850 abort();
3851}
3852#endif
3853
3854static void mov_assemble(int i,struct regstat *i_regs)
3855{
3856 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3857 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3858 if(rt1[i]) {
3859 signed char sl,tl;
3860 tl=get_reg(i_regs->regmap,rt1[i]);
3861 //assert(tl>=0);
3862 if(tl>=0) {
3863 sl=get_reg(i_regs->regmap,rs1[i]);
3864 if(sl>=0) emit_mov(sl,tl);
3865 else emit_loadreg(rs1[i],tl);
3866 }
3867 }
3868 if (rs1[i] == HIREG || rs1[i] == LOREG) // MFHI/MFLO
3869 multdiv_do_stall(i, i_regs);
3870}
3871
3872// call interpreter, exception handler, things that change pc/regs/cycles ...
3873static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3874{
3875 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3876 assert(ccreg==HOST_CCREG);
3877 assert(!is_delayslot);
3878 (void)ccreg;
3879
3880 emit_movimm(pc,3); // Get PC
3881 emit_readword(&last_count,2);
3882 emit_writeword(3,&psxRegs.pc);
3883 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3884 emit_add(2,HOST_CCREG,2);
3885 emit_writeword(2,&psxRegs.cycle);
3886 emit_far_call(func);
3887 emit_far_jump(jump_to_new_pc);
3888}
3889
3890static void syscall_assemble(int i,struct regstat *i_regs)
3891{
3892 emit_movimm(0x20,0); // cause code
3893 emit_movimm(0,1); // not in delay slot
3894 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3895}
3896
3897static void hlecall_assemble(int i,struct regstat *i_regs)
3898{
3899 void *hlefunc = psxNULL;
3900 uint32_t hleCode = source[i] & 0x03ffffff;
3901 if (hleCode < ARRAY_SIZE(psxHLEt))
3902 hlefunc = psxHLEt[hleCode];
3903
3904 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3905}
3906
3907static void intcall_assemble(int i,struct regstat *i_regs)
3908{
3909 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3910}
3911
3912static void speculate_mov(int rs,int rt)
3913{
3914 if(rt!=0) {
3915 smrv_strong_next|=1<<rt;
3916 smrv[rt]=smrv[rs];
3917 }
3918}
3919
3920static void speculate_mov_weak(int rs,int rt)
3921{
3922 if(rt!=0) {
3923 smrv_weak_next|=1<<rt;
3924 smrv[rt]=smrv[rs];
3925 }
3926}
3927
3928static void speculate_register_values(int i)
3929{
3930 if(i==0) {
3931 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3932 // gp,sp are likely to stay the same throughout the block
3933 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3934 smrv_weak_next=~smrv_strong_next;
3935 //printf(" llr %08x\n", smrv[4]);
3936 }
3937 smrv_strong=smrv_strong_next;
3938 smrv_weak=smrv_weak_next;
3939 switch(itype[i]) {
3940 case ALU:
3941 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3942 else if((smrv_strong>>rs2[i])&1) speculate_mov(rs2[i],rt1[i]);
3943 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3944 else if((smrv_weak>>rs2[i])&1) speculate_mov_weak(rs2[i],rt1[i]);
3945 else {
3946 smrv_strong_next&=~(1<<rt1[i]);
3947 smrv_weak_next&=~(1<<rt1[i]);
3948 }
3949 break;
3950 case SHIFTIMM:
3951 smrv_strong_next&=~(1<<rt1[i]);
3952 smrv_weak_next&=~(1<<rt1[i]);
3953 // fallthrough
3954 case IMM16:
3955 if(rt1[i]&&is_const(&regs[i],rt1[i])) {
3956 int value,hr=get_reg(regs[i].regmap,rt1[i]);
3957 if(hr>=0) {
3958 if(get_final_value(hr,i,&value))
3959 smrv[rt1[i]]=value;
3960 else smrv[rt1[i]]=constmap[i][hr];
3961 smrv_strong_next|=1<<rt1[i];
3962 }
3963 }
3964 else {
3965 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3966 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3967 }
3968 break;
3969 case LOAD:
3970 if(start<0x2000&&(rt1[i]==26||(smrv[rt1[i]]>>24)==0xa0)) {
3971 // special case for BIOS
3972 smrv[rt1[i]]=0xa0000000;
3973 smrv_strong_next|=1<<rt1[i];
3974 break;
3975 }
3976 // fallthrough
3977 case SHIFT:
3978 case LOADLR:
3979 case MOV:
3980 smrv_strong_next&=~(1<<rt1[i]);
3981 smrv_weak_next&=~(1<<rt1[i]);
3982 break;
3983 case COP0:
3984 case COP2:
3985 if(opcode2[i]==0||opcode2[i]==2) { // MFC/CFC
3986 smrv_strong_next&=~(1<<rt1[i]);
3987 smrv_weak_next&=~(1<<rt1[i]);
3988 }
3989 break;
3990 case C2LS:
3991 if (opcode[i]==0x32) { // LWC2
3992 smrv_strong_next&=~(1<<rt1[i]);
3993 smrv_weak_next&=~(1<<rt1[i]);
3994 }
3995 break;
3996 }
3997#if 0
3998 int r=4;
3999 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4000 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4001#endif
4002}
4003
4004static void ds_assemble(int i,struct regstat *i_regs)
4005{
4006 speculate_register_values(i);
4007 is_delayslot=1;
4008 switch(itype[i]) {
4009 case ALU:
4010 alu_assemble(i,i_regs);break;
4011 case IMM16:
4012 imm16_assemble(i,i_regs);break;
4013 case SHIFT:
4014 shift_assemble(i,i_regs);break;
4015 case SHIFTIMM:
4016 shiftimm_assemble(i,i_regs);break;
4017 case LOAD:
4018 load_assemble(i,i_regs);break;
4019 case LOADLR:
4020 loadlr_assemble(i,i_regs);break;
4021 case STORE:
4022 store_assemble(i,i_regs);break;
4023 case STORELR:
4024 storelr_assemble(i,i_regs);break;
4025 case COP0:
4026 cop0_assemble(i,i_regs);break;
4027 case COP1:
4028 cop1_assemble(i,i_regs);break;
4029 case C1LS:
4030 c1ls_assemble(i,i_regs);break;
4031 case COP2:
4032 cop2_assemble(i,i_regs);break;
4033 case C2LS:
4034 c2ls_assemble(i,i_regs);break;
4035 case C2OP:
4036 c2op_assemble(i,i_regs);break;
4037 case MULTDIV:
4038 multdiv_assemble(i,i_regs);
4039 multdiv_prepare_stall(i,i_regs);
4040 break;
4041 case MOV:
4042 mov_assemble(i,i_regs);break;
4043 case SYSCALL:
4044 case HLECALL:
4045 case INTCALL:
4046 case SPAN:
4047 case UJUMP:
4048 case RJUMP:
4049 case CJUMP:
4050 case SJUMP:
4051 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4052 }
4053 is_delayslot=0;
4054}
4055
4056// Is the branch target a valid internal jump?
4057static int internal_branch(int addr)
4058{
4059 if(addr&1) return 0; // Indirect (register) jump
4060 if(addr>=start && addr<start+slen*4-4)
4061 {
4062 return 1;
4063 }
4064 return 0;
4065}
4066
4067static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4068{
4069 int hr;
4070 for(hr=0;hr<HOST_REGS;hr++) {
4071 if(hr!=EXCLUDE_REG) {
4072 if(pre[hr]!=entry[hr]) {
4073 if(pre[hr]>=0) {
4074 if((dirty>>hr)&1) {
4075 if(get_reg(entry,pre[hr])<0) {
4076 assert(pre[hr]<64);
4077 if(!((u>>pre[hr])&1))
4078 emit_storereg(pre[hr],hr);
4079 }
4080 }
4081 }
4082 }
4083 }
4084 }
4085 // Move from one register to another (no writeback)
4086 for(hr=0;hr<HOST_REGS;hr++) {
4087 if(hr!=EXCLUDE_REG) {
4088 if(pre[hr]!=entry[hr]) {
4089 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4090 int nr;
4091 if((nr=get_reg(entry,pre[hr]))>=0) {
4092 emit_mov(hr,nr);
4093 }
4094 }
4095 }
4096 }
4097 }
4098}
4099
4100// Load the specified registers
4101// This only loads the registers given as arguments because
4102// we don't want to load things that will be overwritten
4103static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4104{
4105 int hr;
4106 // Load 32-bit regs
4107 for(hr=0;hr<HOST_REGS;hr++) {
4108 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4109 if(entry[hr]!=regmap[hr]) {
4110 if(regmap[hr]==rs1||regmap[hr]==rs2)
4111 {
4112 if(regmap[hr]==0) {
4113 emit_zeroreg(hr);
4114 }
4115 else
4116 {
4117 emit_loadreg(regmap[hr],hr);
4118 }
4119 }
4120 }
4121 }
4122 }
4123}
4124
4125// Load registers prior to the start of a loop
4126// so that they are not loaded within the loop
4127static void loop_preload(signed char pre[],signed char entry[])
4128{
4129 int hr;
4130 for(hr=0;hr<HOST_REGS;hr++) {
4131 if(hr!=EXCLUDE_REG) {
4132 if(pre[hr]!=entry[hr]) {
4133 if(entry[hr]>=0) {
4134 if(get_reg(pre,entry[hr])<0) {
4135 assem_debug("loop preload:\n");
4136 //printf("loop preload: %d\n",hr);
4137 if(entry[hr]==0) {
4138 emit_zeroreg(hr);
4139 }
4140 else if(entry[hr]<TEMPREG)
4141 {
4142 emit_loadreg(entry[hr],hr);
4143 }
4144 else if(entry[hr]-64<TEMPREG)
4145 {
4146 emit_loadreg(entry[hr],hr);
4147 }
4148 }
4149 }
4150 }
4151 }
4152 }
4153}
4154
4155// Generate address for load/store instruction
4156// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4157void address_generation(int i,struct regstat *i_regs,signed char entry[])
4158{
4159 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4160 int ra=-1;
4161 int agr=AGEN1+(i&1);
4162 if(itype[i]==LOAD) {
4163 ra=get_reg(i_regs->regmap,rt1[i]);
4164 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4165 assert(ra>=0);
4166 }
4167 if(itype[i]==LOADLR) {
4168 ra=get_reg(i_regs->regmap,FTEMP);
4169 }
4170 if(itype[i]==STORE||itype[i]==STORELR) {
4171 ra=get_reg(i_regs->regmap,agr);
4172 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4173 }
4174 if(itype[i]==C1LS||itype[i]==C2LS) {
4175 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4176 ra=get_reg(i_regs->regmap,FTEMP);
4177 else { // SWC1/SDC1/SWC2/SDC2
4178 ra=get_reg(i_regs->regmap,agr);
4179 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4180 }
4181 }
4182 int rs=get_reg(i_regs->regmap,rs1[i]);
4183 if(ra>=0) {
4184 int offset=imm[i];
4185 int c=(i_regs->wasconst>>rs)&1;
4186 if(rs1[i]==0) {
4187 // Using r0 as a base address
4188 if(!entry||entry[ra]!=agr) {
4189 if (opcode[i]==0x22||opcode[i]==0x26) {
4190 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4191 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4192 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4193 }else{
4194 emit_movimm(offset,ra);
4195 }
4196 } // else did it in the previous cycle
4197 }
4198 else if(rs<0) {
4199 if(!entry||entry[ra]!=rs1[i])
4200 emit_loadreg(rs1[i],ra);
4201 //if(!entry||entry[ra]!=rs1[i])
4202 // printf("poor load scheduling!\n");
4203 }
4204 else if(c) {
4205 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4206 if(!entry||entry[ra]!=agr) {
4207 if (opcode[i]==0x22||opcode[i]==0x26) {
4208 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4209 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4210 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4211 }else{
4212 emit_movimm(constmap[i][rs]+offset,ra);
4213 regs[i].loadedconst|=1<<ra;
4214 }
4215 } // else did it in the previous cycle
4216 } // else load_consts already did it
4217 }
4218 if(offset&&!c&&rs1[i]) {
4219 if(rs>=0) {
4220 emit_addimm(rs,offset,ra);
4221 }else{
4222 emit_addimm(ra,offset,ra);
4223 }
4224 }
4225 }
4226 }
4227 // Preload constants for next instruction
4228 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4229 int agr,ra;
4230 // Actual address
4231 agr=AGEN1+((i+1)&1);
4232 ra=get_reg(i_regs->regmap,agr);
4233 if(ra>=0) {
4234 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4235 int offset=imm[i+1];
4236 int c=(regs[i+1].wasconst>>rs)&1;
4237 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4238 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4239 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4240 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4241 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4242 }else{
4243 emit_movimm(constmap[i+1][rs]+offset,ra);
4244 regs[i+1].loadedconst|=1<<ra;
4245 }
4246 }
4247 else if(rs1[i+1]==0) {
4248 // Using r0 as a base address
4249 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4250 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4251 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4252 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4253 }else{
4254 emit_movimm(offset,ra);
4255 }
4256 }
4257 }
4258 }
4259}
4260
4261static int get_final_value(int hr, int i, int *value)
4262{
4263 int reg=regs[i].regmap[hr];
4264 while(i<slen-1) {
4265 if(regs[i+1].regmap[hr]!=reg) break;
4266 if(!((regs[i+1].isconst>>hr)&1)) break;
4267 if(bt[i+1]) break;
4268 i++;
4269 }
4270 if(i<slen-1) {
4271 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4272 *value=constmap[i][hr];
4273 return 1;
4274 }
4275 if(!bt[i+1]) {
4276 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4277 // Load in delay slot, out-of-order execution
4278 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4279 {
4280 // Precompute load address
4281 *value=constmap[i][hr]+imm[i+2];
4282 return 1;
4283 }
4284 }
4285 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4286 {
4287 // Precompute load address
4288 *value=constmap[i][hr]+imm[i+1];
4289 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4290 return 1;
4291 }
4292 }
4293 }
4294 *value=constmap[i][hr];
4295 //printf("c=%lx\n",(long)constmap[i][hr]);
4296 if(i==slen-1) return 1;
4297 assert(reg < 64);
4298 return !((unneeded_reg[i+1]>>reg)&1);
4299}
4300
4301// Load registers with known constants
4302static void load_consts(signed char pre[],signed char regmap[],int i)
4303{
4304 int hr,hr2;
4305 // propagate loaded constant flags
4306 if(i==0||bt[i])
4307 regs[i].loadedconst=0;
4308 else {
4309 for(hr=0;hr<HOST_REGS;hr++) {
4310 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4311 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4312 {
4313 regs[i].loadedconst|=1<<hr;
4314 }
4315 }
4316 }
4317 // Load 32-bit regs
4318 for(hr=0;hr<HOST_REGS;hr++) {
4319 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4320 //if(entry[hr]!=regmap[hr]) {
4321 if(!((regs[i].loadedconst>>hr)&1)) {
4322 assert(regmap[hr]<64);
4323 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4324 int value,similar=0;
4325 if(get_final_value(hr,i,&value)) {
4326 // see if some other register has similar value
4327 for(hr2=0;hr2<HOST_REGS;hr2++) {
4328 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4329 if(is_similar_value(value,constmap[i][hr2])) {
4330 similar=1;
4331 break;
4332 }
4333 }
4334 }
4335 if(similar) {
4336 int value2;
4337 if(get_final_value(hr2,i,&value2)) // is this needed?
4338 emit_movimm_from(value2,hr2,value,hr);
4339 else
4340 emit_movimm(value,hr);
4341 }
4342 else if(value==0) {
4343 emit_zeroreg(hr);
4344 }
4345 else {
4346 emit_movimm(value,hr);
4347 }
4348 }
4349 regs[i].loadedconst|=1<<hr;
4350 }
4351 }
4352 }
4353 }
4354}
4355
4356void load_all_consts(signed char regmap[], u_int dirty, int i)
4357{
4358 int hr;
4359 // Load 32-bit regs
4360 for(hr=0;hr<HOST_REGS;hr++) {
4361 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4362 assert(regmap[hr] < 64);
4363 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4364 int value=constmap[i][hr];
4365 if(value==0) {
4366 emit_zeroreg(hr);
4367 }
4368 else {
4369 emit_movimm(value,hr);
4370 }
4371 }
4372 }
4373 }
4374}
4375
4376// Write out all dirty registers (except cycle count)
4377static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4378{
4379 int hr;
4380 for(hr=0;hr<HOST_REGS;hr++) {
4381 if(hr!=EXCLUDE_REG) {
4382 if(i_regmap[hr]>0) {
4383 if(i_regmap[hr]!=CCREG) {
4384 if((i_dirty>>hr)&1) {
4385 assert(i_regmap[hr]<64);
4386 emit_storereg(i_regmap[hr],hr);
4387 }
4388 }
4389 }
4390 }
4391 }
4392}
4393
4394// Write out dirty registers that we need to reload (pair with load_needed_regs)
4395// This writes the registers not written by store_regs_bt
4396void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4397{
4398 int hr;
4399 int t=(addr-start)>>2;
4400 for(hr=0;hr<HOST_REGS;hr++) {
4401 if(hr!=EXCLUDE_REG) {
4402 if(i_regmap[hr]>0) {
4403 if(i_regmap[hr]!=CCREG) {
4404 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4405 if((i_dirty>>hr)&1) {
4406 assert(i_regmap[hr]<64);
4407 emit_storereg(i_regmap[hr],hr);
4408 }
4409 }
4410 }
4411 }
4412 }
4413 }
4414}
4415
4416// Load all registers (except cycle count)
4417void load_all_regs(signed char i_regmap[])
4418{
4419 int hr;
4420 for(hr=0;hr<HOST_REGS;hr++) {
4421 if(hr!=EXCLUDE_REG) {
4422 if(i_regmap[hr]==0) {
4423 emit_zeroreg(hr);
4424 }
4425 else
4426 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4427 {
4428 emit_loadreg(i_regmap[hr],hr);
4429 }
4430 }
4431 }
4432}
4433
4434// Load all current registers also needed by next instruction
4435void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4436{
4437 int hr;
4438 for(hr=0;hr<HOST_REGS;hr++) {
4439 if(hr!=EXCLUDE_REG) {
4440 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4441 if(i_regmap[hr]==0) {
4442 emit_zeroreg(hr);
4443 }
4444 else
4445 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4446 {
4447 emit_loadreg(i_regmap[hr],hr);
4448 }
4449 }
4450 }
4451 }
4452}
4453
4454// Load all regs, storing cycle count if necessary
4455void load_regs_entry(int t)
4456{
4457 int hr;
4458 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4459 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4460 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4461 emit_storereg(CCREG,HOST_CCREG);
4462 }
4463 // Load 32-bit regs
4464 for(hr=0;hr<HOST_REGS;hr++) {
4465 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4466 if(regs[t].regmap_entry[hr]==0) {
4467 emit_zeroreg(hr);
4468 }
4469 else if(regs[t].regmap_entry[hr]!=CCREG)
4470 {
4471 emit_loadreg(regs[t].regmap_entry[hr],hr);
4472 }
4473 }
4474 }
4475}
4476
4477// Store dirty registers prior to branch
4478void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4479{
4480 if(internal_branch(addr))
4481 {
4482 int t=(addr-start)>>2;
4483 int hr;
4484 for(hr=0;hr<HOST_REGS;hr++) {
4485 if(hr!=EXCLUDE_REG) {
4486 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4487 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4488 if((i_dirty>>hr)&1) {
4489 assert(i_regmap[hr]<64);
4490 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4491 emit_storereg(i_regmap[hr],hr);
4492 }
4493 }
4494 }
4495 }
4496 }
4497 }
4498 else
4499 {
4500 // Branch out of this block, write out all dirty regs
4501 wb_dirtys(i_regmap,i_dirty);
4502 }
4503}
4504
4505// Load all needed registers for branch target
4506static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4507{
4508 //if(addr>=start && addr<(start+slen*4))
4509 if(internal_branch(addr))
4510 {
4511 int t=(addr-start)>>2;
4512 int hr;
4513 // Store the cycle count before loading something else
4514 if(i_regmap[HOST_CCREG]!=CCREG) {
4515 assert(i_regmap[HOST_CCREG]==-1);
4516 }
4517 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4518 emit_storereg(CCREG,HOST_CCREG);
4519 }
4520 // Load 32-bit regs
4521 for(hr=0;hr<HOST_REGS;hr++) {
4522 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4523 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4524 if(regs[t].regmap_entry[hr]==0) {
4525 emit_zeroreg(hr);
4526 }
4527 else if(regs[t].regmap_entry[hr]!=CCREG)
4528 {
4529 emit_loadreg(regs[t].regmap_entry[hr],hr);
4530 }
4531 }
4532 }
4533 }
4534 }
4535}
4536
4537static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4538{
4539 if(addr>=start && addr<start+slen*4-4)
4540 {
4541 int t=(addr-start)>>2;
4542 int hr;
4543 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4544 for(hr=0;hr<HOST_REGS;hr++)
4545 {
4546 if(hr!=EXCLUDE_REG)
4547 {
4548 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4549 {
4550 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4551 {
4552 return 0;
4553 }
4554 else
4555 if((i_dirty>>hr)&1)
4556 {
4557 if(i_regmap[hr]<TEMPREG)
4558 {
4559 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4560 return 0;
4561 }
4562 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4563 {
4564 assert(0);
4565 }
4566 }
4567 }
4568 else // Same register but is it 32-bit or dirty?
4569 if(i_regmap[hr]>=0)
4570 {
4571 if(!((regs[t].dirty>>hr)&1))
4572 {
4573 if((i_dirty>>hr)&1)
4574 {
4575 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4576 {
4577 //printf("%x: dirty no match\n",addr);
4578 return 0;
4579 }
4580 }
4581 }
4582 }
4583 }
4584 }
4585 // Delay slots are not valid branch targets
4586 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP)) return 0;
4587 // Delay slots require additional processing, so do not match
4588 if(is_ds[t]) return 0;
4589 }
4590 else
4591 {
4592 int hr;
4593 for(hr=0;hr<HOST_REGS;hr++)
4594 {
4595 if(hr!=EXCLUDE_REG)
4596 {
4597 if(i_regmap[hr]>=0)
4598 {
4599 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4600 {
4601 if((i_dirty>>hr)&1)
4602 {
4603 return 0;
4604 }
4605 }
4606 }
4607 }
4608 }
4609 }
4610 return 1;
4611}
4612
4613#ifdef DRC_DBG
4614static void drc_dbg_emit_do_cmp(int i)
4615{
4616 extern void do_insn_cmp();
4617 //extern int cycle;
4618 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4619
4620 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4621 save_regs(reglist);
4622 // write out changed consts to match the interpreter
4623 if (i > 0 && !bt[i]) {
4624 for (hr = 0; hr < HOST_REGS; hr++) {
4625 int reg = regs[i-1].regmap[hr];
4626 if (hr == EXCLUDE_REG || reg < 0)
4627 continue;
4628 if (!((regs[i-1].isconst >> hr) & 1))
4629 continue;
4630 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4631 continue;
4632 emit_movimm(constmap[i-1][hr],0);
4633 emit_storereg(reg, 0);
4634 }
4635 }
4636 emit_movimm(start+i*4,0);
4637 emit_writeword(0,&pcaddr);
4638 emit_far_call(do_insn_cmp);
4639 //emit_readword(&cycle,0);
4640 //emit_addimm(0,2,0);
4641 //emit_writeword(0,&cycle);
4642 (void)get_reg2;
4643 restore_regs(reglist);
4644 assem_debug("\\\\do_insn_cmp\n");
4645}
4646#else
4647#define drc_dbg_emit_do_cmp(x)
4648#endif
4649
4650// Used when a branch jumps into the delay slot of another branch
4651static void ds_assemble_entry(int i)
4652{
4653 int t=(ba[i]-start)>>2;
4654 if (!instr_addr[t])
4655 instr_addr[t] = out;
4656 assem_debug("Assemble delay slot at %x\n",ba[i]);
4657 assem_debug("<->\n");
4658 drc_dbg_emit_do_cmp(t);
4659 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4660 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4661 load_regs(regs[t].regmap_entry,regs[t].regmap,rs1[t],rs2[t]);
4662 address_generation(t,&regs[t],regs[t].regmap_entry);
4663 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4664 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4665 is_delayslot=0;
4666 switch(itype[t]) {
4667 case ALU:
4668 alu_assemble(t,&regs[t]);break;
4669 case IMM16:
4670 imm16_assemble(t,&regs[t]);break;
4671 case SHIFT:
4672 shift_assemble(t,&regs[t]);break;
4673 case SHIFTIMM:
4674 shiftimm_assemble(t,&regs[t]);break;
4675 case LOAD:
4676 load_assemble(t,&regs[t]);break;
4677 case LOADLR:
4678 loadlr_assemble(t,&regs[t]);break;
4679 case STORE:
4680 store_assemble(t,&regs[t]);break;
4681 case STORELR:
4682 storelr_assemble(t,&regs[t]);break;
4683 case COP0:
4684 cop0_assemble(t,&regs[t]);break;
4685 case COP1:
4686 cop1_assemble(t,&regs[t]);break;
4687 case C1LS:
4688 c1ls_assemble(t,&regs[t]);break;
4689 case COP2:
4690 cop2_assemble(t,&regs[t]);break;
4691 case C2LS:
4692 c2ls_assemble(t,&regs[t]);break;
4693 case C2OP:
4694 c2op_assemble(t,&regs[t]);break;
4695 case MULTDIV:
4696 multdiv_assemble(t,&regs[t]);
4697 multdiv_prepare_stall(i,&regs[t]);
4698 break;
4699 case MOV:
4700 mov_assemble(t,&regs[t]);break;
4701 case SYSCALL:
4702 case HLECALL:
4703 case INTCALL:
4704 case SPAN:
4705 case UJUMP:
4706 case RJUMP:
4707 case CJUMP:
4708 case SJUMP:
4709 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4710 }
4711 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4712 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4713 if(internal_branch(ba[i]+4))
4714 assem_debug("branch: internal\n");
4715 else
4716 assem_debug("branch: external\n");
4717 assert(internal_branch(ba[i]+4));
4718 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4719 emit_jmp(0);
4720}
4721
4722static void emit_extjump(void *addr, u_int target)
4723{
4724 emit_extjump2(addr, target, dyna_linker);
4725}
4726
4727static void emit_extjump_ds(void *addr, u_int target)
4728{
4729 emit_extjump2(addr, target, dyna_linker_ds);
4730}
4731
4732// Load 2 immediates optimizing for small code size
4733static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4734{
4735 emit_movimm(imm1,rt1);
4736 emit_movimm_from(imm1,rt1,imm2,rt2);
4737}
4738
4739void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4740{
4741 int count;
4742 void *jaddr;
4743 void *idle=NULL;
4744 int t=0;
4745 if(itype[i]==RJUMP)
4746 {
4747 *adj=0;
4748 }
4749 //if(ba[i]>=start && ba[i]<(start+slen*4))
4750 if(internal_branch(ba[i]))
4751 {
4752 t=(ba[i]-start)>>2;
4753 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4754 else *adj=ccadj[t];
4755 }
4756 else
4757 {
4758 *adj=0;
4759 }
4760 count=ccadj[i];
4761 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4762 // Idle loop
4763 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4764 idle=out;
4765 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4766 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4767 jaddr=out;
4768 emit_jmp(0);
4769 }
4770 else if(*adj==0||invert) {
4771 int cycles=CLOCK_ADJUST(count+2);
4772 // faster loop HACK
4773#if 0
4774 if (t&&*adj) {
4775 int rel=t-i;
4776 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4777 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4778 }
4779#endif
4780 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4781 jaddr=out;
4782 emit_jns(0);
4783 }
4784 else
4785 {
4786 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4787 jaddr=out;
4788 emit_jns(0);
4789 }
4790 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4791}
4792
4793static void do_ccstub(int n)
4794{
4795 literal_pool(256);
4796 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4797 set_jump_target(stubs[n].addr, out);
4798 int i=stubs[n].b;
4799 if(stubs[n].d==NULLDS) {
4800 // Delay slot instruction is nullified ("likely" branch)
4801 wb_dirtys(regs[i].regmap,regs[i].dirty);
4802 }
4803 else if(stubs[n].d!=TAKEN) {
4804 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4805 }
4806 else {
4807 if(internal_branch(ba[i]))
4808 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4809 }
4810 if(stubs[n].c!=-1)
4811 {
4812 // Save PC as return address
4813 emit_movimm(stubs[n].c,EAX);
4814 emit_writeword(EAX,&pcaddr);
4815 }
4816 else
4817 {
4818 // Return address depends on which way the branch goes
4819 if(itype[i]==CJUMP||itype[i]==SJUMP)
4820 {
4821 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4822 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4823 if(rs1[i]==0)
4824 {
4825 s1l=s2l;
4826 s2l=-1;
4827 }
4828 else if(rs2[i]==0)
4829 {
4830 s2l=-1;
4831 }
4832 assert(s1l>=0);
4833 #ifdef DESTRUCTIVE_WRITEBACK
4834 if(rs1[i]) {
4835 if((branch_regs[i].dirty>>s1l)&&1)
4836 emit_loadreg(rs1[i],s1l);
4837 }
4838 else {
4839 if((branch_regs[i].dirty>>s1l)&1)
4840 emit_loadreg(rs2[i],s1l);
4841 }
4842 if(s2l>=0)
4843 if((branch_regs[i].dirty>>s2l)&1)
4844 emit_loadreg(rs2[i],s2l);
4845 #endif
4846 int hr=0;
4847 int addr=-1,alt=-1,ntaddr=-1;
4848 while(hr<HOST_REGS)
4849 {
4850 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4851 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4852 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4853 {
4854 addr=hr++;break;
4855 }
4856 hr++;
4857 }
4858 while(hr<HOST_REGS)
4859 {
4860 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4861 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4862 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4863 {
4864 alt=hr++;break;
4865 }
4866 hr++;
4867 }
4868 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4869 {
4870 while(hr<HOST_REGS)
4871 {
4872 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4873 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4874 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4875 {
4876 ntaddr=hr;break;
4877 }
4878 hr++;
4879 }
4880 assert(hr<HOST_REGS);
4881 }
4882 if((opcode[i]&0x2f)==4) // BEQ
4883 {
4884 #ifdef HAVE_CMOV_IMM
4885 if(s2l>=0) emit_cmp(s1l,s2l);
4886 else emit_test(s1l,s1l);
4887 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4888 #else
4889 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4890 if(s2l>=0) emit_cmp(s1l,s2l);
4891 else emit_test(s1l,s1l);
4892 emit_cmovne_reg(alt,addr);
4893 #endif
4894 }
4895 if((opcode[i]&0x2f)==5) // BNE
4896 {
4897 #ifdef HAVE_CMOV_IMM
4898 if(s2l>=0) emit_cmp(s1l,s2l);
4899 else emit_test(s1l,s1l);
4900 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4901 #else
4902 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4903 if(s2l>=0) emit_cmp(s1l,s2l);
4904 else emit_test(s1l,s1l);
4905 emit_cmovne_reg(alt,addr);
4906 #endif
4907 }
4908 if((opcode[i]&0x2f)==6) // BLEZ
4909 {
4910 //emit_movimm(ba[i],alt);
4911 //emit_movimm(start+i*4+8,addr);
4912 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4913 emit_cmpimm(s1l,1);
4914 emit_cmovl_reg(alt,addr);
4915 }
4916 if((opcode[i]&0x2f)==7) // BGTZ
4917 {
4918 //emit_movimm(ba[i],addr);
4919 //emit_movimm(start+i*4+8,ntaddr);
4920 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4921 emit_cmpimm(s1l,1);
4922 emit_cmovl_reg(ntaddr,addr);
4923 }
4924 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4925 {
4926 //emit_movimm(ba[i],alt);
4927 //emit_movimm(start+i*4+8,addr);
4928 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4929 emit_test(s1l,s1l);
4930 emit_cmovs_reg(alt,addr);
4931 }
4932 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4933 {
4934 //emit_movimm(ba[i],addr);
4935 //emit_movimm(start+i*4+8,alt);
4936 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4937 emit_test(s1l,s1l);
4938 emit_cmovs_reg(alt,addr);
4939 }
4940 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4941 if(source[i]&0x10000) // BC1T
4942 {
4943 //emit_movimm(ba[i],alt);
4944 //emit_movimm(start+i*4+8,addr);
4945 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4946 emit_testimm(s1l,0x800000);
4947 emit_cmovne_reg(alt,addr);
4948 }
4949 else // BC1F
4950 {
4951 //emit_movimm(ba[i],addr);
4952 //emit_movimm(start+i*4+8,alt);
4953 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4954 emit_testimm(s1l,0x800000);
4955 emit_cmovne_reg(alt,addr);
4956 }
4957 }
4958 emit_writeword(addr,&pcaddr);
4959 }
4960 else
4961 if(itype[i]==RJUMP)
4962 {
4963 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4964 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4965 r=get_reg(branch_regs[i].regmap,RTEMP);
4966 }
4967 emit_writeword(r,&pcaddr);
4968 }
4969 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4970 }
4971 // Update cycle count
4972 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4973 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4974 emit_far_call(cc_interrupt);
4975 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4976 if(stubs[n].d==TAKEN) {
4977 if(internal_branch(ba[i]))
4978 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4979 else if(itype[i]==RJUMP) {
4980 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4981 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4982 else
4983 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4984 }
4985 }else if(stubs[n].d==NOTTAKEN) {
4986 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4987 else load_all_regs(branch_regs[i].regmap);
4988 }else if(stubs[n].d==NULLDS) {
4989 // Delay slot instruction is nullified ("likely" branch)
4990 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4991 else load_all_regs(regs[i].regmap);
4992 }else{
4993 load_all_regs(branch_regs[i].regmap);
4994 }
4995 if (stubs[n].retaddr)
4996 emit_jmp(stubs[n].retaddr);
4997 else
4998 do_jump_vaddr(stubs[n].e);
4999}
5000
5001static void add_to_linker(void *addr, u_int target, int ext)
5002{
5003 assert(linkcount < ARRAY_SIZE(link_addr));
5004 link_addr[linkcount].addr = addr;
5005 link_addr[linkcount].target = target;
5006 link_addr[linkcount].ext = ext;
5007 linkcount++;
5008}
5009
5010static void ujump_assemble_write_ra(int i)
5011{
5012 int rt;
5013 unsigned int return_address;
5014 rt=get_reg(branch_regs[i].regmap,31);
5015 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5016 //assert(rt>=0);
5017 return_address=start+i*4+8;
5018 if(rt>=0) {
5019 #ifdef USE_MINI_HT
5020 if(internal_branch(return_address)&&rt1[i+1]!=31) {
5021 int temp=-1; // note: must be ds-safe
5022 #ifdef HOST_TEMPREG
5023 temp=HOST_TEMPREG;
5024 #endif
5025 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5026 else emit_movimm(return_address,rt);
5027 }
5028 else
5029 #endif
5030 {
5031 #ifdef REG_PREFETCH
5032 if(temp>=0)
5033 {
5034 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5035 }
5036 #endif
5037 emit_movimm(return_address,rt); // PC into link register
5038 #ifdef IMM_PREFETCH
5039 emit_prefetch(hash_table_get(return_address));
5040 #endif
5041 }
5042 }
5043}
5044
5045static void ujump_assemble(int i,struct regstat *i_regs)
5046{
5047 int ra_done=0;
5048 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5049 address_generation(i+1,i_regs,regs[i].regmap_entry);
5050 #ifdef REG_PREFETCH
5051 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5052 if(rt1[i]==31&&temp>=0)
5053 {
5054 signed char *i_regmap=i_regs->regmap;
5055 int return_address=start+i*4+8;
5056 if(get_reg(branch_regs[i].regmap,31)>0)
5057 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5058 }
5059 #endif
5060 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5061 ujump_assemble_write_ra(i); // writeback ra for DS
5062 ra_done=1;
5063 }
5064 ds_assemble(i+1,i_regs);
5065 uint64_t bc_unneeded=branch_regs[i].u;
5066 bc_unneeded|=1|(1LL<<rt1[i]);
5067 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5068 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5069 if(!ra_done&&rt1[i]==31)
5070 ujump_assemble_write_ra(i);
5071 int cc,adj;
5072 cc=get_reg(branch_regs[i].regmap,CCREG);
5073 assert(cc==HOST_CCREG);
5074 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5075 #ifdef REG_PREFETCH
5076 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5077 #endif
5078 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5079 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5080 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5081 if(internal_branch(ba[i]))
5082 assem_debug("branch: internal\n");
5083 else
5084 assem_debug("branch: external\n");
5085 if(internal_branch(ba[i])&&is_ds[(ba[i]-start)>>2]) {
5086 ds_assemble_entry(i);
5087 }
5088 else {
5089 add_to_linker(out,ba[i],internal_branch(ba[i]));
5090 emit_jmp(0);
5091 }
5092}
5093
5094static void rjump_assemble_write_ra(int i)
5095{
5096 int rt,return_address;
5097 assert(rt1[i+1]!=rt1[i]);
5098 assert(rt2[i+1]!=rt1[i]);
5099 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5100 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5101 assert(rt>=0);
5102 return_address=start+i*4+8;
5103 #ifdef REG_PREFETCH
5104 if(temp>=0)
5105 {
5106 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5107 }
5108 #endif
5109 emit_movimm(return_address,rt); // PC into link register
5110 #ifdef IMM_PREFETCH
5111 emit_prefetch(hash_table_get(return_address));
5112 #endif
5113}
5114
5115static void rjump_assemble(int i,struct regstat *i_regs)
5116{
5117 int temp;
5118 int rs,cc;
5119 int ra_done=0;
5120 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5121 assert(rs>=0);
5122 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5123 // Delay slot abuse, make a copy of the branch address register
5124 temp=get_reg(branch_regs[i].regmap,RTEMP);
5125 assert(temp>=0);
5126 assert(regs[i].regmap[temp]==RTEMP);
5127 emit_mov(rs,temp);
5128 rs=temp;
5129 }
5130 address_generation(i+1,i_regs,regs[i].regmap_entry);
5131 #ifdef REG_PREFETCH
5132 if(rt1[i]==31)
5133 {
5134 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5135 signed char *i_regmap=i_regs->regmap;
5136 int return_address=start+i*4+8;
5137 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5138 }
5139 }
5140 #endif
5141 #ifdef USE_MINI_HT
5142 if(rs1[i]==31) {
5143 int rh=get_reg(regs[i].regmap,RHASH);
5144 if(rh>=0) do_preload_rhash(rh);
5145 }
5146 #endif
5147 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5148 rjump_assemble_write_ra(i);
5149 ra_done=1;
5150 }
5151 ds_assemble(i+1,i_regs);
5152 uint64_t bc_unneeded=branch_regs[i].u;
5153 bc_unneeded|=1|(1LL<<rt1[i]);
5154 bc_unneeded&=~(1LL<<rs1[i]);
5155 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5156 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],CCREG);
5157 if(!ra_done&&rt1[i]!=0)
5158 rjump_assemble_write_ra(i);
5159 cc=get_reg(branch_regs[i].regmap,CCREG);
5160 assert(cc==HOST_CCREG);
5161 (void)cc;
5162 #ifdef USE_MINI_HT
5163 int rh=get_reg(branch_regs[i].regmap,RHASH);
5164 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5165 if(rs1[i]==31) {
5166 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5167 do_preload_rhtbl(ht);
5168 do_rhash(rs,rh);
5169 }
5170 #endif
5171 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5172 #ifdef DESTRUCTIVE_WRITEBACK
5173 if((branch_regs[i].dirty>>rs)&1) {
5174 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5175 emit_loadreg(rs1[i],rs);
5176 }
5177 }
5178 #endif
5179 #ifdef REG_PREFETCH
5180 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5181 #endif
5182 #ifdef USE_MINI_HT
5183 if(rs1[i]==31) {
5184 do_miniht_load(ht,rh);
5185 }
5186 #endif
5187 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5188 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5189 //assert(adj==0);
5190 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5191 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5192 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5193 // special case for RFE
5194 emit_jmp(0);
5195 else
5196 emit_jns(0);
5197 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5198 #ifdef USE_MINI_HT
5199 if(rs1[i]==31) {
5200 do_miniht_jump(rs,rh,ht);
5201 }
5202 else
5203 #endif
5204 {
5205 do_jump_vaddr(rs);
5206 }
5207 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5208 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5209 #endif
5210}
5211
5212static void cjump_assemble(int i,struct regstat *i_regs)
5213{
5214 signed char *i_regmap=i_regs->regmap;
5215 int cc;
5216 int match;
5217 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5218 assem_debug("match=%d\n",match);
5219 int s1l,s2l;
5220 int unconditional=0,nop=0;
5221 int invert=0;
5222 int internal=internal_branch(ba[i]);
5223 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5224 if(!match) invert=1;
5225 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5226 if(i>(ba[i]-start)>>2) invert=1;
5227 #endif
5228 #ifdef __aarch64__
5229 invert=1; // because of near cond. branches
5230 #endif
5231
5232 if(ooo[i]) {
5233 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5234 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5235 }
5236 else {
5237 s1l=get_reg(i_regmap,rs1[i]);
5238 s2l=get_reg(i_regmap,rs2[i]);
5239 }
5240 if(rs1[i]==0&&rs2[i]==0)
5241 {
5242 if(opcode[i]&1) nop=1;
5243 else unconditional=1;
5244 //assert(opcode[i]!=5);
5245 //assert(opcode[i]!=7);
5246 //assert(opcode[i]!=0x15);
5247 //assert(opcode[i]!=0x17);
5248 }
5249 else if(rs1[i]==0)
5250 {
5251 s1l=s2l;
5252 s2l=-1;
5253 }
5254 else if(rs2[i]==0)
5255 {
5256 s2l=-1;
5257 }
5258
5259 if(ooo[i]) {
5260 // Out of order execution (delay slot first)
5261 //printf("OOOE\n");
5262 address_generation(i+1,i_regs,regs[i].regmap_entry);
5263 ds_assemble(i+1,i_regs);
5264 int adj;
5265 uint64_t bc_unneeded=branch_regs[i].u;
5266 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5267 bc_unneeded|=1;
5268 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5269 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs2[i]);
5270 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5271 cc=get_reg(branch_regs[i].regmap,CCREG);
5272 assert(cc==HOST_CCREG);
5273 if(unconditional)
5274 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5275 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5276 //assem_debug("cycle count (adj)\n");
5277 if(unconditional) {
5278 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5279 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5280 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5281 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5282 if(internal)
5283 assem_debug("branch: internal\n");
5284 else
5285 assem_debug("branch: external\n");
5286 if(internal&&is_ds[(ba[i]-start)>>2]) {
5287 ds_assemble_entry(i);
5288 }
5289 else {
5290 add_to_linker(out,ba[i],internal);
5291 emit_jmp(0);
5292 }
5293 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5294 if(((u_int)out)&7) emit_addnop(0);
5295 #endif
5296 }
5297 }
5298 else if(nop) {
5299 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5300 void *jaddr=out;
5301 emit_jns(0);
5302 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5303 }
5304 else {
5305 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5306 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5307 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5308
5309 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5310 assert(s1l>=0);
5311 if(opcode[i]==4) // BEQ
5312 {
5313 if(s2l>=0) emit_cmp(s1l,s2l);
5314 else emit_test(s1l,s1l);
5315 if(invert){
5316 nottaken=out;
5317 emit_jne(DJT_1);
5318 }else{
5319 add_to_linker(out,ba[i],internal);
5320 emit_jeq(0);
5321 }
5322 }
5323 if(opcode[i]==5) // BNE
5324 {
5325 if(s2l>=0) emit_cmp(s1l,s2l);
5326 else emit_test(s1l,s1l);
5327 if(invert){
5328 nottaken=out;
5329 emit_jeq(DJT_1);
5330 }else{
5331 add_to_linker(out,ba[i],internal);
5332 emit_jne(0);
5333 }
5334 }
5335 if(opcode[i]==6) // BLEZ
5336 {
5337 emit_cmpimm(s1l,1);
5338 if(invert){
5339 nottaken=out;
5340 emit_jge(DJT_1);
5341 }else{
5342 add_to_linker(out,ba[i],internal);
5343 emit_jl(0);
5344 }
5345 }
5346 if(opcode[i]==7) // BGTZ
5347 {
5348 emit_cmpimm(s1l,1);
5349 if(invert){
5350 nottaken=out;
5351 emit_jl(DJT_1);
5352 }else{
5353 add_to_linker(out,ba[i],internal);
5354 emit_jge(0);
5355 }
5356 }
5357 if(invert) {
5358 if(taken) set_jump_target(taken, out);
5359 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5360 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5361 if(adj) {
5362 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5363 add_to_linker(out,ba[i],internal);
5364 }else{
5365 emit_addnop(13);
5366 add_to_linker(out,ba[i],internal*2);
5367 }
5368 emit_jmp(0);
5369 }else
5370 #endif
5371 {
5372 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5373 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5374 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5375 if(internal)
5376 assem_debug("branch: internal\n");
5377 else
5378 assem_debug("branch: external\n");
5379 if(internal&&is_ds[(ba[i]-start)>>2]) {
5380 ds_assemble_entry(i);
5381 }
5382 else {
5383 add_to_linker(out,ba[i],internal);
5384 emit_jmp(0);
5385 }
5386 }
5387 set_jump_target(nottaken, out);
5388 }
5389
5390 if(nottaken1) set_jump_target(nottaken1, out);
5391 if(adj) {
5392 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5393 }
5394 } // (!unconditional)
5395 } // if(ooo)
5396 else
5397 {
5398 // In-order execution (branch first)
5399 //if(likely[i]) printf("IOL\n");
5400 //else
5401 //printf("IOE\n");
5402 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5403 if(!unconditional&&!nop) {
5404 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5405 assert(s1l>=0);
5406 if((opcode[i]&0x2f)==4) // BEQ
5407 {
5408 if(s2l>=0) emit_cmp(s1l,s2l);
5409 else emit_test(s1l,s1l);
5410 nottaken=out;
5411 emit_jne(DJT_2);
5412 }
5413 if((opcode[i]&0x2f)==5) // BNE
5414 {
5415 if(s2l>=0) emit_cmp(s1l,s2l);
5416 else emit_test(s1l,s1l);
5417 nottaken=out;
5418 emit_jeq(DJT_2);
5419 }
5420 if((opcode[i]&0x2f)==6) // BLEZ
5421 {
5422 emit_cmpimm(s1l,1);
5423 nottaken=out;
5424 emit_jge(DJT_2);
5425 }
5426 if((opcode[i]&0x2f)==7) // BGTZ
5427 {
5428 emit_cmpimm(s1l,1);
5429 nottaken=out;
5430 emit_jl(DJT_2);
5431 }
5432 } // if(!unconditional)
5433 int adj;
5434 uint64_t ds_unneeded=branch_regs[i].u;
5435 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5436 ds_unneeded|=1;
5437 // branch taken
5438 if(!nop) {
5439 if(taken) set_jump_target(taken, out);
5440 assem_debug("1:\n");
5441 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5442 // load regs
5443 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5444 address_generation(i+1,&branch_regs[i],0);
5445 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5446 ds_assemble(i+1,&branch_regs[i]);
5447 cc=get_reg(branch_regs[i].regmap,CCREG);
5448 if(cc==-1) {
5449 emit_loadreg(CCREG,cc=HOST_CCREG);
5450 // CHECK: Is the following instruction (fall thru) allocated ok?
5451 }
5452 assert(cc==HOST_CCREG);
5453 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5454 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5455 assem_debug("cycle count (adj)\n");
5456 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5457 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5458 if(internal)
5459 assem_debug("branch: internal\n");
5460 else
5461 assem_debug("branch: external\n");
5462 if(internal&&is_ds[(ba[i]-start)>>2]) {
5463 ds_assemble_entry(i);
5464 }
5465 else {
5466 add_to_linker(out,ba[i],internal);
5467 emit_jmp(0);
5468 }
5469 }
5470 // branch not taken
5471 if(!unconditional) {
5472 if(nottaken1) set_jump_target(nottaken1, out);
5473 set_jump_target(nottaken, out);
5474 assem_debug("2:\n");
5475 if(!likely[i]) {
5476 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5477 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5478 address_generation(i+1,&branch_regs[i],0);
5479 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5480 ds_assemble(i+1,&branch_regs[i]);
5481 }
5482 cc=get_reg(branch_regs[i].regmap,CCREG);
5483 if(cc==-1&&!likely[i]) {
5484 // Cycle count isn't in a register, temporarily load it then write it out
5485 emit_loadreg(CCREG,HOST_CCREG);
5486 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5487 void *jaddr=out;
5488 emit_jns(0);
5489 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5490 emit_storereg(CCREG,HOST_CCREG);
5491 }
5492 else{
5493 cc=get_reg(i_regmap,CCREG);
5494 assert(cc==HOST_CCREG);
5495 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5496 void *jaddr=out;
5497 emit_jns(0);
5498 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5499 }
5500 }
5501 }
5502}
5503
5504static void sjump_assemble(int i,struct regstat *i_regs)
5505{
5506 signed char *i_regmap=i_regs->regmap;
5507 int cc;
5508 int match;
5509 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5510 assem_debug("smatch=%d\n",match);
5511 int s1l;
5512 int unconditional=0,nevertaken=0;
5513 int invert=0;
5514 int internal=internal_branch(ba[i]);
5515 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5516 if(!match) invert=1;
5517 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5518 if(i>(ba[i]-start)>>2) invert=1;
5519 #endif
5520 #ifdef __aarch64__
5521 invert=1; // because of near cond. branches
5522 #endif
5523
5524 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5525 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5526
5527 if(ooo[i]) {
5528 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5529 }
5530 else {
5531 s1l=get_reg(i_regmap,rs1[i]);
5532 }
5533 if(rs1[i]==0)
5534 {
5535 if(opcode2[i]&1) unconditional=1;
5536 else nevertaken=1;
5537 // These are never taken (r0 is never less than zero)
5538 //assert(opcode2[i]!=0);
5539 //assert(opcode2[i]!=2);
5540 //assert(opcode2[i]!=0x10);
5541 //assert(opcode2[i]!=0x12);
5542 }
5543
5544 if(ooo[i]) {
5545 // Out of order execution (delay slot first)
5546 //printf("OOOE\n");
5547 address_generation(i+1,i_regs,regs[i].regmap_entry);
5548 ds_assemble(i+1,i_regs);
5549 int adj;
5550 uint64_t bc_unneeded=branch_regs[i].u;
5551 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5552 bc_unneeded|=1;
5553 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5554 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs1[i]);
5555 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5556 if(rt1[i]==31) {
5557 int rt,return_address;
5558 rt=get_reg(branch_regs[i].regmap,31);
5559 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5560 if(rt>=0) {
5561 // Save the PC even if the branch is not taken
5562 return_address=start+i*4+8;
5563 emit_movimm(return_address,rt); // PC into link register
5564 #ifdef IMM_PREFETCH
5565 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5566 #endif
5567 }
5568 }
5569 cc=get_reg(branch_regs[i].regmap,CCREG);
5570 assert(cc==HOST_CCREG);
5571 if(unconditional)
5572 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5573 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5574 assem_debug("cycle count (adj)\n");
5575 if(unconditional) {
5576 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5577 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5578 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5579 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5580 if(internal)
5581 assem_debug("branch: internal\n");
5582 else
5583 assem_debug("branch: external\n");
5584 if(internal&&is_ds[(ba[i]-start)>>2]) {
5585 ds_assemble_entry(i);
5586 }
5587 else {
5588 add_to_linker(out,ba[i],internal);
5589 emit_jmp(0);
5590 }
5591 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5592 if(((u_int)out)&7) emit_addnop(0);
5593 #endif
5594 }
5595 }
5596 else if(nevertaken) {
5597 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5598 void *jaddr=out;
5599 emit_jns(0);
5600 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5601 }
5602 else {
5603 void *nottaken = NULL;
5604 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5605 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5606 {
5607 assert(s1l>=0);
5608 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5609 {
5610 emit_test(s1l,s1l);
5611 if(invert){
5612 nottaken=out;
5613 emit_jns(DJT_1);
5614 }else{
5615 add_to_linker(out,ba[i],internal);
5616 emit_js(0);
5617 }
5618 }
5619 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5620 {
5621 emit_test(s1l,s1l);
5622 if(invert){
5623 nottaken=out;
5624 emit_js(DJT_1);
5625 }else{
5626 add_to_linker(out,ba[i],internal);
5627 emit_jns(0);
5628 }
5629 }
5630 }
5631
5632 if(invert) {
5633 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5634 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5635 if(adj) {
5636 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5637 add_to_linker(out,ba[i],internal);
5638 }else{
5639 emit_addnop(13);
5640 add_to_linker(out,ba[i],internal*2);
5641 }
5642 emit_jmp(0);
5643 }else
5644 #endif
5645 {
5646 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5647 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5648 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5649 if(internal)
5650 assem_debug("branch: internal\n");
5651 else
5652 assem_debug("branch: external\n");
5653 if(internal&&is_ds[(ba[i]-start)>>2]) {
5654 ds_assemble_entry(i);
5655 }
5656 else {
5657 add_to_linker(out,ba[i],internal);
5658 emit_jmp(0);
5659 }
5660 }
5661 set_jump_target(nottaken, out);
5662 }
5663
5664 if(adj) {
5665 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5666 }
5667 } // (!unconditional)
5668 } // if(ooo)
5669 else
5670 {
5671 // In-order execution (branch first)
5672 //printf("IOE\n");
5673 void *nottaken = NULL;
5674 if(rt1[i]==31) {
5675 int rt,return_address;
5676 rt=get_reg(branch_regs[i].regmap,31);
5677 if(rt>=0) {
5678 // Save the PC even if the branch is not taken
5679 return_address=start+i*4+8;
5680 emit_movimm(return_address,rt); // PC into link register
5681 #ifdef IMM_PREFETCH
5682 emit_prefetch(hash_table_get(return_address));
5683 #endif
5684 }
5685 }
5686 if(!unconditional) {
5687 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5688 assert(s1l>=0);
5689 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5690 {
5691 emit_test(s1l,s1l);
5692 nottaken=out;
5693 emit_jns(DJT_1);
5694 }
5695 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5696 {
5697 emit_test(s1l,s1l);
5698 nottaken=out;
5699 emit_js(DJT_1);
5700 }
5701 } // if(!unconditional)
5702 int adj;
5703 uint64_t ds_unneeded=branch_regs[i].u;
5704 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5705 ds_unneeded|=1;
5706 // branch taken
5707 if(!nevertaken) {
5708 //assem_debug("1:\n");
5709 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5710 // load regs
5711 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5712 address_generation(i+1,&branch_regs[i],0);
5713 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5714 ds_assemble(i+1,&branch_regs[i]);
5715 cc=get_reg(branch_regs[i].regmap,CCREG);
5716 if(cc==-1) {
5717 emit_loadreg(CCREG,cc=HOST_CCREG);
5718 // CHECK: Is the following instruction (fall thru) allocated ok?
5719 }
5720 assert(cc==HOST_CCREG);
5721 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5722 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5723 assem_debug("cycle count (adj)\n");
5724 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5725 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5726 if(internal)
5727 assem_debug("branch: internal\n");
5728 else
5729 assem_debug("branch: external\n");
5730 if(internal&&is_ds[(ba[i]-start)>>2]) {
5731 ds_assemble_entry(i);
5732 }
5733 else {
5734 add_to_linker(out,ba[i],internal);
5735 emit_jmp(0);
5736 }
5737 }
5738 // branch not taken
5739 if(!unconditional) {
5740 set_jump_target(nottaken, out);
5741 assem_debug("1:\n");
5742 if(!likely[i]) {
5743 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5744 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5745 address_generation(i+1,&branch_regs[i],0);
5746 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5747 ds_assemble(i+1,&branch_regs[i]);
5748 }
5749 cc=get_reg(branch_regs[i].regmap,CCREG);
5750 if(cc==-1&&!likely[i]) {
5751 // Cycle count isn't in a register, temporarily load it then write it out
5752 emit_loadreg(CCREG,HOST_CCREG);
5753 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5754 void *jaddr=out;
5755 emit_jns(0);
5756 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5757 emit_storereg(CCREG,HOST_CCREG);
5758 }
5759 else{
5760 cc=get_reg(i_regmap,CCREG);
5761 assert(cc==HOST_CCREG);
5762 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5763 void *jaddr=out;
5764 emit_jns(0);
5765 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5766 }
5767 }
5768 }
5769}
5770
5771static void pagespan_assemble(int i,struct regstat *i_regs)
5772{
5773 int s1l=get_reg(i_regs->regmap,rs1[i]);
5774 int s2l=get_reg(i_regs->regmap,rs2[i]);
5775 void *taken = NULL;
5776 void *nottaken = NULL;
5777 int unconditional=0;
5778 if(rs1[i]==0)
5779 {
5780 s1l=s2l;
5781 s2l=-1;
5782 }
5783 else if(rs2[i]==0)
5784 {
5785 s2l=-1;
5786 }
5787 int hr=0;
5788 int addr=-1,alt=-1,ntaddr=-1;
5789 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5790 else {
5791 while(hr<HOST_REGS)
5792 {
5793 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5794 (i_regs->regmap[hr]&63)!=rs1[i] &&
5795 (i_regs->regmap[hr]&63)!=rs2[i] )
5796 {
5797 addr=hr++;break;
5798 }
5799 hr++;
5800 }
5801 }
5802 while(hr<HOST_REGS)
5803 {
5804 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5805 (i_regs->regmap[hr]&63)!=rs1[i] &&
5806 (i_regs->regmap[hr]&63)!=rs2[i] )
5807 {
5808 alt=hr++;break;
5809 }
5810 hr++;
5811 }
5812 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5813 {
5814 while(hr<HOST_REGS)
5815 {
5816 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5817 (i_regs->regmap[hr]&63)!=rs1[i] &&
5818 (i_regs->regmap[hr]&63)!=rs2[i] )
5819 {
5820 ntaddr=hr;break;
5821 }
5822 hr++;
5823 }
5824 }
5825 assert(hr<HOST_REGS);
5826 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5827 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5828 }
5829 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5830 if(opcode[i]==2) // J
5831 {
5832 unconditional=1;
5833 }
5834 if(opcode[i]==3) // JAL
5835 {
5836 // TODO: mini_ht
5837 int rt=get_reg(i_regs->regmap,31);
5838 emit_movimm(start+i*4+8,rt);
5839 unconditional=1;
5840 }
5841 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5842 {
5843 emit_mov(s1l,addr);
5844 if(opcode2[i]==9) // JALR
5845 {
5846 int rt=get_reg(i_regs->regmap,rt1[i]);
5847 emit_movimm(start+i*4+8,rt);
5848 }
5849 }
5850 if((opcode[i]&0x3f)==4) // BEQ
5851 {
5852 if(rs1[i]==rs2[i])
5853 {
5854 unconditional=1;
5855 }
5856 else
5857 #ifdef HAVE_CMOV_IMM
5858 if(1) {
5859 if(s2l>=0) emit_cmp(s1l,s2l);
5860 else emit_test(s1l,s1l);
5861 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5862 }
5863 else
5864 #endif
5865 {
5866 assert(s1l>=0);
5867 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5868 if(s2l>=0) emit_cmp(s1l,s2l);
5869 else emit_test(s1l,s1l);
5870 emit_cmovne_reg(alt,addr);
5871 }
5872 }
5873 if((opcode[i]&0x3f)==5) // BNE
5874 {
5875 #ifdef HAVE_CMOV_IMM
5876 if(s2l>=0) emit_cmp(s1l,s2l);
5877 else emit_test(s1l,s1l);
5878 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5879 #else
5880 assert(s1l>=0);
5881 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5882 if(s2l>=0) emit_cmp(s1l,s2l);
5883 else emit_test(s1l,s1l);
5884 emit_cmovne_reg(alt,addr);
5885 #endif
5886 }
5887 if((opcode[i]&0x3f)==0x14) // BEQL
5888 {
5889 if(s2l>=0) emit_cmp(s1l,s2l);
5890 else emit_test(s1l,s1l);
5891 if(nottaken) set_jump_target(nottaken, out);
5892 nottaken=out;
5893 emit_jne(0);
5894 }
5895 if((opcode[i]&0x3f)==0x15) // BNEL
5896 {
5897 if(s2l>=0) emit_cmp(s1l,s2l);
5898 else emit_test(s1l,s1l);
5899 nottaken=out;
5900 emit_jeq(0);
5901 if(taken) set_jump_target(taken, out);
5902 }
5903 if((opcode[i]&0x3f)==6) // BLEZ
5904 {
5905 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5906 emit_cmpimm(s1l,1);
5907 emit_cmovl_reg(alt,addr);
5908 }
5909 if((opcode[i]&0x3f)==7) // BGTZ
5910 {
5911 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5912 emit_cmpimm(s1l,1);
5913 emit_cmovl_reg(ntaddr,addr);
5914 }
5915 if((opcode[i]&0x3f)==0x16) // BLEZL
5916 {
5917 assert((opcode[i]&0x3f)!=0x16);
5918 }
5919 if((opcode[i]&0x3f)==0x17) // BGTZL
5920 {
5921 assert((opcode[i]&0x3f)!=0x17);
5922 }
5923 assert(opcode[i]!=1); // BLTZ/BGEZ
5924
5925 //FIXME: Check CSREG
5926 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5927 if((source[i]&0x30000)==0) // BC1F
5928 {
5929 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5930 emit_testimm(s1l,0x800000);
5931 emit_cmovne_reg(alt,addr);
5932 }
5933 if((source[i]&0x30000)==0x10000) // BC1T
5934 {
5935 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5936 emit_testimm(s1l,0x800000);
5937 emit_cmovne_reg(alt,addr);
5938 }
5939 if((source[i]&0x30000)==0x20000) // BC1FL
5940 {
5941 emit_testimm(s1l,0x800000);
5942 nottaken=out;
5943 emit_jne(0);
5944 }
5945 if((source[i]&0x30000)==0x30000) // BC1TL
5946 {
5947 emit_testimm(s1l,0x800000);
5948 nottaken=out;
5949 emit_jeq(0);
5950 }
5951 }
5952
5953 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5954 wb_dirtys(regs[i].regmap,regs[i].dirty);
5955 if(likely[i]||unconditional)
5956 {
5957 emit_movimm(ba[i],HOST_BTREG);
5958 }
5959 else if(addr!=HOST_BTREG)
5960 {
5961 emit_mov(addr,HOST_BTREG);
5962 }
5963 void *branch_addr=out;
5964 emit_jmp(0);
5965 int target_addr=start+i*4+5;
5966 void *stub=out;
5967 void *compiled_target_addr=check_addr(target_addr);
5968 emit_extjump_ds(branch_addr, target_addr);
5969 if(compiled_target_addr) {
5970 set_jump_target(branch_addr, compiled_target_addr);
5971 add_link(target_addr,stub);
5972 }
5973 else set_jump_target(branch_addr, stub);
5974 if(likely[i]) {
5975 // Not-taken path
5976 set_jump_target(nottaken, out);
5977 wb_dirtys(regs[i].regmap,regs[i].dirty);
5978 void *branch_addr=out;
5979 emit_jmp(0);
5980 int target_addr=start+i*4+8;
5981 void *stub=out;
5982 void *compiled_target_addr=check_addr(target_addr);
5983 emit_extjump_ds(branch_addr, target_addr);
5984 if(compiled_target_addr) {
5985 set_jump_target(branch_addr, compiled_target_addr);
5986 add_link(target_addr,stub);
5987 }
5988 else set_jump_target(branch_addr, stub);
5989 }
5990}
5991
5992// Assemble the delay slot for the above
5993static void pagespan_ds()
5994{
5995 assem_debug("initial delay slot:\n");
5996 u_int vaddr=start+1;
5997 u_int page=get_page(vaddr);
5998 u_int vpage=get_vpage(vaddr);
5999 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6000 do_dirty_stub_ds();
6001 ll_add(jump_in+page,vaddr,(void *)out);
6002 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6003 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6004 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
6005 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6006 emit_writeword(HOST_BTREG,&branch_target);
6007 load_regs(regs[0].regmap_entry,regs[0].regmap,rs1[0],rs2[0]);
6008 address_generation(0,&regs[0],regs[0].regmap_entry);
6009 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6010 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
6011 is_delayslot=0;
6012 switch(itype[0]) {
6013 case ALU:
6014 alu_assemble(0,&regs[0]);break;
6015 case IMM16:
6016 imm16_assemble(0,&regs[0]);break;
6017 case SHIFT:
6018 shift_assemble(0,&regs[0]);break;
6019 case SHIFTIMM:
6020 shiftimm_assemble(0,&regs[0]);break;
6021 case LOAD:
6022 load_assemble(0,&regs[0]);break;
6023 case LOADLR:
6024 loadlr_assemble(0,&regs[0]);break;
6025 case STORE:
6026 store_assemble(0,&regs[0]);break;
6027 case STORELR:
6028 storelr_assemble(0,&regs[0]);break;
6029 case COP0:
6030 cop0_assemble(0,&regs[0]);break;
6031 case COP1:
6032 cop1_assemble(0,&regs[0]);break;
6033 case C1LS:
6034 c1ls_assemble(0,&regs[0]);break;
6035 case COP2:
6036 cop2_assemble(0,&regs[0]);break;
6037 case C2LS:
6038 c2ls_assemble(0,&regs[0]);break;
6039 case C2OP:
6040 c2op_assemble(0,&regs[0]);break;
6041 case MULTDIV:
6042 multdiv_assemble(0,&regs[0]);
6043 multdiv_prepare_stall(0,&regs[0]);
6044 break;
6045 case MOV:
6046 mov_assemble(0,&regs[0]);break;
6047 case SYSCALL:
6048 case HLECALL:
6049 case INTCALL:
6050 case SPAN:
6051 case UJUMP:
6052 case RJUMP:
6053 case CJUMP:
6054 case SJUMP:
6055 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
6056 }
6057 int btaddr=get_reg(regs[0].regmap,BTREG);
6058 if(btaddr<0) {
6059 btaddr=get_reg(regs[0].regmap,-1);
6060 emit_readword(&branch_target,btaddr);
6061 }
6062 assert(btaddr!=HOST_CCREG);
6063 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6064#ifdef HOST_IMM8
6065 host_tempreg_acquire();
6066 emit_movimm(start+4,HOST_TEMPREG);
6067 emit_cmp(btaddr,HOST_TEMPREG);
6068 host_tempreg_release();
6069#else
6070 emit_cmpimm(btaddr,start+4);
6071#endif
6072 void *branch = out;
6073 emit_jeq(0);
6074 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
6075 do_jump_vaddr(btaddr);
6076 set_jump_target(branch, out);
6077 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6078 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6079}
6080
6081// Basic liveness analysis for MIPS registers
6082void unneeded_registers(int istart,int iend,int r)
6083{
6084 int i;
6085 uint64_t u,gte_u,b,gte_b;
6086 uint64_t temp_u,temp_gte_u=0;
6087 uint64_t gte_u_unknown=0;
6088 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6089 gte_u_unknown=~0ll;
6090 if(iend==slen-1) {
6091 u=1;
6092 gte_u=gte_u_unknown;
6093 }else{
6094 //u=unneeded_reg[iend+1];
6095 u=1;
6096 gte_u=gte_unneeded[iend+1];
6097 }
6098
6099 for (i=iend;i>=istart;i--)
6100 {
6101 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6102 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6103 {
6104 // If subroutine call, flag return address as a possible branch target
6105 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6106
6107 if(ba[i]<start || ba[i]>=(start+slen*4))
6108 {
6109 // Branch out of this block, flush all regs
6110 u=1;
6111 gte_u=gte_u_unknown;
6112 branch_unneeded_reg[i]=u;
6113 // Merge in delay slot
6114 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6115 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6116 u|=1;
6117 gte_u|=gte_rt[i+1];
6118 gte_u&=~gte_rs[i+1];
6119 // If branch is "likely" (and conditional)
6120 // then we skip the delay slot on the fall-thru path
6121 if(likely[i]) {
6122 if(i<slen-1) {
6123 u&=unneeded_reg[i+2];
6124 gte_u&=gte_unneeded[i+2];
6125 }
6126 else
6127 {
6128 u=1;
6129 gte_u=gte_u_unknown;
6130 }
6131 }
6132 }
6133 else
6134 {
6135 // Internal branch, flag target
6136 bt[(ba[i]-start)>>2]=1;
6137 if(ba[i]<=start+i*4) {
6138 // Backward branch
6139 if(is_ujump(i))
6140 {
6141 // Unconditional branch
6142 temp_u=1;
6143 temp_gte_u=0;
6144 } else {
6145 // Conditional branch (not taken case)
6146 temp_u=unneeded_reg[i+2];
6147 temp_gte_u&=gte_unneeded[i+2];
6148 }
6149 // Merge in delay slot
6150 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6151 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6152 temp_u|=1;
6153 temp_gte_u|=gte_rt[i+1];
6154 temp_gte_u&=~gte_rs[i+1];
6155 // If branch is "likely" (and conditional)
6156 // then we skip the delay slot on the fall-thru path
6157 if(likely[i]) {
6158 if(i<slen-1) {
6159 temp_u&=unneeded_reg[i+2];
6160 temp_gte_u&=gte_unneeded[i+2];
6161 }
6162 else
6163 {
6164 temp_u=1;
6165 temp_gte_u=gte_u_unknown;
6166 }
6167 }
6168 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6169 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6170 temp_u|=1;
6171 temp_gte_u|=gte_rt[i];
6172 temp_gte_u&=~gte_rs[i];
6173 unneeded_reg[i]=temp_u;
6174 gte_unneeded[i]=temp_gte_u;
6175 // Only go three levels deep. This recursion can take an
6176 // excessive amount of time if there are a lot of nested loops.
6177 if(r<2) {
6178 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6179 }else{
6180 unneeded_reg[(ba[i]-start)>>2]=1;
6181 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6182 }
6183 } /*else*/ if(1) {
6184 if (is_ujump(i))
6185 {
6186 // Unconditional branch
6187 u=unneeded_reg[(ba[i]-start)>>2];
6188 gte_u=gte_unneeded[(ba[i]-start)>>2];
6189 branch_unneeded_reg[i]=u;
6190 // Merge in delay slot
6191 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6192 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6193 u|=1;
6194 gte_u|=gte_rt[i+1];
6195 gte_u&=~gte_rs[i+1];
6196 } else {
6197 // Conditional branch
6198 b=unneeded_reg[(ba[i]-start)>>2];
6199 gte_b=gte_unneeded[(ba[i]-start)>>2];
6200 branch_unneeded_reg[i]=b;
6201 // Branch delay slot
6202 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6203 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6204 b|=1;
6205 gte_b|=gte_rt[i+1];
6206 gte_b&=~gte_rs[i+1];
6207 // If branch is "likely" then we skip the
6208 // delay slot on the fall-thru path
6209 if(likely[i]) {
6210 u=b;
6211 gte_u=gte_b;
6212 if(i<slen-1) {
6213 u&=unneeded_reg[i+2];
6214 gte_u&=gte_unneeded[i+2];
6215 }
6216 } else {
6217 u&=b;
6218 gte_u&=gte_b;
6219 }
6220 if(i<slen-1) {
6221 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6222 } else {
6223 branch_unneeded_reg[i]=1;
6224 }
6225 }
6226 }
6227 }
6228 }
6229 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6230 {
6231 // SYSCALL instruction (software interrupt)
6232 u=1;
6233 }
6234 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6235 {
6236 // ERET instruction (return from interrupt)
6237 u=1;
6238 }
6239 //u=1; // DEBUG
6240 // Written registers are unneeded
6241 u|=1LL<<rt1[i];
6242 u|=1LL<<rt2[i];
6243 gte_u|=gte_rt[i];
6244 // Accessed registers are needed
6245 u&=~(1LL<<rs1[i]);
6246 u&=~(1LL<<rs2[i]);
6247 gte_u&=~gte_rs[i];
6248 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
6249 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6250 // Source-target dependencies
6251 // R0 is always unneeded
6252 u|=1;
6253 // Save it
6254 unneeded_reg[i]=u;
6255 gte_unneeded[i]=gte_u;
6256 /*
6257 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6258 printf("U:");
6259 int r;
6260 for(r=1;r<=CCREG;r++) {
6261 if((unneeded_reg[i]>>r)&1) {
6262 if(r==HIREG) printf(" HI");
6263 else if(r==LOREG) printf(" LO");
6264 else printf(" r%d",r);
6265 }
6266 }
6267 printf("\n");
6268 */
6269 }
6270}
6271
6272// Write back dirty registers as soon as we will no longer modify them,
6273// so that we don't end up with lots of writes at the branches.
6274void clean_registers(int istart,int iend,int wr)
6275{
6276 int i;
6277 int r;
6278 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6279 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6280 if(iend==slen-1) {
6281 will_dirty_i=will_dirty_next=0;
6282 wont_dirty_i=wont_dirty_next=0;
6283 }else{
6284 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6285 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6286 }
6287 for (i=iend;i>=istart;i--)
6288 {
6289 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6290 {
6291 if(ba[i]<start || ba[i]>=(start+slen*4))
6292 {
6293 // Branch out of this block, flush all regs
6294 if (is_ujump(i))
6295 {
6296 // Unconditional branch
6297 will_dirty_i=0;
6298 wont_dirty_i=0;
6299 // Merge in delay slot (will dirty)
6300 for(r=0;r<HOST_REGS;r++) {
6301 if(r!=EXCLUDE_REG) {
6302 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6303 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6304 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6305 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6306 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6307 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6308 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6309 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6310 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6311 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6312 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6313 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6314 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6315 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6316 }
6317 }
6318 }
6319 else
6320 {
6321 // Conditional branch
6322 will_dirty_i=0;
6323 wont_dirty_i=wont_dirty_next;
6324 // Merge in delay slot (will dirty)
6325 for(r=0;r<HOST_REGS;r++) {
6326 if(r!=EXCLUDE_REG) {
6327 if(!likely[i]) {
6328 // Might not dirty if likely branch is not taken
6329 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6330 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6331 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6332 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6333 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6334 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6335 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6336 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6337 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6338 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6339 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6340 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6341 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6342 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6343 }
6344 }
6345 }
6346 }
6347 // Merge in delay slot (wont dirty)
6348 for(r=0;r<HOST_REGS;r++) {
6349 if(r!=EXCLUDE_REG) {
6350 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6351 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6352 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6353 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6354 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6355 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6356 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6357 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6358 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6359 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6360 }
6361 }
6362 if(wr) {
6363 #ifndef DESTRUCTIVE_WRITEBACK
6364 branch_regs[i].dirty&=wont_dirty_i;
6365 #endif
6366 branch_regs[i].dirty|=will_dirty_i;
6367 }
6368 }
6369 else
6370 {
6371 // Internal branch
6372 if(ba[i]<=start+i*4) {
6373 // Backward branch
6374 if (is_ujump(i))
6375 {
6376 // Unconditional branch
6377 temp_will_dirty=0;
6378 temp_wont_dirty=0;
6379 // Merge in delay slot (will dirty)
6380 for(r=0;r<HOST_REGS;r++) {
6381 if(r!=EXCLUDE_REG) {
6382 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6383 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6384 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6385 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6386 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6387 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6388 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6389 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6390 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6391 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6392 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6393 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6394 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6395 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6396 }
6397 }
6398 } else {
6399 // Conditional branch (not taken case)
6400 temp_will_dirty=will_dirty_next;
6401 temp_wont_dirty=wont_dirty_next;
6402 // Merge in delay slot (will dirty)
6403 for(r=0;r<HOST_REGS;r++) {
6404 if(r!=EXCLUDE_REG) {
6405 if(!likely[i]) {
6406 // Will not dirty if likely branch is not taken
6407 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6408 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6409 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6410 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6411 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6412 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6413 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6414 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6415 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6416 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6417 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6418 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6419 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6420 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6421 }
6422 }
6423 }
6424 }
6425 // Merge in delay slot (wont dirty)
6426 for(r=0;r<HOST_REGS;r++) {
6427 if(r!=EXCLUDE_REG) {
6428 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6429 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6430 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6431 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6432 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6433 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6434 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6435 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6436 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6437 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6438 }
6439 }
6440 // Deal with changed mappings
6441 if(i<iend) {
6442 for(r=0;r<HOST_REGS;r++) {
6443 if(r!=EXCLUDE_REG) {
6444 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6445 temp_will_dirty&=~(1<<r);
6446 temp_wont_dirty&=~(1<<r);
6447 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6448 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6449 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6450 } else {
6451 temp_will_dirty|=1<<r;
6452 temp_wont_dirty|=1<<r;
6453 }
6454 }
6455 }
6456 }
6457 }
6458 if(wr) {
6459 will_dirty[i]=temp_will_dirty;
6460 wont_dirty[i]=temp_wont_dirty;
6461 clean_registers((ba[i]-start)>>2,i-1,0);
6462 }else{
6463 // Limit recursion. It can take an excessive amount
6464 // of time if there are a lot of nested loops.
6465 will_dirty[(ba[i]-start)>>2]=0;
6466 wont_dirty[(ba[i]-start)>>2]=-1;
6467 }
6468 }
6469 /*else*/ if(1)
6470 {
6471 if (is_ujump(i))
6472 {
6473 // Unconditional branch
6474 will_dirty_i=0;
6475 wont_dirty_i=0;
6476 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6477 for(r=0;r<HOST_REGS;r++) {
6478 if(r!=EXCLUDE_REG) {
6479 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6480 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6481 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6482 }
6483 if(branch_regs[i].regmap[r]>=0) {
6484 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6485 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6486 }
6487 }
6488 }
6489 //}
6490 // Merge in delay slot
6491 for(r=0;r<HOST_REGS;r++) {
6492 if(r!=EXCLUDE_REG) {
6493 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6494 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6495 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6496 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6497 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6498 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6499 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6500 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6501 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6502 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6503 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6504 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6505 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6506 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6507 }
6508 }
6509 } else {
6510 // Conditional branch
6511 will_dirty_i=will_dirty_next;
6512 wont_dirty_i=wont_dirty_next;
6513 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6514 for(r=0;r<HOST_REGS;r++) {
6515 if(r!=EXCLUDE_REG) {
6516 signed char target_reg=branch_regs[i].regmap[r];
6517 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6518 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6519 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6520 }
6521 else if(target_reg>=0) {
6522 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6523 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6524 }
6525 // Treat delay slot as part of branch too
6526 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6527 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6528 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6529 }
6530 else
6531 {
6532 will_dirty[i+1]&=~(1<<r);
6533 }*/
6534 }
6535 }
6536 //}
6537 // Merge in delay slot
6538 for(r=0;r<HOST_REGS;r++) {
6539 if(r!=EXCLUDE_REG) {
6540 if(!likely[i]) {
6541 // Might not dirty if likely branch is not taken
6542 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6543 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6544 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6545 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6546 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6547 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6548 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6549 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6550 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6551 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6552 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6553 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6554 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6555 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6556 }
6557 }
6558 }
6559 }
6560 // Merge in delay slot (won't dirty)
6561 for(r=0;r<HOST_REGS;r++) {
6562 if(r!=EXCLUDE_REG) {
6563 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6564 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6565 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6566 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6567 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6568 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6569 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6570 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6571 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6572 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6573 }
6574 }
6575 if(wr) {
6576 #ifndef DESTRUCTIVE_WRITEBACK
6577 branch_regs[i].dirty&=wont_dirty_i;
6578 #endif
6579 branch_regs[i].dirty|=will_dirty_i;
6580 }
6581 }
6582 }
6583 }
6584 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6585 {
6586 // SYSCALL instruction (software interrupt)
6587 will_dirty_i=0;
6588 wont_dirty_i=0;
6589 }
6590 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6591 {
6592 // ERET instruction (return from interrupt)
6593 will_dirty_i=0;
6594 wont_dirty_i=0;
6595 }
6596 will_dirty_next=will_dirty_i;
6597 wont_dirty_next=wont_dirty_i;
6598 for(r=0;r<HOST_REGS;r++) {
6599 if(r!=EXCLUDE_REG) {
6600 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6601 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6602 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6603 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6604 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6605 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6606 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6607 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6608 if(i>istart) {
6609 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP)
6610 {
6611 // Don't store a register immediately after writing it,
6612 // may prevent dual-issue.
6613 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6614 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6615 }
6616 }
6617 }
6618 }
6619 // Save it
6620 will_dirty[i]=will_dirty_i;
6621 wont_dirty[i]=wont_dirty_i;
6622 // Mark registers that won't be dirtied as not dirty
6623 if(wr) {
6624 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6625 for(r=0;r<HOST_REGS;r++) {
6626 if((will_dirty_i>>r)&1) {
6627 printf(" r%d",r);
6628 }
6629 }
6630 printf("\n");*/
6631
6632 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP)) {
6633 regs[i].dirty|=will_dirty_i;
6634 #ifndef DESTRUCTIVE_WRITEBACK
6635 regs[i].dirty&=wont_dirty_i;
6636 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6637 {
6638 if (i < iend-1 && !is_ujump(i)) {
6639 for(r=0;r<HOST_REGS;r++) {
6640 if(r!=EXCLUDE_REG) {
6641 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6642 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6643 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6644 }
6645 }
6646 }
6647 }
6648 else
6649 {
6650 if(i<iend) {
6651 for(r=0;r<HOST_REGS;r++) {
6652 if(r!=EXCLUDE_REG) {
6653 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6654 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6655 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6656 }
6657 }
6658 }
6659 }
6660 #endif
6661 //}
6662 }
6663 // Deal with changed mappings
6664 temp_will_dirty=will_dirty_i;
6665 temp_wont_dirty=wont_dirty_i;
6666 for(r=0;r<HOST_REGS;r++) {
6667 if(r!=EXCLUDE_REG) {
6668 int nr;
6669 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6670 if(wr) {
6671 #ifndef DESTRUCTIVE_WRITEBACK
6672 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6673 #endif
6674 regs[i].wasdirty|=will_dirty_i&(1<<r);
6675 }
6676 }
6677 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6678 // Register moved to a different register
6679 will_dirty_i&=~(1<<r);
6680 wont_dirty_i&=~(1<<r);
6681 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6682 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6683 if(wr) {
6684 #ifndef DESTRUCTIVE_WRITEBACK
6685 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6686 #endif
6687 regs[i].wasdirty|=will_dirty_i&(1<<r);
6688 }
6689 }
6690 else {
6691 will_dirty_i&=~(1<<r);
6692 wont_dirty_i&=~(1<<r);
6693 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6694 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6695 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6696 } else {
6697 wont_dirty_i|=1<<r;
6698 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6699 }
6700 }
6701 }
6702 }
6703 }
6704}
6705
6706#ifdef DISASM
6707 /* disassembly */
6708void disassemble_inst(int i)
6709{
6710 if (bt[i]) printf("*"); else printf(" ");
6711 switch(itype[i]) {
6712 case UJUMP:
6713 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6714 case CJUMP:
6715 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6716 case SJUMP:
6717 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6718 case RJUMP:
6719 if (opcode[i]==0x9&&rt1[i]!=31)
6720 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6721 else
6722 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6723 break;
6724 case SPAN:
6725 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6726 case IMM16:
6727 if(opcode[i]==0xf) //LUI
6728 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6729 else
6730 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6731 break;
6732 case LOAD:
6733 case LOADLR:
6734 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6735 break;
6736 case STORE:
6737 case STORELR:
6738 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6739 break;
6740 case ALU:
6741 case SHIFT:
6742 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6743 break;
6744 case MULTDIV:
6745 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6746 break;
6747 case SHIFTIMM:
6748 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6749 break;
6750 case MOV:
6751 if((opcode2[i]&0x1d)==0x10)
6752 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6753 else if((opcode2[i]&0x1d)==0x11)
6754 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6755 else
6756 printf (" %x: %s\n",start+i*4,insn[i]);
6757 break;
6758 case COP0:
6759 if(opcode2[i]==0)
6760 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6761 else if(opcode2[i]==4)
6762 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6763 else printf (" %x: %s\n",start+i*4,insn[i]);
6764 break;
6765 case COP1:
6766 if(opcode2[i]<3)
6767 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6768 else if(opcode2[i]>3)
6769 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6770 else printf (" %x: %s\n",start+i*4,insn[i]);
6771 break;
6772 case COP2:
6773 if(opcode2[i]<3)
6774 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6775 else if(opcode2[i]>3)
6776 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6777 else printf (" %x: %s\n",start+i*4,insn[i]);
6778 break;
6779 case C1LS:
6780 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6781 break;
6782 case C2LS:
6783 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6784 break;
6785 case INTCALL:
6786 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6787 break;
6788 default:
6789 //printf (" %s %8x\n",insn[i],source[i]);
6790 printf (" %x: %s\n",start+i*4,insn[i]);
6791 }
6792}
6793#else
6794static void disassemble_inst(int i) {}
6795#endif // DISASM
6796
6797#define DRC_TEST_VAL 0x74657374
6798
6799static void new_dynarec_test(void)
6800{
6801 int (*testfunc)(void);
6802 void *beginning;
6803 int ret[2];
6804 size_t i;
6805
6806 // check structure linkage
6807 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6808 {
6809 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6810 }
6811
6812 SysPrintf("testing if we can run recompiled code...\n");
6813 ((volatile u_int *)out)[0]++; // make cache dirty
6814
6815 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6816 out = ndrc->translation_cache;
6817 beginning = start_block();
6818 emit_movimm(DRC_TEST_VAL + i, 0); // test
6819 emit_ret();
6820 literal_pool(0);
6821 end_block(beginning);
6822 testfunc = beginning;
6823 ret[i] = testfunc();
6824 }
6825
6826 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6827 SysPrintf("test passed.\n");
6828 else
6829 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6830 out = ndrc->translation_cache;
6831}
6832
6833// clear the state completely, instead of just marking
6834// things invalid like invalidate_all_pages() does
6835void new_dynarec_clear_full(void)
6836{
6837 int n;
6838 out = ndrc->translation_cache;
6839 memset(invalid_code,1,sizeof(invalid_code));
6840 memset(hash_table,0xff,sizeof(hash_table));
6841 memset(mini_ht,-1,sizeof(mini_ht));
6842 memset(restore_candidate,0,sizeof(restore_candidate));
6843 memset(shadow,0,sizeof(shadow));
6844 copy=shadow;
6845 expirep=16384; // Expiry pointer, +2 blocks
6846 pending_exception=0;
6847 literalcount=0;
6848 stop_after_jal=0;
6849 inv_code_start=inv_code_end=~0;
6850 // TLB
6851 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6852 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6853 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6854
6855 cycle_multiplier_old = cycle_multiplier;
6856 new_dynarec_hacks_old = new_dynarec_hacks;
6857}
6858
6859void new_dynarec_init(void)
6860{
6861 SysPrintf("Init new dynarec\n");
6862
6863#ifdef BASE_ADDR_DYNAMIC
6864 #ifdef VITA
6865 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6866 if (sceBlock < 0)
6867 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6868 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6869 if (ret < 0)
6870 SysPrintf("sceKernelGetMemBlockBase failed\n");
6871 #else
6872 uintptr_t desired_addr = 0;
6873 #ifdef __ELF__
6874 extern char _end;
6875 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6876 #endif
6877 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6878 PROT_READ | PROT_WRITE | PROT_EXEC,
6879 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6880 if (ndrc == MAP_FAILED) {
6881 SysPrintf("mmap() failed: %s\n", strerror(errno));
6882 abort();
6883 }
6884 #endif
6885#else
6886 #ifndef NO_WRITE_EXEC
6887 // not all systems allow execute in data segment by default
6888 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6889 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6890 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6891 #endif
6892#endif
6893 out = ndrc->translation_cache;
6894 cycle_multiplier=200;
6895 new_dynarec_clear_full();
6896#ifdef HOST_IMM8
6897 // Copy this into local area so we don't have to put it in every literal pool
6898 invc_ptr=invalid_code;
6899#endif
6900 arch_init();
6901 new_dynarec_test();
6902#ifndef RAM_FIXED
6903 ram_offset=(uintptr_t)rdram-0x80000000;
6904#endif
6905 if (ram_offset!=0)
6906 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6907}
6908
6909void new_dynarec_cleanup(void)
6910{
6911 int n;
6912#ifdef BASE_ADDR_DYNAMIC
6913 #ifdef VITA
6914 sceKernelFreeMemBlock(sceBlock);
6915 sceBlock = -1;
6916 #else
6917 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6918 SysPrintf("munmap() failed\n");
6919 #endif
6920#endif
6921 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6922 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6923 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6924 #ifdef ROM_COPY
6925 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6926 #endif
6927}
6928
6929static u_int *get_source_start(u_int addr, u_int *limit)
6930{
6931 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6932 cycle_multiplier_override = 0;
6933
6934 if (addr < 0x00200000 ||
6935 (0xa0000000 <= addr && addr < 0xa0200000))
6936 {
6937 // used for BIOS calls mostly?
6938 *limit = (addr&0xa0000000)|0x00200000;
6939 return (u_int *)(rdram + (addr&0x1fffff));
6940 }
6941 else if (!Config.HLE && (
6942 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6943 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6944 {
6945 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6946 // but timings in PCSX are too tied to the interpreter's BIAS
6947 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6948 cycle_multiplier_override = 200;
6949
6950 *limit = (addr & 0xfff00000) | 0x80000;
6951 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6952 }
6953 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6954 *limit = (addr & 0x80600000) + 0x00200000;
6955 return (u_int *)(rdram + (addr&0x1fffff));
6956 }
6957 return NULL;
6958}
6959
6960static u_int scan_for_ret(u_int addr)
6961{
6962 u_int limit = 0;
6963 u_int *mem;
6964
6965 mem = get_source_start(addr, &limit);
6966 if (mem == NULL)
6967 return addr;
6968
6969 if (limit > addr + 0x1000)
6970 limit = addr + 0x1000;
6971 for (; addr < limit; addr += 4, mem++) {
6972 if (*mem == 0x03e00008) // jr $ra
6973 return addr + 8;
6974 }
6975 return addr;
6976}
6977
6978struct savestate_block {
6979 uint32_t addr;
6980 uint32_t regflags;
6981};
6982
6983static int addr_cmp(const void *p1_, const void *p2_)
6984{
6985 const struct savestate_block *p1 = p1_, *p2 = p2_;
6986 return p1->addr - p2->addr;
6987}
6988
6989int new_dynarec_save_blocks(void *save, int size)
6990{
6991 struct savestate_block *blocks = save;
6992 int maxcount = size / sizeof(blocks[0]);
6993 struct savestate_block tmp_blocks[1024];
6994 struct ll_entry *head;
6995 int p, s, d, o, bcnt;
6996 u_int addr;
6997
6998 o = 0;
6999 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
7000 bcnt = 0;
7001 for (head = jump_in[p]; head != NULL; head = head->next) {
7002 tmp_blocks[bcnt].addr = head->vaddr;
7003 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7004 bcnt++;
7005 }
7006 if (bcnt < 1)
7007 continue;
7008 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7009
7010 addr = tmp_blocks[0].addr;
7011 for (s = d = 0; s < bcnt; s++) {
7012 if (tmp_blocks[s].addr < addr)
7013 continue;
7014 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7015 tmp_blocks[d++] = tmp_blocks[s];
7016 addr = scan_for_ret(tmp_blocks[s].addr);
7017 }
7018
7019 if (o + d > maxcount)
7020 d = maxcount - o;
7021 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7022 o += d;
7023 }
7024
7025 return o * sizeof(blocks[0]);
7026}
7027
7028void new_dynarec_load_blocks(const void *save, int size)
7029{
7030 const struct savestate_block *blocks = save;
7031 int count = size / sizeof(blocks[0]);
7032 u_int regs_save[32];
7033 uint32_t f;
7034 int i, b;
7035
7036 get_addr(psxRegs.pc);
7037
7038 // change GPRs for speculation to at least partially work..
7039 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7040 for (i = 1; i < 32; i++)
7041 psxRegs.GPR.r[i] = 0x80000000;
7042
7043 for (b = 0; b < count; b++) {
7044 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7045 if (f & 1)
7046 psxRegs.GPR.r[i] = 0x1f800000;
7047 }
7048
7049 get_addr(blocks[b].addr);
7050
7051 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7052 if (f & 1)
7053 psxRegs.GPR.r[i] = 0x80000000;
7054 }
7055 }
7056
7057 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7058}
7059
7060int new_recompile_block(u_int addr)
7061{
7062 u_int pagelimit = 0;
7063 u_int state_rflags = 0;
7064 int i;
7065
7066 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
7067 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7068 //if(debug)
7069 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7070
7071 // this is just for speculation
7072 for (i = 1; i < 32; i++) {
7073 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7074 state_rflags |= 1 << i;
7075 }
7076
7077 start = (u_int)addr&~3;
7078 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
7079 new_dynarec_did_compile=1;
7080 if (Config.HLE && start == 0x80001000) // hlecall
7081 {
7082 // XXX: is this enough? Maybe check hleSoftCall?
7083 void *beginning=start_block();
7084 u_int page=get_page(start);
7085
7086 invalid_code[start>>12]=0;
7087 emit_movimm(start,0);
7088 emit_writeword(0,&pcaddr);
7089 emit_far_jump(new_dyna_leave);
7090 literal_pool(0);
7091 end_block(beginning);
7092 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7093 return 0;
7094 }
7095
7096 source = get_source_start(start, &pagelimit);
7097 if (source == NULL) {
7098 SysPrintf("Compile at bogus memory address: %08x\n", addr);
7099 abort();
7100 }
7101
7102 /* Pass 1: disassemble */
7103 /* Pass 2: register dependencies, branch targets */
7104 /* Pass 3: register allocation */
7105 /* Pass 4: branch dependencies */
7106 /* Pass 5: pre-alloc */
7107 /* Pass 6: optimize clean/dirty state */
7108 /* Pass 7: flag 32-bit registers */
7109 /* Pass 8: assembly */
7110 /* Pass 9: linker */
7111 /* Pass 10: garbage collection / free memory */
7112
7113 int j;
7114 int done=0;
7115 unsigned int type,op,op2;
7116
7117 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7118
7119 /* Pass 1 disassembly */
7120
7121 for(i=0;!done;i++) {
7122 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7123 minimum_free_regs[i]=0;
7124 opcode[i]=op=source[i]>>26;
7125 switch(op)
7126 {
7127 case 0x00: strcpy(insn[i],"special"); type=NI;
7128 op2=source[i]&0x3f;
7129 switch(op2)
7130 {
7131 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7132 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7133 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7134 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7135 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7136 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7137 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7138 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7139 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7140 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7141 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7142 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7143 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7144 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7145 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7146 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7147 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7148 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7149 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7150 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7151 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7152 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7153 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7154 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7155 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7156 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7157 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7158 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7159 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7160 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7161 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7162 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7163 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7164 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7165 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7166#if 0
7167 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7168 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7169 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7170 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7171 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7172 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7173 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7174 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7175 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7176 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7177 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7178 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7179 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7180 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7181 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7182 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7183 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7184#endif
7185 }
7186 break;
7187 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7188 op2=(source[i]>>16)&0x1f;
7189 switch(op2)
7190 {
7191 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7192 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7193 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7194 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7195 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7196 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7197 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7198 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7199 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7200 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7201 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7202 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7203 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7204 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7205 }
7206 break;
7207 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7208 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7209 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7210 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7211 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7212 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7213 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7214 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7215 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7216 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7217 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7218 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7219 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7220 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7221 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7222 op2=(source[i]>>21)&0x1f;
7223 switch(op2)
7224 {
7225 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7226 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
7227 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7228 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
7229 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7230 }
7231 break;
7232 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
7233 op2=(source[i]>>21)&0x1f;
7234 break;
7235#if 0
7236 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7237 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7238 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7239 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7240 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7241 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7242 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7243 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7244#endif
7245 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7246 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7247 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7248 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7249 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7250 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7251 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7252#if 0
7253 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7254#endif
7255 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7256 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7257 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7258 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7259#if 0
7260 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7261 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7262#endif
7263 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7264 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7265 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7266 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7267#if 0
7268 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7269 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7270 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7271#endif
7272 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7273 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7274#if 0
7275 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7276 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7277 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7278#endif
7279 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7280 op2=(source[i]>>21)&0x1f;
7281 //if (op2 & 0x10)
7282 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7283 if (gte_handlers[source[i]&0x3f]!=NULL) {
7284 if (gte_regnames[source[i]&0x3f]!=NULL)
7285 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7286 else
7287 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7288 type=C2OP;
7289 }
7290 }
7291 else switch(op2)
7292 {
7293 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7294 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7295 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7296 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7297 }
7298 break;
7299 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7300 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7301 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7302 default: strcpy(insn[i],"???"); type=NI;
7303 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7304 break;
7305 }
7306 itype[i]=type;
7307 opcode2[i]=op2;
7308 /* Get registers/immediates */
7309 lt1[i]=0;
7310 dep1[i]=0;
7311 dep2[i]=0;
7312 gte_rs[i]=gte_rt[i]=0;
7313 switch(type) {
7314 case LOAD:
7315 rs1[i]=(source[i]>>21)&0x1f;
7316 rs2[i]=0;
7317 rt1[i]=(source[i]>>16)&0x1f;
7318 rt2[i]=0;
7319 imm[i]=(short)source[i];
7320 break;
7321 case STORE:
7322 case STORELR:
7323 rs1[i]=(source[i]>>21)&0x1f;
7324 rs2[i]=(source[i]>>16)&0x1f;
7325 rt1[i]=0;
7326 rt2[i]=0;
7327 imm[i]=(short)source[i];
7328 break;
7329 case LOADLR:
7330 // LWL/LWR only load part of the register,
7331 // therefore the target register must be treated as a source too
7332 rs1[i]=(source[i]>>21)&0x1f;
7333 rs2[i]=(source[i]>>16)&0x1f;
7334 rt1[i]=(source[i]>>16)&0x1f;
7335 rt2[i]=0;
7336 imm[i]=(short)source[i];
7337 if(op==0x26) dep1[i]=rt1[i]; // LWR
7338 break;
7339 case IMM16:
7340 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7341 else rs1[i]=(source[i]>>21)&0x1f;
7342 rs2[i]=0;
7343 rt1[i]=(source[i]>>16)&0x1f;
7344 rt2[i]=0;
7345 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7346 imm[i]=(unsigned short)source[i];
7347 }else{
7348 imm[i]=(short)source[i];
7349 }
7350 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7351 break;
7352 case UJUMP:
7353 rs1[i]=0;
7354 rs2[i]=0;
7355 rt1[i]=0;
7356 rt2[i]=0;
7357 // The JAL instruction writes to r31.
7358 if (op&1) {
7359 rt1[i]=31;
7360 }
7361 rs2[i]=CCREG;
7362 break;
7363 case RJUMP:
7364 rs1[i]=(source[i]>>21)&0x1f;
7365 rs2[i]=0;
7366 rt1[i]=0;
7367 rt2[i]=0;
7368 // The JALR instruction writes to rd.
7369 if (op2&1) {
7370 rt1[i]=(source[i]>>11)&0x1f;
7371 }
7372 rs2[i]=CCREG;
7373 break;
7374 case CJUMP:
7375 rs1[i]=(source[i]>>21)&0x1f;
7376 rs2[i]=(source[i]>>16)&0x1f;
7377 rt1[i]=0;
7378 rt2[i]=0;
7379 if(op&2) { // BGTZ/BLEZ
7380 rs2[i]=0;
7381 }
7382 likely[i]=op>>4;
7383 break;
7384 case SJUMP:
7385 rs1[i]=(source[i]>>21)&0x1f;
7386 rs2[i]=CCREG;
7387 rt1[i]=0;
7388 rt2[i]=0;
7389 if(op2&0x10) { // BxxAL
7390 rt1[i]=31;
7391 // NOTE: If the branch is not taken, r31 is still overwritten
7392 }
7393 likely[i]=(op2&2)>>1;
7394 break;
7395 case ALU:
7396 rs1[i]=(source[i]>>21)&0x1f; // source
7397 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7398 rt1[i]=(source[i]>>11)&0x1f; // destination
7399 rt2[i]=0;
7400 if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7401 dep1[i]=rs1[i];dep2[i]=rs2[i];
7402 }
7403 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7404 dep1[i]=rs1[i];dep2[i]=rs2[i];
7405 }
7406 break;
7407 case MULTDIV:
7408 rs1[i]=(source[i]>>21)&0x1f; // source
7409 rs2[i]=(source[i]>>16)&0x1f; // divisor
7410 rt1[i]=HIREG;
7411 rt2[i]=LOREG;
7412 break;
7413 case MOV:
7414 rs1[i]=0;
7415 rs2[i]=0;
7416 rt1[i]=0;
7417 rt2[i]=0;
7418 if(op2==0x10) rs1[i]=HIREG; // MFHI
7419 if(op2==0x11) rt1[i]=HIREG; // MTHI
7420 if(op2==0x12) rs1[i]=LOREG; // MFLO
7421 if(op2==0x13) rt1[i]=LOREG; // MTLO
7422 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7423 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7424 dep1[i]=rs1[i];
7425 break;
7426 case SHIFT:
7427 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7428 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7429 rt1[i]=(source[i]>>11)&0x1f; // destination
7430 rt2[i]=0;
7431 break;
7432 case SHIFTIMM:
7433 rs1[i]=(source[i]>>16)&0x1f;
7434 rs2[i]=0;
7435 rt1[i]=(source[i]>>11)&0x1f;
7436 rt2[i]=0;
7437 imm[i]=(source[i]>>6)&0x1f;
7438 // DSxx32 instructions
7439 if(op2>=0x3c) imm[i]|=0x20;
7440 break;
7441 case COP0:
7442 rs1[i]=0;
7443 rs2[i]=0;
7444 rt1[i]=0;
7445 rt2[i]=0;
7446 if(op2==0||op2==2) rt1[i]=(source[i]>>16)&0x1F; // MFC0/CFC0
7447 if(op2==4||op2==6) rs1[i]=(source[i]>>16)&0x1F; // MTC0/CTC0
7448 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7449 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7450 break;
7451 case COP1:
7452 rs1[i]=0;
7453 rs2[i]=0;
7454 rt1[i]=0;
7455 rt2[i]=0;
7456 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7457 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7458 rs2[i]=CSREG;
7459 break;
7460 case COP2:
7461 rs1[i]=0;
7462 rs2[i]=0;
7463 rt1[i]=0;
7464 rt2[i]=0;
7465 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7466 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7467 rs2[i]=CSREG;
7468 int gr=(source[i]>>11)&0x1F;
7469 switch(op2)
7470 {
7471 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7472 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7473 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7474 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7475 }
7476 break;
7477 case C1LS:
7478 rs1[i]=(source[i]>>21)&0x1F;
7479 rs2[i]=CSREG;
7480 rt1[i]=0;
7481 rt2[i]=0;
7482 imm[i]=(short)source[i];
7483 break;
7484 case C2LS:
7485 rs1[i]=(source[i]>>21)&0x1F;
7486 rs2[i]=0;
7487 rt1[i]=0;
7488 rt2[i]=0;
7489 imm[i]=(short)source[i];
7490 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7491 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7492 break;
7493 case C2OP:
7494 rs1[i]=0;
7495 rs2[i]=0;
7496 rt1[i]=0;
7497 rt2[i]=0;
7498 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7499 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7500 gte_rt[i]|=1ll<<63; // every op changes flags
7501 if((source[i]&0x3f)==GTE_MVMVA) {
7502 int v = (source[i] >> 15) & 3;
7503 gte_rs[i]&=~0xe3fll;
7504 if(v==3) gte_rs[i]|=0xe00ll;
7505 else gte_rs[i]|=3ll<<(v*2);
7506 }
7507 break;
7508 case SYSCALL:
7509 case HLECALL:
7510 case INTCALL:
7511 rs1[i]=CCREG;
7512 rs2[i]=0;
7513 rt1[i]=0;
7514 rt2[i]=0;
7515 break;
7516 default:
7517 rs1[i]=0;
7518 rs2[i]=0;
7519 rt1[i]=0;
7520 rt2[i]=0;
7521 }
7522 /* Calculate branch target addresses */
7523 if(type==UJUMP)
7524 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7525 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7526 ba[i]=start+i*4+8; // Ignore never taken branch
7527 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7528 ba[i]=start+i*4+8; // Ignore never taken branch
7529 else if(type==CJUMP||type==SJUMP)
7530 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7531 else ba[i]=-1;
7532 if (i > 0 && is_jump(i-1)) {
7533 int do_in_intrp=0;
7534 // branch in delay slot?
7535 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP) {
7536 // don't handle first branch and call interpreter if it's hit
7537 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7538 do_in_intrp=1;
7539 }
7540 // basic load delay detection
7541 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7542 int t=(ba[i-1]-start)/4;
7543 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7544 // jump target wants DS result - potential load delay effect
7545 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7546 do_in_intrp=1;
7547 bt[t+1]=1; // expected return from interpreter
7548 }
7549 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7550 !(i>=3&&is_jump(i-3))) {
7551 // v0 overwrite like this is a sign of trouble, bail out
7552 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7553 do_in_intrp=1;
7554 }
7555 }
7556 if(do_in_intrp) {
7557 rs1[i-1]=CCREG;
7558 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7559 ba[i-1]=-1;
7560 itype[i-1]=INTCALL;
7561 done=2;
7562 i--; // don't compile the DS
7563 }
7564 }
7565 /* Is this the end of the block? */
7566 if (i > 0 && is_ujump(i-1)) {
7567 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7568 done=2;
7569 }
7570 else {
7571 if(stop_after_jal) done=1;
7572 // Stop on BREAK
7573 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7574 }
7575 // Don't recompile stuff that's already compiled
7576 if(check_addr(start+i*4+4)) done=1;
7577 // Don't get too close to the limit
7578 if(i>MAXBLOCK/2) done=1;
7579 }
7580 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7581 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7582 if(done==2) {
7583 // Does the block continue due to a branch?
7584 for(j=i-1;j>=0;j--)
7585 {
7586 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7587 if(ba[j]==start+i*4+4) done=j=0;
7588 if(ba[j]==start+i*4+8) done=j=0;
7589 }
7590 }
7591 //assert(i<MAXBLOCK-1);
7592 if(start+i*4==pagelimit-4) done=1;
7593 assert(start+i*4<pagelimit);
7594 if (i==MAXBLOCK-1) done=1;
7595 // Stop if we're compiling junk
7596 if(itype[i]==NI&&opcode[i]==0x11) {
7597 done=stop_after_jal=1;
7598 SysPrintf("Disabled speculative precompilation\n");
7599 }
7600 }
7601 slen=i;
7602 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP) {
7603 if(start+i*4==pagelimit) {
7604 itype[i-1]=SPAN;
7605 }
7606 }
7607 assert(slen>0);
7608
7609 /* Pass 2 - Register dependencies and branch targets */
7610
7611 unneeded_registers(0,slen-1,0);
7612
7613 /* Pass 3 - Register allocation */
7614
7615 struct regstat current; // Current register allocations/status
7616 current.dirty=0;
7617 current.u=unneeded_reg[0];
7618 clear_all_regs(current.regmap);
7619 alloc_reg(&current,0,CCREG);
7620 dirty_reg(&current,CCREG);
7621 current.isconst=0;
7622 current.wasconst=0;
7623 current.waswritten=0;
7624 int ds=0;
7625 int cc=0;
7626 int hr=-1;
7627
7628 if((u_int)addr&1) {
7629 // First instruction is delay slot
7630 cc=-1;
7631 bt[1]=1;
7632 ds=1;
7633 unneeded_reg[0]=1;
7634 current.regmap[HOST_BTREG]=BTREG;
7635 }
7636
7637 for(i=0;i<slen;i++)
7638 {
7639 if(bt[i])
7640 {
7641 int hr;
7642 for(hr=0;hr<HOST_REGS;hr++)
7643 {
7644 // Is this really necessary?
7645 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7646 }
7647 current.isconst=0;
7648 current.waswritten=0;
7649 }
7650
7651 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7652 regs[i].wasconst=current.isconst;
7653 regs[i].wasdirty=current.dirty;
7654 regs[i].loadedconst=0;
7655 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP) {
7656 if(i+1<slen) {
7657 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7658 current.u|=1;
7659 } else {
7660 current.u=1;
7661 }
7662 } else {
7663 if(i+1<slen) {
7664 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7665 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7666 current.u|=1;
7667 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7668 }
7669 is_ds[i]=ds;
7670 if(ds) {
7671 ds=0; // Skip delay slot, already allocated as part of branch
7672 // ...but we need to alloc it in case something jumps here
7673 if(i+1<slen) {
7674 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7675 }else{
7676 current.u=branch_unneeded_reg[i-1];
7677 }
7678 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7679 current.u|=1;
7680 struct regstat temp;
7681 memcpy(&temp,&current,sizeof(current));
7682 temp.wasdirty=temp.dirty;
7683 // TODO: Take into account unconditional branches, as below
7684 delayslot_alloc(&temp,i);
7685 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7686 regs[i].wasdirty=temp.wasdirty;
7687 regs[i].dirty=temp.dirty;
7688 regs[i].isconst=0;
7689 regs[i].wasconst=0;
7690 current.isconst=0;
7691 // Create entry (branch target) regmap
7692 for(hr=0;hr<HOST_REGS;hr++)
7693 {
7694 int r=temp.regmap[hr];
7695 if(r>=0) {
7696 if(r!=regmap_pre[i][hr]) {
7697 regs[i].regmap_entry[hr]=-1;
7698 }
7699 else
7700 {
7701 assert(r < 64);
7702 if((current.u>>r)&1) {
7703 regs[i].regmap_entry[hr]=-1;
7704 regs[i].regmap[hr]=-1;
7705 //Don't clear regs in the delay slot as the branch might need them
7706 //current.regmap[hr]=-1;
7707 }else
7708 regs[i].regmap_entry[hr]=r;
7709 }
7710 } else {
7711 // First instruction expects CCREG to be allocated
7712 if(i==0&&hr==HOST_CCREG)
7713 regs[i].regmap_entry[hr]=CCREG;
7714 else
7715 regs[i].regmap_entry[hr]=-1;
7716 }
7717 }
7718 }
7719 else { // Not delay slot
7720 switch(itype[i]) {
7721 case UJUMP:
7722 //current.isconst=0; // DEBUG
7723 //current.wasconst=0; // DEBUG
7724 //regs[i].wasconst=0; // DEBUG
7725 clear_const(&current,rt1[i]);
7726 alloc_cc(&current,i);
7727 dirty_reg(&current,CCREG);
7728 if (rt1[i]==31) {
7729 alloc_reg(&current,i,31);
7730 dirty_reg(&current,31);
7731 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
7732 //assert(rt1[i+1]!=rt1[i]);
7733 #ifdef REG_PREFETCH
7734 alloc_reg(&current,i,PTEMP);
7735 #endif
7736 }
7737 ooo[i]=1;
7738 delayslot_alloc(&current,i+1);
7739 //current.isconst=0; // DEBUG
7740 ds=1;
7741 //printf("i=%d, isconst=%x\n",i,current.isconst);
7742 break;
7743 case RJUMP:
7744 //current.isconst=0;
7745 //current.wasconst=0;
7746 //regs[i].wasconst=0;
7747 clear_const(&current,rs1[i]);
7748 clear_const(&current,rt1[i]);
7749 alloc_cc(&current,i);
7750 dirty_reg(&current,CCREG);
7751 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
7752 alloc_reg(&current,i,rs1[i]);
7753 if (rt1[i]!=0) {
7754 alloc_reg(&current,i,rt1[i]);
7755 dirty_reg(&current,rt1[i]);
7756 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
7757 assert(rt1[i+1]!=rt1[i]);
7758 #ifdef REG_PREFETCH
7759 alloc_reg(&current,i,PTEMP);
7760 #endif
7761 }
7762 #ifdef USE_MINI_HT
7763 if(rs1[i]==31) { // JALR
7764 alloc_reg(&current,i,RHASH);
7765 alloc_reg(&current,i,RHTBL);
7766 }
7767 #endif
7768 delayslot_alloc(&current,i+1);
7769 } else {
7770 // The delay slot overwrites our source register,
7771 // allocate a temporary register to hold the old value.
7772 current.isconst=0;
7773 current.wasconst=0;
7774 regs[i].wasconst=0;
7775 delayslot_alloc(&current,i+1);
7776 current.isconst=0;
7777 alloc_reg(&current,i,RTEMP);
7778 }
7779 //current.isconst=0; // DEBUG
7780 ooo[i]=1;
7781 ds=1;
7782 break;
7783 case CJUMP:
7784 //current.isconst=0;
7785 //current.wasconst=0;
7786 //regs[i].wasconst=0;
7787 clear_const(&current,rs1[i]);
7788 clear_const(&current,rs2[i]);
7789 if((opcode[i]&0x3E)==4) // BEQ/BNE
7790 {
7791 alloc_cc(&current,i);
7792 dirty_reg(&current,CCREG);
7793 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7794 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7795 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
7796 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
7797 // The delay slot overwrites one of our conditions.
7798 // Allocate the branch condition registers instead.
7799 current.isconst=0;
7800 current.wasconst=0;
7801 regs[i].wasconst=0;
7802 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7803 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7804 }
7805 else
7806 {
7807 ooo[i]=1;
7808 delayslot_alloc(&current,i+1);
7809 }
7810 }
7811 else
7812 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
7813 {
7814 alloc_cc(&current,i);
7815 dirty_reg(&current,CCREG);
7816 alloc_reg(&current,i,rs1[i]);
7817 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
7818 // The delay slot overwrites one of our conditions.
7819 // Allocate the branch condition registers instead.
7820 current.isconst=0;
7821 current.wasconst=0;
7822 regs[i].wasconst=0;
7823 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7824 }
7825 else
7826 {
7827 ooo[i]=1;
7828 delayslot_alloc(&current,i+1);
7829 }
7830 }
7831 else
7832 // Don't alloc the delay slot yet because we might not execute it
7833 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
7834 {
7835 current.isconst=0;
7836 current.wasconst=0;
7837 regs[i].wasconst=0;
7838 alloc_cc(&current,i);
7839 dirty_reg(&current,CCREG);
7840 alloc_reg(&current,i,rs1[i]);
7841 alloc_reg(&current,i,rs2[i]);
7842 }
7843 else
7844 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
7845 {
7846 current.isconst=0;
7847 current.wasconst=0;
7848 regs[i].wasconst=0;
7849 alloc_cc(&current,i);
7850 dirty_reg(&current,CCREG);
7851 alloc_reg(&current,i,rs1[i]);
7852 }
7853 ds=1;
7854 //current.isconst=0;
7855 break;
7856 case SJUMP:
7857 //current.isconst=0;
7858 //current.wasconst=0;
7859 //regs[i].wasconst=0;
7860 clear_const(&current,rs1[i]);
7861 clear_const(&current,rt1[i]);
7862 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
7863 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
7864 {
7865 alloc_cc(&current,i);
7866 dirty_reg(&current,CCREG);
7867 alloc_reg(&current,i,rs1[i]);
7868 if (rt1[i]==31) { // BLTZAL/BGEZAL
7869 alloc_reg(&current,i,31);
7870 dirty_reg(&current,31);
7871 //#ifdef REG_PREFETCH
7872 //alloc_reg(&current,i,PTEMP);
7873 //#endif
7874 }
7875 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
7876 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
7877 // Allocate the branch condition registers instead.
7878 current.isconst=0;
7879 current.wasconst=0;
7880 regs[i].wasconst=0;
7881 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7882 }
7883 else
7884 {
7885 ooo[i]=1;
7886 delayslot_alloc(&current,i+1);
7887 }
7888 }
7889 else
7890 // Don't alloc the delay slot yet because we might not execute it
7891 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
7892 {
7893 current.isconst=0;
7894 current.wasconst=0;
7895 regs[i].wasconst=0;
7896 alloc_cc(&current,i);
7897 dirty_reg(&current,CCREG);
7898 alloc_reg(&current,i,rs1[i]);
7899 }
7900 ds=1;
7901 //current.isconst=0;
7902 break;
7903 case IMM16:
7904 imm16_alloc(&current,i);
7905 break;
7906 case LOAD:
7907 case LOADLR:
7908 load_alloc(&current,i);
7909 break;
7910 case STORE:
7911 case STORELR:
7912 store_alloc(&current,i);
7913 break;
7914 case ALU:
7915 alu_alloc(&current,i);
7916 break;
7917 case SHIFT:
7918 shift_alloc(&current,i);
7919 break;
7920 case MULTDIV:
7921 multdiv_alloc(&current,i);
7922 break;
7923 case SHIFTIMM:
7924 shiftimm_alloc(&current,i);
7925 break;
7926 case MOV:
7927 mov_alloc(&current,i);
7928 break;
7929 case COP0:
7930 cop0_alloc(&current,i);
7931 break;
7932 case COP1:
7933 break;
7934 case COP2:
7935 cop2_alloc(&current,i);
7936 break;
7937 case C1LS:
7938 c1ls_alloc(&current,i);
7939 break;
7940 case C2LS:
7941 c2ls_alloc(&current,i);
7942 break;
7943 case C2OP:
7944 c2op_alloc(&current,i);
7945 break;
7946 case SYSCALL:
7947 case HLECALL:
7948 case INTCALL:
7949 syscall_alloc(&current,i);
7950 break;
7951 case SPAN:
7952 pagespan_alloc(&current,i);
7953 break;
7954 }
7955
7956 // Create entry (branch target) regmap
7957 for(hr=0;hr<HOST_REGS;hr++)
7958 {
7959 int r,or;
7960 r=current.regmap[hr];
7961 if(r>=0) {
7962 if(r!=regmap_pre[i][hr]) {
7963 // TODO: delay slot (?)
7964 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7965 if(or<0||(r&63)>=TEMPREG){
7966 regs[i].regmap_entry[hr]=-1;
7967 }
7968 else
7969 {
7970 // Just move it to a different register
7971 regs[i].regmap_entry[hr]=r;
7972 // If it was dirty before, it's still dirty
7973 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7974 }
7975 }
7976 else
7977 {
7978 // Unneeded
7979 if(r==0){
7980 regs[i].regmap_entry[hr]=0;
7981 }
7982 else
7983 {
7984 assert(r<64);
7985 if((current.u>>r)&1) {
7986 regs[i].regmap_entry[hr]=-1;
7987 //regs[i].regmap[hr]=-1;
7988 current.regmap[hr]=-1;
7989 }else
7990 regs[i].regmap_entry[hr]=r;
7991 }
7992 }
7993 } else {
7994 // Branches expect CCREG to be allocated at the target
7995 if(regmap_pre[i][hr]==CCREG)
7996 regs[i].regmap_entry[hr]=CCREG;
7997 else
7998 regs[i].regmap_entry[hr]=-1;
7999 }
8000 }
8001 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8002 }
8003
8004 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8005 current.waswritten|=1<<rs1[i-1];
8006 current.waswritten&=~(1<<rt1[i]);
8007 current.waswritten&=~(1<<rt2[i]);
8008 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8009 current.waswritten&=~(1<<rs1[i]);
8010
8011 /* Branch post-alloc */
8012 if(i>0)
8013 {
8014 current.wasdirty=current.dirty;
8015 switch(itype[i-1]) {
8016 case UJUMP:
8017 memcpy(&branch_regs[i-1],&current,sizeof(current));
8018 branch_regs[i-1].isconst=0;
8019 branch_regs[i-1].wasconst=0;
8020 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8021 alloc_cc(&branch_regs[i-1],i-1);
8022 dirty_reg(&branch_regs[i-1],CCREG);
8023 if(rt1[i-1]==31) { // JAL
8024 alloc_reg(&branch_regs[i-1],i-1,31);
8025 dirty_reg(&branch_regs[i-1],31);
8026 }
8027 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8028 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8029 break;
8030 case RJUMP:
8031 memcpy(&branch_regs[i-1],&current,sizeof(current));
8032 branch_regs[i-1].isconst=0;
8033 branch_regs[i-1].wasconst=0;
8034 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8035 alloc_cc(&branch_regs[i-1],i-1);
8036 dirty_reg(&branch_regs[i-1],CCREG);
8037 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8038 if(rt1[i-1]!=0) { // JALR
8039 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8040 dirty_reg(&branch_regs[i-1],rt1[i-1]);
8041 }
8042 #ifdef USE_MINI_HT
8043 if(rs1[i-1]==31) { // JALR
8044 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8045 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8046 }
8047 #endif
8048 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8049 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8050 break;
8051 case CJUMP:
8052 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8053 {
8054 alloc_cc(&current,i-1);
8055 dirty_reg(&current,CCREG);
8056 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8057 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8058 // The delay slot overwrote one of our conditions
8059 // Delay slot goes after the test (in order)
8060 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8061 current.u|=1;
8062 delayslot_alloc(&current,i);
8063 current.isconst=0;
8064 }
8065 else
8066 {
8067 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8068 // Alloc the branch condition registers
8069 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8070 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8071 }
8072 memcpy(&branch_regs[i-1],&current,sizeof(current));
8073 branch_regs[i-1].isconst=0;
8074 branch_regs[i-1].wasconst=0;
8075 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8076 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8077 }
8078 else
8079 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8080 {
8081 alloc_cc(&current,i-1);
8082 dirty_reg(&current,CCREG);
8083 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8084 // The delay slot overwrote the branch condition
8085 // Delay slot goes after the test (in order)
8086 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8087 current.u|=1;
8088 delayslot_alloc(&current,i);
8089 current.isconst=0;
8090 }
8091 else
8092 {
8093 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8094 // Alloc the branch condition register
8095 alloc_reg(&current,i-1,rs1[i-1]);
8096 }
8097 memcpy(&branch_regs[i-1],&current,sizeof(current));
8098 branch_regs[i-1].isconst=0;
8099 branch_regs[i-1].wasconst=0;
8100 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8101 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8102 }
8103 else
8104 // Alloc the delay slot in case the branch is taken
8105 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8106 {
8107 memcpy(&branch_regs[i-1],&current,sizeof(current));
8108 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8109 alloc_cc(&branch_regs[i-1],i);
8110 dirty_reg(&branch_regs[i-1],CCREG);
8111 delayslot_alloc(&branch_regs[i-1],i);
8112 branch_regs[i-1].isconst=0;
8113 alloc_reg(&current,i,CCREG); // Not taken path
8114 dirty_reg(&current,CCREG);
8115 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8116 }
8117 else
8118 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8119 {
8120 memcpy(&branch_regs[i-1],&current,sizeof(current));
8121 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8122 alloc_cc(&branch_regs[i-1],i);
8123 dirty_reg(&branch_regs[i-1],CCREG);
8124 delayslot_alloc(&branch_regs[i-1],i);
8125 branch_regs[i-1].isconst=0;
8126 alloc_reg(&current,i,CCREG); // Not taken path
8127 dirty_reg(&current,CCREG);
8128 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8129 }
8130 break;
8131 case SJUMP:
8132 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8133 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8134 {
8135 alloc_cc(&current,i-1);
8136 dirty_reg(&current,CCREG);
8137 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8138 // The delay slot overwrote the branch condition
8139 // Delay slot goes after the test (in order)
8140 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8141 current.u|=1;
8142 delayslot_alloc(&current,i);
8143 current.isconst=0;
8144 }
8145 else
8146 {
8147 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8148 // Alloc the branch condition register
8149 alloc_reg(&current,i-1,rs1[i-1]);
8150 }
8151 memcpy(&branch_regs[i-1],&current,sizeof(current));
8152 branch_regs[i-1].isconst=0;
8153 branch_regs[i-1].wasconst=0;
8154 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8155 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8156 }
8157 else
8158 // Alloc the delay slot in case the branch is taken
8159 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8160 {
8161 memcpy(&branch_regs[i-1],&current,sizeof(current));
8162 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8163 alloc_cc(&branch_regs[i-1],i);
8164 dirty_reg(&branch_regs[i-1],CCREG);
8165 delayslot_alloc(&branch_regs[i-1],i);
8166 branch_regs[i-1].isconst=0;
8167 alloc_reg(&current,i,CCREG); // Not taken path
8168 dirty_reg(&current,CCREG);
8169 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8170 }
8171 // FIXME: BLTZAL/BGEZAL
8172 if(opcode2[i-1]&0x10) { // BxxZAL
8173 alloc_reg(&branch_regs[i-1],i-1,31);
8174 dirty_reg(&branch_regs[i-1],31);
8175 }
8176 break;
8177 }
8178
8179 if (is_ujump(i-1))
8180 {
8181 if(rt1[i-1]==31) // JAL/JALR
8182 {
8183 // Subroutine call will return here, don't alloc any registers
8184 current.dirty=0;
8185 clear_all_regs(current.regmap);
8186 alloc_reg(&current,i,CCREG);
8187 dirty_reg(&current,CCREG);
8188 }
8189 else if(i+1<slen)
8190 {
8191 // Internal branch will jump here, match registers to caller
8192 current.dirty=0;
8193 clear_all_regs(current.regmap);
8194 alloc_reg(&current,i,CCREG);
8195 dirty_reg(&current,CCREG);
8196 for(j=i-1;j>=0;j--)
8197 {
8198 if(ba[j]==start+i*4+4) {
8199 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8200 current.dirty=branch_regs[j].dirty;
8201 break;
8202 }
8203 }
8204 while(j>=0) {
8205 if(ba[j]==start+i*4+4) {
8206 for(hr=0;hr<HOST_REGS;hr++) {
8207 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8208 current.regmap[hr]=-1;
8209 }
8210 current.dirty&=branch_regs[j].dirty;
8211 }
8212 }
8213 j--;
8214 }
8215 }
8216 }
8217 }
8218
8219 // Count cycles in between branches
8220 ccadj[i]=cc;
8221 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
8222 {
8223 cc=0;
8224 }
8225#if !defined(DRC_DBG)
8226 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8227 {
8228 // this should really be removed since the real stalls have been implemented,
8229 // but doing so causes sizeable perf regression against the older version
8230 u_int gtec = gte_cycletab[source[i] & 0x3f];
8231 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8232 }
8233 else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8234 {
8235 cc+=4;
8236 }
8237 else if(itype[i]==C2LS)
8238 {
8239 // same as with C2OP
8240 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8241 }
8242#endif
8243 else
8244 {
8245 cc++;
8246 }
8247
8248 if(!is_ds[i]) {
8249 regs[i].dirty=current.dirty;
8250 regs[i].isconst=current.isconst;
8251 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8252 }
8253 for(hr=0;hr<HOST_REGS;hr++) {
8254 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8255 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8256 regs[i].wasconst&=~(1<<hr);
8257 }
8258 }
8259 }
8260 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8261 regs[i].waswritten=current.waswritten;
8262 }
8263
8264 /* Pass 4 - Cull unused host registers */
8265
8266 uint64_t nr=0;
8267
8268 for (i=slen-1;i>=0;i--)
8269 {
8270 int hr;
8271 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8272 {
8273 if(ba[i]<start || ba[i]>=(start+slen*4))
8274 {
8275 // Branch out of this block, don't need anything
8276 nr=0;
8277 }
8278 else
8279 {
8280 // Internal branch
8281 // Need whatever matches the target
8282 nr=0;
8283 int t=(ba[i]-start)>>2;
8284 for(hr=0;hr<HOST_REGS;hr++)
8285 {
8286 if(regs[i].regmap_entry[hr]>=0) {
8287 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8288 }
8289 }
8290 }
8291 // Conditional branch may need registers for following instructions
8292 if (!is_ujump(i))
8293 {
8294 if(i<slen-2) {
8295 nr|=needed_reg[i+2];
8296 for(hr=0;hr<HOST_REGS;hr++)
8297 {
8298 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8299 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8300 }
8301 }
8302 }
8303 // Don't need stuff which is overwritten
8304 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8305 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8306 // Merge in delay slot
8307 for(hr=0;hr<HOST_REGS;hr++)
8308 {
8309 if(!likely[i]) {
8310 // These are overwritten unless the branch is "likely"
8311 // and the delay slot is nullified if not taken
8312 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8313 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8314 }
8315 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8316 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8317 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8318 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8319 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
8320 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8321 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8322 }
8323 }
8324 }
8325 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
8326 {
8327 // SYSCALL instruction (software interrupt)
8328 nr=0;
8329 }
8330 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8331 {
8332 // ERET instruction (return from interrupt)
8333 nr=0;
8334 }
8335 else // Non-branch
8336 {
8337 if(i<slen-1) {
8338 for(hr=0;hr<HOST_REGS;hr++) {
8339 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8340 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8341 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8342 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8343 }
8344 }
8345 }
8346 for(hr=0;hr<HOST_REGS;hr++)
8347 {
8348 // Overwritten registers are not needed
8349 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8350 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8351 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8352 // Source registers are needed
8353 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8354 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8355 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8356 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8357 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8358 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8359 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8360 }
8361 // Don't store a register immediately after writing it,
8362 // may prevent dual-issue.
8363 // But do so if this is a branch target, otherwise we
8364 // might have to load the register before the branch.
8365 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8366 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8367 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8368 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8369 }
8370 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8371 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8372 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8373 }
8374 }
8375 }
8376 // Cycle count is needed at branches. Assume it is needed at the target too.
8377 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==SPAN) {
8378 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8379 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8380 }
8381 // Save it
8382 needed_reg[i]=nr;
8383
8384 // Deallocate unneeded registers
8385 for(hr=0;hr<HOST_REGS;hr++)
8386 {
8387 if(!((nr>>hr)&1)) {
8388 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8389 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8390 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8391 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8392 {
8393 if (!is_ujump(i))
8394 {
8395 if(likely[i]) {
8396 regs[i].regmap[hr]=-1;
8397 regs[i].isconst&=~(1<<hr);
8398 if(i<slen-2) {
8399 regmap_pre[i+2][hr]=-1;
8400 regs[i+2].wasconst&=~(1<<hr);
8401 }
8402 }
8403 }
8404 }
8405 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8406 {
8407 int map=0,temp=0;
8408 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8409 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8410 map=INVCP;
8411 }
8412 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
8413 itype[i+1]==C1LS || itype[i+1]==C2LS)
8414 temp=FTEMP;
8415 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8416 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8417 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8418 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8419 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8420 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8421 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8422 regs[i].regmap[hr]!=map )
8423 {
8424 regs[i].regmap[hr]=-1;
8425 regs[i].isconst&=~(1<<hr);
8426 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8427 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8428 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8429 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8430 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8431 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8432 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8433 branch_regs[i].regmap[hr]!=map)
8434 {
8435 branch_regs[i].regmap[hr]=-1;
8436 branch_regs[i].regmap_entry[hr]=-1;
8437 if (!is_ujump(i))
8438 {
8439 if(!likely[i]&&i<slen-2) {
8440 regmap_pre[i+2][hr]=-1;
8441 regs[i+2].wasconst&=~(1<<hr);
8442 }
8443 }
8444 }
8445 }
8446 }
8447 else
8448 {
8449 // Non-branch
8450 if(i>0)
8451 {
8452 int map=-1,temp=-1;
8453 if(itype[i]==STORE || itype[i]==STORELR ||
8454 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8455 map=INVCP;
8456 }
8457 if(itype[i]==LOADLR || itype[i]==STORELR ||
8458 itype[i]==C1LS || itype[i]==C2LS)
8459 temp=FTEMP;
8460 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8461 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
8462 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8463 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
8464 {
8465 if(i<slen-1&&!is_ds[i]) {
8466 assert(regs[i].regmap[hr]<64);
8467 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8468 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8469 {
8470 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8471 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8472 }
8473 regmap_pre[i+1][hr]=-1;
8474 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8475 regs[i+1].wasconst&=~(1<<hr);
8476 }
8477 regs[i].regmap[hr]=-1;
8478 regs[i].isconst&=~(1<<hr);
8479 }
8480 }
8481 }
8482 } // if needed
8483 } // for hr
8484 }
8485
8486 /* Pass 5 - Pre-allocate registers */
8487
8488 // If a register is allocated during a loop, try to allocate it for the
8489 // entire loop, if possible. This avoids loading/storing registers
8490 // inside of the loop.
8491
8492 signed char f_regmap[HOST_REGS];
8493 clear_all_regs(f_regmap);
8494 for(i=0;i<slen-1;i++)
8495 {
8496 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8497 {
8498 if(ba[i]>=start && ba[i]<(start+i*4))
8499 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
8500 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
8501 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
8502 ||itype[i+1]==SHIFT||itype[i+1]==COP1
8503 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
8504 {
8505 int t=(ba[i]-start)>>2;
8506 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP)) // loop_preload can't handle jumps into delay slots
8507 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
8508 for(hr=0;hr<HOST_REGS;hr++)
8509 {
8510 if(regs[i].regmap[hr]>=0) {
8511 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8512 // dealloc old register
8513 int n;
8514 for(n=0;n<HOST_REGS;n++)
8515 {
8516 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8517 }
8518 // and alloc new one
8519 f_regmap[hr]=regs[i].regmap[hr];
8520 }
8521 }
8522 if(branch_regs[i].regmap[hr]>=0) {
8523 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8524 // dealloc old register
8525 int n;
8526 for(n=0;n<HOST_REGS;n++)
8527 {
8528 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8529 }
8530 // and alloc new one
8531 f_regmap[hr]=branch_regs[i].regmap[hr];
8532 }
8533 }
8534 if(ooo[i]) {
8535 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8536 f_regmap[hr]=branch_regs[i].regmap[hr];
8537 }else{
8538 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8539 f_regmap[hr]=branch_regs[i].regmap[hr];
8540 }
8541 // Avoid dirty->clean transition
8542 #ifdef DESTRUCTIVE_WRITEBACK
8543 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8544 #endif
8545 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8546 // case above, however it's always a good idea. We can't hoist the
8547 // load if the register was already allocated, so there's no point
8548 // wasting time analyzing most of these cases. It only "succeeds"
8549 // when the mapping was different and the load can be replaced with
8550 // a mov, which is of negligible benefit. So such cases are
8551 // skipped below.
8552 if(f_regmap[hr]>0) {
8553 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8554 int r=f_regmap[hr];
8555 for(j=t;j<=i;j++)
8556 {
8557 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8558 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8559 assert(r < 64);
8560 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8561 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8562 int k;
8563 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8564 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8565 if(r>63) {
8566 if(get_reg(regs[i].regmap,r&63)<0) break;
8567 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8568 }
8569 k=i;
8570 while(k>1&&regs[k-1].regmap[hr]==-1) {
8571 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8572 //printf("no free regs for store %x\n",start+(k-1)*4);
8573 break;
8574 }
8575 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8576 //printf("no-match due to different register\n");
8577 break;
8578 }
8579 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP) {
8580 //printf("no-match due to branch\n");
8581 break;
8582 }
8583 // call/ret fast path assumes no registers allocated
8584 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
8585 break;
8586 }
8587 assert(r < 64);
8588 k--;
8589 }
8590 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8591 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8592 while(k<i) {
8593 regs[k].regmap_entry[hr]=f_regmap[hr];
8594 regs[k].regmap[hr]=f_regmap[hr];
8595 regmap_pre[k+1][hr]=f_regmap[hr];
8596 regs[k].wasdirty&=~(1<<hr);
8597 regs[k].dirty&=~(1<<hr);
8598 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8599 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8600 regs[k].wasconst&=~(1<<hr);
8601 regs[k].isconst&=~(1<<hr);
8602 k++;
8603 }
8604 }
8605 else {
8606 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8607 break;
8608 }
8609 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8610 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8611 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8612 regs[i].regmap_entry[hr]=f_regmap[hr];
8613 regs[i].regmap[hr]=f_regmap[hr];
8614 regs[i].wasdirty&=~(1<<hr);
8615 regs[i].dirty&=~(1<<hr);
8616 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8617 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8618 regs[i].wasconst&=~(1<<hr);
8619 regs[i].isconst&=~(1<<hr);
8620 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8621 branch_regs[i].wasdirty&=~(1<<hr);
8622 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8623 branch_regs[i].regmap[hr]=f_regmap[hr];
8624 branch_regs[i].dirty&=~(1<<hr);
8625 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8626 branch_regs[i].wasconst&=~(1<<hr);
8627 branch_regs[i].isconst&=~(1<<hr);
8628 if (!is_ujump(i)) {
8629 regmap_pre[i+2][hr]=f_regmap[hr];
8630 regs[i+2].wasdirty&=~(1<<hr);
8631 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8632 }
8633 }
8634 }
8635 for(k=t;k<j;k++) {
8636 // Alloc register clean at beginning of loop,
8637 // but may dirty it in pass 6
8638 regs[k].regmap_entry[hr]=f_regmap[hr];
8639 regs[k].regmap[hr]=f_regmap[hr];
8640 regs[k].dirty&=~(1<<hr);
8641 regs[k].wasconst&=~(1<<hr);
8642 regs[k].isconst&=~(1<<hr);
8643 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP) {
8644 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8645 branch_regs[k].regmap[hr]=f_regmap[hr];
8646 branch_regs[k].dirty&=~(1<<hr);
8647 branch_regs[k].wasconst&=~(1<<hr);
8648 branch_regs[k].isconst&=~(1<<hr);
8649 if (!is_ujump(k)) {
8650 regmap_pre[k+2][hr]=f_regmap[hr];
8651 regs[k+2].wasdirty&=~(1<<hr);
8652 }
8653 }
8654 else
8655 {
8656 regmap_pre[k+1][hr]=f_regmap[hr];
8657 regs[k+1].wasdirty&=~(1<<hr);
8658 }
8659 }
8660 if(regs[j].regmap[hr]==f_regmap[hr])
8661 regs[j].regmap_entry[hr]=f_regmap[hr];
8662 break;
8663 }
8664 if(j==i) break;
8665 if(regs[j].regmap[hr]>=0)
8666 break;
8667 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8668 //printf("no-match due to different register\n");
8669 break;
8670 }
8671 if (is_ujump(j))
8672 {
8673 // Stop on unconditional branch
8674 break;
8675 }
8676 if(itype[j]==CJUMP||itype[j]==SJUMP)
8677 {
8678 if(ooo[j]) {
8679 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8680 break;
8681 }else{
8682 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8683 break;
8684 }
8685 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8686 //printf("no-match due to different register (branch)\n");
8687 break;
8688 }
8689 }
8690 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8691 //printf("No free regs for store %x\n",start+j*4);
8692 break;
8693 }
8694 assert(f_regmap[hr]<64);
8695 }
8696 }
8697 }
8698 }
8699 }
8700 }else{
8701 // Non branch or undetermined branch target
8702 for(hr=0;hr<HOST_REGS;hr++)
8703 {
8704 if(hr!=EXCLUDE_REG) {
8705 if(regs[i].regmap[hr]>=0) {
8706 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8707 // dealloc old register
8708 int n;
8709 for(n=0;n<HOST_REGS;n++)
8710 {
8711 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8712 }
8713 // and alloc new one
8714 f_regmap[hr]=regs[i].regmap[hr];
8715 }
8716 }
8717 }
8718 }
8719 // Try to restore cycle count at branch targets
8720 if(bt[i]) {
8721 for(j=i;j<slen-1;j++) {
8722 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8723 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8724 //printf("no free regs for store %x\n",start+j*4);
8725 break;
8726 }
8727 }
8728 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8729 int k=i;
8730 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8731 while(k<j) {
8732 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8733 regs[k].regmap[HOST_CCREG]=CCREG;
8734 regmap_pre[k+1][HOST_CCREG]=CCREG;
8735 regs[k+1].wasdirty|=1<<HOST_CCREG;
8736 regs[k].dirty|=1<<HOST_CCREG;
8737 regs[k].wasconst&=~(1<<HOST_CCREG);
8738 regs[k].isconst&=~(1<<HOST_CCREG);
8739 k++;
8740 }
8741 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8742 }
8743 // Work backwards from the branch target
8744 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8745 {
8746 //printf("Extend backwards\n");
8747 int k;
8748 k=i;
8749 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8750 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8751 //printf("no free regs for store %x\n",start+(k-1)*4);
8752 break;
8753 }
8754 k--;
8755 }
8756 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8757 //printf("Extend CC, %x ->\n",start+k*4);
8758 while(k<=i) {
8759 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8760 regs[k].regmap[HOST_CCREG]=CCREG;
8761 regmap_pre[k+1][HOST_CCREG]=CCREG;
8762 regs[k+1].wasdirty|=1<<HOST_CCREG;
8763 regs[k].dirty|=1<<HOST_CCREG;
8764 regs[k].wasconst&=~(1<<HOST_CCREG);
8765 regs[k].isconst&=~(1<<HOST_CCREG);
8766 k++;
8767 }
8768 }
8769 else {
8770 //printf("Fail Extend CC, %x ->\n",start+k*4);
8771 }
8772 }
8773 }
8774 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
8775 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
8776 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1)
8777 {
8778 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8779 }
8780 }
8781 }
8782
8783 // This allocates registers (if possible) one instruction prior
8784 // to use, which can avoid a load-use penalty on certain CPUs.
8785 for(i=0;i<slen-1;i++)
8786 {
8787 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP))
8788 {
8789 if(!bt[i+1])
8790 {
8791 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
8792 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
8793 {
8794 if(rs1[i+1]) {
8795 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
8796 {
8797 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8798 {
8799 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8800 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8801 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8802 regs[i].isconst&=~(1<<hr);
8803 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8804 constmap[i][hr]=constmap[i+1][hr];
8805 regs[i+1].wasdirty&=~(1<<hr);
8806 regs[i].dirty&=~(1<<hr);
8807 }
8808 }
8809 }
8810 if(rs2[i+1]) {
8811 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
8812 {
8813 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8814 {
8815 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8816 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8817 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8818 regs[i].isconst&=~(1<<hr);
8819 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8820 constmap[i][hr]=constmap[i+1][hr];
8821 regs[i+1].wasdirty&=~(1<<hr);
8822 regs[i].dirty&=~(1<<hr);
8823 }
8824 }
8825 }
8826 // Preload target address for load instruction (non-constant)
8827 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8828 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8829 {
8830 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8831 {
8832 regs[i].regmap[hr]=rs1[i+1];
8833 regmap_pre[i+1][hr]=rs1[i+1];
8834 regs[i+1].regmap_entry[hr]=rs1[i+1];
8835 regs[i].isconst&=~(1<<hr);
8836 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8837 constmap[i][hr]=constmap[i+1][hr];
8838 regs[i+1].wasdirty&=~(1<<hr);
8839 regs[i].dirty&=~(1<<hr);
8840 }
8841 }
8842 }
8843 // Load source into target register
8844 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8845 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8846 {
8847 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8848 {
8849 regs[i].regmap[hr]=rs1[i+1];
8850 regmap_pre[i+1][hr]=rs1[i+1];
8851 regs[i+1].regmap_entry[hr]=rs1[i+1];
8852 regs[i].isconst&=~(1<<hr);
8853 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8854 constmap[i][hr]=constmap[i+1][hr];
8855 regs[i+1].wasdirty&=~(1<<hr);
8856 regs[i].dirty&=~(1<<hr);
8857 }
8858 }
8859 }
8860 // Address for store instruction (non-constant)
8861 if(itype[i+1]==STORE||itype[i+1]==STORELR
8862 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8863 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8864 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8865 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8866 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8867 assert(hr>=0);
8868 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8869 {
8870 regs[i].regmap[hr]=rs1[i+1];
8871 regmap_pre[i+1][hr]=rs1[i+1];
8872 regs[i+1].regmap_entry[hr]=rs1[i+1];
8873 regs[i].isconst&=~(1<<hr);
8874 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8875 constmap[i][hr]=constmap[i+1][hr];
8876 regs[i+1].wasdirty&=~(1<<hr);
8877 regs[i].dirty&=~(1<<hr);
8878 }
8879 }
8880 }
8881 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8882 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8883 int nr;
8884 hr=get_reg(regs[i+1].regmap,FTEMP);
8885 assert(hr>=0);
8886 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8887 {
8888 regs[i].regmap[hr]=rs1[i+1];
8889 regmap_pre[i+1][hr]=rs1[i+1];
8890 regs[i+1].regmap_entry[hr]=rs1[i+1];
8891 regs[i].isconst&=~(1<<hr);
8892 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8893 constmap[i][hr]=constmap[i+1][hr];
8894 regs[i+1].wasdirty&=~(1<<hr);
8895 regs[i].dirty&=~(1<<hr);
8896 }
8897 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8898 {
8899 // move it to another register
8900 regs[i+1].regmap[hr]=-1;
8901 regmap_pre[i+2][hr]=-1;
8902 regs[i+1].regmap[nr]=FTEMP;
8903 regmap_pre[i+2][nr]=FTEMP;
8904 regs[i].regmap[nr]=rs1[i+1];
8905 regmap_pre[i+1][nr]=rs1[i+1];
8906 regs[i+1].regmap_entry[nr]=rs1[i+1];
8907 regs[i].isconst&=~(1<<nr);
8908 regs[i+1].isconst&=~(1<<nr);
8909 regs[i].dirty&=~(1<<nr);
8910 regs[i+1].wasdirty&=~(1<<nr);
8911 regs[i+1].dirty&=~(1<<nr);
8912 regs[i+2].wasdirty&=~(1<<nr);
8913 }
8914 }
8915 }
8916 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
8917 if(itype[i+1]==LOAD)
8918 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
8919 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8920 hr=get_reg(regs[i+1].regmap,FTEMP);
8921 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8922 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8923 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8924 }
8925 if(hr>=0&&regs[i].regmap[hr]<0) {
8926 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
8927 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8928 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8929 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8930 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8931 regs[i].isconst&=~(1<<hr);
8932 regs[i+1].wasdirty&=~(1<<hr);
8933 regs[i].dirty&=~(1<<hr);
8934 }
8935 }
8936 }
8937 }
8938 }
8939 }
8940 }
8941
8942 /* Pass 6 - Optimize clean/dirty state */
8943 clean_registers(0,slen-1,1);
8944
8945 /* Pass 7 - Identify 32-bit registers */
8946 for (i=slen-1;i>=0;i--)
8947 {
8948 if(itype[i]==CJUMP||itype[i]==SJUMP)
8949 {
8950 // Conditional branch
8951 if((source[i]>>16)!=0x1000&&i<slen-2) {
8952 // Mark this address as a branch target since it may be called
8953 // upon return from interrupt
8954 bt[i+2]=1;
8955 }
8956 }
8957 }
8958
8959 if(itype[slen-1]==SPAN) {
8960 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
8961 }
8962
8963#ifdef DISASM
8964 /* Debug/disassembly */
8965 for(i=0;i<slen;i++)
8966 {
8967 printf("U:");
8968 int r;
8969 for(r=1;r<=CCREG;r++) {
8970 if((unneeded_reg[i]>>r)&1) {
8971 if(r==HIREG) printf(" HI");
8972 else if(r==LOREG) printf(" LO");
8973 else printf(" r%d",r);
8974 }
8975 }
8976 printf("\n");
8977 #if defined(__i386__) || defined(__x86_64__)
8978 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8979 #endif
8980 #ifdef __arm__
8981 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8982 #endif
8983 #if defined(__i386__) || defined(__x86_64__)
8984 printf("needs: ");
8985 if(needed_reg[i]&1) printf("eax ");
8986 if((needed_reg[i]>>1)&1) printf("ecx ");
8987 if((needed_reg[i]>>2)&1) printf("edx ");
8988 if((needed_reg[i]>>3)&1) printf("ebx ");
8989 if((needed_reg[i]>>5)&1) printf("ebp ");
8990 if((needed_reg[i]>>6)&1) printf("esi ");
8991 if((needed_reg[i]>>7)&1) printf("edi ");
8992 printf("\n");
8993 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8994 printf("dirty: ");
8995 if(regs[i].wasdirty&1) printf("eax ");
8996 if((regs[i].wasdirty>>1)&1) printf("ecx ");
8997 if((regs[i].wasdirty>>2)&1) printf("edx ");
8998 if((regs[i].wasdirty>>3)&1) printf("ebx ");
8999 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9000 if((regs[i].wasdirty>>6)&1) printf("esi ");
9001 if((regs[i].wasdirty>>7)&1) printf("edi ");
9002 #endif
9003 #ifdef __arm__
9004 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9005 printf("dirty: ");
9006 if(regs[i].wasdirty&1) printf("r0 ");
9007 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9008 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9009 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9010 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9011 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9012 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9013 if((regs[i].wasdirty>>7)&1) printf("r7 ");
9014 if((regs[i].wasdirty>>8)&1) printf("r8 ");
9015 if((regs[i].wasdirty>>9)&1) printf("r9 ");
9016 if((regs[i].wasdirty>>10)&1) printf("r10 ");
9017 if((regs[i].wasdirty>>12)&1) printf("r12 ");
9018 #endif
9019 printf("\n");
9020 disassemble_inst(i);
9021 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9022 #if defined(__i386__) || defined(__x86_64__)
9023 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9024 if(regs[i].dirty&1) printf("eax ");
9025 if((regs[i].dirty>>1)&1) printf("ecx ");
9026 if((regs[i].dirty>>2)&1) printf("edx ");
9027 if((regs[i].dirty>>3)&1) printf("ebx ");
9028 if((regs[i].dirty>>5)&1) printf("ebp ");
9029 if((regs[i].dirty>>6)&1) printf("esi ");
9030 if((regs[i].dirty>>7)&1) printf("edi ");
9031 #endif
9032 #ifdef __arm__
9033 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9034 if(regs[i].dirty&1) printf("r0 ");
9035 if((regs[i].dirty>>1)&1) printf("r1 ");
9036 if((regs[i].dirty>>2)&1) printf("r2 ");
9037 if((regs[i].dirty>>3)&1) printf("r3 ");
9038 if((regs[i].dirty>>4)&1) printf("r4 ");
9039 if((regs[i].dirty>>5)&1) printf("r5 ");
9040 if((regs[i].dirty>>6)&1) printf("r6 ");
9041 if((regs[i].dirty>>7)&1) printf("r7 ");
9042 if((regs[i].dirty>>8)&1) printf("r8 ");
9043 if((regs[i].dirty>>9)&1) printf("r9 ");
9044 if((regs[i].dirty>>10)&1) printf("r10 ");
9045 if((regs[i].dirty>>12)&1) printf("r12 ");
9046 #endif
9047 printf("\n");
9048 if(regs[i].isconst) {
9049 printf("constants: ");
9050 #if defined(__i386__) || defined(__x86_64__)
9051 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
9052 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
9053 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
9054 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
9055 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
9056 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
9057 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
9058 #endif
9059 #if defined(__arm__) || defined(__aarch64__)
9060 int r;
9061 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
9062 if ((regs[i].isconst >> r) & 1)
9063 printf(" r%d=%x", r, (u_int)constmap[i][r]);
9064 #endif
9065 printf("\n");
9066 }
9067 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
9068 #if defined(__i386__) || defined(__x86_64__)
9069 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9070 if(branch_regs[i].dirty&1) printf("eax ");
9071 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9072 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9073 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9074 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9075 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9076 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9077 #endif
9078 #ifdef __arm__
9079 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9080 if(branch_regs[i].dirty&1) printf("r0 ");
9081 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9082 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9083 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9084 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9085 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9086 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9087 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9088 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9089 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9090 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9091 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9092 #endif
9093 }
9094 }
9095#endif // DISASM
9096
9097 /* Pass 8 - Assembly */
9098 linkcount=0;stubcount=0;
9099 ds=0;is_delayslot=0;
9100 u_int dirty_pre=0;
9101 void *beginning=start_block();
9102 if((u_int)addr&1) {
9103 ds=1;
9104 pagespan_ds();
9105 }
9106 void *instr_addr0_override = NULL;
9107
9108 if (start == 0x80030000) {
9109 // nasty hack for the fastbios thing
9110 // override block entry to this code
9111 instr_addr0_override = out;
9112 emit_movimm(start,0);
9113 // abuse io address var as a flag that we
9114 // have already returned here once
9115 emit_readword(&address,1);
9116 emit_writeword(0,&pcaddr);
9117 emit_writeword(0,&address);
9118 emit_cmp(0,1);
9119 #ifdef __aarch64__
9120 emit_jeq(out + 4*2);
9121 emit_far_jump(new_dyna_leave);
9122 #else
9123 emit_jne(new_dyna_leave);
9124 #endif
9125 }
9126 for(i=0;i<slen;i++)
9127 {
9128 //if(ds) printf("ds: ");
9129 disassemble_inst(i);
9130 if(ds) {
9131 ds=0; // Skip delay slot
9132 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
9133 instr_addr[i] = NULL;
9134 } else {
9135 speculate_register_values(i);
9136 #ifndef DESTRUCTIVE_WRITEBACK
9137 if (i < 2 || !is_ujump(i-2))
9138 {
9139 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9140 }
9141 if((itype[i]==CJUMP||itype[i]==SJUMP)&&!likely[i]) {
9142 dirty_pre=branch_regs[i].dirty;
9143 }else{
9144 dirty_pre=regs[i].dirty;
9145 }
9146 #endif
9147 // write back
9148 if (i < 2 || !is_ujump(i-2))
9149 {
9150 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9151 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9152 }
9153 // branch target entry point
9154 instr_addr[i] = out;
9155 assem_debug("<->\n");
9156 drc_dbg_emit_do_cmp(i);
9157
9158 // load regs
9159 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9160 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9161 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i],rs2[i]);
9162 address_generation(i,&regs[i],regs[i].regmap_entry);
9163 load_consts(regmap_pre[i],regs[i].regmap,i);
9164 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
9165 {
9166 // Load the delay slot registers if necessary
9167 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
9168 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
9169 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
9170 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
9171 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
9172 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9173 }
9174 else if(i+1<slen)
9175 {
9176 // Preload registers for following instruction
9177 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
9178 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
9179 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
9180 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
9181 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
9182 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
9183 }
9184 // TODO: if(is_ooo(i)) address_generation(i+1);
9185 if(itype[i]==CJUMP)
9186 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9187 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
9188 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9189 // assemble
9190 switch(itype[i]) {
9191 case ALU:
9192 alu_assemble(i,&regs[i]);break;
9193 case IMM16:
9194 imm16_assemble(i,&regs[i]);break;
9195 case SHIFT:
9196 shift_assemble(i,&regs[i]);break;
9197 case SHIFTIMM:
9198 shiftimm_assemble(i,&regs[i]);break;
9199 case LOAD:
9200 load_assemble(i,&regs[i]);break;
9201 case LOADLR:
9202 loadlr_assemble(i,&regs[i]);break;
9203 case STORE:
9204 store_assemble(i,&regs[i]);break;
9205 case STORELR:
9206 storelr_assemble(i,&regs[i]);break;
9207 case COP0:
9208 cop0_assemble(i,&regs[i]);break;
9209 case COP1:
9210 cop1_assemble(i,&regs[i]);break;
9211 case C1LS:
9212 c1ls_assemble(i,&regs[i]);break;
9213 case COP2:
9214 cop2_assemble(i,&regs[i]);break;
9215 case C2LS:
9216 c2ls_assemble(i,&regs[i]);break;
9217 case C2OP:
9218 c2op_assemble(i,&regs[i]);break;
9219 case MULTDIV:
9220 multdiv_assemble(i,&regs[i]);
9221 multdiv_prepare_stall(i,&regs[i]);
9222 break;
9223 case MOV:
9224 mov_assemble(i,&regs[i]);break;
9225 case SYSCALL:
9226 syscall_assemble(i,&regs[i]);break;
9227 case HLECALL:
9228 hlecall_assemble(i,&regs[i]);break;
9229 case INTCALL:
9230 intcall_assemble(i,&regs[i]);break;
9231 case UJUMP:
9232 ujump_assemble(i,&regs[i]);ds=1;break;
9233 case RJUMP:
9234 rjump_assemble(i,&regs[i]);ds=1;break;
9235 case CJUMP:
9236 cjump_assemble(i,&regs[i]);ds=1;break;
9237 case SJUMP:
9238 sjump_assemble(i,&regs[i]);ds=1;break;
9239 case SPAN:
9240 pagespan_assemble(i,&regs[i]);break;
9241 }
9242 if (is_ujump(i))
9243 literal_pool(1024);
9244 else
9245 literal_pool_jumpover(256);
9246 }
9247 }
9248 //assert(is_ujump(i-2));
9249 // If the block did not end with an unconditional branch,
9250 // add a jump to the next instruction.
9251 if(i>1) {
9252 if(!is_ujump(i-2)&&itype[i-1]!=SPAN) {
9253 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
9254 assert(i==slen);
9255 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP) {
9256 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9257 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9258 emit_loadreg(CCREG,HOST_CCREG);
9259 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9260 }
9261 else if(!likely[i-2])
9262 {
9263 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9264 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9265 }
9266 else
9267 {
9268 store_regs_bt(regs[i-2].regmap,regs[i-2].dirty,start+i*4);
9269 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
9270 }
9271 add_to_linker(out,start+i*4,0);
9272 emit_jmp(0);
9273 }
9274 }
9275 else
9276 {
9277 assert(i>0);
9278 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
9279 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9280 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9281 emit_loadreg(CCREG,HOST_CCREG);
9282 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9283 add_to_linker(out,start+i*4,0);
9284 emit_jmp(0);
9285 }
9286
9287 // TODO: delay slot stubs?
9288 // Stubs
9289 for(i=0;i<stubcount;i++)
9290 {
9291 switch(stubs[i].type)
9292 {
9293 case LOADB_STUB:
9294 case LOADH_STUB:
9295 case LOADW_STUB:
9296 case LOADD_STUB:
9297 case LOADBU_STUB:
9298 case LOADHU_STUB:
9299 do_readstub(i);break;
9300 case STOREB_STUB:
9301 case STOREH_STUB:
9302 case STOREW_STUB:
9303 case STORED_STUB:
9304 do_writestub(i);break;
9305 case CC_STUB:
9306 do_ccstub(i);break;
9307 case INVCODE_STUB:
9308 do_invstub(i);break;
9309 case FP_STUB:
9310 do_cop1stub(i);break;
9311 case STORELR_STUB:
9312 do_unalignedwritestub(i);break;
9313 }
9314 }
9315
9316 if (instr_addr0_override)
9317 instr_addr[0] = instr_addr0_override;
9318
9319 /* Pass 9 - Linker */
9320 for(i=0;i<linkcount;i++)
9321 {
9322 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9323 literal_pool(64);
9324 if (!link_addr[i].ext)
9325 {
9326 void *stub = out;
9327 void *addr = check_addr(link_addr[i].target);
9328 emit_extjump(link_addr[i].addr, link_addr[i].target);
9329 if (addr) {
9330 set_jump_target(link_addr[i].addr, addr);
9331 add_link(link_addr[i].target,stub);
9332 }
9333 else
9334 set_jump_target(link_addr[i].addr, stub);
9335 }
9336 else
9337 {
9338 // Internal branch
9339 int target=(link_addr[i].target-start)>>2;
9340 assert(target>=0&&target<slen);
9341 assert(instr_addr[target]);
9342 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9343 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9344 //#else
9345 set_jump_target(link_addr[i].addr, instr_addr[target]);
9346 //#endif
9347 }
9348 }
9349 // External Branch Targets (jump_in)
9350 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
9351 for(i=0;i<slen;i++)
9352 {
9353 if(bt[i]||i==0)
9354 {
9355 if(instr_addr[i]) // TODO - delay slots (=null)
9356 {
9357 u_int vaddr=start+i*4;
9358 u_int page=get_page(vaddr);
9359 u_int vpage=get_vpage(vaddr);
9360 literal_pool(256);
9361 {
9362 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9363 assem_debug("jump_in: %x\n",start+i*4);
9364 ll_add(jump_dirty+vpage,vaddr,out);
9365 void *entry_point = do_dirty_stub(i);
9366 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9367 // If there was an existing entry in the hash table,
9368 // replace it with the new address.
9369 // Don't add new entries. We'll insert the
9370 // ones that actually get used in check_addr().
9371 struct ht_entry *ht_bin = hash_table_get(vaddr);
9372 if (ht_bin->vaddr[0] == vaddr)
9373 ht_bin->tcaddr[0] = entry_point;
9374 if (ht_bin->vaddr[1] == vaddr)
9375 ht_bin->tcaddr[1] = entry_point;
9376 }
9377 }
9378 }
9379 }
9380 // Write out the literal pool if necessary
9381 literal_pool(0);
9382 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9383 // Align code
9384 if(((u_int)out)&7) emit_addnop(13);
9385 #endif
9386 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9387 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9388 memcpy(copy,source,slen*4);
9389 copy+=slen*4;
9390
9391 end_block(beginning);
9392
9393 // If we're within 256K of the end of the buffer,
9394 // start over from the beginning. (Is 256K enough?)
9395 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9396 out = ndrc->translation_cache;
9397
9398 // Trap writes to any of the pages we compiled
9399 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9400 invalid_code[i]=0;
9401 }
9402 inv_code_start=inv_code_end=~0;
9403
9404 // for PCSX we need to mark all mirrors too
9405 if(get_page(start)<(RAM_SIZE>>12))
9406 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9407 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9408 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9409 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9410
9411 /* Pass 10 - Free memory by expiring oldest blocks */
9412
9413 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9414 while(expirep!=end)
9415 {
9416 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9417 uintptr_t base=(uintptr_t)ndrc->translation_cache+((expirep>>13)<<shift); // Base address of this block
9418 inv_debug("EXP: Phase %d\n",expirep);
9419 switch((expirep>>11)&3)
9420 {
9421 case 0:
9422 // Clear jump_in and jump_dirty
9423 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
9424 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
9425 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
9426 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
9427 break;
9428 case 1:
9429 // Clear pointers
9430 ll_kill_pointers(jump_out[expirep&2047],base,shift);
9431 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
9432 break;
9433 case 2:
9434 // Clear hash table
9435 for(i=0;i<32;i++) {
9436 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9437 if (((uintptr_t)ht_bin->tcaddr[1]>>shift) == (base>>shift) ||
9438 (((uintptr_t)ht_bin->tcaddr[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
9439 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9440 ht_bin->vaddr[1] = -1;
9441 ht_bin->tcaddr[1] = NULL;
9442 }
9443 if (((uintptr_t)ht_bin->tcaddr[0]>>shift) == (base>>shift) ||
9444 (((uintptr_t)ht_bin->tcaddr[0]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
9445 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9446 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9447 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9448 ht_bin->vaddr[1] = -1;
9449 ht_bin->tcaddr[1] = NULL;
9450 }
9451 }
9452 break;
9453 case 3:
9454 // Clear jump_out
9455 if((expirep&2047)==0)
9456 do_clear_cache();
9457 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
9458 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
9459 break;
9460 }
9461 expirep=(expirep+1)&65535;
9462 }
9463 return 0;
9464}
9465
9466// vim:shiftwidth=2:expandtab