drc: get rid of RAM_FIXED, revive ROREG
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42
43#define noinline __attribute__((noinline,noclone))
44#ifndef ARRAY_SIZE
45#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
46#endif
47#ifndef min
48#define min(a, b) ((b) < (a) ? (b) : (a))
49#endif
50#ifndef max
51#define max(a, b) ((b) > (a) ? (b) : (a))
52#endif
53
54//#define DISASM
55//#define ASSEM_PRINT
56
57#ifdef ASSEM_PRINT
58#define assem_debug printf
59#else
60#define assem_debug(...)
61#endif
62//#define inv_debug printf
63#define inv_debug(...)
64
65#ifdef __i386__
66#include "assem_x86.h"
67#endif
68#ifdef __x86_64__
69#include "assem_x64.h"
70#endif
71#ifdef __arm__
72#include "assem_arm.h"
73#endif
74#ifdef __aarch64__
75#include "assem_arm64.h"
76#endif
77
78#define RAM_SIZE 0x200000
79#define MAXBLOCK 4096
80#define MAX_OUTPUT_BLOCK_SIZE 262144
81
82struct ndrc_mem
83{
84 u_char translation_cache[1 << TARGET_SIZE_2];
85 struct
86 {
87 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
88 const void *f[2048 / sizeof(void *)];
89 } tramp;
90};
91
92#ifdef BASE_ADDR_DYNAMIC
93static struct ndrc_mem *ndrc;
94#else
95static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
96static struct ndrc_mem *ndrc = &ndrc_;
97#endif
98
99// stubs
100enum stub_type {
101 CC_STUB = 1,
102 FP_STUB = 2,
103 LOADB_STUB = 3,
104 LOADH_STUB = 4,
105 LOADW_STUB = 5,
106 LOADD_STUB = 6,
107 LOADBU_STUB = 7,
108 LOADHU_STUB = 8,
109 STOREB_STUB = 9,
110 STOREH_STUB = 10,
111 STOREW_STUB = 11,
112 STORED_STUB = 12,
113 STORELR_STUB = 13,
114 INVCODE_STUB = 14,
115};
116
117struct regstat
118{
119 signed char regmap_entry[HOST_REGS];
120 signed char regmap[HOST_REGS];
121 uint64_t wasdirty;
122 uint64_t dirty;
123 uint64_t u;
124 u_int wasconst;
125 u_int isconst;
126 u_int loadedconst; // host regs that have constants loaded
127 u_int waswritten; // MIPS regs that were used as store base before
128};
129
130// note: asm depends on this layout
131struct ll_entry
132{
133 u_int vaddr;
134 u_int reg_sv_flags;
135 void *addr;
136 struct ll_entry *next;
137};
138
139struct ht_entry
140{
141 u_int vaddr[2];
142 void *tcaddr[2];
143};
144
145struct code_stub
146{
147 enum stub_type type;
148 void *addr;
149 void *retaddr;
150 u_int a;
151 uintptr_t b;
152 uintptr_t c;
153 u_int d;
154 u_int e;
155};
156
157struct link_entry
158{
159 void *addr;
160 u_int target;
161 u_int ext;
162};
163
164static struct decoded_insn
165{
166 u_char itype;
167 u_char opcode;
168 u_char opcode2;
169 u_char rs1;
170 u_char rs2;
171 u_char rt1;
172 u_char rt2;
173 u_char lt1;
174 u_char bt:1;
175 u_char ooo:1;
176 u_char is_ds:1;
177 u_char is_jump:1;
178 u_char is_ujump:1;
179 u_char is_load:1;
180 u_char is_store:1;
181} dops[MAXBLOCK];
182
183 // used by asm:
184 u_char *out;
185 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
186 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
187 struct ll_entry *jump_dirty[4096];
188
189 static struct ll_entry *jump_out[4096];
190 static u_int start;
191 static u_int *source;
192 static char insn[MAXBLOCK][10];
193 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
194 static uint64_t gte_rt[MAXBLOCK];
195 static uint64_t gte_unneeded[MAXBLOCK];
196 static u_int smrv[32]; // speculated MIPS register values
197 static u_int smrv_strong; // mask or regs that are likely to have correct values
198 static u_int smrv_weak; // same, but somewhat less likely
199 static u_int smrv_strong_next; // same, but after current insn executes
200 static u_int smrv_weak_next;
201 static int imm[MAXBLOCK];
202 static u_int ba[MAXBLOCK];
203 static uint64_t unneeded_reg[MAXBLOCK];
204 static uint64_t branch_unneeded_reg[MAXBLOCK];
205 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
206 // contains 'real' consts at [i] insn, but may differ from what's actually
207 // loaded in host reg as 'final' value is always loaded, see get_final_value()
208 static uint32_t current_constmap[HOST_REGS];
209 static uint32_t constmap[MAXBLOCK][HOST_REGS];
210 static struct regstat regs[MAXBLOCK];
211 static struct regstat branch_regs[MAXBLOCK];
212 static signed char minimum_free_regs[MAXBLOCK];
213 static u_int needed_reg[MAXBLOCK];
214 static u_int wont_dirty[MAXBLOCK];
215 static u_int will_dirty[MAXBLOCK];
216 static int ccadj[MAXBLOCK];
217 static int slen;
218 static void *instr_addr[MAXBLOCK];
219 static struct link_entry link_addr[MAXBLOCK];
220 static int linkcount;
221 static struct code_stub stubs[MAXBLOCK*3];
222 static int stubcount;
223 static u_int literals[1024][2];
224 static int literalcount;
225 static int is_delayslot;
226 static char shadow[1048576] __attribute__((aligned(16)));
227 static void *copy;
228 static int expirep;
229 static u_int stop_after_jal;
230 static u_int f1_hack; // 0 - off, ~0 - capture address, else addr
231
232 int new_dynarec_hacks;
233 int new_dynarec_hacks_pergame;
234 int new_dynarec_hacks_old;
235 int new_dynarec_did_compile;
236
237 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
238
239 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
240 extern int last_count; // last absolute target, often = next_interupt
241 extern int pcaddr;
242 extern int pending_exception;
243 extern int branch_target;
244 extern uintptr_t ram_offset;
245 extern uintptr_t mini_ht[32][2];
246 extern u_char restore_candidate[512];
247
248 /* registers that may be allocated */
249 /* 1-31 gpr */
250#define LOREG 32 // lo
251#define HIREG 33 // hi
252//#define FSREG 34 // FPU status (FCSR)
253#define CSREG 35 // Coprocessor status
254#define CCREG 36 // Cycle count
255#define INVCP 37 // Pointer to invalid_code
256//#define MMREG 38 // Pointer to memory_map
257#define ROREG 39 // ram offset (if rdram!=0x80000000)
258#define TEMPREG 40
259#define FTEMP 40 // FPU temporary register
260#define PTEMP 41 // Prefetch temporary register
261//#define TLREG 42 // TLB mapping offset
262#define RHASH 43 // Return address hash
263#define RHTBL 44 // Return address hash table address
264#define RTEMP 45 // JR/JALR address register
265#define MAXREG 45
266#define AGEN1 46 // Address generation temporary register
267//#define AGEN2 47 // Address generation temporary register
268//#define MGEN1 48 // Maptable address generation temporary register
269//#define MGEN2 49 // Maptable address generation temporary register
270#define BTREG 50 // Branch target temporary register
271
272 /* instruction types */
273#define NOP 0 // No operation
274#define LOAD 1 // Load
275#define STORE 2 // Store
276#define LOADLR 3 // Unaligned load
277#define STORELR 4 // Unaligned store
278#define MOV 5 // Move
279#define ALU 6 // Arithmetic/logic
280#define MULTDIV 7 // Multiply/divide
281#define SHIFT 8 // Shift by register
282#define SHIFTIMM 9// Shift by immediate
283#define IMM16 10 // 16-bit immediate
284#define RJUMP 11 // Unconditional jump to register
285#define UJUMP 12 // Unconditional jump
286#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
287#define SJUMP 14 // Conditional branch (regimm format)
288#define COP0 15 // Coprocessor 0
289#define COP1 16 // Coprocessor 1
290#define C1LS 17 // Coprocessor 1 load/store
291//#define FJUMP 18 // Conditional branch (floating point)
292//#define FLOAT 19 // Floating point unit
293//#define FCONV 20 // Convert integer to float
294//#define FCOMP 21 // Floating point compare (sets FSREG)
295#define SYSCALL 22// SYSCALL
296#define OTHER 23 // Other
297#define SPAN 24 // Branch/delay slot spans 2 pages
298#define NI 25 // Not implemented
299#define HLECALL 26// PCSX fake opcodes for HLE
300#define COP2 27 // Coprocessor 2 move
301#define C2LS 28 // Coprocessor 2 load/store
302#define C2OP 29 // Coprocessor 2 operation
303#define INTCALL 30// Call interpreter to handle rare corner cases
304
305 /* branch codes */
306#define TAKEN 1
307#define NOTTAKEN 2
308#define NULLDS 3
309
310#define DJT_1 (void *)1l // no function, just a label in assem_debug log
311#define DJT_2 (void *)2l
312
313// asm linkage
314int new_recompile_block(u_int addr);
315void *get_addr_ht(u_int vaddr);
316void invalidate_block(u_int block);
317void invalidate_addr(u_int addr);
318void remove_hash(int vaddr);
319void dyna_linker();
320void dyna_linker_ds();
321void verify_code();
322void verify_code_ds();
323void cc_interrupt();
324void fp_exception();
325void fp_exception_ds();
326void jump_to_new_pc();
327void call_gteStall();
328void new_dyna_leave();
329
330// Needed by assembler
331static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
332static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
333static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
334static void load_all_regs(signed char i_regmap[]);
335static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
336static void load_regs_entry(int t);
337static void load_all_consts(signed char regmap[],u_int dirty,int i);
338static u_int get_host_reglist(const signed char *regmap);
339
340static int verify_dirty(const u_int *ptr);
341static int get_final_value(int hr, int i, int *value);
342static void add_stub(enum stub_type type, void *addr, void *retaddr,
343 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
344static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
345 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
346static void add_to_linker(void *addr, u_int target, int ext);
347static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
348 int addr, int *offset_reg, int *addr_reg_override);
349static void *get_direct_memhandler(void *table, u_int addr,
350 enum stub_type type, uintptr_t *addr_host);
351static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
352static void pass_args(int a0, int a1);
353static void emit_far_jump(const void *f);
354static void emit_far_call(const void *f);
355
356static void mprotect_w_x(void *start, void *end, int is_x)
357{
358#ifdef NO_WRITE_EXEC
359 #if defined(VITA)
360 // *Open* enables write on all memory that was
361 // allocated by sceKernelAllocMemBlockForVM()?
362 if (is_x)
363 sceKernelCloseVMDomain();
364 else
365 sceKernelOpenVMDomain();
366 #else
367 u_long mstart = (u_long)start & ~4095ul;
368 u_long mend = (u_long)end;
369 if (mprotect((void *)mstart, mend - mstart,
370 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
371 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
372 #endif
373#endif
374}
375
376static void start_tcache_write(void *start, void *end)
377{
378 mprotect_w_x(start, end, 0);
379}
380
381static void end_tcache_write(void *start, void *end)
382{
383#if defined(__arm__) || defined(__aarch64__)
384 size_t len = (char *)end - (char *)start;
385 #if defined(__BLACKBERRY_QNX__)
386 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
387 #elif defined(__MACH__)
388 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
389 #elif defined(VITA)
390 sceKernelSyncVMDomain(sceBlock, start, len);
391 #elif defined(_3DS)
392 ctr_flush_invalidate_cache();
393 #elif defined(__aarch64__)
394 // as of 2021, __clear_cache() is still broken on arm64
395 // so here is a custom one :(
396 clear_cache_arm64(start, end);
397 #else
398 __clear_cache(start, end);
399 #endif
400 (void)len;
401#endif
402
403 mprotect_w_x(start, end, 1);
404}
405
406static void *start_block(void)
407{
408 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
409 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
410 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
411 start_tcache_write(out, end);
412 return out;
413}
414
415static void end_block(void *start)
416{
417 end_tcache_write(start, out);
418}
419
420// also takes care of w^x mappings when patching code
421static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
422
423static void mark_clear_cache(void *target)
424{
425 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
426 u_int mask = 1u << ((offset >> 12) & 31);
427 if (!(needs_clear_cache[offset >> 17] & mask)) {
428 char *start = (char *)((uintptr_t)target & ~4095l);
429 start_tcache_write(start, start + 4095);
430 needs_clear_cache[offset >> 17] |= mask;
431 }
432}
433
434// Clearing the cache is rather slow on ARM Linux, so mark the areas
435// that need to be cleared, and then only clear these areas once.
436static void do_clear_cache(void)
437{
438 int i, j;
439 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
440 {
441 u_int bitmap = needs_clear_cache[i];
442 if (!bitmap)
443 continue;
444 for (j = 0; j < 32; j++)
445 {
446 u_char *start, *end;
447 if (!(bitmap & (1<<j)))
448 continue;
449
450 start = ndrc->translation_cache + i*131072 + j*4096;
451 end = start + 4095;
452 for (j++; j < 32; j++) {
453 if (!(bitmap & (1<<j)))
454 break;
455 end += 4096;
456 }
457 end_tcache_write(start, end);
458 }
459 needs_clear_cache[i] = 0;
460 }
461}
462
463//#define DEBUG_CYCLE_COUNT 1
464
465#define NO_CYCLE_PENALTY_THR 12
466
467int cycle_multiplier = CYCLE_MULT_DEFAULT; // 100 for 1.0
468int cycle_multiplier_override;
469int cycle_multiplier_old;
470
471static int CLOCK_ADJUST(int x)
472{
473 int m = cycle_multiplier_override && cycle_multiplier == CYCLE_MULT_DEFAULT
474 ? cycle_multiplier_override : cycle_multiplier;
475 int s=(x>>31)|1;
476 return (x * m + s * 50) / 100;
477}
478
479static int ds_writes_rjump_rs(int i)
480{
481 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
482}
483
484static u_int get_page(u_int vaddr)
485{
486 u_int page=vaddr&~0xe0000000;
487 if (page < 0x1000000)
488 page &= ~0x0e00000; // RAM mirrors
489 page>>=12;
490 if(page>2048) page=2048+(page&2047);
491 return page;
492}
493
494// no virtual mem in PCSX
495static u_int get_vpage(u_int vaddr)
496{
497 return get_page(vaddr);
498}
499
500static struct ht_entry *hash_table_get(u_int vaddr)
501{
502 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
503}
504
505static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
506{
507 ht_bin->vaddr[1] = ht_bin->vaddr[0];
508 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
509 ht_bin->vaddr[0] = vaddr;
510 ht_bin->tcaddr[0] = tcaddr;
511}
512
513// some messy ari64's code, seems to rely on unsigned 32bit overflow
514static int doesnt_expire_soon(void *tcaddr)
515{
516 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
517 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
518}
519
520// Get address from virtual address
521// This is called from the recompiled JR/JALR instructions
522void noinline *get_addr(u_int vaddr)
523{
524 u_int page=get_page(vaddr);
525 u_int vpage=get_vpage(vaddr);
526 struct ll_entry *head;
527 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
528 head=jump_in[page];
529 while(head!=NULL) {
530 if(head->vaddr==vaddr) {
531 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
532 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
533 return head->addr;
534 }
535 head=head->next;
536 }
537 head=jump_dirty[vpage];
538 while(head!=NULL) {
539 if(head->vaddr==vaddr) {
540 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
541 // Don't restore blocks which are about to expire from the cache
542 if (doesnt_expire_soon(head->addr))
543 if (verify_dirty(head->addr)) {
544 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
545 invalid_code[vaddr>>12]=0;
546 inv_code_start=inv_code_end=~0;
547 if(vpage<2048) {
548 restore_candidate[vpage>>3]|=1<<(vpage&7);
549 }
550 else restore_candidate[page>>3]|=1<<(page&7);
551 struct ht_entry *ht_bin = hash_table_get(vaddr);
552 if (ht_bin->vaddr[0] == vaddr)
553 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
554 else
555 hash_table_add(ht_bin, vaddr, head->addr);
556
557 return head->addr;
558 }
559 }
560 head=head->next;
561 }
562 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
563 int r=new_recompile_block(vaddr);
564 if(r==0) return get_addr(vaddr);
565 // Execute in unmapped page, generate pagefault execption
566 Status|=2;
567 Cause=(vaddr<<31)|0x8;
568 EPC=(vaddr&1)?vaddr-5:vaddr;
569 BadVAddr=(vaddr&~1);
570 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
571 EntryHi=BadVAddr&0xFFFFE000;
572 return get_addr_ht(0x80000000);
573}
574// Look up address in hash table first
575void *get_addr_ht(u_int vaddr)
576{
577 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
578 const struct ht_entry *ht_bin = hash_table_get(vaddr);
579 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
580 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
581 return get_addr(vaddr);
582}
583
584void clear_all_regs(signed char regmap[])
585{
586 int hr;
587 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
588}
589
590static signed char get_reg(const signed char regmap[],int r)
591{
592 int hr;
593 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
594 return -1;
595}
596
597// Find a register that is available for two consecutive cycles
598static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
599{
600 int hr;
601 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
602 return -1;
603}
604
605int count_free_regs(signed char regmap[])
606{
607 int count=0;
608 int hr;
609 for(hr=0;hr<HOST_REGS;hr++)
610 {
611 if(hr!=EXCLUDE_REG) {
612 if(regmap[hr]<0) count++;
613 }
614 }
615 return count;
616}
617
618void dirty_reg(struct regstat *cur,signed char reg)
619{
620 int hr;
621 if(!reg) return;
622 for (hr=0;hr<HOST_REGS;hr++) {
623 if((cur->regmap[hr]&63)==reg) {
624 cur->dirty|=1<<hr;
625 }
626 }
627}
628
629static void set_const(struct regstat *cur, signed char reg, uint32_t value)
630{
631 int hr;
632 if(!reg) return;
633 for (hr=0;hr<HOST_REGS;hr++) {
634 if(cur->regmap[hr]==reg) {
635 cur->isconst|=1<<hr;
636 current_constmap[hr]=value;
637 }
638 }
639}
640
641static void clear_const(struct regstat *cur, signed char reg)
642{
643 int hr;
644 if(!reg) return;
645 for (hr=0;hr<HOST_REGS;hr++) {
646 if((cur->regmap[hr]&63)==reg) {
647 cur->isconst&=~(1<<hr);
648 }
649 }
650}
651
652static int is_const(struct regstat *cur, signed char reg)
653{
654 int hr;
655 if(reg<0) return 0;
656 if(!reg) return 1;
657 for (hr=0;hr<HOST_REGS;hr++) {
658 if((cur->regmap[hr]&63)==reg) {
659 return (cur->isconst>>hr)&1;
660 }
661 }
662 return 0;
663}
664
665static uint32_t get_const(struct regstat *cur, signed char reg)
666{
667 int hr;
668 if(!reg) return 0;
669 for (hr=0;hr<HOST_REGS;hr++) {
670 if(cur->regmap[hr]==reg) {
671 return current_constmap[hr];
672 }
673 }
674 SysPrintf("Unknown constant in r%d\n",reg);
675 abort();
676}
677
678// Least soon needed registers
679// Look at the next ten instructions and see which registers
680// will be used. Try not to reallocate these.
681void lsn(u_char hsn[], int i, int *preferred_reg)
682{
683 int j;
684 int b=-1;
685 for(j=0;j<9;j++)
686 {
687 if(i+j>=slen) {
688 j=slen-i-1;
689 break;
690 }
691 if (dops[i+j].is_ujump)
692 {
693 // Don't go past an unconditonal jump
694 j++;
695 break;
696 }
697 }
698 for(;j>=0;j--)
699 {
700 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
701 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
702 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
703 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
704 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
705 // Stores can allocate zero
706 hsn[dops[i+j].rs1]=j;
707 hsn[dops[i+j].rs2]=j;
708 }
709 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
710 hsn[ROREG] = j;
711 // On some architectures stores need invc_ptr
712 #if defined(HOST_IMM8)
713 if (dops[i+j].is_store)
714 hsn[INVCP] = j;
715 #endif
716 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
717 {
718 hsn[CCREG]=j;
719 b=j;
720 }
721 }
722 if(b>=0)
723 {
724 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
725 {
726 // Follow first branch
727 int t=(ba[i+b]-start)>>2;
728 j=7-b;if(t+j>=slen) j=slen-t-1;
729 for(;j>=0;j--)
730 {
731 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
732 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
733 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
734 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
735 }
736 }
737 // TODO: preferred register based on backward branch
738 }
739 // Delay slot should preferably not overwrite branch conditions or cycle count
740 if (i > 0 && dops[i-1].is_jump) {
741 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
742 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
743 hsn[CCREG]=1;
744 // ...or hash tables
745 hsn[RHASH]=1;
746 hsn[RHTBL]=1;
747 }
748 // Coprocessor load/store needs FTEMP, even if not declared
749 if(dops[i].itype==C2LS) {
750 hsn[FTEMP]=0;
751 }
752 // Load L/R also uses FTEMP as a temporary register
753 if(dops[i].itype==LOADLR) {
754 hsn[FTEMP]=0;
755 }
756 // Also SWL/SWR/SDL/SDR
757 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
758 hsn[FTEMP]=0;
759 }
760 // Don't remove the miniht registers
761 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
762 {
763 hsn[RHASH]=0;
764 hsn[RHTBL]=0;
765 }
766}
767
768// We only want to allocate registers if we're going to use them again soon
769int needed_again(int r, int i)
770{
771 int j;
772 int b=-1;
773 int rn=10;
774
775 if (i > 0 && dops[i-1].is_ujump)
776 {
777 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
778 return 0; // Don't need any registers if exiting the block
779 }
780 for(j=0;j<9;j++)
781 {
782 if(i+j>=slen) {
783 j=slen-i-1;
784 break;
785 }
786 if (dops[i+j].is_ujump)
787 {
788 // Don't go past an unconditonal jump
789 j++;
790 break;
791 }
792 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
793 {
794 break;
795 }
796 }
797 for(;j>=1;j--)
798 {
799 if(dops[i+j].rs1==r) rn=j;
800 if(dops[i+j].rs2==r) rn=j;
801 if((unneeded_reg[i+j]>>r)&1) rn=10;
802 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
803 {
804 b=j;
805 }
806 }
807 if(rn<10) return 1;
808 (void)b;
809 return 0;
810}
811
812// Try to match register allocations at the end of a loop with those
813// at the beginning
814int loop_reg(int i, int r, int hr)
815{
816 int j,k;
817 for(j=0;j<9;j++)
818 {
819 if(i+j>=slen) {
820 j=slen-i-1;
821 break;
822 }
823 if (dops[i+j].is_ujump)
824 {
825 // Don't go past an unconditonal jump
826 j++;
827 break;
828 }
829 }
830 k=0;
831 if(i>0){
832 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
833 k--;
834 }
835 for(;k<j;k++)
836 {
837 assert(r < 64);
838 if((unneeded_reg[i+k]>>r)&1) return hr;
839 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
840 {
841 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
842 {
843 int t=(ba[i+k]-start)>>2;
844 int reg=get_reg(regs[t].regmap_entry,r);
845 if(reg>=0) return reg;
846 //reg=get_reg(regs[t+1].regmap_entry,r);
847 //if(reg>=0) return reg;
848 }
849 }
850 }
851 return hr;
852}
853
854
855// Allocate every register, preserving source/target regs
856void alloc_all(struct regstat *cur,int i)
857{
858 int hr;
859
860 for(hr=0;hr<HOST_REGS;hr++) {
861 if(hr!=EXCLUDE_REG) {
862 if(((cur->regmap[hr]&63)!=dops[i].rs1)&&((cur->regmap[hr]&63)!=dops[i].rs2)&&
863 ((cur->regmap[hr]&63)!=dops[i].rt1)&&((cur->regmap[hr]&63)!=dops[i].rt2))
864 {
865 cur->regmap[hr]=-1;
866 cur->dirty&=~(1<<hr);
867 }
868 // Don't need zeros
869 if((cur->regmap[hr]&63)==0)
870 {
871 cur->regmap[hr]=-1;
872 cur->dirty&=~(1<<hr);
873 }
874 }
875 }
876}
877
878#ifndef NDEBUG
879static int host_tempreg_in_use;
880
881static void host_tempreg_acquire(void)
882{
883 assert(!host_tempreg_in_use);
884 host_tempreg_in_use = 1;
885}
886
887static void host_tempreg_release(void)
888{
889 host_tempreg_in_use = 0;
890}
891#else
892static void host_tempreg_acquire(void) {}
893static void host_tempreg_release(void) {}
894#endif
895
896#ifdef ASSEM_PRINT
897extern void gen_interupt();
898extern void do_insn_cmp();
899#define FUNCNAME(f) { f, " " #f }
900static const struct {
901 void *addr;
902 const char *name;
903} function_names[] = {
904 FUNCNAME(cc_interrupt),
905 FUNCNAME(gen_interupt),
906 FUNCNAME(get_addr_ht),
907 FUNCNAME(get_addr),
908 FUNCNAME(jump_handler_read8),
909 FUNCNAME(jump_handler_read16),
910 FUNCNAME(jump_handler_read32),
911 FUNCNAME(jump_handler_write8),
912 FUNCNAME(jump_handler_write16),
913 FUNCNAME(jump_handler_write32),
914 FUNCNAME(invalidate_addr),
915 FUNCNAME(jump_to_new_pc),
916 FUNCNAME(call_gteStall),
917 FUNCNAME(new_dyna_leave),
918 FUNCNAME(pcsx_mtc0),
919 FUNCNAME(pcsx_mtc0_ds),
920#ifdef DRC_DBG
921 FUNCNAME(do_insn_cmp),
922#endif
923#ifdef __arm__
924 FUNCNAME(verify_code),
925#endif
926};
927
928static const char *func_name(const void *a)
929{
930 int i;
931 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
932 if (function_names[i].addr == a)
933 return function_names[i].name;
934 return "";
935}
936#else
937#define func_name(x) ""
938#endif
939
940#ifdef __i386__
941#include "assem_x86.c"
942#endif
943#ifdef __x86_64__
944#include "assem_x64.c"
945#endif
946#ifdef __arm__
947#include "assem_arm.c"
948#endif
949#ifdef __aarch64__
950#include "assem_arm64.c"
951#endif
952
953static void *get_trampoline(const void *f)
954{
955 size_t i;
956
957 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
958 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
959 break;
960 }
961 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
962 SysPrintf("trampoline table is full, last func %p\n", f);
963 abort();
964 }
965 if (ndrc->tramp.f[i] == NULL) {
966 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
967 ndrc->tramp.f[i] = f;
968 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
969 }
970 return &ndrc->tramp.ops[i];
971}
972
973static void emit_far_jump(const void *f)
974{
975 if (can_jump_or_call(f)) {
976 emit_jmp(f);
977 return;
978 }
979
980 f = get_trampoline(f);
981 emit_jmp(f);
982}
983
984static void emit_far_call(const void *f)
985{
986 if (can_jump_or_call(f)) {
987 emit_call(f);
988 return;
989 }
990
991 f = get_trampoline(f);
992 emit_call(f);
993}
994
995// Add virtual address mapping to linked list
996void ll_add(struct ll_entry **head,int vaddr,void *addr)
997{
998 struct ll_entry *new_entry;
999 new_entry=malloc(sizeof(struct ll_entry));
1000 assert(new_entry!=NULL);
1001 new_entry->vaddr=vaddr;
1002 new_entry->reg_sv_flags=0;
1003 new_entry->addr=addr;
1004 new_entry->next=*head;
1005 *head=new_entry;
1006}
1007
1008void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1009{
1010 ll_add(head,vaddr,addr);
1011 (*head)->reg_sv_flags=reg_sv_flags;
1012}
1013
1014// Check if an address is already compiled
1015// but don't return addresses which are about to expire from the cache
1016void *check_addr(u_int vaddr)
1017{
1018 struct ht_entry *ht_bin = hash_table_get(vaddr);
1019 size_t i;
1020 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1021 if (ht_bin->vaddr[i] == vaddr)
1022 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1023 if (isclean(ht_bin->tcaddr[i]))
1024 return ht_bin->tcaddr[i];
1025 }
1026 u_int page=get_page(vaddr);
1027 struct ll_entry *head;
1028 head=jump_in[page];
1029 while (head != NULL) {
1030 if (head->vaddr == vaddr) {
1031 if (doesnt_expire_soon(head->addr)) {
1032 // Update existing entry with current address
1033 if (ht_bin->vaddr[0] == vaddr) {
1034 ht_bin->tcaddr[0] = head->addr;
1035 return head->addr;
1036 }
1037 if (ht_bin->vaddr[1] == vaddr) {
1038 ht_bin->tcaddr[1] = head->addr;
1039 return head->addr;
1040 }
1041 // Insert into hash table with low priority.
1042 // Don't evict existing entries, as they are probably
1043 // addresses that are being accessed frequently.
1044 if (ht_bin->vaddr[0] == -1) {
1045 ht_bin->vaddr[0] = vaddr;
1046 ht_bin->tcaddr[0] = head->addr;
1047 }
1048 else if (ht_bin->vaddr[1] == -1) {
1049 ht_bin->vaddr[1] = vaddr;
1050 ht_bin->tcaddr[1] = head->addr;
1051 }
1052 return head->addr;
1053 }
1054 }
1055 head=head->next;
1056 }
1057 return 0;
1058}
1059
1060void remove_hash(int vaddr)
1061{
1062 //printf("remove hash: %x\n",vaddr);
1063 struct ht_entry *ht_bin = hash_table_get(vaddr);
1064 if (ht_bin->vaddr[1] == vaddr) {
1065 ht_bin->vaddr[1] = -1;
1066 ht_bin->tcaddr[1] = NULL;
1067 }
1068 if (ht_bin->vaddr[0] == vaddr) {
1069 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1070 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1071 ht_bin->vaddr[1] = -1;
1072 ht_bin->tcaddr[1] = NULL;
1073 }
1074}
1075
1076static void ll_remove_matching_addrs(struct ll_entry **head,
1077 uintptr_t base_offs_s, int shift)
1078{
1079 struct ll_entry *next;
1080 while(*head) {
1081 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1082 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1083 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1084 {
1085 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1086 remove_hash((*head)->vaddr);
1087 next=(*head)->next;
1088 free(*head);
1089 *head=next;
1090 }
1091 else
1092 {
1093 head=&((*head)->next);
1094 }
1095 }
1096}
1097
1098// Remove all entries from linked list
1099void ll_clear(struct ll_entry **head)
1100{
1101 struct ll_entry *cur;
1102 struct ll_entry *next;
1103 if((cur=*head)) {
1104 *head=0;
1105 while(cur) {
1106 next=cur->next;
1107 free(cur);
1108 cur=next;
1109 }
1110 }
1111}
1112
1113// Dereference the pointers and remove if it matches
1114static void ll_kill_pointers(struct ll_entry *head,
1115 uintptr_t base_offs_s, int shift)
1116{
1117 while(head) {
1118 u_char *ptr = get_pointer(head->addr);
1119 uintptr_t o1 = ptr - ndrc->translation_cache;
1120 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1121 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1122 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1123 {
1124 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1125 void *host_addr=find_extjump_insn(head->addr);
1126 mark_clear_cache(host_addr);
1127 set_jump_target(host_addr, head->addr);
1128 }
1129 head=head->next;
1130 }
1131}
1132
1133// This is called when we write to a compiled block (see do_invstub)
1134static void invalidate_page(u_int page)
1135{
1136 struct ll_entry *head;
1137 struct ll_entry *next;
1138 head=jump_in[page];
1139 jump_in[page]=0;
1140 while(head!=NULL) {
1141 inv_debug("INVALIDATE: %x\n",head->vaddr);
1142 remove_hash(head->vaddr);
1143 next=head->next;
1144 free(head);
1145 head=next;
1146 }
1147 head=jump_out[page];
1148 jump_out[page]=0;
1149 while(head!=NULL) {
1150 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1151 void *host_addr=find_extjump_insn(head->addr);
1152 mark_clear_cache(host_addr);
1153 set_jump_target(host_addr, head->addr); // point back to dyna_linker
1154 next=head->next;
1155 free(head);
1156 head=next;
1157 }
1158}
1159
1160static void invalidate_block_range(u_int block, u_int first, u_int last)
1161{
1162 u_int page=get_page(block<<12);
1163 //printf("first=%d last=%d\n",first,last);
1164 invalidate_page(page);
1165 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1166 assert(last<page+5);
1167 // Invalidate the adjacent pages if a block crosses a 4K boundary
1168 while(first<page) {
1169 invalidate_page(first);
1170 first++;
1171 }
1172 for(first=page+1;first<last;first++) {
1173 invalidate_page(first);
1174 }
1175 do_clear_cache();
1176
1177 // Don't trap writes
1178 invalid_code[block]=1;
1179
1180 #ifdef USE_MINI_HT
1181 memset(mini_ht,-1,sizeof(mini_ht));
1182 #endif
1183}
1184
1185void invalidate_block(u_int block)
1186{
1187 u_int page=get_page(block<<12);
1188 u_int vpage=get_vpage(block<<12);
1189 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1190 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1191 u_int first,last;
1192 first=last=page;
1193 struct ll_entry *head;
1194 head=jump_dirty[vpage];
1195 //printf("page=%d vpage=%d\n",page,vpage);
1196 while(head!=NULL) {
1197 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1198 u_char *start, *end;
1199 get_bounds(head->addr, &start, &end);
1200 //printf("start: %p end: %p\n", start, end);
1201 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1202 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1203 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1204 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1205 }
1206 }
1207 }
1208 head=head->next;
1209 }
1210 invalidate_block_range(block,first,last);
1211}
1212
1213void invalidate_addr(u_int addr)
1214{
1215 //static int rhits;
1216 // this check is done by the caller
1217 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1218 u_int page=get_vpage(addr);
1219 if(page<2048) { // RAM
1220 struct ll_entry *head;
1221 u_int addr_min=~0, addr_max=0;
1222 u_int mask=RAM_SIZE-1;
1223 u_int addr_main=0x80000000|(addr&mask);
1224 int pg1;
1225 inv_code_start=addr_main&~0xfff;
1226 inv_code_end=addr_main|0xfff;
1227 pg1=page;
1228 if (pg1>0) {
1229 // must check previous page too because of spans..
1230 pg1--;
1231 inv_code_start-=0x1000;
1232 }
1233 for(;pg1<=page;pg1++) {
1234 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1235 u_char *start_h, *end_h;
1236 u_int start, end;
1237 get_bounds(head->addr, &start_h, &end_h);
1238 start = (uintptr_t)start_h - ram_offset;
1239 end = (uintptr_t)end_h - ram_offset;
1240 if(start<=addr_main&&addr_main<end) {
1241 if(start<addr_min) addr_min=start;
1242 if(end>addr_max) addr_max=end;
1243 }
1244 else if(addr_main<start) {
1245 if(start<inv_code_end)
1246 inv_code_end=start-1;
1247 }
1248 else {
1249 if(end>inv_code_start)
1250 inv_code_start=end;
1251 }
1252 }
1253 }
1254 if (addr_min!=~0) {
1255 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1256 inv_code_start=inv_code_end=~0;
1257 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1258 return;
1259 }
1260 else {
1261 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1262 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1263 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1264 return;
1265 }
1266 }
1267 invalidate_block(addr>>12);
1268}
1269
1270// This is called when loading a save state.
1271// Anything could have changed, so invalidate everything.
1272void invalidate_all_pages(void)
1273{
1274 u_int page;
1275 for(page=0;page<4096;page++)
1276 invalidate_page(page);
1277 for(page=0;page<1048576;page++)
1278 if(!invalid_code[page]) {
1279 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1280 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1281 }
1282 #ifdef USE_MINI_HT
1283 memset(mini_ht,-1,sizeof(mini_ht));
1284 #endif
1285 do_clear_cache();
1286}
1287
1288static void do_invstub(int n)
1289{
1290 literal_pool(20);
1291 u_int reglist=stubs[n].a;
1292 set_jump_target(stubs[n].addr, out);
1293 save_regs(reglist);
1294 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1295 emit_far_call(invalidate_addr);
1296 restore_regs(reglist);
1297 emit_jmp(stubs[n].retaddr); // return address
1298}
1299
1300// Add an entry to jump_out after making a link
1301// src should point to code by emit_extjump2()
1302void add_jump_out(u_int vaddr,void *src)
1303{
1304 u_int page=get_page(vaddr);
1305 inv_debug("add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1306 check_extjump2(src);
1307 ll_add(jump_out+page,vaddr,src);
1308 //inv_debug("add_jump_out: to %p\n",get_pointer(src));
1309}
1310
1311// If a code block was found to be unmodified (bit was set in
1312// restore_candidate) and it remains unmodified (bit is clear
1313// in invalid_code) then move the entries for that 4K page from
1314// the dirty list to the clean list.
1315void clean_blocks(u_int page)
1316{
1317 struct ll_entry *head;
1318 inv_debug("INV: clean_blocks page=%d\n",page);
1319 head=jump_dirty[page];
1320 while(head!=NULL) {
1321 if(!invalid_code[head->vaddr>>12]) {
1322 // Don't restore blocks which are about to expire from the cache
1323 if (doesnt_expire_soon(head->addr)) {
1324 if(verify_dirty(head->addr)) {
1325 u_char *start, *end;
1326 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1327 u_int i;
1328 u_int inv=0;
1329 get_bounds(head->addr, &start, &end);
1330 if (start - rdram < RAM_SIZE) {
1331 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1332 inv|=invalid_code[i];
1333 }
1334 }
1335 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1336 inv=1;
1337 }
1338 if(!inv) {
1339 void *clean_addr = get_clean_addr(head->addr);
1340 if (doesnt_expire_soon(clean_addr)) {
1341 u_int ppage=page;
1342 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1343 //printf("page=%x, addr=%x\n",page,head->vaddr);
1344 //assert(head->vaddr>>12==(page|0x80000));
1345 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1346 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1347 if (ht_bin->vaddr[0] == head->vaddr)
1348 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1349 if (ht_bin->vaddr[1] == head->vaddr)
1350 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1351 }
1352 }
1353 }
1354 }
1355 }
1356 head=head->next;
1357 }
1358}
1359
1360/* Register allocation */
1361
1362// Note: registers are allocated clean (unmodified state)
1363// if you intend to modify the register, you must call dirty_reg().
1364static void alloc_reg(struct regstat *cur,int i,signed char reg)
1365{
1366 int r,hr;
1367 int preferred_reg = (reg&7);
1368 if(reg==CCREG) preferred_reg=HOST_CCREG;
1369 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1370
1371 // Don't allocate unused registers
1372 if((cur->u>>reg)&1) return;
1373
1374 // see if it's already allocated
1375 for(hr=0;hr<HOST_REGS;hr++)
1376 {
1377 if(cur->regmap[hr]==reg) return;
1378 }
1379
1380 // Keep the same mapping if the register was already allocated in a loop
1381 preferred_reg = loop_reg(i,reg,preferred_reg);
1382
1383 // Try to allocate the preferred register
1384 if(cur->regmap[preferred_reg]==-1) {
1385 cur->regmap[preferred_reg]=reg;
1386 cur->dirty&=~(1<<preferred_reg);
1387 cur->isconst&=~(1<<preferred_reg);
1388 return;
1389 }
1390 r=cur->regmap[preferred_reg];
1391 assert(r < 64);
1392 if((cur->u>>r)&1) {
1393 cur->regmap[preferred_reg]=reg;
1394 cur->dirty&=~(1<<preferred_reg);
1395 cur->isconst&=~(1<<preferred_reg);
1396 return;
1397 }
1398
1399 // Clear any unneeded registers
1400 // We try to keep the mapping consistent, if possible, because it
1401 // makes branches easier (especially loops). So we try to allocate
1402 // first (see above) before removing old mappings. If this is not
1403 // possible then go ahead and clear out the registers that are no
1404 // longer needed.
1405 for(hr=0;hr<HOST_REGS;hr++)
1406 {
1407 r=cur->regmap[hr];
1408 if(r>=0) {
1409 assert(r < 64);
1410 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1411 }
1412 }
1413 // Try to allocate any available register, but prefer
1414 // registers that have not been used recently.
1415 if(i>0) {
1416 for(hr=0;hr<HOST_REGS;hr++) {
1417 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1418 if(regs[i-1].regmap[hr]!=dops[i-1].rs1&&regs[i-1].regmap[hr]!=dops[i-1].rs2&&regs[i-1].regmap[hr]!=dops[i-1].rt1&&regs[i-1].regmap[hr]!=dops[i-1].rt2) {
1419 cur->regmap[hr]=reg;
1420 cur->dirty&=~(1<<hr);
1421 cur->isconst&=~(1<<hr);
1422 return;
1423 }
1424 }
1425 }
1426 }
1427 // Try to allocate any available register
1428 for(hr=0;hr<HOST_REGS;hr++) {
1429 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1430 cur->regmap[hr]=reg;
1431 cur->dirty&=~(1<<hr);
1432 cur->isconst&=~(1<<hr);
1433 return;
1434 }
1435 }
1436
1437 // Ok, now we have to evict someone
1438 // Pick a register we hopefully won't need soon
1439 u_char hsn[MAXREG+1];
1440 memset(hsn,10,sizeof(hsn));
1441 int j;
1442 lsn(hsn,i,&preferred_reg);
1443 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1444 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1445 if(i>0) {
1446 // Don't evict the cycle count at entry points, otherwise the entry
1447 // stub will have to write it.
1448 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1449 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1450 for(j=10;j>=3;j--)
1451 {
1452 // Alloc preferred register if available
1453 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1454 for(hr=0;hr<HOST_REGS;hr++) {
1455 // Evict both parts of a 64-bit register
1456 if((cur->regmap[hr]&63)==r) {
1457 cur->regmap[hr]=-1;
1458 cur->dirty&=~(1<<hr);
1459 cur->isconst&=~(1<<hr);
1460 }
1461 }
1462 cur->regmap[preferred_reg]=reg;
1463 return;
1464 }
1465 for(r=1;r<=MAXREG;r++)
1466 {
1467 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1468 for(hr=0;hr<HOST_REGS;hr++) {
1469 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1470 if(cur->regmap[hr]==r) {
1471 cur->regmap[hr]=reg;
1472 cur->dirty&=~(1<<hr);
1473 cur->isconst&=~(1<<hr);
1474 return;
1475 }
1476 }
1477 }
1478 }
1479 }
1480 }
1481 }
1482 for(j=10;j>=0;j--)
1483 {
1484 for(r=1;r<=MAXREG;r++)
1485 {
1486 if(hsn[r]==j) {
1487 for(hr=0;hr<HOST_REGS;hr++) {
1488 if(cur->regmap[hr]==r) {
1489 cur->regmap[hr]=reg;
1490 cur->dirty&=~(1<<hr);
1491 cur->isconst&=~(1<<hr);
1492 return;
1493 }
1494 }
1495 }
1496 }
1497 }
1498 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1499}
1500
1501// Allocate a temporary register. This is done without regard to
1502// dirty status or whether the register we request is on the unneeded list
1503// Note: This will only allocate one register, even if called multiple times
1504static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1505{
1506 int r,hr;
1507 int preferred_reg = -1;
1508
1509 // see if it's already allocated
1510 for(hr=0;hr<HOST_REGS;hr++)
1511 {
1512 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1513 }
1514
1515 // Try to allocate any available register
1516 for(hr=HOST_REGS-1;hr>=0;hr--) {
1517 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1518 cur->regmap[hr]=reg;
1519 cur->dirty&=~(1<<hr);
1520 cur->isconst&=~(1<<hr);
1521 return;
1522 }
1523 }
1524
1525 // Find an unneeded register
1526 for(hr=HOST_REGS-1;hr>=0;hr--)
1527 {
1528 r=cur->regmap[hr];
1529 if(r>=0) {
1530 assert(r < 64);
1531 if((cur->u>>r)&1) {
1532 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1533 cur->regmap[hr]=reg;
1534 cur->dirty&=~(1<<hr);
1535 cur->isconst&=~(1<<hr);
1536 return;
1537 }
1538 }
1539 }
1540 }
1541
1542 // Ok, now we have to evict someone
1543 // Pick a register we hopefully won't need soon
1544 // TODO: we might want to follow unconditional jumps here
1545 // TODO: get rid of dupe code and make this into a function
1546 u_char hsn[MAXREG+1];
1547 memset(hsn,10,sizeof(hsn));
1548 int j;
1549 lsn(hsn,i,&preferred_reg);
1550 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1551 if(i>0) {
1552 // Don't evict the cycle count at entry points, otherwise the entry
1553 // stub will have to write it.
1554 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1555 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1556 for(j=10;j>=3;j--)
1557 {
1558 for(r=1;r<=MAXREG;r++)
1559 {
1560 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1561 for(hr=0;hr<HOST_REGS;hr++) {
1562 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1563 if(cur->regmap[hr]==r) {
1564 cur->regmap[hr]=reg;
1565 cur->dirty&=~(1<<hr);
1566 cur->isconst&=~(1<<hr);
1567 return;
1568 }
1569 }
1570 }
1571 }
1572 }
1573 }
1574 }
1575 for(j=10;j>=0;j--)
1576 {
1577 for(r=1;r<=MAXREG;r++)
1578 {
1579 if(hsn[r]==j) {
1580 for(hr=0;hr<HOST_REGS;hr++) {
1581 if(cur->regmap[hr]==r) {
1582 cur->regmap[hr]=reg;
1583 cur->dirty&=~(1<<hr);
1584 cur->isconst&=~(1<<hr);
1585 return;
1586 }
1587 }
1588 }
1589 }
1590 }
1591 SysPrintf("This shouldn't happen");abort();
1592}
1593
1594static void mov_alloc(struct regstat *current,int i)
1595{
1596 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1597 // logically this is needed but just won't work, no idea why
1598 //alloc_cc(current,i); // for stalls
1599 //dirty_reg(current,CCREG);
1600 }
1601
1602 // Note: Don't need to actually alloc the source registers
1603 //alloc_reg(current,i,dops[i].rs1);
1604 alloc_reg(current,i,dops[i].rt1);
1605
1606 clear_const(current,dops[i].rs1);
1607 clear_const(current,dops[i].rt1);
1608 dirty_reg(current,dops[i].rt1);
1609}
1610
1611static void shiftimm_alloc(struct regstat *current,int i)
1612{
1613 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1614 {
1615 if(dops[i].rt1) {
1616 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1617 else dops[i].lt1=dops[i].rs1;
1618 alloc_reg(current,i,dops[i].rt1);
1619 dirty_reg(current,dops[i].rt1);
1620 if(is_const(current,dops[i].rs1)) {
1621 int v=get_const(current,dops[i].rs1);
1622 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1623 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1624 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1625 }
1626 else clear_const(current,dops[i].rt1);
1627 }
1628 }
1629 else
1630 {
1631 clear_const(current,dops[i].rs1);
1632 clear_const(current,dops[i].rt1);
1633 }
1634
1635 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1636 {
1637 assert(0);
1638 }
1639 if(dops[i].opcode2==0x3c) // DSLL32
1640 {
1641 assert(0);
1642 }
1643 if(dops[i].opcode2==0x3e) // DSRL32
1644 {
1645 assert(0);
1646 }
1647 if(dops[i].opcode2==0x3f) // DSRA32
1648 {
1649 assert(0);
1650 }
1651}
1652
1653static void shift_alloc(struct regstat *current,int i)
1654{
1655 if(dops[i].rt1) {
1656 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1657 {
1658 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1659 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1660 alloc_reg(current,i,dops[i].rt1);
1661 if(dops[i].rt1==dops[i].rs2) {
1662 alloc_reg_temp(current,i,-1);
1663 minimum_free_regs[i]=1;
1664 }
1665 } else { // DSLLV/DSRLV/DSRAV
1666 assert(0);
1667 }
1668 clear_const(current,dops[i].rs1);
1669 clear_const(current,dops[i].rs2);
1670 clear_const(current,dops[i].rt1);
1671 dirty_reg(current,dops[i].rt1);
1672 }
1673}
1674
1675static void alu_alloc(struct regstat *current,int i)
1676{
1677 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1678 if(dops[i].rt1) {
1679 if(dops[i].rs1&&dops[i].rs2) {
1680 alloc_reg(current,i,dops[i].rs1);
1681 alloc_reg(current,i,dops[i].rs2);
1682 }
1683 else {
1684 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1685 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1686 }
1687 alloc_reg(current,i,dops[i].rt1);
1688 }
1689 }
1690 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1691 if(dops[i].rt1) {
1692 alloc_reg(current,i,dops[i].rs1);
1693 alloc_reg(current,i,dops[i].rs2);
1694 alloc_reg(current,i,dops[i].rt1);
1695 }
1696 }
1697 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1698 if(dops[i].rt1) {
1699 if(dops[i].rs1&&dops[i].rs2) {
1700 alloc_reg(current,i,dops[i].rs1);
1701 alloc_reg(current,i,dops[i].rs2);
1702 }
1703 else
1704 {
1705 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1706 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1707 }
1708 alloc_reg(current,i,dops[i].rt1);
1709 }
1710 }
1711 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1712 assert(0);
1713 }
1714 clear_const(current,dops[i].rs1);
1715 clear_const(current,dops[i].rs2);
1716 clear_const(current,dops[i].rt1);
1717 dirty_reg(current,dops[i].rt1);
1718}
1719
1720static void imm16_alloc(struct regstat *current,int i)
1721{
1722 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1723 else dops[i].lt1=dops[i].rs1;
1724 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1725 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1726 assert(0);
1727 }
1728 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1729 clear_const(current,dops[i].rs1);
1730 clear_const(current,dops[i].rt1);
1731 }
1732 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1733 if(is_const(current,dops[i].rs1)) {
1734 int v=get_const(current,dops[i].rs1);
1735 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1736 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1737 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1738 }
1739 else clear_const(current,dops[i].rt1);
1740 }
1741 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1742 if(is_const(current,dops[i].rs1)) {
1743 int v=get_const(current,dops[i].rs1);
1744 set_const(current,dops[i].rt1,v+imm[i]);
1745 }
1746 else clear_const(current,dops[i].rt1);
1747 }
1748 else {
1749 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1750 }
1751 dirty_reg(current,dops[i].rt1);
1752}
1753
1754static void load_alloc(struct regstat *current,int i)
1755{
1756 clear_const(current,dops[i].rt1);
1757 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1758 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1759 if (needed_again(dops[i].rs1, i))
1760 alloc_reg(current, i, dops[i].rs1);
1761 if (ram_offset)
1762 alloc_reg(current, i, ROREG);
1763 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1764 alloc_reg(current,i,dops[i].rt1);
1765 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1766 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1767 {
1768 assert(0);
1769 }
1770 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1771 {
1772 assert(0);
1773 }
1774 dirty_reg(current,dops[i].rt1);
1775 // LWL/LWR need a temporary register for the old value
1776 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1777 {
1778 alloc_reg(current,i,FTEMP);
1779 alloc_reg_temp(current,i,-1);
1780 minimum_free_regs[i]=1;
1781 }
1782 }
1783 else
1784 {
1785 // Load to r0 or unneeded register (dummy load)
1786 // but we still need a register to calculate the address
1787 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1788 {
1789 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1790 }
1791 alloc_reg_temp(current,i,-1);
1792 minimum_free_regs[i]=1;
1793 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1794 {
1795 assert(0);
1796 }
1797 }
1798}
1799
1800void store_alloc(struct regstat *current,int i)
1801{
1802 clear_const(current,dops[i].rs2);
1803 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1804 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1805 alloc_reg(current,i,dops[i].rs2);
1806 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1807 assert(0);
1808 }
1809 if (ram_offset)
1810 alloc_reg(current, i, ROREG);
1811 #if defined(HOST_IMM8)
1812 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1813 alloc_reg(current, i, INVCP);
1814 #endif
1815 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1816 alloc_reg(current,i,FTEMP);
1817 }
1818 // We need a temporary register for address generation
1819 alloc_reg_temp(current,i,-1);
1820 minimum_free_regs[i]=1;
1821}
1822
1823void c1ls_alloc(struct regstat *current,int i)
1824{
1825 clear_const(current,dops[i].rt1);
1826 alloc_reg(current,i,CSREG); // Status
1827}
1828
1829void c2ls_alloc(struct regstat *current,int i)
1830{
1831 clear_const(current,dops[i].rt1);
1832 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1833 alloc_reg(current,i,FTEMP);
1834 if (ram_offset)
1835 alloc_reg(current, i, ROREG);
1836 #if defined(HOST_IMM8)
1837 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1838 if (dops[i].opcode == 0x3a) // SWC2
1839 alloc_reg(current,i,INVCP);
1840 #endif
1841 // We need a temporary register for address generation
1842 alloc_reg_temp(current,i,-1);
1843 minimum_free_regs[i]=1;
1844}
1845
1846#ifndef multdiv_alloc
1847void multdiv_alloc(struct regstat *current,int i)
1848{
1849 // case 0x18: MULT
1850 // case 0x19: MULTU
1851 // case 0x1A: DIV
1852 // case 0x1B: DIVU
1853 // case 0x1C: DMULT
1854 // case 0x1D: DMULTU
1855 // case 0x1E: DDIV
1856 // case 0x1F: DDIVU
1857 clear_const(current,dops[i].rs1);
1858 clear_const(current,dops[i].rs2);
1859 alloc_cc(current,i); // for stalls
1860 if(dops[i].rs1&&dops[i].rs2)
1861 {
1862 if((dops[i].opcode2&4)==0) // 32-bit
1863 {
1864 current->u&=~(1LL<<HIREG);
1865 current->u&=~(1LL<<LOREG);
1866 alloc_reg(current,i,HIREG);
1867 alloc_reg(current,i,LOREG);
1868 alloc_reg(current,i,dops[i].rs1);
1869 alloc_reg(current,i,dops[i].rs2);
1870 dirty_reg(current,HIREG);
1871 dirty_reg(current,LOREG);
1872 }
1873 else // 64-bit
1874 {
1875 assert(0);
1876 }
1877 }
1878 else
1879 {
1880 // Multiply by zero is zero.
1881 // MIPS does not have a divide by zero exception.
1882 // The result is undefined, we return zero.
1883 alloc_reg(current,i,HIREG);
1884 alloc_reg(current,i,LOREG);
1885 dirty_reg(current,HIREG);
1886 dirty_reg(current,LOREG);
1887 }
1888}
1889#endif
1890
1891void cop0_alloc(struct regstat *current,int i)
1892{
1893 if(dops[i].opcode2==0) // MFC0
1894 {
1895 if(dops[i].rt1) {
1896 clear_const(current,dops[i].rt1);
1897 alloc_all(current,i);
1898 alloc_reg(current,i,dops[i].rt1);
1899 dirty_reg(current,dops[i].rt1);
1900 }
1901 }
1902 else if(dops[i].opcode2==4) // MTC0
1903 {
1904 if(dops[i].rs1){
1905 clear_const(current,dops[i].rs1);
1906 alloc_reg(current,i,dops[i].rs1);
1907 alloc_all(current,i);
1908 }
1909 else {
1910 alloc_all(current,i); // FIXME: Keep r0
1911 current->u&=~1LL;
1912 alloc_reg(current,i,0);
1913 }
1914 }
1915 else
1916 {
1917 // TLBR/TLBWI/TLBWR/TLBP/ERET
1918 assert(dops[i].opcode2==0x10);
1919 alloc_all(current,i);
1920 }
1921 minimum_free_regs[i]=HOST_REGS;
1922}
1923
1924static void cop2_alloc(struct regstat *current,int i)
1925{
1926 if (dops[i].opcode2 < 3) // MFC2/CFC2
1927 {
1928 alloc_cc(current,i); // for stalls
1929 dirty_reg(current,CCREG);
1930 if(dops[i].rt1){
1931 clear_const(current,dops[i].rt1);
1932 alloc_reg(current,i,dops[i].rt1);
1933 dirty_reg(current,dops[i].rt1);
1934 }
1935 }
1936 else if (dops[i].opcode2 > 3) // MTC2/CTC2
1937 {
1938 if(dops[i].rs1){
1939 clear_const(current,dops[i].rs1);
1940 alloc_reg(current,i,dops[i].rs1);
1941 }
1942 else {
1943 current->u&=~1LL;
1944 alloc_reg(current,i,0);
1945 }
1946 }
1947 alloc_reg_temp(current,i,-1);
1948 minimum_free_regs[i]=1;
1949}
1950
1951void c2op_alloc(struct regstat *current,int i)
1952{
1953 alloc_cc(current,i); // for stalls
1954 dirty_reg(current,CCREG);
1955 alloc_reg_temp(current,i,-1);
1956}
1957
1958void syscall_alloc(struct regstat *current,int i)
1959{
1960 alloc_cc(current,i);
1961 dirty_reg(current,CCREG);
1962 alloc_all(current,i);
1963 minimum_free_regs[i]=HOST_REGS;
1964 current->isconst=0;
1965}
1966
1967void delayslot_alloc(struct regstat *current,int i)
1968{
1969 switch(dops[i].itype) {
1970 case UJUMP:
1971 case CJUMP:
1972 case SJUMP:
1973 case RJUMP:
1974 case SYSCALL:
1975 case HLECALL:
1976 case SPAN:
1977 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
1978 SysPrintf("Disabled speculative precompilation\n");
1979 stop_after_jal=1;
1980 break;
1981 case IMM16:
1982 imm16_alloc(current,i);
1983 break;
1984 case LOAD:
1985 case LOADLR:
1986 load_alloc(current,i);
1987 break;
1988 case STORE:
1989 case STORELR:
1990 store_alloc(current,i);
1991 break;
1992 case ALU:
1993 alu_alloc(current,i);
1994 break;
1995 case SHIFT:
1996 shift_alloc(current,i);
1997 break;
1998 case MULTDIV:
1999 multdiv_alloc(current,i);
2000 break;
2001 case SHIFTIMM:
2002 shiftimm_alloc(current,i);
2003 break;
2004 case MOV:
2005 mov_alloc(current,i);
2006 break;
2007 case COP0:
2008 cop0_alloc(current,i);
2009 break;
2010 case COP1:
2011 break;
2012 case COP2:
2013 cop2_alloc(current,i);
2014 break;
2015 case C1LS:
2016 c1ls_alloc(current,i);
2017 break;
2018 case C2LS:
2019 c2ls_alloc(current,i);
2020 break;
2021 case C2OP:
2022 c2op_alloc(current,i);
2023 break;
2024 }
2025}
2026
2027// Special case where a branch and delay slot span two pages in virtual memory
2028static void pagespan_alloc(struct regstat *current,int i)
2029{
2030 current->isconst=0;
2031 current->wasconst=0;
2032 regs[i].wasconst=0;
2033 minimum_free_regs[i]=HOST_REGS;
2034 alloc_all(current,i);
2035 alloc_cc(current,i);
2036 dirty_reg(current,CCREG);
2037 if(dops[i].opcode==3) // JAL
2038 {
2039 alloc_reg(current,i,31);
2040 dirty_reg(current,31);
2041 }
2042 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
2043 {
2044 alloc_reg(current,i,dops[i].rs1);
2045 if (dops[i].rt1!=0) {
2046 alloc_reg(current,i,dops[i].rt1);
2047 dirty_reg(current,dops[i].rt1);
2048 }
2049 }
2050 if((dops[i].opcode&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2051 {
2052 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2053 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
2054 }
2055 else
2056 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2057 {
2058 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2059 }
2060 //else ...
2061}
2062
2063static void add_stub(enum stub_type type, void *addr, void *retaddr,
2064 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2065{
2066 assert(stubcount < ARRAY_SIZE(stubs));
2067 stubs[stubcount].type = type;
2068 stubs[stubcount].addr = addr;
2069 stubs[stubcount].retaddr = retaddr;
2070 stubs[stubcount].a = a;
2071 stubs[stubcount].b = b;
2072 stubs[stubcount].c = c;
2073 stubs[stubcount].d = d;
2074 stubs[stubcount].e = e;
2075 stubcount++;
2076}
2077
2078static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2079 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2080{
2081 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2082}
2083
2084// Write out a single register
2085static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2086{
2087 int hr;
2088 for(hr=0;hr<HOST_REGS;hr++) {
2089 if(hr!=EXCLUDE_REG) {
2090 if((regmap[hr]&63)==r) {
2091 if((dirty>>hr)&1) {
2092 assert(regmap[hr]<64);
2093 emit_storereg(r,hr);
2094 }
2095 }
2096 }
2097 }
2098}
2099
2100static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2101{
2102 //if(dirty_pre==dirty) return;
2103 int hr,reg;
2104 for(hr=0;hr<HOST_REGS;hr++) {
2105 if(hr!=EXCLUDE_REG) {
2106 reg=pre[hr];
2107 if(((~u)>>(reg&63))&1) {
2108 if(reg>0) {
2109 if(((dirty_pre&~dirty)>>hr)&1) {
2110 if(reg>0&&reg<34) {
2111 emit_storereg(reg,hr);
2112 }
2113 else if(reg>=64) {
2114 assert(0);
2115 }
2116 }
2117 }
2118 }
2119 }
2120 }
2121}
2122
2123// trashes r2
2124static void pass_args(int a0, int a1)
2125{
2126 if(a0==1&&a1==0) {
2127 // must swap
2128 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2129 }
2130 else if(a0!=0&&a1==0) {
2131 emit_mov(a1,1);
2132 if (a0>=0) emit_mov(a0,0);
2133 }
2134 else {
2135 if(a0>=0&&a0!=0) emit_mov(a0,0);
2136 if(a1>=0&&a1!=1) emit_mov(a1,1);
2137 }
2138}
2139
2140static void alu_assemble(int i,struct regstat *i_regs)
2141{
2142 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2143 if(dops[i].rt1) {
2144 signed char s1,s2,t;
2145 t=get_reg(i_regs->regmap,dops[i].rt1);
2146 if(t>=0) {
2147 s1=get_reg(i_regs->regmap,dops[i].rs1);
2148 s2=get_reg(i_regs->regmap,dops[i].rs2);
2149 if(dops[i].rs1&&dops[i].rs2) {
2150 assert(s1>=0);
2151 assert(s2>=0);
2152 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2153 else emit_add(s1,s2,t);
2154 }
2155 else if(dops[i].rs1) {
2156 if(s1>=0) emit_mov(s1,t);
2157 else emit_loadreg(dops[i].rs1,t);
2158 }
2159 else if(dops[i].rs2) {
2160 if(s2>=0) {
2161 if(dops[i].opcode2&2) emit_neg(s2,t);
2162 else emit_mov(s2,t);
2163 }
2164 else {
2165 emit_loadreg(dops[i].rs2,t);
2166 if(dops[i].opcode2&2) emit_neg(t,t);
2167 }
2168 }
2169 else emit_zeroreg(t);
2170 }
2171 }
2172 }
2173 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2174 assert(0);
2175 }
2176 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2177 if(dops[i].rt1) {
2178 signed char s1l,s2l,t;
2179 {
2180 t=get_reg(i_regs->regmap,dops[i].rt1);
2181 //assert(t>=0);
2182 if(t>=0) {
2183 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2184 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2185 if(dops[i].rs2==0) // rx<r0
2186 {
2187 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2188 assert(s1l>=0);
2189 emit_shrimm(s1l,31,t);
2190 }
2191 else // SLTU (unsigned can not be less than zero, 0<0)
2192 emit_zeroreg(t);
2193 }
2194 else if(dops[i].rs1==0) // r0<rx
2195 {
2196 assert(s2l>=0);
2197 if(dops[i].opcode2==0x2a) // SLT
2198 emit_set_gz32(s2l,t);
2199 else // SLTU (set if not zero)
2200 emit_set_nz32(s2l,t);
2201 }
2202 else{
2203 assert(s1l>=0);assert(s2l>=0);
2204 if(dops[i].opcode2==0x2a) // SLT
2205 emit_set_if_less32(s1l,s2l,t);
2206 else // SLTU
2207 emit_set_if_carry32(s1l,s2l,t);
2208 }
2209 }
2210 }
2211 }
2212 }
2213 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2214 if(dops[i].rt1) {
2215 signed char s1l,s2l,tl;
2216 tl=get_reg(i_regs->regmap,dops[i].rt1);
2217 {
2218 if(tl>=0) {
2219 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2220 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2221 if(dops[i].rs1&&dops[i].rs2) {
2222 assert(s1l>=0);
2223 assert(s2l>=0);
2224 if(dops[i].opcode2==0x24) { // AND
2225 emit_and(s1l,s2l,tl);
2226 } else
2227 if(dops[i].opcode2==0x25) { // OR
2228 emit_or(s1l,s2l,tl);
2229 } else
2230 if(dops[i].opcode2==0x26) { // XOR
2231 emit_xor(s1l,s2l,tl);
2232 } else
2233 if(dops[i].opcode2==0x27) { // NOR
2234 emit_or(s1l,s2l,tl);
2235 emit_not(tl,tl);
2236 }
2237 }
2238 else
2239 {
2240 if(dops[i].opcode2==0x24) { // AND
2241 emit_zeroreg(tl);
2242 } else
2243 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2244 if(dops[i].rs1){
2245 if(s1l>=0) emit_mov(s1l,tl);
2246 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2247 }
2248 else
2249 if(dops[i].rs2){
2250 if(s2l>=0) emit_mov(s2l,tl);
2251 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2252 }
2253 else emit_zeroreg(tl);
2254 } else
2255 if(dops[i].opcode2==0x27) { // NOR
2256 if(dops[i].rs1){
2257 if(s1l>=0) emit_not(s1l,tl);
2258 else {
2259 emit_loadreg(dops[i].rs1,tl);
2260 emit_not(tl,tl);
2261 }
2262 }
2263 else
2264 if(dops[i].rs2){
2265 if(s2l>=0) emit_not(s2l,tl);
2266 else {
2267 emit_loadreg(dops[i].rs2,tl);
2268 emit_not(tl,tl);
2269 }
2270 }
2271 else emit_movimm(-1,tl);
2272 }
2273 }
2274 }
2275 }
2276 }
2277 }
2278}
2279
2280void imm16_assemble(int i,struct regstat *i_regs)
2281{
2282 if (dops[i].opcode==0x0f) { // LUI
2283 if(dops[i].rt1) {
2284 signed char t;
2285 t=get_reg(i_regs->regmap,dops[i].rt1);
2286 //assert(t>=0);
2287 if(t>=0) {
2288 if(!((i_regs->isconst>>t)&1))
2289 emit_movimm(imm[i]<<16,t);
2290 }
2291 }
2292 }
2293 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2294 if(dops[i].rt1) {
2295 signed char s,t;
2296 t=get_reg(i_regs->regmap,dops[i].rt1);
2297 s=get_reg(i_regs->regmap,dops[i].rs1);
2298 if(dops[i].rs1) {
2299 //assert(t>=0);
2300 //assert(s>=0);
2301 if(t>=0) {
2302 if(!((i_regs->isconst>>t)&1)) {
2303 if(s<0) {
2304 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2305 emit_addimm(t,imm[i],t);
2306 }else{
2307 if(!((i_regs->wasconst>>s)&1))
2308 emit_addimm(s,imm[i],t);
2309 else
2310 emit_movimm(constmap[i][s]+imm[i],t);
2311 }
2312 }
2313 }
2314 } else {
2315 if(t>=0) {
2316 if(!((i_regs->isconst>>t)&1))
2317 emit_movimm(imm[i],t);
2318 }
2319 }
2320 }
2321 }
2322 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2323 if(dops[i].rt1) {
2324 signed char sl,tl;
2325 tl=get_reg(i_regs->regmap,dops[i].rt1);
2326 sl=get_reg(i_regs->regmap,dops[i].rs1);
2327 if(tl>=0) {
2328 if(dops[i].rs1) {
2329 assert(sl>=0);
2330 emit_addimm(sl,imm[i],tl);
2331 } else {
2332 emit_movimm(imm[i],tl);
2333 }
2334 }
2335 }
2336 }
2337 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2338 if(dops[i].rt1) {
2339 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2340 signed char sl,t;
2341 t=get_reg(i_regs->regmap,dops[i].rt1);
2342 sl=get_reg(i_regs->regmap,dops[i].rs1);
2343 //assert(t>=0);
2344 if(t>=0) {
2345 if(dops[i].rs1>0) {
2346 if(dops[i].opcode==0x0a) { // SLTI
2347 if(sl<0) {
2348 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2349 emit_slti32(t,imm[i],t);
2350 }else{
2351 emit_slti32(sl,imm[i],t);
2352 }
2353 }
2354 else { // SLTIU
2355 if(sl<0) {
2356 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2357 emit_sltiu32(t,imm[i],t);
2358 }else{
2359 emit_sltiu32(sl,imm[i],t);
2360 }
2361 }
2362 }else{
2363 // SLTI(U) with r0 is just stupid,
2364 // nonetheless examples can be found
2365 if(dops[i].opcode==0x0a) // SLTI
2366 if(0<imm[i]) emit_movimm(1,t);
2367 else emit_zeroreg(t);
2368 else // SLTIU
2369 {
2370 if(imm[i]) emit_movimm(1,t);
2371 else emit_zeroreg(t);
2372 }
2373 }
2374 }
2375 }
2376 }
2377 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2378 if(dops[i].rt1) {
2379 signed char sl,tl;
2380 tl=get_reg(i_regs->regmap,dops[i].rt1);
2381 sl=get_reg(i_regs->regmap,dops[i].rs1);
2382 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2383 if(dops[i].opcode==0x0c) //ANDI
2384 {
2385 if(dops[i].rs1) {
2386 if(sl<0) {
2387 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2388 emit_andimm(tl,imm[i],tl);
2389 }else{
2390 if(!((i_regs->wasconst>>sl)&1))
2391 emit_andimm(sl,imm[i],tl);
2392 else
2393 emit_movimm(constmap[i][sl]&imm[i],tl);
2394 }
2395 }
2396 else
2397 emit_zeroreg(tl);
2398 }
2399 else
2400 {
2401 if(dops[i].rs1) {
2402 if(sl<0) {
2403 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2404 }
2405 if(dops[i].opcode==0x0d) { // ORI
2406 if(sl<0) {
2407 emit_orimm(tl,imm[i],tl);
2408 }else{
2409 if(!((i_regs->wasconst>>sl)&1))
2410 emit_orimm(sl,imm[i],tl);
2411 else
2412 emit_movimm(constmap[i][sl]|imm[i],tl);
2413 }
2414 }
2415 if(dops[i].opcode==0x0e) { // XORI
2416 if(sl<0) {
2417 emit_xorimm(tl,imm[i],tl);
2418 }else{
2419 if(!((i_regs->wasconst>>sl)&1))
2420 emit_xorimm(sl,imm[i],tl);
2421 else
2422 emit_movimm(constmap[i][sl]^imm[i],tl);
2423 }
2424 }
2425 }
2426 else {
2427 emit_movimm(imm[i],tl);
2428 }
2429 }
2430 }
2431 }
2432 }
2433}
2434
2435void shiftimm_assemble(int i,struct regstat *i_regs)
2436{
2437 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2438 {
2439 if(dops[i].rt1) {
2440 signed char s,t;
2441 t=get_reg(i_regs->regmap,dops[i].rt1);
2442 s=get_reg(i_regs->regmap,dops[i].rs1);
2443 //assert(t>=0);
2444 if(t>=0&&!((i_regs->isconst>>t)&1)){
2445 if(dops[i].rs1==0)
2446 {
2447 emit_zeroreg(t);
2448 }
2449 else
2450 {
2451 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2452 if(imm[i]) {
2453 if(dops[i].opcode2==0) // SLL
2454 {
2455 emit_shlimm(s<0?t:s,imm[i],t);
2456 }
2457 if(dops[i].opcode2==2) // SRL
2458 {
2459 emit_shrimm(s<0?t:s,imm[i],t);
2460 }
2461 if(dops[i].opcode2==3) // SRA
2462 {
2463 emit_sarimm(s<0?t:s,imm[i],t);
2464 }
2465 }else{
2466 // Shift by zero
2467 if(s>=0 && s!=t) emit_mov(s,t);
2468 }
2469 }
2470 }
2471 //emit_storereg(dops[i].rt1,t); //DEBUG
2472 }
2473 }
2474 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2475 {
2476 assert(0);
2477 }
2478 if(dops[i].opcode2==0x3c) // DSLL32
2479 {
2480 assert(0);
2481 }
2482 if(dops[i].opcode2==0x3e) // DSRL32
2483 {
2484 assert(0);
2485 }
2486 if(dops[i].opcode2==0x3f) // DSRA32
2487 {
2488 assert(0);
2489 }
2490}
2491
2492#ifndef shift_assemble
2493static void shift_assemble(int i,struct regstat *i_regs)
2494{
2495 signed char s,t,shift;
2496 if (dops[i].rt1 == 0)
2497 return;
2498 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2499 t = get_reg(i_regs->regmap, dops[i].rt1);
2500 s = get_reg(i_regs->regmap, dops[i].rs1);
2501 shift = get_reg(i_regs->regmap, dops[i].rs2);
2502 if (t < 0)
2503 return;
2504
2505 if(dops[i].rs1==0)
2506 emit_zeroreg(t);
2507 else if(dops[i].rs2==0) {
2508 assert(s>=0);
2509 if(s!=t) emit_mov(s,t);
2510 }
2511 else {
2512 host_tempreg_acquire();
2513 emit_andimm(shift,31,HOST_TEMPREG);
2514 switch(dops[i].opcode2) {
2515 case 4: // SLLV
2516 emit_shl(s,HOST_TEMPREG,t);
2517 break;
2518 case 6: // SRLV
2519 emit_shr(s,HOST_TEMPREG,t);
2520 break;
2521 case 7: // SRAV
2522 emit_sar(s,HOST_TEMPREG,t);
2523 break;
2524 default:
2525 assert(0);
2526 }
2527 host_tempreg_release();
2528 }
2529}
2530
2531#endif
2532
2533enum {
2534 MTYPE_8000 = 0,
2535 MTYPE_8020,
2536 MTYPE_0000,
2537 MTYPE_A000,
2538 MTYPE_1F80,
2539};
2540
2541static int get_ptr_mem_type(u_int a)
2542{
2543 if(a < 0x00200000) {
2544 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2545 // return wrong, must use memhandler for BIOS self-test to pass
2546 // 007 does similar stuff from a00 mirror, weird stuff
2547 return MTYPE_8000;
2548 return MTYPE_0000;
2549 }
2550 if(0x1f800000 <= a && a < 0x1f801000)
2551 return MTYPE_1F80;
2552 if(0x80200000 <= a && a < 0x80800000)
2553 return MTYPE_8020;
2554 if(0xa0000000 <= a && a < 0xa0200000)
2555 return MTYPE_A000;
2556 return MTYPE_8000;
2557}
2558
2559static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2560{
2561 int r = get_reg(i_regs->regmap, ROREG);
2562 if (r < 0 && host_tempreg_free) {
2563 host_tempreg_acquire();
2564 emit_loadreg(ROREG, r = HOST_TEMPREG);
2565 }
2566 if (r < 0)
2567 abort();
2568 return r;
2569}
2570
2571static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2572 int addr, int *offset_reg, int *addr_reg_override)
2573{
2574 void *jaddr = NULL;
2575 int type = 0;
2576 int mr = dops[i].rs1;
2577 *offset_reg = -1;
2578 if(((smrv_strong|smrv_weak)>>mr)&1) {
2579 type=get_ptr_mem_type(smrv[mr]);
2580 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2581 }
2582 else {
2583 // use the mirror we are running on
2584 type=get_ptr_mem_type(start);
2585 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2586 }
2587
2588 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2589 host_tempreg_acquire();
2590 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2591 addr=*addr_reg_override=HOST_TEMPREG;
2592 type=0;
2593 }
2594 else if(type==MTYPE_0000) { // RAM 0 mirror
2595 host_tempreg_acquire();
2596 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2597 addr=*addr_reg_override=HOST_TEMPREG;
2598 type=0;
2599 }
2600 else if(type==MTYPE_A000) { // RAM A mirror
2601 host_tempreg_acquire();
2602 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2603 addr=*addr_reg_override=HOST_TEMPREG;
2604 type=0;
2605 }
2606 else if(type==MTYPE_1F80) { // scratchpad
2607 if (psxH == (void *)0x1f800000) {
2608 host_tempreg_acquire();
2609 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2610 emit_cmpimm(HOST_TEMPREG,0x1000);
2611 host_tempreg_release();
2612 jaddr=out;
2613 emit_jc(0);
2614 }
2615 else {
2616 // do the usual RAM check, jump will go to the right handler
2617 type=0;
2618 }
2619 }
2620
2621 if (type == 0) // need ram check
2622 {
2623 emit_cmpimm(addr,RAM_SIZE);
2624 jaddr = out;
2625 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2626 // Hint to branch predictor that the branch is unlikely to be taken
2627 if (dops[i].rs1 >= 28)
2628 emit_jno_unlikely(0);
2629 else
2630 #endif
2631 emit_jno(0);
2632 if (ram_offset != 0)
2633 *offset_reg = get_ro_reg(i_regs, 0);
2634 }
2635
2636 return jaddr;
2637}
2638
2639// return memhandler, or get directly accessable address and return 0
2640static void *get_direct_memhandler(void *table, u_int addr,
2641 enum stub_type type, uintptr_t *addr_host)
2642{
2643 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2644 uintptr_t l1, l2 = 0;
2645 l1 = ((uintptr_t *)table)[addr>>12];
2646 if (!(l1 & msb)) {
2647 uintptr_t v = l1 << 1;
2648 *addr_host = v + addr;
2649 return NULL;
2650 }
2651 else {
2652 l1 <<= 1;
2653 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2654 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2655 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2656 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2657 else
2658 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2659 if (!(l2 & msb)) {
2660 uintptr_t v = l2 << 1;
2661 *addr_host = v + (addr&0xfff);
2662 return NULL;
2663 }
2664 return (void *)(l2 << 1);
2665 }
2666}
2667
2668static u_int get_host_reglist(const signed char *regmap)
2669{
2670 u_int reglist = 0, hr;
2671 for (hr = 0; hr < HOST_REGS; hr++) {
2672 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2673 reglist |= 1 << hr;
2674 }
2675 return reglist;
2676}
2677
2678static u_int reglist_exclude(u_int reglist, int r1, int r2)
2679{
2680 if (r1 >= 0)
2681 reglist &= ~(1u << r1);
2682 if (r2 >= 0)
2683 reglist &= ~(1u << r2);
2684 return reglist;
2685}
2686
2687// find a temp caller-saved register not in reglist (so assumed to be free)
2688static int reglist_find_free(u_int reglist)
2689{
2690 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2691 if (free_regs == 0)
2692 return -1;
2693 return __builtin_ctz(free_regs);
2694}
2695
2696static void do_load_word(int a, int rt, int offset_reg)
2697{
2698 if (offset_reg >= 0)
2699 emit_ldr_dualindexed(offset_reg, a, rt);
2700 else
2701 emit_readword_indexed(0, a, rt);
2702}
2703
2704static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2705{
2706 if (offset_reg < 0) {
2707 emit_writeword_indexed(rt, ofs, a);
2708 return;
2709 }
2710 if (ofs != 0)
2711 emit_addimm(a, ofs, a);
2712 emit_str_dualindexed(offset_reg, a, rt);
2713 if (ofs != 0 && preseve_a)
2714 emit_addimm(a, -ofs, a);
2715}
2716
2717static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2718{
2719 if (offset_reg < 0) {
2720 emit_writehword_indexed(rt, ofs, a);
2721 return;
2722 }
2723 if (ofs != 0)
2724 emit_addimm(a, ofs, a);
2725 emit_strh_dualindexed(offset_reg, a, rt);
2726 if (ofs != 0 && preseve_a)
2727 emit_addimm(a, -ofs, a);
2728}
2729
2730static void do_store_byte(int a, int rt, int offset_reg)
2731{
2732 if (offset_reg >= 0)
2733 emit_strb_dualindexed(offset_reg, a, rt);
2734 else
2735 emit_writebyte_indexed(rt, 0, a);
2736}
2737
2738static void load_assemble(int i, const struct regstat *i_regs)
2739{
2740 int s,tl,addr;
2741 int offset;
2742 void *jaddr=0;
2743 int memtarget=0,c=0;
2744 int offset_reg = -1;
2745 int fastio_reg_override = -1;
2746 u_int reglist=get_host_reglist(i_regs->regmap);
2747 tl=get_reg(i_regs->regmap,dops[i].rt1);
2748 s=get_reg(i_regs->regmap,dops[i].rs1);
2749 offset=imm[i];
2750 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2751 if(s>=0) {
2752 c=(i_regs->wasconst>>s)&1;
2753 if (c) {
2754 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2755 }
2756 }
2757 //printf("load_assemble: c=%d\n",c);
2758 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2759 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2760 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2761 ||dops[i].rt1==0) {
2762 // could be FIFO, must perform the read
2763 // ||dummy read
2764 assem_debug("(forced read)\n");
2765 tl=get_reg(i_regs->regmap,-1);
2766 assert(tl>=0);
2767 }
2768 if(offset||s<0||c) addr=tl;
2769 else addr=s;
2770 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2771 if(tl>=0) {
2772 //printf("load_assemble: c=%d\n",c);
2773 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2774 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2775 reglist&=~(1<<tl);
2776 if(!c) {
2777 #ifdef R29_HACK
2778 // Strmnnrmn's speed hack
2779 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2780 #endif
2781 {
2782 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
2783 &offset_reg, &fastio_reg_override);
2784 }
2785 }
2786 else if (ram_offset && memtarget) {
2787 offset_reg = get_ro_reg(i_regs, 0);
2788 }
2789 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2790 switch (dops[i].opcode) {
2791 case 0x20: // LB
2792 if(!c||memtarget) {
2793 if(!dummy) {
2794 int a = tl;
2795 if (!c) a = addr;
2796 if (fastio_reg_override >= 0)
2797 a = fastio_reg_override;
2798
2799 if (offset_reg >= 0)
2800 emit_ldrsb_dualindexed(offset_reg, a, tl);
2801 else
2802 emit_movsbl_indexed(0, a, tl);
2803 }
2804 if(jaddr)
2805 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2806 }
2807 else
2808 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2809 break;
2810 case 0x21: // LH
2811 if(!c||memtarget) {
2812 if(!dummy) {
2813 int a = tl;
2814 if (!c) a = addr;
2815 if (fastio_reg_override >= 0)
2816 a = fastio_reg_override;
2817 if (offset_reg >= 0)
2818 emit_ldrsh_dualindexed(offset_reg, a, tl);
2819 else
2820 emit_movswl_indexed(0, a, tl);
2821 }
2822 if(jaddr)
2823 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2824 }
2825 else
2826 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2827 break;
2828 case 0x23: // LW
2829 if(!c||memtarget) {
2830 if(!dummy) {
2831 int a = addr;
2832 if (fastio_reg_override >= 0)
2833 a = fastio_reg_override;
2834 do_load_word(a, tl, offset_reg);
2835 }
2836 if(jaddr)
2837 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2838 }
2839 else
2840 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2841 break;
2842 case 0x24: // LBU
2843 if(!c||memtarget) {
2844 if(!dummy) {
2845 int a = tl;
2846 if (!c) a = addr;
2847 if (fastio_reg_override >= 0)
2848 a = fastio_reg_override;
2849
2850 if (offset_reg >= 0)
2851 emit_ldrb_dualindexed(offset_reg, a, tl);
2852 else
2853 emit_movzbl_indexed(0, a, tl);
2854 }
2855 if(jaddr)
2856 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2857 }
2858 else
2859 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2860 break;
2861 case 0x25: // LHU
2862 if(!c||memtarget) {
2863 if(!dummy) {
2864 int a = tl;
2865 if(!c) a = addr;
2866 if (fastio_reg_override >= 0)
2867 a = fastio_reg_override;
2868 if (offset_reg >= 0)
2869 emit_ldrh_dualindexed(offset_reg, a, tl);
2870 else
2871 emit_movzwl_indexed(0, a, tl);
2872 }
2873 if(jaddr)
2874 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2875 }
2876 else
2877 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj[i],reglist);
2878 break;
2879 case 0x27: // LWU
2880 case 0x37: // LD
2881 default:
2882 assert(0);
2883 }
2884 }
2885 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
2886 host_tempreg_release();
2887}
2888
2889#ifndef loadlr_assemble
2890static void loadlr_assemble(int i, const struct regstat *i_regs)
2891{
2892 int s,tl,temp,temp2,addr;
2893 int offset;
2894 void *jaddr=0;
2895 int memtarget=0,c=0;
2896 int offset_reg = -1;
2897 int fastio_reg_override = -1;
2898 u_int reglist=get_host_reglist(i_regs->regmap);
2899 tl=get_reg(i_regs->regmap,dops[i].rt1);
2900 s=get_reg(i_regs->regmap,dops[i].rs1);
2901 temp=get_reg(i_regs->regmap,-1);
2902 temp2=get_reg(i_regs->regmap,FTEMP);
2903 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2904 assert(addr<0);
2905 offset=imm[i];
2906 reglist|=1<<temp;
2907 if(offset||s<0||c) addr=temp2;
2908 else addr=s;
2909 if(s>=0) {
2910 c=(i_regs->wasconst>>s)&1;
2911 if(c) {
2912 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2913 }
2914 }
2915 if(!c) {
2916 emit_shlimm(addr,3,temp);
2917 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2918 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2919 }else{
2920 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2921 }
2922 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
2923 &offset_reg, &fastio_reg_override);
2924 }
2925 else {
2926 if (ram_offset && memtarget) {
2927 offset_reg = get_ro_reg(i_regs, 0);
2928 }
2929 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2930 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2931 }else{
2932 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2933 }
2934 }
2935 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
2936 if(!c||memtarget) {
2937 int a = temp2;
2938 if (fastio_reg_override >= 0)
2939 a = fastio_reg_override;
2940 do_load_word(a, temp2, offset_reg);
2941 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
2942 host_tempreg_release();
2943 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2944 }
2945 else
2946 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2947 if(dops[i].rt1) {
2948 assert(tl>=0);
2949 emit_andimm(temp,24,temp);
2950 if (dops[i].opcode==0x22) // LWL
2951 emit_xorimm(temp,24,temp);
2952 host_tempreg_acquire();
2953 emit_movimm(-1,HOST_TEMPREG);
2954 if (dops[i].opcode==0x26) {
2955 emit_shr(temp2,temp,temp2);
2956 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2957 }else{
2958 emit_shl(temp2,temp,temp2);
2959 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2960 }
2961 host_tempreg_release();
2962 emit_or(temp2,tl,tl);
2963 }
2964 //emit_storereg(dops[i].rt1,tl); // DEBUG
2965 }
2966 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
2967 assert(0);
2968 }
2969}
2970#endif
2971
2972static void store_assemble(int i, const struct regstat *i_regs)
2973{
2974 int s,tl;
2975 int addr,temp;
2976 int offset;
2977 void *jaddr=0;
2978 enum stub_type type=0;
2979 int memtarget=0,c=0;
2980 int agr=AGEN1+(i&1);
2981 int offset_reg = -1;
2982 int fastio_reg_override = -1;
2983 u_int reglist=get_host_reglist(i_regs->regmap);
2984 tl=get_reg(i_regs->regmap,dops[i].rs2);
2985 s=get_reg(i_regs->regmap,dops[i].rs1);
2986 temp=get_reg(i_regs->regmap,agr);
2987 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2988 offset=imm[i];
2989 if(s>=0) {
2990 c=(i_regs->wasconst>>s)&1;
2991 if(c) {
2992 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2993 }
2994 }
2995 assert(tl>=0);
2996 assert(temp>=0);
2997 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2998 if(offset||s<0||c) addr=temp;
2999 else addr=s;
3000 if (!c) {
3001 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3002 &offset_reg, &fastio_reg_override);
3003 }
3004 else if (ram_offset && memtarget) {
3005 offset_reg = get_ro_reg(i_regs, 0);
3006 }
3007
3008 switch (dops[i].opcode) {
3009 case 0x28: // SB
3010 if(!c||memtarget) {
3011 int a = temp;
3012 if (!c) a = addr;
3013 if (fastio_reg_override >= 0)
3014 a = fastio_reg_override;
3015 do_store_byte(a, tl, offset_reg);
3016 }
3017 type = STOREB_STUB;
3018 break;
3019 case 0x29: // SH
3020 if(!c||memtarget) {
3021 int a = temp;
3022 if (!c) a = addr;
3023 if (fastio_reg_override >= 0)
3024 a = fastio_reg_override;
3025 do_store_hword(a, 0, tl, offset_reg, 1);
3026 }
3027 type = STOREH_STUB;
3028 break;
3029 case 0x2B: // SW
3030 if(!c||memtarget) {
3031 int a = addr;
3032 if (fastio_reg_override >= 0)
3033 a = fastio_reg_override;
3034 do_store_word(a, 0, tl, offset_reg, 1);
3035 }
3036 type = STOREW_STUB;
3037 break;
3038 case 0x3F: // SD
3039 default:
3040 assert(0);
3041 }
3042 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3043 host_tempreg_release();
3044 if(jaddr) {
3045 // PCSX store handlers don't check invcode again
3046 reglist|=1<<addr;
3047 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3048 jaddr=0;
3049 }
3050 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3051 if(!c||memtarget) {
3052 #ifdef DESTRUCTIVE_SHIFT
3053 // The x86 shift operation is 'destructive'; it overwrites the
3054 // source register, so we need to make a copy first and use that.
3055 addr=temp;
3056 #endif
3057 #if defined(HOST_IMM8)
3058 int ir=get_reg(i_regs->regmap,INVCP);
3059 assert(ir>=0);
3060 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3061 #else
3062 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3063 #endif
3064 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3065 emit_callne(invalidate_addr_reg[addr]);
3066 #else
3067 void *jaddr2 = out;
3068 emit_jne(0);
3069 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3070 #endif
3071 }
3072 }
3073 u_int addr_val=constmap[i][s]+offset;
3074 if(jaddr) {
3075 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3076 } else if(c&&!memtarget) {
3077 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj[i],reglist);
3078 }
3079 // basic current block modification detection..
3080 // not looking back as that should be in mips cache already
3081 // (see Spyro2 title->attract mode)
3082 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3083 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3084 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3085 if(i_regs->regmap==regs[i].regmap) {
3086 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3087 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3088 emit_movimm(start+i*4+4,0);
3089 emit_writeword(0,&pcaddr);
3090 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3091 emit_far_call(get_addr_ht);
3092 emit_jmpreg(0);
3093 }
3094 }
3095}
3096
3097static void storelr_assemble(int i, const struct regstat *i_regs)
3098{
3099 int s,tl;
3100 int temp;
3101 int offset;
3102 void *jaddr=0;
3103 void *case1, *case23, *case3;
3104 void *done0, *done1, *done2;
3105 int memtarget=0,c=0;
3106 int agr=AGEN1+(i&1);
3107 int offset_reg = -1;
3108 u_int reglist=get_host_reglist(i_regs->regmap);
3109 tl=get_reg(i_regs->regmap,dops[i].rs2);
3110 s=get_reg(i_regs->regmap,dops[i].rs1);
3111 temp=get_reg(i_regs->regmap,agr);
3112 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3113 offset=imm[i];
3114 if(s>=0) {
3115 c=(i_regs->isconst>>s)&1;
3116 if(c) {
3117 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3118 }
3119 }
3120 assert(tl>=0);
3121 assert(temp>=0);
3122 if(!c) {
3123 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3124 if(!offset&&s!=temp) emit_mov(s,temp);
3125 jaddr=out;
3126 emit_jno(0);
3127 }
3128 else
3129 {
3130 if(!memtarget||!dops[i].rs1) {
3131 jaddr=out;
3132 emit_jmp(0);
3133 }
3134 }
3135 if (ram_offset)
3136 offset_reg = get_ro_reg(i_regs, 0);
3137
3138 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3139 assert(0);
3140 }
3141
3142 emit_testimm(temp,2);
3143 case23=out;
3144 emit_jne(0);
3145 emit_testimm(temp,1);
3146 case1=out;
3147 emit_jne(0);
3148 // 0
3149 if (dops[i].opcode == 0x2A) { // SWL
3150 // Write msb into least significant byte
3151 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3152 do_store_byte(temp, tl, offset_reg);
3153 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3154 }
3155 else if (dops[i].opcode == 0x2E) { // SWR
3156 // Write entire word
3157 do_store_word(temp, 0, tl, offset_reg, 1);
3158 }
3159 done0 = out;
3160 emit_jmp(0);
3161 // 1
3162 set_jump_target(case1, out);
3163 if (dops[i].opcode == 0x2A) { // SWL
3164 // Write two msb into two least significant bytes
3165 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3166 do_store_hword(temp, -1, tl, offset_reg, 0);
3167 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3168 }
3169 else if (dops[i].opcode == 0x2E) { // SWR
3170 // Write 3 lsb into three most significant bytes
3171 do_store_byte(temp, tl, offset_reg);
3172 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3173 do_store_hword(temp, 1, tl, offset_reg, 0);
3174 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3175 }
3176 done1=out;
3177 emit_jmp(0);
3178 // 2,3
3179 set_jump_target(case23, out);
3180 emit_testimm(temp,1);
3181 case3 = out;
3182 emit_jne(0);
3183 // 2
3184 if (dops[i].opcode==0x2A) { // SWL
3185 // Write 3 msb into three least significant bytes
3186 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3187 do_store_hword(temp, -2, tl, offset_reg, 1);
3188 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3189 do_store_byte(temp, tl, offset_reg);
3190 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3191 }
3192 else if (dops[i].opcode == 0x2E) { // SWR
3193 // Write two lsb into two most significant bytes
3194 do_store_hword(temp, 0, tl, offset_reg, 1);
3195 }
3196 done2 = out;
3197 emit_jmp(0);
3198 // 3
3199 set_jump_target(case3, out);
3200 if (dops[i].opcode == 0x2A) { // SWL
3201 do_store_word(temp, -3, tl, offset_reg, 0);
3202 }
3203 else if (dops[i].opcode == 0x2E) { // SWR
3204 do_store_byte(temp, tl, offset_reg);
3205 }
3206 set_jump_target(done0, out);
3207 set_jump_target(done1, out);
3208 set_jump_target(done2, out);
3209 if (offset_reg == HOST_TEMPREG)
3210 host_tempreg_release();
3211 if(!c||!memtarget)
3212 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3213 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3214 #if defined(HOST_IMM8)
3215 int ir=get_reg(i_regs->regmap,INVCP);
3216 assert(ir>=0);
3217 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3218 #else
3219 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3220 #endif
3221 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3222 emit_callne(invalidate_addr_reg[temp]);
3223 #else
3224 void *jaddr2 = out;
3225 emit_jne(0);
3226 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3227 #endif
3228 }
3229}
3230
3231static void cop0_assemble(int i,struct regstat *i_regs)
3232{
3233 if(dops[i].opcode2==0) // MFC0
3234 {
3235 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3236 u_int copr=(source[i]>>11)&0x1f;
3237 //assert(t>=0); // Why does this happen? OOT is weird
3238 if(t>=0&&dops[i].rt1!=0) {
3239 emit_readword(&reg_cop0[copr],t);
3240 }
3241 }
3242 else if(dops[i].opcode2==4) // MTC0
3243 {
3244 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3245 char copr=(source[i]>>11)&0x1f;
3246 assert(s>=0);
3247 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3248 if(copr==9||copr==11||copr==12||copr==13) {
3249 emit_readword(&last_count,HOST_TEMPREG);
3250 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3251 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3252 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3253 emit_writeword(HOST_CCREG,&Count);
3254 }
3255 // What a mess. The status register (12) can enable interrupts,
3256 // so needs a special case to handle a pending interrupt.
3257 // The interrupt must be taken immediately, because a subsequent
3258 // instruction might disable interrupts again.
3259 if(copr==12||copr==13) {
3260 if (is_delayslot) {
3261 // burn cycles to cause cc_interrupt, which will
3262 // reschedule next_interupt. Relies on CCREG from above.
3263 assem_debug("MTC0 DS %d\n", copr);
3264 emit_writeword(HOST_CCREG,&last_count);
3265 emit_movimm(0,HOST_CCREG);
3266 emit_storereg(CCREG,HOST_CCREG);
3267 emit_loadreg(dops[i].rs1,1);
3268 emit_movimm(copr,0);
3269 emit_far_call(pcsx_mtc0_ds);
3270 emit_loadreg(dops[i].rs1,s);
3271 return;
3272 }
3273 emit_movimm(start+i*4+4,HOST_TEMPREG);
3274 emit_writeword(HOST_TEMPREG,&pcaddr);
3275 emit_movimm(0,HOST_TEMPREG);
3276 emit_writeword(HOST_TEMPREG,&pending_exception);
3277 }
3278 if(s==HOST_CCREG)
3279 emit_loadreg(dops[i].rs1,1);
3280 else if(s!=1)
3281 emit_mov(s,1);
3282 emit_movimm(copr,0);
3283 emit_far_call(pcsx_mtc0);
3284 if(copr==9||copr==11||copr==12||copr==13) {
3285 emit_readword(&Count,HOST_CCREG);
3286 emit_readword(&next_interupt,HOST_TEMPREG);
3287 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3288 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3289 emit_writeword(HOST_TEMPREG,&last_count);
3290 emit_storereg(CCREG,HOST_CCREG);
3291 }
3292 if(copr==12||copr==13) {
3293 assert(!is_delayslot);
3294 emit_readword(&pending_exception,14);
3295 emit_test(14,14);
3296 void *jaddr = out;
3297 emit_jeq(0);
3298 emit_readword(&pcaddr, 0);
3299 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3300 emit_far_call(get_addr_ht);
3301 emit_jmpreg(0);
3302 set_jump_target(jaddr, out);
3303 }
3304 emit_loadreg(dops[i].rs1,s);
3305 }
3306 else
3307 {
3308 assert(dops[i].opcode2==0x10);
3309 //if((source[i]&0x3f)==0x10) // RFE
3310 {
3311 emit_readword(&Status,0);
3312 emit_andimm(0,0x3c,1);
3313 emit_andimm(0,~0xf,0);
3314 emit_orrshr_imm(1,2,0);
3315 emit_writeword(0,&Status);
3316 }
3317 }
3318}
3319
3320static void cop1_unusable(int i,struct regstat *i_regs)
3321{
3322 // XXX: should just just do the exception instead
3323 //if(!cop1_usable)
3324 {
3325 void *jaddr=out;
3326 emit_jmp(0);
3327 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3328 }
3329}
3330
3331static void cop1_assemble(int i,struct regstat *i_regs)
3332{
3333 cop1_unusable(i, i_regs);
3334}
3335
3336static void c1ls_assemble(int i,struct regstat *i_regs)
3337{
3338 cop1_unusable(i, i_regs);
3339}
3340
3341// FP_STUB
3342static void do_cop1stub(int n)
3343{
3344 literal_pool(256);
3345 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3346 set_jump_target(stubs[n].addr, out);
3347 int i=stubs[n].a;
3348// int rs=stubs[n].b;
3349 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3350 int ds=stubs[n].d;
3351 if(!ds) {
3352 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3353 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3354 }
3355 //else {printf("fp exception in delay slot\n");}
3356 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3357 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3358 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3359 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3360 emit_far_jump(ds?fp_exception_ds:fp_exception);
3361}
3362
3363static int cop2_is_stalling_op(int i, int *cycles)
3364{
3365 if (dops[i].opcode == 0x3a) { // SWC2
3366 *cycles = 0;
3367 return 1;
3368 }
3369 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3370 *cycles = 0;
3371 return 1;
3372 }
3373 if (dops[i].itype == C2OP) {
3374 *cycles = gte_cycletab[source[i] & 0x3f];
3375 return 1;
3376 }
3377 // ... what about MTC2/CTC2/LWC2?
3378 return 0;
3379}
3380
3381#if 0
3382static void log_gte_stall(int stall, u_int cycle)
3383{
3384 if ((u_int)stall <= 44)
3385 printf("x stall %2d %u\n", stall, cycle + last_count);
3386}
3387
3388static void emit_log_gte_stall(int i, int stall, u_int reglist)
3389{
3390 save_regs(reglist);
3391 if (stall > 0)
3392 emit_movimm(stall, 0);
3393 else
3394 emit_mov(HOST_TEMPREG, 0);
3395 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3396 emit_far_call(log_gte_stall);
3397 restore_regs(reglist);
3398}
3399#endif
3400
3401static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3402{
3403 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3404 int rtmp = reglist_find_free(reglist);
3405
3406 if (HACK_ENABLED(NDHACK_NO_STALLS))
3407 return;
3408 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3409 // happens occasionally... cc evicted? Don't bother then
3410 //printf("no cc %08x\n", start + i*4);
3411 return;
3412 }
3413 if (!dops[i].bt) {
3414 for (j = i - 1; j >= 0; j--) {
3415 //if (dops[j].is_ds) break;
3416 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3417 break;
3418 }
3419 j = max(j, 0);
3420 }
3421 cycles_passed = CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3422 if (other_gte_op_cycles >= 0)
3423 stall = other_gte_op_cycles - cycles_passed;
3424 else if (cycles_passed >= 44)
3425 stall = 0; // can't stall
3426 if (stall == -MAXBLOCK && rtmp >= 0) {
3427 // unknown stall, do the expensive runtime check
3428 assem_debug("; cop2_do_stall_check\n");
3429#if 0 // too slow
3430 save_regs(reglist);
3431 emit_movimm(gte_cycletab[op], 0);
3432 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3433 emit_far_call(call_gteStall);
3434 restore_regs(reglist);
3435#else
3436 host_tempreg_acquire();
3437 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3438 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3439 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3440 emit_cmpimm(HOST_TEMPREG, 44);
3441 emit_cmovb_reg(rtmp, HOST_CCREG);
3442 //emit_log_gte_stall(i, 0, reglist);
3443 host_tempreg_release();
3444#endif
3445 }
3446 else if (stall > 0) {
3447 //emit_log_gte_stall(i, stall, reglist);
3448 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3449 }
3450
3451 // save gteBusyCycle, if needed
3452 if (gte_cycletab[op] == 0)
3453 return;
3454 other_gte_op_cycles = -1;
3455 for (j = i + 1; j < slen; j++) {
3456 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3457 break;
3458 if (dops[j].is_jump) {
3459 // check ds
3460 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3461 j++;
3462 break;
3463 }
3464 }
3465 if (other_gte_op_cycles >= 0)
3466 // will handle stall when assembling that op
3467 return;
3468 cycles_passed = CLOCK_ADJUST(ccadj[min(j, slen -1)] - ccadj[i]);
3469 if (cycles_passed >= 44)
3470 return;
3471 assem_debug("; save gteBusyCycle\n");
3472 host_tempreg_acquire();
3473#if 0
3474 emit_readword(&last_count, HOST_TEMPREG);
3475 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3476 emit_addimm(HOST_TEMPREG, CLOCK_ADJUST(ccadj[i]), HOST_TEMPREG);
3477 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3478 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3479#else
3480 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + gte_cycletab[op], HOST_TEMPREG);
3481 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3482#endif
3483 host_tempreg_release();
3484}
3485
3486static int is_mflohi(int i)
3487{
3488 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3489}
3490
3491static int check_multdiv(int i, int *cycles)
3492{
3493 if (dops[i].itype != MULTDIV)
3494 return 0;
3495 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3496 *cycles = 11; // approx from 7 11 14
3497 else
3498 *cycles = 37;
3499 return 1;
3500}
3501
3502static void multdiv_prepare_stall(int i, const struct regstat *i_regs)
3503{
3504 int j, found = 0, c = 0;
3505 if (HACK_ENABLED(NDHACK_NO_STALLS))
3506 return;
3507 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3508 // happens occasionally... cc evicted? Don't bother then
3509 return;
3510 }
3511 for (j = i + 1; j < slen; j++) {
3512 if (dops[j].bt)
3513 break;
3514 if ((found = is_mflohi(j)))
3515 break;
3516 if (dops[j].is_jump) {
3517 // check ds
3518 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3519 j++;
3520 break;
3521 }
3522 }
3523 if (found)
3524 // handle all in multdiv_do_stall()
3525 return;
3526 check_multdiv(i, &c);
3527 assert(c > 0);
3528 assem_debug("; muldiv prepare stall %d\n", c);
3529 host_tempreg_acquire();
3530 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + c, HOST_TEMPREG);
3531 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3532 host_tempreg_release();
3533}
3534
3535static void multdiv_do_stall(int i, const struct regstat *i_regs)
3536{
3537 int j, known_cycles = 0;
3538 u_int reglist = get_host_reglist(i_regs->regmap);
3539 int rtmp = get_reg(i_regs->regmap, -1);
3540 if (rtmp < 0)
3541 rtmp = reglist_find_free(reglist);
3542 if (HACK_ENABLED(NDHACK_NO_STALLS))
3543 return;
3544 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3545 // happens occasionally... cc evicted? Don't bother then
3546 //printf("no cc/rtmp %08x\n", start + i*4);
3547 return;
3548 }
3549 if (!dops[i].bt) {
3550 for (j = i - 1; j >= 0; j--) {
3551 if (dops[j].is_ds) break;
3552 if (check_multdiv(j, &known_cycles) || dops[j].bt)
3553 break;
3554 if (is_mflohi(j))
3555 // already handled by this op
3556 return;
3557 }
3558 j = max(j, 0);
3559 }
3560 if (known_cycles > 0) {
3561 known_cycles -= CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3562 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3563 if (known_cycles > 0)
3564 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3565 return;
3566 }
3567 assem_debug("; muldiv stall unresolved\n");
3568 host_tempreg_acquire();
3569 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3570 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3571 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3572 emit_cmpimm(HOST_TEMPREG, 37);
3573 emit_cmovb_reg(rtmp, HOST_CCREG);
3574 //emit_log_gte_stall(i, 0, reglist);
3575 host_tempreg_release();
3576}
3577
3578static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3579{
3580 switch (copr) {
3581 case 1:
3582 case 3:
3583 case 5:
3584 case 8:
3585 case 9:
3586 case 10:
3587 case 11:
3588 emit_readword(&reg_cop2d[copr],tl);
3589 emit_signextend16(tl,tl);
3590 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3591 break;
3592 case 7:
3593 case 16:
3594 case 17:
3595 case 18:
3596 case 19:
3597 emit_readword(&reg_cop2d[copr],tl);
3598 emit_andimm(tl,0xffff,tl);
3599 emit_writeword(tl,&reg_cop2d[copr]);
3600 break;
3601 case 15:
3602 emit_readword(&reg_cop2d[14],tl); // SXY2
3603 emit_writeword(tl,&reg_cop2d[copr]);
3604 break;
3605 case 28:
3606 case 29:
3607 c2op_mfc2_29_assemble(tl,temp);
3608 break;
3609 default:
3610 emit_readword(&reg_cop2d[copr],tl);
3611 break;
3612 }
3613}
3614
3615static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3616{
3617 switch (copr) {
3618 case 15:
3619 emit_readword(&reg_cop2d[13],temp); // SXY1
3620 emit_writeword(sl,&reg_cop2d[copr]);
3621 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3622 emit_readword(&reg_cop2d[14],temp); // SXY2
3623 emit_writeword(sl,&reg_cop2d[14]);
3624 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3625 break;
3626 case 28:
3627 emit_andimm(sl,0x001f,temp);
3628 emit_shlimm(temp,7,temp);
3629 emit_writeword(temp,&reg_cop2d[9]);
3630 emit_andimm(sl,0x03e0,temp);
3631 emit_shlimm(temp,2,temp);
3632 emit_writeword(temp,&reg_cop2d[10]);
3633 emit_andimm(sl,0x7c00,temp);
3634 emit_shrimm(temp,3,temp);
3635 emit_writeword(temp,&reg_cop2d[11]);
3636 emit_writeword(sl,&reg_cop2d[28]);
3637 break;
3638 case 30:
3639 emit_xorsar_imm(sl,sl,31,temp);
3640#if defined(HAVE_ARMV5) || defined(__aarch64__)
3641 emit_clz(temp,temp);
3642#else
3643 emit_movs(temp,HOST_TEMPREG);
3644 emit_movimm(0,temp);
3645 emit_jeq((int)out+4*4);
3646 emit_addpl_imm(temp,1,temp);
3647 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3648 emit_jns((int)out-2*4);
3649#endif
3650 emit_writeword(sl,&reg_cop2d[30]);
3651 emit_writeword(temp,&reg_cop2d[31]);
3652 break;
3653 case 31:
3654 break;
3655 default:
3656 emit_writeword(sl,&reg_cop2d[copr]);
3657 break;
3658 }
3659}
3660
3661static void c2ls_assemble(int i, const struct regstat *i_regs)
3662{
3663 int s,tl;
3664 int ar;
3665 int offset;
3666 int memtarget=0,c=0;
3667 void *jaddr2=NULL;
3668 enum stub_type type;
3669 int agr=AGEN1+(i&1);
3670 int offset_reg = -1;
3671 int fastio_reg_override = -1;
3672 u_int reglist=get_host_reglist(i_regs->regmap);
3673 u_int copr=(source[i]>>16)&0x1f;
3674 s=get_reg(i_regs->regmap,dops[i].rs1);
3675 tl=get_reg(i_regs->regmap,FTEMP);
3676 offset=imm[i];
3677 assert(dops[i].rs1>0);
3678 assert(tl>=0);
3679
3680 if(i_regs->regmap[HOST_CCREG]==CCREG)
3681 reglist&=~(1<<HOST_CCREG);
3682
3683 // get the address
3684 if (dops[i].opcode==0x3a) { // SWC2
3685 ar=get_reg(i_regs->regmap,agr);
3686 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3687 reglist|=1<<ar;
3688 } else { // LWC2
3689 ar=tl;
3690 }
3691 if(s>=0) c=(i_regs->wasconst>>s)&1;
3692 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3693 if (!offset&&!c&&s>=0) ar=s;
3694 assert(ar>=0);
3695
3696 cop2_do_stall_check(0, i, i_regs, reglist);
3697
3698 if (dops[i].opcode==0x3a) { // SWC2
3699 cop2_get_dreg(copr,tl,-1);
3700 type=STOREW_STUB;
3701 }
3702 else
3703 type=LOADW_STUB;
3704
3705 if(c&&!memtarget) {
3706 jaddr2=out;
3707 emit_jmp(0); // inline_readstub/inline_writestub?
3708 }
3709 else {
3710 if(!c) {
3711 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3712 &offset_reg, &fastio_reg_override);
3713 }
3714 else if (ram_offset && memtarget) {
3715 offset_reg = get_ro_reg(i_regs, 0);
3716 }
3717 switch (dops[i].opcode) {
3718 case 0x32: { // LWC2
3719 int a = ar;
3720 if (fastio_reg_override >= 0)
3721 a = fastio_reg_override;
3722 do_load_word(a, tl, offset_reg);
3723 break;
3724 }
3725 case 0x3a: { // SWC2
3726 #ifdef DESTRUCTIVE_SHIFT
3727 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3728 #endif
3729 int a = ar;
3730 if (fastio_reg_override >= 0)
3731 a = fastio_reg_override;
3732 do_store_word(a, 0, tl, offset_reg, 1);
3733 break;
3734 }
3735 default:
3736 assert(0);
3737 }
3738 }
3739 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3740 host_tempreg_release();
3741 if(jaddr2)
3742 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3743 if(dops[i].opcode==0x3a) // SWC2
3744 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3745#if defined(HOST_IMM8)
3746 int ir=get_reg(i_regs->regmap,INVCP);
3747 assert(ir>=0);
3748 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3749#else
3750 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3751#endif
3752 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3753 emit_callne(invalidate_addr_reg[ar]);
3754 #else
3755 void *jaddr3 = out;
3756 emit_jne(0);
3757 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3758 #endif
3759 }
3760 if (dops[i].opcode==0x32) { // LWC2
3761 host_tempreg_acquire();
3762 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3763 host_tempreg_release();
3764 }
3765}
3766
3767static void cop2_assemble(int i, const struct regstat *i_regs)
3768{
3769 u_int copr = (source[i]>>11) & 0x1f;
3770 signed char temp = get_reg(i_regs->regmap, -1);
3771
3772 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3773 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3774 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3775 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3776 reglist = reglist_exclude(reglist, tl, -1);
3777 }
3778 cop2_do_stall_check(0, i, i_regs, reglist);
3779 }
3780 if (dops[i].opcode2==0) { // MFC2
3781 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3782 if(tl>=0&&dops[i].rt1!=0)
3783 cop2_get_dreg(copr,tl,temp);
3784 }
3785 else if (dops[i].opcode2==4) { // MTC2
3786 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3787 cop2_put_dreg(copr,sl,temp);
3788 }
3789 else if (dops[i].opcode2==2) // CFC2
3790 {
3791 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3792 if(tl>=0&&dops[i].rt1!=0)
3793 emit_readword(&reg_cop2c[copr],tl);
3794 }
3795 else if (dops[i].opcode2==6) // CTC2
3796 {
3797 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3798 switch(copr) {
3799 case 4:
3800 case 12:
3801 case 20:
3802 case 26:
3803 case 27:
3804 case 29:
3805 case 30:
3806 emit_signextend16(sl,temp);
3807 break;
3808 case 31:
3809 c2op_ctc2_31_assemble(sl,temp);
3810 break;
3811 default:
3812 temp=sl;
3813 break;
3814 }
3815 emit_writeword(temp,&reg_cop2c[copr]);
3816 assert(sl>=0);
3817 }
3818}
3819
3820static void do_unalignedwritestub(int n)
3821{
3822 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3823 literal_pool(256);
3824 set_jump_target(stubs[n].addr, out);
3825
3826 int i=stubs[n].a;
3827 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3828 int addr=stubs[n].b;
3829 u_int reglist=stubs[n].e;
3830 signed char *i_regmap=i_regs->regmap;
3831 int temp2=get_reg(i_regmap,FTEMP);
3832 int rt;
3833 rt=get_reg(i_regmap,dops[i].rs2);
3834 assert(rt>=0);
3835 assert(addr>=0);
3836 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3837 reglist|=(1<<addr);
3838 reglist&=~(1<<temp2);
3839
3840 // don't bother with it and call write handler
3841 save_regs(reglist);
3842 pass_args(addr,rt);
3843 int cc=get_reg(i_regmap,CCREG);
3844 if(cc<0)
3845 emit_loadreg(CCREG,2);
3846 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3847 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3848 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3849 if(cc<0)
3850 emit_storereg(CCREG,2);
3851 restore_regs(reglist);
3852 emit_jmp(stubs[n].retaddr); // return address
3853}
3854
3855#ifndef multdiv_assemble
3856void multdiv_assemble(int i,struct regstat *i_regs)
3857{
3858 printf("Need multdiv_assemble for this architecture.\n");
3859 abort();
3860}
3861#endif
3862
3863static void mov_assemble(int i,struct regstat *i_regs)
3864{
3865 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3866 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3867 if(dops[i].rt1) {
3868 signed char sl,tl;
3869 tl=get_reg(i_regs->regmap,dops[i].rt1);
3870 //assert(tl>=0);
3871 if(tl>=0) {
3872 sl=get_reg(i_regs->regmap,dops[i].rs1);
3873 if(sl>=0) emit_mov(sl,tl);
3874 else emit_loadreg(dops[i].rs1,tl);
3875 }
3876 }
3877 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3878 multdiv_do_stall(i, i_regs);
3879}
3880
3881// call interpreter, exception handler, things that change pc/regs/cycles ...
3882static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3883{
3884 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3885 assert(ccreg==HOST_CCREG);
3886 assert(!is_delayslot);
3887 (void)ccreg;
3888
3889 emit_movimm(pc,3); // Get PC
3890 emit_readword(&last_count,2);
3891 emit_writeword(3,&psxRegs.pc);
3892 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3893 emit_add(2,HOST_CCREG,2);
3894 emit_writeword(2,&psxRegs.cycle);
3895 emit_far_call(func);
3896 emit_far_jump(jump_to_new_pc);
3897}
3898
3899static void syscall_assemble(int i,struct regstat *i_regs)
3900{
3901 emit_movimm(0x20,0); // cause code
3902 emit_movimm(0,1); // not in delay slot
3903 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3904}
3905
3906static void hlecall_assemble(int i,struct regstat *i_regs)
3907{
3908 void *hlefunc = psxNULL;
3909 uint32_t hleCode = source[i] & 0x03ffffff;
3910 if (hleCode < ARRAY_SIZE(psxHLEt))
3911 hlefunc = psxHLEt[hleCode];
3912
3913 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3914}
3915
3916static void intcall_assemble(int i,struct regstat *i_regs)
3917{
3918 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3919}
3920
3921static void speculate_mov(int rs,int rt)
3922{
3923 if(rt!=0) {
3924 smrv_strong_next|=1<<rt;
3925 smrv[rt]=smrv[rs];
3926 }
3927}
3928
3929static void speculate_mov_weak(int rs,int rt)
3930{
3931 if(rt!=0) {
3932 smrv_weak_next|=1<<rt;
3933 smrv[rt]=smrv[rs];
3934 }
3935}
3936
3937static void speculate_register_values(int i)
3938{
3939 if(i==0) {
3940 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3941 // gp,sp are likely to stay the same throughout the block
3942 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3943 smrv_weak_next=~smrv_strong_next;
3944 //printf(" llr %08x\n", smrv[4]);
3945 }
3946 smrv_strong=smrv_strong_next;
3947 smrv_weak=smrv_weak_next;
3948 switch(dops[i].itype) {
3949 case ALU:
3950 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
3951 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
3952 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
3953 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
3954 else {
3955 smrv_strong_next&=~(1<<dops[i].rt1);
3956 smrv_weak_next&=~(1<<dops[i].rt1);
3957 }
3958 break;
3959 case SHIFTIMM:
3960 smrv_strong_next&=~(1<<dops[i].rt1);
3961 smrv_weak_next&=~(1<<dops[i].rt1);
3962 // fallthrough
3963 case IMM16:
3964 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
3965 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
3966 if(hr>=0) {
3967 if(get_final_value(hr,i,&value))
3968 smrv[dops[i].rt1]=value;
3969 else smrv[dops[i].rt1]=constmap[i][hr];
3970 smrv_strong_next|=1<<dops[i].rt1;
3971 }
3972 }
3973 else {
3974 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
3975 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
3976 }
3977 break;
3978 case LOAD:
3979 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
3980 // special case for BIOS
3981 smrv[dops[i].rt1]=0xa0000000;
3982 smrv_strong_next|=1<<dops[i].rt1;
3983 break;
3984 }
3985 // fallthrough
3986 case SHIFT:
3987 case LOADLR:
3988 case MOV:
3989 smrv_strong_next&=~(1<<dops[i].rt1);
3990 smrv_weak_next&=~(1<<dops[i].rt1);
3991 break;
3992 case COP0:
3993 case COP2:
3994 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
3995 smrv_strong_next&=~(1<<dops[i].rt1);
3996 smrv_weak_next&=~(1<<dops[i].rt1);
3997 }
3998 break;
3999 case C2LS:
4000 if (dops[i].opcode==0x32) { // LWC2
4001 smrv_strong_next&=~(1<<dops[i].rt1);
4002 smrv_weak_next&=~(1<<dops[i].rt1);
4003 }
4004 break;
4005 }
4006#if 0
4007 int r=4;
4008 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4009 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4010#endif
4011}
4012
4013static void ds_assemble(int i,struct regstat *i_regs)
4014{
4015 speculate_register_values(i);
4016 is_delayslot=1;
4017 switch(dops[i].itype) {
4018 case ALU:
4019 alu_assemble(i,i_regs);break;
4020 case IMM16:
4021 imm16_assemble(i,i_regs);break;
4022 case SHIFT:
4023 shift_assemble(i,i_regs);break;
4024 case SHIFTIMM:
4025 shiftimm_assemble(i,i_regs);break;
4026 case LOAD:
4027 load_assemble(i,i_regs);break;
4028 case LOADLR:
4029 loadlr_assemble(i,i_regs);break;
4030 case STORE:
4031 store_assemble(i,i_regs);break;
4032 case STORELR:
4033 storelr_assemble(i,i_regs);break;
4034 case COP0:
4035 cop0_assemble(i,i_regs);break;
4036 case COP1:
4037 cop1_assemble(i,i_regs);break;
4038 case C1LS:
4039 c1ls_assemble(i,i_regs);break;
4040 case COP2:
4041 cop2_assemble(i,i_regs);break;
4042 case C2LS:
4043 c2ls_assemble(i,i_regs);break;
4044 case C2OP:
4045 c2op_assemble(i,i_regs);break;
4046 case MULTDIV:
4047 multdiv_assemble(i,i_regs);
4048 multdiv_prepare_stall(i,i_regs);
4049 break;
4050 case MOV:
4051 mov_assemble(i,i_regs);break;
4052 case SYSCALL:
4053 case HLECALL:
4054 case INTCALL:
4055 case SPAN:
4056 case UJUMP:
4057 case RJUMP:
4058 case CJUMP:
4059 case SJUMP:
4060 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4061 }
4062 is_delayslot=0;
4063}
4064
4065// Is the branch target a valid internal jump?
4066static int internal_branch(int addr)
4067{
4068 if(addr&1) return 0; // Indirect (register) jump
4069 if(addr>=start && addr<start+slen*4-4)
4070 {
4071 return 1;
4072 }
4073 return 0;
4074}
4075
4076static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4077{
4078 int hr;
4079 for(hr=0;hr<HOST_REGS;hr++) {
4080 if(hr!=EXCLUDE_REG) {
4081 if(pre[hr]!=entry[hr]) {
4082 if(pre[hr]>=0) {
4083 if((dirty>>hr)&1) {
4084 if(get_reg(entry,pre[hr])<0) {
4085 assert(pre[hr]<64);
4086 if(!((u>>pre[hr])&1))
4087 emit_storereg(pre[hr],hr);
4088 }
4089 }
4090 }
4091 }
4092 }
4093 }
4094 // Move from one register to another (no writeback)
4095 for(hr=0;hr<HOST_REGS;hr++) {
4096 if(hr!=EXCLUDE_REG) {
4097 if(pre[hr]!=entry[hr]) {
4098 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4099 int nr;
4100 if((nr=get_reg(entry,pre[hr]))>=0) {
4101 emit_mov(hr,nr);
4102 }
4103 }
4104 }
4105 }
4106 }
4107}
4108
4109// Load the specified registers
4110// This only loads the registers given as arguments because
4111// we don't want to load things that will be overwritten
4112static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4113{
4114 int hr;
4115 // Load 32-bit regs
4116 for(hr=0;hr<HOST_REGS;hr++) {
4117 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4118 if(entry[hr]!=regmap[hr]) {
4119 if(regmap[hr]==rs1||regmap[hr]==rs2)
4120 {
4121 if(regmap[hr]==0) {
4122 emit_zeroreg(hr);
4123 }
4124 else
4125 {
4126 emit_loadreg(regmap[hr],hr);
4127 }
4128 }
4129 }
4130 }
4131 }
4132}
4133
4134// Load registers prior to the start of a loop
4135// so that they are not loaded within the loop
4136static void loop_preload(signed char pre[],signed char entry[])
4137{
4138 int hr;
4139 for(hr=0;hr<HOST_REGS;hr++) {
4140 if(hr!=EXCLUDE_REG) {
4141 if(pre[hr]!=entry[hr]) {
4142 if(entry[hr]>=0) {
4143 if(get_reg(pre,entry[hr])<0) {
4144 assem_debug("loop preload:\n");
4145 //printf("loop preload: %d\n",hr);
4146 if(entry[hr]==0) {
4147 emit_zeroreg(hr);
4148 }
4149 else if(entry[hr]<TEMPREG)
4150 {
4151 emit_loadreg(entry[hr],hr);
4152 }
4153 else if(entry[hr]-64<TEMPREG)
4154 {
4155 emit_loadreg(entry[hr],hr);
4156 }
4157 }
4158 }
4159 }
4160 }
4161 }
4162}
4163
4164// Generate address for load/store instruction
4165// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4166void address_generation(int i,struct regstat *i_regs,signed char entry[])
4167{
4168 if (dops[i].is_load || dops[i].is_store) {
4169 int ra=-1;
4170 int agr=AGEN1+(i&1);
4171 if(dops[i].itype==LOAD) {
4172 ra=get_reg(i_regs->regmap,dops[i].rt1);
4173 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4174 assert(ra>=0);
4175 }
4176 if(dops[i].itype==LOADLR) {
4177 ra=get_reg(i_regs->regmap,FTEMP);
4178 }
4179 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4180 ra=get_reg(i_regs->regmap,agr);
4181 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4182 }
4183 if(dops[i].itype==C2LS) {
4184 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4185 ra=get_reg(i_regs->regmap,FTEMP);
4186 else { // SWC1/SDC1/SWC2/SDC2
4187 ra=get_reg(i_regs->regmap,agr);
4188 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4189 }
4190 }
4191 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4192 if(ra>=0) {
4193 int offset=imm[i];
4194 int c=(i_regs->wasconst>>rs)&1;
4195 if(dops[i].rs1==0) {
4196 // Using r0 as a base address
4197 if(!entry||entry[ra]!=agr) {
4198 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4199 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4200 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4201 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4202 }else{
4203 emit_movimm(offset,ra);
4204 }
4205 } // else did it in the previous cycle
4206 }
4207 else if(rs<0) {
4208 if(!entry||entry[ra]!=dops[i].rs1)
4209 emit_loadreg(dops[i].rs1,ra);
4210 //if(!entry||entry[ra]!=dops[i].rs1)
4211 // printf("poor load scheduling!\n");
4212 }
4213 else if(c) {
4214 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4215 if(!entry||entry[ra]!=agr) {
4216 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4217 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4218 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4219 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4220 }else{
4221 emit_movimm(constmap[i][rs]+offset,ra);
4222 regs[i].loadedconst|=1<<ra;
4223 }
4224 } // else did it in the previous cycle
4225 } // else load_consts already did it
4226 }
4227 if(offset&&!c&&dops[i].rs1) {
4228 if(rs>=0) {
4229 emit_addimm(rs,offset,ra);
4230 }else{
4231 emit_addimm(ra,offset,ra);
4232 }
4233 }
4234 }
4235 }
4236 // Preload constants for next instruction
4237 if (dops[i+1].is_load || dops[i+1].is_store) {
4238 int agr,ra;
4239 // Actual address
4240 agr=AGEN1+((i+1)&1);
4241 ra=get_reg(i_regs->regmap,agr);
4242 if(ra>=0) {
4243 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4244 int offset=imm[i+1];
4245 int c=(regs[i+1].wasconst>>rs)&1;
4246 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4247 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4248 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4249 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4250 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4251 }else{
4252 emit_movimm(constmap[i+1][rs]+offset,ra);
4253 regs[i+1].loadedconst|=1<<ra;
4254 }
4255 }
4256 else if(dops[i+1].rs1==0) {
4257 // Using r0 as a base address
4258 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4259 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4260 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4261 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4262 }else{
4263 emit_movimm(offset,ra);
4264 }
4265 }
4266 }
4267 }
4268}
4269
4270static int get_final_value(int hr, int i, int *value)
4271{
4272 int reg=regs[i].regmap[hr];
4273 while(i<slen-1) {
4274 if(regs[i+1].regmap[hr]!=reg) break;
4275 if(!((regs[i+1].isconst>>hr)&1)) break;
4276 if(dops[i+1].bt) break;
4277 i++;
4278 }
4279 if(i<slen-1) {
4280 if (dops[i].is_jump) {
4281 *value=constmap[i][hr];
4282 return 1;
4283 }
4284 if(!dops[i+1].bt) {
4285 if (dops[i+1].is_jump) {
4286 // Load in delay slot, out-of-order execution
4287 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4288 {
4289 // Precompute load address
4290 *value=constmap[i][hr]+imm[i+2];
4291 return 1;
4292 }
4293 }
4294 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4295 {
4296 // Precompute load address
4297 *value=constmap[i][hr]+imm[i+1];
4298 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4299 return 1;
4300 }
4301 }
4302 }
4303 *value=constmap[i][hr];
4304 //printf("c=%lx\n",(long)constmap[i][hr]);
4305 if(i==slen-1) return 1;
4306 assert(reg < 64);
4307 return !((unneeded_reg[i+1]>>reg)&1);
4308}
4309
4310// Load registers with known constants
4311static void load_consts(signed char pre[],signed char regmap[],int i)
4312{
4313 int hr,hr2;
4314 // propagate loaded constant flags
4315 if(i==0||dops[i].bt)
4316 regs[i].loadedconst=0;
4317 else {
4318 for(hr=0;hr<HOST_REGS;hr++) {
4319 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4320 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4321 {
4322 regs[i].loadedconst|=1<<hr;
4323 }
4324 }
4325 }
4326 // Load 32-bit regs
4327 for(hr=0;hr<HOST_REGS;hr++) {
4328 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4329 //if(entry[hr]!=regmap[hr]) {
4330 if(!((regs[i].loadedconst>>hr)&1)) {
4331 assert(regmap[hr]<64);
4332 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4333 int value,similar=0;
4334 if(get_final_value(hr,i,&value)) {
4335 // see if some other register has similar value
4336 for(hr2=0;hr2<HOST_REGS;hr2++) {
4337 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4338 if(is_similar_value(value,constmap[i][hr2])) {
4339 similar=1;
4340 break;
4341 }
4342 }
4343 }
4344 if(similar) {
4345 int value2;
4346 if(get_final_value(hr2,i,&value2)) // is this needed?
4347 emit_movimm_from(value2,hr2,value,hr);
4348 else
4349 emit_movimm(value,hr);
4350 }
4351 else if(value==0) {
4352 emit_zeroreg(hr);
4353 }
4354 else {
4355 emit_movimm(value,hr);
4356 }
4357 }
4358 regs[i].loadedconst|=1<<hr;
4359 }
4360 }
4361 }
4362 }
4363}
4364
4365void load_all_consts(signed char regmap[], u_int dirty, int i)
4366{
4367 int hr;
4368 // Load 32-bit regs
4369 for(hr=0;hr<HOST_REGS;hr++) {
4370 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4371 assert(regmap[hr] < 64);
4372 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4373 int value=constmap[i][hr];
4374 if(value==0) {
4375 emit_zeroreg(hr);
4376 }
4377 else {
4378 emit_movimm(value,hr);
4379 }
4380 }
4381 }
4382 }
4383}
4384
4385// Write out all dirty registers (except cycle count)
4386static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4387{
4388 int hr;
4389 for(hr=0;hr<HOST_REGS;hr++) {
4390 if(hr!=EXCLUDE_REG) {
4391 if(i_regmap[hr]>0) {
4392 if(i_regmap[hr]!=CCREG) {
4393 if((i_dirty>>hr)&1) {
4394 assert(i_regmap[hr]<64);
4395 emit_storereg(i_regmap[hr],hr);
4396 }
4397 }
4398 }
4399 }
4400 }
4401}
4402
4403// Write out dirty registers that we need to reload (pair with load_needed_regs)
4404// This writes the registers not written by store_regs_bt
4405void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4406{
4407 int hr;
4408 int t=(addr-start)>>2;
4409 for(hr=0;hr<HOST_REGS;hr++) {
4410 if(hr!=EXCLUDE_REG) {
4411 if(i_regmap[hr]>0) {
4412 if(i_regmap[hr]!=CCREG) {
4413 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4414 if((i_dirty>>hr)&1) {
4415 assert(i_regmap[hr]<64);
4416 emit_storereg(i_regmap[hr],hr);
4417 }
4418 }
4419 }
4420 }
4421 }
4422 }
4423}
4424
4425// Load all registers (except cycle count)
4426void load_all_regs(signed char i_regmap[])
4427{
4428 int hr;
4429 for(hr=0;hr<HOST_REGS;hr++) {
4430 if(hr!=EXCLUDE_REG) {
4431 if(i_regmap[hr]==0) {
4432 emit_zeroreg(hr);
4433 }
4434 else
4435 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4436 {
4437 emit_loadreg(i_regmap[hr],hr);
4438 }
4439 }
4440 }
4441}
4442
4443// Load all current registers also needed by next instruction
4444void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4445{
4446 int hr;
4447 for(hr=0;hr<HOST_REGS;hr++) {
4448 if(hr!=EXCLUDE_REG) {
4449 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4450 if(i_regmap[hr]==0) {
4451 emit_zeroreg(hr);
4452 }
4453 else
4454 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4455 {
4456 emit_loadreg(i_regmap[hr],hr);
4457 }
4458 }
4459 }
4460 }
4461}
4462
4463// Load all regs, storing cycle count if necessary
4464void load_regs_entry(int t)
4465{
4466 int hr;
4467 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4468 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4469 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4470 emit_storereg(CCREG,HOST_CCREG);
4471 }
4472 // Load 32-bit regs
4473 for(hr=0;hr<HOST_REGS;hr++) {
4474 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4475 if(regs[t].regmap_entry[hr]==0) {
4476 emit_zeroreg(hr);
4477 }
4478 else if(regs[t].regmap_entry[hr]!=CCREG)
4479 {
4480 emit_loadreg(regs[t].regmap_entry[hr],hr);
4481 }
4482 }
4483 }
4484}
4485
4486// Store dirty registers prior to branch
4487void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4488{
4489 if(internal_branch(addr))
4490 {
4491 int t=(addr-start)>>2;
4492 int hr;
4493 for(hr=0;hr<HOST_REGS;hr++) {
4494 if(hr!=EXCLUDE_REG) {
4495 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4496 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4497 if((i_dirty>>hr)&1) {
4498 assert(i_regmap[hr]<64);
4499 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4500 emit_storereg(i_regmap[hr],hr);
4501 }
4502 }
4503 }
4504 }
4505 }
4506 }
4507 else
4508 {
4509 // Branch out of this block, write out all dirty regs
4510 wb_dirtys(i_regmap,i_dirty);
4511 }
4512}
4513
4514// Load all needed registers for branch target
4515static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4516{
4517 //if(addr>=start && addr<(start+slen*4))
4518 if(internal_branch(addr))
4519 {
4520 int t=(addr-start)>>2;
4521 int hr;
4522 // Store the cycle count before loading something else
4523 if(i_regmap[HOST_CCREG]!=CCREG) {
4524 assert(i_regmap[HOST_CCREG]==-1);
4525 }
4526 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4527 emit_storereg(CCREG,HOST_CCREG);
4528 }
4529 // Load 32-bit regs
4530 for(hr=0;hr<HOST_REGS;hr++) {
4531 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4532 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4533 if(regs[t].regmap_entry[hr]==0) {
4534 emit_zeroreg(hr);
4535 }
4536 else if(regs[t].regmap_entry[hr]!=CCREG)
4537 {
4538 emit_loadreg(regs[t].regmap_entry[hr],hr);
4539 }
4540 }
4541 }
4542 }
4543 }
4544}
4545
4546static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4547{
4548 if(addr>=start && addr<start+slen*4-4)
4549 {
4550 int t=(addr-start)>>2;
4551 int hr;
4552 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4553 for(hr=0;hr<HOST_REGS;hr++)
4554 {
4555 if(hr!=EXCLUDE_REG)
4556 {
4557 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4558 {
4559 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4560 {
4561 return 0;
4562 }
4563 else
4564 if((i_dirty>>hr)&1)
4565 {
4566 if(i_regmap[hr]<TEMPREG)
4567 {
4568 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4569 return 0;
4570 }
4571 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4572 {
4573 assert(0);
4574 }
4575 }
4576 }
4577 else // Same register but is it 32-bit or dirty?
4578 if(i_regmap[hr]>=0)
4579 {
4580 if(!((regs[t].dirty>>hr)&1))
4581 {
4582 if((i_dirty>>hr)&1)
4583 {
4584 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4585 {
4586 //printf("%x: dirty no match\n",addr);
4587 return 0;
4588 }
4589 }
4590 }
4591 }
4592 }
4593 }
4594 // Delay slots are not valid branch targets
4595 //if(t>0&&(dops[t-1].is_jump) return 0;
4596 // Delay slots require additional processing, so do not match
4597 if(dops[t].is_ds) return 0;
4598 }
4599 else
4600 {
4601 int hr;
4602 for(hr=0;hr<HOST_REGS;hr++)
4603 {
4604 if(hr!=EXCLUDE_REG)
4605 {
4606 if(i_regmap[hr]>=0)
4607 {
4608 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4609 {
4610 if((i_dirty>>hr)&1)
4611 {
4612 return 0;
4613 }
4614 }
4615 }
4616 }
4617 }
4618 }
4619 return 1;
4620}
4621
4622#ifdef DRC_DBG
4623static void drc_dbg_emit_do_cmp(int i)
4624{
4625 extern void do_insn_cmp();
4626 //extern int cycle;
4627 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4628
4629 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4630 save_regs(reglist);
4631 // write out changed consts to match the interpreter
4632 if (i > 0 && !dops[i].bt) {
4633 for (hr = 0; hr < HOST_REGS; hr++) {
4634 int reg = regs[i-1].regmap[hr];
4635 if (hr == EXCLUDE_REG || reg < 0)
4636 continue;
4637 if (!((regs[i-1].isconst >> hr) & 1))
4638 continue;
4639 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4640 continue;
4641 emit_movimm(constmap[i-1][hr],0);
4642 emit_storereg(reg, 0);
4643 }
4644 }
4645 emit_movimm(start+i*4,0);
4646 emit_writeword(0,&pcaddr);
4647 emit_far_call(do_insn_cmp);
4648 //emit_readword(&cycle,0);
4649 //emit_addimm(0,2,0);
4650 //emit_writeword(0,&cycle);
4651 (void)get_reg2;
4652 restore_regs(reglist);
4653 assem_debug("\\\\do_insn_cmp\n");
4654}
4655#else
4656#define drc_dbg_emit_do_cmp(x)
4657#endif
4658
4659// Used when a branch jumps into the delay slot of another branch
4660static void ds_assemble_entry(int i)
4661{
4662 int t=(ba[i]-start)>>2;
4663 if (!instr_addr[t])
4664 instr_addr[t] = out;
4665 assem_debug("Assemble delay slot at %x\n",ba[i]);
4666 assem_debug("<->\n");
4667 drc_dbg_emit_do_cmp(t);
4668 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4669 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4670 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4671 address_generation(t,&regs[t],regs[t].regmap_entry);
4672 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4673 load_regs(regs[t].regmap_entry,regs[t].regmap,ROREG,ROREG);
4674 if (dops[t].is_store)
4675 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4676 is_delayslot=0;
4677 switch(dops[t].itype) {
4678 case ALU:
4679 alu_assemble(t,&regs[t]);break;
4680 case IMM16:
4681 imm16_assemble(t,&regs[t]);break;
4682 case SHIFT:
4683 shift_assemble(t,&regs[t]);break;
4684 case SHIFTIMM:
4685 shiftimm_assemble(t,&regs[t]);break;
4686 case LOAD:
4687 load_assemble(t,&regs[t]);break;
4688 case LOADLR:
4689 loadlr_assemble(t,&regs[t]);break;
4690 case STORE:
4691 store_assemble(t,&regs[t]);break;
4692 case STORELR:
4693 storelr_assemble(t,&regs[t]);break;
4694 case COP0:
4695 cop0_assemble(t,&regs[t]);break;
4696 case COP1:
4697 cop1_assemble(t,&regs[t]);break;
4698 case C1LS:
4699 c1ls_assemble(t,&regs[t]);break;
4700 case COP2:
4701 cop2_assemble(t,&regs[t]);break;
4702 case C2LS:
4703 c2ls_assemble(t,&regs[t]);break;
4704 case C2OP:
4705 c2op_assemble(t,&regs[t]);break;
4706 case MULTDIV:
4707 multdiv_assemble(t,&regs[t]);
4708 multdiv_prepare_stall(i,&regs[t]);
4709 break;
4710 case MOV:
4711 mov_assemble(t,&regs[t]);break;
4712 case SYSCALL:
4713 case HLECALL:
4714 case INTCALL:
4715 case SPAN:
4716 case UJUMP:
4717 case RJUMP:
4718 case CJUMP:
4719 case SJUMP:
4720 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4721 }
4722 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4723 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4724 if(internal_branch(ba[i]+4))
4725 assem_debug("branch: internal\n");
4726 else
4727 assem_debug("branch: external\n");
4728 assert(internal_branch(ba[i]+4));
4729 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4730 emit_jmp(0);
4731}
4732
4733static void emit_extjump(void *addr, u_int target)
4734{
4735 emit_extjump2(addr, target, dyna_linker);
4736}
4737
4738static void emit_extjump_ds(void *addr, u_int target)
4739{
4740 emit_extjump2(addr, target, dyna_linker_ds);
4741}
4742
4743// Load 2 immediates optimizing for small code size
4744static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4745{
4746 emit_movimm(imm1,rt1);
4747 emit_movimm_from(imm1,rt1,imm2,rt2);
4748}
4749
4750void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4751{
4752 int count;
4753 void *jaddr;
4754 void *idle=NULL;
4755 int t=0;
4756 if(dops[i].itype==RJUMP)
4757 {
4758 *adj=0;
4759 }
4760 //if(ba[i]>=start && ba[i]<(start+slen*4))
4761 if(internal_branch(ba[i]))
4762 {
4763 t=(ba[i]-start)>>2;
4764 if(dops[t].is_ds) *adj=-1; // Branch into delay slot adds an extra cycle
4765 else *adj=ccadj[t];
4766 }
4767 else
4768 {
4769 *adj=0;
4770 }
4771 count=ccadj[i];
4772 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4773 // Idle loop
4774 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4775 idle=out;
4776 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4777 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4778 jaddr=out;
4779 emit_jmp(0);
4780 }
4781 else if(*adj==0||invert) {
4782 int cycles=CLOCK_ADJUST(count+2);
4783 // faster loop HACK
4784#if 0
4785 if (t&&*adj) {
4786 int rel=t-i;
4787 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4788 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4789 }
4790#endif
4791 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4792 jaddr=out;
4793 emit_jns(0);
4794 }
4795 else
4796 {
4797 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4798 jaddr=out;
4799 emit_jns(0);
4800 }
4801 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4802}
4803
4804static void do_ccstub(int n)
4805{
4806 literal_pool(256);
4807 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4808 set_jump_target(stubs[n].addr, out);
4809 int i=stubs[n].b;
4810 if(stubs[n].d==NULLDS) {
4811 // Delay slot instruction is nullified ("likely" branch)
4812 wb_dirtys(regs[i].regmap,regs[i].dirty);
4813 }
4814 else if(stubs[n].d!=TAKEN) {
4815 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4816 }
4817 else {
4818 if(internal_branch(ba[i]))
4819 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4820 }
4821 if(stubs[n].c!=-1)
4822 {
4823 // Save PC as return address
4824 emit_movimm(stubs[n].c,EAX);
4825 emit_writeword(EAX,&pcaddr);
4826 }
4827 else
4828 {
4829 // Return address depends on which way the branch goes
4830 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4831 {
4832 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4833 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4834 if(dops[i].rs1==0)
4835 {
4836 s1l=s2l;
4837 s2l=-1;
4838 }
4839 else if(dops[i].rs2==0)
4840 {
4841 s2l=-1;
4842 }
4843 assert(s1l>=0);
4844 #ifdef DESTRUCTIVE_WRITEBACK
4845 if(dops[i].rs1) {
4846 if((branch_regs[i].dirty>>s1l)&&1)
4847 emit_loadreg(dops[i].rs1,s1l);
4848 }
4849 else {
4850 if((branch_regs[i].dirty>>s1l)&1)
4851 emit_loadreg(dops[i].rs2,s1l);
4852 }
4853 if(s2l>=0)
4854 if((branch_regs[i].dirty>>s2l)&1)
4855 emit_loadreg(dops[i].rs2,s2l);
4856 #endif
4857 int hr=0;
4858 int addr=-1,alt=-1,ntaddr=-1;
4859 while(hr<HOST_REGS)
4860 {
4861 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4862 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4863 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4864 {
4865 addr=hr++;break;
4866 }
4867 hr++;
4868 }
4869 while(hr<HOST_REGS)
4870 {
4871 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4872 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4873 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4874 {
4875 alt=hr++;break;
4876 }
4877 hr++;
4878 }
4879 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
4880 {
4881 while(hr<HOST_REGS)
4882 {
4883 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4884 (branch_regs[i].regmap[hr]&63)!=dops[i].rs1 &&
4885 (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 )
4886 {
4887 ntaddr=hr;break;
4888 }
4889 hr++;
4890 }
4891 assert(hr<HOST_REGS);
4892 }
4893 if((dops[i].opcode&0x2f)==4) // BEQ
4894 {
4895 #ifdef HAVE_CMOV_IMM
4896 if(s2l>=0) emit_cmp(s1l,s2l);
4897 else emit_test(s1l,s1l);
4898 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4899 #else
4900 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4901 if(s2l>=0) emit_cmp(s1l,s2l);
4902 else emit_test(s1l,s1l);
4903 emit_cmovne_reg(alt,addr);
4904 #endif
4905 }
4906 if((dops[i].opcode&0x2f)==5) // BNE
4907 {
4908 #ifdef HAVE_CMOV_IMM
4909 if(s2l>=0) emit_cmp(s1l,s2l);
4910 else emit_test(s1l,s1l);
4911 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4912 #else
4913 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4914 if(s2l>=0) emit_cmp(s1l,s2l);
4915 else emit_test(s1l,s1l);
4916 emit_cmovne_reg(alt,addr);
4917 #endif
4918 }
4919 if((dops[i].opcode&0x2f)==6) // BLEZ
4920 {
4921 //emit_movimm(ba[i],alt);
4922 //emit_movimm(start+i*4+8,addr);
4923 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4924 emit_cmpimm(s1l,1);
4925 emit_cmovl_reg(alt,addr);
4926 }
4927 if((dops[i].opcode&0x2f)==7) // BGTZ
4928 {
4929 //emit_movimm(ba[i],addr);
4930 //emit_movimm(start+i*4+8,ntaddr);
4931 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4932 emit_cmpimm(s1l,1);
4933 emit_cmovl_reg(ntaddr,addr);
4934 }
4935 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
4936 {
4937 //emit_movimm(ba[i],alt);
4938 //emit_movimm(start+i*4+8,addr);
4939 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4940 emit_test(s1l,s1l);
4941 emit_cmovs_reg(alt,addr);
4942 }
4943 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
4944 {
4945 //emit_movimm(ba[i],addr);
4946 //emit_movimm(start+i*4+8,alt);
4947 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4948 emit_test(s1l,s1l);
4949 emit_cmovs_reg(alt,addr);
4950 }
4951 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
4952 if(source[i]&0x10000) // BC1T
4953 {
4954 //emit_movimm(ba[i],alt);
4955 //emit_movimm(start+i*4+8,addr);
4956 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4957 emit_testimm(s1l,0x800000);
4958 emit_cmovne_reg(alt,addr);
4959 }
4960 else // BC1F
4961 {
4962 //emit_movimm(ba[i],addr);
4963 //emit_movimm(start+i*4+8,alt);
4964 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4965 emit_testimm(s1l,0x800000);
4966 emit_cmovne_reg(alt,addr);
4967 }
4968 }
4969 emit_writeword(addr,&pcaddr);
4970 }
4971 else
4972 if(dops[i].itype==RJUMP)
4973 {
4974 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
4975 if (ds_writes_rjump_rs(i)) {
4976 r=get_reg(branch_regs[i].regmap,RTEMP);
4977 }
4978 emit_writeword(r,&pcaddr);
4979 }
4980 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4981 }
4982 // Update cycle count
4983 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4984 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4985 emit_far_call(cc_interrupt);
4986 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4987 if(stubs[n].d==TAKEN) {
4988 if(internal_branch(ba[i]))
4989 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4990 else if(dops[i].itype==RJUMP) {
4991 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4992 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4993 else
4994 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
4995 }
4996 }else if(stubs[n].d==NOTTAKEN) {
4997 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4998 else load_all_regs(branch_regs[i].regmap);
4999 }else if(stubs[n].d==NULLDS) {
5000 // Delay slot instruction is nullified ("likely" branch)
5001 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5002 else load_all_regs(regs[i].regmap);
5003 }else{
5004 load_all_regs(branch_regs[i].regmap);
5005 }
5006 if (stubs[n].retaddr)
5007 emit_jmp(stubs[n].retaddr);
5008 else
5009 do_jump_vaddr(stubs[n].e);
5010}
5011
5012static void add_to_linker(void *addr, u_int target, int ext)
5013{
5014 assert(linkcount < ARRAY_SIZE(link_addr));
5015 link_addr[linkcount].addr = addr;
5016 link_addr[linkcount].target = target;
5017 link_addr[linkcount].ext = ext;
5018 linkcount++;
5019}
5020
5021static void ujump_assemble_write_ra(int i)
5022{
5023 int rt;
5024 unsigned int return_address;
5025 rt=get_reg(branch_regs[i].regmap,31);
5026 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5027 //assert(rt>=0);
5028 return_address=start+i*4+8;
5029 if(rt>=0) {
5030 #ifdef USE_MINI_HT
5031 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5032 int temp=-1; // note: must be ds-safe
5033 #ifdef HOST_TEMPREG
5034 temp=HOST_TEMPREG;
5035 #endif
5036 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5037 else emit_movimm(return_address,rt);
5038 }
5039 else
5040 #endif
5041 {
5042 #ifdef REG_PREFETCH
5043 if(temp>=0)
5044 {
5045 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5046 }
5047 #endif
5048 emit_movimm(return_address,rt); // PC into link register
5049 #ifdef IMM_PREFETCH
5050 emit_prefetch(hash_table_get(return_address));
5051 #endif
5052 }
5053 }
5054}
5055
5056static void ujump_assemble(int i,struct regstat *i_regs)
5057{
5058 int ra_done=0;
5059 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5060 address_generation(i+1,i_regs,regs[i].regmap_entry);
5061 #ifdef REG_PREFETCH
5062 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5063 if(dops[i].rt1==31&&temp>=0)
5064 {
5065 signed char *i_regmap=i_regs->regmap;
5066 int return_address=start+i*4+8;
5067 if(get_reg(branch_regs[i].regmap,31)>0)
5068 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5069 }
5070 #endif
5071 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5072 ujump_assemble_write_ra(i); // writeback ra for DS
5073 ra_done=1;
5074 }
5075 ds_assemble(i+1,i_regs);
5076 uint64_t bc_unneeded=branch_regs[i].u;
5077 bc_unneeded|=1|(1LL<<dops[i].rt1);
5078 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5079 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5080 if(!ra_done&&dops[i].rt1==31)
5081 ujump_assemble_write_ra(i);
5082 int cc,adj;
5083 cc=get_reg(branch_regs[i].regmap,CCREG);
5084 assert(cc==HOST_CCREG);
5085 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5086 #ifdef REG_PREFETCH
5087 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5088 #endif
5089 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5090 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5091 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5092 if(internal_branch(ba[i]))
5093 assem_debug("branch: internal\n");
5094 else
5095 assem_debug("branch: external\n");
5096 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5097 ds_assemble_entry(i);
5098 }
5099 else {
5100 add_to_linker(out,ba[i],internal_branch(ba[i]));
5101 emit_jmp(0);
5102 }
5103}
5104
5105static void rjump_assemble_write_ra(int i)
5106{
5107 int rt,return_address;
5108 assert(dops[i+1].rt1!=dops[i].rt1);
5109 assert(dops[i+1].rt2!=dops[i].rt1);
5110 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5111 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5112 assert(rt>=0);
5113 return_address=start+i*4+8;
5114 #ifdef REG_PREFETCH
5115 if(temp>=0)
5116 {
5117 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5118 }
5119 #endif
5120 emit_movimm(return_address,rt); // PC into link register
5121 #ifdef IMM_PREFETCH
5122 emit_prefetch(hash_table_get(return_address));
5123 #endif
5124}
5125
5126static void rjump_assemble(int i,struct regstat *i_regs)
5127{
5128 int temp;
5129 int rs,cc;
5130 int ra_done=0;
5131 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5132 assert(rs>=0);
5133 if (ds_writes_rjump_rs(i)) {
5134 // Delay slot abuse, make a copy of the branch address register
5135 temp=get_reg(branch_regs[i].regmap,RTEMP);
5136 assert(temp>=0);
5137 assert(regs[i].regmap[temp]==RTEMP);
5138 emit_mov(rs,temp);
5139 rs=temp;
5140 }
5141 address_generation(i+1,i_regs,regs[i].regmap_entry);
5142 #ifdef REG_PREFETCH
5143 if(dops[i].rt1==31)
5144 {
5145 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5146 signed char *i_regmap=i_regs->regmap;
5147 int return_address=start+i*4+8;
5148 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5149 }
5150 }
5151 #endif
5152 #ifdef USE_MINI_HT
5153 if(dops[i].rs1==31) {
5154 int rh=get_reg(regs[i].regmap,RHASH);
5155 if(rh>=0) do_preload_rhash(rh);
5156 }
5157 #endif
5158 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5159 rjump_assemble_write_ra(i);
5160 ra_done=1;
5161 }
5162 ds_assemble(i+1,i_regs);
5163 uint64_t bc_unneeded=branch_regs[i].u;
5164 bc_unneeded|=1|(1LL<<dops[i].rt1);
5165 bc_unneeded&=~(1LL<<dops[i].rs1);
5166 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5167 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5168 if(!ra_done&&dops[i].rt1!=0)
5169 rjump_assemble_write_ra(i);
5170 cc=get_reg(branch_regs[i].regmap,CCREG);
5171 assert(cc==HOST_CCREG);
5172 (void)cc;
5173 #ifdef USE_MINI_HT
5174 int rh=get_reg(branch_regs[i].regmap,RHASH);
5175 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5176 if(dops[i].rs1==31) {
5177 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5178 do_preload_rhtbl(ht);
5179 do_rhash(rs,rh);
5180 }
5181 #endif
5182 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5183 #ifdef DESTRUCTIVE_WRITEBACK
5184 if((branch_regs[i].dirty>>rs)&1) {
5185 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5186 emit_loadreg(dops[i].rs1,rs);
5187 }
5188 }
5189 #endif
5190 #ifdef REG_PREFETCH
5191 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5192 #endif
5193 #ifdef USE_MINI_HT
5194 if(dops[i].rs1==31) {
5195 do_miniht_load(ht,rh);
5196 }
5197 #endif
5198 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5199 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5200 //assert(adj==0);
5201 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5202 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5203 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5204 // special case for RFE
5205 emit_jmp(0);
5206 else
5207 emit_jns(0);
5208 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5209 #ifdef USE_MINI_HT
5210 if(dops[i].rs1==31) {
5211 do_miniht_jump(rs,rh,ht);
5212 }
5213 else
5214 #endif
5215 {
5216 do_jump_vaddr(rs);
5217 }
5218 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5219 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5220 #endif
5221}
5222
5223static void cjump_assemble(int i,struct regstat *i_regs)
5224{
5225 signed char *i_regmap=i_regs->regmap;
5226 int cc;
5227 int match;
5228 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5229 assem_debug("match=%d\n",match);
5230 int s1l,s2l;
5231 int unconditional=0,nop=0;
5232 int invert=0;
5233 int internal=internal_branch(ba[i]);
5234 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5235 if(!match) invert=1;
5236 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5237 if(i>(ba[i]-start)>>2) invert=1;
5238 #endif
5239 #ifdef __aarch64__
5240 invert=1; // because of near cond. branches
5241 #endif
5242
5243 if(dops[i].ooo) {
5244 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5245 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5246 }
5247 else {
5248 s1l=get_reg(i_regmap,dops[i].rs1);
5249 s2l=get_reg(i_regmap,dops[i].rs2);
5250 }
5251 if(dops[i].rs1==0&&dops[i].rs2==0)
5252 {
5253 if(dops[i].opcode&1) nop=1;
5254 else unconditional=1;
5255 //assert(dops[i].opcode!=5);
5256 //assert(dops[i].opcode!=7);
5257 //assert(dops[i].opcode!=0x15);
5258 //assert(dops[i].opcode!=0x17);
5259 }
5260 else if(dops[i].rs1==0)
5261 {
5262 s1l=s2l;
5263 s2l=-1;
5264 }
5265 else if(dops[i].rs2==0)
5266 {
5267 s2l=-1;
5268 }
5269
5270 if(dops[i].ooo) {
5271 // Out of order execution (delay slot first)
5272 //printf("OOOE\n");
5273 address_generation(i+1,i_regs,regs[i].regmap_entry);
5274 ds_assemble(i+1,i_regs);
5275 int adj;
5276 uint64_t bc_unneeded=branch_regs[i].u;
5277 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5278 bc_unneeded|=1;
5279 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5280 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5281 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5282 cc=get_reg(branch_regs[i].regmap,CCREG);
5283 assert(cc==HOST_CCREG);
5284 if(unconditional)
5285 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5286 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5287 //assem_debug("cycle count (adj)\n");
5288 if(unconditional) {
5289 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5290 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5291 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5292 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5293 if(internal)
5294 assem_debug("branch: internal\n");
5295 else
5296 assem_debug("branch: external\n");
5297 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5298 ds_assemble_entry(i);
5299 }
5300 else {
5301 add_to_linker(out,ba[i],internal);
5302 emit_jmp(0);
5303 }
5304 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5305 if(((u_int)out)&7) emit_addnop(0);
5306 #endif
5307 }
5308 }
5309 else if(nop) {
5310 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5311 void *jaddr=out;
5312 emit_jns(0);
5313 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5314 }
5315 else {
5316 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5317 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5318 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5319
5320 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5321 assert(s1l>=0);
5322 if(dops[i].opcode==4) // BEQ
5323 {
5324 if(s2l>=0) emit_cmp(s1l,s2l);
5325 else emit_test(s1l,s1l);
5326 if(invert){
5327 nottaken=out;
5328 emit_jne(DJT_1);
5329 }else{
5330 add_to_linker(out,ba[i],internal);
5331 emit_jeq(0);
5332 }
5333 }
5334 if(dops[i].opcode==5) // BNE
5335 {
5336 if(s2l>=0) emit_cmp(s1l,s2l);
5337 else emit_test(s1l,s1l);
5338 if(invert){
5339 nottaken=out;
5340 emit_jeq(DJT_1);
5341 }else{
5342 add_to_linker(out,ba[i],internal);
5343 emit_jne(0);
5344 }
5345 }
5346 if(dops[i].opcode==6) // BLEZ
5347 {
5348 emit_cmpimm(s1l,1);
5349 if(invert){
5350 nottaken=out;
5351 emit_jge(DJT_1);
5352 }else{
5353 add_to_linker(out,ba[i],internal);
5354 emit_jl(0);
5355 }
5356 }
5357 if(dops[i].opcode==7) // BGTZ
5358 {
5359 emit_cmpimm(s1l,1);
5360 if(invert){
5361 nottaken=out;
5362 emit_jl(DJT_1);
5363 }else{
5364 add_to_linker(out,ba[i],internal);
5365 emit_jge(0);
5366 }
5367 }
5368 if(invert) {
5369 if(taken) set_jump_target(taken, out);
5370 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5371 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5372 if(adj) {
5373 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5374 add_to_linker(out,ba[i],internal);
5375 }else{
5376 emit_addnop(13);
5377 add_to_linker(out,ba[i],internal*2);
5378 }
5379 emit_jmp(0);
5380 }else
5381 #endif
5382 {
5383 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5384 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5385 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5386 if(internal)
5387 assem_debug("branch: internal\n");
5388 else
5389 assem_debug("branch: external\n");
5390 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5391 ds_assemble_entry(i);
5392 }
5393 else {
5394 add_to_linker(out,ba[i],internal);
5395 emit_jmp(0);
5396 }
5397 }
5398 set_jump_target(nottaken, out);
5399 }
5400
5401 if(nottaken1) set_jump_target(nottaken1, out);
5402 if(adj) {
5403 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5404 }
5405 } // (!unconditional)
5406 } // if(ooo)
5407 else
5408 {
5409 // In-order execution (branch first)
5410 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5411 if(!unconditional&&!nop) {
5412 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5413 assert(s1l>=0);
5414 if((dops[i].opcode&0x2f)==4) // BEQ
5415 {
5416 if(s2l>=0) emit_cmp(s1l,s2l);
5417 else emit_test(s1l,s1l);
5418 nottaken=out;
5419 emit_jne(DJT_2);
5420 }
5421 if((dops[i].opcode&0x2f)==5) // BNE
5422 {
5423 if(s2l>=0) emit_cmp(s1l,s2l);
5424 else emit_test(s1l,s1l);
5425 nottaken=out;
5426 emit_jeq(DJT_2);
5427 }
5428 if((dops[i].opcode&0x2f)==6) // BLEZ
5429 {
5430 emit_cmpimm(s1l,1);
5431 nottaken=out;
5432 emit_jge(DJT_2);
5433 }
5434 if((dops[i].opcode&0x2f)==7) // BGTZ
5435 {
5436 emit_cmpimm(s1l,1);
5437 nottaken=out;
5438 emit_jl(DJT_2);
5439 }
5440 } // if(!unconditional)
5441 int adj;
5442 uint64_t ds_unneeded=branch_regs[i].u;
5443 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5444 ds_unneeded|=1;
5445 // branch taken
5446 if(!nop) {
5447 if(taken) set_jump_target(taken, out);
5448 assem_debug("1:\n");
5449 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5450 // load regs
5451 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5452 address_generation(i+1,&branch_regs[i],0);
5453 if (ram_offset)
5454 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5455 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5456 ds_assemble(i+1,&branch_regs[i]);
5457 cc=get_reg(branch_regs[i].regmap,CCREG);
5458 if(cc==-1) {
5459 emit_loadreg(CCREG,cc=HOST_CCREG);
5460 // CHECK: Is the following instruction (fall thru) allocated ok?
5461 }
5462 assert(cc==HOST_CCREG);
5463 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5464 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5465 assem_debug("cycle count (adj)\n");
5466 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5467 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5468 if(internal)
5469 assem_debug("branch: internal\n");
5470 else
5471 assem_debug("branch: external\n");
5472 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5473 ds_assemble_entry(i);
5474 }
5475 else {
5476 add_to_linker(out,ba[i],internal);
5477 emit_jmp(0);
5478 }
5479 }
5480 // branch not taken
5481 if(!unconditional) {
5482 if(nottaken1) set_jump_target(nottaken1, out);
5483 set_jump_target(nottaken, out);
5484 assem_debug("2:\n");
5485 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5486 // load regs
5487 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5488 address_generation(i+1,&branch_regs[i],0);
5489 if (ram_offset)
5490 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5491 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5492 ds_assemble(i+1,&branch_regs[i]);
5493 cc=get_reg(branch_regs[i].regmap,CCREG);
5494 if (cc == -1) {
5495 // Cycle count isn't in a register, temporarily load it then write it out
5496 emit_loadreg(CCREG,HOST_CCREG);
5497 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5498 void *jaddr=out;
5499 emit_jns(0);
5500 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5501 emit_storereg(CCREG,HOST_CCREG);
5502 }
5503 else{
5504 cc=get_reg(i_regmap,CCREG);
5505 assert(cc==HOST_CCREG);
5506 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5507 void *jaddr=out;
5508 emit_jns(0);
5509 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5510 }
5511 }
5512 }
5513}
5514
5515static void sjump_assemble(int i,struct regstat *i_regs)
5516{
5517 signed char *i_regmap=i_regs->regmap;
5518 int cc;
5519 int match;
5520 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5521 assem_debug("smatch=%d\n",match);
5522 int s1l;
5523 int unconditional=0,nevertaken=0;
5524 int invert=0;
5525 int internal=internal_branch(ba[i]);
5526 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5527 if(!match) invert=1;
5528 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5529 if(i>(ba[i]-start)>>2) invert=1;
5530 #endif
5531 #ifdef __aarch64__
5532 invert=1; // because of near cond. branches
5533 #endif
5534
5535 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5536 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5537
5538 if(dops[i].ooo) {
5539 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5540 }
5541 else {
5542 s1l=get_reg(i_regmap,dops[i].rs1);
5543 }
5544 if(dops[i].rs1==0)
5545 {
5546 if(dops[i].opcode2&1) unconditional=1;
5547 else nevertaken=1;
5548 // These are never taken (r0 is never less than zero)
5549 //assert(dops[i].opcode2!=0);
5550 //assert(dops[i].opcode2!=2);
5551 //assert(dops[i].opcode2!=0x10);
5552 //assert(dops[i].opcode2!=0x12);
5553 }
5554
5555 if(dops[i].ooo) {
5556 // Out of order execution (delay slot first)
5557 //printf("OOOE\n");
5558 address_generation(i+1,i_regs,regs[i].regmap_entry);
5559 ds_assemble(i+1,i_regs);
5560 int adj;
5561 uint64_t bc_unneeded=branch_regs[i].u;
5562 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5563 bc_unneeded|=1;
5564 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5565 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5566 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5567 if(dops[i].rt1==31) {
5568 int rt,return_address;
5569 rt=get_reg(branch_regs[i].regmap,31);
5570 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5571 if(rt>=0) {
5572 // Save the PC even if the branch is not taken
5573 return_address=start+i*4+8;
5574 emit_movimm(return_address,rt); // PC into link register
5575 #ifdef IMM_PREFETCH
5576 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5577 #endif
5578 }
5579 }
5580 cc=get_reg(branch_regs[i].regmap,CCREG);
5581 assert(cc==HOST_CCREG);
5582 if(unconditional)
5583 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5584 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5585 assem_debug("cycle count (adj)\n");
5586 if(unconditional) {
5587 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5588 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5589 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5590 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5591 if(internal)
5592 assem_debug("branch: internal\n");
5593 else
5594 assem_debug("branch: external\n");
5595 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5596 ds_assemble_entry(i);
5597 }
5598 else {
5599 add_to_linker(out,ba[i],internal);
5600 emit_jmp(0);
5601 }
5602 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5603 if(((u_int)out)&7) emit_addnop(0);
5604 #endif
5605 }
5606 }
5607 else if(nevertaken) {
5608 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5609 void *jaddr=out;
5610 emit_jns(0);
5611 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5612 }
5613 else {
5614 void *nottaken = NULL;
5615 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5616 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5617 {
5618 assert(s1l>=0);
5619 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5620 {
5621 emit_test(s1l,s1l);
5622 if(invert){
5623 nottaken=out;
5624 emit_jns(DJT_1);
5625 }else{
5626 add_to_linker(out,ba[i],internal);
5627 emit_js(0);
5628 }
5629 }
5630 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5631 {
5632 emit_test(s1l,s1l);
5633 if(invert){
5634 nottaken=out;
5635 emit_js(DJT_1);
5636 }else{
5637 add_to_linker(out,ba[i],internal);
5638 emit_jns(0);
5639 }
5640 }
5641 }
5642
5643 if(invert) {
5644 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5645 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5646 if(adj) {
5647 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5648 add_to_linker(out,ba[i],internal);
5649 }else{
5650 emit_addnop(13);
5651 add_to_linker(out,ba[i],internal*2);
5652 }
5653 emit_jmp(0);
5654 }else
5655 #endif
5656 {
5657 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5658 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5659 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5660 if(internal)
5661 assem_debug("branch: internal\n");
5662 else
5663 assem_debug("branch: external\n");
5664 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5665 ds_assemble_entry(i);
5666 }
5667 else {
5668 add_to_linker(out,ba[i],internal);
5669 emit_jmp(0);
5670 }
5671 }
5672 set_jump_target(nottaken, out);
5673 }
5674
5675 if(adj) {
5676 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5677 }
5678 } // (!unconditional)
5679 } // if(ooo)
5680 else
5681 {
5682 // In-order execution (branch first)
5683 //printf("IOE\n");
5684 void *nottaken = NULL;
5685 if(dops[i].rt1==31) {
5686 int rt,return_address;
5687 rt=get_reg(branch_regs[i].regmap,31);
5688 if(rt>=0) {
5689 // Save the PC even if the branch is not taken
5690 return_address=start+i*4+8;
5691 emit_movimm(return_address,rt); // PC into link register
5692 #ifdef IMM_PREFETCH
5693 emit_prefetch(hash_table_get(return_address));
5694 #endif
5695 }
5696 }
5697 if(!unconditional) {
5698 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5699 assert(s1l>=0);
5700 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5701 {
5702 emit_test(s1l,s1l);
5703 nottaken=out;
5704 emit_jns(DJT_1);
5705 }
5706 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5707 {
5708 emit_test(s1l,s1l);
5709 nottaken=out;
5710 emit_js(DJT_1);
5711 }
5712 } // if(!unconditional)
5713 int adj;
5714 uint64_t ds_unneeded=branch_regs[i].u;
5715 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5716 ds_unneeded|=1;
5717 // branch taken
5718 if(!nevertaken) {
5719 //assem_debug("1:\n");
5720 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5721 // load regs
5722 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5723 address_generation(i+1,&branch_regs[i],0);
5724 if (ram_offset)
5725 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5726 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5727 ds_assemble(i+1,&branch_regs[i]);
5728 cc=get_reg(branch_regs[i].regmap,CCREG);
5729 if(cc==-1) {
5730 emit_loadreg(CCREG,cc=HOST_CCREG);
5731 // CHECK: Is the following instruction (fall thru) allocated ok?
5732 }
5733 assert(cc==HOST_CCREG);
5734 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5735 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5736 assem_debug("cycle count (adj)\n");
5737 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5738 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5739 if(internal)
5740 assem_debug("branch: internal\n");
5741 else
5742 assem_debug("branch: external\n");
5743 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5744 ds_assemble_entry(i);
5745 }
5746 else {
5747 add_to_linker(out,ba[i],internal);
5748 emit_jmp(0);
5749 }
5750 }
5751 // branch not taken
5752 if(!unconditional) {
5753 set_jump_target(nottaken, out);
5754 assem_debug("1:\n");
5755 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5756 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5757 address_generation(i+1,&branch_regs[i],0);
5758 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5759 ds_assemble(i+1,&branch_regs[i]);
5760 cc=get_reg(branch_regs[i].regmap,CCREG);
5761 if (cc == -1) {
5762 // Cycle count isn't in a register, temporarily load it then write it out
5763 emit_loadreg(CCREG,HOST_CCREG);
5764 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5765 void *jaddr=out;
5766 emit_jns(0);
5767 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5768 emit_storereg(CCREG,HOST_CCREG);
5769 }
5770 else{
5771 cc=get_reg(i_regmap,CCREG);
5772 assert(cc==HOST_CCREG);
5773 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5774 void *jaddr=out;
5775 emit_jns(0);
5776 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5777 }
5778 }
5779 }
5780}
5781
5782static void pagespan_assemble(int i,struct regstat *i_regs)
5783{
5784 int s1l=get_reg(i_regs->regmap,dops[i].rs1);
5785 int s2l=get_reg(i_regs->regmap,dops[i].rs2);
5786 void *taken = NULL;
5787 void *nottaken = NULL;
5788 int unconditional=0;
5789 if(dops[i].rs1==0)
5790 {
5791 s1l=s2l;
5792 s2l=-1;
5793 }
5794 else if(dops[i].rs2==0)
5795 {
5796 s2l=-1;
5797 }
5798 int hr=0;
5799 int addr=-1,alt=-1,ntaddr=-1;
5800 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5801 else {
5802 while(hr<HOST_REGS)
5803 {
5804 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5805 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5806 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5807 {
5808 addr=hr++;break;
5809 }
5810 hr++;
5811 }
5812 }
5813 while(hr<HOST_REGS)
5814 {
5815 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5816 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5817 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5818 {
5819 alt=hr++;break;
5820 }
5821 hr++;
5822 }
5823 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5824 {
5825 while(hr<HOST_REGS)
5826 {
5827 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5828 (i_regs->regmap[hr]&63)!=dops[i].rs1 &&
5829 (i_regs->regmap[hr]&63)!=dops[i].rs2 )
5830 {
5831 ntaddr=hr;break;
5832 }
5833 hr++;
5834 }
5835 }
5836 assert(hr<HOST_REGS);
5837 if((dops[i].opcode&0x2e)==4||dops[i].opcode==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5838 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5839 }
5840 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5841 if(dops[i].opcode==2) // J
5842 {
5843 unconditional=1;
5844 }
5845 if(dops[i].opcode==3) // JAL
5846 {
5847 // TODO: mini_ht
5848 int rt=get_reg(i_regs->regmap,31);
5849 emit_movimm(start+i*4+8,rt);
5850 unconditional=1;
5851 }
5852 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
5853 {
5854 emit_mov(s1l,addr);
5855 if(dops[i].opcode2==9) // JALR
5856 {
5857 int rt=get_reg(i_regs->regmap,dops[i].rt1);
5858 emit_movimm(start+i*4+8,rt);
5859 }
5860 }
5861 if((dops[i].opcode&0x3f)==4) // BEQ
5862 {
5863 if(dops[i].rs1==dops[i].rs2)
5864 {
5865 unconditional=1;
5866 }
5867 else
5868 #ifdef HAVE_CMOV_IMM
5869 if(1) {
5870 if(s2l>=0) emit_cmp(s1l,s2l);
5871 else emit_test(s1l,s1l);
5872 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5873 }
5874 else
5875 #endif
5876 {
5877 assert(s1l>=0);
5878 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5879 if(s2l>=0) emit_cmp(s1l,s2l);
5880 else emit_test(s1l,s1l);
5881 emit_cmovne_reg(alt,addr);
5882 }
5883 }
5884 if((dops[i].opcode&0x3f)==5) // BNE
5885 {
5886 #ifdef HAVE_CMOV_IMM
5887 if(s2l>=0) emit_cmp(s1l,s2l);
5888 else emit_test(s1l,s1l);
5889 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5890 #else
5891 assert(s1l>=0);
5892 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5893 if(s2l>=0) emit_cmp(s1l,s2l);
5894 else emit_test(s1l,s1l);
5895 emit_cmovne_reg(alt,addr);
5896 #endif
5897 }
5898 if((dops[i].opcode&0x3f)==0x14) // BEQL
5899 {
5900 if(s2l>=0) emit_cmp(s1l,s2l);
5901 else emit_test(s1l,s1l);
5902 if(nottaken) set_jump_target(nottaken, out);
5903 nottaken=out;
5904 emit_jne(0);
5905 }
5906 if((dops[i].opcode&0x3f)==0x15) // BNEL
5907 {
5908 if(s2l>=0) emit_cmp(s1l,s2l);
5909 else emit_test(s1l,s1l);
5910 nottaken=out;
5911 emit_jeq(0);
5912 if(taken) set_jump_target(taken, out);
5913 }
5914 if((dops[i].opcode&0x3f)==6) // BLEZ
5915 {
5916 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5917 emit_cmpimm(s1l,1);
5918 emit_cmovl_reg(alt,addr);
5919 }
5920 if((dops[i].opcode&0x3f)==7) // BGTZ
5921 {
5922 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5923 emit_cmpimm(s1l,1);
5924 emit_cmovl_reg(ntaddr,addr);
5925 }
5926 if((dops[i].opcode&0x3f)==0x16) // BLEZL
5927 {
5928 assert((dops[i].opcode&0x3f)!=0x16);
5929 }
5930 if((dops[i].opcode&0x3f)==0x17) // BGTZL
5931 {
5932 assert((dops[i].opcode&0x3f)!=0x17);
5933 }
5934 assert(dops[i].opcode!=1); // BLTZ/BGEZ
5935
5936 //FIXME: Check CSREG
5937 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5938 if((source[i]&0x30000)==0) // BC1F
5939 {
5940 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5941 emit_testimm(s1l,0x800000);
5942 emit_cmovne_reg(alt,addr);
5943 }
5944 if((source[i]&0x30000)==0x10000) // BC1T
5945 {
5946 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5947 emit_testimm(s1l,0x800000);
5948 emit_cmovne_reg(alt,addr);
5949 }
5950 if((source[i]&0x30000)==0x20000) // BC1FL
5951 {
5952 emit_testimm(s1l,0x800000);
5953 nottaken=out;
5954 emit_jne(0);
5955 }
5956 if((source[i]&0x30000)==0x30000) // BC1TL
5957 {
5958 emit_testimm(s1l,0x800000);
5959 nottaken=out;
5960 emit_jeq(0);
5961 }
5962 }
5963
5964 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5965 wb_dirtys(regs[i].regmap,regs[i].dirty);
5966 if(unconditional)
5967 {
5968 emit_movimm(ba[i],HOST_BTREG);
5969 }
5970 else if(addr!=HOST_BTREG)
5971 {
5972 emit_mov(addr,HOST_BTREG);
5973 }
5974 void *branch_addr=out;
5975 emit_jmp(0);
5976 int target_addr=start+i*4+5;
5977 void *stub=out;
5978 void *compiled_target_addr=check_addr(target_addr);
5979 emit_extjump_ds(branch_addr, target_addr);
5980 if(compiled_target_addr) {
5981 set_jump_target(branch_addr, compiled_target_addr);
5982 add_jump_out(target_addr,stub);
5983 }
5984 else set_jump_target(branch_addr, stub);
5985}
5986
5987// Assemble the delay slot for the above
5988static void pagespan_ds()
5989{
5990 assem_debug("initial delay slot:\n");
5991 u_int vaddr=start+1;
5992 u_int page=get_page(vaddr);
5993 u_int vpage=get_vpage(vaddr);
5994 ll_add(jump_dirty+vpage,vaddr,(void *)out);
5995 do_dirty_stub_ds(slen*4);
5996 ll_add(jump_in+page,vaddr,(void *)out);
5997 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
5998 if(regs[0].regmap[HOST_CCREG]!=CCREG)
5999 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
6000 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6001 emit_writeword(HOST_BTREG,&branch_target);
6002 load_regs(regs[0].regmap_entry,regs[0].regmap,dops[0].rs1,dops[0].rs2);
6003 address_generation(0,&regs[0],regs[0].regmap_entry);
6004 if (ram_offset && (dops[0].is_load || dops[0].is_store))
6005 load_regs(regs[0].regmap_entry,regs[0].regmap,ROREG,ROREG);
6006 if (dops[0].is_store)
6007 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
6008 is_delayslot=0;
6009 switch(dops[0].itype) {
6010 case ALU:
6011 alu_assemble(0,&regs[0]);break;
6012 case IMM16:
6013 imm16_assemble(0,&regs[0]);break;
6014 case SHIFT:
6015 shift_assemble(0,&regs[0]);break;
6016 case SHIFTIMM:
6017 shiftimm_assemble(0,&regs[0]);break;
6018 case LOAD:
6019 load_assemble(0,&regs[0]);break;
6020 case LOADLR:
6021 loadlr_assemble(0,&regs[0]);break;
6022 case STORE:
6023 store_assemble(0,&regs[0]);break;
6024 case STORELR:
6025 storelr_assemble(0,&regs[0]);break;
6026 case COP0:
6027 cop0_assemble(0,&regs[0]);break;
6028 case COP1:
6029 cop1_assemble(0,&regs[0]);break;
6030 case C1LS:
6031 c1ls_assemble(0,&regs[0]);break;
6032 case COP2:
6033 cop2_assemble(0,&regs[0]);break;
6034 case C2LS:
6035 c2ls_assemble(0,&regs[0]);break;
6036 case C2OP:
6037 c2op_assemble(0,&regs[0]);break;
6038 case MULTDIV:
6039 multdiv_assemble(0,&regs[0]);
6040 multdiv_prepare_stall(0,&regs[0]);
6041 break;
6042 case MOV:
6043 mov_assemble(0,&regs[0]);break;
6044 case SYSCALL:
6045 case HLECALL:
6046 case INTCALL:
6047 case SPAN:
6048 case UJUMP:
6049 case RJUMP:
6050 case CJUMP:
6051 case SJUMP:
6052 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
6053 }
6054 int btaddr=get_reg(regs[0].regmap,BTREG);
6055 if(btaddr<0) {
6056 btaddr=get_reg(regs[0].regmap,-1);
6057 emit_readword(&branch_target,btaddr);
6058 }
6059 assert(btaddr!=HOST_CCREG);
6060 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6061#ifdef HOST_IMM8
6062 host_tempreg_acquire();
6063 emit_movimm(start+4,HOST_TEMPREG);
6064 emit_cmp(btaddr,HOST_TEMPREG);
6065 host_tempreg_release();
6066#else
6067 emit_cmpimm(btaddr,start+4);
6068#endif
6069 void *branch = out;
6070 emit_jeq(0);
6071 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
6072 do_jump_vaddr(btaddr);
6073 set_jump_target(branch, out);
6074 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6075 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6076}
6077
6078// Basic liveness analysis for MIPS registers
6079void unneeded_registers(int istart,int iend,int r)
6080{
6081 int i;
6082 uint64_t u,gte_u,b,gte_b;
6083 uint64_t temp_u,temp_gte_u=0;
6084 uint64_t gte_u_unknown=0;
6085 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6086 gte_u_unknown=~0ll;
6087 if(iend==slen-1) {
6088 u=1;
6089 gte_u=gte_u_unknown;
6090 }else{
6091 //u=unneeded_reg[iend+1];
6092 u=1;
6093 gte_u=gte_unneeded[iend+1];
6094 }
6095
6096 for (i=iend;i>=istart;i--)
6097 {
6098 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6099 if(dops[i].is_jump)
6100 {
6101 // If subroutine call, flag return address as a possible branch target
6102 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6103
6104 if(ba[i]<start || ba[i]>=(start+slen*4))
6105 {
6106 // Branch out of this block, flush all regs
6107 u=1;
6108 gte_u=gte_u_unknown;
6109 branch_unneeded_reg[i]=u;
6110 // Merge in delay slot
6111 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6112 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6113 u|=1;
6114 gte_u|=gte_rt[i+1];
6115 gte_u&=~gte_rs[i+1];
6116 }
6117 else
6118 {
6119 // Internal branch, flag target
6120 dops[(ba[i]-start)>>2].bt=1;
6121 if(ba[i]<=start+i*4) {
6122 // Backward branch
6123 if(dops[i].is_ujump)
6124 {
6125 // Unconditional branch
6126 temp_u=1;
6127 temp_gte_u=0;
6128 } else {
6129 // Conditional branch (not taken case)
6130 temp_u=unneeded_reg[i+2];
6131 temp_gte_u&=gte_unneeded[i+2];
6132 }
6133 // Merge in delay slot
6134 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6135 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6136 temp_u|=1;
6137 temp_gte_u|=gte_rt[i+1];
6138 temp_gte_u&=~gte_rs[i+1];
6139 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6140 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6141 temp_u|=1;
6142 temp_gte_u|=gte_rt[i];
6143 temp_gte_u&=~gte_rs[i];
6144 unneeded_reg[i]=temp_u;
6145 gte_unneeded[i]=temp_gte_u;
6146 // Only go three levels deep. This recursion can take an
6147 // excessive amount of time if there are a lot of nested loops.
6148 if(r<2) {
6149 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6150 }else{
6151 unneeded_reg[(ba[i]-start)>>2]=1;
6152 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6153 }
6154 } /*else*/ if(1) {
6155 if (dops[i].is_ujump)
6156 {
6157 // Unconditional branch
6158 u=unneeded_reg[(ba[i]-start)>>2];
6159 gte_u=gte_unneeded[(ba[i]-start)>>2];
6160 branch_unneeded_reg[i]=u;
6161 // Merge in delay slot
6162 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6163 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6164 u|=1;
6165 gte_u|=gte_rt[i+1];
6166 gte_u&=~gte_rs[i+1];
6167 } else {
6168 // Conditional branch
6169 b=unneeded_reg[(ba[i]-start)>>2];
6170 gte_b=gte_unneeded[(ba[i]-start)>>2];
6171 branch_unneeded_reg[i]=b;
6172 // Branch delay slot
6173 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6174 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6175 b|=1;
6176 gte_b|=gte_rt[i+1];
6177 gte_b&=~gte_rs[i+1];
6178 u&=b;
6179 gte_u&=gte_b;
6180 if(i<slen-1) {
6181 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6182 } else {
6183 branch_unneeded_reg[i]=1;
6184 }
6185 }
6186 }
6187 }
6188 }
6189 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6190 {
6191 // SYSCALL instruction (software interrupt)
6192 u=1;
6193 }
6194 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6195 {
6196 // ERET instruction (return from interrupt)
6197 u=1;
6198 }
6199 //u=1; // DEBUG
6200 // Written registers are unneeded
6201 u|=1LL<<dops[i].rt1;
6202 u|=1LL<<dops[i].rt2;
6203 gte_u|=gte_rt[i];
6204 // Accessed registers are needed
6205 u&=~(1LL<<dops[i].rs1);
6206 u&=~(1LL<<dops[i].rs2);
6207 gte_u&=~gte_rs[i];
6208 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
6209 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6210 // Source-target dependencies
6211 // R0 is always unneeded
6212 u|=1;
6213 // Save it
6214 unneeded_reg[i]=u;
6215 gte_unneeded[i]=gte_u;
6216 /*
6217 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6218 printf("U:");
6219 int r;
6220 for(r=1;r<=CCREG;r++) {
6221 if((unneeded_reg[i]>>r)&1) {
6222 if(r==HIREG) printf(" HI");
6223 else if(r==LOREG) printf(" LO");
6224 else printf(" r%d",r);
6225 }
6226 }
6227 printf("\n");
6228 */
6229 }
6230}
6231
6232// Write back dirty registers as soon as we will no longer modify them,
6233// so that we don't end up with lots of writes at the branches.
6234void clean_registers(int istart,int iend,int wr)
6235{
6236 int i;
6237 int r;
6238 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6239 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6240 if(iend==slen-1) {
6241 will_dirty_i=will_dirty_next=0;
6242 wont_dirty_i=wont_dirty_next=0;
6243 }else{
6244 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6245 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6246 }
6247 for (i=iend;i>=istart;i--)
6248 {
6249 if(dops[i].is_jump)
6250 {
6251 if(ba[i]<start || ba[i]>=(start+slen*4))
6252 {
6253 // Branch out of this block, flush all regs
6254 if (dops[i].is_ujump)
6255 {
6256 // Unconditional branch
6257 will_dirty_i=0;
6258 wont_dirty_i=0;
6259 // Merge in delay slot (will dirty)
6260 for(r=0;r<HOST_REGS;r++) {
6261 if(r!=EXCLUDE_REG) {
6262 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6263 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6264 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6265 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6266 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6267 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6268 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6269 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6270 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6271 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6272 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6273 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6274 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6275 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6276 }
6277 }
6278 }
6279 else
6280 {
6281 // Conditional branch
6282 will_dirty_i=0;
6283 wont_dirty_i=wont_dirty_next;
6284 // Merge in delay slot (will dirty)
6285 for(r=0;r<HOST_REGS;r++) {
6286 if(r!=EXCLUDE_REG) {
6287 if (1) { // !dops[i].likely) {
6288 // Might not dirty if likely branch is not taken
6289 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6290 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6291 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6292 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6293 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6294 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6295 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6296 //if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6297 //if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6298 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6299 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6300 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6301 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6302 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6303 }
6304 }
6305 }
6306 }
6307 // Merge in delay slot (wont dirty)
6308 for(r=0;r<HOST_REGS;r++) {
6309 if(r!=EXCLUDE_REG) {
6310 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6311 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6312 if((regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6313 if((regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6314 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6315 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6316 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6317 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6318 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6319 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6320 }
6321 }
6322 if(wr) {
6323 #ifndef DESTRUCTIVE_WRITEBACK
6324 branch_regs[i].dirty&=wont_dirty_i;
6325 #endif
6326 branch_regs[i].dirty|=will_dirty_i;
6327 }
6328 }
6329 else
6330 {
6331 // Internal branch
6332 if(ba[i]<=start+i*4) {
6333 // Backward branch
6334 if (dops[i].is_ujump)
6335 {
6336 // Unconditional branch
6337 temp_will_dirty=0;
6338 temp_wont_dirty=0;
6339 // Merge in delay slot (will dirty)
6340 for(r=0;r<HOST_REGS;r++) {
6341 if(r!=EXCLUDE_REG) {
6342 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6343 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6344 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6345 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6346 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6347 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6348 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6349 if((regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6350 if((regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6351 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6352 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6353 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6354 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6355 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6356 }
6357 }
6358 } else {
6359 // Conditional branch (not taken case)
6360 temp_will_dirty=will_dirty_next;
6361 temp_wont_dirty=wont_dirty_next;
6362 // Merge in delay slot (will dirty)
6363 for(r=0;r<HOST_REGS;r++) {
6364 if(r!=EXCLUDE_REG) {
6365 if (1) { // !dops[i].likely) {
6366 // Will not dirty if likely branch is not taken
6367 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6368 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6369 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6370 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6371 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6372 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6373 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6374 //if((regs[i].regmap[r]&63)==dops[i].rt1) temp_will_dirty|=1<<r;
6375 //if((regs[i].regmap[r]&63)==dops[i].rt2) temp_will_dirty|=1<<r;
6376 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_will_dirty|=1<<r;
6377 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_will_dirty|=1<<r;
6378 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6379 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6380 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6381 }
6382 }
6383 }
6384 }
6385 // Merge in delay slot (wont dirty)
6386 for(r=0;r<HOST_REGS;r++) {
6387 if(r!=EXCLUDE_REG) {
6388 if((regs[i].regmap[r]&63)==dops[i].rt1) temp_wont_dirty|=1<<r;
6389 if((regs[i].regmap[r]&63)==dops[i].rt2) temp_wont_dirty|=1<<r;
6390 if((regs[i].regmap[r]&63)==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6391 if((regs[i].regmap[r]&63)==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6392 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6393 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) temp_wont_dirty|=1<<r;
6394 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) temp_wont_dirty|=1<<r;
6395 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6396 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6397 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6398 }
6399 }
6400 // Deal with changed mappings
6401 if(i<iend) {
6402 for(r=0;r<HOST_REGS;r++) {
6403 if(r!=EXCLUDE_REG) {
6404 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6405 temp_will_dirty&=~(1<<r);
6406 temp_wont_dirty&=~(1<<r);
6407 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6408 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6409 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6410 } else {
6411 temp_will_dirty|=1<<r;
6412 temp_wont_dirty|=1<<r;
6413 }
6414 }
6415 }
6416 }
6417 }
6418 if(wr) {
6419 will_dirty[i]=temp_will_dirty;
6420 wont_dirty[i]=temp_wont_dirty;
6421 clean_registers((ba[i]-start)>>2,i-1,0);
6422 }else{
6423 // Limit recursion. It can take an excessive amount
6424 // of time if there are a lot of nested loops.
6425 will_dirty[(ba[i]-start)>>2]=0;
6426 wont_dirty[(ba[i]-start)>>2]=-1;
6427 }
6428 }
6429 /*else*/ if(1)
6430 {
6431 if (dops[i].is_ujump)
6432 {
6433 // Unconditional branch
6434 will_dirty_i=0;
6435 wont_dirty_i=0;
6436 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6437 for(r=0;r<HOST_REGS;r++) {
6438 if(r!=EXCLUDE_REG) {
6439 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6440 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6441 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6442 }
6443 if(branch_regs[i].regmap[r]>=0) {
6444 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6445 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6446 }
6447 }
6448 }
6449 //}
6450 // Merge in delay slot
6451 for(r=0;r<HOST_REGS;r++) {
6452 if(r!=EXCLUDE_REG) {
6453 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6454 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6455 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6456 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6457 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6458 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6459 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6460 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6461 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6462 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6463 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6464 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6465 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6466 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6467 }
6468 }
6469 } else {
6470 // Conditional branch
6471 will_dirty_i=will_dirty_next;
6472 wont_dirty_i=wont_dirty_next;
6473 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6474 for(r=0;r<HOST_REGS;r++) {
6475 if(r!=EXCLUDE_REG) {
6476 signed char target_reg=branch_regs[i].regmap[r];
6477 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6478 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6479 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6480 }
6481 else if(target_reg>=0) {
6482 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6483 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6484 }
6485 }
6486 }
6487 //}
6488 // Merge in delay slot
6489 for(r=0;r<HOST_REGS;r++) {
6490 if(r!=EXCLUDE_REG) {
6491 if (1) { // !dops[i].likely) {
6492 // Might not dirty if likely branch is not taken
6493 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6494 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6495 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6496 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6497 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6498 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6499 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6500 //if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6501 //if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6502 if((regs[i].regmap[r]&63)==dops[i+1].rt1) will_dirty_i|=1<<r;
6503 if((regs[i].regmap[r]&63)==dops[i+1].rt2) will_dirty_i|=1<<r;
6504 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6505 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6506 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6507 }
6508 }
6509 }
6510 }
6511 // Merge in delay slot (won't dirty)
6512 for(r=0;r<HOST_REGS;r++) {
6513 if(r!=EXCLUDE_REG) {
6514 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6515 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6516 if((regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6517 if((regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6518 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6519 if((branch_regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6520 if((branch_regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6521 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt1) wont_dirty_i|=1<<r;
6522 if((branch_regs[i].regmap[r]&63)==dops[i+1].rt2) wont_dirty_i|=1<<r;
6523 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6524 }
6525 }
6526 if(wr) {
6527 #ifndef DESTRUCTIVE_WRITEBACK
6528 branch_regs[i].dirty&=wont_dirty_i;
6529 #endif
6530 branch_regs[i].dirty|=will_dirty_i;
6531 }
6532 }
6533 }
6534 }
6535 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6536 {
6537 // SYSCALL instruction (software interrupt)
6538 will_dirty_i=0;
6539 wont_dirty_i=0;
6540 }
6541 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6542 {
6543 // ERET instruction (return from interrupt)
6544 will_dirty_i=0;
6545 wont_dirty_i=0;
6546 }
6547 will_dirty_next=will_dirty_i;
6548 wont_dirty_next=wont_dirty_i;
6549 for(r=0;r<HOST_REGS;r++) {
6550 if(r!=EXCLUDE_REG) {
6551 if((regs[i].regmap[r]&63)==dops[i].rt1) will_dirty_i|=1<<r;
6552 if((regs[i].regmap[r]&63)==dops[i].rt2) will_dirty_i|=1<<r;
6553 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6554 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6555 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6556 if((regs[i].regmap[r]&63)==dops[i].rt1) wont_dirty_i|=1<<r;
6557 if((regs[i].regmap[r]&63)==dops[i].rt2) wont_dirty_i|=1<<r;
6558 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6559 if(i>istart) {
6560 if (!dops[i].is_jump)
6561 {
6562 // Don't store a register immediately after writing it,
6563 // may prevent dual-issue.
6564 if((regs[i].regmap[r]&63)==dops[i-1].rt1) wont_dirty_i|=1<<r;
6565 if((regs[i].regmap[r]&63)==dops[i-1].rt2) wont_dirty_i|=1<<r;
6566 }
6567 }
6568 }
6569 }
6570 // Save it
6571 will_dirty[i]=will_dirty_i;
6572 wont_dirty[i]=wont_dirty_i;
6573 // Mark registers that won't be dirtied as not dirty
6574 if(wr) {
6575 regs[i].dirty|=will_dirty_i;
6576 #ifndef DESTRUCTIVE_WRITEBACK
6577 regs[i].dirty&=wont_dirty_i;
6578 if(dops[i].is_jump)
6579 {
6580 if (i < iend-1 && !dops[i].is_ujump) {
6581 for(r=0;r<HOST_REGS;r++) {
6582 if(r!=EXCLUDE_REG) {
6583 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6584 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6585 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6586 }
6587 }
6588 }
6589 }
6590 else
6591 {
6592 if(i<iend) {
6593 for(r=0;r<HOST_REGS;r++) {
6594 if(r!=EXCLUDE_REG) {
6595 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6596 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6597 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6598 }
6599 }
6600 }
6601 }
6602 #endif
6603 //}
6604 }
6605 // Deal with changed mappings
6606 temp_will_dirty=will_dirty_i;
6607 temp_wont_dirty=wont_dirty_i;
6608 for(r=0;r<HOST_REGS;r++) {
6609 if(r!=EXCLUDE_REG) {
6610 int nr;
6611 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6612 if(wr) {
6613 #ifndef DESTRUCTIVE_WRITEBACK
6614 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6615 #endif
6616 regs[i].wasdirty|=will_dirty_i&(1<<r);
6617 }
6618 }
6619 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6620 // Register moved to a different register
6621 will_dirty_i&=~(1<<r);
6622 wont_dirty_i&=~(1<<r);
6623 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6624 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6625 if(wr) {
6626 #ifndef DESTRUCTIVE_WRITEBACK
6627 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6628 #endif
6629 regs[i].wasdirty|=will_dirty_i&(1<<r);
6630 }
6631 }
6632 else {
6633 will_dirty_i&=~(1<<r);
6634 wont_dirty_i&=~(1<<r);
6635 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6636 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6637 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6638 } else {
6639 wont_dirty_i|=1<<r;
6640 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6641 }
6642 }
6643 }
6644 }
6645 }
6646}
6647
6648#ifdef DISASM
6649 /* disassembly */
6650void disassemble_inst(int i)
6651{
6652 if (dops[i].bt) printf("*"); else printf(" ");
6653 switch(dops[i].itype) {
6654 case UJUMP:
6655 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6656 case CJUMP:
6657 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6658 case SJUMP:
6659 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6660 case RJUMP:
6661 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
6662 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6663 else
6664 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6665 break;
6666 case SPAN:
6667 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,ba[i]);break;
6668 case IMM16:
6669 if(dops[i].opcode==0xf) //LUI
6670 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
6671 else
6672 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6673 break;
6674 case LOAD:
6675 case LOADLR:
6676 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6677 break;
6678 case STORE:
6679 case STORELR:
6680 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
6681 break;
6682 case ALU:
6683 case SHIFT:
6684 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6685 break;
6686 case MULTDIV:
6687 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6688 break;
6689 case SHIFTIMM:
6690 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6691 break;
6692 case MOV:
6693 if((dops[i].opcode2&0x1d)==0x10)
6694 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6695 else if((dops[i].opcode2&0x1d)==0x11)
6696 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6697 else
6698 printf (" %x: %s\n",start+i*4,insn[i]);
6699 break;
6700 case COP0:
6701 if(dops[i].opcode2==0)
6702 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6703 else if(dops[i].opcode2==4)
6704 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6705 else printf (" %x: %s\n",start+i*4,insn[i]);
6706 break;
6707 case COP1:
6708 if(dops[i].opcode2<3)
6709 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
6710 else if(dops[i].opcode2>3)
6711 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
6712 else printf (" %x: %s\n",start+i*4,insn[i]);
6713 break;
6714 case COP2:
6715 if(dops[i].opcode2<3)
6716 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6717 else if(dops[i].opcode2>3)
6718 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6719 else printf (" %x: %s\n",start+i*4,insn[i]);
6720 break;
6721 case C1LS:
6722 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6723 break;
6724 case C2LS:
6725 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6726 break;
6727 case INTCALL:
6728 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6729 break;
6730 default:
6731 //printf (" %s %8x\n",insn[i],source[i]);
6732 printf (" %x: %s\n",start+i*4,insn[i]);
6733 }
6734}
6735#else
6736static void disassemble_inst(int i) {}
6737#endif // DISASM
6738
6739#define DRC_TEST_VAL 0x74657374
6740
6741static void new_dynarec_test(void)
6742{
6743 int (*testfunc)(void);
6744 void *beginning;
6745 int ret[2];
6746 size_t i;
6747
6748 // check structure linkage
6749 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6750 {
6751 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6752 }
6753
6754 SysPrintf("testing if we can run recompiled code...\n");
6755 ((volatile u_int *)out)[0]++; // make cache dirty
6756
6757 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6758 out = ndrc->translation_cache;
6759 beginning = start_block();
6760 emit_movimm(DRC_TEST_VAL + i, 0); // test
6761 emit_ret();
6762 literal_pool(0);
6763 end_block(beginning);
6764 testfunc = beginning;
6765 ret[i] = testfunc();
6766 }
6767
6768 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6769 SysPrintf("test passed.\n");
6770 else
6771 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6772 out = ndrc->translation_cache;
6773}
6774
6775// clear the state completely, instead of just marking
6776// things invalid like invalidate_all_pages() does
6777void new_dynarec_clear_full(void)
6778{
6779 int n;
6780 out = ndrc->translation_cache;
6781 memset(invalid_code,1,sizeof(invalid_code));
6782 memset(hash_table,0xff,sizeof(hash_table));
6783 memset(mini_ht,-1,sizeof(mini_ht));
6784 memset(restore_candidate,0,sizeof(restore_candidate));
6785 memset(shadow,0,sizeof(shadow));
6786 copy=shadow;
6787 expirep=16384; // Expiry pointer, +2 blocks
6788 pending_exception=0;
6789 literalcount=0;
6790 stop_after_jal=0;
6791 inv_code_start=inv_code_end=~0;
6792 f1_hack=0;
6793 // TLB
6794 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6795 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6796 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6797
6798 cycle_multiplier_old = cycle_multiplier;
6799 new_dynarec_hacks_old = new_dynarec_hacks;
6800}
6801
6802void new_dynarec_init(void)
6803{
6804 SysPrintf("Init new dynarec\n");
6805
6806#ifdef BASE_ADDR_DYNAMIC
6807 #ifdef VITA
6808 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6809 if (sceBlock < 0)
6810 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6811 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6812 if (ret < 0)
6813 SysPrintf("sceKernelGetMemBlockBase failed\n");
6814 #else
6815 uintptr_t desired_addr = 0;
6816 #ifdef __ELF__
6817 extern char _end;
6818 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6819 #endif
6820 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6821 PROT_READ | PROT_WRITE | PROT_EXEC,
6822 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6823 if (ndrc == MAP_FAILED) {
6824 SysPrintf("mmap() failed: %s\n", strerror(errno));
6825 abort();
6826 }
6827 #endif
6828#else
6829 #ifndef NO_WRITE_EXEC
6830 // not all systems allow execute in data segment by default
6831 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6832 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6833 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6834 #endif
6835#endif
6836 out = ndrc->translation_cache;
6837 cycle_multiplier=200;
6838 new_dynarec_clear_full();
6839#ifdef HOST_IMM8
6840 // Copy this into local area so we don't have to put it in every literal pool
6841 invc_ptr=invalid_code;
6842#endif
6843 arch_init();
6844 new_dynarec_test();
6845 ram_offset=(uintptr_t)rdram-0x80000000;
6846 if (ram_offset!=0)
6847 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6848}
6849
6850void new_dynarec_cleanup(void)
6851{
6852 int n;
6853#ifdef BASE_ADDR_DYNAMIC
6854 #ifdef VITA
6855 sceKernelFreeMemBlock(sceBlock);
6856 sceBlock = -1;
6857 #else
6858 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6859 SysPrintf("munmap() failed\n");
6860 #endif
6861#endif
6862 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6863 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6864 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6865 #ifdef ROM_COPY
6866 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6867 #endif
6868}
6869
6870static u_int *get_source_start(u_int addr, u_int *limit)
6871{
6872 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6873 cycle_multiplier_override = 0;
6874
6875 if (addr < 0x00200000 ||
6876 (0xa0000000 <= addr && addr < 0xa0200000))
6877 {
6878 // used for BIOS calls mostly?
6879 *limit = (addr&0xa0000000)|0x00200000;
6880 return (u_int *)(rdram + (addr&0x1fffff));
6881 }
6882 else if (!Config.HLE && (
6883 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6884 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6885 {
6886 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6887 // but timings in PCSX are too tied to the interpreter's BIAS
6888 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6889 cycle_multiplier_override = 200;
6890
6891 *limit = (addr & 0xfff00000) | 0x80000;
6892 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6893 }
6894 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6895 *limit = (addr & 0x80600000) + 0x00200000;
6896 return (u_int *)(rdram + (addr&0x1fffff));
6897 }
6898 return NULL;
6899}
6900
6901static u_int scan_for_ret(u_int addr)
6902{
6903 u_int limit = 0;
6904 u_int *mem;
6905
6906 mem = get_source_start(addr, &limit);
6907 if (mem == NULL)
6908 return addr;
6909
6910 if (limit > addr + 0x1000)
6911 limit = addr + 0x1000;
6912 for (; addr < limit; addr += 4, mem++) {
6913 if (*mem == 0x03e00008) // jr $ra
6914 return addr + 8;
6915 }
6916 return addr;
6917}
6918
6919struct savestate_block {
6920 uint32_t addr;
6921 uint32_t regflags;
6922};
6923
6924static int addr_cmp(const void *p1_, const void *p2_)
6925{
6926 const struct savestate_block *p1 = p1_, *p2 = p2_;
6927 return p1->addr - p2->addr;
6928}
6929
6930int new_dynarec_save_blocks(void *save, int size)
6931{
6932 struct savestate_block *blocks = save;
6933 int maxcount = size / sizeof(blocks[0]);
6934 struct savestate_block tmp_blocks[1024];
6935 struct ll_entry *head;
6936 int p, s, d, o, bcnt;
6937 u_int addr;
6938
6939 o = 0;
6940 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
6941 bcnt = 0;
6942 for (head = jump_in[p]; head != NULL; head = head->next) {
6943 tmp_blocks[bcnt].addr = head->vaddr;
6944 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
6945 bcnt++;
6946 }
6947 if (bcnt < 1)
6948 continue;
6949 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6950
6951 addr = tmp_blocks[0].addr;
6952 for (s = d = 0; s < bcnt; s++) {
6953 if (tmp_blocks[s].addr < addr)
6954 continue;
6955 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6956 tmp_blocks[d++] = tmp_blocks[s];
6957 addr = scan_for_ret(tmp_blocks[s].addr);
6958 }
6959
6960 if (o + d > maxcount)
6961 d = maxcount - o;
6962 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
6963 o += d;
6964 }
6965
6966 return o * sizeof(blocks[0]);
6967}
6968
6969void new_dynarec_load_blocks(const void *save, int size)
6970{
6971 const struct savestate_block *blocks = save;
6972 int count = size / sizeof(blocks[0]);
6973 u_int regs_save[32];
6974 uint32_t f;
6975 int i, b;
6976
6977 get_addr(psxRegs.pc);
6978
6979 // change GPRs for speculation to at least partially work..
6980 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6981 for (i = 1; i < 32; i++)
6982 psxRegs.GPR.r[i] = 0x80000000;
6983
6984 for (b = 0; b < count; b++) {
6985 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6986 if (f & 1)
6987 psxRegs.GPR.r[i] = 0x1f800000;
6988 }
6989
6990 get_addr(blocks[b].addr);
6991
6992 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6993 if (f & 1)
6994 psxRegs.GPR.r[i] = 0x80000000;
6995 }
6996 }
6997
6998 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6999}
7000
7001int new_recompile_block(u_int addr)
7002{
7003 u_int pagelimit = 0;
7004 u_int state_rflags = 0;
7005 int i;
7006
7007 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
7008 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7009 //if(debug)
7010 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7011
7012 // this is just for speculation
7013 for (i = 1; i < 32; i++) {
7014 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7015 state_rflags |= 1 << i;
7016 }
7017
7018 start = (u_int)addr&~3;
7019 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
7020 new_dynarec_did_compile=1;
7021 if (Config.HLE && start == 0x80001000) // hlecall
7022 {
7023 // XXX: is this enough? Maybe check hleSoftCall?
7024 void *beginning=start_block();
7025 u_int page=get_page(start);
7026
7027 invalid_code[start>>12]=0;
7028 emit_movimm(start,0);
7029 emit_writeword(0,&pcaddr);
7030 emit_far_jump(new_dyna_leave);
7031 literal_pool(0);
7032 end_block(beginning);
7033 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7034 return 0;
7035 }
7036 else if (f1_hack == ~0u || (f1_hack != 0 && start == f1_hack)) {
7037 void *beginning = start_block();
7038 u_int page = get_page(start);
7039 emit_readword(&psxRegs.GPR.n.sp, 0);
7040 emit_readptr(&mem_rtab, 1);
7041 emit_shrimm(0, 12, 2);
7042 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
7043 emit_addimm(0, 0x18, 0);
7044 emit_adds_ptr(1, 1, 1);
7045 emit_ldr_dualindexed(1, 0, 0);
7046 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
7047 emit_far_call(get_addr_ht);
7048 emit_jmpreg(0); // jr k0
7049 literal_pool(0);
7050 end_block(beginning);
7051
7052 ll_add_flags(jump_in + page, start, state_rflags, beginning);
7053 SysPrintf("F1 hack to %08x\n", start);
7054 f1_hack = start;
7055 return 0;
7056 }
7057
7058 source = get_source_start(start, &pagelimit);
7059 if (source == NULL) {
7060 SysPrintf("Compile at bogus memory address: %08x\n", addr);
7061 abort();
7062 }
7063
7064 /* Pass 1: disassemble */
7065 /* Pass 2: register dependencies, branch targets */
7066 /* Pass 3: register allocation */
7067 /* Pass 4: branch dependencies */
7068 /* Pass 5: pre-alloc */
7069 /* Pass 6: optimize clean/dirty state */
7070 /* Pass 7: flag 32-bit registers */
7071 /* Pass 8: assembly */
7072 /* Pass 9: linker */
7073 /* Pass 10: garbage collection / free memory */
7074
7075 int j;
7076 int done=0;
7077 unsigned int type,op,op2;
7078
7079 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7080
7081 /* Pass 1 disassembly */
7082
7083 for(i=0;!done;i++) {
7084 dops[i].bt=0;
7085 dops[i].ooo=0;
7086 op2=0;
7087 minimum_free_regs[i]=0;
7088 dops[i].opcode=op=source[i]>>26;
7089 switch(op)
7090 {
7091 case 0x00: strcpy(insn[i],"special"); type=NI;
7092 op2=source[i]&0x3f;
7093 switch(op2)
7094 {
7095 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7096 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7097 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7098 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7099 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7100 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7101 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7102 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7103 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7104 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7105 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7106 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7107 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7108 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7109 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7110 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7111 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7112 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7113 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7114 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7115 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7116 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7117 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7118 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7119 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7120 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7121 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7122 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7123 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7124 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7125 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7126 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7127 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7128 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7129 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7130#if 0
7131 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7132 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7133 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7134 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7135 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7136 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7137 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7138 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7139 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7140 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7141 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7142 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7143 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7144 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7145 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7146 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7147 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7148#endif
7149 }
7150 break;
7151 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7152 op2=(source[i]>>16)&0x1f;
7153 switch(op2)
7154 {
7155 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7156 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7157 //case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7158 //case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7159 //case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7160 //case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7161 //case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7162 //case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7163 //case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7164 //case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7165 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7166 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7167 //case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7168 //case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7169 }
7170 break;
7171 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7172 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7173 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7174 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7175 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7176 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7177 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7178 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7179 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7180 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7181 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7182 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7183 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7184 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7185 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7186 op2=(source[i]>>21)&0x1f;
7187 switch(op2)
7188 {
7189 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7190 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
7191 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7192 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
7193 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7194 }
7195 break;
7196 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
7197 op2=(source[i]>>21)&0x1f;
7198 break;
7199#if 0
7200 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7201 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7202 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7203 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7204 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7205 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7206 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7207 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7208#endif
7209 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7210 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7211 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7212 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7213 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7214 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7215 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7216#if 0
7217 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7218#endif
7219 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7220 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7221 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7222 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7223#if 0
7224 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7225 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7226#endif
7227 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7228 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7229 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7230 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7231#if 0
7232 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7233 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7234 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7235#endif
7236 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7237 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7238#if 0
7239 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7240 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7241 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7242#endif
7243 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7244 op2=(source[i]>>21)&0x1f;
7245 //if (op2 & 0x10)
7246 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7247 if (gte_handlers[source[i]&0x3f]!=NULL) {
7248 if (gte_regnames[source[i]&0x3f]!=NULL)
7249 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7250 else
7251 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7252 type=C2OP;
7253 }
7254 }
7255 else switch(op2)
7256 {
7257 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7258 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7259 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7260 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7261 }
7262 break;
7263 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7264 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7265 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7266 default: strcpy(insn[i],"???"); type=NI;
7267 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7268 break;
7269 }
7270 dops[i].itype=type;
7271 dops[i].opcode2=op2;
7272 /* Get registers/immediates */
7273 dops[i].lt1=0;
7274 gte_rs[i]=gte_rt[i]=0;
7275 switch(type) {
7276 case LOAD:
7277 dops[i].rs1=(source[i]>>21)&0x1f;
7278 dops[i].rs2=0;
7279 dops[i].rt1=(source[i]>>16)&0x1f;
7280 dops[i].rt2=0;
7281 imm[i]=(short)source[i];
7282 break;
7283 case STORE:
7284 case STORELR:
7285 dops[i].rs1=(source[i]>>21)&0x1f;
7286 dops[i].rs2=(source[i]>>16)&0x1f;
7287 dops[i].rt1=0;
7288 dops[i].rt2=0;
7289 imm[i]=(short)source[i];
7290 break;
7291 case LOADLR:
7292 // LWL/LWR only load part of the register,
7293 // therefore the target register must be treated as a source too
7294 dops[i].rs1=(source[i]>>21)&0x1f;
7295 dops[i].rs2=(source[i]>>16)&0x1f;
7296 dops[i].rt1=(source[i]>>16)&0x1f;
7297 dops[i].rt2=0;
7298 imm[i]=(short)source[i];
7299 break;
7300 case IMM16:
7301 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
7302 else dops[i].rs1=(source[i]>>21)&0x1f;
7303 dops[i].rs2=0;
7304 dops[i].rt1=(source[i]>>16)&0x1f;
7305 dops[i].rt2=0;
7306 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7307 imm[i]=(unsigned short)source[i];
7308 }else{
7309 imm[i]=(short)source[i];
7310 }
7311 break;
7312 case UJUMP:
7313 dops[i].rs1=0;
7314 dops[i].rs2=0;
7315 dops[i].rt1=0;
7316 dops[i].rt2=0;
7317 // The JAL instruction writes to r31.
7318 if (op&1) {
7319 dops[i].rt1=31;
7320 }
7321 dops[i].rs2=CCREG;
7322 break;
7323 case RJUMP:
7324 dops[i].rs1=(source[i]>>21)&0x1f;
7325 dops[i].rs2=0;
7326 dops[i].rt1=0;
7327 dops[i].rt2=0;
7328 // The JALR instruction writes to rd.
7329 if (op2&1) {
7330 dops[i].rt1=(source[i]>>11)&0x1f;
7331 }
7332 dops[i].rs2=CCREG;
7333 break;
7334 case CJUMP:
7335 dops[i].rs1=(source[i]>>21)&0x1f;
7336 dops[i].rs2=(source[i]>>16)&0x1f;
7337 dops[i].rt1=0;
7338 dops[i].rt2=0;
7339 if(op&2) { // BGTZ/BLEZ
7340 dops[i].rs2=0;
7341 }
7342 break;
7343 case SJUMP:
7344 dops[i].rs1=(source[i]>>21)&0x1f;
7345 dops[i].rs2=CCREG;
7346 dops[i].rt1=0;
7347 dops[i].rt2=0;
7348 if(op2&0x10) { // BxxAL
7349 dops[i].rt1=31;
7350 // NOTE: If the branch is not taken, r31 is still overwritten
7351 }
7352 break;
7353 case ALU:
7354 dops[i].rs1=(source[i]>>21)&0x1f; // source
7355 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
7356 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7357 dops[i].rt2=0;
7358 break;
7359 case MULTDIV:
7360 dops[i].rs1=(source[i]>>21)&0x1f; // source
7361 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
7362 dops[i].rt1=HIREG;
7363 dops[i].rt2=LOREG;
7364 break;
7365 case MOV:
7366 dops[i].rs1=0;
7367 dops[i].rs2=0;
7368 dops[i].rt1=0;
7369 dops[i].rt2=0;
7370 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
7371 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
7372 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
7373 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
7374 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
7375 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
7376 break;
7377 case SHIFT:
7378 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
7379 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
7380 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7381 dops[i].rt2=0;
7382 break;
7383 case SHIFTIMM:
7384 dops[i].rs1=(source[i]>>16)&0x1f;
7385 dops[i].rs2=0;
7386 dops[i].rt1=(source[i]>>11)&0x1f;
7387 dops[i].rt2=0;
7388 imm[i]=(source[i]>>6)&0x1f;
7389 // DSxx32 instructions
7390 if(op2>=0x3c) imm[i]|=0x20;
7391 break;
7392 case COP0:
7393 dops[i].rs1=0;
7394 dops[i].rs2=0;
7395 dops[i].rt1=0;
7396 dops[i].rt2=0;
7397 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
7398 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
7399 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
7400 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
7401 break;
7402 case COP1:
7403 dops[i].rs1=0;
7404 dops[i].rs2=0;
7405 dops[i].rt1=0;
7406 dops[i].rt2=0;
7407 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7408 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7409 dops[i].rs2=CSREG;
7410 break;
7411 case COP2:
7412 dops[i].rs1=0;
7413 dops[i].rs2=0;
7414 dops[i].rt1=0;
7415 dops[i].rt2=0;
7416 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
7417 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
7418 dops[i].rs2=CSREG;
7419 int gr=(source[i]>>11)&0x1F;
7420 switch(op2)
7421 {
7422 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7423 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7424 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7425 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7426 }
7427 break;
7428 case C1LS:
7429 dops[i].rs1=(source[i]>>21)&0x1F;
7430 dops[i].rs2=CSREG;
7431 dops[i].rt1=0;
7432 dops[i].rt2=0;
7433 imm[i]=(short)source[i];
7434 break;
7435 case C2LS:
7436 dops[i].rs1=(source[i]>>21)&0x1F;
7437 dops[i].rs2=0;
7438 dops[i].rt1=0;
7439 dops[i].rt2=0;
7440 imm[i]=(short)source[i];
7441 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7442 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7443 break;
7444 case C2OP:
7445 dops[i].rs1=0;
7446 dops[i].rs2=0;
7447 dops[i].rt1=0;
7448 dops[i].rt2=0;
7449 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7450 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7451 gte_rt[i]|=1ll<<63; // every op changes flags
7452 if((source[i]&0x3f)==GTE_MVMVA) {
7453 int v = (source[i] >> 15) & 3;
7454 gte_rs[i]&=~0xe3fll;
7455 if(v==3) gte_rs[i]|=0xe00ll;
7456 else gte_rs[i]|=3ll<<(v*2);
7457 }
7458 break;
7459 case SYSCALL:
7460 case HLECALL:
7461 case INTCALL:
7462 dops[i].rs1=CCREG;
7463 dops[i].rs2=0;
7464 dops[i].rt1=0;
7465 dops[i].rt2=0;
7466 break;
7467 default:
7468 dops[i].rs1=0;
7469 dops[i].rs2=0;
7470 dops[i].rt1=0;
7471 dops[i].rt2=0;
7472 }
7473 /* Calculate branch target addresses */
7474 if(type==UJUMP)
7475 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7476 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
7477 ba[i]=start+i*4+8; // Ignore never taken branch
7478 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
7479 ba[i]=start+i*4+8; // Ignore never taken branch
7480 else if(type==CJUMP||type==SJUMP)
7481 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7482 else ba[i]=-1;
7483
7484 /* simplify always (not)taken branches */
7485 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
7486 dops[i].rs1 = dops[i].rs2 = 0;
7487 if (!(op & 1)) {
7488 dops[i].itype = type = UJUMP;
7489 dops[i].rs2 = CCREG;
7490 }
7491 }
7492 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
7493 dops[i].itype = type = UJUMP;
7494
7495 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
7496 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
7497 dops[i].is_load = (dops[i].itype == LOAD || dops[i].itype == LOADLR || op == 0x32); // LWC2
7498 dops[i].is_store = (dops[i].itype == STORE || dops[i].itype == STORELR || op == 0x3a); // SWC2
7499
7500 /* messy cases to just pass over to the interpreter */
7501 if (i > 0 && dops[i-1].is_jump) {
7502 int do_in_intrp=0;
7503 // branch in delay slot?
7504 if (dops[i].is_jump) {
7505 // don't handle first branch and call interpreter if it's hit
7506 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7507 do_in_intrp=1;
7508 }
7509 // basic load delay detection
7510 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
7511 int t=(ba[i-1]-start)/4;
7512 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
7513 // jump target wants DS result - potential load delay effect
7514 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7515 do_in_intrp=1;
7516 dops[t+1].bt=1; // expected return from interpreter
7517 }
7518 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
7519 !(i>=3&&dops[i-3].is_jump)) {
7520 // v0 overwrite like this is a sign of trouble, bail out
7521 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7522 do_in_intrp=1;
7523 }
7524 }
7525 if(do_in_intrp) {
7526 dops[i-1].rs1=CCREG;
7527 dops[i-1].rs2=dops[i-1].rt1=dops[i-1].rt2=0;
7528 ba[i-1]=-1;
7529 dops[i-1].itype=INTCALL;
7530 done=2;
7531 i--; // don't compile the DS
7532 }
7533 }
7534
7535 /* Is this the end of the block? */
7536 if (i > 0 && dops[i-1].is_ujump) {
7537 if(dops[i-1].rt1==0) { // Continue past subroutine call (JAL)
7538 done=2;
7539 }
7540 else {
7541 if(stop_after_jal) done=1;
7542 // Stop on BREAK
7543 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7544 }
7545 // Don't recompile stuff that's already compiled
7546 if(check_addr(start+i*4+4)) done=1;
7547 // Don't get too close to the limit
7548 if(i>MAXBLOCK/2) done=1;
7549 }
7550 if(dops[i].itype==SYSCALL&&stop_after_jal) done=1;
7551 if(dops[i].itype==HLECALL||dops[i].itype==INTCALL) done=2;
7552 if(done==2) {
7553 // Does the block continue due to a branch?
7554 for(j=i-1;j>=0;j--)
7555 {
7556 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7557 if(ba[j]==start+i*4+4) done=j=0;
7558 if(ba[j]==start+i*4+8) done=j=0;
7559 }
7560 }
7561 //assert(i<MAXBLOCK-1);
7562 if(start+i*4==pagelimit-4) done=1;
7563 assert(start+i*4<pagelimit);
7564 if (i==MAXBLOCK-1) done=1;
7565 // Stop if we're compiling junk
7566 if(dops[i].itype==NI&&dops[i].opcode==0x11) {
7567 done=stop_after_jal=1;
7568 SysPrintf("Disabled speculative precompilation\n");
7569 }
7570 }
7571 slen=i;
7572 if (dops[i-1].is_jump) {
7573 if(start+i*4==pagelimit) {
7574 dops[i-1].itype=SPAN;
7575 }
7576 }
7577 assert(slen>0);
7578
7579 /* spacial hack(s) */
7580 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
7581 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
7582 && dops[i-7].itype == STORE)
7583 {
7584 i = i-8;
7585 if (dops[i].itype == IMM16)
7586 i--;
7587 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
7588 if (dops[i].itype == STORELR && dops[i].rs1 == 6
7589 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
7590 {
7591 SysPrintf("F1 hack from %08x\n", start);
7592 if (f1_hack == 0)
7593 f1_hack = ~0u;
7594 }
7595 }
7596
7597 /* Pass 2 - Register dependencies and branch targets */
7598
7599 unneeded_registers(0,slen-1,0);
7600
7601 /* Pass 3 - Register allocation */
7602
7603 struct regstat current; // Current register allocations/status
7604 current.dirty=0;
7605 current.u=unneeded_reg[0];
7606 clear_all_regs(current.regmap);
7607 alloc_reg(&current,0,CCREG);
7608 dirty_reg(&current,CCREG);
7609 current.isconst=0;
7610 current.wasconst=0;
7611 current.waswritten=0;
7612 int ds=0;
7613 int cc=0;
7614 int hr=-1;
7615
7616 if((u_int)addr&1) {
7617 // First instruction is delay slot
7618 cc=-1;
7619 dops[1].bt=1;
7620 ds=1;
7621 unneeded_reg[0]=1;
7622 current.regmap[HOST_BTREG]=BTREG;
7623 }
7624
7625 for(i=0;i<slen;i++)
7626 {
7627 if(dops[i].bt)
7628 {
7629 int hr;
7630 for(hr=0;hr<HOST_REGS;hr++)
7631 {
7632 // Is this really necessary?
7633 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7634 }
7635 current.isconst=0;
7636 current.waswritten=0;
7637 }
7638
7639 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7640 regs[i].wasconst=current.isconst;
7641 regs[i].wasdirty=current.dirty;
7642 regs[i].loadedconst=0;
7643 if (!dops[i].is_jump) {
7644 if(i+1<slen) {
7645 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7646 current.u|=1;
7647 } else {
7648 current.u=1;
7649 }
7650 } else {
7651 if(i+1<slen) {
7652 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7653 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7654 current.u|=1;
7655 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7656 }
7657 dops[i].is_ds=ds;
7658 if(ds) {
7659 ds=0; // Skip delay slot, already allocated as part of branch
7660 // ...but we need to alloc it in case something jumps here
7661 if(i+1<slen) {
7662 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7663 }else{
7664 current.u=branch_unneeded_reg[i-1];
7665 }
7666 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7667 current.u|=1;
7668 struct regstat temp;
7669 memcpy(&temp,&current,sizeof(current));
7670 temp.wasdirty=temp.dirty;
7671 // TODO: Take into account unconditional branches, as below
7672 delayslot_alloc(&temp,i);
7673 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7674 regs[i].wasdirty=temp.wasdirty;
7675 regs[i].dirty=temp.dirty;
7676 regs[i].isconst=0;
7677 regs[i].wasconst=0;
7678 current.isconst=0;
7679 // Create entry (branch target) regmap
7680 for(hr=0;hr<HOST_REGS;hr++)
7681 {
7682 int r=temp.regmap[hr];
7683 if(r>=0) {
7684 if(r!=regmap_pre[i][hr]) {
7685 regs[i].regmap_entry[hr]=-1;
7686 }
7687 else
7688 {
7689 assert(r < 64);
7690 if((current.u>>r)&1) {
7691 regs[i].regmap_entry[hr]=-1;
7692 regs[i].regmap[hr]=-1;
7693 //Don't clear regs in the delay slot as the branch might need them
7694 //current.regmap[hr]=-1;
7695 }else
7696 regs[i].regmap_entry[hr]=r;
7697 }
7698 } else {
7699 // First instruction expects CCREG to be allocated
7700 if(i==0&&hr==HOST_CCREG)
7701 regs[i].regmap_entry[hr]=CCREG;
7702 else
7703 regs[i].regmap_entry[hr]=-1;
7704 }
7705 }
7706 }
7707 else { // Not delay slot
7708 switch(dops[i].itype) {
7709 case UJUMP:
7710 //current.isconst=0; // DEBUG
7711 //current.wasconst=0; // DEBUG
7712 //regs[i].wasconst=0; // DEBUG
7713 clear_const(&current,dops[i].rt1);
7714 alloc_cc(&current,i);
7715 dirty_reg(&current,CCREG);
7716 if (dops[i].rt1==31) {
7717 alloc_reg(&current,i,31);
7718 dirty_reg(&current,31);
7719 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7720 //assert(dops[i+1].rt1!=dops[i].rt1);
7721 #ifdef REG_PREFETCH
7722 alloc_reg(&current,i,PTEMP);
7723 #endif
7724 }
7725 dops[i].ooo=1;
7726 delayslot_alloc(&current,i+1);
7727 //current.isconst=0; // DEBUG
7728 ds=1;
7729 //printf("i=%d, isconst=%x\n",i,current.isconst);
7730 break;
7731 case RJUMP:
7732 //current.isconst=0;
7733 //current.wasconst=0;
7734 //regs[i].wasconst=0;
7735 clear_const(&current,dops[i].rs1);
7736 clear_const(&current,dops[i].rt1);
7737 alloc_cc(&current,i);
7738 dirty_reg(&current,CCREG);
7739 if (!ds_writes_rjump_rs(i)) {
7740 alloc_reg(&current,i,dops[i].rs1);
7741 if (dops[i].rt1!=0) {
7742 alloc_reg(&current,i,dops[i].rt1);
7743 dirty_reg(&current,dops[i].rt1);
7744 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7745 assert(dops[i+1].rt1!=dops[i].rt1);
7746 #ifdef REG_PREFETCH
7747 alloc_reg(&current,i,PTEMP);
7748 #endif
7749 }
7750 #ifdef USE_MINI_HT
7751 if(dops[i].rs1==31) { // JALR
7752 alloc_reg(&current,i,RHASH);
7753 alloc_reg(&current,i,RHTBL);
7754 }
7755 #endif
7756 delayslot_alloc(&current,i+1);
7757 } else {
7758 // The delay slot overwrites our source register,
7759 // allocate a temporary register to hold the old value.
7760 current.isconst=0;
7761 current.wasconst=0;
7762 regs[i].wasconst=0;
7763 delayslot_alloc(&current,i+1);
7764 current.isconst=0;
7765 alloc_reg(&current,i,RTEMP);
7766 }
7767 //current.isconst=0; // DEBUG
7768 dops[i].ooo=1;
7769 ds=1;
7770 break;
7771 case CJUMP:
7772 //current.isconst=0;
7773 //current.wasconst=0;
7774 //regs[i].wasconst=0;
7775 clear_const(&current,dops[i].rs1);
7776 clear_const(&current,dops[i].rs2);
7777 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7778 {
7779 alloc_cc(&current,i);
7780 dirty_reg(&current,CCREG);
7781 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7782 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7783 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7784 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7785 // The delay slot overwrites one of our conditions.
7786 // Allocate the branch condition registers instead.
7787 current.isconst=0;
7788 current.wasconst=0;
7789 regs[i].wasconst=0;
7790 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7791 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7792 }
7793 else
7794 {
7795 dops[i].ooo=1;
7796 delayslot_alloc(&current,i+1);
7797 }
7798 }
7799 else
7800 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7801 {
7802 alloc_cc(&current,i);
7803 dirty_reg(&current,CCREG);
7804 alloc_reg(&current,i,dops[i].rs1);
7805 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7806 // The delay slot overwrites one of our conditions.
7807 // Allocate the branch condition registers instead.
7808 current.isconst=0;
7809 current.wasconst=0;
7810 regs[i].wasconst=0;
7811 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7812 }
7813 else
7814 {
7815 dops[i].ooo=1;
7816 delayslot_alloc(&current,i+1);
7817 }
7818 }
7819 else
7820 // Don't alloc the delay slot yet because we might not execute it
7821 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7822 {
7823 current.isconst=0;
7824 current.wasconst=0;
7825 regs[i].wasconst=0;
7826 alloc_cc(&current,i);
7827 dirty_reg(&current,CCREG);
7828 alloc_reg(&current,i,dops[i].rs1);
7829 alloc_reg(&current,i,dops[i].rs2);
7830 }
7831 else
7832 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7833 {
7834 current.isconst=0;
7835 current.wasconst=0;
7836 regs[i].wasconst=0;
7837 alloc_cc(&current,i);
7838 dirty_reg(&current,CCREG);
7839 alloc_reg(&current,i,dops[i].rs1);
7840 }
7841 ds=1;
7842 //current.isconst=0;
7843 break;
7844 case SJUMP:
7845 //current.isconst=0;
7846 //current.wasconst=0;
7847 //regs[i].wasconst=0;
7848 clear_const(&current,dops[i].rs1);
7849 clear_const(&current,dops[i].rt1);
7850 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
7851 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
7852 {
7853 alloc_cc(&current,i);
7854 dirty_reg(&current,CCREG);
7855 alloc_reg(&current,i,dops[i].rs1);
7856 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
7857 alloc_reg(&current,i,31);
7858 dirty_reg(&current,31);
7859 //#ifdef REG_PREFETCH
7860 //alloc_reg(&current,i,PTEMP);
7861 //#endif
7862 }
7863 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7864 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7865 // Allocate the branch condition registers instead.
7866 current.isconst=0;
7867 current.wasconst=0;
7868 regs[i].wasconst=0;
7869 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7870 }
7871 else
7872 {
7873 dops[i].ooo=1;
7874 delayslot_alloc(&current,i+1);
7875 }
7876 }
7877 else
7878 // Don't alloc the delay slot yet because we might not execute it
7879 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
7880 {
7881 current.isconst=0;
7882 current.wasconst=0;
7883 regs[i].wasconst=0;
7884 alloc_cc(&current,i);
7885 dirty_reg(&current,CCREG);
7886 alloc_reg(&current,i,dops[i].rs1);
7887 }
7888 ds=1;
7889 //current.isconst=0;
7890 break;
7891 case IMM16:
7892 imm16_alloc(&current,i);
7893 break;
7894 case LOAD:
7895 case LOADLR:
7896 load_alloc(&current,i);
7897 break;
7898 case STORE:
7899 case STORELR:
7900 store_alloc(&current,i);
7901 break;
7902 case ALU:
7903 alu_alloc(&current,i);
7904 break;
7905 case SHIFT:
7906 shift_alloc(&current,i);
7907 break;
7908 case MULTDIV:
7909 multdiv_alloc(&current,i);
7910 break;
7911 case SHIFTIMM:
7912 shiftimm_alloc(&current,i);
7913 break;
7914 case MOV:
7915 mov_alloc(&current,i);
7916 break;
7917 case COP0:
7918 cop0_alloc(&current,i);
7919 break;
7920 case COP1:
7921 break;
7922 case COP2:
7923 cop2_alloc(&current,i);
7924 break;
7925 case C1LS:
7926 c1ls_alloc(&current,i);
7927 break;
7928 case C2LS:
7929 c2ls_alloc(&current,i);
7930 break;
7931 case C2OP:
7932 c2op_alloc(&current,i);
7933 break;
7934 case SYSCALL:
7935 case HLECALL:
7936 case INTCALL:
7937 syscall_alloc(&current,i);
7938 break;
7939 case SPAN:
7940 pagespan_alloc(&current,i);
7941 break;
7942 }
7943
7944 // Create entry (branch target) regmap
7945 for(hr=0;hr<HOST_REGS;hr++)
7946 {
7947 int r,or;
7948 r=current.regmap[hr];
7949 if(r>=0) {
7950 if(r!=regmap_pre[i][hr]) {
7951 // TODO: delay slot (?)
7952 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7953 if(or<0||(r&63)>=TEMPREG){
7954 regs[i].regmap_entry[hr]=-1;
7955 }
7956 else
7957 {
7958 // Just move it to a different register
7959 regs[i].regmap_entry[hr]=r;
7960 // If it was dirty before, it's still dirty
7961 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7962 }
7963 }
7964 else
7965 {
7966 // Unneeded
7967 if(r==0){
7968 regs[i].regmap_entry[hr]=0;
7969 }
7970 else
7971 {
7972 assert(r<64);
7973 if((current.u>>r)&1) {
7974 regs[i].regmap_entry[hr]=-1;
7975 //regs[i].regmap[hr]=-1;
7976 current.regmap[hr]=-1;
7977 }else
7978 regs[i].regmap_entry[hr]=r;
7979 }
7980 }
7981 } else {
7982 // Branches expect CCREG to be allocated at the target
7983 if(regmap_pre[i][hr]==CCREG)
7984 regs[i].regmap_entry[hr]=CCREG;
7985 else
7986 regs[i].regmap_entry[hr]=-1;
7987 }
7988 }
7989 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7990 }
7991
7992 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
7993 current.waswritten|=1<<dops[i-1].rs1;
7994 current.waswritten&=~(1<<dops[i].rt1);
7995 current.waswritten&=~(1<<dops[i].rt2);
7996 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
7997 current.waswritten&=~(1<<dops[i].rs1);
7998
7999 /* Branch post-alloc */
8000 if(i>0)
8001 {
8002 current.wasdirty=current.dirty;
8003 switch(dops[i-1].itype) {
8004 case UJUMP:
8005 memcpy(&branch_regs[i-1],&current,sizeof(current));
8006 branch_regs[i-1].isconst=0;
8007 branch_regs[i-1].wasconst=0;
8008 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8009 alloc_cc(&branch_regs[i-1],i-1);
8010 dirty_reg(&branch_regs[i-1],CCREG);
8011 if(dops[i-1].rt1==31) { // JAL
8012 alloc_reg(&branch_regs[i-1],i-1,31);
8013 dirty_reg(&branch_regs[i-1],31);
8014 }
8015 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8016 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8017 break;
8018 case RJUMP:
8019 memcpy(&branch_regs[i-1],&current,sizeof(current));
8020 branch_regs[i-1].isconst=0;
8021 branch_regs[i-1].wasconst=0;
8022 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8023 alloc_cc(&branch_regs[i-1],i-1);
8024 dirty_reg(&branch_regs[i-1],CCREG);
8025 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
8026 if(dops[i-1].rt1!=0) { // JALR
8027 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
8028 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
8029 }
8030 #ifdef USE_MINI_HT
8031 if(dops[i-1].rs1==31) { // JALR
8032 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8033 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8034 }
8035 #endif
8036 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8037 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8038 break;
8039 case CJUMP:
8040 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
8041 {
8042 alloc_cc(&current,i-1);
8043 dirty_reg(&current,CCREG);
8044 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
8045 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
8046 // The delay slot overwrote one of our conditions
8047 // Delay slot goes after the test (in order)
8048 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8049 current.u|=1;
8050 delayslot_alloc(&current,i);
8051 current.isconst=0;
8052 }
8053 else
8054 {
8055 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8056 // Alloc the branch condition registers
8057 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
8058 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
8059 }
8060 memcpy(&branch_regs[i-1],&current,sizeof(current));
8061 branch_regs[i-1].isconst=0;
8062 branch_regs[i-1].wasconst=0;
8063 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8064 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8065 }
8066 else
8067 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
8068 {
8069 alloc_cc(&current,i-1);
8070 dirty_reg(&current,CCREG);
8071 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8072 // The delay slot overwrote the branch condition
8073 // Delay slot goes after the test (in order)
8074 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8075 current.u|=1;
8076 delayslot_alloc(&current,i);
8077 current.isconst=0;
8078 }
8079 else
8080 {
8081 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8082 // Alloc the branch condition register
8083 alloc_reg(&current,i-1,dops[i-1].rs1);
8084 }
8085 memcpy(&branch_regs[i-1],&current,sizeof(current));
8086 branch_regs[i-1].isconst=0;
8087 branch_regs[i-1].wasconst=0;
8088 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8089 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8090 }
8091 else
8092 // Alloc the delay slot in case the branch is taken
8093 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
8094 {
8095 memcpy(&branch_regs[i-1],&current,sizeof(current));
8096 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8097 alloc_cc(&branch_regs[i-1],i);
8098 dirty_reg(&branch_regs[i-1],CCREG);
8099 delayslot_alloc(&branch_regs[i-1],i);
8100 branch_regs[i-1].isconst=0;
8101 alloc_reg(&current,i,CCREG); // Not taken path
8102 dirty_reg(&current,CCREG);
8103 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8104 }
8105 else
8106 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
8107 {
8108 memcpy(&branch_regs[i-1],&current,sizeof(current));
8109 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8110 alloc_cc(&branch_regs[i-1],i);
8111 dirty_reg(&branch_regs[i-1],CCREG);
8112 delayslot_alloc(&branch_regs[i-1],i);
8113 branch_regs[i-1].isconst=0;
8114 alloc_reg(&current,i,CCREG); // Not taken path
8115 dirty_reg(&current,CCREG);
8116 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8117 }
8118 break;
8119 case SJUMP:
8120 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
8121 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
8122 {
8123 alloc_cc(&current,i-1);
8124 dirty_reg(&current,CCREG);
8125 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8126 // The delay slot overwrote the branch condition
8127 // Delay slot goes after the test (in order)
8128 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8129 current.u|=1;
8130 delayslot_alloc(&current,i);
8131 current.isconst=0;
8132 }
8133 else
8134 {
8135 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8136 // Alloc the branch condition register
8137 alloc_reg(&current,i-1,dops[i-1].rs1);
8138 }
8139 memcpy(&branch_regs[i-1],&current,sizeof(current));
8140 branch_regs[i-1].isconst=0;
8141 branch_regs[i-1].wasconst=0;
8142 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8143 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8144 }
8145 else
8146 // Alloc the delay slot in case the branch is taken
8147 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
8148 {
8149 memcpy(&branch_regs[i-1],&current,sizeof(current));
8150 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8151 alloc_cc(&branch_regs[i-1],i);
8152 dirty_reg(&branch_regs[i-1],CCREG);
8153 delayslot_alloc(&branch_regs[i-1],i);
8154 branch_regs[i-1].isconst=0;
8155 alloc_reg(&current,i,CCREG); // Not taken path
8156 dirty_reg(&current,CCREG);
8157 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8158 }
8159 // FIXME: BLTZAL/BGEZAL
8160 if(dops[i-1].opcode2&0x10) { // BxxZAL
8161 alloc_reg(&branch_regs[i-1],i-1,31);
8162 dirty_reg(&branch_regs[i-1],31);
8163 }
8164 break;
8165 }
8166
8167 if (dops[i-1].is_ujump)
8168 {
8169 if(dops[i-1].rt1==31) // JAL/JALR
8170 {
8171 // Subroutine call will return here, don't alloc any registers
8172 current.dirty=0;
8173 clear_all_regs(current.regmap);
8174 alloc_reg(&current,i,CCREG);
8175 dirty_reg(&current,CCREG);
8176 }
8177 else if(i+1<slen)
8178 {
8179 // Internal branch will jump here, match registers to caller
8180 current.dirty=0;
8181 clear_all_regs(current.regmap);
8182 alloc_reg(&current,i,CCREG);
8183 dirty_reg(&current,CCREG);
8184 for(j=i-1;j>=0;j--)
8185 {
8186 if(ba[j]==start+i*4+4) {
8187 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8188 current.dirty=branch_regs[j].dirty;
8189 break;
8190 }
8191 }
8192 while(j>=0) {
8193 if(ba[j]==start+i*4+4) {
8194 for(hr=0;hr<HOST_REGS;hr++) {
8195 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8196 current.regmap[hr]=-1;
8197 }
8198 current.dirty&=branch_regs[j].dirty;
8199 }
8200 }
8201 j--;
8202 }
8203 }
8204 }
8205 }
8206
8207 // Count cycles in between branches
8208 ccadj[i]=cc;
8209 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
8210 {
8211 cc=0;
8212 }
8213#if !defined(DRC_DBG)
8214 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8215 {
8216 // this should really be removed since the real stalls have been implemented,
8217 // but doing so causes sizeable perf regression against the older version
8218 u_int gtec = gte_cycletab[source[i] & 0x3f];
8219 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8220 }
8221 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
8222 {
8223 cc+=4;
8224 }
8225 else if(dops[i].itype==C2LS)
8226 {
8227 // same as with C2OP
8228 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8229 }
8230#endif
8231 else
8232 {
8233 cc++;
8234 }
8235
8236 if(!dops[i].is_ds) {
8237 regs[i].dirty=current.dirty;
8238 regs[i].isconst=current.isconst;
8239 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8240 }
8241 for(hr=0;hr<HOST_REGS;hr++) {
8242 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8243 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8244 regs[i].wasconst&=~(1<<hr);
8245 }
8246 }
8247 }
8248 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8249 regs[i].waswritten=current.waswritten;
8250 }
8251
8252 /* Pass 4 - Cull unused host registers */
8253
8254 uint64_t nr=0;
8255
8256 for (i=slen-1;i>=0;i--)
8257 {
8258 int hr;
8259 if(dops[i].is_jump)
8260 {
8261 if(ba[i]<start || ba[i]>=(start+slen*4))
8262 {
8263 // Branch out of this block, don't need anything
8264 nr=0;
8265 }
8266 else
8267 {
8268 // Internal branch
8269 // Need whatever matches the target
8270 nr=0;
8271 int t=(ba[i]-start)>>2;
8272 for(hr=0;hr<HOST_REGS;hr++)
8273 {
8274 if(regs[i].regmap_entry[hr]>=0) {
8275 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8276 }
8277 }
8278 }
8279 // Conditional branch may need registers for following instructions
8280 if (!dops[i].is_ujump)
8281 {
8282 if(i<slen-2) {
8283 nr|=needed_reg[i+2];
8284 for(hr=0;hr<HOST_REGS;hr++)
8285 {
8286 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8287 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8288 }
8289 }
8290 }
8291 // Don't need stuff which is overwritten
8292 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8293 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8294 // Merge in delay slot
8295 for(hr=0;hr<HOST_REGS;hr++)
8296 {
8297 if(dops[i+1].rt1&&dops[i+1].rt1==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8298 if(dops[i+1].rt2&&dops[i+1].rt2==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8299 if(dops[i+1].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8300 if(dops[i+1].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8301 if(dops[i+1].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8302 if(dops[i+1].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8303 if(ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
8304 if(regmap_pre[i][hr]==ROREG) nr|=1<<hr;
8305 if(regs[i].regmap_entry[hr]==ROREG) nr|=1<<hr;
8306 }
8307 if(dops[i+1].is_store) {
8308 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8309 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8310 }
8311 }
8312 }
8313 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8314 {
8315 // SYSCALL instruction (software interrupt)
8316 nr=0;
8317 }
8318 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8319 {
8320 // ERET instruction (return from interrupt)
8321 nr=0;
8322 }
8323 else // Non-branch
8324 {
8325 if(i<slen-1) {
8326 for(hr=0;hr<HOST_REGS;hr++) {
8327 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8328 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8329 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8330 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8331 }
8332 }
8333 }
8334 for(hr=0;hr<HOST_REGS;hr++)
8335 {
8336 // Overwritten registers are not needed
8337 if(dops[i].rt1&&dops[i].rt1==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8338 if(dops[i].rt2&&dops[i].rt2==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8339 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8340 // Source registers are needed
8341 if(dops[i].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8342 if(dops[i].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8343 if(dops[i].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8344 if(dops[i].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8345 if(ram_offset && (dops[i].is_load || dops[i].is_store)) {
8346 if(regmap_pre[i][hr]==ROREG) nr|=1<<hr;
8347 if(regs[i].regmap_entry[hr]==ROREG) nr|=1<<hr;
8348 }
8349 if(dops[i].is_store) {
8350 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8351 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8352 }
8353 // Don't store a register immediately after writing it,
8354 // may prevent dual-issue.
8355 // But do so if this is a branch target, otherwise we
8356 // might have to load the register before the branch.
8357 if(i>0&&!dops[i].bt&&((regs[i].wasdirty>>hr)&1)) {
8358 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8359 if(dops[i-1].rt1==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8360 if(dops[i-1].rt2==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8361 }
8362 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8363 if(dops[i-1].rt1==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8364 if(dops[i-1].rt2==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8365 }
8366 }
8367 }
8368 // Cycle count is needed at branches. Assume it is needed at the target too.
8369 if(i==0||dops[i].bt||dops[i].itype==CJUMP||dops[i].itype==SPAN) {
8370 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8371 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8372 }
8373 // Save it
8374 needed_reg[i]=nr;
8375
8376 // Deallocate unneeded registers
8377 for(hr=0;hr<HOST_REGS;hr++)
8378 {
8379 if(!((nr>>hr)&1)) {
8380 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8381 if(dops[i].is_jump)
8382 {
8383 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
8384 if (dops[i+1].is_load || dops[i+1].is_store)
8385 map1 = ROREG;
8386 if (dops[i+1].is_store)
8387 map2 = INVCP;
8388 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
8389 temp = FTEMP;
8390 if((regs[i].regmap[hr]&63)!=dops[i].rs1 && (regs[i].regmap[hr]&63)!=dops[i].rs2 &&
8391 (regs[i].regmap[hr]&63)!=dops[i].rt1 && (regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8392 (regs[i].regmap[hr]&63)!=dops[i+1].rt1 && (regs[i].regmap[hr]&63)!=dops[i+1].rt2 &&
8393 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
8394 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8395 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8396 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8397 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
8398 {
8399 regs[i].regmap[hr]=-1;
8400 regs[i].isconst&=~(1<<hr);
8401 if((branch_regs[i].regmap[hr]&63)!=dops[i].rs1 && (branch_regs[i].regmap[hr]&63)!=dops[i].rs2 &&
8402 (branch_regs[i].regmap[hr]&63)!=dops[i].rt1 && (branch_regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8403 (branch_regs[i].regmap[hr]&63)!=dops[i+1].rt1 && (branch_regs[i].regmap[hr]&63)!=dops[i+1].rt2 &&
8404 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
8405 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8406 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8407 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8408 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
8409 {
8410 branch_regs[i].regmap[hr]=-1;
8411 branch_regs[i].regmap_entry[hr]=-1;
8412 if (!dops[i].is_ujump)
8413 {
8414 if (i < slen-2) {
8415 regmap_pre[i+2][hr]=-1;
8416 regs[i+2].wasconst&=~(1<<hr);
8417 }
8418 }
8419 }
8420 }
8421 }
8422 else
8423 {
8424 // Non-branch
8425 if(i>0)
8426 {
8427 int map1 = -1, map2 = -1, temp=-1;
8428 if (dops[i].is_load || dops[i].is_store)
8429 map1 = ROREG;
8430 if (dops[i].is_store)
8431 map2 = INVCP;
8432 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
8433 temp = FTEMP;
8434 if((regs[i].regmap[hr]&63)!=dops[i].rt1 && (regs[i].regmap[hr]&63)!=dops[i].rt2 &&
8435 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8436 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
8437 (dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG))
8438 {
8439 if(i<slen-1&&!dops[i].is_ds) {
8440 assert(regs[i].regmap[hr]<64);
8441 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8442 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8443 {
8444 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8445 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8446 }
8447 regmap_pre[i+1][hr]=-1;
8448 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8449 regs[i+1].wasconst&=~(1<<hr);
8450 }
8451 regs[i].regmap[hr]=-1;
8452 regs[i].isconst&=~(1<<hr);
8453 }
8454 }
8455 }
8456 } // if needed
8457 } // for hr
8458 }
8459
8460 /* Pass 5 - Pre-allocate registers */
8461
8462 // If a register is allocated during a loop, try to allocate it for the
8463 // entire loop, if possible. This avoids loading/storing registers
8464 // inside of the loop.
8465
8466 signed char f_regmap[HOST_REGS];
8467 clear_all_regs(f_regmap);
8468 for(i=0;i<slen-1;i++)
8469 {
8470 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8471 {
8472 if(ba[i]>=start && ba[i]<(start+i*4))
8473 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8474 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8475 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
8476 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
8477 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8478 {
8479 int t=(ba[i]-start)>>2;
8480 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8481 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8482 for(hr=0;hr<HOST_REGS;hr++)
8483 {
8484 if(regs[i].regmap[hr]>=0) {
8485 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8486 // dealloc old register
8487 int n;
8488 for(n=0;n<HOST_REGS;n++)
8489 {
8490 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8491 }
8492 // and alloc new one
8493 f_regmap[hr]=regs[i].regmap[hr];
8494 }
8495 }
8496 if(branch_regs[i].regmap[hr]>=0) {
8497 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8498 // dealloc old register
8499 int n;
8500 for(n=0;n<HOST_REGS;n++)
8501 {
8502 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8503 }
8504 // and alloc new one
8505 f_regmap[hr]=branch_regs[i].regmap[hr];
8506 }
8507 }
8508 if(dops[i].ooo) {
8509 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8510 f_regmap[hr]=branch_regs[i].regmap[hr];
8511 }else{
8512 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8513 f_regmap[hr]=branch_regs[i].regmap[hr];
8514 }
8515 // Avoid dirty->clean transition
8516 #ifdef DESTRUCTIVE_WRITEBACK
8517 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8518 #endif
8519 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8520 // case above, however it's always a good idea. We can't hoist the
8521 // load if the register was already allocated, so there's no point
8522 // wasting time analyzing most of these cases. It only "succeeds"
8523 // when the mapping was different and the load can be replaced with
8524 // a mov, which is of negligible benefit. So such cases are
8525 // skipped below.
8526 if(f_regmap[hr]>0) {
8527 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8528 int r=f_regmap[hr];
8529 for(j=t;j<=i;j++)
8530 {
8531 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8532 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8533 assert(r < 64);
8534 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8535 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8536 int k;
8537 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8538 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8539 if(r>63) {
8540 if(get_reg(regs[i].regmap,r&63)<0) break;
8541 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8542 }
8543 k=i;
8544 while(k>1&&regs[k-1].regmap[hr]==-1) {
8545 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8546 //printf("no free regs for store %x\n",start+(k-1)*4);
8547 break;
8548 }
8549 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8550 //printf("no-match due to different register\n");
8551 break;
8552 }
8553 if (dops[k-2].is_jump) {
8554 //printf("no-match due to branch\n");
8555 break;
8556 }
8557 // call/ret fast path assumes no registers allocated
8558 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8559 break;
8560 }
8561 assert(r < 64);
8562 k--;
8563 }
8564 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8565 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8566 while(k<i) {
8567 regs[k].regmap_entry[hr]=f_regmap[hr];
8568 regs[k].regmap[hr]=f_regmap[hr];
8569 regmap_pre[k+1][hr]=f_regmap[hr];
8570 regs[k].wasdirty&=~(1<<hr);
8571 regs[k].dirty&=~(1<<hr);
8572 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8573 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8574 regs[k].wasconst&=~(1<<hr);
8575 regs[k].isconst&=~(1<<hr);
8576 k++;
8577 }
8578 }
8579 else {
8580 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8581 break;
8582 }
8583 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8584 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8585 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8586 regs[i].regmap_entry[hr]=f_regmap[hr];
8587 regs[i].regmap[hr]=f_regmap[hr];
8588 regs[i].wasdirty&=~(1<<hr);
8589 regs[i].dirty&=~(1<<hr);
8590 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8591 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8592 regs[i].wasconst&=~(1<<hr);
8593 regs[i].isconst&=~(1<<hr);
8594 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8595 branch_regs[i].wasdirty&=~(1<<hr);
8596 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8597 branch_regs[i].regmap[hr]=f_regmap[hr];
8598 branch_regs[i].dirty&=~(1<<hr);
8599 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8600 branch_regs[i].wasconst&=~(1<<hr);
8601 branch_regs[i].isconst&=~(1<<hr);
8602 if (!dops[i].is_ujump) {
8603 regmap_pre[i+2][hr]=f_regmap[hr];
8604 regs[i+2].wasdirty&=~(1<<hr);
8605 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8606 }
8607 }
8608 }
8609 for(k=t;k<j;k++) {
8610 // Alloc register clean at beginning of loop,
8611 // but may dirty it in pass 6
8612 regs[k].regmap_entry[hr]=f_regmap[hr];
8613 regs[k].regmap[hr]=f_regmap[hr];
8614 regs[k].dirty&=~(1<<hr);
8615 regs[k].wasconst&=~(1<<hr);
8616 regs[k].isconst&=~(1<<hr);
8617 if (dops[k].is_jump) {
8618 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8619 branch_regs[k].regmap[hr]=f_regmap[hr];
8620 branch_regs[k].dirty&=~(1<<hr);
8621 branch_regs[k].wasconst&=~(1<<hr);
8622 branch_regs[k].isconst&=~(1<<hr);
8623 if (!dops[k].is_ujump) {
8624 regmap_pre[k+2][hr]=f_regmap[hr];
8625 regs[k+2].wasdirty&=~(1<<hr);
8626 }
8627 }
8628 else
8629 {
8630 regmap_pre[k+1][hr]=f_regmap[hr];
8631 regs[k+1].wasdirty&=~(1<<hr);
8632 }
8633 }
8634 if(regs[j].regmap[hr]==f_regmap[hr])
8635 regs[j].regmap_entry[hr]=f_regmap[hr];
8636 break;
8637 }
8638 if(j==i) break;
8639 if(regs[j].regmap[hr]>=0)
8640 break;
8641 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8642 //printf("no-match due to different register\n");
8643 break;
8644 }
8645 if (dops[j].is_ujump)
8646 {
8647 // Stop on unconditional branch
8648 break;
8649 }
8650 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8651 {
8652 if(dops[j].ooo) {
8653 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8654 break;
8655 }else{
8656 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8657 break;
8658 }
8659 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8660 //printf("no-match due to different register (branch)\n");
8661 break;
8662 }
8663 }
8664 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8665 //printf("No free regs for store %x\n",start+j*4);
8666 break;
8667 }
8668 assert(f_regmap[hr]<64);
8669 }
8670 }
8671 }
8672 }
8673 }
8674 }else{
8675 // Non branch or undetermined branch target
8676 for(hr=0;hr<HOST_REGS;hr++)
8677 {
8678 if(hr!=EXCLUDE_REG) {
8679 if(regs[i].regmap[hr]>=0) {
8680 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8681 // dealloc old register
8682 int n;
8683 for(n=0;n<HOST_REGS;n++)
8684 {
8685 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8686 }
8687 // and alloc new one
8688 f_regmap[hr]=regs[i].regmap[hr];
8689 }
8690 }
8691 }
8692 }
8693 // Try to restore cycle count at branch targets
8694 if(dops[i].bt) {
8695 for(j=i;j<slen-1;j++) {
8696 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8697 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8698 //printf("no free regs for store %x\n",start+j*4);
8699 break;
8700 }
8701 }
8702 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8703 int k=i;
8704 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8705 while(k<j) {
8706 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8707 regs[k].regmap[HOST_CCREG]=CCREG;
8708 regmap_pre[k+1][HOST_CCREG]=CCREG;
8709 regs[k+1].wasdirty|=1<<HOST_CCREG;
8710 regs[k].dirty|=1<<HOST_CCREG;
8711 regs[k].wasconst&=~(1<<HOST_CCREG);
8712 regs[k].isconst&=~(1<<HOST_CCREG);
8713 k++;
8714 }
8715 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8716 }
8717 // Work backwards from the branch target
8718 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8719 {
8720 //printf("Extend backwards\n");
8721 int k;
8722 k=i;
8723 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8724 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8725 //printf("no free regs for store %x\n",start+(k-1)*4);
8726 break;
8727 }
8728 k--;
8729 }
8730 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8731 //printf("Extend CC, %x ->\n",start+k*4);
8732 while(k<=i) {
8733 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8734 regs[k].regmap[HOST_CCREG]=CCREG;
8735 regmap_pre[k+1][HOST_CCREG]=CCREG;
8736 regs[k+1].wasdirty|=1<<HOST_CCREG;
8737 regs[k].dirty|=1<<HOST_CCREG;
8738 regs[k].wasconst&=~(1<<HOST_CCREG);
8739 regs[k].isconst&=~(1<<HOST_CCREG);
8740 k++;
8741 }
8742 }
8743 else {
8744 //printf("Fail Extend CC, %x ->\n",start+k*4);
8745 }
8746 }
8747 }
8748 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8749 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8750 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8751 {
8752 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8753 }
8754 }
8755 }
8756
8757 // This allocates registers (if possible) one instruction prior
8758 // to use, which can avoid a load-use penalty on certain CPUs.
8759 for(i=0;i<slen-1;i++)
8760 {
8761 if (!i || !dops[i-1].is_jump)
8762 {
8763 if(!dops[i+1].bt)
8764 {
8765 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8766 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8767 {
8768 if(dops[i+1].rs1) {
8769 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8770 {
8771 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8772 {
8773 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8774 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8775 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8776 regs[i].isconst&=~(1<<hr);
8777 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8778 constmap[i][hr]=constmap[i+1][hr];
8779 regs[i+1].wasdirty&=~(1<<hr);
8780 regs[i].dirty&=~(1<<hr);
8781 }
8782 }
8783 }
8784 if(dops[i+1].rs2) {
8785 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8786 {
8787 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8788 {
8789 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8790 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8791 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8792 regs[i].isconst&=~(1<<hr);
8793 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8794 constmap[i][hr]=constmap[i+1][hr];
8795 regs[i+1].wasdirty&=~(1<<hr);
8796 regs[i].dirty&=~(1<<hr);
8797 }
8798 }
8799 }
8800 // Preload target address for load instruction (non-constant)
8801 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8802 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8803 {
8804 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8805 {
8806 regs[i].regmap[hr]=dops[i+1].rs1;
8807 regmap_pre[i+1][hr]=dops[i+1].rs1;
8808 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8809 regs[i].isconst&=~(1<<hr);
8810 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8811 constmap[i][hr]=constmap[i+1][hr];
8812 regs[i+1].wasdirty&=~(1<<hr);
8813 regs[i].dirty&=~(1<<hr);
8814 }
8815 }
8816 }
8817 // Load source into target register
8818 if(dops[i+1].lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8819 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8820 {
8821 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8822 {
8823 regs[i].regmap[hr]=dops[i+1].rs1;
8824 regmap_pre[i+1][hr]=dops[i+1].rs1;
8825 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8826 regs[i].isconst&=~(1<<hr);
8827 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8828 constmap[i][hr]=constmap[i+1][hr];
8829 regs[i+1].wasdirty&=~(1<<hr);
8830 regs[i].dirty&=~(1<<hr);
8831 }
8832 }
8833 }
8834 // Address for store instruction (non-constant)
8835 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8836 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8837 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8838 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8839 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8840 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8841 assert(hr>=0);
8842 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8843 {
8844 regs[i].regmap[hr]=dops[i+1].rs1;
8845 regmap_pre[i+1][hr]=dops[i+1].rs1;
8846 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8847 regs[i].isconst&=~(1<<hr);
8848 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8849 constmap[i][hr]=constmap[i+1][hr];
8850 regs[i+1].wasdirty&=~(1<<hr);
8851 regs[i].dirty&=~(1<<hr);
8852 }
8853 }
8854 }
8855 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8856 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8857 int nr;
8858 hr=get_reg(regs[i+1].regmap,FTEMP);
8859 assert(hr>=0);
8860 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8861 {
8862 regs[i].regmap[hr]=dops[i+1].rs1;
8863 regmap_pre[i+1][hr]=dops[i+1].rs1;
8864 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8865 regs[i].isconst&=~(1<<hr);
8866 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8867 constmap[i][hr]=constmap[i+1][hr];
8868 regs[i+1].wasdirty&=~(1<<hr);
8869 regs[i].dirty&=~(1<<hr);
8870 }
8871 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8872 {
8873 // move it to another register
8874 regs[i+1].regmap[hr]=-1;
8875 regmap_pre[i+2][hr]=-1;
8876 regs[i+1].regmap[nr]=FTEMP;
8877 regmap_pre[i+2][nr]=FTEMP;
8878 regs[i].regmap[nr]=dops[i+1].rs1;
8879 regmap_pre[i+1][nr]=dops[i+1].rs1;
8880 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8881 regs[i].isconst&=~(1<<nr);
8882 regs[i+1].isconst&=~(1<<nr);
8883 regs[i].dirty&=~(1<<nr);
8884 regs[i+1].wasdirty&=~(1<<nr);
8885 regs[i+1].dirty&=~(1<<nr);
8886 regs[i+2].wasdirty&=~(1<<nr);
8887 }
8888 }
8889 }
8890 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
8891 if(dops[i+1].itype==LOAD)
8892 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
8893 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8894 hr=get_reg(regs[i+1].regmap,FTEMP);
8895 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8896 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8897 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8898 }
8899 if(hr>=0&&regs[i].regmap[hr]<0) {
8900 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8901 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8902 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8903 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8904 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8905 regs[i].isconst&=~(1<<hr);
8906 regs[i+1].wasdirty&=~(1<<hr);
8907 regs[i].dirty&=~(1<<hr);
8908 }
8909 }
8910 }
8911 }
8912 }
8913 }
8914 }
8915
8916 /* Pass 6 - Optimize clean/dirty state */
8917 clean_registers(0,slen-1,1);
8918
8919 /* Pass 7 - Identify 32-bit registers */
8920 for (i=slen-1;i>=0;i--)
8921 {
8922 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8923 {
8924 // Conditional branch
8925 if((source[i]>>16)!=0x1000&&i<slen-2) {
8926 // Mark this address as a branch target since it may be called
8927 // upon return from interrupt
8928 dops[i+2].bt=1;
8929 }
8930 }
8931 }
8932
8933 if(dops[slen-1].itype==SPAN) {
8934 dops[slen-1].bt=1; // Mark as a branch target so instruction can restart after exception
8935 }
8936
8937#ifdef DISASM
8938 /* Debug/disassembly */
8939 for(i=0;i<slen;i++)
8940 {
8941 printf("U:");
8942 int r;
8943 for(r=1;r<=CCREG;r++) {
8944 if((unneeded_reg[i]>>r)&1) {
8945 if(r==HIREG) printf(" HI");
8946 else if(r==LOREG) printf(" LO");
8947 else printf(" r%d",r);
8948 }
8949 }
8950 printf("\n");
8951 #if defined(__i386__) || defined(__x86_64__)
8952 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8953 #endif
8954 #ifdef __arm__
8955 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8956 #endif
8957 #if defined(__i386__) || defined(__x86_64__)
8958 printf("needs: ");
8959 if(needed_reg[i]&1) printf("eax ");
8960 if((needed_reg[i]>>1)&1) printf("ecx ");
8961 if((needed_reg[i]>>2)&1) printf("edx ");
8962 if((needed_reg[i]>>3)&1) printf("ebx ");
8963 if((needed_reg[i]>>5)&1) printf("ebp ");
8964 if((needed_reg[i]>>6)&1) printf("esi ");
8965 if((needed_reg[i]>>7)&1) printf("edi ");
8966 printf("\n");
8967 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8968 printf("dirty: ");
8969 if(regs[i].wasdirty&1) printf("eax ");
8970 if((regs[i].wasdirty>>1)&1) printf("ecx ");
8971 if((regs[i].wasdirty>>2)&1) printf("edx ");
8972 if((regs[i].wasdirty>>3)&1) printf("ebx ");
8973 if((regs[i].wasdirty>>5)&1) printf("ebp ");
8974 if((regs[i].wasdirty>>6)&1) printf("esi ");
8975 if((regs[i].wasdirty>>7)&1) printf("edi ");
8976 #endif
8977 #ifdef __arm__
8978 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
8979 printf("dirty: ");
8980 if(regs[i].wasdirty&1) printf("r0 ");
8981 if((regs[i].wasdirty>>1)&1) printf("r1 ");
8982 if((regs[i].wasdirty>>2)&1) printf("r2 ");
8983 if((regs[i].wasdirty>>3)&1) printf("r3 ");
8984 if((regs[i].wasdirty>>4)&1) printf("r4 ");
8985 if((regs[i].wasdirty>>5)&1) printf("r5 ");
8986 if((regs[i].wasdirty>>6)&1) printf("r6 ");
8987 if((regs[i].wasdirty>>7)&1) printf("r7 ");
8988 if((regs[i].wasdirty>>8)&1) printf("r8 ");
8989 if((regs[i].wasdirty>>9)&1) printf("r9 ");
8990 if((regs[i].wasdirty>>10)&1) printf("r10 ");
8991 if((regs[i].wasdirty>>12)&1) printf("r12 ");
8992 #endif
8993 printf("\n");
8994 disassemble_inst(i);
8995 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
8996 #if defined(__i386__) || defined(__x86_64__)
8997 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
8998 if(regs[i].dirty&1) printf("eax ");
8999 if((regs[i].dirty>>1)&1) printf("ecx ");
9000 if((regs[i].dirty>>2)&1) printf("edx ");
9001 if((regs[i].dirty>>3)&1) printf("ebx ");
9002 if((regs[i].dirty>>5)&1) printf("ebp ");
9003 if((regs[i].dirty>>6)&1) printf("esi ");
9004 if((regs[i].dirty>>7)&1) printf("edi ");
9005 #endif
9006 #ifdef __arm__
9007 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9008 if(regs[i].dirty&1) printf("r0 ");
9009 if((regs[i].dirty>>1)&1) printf("r1 ");
9010 if((regs[i].dirty>>2)&1) printf("r2 ");
9011 if((regs[i].dirty>>3)&1) printf("r3 ");
9012 if((regs[i].dirty>>4)&1) printf("r4 ");
9013 if((regs[i].dirty>>5)&1) printf("r5 ");
9014 if((regs[i].dirty>>6)&1) printf("r6 ");
9015 if((regs[i].dirty>>7)&1) printf("r7 ");
9016 if((regs[i].dirty>>8)&1) printf("r8 ");
9017 if((regs[i].dirty>>9)&1) printf("r9 ");
9018 if((regs[i].dirty>>10)&1) printf("r10 ");
9019 if((regs[i].dirty>>12)&1) printf("r12 ");
9020 #endif
9021 printf("\n");
9022 if(regs[i].isconst) {
9023 printf("constants: ");
9024 #if defined(__i386__) || defined(__x86_64__)
9025 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
9026 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
9027 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
9028 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
9029 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
9030 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
9031 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
9032 #endif
9033 #if defined(__arm__) || defined(__aarch64__)
9034 int r;
9035 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
9036 if ((regs[i].isconst >> r) & 1)
9037 printf(" r%d=%x", r, (u_int)constmap[i][r]);
9038 #endif
9039 printf("\n");
9040 }
9041 if(dops[i].is_jump) {
9042 #if defined(__i386__) || defined(__x86_64__)
9043 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9044 if(branch_regs[i].dirty&1) printf("eax ");
9045 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9046 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9047 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9048 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9049 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9050 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9051 #endif
9052 #ifdef __arm__
9053 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9054 if(branch_regs[i].dirty&1) printf("r0 ");
9055 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9056 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9057 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9058 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9059 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9060 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9061 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9062 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9063 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9064 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9065 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9066 #endif
9067 }
9068 }
9069#endif // DISASM
9070
9071 /* Pass 8 - Assembly */
9072 linkcount=0;stubcount=0;
9073 ds=0;is_delayslot=0;
9074 u_int dirty_pre=0;
9075 void *beginning=start_block();
9076 if((u_int)addr&1) {
9077 ds=1;
9078 pagespan_ds();
9079 }
9080 void *instr_addr0_override = NULL;
9081
9082 if (start == 0x80030000) {
9083 // nasty hack for the fastbios thing
9084 // override block entry to this code
9085 instr_addr0_override = out;
9086 emit_movimm(start,0);
9087 // abuse io address var as a flag that we
9088 // have already returned here once
9089 emit_readword(&address,1);
9090 emit_writeword(0,&pcaddr);
9091 emit_writeword(0,&address);
9092 emit_cmp(0,1);
9093 #ifdef __aarch64__
9094 emit_jeq(out + 4*2);
9095 emit_far_jump(new_dyna_leave);
9096 #else
9097 emit_jne(new_dyna_leave);
9098 #endif
9099 }
9100 for(i=0;i<slen;i++)
9101 {
9102 //if(ds) printf("ds: ");
9103 disassemble_inst(i);
9104 if(ds) {
9105 ds=0; // Skip delay slot
9106 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
9107 instr_addr[i] = NULL;
9108 } else {
9109 speculate_register_values(i);
9110 #ifndef DESTRUCTIVE_WRITEBACK
9111 if (i < 2 || !dops[i-2].is_ujump)
9112 {
9113 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9114 }
9115 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
9116 dirty_pre=branch_regs[i].dirty;
9117 }else{
9118 dirty_pre=regs[i].dirty;
9119 }
9120 #endif
9121 // write back
9122 if (i < 2 || !dops[i-2].is_ujump)
9123 {
9124 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9125 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9126 }
9127 // branch target entry point
9128 instr_addr[i] = out;
9129 assem_debug("<->\n");
9130 drc_dbg_emit_do_cmp(i);
9131
9132 // load regs
9133 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9134 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9135 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9136 address_generation(i,&regs[i],regs[i].regmap_entry);
9137 load_consts(regmap_pre[i],regs[i].regmap,i);
9138 if(dops[i].is_jump)
9139 {
9140 // Load the delay slot registers if necessary
9141 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9142 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9143 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9144 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9145 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
9146 load_regs(regs[i].regmap_entry,regs[i].regmap,ROREG,ROREG);
9147 if (dops[i+1].is_store)
9148 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9149 }
9150 else if(i+1<slen)
9151 {
9152 // Preload registers for following instruction
9153 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9154 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9155 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9156 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9157 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9158 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9159 }
9160 // TODO: if(is_ooo(i)) address_generation(i+1);
9161 if (dops[i].itype == CJUMP)
9162 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9163 if (ram_offset && (dops[i].is_load || dops[i].is_store))
9164 load_regs(regs[i].regmap_entry,regs[i].regmap,ROREG,ROREG);
9165 if (dops[i].is_store)
9166 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9167 // assemble
9168 switch(dops[i].itype) {
9169 case ALU:
9170 alu_assemble(i,&regs[i]);break;
9171 case IMM16:
9172 imm16_assemble(i,&regs[i]);break;
9173 case SHIFT:
9174 shift_assemble(i,&regs[i]);break;
9175 case SHIFTIMM:
9176 shiftimm_assemble(i,&regs[i]);break;
9177 case LOAD:
9178 load_assemble(i,&regs[i]);break;
9179 case LOADLR:
9180 loadlr_assemble(i,&regs[i]);break;
9181 case STORE:
9182 store_assemble(i,&regs[i]);break;
9183 case STORELR:
9184 storelr_assemble(i,&regs[i]);break;
9185 case COP0:
9186 cop0_assemble(i,&regs[i]);break;
9187 case COP1:
9188 cop1_assemble(i,&regs[i]);break;
9189 case C1LS:
9190 c1ls_assemble(i,&regs[i]);break;
9191 case COP2:
9192 cop2_assemble(i,&regs[i]);break;
9193 case C2LS:
9194 c2ls_assemble(i,&regs[i]);break;
9195 case C2OP:
9196 c2op_assemble(i,&regs[i]);break;
9197 case MULTDIV:
9198 multdiv_assemble(i,&regs[i]);
9199 multdiv_prepare_stall(i,&regs[i]);
9200 break;
9201 case MOV:
9202 mov_assemble(i,&regs[i]);break;
9203 case SYSCALL:
9204 syscall_assemble(i,&regs[i]);break;
9205 case HLECALL:
9206 hlecall_assemble(i,&regs[i]);break;
9207 case INTCALL:
9208 intcall_assemble(i,&regs[i]);break;
9209 case UJUMP:
9210 ujump_assemble(i,&regs[i]);ds=1;break;
9211 case RJUMP:
9212 rjump_assemble(i,&regs[i]);ds=1;break;
9213 case CJUMP:
9214 cjump_assemble(i,&regs[i]);ds=1;break;
9215 case SJUMP:
9216 sjump_assemble(i,&regs[i]);ds=1;break;
9217 case SPAN:
9218 pagespan_assemble(i,&regs[i]);break;
9219 }
9220 if (dops[i].is_ujump)
9221 literal_pool(1024);
9222 else
9223 literal_pool_jumpover(256);
9224 }
9225 }
9226
9227 assert(slen > 0);
9228 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9229 // no ending needed for this block since INTCALL never returns
9230 }
9231 // If the block did not end with an unconditional branch,
9232 // add a jump to the next instruction.
9233 else if (i > 1) {
9234 if (!dops[i-2].is_ujump && dops[i-1].itype != SPAN) {
9235 assert(!dops[i-1].is_jump);
9236 assert(i==slen);
9237 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9238 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9239 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9240 emit_loadreg(CCREG,HOST_CCREG);
9241 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9242 }
9243 else
9244 {
9245 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9246 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9247 }
9248 add_to_linker(out,start+i*4,0);
9249 emit_jmp(0);
9250 }
9251 }
9252 else
9253 {
9254 assert(i>0);
9255 assert(!dops[i-1].is_jump);
9256 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9257 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9258 emit_loadreg(CCREG,HOST_CCREG);
9259 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9260 add_to_linker(out,start+i*4,0);
9261 emit_jmp(0);
9262 }
9263
9264 // TODO: delay slot stubs?
9265 // Stubs
9266 for(i=0;i<stubcount;i++)
9267 {
9268 switch(stubs[i].type)
9269 {
9270 case LOADB_STUB:
9271 case LOADH_STUB:
9272 case LOADW_STUB:
9273 case LOADD_STUB:
9274 case LOADBU_STUB:
9275 case LOADHU_STUB:
9276 do_readstub(i);break;
9277 case STOREB_STUB:
9278 case STOREH_STUB:
9279 case STOREW_STUB:
9280 case STORED_STUB:
9281 do_writestub(i);break;
9282 case CC_STUB:
9283 do_ccstub(i);break;
9284 case INVCODE_STUB:
9285 do_invstub(i);break;
9286 case FP_STUB:
9287 do_cop1stub(i);break;
9288 case STORELR_STUB:
9289 do_unalignedwritestub(i);break;
9290 }
9291 }
9292
9293 if (instr_addr0_override)
9294 instr_addr[0] = instr_addr0_override;
9295
9296 /* Pass 9 - Linker */
9297 for(i=0;i<linkcount;i++)
9298 {
9299 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9300 literal_pool(64);
9301 if (!link_addr[i].ext)
9302 {
9303 void *stub = out;
9304 void *addr = check_addr(link_addr[i].target);
9305 emit_extjump(link_addr[i].addr, link_addr[i].target);
9306 if (addr) {
9307 set_jump_target(link_addr[i].addr, addr);
9308 add_jump_out(link_addr[i].target,stub);
9309 }
9310 else
9311 set_jump_target(link_addr[i].addr, stub);
9312 }
9313 else
9314 {
9315 // Internal branch
9316 int target=(link_addr[i].target-start)>>2;
9317 assert(target>=0&&target<slen);
9318 assert(instr_addr[target]);
9319 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9320 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9321 //#else
9322 set_jump_target(link_addr[i].addr, instr_addr[target]);
9323 //#endif
9324 }
9325 }
9326
9327 u_int source_len = slen*4;
9328 if (dops[slen-1].itype == INTCALL && source_len > 4)
9329 // no need to treat the last instruction as compiled
9330 // as interpreter fully handles it
9331 source_len -= 4;
9332
9333 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9334 copy = shadow;
9335
9336 // External Branch Targets (jump_in)
9337 for(i=0;i<slen;i++)
9338 {
9339 if(dops[i].bt||i==0)
9340 {
9341 if(instr_addr[i]) // TODO - delay slots (=null)
9342 {
9343 u_int vaddr=start+i*4;
9344 u_int page=get_page(vaddr);
9345 u_int vpage=get_vpage(vaddr);
9346 literal_pool(256);
9347 {
9348 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9349 assem_debug("jump_in: %x\n",start+i*4);
9350 ll_add(jump_dirty+vpage,vaddr,out);
9351 void *entry_point = do_dirty_stub(i, source_len);
9352 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9353 // If there was an existing entry in the hash table,
9354 // replace it with the new address.
9355 // Don't add new entries. We'll insert the
9356 // ones that actually get used in check_addr().
9357 struct ht_entry *ht_bin = hash_table_get(vaddr);
9358 if (ht_bin->vaddr[0] == vaddr)
9359 ht_bin->tcaddr[0] = entry_point;
9360 if (ht_bin->vaddr[1] == vaddr)
9361 ht_bin->tcaddr[1] = entry_point;
9362 }
9363 }
9364 }
9365 }
9366 // Write out the literal pool if necessary
9367 literal_pool(0);
9368 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9369 // Align code
9370 if(((u_int)out)&7) emit_addnop(13);
9371 #endif
9372 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9373 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9374 memcpy(copy, source, source_len);
9375 copy += source_len;
9376
9377 end_block(beginning);
9378
9379 // If we're within 256K of the end of the buffer,
9380 // start over from the beginning. (Is 256K enough?)
9381 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9382 out = ndrc->translation_cache;
9383
9384 // Trap writes to any of the pages we compiled
9385 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9386 invalid_code[i]=0;
9387 }
9388 inv_code_start=inv_code_end=~0;
9389
9390 // for PCSX we need to mark all mirrors too
9391 if(get_page(start)<(RAM_SIZE>>12))
9392 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9393 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9394 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9395 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9396
9397 /* Pass 10 - Free memory by expiring oldest blocks */
9398
9399 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9400 while(expirep!=end)
9401 {
9402 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9403 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
9404 uintptr_t base_offs_s = base_offs >> shift;
9405 inv_debug("EXP: Phase %d\n",expirep);
9406 switch((expirep>>11)&3)
9407 {
9408 case 0:
9409 // Clear jump_in and jump_dirty
9410 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
9411 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
9412 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
9413 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
9414 break;
9415 case 1:
9416 // Clear pointers
9417 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
9418 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
9419 break;
9420 case 2:
9421 // Clear hash table
9422 for(i=0;i<32;i++) {
9423 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9424 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
9425 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9426 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9427 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9428 ht_bin->vaddr[1] = -1;
9429 ht_bin->tcaddr[1] = NULL;
9430 }
9431 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
9432 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9433 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9434 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9435 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9436 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9437 ht_bin->vaddr[1] = -1;
9438 ht_bin->tcaddr[1] = NULL;
9439 }
9440 }
9441 break;
9442 case 3:
9443 // Clear jump_out
9444 if((expirep&2047)==0)
9445 do_clear_cache();
9446 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
9447 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
9448 break;
9449 }
9450 expirep=(expirep+1)&65535;
9451 }
9452#ifdef ASSEM_PRINT
9453 fflush(stdout);
9454#endif
9455 return 0;
9456}
9457
9458// vim:shiftwidth=2:expandtab