add unmodified Ari64 drc to track it's changes
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
25#include "../recomp.h"
26#include "../recomph.h" //include for function prototypes
27#include "../macros.h"
28#include "../r4300.h"
29#include "../ops.h"
30#include "../interupt.h"
31
32#include "../../memory/memory.h"
33
34#include <sys/mman.h>
35
36#ifdef __i386__
37#include "assem_x86.h"
38#endif
39#ifdef __x86_64__
40#include "assem_x64.h"
41#endif
42#ifdef __arm__
43#include "assem_arm.h"
44#endif
45
46#define MAXBLOCK 4096
47#define MAX_OUTPUT_BLOCK_SIZE 262144
48#define CLOCK_DIVIDER 2
49
50struct regstat
51{
52 signed char regmap_entry[HOST_REGS];
53 signed char regmap[HOST_REGS];
54 uint64_t was32;
55 uint64_t is32;
56 uint64_t wasdirty;
57 uint64_t dirty;
58 uint64_t u;
59 uint64_t uu;
60 u_int wasconst;
61 u_int isconst;
62 uint64_t constmap[HOST_REGS];
63};
64
65struct ll_entry
66{
67 u_int vaddr;
68 u_int reg32;
69 void *addr;
70 struct ll_entry *next;
71};
72
73 u_int start;
74 u_int *source;
75 u_int pagelimit;
76 char insn[MAXBLOCK][10];
77 u_char itype[MAXBLOCK];
78 u_char opcode[MAXBLOCK];
79 u_char opcode2[MAXBLOCK];
80 u_char bt[MAXBLOCK];
81 u_char rs1[MAXBLOCK];
82 u_char rs2[MAXBLOCK];
83 u_char rt1[MAXBLOCK];
84 u_char rt2[MAXBLOCK];
85 u_char us1[MAXBLOCK];
86 u_char us2[MAXBLOCK];
87 u_char dep1[MAXBLOCK];
88 u_char dep2[MAXBLOCK];
89 u_char lt1[MAXBLOCK];
90 int imm[MAXBLOCK];
91 u_int ba[MAXBLOCK];
92 char likely[MAXBLOCK];
93 char is_ds[MAXBLOCK];
94 uint64_t unneeded_reg[MAXBLOCK];
95 uint64_t unneeded_reg_upper[MAXBLOCK];
96 uint64_t branch_unneeded_reg[MAXBLOCK];
97 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
98 uint64_t p32[MAXBLOCK];
99 uint64_t pr32[MAXBLOCK];
100 signed char regmap_pre[MAXBLOCK][HOST_REGS];
101 signed char regmap[MAXBLOCK][HOST_REGS];
102 signed char regmap_entry[MAXBLOCK][HOST_REGS];
103 uint64_t constmap[MAXBLOCK][HOST_REGS];
104 uint64_t known_value[HOST_REGS];
105 u_int known_reg;
106 struct regstat regs[MAXBLOCK];
107 struct regstat branch_regs[MAXBLOCK];
108 u_int needed_reg[MAXBLOCK];
109 uint64_t requires_32bit[MAXBLOCK];
110 u_int wont_dirty[MAXBLOCK];
111 u_int will_dirty[MAXBLOCK];
112 int ccadj[MAXBLOCK];
113 int slen;
114 u_int instr_addr[MAXBLOCK];
115 u_int link_addr[MAXBLOCK][3];
116 int linkcount;
117 u_int stubs[MAXBLOCK*3][8];
118 int stubcount;
119 u_int literals[1024][2];
120 int literalcount;
121 int is_delayslot;
122 int cop1_usable;
123 u_char *out;
124 struct ll_entry *jump_in[4096];
125 struct ll_entry *jump_out[4096];
126 struct ll_entry *jump_dirty[4096];
127 u_int hash_table[65536][4] __attribute__((aligned(16)));
128 char shadow[1048576] __attribute__((aligned(16)));
129 void *copy;
130 int expirep;
131 u_int using_tlb;
132 u_int stop_after_jal;
133 extern u_char restore_candidate[512];
134 extern int cycle_count;
135
136 /* registers that may be allocated */
137 /* 1-31 gpr */
138#define HIREG 32 // hi
139#define LOREG 33 // lo
140#define FSREG 34 // FPU status (FCSR)
141#define CSREG 35 // Coprocessor status
142#define CCREG 36 // Cycle count
143#define INVCP 37 // Pointer to invalid_code
144#define TEMPREG 38
145#define FTEMP 38 // FPU temporary register
146#define PTEMP 39 // Prefetch temporary register
147#define TLREG 40 // TLB mapping offset
148#define RHASH 41 // Return address hash
149#define RHTBL 42 // Return address hash table address
150#define RTEMP 43 // JR/JALR address register
151#define MAXREG 43
152#define AGEN1 44 // Address generation temporary register
153#define AGEN2 45 // Address generation temporary register
154#define MGEN1 46 // Maptable address generation temporary register
155#define MGEN2 47 // Maptable address generation temporary register
156#define BTREG 48 // Branch target temporary register
157
158 /* instruction types */
159#define NOP 0 // No operation
160#define LOAD 1 // Load
161#define STORE 2 // Store
162#define LOADLR 3 // Unaligned load
163#define STORELR 4 // Unaligned store
164#define MOV 5 // Move
165#define ALU 6 // Arithmetic/logic
166#define MULTDIV 7 // Multiply/divide
167#define SHIFT 8 // Shift by register
168#define SHIFTIMM 9// Shift by immediate
169#define IMM16 10 // 16-bit immediate
170#define RJUMP 11 // Unconditional jump to register
171#define UJUMP 12 // Unconditional jump
172#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
173#define SJUMP 14 // Conditional branch (regimm format)
174#define COP0 15 // Coprocessor 0
175#define COP1 16 // Coprocessor 1
176#define C1LS 17 // Coprocessor 1 load/store
177#define FJUMP 18 // Conditional branch (floating point)
178#define FLOAT 19 // Floating point unit
179#define FCONV 20 // Convert integer to float
180#define FCOMP 21 // Floating point compare (sets FSREG)
181#define SYSCALL 22// SYSCALL
182#define OTHER 23 // Other
183#define SPAN 24 // Branch/delay slot spans 2 pages
184#define NI 25 // Not implemented
185
186 /* stubs */
187#define CC_STUB 1
188#define FP_STUB 2
189#define LOADB_STUB 3
190#define LOADH_STUB 4
191#define LOADW_STUB 5
192#define LOADD_STUB 6
193#define LOADBU_STUB 7
194#define LOADHU_STUB 8
195#define STOREB_STUB 9
196#define STOREH_STUB 10
197#define STOREW_STUB 11
198#define STORED_STUB 12
199#define STORELR_STUB 13
200#define INVCODE_STUB 14
201
202 /* branch codes */
203#define TAKEN 1
204#define NOTTAKEN 2
205#define NULLDS 3
206
207// asm linkage
208int new_recompile_block(int addr);
209void *get_addr_ht(u_int vaddr);
210void invalidate_block(u_int block);
211void invalidate_addr(u_int addr);
212void remove_hash(int vaddr);
213void jump_vaddr();
214void dyna_linker();
215void dyna_linker_ds();
216void verify_code();
217void verify_code_vm();
218void verify_code_ds();
219void cc_interrupt();
220void fp_exception();
221void fp_exception_ds();
222void jump_syscall();
223void jump_eret();
224
225// TLB
226void TLBWI_new();
227void TLBWR_new();
228void read_nomem_new();
229void read_nomemb_new();
230void read_nomemh_new();
231void read_nomemd_new();
232void write_nomem_new();
233void write_nomemb_new();
234void write_nomemh_new();
235void write_nomemd_new();
236void write_rdram_new();
237void write_rdramb_new();
238void write_rdramh_new();
239void write_rdramd_new();
240extern u_int memory_map[1048576];
241
242// Needed by assembler
243void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246void load_all_regs(signed char i_regmap[]);
247void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248void load_regs_entry(int t);
249void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251int tracedebug=0;
252
253//#define DEBUG_CYCLE_COUNT 1
254
255void nullf() {}
256//#define assem_debug printf
257//#define inv_debug printf
258#define assem_debug nullf
259#define inv_debug nullf
260
261void tlb_hacks()
262{
263 // Goldeneye hack
264 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
265 {
266 u_int addr;
267 int n;
268 switch (ROM_HEADER->Country_code&0xFF)
269 {
270 case 0x45: // U
271 addr=0x34b30;
272 break;
273 case 0x4A: // J
274 addr=0x34b70;
275 break;
276 case 0x50: // E
277 addr=0x329f0;
278 break;
279 default:
280 // Unknown country code
281 addr=0;
282 break;
283 }
284 u_int rom_addr=(u_int)rom;
285 #ifdef ROM_COPY
286 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
287 // in the lower 4G of memory to use this hack. Copy it if necessary.
288 if((void *)rom>(void *)0xffffffff) {
289 munmap(ROM_COPY, 67108864);
290 if(mmap(ROM_COPY, 12582912,
291 PROT_READ | PROT_WRITE,
292 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
293 -1, 0) <= 0) {printf("mmap() failed\n");}
294 memcpy(ROM_COPY,rom,12582912);
295 rom_addr=(u_int)ROM_COPY;
296 }
297 #endif
298 if(addr) {
299 for(n=0x7F000;n<0x80000;n++) {
300 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
301 }
302 }
303 }
304}
305
306// Get address from virtual address
307// This is called from the recompiled JR/JALR instructions
308void *get_addr(u_int vaddr)
309{
310 u_int page=(vaddr^0x80000000)>>12;
311 u_int vpage=page;
312 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
313 if(page>2048) page=2048+(page&2047);
314 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
315 if(vpage>2048) vpage=2048+(vpage&2047);
316 struct ll_entry *head;
317 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
318 head=jump_in[page];
319 while(head!=NULL) {
320 if(head->vaddr==vaddr&&head->reg32==0) {
321 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
322 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
323 ht_bin[3]=ht_bin[1];
324 ht_bin[2]=ht_bin[0];
325 ht_bin[1]=(int)head->addr;
326 ht_bin[0]=vaddr;
327 return head->addr;
328 }
329 head=head->next;
330 }
331 head=jump_dirty[vpage];
332 while(head!=NULL) {
333 if(head->vaddr==vaddr&&head->reg32==0) {
334 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
335 // Don't restore blocks which are about to expire from the cache
336 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
337 if(verify_dirty(head->addr)) {
338 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
339 invalid_code[vaddr>>12]=0;
340 memory_map[vaddr>>12]|=0x40000000;
341 if(vpage<2048) {
342 if(tlb_LUT_r[vaddr>>12]) {
343 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
344 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
345 }
346 restore_candidate[vpage>>3]|=1<<(vpage&7);
347 }
348 else restore_candidate[page>>3]|=1<<(page&7);
349 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350 if(ht_bin[0]==vaddr) {
351 ht_bin[1]=(int)head->addr; // Replace existing entry
352 }
353 else
354 {
355 ht_bin[3]=ht_bin[1];
356 ht_bin[2]=ht_bin[0];
357 ht_bin[1]=(int)head->addr;
358 ht_bin[0]=vaddr;
359 }
360 return head->addr;
361 }
362 }
363 head=head->next;
364 }
365 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
366 int r=new_recompile_block(vaddr);
367 if(r==0) return get_addr(vaddr);
368 // Execute in unmapped page, generate pagefault execption
369 Status|=2;
370 Cause=(vaddr<<31)|0x8;
371 EPC=(vaddr&1)?vaddr-5:vaddr;
372 BadVAddr=(vaddr&~1);
373 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
374 EntryHi=BadVAddr&0xFFFFE000;
375 return get_addr_ht(0x80000000);
376}
377// Look up address in hash table first
378void *get_addr_ht(u_int vaddr)
379{
380 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
381 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
382 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
383 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
384 return get_addr(vaddr);
385}
386
387void *get_addr_32(u_int vaddr,u_int flags)
388{
389 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
390 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
391 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
392 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
393 u_int page=(vaddr^0x80000000)>>12;
394 u_int vpage=page;
395 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
396 if(page>2048) page=2048+(page&2047);
397 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
398 if(vpage>2048) vpage=2048+(vpage&2047);
399 struct ll_entry *head;
400 head=jump_in[page];
401 while(head!=NULL) {
402 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
403 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
404 if(head->reg32==0) {
405 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
406 if(ht_bin[0]==-1) {
407 ht_bin[1]=(int)head->addr;
408 ht_bin[0]=vaddr;
409 }else if(ht_bin[2]==-1) {
410 ht_bin[3]=(int)head->addr;
411 ht_bin[2]=vaddr;
412 }
413 //ht_bin[3]=ht_bin[1];
414 //ht_bin[2]=ht_bin[0];
415 //ht_bin[1]=(int)head->addr;
416 //ht_bin[0]=vaddr;
417 }
418 return head->addr;
419 }
420 head=head->next;
421 }
422 head=jump_dirty[vpage];
423 while(head!=NULL) {
424 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
425 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
426 // Don't restore blocks which are about to expire from the cache
427 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
428 if(verify_dirty(head->addr)) {
429 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
430 invalid_code[vaddr>>12]=0;
431 memory_map[vaddr>>12]|=0x40000000;
432 if(vpage<2048) {
433 if(tlb_LUT_r[vaddr>>12]) {
434 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
435 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
436 }
437 restore_candidate[vpage>>3]|=1<<(vpage&7);
438 }
439 else restore_candidate[page>>3]|=1<<(page&7);
440 if(head->reg32==0) {
441 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
442 if(ht_bin[0]==-1) {
443 ht_bin[1]=(int)head->addr;
444 ht_bin[0]=vaddr;
445 }else if(ht_bin[2]==-1) {
446 ht_bin[3]=(int)head->addr;
447 ht_bin[2]=vaddr;
448 }
449 //ht_bin[3]=ht_bin[1];
450 //ht_bin[2]=ht_bin[0];
451 //ht_bin[1]=(int)head->addr;
452 //ht_bin[0]=vaddr;
453 }
454 return head->addr;
455 }
456 }
457 head=head->next;
458 }
459 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
460 int r=new_recompile_block(vaddr);
461 if(r==0) return get_addr(vaddr);
462 // Execute in unmapped page, generate pagefault execption
463 Status|=2;
464 Cause=(vaddr<<31)|0x8;
465 EPC=(vaddr&1)?vaddr-5:vaddr;
466 BadVAddr=(vaddr&~1);
467 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
468 EntryHi=BadVAddr&0xFFFFE000;
469 return get_addr_ht(0x80000000);
470}
471
472void clear_all_regs(signed char regmap[])
473{
474 int hr;
475 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
476}
477
478signed char get_reg(signed char regmap[],int r)
479{
480 int hr;
481 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
482 return -1;
483}
484
485// Find a register that is available for two consecutive cycles
486signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
487{
488 int hr;
489 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
490 return -1;
491}
492
493int count_free_regs(signed char regmap[])
494{
495 int count=0;
496 int hr;
497 for(hr=0;hr<HOST_REGS;hr++)
498 {
499 if(hr!=EXCLUDE_REG) {
500 if(regmap[hr]<0) count++;
501 }
502 }
503 return count;
504}
505
506void dirty_reg(struct regstat *cur,signed char reg)
507{
508 int hr;
509 if(!reg) return;
510 for (hr=0;hr<HOST_REGS;hr++) {
511 if((cur->regmap[hr]&63)==reg) {
512 cur->dirty|=1<<hr;
513 }
514 }
515}
516
517// If we dirty the lower half of a 64 bit register which is now being
518// sign-extended, we need to dump the upper half.
519// Note: Do this only after completion of the instruction, because
520// some instructions may need to read the full 64-bit value even if
521// overwriting it (eg SLTI, DSRA32).
522static void flush_dirty_uppers(struct regstat *cur)
523{
524 int hr,reg;
525 for (hr=0;hr<HOST_REGS;hr++) {
526 if((cur->dirty>>hr)&1) {
527 reg=cur->regmap[hr];
528 if(reg>=64)
529 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
530 }
531 }
532}
533
534void set_const(struct regstat *cur,signed char reg,uint64_t value)
535{
536 int hr;
537 if(!reg) return;
538 for (hr=0;hr<HOST_REGS;hr++) {
539 if(cur->regmap[hr]==reg) {
540 cur->isconst|=1<<hr;
541 cur->constmap[hr]=value;
542 }
543 else if((cur->regmap[hr]^64)==reg) {
544 cur->isconst|=1<<hr;
545 cur->constmap[hr]=value>>32;
546 }
547 }
548}
549
550void clear_const(struct regstat *cur,signed char reg)
551{
552 int hr;
553 if(!reg) return;
554 for (hr=0;hr<HOST_REGS;hr++) {
555 if((cur->regmap[hr]&63)==reg) {
556 cur->isconst&=~(1<<hr);
557 }
558 }
559}
560
561int is_const(struct regstat *cur,signed char reg)
562{
563 int hr;
564 if(!reg) return 1;
565 for (hr=0;hr<HOST_REGS;hr++) {
566 if((cur->regmap[hr]&63)==reg) {
567 return (cur->isconst>>hr)&1;
568 }
569 }
570 return 0;
571}
572uint64_t get_const(struct regstat *cur,signed char reg)
573{
574 int hr;
575 if(!reg) return 0;
576 for (hr=0;hr<HOST_REGS;hr++) {
577 if(cur->regmap[hr]==reg) {
578 return cur->constmap[hr];
579 }
580 }
581 printf("Unknown constant in r%d\n",reg);
582 exit(1);
583}
584
585// Least soon needed registers
586// Look at the next ten instructions and see which registers
587// will be used. Try not to reallocate these.
588void lsn(u_char hsn[], int i, int *preferred_reg)
589{
590 int j;
591 int b=-1;
592 for(j=0;j<9;j++)
593 {
594 if(i+j>=slen) {
595 j=slen-i-1;
596 break;
597 }
598 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
599 {
600 // Don't go past an unconditonal jump
601 j++;
602 break;
603 }
604 }
605 for(;j>=0;j--)
606 {
607 if(rs1[i+j]) hsn[rs1[i+j]]=j;
608 if(rs2[i+j]) hsn[rs2[i+j]]=j;
609 if(rt1[i+j]) hsn[rt1[i+j]]=j;
610 if(rt2[i+j]) hsn[rt2[i+j]]=j;
611 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
612 // Stores can allocate zero
613 hsn[rs1[i+j]]=j;
614 hsn[rs2[i+j]]=j;
615 }
616 // On some architectures stores need invc_ptr
617 #if defined(HOST_IMM8)
618 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
619 hsn[INVCP]=j;
620 }
621 #endif
622 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
623 {
624 hsn[CCREG]=j;
625 b=j;
626 }
627 }
628 if(b>=0)
629 {
630 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
631 {
632 // Follow first branch
633 int t=(ba[i+b]-start)>>2;
634 j=7-b;if(t+j>=slen) j=slen-t-1;
635 for(;j>=0;j--)
636 {
637 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
638 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
639 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
640 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
641 }
642 }
643 // TODO: preferred register based on backward branch
644 }
645 // Delay slot should preferably not overwrite branch conditions or cycle count
646 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
647 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
648 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
649 hsn[CCREG]=1;
650 // ...or hash tables
651 hsn[RHASH]=1;
652 hsn[RHTBL]=1;
653 }
654 // Coprocessor load/store needs FTEMP, even if not declared
655 if(itype[i]==C1LS) {
656 hsn[FTEMP]=0;
657 }
658 // Load L/R also uses FTEMP as a temporary register
659 if(itype[i]==LOADLR) {
660 hsn[FTEMP]=0;
661 }
662 // Also 64-bit SDL/SDR
663 if(opcode[i]==0x2c||opcode[i]==0x2d) {
664 hsn[FTEMP]=0;
665 }
666 // Don't remove the TLB registers either
667 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
668 hsn[TLREG]=0;
669 }
670 // Don't remove the miniht registers
671 if(itype[i]==UJUMP||itype[i]==RJUMP)
672 {
673 hsn[RHASH]=0;
674 hsn[RHTBL]=0;
675 }
676}
677
678// We only want to allocate registers if we're going to use them again soon
679int needed_again(int r, int i)
680{
681 int j;
682 int b=-1;
683 int rn=10;
684 int hr;
685 u_char hsn[MAXREG+1];
686 int preferred_reg;
687
688 memset(hsn,10,sizeof(hsn));
689 lsn(hsn,i,&preferred_reg);
690
691 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
692 {
693 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
694 return 0; // Don't need any registers if exiting the block
695 }
696 for(j=0;j<9;j++)
697 {
698 if(i+j>=slen) {
699 j=slen-i-1;
700 break;
701 }
702 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
703 {
704 // Don't go past an unconditonal jump
705 j++;
706 break;
707 }
708 if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
709 {
710 break;
711 }
712 }
713 for(;j>=1;j--)
714 {
715 if(rs1[i+j]==r) rn=j;
716 if(rs2[i+j]==r) rn=j;
717 if((unneeded_reg[i+j]>>r)&1) rn=10;
718 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
719 {
720 b=j;
721 }
722 }
723 /*
724 if(b>=0)
725 {
726 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
727 {
728 // Follow first branch
729 int o=rn;
730 int t=(ba[i+b]-start)>>2;
731 j=7-b;if(t+j>=slen) j=slen-t-1;
732 for(;j>=0;j--)
733 {
734 if(!((unneeded_reg[t+j]>>r)&1)) {
735 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
736 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
737 }
738 else rn=o;
739 }
740 }
741 }*/
742 for(hr=0;hr<HOST_REGS;hr++) {
743 if(hr!=EXCLUDE_REG) {
744 if(rn<hsn[hr]) return 1;
745 }
746 }
747 return 0;
748}
749
750// Try to match register allocations at the end of a loop with those
751// at the beginning
752int loop_reg(int i, int r, int hr)
753{
754 int j,k;
755 for(j=0;j<9;j++)
756 {
757 if(i+j>=slen) {
758 j=slen-i-1;
759 break;
760 }
761 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
762 {
763 // Don't go past an unconditonal jump
764 j++;
765 break;
766 }
767 }
768 k=0;
769 if(i>0){
770 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
771 k--;
772 }
773 for(;k<j;k++)
774 {
775 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
776 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
777 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
778 {
779 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
780 {
781 int t=(ba[i+k]-start)>>2;
782 int reg=get_reg(regs[t].regmap_entry,r);
783 if(reg>=0) return reg;
784 //reg=get_reg(regs[t+1].regmap_entry,r);
785 //if(reg>=0) return reg;
786 }
787 }
788 }
789 return hr;
790}
791
792
793// Allocate every register, preserving source/target regs
794void alloc_all(struct regstat *cur,int i)
795{
796 int hr;
797
798 for(hr=0;hr<HOST_REGS;hr++) {
799 if(hr!=EXCLUDE_REG) {
800 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
801 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
802 {
803 cur->regmap[hr]=-1;
804 cur->dirty&=~(1<<hr);
805 }
806 // Don't need zeros
807 if((cur->regmap[hr]&63)==0)
808 {
809 cur->regmap[hr]=-1;
810 cur->dirty&=~(1<<hr);
811 }
812 }
813 }
814}
815
816
817void div64(int64_t dividend,int64_t divisor)
818{
819 lo=dividend/divisor;
820 hi=dividend%divisor;
821 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
822 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
823}
824void divu64(uint64_t dividend,uint64_t divisor)
825{
826 lo=dividend/divisor;
827 hi=dividend%divisor;
828 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
829 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
830}
831
832void mult64(uint64_t m1,uint64_t m2)
833{
834 unsigned long long int op1, op2, op3, op4;
835 unsigned long long int result1, result2, result3, result4;
836 unsigned long long int temp1, temp2, temp3, temp4;
837 int sign = 0;
838
839 if (m1 < 0)
840 {
841 op2 = -m1;
842 sign = 1 - sign;
843 }
844 else op2 = m1;
845 if (m2 < 0)
846 {
847 op4 = -m2;
848 sign = 1 - sign;
849 }
850 else op4 = m2;
851
852 op1 = op2 & 0xFFFFFFFF;
853 op2 = (op2 >> 32) & 0xFFFFFFFF;
854 op3 = op4 & 0xFFFFFFFF;
855 op4 = (op4 >> 32) & 0xFFFFFFFF;
856
857 temp1 = op1 * op3;
858 temp2 = (temp1 >> 32) + op1 * op4;
859 temp3 = op2 * op3;
860 temp4 = (temp3 >> 32) + op2 * op4;
861
862 result1 = temp1 & 0xFFFFFFFF;
863 result2 = temp2 + (temp3 & 0xFFFFFFFF);
864 result3 = (result2 >> 32) + temp4;
865 result4 = (result3 >> 32);
866
867 lo = result1 | (result2 << 32);
868 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
869 if (sign)
870 {
871 hi = ~hi;
872 if (!lo) hi++;
873 else lo = ~lo + 1;
874 }
875}
876
877void multu64(uint64_t m1,uint64_t m2)
878{
879 unsigned long long int op1, op2, op3, op4;
880 unsigned long long int result1, result2, result3, result4;
881 unsigned long long int temp1, temp2, temp3, temp4;
882
883 op1 = m1 & 0xFFFFFFFF;
884 op2 = (m1 >> 32) & 0xFFFFFFFF;
885 op3 = m2 & 0xFFFFFFFF;
886 op4 = (m2 >> 32) & 0xFFFFFFFF;
887
888 temp1 = op1 * op3;
889 temp2 = (temp1 >> 32) + op1 * op4;
890 temp3 = op2 * op3;
891 temp4 = (temp3 >> 32) + op2 * op4;
892
893 result1 = temp1 & 0xFFFFFFFF;
894 result2 = temp2 + (temp3 & 0xFFFFFFFF);
895 result3 = (result2 >> 32) + temp4;
896 result4 = (result3 >> 32);
897
898 lo = result1 | (result2 << 32);
899 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900
901 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
902 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
903}
904
905uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
906{
907 if(bits) {
908 original<<=64-bits;
909 original>>=64-bits;
910 loaded<<=bits;
911 original|=loaded;
912 }
913 else original=loaded;
914 return original;
915}
916uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
917{
918 if(bits^56) {
919 original>>=64-(bits^56);
920 original<<=64-(bits^56);
921 loaded>>=bits^56;
922 original|=loaded;
923 }
924 else original=loaded;
925 return original;
926}
927
928#ifdef __i386__
929#include "assem_x86.c"
930#endif
931#ifdef __x86_64__
932#include "assem_x64.c"
933#endif
934#ifdef __arm__
935#include "assem_arm.c"
936#endif
937
938// Add virtual address mapping to linked list
939void ll_add(struct ll_entry **head,int vaddr,void *addr)
940{
941 struct ll_entry *new_entry;
942 new_entry=malloc(sizeof(struct ll_entry));
943 assert(new_entry!=NULL);
944 new_entry->vaddr=vaddr;
945 new_entry->reg32=0;
946 new_entry->addr=addr;
947 new_entry->next=*head;
948 *head=new_entry;
949}
950
951// Add virtual address mapping for 32-bit compiled block
952void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
953{
954 struct ll_entry *new_entry;
955 new_entry=malloc(sizeof(struct ll_entry));
956 assert(new_entry!=NULL);
957 new_entry->vaddr=vaddr;
958 new_entry->reg32=reg32;
959 new_entry->addr=addr;
960 new_entry->next=*head;
961 *head=new_entry;
962}
963
964// Check if an address is already compiled
965// but don't return addresses which are about to expire from the cache
966void *check_addr(u_int vaddr)
967{
968 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
969 if(ht_bin[0]==vaddr) {
970 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
971 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
972 }
973 if(ht_bin[2]==vaddr) {
974 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
975 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
976 }
977 u_int page=(vaddr^0x80000000)>>12;
978 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
979 if(page>2048) page=2048+(page&2047);
980 struct ll_entry *head;
981 head=jump_in[page];
982 while(head!=NULL) {
983 if(head->vaddr==vaddr&&head->reg32==0) {
984 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
985 // Update existing entry with current address
986 if(ht_bin[0]==vaddr) {
987 ht_bin[1]=(int)head->addr;
988 return head->addr;
989 }
990 if(ht_bin[2]==vaddr) {
991 ht_bin[3]=(int)head->addr;
992 return head->addr;
993 }
994 // Insert into hash table with low priority.
995 // Don't evict existing entries, as they are probably
996 // addresses that are being accessed frequently.
997 if(ht_bin[0]==-1) {
998 ht_bin[1]=(int)head->addr;
999 ht_bin[0]=vaddr;
1000 }else if(ht_bin[2]==-1) {
1001 ht_bin[3]=(int)head->addr;
1002 ht_bin[2]=vaddr;
1003 }
1004 return head->addr;
1005 }
1006 }
1007 head=head->next;
1008 }
1009 return 0;
1010}
1011
1012void remove_hash(int vaddr)
1013{
1014 //printf("remove hash: %x\n",vaddr);
1015 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1016 if(ht_bin[2]==vaddr) {
1017 ht_bin[2]=ht_bin[3]=-1;
1018 }
1019 if(ht_bin[0]==vaddr) {
1020 ht_bin[0]=ht_bin[2];
1021 ht_bin[1]=ht_bin[3];
1022 ht_bin[2]=ht_bin[3]=-1;
1023 }
1024}
1025
1026void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1027{
1028 struct ll_entry *next;
1029 while(*head) {
1030 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1031 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1032 {
1033 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1034 remove_hash((*head)->vaddr);
1035 next=(*head)->next;
1036 free(*head);
1037 *head=next;
1038 }
1039 else
1040 {
1041 head=&((*head)->next);
1042 }
1043 }
1044}
1045
1046// Remove all entries from linked list
1047void ll_clear(struct ll_entry **head)
1048{
1049 struct ll_entry *cur;
1050 struct ll_entry *next;
1051 if(cur=*head) {
1052 *head=0;
1053 while(cur) {
1054 next=cur->next;
1055 free(cur);
1056 cur=next;
1057 }
1058 }
1059}
1060
1061// Dereference the pointers and remove if it matches
1062void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1063{
1064 while(head) {
1065 int ptr=get_pointer(head->addr);
1066 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1067 if(((ptr>>shift)==(addr>>shift)) ||
1068 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1069 {
1070 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1071 kill_pointer(head->addr);
1072 }
1073 head=head->next;
1074 }
1075}
1076
1077// This is called when we write to a compiled block (see do_invstub)
1078int invalidate_page(u_int page)
1079{
1080 int modified=0;
1081 struct ll_entry *head;
1082 struct ll_entry *next;
1083 head=jump_in[page];
1084 jump_in[page]=0;
1085 while(head!=NULL) {
1086 inv_debug("INVALIDATE: %x\n",head->vaddr);
1087 remove_hash(head->vaddr);
1088 next=head->next;
1089 free(head);
1090 head=next;
1091 }
1092 head=jump_out[page];
1093 jump_out[page]=0;
1094 while(head!=NULL) {
1095 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1096 kill_pointer(head->addr);
1097 modified=1;
1098 next=head->next;
1099 free(head);
1100 head=next;
1101 }
1102 return modified;
1103}
1104void invalidate_block(u_int block)
1105{
1106 int modified;
1107 u_int page,vpage;
1108 page=vpage=block^0x80000;
1109 if(page>262143&&tlb_LUT_r[block]) page=(tlb_LUT_r[block]^0x80000000)>>12;
1110 if(page>2048) page=2048+(page&2047);
1111 if(vpage>262143&&tlb_LUT_r[block]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
1112 if(vpage>2048) vpage=2048+(vpage&2047);
1113 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1114 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1115 u_int first,last;
1116 first=last=page;
1117 struct ll_entry *head;
1118 head=jump_dirty[vpage];
1119 //printf("page=%d vpage=%d\n",page,vpage);
1120 while(head!=NULL) {
1121 u_int start,end;
1122 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1123 get_bounds((int)head->addr,&start,&end);
1124 //printf("start: %x end: %x\n",start,end);
1125 if(page<2048&&start>=0x80000000&&end<0x80800000) {
1126 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1127 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1128 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1129 }
1130 }
1131 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1132 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1133 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1134 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1135 }
1136 }
1137 }
1138 head=head->next;
1139 }
1140 //printf("first=%d last=%d\n",first,last);
1141 modified=invalidate_page(page);
1142 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1143 assert(last<page+5);
1144 // Invalidate the adjacent pages if a block crosses a 4K boundary
1145 while(first<page) {
1146 invalidate_page(first);
1147 first++;
1148 }
1149 for(first=page+1;first<last;first++) {
1150 invalidate_page(first);
1151 }
1152
1153 // Don't trap writes
1154 invalid_code[block]=1;
1155 // If there is a valid TLB entry for this page, remove write protect
1156 if(tlb_LUT_w[block]) {
1157 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1158 // CHECK: Is this right?
1159 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1160 u_int real_block=tlb_LUT_w[block]>>12;
1161 invalid_code[real_block]=1;
1162 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1163 }
1164 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1165 #ifdef __arm__
1166 if(modified)
1167 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1168 #endif
1169 #ifdef USE_MINI_HT
1170 memset(mini_ht,-1,sizeof(mini_ht));
1171 #endif
1172}
1173void invalidate_addr(u_int addr)
1174{
1175 invalidate_block(addr>>12);
1176}
1177void invalidate_all_pages()
1178{
1179 u_int page,n;
1180 for(page=0;page<4096;page++)
1181 invalidate_page(page);
1182 for(page=0;page<1048576;page++)
1183 if(!invalid_code[page]) {
1184 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1185 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1186 }
1187 #ifdef __arm__
1188 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1189 #endif
1190 #ifdef USE_MINI_HT
1191 memset(mini_ht,-1,sizeof(mini_ht));
1192 #endif
1193 // TLB
1194 for(page=0;page<0x100000;page++) {
1195 if(tlb_LUT_r[page]) {
1196 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1197 if(!tlb_LUT_w[page]||!invalid_code[page])
1198 memory_map[page]|=0x40000000; // Write protect
1199 }
1200 else memory_map[page]=-1;
1201 if(page==0x80000) page=0xC0000;
1202 }
1203 tlb_hacks();
1204}
1205
1206// Add an entry to jump_out after making a link
1207void add_link(u_int vaddr,void *src)
1208{
1209 u_int page=(vaddr^0x80000000)>>12;
1210 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1211 if(page>4095) page=2048+(page&2047);
1212 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1213 ll_add(jump_out+page,vaddr,src);
1214 //int ptr=get_pointer(src);
1215 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1216}
1217
1218// If a code block was found to be unmodified (bit was set in
1219// restore_candidate) and it remains unmodified (bit is clear
1220// in invalid_code) then move the entries for that 4K page from
1221// the dirty list to the clean list.
1222void clean_blocks(u_int page)
1223{
1224 struct ll_entry *head;
1225 inv_debug("INV: clean_blocks page=%d\n",page);
1226 head=jump_dirty[page];
1227 while(head!=NULL) {
1228 if(!invalid_code[head->vaddr>>12]) {
1229 // Don't restore blocks which are about to expire from the cache
1230 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1231 u_int start,end;
1232 if(verify_dirty((int)head->addr)) {
1233 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1234 u_int i;
1235 u_int inv=0;
1236 get_bounds((int)head->addr,&start,&end);
1237 if(start-(u_int)rdram<0x800000) {
1238 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1239 inv|=invalid_code[i];
1240 }
1241 }
1242 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1243 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1244 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1245 if(addr<start||addr>=end) inv=1;
1246 }
1247 else if((signed int)head->vaddr>=(signed int)0x80800000) {
1248 inv=1;
1249 }
1250 if(!inv) {
1251 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1252 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1253 u_int ppage=page;
1254 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1255 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1256 //printf("page=%x, addr=%x\n",page,head->vaddr);
1257 //assert(head->vaddr>>12==(page|0x80000));
1258 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1259 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1260 if(!head->reg32) {
1261 if(ht_bin[0]==head->vaddr) {
1262 ht_bin[1]=(int)clean_addr; // Replace existing entry
1263 }
1264 if(ht_bin[2]==head->vaddr) {
1265 ht_bin[3]=(int)clean_addr; // Replace existing entry
1266 }
1267 }
1268 }
1269 }
1270 }
1271 }
1272 }
1273 head=head->next;
1274 }
1275}
1276
1277
1278void mov_alloc(struct regstat *current,int i)
1279{
1280 // Note: Don't need to actually alloc the source registers
1281 if((~current->is32>>rs1[i])&1) {
1282 //alloc_reg64(current,i,rs1[i]);
1283 alloc_reg64(current,i,rt1[i]);
1284 current->is32&=~(1LL<<rt1[i]);
1285 } else {
1286 //alloc_reg(current,i,rs1[i]);
1287 alloc_reg(current,i,rt1[i]);
1288 current->is32|=(1LL<<rt1[i]);
1289 }
1290 clear_const(current,rs1[i]);
1291 clear_const(current,rt1[i]);
1292 dirty_reg(current,rt1[i]);
1293}
1294
1295void shiftimm_alloc(struct regstat *current,int i)
1296{
1297 clear_const(current,rs1[i]);
1298 clear_const(current,rt1[i]);
1299 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1300 {
1301 if(rt1[i]) {
1302 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1303 else lt1[i]=rs1[i];
1304 alloc_reg(current,i,rt1[i]);
1305 current->is32|=1LL<<rt1[i];
1306 dirty_reg(current,rt1[i]);
1307 }
1308 }
1309 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1310 {
1311 if(rt1[i]) {
1312 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1313 alloc_reg64(current,i,rt1[i]);
1314 current->is32&=~(1LL<<rt1[i]);
1315 dirty_reg(current,rt1[i]);
1316 }
1317 }
1318 if(opcode2[i]==0x3c) // DSLL32
1319 {
1320 if(rt1[i]) {
1321 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1322 alloc_reg64(current,i,rt1[i]);
1323 current->is32&=~(1LL<<rt1[i]);
1324 dirty_reg(current,rt1[i]);
1325 }
1326 }
1327 if(opcode2[i]==0x3e) // DSRL32
1328 {
1329 if(rt1[i]) {
1330 alloc_reg64(current,i,rs1[i]);
1331 if(imm[i]==32) {
1332 alloc_reg64(current,i,rt1[i]);
1333 current->is32&=~(1LL<<rt1[i]);
1334 } else {
1335 alloc_reg(current,i,rt1[i]);
1336 current->is32|=1LL<<rt1[i];
1337 }
1338 dirty_reg(current,rt1[i]);
1339 }
1340 }
1341 if(opcode2[i]==0x3f) // DSRA32
1342 {
1343 if(rt1[i]) {
1344 alloc_reg64(current,i,rs1[i]);
1345 alloc_reg(current,i,rt1[i]);
1346 current->is32|=1LL<<rt1[i];
1347 dirty_reg(current,rt1[i]);
1348 }
1349 }
1350}
1351
1352void shift_alloc(struct regstat *current,int i)
1353{
1354 if(rt1[i]) {
1355 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1356 {
1357 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1358 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1359 alloc_reg(current,i,rt1[i]);
1360 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1361 current->is32|=1LL<<rt1[i];
1362 } else { // DSLLV/DSRLV/DSRAV
1363 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1364 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1365 alloc_reg64(current,i,rt1[i]);
1366 current->is32&=~(1LL<<rt1[i]);
1367 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1368 alloc_reg_temp(current,i,-1);
1369 }
1370 clear_const(current,rs1[i]);
1371 clear_const(current,rs2[i]);
1372 clear_const(current,rt1[i]);
1373 dirty_reg(current,rt1[i]);
1374 }
1375}
1376
1377void alu_alloc(struct regstat *current,int i)
1378{
1379 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1380 if(rt1[i]) {
1381 if(rs1[i]&&rs2[i]) {
1382 alloc_reg(current,i,rs1[i]);
1383 alloc_reg(current,i,rs2[i]);
1384 }
1385 else {
1386 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1387 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1388 }
1389 alloc_reg(current,i,rt1[i]);
1390 }
1391 current->is32|=1LL<<rt1[i];
1392 }
1393 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1394 if(rt1[i]) {
1395 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1396 {
1397 alloc_reg64(current,i,rs1[i]);
1398 alloc_reg64(current,i,rs2[i]);
1399 alloc_reg(current,i,rt1[i]);
1400 } else {
1401 alloc_reg(current,i,rs1[i]);
1402 alloc_reg(current,i,rs2[i]);
1403 alloc_reg(current,i,rt1[i]);
1404 }
1405 }
1406 current->is32|=1LL<<rt1[i];
1407 }
1408 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1409 if(rt1[i]) {
1410 if(rs1[i]&&rs2[i]) {
1411 alloc_reg(current,i,rs1[i]);
1412 alloc_reg(current,i,rs2[i]);
1413 }
1414 else
1415 {
1416 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1417 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1418 }
1419 alloc_reg(current,i,rt1[i]);
1420 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1421 {
1422 if(!((current->uu>>rt1[i])&1)) {
1423 alloc_reg64(current,i,rt1[i]);
1424 }
1425 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1426 if(rs1[i]&&rs2[i]) {
1427 alloc_reg64(current,i,rs1[i]);
1428 alloc_reg64(current,i,rs2[i]);
1429 }
1430 else
1431 {
1432 // Is is really worth it to keep 64-bit values in registers?
1433 #ifdef NATIVE_64BIT
1434 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1435 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1436 #endif
1437 }
1438 }
1439 current->is32&=~(1LL<<rt1[i]);
1440 } else {
1441 current->is32|=1LL<<rt1[i];
1442 }
1443 }
1444 }
1445 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1446 if(rt1[i]) {
1447 if(rs1[i]&&rs2[i]) {
1448 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1449 alloc_reg64(current,i,rs1[i]);
1450 alloc_reg64(current,i,rs2[i]);
1451 alloc_reg64(current,i,rt1[i]);
1452 } else {
1453 alloc_reg(current,i,rs1[i]);
1454 alloc_reg(current,i,rs2[i]);
1455 alloc_reg(current,i,rt1[i]);
1456 }
1457 }
1458 else {
1459 alloc_reg(current,i,rt1[i]);
1460 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1461 // DADD used as move, or zeroing
1462 // If we have a 64-bit source, then make the target 64 bits too
1463 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1464 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1465 alloc_reg64(current,i,rt1[i]);
1466 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1467 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1468 alloc_reg64(current,i,rt1[i]);
1469 }
1470 if(opcode2[i]>=0x2e&&rs2[i]) {
1471 // DSUB used as negation - 64-bit result
1472 // If we have a 32-bit register, extend it to 64 bits
1473 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1474 alloc_reg64(current,i,rt1[i]);
1475 }
1476 }
1477 }
1478 if(rs1[i]&&rs2[i]) {
1479 current->is32&=~(1LL<<rt1[i]);
1480 } else if(rs1[i]) {
1481 current->is32&=~(1LL<<rt1[i]);
1482 if((current->is32>>rs1[i])&1)
1483 current->is32|=1LL<<rt1[i];
1484 } else if(rs2[i]) {
1485 current->is32&=~(1LL<<rt1[i]);
1486 if((current->is32>>rs2[i])&1)
1487 current->is32|=1LL<<rt1[i];
1488 } else {
1489 current->is32|=1LL<<rt1[i];
1490 }
1491 }
1492 }
1493 clear_const(current,rs1[i]);
1494 clear_const(current,rs2[i]);
1495 clear_const(current,rt1[i]);
1496 dirty_reg(current,rt1[i]);
1497}
1498
1499void imm16_alloc(struct regstat *current,int i)
1500{
1501 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1502 else lt1[i]=rs1[i];
1503 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1504 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1505 current->is32&=~(1LL<<rt1[i]);
1506 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1507 // TODO: Could preserve the 32-bit flag if the immediate is zero
1508 alloc_reg64(current,i,rt1[i]);
1509 alloc_reg64(current,i,rs1[i]);
1510 }
1511 clear_const(current,rs1[i]);
1512 clear_const(current,rt1[i]);
1513 }
1514 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1515 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1516 current->is32|=1LL<<rt1[i];
1517 clear_const(current,rs1[i]);
1518 clear_const(current,rt1[i]);
1519 }
1520 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1521 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1522 if(rs1[i]!=rt1[i]) {
1523 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1524 alloc_reg64(current,i,rt1[i]);
1525 current->is32&=~(1LL<<rt1[i]);
1526 }
1527 }
1528 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1529 if(is_const(current,rs1[i])) {
1530 int v=get_const(current,rs1[i]);
1531 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1532 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1533 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1534 }
1535 else clear_const(current,rt1[i]);
1536 }
1537 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1538 if(is_const(current,rs1[i])) {
1539 int v=get_const(current,rs1[i]);
1540 set_const(current,rt1[i],v+imm[i]);
1541 }
1542 else clear_const(current,rt1[i]);
1543 current->is32|=1LL<<rt1[i];
1544 }
1545 else {
1546 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1547 current->is32|=1LL<<rt1[i];
1548 }
1549 dirty_reg(current,rt1[i]);
1550}
1551
1552void load_alloc(struct regstat *current,int i)
1553{
1554 clear_const(current,rt1[i]);
1555 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1556 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1557 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1558 if(rt1[i]) {
1559 alloc_reg(current,i,rt1[i]);
1560 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1561 {
1562 current->is32&=~(1LL<<rt1[i]);
1563 alloc_reg64(current,i,rt1[i]);
1564 }
1565 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1566 {
1567 current->is32&=~(1LL<<rt1[i]);
1568 alloc_reg64(current,i,rt1[i]);
1569 alloc_all(current,i);
1570 alloc_reg64(current,i,FTEMP);
1571 }
1572 else current->is32|=1LL<<rt1[i];
1573 dirty_reg(current,rt1[i]);
1574 // If using TLB, need a register for pointer to the mapping table
1575 if(using_tlb) alloc_reg(current,i,TLREG);
1576 // LWL/LWR need a temporary register for the old value
1577 if(opcode[i]==0x22||opcode[i]==0x26)
1578 {
1579 alloc_reg(current,i,FTEMP);
1580 alloc_reg_temp(current,i,-1);
1581 }
1582 }
1583 else
1584 {
1585 // Load to r0 (dummy load)
1586 // but we still need a register to calculate the address
1587 alloc_reg_temp(current,i,-1);
1588 }
1589}
1590
1591void store_alloc(struct regstat *current,int i)
1592{
1593 clear_const(current,rs2[i]);
1594 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1595 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1596 alloc_reg(current,i,rs2[i]);
1597 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1598 alloc_reg64(current,i,rs2[i]);
1599 if(rs2[i]) alloc_reg(current,i,FTEMP);
1600 }
1601 // If using TLB, need a register for pointer to the mapping table
1602 if(using_tlb) alloc_reg(current,i,TLREG);
1603 #if defined(HOST_IMM8)
1604 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1605 else alloc_reg(current,i,INVCP);
1606 #endif
1607 if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1608 alloc_reg(current,i,FTEMP);
1609 }
1610 // We need a temporary register for address generation
1611 alloc_reg_temp(current,i,-1);
1612}
1613
1614void c1ls_alloc(struct regstat *current,int i)
1615{
1616 //clear_const(current,rs1[i]); // FIXME
1617 clear_const(current,rt1[i]);
1618 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1619 alloc_reg(current,i,CSREG); // Status
1620 alloc_reg(current,i,FTEMP);
1621 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1622 alloc_reg64(current,i,FTEMP);
1623 }
1624 // If using TLB, need a register for pointer to the mapping table
1625 if(using_tlb) alloc_reg(current,i,TLREG);
1626 #if defined(HOST_IMM8)
1627 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1628 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1629 alloc_reg(current,i,INVCP);
1630 #endif
1631 // We need a temporary register for address generation
1632 alloc_reg_temp(current,i,-1);
1633}
1634
1635#ifndef multdiv_alloc
1636void multdiv_alloc(struct regstat *current,int i)
1637{
1638 // case 0x18: MULT
1639 // case 0x19: MULTU
1640 // case 0x1A: DIV
1641 // case 0x1B: DIVU
1642 // case 0x1C: DMULT
1643 // case 0x1D: DMULTU
1644 // case 0x1E: DDIV
1645 // case 0x1F: DDIVU
1646 clear_const(current,rs1[i]);
1647 clear_const(current,rs2[i]);
1648 if(rs1[i]&&rs2[i])
1649 {
1650 if((opcode2[i]&4)==0) // 32-bit
1651 {
1652 current->u&=~(1LL<<HIREG);
1653 current->u&=~(1LL<<LOREG);
1654 alloc_reg(current,i,HIREG);
1655 alloc_reg(current,i,LOREG);
1656 alloc_reg(current,i,rs1[i]);
1657 alloc_reg(current,i,rs2[i]);
1658 current->is32|=1LL<<HIREG;
1659 current->is32|=1LL<<LOREG;
1660 dirty_reg(current,HIREG);
1661 dirty_reg(current,LOREG);
1662 }
1663 else // 64-bit
1664 {
1665 current->u&=~(1LL<<HIREG);
1666 current->u&=~(1LL<<LOREG);
1667 current->uu&=~(1LL<<HIREG);
1668 current->uu&=~(1LL<<LOREG);
1669 alloc_reg64(current,i,HIREG);
1670 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1671 alloc_reg64(current,i,rs1[i]);
1672 alloc_reg64(current,i,rs2[i]);
1673 alloc_all(current,i);
1674 current->is32&=~(1LL<<HIREG);
1675 current->is32&=~(1LL<<LOREG);
1676 dirty_reg(current,HIREG);
1677 dirty_reg(current,LOREG);
1678 }
1679 }
1680 else
1681 {
1682 // Multiply by zero is zero.
1683 // MIPS does not have a divide by zero exception.
1684 // The result is undefined, we return zero.
1685 alloc_reg(current,i,HIREG);
1686 alloc_reg(current,i,LOREG);
1687 current->is32|=1LL<<HIREG;
1688 current->is32|=1LL<<LOREG;
1689 dirty_reg(current,HIREG);
1690 dirty_reg(current,LOREG);
1691 }
1692}
1693#endif
1694
1695void cop0_alloc(struct regstat *current,int i)
1696{
1697 if(opcode2[i]==0) // MFC0
1698 {
1699 if(rt1[i]) {
1700 clear_const(current,rt1[i]);
1701 alloc_all(current,i);
1702 alloc_reg(current,i,rt1[i]);
1703 current->is32|=1LL<<rt1[i];
1704 dirty_reg(current,rt1[i]);
1705 }
1706 }
1707 else if(opcode2[i]==4) // MTC0
1708 {
1709 if(rs1[i]){
1710 clear_const(current,rs1[i]);
1711 alloc_reg(current,i,rs1[i]);
1712 alloc_all(current,i);
1713 }
1714 else {
1715 alloc_all(current,i); // FIXME: Keep r0
1716 current->u&=~1LL;
1717 alloc_reg(current,i,0);
1718 }
1719 }
1720 else
1721 {
1722 // TLBR/TLBWI/TLBWR/TLBP/ERET
1723 assert(opcode2[i]==0x10);
1724 alloc_all(current,i);
1725 }
1726}
1727
1728void cop1_alloc(struct regstat *current,int i)
1729{
1730 alloc_reg(current,i,CSREG); // Load status
1731 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1732 {
1733 assert(rt1[i]);
1734 clear_const(current,rt1[i]);
1735 if(opcode2[i]==1) {
1736 alloc_reg64(current,i,rt1[i]); // DMFC1
1737 current->is32&=~(1LL<<rt1[i]);
1738 }else{
1739 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1740 current->is32|=1LL<<rt1[i];
1741 }
1742 dirty_reg(current,rt1[i]);
1743 alloc_reg_temp(current,i,-1);
1744 }
1745 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1746 {
1747 if(rs1[i]){
1748 clear_const(current,rs1[i]);
1749 if(opcode2[i]==5)
1750 alloc_reg64(current,i,rs1[i]); // DMTC1
1751 else
1752 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1753 alloc_reg_temp(current,i,-1);
1754 }
1755 else {
1756 current->u&=~1LL;
1757 alloc_reg(current,i,0);
1758 alloc_reg_temp(current,i,-1);
1759 }
1760 }
1761}
1762void fconv_alloc(struct regstat *current,int i)
1763{
1764 alloc_reg(current,i,CSREG); // Load status
1765 alloc_reg_temp(current,i,-1);
1766}
1767void float_alloc(struct regstat *current,int i)
1768{
1769 alloc_reg(current,i,CSREG); // Load status
1770 alloc_reg_temp(current,i,-1);
1771}
1772void fcomp_alloc(struct regstat *current,int i)
1773{
1774 alloc_reg(current,i,CSREG); // Load status
1775 alloc_reg(current,i,FSREG); // Load flags
1776 dirty_reg(current,FSREG); // Flag will be modified
1777 alloc_reg_temp(current,i,-1);
1778}
1779
1780void syscall_alloc(struct regstat *current,int i)
1781{
1782 alloc_cc(current,i);
1783 dirty_reg(current,CCREG);
1784 alloc_all(current,i);
1785 current->isconst=0;
1786}
1787
1788void delayslot_alloc(struct regstat *current,int i)
1789{
1790 switch(itype[i]) {
1791 case UJUMP:
1792 case CJUMP:
1793 case SJUMP:
1794 case RJUMP:
1795 case FJUMP:
1796 case SYSCALL:
1797 case SPAN:
1798 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1799 printf("Disabled speculative precompilation\n");
1800 stop_after_jal=1;
1801 break;
1802 case IMM16:
1803 imm16_alloc(current,i);
1804 break;
1805 case LOAD:
1806 case LOADLR:
1807 load_alloc(current,i);
1808 break;
1809 case STORE:
1810 case STORELR:
1811 store_alloc(current,i);
1812 break;
1813 case ALU:
1814 alu_alloc(current,i);
1815 break;
1816 case SHIFT:
1817 shift_alloc(current,i);
1818 break;
1819 case MULTDIV:
1820 multdiv_alloc(current,i);
1821 break;
1822 case SHIFTIMM:
1823 shiftimm_alloc(current,i);
1824 break;
1825 case MOV:
1826 mov_alloc(current,i);
1827 break;
1828 case COP0:
1829 cop0_alloc(current,i);
1830 break;
1831 case COP1:
1832 cop1_alloc(current,i);
1833 break;
1834 case C1LS:
1835 c1ls_alloc(current,i);
1836 break;
1837 case FCONV:
1838 fconv_alloc(current,i);
1839 break;
1840 case FLOAT:
1841 float_alloc(current,i);
1842 break;
1843 case FCOMP:
1844 fcomp_alloc(current,i);
1845 break;
1846 }
1847}
1848
1849// Special case where a branch and delay slot span two pages in virtual memory
1850static void pagespan_alloc(struct regstat *current,int i)
1851{
1852 current->isconst=0;
1853 current->wasconst=0;
1854 regs[i].wasconst=0;
1855 alloc_all(current,i);
1856 alloc_cc(current,i);
1857 dirty_reg(current,CCREG);
1858 if(opcode[i]==3) // JAL
1859 {
1860 alloc_reg(current,i,31);
1861 dirty_reg(current,31);
1862 }
1863 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1864 {
1865 alloc_reg(current,i,rs1[i]);
1866 if (rt1[i]==31) {
1867 alloc_reg(current,i,31);
1868 dirty_reg(current,31);
1869 }
1870 }
1871 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1872 {
1873 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1874 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1875 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1876 {
1877 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1878 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1879 }
1880 }
1881 else
1882 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1883 {
1884 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1885 if(!((current->is32>>rs1[i])&1))
1886 {
1887 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1888 }
1889 }
1890 else
1891 if(opcode[i]==0x11) // BC1
1892 {
1893 alloc_reg(current,i,FSREG);
1894 alloc_reg(current,i,CSREG);
1895 }
1896 //else ...
1897}
1898
1899add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1900{
1901 stubs[stubcount][0]=type;
1902 stubs[stubcount][1]=addr;
1903 stubs[stubcount][2]=retaddr;
1904 stubs[stubcount][3]=a;
1905 stubs[stubcount][4]=b;
1906 stubs[stubcount][5]=c;
1907 stubs[stubcount][6]=d;
1908 stubs[stubcount][7]=e;
1909 stubcount++;
1910}
1911
1912// Write out a single register
1913void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1914{
1915 int hr;
1916 for(hr=0;hr<HOST_REGS;hr++) {
1917 if(hr!=EXCLUDE_REG) {
1918 if((regmap[hr]&63)==r) {
1919 if((dirty>>hr)&1) {
1920 if(regmap[hr]<64) {
1921 emit_storereg(r,hr);
1922 if((is32>>regmap[hr])&1) {
1923 emit_sarimm(hr,31,hr);
1924 emit_storereg(r|64,hr);
1925 }
1926 }else{
1927 emit_storereg(r|64,hr);
1928 }
1929 }
1930 }
1931 }
1932 }
1933}
1934
1935int mchecksum()
1936{
1937 //if(!tracedebug) return 0;
1938 int i;
1939 int sum=0;
1940 for(i=0;i<2097152;i++) {
1941 unsigned int temp=sum;
1942 sum<<=1;
1943 sum|=(~temp)>>31;
1944 sum^=((u_int *)rdram)[i];
1945 }
1946 return sum;
1947}
1948int rchecksum()
1949{
1950 int i;
1951 int sum=0;
1952 for(i=0;i<64;i++)
1953 sum^=((u_int *)reg)[i];
1954 return sum;
1955}
1956int fchecksum()
1957{
1958 int i;
1959 int sum=0;
1960 for(i=0;i<64;i++)
1961 sum^=((u_int *)reg_cop1_fgr_64)[i];
1962 return sum;
1963}
1964void rlist()
1965{
1966 int i;
1967 printf("TRACE: ");
1968 for(i=0;i<32;i++)
1969 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1970 printf("\n");
1971 printf("TRACE: ");
1972 for(i=0;i<32;i++)
1973 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
1974 printf("\n");
1975}
1976
1977void enabletrace()
1978{
1979 tracedebug=1;
1980}
1981
1982void memdebug(int i)
1983{
1984 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
1985 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
1986 //rlist();
1987 //if(tracedebug) {
1988 //if(Count>=-2084597794) {
1989 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
1990 //if(0) {
1991 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
1992 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
1993 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
1994 rlist();
1995 #ifdef __i386__
1996 printf("TRACE: %x\n",(&i)[-1]);
1997 #endif
1998 #ifdef __arm__
1999 int j;
2000 printf("TRACE: %x \n",(&j)[10]);
2001 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2002 #endif
2003 //fflush(stdout);
2004 }
2005 //printf("TRACE: %x\n",(&i)[-1]);
2006}
2007
2008void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2009{
2010 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2011}
2012
2013void alu_assemble(int i,struct regstat *i_regs)
2014{
2015 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2016 if(rt1[i]) {
2017 signed char s1,s2,t;
2018 t=get_reg(i_regs->regmap,rt1[i]);
2019 if(t>=0) {
2020 s1=get_reg(i_regs->regmap,rs1[i]);
2021 s2=get_reg(i_regs->regmap,rs2[i]);
2022 if(rs1[i]&&rs2[i]) {
2023 assert(s1>=0);
2024 assert(s2>=0);
2025 if(opcode2[i]&2) emit_sub(s1,s2,t);
2026 else emit_add(s1,s2,t);
2027 }
2028 else if(rs1[i]) {
2029 if(s1>=0) emit_mov(s1,t);
2030 else emit_loadreg(rs1[i],t);
2031 }
2032 else if(rs2[i]) {
2033 if(s2>=0) {
2034 if(opcode2[i]&2) emit_neg(s2,t);
2035 else emit_mov(s2,t);
2036 }
2037 else {
2038 emit_loadreg(rs2[i],t);
2039 if(opcode2[i]&2) emit_neg(t,t);
2040 }
2041 }
2042 else emit_zeroreg(t);
2043 }
2044 }
2045 }
2046 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2047 if(rt1[i]) {
2048 signed char s1l,s2l,s1h,s2h,tl,th;
2049 tl=get_reg(i_regs->regmap,rt1[i]);
2050 th=get_reg(i_regs->regmap,rt1[i]|64);
2051 if(tl>=0) {
2052 s1l=get_reg(i_regs->regmap,rs1[i]);
2053 s2l=get_reg(i_regs->regmap,rs2[i]);
2054 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2055 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2056 if(rs1[i]&&rs2[i]) {
2057 assert(s1l>=0);
2058 assert(s2l>=0);
2059 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2060 else emit_adds(s1l,s2l,tl);
2061 if(th>=0) {
2062 #ifdef INVERTED_CARRY
2063 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2064 #else
2065 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2066 #endif
2067 else emit_add(s1h,s2h,th);
2068 }
2069 }
2070 else if(rs1[i]) {
2071 if(s1l>=0) emit_mov(s1l,tl);
2072 else emit_loadreg(rs1[i],tl);
2073 if(th>=0) {
2074 if(s1h>=0) emit_mov(s1h,th);
2075 else emit_loadreg(rs1[i]|64,th);
2076 }
2077 }
2078 else if(rs2[i]) {
2079 if(s2l>=0) {
2080 if(opcode2[i]&2) emit_negs(s2l,tl);
2081 else emit_mov(s2l,tl);
2082 }
2083 else {
2084 emit_loadreg(rs2[i],tl);
2085 if(opcode2[i]&2) emit_negs(tl,tl);
2086 }
2087 if(th>=0) {
2088 #ifdef INVERTED_CARRY
2089 if(s2h>=0) emit_mov(s2h,th);
2090 else emit_loadreg(rs2[i]|64,th);
2091 if(opcode2[i]&2) {
2092 emit_adcimm(-1,th); // x86 has inverted carry flag
2093 emit_not(th,th);
2094 }
2095 #else
2096 if(opcode2[i]&2) {
2097 if(s2h>=0) emit_rscimm(s2h,0,th);
2098 else {
2099 emit_loadreg(rs2[i]|64,th);
2100 emit_rscimm(th,0,th);
2101 }
2102 }else{
2103 if(s2h>=0) emit_mov(s2h,th);
2104 else emit_loadreg(rs2[i]|64,th);
2105 }
2106 #endif
2107 }
2108 }
2109 else {
2110 emit_zeroreg(tl);
2111 if(th>=0) emit_zeroreg(th);
2112 }
2113 }
2114 }
2115 }
2116 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2117 if(rt1[i]) {
2118 signed char s1l,s1h,s2l,s2h,t;
2119 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2120 {
2121 t=get_reg(i_regs->regmap,rt1[i]);
2122 //assert(t>=0);
2123 if(t>=0) {
2124 s1l=get_reg(i_regs->regmap,rs1[i]);
2125 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2126 s2l=get_reg(i_regs->regmap,rs2[i]);
2127 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2128 if(rs2[i]==0) // rx<r0
2129 {
2130 assert(s1h>=0);
2131 if(opcode2[i]==0x2a) // SLT
2132 emit_shrimm(s1h,31,t);
2133 else // SLTU (unsigned can not be less than zero)
2134 emit_zeroreg(t);
2135 }
2136 else if(rs1[i]==0) // r0<rx
2137 {
2138 assert(s2h>=0);
2139 if(opcode2[i]==0x2a) // SLT
2140 emit_set_gz64_32(s2h,s2l,t);
2141 else // SLTU (set if not zero)
2142 emit_set_nz64_32(s2h,s2l,t);
2143 }
2144 else {
2145 assert(s1l>=0);assert(s1h>=0);
2146 assert(s2l>=0);assert(s2h>=0);
2147 if(opcode2[i]==0x2a) // SLT
2148 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2149 else // SLTU
2150 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2151 }
2152 }
2153 } else {
2154 t=get_reg(i_regs->regmap,rt1[i]);
2155 //assert(t>=0);
2156 if(t>=0) {
2157 s1l=get_reg(i_regs->regmap,rs1[i]);
2158 s2l=get_reg(i_regs->regmap,rs2[i]);
2159 if(rs2[i]==0) // rx<r0
2160 {
2161 assert(s1l>=0);
2162 if(opcode2[i]==0x2a) // SLT
2163 emit_shrimm(s1l,31,t);
2164 else // SLTU (unsigned can not be less than zero)
2165 emit_zeroreg(t);
2166 }
2167 else if(rs1[i]==0) // r0<rx
2168 {
2169 assert(s2l>=0);
2170 if(opcode2[i]==0x2a) // SLT
2171 emit_set_gz32(s2l,t);
2172 else // SLTU (set if not zero)
2173 emit_set_nz32(s2l,t);
2174 }
2175 else{
2176 assert(s1l>=0);assert(s2l>=0);
2177 if(opcode2[i]==0x2a) // SLT
2178 emit_set_if_less32(s1l,s2l,t);
2179 else // SLTU
2180 emit_set_if_carry32(s1l,s2l,t);
2181 }
2182 }
2183 }
2184 }
2185 }
2186 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2187 if(rt1[i]) {
2188 signed char s1l,s1h,s2l,s2h,th,tl;
2189 tl=get_reg(i_regs->regmap,rt1[i]);
2190 th=get_reg(i_regs->regmap,rt1[i]|64);
2191 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2192 {
2193 assert(tl>=0);
2194 if(tl>=0) {
2195 s1l=get_reg(i_regs->regmap,rs1[i]);
2196 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2197 s2l=get_reg(i_regs->regmap,rs2[i]);
2198 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2199 if(rs1[i]&&rs2[i]) {
2200 assert(s1l>=0);assert(s1h>=0);
2201 assert(s2l>=0);assert(s2h>=0);
2202 if(opcode2[i]==0x24) { // AND
2203 emit_and(s1l,s2l,tl);
2204 emit_and(s1h,s2h,th);
2205 } else
2206 if(opcode2[i]==0x25) { // OR
2207 emit_or(s1l,s2l,tl);
2208 emit_or(s1h,s2h,th);
2209 } else
2210 if(opcode2[i]==0x26) { // XOR
2211 emit_xor(s1l,s2l,tl);
2212 emit_xor(s1h,s2h,th);
2213 } else
2214 if(opcode2[i]==0x27) { // NOR
2215 emit_or(s1l,s2l,tl);
2216 emit_or(s1h,s2h,th);
2217 emit_not(tl,tl);
2218 emit_not(th,th);
2219 }
2220 }
2221 else
2222 {
2223 if(opcode2[i]==0x24) { // AND
2224 emit_zeroreg(tl);
2225 emit_zeroreg(th);
2226 } else
2227 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2228 if(rs1[i]){
2229 if(s1l>=0) emit_mov(s1l,tl);
2230 else emit_loadreg(rs1[i],tl);
2231 if(s1h>=0) emit_mov(s1h,th);
2232 else emit_loadreg(rs1[i]|64,th);
2233 }
2234 else
2235 if(rs2[i]){
2236 if(s2l>=0) emit_mov(s2l,tl);
2237 else emit_loadreg(rs2[i],tl);
2238 if(s2h>=0) emit_mov(s2h,th);
2239 else emit_loadreg(rs2[i]|64,th);
2240 }
2241 else{
2242 emit_zeroreg(tl);
2243 emit_zeroreg(th);
2244 }
2245 } else
2246 if(opcode2[i]==0x27) { // NOR
2247 if(rs1[i]){
2248 if(s1l>=0) emit_not(s1l,tl);
2249 else{
2250 emit_loadreg(rs1[i],tl);
2251 emit_not(tl,tl);
2252 }
2253 if(s1h>=0) emit_not(s1h,th);
2254 else{
2255 emit_loadreg(rs1[i]|64,th);
2256 emit_not(th,th);
2257 }
2258 }
2259 else
2260 if(rs2[i]){
2261 if(s2l>=0) emit_not(s2l,tl);
2262 else{
2263 emit_loadreg(rs2[i],tl);
2264 emit_not(tl,tl);
2265 }
2266 if(s2h>=0) emit_not(s2h,th);
2267 else{
2268 emit_loadreg(rs2[i]|64,th);
2269 emit_not(th,th);
2270 }
2271 }
2272 else {
2273 emit_movimm(-1,tl);
2274 emit_movimm(-1,th);
2275 }
2276 }
2277 }
2278 }
2279 }
2280 else
2281 {
2282 // 32 bit
2283 if(tl>=0) {
2284 s1l=get_reg(i_regs->regmap,rs1[i]);
2285 s2l=get_reg(i_regs->regmap,rs2[i]);
2286 if(rs1[i]&&rs2[i]) {
2287 assert(s1l>=0);
2288 assert(s2l>=0);
2289 if(opcode2[i]==0x24) { // AND
2290 emit_and(s1l,s2l,tl);
2291 } else
2292 if(opcode2[i]==0x25) { // OR
2293 emit_or(s1l,s2l,tl);
2294 } else
2295 if(opcode2[i]==0x26) { // XOR
2296 emit_xor(s1l,s2l,tl);
2297 } else
2298 if(opcode2[i]==0x27) { // NOR
2299 emit_or(s1l,s2l,tl);
2300 emit_not(tl,tl);
2301 }
2302 }
2303 else
2304 {
2305 if(opcode2[i]==0x24) { // AND
2306 emit_zeroreg(tl);
2307 } else
2308 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2309 if(rs1[i]){
2310 if(s1l>=0) emit_mov(s1l,tl);
2311 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2312 }
2313 else
2314 if(rs2[i]){
2315 if(s2l>=0) emit_mov(s2l,tl);
2316 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2317 }
2318 else emit_zeroreg(tl);
2319 } else
2320 if(opcode2[i]==0x27) { // NOR
2321 if(rs1[i]){
2322 if(s1l>=0) emit_not(s1l,tl);
2323 else {
2324 emit_loadreg(rs1[i],tl);
2325 emit_not(tl,tl);
2326 }
2327 }
2328 else
2329 if(rs2[i]){
2330 if(s2l>=0) emit_not(s2l,tl);
2331 else {
2332 emit_loadreg(rs2[i],tl);
2333 emit_not(tl,tl);
2334 }
2335 }
2336 else emit_movimm(-1,tl);
2337 }
2338 }
2339 }
2340 }
2341 }
2342 }
2343}
2344
2345void imm16_assemble(int i,struct regstat *i_regs)
2346{
2347 if (opcode[i]==0x0f) { // LUI
2348 if(rt1[i]) {
2349 signed char t;
2350 t=get_reg(i_regs->regmap,rt1[i]);
2351 //assert(t>=0);
2352 if(t>=0) {
2353 if(!((i_regs->isconst>>t)&1))
2354 emit_movimm(imm[i]<<16,t);
2355 }
2356 }
2357 }
2358 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2359 if(rt1[i]) {
2360 signed char s,t;
2361 t=get_reg(i_regs->regmap,rt1[i]);
2362 s=get_reg(i_regs->regmap,rs1[i]);
2363 if(rs1[i]) {
2364 //assert(t>=0);
2365 //assert(s>=0);
2366 if(t>=0) {
2367 if(!((i_regs->isconst>>t)&1)) {
2368 if(s<0) {
2369 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2370 emit_addimm(t,imm[i],t);
2371 }else{
2372 if(!((i_regs->wasconst>>s)&1))
2373 emit_addimm(s,imm[i],t);
2374 else
2375 emit_movimm(constmap[i][s]+imm[i],t);
2376 }
2377 }
2378 }
2379 } else {
2380 if(t>=0) {
2381 if(!((i_regs->isconst>>t)&1))
2382 emit_movimm(imm[i],t);
2383 }
2384 }
2385 }
2386 }
2387 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2388 if(rt1[i]) {
2389 signed char sh,sl,th,tl;
2390 th=get_reg(i_regs->regmap,rt1[i]|64);
2391 tl=get_reg(i_regs->regmap,rt1[i]);
2392 sh=get_reg(i_regs->regmap,rs1[i]|64);
2393 sl=get_reg(i_regs->regmap,rs1[i]);
2394 if(tl>=0) {
2395 if(rs1[i]) {
2396 assert(sh>=0);
2397 assert(sl>=0);
2398 if(th>=0) {
2399 emit_addimm64_32(sh,sl,imm[i],th,tl);
2400 }
2401 else {
2402 emit_addimm(sl,imm[i],tl);
2403 }
2404 } else {
2405 emit_movimm(imm[i],tl);
2406 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2407 }
2408 }
2409 }
2410 }
2411 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2412 if(rt1[i]) {
2413 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2414 signed char sh,sl,t;
2415 t=get_reg(i_regs->regmap,rt1[i]);
2416 sh=get_reg(i_regs->regmap,rs1[i]|64);
2417 sl=get_reg(i_regs->regmap,rs1[i]);
2418 //assert(t>=0);
2419 if(t>=0) {
2420 if(rs1[i]>0) {
2421 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2422 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2423 if(opcode[i]==0x0a) { // SLTI
2424 if(sl<0) {
2425 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2426 emit_slti32(t,imm[i],t);
2427 }else{
2428 emit_slti32(sl,imm[i],t);
2429 }
2430 }
2431 else { // SLTIU
2432 if(sl<0) {
2433 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2434 emit_sltiu32(t,imm[i],t);
2435 }else{
2436 emit_sltiu32(sl,imm[i],t);
2437 }
2438 }
2439 }else{ // 64-bit
2440 assert(sl>=0);
2441 if(opcode[i]==0x0a) // SLTI
2442 emit_slti64_32(sh,sl,imm[i],t);
2443 else // SLTIU
2444 emit_sltiu64_32(sh,sl,imm[i],t);
2445 }
2446 }else{
2447 // SLTI(U) with r0 is just stupid,
2448 // nonetheless examples can be found
2449 if(opcode[i]==0x0a) // SLTI
2450 if(0<imm[i]) emit_movimm(1,t);
2451 else emit_zeroreg(t);
2452 else // SLTIU
2453 {
2454 if(imm[i]) emit_movimm(1,t);
2455 else emit_zeroreg(t);
2456 }
2457 }
2458 }
2459 }
2460 }
2461 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2462 if(rt1[i]) {
2463 signed char sh,sl,th,tl;
2464 th=get_reg(i_regs->regmap,rt1[i]|64);
2465 tl=get_reg(i_regs->regmap,rt1[i]);
2466 sh=get_reg(i_regs->regmap,rs1[i]|64);
2467 sl=get_reg(i_regs->regmap,rs1[i]);
2468 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2469 if(opcode[i]==0x0c) //ANDI
2470 {
2471 if(rs1[i]) {
2472 if(sl<0) {
2473 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2474 emit_andimm(tl,imm[i],tl);
2475 }else{
2476 if(!((i_regs->wasconst>>sl)&1))
2477 emit_andimm(sl,imm[i],tl);
2478 else
2479 emit_movimm(constmap[i][sl]&imm[i],tl);
2480 }
2481 }
2482 else
2483 emit_zeroreg(tl);
2484 if(th>=0) emit_zeroreg(th);
2485 }
2486 else
2487 {
2488 if(rs1[i]) {
2489 if(sl<0) {
2490 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2491 }
2492 if(th>=0) {
2493 if(sh<0) {
2494 emit_loadreg(rs1[i]|64,th);
2495 }else{
2496 emit_mov(sh,th);
2497 }
2498 }
2499 if(opcode[i]==0x0d) //ORI
2500 if(sl<0) {
2501 emit_orimm(tl,imm[i],tl);
2502 }else{
2503 if(!((i_regs->wasconst>>sl)&1))
2504 emit_orimm(sl,imm[i],tl);
2505 else
2506 emit_movimm(constmap[i][sl]|imm[i],tl);
2507 }
2508 if(opcode[i]==0x0e) //XORI
2509 if(sl<0) {
2510 emit_xorimm(tl,imm[i],tl);
2511 }else{
2512 if(!((i_regs->wasconst>>sl)&1))
2513 emit_xorimm(sl,imm[i],tl);
2514 else
2515 emit_movimm(constmap[i][sl]^imm[i],tl);
2516 }
2517 }
2518 else {
2519 emit_movimm(imm[i],tl);
2520 if(th>=0) emit_zeroreg(th);
2521 }
2522 }
2523 }
2524 }
2525 }
2526}
2527
2528void shiftimm_assemble(int i,struct regstat *i_regs)
2529{
2530 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2531 {
2532 if(rt1[i]) {
2533 signed char s,t;
2534 t=get_reg(i_regs->regmap,rt1[i]);
2535 s=get_reg(i_regs->regmap,rs1[i]);
2536 //assert(t>=0);
2537 if(t>=0){
2538 if(rs1[i]==0)
2539 {
2540 emit_zeroreg(t);
2541 }
2542 else
2543 {
2544 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2545 if(imm[i]) {
2546 if(opcode2[i]==0) // SLL
2547 {
2548 emit_shlimm(s<0?t:s,imm[i],t);
2549 }
2550 if(opcode2[i]==2) // SRL
2551 {
2552 emit_shrimm(s<0?t:s,imm[i],t);
2553 }
2554 if(opcode2[i]==3) // SRA
2555 {
2556 emit_sarimm(s<0?t:s,imm[i],t);
2557 }
2558 }else{
2559 // Shift by zero
2560 if(s>=0 && s!=t) emit_mov(s,t);
2561 }
2562 }
2563 }
2564 //emit_storereg(rt1[i],t); //DEBUG
2565 }
2566 }
2567 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2568 {
2569 if(rt1[i]) {
2570 signed char sh,sl,th,tl;
2571 th=get_reg(i_regs->regmap,rt1[i]|64);
2572 tl=get_reg(i_regs->regmap,rt1[i]);
2573 sh=get_reg(i_regs->regmap,rs1[i]|64);
2574 sl=get_reg(i_regs->regmap,rs1[i]);
2575 if(tl>=0) {
2576 if(rs1[i]==0)
2577 {
2578 emit_zeroreg(tl);
2579 if(th>=0) emit_zeroreg(th);
2580 }
2581 else
2582 {
2583 assert(sl>=0);
2584 assert(sh>=0);
2585 if(imm[i]) {
2586 if(opcode2[i]==0x38) // DSLL
2587 {
2588 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2589 emit_shlimm(sl,imm[i],tl);
2590 }
2591 if(opcode2[i]==0x3a) // DSRL
2592 {
2593 emit_shrdimm(sl,sh,imm[i],tl);
2594 if(th>=0) emit_shrimm(sh,imm[i],th);
2595 }
2596 if(opcode2[i]==0x3b) // DSRA
2597 {
2598 emit_shrdimm(sl,sh,imm[i],tl);
2599 if(th>=0) emit_sarimm(sh,imm[i],th);
2600 }
2601 }else{
2602 // Shift by zero
2603 if(sl!=tl) emit_mov(sl,tl);
2604 if(th>=0&&sh!=th) emit_mov(sh,th);
2605 }
2606 }
2607 }
2608 }
2609 }
2610 if(opcode2[i]==0x3c) // DSLL32
2611 {
2612 if(rt1[i]) {
2613 signed char sl,tl,th;
2614 tl=get_reg(i_regs->regmap,rt1[i]);
2615 th=get_reg(i_regs->regmap,rt1[i]|64);
2616 sl=get_reg(i_regs->regmap,rs1[i]);
2617 if(th>=0||tl>=0){
2618 assert(tl>=0);
2619 assert(th>=0);
2620 assert(sl>=0);
2621 emit_mov(sl,th);
2622 emit_zeroreg(tl);
2623 if(imm[i]>32)
2624 {
2625 emit_shlimm(th,imm[i]&31,th);
2626 }
2627 }
2628 }
2629 }
2630 if(opcode2[i]==0x3e) // DSRL32
2631 {
2632 if(rt1[i]) {
2633 signed char sh,tl,th;
2634 tl=get_reg(i_regs->regmap,rt1[i]);
2635 th=get_reg(i_regs->regmap,rt1[i]|64);
2636 sh=get_reg(i_regs->regmap,rs1[i]|64);
2637 if(tl>=0){
2638 assert(sh>=0);
2639 emit_mov(sh,tl);
2640 if(th>=0) emit_zeroreg(th);
2641 if(imm[i]>32)
2642 {
2643 emit_shrimm(tl,imm[i]&31,tl);
2644 }
2645 }
2646 }
2647 }
2648 if(opcode2[i]==0x3f) // DSRA32
2649 {
2650 if(rt1[i]) {
2651 signed char sh,tl;
2652 tl=get_reg(i_regs->regmap,rt1[i]);
2653 sh=get_reg(i_regs->regmap,rs1[i]|64);
2654 if(tl>=0){
2655 assert(sh>=0);
2656 emit_mov(sh,tl);
2657 if(imm[i]>32)
2658 {
2659 emit_sarimm(tl,imm[i]&31,tl);
2660 }
2661 }
2662 }
2663 }
2664}
2665
2666#ifndef shift_assemble
2667void shift_assemble(int i,struct regstat *i_regs)
2668{
2669 printf("Need shift_assemble for this architecture.\n");
2670 exit(1);
2671}
2672#endif
2673
2674void load_assemble(int i,struct regstat *i_regs)
2675{
2676 int s,th,tl,addr,map=-1;
2677 int offset;
2678 int jaddr=0;
2679 int memtarget,c=0;
2680 u_int hr,reglist=0;
2681 th=get_reg(i_regs->regmap,rt1[i]|64);
2682 tl=get_reg(i_regs->regmap,rt1[i]);
2683 s=get_reg(i_regs->regmap,rs1[i]);
2684 offset=imm[i];
2685 for(hr=0;hr<HOST_REGS;hr++) {
2686 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2687 }
2688 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2689 if(s>=0) {
2690 c=(i_regs->wasconst>>s)&1;
2691 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2692 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2693 }
2694 if(offset||s<0||c) addr=tl;
2695 else addr=s;
2696 //printf("load_assemble: c=%d\n",c);
2697 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2698 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2699 if(tl>=0) {
2700 //assert(tl>=0);
2701 //assert(rt1[i]);
2702 reglist&=~(1<<tl);
2703 if(th>=0) reglist&=~(1<<th);
2704 if(!using_tlb) {
2705 if(!c) {
2706//#define R29_HACK 1
2707 #ifdef R29_HACK
2708 // Strmnnrmn's speed hack
2709 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2710 #endif
2711 {
2712 emit_cmpimm(addr,0x800000);
2713 jaddr=(int)out;
2714 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2715 // Hint to branch predictor that the branch is unlikely to be taken
2716 if(rs1[i]>=28)
2717 emit_jno_unlikely(0);
2718 else
2719 #endif
2720 emit_jno(0);
2721 }
2722 }
2723 }else{ // using tlb
2724 int x=0;
2725 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2726 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2727 map=get_reg(i_regs->regmap,TLREG);
2728 assert(map>=0);
2729 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2730 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2731 }
2732 if (opcode[i]==0x20) { // LB
2733 if(!c||memtarget) {
2734 #ifdef HOST_IMM_ADDR32
2735 if(c)
2736 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2737 else
2738 #endif
2739 {
2740 //emit_xorimm(addr,3,tl);
2741 //gen_tlb_addr_r(tl,map);
2742 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2743 int x=0;
2744 if(!c) emit_xorimm(addr,3,tl);
2745 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2746 emit_movsbl_indexed_tlb(x,tl,map,tl);
2747 }
2748 if(jaddr)
2749 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2750 }
2751 else
2752 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2753 }
2754 if (opcode[i]==0x21) { // LH
2755 if(!c||memtarget) {
2756 #ifdef HOST_IMM_ADDR32
2757 if(c)
2758 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2759 else
2760 #endif
2761 {
2762 int x=0;
2763 if(!c) emit_xorimm(addr,2,tl);
2764 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2765 //#ifdef
2766 //emit_movswl_indexed_tlb(x,tl,map,tl);
2767 //else
2768 if(map>=0) {
2769 gen_tlb_addr_r(tl,map);
2770 emit_movswl_indexed(x,tl,tl);
2771 }else
2772 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2773 }
2774 if(jaddr)
2775 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2776 }
2777 else
2778 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2779 }
2780 if (opcode[i]==0x23) { // LW
2781 if(!c||memtarget) {
2782 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2783 #ifdef HOST_IMM_ADDR32
2784 if(c)
2785 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2786 else
2787 #endif
2788 emit_readword_indexed_tlb(0,addr,map,tl);
2789 if(jaddr)
2790 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2791 }
2792 else
2793 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2794 }
2795 if (opcode[i]==0x24) { // LBU
2796 if(!c||memtarget) {
2797 #ifdef HOST_IMM_ADDR32
2798 if(c)
2799 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2800 else
2801 #endif
2802 {
2803 //emit_xorimm(addr,3,tl);
2804 //gen_tlb_addr_r(tl,map);
2805 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2806 int x=0;
2807 if(!c) emit_xorimm(addr,3,tl);
2808 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2809 emit_movzbl_indexed_tlb(x,tl,map,tl);
2810 }
2811 if(jaddr)
2812 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2813 }
2814 else
2815 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2816 }
2817 if (opcode[i]==0x25) { // LHU
2818 if(!c||memtarget) {
2819 #ifdef HOST_IMM_ADDR32
2820 if(c)
2821 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2822 else
2823 #endif
2824 {
2825 int x=0;
2826 if(!c) emit_xorimm(addr,2,tl);
2827 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2828 //#ifdef
2829 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2830 //#else
2831 if(map>=0) {
2832 gen_tlb_addr_r(tl,map);
2833 emit_movzwl_indexed(x,tl,tl);
2834 }else
2835 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2836 if(jaddr)
2837 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2838 }
2839 }
2840 else
2841 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2842 }
2843 if (opcode[i]==0x27) { // LWU
2844 assert(th>=0);
2845 if(!c||memtarget) {
2846 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2847 #ifdef HOST_IMM_ADDR32
2848 if(c)
2849 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2850 else
2851 #endif
2852 emit_readword_indexed_tlb(0,addr,map,tl);
2853 if(jaddr)
2854 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2855 }
2856 else {
2857 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2858 }
2859 emit_zeroreg(th);
2860 }
2861 if (opcode[i]==0x37) { // LD
2862 if(!c||memtarget) {
2863 //gen_tlb_addr_r(tl,map);
2864 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2865 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2866 #ifdef HOST_IMM_ADDR32
2867 if(c)
2868 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2869 else
2870 #endif
2871 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2872 if(jaddr)
2873 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2874 }
2875 else
2876 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2877 }
2878 //emit_storereg(rt1[i],tl); // DEBUG
2879 }
2880 //if(opcode[i]==0x23)
2881 //if(opcode[i]==0x24)
2882 //if(opcode[i]==0x23||opcode[i]==0x24)
2883 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2884 {
2885 //emit_pusha();
2886 save_regs(0x100f);
2887 emit_readword((int)&last_count,ECX);
2888 #ifdef __i386__
2889 if(get_reg(i_regs->regmap,CCREG)<0)
2890 emit_loadreg(CCREG,HOST_CCREG);
2891 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2892 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2893 emit_writeword(HOST_CCREG,(int)&Count);
2894 #endif
2895 #ifdef __arm__
2896 if(get_reg(i_regs->regmap,CCREG)<0)
2897 emit_loadreg(CCREG,0);
2898 else
2899 emit_mov(HOST_CCREG,0);
2900 emit_add(0,ECX,0);
2901 emit_addimm(0,2*ccadj[i],0);
2902 emit_writeword(0,(int)&Count);
2903 #endif
2904 emit_call((int)memdebug);
2905 //emit_popa();
2906 restore_regs(0x100f);
2907 }/**/
2908}
2909
2910#ifndef loadlr_assemble
2911void loadlr_assemble(int i,struct regstat *i_regs)
2912{
2913 printf("Need loadlr_assemble for this architecture.\n");
2914 exit(1);
2915}
2916#endif
2917
2918void store_assemble(int i,struct regstat *i_regs)
2919{
2920 int s,th,tl,map=-1;
2921 int addr,temp;
2922 int offset;
2923 int jaddr=0,jaddr2,type;
2924 int memtarget,c=0;
2925 int agr=AGEN1+(i&1);
2926 u_int hr,reglist=0;
2927 th=get_reg(i_regs->regmap,rs2[i]|64);
2928 tl=get_reg(i_regs->regmap,rs2[i]);
2929 s=get_reg(i_regs->regmap,rs1[i]);
2930 temp=get_reg(i_regs->regmap,agr);
2931 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2932 offset=imm[i];
2933 if(s>=0) {
2934 c=(i_regs->wasconst>>s)&1;
2935 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2936 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2937 }
2938 assert(tl>=0);
2939 assert(temp>=0);
2940 for(hr=0;hr<HOST_REGS;hr++) {
2941 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2942 }
2943 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2944 if(offset||s<0||c) addr=temp;
2945 else addr=s;
2946 if(!using_tlb) {
2947 if(!c) {
2948 #ifdef R29_HACK
2949 // Strmnnrmn's speed hack
2950 memtarget=1;
2951 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2952 #endif
2953 emit_cmpimm(addr,0x800000);
2954 #ifdef DESTRUCTIVE_SHIFT
2955 if(s==addr) emit_mov(s,temp);
2956 #endif
2957 #ifdef R29_HACK
2958 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2959 #endif
2960 {
2961 jaddr=(int)out;
2962 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2963 // Hint to branch predictor that the branch is unlikely to be taken
2964 if(rs1[i]>=28)
2965 emit_jno_unlikely(0);
2966 else
2967 #endif
2968 emit_jno(0);
2969 }
2970 }
2971 }else{ // using tlb
2972 int x=0;
2973 if (opcode[i]==0x28) x=3; // SB
2974 if (opcode[i]==0x29) x=2; // SH
2975 map=get_reg(i_regs->regmap,TLREG);
2976 assert(map>=0);
2977 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
2978 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
2979 }
2980
2981 if (opcode[i]==0x28) { // SB
2982 if(!c||memtarget) {
2983 int x=0;
2984 if(!c) emit_xorimm(addr,3,temp);
2985 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2986 //gen_tlb_addr_w(temp,map);
2987 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
2988 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
2989 }
2990 type=STOREB_STUB;
2991 }
2992 if (opcode[i]==0x29) { // SH
2993 if(!c||memtarget) {
2994 int x=0;
2995 if(!c) emit_xorimm(addr,2,temp);
2996 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2997 //#ifdef
2998 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
2999 //#else
3000 if(map>=0) {
3001 gen_tlb_addr_w(temp,map);
3002 emit_writehword_indexed(tl,x,temp);
3003 }else
3004 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3005 }
3006 type=STOREH_STUB;
3007 }
3008 if (opcode[i]==0x2B) { // SW
3009 if(!c||memtarget)
3010 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3011 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3012 type=STOREW_STUB;
3013 }
3014 if (opcode[i]==0x3F) { // SD
3015 if(!c||memtarget) {
3016 if(rs2[i]) {
3017 assert(th>=0);
3018 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3019 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3020 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3021 }else{
3022 // Store zero
3023 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3024 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3025 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3026 }
3027 }
3028 type=STORED_STUB;
3029 }
3030 if(jaddr) {
3031 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3032 } else if(!memtarget) {
3033 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3034 }
3035 if(!using_tlb) {
3036 if(!c||memtarget) {
3037 #ifdef DESTRUCTIVE_SHIFT
3038 // The x86 shift operation is 'destructive'; it overwrites the
3039 // source register, so we need to make a copy first and use that.
3040 addr=temp;
3041 #endif
3042 #if defined(HOST_IMM8)
3043 int ir=get_reg(i_regs->regmap,INVCP);
3044 assert(ir>=0);
3045 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3046 #else
3047 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3048 #endif
3049 jaddr2=(int)out;
3050 emit_jne(0);
3051 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3052 }
3053 }
3054 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3055 //if(opcode[i]==0x2B || opcode[i]==0x28)
3056 //if(opcode[i]==0x2B || opcode[i]==0x29)
3057 //if(opcode[i]==0x2B)
3058 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3059 {
3060 //emit_pusha();
3061 save_regs(0x100f);
3062 emit_readword((int)&last_count,ECX);
3063 #ifdef __i386__
3064 if(get_reg(i_regs->regmap,CCREG)<0)
3065 emit_loadreg(CCREG,HOST_CCREG);
3066 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3067 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3068 emit_writeword(HOST_CCREG,(int)&Count);
3069 #endif
3070 #ifdef __arm__
3071 if(get_reg(i_regs->regmap,CCREG)<0)
3072 emit_loadreg(CCREG,0);
3073 else
3074 emit_mov(HOST_CCREG,0);
3075 emit_add(0,ECX,0);
3076 emit_addimm(0,2*ccadj[i],0);
3077 emit_writeword(0,(int)&Count);
3078 #endif
3079 emit_call((int)memdebug);
3080 //emit_popa();
3081 restore_regs(0x100f);
3082 }/**/
3083}
3084
3085void storelr_assemble(int i,struct regstat *i_regs)
3086{
3087 int s,th,tl;
3088 int temp;
3089 int temp2;
3090 int offset;
3091 int jaddr=0,jaddr2;
3092 int case1,case2,case3;
3093 int done0,done1,done2;
3094 int memtarget,c=0;
3095 u_int hr,reglist=0;
3096 th=get_reg(i_regs->regmap,rs2[i]|64);
3097 tl=get_reg(i_regs->regmap,rs2[i]);
3098 s=get_reg(i_regs->regmap,rs1[i]);
3099 temp=get_reg(i_regs->regmap,-1);
3100 offset=imm[i];
3101 if(s>=0) {
3102 c=(i_regs->isconst>>s)&1;
3103 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3104 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3105 }
3106 assert(tl>=0);
3107 for(hr=0;hr<HOST_REGS;hr++) {
3108 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3109 }
3110 if(tl>=0) {
3111 assert(temp>=0);
3112 if(!using_tlb) {
3113 if(!c) {
3114 emit_cmpimm(s<0||offset?temp:s,0x800000);
3115 if(!offset&&s!=temp) emit_mov(s,temp);
3116 jaddr=(int)out;
3117 emit_jno(0);
3118 }
3119 else
3120 {
3121 if(!memtarget||!rs1[i]) {
3122 jaddr=(int)out;
3123 emit_jmp(0);
3124 }
3125 }
3126 if((u_int)rdram!=0x80000000)
3127 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3128 }else{ // using tlb
3129 int map=get_reg(i_regs->regmap,TLREG);
3130 assert(map>=0);
3131 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3132 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3133 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3134 if(!jaddr&&!memtarget) {
3135 jaddr=(int)out;
3136 emit_jmp(0);
3137 }
3138 gen_tlb_addr_w(temp,map);
3139 }
3140
3141 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3142 temp2=get_reg(i_regs->regmap,FTEMP);
3143 if(!rs2[i]) temp2=th=tl;
3144 }
3145
3146 emit_testimm(temp,2);
3147 case2=(int)out;
3148 emit_jne(0);
3149 emit_testimm(temp,1);
3150 case1=(int)out;
3151 emit_jne(0);
3152 // 0
3153 if (opcode[i]==0x2A) { // SWL
3154 emit_writeword_indexed(tl,0,temp);
3155 }
3156 if (opcode[i]==0x2E) { // SWR
3157 emit_writebyte_indexed(tl,3,temp);
3158 }
3159 if (opcode[i]==0x2C) { // SDL
3160 emit_writeword_indexed(th,0,temp);
3161 if(rs2[i]) emit_mov(tl,temp2);
3162 }
3163 if (opcode[i]==0x2D) { // SDR
3164 emit_writebyte_indexed(tl,3,temp);
3165 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3166 }
3167 done0=(int)out;
3168 emit_jmp(0);
3169 // 1
3170 set_jump_target(case1,(int)out);
3171 if (opcode[i]==0x2A) { // SWL
3172 // Write 3 msb into three least significant bytes
3173 if(rs2[i]) emit_rorimm(tl,8,tl);
3174 emit_writehword_indexed(tl,-1,temp);
3175 if(rs2[i]) emit_rorimm(tl,16,tl);
3176 emit_writebyte_indexed(tl,1,temp);
3177 if(rs2[i]) emit_rorimm(tl,8,tl);
3178 }
3179 if (opcode[i]==0x2E) { // SWR
3180 // Write two lsb into two most significant bytes
3181 emit_writehword_indexed(tl,1,temp);
3182 }
3183 if (opcode[i]==0x2C) { // SDL
3184 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3185 // Write 3 msb into three least significant bytes
3186 if(rs2[i]) emit_rorimm(th,8,th);
3187 emit_writehword_indexed(th,-1,temp);
3188 if(rs2[i]) emit_rorimm(th,16,th);
3189 emit_writebyte_indexed(th,1,temp);
3190 if(rs2[i]) emit_rorimm(th,8,th);
3191 }
3192 if (opcode[i]==0x2D) { // SDR
3193 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3194 // Write two lsb into two most significant bytes
3195 emit_writehword_indexed(tl,1,temp);
3196 }
3197 done1=(int)out;
3198 emit_jmp(0);
3199 // 2
3200 set_jump_target(case2,(int)out);
3201 emit_testimm(temp,1);
3202 case3=(int)out;
3203 emit_jne(0);
3204 if (opcode[i]==0x2A) { // SWL
3205 // Write two msb into two least significant bytes
3206 if(rs2[i]) emit_rorimm(tl,16,tl);
3207 emit_writehword_indexed(tl,-2,temp);
3208 if(rs2[i]) emit_rorimm(tl,16,tl);
3209 }
3210 if (opcode[i]==0x2E) { // SWR
3211 // Write 3 lsb into three most significant bytes
3212 emit_writebyte_indexed(tl,-1,temp);
3213 if(rs2[i]) emit_rorimm(tl,8,tl);
3214 emit_writehword_indexed(tl,0,temp);
3215 if(rs2[i]) emit_rorimm(tl,24,tl);
3216 }
3217 if (opcode[i]==0x2C) { // SDL
3218 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3219 // Write two msb into two least significant bytes
3220 if(rs2[i]) emit_rorimm(th,16,th);
3221 emit_writehword_indexed(th,-2,temp);
3222 if(rs2[i]) emit_rorimm(th,16,th);
3223 }
3224 if (opcode[i]==0x2D) { // SDR
3225 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3226 // Write 3 lsb into three most significant bytes
3227 emit_writebyte_indexed(tl,-1,temp);
3228 if(rs2[i]) emit_rorimm(tl,8,tl);
3229 emit_writehword_indexed(tl,0,temp);
3230 if(rs2[i]) emit_rorimm(tl,24,tl);
3231 }
3232 done2=(int)out;
3233 emit_jmp(0);
3234 // 3
3235 set_jump_target(case3,(int)out);
3236 if (opcode[i]==0x2A) { // SWL
3237 // Write msb into least significant byte
3238 if(rs2[i]) emit_rorimm(tl,24,tl);
3239 emit_writebyte_indexed(tl,-3,temp);
3240 if(rs2[i]) emit_rorimm(tl,8,tl);
3241 }
3242 if (opcode[i]==0x2E) { // SWR
3243 // Write entire word
3244 emit_writeword_indexed(tl,-3,temp);
3245 }
3246 if (opcode[i]==0x2C) { // SDL
3247 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3248 // Write msb into least significant byte
3249 if(rs2[i]) emit_rorimm(th,24,th);
3250 emit_writebyte_indexed(th,-3,temp);
3251 if(rs2[i]) emit_rorimm(th,8,th);
3252 }
3253 if (opcode[i]==0x2D) { // SDR
3254 if(rs2[i]) emit_mov(th,temp2);
3255 // Write entire word
3256 emit_writeword_indexed(tl,-3,temp);
3257 }
3258 set_jump_target(done0,(int)out);
3259 set_jump_target(done1,(int)out);
3260 set_jump_target(done2,(int)out);
3261 if (opcode[i]==0x2C) { // SDL
3262 emit_testimm(temp,4);
3263 done0=(int)out;
3264 emit_jne(0);
3265 emit_andimm(temp,~3,temp);
3266 emit_writeword_indexed(temp2,4,temp);
3267 set_jump_target(done0,(int)out);
3268 }
3269 if (opcode[i]==0x2D) { // SDR
3270 emit_testimm(temp,4);
3271 done0=(int)out;
3272 emit_jeq(0);
3273 emit_andimm(temp,~3,temp);
3274 emit_writeword_indexed(temp2,-4,temp);
3275 set_jump_target(done0,(int)out);
3276 }
3277 if(!c||!memtarget)
3278 add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3279 }
3280 if(!using_tlb) {
3281 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3282 #if defined(HOST_IMM8)
3283 int ir=get_reg(i_regs->regmap,INVCP);
3284 assert(ir>=0);
3285 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3286 #else
3287 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3288 #endif
3289 jaddr2=(int)out;
3290 emit_jne(0);
3291 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3292 }
3293 /*
3294 emit_pusha();
3295 //save_regs(0x100f);
3296 emit_readword((int)&last_count,ECX);
3297 if(get_reg(i_regs->regmap,CCREG)<0)
3298 emit_loadreg(CCREG,HOST_CCREG);
3299 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3300 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3301 emit_writeword(HOST_CCREG,(int)&Count);
3302 emit_call((int)memdebug);
3303 emit_popa();
3304 //restore_regs(0x100f);
3305 /**/
3306}
3307
3308void c1ls_assemble(int i,struct regstat *i_regs)
3309{
3310 int s,th,tl;
3311 int temp,ar;
3312 int map=-1;
3313 int offset;
3314 int c=0;
3315 int jaddr,jaddr2=0,jaddr3,type;
3316 int agr=AGEN1+(i&1);
3317 u_int hr,reglist=0;
3318 th=get_reg(i_regs->regmap,FTEMP|64);
3319 tl=get_reg(i_regs->regmap,FTEMP);
3320 s=get_reg(i_regs->regmap,rs1[i]);
3321 temp=get_reg(i_regs->regmap,agr);
3322 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3323 offset=imm[i];
3324 assert(tl>=0);
3325 assert(rs1[i]>0);
3326 assert(temp>=0);
3327 for(hr=0;hr<HOST_REGS;hr++) {
3328 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3329 }
3330 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3331 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3332 {
3333 // Loads use a temporary register which we need to save
3334 reglist|=1<<temp;
3335 }
3336 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3337 ar=temp;
3338 else // LWC1/LDC1
3339 ar=tl;
3340 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3341 //else c=(i_regs->wasconst>>s)&1;
3342 if(s>=0) c=(i_regs->wasconst>>s)&1;
3343 // Check cop1 unusable
3344 if(!cop1_usable) {
3345 signed char rs=get_reg(i_regs->regmap,CSREG);
3346 assert(rs>=0);
3347 emit_testimm(rs,0x20000000);
3348 jaddr=(int)out;
3349 emit_jeq(0);
3350 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3351 cop1_usable=1;
3352 }
3353 if (opcode[i]==0x39) { // SWC1 (get float address)
3354 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3355 }
3356 if (opcode[i]==0x3D) { // SDC1 (get double address)
3357 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3358 }
3359 // Generate address + offset
3360 if(!using_tlb) {
3361 if(!c)
3362 emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3363 }
3364 else
3365 {
3366 map=get_reg(i_regs->regmap,TLREG);
3367 assert(map>=0);
3368 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3369 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3370 }
3371 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3372 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3373 }
3374 }
3375 if (opcode[i]==0x39) { // SWC1 (read float)
3376 emit_readword_indexed(0,tl,tl);
3377 }
3378 if (opcode[i]==0x3D) { // SDC1 (read double)
3379 emit_readword_indexed(4,tl,th);
3380 emit_readword_indexed(0,tl,tl);
3381 }
3382 if (opcode[i]==0x31) { // LWC1 (get target address)
3383 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3384 }
3385 if (opcode[i]==0x35) { // LDC1 (get target address)
3386 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3387 }
3388 if(!using_tlb) {
3389 if(!c) {
3390 jaddr2=(int)out;
3391 emit_jno(0);
3392 }
3393 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3394 jaddr2=(int)out;
3395 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3396 }
3397 #ifdef DESTRUCTIVE_SHIFT
3398 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3399 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3400 }
3401 #endif
3402 }else{
3403 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3404 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3405 }
3406 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3407 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3408 }
3409 }
3410 if (opcode[i]==0x31) { // LWC1
3411 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3412 //gen_tlb_addr_r(ar,map);
3413 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3414 #ifdef HOST_IMM_ADDR32
3415 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3416 else
3417 #endif
3418 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3419 type=LOADW_STUB;
3420 }
3421 if (opcode[i]==0x35) { // LDC1
3422 assert(th>=0);
3423 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3424 //gen_tlb_addr_r(ar,map);
3425 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3426 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3427 #ifdef HOST_IMM_ADDR32
3428 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3429 else
3430 #endif
3431 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3432 type=LOADD_STUB;
3433 }
3434 if (opcode[i]==0x39) { // SWC1
3435 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3436 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3437 type=STOREW_STUB;
3438 }
3439 if (opcode[i]==0x3D) { // SDC1
3440 assert(th>=0);
3441 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3442 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3443 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3444 type=STORED_STUB;
3445 }
3446 if(!using_tlb) {
3447 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3448 #ifndef DESTRUCTIVE_SHIFT
3449 temp=offset||c||s<0?ar:s;
3450 #endif
3451 #if defined(HOST_IMM8)
3452 int ir=get_reg(i_regs->regmap,INVCP);
3453 assert(ir>=0);
3454 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3455 #else
3456 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3457 #endif
3458 jaddr3=(int)out;
3459 emit_jne(0);
3460 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3461 }
3462 }
3463 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3464 if (opcode[i]==0x31) { // LWC1 (write float)
3465 emit_writeword_indexed(tl,0,temp);
3466 }
3467 if (opcode[i]==0x35) { // LDC1 (write double)
3468 emit_writeword_indexed(th,4,temp);
3469 emit_writeword_indexed(tl,0,temp);
3470 }
3471 //if(opcode[i]==0x39)
3472 /*if(opcode[i]==0x39||opcode[i]==0x31)
3473 {
3474 emit_pusha();
3475 emit_readword((int)&last_count,ECX);
3476 if(get_reg(i_regs->regmap,CCREG)<0)
3477 emit_loadreg(CCREG,HOST_CCREG);
3478 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3479 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3480 emit_writeword(HOST_CCREG,(int)&Count);
3481 emit_call((int)memdebug);
3482 emit_popa();
3483 }/**/
3484}
3485
3486#ifndef multdiv_assemble
3487void multdiv_assemble(int i,struct regstat *i_regs)
3488{
3489 printf("Need multdiv_assemble for this architecture.\n");
3490 exit(1);
3491}
3492#endif
3493
3494void mov_assemble(int i,struct regstat *i_regs)
3495{
3496 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3497 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3498 assert(rt1[i]>0);
3499 if(rt1[i]) {
3500 signed char sh,sl,th,tl;
3501 th=get_reg(i_regs->regmap,rt1[i]|64);
3502 tl=get_reg(i_regs->regmap,rt1[i]);
3503 //assert(tl>=0);
3504 if(tl>=0) {
3505 sh=get_reg(i_regs->regmap,rs1[i]|64);
3506 sl=get_reg(i_regs->regmap,rs1[i]);
3507 if(sl>=0) emit_mov(sl,tl);
3508 else emit_loadreg(rs1[i],tl);
3509 if(th>=0) {
3510 if(sh>=0) emit_mov(sh,th);
3511 else emit_loadreg(rs1[i]|64,th);
3512 }
3513 }
3514 }
3515}
3516
3517#ifndef fconv_assemble
3518void fconv_assemble(int i,struct regstat *i_regs)
3519{
3520 printf("Need fconv_assemble for this architecture.\n");
3521 exit(1);
3522}
3523#endif
3524
3525#if 0
3526void float_assemble(int i,struct regstat *i_regs)
3527{
3528 printf("Need float_assemble for this architecture.\n");
3529 exit(1);
3530}
3531#endif
3532
3533void syscall_assemble(int i,struct regstat *i_regs)
3534{
3535 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3536 assert(ccreg==HOST_CCREG);
3537 assert(!is_delayslot);
3538 emit_movimm(start+i*4,EAX); // Get PC
3539 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3540 emit_jmp((int)jump_syscall);
3541}
3542
3543void ds_assemble(int i,struct regstat *i_regs)
3544{
3545 is_delayslot=1;
3546 switch(itype[i]) {
3547 case ALU:
3548 alu_assemble(i,i_regs);break;
3549 case IMM16:
3550 imm16_assemble(i,i_regs);break;
3551 case SHIFT:
3552 shift_assemble(i,i_regs);break;
3553 case SHIFTIMM:
3554 shiftimm_assemble(i,i_regs);break;
3555 case LOAD:
3556 load_assemble(i,i_regs);break;
3557 case LOADLR:
3558 loadlr_assemble(i,i_regs);break;
3559 case STORE:
3560 store_assemble(i,i_regs);break;
3561 case STORELR:
3562 storelr_assemble(i,i_regs);break;
3563 case COP0:
3564 cop0_assemble(i,i_regs);break;
3565 case COP1:
3566 cop1_assemble(i,i_regs);break;
3567 case C1LS:
3568 c1ls_assemble(i,i_regs);break;
3569 case FCONV:
3570 fconv_assemble(i,i_regs);break;
3571 case FLOAT:
3572 float_assemble(i,i_regs);break;
3573 case FCOMP:
3574 fcomp_assemble(i,i_regs);break;
3575 case MULTDIV:
3576 multdiv_assemble(i,i_regs);break;
3577 case MOV:
3578 mov_assemble(i,i_regs);break;
3579 case SYSCALL:
3580 case SPAN:
3581 case UJUMP:
3582 case RJUMP:
3583 case CJUMP:
3584 case SJUMP:
3585 case FJUMP:
3586 printf("Jump in the delay slot. This is probably a bug.\n");
3587 }
3588 is_delayslot=0;
3589}
3590
3591// Is the branch target a valid internal jump?
3592int internal_branch(uint64_t i_is32,int addr)
3593{
3594 if(addr&1) return 0; // Indirect (register) jump
3595 if(addr>=start && addr<start+slen*4-4)
3596 {
3597 int t=(addr-start)>>2;
3598 // Delay slots are not valid branch targets
3599 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3600 // 64 -> 32 bit transition requires a recompile
3601 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3602 {
3603 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3604 else printf("optimizable: yes\n");
3605 }*/
3606 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3607 if(requires_32bit[t]&~i_is32) return 0;
3608 else return 1;
3609 }
3610 return 0;
3611}
3612
3613#ifndef wb_invalidate
3614void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3615 uint64_t u,uint64_t uu)
3616{
3617 int hr;
3618 for(hr=0;hr<HOST_REGS;hr++) {
3619 if(hr!=EXCLUDE_REG) {
3620 if(pre[hr]!=entry[hr]) {
3621 if(pre[hr]>=0) {
3622 if((dirty>>hr)&1) {
3623 if(get_reg(entry,pre[hr])<0) {
3624 if(pre[hr]<64) {
3625 if(!((u>>pre[hr])&1)) {
3626 emit_storereg(pre[hr],hr);
3627 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3628 emit_sarimm(hr,31,hr);
3629 emit_storereg(pre[hr]|64,hr);
3630 }
3631 }
3632 }else{
3633 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3634 emit_storereg(pre[hr],hr);
3635 }
3636 }
3637 }
3638 }
3639 }
3640 }
3641 }
3642 }
3643 // Move from one register to another (no writeback)
3644 for(hr=0;hr<HOST_REGS;hr++) {
3645 if(hr!=EXCLUDE_REG) {
3646 if(pre[hr]!=entry[hr]) {
3647 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3648 int nr;
3649 if((nr=get_reg(entry,pre[hr]))>=0) {
3650 emit_mov(hr,nr);
3651 }
3652 }
3653 }
3654 }
3655 }
3656}
3657#endif
3658
3659// Load the specified registers
3660// This only loads the registers given as arguments because
3661// we don't want to load things that will be overwritten
3662void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3663{
3664 int hr;
3665 // Load 32-bit regs
3666 for(hr=0;hr<HOST_REGS;hr++) {
3667 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3668 if(entry[hr]!=regmap[hr]) {
3669 if(regmap[hr]==rs1||regmap[hr]==rs2)
3670 {
3671 if(regmap[hr]==0) {
3672 emit_zeroreg(hr);
3673 }
3674 else
3675 {
3676 emit_loadreg(regmap[hr],hr);
3677 }
3678 }
3679 }
3680 }
3681 }
3682 //Load 64-bit regs
3683 for(hr=0;hr<HOST_REGS;hr++) {
3684 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3685 if(entry[hr]!=regmap[hr]) {
3686 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3687 {
3688 assert(regmap[hr]!=64);
3689 if((is32>>(regmap[hr]&63))&1) {
3690 int lr=get_reg(regmap,regmap[hr]-64);
3691 if(lr>=0)
3692 emit_sarimm(lr,31,hr);
3693 else
3694 emit_loadreg(regmap[hr],hr);
3695 }
3696 else
3697 {
3698 emit_loadreg(regmap[hr],hr);
3699 }
3700 }
3701 }
3702 }
3703 }
3704}
3705
3706// Load registers prior to the start of a loop
3707// so that they are not loaded within the loop
3708static void loop_preload(signed char pre[],signed char entry[])
3709{
3710 int hr;
3711 for(hr=0;hr<HOST_REGS;hr++) {
3712 if(hr!=EXCLUDE_REG) {
3713 if(pre[hr]!=entry[hr]) {
3714 if(entry[hr]>=0) {
3715 if(get_reg(pre,entry[hr])<0) {
3716 assem_debug("loop preload:\n");
3717 //printf("loop preload: %d\n",hr);
3718 if(entry[hr]==0) {
3719 emit_zeroreg(hr);
3720 }
3721 else if(entry[hr]<TEMPREG)
3722 {
3723 emit_loadreg(entry[hr],hr);
3724 }
3725 else if(entry[hr]-64<TEMPREG)
3726 {
3727 emit_loadreg(entry[hr],hr);
3728 }
3729 }
3730 }
3731 }
3732 }
3733 }
3734}
3735
3736// Generate address for load/store instruction
3737void address_generation(int i,struct regstat *i_regs,signed char entry[])
3738{
3739 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
3740 int ra;
3741 int agr=AGEN1+(i&1);
3742 int mgr=MGEN1+(i&1);
3743 if(itype[i]==LOAD) {
3744 ra=get_reg(i_regs->regmap,rt1[i]);
3745 //if(rt1[i]) assert(ra>=0);
3746 }
3747 if(itype[i]==LOADLR) {
3748 ra=get_reg(i_regs->regmap,FTEMP);
3749 }
3750 if(itype[i]==STORE||itype[i]==STORELR) {
3751 ra=get_reg(i_regs->regmap,agr);
3752 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3753 }
3754 if(itype[i]==C1LS) {
3755 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3756 ra=get_reg(i_regs->regmap,FTEMP);
3757 else { // SWC1/SDC1
3758 ra=get_reg(i_regs->regmap,agr);
3759 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3760 }
3761 }
3762 int rs=get_reg(i_regs->regmap,rs1[i]);
3763 int rm=get_reg(i_regs->regmap,TLREG);
3764 if(ra>=0) {
3765 int offset=imm[i];
3766 int c=(i_regs->wasconst>>rs)&1;
3767 if(rs1[i]==0) {
3768 // Using r0 as a base address
3769 /*if(rm>=0) {
3770 if(!entry||entry[rm]!=mgr) {
3771 generate_map_const(offset,rm);
3772 } // else did it in the previous cycle
3773 }*/
3774 if(!entry||entry[ra]!=agr) {
3775 if (opcode[i]==0x22||opcode[i]==0x26) {
3776 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3777 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3778 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3779 }else{
3780 emit_movimm(offset,ra);
3781 }
3782 } // else did it in the previous cycle
3783 }
3784 else if(rs<0) {
3785 if(!entry||entry[ra]!=rs1[i])
3786 emit_loadreg(rs1[i],ra);
3787 //if(!entry||entry[ra]!=rs1[i])
3788 // printf("poor load scheduling!\n");
3789 }
3790 else if(c) {
3791 if(rm>=0) {
3792 if(!entry||entry[rm]!=mgr) {
3793 if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
3794 // Stores to memory go thru the mapper to detect self-modifying
3795 // code, loads don't.
3796 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
3797 (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
3798 generate_map_const(constmap[i][rs]+offset,rm);
3799 }else{
3800 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
3801 generate_map_const(constmap[i][rs]+offset,rm);
3802 }
3803 }
3804 }
3805 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3806 if(!entry||entry[ra]!=agr) {
3807 if (opcode[i]==0x22||opcode[i]==0x26) {
3808 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3809 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3810 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3811 }else{
3812 #ifdef HOST_IMM_ADDR32
3813 if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
3814 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
3815 #endif
3816 emit_movimm(constmap[i][rs]+offset,ra);
3817 }
3818 } // else did it in the previous cycle
3819 } // else load_consts already did it
3820 }
3821 if(offset&&!c&&rs1[i]) {
3822 if(rs>=0) {
3823 emit_addimm(rs,offset,ra);
3824 }else{
3825 emit_addimm(ra,offset,ra);
3826 }
3827 }
3828 }
3829 }
3830 // Preload constants for next instruction
3831 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
3832 int agr,ra;
3833 #ifndef HOST_IMM_ADDR32
3834 // Mapper entry
3835 agr=MGEN1+((i+1)&1);
3836 ra=get_reg(i_regs->regmap,agr);
3837 if(ra>=0) {
3838 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3839 int offset=imm[i+1];
3840 int c=(regs[i+1].wasconst>>rs)&1;
3841 if(c) {
3842 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
3843 // Stores to memory go thru the mapper to detect self-modifying
3844 // code, loads don't.
3845 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
3846 (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
3847 generate_map_const(constmap[i+1][rs]+offset,ra);
3848 }else{
3849 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
3850 generate_map_const(constmap[i+1][rs]+offset,ra);
3851 }
3852 }
3853 /*else if(rs1[i]==0) {
3854 generate_map_const(offset,ra);
3855 }*/
3856 }
3857 #endif
3858 // Actual address
3859 agr=AGEN1+((i+1)&1);
3860 ra=get_reg(i_regs->regmap,agr);
3861 if(ra>=0) {
3862 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3863 int offset=imm[i+1];
3864 int c=(regs[i+1].wasconst>>rs)&1;
3865 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3866 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3867 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3868 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3869 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3870 }else{
3871 #ifdef HOST_IMM_ADDR32
3872 if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
3873 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
3874 #endif
3875 emit_movimm(constmap[i+1][rs]+offset,ra);
3876 }
3877 }
3878 else if(rs1[i+1]==0) {
3879 // Using r0 as a base address
3880 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3881 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3882 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3883 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3884 }else{
3885 emit_movimm(offset,ra);
3886 }
3887 }
3888 }
3889 }
3890}
3891
3892int get_final_value(int hr, int i, int *value)
3893{
3894 int reg=regs[i].regmap[hr];
3895 while(i<slen-1) {
3896 if(regs[i+1].regmap[hr]!=reg) break;
3897 if(!((regs[i+1].isconst>>hr)&1)) break;
3898 if(bt[i+1]) break;
3899 i++;
3900 }
3901 if(i<slen-1) {
3902 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3903 *value=constmap[i][hr];
3904 return 1;
3905 }
3906 if(!bt[i+1]) {
3907 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3908 // Load in delay slot, out-of-order execution
3909 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3910 {
3911 #ifdef HOST_IMM_ADDR32
3912 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
3913 #endif
3914 // Precompute load address
3915 *value=constmap[i][hr]+imm[i+2];
3916 return 1;
3917 }
3918 }
3919 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3920 {
3921 #ifdef HOST_IMM_ADDR32
3922 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
3923 #endif
3924 // Precompute load address
3925 *value=constmap[i][hr]+imm[i+1];
3926 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3927 return 1;
3928 }
3929 }
3930 }
3931 *value=constmap[i][hr];
3932 //printf("c=%x\n",(int)constmap[i][hr]);
3933 if(i==slen-1) return 1;
3934 if(reg<64) {
3935 return !((unneeded_reg[i+1]>>reg)&1);
3936 }else{
3937 return !((unneeded_reg_upper[i+1]>>reg)&1);
3938 }
3939}
3940
3941// Load registers with known constants
3942void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3943{
3944 int hr;
3945 // Load 32-bit regs
3946 for(hr=0;hr<HOST_REGS;hr++) {
3947 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3948 //if(entry[hr]!=regmap[hr]) {
3949 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3950 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3951 int value;
3952 if(get_final_value(hr,i,&value)) {
3953 if(value==0) {
3954 emit_zeroreg(hr);
3955 }
3956 else {
3957 emit_movimm(value,hr);
3958 }
3959 }
3960 }
3961 }
3962 }
3963 }
3964 // Load 64-bit regs
3965 for(hr=0;hr<HOST_REGS;hr++) {
3966 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3967 //if(entry[hr]!=regmap[hr]) {
3968 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3969 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3970 if((is32>>(regmap[hr]&63))&1) {
3971 int lr=get_reg(regmap,regmap[hr]-64);
3972 assert(lr>=0);
3973 emit_sarimm(lr,31,hr);
3974 }
3975 else
3976 {
3977 int value;
3978 if(get_final_value(hr,i,&value)) {
3979 if(value==0) {
3980 emit_zeroreg(hr);
3981 }
3982 else {
3983 emit_movimm(value,hr);
3984 }
3985 }
3986 }
3987 }
3988 }
3989 }
3990 }
3991}
3992void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
3993{
3994 int hr;
3995 // Load 32-bit regs
3996 for(hr=0;hr<HOST_REGS;hr++) {
3997 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3998 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3999 int value=constmap[i][hr];
4000 if(value==0) {
4001 emit_zeroreg(hr);
4002 }
4003 else {
4004 emit_movimm(value,hr);
4005 }
4006 }
4007 }
4008 }
4009 // Load 64-bit regs
4010 for(hr=0;hr<HOST_REGS;hr++) {
4011 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4012 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4013 if((is32>>(regmap[hr]&63))&1) {
4014 int lr=get_reg(regmap,regmap[hr]-64);
4015 assert(lr>=0);
4016 emit_sarimm(lr,31,hr);
4017 }
4018 else
4019 {
4020 int value=constmap[i][hr];
4021 if(value==0) {
4022 emit_zeroreg(hr);
4023 }
4024 else {
4025 emit_movimm(value,hr);
4026 }
4027 }
4028 }
4029 }
4030 }
4031}
4032
4033// Write out all dirty registers (except cycle count)
4034void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4035{
4036 int hr;
4037 for(hr=0;hr<HOST_REGS;hr++) {
4038 if(hr!=EXCLUDE_REG) {
4039 if(i_regmap[hr]>0) {
4040 if(i_regmap[hr]!=CCREG) {
4041 if((i_dirty>>hr)&1) {
4042 if(i_regmap[hr]<64) {
4043 emit_storereg(i_regmap[hr],hr);
4044 if( ((i_is32>>i_regmap[hr])&1) ) {
4045 #ifdef DESTRUCTIVE_WRITEBACK
4046 emit_sarimm(hr,31,hr);
4047 emit_storereg(i_regmap[hr]|64,hr);
4048 #else
4049 emit_sarimm(hr,31,HOST_TEMPREG);
4050 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4051 #endif
4052 }
4053 }else{
4054 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4055 emit_storereg(i_regmap[hr],hr);
4056 }
4057 }
4058 }
4059 }
4060 }
4061 }
4062 }
4063}
4064// Write out dirty registers that we need to reload (pair with load_needed_regs)
4065// This writes the registers not written by store_regs_bt
4066void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4067{
4068 int hr;
4069 int t=(addr-start)>>2;
4070 for(hr=0;hr<HOST_REGS;hr++) {
4071 if(hr!=EXCLUDE_REG) {
4072 if(i_regmap[hr]>0) {
4073 if(i_regmap[hr]!=CCREG) {
4074 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4075 if((i_dirty>>hr)&1) {
4076 if(i_regmap[hr]<64) {
4077 emit_storereg(i_regmap[hr],hr);
4078 if( ((i_is32>>i_regmap[hr])&1) ) {
4079 #ifdef DESTRUCTIVE_WRITEBACK
4080 emit_sarimm(hr,31,hr);
4081 emit_storereg(i_regmap[hr]|64,hr);
4082 #else
4083 emit_sarimm(hr,31,HOST_TEMPREG);
4084 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4085 #endif
4086 }
4087 }else{
4088 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4089 emit_storereg(i_regmap[hr],hr);
4090 }
4091 }
4092 }
4093 }
4094 }
4095 }
4096 }
4097 }
4098}
4099
4100// Load all registers (except cycle count)
4101void load_all_regs(signed char i_regmap[])
4102{
4103 int hr;
4104 for(hr=0;hr<HOST_REGS;hr++) {
4105 if(hr!=EXCLUDE_REG) {
4106 if(i_regmap[hr]==0) {
4107 emit_zeroreg(hr);
4108 }
4109 else
4110 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4111 {
4112 emit_loadreg(i_regmap[hr],hr);
4113 }
4114 }
4115 }
4116}
4117
4118// Load all current registers also needed by next instruction
4119void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4120{
4121 int hr;
4122 for(hr=0;hr<HOST_REGS;hr++) {
4123 if(hr!=EXCLUDE_REG) {
4124 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4125 if(i_regmap[hr]==0) {
4126 emit_zeroreg(hr);
4127 }
4128 else
4129 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4130 {
4131 emit_loadreg(i_regmap[hr],hr);
4132 }
4133 }
4134 }
4135 }
4136}
4137
4138// Load all regs, storing cycle count if necessary
4139void load_regs_entry(int t)
4140{
4141 int hr;
4142 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4143 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4144 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4145 emit_storereg(CCREG,HOST_CCREG);
4146 }
4147 // Load 32-bit regs
4148 for(hr=0;hr<HOST_REGS;hr++) {
4149 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4150 if(regs[t].regmap_entry[hr]==0) {
4151 emit_zeroreg(hr);
4152 }
4153 else if(regs[t].regmap_entry[hr]!=CCREG)
4154 {
4155 emit_loadreg(regs[t].regmap_entry[hr],hr);
4156 }
4157 }
4158 }
4159 // Load 64-bit regs
4160 for(hr=0;hr<HOST_REGS;hr++) {
4161 if(regs[t].regmap_entry[hr]>=64) {
4162 assert(regs[t].regmap_entry[hr]!=64);
4163 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4164 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4165 if(lr<0) {
4166 emit_loadreg(regs[t].regmap_entry[hr],hr);
4167 }
4168 else
4169 {
4170 emit_sarimm(lr,31,hr);
4171 }
4172 }
4173 else
4174 {
4175 emit_loadreg(regs[t].regmap_entry[hr],hr);
4176 }
4177 }
4178 }
4179}
4180
4181// Store dirty registers prior to branch
4182void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4183{
4184 if(internal_branch(i_is32,addr))
4185 {
4186 int t=(addr-start)>>2;
4187 int hr;
4188 for(hr=0;hr<HOST_REGS;hr++) {
4189 if(hr!=EXCLUDE_REG) {
4190 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4191 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4192 if((i_dirty>>hr)&1) {
4193 if(i_regmap[hr]<64) {
4194 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4195 emit_storereg(i_regmap[hr],hr);
4196 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4197 #ifdef DESTRUCTIVE_WRITEBACK
4198 emit_sarimm(hr,31,hr);
4199 emit_storereg(i_regmap[hr]|64,hr);
4200 #else
4201 emit_sarimm(hr,31,HOST_TEMPREG);
4202 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4203 #endif
4204 }
4205 }
4206 }else{
4207 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4208 emit_storereg(i_regmap[hr],hr);
4209 }
4210 }
4211 }
4212 }
4213 }
4214 }
4215 }
4216 }
4217 else
4218 {
4219 // Branch out of this block, write out all dirty regs
4220 wb_dirtys(i_regmap,i_is32,i_dirty);
4221 }
4222}
4223
4224// Load all needed registers for branch target
4225void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4226{
4227 //if(addr>=start && addr<(start+slen*4))
4228 if(internal_branch(i_is32,addr))
4229 {
4230 int t=(addr-start)>>2;
4231 int hr;
4232 // Store the cycle count before loading something else
4233 if(i_regmap[HOST_CCREG]!=CCREG) {
4234 assert(i_regmap[HOST_CCREG]==-1);
4235 }
4236 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4237 emit_storereg(CCREG,HOST_CCREG);
4238 }
4239 // Load 32-bit regs
4240 for(hr=0;hr<HOST_REGS;hr++) {
4241 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4242 #ifdef DESTRUCTIVE_WRITEBACK
4243 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4244 #else
4245 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4246 #endif
4247 if(regs[t].regmap_entry[hr]==0) {
4248 emit_zeroreg(hr);
4249 }
4250 else if(regs[t].regmap_entry[hr]!=CCREG)
4251 {
4252 emit_loadreg(regs[t].regmap_entry[hr],hr);
4253 }
4254 }
4255 }
4256 }
4257 //Load 64-bit regs
4258 for(hr=0;hr<HOST_REGS;hr++) {
4259 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4260 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4261 assert(regs[t].regmap_entry[hr]!=64);
4262 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4263 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4264 if(lr<0) {
4265 emit_loadreg(regs[t].regmap_entry[hr],hr);
4266 }
4267 else
4268 {
4269 emit_sarimm(lr,31,hr);
4270 }
4271 }
4272 else
4273 {
4274 emit_loadreg(regs[t].regmap_entry[hr],hr);
4275 }
4276 }
4277 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4278 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4279 assert(lr>=0);
4280 emit_sarimm(lr,31,hr);
4281 }
4282 }
4283 }
4284 }
4285}
4286
4287int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4288{
4289 if(addr>=start && addr<start+slen*4-4)
4290 {
4291 int t=(addr-start)>>2;
4292 int hr;
4293 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4294 for(hr=0;hr<HOST_REGS;hr++)
4295 {
4296 if(hr!=EXCLUDE_REG)
4297 {
4298 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4299 {
4300 if(regs[t].regmap_entry[hr]!=-1)
4301 {
4302 return 0;
4303 }
4304 else
4305 if((i_dirty>>hr)&1)
4306 {
4307 if(i_regmap[hr]<64)
4308 {
4309 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4310 return 0;
4311 }
4312 else
4313 {
4314 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4315 return 0;
4316 }
4317 }
4318 }
4319 else // Same register but is it 32-bit or dirty?
4320 if(i_regmap[hr]>=0)
4321 {
4322 if(!((regs[t].dirty>>hr)&1))
4323 {
4324 if((i_dirty>>hr)&1)
4325 {
4326 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4327 {
4328 //printf("%x: dirty no match\n",addr);
4329 return 0;
4330 }
4331 }
4332 }
4333 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4334 {
4335 //printf("%x: is32 no match\n",addr);
4336 return 0;
4337 }
4338 }
4339 }
4340 }
4341 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4342 if(requires_32bit[t]&~i_is32) return 0;
4343 // Delay slots are not valid branch targets
4344 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4345 // Delay slots require additional processing, so do not match
4346 if(is_ds[t]) return 0;
4347 }
4348 else
4349 {
4350 int hr;
4351 for(hr=0;hr<HOST_REGS;hr++)
4352 {
4353 if(hr!=EXCLUDE_REG)
4354 {
4355 if(i_regmap[hr]>=0)
4356 {
4357 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4358 {
4359 if((i_dirty>>hr)&1)
4360 {
4361 return 0;
4362 }
4363 }
4364 }
4365 }
4366 }
4367 }
4368 return 1;
4369}
4370
4371// Used when a branch jumps into the delay slot of another branch
4372void ds_assemble_entry(int i)
4373{
4374 int t=(ba[i]-start)>>2;
4375 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4376 assem_debug("Assemble delay slot at %x\n",ba[i]);
4377 assem_debug("<->\n");
4378 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4379 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4380 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4381 address_generation(t,&regs[t],regs[t].regmap_entry);
4382 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
4383 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4384 cop1_usable=0;
4385 is_delayslot=0;
4386 switch(itype[t]) {
4387 case ALU:
4388 alu_assemble(t,&regs[t]);break;
4389 case IMM16:
4390 imm16_assemble(t,&regs[t]);break;
4391 case SHIFT:
4392 shift_assemble(t,&regs[t]);break;
4393 case SHIFTIMM:
4394 shiftimm_assemble(t,&regs[t]);break;
4395 case LOAD:
4396 load_assemble(t,&regs[t]);break;
4397 case LOADLR:
4398 loadlr_assemble(t,&regs[t]);break;
4399 case STORE:
4400 store_assemble(t,&regs[t]);break;
4401 case STORELR:
4402 storelr_assemble(t,&regs[t]);break;
4403 case COP0:
4404 cop0_assemble(t,&regs[t]);break;
4405 case COP1:
4406 cop1_assemble(t,&regs[t]);break;
4407 case C1LS:
4408 c1ls_assemble(t,&regs[t]);break;
4409 case FCONV:
4410 fconv_assemble(t,&regs[t]);break;
4411 case FLOAT:
4412 float_assemble(t,&regs[t]);break;
4413 case FCOMP:
4414 fcomp_assemble(t,&regs[t]);break;
4415 case MULTDIV:
4416 multdiv_assemble(t,&regs[t]);break;
4417 case MOV:
4418 mov_assemble(t,&regs[t]);break;
4419 case SYSCALL:
4420 case SPAN:
4421 case UJUMP:
4422 case RJUMP:
4423 case CJUMP:
4424 case SJUMP:
4425 case FJUMP:
4426 printf("Jump in the delay slot. This is probably a bug.\n");
4427 }
4428 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4429 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4430 if(internal_branch(regs[t].is32,ba[i]+4))
4431 assem_debug("branch: internal\n");
4432 else
4433 assem_debug("branch: external\n");
4434 assert(internal_branch(regs[t].is32,ba[i]+4));
4435 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4436 emit_jmp(0);
4437}
4438
4439void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4440{
4441 int count;
4442 int jaddr;
4443 int idle=0;
4444 if(itype[i]==RJUMP)
4445 {
4446 *adj=0;
4447 }
4448 //if(ba[i]>=start && ba[i]<(start+slen*4))
4449 if(internal_branch(branch_regs[i].is32,ba[i]))
4450 {
4451 int t=(ba[i]-start)>>2;
4452 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4453 else *adj=ccadj[t];
4454 }
4455 else
4456 {
4457 *adj=0;
4458 }
4459 count=ccadj[i];
4460 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4461 // Idle loop
4462 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4463 idle=(int)out;
4464 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4465 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4466 jaddr=(int)out;
4467 emit_jmp(0);
4468 }
4469 else if(*adj==0||invert) {
4470 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4471 jaddr=(int)out;
4472 emit_jns(0);
4473 }
4474 else
4475 {
4476 emit_cmpimm(HOST_CCREG,-2*(count+2));
4477 jaddr=(int)out;
4478 emit_jns(0);
4479 }
4480 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4481}
4482
4483void do_ccstub(int n)
4484{
4485 literal_pool(256);
4486 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4487 set_jump_target(stubs[n][1],(int)out);
4488 int i=stubs[n][4];
4489 if(stubs[n][6]==NULLDS) {
4490 // Delay slot instruction is nullified ("likely" branch)
4491 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4492 }
4493 else if(stubs[n][6]!=TAKEN) {
4494 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4495 }
4496 else {
4497 if(internal_branch(branch_regs[i].is32,ba[i]))
4498 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4499 }
4500 if(stubs[n][5]!=-1)
4501 {
4502 // Save PC as return address
4503 emit_movimm(stubs[n][5],EAX);
4504 emit_writeword(EAX,(int)&pcaddr);
4505 }
4506 else
4507 {
4508 // Return address depends on which way the branch goes
4509 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4510 {
4511 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4512 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4513 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4514 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4515 if(rs1[i]==0)
4516 {
4517 s1l=s2l;s1h=s2h;
4518 s2l=s2h=-1;
4519 }
4520 else if(rs2[i]==0)
4521 {
4522 s2l=s2h=-1;
4523 }
4524 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4525 s1h=s2h=-1;
4526 }
4527 assert(s1l>=0);
4528 #ifdef DESTRUCTIVE_WRITEBACK
4529 if(rs1[i]) {
4530 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4531 emit_loadreg(rs1[i],s1l);
4532 }
4533 else {
4534 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4535 emit_loadreg(rs2[i],s1l);
4536 }
4537 if(s2l>=0)
4538 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4539 emit_loadreg(rs2[i],s2l);
4540 #endif
4541 int hr=0;
4542 int addr,alt,ntaddr;
4543 while(hr<HOST_REGS)
4544 {
4545 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4546 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4547 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4548 {
4549 addr=hr++;break;
4550 }
4551 hr++;
4552 }
4553 while(hr<HOST_REGS)
4554 {
4555 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4556 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4557 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4558 {
4559 alt=hr++;break;
4560 }
4561 hr++;
4562 }
4563 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4564 {
4565 while(hr<HOST_REGS)
4566 {
4567 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4568 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4569 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4570 {
4571 ntaddr=hr;break;
4572 }
4573 hr++;
4574 }
4575 assert(hr<HOST_REGS);
4576 }
4577 if((opcode[i]&0x2f)==4) // BEQ
4578 {
4579 #ifdef HAVE_CMOV_IMM
4580 if(s1h<0) {
4581 if(s2l>=0) emit_cmp(s1l,s2l);
4582 else emit_test(s1l,s1l);
4583 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4584 }
4585 else
4586 #endif
4587 {
4588 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4589 if(s1h>=0) {
4590 if(s2h>=0) emit_cmp(s1h,s2h);
4591 else emit_test(s1h,s1h);
4592 emit_cmovne_reg(alt,addr);
4593 }
4594 if(s2l>=0) emit_cmp(s1l,s2l);
4595 else emit_test(s1l,s1l);
4596 emit_cmovne_reg(alt,addr);
4597 }
4598 }
4599 if((opcode[i]&0x2f)==5) // BNE
4600 {
4601 #ifdef HAVE_CMOV_IMM
4602 if(s1h<0) {
4603 if(s2l>=0) emit_cmp(s1l,s2l);
4604 else emit_test(s1l,s1l);
4605 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4606 }
4607 else
4608 #endif
4609 {
4610 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4611 if(s1h>=0) {
4612 if(s2h>=0) emit_cmp(s1h,s2h);
4613 else emit_test(s1h,s1h);
4614 emit_cmovne_reg(alt,addr);
4615 }
4616 if(s2l>=0) emit_cmp(s1l,s2l);
4617 else emit_test(s1l,s1l);
4618 emit_cmovne_reg(alt,addr);
4619 }
4620 }
4621 if((opcode[i]&0x2f)==6) // BLEZ
4622 {
4623 //emit_movimm(ba[i],alt);
4624 //emit_movimm(start+i*4+8,addr);
4625 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4626 emit_cmpimm(s1l,1);
4627 if(s1h>=0) emit_mov(addr,ntaddr);
4628 emit_cmovl_reg(alt,addr);
4629 if(s1h>=0) {
4630 emit_test(s1h,s1h);
4631 emit_cmovne_reg(ntaddr,addr);
4632 emit_cmovs_reg(alt,addr);
4633 }
4634 }
4635 if((opcode[i]&0x2f)==7) // BGTZ
4636 {
4637 //emit_movimm(ba[i],addr);
4638 //emit_movimm(start+i*4+8,ntaddr);
4639 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4640 emit_cmpimm(s1l,1);
4641 if(s1h>=0) emit_mov(addr,alt);
4642 emit_cmovl_reg(ntaddr,addr);
4643 if(s1h>=0) {
4644 emit_test(s1h,s1h);
4645 emit_cmovne_reg(alt,addr);
4646 emit_cmovs_reg(ntaddr,addr);
4647 }
4648 }
4649 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4650 {
4651 //emit_movimm(ba[i],alt);
4652 //emit_movimm(start+i*4+8,addr);
4653 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4654 if(s1h>=0) emit_test(s1h,s1h);
4655 else emit_test(s1l,s1l);
4656 emit_cmovs_reg(alt,addr);
4657 }
4658 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4659 {
4660 //emit_movimm(ba[i],addr);
4661 //emit_movimm(start+i*4+8,alt);
4662 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4663 if(s1h>=0) emit_test(s1h,s1h);
4664 else emit_test(s1l,s1l);
4665 emit_cmovs_reg(alt,addr);
4666 }
4667 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4668 if(source[i]&0x10000) // BC1T
4669 {
4670 //emit_movimm(ba[i],alt);
4671 //emit_movimm(start+i*4+8,addr);
4672 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4673 emit_testimm(s1l,0x800000);
4674 emit_cmovne_reg(alt,addr);
4675 }
4676 else // BC1F
4677 {
4678 //emit_movimm(ba[i],addr);
4679 //emit_movimm(start+i*4+8,alt);
4680 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4681 emit_testimm(s1l,0x800000);
4682 emit_cmovne_reg(alt,addr);
4683 }
4684 }
4685 emit_writeword(addr,(int)&pcaddr);
4686 }
4687 else
4688 if(itype[i]==RJUMP)
4689 {
4690 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4691 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4692 r=get_reg(branch_regs[i].regmap,RTEMP);
4693 }
4694 emit_writeword(r,(int)&pcaddr);
4695 }
4696 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4697 }
4698 // Update cycle count
4699 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4700 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4701 emit_call((int)cc_interrupt);
4702 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4703 if(stubs[n][6]==TAKEN) {
4704 if(internal_branch(branch_regs[i].is32,ba[i]))
4705 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4706 else if(itype[i]==RJUMP) {
4707 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4708 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4709 else
4710 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4711 }
4712 }else if(stubs[n][6]==NOTTAKEN) {
4713 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4714 else load_all_regs(branch_regs[i].regmap);
4715 }else if(stubs[n][6]==NULLDS) {
4716 // Delay slot instruction is nullified ("likely" branch)
4717 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4718 else load_all_regs(regs[i].regmap);
4719 }else{
4720 load_all_regs(branch_regs[i].regmap);
4721 }
4722 emit_jmp(stubs[n][2]); // return address
4723
4724 /* This works but uses a lot of memory...
4725 emit_readword((int)&last_count,ECX);
4726 emit_add(HOST_CCREG,ECX,EAX);
4727 emit_writeword(EAX,(int)&Count);
4728 emit_call((int)gen_interupt);
4729 emit_readword((int)&Count,HOST_CCREG);
4730 emit_readword((int)&next_interupt,EAX);
4731 emit_readword((int)&pending_exception,EBX);
4732 emit_writeword(EAX,(int)&last_count);
4733 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4734 emit_test(EBX,EBX);
4735 int jne_instr=(int)out;
4736 emit_jne(0);
4737 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4738 load_all_regs(branch_regs[i].regmap);
4739 emit_jmp(stubs[n][2]); // return address
4740 set_jump_target(jne_instr,(int)out);
4741 emit_readword((int)&pcaddr,EAX);
4742 // Call get_addr_ht instead of doing the hash table here.
4743 // This code is executed infrequently and takes up a lot of space
4744 // so smaller is better.
4745 emit_storereg(CCREG,HOST_CCREG);
4746 emit_pushreg(EAX);
4747 emit_call((int)get_addr_ht);
4748 emit_loadreg(CCREG,HOST_CCREG);
4749 emit_addimm(ESP,4,ESP);
4750 emit_jmpreg(EAX);*/
4751}
4752
4753add_to_linker(int addr,int target,int ext)
4754{
4755 link_addr[linkcount][0]=addr;
4756 link_addr[linkcount][1]=target;
4757 link_addr[linkcount][2]=ext;
4758 linkcount++;
4759}
4760
4761void ujump_assemble(int i,struct regstat *i_regs)
4762{
4763 signed char *i_regmap=i_regs->regmap;
4764 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4765 address_generation(i+1,i_regs,regs[i].regmap_entry);
4766 #ifdef REG_PREFETCH
4767 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4768 if(rt1[i]==31&&temp>=0)
4769 {
4770 int return_address=start+i*4+8;
4771 if(get_reg(branch_regs[i].regmap,31)>0)
4772 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4773 }
4774 #endif
4775 ds_assemble(i+1,i_regs);
4776 uint64_t bc_unneeded=branch_regs[i].u;
4777 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4778 bc_unneeded|=1|(1LL<<rt1[i]);
4779 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4780 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4781 bc_unneeded,bc_unneeded_upper);
4782 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4783 if(rt1[i]==31) {
4784 int rt;
4785 unsigned int return_address;
4786 assert(rt1[i+1]!=31);
4787 assert(rt2[i+1]!=31);
4788 rt=get_reg(branch_regs[i].regmap,31);
4789 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4790 //assert(rt>=0);
4791 return_address=start+i*4+8;
4792 if(rt>=0) {
4793 #ifdef USE_MINI_HT
4794 if(internal_branch(branch_regs[i].is32,return_address)) {
4795 int temp=rt+1;
4796 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
4797 branch_regs[i].regmap[temp]>=0)
4798 {
4799 temp=get_reg(branch_regs[i].regmap,-1);
4800 }
4801 #ifdef HOST_TEMPREG
4802 if(temp<0) temp=HOST_TEMPREG;
4803 #endif
4804 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4805 else emit_movimm(return_address,rt);
4806 }
4807 else
4808 #endif
4809 {
4810 #ifdef REG_PREFETCH
4811 if(temp>=0)
4812 {
4813 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4814 }
4815 #endif
4816 emit_movimm(return_address,rt); // PC into link register
4817 #ifdef IMM_PREFETCH
4818 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4819 #endif
4820 }
4821 }
4822 }
4823 int cc,adj;
4824 cc=get_reg(branch_regs[i].regmap,CCREG);
4825 assert(cc==HOST_CCREG);
4826 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4827 #ifdef REG_PREFETCH
4828 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4829 #endif
4830 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4831 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
4832 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4833 if(internal_branch(branch_regs[i].is32,ba[i]))
4834 assem_debug("branch: internal\n");
4835 else
4836 assem_debug("branch: external\n");
4837 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4838 ds_assemble_entry(i);
4839 }
4840 else {
4841 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4842 emit_jmp(0);
4843 }
4844}
4845
4846void rjump_assemble(int i,struct regstat *i_regs)
4847{
4848 signed char *i_regmap=i_regs->regmap;
4849 int temp;
4850 int rs,cc,adj;
4851 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4852 assert(rs>=0);
4853 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4854 // Delay slot abuse, make a copy of the branch address register
4855 temp=get_reg(branch_regs[i].regmap,RTEMP);
4856 assert(temp>=0);
4857 assert(regs[i].regmap[temp]==RTEMP);
4858 emit_mov(rs,temp);
4859 rs=temp;
4860 }
4861 address_generation(i+1,i_regs,regs[i].regmap_entry);
4862 #ifdef REG_PREFETCH
4863 if(rt1[i]==31)
4864 {
4865 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4866 int return_address=start+i*4+8;
4867 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4868 }
4869 }
4870 #endif
4871 #ifdef USE_MINI_HT
4872 if(rs1[i]==31) {
4873 int rh=get_reg(regs[i].regmap,RHASH);
4874 if(rh>=0) do_preload_rhash(rh);
4875 }
4876 #endif
4877 ds_assemble(i+1,i_regs);
4878 uint64_t bc_unneeded=branch_regs[i].u;
4879 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4880 bc_unneeded|=1|(1LL<<rt1[i]);
4881 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4882 bc_unneeded&=~(1LL<<rs1[i]);
4883 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4884 bc_unneeded,bc_unneeded_upper);
4885 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4886 if(rt1[i]==31) {
4887 int rt,return_address;
4888 assert(rt1[i+1]!=31);
4889 assert(rt2[i+1]!=31);
4890 rt=get_reg(branch_regs[i].regmap,31);
4891 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4892 assert(rt>=0);
4893 return_address=start+i*4+8;
4894 #ifdef REG_PREFETCH
4895 if(temp>=0)
4896 {
4897 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4898 }
4899 #endif
4900 emit_movimm(return_address,rt); // PC into link register
4901 #ifdef IMM_PREFETCH
4902 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4903 #endif
4904 }
4905 cc=get_reg(branch_regs[i].regmap,CCREG);
4906 assert(cc==HOST_CCREG);
4907 #ifdef USE_MINI_HT
4908 int rh=get_reg(branch_regs[i].regmap,RHASH);
4909 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4910 if(rs1[i]==31) {
4911 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4912 do_preload_rhtbl(ht);
4913 do_rhash(rs,rh);
4914 }
4915 #endif
4916 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4917 #ifdef DESTRUCTIVE_WRITEBACK
4918 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4919 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4920 emit_loadreg(rs1[i],rs);
4921 }
4922 }
4923 #endif
4924 #ifdef REG_PREFETCH
4925 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4926 #endif
4927 #ifdef USE_MINI_HT
4928 if(rs1[i]==31) {
4929 do_miniht_load(ht,rh);
4930 }
4931 #endif
4932 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4933 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4934 //assert(adj==0);
4935 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
4936 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4937 emit_jns(0);
4938 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4939 #ifdef USE_MINI_HT
4940 if(rs1[i]==31) {
4941 do_miniht_jump(rs,rh,ht);
4942 }
4943 else
4944 #endif
4945 {
4946 //if(rs!=EAX) emit_mov(rs,EAX);
4947 //emit_jmp((int)jump_vaddr_eax);
4948 emit_jmp(jump_vaddr_reg[rs]);
4949 }
4950 /* Check hash table
4951 temp=!rs;
4952 emit_mov(rs,temp);
4953 emit_shrimm(rs,16,rs);
4954 emit_xor(temp,rs,rs);
4955 emit_movzwl_reg(rs,rs);
4956 emit_shlimm(rs,4,rs);
4957 emit_cmpmem_indexed((int)hash_table,rs,temp);
4958 emit_jne((int)out+14);
4959 emit_readword_indexed((int)hash_table+4,rs,rs);
4960 emit_jmpreg(rs);
4961 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4962 emit_addimm_no_flags(8,rs);
4963 emit_jeq((int)out-17);
4964 // No hit on hash table, call compiler
4965 emit_pushreg(temp);
4966//DEBUG >
4967#ifdef DEBUG_CYCLE_COUNT
4968 emit_readword((int)&last_count,ECX);
4969 emit_add(HOST_CCREG,ECX,HOST_CCREG);
4970 emit_readword((int)&next_interupt,ECX);
4971 emit_writeword(HOST_CCREG,(int)&Count);
4972 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4973 emit_writeword(ECX,(int)&last_count);
4974#endif
4975//DEBUG <
4976 emit_storereg(CCREG,HOST_CCREG);
4977 emit_call((int)get_addr);
4978 emit_loadreg(CCREG,HOST_CCREG);
4979 emit_addimm(ESP,4,ESP);
4980 emit_jmpreg(EAX);*/
4981 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4982 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4983 #endif
4984}
4985
4986void cjump_assemble(int i,struct regstat *i_regs)
4987{
4988 signed char *i_regmap=i_regs->regmap;
4989 int cc;
4990 int match;
4991 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4992 assem_debug("match=%d\n",match);
4993 int s1h,s1l,s2h,s2l;
4994 int prev_cop1_usable=cop1_usable;
4995 int unconditional=0,nop=0;
4996 int only32=0;
4997 int ooo=1;
4998 int invert=0;
4999 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5000 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5001 if(likely[i]) ooo=0;
5002 if(!match) invert=1;
5003 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5004 if(i>(ba[i]-start)>>2) invert=1;
5005 #endif
5006
5007 if(ooo)
5008 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5009 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5010 {
5011 // Write-after-read dependency prevents out of order execution
5012 // First test branch condition, then execute delay slot, then branch
5013 ooo=0;
5014 }
5015
5016 if(ooo) {
5017 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5018 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5019 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5020 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5021 }
5022 else {
5023 s1l=get_reg(i_regmap,rs1[i]);
5024 s1h=get_reg(i_regmap,rs1[i]|64);
5025 s2l=get_reg(i_regmap,rs2[i]);
5026 s2h=get_reg(i_regmap,rs2[i]|64);
5027 }
5028 if(rs1[i]==0&&rs2[i]==0)
5029 {
5030 if(opcode[i]&1) nop=1;
5031 else unconditional=1;
5032 //assert(opcode[i]!=5);
5033 //assert(opcode[i]!=7);
5034 //assert(opcode[i]!=0x15);
5035 //assert(opcode[i]!=0x17);
5036 }
5037 else if(rs1[i]==0)
5038 {
5039 s1l=s2l;s1h=s2h;
5040 s2l=s2h=-1;
5041 only32=(regs[i].was32>>rs2[i])&1;
5042 }
5043 else if(rs2[i]==0)
5044 {
5045 s2l=s2h=-1;
5046 only32=(regs[i].was32>>rs1[i])&1;
5047 }
5048 else {
5049 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5050 }
5051
5052 if(ooo) {
5053 // Out of order execution (delay slot first)
5054 //printf("OOOE\n");
5055 address_generation(i+1,i_regs,regs[i].regmap_entry);
5056 ds_assemble(i+1,i_regs);
5057 int adj;
5058 uint64_t bc_unneeded=branch_regs[i].u;
5059 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5060 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5061 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5062 bc_unneeded|=1;
5063 bc_unneeded_upper|=1;
5064 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5065 bc_unneeded,bc_unneeded_upper);
5066 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5067 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5068 cc=get_reg(branch_regs[i].regmap,CCREG);
5069 assert(cc==HOST_CCREG);
5070 if(unconditional)
5071 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5072 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5073 //assem_debug("cycle count (adj)\n");
5074 if(unconditional) {
5075 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5076 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5077 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5078 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5079 if(internal)
5080 assem_debug("branch: internal\n");
5081 else
5082 assem_debug("branch: external\n");
5083 if(internal&&is_ds[(ba[i]-start)>>2]) {
5084 ds_assemble_entry(i);
5085 }
5086 else {
5087 add_to_linker((int)out,ba[i],internal);
5088 emit_jmp(0);
5089 }
5090 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5091 if(((u_int)out)&7) emit_addnop(0);
5092 #endif
5093 }
5094 }
5095 else if(nop) {
5096 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5097 int jaddr=(int)out;
5098 emit_jns(0);
5099 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5100 }
5101 else {
5102 int taken=0,nottaken=0,nottaken1=0;
5103 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5104 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5105 if(!only32)
5106 {
5107 assert(s1h>=0);
5108 if(opcode[i]==4) // BEQ
5109 {
5110 if(s2h>=0) emit_cmp(s1h,s2h);
5111 else emit_test(s1h,s1h);
5112 nottaken1=(int)out;
5113 emit_jne(1);
5114 }
5115 if(opcode[i]==5) // BNE
5116 {
5117 if(s2h>=0) emit_cmp(s1h,s2h);
5118 else emit_test(s1h,s1h);
5119 if(invert) taken=(int)out;
5120 else add_to_linker((int)out,ba[i],internal);
5121 emit_jne(0);
5122 }
5123 if(opcode[i]==6) // BLEZ
5124 {
5125 emit_test(s1h,s1h);
5126 if(invert) taken=(int)out;
5127 else add_to_linker((int)out,ba[i],internal);
5128 emit_js(0);
5129 nottaken1=(int)out;
5130 emit_jne(1);
5131 }
5132 if(opcode[i]==7) // BGTZ
5133 {
5134 emit_test(s1h,s1h);
5135 nottaken1=(int)out;
5136 emit_js(1);
5137 if(invert) taken=(int)out;
5138 else add_to_linker((int)out,ba[i],internal);
5139 emit_jne(0);
5140 }
5141 } // if(!only32)
5142
5143 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5144 assert(s1l>=0);
5145 if(opcode[i]==4) // BEQ
5146 {
5147 if(s2l>=0) emit_cmp(s1l,s2l);
5148 else emit_test(s1l,s1l);
5149 if(invert){
5150 nottaken=(int)out;
5151 emit_jne(1);
5152 }else{
5153 add_to_linker((int)out,ba[i],internal);
5154 emit_jeq(0);
5155 }
5156 }
5157 if(opcode[i]==5) // BNE
5158 {
5159 if(s2l>=0) emit_cmp(s1l,s2l);
5160 else emit_test(s1l,s1l);
5161 if(invert){
5162 nottaken=(int)out;
5163 emit_jeq(1);
5164 }else{
5165 add_to_linker((int)out,ba[i],internal);
5166 emit_jne(0);
5167 }
5168 }
5169 if(opcode[i]==6) // BLEZ
5170 {
5171 emit_cmpimm(s1l,1);
5172 if(invert){
5173 nottaken=(int)out;
5174 emit_jge(1);
5175 }else{
5176 add_to_linker((int)out,ba[i],internal);
5177 emit_jl(0);
5178 }
5179 }
5180 if(opcode[i]==7) // BGTZ
5181 {
5182 emit_cmpimm(s1l,1);
5183 if(invert){
5184 nottaken=(int)out;
5185 emit_jl(1);
5186 }else{
5187 add_to_linker((int)out,ba[i],internal);
5188 emit_jge(0);
5189 }
5190 }
5191 if(invert) {
5192 if(taken) set_jump_target(taken,(int)out);
5193 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5194 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5195 if(adj) {
5196 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5197 add_to_linker((int)out,ba[i],internal);
5198 }else{
5199 emit_addnop(13);
5200 add_to_linker((int)out,ba[i],internal*2);
5201 }
5202 emit_jmp(0);
5203 }else
5204 #endif
5205 {
5206 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5207 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5208 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5209 if(internal)
5210 assem_debug("branch: internal\n");
5211 else
5212 assem_debug("branch: external\n");
5213 if(internal&&is_ds[(ba[i]-start)>>2]) {
5214 ds_assemble_entry(i);
5215 }
5216 else {
5217 add_to_linker((int)out,ba[i],internal);
5218 emit_jmp(0);
5219 }
5220 }
5221 set_jump_target(nottaken,(int)out);
5222 }
5223
5224 if(nottaken1) set_jump_target(nottaken1,(int)out);
5225 if(adj) {
5226 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5227 }
5228 } // (!unconditional)
5229 } // if(ooo)
5230 else
5231 {
5232 // In-order execution (branch first)
5233 //if(likely[i]) printf("IOL\n");
5234 //else
5235 //printf("IOE\n");
5236 int taken=0,nottaken=0,nottaken1=0;
5237 if(!unconditional&&!nop) {
5238 if(!only32)
5239 {
5240 assert(s1h>=0);
5241 if((opcode[i]&0x2f)==4) // BEQ
5242 {
5243 if(s2h>=0) emit_cmp(s1h,s2h);
5244 else emit_test(s1h,s1h);
5245 nottaken1=(int)out;
5246 emit_jne(2);
5247 }
5248 if((opcode[i]&0x2f)==5) // BNE
5249 {
5250 if(s2h>=0) emit_cmp(s1h,s2h);
5251 else emit_test(s1h,s1h);
5252 taken=(int)out;
5253 emit_jne(1);
5254 }
5255 if((opcode[i]&0x2f)==6) // BLEZ
5256 {
5257 emit_test(s1h,s1h);
5258 taken=(int)out;
5259 emit_js(1);
5260 nottaken1=(int)out;
5261 emit_jne(2);
5262 }
5263 if((opcode[i]&0x2f)==7) // BGTZ
5264 {
5265 emit_test(s1h,s1h);
5266 nottaken1=(int)out;
5267 emit_js(2);
5268 taken=(int)out;
5269 emit_jne(1);
5270 }
5271 } // if(!only32)
5272
5273 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5274 assert(s1l>=0);
5275 if((opcode[i]&0x2f)==4) // BEQ
5276 {
5277 if(s2l>=0) emit_cmp(s1l,s2l);
5278 else emit_test(s1l,s1l);
5279 nottaken=(int)out;
5280 emit_jne(2);
5281 }
5282 if((opcode[i]&0x2f)==5) // BNE
5283 {
5284 if(s2l>=0) emit_cmp(s1l,s2l);
5285 else emit_test(s1l,s1l);
5286 nottaken=(int)out;
5287 emit_jeq(2);
5288 }
5289 if((opcode[i]&0x2f)==6) // BLEZ
5290 {
5291 emit_cmpimm(s1l,1);
5292 nottaken=(int)out;
5293 emit_jge(2);
5294 }
5295 if((opcode[i]&0x2f)==7) // BGTZ
5296 {
5297 emit_cmpimm(s1l,1);
5298 nottaken=(int)out;
5299 emit_jl(2);
5300 }
5301 } // if(!unconditional)
5302 int adj;
5303 uint64_t ds_unneeded=branch_regs[i].u;
5304 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5305 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5306 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5307 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5308 ds_unneeded|=1;
5309 ds_unneeded_upper|=1;
5310 // branch taken
5311 if(!nop) {
5312 if(taken) set_jump_target(taken,(int)out);
5313 assem_debug("1:\n");
5314 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5315 ds_unneeded,ds_unneeded_upper);
5316 // load regs
5317 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5318 address_generation(i+1,&branch_regs[i],0);
5319 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5320 ds_assemble(i+1,&branch_regs[i]);
5321 cc=get_reg(branch_regs[i].regmap,CCREG);
5322 if(cc==-1) {
5323 emit_loadreg(CCREG,cc=HOST_CCREG);
5324 // CHECK: Is the following instruction (fall thru) allocated ok?
5325 }
5326 assert(cc==HOST_CCREG);
5327 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5328 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5329 assem_debug("cycle count (adj)\n");
5330 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5331 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5332 if(internal)
5333 assem_debug("branch: internal\n");
5334 else
5335 assem_debug("branch: external\n");
5336 if(internal&&is_ds[(ba[i]-start)>>2]) {
5337 ds_assemble_entry(i);
5338 }
5339 else {
5340 add_to_linker((int)out,ba[i],internal);
5341 emit_jmp(0);
5342 }
5343 }
5344 // branch not taken
5345 cop1_usable=prev_cop1_usable;
5346 if(!unconditional) {
5347 if(nottaken1) set_jump_target(nottaken1,(int)out);
5348 set_jump_target(nottaken,(int)out);
5349 assem_debug("2:\n");
5350 if(!likely[i]) {
5351 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5352 ds_unneeded,ds_unneeded_upper);
5353 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5354 address_generation(i+1,&branch_regs[i],0);
5355 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5356 ds_assemble(i+1,&branch_regs[i]);
5357 }
5358 cc=get_reg(branch_regs[i].regmap,CCREG);
5359 if(cc==-1&&!likely[i]) {
5360 // Cycle count isn't in a register, temporarily load it then write it out
5361 emit_loadreg(CCREG,HOST_CCREG);
5362 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5363 int jaddr=(int)out;
5364 emit_jns(0);
5365 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5366 emit_storereg(CCREG,HOST_CCREG);
5367 }
5368 else{
5369 cc=get_reg(i_regmap,CCREG);
5370 assert(cc==HOST_CCREG);
5371 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5372 int jaddr=(int)out;
5373 emit_jns(0);
5374 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5375 }
5376 }
5377 }
5378}
5379
5380void sjump_assemble(int i,struct regstat *i_regs)
5381{
5382 signed char *i_regmap=i_regs->regmap;
5383 int cc;
5384 int match;
5385 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5386 assem_debug("smatch=%d\n",match);
5387 int s1h,s1l;
5388 int prev_cop1_usable=cop1_usable;
5389 int unconditional=0,nevertaken=0;
5390 int only32=0;
5391 int ooo=1;
5392 int invert=0;
5393 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5394 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5395 if(likely[i]) ooo=0;
5396 if(!match) invert=1;
5397 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5398 if(i>(ba[i]-start)>>2) invert=1;
5399 #endif
5400
5401 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5402 assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5403
5404 if(ooo)
5405 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5406 {
5407 // Write-after-read dependency prevents out of order execution
5408 // First test branch condition, then execute delay slot, then branch
5409 ooo=0;
5410 }
5411 // TODO: Conditional branches w/link must execute in-order so that
5412 // condition test and write to r31 occur before cycle count test
5413
5414 if(ooo) {
5415 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5416 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5417 }
5418 else {
5419 s1l=get_reg(i_regmap,rs1[i]);
5420 s1h=get_reg(i_regmap,rs1[i]|64);
5421 }
5422 if(rs1[i]==0)
5423 {
5424 if(opcode2[i]&1) unconditional=1;
5425 else nevertaken=1;
5426 // These are never taken (r0 is never less than zero)
5427 //assert(opcode2[i]!=0);
5428 //assert(opcode2[i]!=2);
5429 //assert(opcode2[i]!=0x10);
5430 //assert(opcode2[i]!=0x12);
5431 }
5432 else {
5433 only32=(regs[i].was32>>rs1[i])&1;
5434 }
5435
5436 if(ooo) {
5437 // Out of order execution (delay slot first)
5438 //printf("OOOE\n");
5439 address_generation(i+1,i_regs,regs[i].regmap_entry);
5440 ds_assemble(i+1,i_regs);
5441 int adj;
5442 uint64_t bc_unneeded=branch_regs[i].u;
5443 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5444 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5445 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5446 bc_unneeded|=1;
5447 bc_unneeded_upper|=1;
5448 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5449 bc_unneeded,bc_unneeded_upper);
5450 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5451 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5452 if(rt1[i]==31) {
5453 int rt,return_address;
5454 assert(rt1[i+1]!=31);
5455 assert(rt2[i+1]!=31);
5456 rt=get_reg(branch_regs[i].regmap,31);
5457 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5458 if(rt>=0) {
5459 // Save the PC even if the branch is not taken
5460 return_address=start+i*4+8;
5461 emit_movimm(return_address,rt); // PC into link register
5462 #ifdef IMM_PREFETCH
5463 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5464 #endif
5465 }
5466 }
5467 cc=get_reg(branch_regs[i].regmap,CCREG);
5468 assert(cc==HOST_CCREG);
5469 if(unconditional)
5470 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5471 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5472 assem_debug("cycle count (adj)\n");
5473 if(unconditional) {
5474 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5475 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5476 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5477 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5478 if(internal)
5479 assem_debug("branch: internal\n");
5480 else
5481 assem_debug("branch: external\n");
5482 if(internal&&is_ds[(ba[i]-start)>>2]) {
5483 ds_assemble_entry(i);
5484 }
5485 else {
5486 add_to_linker((int)out,ba[i],internal);
5487 emit_jmp(0);
5488 }
5489 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5490 if(((u_int)out)&7) emit_addnop(0);
5491 #endif
5492 }
5493 }
5494 else if(nevertaken) {
5495 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5496 int jaddr=(int)out;
5497 emit_jns(0);
5498 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5499 }
5500 else {
5501 int nottaken=0;
5502 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5503 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5504 if(!only32)
5505 {
5506 assert(s1h>=0);
5507 if(opcode2[i]==0) // BLTZ
5508 {
5509 emit_test(s1h,s1h);
5510 if(invert){
5511 nottaken=(int)out;
5512 emit_jns(1);
5513 }else{
5514 add_to_linker((int)out,ba[i],internal);
5515 emit_js(0);
5516 }
5517 }
5518 if(opcode2[i]==1) // BGEZ
5519 {
5520 emit_test(s1h,s1h);
5521 if(invert){
5522 nottaken=(int)out;
5523 emit_js(1);
5524 }else{
5525 add_to_linker((int)out,ba[i],internal);
5526 emit_jns(0);
5527 }
5528 }
5529 } // if(!only32)
5530 else
5531 {
5532 assert(s1l>=0);
5533 if(opcode2[i]==0) // BLTZ
5534 {
5535 emit_test(s1l,s1l);
5536 if(invert){
5537 nottaken=(int)out;
5538 emit_jns(1);
5539 }else{
5540 add_to_linker((int)out,ba[i],internal);
5541 emit_js(0);
5542 }
5543 }
5544 if(opcode2[i]==1) // BGEZ
5545 {
5546 emit_test(s1l,s1l);
5547 if(invert){
5548 nottaken=(int)out;
5549 emit_js(1);
5550 }else{
5551 add_to_linker((int)out,ba[i],internal);
5552 emit_jns(0);
5553 }
5554 }
5555 } // if(!only32)
5556
5557 if(invert) {
5558 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5559 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5560 if(adj) {
5561 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5562 add_to_linker((int)out,ba[i],internal);
5563 }else{
5564 emit_addnop(13);
5565 add_to_linker((int)out,ba[i],internal*2);
5566 }
5567 emit_jmp(0);
5568 }else
5569 #endif
5570 {
5571 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5572 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5573 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5574 if(internal)
5575 assem_debug("branch: internal\n");
5576 else
5577 assem_debug("branch: external\n");
5578 if(internal&&is_ds[(ba[i]-start)>>2]) {
5579 ds_assemble_entry(i);
5580 }
5581 else {
5582 add_to_linker((int)out,ba[i],internal);
5583 emit_jmp(0);
5584 }
5585 }
5586 set_jump_target(nottaken,(int)out);
5587 }
5588
5589 if(adj) {
5590 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5591 }
5592 } // (!unconditional)
5593 } // if(ooo)
5594 else
5595 {
5596 // In-order execution (branch first)
5597 //printf("IOE\n");
5598 int nottaken=0;
5599 if(!unconditional) {
5600 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5601 if(!only32)
5602 {
5603 assert(s1h>=0);
5604 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5605 {
5606 emit_test(s1h,s1h);
5607 nottaken=(int)out;
5608 emit_jns(1);
5609 }
5610 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5611 {
5612 emit_test(s1h,s1h);
5613 nottaken=(int)out;
5614 emit_js(1);
5615 }
5616 } // if(!only32)
5617 else
5618 {
5619 assert(s1l>=0);
5620 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5621 {
5622 emit_test(s1l,s1l);
5623 nottaken=(int)out;
5624 emit_jns(1);
5625 }
5626 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5627 {
5628 emit_test(s1l,s1l);
5629 nottaken=(int)out;
5630 emit_js(1);
5631 }
5632 }
5633 } // if(!unconditional)
5634 int adj;
5635 uint64_t ds_unneeded=branch_regs[i].u;
5636 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5637 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5638 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5639 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5640 ds_unneeded|=1;
5641 ds_unneeded_upper|=1;
5642 // branch taken
5643 if(!nevertaken) {
5644 //assem_debug("1:\n");
5645 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5646 ds_unneeded,ds_unneeded_upper);
5647 // load regs
5648 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5649 address_generation(i+1,&branch_regs[i],0);
5650 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5651 ds_assemble(i+1,&branch_regs[i]);
5652 cc=get_reg(branch_regs[i].regmap,CCREG);
5653 if(cc==-1) {
5654 emit_loadreg(CCREG,cc=HOST_CCREG);
5655 // CHECK: Is the following instruction (fall thru) allocated ok?
5656 }
5657 assert(cc==HOST_CCREG);
5658 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5659 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5660 assem_debug("cycle count (adj)\n");
5661 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5662 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5663 if(internal)
5664 assem_debug("branch: internal\n");
5665 else
5666 assem_debug("branch: external\n");
5667 if(internal&&is_ds[(ba[i]-start)>>2]) {
5668 ds_assemble_entry(i);
5669 }
5670 else {
5671 add_to_linker((int)out,ba[i],internal);
5672 emit_jmp(0);
5673 }
5674 }
5675 // branch not taken
5676 cop1_usable=prev_cop1_usable;
5677 if(!unconditional) {
5678 set_jump_target(nottaken,(int)out);
5679 assem_debug("1:\n");
5680 if(!likely[i]) {
5681 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5682 ds_unneeded,ds_unneeded_upper);
5683 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5684 address_generation(i+1,&branch_regs[i],0);
5685 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5686 ds_assemble(i+1,&branch_regs[i]);
5687 }
5688 cc=get_reg(branch_regs[i].regmap,CCREG);
5689 if(cc==-1&&!likely[i]) {
5690 // Cycle count isn't in a register, temporarily load it then write it out
5691 emit_loadreg(CCREG,HOST_CCREG);
5692 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5693 int jaddr=(int)out;
5694 emit_jns(0);
5695 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5696 emit_storereg(CCREG,HOST_CCREG);
5697 }
5698 else{
5699 cc=get_reg(i_regmap,CCREG);
5700 assert(cc==HOST_CCREG);
5701 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5702 int jaddr=(int)out;
5703 emit_jns(0);
5704 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5705 }
5706 }
5707 }
5708}
5709
5710void fjump_assemble(int i,struct regstat *i_regs)
5711{
5712 signed char *i_regmap=i_regs->regmap;
5713 int cc;
5714 int match;
5715 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5716 assem_debug("fmatch=%d\n",match);
5717 int fs,cs;
5718 int eaddr;
5719 int ooo=1;
5720 int invert=0;
5721 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5722 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5723 if(likely[i]) ooo=0;
5724 if(!match) invert=1;
5725 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5726 if(i>(ba[i]-start)>>2) invert=1;
5727 #endif
5728
5729 if(ooo)
5730 if(itype[i+1]==FCOMP)
5731 {
5732 // Write-after-read dependency prevents out of order execution
5733 // First test branch condition, then execute delay slot, then branch
5734 ooo=0;
5735 }
5736
5737 if(ooo) {
5738 fs=get_reg(branch_regs[i].regmap,FSREG);
5739 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5740 }
5741 else {
5742 fs=get_reg(i_regmap,FSREG);
5743 }
5744
5745 // Check cop1 unusable
5746 if(!cop1_usable) {
5747 cs=get_reg(i_regmap,CSREG);
5748 assert(cs>=0);
5749 emit_testimm(cs,0x20000000);
5750 eaddr=(int)out;
5751 emit_jeq(0);
5752 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5753 cop1_usable=1;
5754 }
5755
5756 if(ooo) {
5757 // Out of order execution (delay slot first)
5758 //printf("OOOE\n");
5759 ds_assemble(i+1,i_regs);
5760 int adj;
5761 uint64_t bc_unneeded=branch_regs[i].u;
5762 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5763 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5764 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5765 bc_unneeded|=1;
5766 bc_unneeded_upper|=1;
5767 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5768 bc_unneeded,bc_unneeded_upper);
5769 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5770 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5771 cc=get_reg(branch_regs[i].regmap,CCREG);
5772 assert(cc==HOST_CCREG);
5773 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5774 assem_debug("cycle count (adj)\n");
5775 if(1) {
5776 int nottaken=0;
5777 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5778 if(1) {
5779 assert(fs>=0);
5780 emit_testimm(fs,0x800000);
5781 if(source[i]&0x10000) // BC1T
5782 {
5783 if(invert){
5784 nottaken=(int)out;
5785 emit_jeq(1);
5786 }else{
5787 add_to_linker((int)out,ba[i],internal);
5788 emit_jne(0);
5789 }
5790 }
5791 else // BC1F
5792 if(invert){
5793 nottaken=(int)out;
5794 emit_jne(1);
5795 }else{
5796 add_to_linker((int)out,ba[i],internal);
5797 emit_jeq(0);
5798 }
5799 {
5800 }
5801 } // if(!only32)
5802
5803 if(invert) {
5804 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5805 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5806 else if(match) emit_addnop(13);
5807 #endif
5808 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5809 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5810 if(internal)
5811 assem_debug("branch: internal\n");
5812 else
5813 assem_debug("branch: external\n");
5814 if(internal&&is_ds[(ba[i]-start)>>2]) {
5815 ds_assemble_entry(i);
5816 }
5817 else {
5818 add_to_linker((int)out,ba[i],internal);
5819 emit_jmp(0);
5820 }
5821 set_jump_target(nottaken,(int)out);
5822 }
5823
5824 if(adj) {
5825 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5826 }
5827 } // (!unconditional)
5828 } // if(ooo)
5829 else
5830 {
5831 // In-order execution (branch first)
5832 //printf("IOE\n");
5833 int nottaken=0;
5834 if(1) {
5835 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5836 if(1) {
5837 assert(fs>=0);
5838 emit_testimm(fs,0x800000);
5839 if(source[i]&0x10000) // BC1T
5840 {
5841 nottaken=(int)out;
5842 emit_jeq(1);
5843 }
5844 else // BC1F
5845 {
5846 nottaken=(int)out;
5847 emit_jne(1);
5848 }
5849 }
5850 } // if(!unconditional)
5851 int adj;
5852 uint64_t ds_unneeded=branch_regs[i].u;
5853 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5854 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5855 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5856 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5857 ds_unneeded|=1;
5858 ds_unneeded_upper|=1;
5859 // branch taken
5860 //assem_debug("1:\n");
5861 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5862 ds_unneeded,ds_unneeded_upper);
5863 // load regs
5864 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5865 address_generation(i+1,&branch_regs[i],0);
5866 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5867 ds_assemble(i+1,&branch_regs[i]);
5868 cc=get_reg(branch_regs[i].regmap,CCREG);
5869 if(cc==-1) {
5870 emit_loadreg(CCREG,cc=HOST_CCREG);
5871 // CHECK: Is the following instruction (fall thru) allocated ok?
5872 }
5873 assert(cc==HOST_CCREG);
5874 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5875 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5876 assem_debug("cycle count (adj)\n");
5877 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5878 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5879 if(internal)
5880 assem_debug("branch: internal\n");
5881 else
5882 assem_debug("branch: external\n");
5883 if(internal&&is_ds[(ba[i]-start)>>2]) {
5884 ds_assemble_entry(i);
5885 }
5886 else {
5887 add_to_linker((int)out,ba[i],internal);
5888 emit_jmp(0);
5889 }
5890
5891 // branch not taken
5892 if(1) { // <- FIXME (don't need this)
5893 set_jump_target(nottaken,(int)out);
5894 assem_debug("1:\n");
5895 if(!likely[i]) {
5896 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5897 ds_unneeded,ds_unneeded_upper);
5898 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5899 address_generation(i+1,&branch_regs[i],0);
5900 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5901 ds_assemble(i+1,&branch_regs[i]);
5902 }
5903 cc=get_reg(branch_regs[i].regmap,CCREG);
5904 if(cc==-1&&!likely[i]) {
5905 // Cycle count isn't in a register, temporarily load it then write it out
5906 emit_loadreg(CCREG,HOST_CCREG);
5907 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5908 int jaddr=(int)out;
5909 emit_jns(0);
5910 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5911 emit_storereg(CCREG,HOST_CCREG);
5912 }
5913 else{
5914 cc=get_reg(i_regmap,CCREG);
5915 assert(cc==HOST_CCREG);
5916 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5917 int jaddr=(int)out;
5918 emit_jns(0);
5919 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5920 }
5921 }
5922 }
5923}
5924
5925static void pagespan_assemble(int i,struct regstat *i_regs)
5926{
5927 int s1l=get_reg(i_regs->regmap,rs1[i]);
5928 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5929 int s2l=get_reg(i_regs->regmap,rs2[i]);
5930 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5931 void *nt_branch=NULL;
5932 int taken=0;
5933 int nottaken=0;
5934 int unconditional=0;
5935 if(rs1[i]==0)
5936 {
5937 s1l=s2l;s1h=s2h;
5938 s2l=s2h=-1;
5939 }
5940 else if(rs2[i]==0)
5941 {
5942 s2l=s2h=-1;
5943 }
5944 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5945 s1h=s2h=-1;
5946 }
5947 int hr=0;
5948 int addr,alt,ntaddr;
5949 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5950 else {
5951 while(hr<HOST_REGS)
5952 {
5953 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5954 (i_regs->regmap[hr]&63)!=rs1[i] &&
5955 (i_regs->regmap[hr]&63)!=rs2[i] )
5956 {
5957 addr=hr++;break;
5958 }
5959 hr++;
5960 }
5961 }
5962 while(hr<HOST_REGS)
5963 {
5964 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5965 (i_regs->regmap[hr]&63)!=rs1[i] &&
5966 (i_regs->regmap[hr]&63)!=rs2[i] )
5967 {
5968 alt=hr++;break;
5969 }
5970 hr++;
5971 }
5972 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5973 {
5974 while(hr<HOST_REGS)
5975 {
5976 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5977 (i_regs->regmap[hr]&63)!=rs1[i] &&
5978 (i_regs->regmap[hr]&63)!=rs2[i] )
5979 {
5980 ntaddr=hr;break;
5981 }
5982 hr++;
5983 }
5984 }
5985 assert(hr<HOST_REGS);
5986 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5987 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5988 }
5989 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5990 if(opcode[i]==2) // J
5991 {
5992 unconditional=1;
5993 }
5994 if(opcode[i]==3) // JAL
5995 {
5996 // TODO: mini_ht
5997 int rt=get_reg(i_regs->regmap,31);
5998 emit_movimm(start+i*4+8,rt);
5999 unconditional=1;
6000 }
6001 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6002 {
6003 emit_mov(s1l,addr);
6004 if(opcode2[i]==9) // JALR
6005 {
6006 int rt=get_reg(i_regs->regmap,31);
6007 emit_movimm(start+i*4+8,rt);
6008 }
6009 }
6010 if((opcode[i]&0x3f)==4) // BEQ
6011 {
6012 if(rs1[i]==rs2[i])
6013 {
6014 unconditional=1;
6015 }
6016 else
6017 #ifdef HAVE_CMOV_IMM
6018 if(s1h<0) {
6019 if(s2l>=0) emit_cmp(s1l,s2l);
6020 else emit_test(s1l,s1l);
6021 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6022 }
6023 else
6024 #endif
6025 {
6026 assert(s1l>=0);
6027 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6028 if(s1h>=0) {
6029 if(s2h>=0) emit_cmp(s1h,s2h);
6030 else emit_test(s1h,s1h);
6031 emit_cmovne_reg(alt,addr);
6032 }
6033 if(s2l>=0) emit_cmp(s1l,s2l);
6034 else emit_test(s1l,s1l);
6035 emit_cmovne_reg(alt,addr);
6036 }
6037 }
6038 if((opcode[i]&0x3f)==5) // BNE
6039 {
6040 #ifdef HAVE_CMOV_IMM
6041 if(s1h<0) {
6042 if(s2l>=0) emit_cmp(s1l,s2l);
6043 else emit_test(s1l,s1l);
6044 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6045 }
6046 else
6047 #endif
6048 {
6049 assert(s1l>=0);
6050 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6051 if(s1h>=0) {
6052 if(s2h>=0) emit_cmp(s1h,s2h);
6053 else emit_test(s1h,s1h);
6054 emit_cmovne_reg(alt,addr);
6055 }
6056 if(s2l>=0) emit_cmp(s1l,s2l);
6057 else emit_test(s1l,s1l);
6058 emit_cmovne_reg(alt,addr);
6059 }
6060 }
6061 if((opcode[i]&0x3f)==0x14) // BEQL
6062 {
6063 if(s1h>=0) {
6064 if(s2h>=0) emit_cmp(s1h,s2h);
6065 else emit_test(s1h,s1h);
6066 nottaken=(int)out;
6067 emit_jne(0);
6068 }
6069 if(s2l>=0) emit_cmp(s1l,s2l);
6070 else emit_test(s1l,s1l);
6071 if(nottaken) set_jump_target(nottaken,(int)out);
6072 nottaken=(int)out;
6073 emit_jne(0);
6074 }
6075 if((opcode[i]&0x3f)==0x15) // BNEL
6076 {
6077 if(s1h>=0) {
6078 if(s2h>=0) emit_cmp(s1h,s2h);
6079 else emit_test(s1h,s1h);
6080 taken=(int)out;
6081 emit_jne(0);
6082 }
6083 if(s2l>=0) emit_cmp(s1l,s2l);
6084 else emit_test(s1l,s1l);
6085 nottaken=(int)out;
6086 emit_jeq(0);
6087 if(taken) set_jump_target(taken,(int)out);
6088 }
6089 if((opcode[i]&0x3f)==6) // BLEZ
6090 {
6091 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6092 emit_cmpimm(s1l,1);
6093 if(s1h>=0) emit_mov(addr,ntaddr);
6094 emit_cmovl_reg(alt,addr);
6095 if(s1h>=0) {
6096 emit_test(s1h,s1h);
6097 emit_cmovne_reg(ntaddr,addr);
6098 emit_cmovs_reg(alt,addr);
6099 }
6100 }
6101 if((opcode[i]&0x3f)==7) // BGTZ
6102 {
6103 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6104 emit_cmpimm(s1l,1);
6105 if(s1h>=0) emit_mov(addr,alt);
6106 emit_cmovl_reg(ntaddr,addr);
6107 if(s1h>=0) {
6108 emit_test(s1h,s1h);
6109 emit_cmovne_reg(alt,addr);
6110 emit_cmovs_reg(ntaddr,addr);
6111 }
6112 }
6113 if((opcode[i]&0x3f)==0x16) // BLEZL
6114 {
6115 assert((opcode[i]&0x3f)!=0x16);
6116 }
6117 if((opcode[i]&0x3f)==0x17) // BGTZL
6118 {
6119 assert((opcode[i]&0x3f)!=0x17);
6120 }
6121 assert(opcode[i]!=1); // BLTZ/BGEZ
6122
6123 //FIXME: Check CSREG
6124 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6125 if((source[i]&0x30000)==0) // BC1F
6126 {
6127 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6128 emit_testimm(s1l,0x800000);
6129 emit_cmovne_reg(alt,addr);
6130 }
6131 if((source[i]&0x30000)==0x10000) // BC1T
6132 {
6133 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6134 emit_testimm(s1l,0x800000);
6135 emit_cmovne_reg(alt,addr);
6136 }
6137 if((source[i]&0x30000)==0x20000) // BC1FL
6138 {
6139 emit_testimm(s1l,0x800000);
6140 nottaken=(int)out;
6141 emit_jne(0);
6142 }
6143 if((source[i]&0x30000)==0x30000) // BC1TL
6144 {
6145 emit_testimm(s1l,0x800000);
6146 nottaken=(int)out;
6147 emit_jeq(0);
6148 }
6149 }
6150
6151 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6152 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6153 if(likely[i]||unconditional)
6154 {
6155 emit_movimm(ba[i],HOST_BTREG);
6156 }
6157 else if(addr!=HOST_BTREG)
6158 {
6159 emit_mov(addr,HOST_BTREG);
6160 }
6161 void *branch_addr=out;
6162 emit_jmp(0);
6163 int target_addr=start+i*4+5;
6164 void *stub=out;
6165 void *compiled_target_addr=check_addr(target_addr);
6166 emit_extjump_ds((int)branch_addr,target_addr);
6167 if(compiled_target_addr) {
6168 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6169 add_link(target_addr,stub);
6170 }
6171 else set_jump_target((int)branch_addr,(int)stub);
6172 if(likely[i]) {
6173 // Not-taken path
6174 set_jump_target((int)nottaken,(int)out);
6175 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6176 void *branch_addr=out;
6177 emit_jmp(0);
6178 int target_addr=start+i*4+8;
6179 void *stub=out;
6180 void *compiled_target_addr=check_addr(target_addr);
6181 emit_extjump_ds((int)branch_addr,target_addr);
6182 if(compiled_target_addr) {
6183 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6184 add_link(target_addr,stub);
6185 }
6186 else set_jump_target((int)branch_addr,(int)stub);
6187 }
6188}
6189
6190// Assemble the delay slot for the above
6191static void pagespan_ds()
6192{
6193 assem_debug("initial delay slot:\n");
6194 u_int vaddr=start+1;
6195 u_int page=(0x80000000^vaddr)>>12;
6196 u_int vpage=page;
6197 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
6198 if(page>2048) page=2048+(page&2047);
6199 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
6200 if(vpage>2048) vpage=2048+(vpage&2047);
6201 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6202 do_dirty_stub_ds();
6203 ll_add(jump_in+page,vaddr,(void *)out);
6204 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6205 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6206 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6207 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6208 emit_writeword(HOST_BTREG,(int)&branch_target);
6209 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6210 address_generation(0,&regs[0],regs[0].regmap_entry);
6211 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
6212 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6213 cop1_usable=0;
6214 is_delayslot=0;
6215 switch(itype[0]) {
6216 case ALU:
6217 alu_assemble(0,&regs[0]);break;
6218 case IMM16:
6219 imm16_assemble(0,&regs[0]);break;
6220 case SHIFT:
6221 shift_assemble(0,&regs[0]);break;
6222 case SHIFTIMM:
6223 shiftimm_assemble(0,&regs[0]);break;
6224 case LOAD:
6225 load_assemble(0,&regs[0]);break;
6226 case LOADLR:
6227 loadlr_assemble(0,&regs[0]);break;
6228 case STORE:
6229 store_assemble(0,&regs[0]);break;
6230 case STORELR:
6231 storelr_assemble(0,&regs[0]);break;
6232 case COP0:
6233 cop0_assemble(0,&regs[0]);break;
6234 case COP1:
6235 cop1_assemble(0,&regs[0]);break;
6236 case C1LS:
6237 c1ls_assemble(0,&regs[0]);break;
6238 case FCONV:
6239 fconv_assemble(0,&regs[0]);break;
6240 case FLOAT:
6241 float_assemble(0,&regs[0]);break;
6242 case FCOMP:
6243 fcomp_assemble(0,&regs[0]);break;
6244 case MULTDIV:
6245 multdiv_assemble(0,&regs[0]);break;
6246 case MOV:
6247 mov_assemble(0,&regs[0]);break;
6248 case SYSCALL:
6249 case SPAN:
6250 case UJUMP:
6251 case RJUMP:
6252 case CJUMP:
6253 case SJUMP:
6254 case FJUMP:
6255 printf("Jump in the delay slot. This is probably a bug.\n");
6256 }
6257 int btaddr=get_reg(regs[0].regmap,BTREG);
6258 if(btaddr<0) {
6259 btaddr=get_reg(regs[0].regmap,-1);
6260 emit_readword((int)&branch_target,btaddr);
6261 }
6262 assert(btaddr!=HOST_CCREG);
6263 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6264#ifdef HOST_IMM8
6265 emit_movimm(start+4,HOST_TEMPREG);
6266 emit_cmp(btaddr,HOST_TEMPREG);
6267#else
6268 emit_cmpimm(btaddr,start+4);
6269#endif
6270 int branch=(int)out;
6271 emit_jeq(0);
6272 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6273 emit_jmp(jump_vaddr_reg[btaddr]);
6274 set_jump_target(branch,(int)out);
6275 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6276 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6277}
6278
6279// Basic liveness analysis for MIPS registers
6280void unneeded_registers(int istart,int iend,int r)
6281{
6282 int i;
6283 uint64_t u,uu,b,bu;
6284 uint64_t temp_u,temp_uu;
6285 uint64_t tdep;
6286 if(iend==slen-1) {
6287 u=1;uu=1;
6288 }else{
6289 u=unneeded_reg[iend+1];
6290 uu=unneeded_reg_upper[iend+1];
6291 u=1;uu=1;
6292 }
6293 for (i=iend;i>=istart;i--)
6294 {
6295 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6296 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6297 {
6298 // If subroutine call, flag return address as a possible branch target
6299 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6300
6301 if(ba[i]<start || ba[i]>=(start+slen*4))
6302 {
6303 // Branch out of this block, flush all regs
6304 u=1;
6305 uu=1;
6306 /* Hexagon hack
6307 if(itype[i]==UJUMP&&rt1[i]==31)
6308 {
6309 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6310 }
6311 if(itype[i]==RJUMP&&rs1[i]==31)
6312 {
6313 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6314 }
6315 if(start>0x80000400&&start<0x80800000) {
6316 if(itype[i]==UJUMP&&rt1[i]==31)
6317 {
6318 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6319 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6320 }
6321 if(itype[i]==RJUMP&&rs1[i]==31)
6322 {
6323 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6324 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6325 }
6326 }*/
6327 branch_unneeded_reg[i]=u;
6328 branch_unneeded_reg_upper[i]=uu;
6329 // Merge in delay slot
6330 tdep=(~uu>>rt1[i+1])&1;
6331 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6332 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6333 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6334 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6335 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6336 u|=1;uu|=1;
6337 // If branch is "likely" (and conditional)
6338 // then we skip the delay slot on the fall-thru path
6339 if(likely[i]) {
6340 if(i<slen-1) {
6341 u&=unneeded_reg[i+2];
6342 uu&=unneeded_reg_upper[i+2];
6343 }
6344 else
6345 {
6346 u=1;
6347 uu=1;
6348 }
6349 }
6350 }
6351 else
6352 {
6353 // Internal branch, flag target
6354 bt[(ba[i]-start)>>2]=1;
6355 if(ba[i]<=start+i*4) {
6356 // Backward branch
6357 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6358 {
6359 // Unconditional branch
6360 temp_u=1;temp_uu=1;
6361 } else {
6362 // Conditional branch (not taken case)
6363 temp_u=unneeded_reg[i+2];
6364 temp_uu=unneeded_reg_upper[i+2];
6365 }
6366 // Merge in delay slot
6367 tdep=(~temp_uu>>rt1[i+1])&1;
6368 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6369 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6370 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6371 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6372 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6373 temp_u|=1;temp_uu|=1;
6374 // If branch is "likely" (and conditional)
6375 // then we skip the delay slot on the fall-thru path
6376 if(likely[i]) {
6377 if(i<slen-1) {
6378 temp_u&=unneeded_reg[i+2];
6379 temp_uu&=unneeded_reg_upper[i+2];
6380 }
6381 else
6382 {
6383 temp_u=1;
6384 temp_uu=1;
6385 }
6386 }
6387 tdep=(~temp_uu>>rt1[i])&1;
6388 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6389 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6390 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6391 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6392 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6393 temp_u|=1;temp_uu|=1;
6394 unneeded_reg[i]=temp_u;
6395 unneeded_reg_upper[i]=temp_uu;
6396 // Only go three levels deep. This recursion can take an
6397 // excessive amount of time if there are a lot of nested loops.
6398 if(r<2) {
6399 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6400 }else{
6401 unneeded_reg[(ba[i]-start)>>2]=1;
6402 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6403 }
6404 } /*else*/ if(1) {
6405 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6406 {
6407 // Unconditional branch
6408 u=unneeded_reg[(ba[i]-start)>>2];
6409 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6410 branch_unneeded_reg[i]=u;
6411 branch_unneeded_reg_upper[i]=uu;
6412 //u=1;
6413 //uu=1;
6414 //branch_unneeded_reg[i]=u;
6415 //branch_unneeded_reg_upper[i]=uu;
6416 // Merge in delay slot
6417 tdep=(~uu>>rt1[i+1])&1;
6418 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6419 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6420 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6421 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6422 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6423 u|=1;uu|=1;
6424 } else {
6425 // Conditional branch
6426 b=unneeded_reg[(ba[i]-start)>>2];
6427 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6428 branch_unneeded_reg[i]=b;
6429 branch_unneeded_reg_upper[i]=bu;
6430 //b=1;
6431 //bu=1;
6432 //branch_unneeded_reg[i]=b;
6433 //branch_unneeded_reg_upper[i]=bu;
6434 // Branch delay slot
6435 tdep=(~uu>>rt1[i+1])&1;
6436 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6437 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6438 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6439 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6440 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6441 b|=1;bu|=1;
6442 // If branch is "likely" then we skip the
6443 // delay slot on the fall-thru path
6444 if(likely[i]) {
6445 u=b;
6446 uu=bu;
6447 if(i<slen-1) {
6448 u&=unneeded_reg[i+2];
6449 uu&=unneeded_reg_upper[i+2];
6450 //u=1;
6451 //uu=1;
6452 }
6453 } else {
6454 u&=b;
6455 uu&=bu;
6456 //u=1;
6457 //uu=1;
6458 }
6459 if(i<slen-1) {
6460 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6461 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6462 //branch_unneeded_reg[i]=1;
6463 //branch_unneeded_reg_upper[i]=1;
6464 } else {
6465 branch_unneeded_reg[i]=1;
6466 branch_unneeded_reg_upper[i]=1;
6467 }
6468 }
6469 }
6470 }
6471 }
6472 else if(itype[i]==SYSCALL)
6473 {
6474 // SYSCALL instruction (software interrupt)
6475 u=1;
6476 uu=1;
6477 }
6478 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6479 {
6480 // ERET instruction (return from interrupt)
6481 u=1;
6482 uu=1;
6483 }
6484 //u=uu=1; // DEBUG
6485 tdep=(~uu>>rt1[i])&1;
6486 // Written registers are unneeded
6487 u|=1LL<<rt1[i];
6488 u|=1LL<<rt2[i];
6489 uu|=1LL<<rt1[i];
6490 uu|=1LL<<rt2[i];
6491 // Accessed registers are needed
6492 u&=~(1LL<<rs1[i]);
6493 u&=~(1LL<<rs2[i]);
6494 uu&=~(1LL<<us1[i]);
6495 uu&=~(1LL<<us2[i]);
6496 // Source-target dependencies
6497 uu&=~(tdep<<dep1[i]);
6498 uu&=~(tdep<<dep2[i]);
6499 // R0 is always unneeded
6500 u|=1;uu|=1;
6501 // Save it
6502 unneeded_reg[i]=u;
6503 unneeded_reg_upper[i]=uu;
6504 /*
6505 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6506 printf("U:");
6507 int r;
6508 for(r=1;r<=CCREG;r++) {
6509 if((unneeded_reg[i]>>r)&1) {
6510 if(r==HIREG) printf(" HI");
6511 else if(r==LOREG) printf(" LO");
6512 else printf(" r%d",r);
6513 }
6514 }
6515 printf(" UU:");
6516 for(r=1;r<=CCREG;r++) {
6517 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6518 if(r==HIREG) printf(" HI");
6519 else if(r==LOREG) printf(" LO");
6520 else printf(" r%d",r);
6521 }
6522 }
6523 printf("\n");*/
6524 }
6525}
6526
6527// Identify registers which are likely to contain 32-bit values
6528// This is used to predict whether any branches will jump to a
6529// location with 64-bit values in registers.
6530static void provisional_32bit()
6531{
6532 int i,j;
6533 uint64_t is32=1;
6534 uint64_t lastbranch=1;
6535
6536 for(i=0;i<slen;i++)
6537 {
6538 if(i>0) {
6539 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6540 if(i>1) is32=lastbranch;
6541 else is32=1;
6542 }
6543 }
6544 if(i>1)
6545 {
6546 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6547 if(likely[i-2]) {
6548 if(i>2) is32=lastbranch;
6549 else is32=1;
6550 }
6551 }
6552 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6553 {
6554 if(rs1[i-2]==0||rs2[i-2]==0)
6555 {
6556 if(rs1[i-2]) {
6557 is32|=1LL<<rs1[i-2];
6558 }
6559 if(rs2[i-2]) {
6560 is32|=1LL<<rs2[i-2];
6561 }
6562 }
6563 }
6564 }
6565 // If something jumps here with 64-bit values
6566 // then promote those registers to 64 bits
6567 if(bt[i])
6568 {
6569 uint64_t temp_is32=is32;
6570 for(j=i-1;j>=0;j--)
6571 {
6572 if(ba[j]==start+i*4)
6573 //temp_is32&=branch_regs[j].is32;
6574 temp_is32&=p32[j];
6575 }
6576 for(j=i;j<slen;j++)
6577 {
6578 if(ba[j]==start+i*4)
6579 temp_is32=1;
6580 }
6581 is32=temp_is32;
6582 }
6583 int type=itype[i];
6584 int op=opcode[i];
6585 int op2=opcode2[i];
6586 int rt=rt1[i];
6587 int s1=rs1[i];
6588 int s2=rs2[i];
6589 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6590 // Branches don't write registers, consider the delay slot instead.
6591 type=itype[i+1];
6592 op=opcode[i+1];
6593 op2=opcode2[i+1];
6594 rt=rt1[i+1];
6595 s1=rs1[i+1];
6596 s2=rs2[i+1];
6597 lastbranch=is32;
6598 }
6599 switch(type) {
6600 case LOAD:
6601 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6602 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6603 is32&=~(1LL<<rt);
6604 else
6605 is32|=1LL<<rt;
6606 break;
6607 case STORE:
6608 case STORELR:
6609 break;
6610 case LOADLR:
6611 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6612 if(op==0x22) is32|=1LL<<rt; // LWL
6613 break;
6614 case IMM16:
6615 if (op==0x08||op==0x09|| // ADDI/ADDIU
6616 op==0x0a||op==0x0b|| // SLTI/SLTIU
6617 op==0x0c|| // ANDI
6618 op==0x0f) // LUI
6619 {
6620 is32|=1LL<<rt;
6621 }
6622 if(op==0x18||op==0x19) { // DADDI/DADDIU
6623 is32&=~(1LL<<rt);
6624 //if(imm[i]==0)
6625 // is32|=((is32>>s1)&1LL)<<rt;
6626 }
6627 if(op==0x0d||op==0x0e) { // ORI/XORI
6628 uint64_t sr=((is32>>s1)&1LL);
6629 is32&=~(1LL<<rt);
6630 is32|=sr<<rt;
6631 }
6632 break;
6633 case UJUMP:
6634 break;
6635 case RJUMP:
6636 break;
6637 case CJUMP:
6638 break;
6639 case SJUMP:
6640 break;
6641 case FJUMP:
6642 break;
6643 case ALU:
6644 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6645 is32|=1LL<<rt;
6646 }
6647 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6648 is32|=1LL<<rt;
6649 }
6650 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6651 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6652 is32&=~(1LL<<rt);
6653 is32|=sr<<rt;
6654 }
6655 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6656 if(s1==0&&s2==0) {
6657 is32|=1LL<<rt;
6658 }
6659 else if(s2==0) {
6660 uint64_t sr=((is32>>s1)&1LL);
6661 is32&=~(1LL<<rt);
6662 is32|=sr<<rt;
6663 }
6664 else if(s1==0) {
6665 uint64_t sr=((is32>>s2)&1LL);
6666 is32&=~(1LL<<rt);
6667 is32|=sr<<rt;
6668 }
6669 else {
6670 is32&=~(1LL<<rt);
6671 }
6672 }
6673 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6674 if(s1==0&&s2==0) {
6675 is32|=1LL<<rt;
6676 }
6677 else if(s2==0) {
6678 uint64_t sr=((is32>>s1)&1LL);
6679 is32&=~(1LL<<rt);
6680 is32|=sr<<rt;
6681 }
6682 else {
6683 is32&=~(1LL<<rt);
6684 }
6685 }
6686 break;
6687 case MULTDIV:
6688 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6689 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6690 }
6691 else {
6692 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6693 }
6694 break;
6695 case MOV:
6696 {
6697 uint64_t sr=((is32>>s1)&1LL);
6698 is32&=~(1LL<<rt);
6699 is32|=sr<<rt;
6700 }
6701 break;
6702 case SHIFT:
6703 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6704 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6705 break;
6706 case SHIFTIMM:
6707 is32|=1LL<<rt;
6708 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6709 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6710 break;
6711 case COP0:
6712 if(op2==0) is32|=1LL<<rt; // MFC0
6713 break;
6714 case COP1:
6715 if(op2==0) is32|=1LL<<rt; // MFC1
6716 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6717 if(op2==2) is32|=1LL<<rt; // CFC1
6718 break;
6719 case C1LS:
6720 break;
6721 case FLOAT:
6722 case FCONV:
6723 break;
6724 case FCOMP:
6725 break;
6726 case SYSCALL:
6727 break;
6728 default:
6729 break;
6730 }
6731 is32|=1;
6732 p32[i]=is32;
6733
6734 if(i>0)
6735 {
6736 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6737 {
6738 if(rt1[i-1]==31) // JAL/JALR
6739 {
6740 // Subroutine call will return here, don't alloc any registers
6741 is32=1;
6742 }
6743 else if(i+1<slen)
6744 {
6745 // Internal branch will jump here, match registers to caller
6746 is32=0x3FFFFFFFFLL;
6747 }
6748 }
6749 }
6750 }
6751}
6752
6753// Identify registers which may be assumed to contain 32-bit values
6754// and where optimizations will rely on this.
6755// This is used to determine whether backward branches can safely
6756// jump to a location with 64-bit values in registers.
6757static void provisional_r32()
6758{
6759 u_int r32=0;
6760 int i;
6761
6762 for (i=slen-1;i>=0;i--)
6763 {
6764 int hr;
6765 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6766 {
6767 if(ba[i]<start || ba[i]>=(start+slen*4))
6768 {
6769 // Branch out of this block, don't need anything
6770 r32=0;
6771 }
6772 else
6773 {
6774 // Internal branch
6775 // Need whatever matches the target
6776 // (and doesn't get overwritten by the delay slot instruction)
6777 r32=0;
6778 int t=(ba[i]-start)>>2;
6779 if(ba[i]>start+i*4) {
6780 // Forward branch
6781 //if(!(requires_32bit[t]&~regs[i].was32))
6782 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6783 if(!(pr32[t]&~regs[i].was32))
6784 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6785 }else{
6786 // Backward branch
6787 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
6788 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6789 }
6790 }
6791 // Conditional branch may need registers for following instructions
6792 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
6793 {
6794 if(i<slen-2) {
6795 //r32|=requires_32bit[i+2];
6796 r32|=pr32[i+2];
6797 r32&=regs[i].was32;
6798 // Mark this address as a branch target since it may be called
6799 // upon return from interrupt
6800 //bt[i+2]=1;
6801 }
6802 }
6803 // Merge in delay slot
6804 if(!likely[i]) {
6805 // These are overwritten unless the branch is "likely"
6806 // and the delay slot is nullified if not taken
6807 r32&=~(1LL<<rt1[i+1]);
6808 r32&=~(1LL<<rt2[i+1]);
6809 }
6810 // Assume these are needed (delay slot)
6811 if(us1[i+1]>0)
6812 {
6813 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
6814 }
6815 if(us2[i+1]>0)
6816 {
6817 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
6818 }
6819 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
6820 {
6821 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
6822 }
6823 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
6824 {
6825 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
6826 }
6827 }
6828 else if(itype[i]==SYSCALL)
6829 {
6830 // SYSCALL instruction (software interrupt)
6831 r32=0;
6832 }
6833 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6834 {
6835 // ERET instruction (return from interrupt)
6836 r32=0;
6837 }
6838 // Check 32 bits
6839 r32&=~(1LL<<rt1[i]);
6840 r32&=~(1LL<<rt2[i]);
6841 if(us1[i]>0)
6842 {
6843 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
6844 }
6845 if(us2[i]>0)
6846 {
6847 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
6848 }
6849 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
6850 {
6851 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
6852 }
6853 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
6854 {
6855 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
6856 }
6857 //requires_32bit[i]=r32;
6858 pr32[i]=r32;
6859
6860 // Dirty registers which are 32-bit, require 32-bit input
6861 // as they will be written as 32-bit values
6862 for(hr=0;hr<HOST_REGS;hr++)
6863 {
6864 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
6865 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
6866 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
6867 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
6868 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
6869 }
6870 }
6871 }
6872 }
6873}
6874
6875// Write back dirty registers as soon as we will no longer modify them,
6876// so that we don't end up with lots of writes at the branches.
6877void clean_registers(int istart,int iend,int wr)
6878{
6879 int i;
6880 int r;
6881 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6882 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6883 if(iend==slen-1) {
6884 will_dirty_i=will_dirty_next=0;
6885 wont_dirty_i=wont_dirty_next=0;
6886 }else{
6887 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6888 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6889 }
6890 for (i=iend;i>=istart;i--)
6891 {
6892 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6893 {
6894 if(ba[i]<start || ba[i]>=(start+slen*4))
6895 {
6896 // Branch out of this block, flush all regs
6897 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6898 {
6899 // Unconditional branch
6900 will_dirty_i=0;
6901 wont_dirty_i=0;
6902 // Merge in delay slot (will dirty)
6903 for(r=0;r<HOST_REGS;r++) {
6904 if(r!=EXCLUDE_REG) {
6905 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6906 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6907 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6908 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6909 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6910 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6911 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6912 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6913 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6914 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6915 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6916 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6917 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6918 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6919 }
6920 }
6921 }
6922 else
6923 {
6924 // Conditional branch
6925 will_dirty_i=0;
6926 wont_dirty_i=wont_dirty_next;
6927 // Merge in delay slot (will dirty)
6928 for(r=0;r<HOST_REGS;r++) {
6929 if(r!=EXCLUDE_REG) {
6930 if(!likely[i]) {
6931 // Might not dirty if likely branch is not taken
6932 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6933 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6934 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6935 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6936 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6937 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6938 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6939 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6940 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6941 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6942 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6943 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6944 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6945 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6946 }
6947 }
6948 }
6949 }
6950 // Merge in delay slot (wont dirty)
6951 for(r=0;r<HOST_REGS;r++) {
6952 if(r!=EXCLUDE_REG) {
6953 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6954 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6955 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6956 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6957 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6958 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6959 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6960 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6961 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6962 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6963 }
6964 }
6965 if(wr) {
6966 #ifndef DESTRUCTIVE_WRITEBACK
6967 branch_regs[i].dirty&=wont_dirty_i;
6968 #endif
6969 branch_regs[i].dirty|=will_dirty_i;
6970 }
6971 }
6972 else
6973 {
6974 // Internal branch
6975 if(ba[i]<=start+i*4) {
6976 // Backward branch
6977 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6978 {
6979 // Unconditional branch
6980 temp_will_dirty=0;
6981 temp_wont_dirty=0;
6982 // Merge in delay slot (will dirty)
6983 for(r=0;r<HOST_REGS;r++) {
6984 if(r!=EXCLUDE_REG) {
6985 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6986 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6987 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6988 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6989 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6990 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6991 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6992 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6993 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6994 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6995 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6996 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6997 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6998 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6999 }
7000 }
7001 } else {
7002 // Conditional branch (not taken case)
7003 temp_will_dirty=will_dirty_next;
7004 temp_wont_dirty=wont_dirty_next;
7005 // Merge in delay slot (will dirty)
7006 for(r=0;r<HOST_REGS;r++) {
7007 if(r!=EXCLUDE_REG) {
7008 if(!likely[i]) {
7009 // Will not dirty if likely branch is not taken
7010 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7011 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7012 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7013 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7014 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7015 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7016 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7017 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7018 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7019 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7020 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7021 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7022 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7023 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7024 }
7025 }
7026 }
7027 }
7028 // Merge in delay slot (wont dirty)
7029 for(r=0;r<HOST_REGS;r++) {
7030 if(r!=EXCLUDE_REG) {
7031 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7032 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7033 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7034 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7035 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7036 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7037 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7038 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7039 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7040 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7041 }
7042 }
7043 // Deal with changed mappings
7044 if(i<iend) {
7045 for(r=0;r<HOST_REGS;r++) {
7046 if(r!=EXCLUDE_REG) {
7047 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7048 temp_will_dirty&=~(1<<r);
7049 temp_wont_dirty&=~(1<<r);
7050 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7051 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7052 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7053 } else {
7054 temp_will_dirty|=1<<r;
7055 temp_wont_dirty|=1<<r;
7056 }
7057 }
7058 }
7059 }
7060 }
7061 if(wr) {
7062 will_dirty[i]=temp_will_dirty;
7063 wont_dirty[i]=temp_wont_dirty;
7064 clean_registers((ba[i]-start)>>2,i-1,0);
7065 }else{
7066 // Limit recursion. It can take an excessive amount
7067 // of time if there are a lot of nested loops.
7068 will_dirty[(ba[i]-start)>>2]=0;
7069 wont_dirty[(ba[i]-start)>>2]=-1;
7070 }
7071 }
7072 /*else*/ if(1)
7073 {
7074 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7075 {
7076 // Unconditional branch
7077 will_dirty_i=0;
7078 wont_dirty_i=0;
7079 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7080 for(r=0;r<HOST_REGS;r++) {
7081 if(r!=EXCLUDE_REG) {
7082 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7083 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7084 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7085 }
7086 }
7087 }
7088 //}
7089 // Merge in delay slot
7090 for(r=0;r<HOST_REGS;r++) {
7091 if(r!=EXCLUDE_REG) {
7092 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7093 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7094 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7095 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7096 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7097 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7098 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7099 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7100 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7101 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7102 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7103 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7104 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7105 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7106 }
7107 }
7108 } else {
7109 // Conditional branch
7110 will_dirty_i=will_dirty_next;
7111 wont_dirty_i=wont_dirty_next;
7112 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7113 for(r=0;r<HOST_REGS;r++) {
7114 if(r!=EXCLUDE_REG) {
7115 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7116 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7117 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7118 }
7119 else
7120 {
7121 will_dirty_i&=~(1<<r);
7122 }
7123 // Treat delay slot as part of branch too
7124 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7125 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7126 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7127 }
7128 else
7129 {
7130 will_dirty[i+1]&=~(1<<r);
7131 }*/
7132 }
7133 }
7134 //}
7135 // Merge in delay slot
7136 for(r=0;r<HOST_REGS;r++) {
7137 if(r!=EXCLUDE_REG) {
7138 if(!likely[i]) {
7139 // Might not dirty if likely branch is not taken
7140 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7141 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7142 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7143 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7144 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7145 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7146 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7147 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7148 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7149 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7150 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7151 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7152 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7153 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7154 }
7155 }
7156 }
7157 }
7158 // Merge in delay slot
7159 for(r=0;r<HOST_REGS;r++) {
7160 if(r!=EXCLUDE_REG) {
7161 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7162 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7163 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7164 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7165 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7166 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7167 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7168 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7169 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7170 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7171 }
7172 }
7173 if(wr) {
7174 #ifndef DESTRUCTIVE_WRITEBACK
7175 branch_regs[i].dirty&=wont_dirty_i;
7176 #endif
7177 branch_regs[i].dirty|=will_dirty_i;
7178 }
7179 }
7180 }
7181 }
7182 else if(itype[i]==SYSCALL)
7183 {
7184 // SYSCALL instruction (software interrupt)
7185 will_dirty_i=0;
7186 wont_dirty_i=0;
7187 }
7188 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7189 {
7190 // ERET instruction (return from interrupt)
7191 will_dirty_i=0;
7192 wont_dirty_i=0;
7193 }
7194 will_dirty_next=will_dirty_i;
7195 wont_dirty_next=wont_dirty_i;
7196 for(r=0;r<HOST_REGS;r++) {
7197 if(r!=EXCLUDE_REG) {
7198 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7199 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7200 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7201 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7202 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7203 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7204 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7205 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7206 if(i>istart) {
7207 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7208 {
7209 // Don't store a register immediately after writing it,
7210 // may prevent dual-issue.
7211 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7212 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7213 }
7214 }
7215 }
7216 }
7217 // Save it
7218 will_dirty[i]=will_dirty_i;
7219 wont_dirty[i]=wont_dirty_i;
7220 // Mark registers that won't be dirtied as not dirty
7221 if(wr) {
7222 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7223 for(r=0;r<HOST_REGS;r++) {
7224 if((will_dirty_i>>r)&1) {
7225 printf(" r%d",r);
7226 }
7227 }
7228 printf("\n");*/
7229
7230 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7231 regs[i].dirty|=will_dirty_i;
7232 #ifndef DESTRUCTIVE_WRITEBACK
7233 regs[i].dirty&=wont_dirty_i;
7234 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7235 {
7236 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7237 for(r=0;r<HOST_REGS;r++) {
7238 if(r!=EXCLUDE_REG) {
7239 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7240 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7241 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7242 }
7243 }
7244 }
7245 }
7246 else
7247 {
7248 if(i<iend) {
7249 for(r=0;r<HOST_REGS;r++) {
7250 if(r!=EXCLUDE_REG) {
7251 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7252 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7253 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7254 }
7255 }
7256 }
7257 }
7258 #endif
7259 //}
7260 }
7261 // Deal with changed mappings
7262 temp_will_dirty=will_dirty_i;
7263 temp_wont_dirty=wont_dirty_i;
7264 for(r=0;r<HOST_REGS;r++) {
7265 if(r!=EXCLUDE_REG) {
7266 int nr;
7267 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7268 if(wr) {
7269 #ifndef DESTRUCTIVE_WRITEBACK
7270 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7271 #endif
7272 regs[i].wasdirty|=will_dirty_i&(1<<r);
7273 }
7274 }
7275 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7276 // Register moved to a different register
7277 will_dirty_i&=~(1<<r);
7278 wont_dirty_i&=~(1<<r);
7279 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7280 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7281 if(wr) {
7282 #ifndef DESTRUCTIVE_WRITEBACK
7283 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7284 #endif
7285 regs[i].wasdirty|=will_dirty_i&(1<<r);
7286 }
7287 }
7288 else {
7289 will_dirty_i&=~(1<<r);
7290 wont_dirty_i&=~(1<<r);
7291 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7292 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7293 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7294 } else {
7295 wont_dirty_i|=1<<r;
7296 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7297 }
7298 }
7299 }
7300 }
7301 }
7302}
7303
7304 /* disassembly */
7305void disassemble_inst(int i)
7306{
7307 if (bt[i]) printf("*"); else printf(" ");
7308 switch(itype[i]) {
7309 case UJUMP:
7310 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7311 case CJUMP:
7312 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7313 case SJUMP:
7314 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7315 case FJUMP:
7316 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7317 case RJUMP:
7318 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);break;
7319 case SPAN:
7320 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7321 case IMM16:
7322 if(opcode[i]==0xf) //LUI
7323 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7324 else
7325 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7326 break;
7327 case LOAD:
7328 case LOADLR:
7329 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7330 break;
7331 case STORE:
7332 case STORELR:
7333 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7334 break;
7335 case ALU:
7336 case SHIFT:
7337 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7338 break;
7339 case MULTDIV:
7340 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7341 break;
7342 case SHIFTIMM:
7343 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7344 break;
7345 case MOV:
7346 if((opcode2[i]&0x1d)==0x10)
7347 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7348 else if((opcode2[i]&0x1d)==0x11)
7349 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7350 else
7351 printf (" %x: %s\n",start+i*4,insn[i]);
7352 break;
7353 case COP0:
7354 if(opcode2[i]==0)
7355 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7356 else if(opcode2[i]==4)
7357 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7358 else printf (" %x: %s\n",start+i*4,insn[i]);
7359 break;
7360 case COP1:
7361 if(opcode2[i]<3)
7362 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7363 else if(opcode2[i]>3)
7364 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7365 else printf (" %x: %s\n",start+i*4,insn[i]);
7366 break;
7367 case C1LS:
7368 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7369 break;
7370 default:
7371 //printf (" %s %8x\n",insn[i],source[i]);
7372 printf (" %x: %s\n",start+i*4,insn[i]);
7373 }
7374}
7375
7376void new_dynarec_init()
7377{
7378 printf("Init new dynarec\n");
7379 out=(u_char *)BASE_ADDR;
7380 if (mmap (out, 1<<TARGET_SIZE_2,
7381 PROT_READ | PROT_WRITE | PROT_EXEC,
7382 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7383 -1, 0) <= 0) {printf("mmap() failed\n");}
7384 rdword=&readmem_dword;
7385 fake_pc.f.r.rs=&readmem_dword;
7386 fake_pc.f.r.rt=&readmem_dword;
7387 fake_pc.f.r.rd=&readmem_dword;
7388 int n;
7389 for(n=0x80000;n<0x80800;n++)
7390 invalid_code[n]=1;
7391 for(n=0;n<65536;n++)
7392 hash_table[n][0]=hash_table[n][2]=-1;
7393 memset(mini_ht,-1,sizeof(mini_ht));
7394 memset(restore_candidate,0,sizeof(restore_candidate));
7395 copy=shadow;
7396 expirep=16384; // Expiry pointer, +2 blocks
7397 pending_exception=0;
7398 literalcount=0;
7399#ifdef HOST_IMM8
7400 // Copy this into local area so we don't have to put it in every literal pool
7401 invc_ptr=invalid_code;
7402#endif
7403 stop_after_jal=0;
7404 // TLB
7405 using_tlb=0;
7406 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7407 memory_map[n]=-1;
7408 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7409 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7410 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7411 memory_map[n]=-1;
7412 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7413 writemem[n] = write_nomem_new;
7414 writememb[n] = write_nomemb_new;
7415 writememh[n] = write_nomemh_new;
7416 writememd[n] = write_nomemd_new;
7417 readmem[n] = read_nomem_new;
7418 readmemb[n] = read_nomemb_new;
7419 readmemh[n] = read_nomemh_new;
7420 readmemd[n] = read_nomemd_new;
7421 }
7422 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7423 writemem[n] = write_rdram_new;
7424 writememb[n] = write_rdramb_new;
7425 writememh[n] = write_rdramh_new;
7426 writememd[n] = write_rdramd_new;
7427 }
7428 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7429 writemem[n] = write_nomem_new;
7430 writememb[n] = write_nomemb_new;
7431 writememh[n] = write_nomemh_new;
7432 writememd[n] = write_nomemd_new;
7433 readmem[n] = read_nomem_new;
7434 readmemb[n] = read_nomemb_new;
7435 readmemh[n] = read_nomemh_new;
7436 readmemd[n] = read_nomemd_new;
7437 }
7438 tlb_hacks();
7439 arch_init();
7440}
7441
7442void new_dynarec_cleanup()
7443{
7444 int n;
7445 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7446 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7447 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7448 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7449 #ifdef ROM_COPY
7450 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7451 #endif
7452}
7453
7454int new_recompile_block(int addr)
7455{
7456/*
7457 if(addr==0x800cd050) {
7458 int block;
7459 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7460 int n;
7461 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7462 }
7463*/
7464 //if(Count==365117028) tracedebug=1;
7465 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7466 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7467 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7468 //if(debug)
7469 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7470 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7471 /*if(Count>=312978186) {
7472 rlist();
7473 }*/
7474 //rlist();
7475 start = (u_int)addr&~3;
7476 //assert(((u_int)addr&1)==0);
7477 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7478 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7479 pagelimit = 0xa4001000;
7480 }
7481 else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
7482 source = (u_int *)((u_int)rdram+start-0x80000000);
7483 pagelimit = 0x80800000;
7484 }
7485 else if ((signed int)addr >= (signed int)0xC0000000) {
7486 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7487 //if(tlb_LUT_r[start>>12])
7488 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7489 if((signed int)memory_map[start>>12]>=0) {
7490 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7491 pagelimit=(start+4096)&0xFFFFF000;
7492 int map=memory_map[start>>12];
7493 int i;
7494 for(i=0;i<5;i++) {
7495 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7496 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7497 }
7498 assem_debug("pagelimit=%x\n",pagelimit);
7499 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7500 }
7501 else {
7502 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7503 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7504 return 1; // Caller will invoke exception handler
7505 }
7506 //printf("source= %x\n",(int)source);
7507 }
7508 else {
7509 printf("Compile at bogus memory address: %x \n", (int)addr);
7510 exit(1);
7511 }
7512
7513 /* Pass 1: disassemble */
7514 /* Pass 2: register dependencies, branch targets */
7515 /* Pass 3: register allocation */
7516 /* Pass 4: branch dependencies */
7517 /* Pass 5: pre-alloc */
7518 /* Pass 6: optimize clean/dirty state */
7519 /* Pass 7: flag 32-bit registers */
7520 /* Pass 8: assembly */
7521 /* Pass 9: linker */
7522 /* Pass 10: garbage collection / free memory */
7523
7524 int i,j;
7525 int done=0;
7526 unsigned int type,op,op2;
7527
7528 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7529
7530 /* Pass 1 disassembly */
7531
7532 for(i=0;!done;i++) {
7533 bt[i]=0;likely[i]=0;op2=0;
7534 opcode[i]=op=source[i]>>26;
7535 switch(op)
7536 {
7537 case 0x00: strcpy(insn[i],"special"); type=NI;
7538 op2=source[i]&0x3f;
7539 switch(op2)
7540 {
7541 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7542 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7543 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7544 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7545 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7546 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7547 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7548 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7549 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7550 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7551 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7552 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7553 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7554 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7555 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7556 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7557 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7558 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7559 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7560 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7561 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7562 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7563 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7564 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7565 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7566 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7567 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7568 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7569 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7570 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7571 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7572 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7573 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7574 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7575 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7576 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7577 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7578 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7579 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7580 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7581 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7582 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7583 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7584 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7585 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7586 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7587 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7588 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7589 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7590 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7591 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7592 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7593 }
7594 break;
7595 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7596 op2=(source[i]>>16)&0x1f;
7597 switch(op2)
7598 {
7599 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7600 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7601 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7602 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7603 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7604 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7605 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7606 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7607 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7608 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7609 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7610 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7611 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7612 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7613 }
7614 break;
7615 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7616 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7617 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7618 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7619 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7620 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7621 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7622 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7623 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7624 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7625 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7626 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7627 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7628 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7629 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7630 op2=(source[i]>>21)&0x1f;
7631 switch(op2)
7632 {
7633 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7634 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7635 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7636 switch(source[i]&0x3f)
7637 {
7638 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7639 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7640 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7641 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7642 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7643 }
7644 }
7645 break;
7646 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7647 op2=(source[i]>>21)&0x1f;
7648 switch(op2)
7649 {
7650 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7651 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7652 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7653 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7654 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7655 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7656 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7657 switch((source[i]>>16)&0x3)
7658 {
7659 case 0x00: strcpy(insn[i],"BC1F"); break;
7660 case 0x01: strcpy(insn[i],"BC1T"); break;
7661 case 0x02: strcpy(insn[i],"BC1FL"); break;
7662 case 0x03: strcpy(insn[i],"BC1TL"); break;
7663 }
7664 break;
7665 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7666 switch(source[i]&0x3f)
7667 {
7668 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7669 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7670 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7671 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7672 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7673 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7674 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7675 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7676 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7677 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7678 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7679 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7680 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7681 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7682 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7683 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7684 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7685 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7686 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7687 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7688 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7689 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7690 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7691 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7692 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7693 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7694 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7695 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7696 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7697 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7698 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7699 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7700 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7701 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7702 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7703 }
7704 break;
7705 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7706 switch(source[i]&0x3f)
7707 {
7708 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7709 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7710 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7711 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7712 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7713 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7714 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7715 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7716 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7717 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7718 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7719 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7720 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7721 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7722 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7723 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7724 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7725 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7726 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7727 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7728 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7729 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7730 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7731 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7732 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7733 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7734 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7735 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7736 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7737 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7738 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7739 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7740 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7741 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7742 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7743 }
7744 break;
7745 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7746 switch(source[i]&0x3f)
7747 {
7748 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7749 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7750 }
7751 break;
7752 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7753 switch(source[i]&0x3f)
7754 {
7755 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7756 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7757 }
7758 break;
7759 }
7760 break;
7761 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7762 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7763 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7764 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7765 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7766 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7767 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7768 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7769 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7770 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7771 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7772 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7773 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7774 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7775 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7776 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7777 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7778 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7779 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7780 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7781 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7782 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7783 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7784 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7785 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7786 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7787 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7788 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7789 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7790 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7791 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7792 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7793 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7794 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7795 default: strcpy(insn[i],"???"); type=NI; break;
7796 }
7797 itype[i]=type;
7798 opcode2[i]=op2;
7799 /* Get registers/immediates */
7800 lt1[i]=0;
7801 us1[i]=0;
7802 us2[i]=0;
7803 dep1[i]=0;
7804 dep2[i]=0;
7805 switch(type) {
7806 case LOAD:
7807 rs1[i]=(source[i]>>21)&0x1f;
7808 rs2[i]=0;
7809 rt1[i]=(source[i]>>16)&0x1f;
7810 rt2[i]=0;
7811 imm[i]=(short)source[i];
7812 break;
7813 case STORE:
7814 case STORELR:
7815 rs1[i]=(source[i]>>21)&0x1f;
7816 rs2[i]=(source[i]>>16)&0x1f;
7817 rt1[i]=0;
7818 rt2[i]=0;
7819 imm[i]=(short)source[i];
7820 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7821 break;
7822 case LOADLR:
7823 // LWL/LWR only load part of the register,
7824 // therefore the target register must be treated as a source too
7825 rs1[i]=(source[i]>>21)&0x1f;
7826 rs2[i]=(source[i]>>16)&0x1f;
7827 rt1[i]=(source[i]>>16)&0x1f;
7828 rt2[i]=0;
7829 imm[i]=(short)source[i];
7830 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7831 if(op==0x26) dep1[i]=rt1[i]; // LWR
7832 break;
7833 case IMM16:
7834 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7835 else rs1[i]=(source[i]>>21)&0x1f;
7836 rs2[i]=0;
7837 rt1[i]=(source[i]>>16)&0x1f;
7838 rt2[i]=0;
7839 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7840 imm[i]=(unsigned short)source[i];
7841 }else{
7842 imm[i]=(short)source[i];
7843 }
7844 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7845 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7846 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7847 break;
7848 case UJUMP:
7849 rs1[i]=0;
7850 rs2[i]=0;
7851 rt1[i]=0;
7852 rt2[i]=0;
7853 // The JAL instruction writes to r31.
7854 if (op&1) {
7855 rt1[i]=31;
7856 }
7857 rs2[i]=CCREG;
7858 break;
7859 case RJUMP:
7860 rs1[i]=(source[i]>>21)&0x1f;
7861 rs2[i]=0;
7862 rt1[i]=0;
7863 rt2[i]=0;
7864 // The JALR instruction writes to r31.
7865 if (op2&1) {
7866 rt1[i]=31;
7867 }
7868 rs2[i]=CCREG;
7869 break;
7870 case CJUMP:
7871 rs1[i]=(source[i]>>21)&0x1f;
7872 rs2[i]=(source[i]>>16)&0x1f;
7873 rt1[i]=0;
7874 rt2[i]=0;
7875 if(op&2) { // BGTZ/BLEZ
7876 rs2[i]=0;
7877 }
7878 us1[i]=rs1[i];
7879 us2[i]=rs2[i];
7880 likely[i]=op>>4;
7881 break;
7882 case SJUMP:
7883 rs1[i]=(source[i]>>21)&0x1f;
7884 rs2[i]=CCREG;
7885 rt1[i]=0;
7886 rt2[i]=0;
7887 us1[i]=rs1[i];
7888 if(op2&0x10) { // BxxAL
7889 rt1[i]=31;
7890 // NOTE: If the branch is not taken, r31 is still overwritten
7891 }
7892 likely[i]=(op2&2)>>1;
7893 break;
7894 case FJUMP:
7895 rs1[i]=FSREG;
7896 rs2[i]=CSREG;
7897 rt1[i]=0;
7898 rt2[i]=0;
7899 likely[i]=((source[i])>>17)&1;
7900 break;
7901 case ALU:
7902 rs1[i]=(source[i]>>21)&0x1f; // source
7903 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7904 rt1[i]=(source[i]>>11)&0x1f; // destination
7905 rt2[i]=0;
7906 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7907 us1[i]=rs1[i];us2[i]=rs2[i];
7908 }
7909 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7910 dep1[i]=rs1[i];dep2[i]=rs2[i];
7911 }
7912 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7913 dep1[i]=rs1[i];dep2[i]=rs2[i];
7914 }
7915 break;
7916 case MULTDIV:
7917 rs1[i]=(source[i]>>21)&0x1f; // source
7918 rs2[i]=(source[i]>>16)&0x1f; // divisor
7919 rt1[i]=HIREG;
7920 rt2[i]=LOREG;
7921 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7922 us1[i]=rs1[i];us2[i]=rs2[i];
7923 }
7924 break;
7925 case MOV:
7926 rs1[i]=0;
7927 rs2[i]=0;
7928 rt1[i]=0;
7929 rt2[i]=0;
7930 if(op2==0x10) rs1[i]=HIREG; // MFHI
7931 if(op2==0x11) rt1[i]=HIREG; // MTHI
7932 if(op2==0x12) rs1[i]=LOREG; // MFLO
7933 if(op2==0x13) rt1[i]=LOREG; // MTLO
7934 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7935 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7936 dep1[i]=rs1[i];
7937 break;
7938 case SHIFT:
7939 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7940 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7941 rt1[i]=(source[i]>>11)&0x1f; // destination
7942 rt2[i]=0;
7943 // DSLLV/DSRLV/DSRAV are 64-bit
7944 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7945 break;
7946 case SHIFTIMM:
7947 rs1[i]=(source[i]>>16)&0x1f;
7948 rs2[i]=0;
7949 rt1[i]=(source[i]>>11)&0x1f;
7950 rt2[i]=0;
7951 imm[i]=(source[i]>>6)&0x1f;
7952 // DSxx32 instructions
7953 if(op2>=0x3c) imm[i]|=0x20;
7954 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7955 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7956 break;
7957 case COP0:
7958 rs1[i]=0;
7959 rs2[i]=0;
7960 rt1[i]=0;
7961 rt2[i]=0;
7962 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7963 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7964 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7965 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7966 break;
7967 case COP1:
7968 rs1[i]=0;
7969 rs2[i]=0;
7970 rt1[i]=0;
7971 rt2[i]=0;
7972 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7973 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7974 if(op2==5) us1[i]=rs1[i]; // DMTC1
7975 rs2[i]=CSREG;
7976 break;
7977 case C1LS:
7978 rs1[i]=(source[i]>>21)&0x1F;
7979 rs2[i]=CSREG;
7980 rt1[i]=0;
7981 rt2[i]=0;
7982 imm[i]=(short)source[i];
7983 break;
7984 case FLOAT:
7985 case FCONV:
7986 rs1[i]=0;
7987 rs2[i]=CSREG;
7988 rt1[i]=0;
7989 rt2[i]=0;
7990 break;
7991 case FCOMP:
7992 rs1[i]=FSREG;
7993 rs2[i]=CSREG;
7994 rt1[i]=FSREG;
7995 rt2[i]=0;
7996 break;
7997 case SYSCALL:
7998 rs1[i]=CCREG;
7999 rs2[i]=0;
8000 rt1[i]=0;
8001 rt2[i]=0;
8002 break;
8003 default:
8004 rs1[i]=0;
8005 rs2[i]=0;
8006 rt1[i]=0;
8007 rt2[i]=0;
8008 }
8009 /* Calculate branch target addresses */
8010 if(type==UJUMP)
8011 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8012 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8013 ba[i]=start+i*4+8; // Ignore never taken branch
8014 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8015 ba[i]=start+i*4+8; // Ignore never taken branch
8016 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8017 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8018 else ba[i]=-1;
8019 /* Is this the end of the block? */
8020 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8021 if(rt1[i-1]!=31) { // Continue past subroutine call (JAL)
8022 done=1;
8023 // Does the block continue due to a branch?
8024 for(j=i-1;j>=0;j--)
8025 {
8026 if(ba[j]==start+i*4+4) done=j=0;
8027 if(ba[j]==start+i*4+8) done=j=0;
8028 }
8029 }
8030 else {
8031 if(stop_after_jal) done=1;
8032 // Stop on BREAK
8033 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8034 }
8035 // Don't recompile stuff that's already compiled
8036 if(check_addr(start+i*4+4)) done=1;
8037 // Don't get too close to the limit
8038 if(i>MAXBLOCK/2) done=1;
8039 }
8040 if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8041 assert(i<MAXBLOCK-1);
8042 if(start+i*4==pagelimit-4) done=1;
8043 assert(start+i*4<pagelimit);
8044 if (i==MAXBLOCK-1) done=1;
8045 // Stop if we're compiling junk
8046 if(itype[i]==NI&&opcode[i]==0x11) {
8047 done=stop_after_jal=1;
8048 printf("Disabled speculative precompilation\n");
8049 }
8050 }
8051 slen=i;
8052 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8053 if(start+i*4==pagelimit) {
8054 itype[i-1]=SPAN;
8055 }
8056 }
8057 assert(slen>0);
8058
8059 /* Pass 2 - Register dependencies and branch targets */
8060
8061 unneeded_registers(0,slen-1,0);
8062
8063 /* Pass 3 - Register allocation */
8064
8065 struct regstat current; // Current register allocations/status
8066 current.is32=1;
8067 current.dirty=0;
8068 current.u=unneeded_reg[0];
8069 current.uu=unneeded_reg_upper[0];
8070 clear_all_regs(current.regmap);
8071 alloc_reg(&current,0,CCREG);
8072 dirty_reg(&current,CCREG);
8073 current.isconst=0;
8074 current.wasconst=0;
8075 int ds=0;
8076 int cc=0;
8077 int hr;
8078
8079 provisional_32bit();
8080
8081 if((u_int)addr&1) {
8082 // First instruction is delay slot
8083 cc=-1;
8084 bt[1]=1;
8085 ds=1;
8086 unneeded_reg[0]=1;
8087 unneeded_reg_upper[0]=1;
8088 current.regmap[HOST_BTREG]=BTREG;
8089 }
8090
8091 for(i=0;i<slen;i++)
8092 {
8093 if(bt[i])
8094 {
8095 int hr;
8096 for(hr=0;hr<HOST_REGS;hr++)
8097 {
8098 // Is this really necessary?
8099 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8100 }
8101 current.isconst=0;
8102 }
8103 if(i>1)
8104 {
8105 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8106 {
8107 if(rs1[i-2]==0||rs2[i-2]==0)
8108 {
8109 if(rs1[i-2]) {
8110 current.is32|=1LL<<rs1[i-2];
8111 int hr=get_reg(current.regmap,rs1[i-2]|64);
8112 if(hr>=0) current.regmap[hr]=-1;
8113 }
8114 if(rs2[i-2]) {
8115 current.is32|=1LL<<rs2[i-2];
8116 int hr=get_reg(current.regmap,rs2[i-2]|64);
8117 if(hr>=0) current.regmap[hr]=-1;
8118 }
8119 }
8120 }
8121 }
8122 // If something jumps here with 64-bit values
8123 // then promote those registers to 64 bits
8124 if(bt[i])
8125 {
8126 uint64_t temp_is32=current.is32;
8127 for(j=i-1;j>=0;j--)
8128 {
8129 if(ba[j]==start+i*4)
8130 temp_is32&=branch_regs[j].is32;
8131 }
8132 for(j=i;j<slen;j++)
8133 {
8134 if(ba[j]==start+i*4)
8135 //temp_is32=1;
8136 temp_is32&=p32[j];
8137 }
8138 if(temp_is32!=current.is32) {
8139 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8140 #ifdef DESTRUCTIVE_WRITEBACK
8141 for(hr=0;hr<HOST_REGS;hr++)
8142 {
8143 int r=current.regmap[hr];
8144 if(r>0&&r<64)
8145 {
8146 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8147 temp_is32|=1LL<<r;
8148 //printf("restore %d\n",r);
8149 }
8150 }
8151 }
8152 #endif
8153 current.is32=temp_is32;
8154 }
8155 }
8156 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8157 regs[i].wasconst=current.isconst;
8158 regs[i].was32=current.is32;
8159 regs[i].wasdirty=current.dirty;
8160 #ifdef DESTRUCTIVE_WRITEBACK
8161 // To change a dirty register from 32 to 64 bits, we must write
8162 // it out during the previous cycle (for branches, 2 cycles)
8163 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8164 {
8165 uint64_t temp_is32=current.is32;
8166 for(j=i-1;j>=0;j--)
8167 {
8168 if(ba[j]==start+i*4+4)
8169 temp_is32&=branch_regs[j].is32;
8170 }
8171 for(j=i;j<slen;j++)
8172 {
8173 if(ba[j]==start+i*4+4)
8174 //temp_is32=1;
8175 temp_is32&=p32[j];
8176 }
8177 if(temp_is32!=current.is32) {
8178 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8179 for(hr=0;hr<HOST_REGS;hr++)
8180 {
8181 int r=current.regmap[hr];
8182 if(r>0)
8183 {
8184 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8185 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8186 {
8187 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8188 {
8189 //printf("dump %d/r%d\n",hr,r);
8190 current.regmap[hr]=-1;
8191 if(get_reg(current.regmap,r|64)>=0)
8192 current.regmap[get_reg(current.regmap,r|64)]=-1;
8193 }
8194 }
8195 }
8196 }
8197 }
8198 }
8199 }
8200 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8201 {
8202 uint64_t temp_is32=current.is32;
8203 for(j=i-1;j>=0;j--)
8204 {
8205 if(ba[j]==start+i*4+8)
8206 temp_is32&=branch_regs[j].is32;
8207 }
8208 for(j=i;j<slen;j++)
8209 {
8210 if(ba[j]==start+i*4+8)
8211 //temp_is32=1;
8212 temp_is32&=p32[j];
8213 }
8214 if(temp_is32!=current.is32) {
8215 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8216 for(hr=0;hr<HOST_REGS;hr++)
8217 {
8218 int r=current.regmap[hr];
8219 if(r>0)
8220 {
8221 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8222 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8223 {
8224 //printf("dump %d/r%d\n",hr,r);
8225 current.regmap[hr]=-1;
8226 if(get_reg(current.regmap,r|64)>=0)
8227 current.regmap[get_reg(current.regmap,r|64)]=-1;
8228 }
8229 }
8230 }
8231 }
8232 }
8233 }
8234 #endif
8235 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8236 if(i+1<slen) {
8237 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8238 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8239 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8240 current.u|=1;
8241 current.uu|=1;
8242 } else {
8243 current.u=1;
8244 current.uu=1;
8245 }
8246 } else {
8247 if(i+1<slen) {
8248 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8249 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8250 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8251 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8252 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8253 current.u|=1;
8254 current.uu|=1;
8255 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8256 }
8257 is_ds[i]=ds;
8258 if(ds) {
8259 ds=0; // Skip delay slot, already allocated as part of branch
8260 // ...but we need to alloc it in case something jumps here
8261 if(i+1<slen) {
8262 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8263 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8264 }else{
8265 current.u=branch_unneeded_reg[i-1];
8266 current.uu=branch_unneeded_reg_upper[i-1];
8267 }
8268 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8269 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8270 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8271 current.u|=1;
8272 current.uu|=1;
8273 struct regstat temp;
8274 memcpy(&temp,&current,sizeof(current));
8275 temp.wasdirty=temp.dirty;
8276 temp.was32=temp.is32;
8277 // TODO: Take into account unconditional branches, as below
8278 delayslot_alloc(&temp,i);
8279 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8280 regs[i].wasdirty=temp.wasdirty;
8281 regs[i].was32=temp.was32;
8282 regs[i].dirty=temp.dirty;
8283 regs[i].is32=temp.is32;
8284 regs[i].isconst=0;
8285 regs[i].wasconst=0;
8286 current.isconst=0;
8287 // Create entry (branch target) regmap
8288 for(hr=0;hr<HOST_REGS;hr++)
8289 {
8290 int r=temp.regmap[hr];
8291 if(r>=0) {
8292 if(r!=regmap_pre[i][hr]) {
8293 regs[i].regmap_entry[hr]=-1;
8294 }
8295 else
8296 {
8297 if(r<64){
8298 if((current.u>>r)&1) {
8299 regs[i].regmap_entry[hr]=-1;
8300 regs[i].regmap[hr]=-1;
8301 //Don't clear regs in the delay slot as the branch might need them
8302 //current.regmap[hr]=-1;
8303 }else
8304 regs[i].regmap_entry[hr]=r;
8305 }
8306 else {
8307 if((current.uu>>(r&63))&1) {
8308 regs[i].regmap_entry[hr]=-1;
8309 regs[i].regmap[hr]=-1;
8310 //Don't clear regs in the delay slot as the branch might need them
8311 //current.regmap[hr]=-1;
8312 }else
8313 regs[i].regmap_entry[hr]=r;
8314 }
8315 }
8316 } else {
8317 // First instruction expects CCREG to be allocated
8318 if(i==0&&hr==HOST_CCREG)
8319 regs[i].regmap_entry[hr]=CCREG;
8320 else
8321 regs[i].regmap_entry[hr]=-1;
8322 }
8323 }
8324 }
8325 else { // Not delay slot
8326 switch(itype[i]) {
8327 case UJUMP:
8328 //current.isconst=0; // DEBUG
8329 //current.wasconst=0; // DEBUG
8330 //regs[i].wasconst=0; // DEBUG
8331 clear_const(&current,rt1[i]);
8332 alloc_cc(&current,i);
8333 dirty_reg(&current,CCREG);
8334 if (rt1[i]==31) {
8335 alloc_reg(&current,i,31);
8336 dirty_reg(&current,31);
8337 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8338 #ifdef REG_PREFETCH
8339 alloc_reg(&current,i,PTEMP);
8340 #endif
8341 //current.is32|=1LL<<rt1[i];
8342 }
8343 delayslot_alloc(&current,i+1);
8344 //current.isconst=0; // DEBUG
8345 ds=1;
8346 //printf("i=%d, isconst=%x\n",i,current.isconst);
8347 break;
8348 case RJUMP:
8349 //current.isconst=0;
8350 //current.wasconst=0;
8351 //regs[i].wasconst=0;
8352 clear_const(&current,rs1[i]);
8353 clear_const(&current,rt1[i]);
8354 alloc_cc(&current,i);
8355 dirty_reg(&current,CCREG);
8356 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8357 alloc_reg(&current,i,rs1[i]);
8358 if (rt1[i]==31) {
8359 alloc_reg(&current,i,31);
8360 dirty_reg(&current,31);
8361 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8362 #ifdef REG_PREFETCH
8363 alloc_reg(&current,i,PTEMP);
8364 #endif
8365 }
8366 #ifdef USE_MINI_HT
8367 if(rs1[i]==31) { // JALR
8368 alloc_reg(&current,i,RHASH);
8369 #ifndef HOST_IMM_ADDR32
8370 alloc_reg(&current,i,RHTBL);
8371 #endif
8372 }
8373 #endif
8374 delayslot_alloc(&current,i+1);
8375 } else {
8376 // The delay slot overwrites our source register,
8377 // allocate a temporary register to hold the old value.
8378 current.isconst=0;
8379 current.wasconst=0;
8380 regs[i].wasconst=0;
8381 delayslot_alloc(&current,i+1);
8382 current.isconst=0;
8383 alloc_reg(&current,i,RTEMP);
8384 }
8385 //current.isconst=0; // DEBUG
8386 ds=1;
8387 break;
8388 case CJUMP:
8389 //current.isconst=0;
8390 //current.wasconst=0;
8391 //regs[i].wasconst=0;
8392 clear_const(&current,rs1[i]);
8393 clear_const(&current,rs2[i]);
8394 if((opcode[i]&0x3E)==4) // BEQ/BNE
8395 {
8396 alloc_cc(&current,i);
8397 dirty_reg(&current,CCREG);
8398 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8399 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8400 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8401 {
8402 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8403 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8404 }
8405 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8406 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8407 // The delay slot overwrites one of our conditions.
8408 // Allocate the branch condition registers instead.
8409 // Note that such a sequence of instructions could
8410 // be considered a bug since the branch can not be
8411 // re-executed if an exception occurs.
8412 current.isconst=0;
8413 current.wasconst=0;
8414 regs[i].wasconst=0;
8415 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8416 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8417 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8418 {
8419 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8420 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8421 }
8422 }
8423 else delayslot_alloc(&current,i+1);
8424 }
8425 else
8426 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8427 {
8428 alloc_cc(&current,i);
8429 dirty_reg(&current,CCREG);
8430 alloc_reg(&current,i,rs1[i]);
8431 if(!(current.is32>>rs1[i]&1))
8432 {
8433 alloc_reg64(&current,i,rs1[i]);
8434 }
8435 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8436 // The delay slot overwrites one of our conditions.
8437 // Allocate the branch condition registers instead.
8438 // Note that such a sequence of instructions could
8439 // be considered a bug since the branch can not be
8440 // re-executed if an exception occurs.
8441 current.isconst=0;
8442 current.wasconst=0;
8443 regs[i].wasconst=0;
8444 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8445 if(!((current.is32>>rs1[i])&1))
8446 {
8447 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8448 }
8449 }
8450 else delayslot_alloc(&current,i+1);
8451 }
8452 else
8453 // Don't alloc the delay slot yet because we might not execute it
8454 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8455 {
8456 current.isconst=0;
8457 current.wasconst=0;
8458 regs[i].wasconst=0;
8459 alloc_cc(&current,i);
8460 dirty_reg(&current,CCREG);
8461 alloc_reg(&current,i,rs1[i]);
8462 alloc_reg(&current,i,rs2[i]);
8463 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8464 {
8465 alloc_reg64(&current,i,rs1[i]);
8466 alloc_reg64(&current,i,rs2[i]);
8467 }
8468 }
8469 else
8470 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8471 {
8472 current.isconst=0;
8473 current.wasconst=0;
8474 regs[i].wasconst=0;
8475 alloc_cc(&current,i);
8476 dirty_reg(&current,CCREG);
8477 alloc_reg(&current,i,rs1[i]);
8478 if(!(current.is32>>rs1[i]&1))
8479 {
8480 alloc_reg64(&current,i,rs1[i]);
8481 }
8482 }
8483 ds=1;
8484 //current.isconst=0;
8485 break;
8486 case SJUMP:
8487 //current.isconst=0;
8488 //current.wasconst=0;
8489 //regs[i].wasconst=0;
8490 clear_const(&current,rs1[i]);
8491 clear_const(&current,rt1[i]);
8492 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8493 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8494 {
8495 alloc_cc(&current,i);
8496 dirty_reg(&current,CCREG);
8497 alloc_reg(&current,i,rs1[i]);
8498 if(!(current.is32>>rs1[i]&1))
8499 {
8500 alloc_reg64(&current,i,rs1[i]);
8501 }
8502 if (rt1[i]==31) { // BLTZAL/BGEZAL
8503 alloc_reg(&current,i,31);
8504 dirty_reg(&current,31);
8505 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8506 //#ifdef REG_PREFETCH
8507 //alloc_reg(&current,i,PTEMP);
8508 //#endif
8509 //current.is32|=1LL<<rt1[i];
8510 }
8511 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8512 // The delay slot overwrites the branch condition.
8513 // Allocate the branch condition registers instead.
8514 // Note that such a sequence of instructions could
8515 // be considered a bug since the branch can not be
8516 // re-executed if an exception occurs.
8517 current.isconst=0;
8518 current.wasconst=0;
8519 regs[i].wasconst=0;
8520 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8521 if(!((current.is32>>rs1[i])&1))
8522 {
8523 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8524 }
8525 }
8526 else delayslot_alloc(&current,i+1);
8527 }
8528 else
8529 // Don't alloc the delay slot yet because we might not execute it
8530 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8531 {
8532 current.isconst=0;
8533 current.wasconst=0;
8534 regs[i].wasconst=0;
8535 alloc_cc(&current,i);
8536 dirty_reg(&current,CCREG);
8537 alloc_reg(&current,i,rs1[i]);
8538 if(!(current.is32>>rs1[i]&1))
8539 {
8540 alloc_reg64(&current,i,rs1[i]);
8541 }
8542 }
8543 ds=1;
8544 //current.isconst=0;
8545 break;
8546 case FJUMP:
8547 current.isconst=0;
8548 current.wasconst=0;
8549 regs[i].wasconst=0;
8550 if(likely[i]==0) // BC1F/BC1T
8551 {
8552 // TODO: Theoretically we can run out of registers here on x86.
8553 // The delay slot can allocate up to six, and we need to check
8554 // CSREG before executing the delay slot. Possibly we can drop
8555 // the cycle count and then reload it after checking that the
8556 // FPU is in a usable state, or don't do out-of-order execution.
8557 alloc_cc(&current,i);
8558 dirty_reg(&current,CCREG);
8559 alloc_reg(&current,i,FSREG);
8560 alloc_reg(&current,i,CSREG);
8561 if(itype[i+1]==FCOMP) {
8562 // The delay slot overwrites the branch condition.
8563 // Allocate the branch condition registers instead.
8564 // Note that such a sequence of instructions could
8565 // be considered a bug since the branch can not be
8566 // re-executed if an exception occurs.
8567 alloc_cc(&current,i);
8568 dirty_reg(&current,CCREG);
8569 alloc_reg(&current,i,CSREG);
8570 alloc_reg(&current,i,FSREG);
8571 }
8572 else {
8573 delayslot_alloc(&current,i+1);
8574 alloc_reg(&current,i+1,CSREG);
8575 }
8576 }
8577 else
8578 // Don't alloc the delay slot yet because we might not execute it
8579 if(likely[i]) // BC1FL/BC1TL
8580 {
8581 alloc_cc(&current,i);
8582 dirty_reg(&current,CCREG);
8583 alloc_reg(&current,i,CSREG);
8584 alloc_reg(&current,i,FSREG);
8585 }
8586 ds=1;
8587 current.isconst=0;
8588 break;
8589 case IMM16:
8590 imm16_alloc(&current,i);
8591 break;
8592 case LOAD:
8593 case LOADLR:
8594 load_alloc(&current,i);
8595 break;
8596 case STORE:
8597 case STORELR:
8598 store_alloc(&current,i);
8599 break;
8600 case ALU:
8601 alu_alloc(&current,i);
8602 break;
8603 case SHIFT:
8604 shift_alloc(&current,i);
8605 break;
8606 case MULTDIV:
8607 multdiv_alloc(&current,i);
8608 break;
8609 case SHIFTIMM:
8610 shiftimm_alloc(&current,i);
8611 break;
8612 case MOV:
8613 mov_alloc(&current,i);
8614 break;
8615 case COP0:
8616 cop0_alloc(&current,i);
8617 break;
8618 case COP1:
8619 cop1_alloc(&current,i);
8620 break;
8621 case C1LS:
8622 c1ls_alloc(&current,i);
8623 break;
8624 case FCONV:
8625 fconv_alloc(&current,i);
8626 break;
8627 case FLOAT:
8628 float_alloc(&current,i);
8629 break;
8630 case FCOMP:
8631 fcomp_alloc(&current,i);
8632 break;
8633 case SYSCALL:
8634 syscall_alloc(&current,i);
8635 break;
8636 case SPAN:
8637 pagespan_alloc(&current,i);
8638 break;
8639 }
8640
8641 // Drop the upper half of registers that have become 32-bit
8642 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8643 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8644 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8645 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8646 current.uu|=1;
8647 } else {
8648 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8649 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8650 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8651 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8652 current.uu|=1;
8653 }
8654
8655 // Create entry (branch target) regmap
8656 for(hr=0;hr<HOST_REGS;hr++)
8657 {
8658 int r,or,er;
8659 r=current.regmap[hr];
8660 if(r>=0) {
8661 if(r!=regmap_pre[i][hr]) {
8662 // TODO: delay slot (?)
8663 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8664 if(or<0||(r&63)>=TEMPREG){
8665 regs[i].regmap_entry[hr]=-1;
8666 }
8667 else
8668 {
8669 // Just move it to a different register
8670 regs[i].regmap_entry[hr]=r;
8671 // If it was dirty before, it's still dirty
8672 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8673 }
8674 }
8675 else
8676 {
8677 // Unneeded
8678 if(r==0){
8679 regs[i].regmap_entry[hr]=0;
8680 }
8681 else
8682 if(r<64){
8683 if((current.u>>r)&1) {
8684 regs[i].regmap_entry[hr]=-1;
8685 //regs[i].regmap[hr]=-1;
8686 current.regmap[hr]=-1;
8687 }else
8688 regs[i].regmap_entry[hr]=r;
8689 }
8690 else {
8691 if((current.uu>>(r&63))&1) {
8692 regs[i].regmap_entry[hr]=-1;
8693 //regs[i].regmap[hr]=-1;
8694 current.regmap[hr]=-1;
8695 }else
8696 regs[i].regmap_entry[hr]=r;
8697 }
8698 }
8699 } else {
8700 // Branches expect CCREG to be allocated at the target
8701 if(regmap_pre[i][hr]==CCREG)
8702 regs[i].regmap_entry[hr]=CCREG;
8703 else
8704 regs[i].regmap_entry[hr]=-1;
8705 }
8706 }
8707 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8708 }
8709 /* Branch post-alloc */
8710 if(i>0)
8711 {
8712 current.was32=current.is32;
8713 current.wasdirty=current.dirty;
8714 switch(itype[i-1]) {
8715 case UJUMP:
8716 memcpy(&branch_regs[i-1],&current,sizeof(current));
8717 branch_regs[i-1].isconst=0;
8718 branch_regs[i-1].wasconst=0;
8719 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8720 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8721 alloc_cc(&branch_regs[i-1],i-1);
8722 dirty_reg(&branch_regs[i-1],CCREG);
8723 if(rt1[i-1]==31) { // JAL
8724 alloc_reg(&branch_regs[i-1],i-1,31);
8725 dirty_reg(&branch_regs[i-1],31);
8726 branch_regs[i-1].is32|=1LL<<31;
8727 }
8728 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8729 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8730 break;
8731 case RJUMP:
8732 memcpy(&branch_regs[i-1],&current,sizeof(current));
8733 branch_regs[i-1].isconst=0;
8734 branch_regs[i-1].wasconst=0;
8735 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8736 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8737 alloc_cc(&branch_regs[i-1],i-1);
8738 dirty_reg(&branch_regs[i-1],CCREG);
8739 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8740 if(rt1[i-1]==31) { // JALR
8741 alloc_reg(&branch_regs[i-1],i-1,31);
8742 dirty_reg(&branch_regs[i-1],31);
8743 branch_regs[i-1].is32|=1LL<<31;
8744 }
8745 #ifdef USE_MINI_HT
8746 if(rs1[i-1]==31) { // JALR
8747 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8748 #ifndef HOST_IMM_ADDR32
8749 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8750 #endif
8751 }
8752 #endif
8753 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8754 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8755 break;
8756 case CJUMP:
8757 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8758 {
8759 alloc_cc(&current,i-1);
8760 dirty_reg(&current,CCREG);
8761 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8762 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8763 // The delay slot overwrote one of our conditions
8764 // Delay slot goes after the test (in order)
8765 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8766 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8767 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8768 current.u|=1;
8769 current.uu|=1;
8770 delayslot_alloc(&current,i);
8771 current.isconst=0;
8772 }
8773 else
8774 {
8775 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8776 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8777 // Alloc the branch condition registers
8778 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8779 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8780 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8781 {
8782 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8783 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8784 }
8785 }
8786 memcpy(&branch_regs[i-1],&current,sizeof(current));
8787 branch_regs[i-1].isconst=0;
8788 branch_regs[i-1].wasconst=0;
8789 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8790 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8791 }
8792 else
8793 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8794 {
8795 alloc_cc(&current,i-1);
8796 dirty_reg(&current,CCREG);
8797 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8798 // The delay slot overwrote the branch condition
8799 // Delay slot goes after the test (in order)
8800 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8801 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8802 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8803 current.u|=1;
8804 current.uu|=1;
8805 delayslot_alloc(&current,i);
8806 current.isconst=0;
8807 }
8808 else
8809 {
8810 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8811 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8812 // Alloc the branch condition register
8813 alloc_reg(&current,i-1,rs1[i-1]);
8814 if(!(current.is32>>rs1[i-1]&1))
8815 {
8816 alloc_reg64(&current,i-1,rs1[i-1]);
8817 }
8818 }
8819 memcpy(&branch_regs[i-1],&current,sizeof(current));
8820 branch_regs[i-1].isconst=0;
8821 branch_regs[i-1].wasconst=0;
8822 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8823 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8824 }
8825 else
8826 // Alloc the delay slot in case the branch is taken
8827 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8828 {
8829 memcpy(&branch_regs[i-1],&current,sizeof(current));
8830 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8831 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8832 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8833 alloc_cc(&branch_regs[i-1],i);
8834 dirty_reg(&branch_regs[i-1],CCREG);
8835 delayslot_alloc(&branch_regs[i-1],i);
8836 branch_regs[i-1].isconst=0;
8837 alloc_reg(&current,i,CCREG); // Not taken path
8838 dirty_reg(&current,CCREG);
8839 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8840 }
8841 else
8842 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8843 {
8844 memcpy(&branch_regs[i-1],&current,sizeof(current));
8845 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8846 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8847 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8848 alloc_cc(&branch_regs[i-1],i);
8849 dirty_reg(&branch_regs[i-1],CCREG);
8850 delayslot_alloc(&branch_regs[i-1],i);
8851 branch_regs[i-1].isconst=0;
8852 alloc_reg(&current,i,CCREG); // Not taken path
8853 dirty_reg(&current,CCREG);
8854 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8855 }
8856 break;
8857 case SJUMP:
8858 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8859 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8860 {
8861 alloc_cc(&current,i-1);
8862 dirty_reg(&current,CCREG);
8863 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8864 // The delay slot overwrote the branch condition
8865 // Delay slot goes after the test (in order)
8866 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8867 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8868 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8869 current.u|=1;
8870 current.uu|=1;
8871 delayslot_alloc(&current,i);
8872 current.isconst=0;
8873 }
8874 else
8875 {
8876 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8877 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8878 // Alloc the branch condition register
8879 alloc_reg(&current,i-1,rs1[i-1]);
8880 if(!(current.is32>>rs1[i-1]&1))
8881 {
8882 alloc_reg64(&current,i-1,rs1[i-1]);
8883 }
8884 }
8885 memcpy(&branch_regs[i-1],&current,sizeof(current));
8886 branch_regs[i-1].isconst=0;
8887 branch_regs[i-1].wasconst=0;
8888 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8889 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8890 }
8891 else
8892 // Alloc the delay slot in case the branch is taken
8893 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8894 {
8895 memcpy(&branch_regs[i-1],&current,sizeof(current));
8896 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8897 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8898 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8899 alloc_cc(&branch_regs[i-1],i);
8900 dirty_reg(&branch_regs[i-1],CCREG);
8901 delayslot_alloc(&branch_regs[i-1],i);
8902 branch_regs[i-1].isconst=0;
8903 alloc_reg(&current,i,CCREG); // Not taken path
8904 dirty_reg(&current,CCREG);
8905 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8906 }
8907 // FIXME: BLTZAL/BGEZAL
8908 if(opcode2[i-1]&0x10) { // BxxZAL
8909 alloc_reg(&branch_regs[i-1],i-1,31);
8910 dirty_reg(&branch_regs[i-1],31);
8911 branch_regs[i-1].is32|=1LL<<31;
8912 }
8913 break;
8914 case FJUMP:
8915 if(likely[i-1]==0) // BC1F/BC1T
8916 {
8917 alloc_cc(&current,i-1);
8918 dirty_reg(&current,CCREG);
8919 if(itype[i]==FCOMP) {
8920 // The delay slot overwrote the branch condition
8921 // Delay slot goes after the test (in order)
8922 delayslot_alloc(&current,i);
8923 current.isconst=0;
8924 }
8925 else
8926 {
8927 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8928 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8929 // Alloc the branch condition register
8930 alloc_reg(&current,i-1,FSREG);
8931 }
8932 memcpy(&branch_regs[i-1],&current,sizeof(current));
8933 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8934 }
8935 else // BC1FL/BC1TL
8936 {
8937 // Alloc the delay slot in case the branch is taken
8938 memcpy(&branch_regs[i-1],&current,sizeof(current));
8939 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8940 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8941 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8942 alloc_cc(&branch_regs[i-1],i);
8943 dirty_reg(&branch_regs[i-1],CCREG);
8944 delayslot_alloc(&branch_regs[i-1],i);
8945 branch_regs[i-1].isconst=0;
8946 alloc_reg(&current,i,CCREG); // Not taken path
8947 dirty_reg(&current,CCREG);
8948 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8949 }
8950 break;
8951 }
8952
8953 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8954 {
8955 if(rt1[i-1]==31) // JAL/JALR
8956 {
8957 // Subroutine call will return here, don't alloc any registers
8958 current.is32=1;
8959 current.dirty=0;
8960 clear_all_regs(current.regmap);
8961 alloc_reg(&current,i,CCREG);
8962 dirty_reg(&current,CCREG);
8963 }
8964 else if(i+1<slen)
8965 {
8966 // Internal branch will jump here, match registers to caller
8967 current.is32=0x3FFFFFFFFLL;
8968 current.dirty=0;
8969 clear_all_regs(current.regmap);
8970 alloc_reg(&current,i,CCREG);
8971 dirty_reg(&current,CCREG);
8972 for(j=i-1;j>=0;j--)
8973 {
8974 if(ba[j]==start+i*4+4) {
8975 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8976 current.is32=branch_regs[j].is32;
8977 current.dirty=branch_regs[j].dirty;
8978 break;
8979 }
8980 }
8981 while(j>=0) {
8982 if(ba[j]==start+i*4+4) {
8983 for(hr=0;hr<HOST_REGS;hr++) {
8984 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8985 current.regmap[hr]=-1;
8986 }
8987 current.is32&=branch_regs[j].is32;
8988 current.dirty&=branch_regs[j].dirty;
8989 }
8990 }
8991 j--;
8992 }
8993 }
8994 }
8995 }
8996
8997 // Count cycles in between branches
8998 ccadj[i]=cc;
8999 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
9000 {
9001 cc=0;
9002 }
9003 else
9004 {
9005 cc++;
9006 }
9007
9008 flush_dirty_uppers(&current);
9009 if(!is_ds[i]) {
9010 regs[i].is32=current.is32;
9011 regs[i].dirty=current.dirty;
9012 regs[i].isconst=current.isconst;
9013 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9014 }
9015 for(hr=0;hr<HOST_REGS;hr++) {
9016 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9017 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9018 regs[i].wasconst&=~(1<<hr);
9019 }
9020 }
9021 }
9022 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9023 }
9024
9025 /* Pass 4 - Cull unused host registers */
9026
9027 uint64_t nr=0;
9028
9029 for (i=slen-1;i>=0;i--)
9030 {
9031 int hr;
9032 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9033 {
9034 if(ba[i]<start || ba[i]>=(start+slen*4))
9035 {
9036 // Branch out of this block, don't need anything
9037 nr=0;
9038 }
9039 else
9040 {
9041 // Internal branch
9042 // Need whatever matches the target
9043 nr=0;
9044 int t=(ba[i]-start)>>2;
9045 for(hr=0;hr<HOST_REGS;hr++)
9046 {
9047 if(regs[i].regmap_entry[hr]>=0) {
9048 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9049 }
9050 }
9051 }
9052 // Conditional branch may need registers for following instructions
9053 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9054 {
9055 if(i<slen-2) {
9056 nr|=needed_reg[i+2];
9057 for(hr=0;hr<HOST_REGS;hr++)
9058 {
9059 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9060 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9061 }
9062 }
9063 }
9064 // Don't need stuff which is overwritten
9065 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9066 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9067 // Merge in delay slot
9068 for(hr=0;hr<HOST_REGS;hr++)
9069 {
9070 if(!likely[i]) {
9071 // These are overwritten unless the branch is "likely"
9072 // and the delay slot is nullified if not taken
9073 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9074 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9075 }
9076 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9077 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9078 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9079 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9080 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9081 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9082 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9083 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9084 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9085 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9086 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9087 }
9088 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9089 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9090 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9091 }
9092 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9093 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9094 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9095 }
9096 }
9097 }
9098 else if(itype[i]==SYSCALL)
9099 {
9100 // SYSCALL instruction (software interrupt)
9101 nr=0;
9102 }
9103 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9104 {
9105 // ERET instruction (return from interrupt)
9106 nr=0;
9107 }
9108 else // Non-branch
9109 {
9110 if(i<slen-1) {
9111 for(hr=0;hr<HOST_REGS;hr++) {
9112 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9113 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9114 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9115 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9116 }
9117 }
9118 }
9119 for(hr=0;hr<HOST_REGS;hr++)
9120 {
9121 // Overwritten registers are not needed
9122 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9123 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9124 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9125 // Source registers are needed
9126 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9127 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9128 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9129 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9130 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9131 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9132 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9133 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9134 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9135 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9136 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9137 }
9138 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9139 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9140 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9141 }
9142 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9143 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9144 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9145 }
9146 // Don't store a register immediately after writing it,
9147 // may prevent dual-issue.
9148 // But do so if this is a branch target, otherwise we
9149 // might have to load the register before the branch.
9150 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9151 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9152 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9153 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9154 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9155 }
9156 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9157 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9158 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9159 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9160 }
9161 }
9162 }
9163 // Cycle count is needed at branches. Assume it is needed at the target too.
9164 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9165 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9166 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9167 }
9168 // Save it
9169 needed_reg[i]=nr;
9170
9171 // Deallocate unneeded registers
9172 for(hr=0;hr<HOST_REGS;hr++)
9173 {
9174 if(!((nr>>hr)&1)) {
9175 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9176 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9177 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9178 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9179 {
9180 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9181 {
9182 if(likely[i]) {
9183 regs[i].regmap[hr]=-1;
9184 regs[i].isconst&=~(1<<hr);
9185 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9186 }
9187 }
9188 }
9189 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9190 {
9191 int d1=0,d2=0,map=0,temp=0;
9192 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9193 {
9194 d1=dep1[i+1];
9195 d2=dep2[i+1];
9196 }
9197 if(using_tlb) {
9198 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9199 itype[i+1]==STORE || itype[i+1]==STORELR ||
9200 itype[i+1]==C1LS )
9201 map=TLREG;
9202 } else
9203 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9204 map=INVCP;
9205 }
9206 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9207 itype[i+1]==C1LS )
9208 temp=FTEMP;
9209 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9210 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9211 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9212 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9213 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9214 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9215 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9216 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9217 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9218 regs[i].regmap[hr]!=map )
9219 {
9220 regs[i].regmap[hr]=-1;
9221 regs[i].isconst&=~(1<<hr);
9222 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9223 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9224 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9225 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9226 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9227 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9228 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9229 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9230 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9231 branch_regs[i].regmap[hr]!=map)
9232 {
9233 branch_regs[i].regmap[hr]=-1;
9234 branch_regs[i].regmap_entry[hr]=-1;
9235 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9236 {
9237 if(!likely[i]&&i<slen-2) {
9238 regmap_pre[i+2][hr]=-1;
9239 }
9240 }
9241 }
9242 }
9243 }
9244 else
9245 {
9246 // Non-branch
9247 if(i>0)
9248 {
9249 int d1=0,d2=0,map=-1,temp=-1;
9250 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9251 {
9252 d1=dep1[i];
9253 d2=dep2[i];
9254 }
9255 if(using_tlb) {
9256 if(itype[i]==LOAD || itype[i]==LOADLR ||
9257 itype[i]==STORE || itype[i]==STORELR ||
9258 itype[i]==C1LS )
9259 map=TLREG;
9260 } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9261 map=INVCP;
9262 }
9263 if(itype[i]==LOADLR || itype[i]==STORELR ||
9264 itype[i]==C1LS )
9265 temp=FTEMP;
9266 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9267 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9268 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9269 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9270 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9271 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9272 {
9273 if(i<slen-1&&!is_ds[i]) {
9274 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9275 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9276 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9277 {
9278 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9279 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9280 }
9281 regmap_pre[i+1][hr]=-1;
9282 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9283 }
9284 regs[i].regmap[hr]=-1;
9285 regs[i].isconst&=~(1<<hr);
9286 }
9287 }
9288 }
9289 }
9290 }
9291 }
9292
9293 /* Pass 5 - Pre-allocate registers */
9294
9295 // If a register is allocated during a loop, try to allocate it for the
9296 // entire loop, if possible. This avoids loading/storing registers
9297 // inside of the loop.
9298
9299 signed char f_regmap[HOST_REGS];
9300 clear_all_regs(f_regmap);
9301 for(i=0;i<slen-1;i++)
9302 {
9303 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9304 {
9305 if(ba[i]>=start && ba[i]<(start+i*4))
9306 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9307 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9308 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9309 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9310 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9311 {
9312 int t=(ba[i]-start)>>2;
9313 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9314 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9315 for(hr=0;hr<HOST_REGS;hr++)
9316 {
9317 if(regs[i].regmap[hr]>64) {
9318 if(!((regs[i].dirty>>hr)&1))
9319 f_regmap[hr]=regs[i].regmap[hr];
9320 else f_regmap[hr]=-1;
9321 }
9322 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9323 if(branch_regs[i].regmap[hr]>64) {
9324 if(!((branch_regs[i].dirty>>hr)&1))
9325 f_regmap[hr]=branch_regs[i].regmap[hr];
9326 else f_regmap[hr]=-1;
9327 }
9328 else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
9329 if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9330 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9331 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9332 {
9333 // Test both in case the delay slot is ooo,
9334 // could be done better...
9335 if(count_free_regs(branch_regs[i].regmap)<2
9336 ||count_free_regs(regs[i].regmap)<2)
9337 f_regmap[hr]=branch_regs[i].regmap[hr];
9338 }
9339 // Avoid dirty->clean transition
9340 // #ifdef DESTRUCTIVE_WRITEBACK here?
9341 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9342 if(f_regmap[hr]>0) {
9343 if(regs[t].regmap_entry[hr]<0) {
9344 int r=f_regmap[hr];
9345 for(j=t;j<=i;j++)
9346 {
9347 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9348 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9349 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9350 if(r>63) {
9351 // NB This can exclude the case where the upper-half
9352 // register is lower numbered than the lower-half
9353 // register. Not sure if it's worth fixing...
9354 if(get_reg(regs[j].regmap,r&63)<0) break;
9355 if(regs[j].is32&(1LL<<(r&63))) break;
9356 }
9357 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9358 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9359 int k;
9360 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9361 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9362 if(r>63) {
9363 if(get_reg(regs[i].regmap,r&63)<0) break;
9364 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9365 }
9366 k=i;
9367 while(k>1&&regs[k-1].regmap[hr]==-1) {
9368 if(itype[k-1]==STORE||itype[k-1]==STORELR
9369 ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9370 ||itype[k-1]==FLOAT||itype[k-1]==FCONV
9371 ||itype[k-1]==FCOMP) {
9372 if(count_free_regs(regs[k-1].regmap)<2) {
9373 //printf("no free regs for store %x\n",start+(k-1)*4);
9374 break;
9375 }
9376 }
9377 else
9378 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9379 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9380 //printf("no-match due to different register\n");
9381 break;
9382 }
9383 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9384 //printf("no-match due to branch\n");
9385 break;
9386 }
9387 // call/ret fast path assumes no registers allocated
9388 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9389 break;
9390 }
9391 if(r>63) {
9392 // NB This can exclude the case where the upper-half
9393 // register is lower numbered than the lower-half
9394 // register. Not sure if it's worth fixing...
9395 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9396 if(regs[k-1].is32&(1LL<<(r&63))) break;
9397 }
9398 k--;
9399 }
9400 if(i<slen-1) {
9401 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9402 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9403 //printf("bad match after branch\n");
9404 break;
9405 }
9406 }
9407 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9408 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9409 while(k<i) {
9410 regs[k].regmap_entry[hr]=f_regmap[hr];
9411 regs[k].regmap[hr]=f_regmap[hr];
9412 regmap_pre[k+1][hr]=f_regmap[hr];
9413 regs[k].wasdirty&=~(1<<hr);
9414 regs[k].dirty&=~(1<<hr);
9415 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9416 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9417 regs[k].wasconst&=~(1<<hr);
9418 regs[k].isconst&=~(1<<hr);
9419 k++;
9420 }
9421 }
9422 else {
9423 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9424 break;
9425 }
9426 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9427 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9428 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9429 regs[i].regmap_entry[hr]=f_regmap[hr];
9430 regs[i].regmap[hr]=f_regmap[hr];
9431 regs[i].wasdirty&=~(1<<hr);
9432 regs[i].dirty&=~(1<<hr);
9433 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9434 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9435 regs[i].wasconst&=~(1<<hr);
9436 regs[i].isconst&=~(1<<hr);
9437 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9438 branch_regs[i].wasdirty&=~(1<<hr);
9439 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9440 branch_regs[i].regmap[hr]=f_regmap[hr];
9441 branch_regs[i].dirty&=~(1<<hr);
9442 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9443 branch_regs[i].wasconst&=~(1<<hr);
9444 branch_regs[i].isconst&=~(1<<hr);
9445 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9446 regmap_pre[i+2][hr]=f_regmap[hr];
9447 regs[i+2].wasdirty&=~(1<<hr);
9448 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9449 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9450 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9451 }
9452 }
9453 }
9454 for(k=t;k<j;k++) {
9455 regs[k].regmap_entry[hr]=f_regmap[hr];
9456 regs[k].regmap[hr]=f_regmap[hr];
9457 regmap_pre[k+1][hr]=f_regmap[hr];
9458 regs[k+1].wasdirty&=~(1<<hr);
9459 regs[k].dirty&=~(1<<hr);
9460 regs[k].wasconst&=~(1<<hr);
9461 regs[k].isconst&=~(1<<hr);
9462 }
9463 if(regs[j].regmap[hr]==f_regmap[hr])
9464 regs[j].regmap_entry[hr]=f_regmap[hr];
9465 break;
9466 }
9467 if(j==i) break;
9468 if(regs[j].regmap[hr]>=0)
9469 break;
9470 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9471 //printf("no-match due to different register\n");
9472 break;
9473 }
9474 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9475 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9476 break;
9477 }
9478 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9479 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9480 ||itype[j]==FCOMP||itype[j]==FCONV) {
9481 if(count_free_regs(regs[j].regmap)<2) {
9482 //printf("No free regs for store %x\n",start+j*4);
9483 break;
9484 }
9485 }
9486 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9487 if(f_regmap[hr]>=64) {
9488 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9489 break;
9490 }
9491 else
9492 {
9493 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9494 break;
9495 }
9496 }
9497 }
9498 }
9499 }
9500 }
9501 }
9502 }
9503 }else{
9504 int count=0;
9505 for(hr=0;hr<HOST_REGS;hr++)
9506 {
9507 if(hr!=EXCLUDE_REG) {
9508 if(regs[i].regmap[hr]>64) {
9509 if(!((regs[i].dirty>>hr)&1))
9510 f_regmap[hr]=regs[i].regmap[hr];
9511 }
9512 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9513 else if(regs[i].regmap[hr]<0) count++;
9514 }
9515 }
9516 // Try to restore cycle count at branch targets
9517 if(bt[i]) {
9518 for(j=i;j<slen-1;j++) {
9519 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9520 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9521 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9522 ||itype[j]==FCOMP||itype[j]==FCONV) {
9523 if(count_free_regs(regs[j].regmap)<2) {
9524 //printf("no free regs for store %x\n",start+j*4);
9525 break;
9526 }
9527 }
9528 else
9529 if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9530 }
9531 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9532 int k=i;
9533 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9534 while(k<j) {
9535 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9536 regs[k].regmap[HOST_CCREG]=CCREG;
9537 regmap_pre[k+1][HOST_CCREG]=CCREG;
9538 regs[k+1].wasdirty|=1<<HOST_CCREG;
9539 regs[k].dirty|=1<<HOST_CCREG;
9540 regs[k].wasconst&=~(1<<HOST_CCREG);
9541 regs[k].isconst&=~(1<<HOST_CCREG);
9542 k++;
9543 }
9544 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9545 }
9546 // Work backwards from the branch target
9547 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9548 {
9549 //printf("Extend backwards\n");
9550 int k;
9551 k=i;
9552 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9553 if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9554 ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9555 ||itype[k-1]==FCONV||itype[k-1]==FCOMP) {
9556 if(count_free_regs(regs[k-1].regmap)<2) {
9557 //printf("no free regs for store %x\n",start+(k-1)*4);
9558 break;
9559 }
9560 }
9561 else
9562 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9563 k--;
9564 }
9565 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9566 //printf("Extend CC, %x ->\n",start+k*4);
9567 while(k<=i) {
9568 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9569 regs[k].regmap[HOST_CCREG]=CCREG;
9570 regmap_pre[k+1][HOST_CCREG]=CCREG;
9571 regs[k+1].wasdirty|=1<<HOST_CCREG;
9572 regs[k].dirty|=1<<HOST_CCREG;
9573 regs[k].wasconst&=~(1<<HOST_CCREG);
9574 regs[k].isconst&=~(1<<HOST_CCREG);
9575 k++;
9576 }
9577 }
9578 else {
9579 //printf("Fail Extend CC, %x ->\n",start+k*4);
9580 }
9581 }
9582 }
9583 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9584 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9585 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9586 itype[i]!=FCONV&&itype[i]!=FCOMP)
9587 {
9588 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9589 }
9590 }
9591 }
9592
9593 // This allocates registers (if possible) one instruction prior
9594 // to use, which can avoid a load-use penalty on certain CPUs.
9595 for(i=0;i<slen-1;i++)
9596 {
9597 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9598 {
9599 if(!bt[i+1])
9600 {
9601 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
9602 {
9603 if(rs1[i+1]) {
9604 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9605 {
9606 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9607 {
9608 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9609 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9610 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9611 regs[i].isconst&=~(1<<hr);
9612 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9613 constmap[i][hr]=constmap[i+1][hr];
9614 regs[i+1].wasdirty&=~(1<<hr);
9615 regs[i].dirty&=~(1<<hr);
9616 }
9617 }
9618 }
9619 if(rs2[i+1]) {
9620 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9621 {
9622 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9623 {
9624 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9625 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9626 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9627 regs[i].isconst&=~(1<<hr);
9628 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9629 constmap[i][hr]=constmap[i+1][hr];
9630 regs[i+1].wasdirty&=~(1<<hr);
9631 regs[i].dirty&=~(1<<hr);
9632 }
9633 }
9634 }
9635 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9636 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9637 {
9638 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9639 {
9640 regs[i].regmap[hr]=rs1[i+1];
9641 regmap_pre[i+1][hr]=rs1[i+1];
9642 regs[i+1].regmap_entry[hr]=rs1[i+1];
9643 regs[i].isconst&=~(1<<hr);
9644 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9645 constmap[i][hr]=constmap[i+1][hr];
9646 regs[i+1].wasdirty&=~(1<<hr);
9647 regs[i].dirty&=~(1<<hr);
9648 }
9649 }
9650 }
9651 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9652 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9653 {
9654 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9655 {
9656 regs[i].regmap[hr]=rs1[i+1];
9657 regmap_pre[i+1][hr]=rs1[i+1];
9658 regs[i+1].regmap_entry[hr]=rs1[i+1];
9659 regs[i].isconst&=~(1<<hr);
9660 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9661 constmap[i][hr]=constmap[i+1][hr];
9662 regs[i+1].wasdirty&=~(1<<hr);
9663 regs[i].dirty&=~(1<<hr);
9664 }
9665 }
9666 }
9667 #ifndef HOST_IMM_ADDR32
9668 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
9669 hr=get_reg(regs[i+1].regmap,TLREG);
9670 if(hr>=0) {
9671 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
9672 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
9673 int nr;
9674 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9675 {
9676 regs[i].regmap[hr]=MGEN1+((i+1)&1);
9677 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
9678 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
9679 regs[i].isconst&=~(1<<hr);
9680 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9681 constmap[i][hr]=constmap[i+1][hr];
9682 regs[i+1].wasdirty&=~(1<<hr);
9683 regs[i].dirty&=~(1<<hr);
9684 }
9685 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9686 {
9687 // move it to another register
9688 regs[i+1].regmap[hr]=-1;
9689 regmap_pre[i+2][hr]=-1;
9690 regs[i+1].regmap[nr]=TLREG;
9691 regmap_pre[i+2][nr]=TLREG;
9692 regs[i].regmap[nr]=MGEN1+((i+1)&1);
9693 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
9694 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
9695 regs[i].isconst&=~(1<<nr);
9696 regs[i+1].isconst&=~(1<<nr);
9697 regs[i].dirty&=~(1<<nr);
9698 regs[i+1].wasdirty&=~(1<<nr);
9699 regs[i+1].dirty&=~(1<<nr);
9700 regs[i+2].wasdirty&=~(1<<nr);
9701 }
9702 }
9703 }
9704 }
9705 #endif
9706 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
9707 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9708 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9709 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9710 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9711 assert(hr>=0);
9712 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9713 {
9714 regs[i].regmap[hr]=rs1[i+1];
9715 regmap_pre[i+1][hr]=rs1[i+1];
9716 regs[i+1].regmap_entry[hr]=rs1[i+1];
9717 regs[i].isconst&=~(1<<hr);
9718 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9719 constmap[i][hr]=constmap[i+1][hr];
9720 regs[i+1].wasdirty&=~(1<<hr);
9721 regs[i].dirty&=~(1<<hr);
9722 }
9723 }
9724 }
9725 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
9726 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9727 int nr;
9728 hr=get_reg(regs[i+1].regmap,FTEMP);
9729 assert(hr>=0);
9730 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9731 {
9732 regs[i].regmap[hr]=rs1[i+1];
9733 regmap_pre[i+1][hr]=rs1[i+1];
9734 regs[i+1].regmap_entry[hr]=rs1[i+1];
9735 regs[i].isconst&=~(1<<hr);
9736 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9737 constmap[i][hr]=constmap[i+1][hr];
9738 regs[i+1].wasdirty&=~(1<<hr);
9739 regs[i].dirty&=~(1<<hr);
9740 }
9741 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9742 {
9743 // move it to another register
9744 regs[i+1].regmap[hr]=-1;
9745 regmap_pre[i+2][hr]=-1;
9746 regs[i+1].regmap[nr]=FTEMP;
9747 regmap_pre[i+2][nr]=FTEMP;
9748 regs[i].regmap[nr]=rs1[i+1];
9749 regmap_pre[i+1][nr]=rs1[i+1];
9750 regs[i+1].regmap_entry[nr]=rs1[i+1];
9751 regs[i].isconst&=~(1<<nr);
9752 regs[i+1].isconst&=~(1<<nr);
9753 regs[i].dirty&=~(1<<nr);
9754 regs[i+1].wasdirty&=~(1<<nr);
9755 regs[i+1].dirty&=~(1<<nr);
9756 regs[i+2].wasdirty&=~(1<<nr);
9757 }
9758 }
9759 }
9760 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
9761 if(itype[i+1]==LOAD)
9762 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9763 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
9764 hr=get_reg(regs[i+1].regmap,FTEMP);
9765 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
9766 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9767 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9768 }
9769 if(hr>=0&&regs[i].regmap[hr]<0) {
9770 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9771 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9772 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9773 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9774 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9775 regs[i].isconst&=~(1<<hr);
9776 regs[i+1].wasdirty&=~(1<<hr);
9777 regs[i].dirty&=~(1<<hr);
9778 }
9779 }
9780 }
9781 }
9782 }
9783 }
9784 }
9785
9786 /* Pass 6 - Optimize clean/dirty state */
9787 clean_registers(0,slen-1,1);
9788
9789 /* Pass 7 - Identify 32-bit registers */
9790
9791 provisional_r32();
9792
9793 u_int r32=0;
9794
9795 for (i=slen-1;i>=0;i--)
9796 {
9797 int hr;
9798 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9799 {
9800 if(ba[i]<start || ba[i]>=(start+slen*4))
9801 {
9802 // Branch out of this block, don't need anything
9803 r32=0;
9804 }
9805 else
9806 {
9807 // Internal branch
9808 // Need whatever matches the target
9809 // (and doesn't get overwritten by the delay slot instruction)
9810 r32=0;
9811 int t=(ba[i]-start)>>2;
9812 if(ba[i]>start+i*4) {
9813 // Forward branch
9814 if(!(requires_32bit[t]&~regs[i].was32))
9815 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9816 }else{
9817 // Backward branch
9818 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
9819 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9820 if(!(pr32[t]&~regs[i].was32))
9821 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9822 }
9823 }
9824 // Conditional branch may need registers for following instructions
9825 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9826 {
9827 if(i<slen-2) {
9828 r32|=requires_32bit[i+2];
9829 r32&=regs[i].was32;
9830 // Mark this address as a branch target since it may be called
9831 // upon return from interrupt
9832 bt[i+2]=1;
9833 }
9834 }
9835 // Merge in delay slot
9836 if(!likely[i]) {
9837 // These are overwritten unless the branch is "likely"
9838 // and the delay slot is nullified if not taken
9839 r32&=~(1LL<<rt1[i+1]);
9840 r32&=~(1LL<<rt2[i+1]);
9841 }
9842 // Assume these are needed (delay slot)
9843 if(us1[i+1]>0)
9844 {
9845 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
9846 }
9847 if(us2[i+1]>0)
9848 {
9849 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
9850 }
9851 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
9852 {
9853 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
9854 }
9855 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
9856 {
9857 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
9858 }
9859 }
9860 else if(itype[i]==SYSCALL)
9861 {
9862 // SYSCALL instruction (software interrupt)
9863 r32=0;
9864 }
9865 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9866 {
9867 // ERET instruction (return from interrupt)
9868 r32=0;
9869 }
9870 // Check 32 bits
9871 r32&=~(1LL<<rt1[i]);
9872 r32&=~(1LL<<rt2[i]);
9873 if(us1[i]>0)
9874 {
9875 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
9876 }
9877 if(us2[i]>0)
9878 {
9879 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
9880 }
9881 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
9882 {
9883 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
9884 }
9885 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
9886 {
9887 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
9888 }
9889 requires_32bit[i]=r32;
9890
9891 // Dirty registers which are 32-bit, require 32-bit input
9892 // as they will be written as 32-bit values
9893 for(hr=0;hr<HOST_REGS;hr++)
9894 {
9895 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
9896 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
9897 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
9898 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
9899 }
9900 }
9901 }
9902 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
9903 }
9904
9905 if(itype[slen-1]==SPAN) {
9906 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9907 }
9908
9909 /* Debug/disassembly */
9910 if((void*)assem_debug==(void*)printf)
9911 for(i=0;i<slen;i++)
9912 {
9913 printf("U:");
9914 int r;
9915 for(r=1;r<=CCREG;r++) {
9916 if((unneeded_reg[i]>>r)&1) {
9917 if(r==HIREG) printf(" HI");
9918 else if(r==LOREG) printf(" LO");
9919 else printf(" r%d",r);
9920 }
9921 }
9922 printf(" UU:");
9923 for(r=1;r<=CCREG;r++) {
9924 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
9925 if(r==HIREG) printf(" HI");
9926 else if(r==LOREG) printf(" LO");
9927 else printf(" r%d",r);
9928 }
9929 }
9930 printf(" 32:");
9931 for(r=0;r<=CCREG;r++) {
9932 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9933 if((regs[i].was32>>r)&1) {
9934 if(r==CCREG) printf(" CC");
9935 else if(r==HIREG) printf(" HI");
9936 else if(r==LOREG) printf(" LO");
9937 else printf(" r%d",r);
9938 }
9939 }
9940 printf("\n");
9941 #if defined(__i386__) || defined(__x86_64__)
9942 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9943 #endif
9944 #ifdef __arm__
9945 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9946 #endif
9947 printf("needs: ");
9948 if(needed_reg[i]&1) printf("eax ");
9949 if((needed_reg[i]>>1)&1) printf("ecx ");
9950 if((needed_reg[i]>>2)&1) printf("edx ");
9951 if((needed_reg[i]>>3)&1) printf("ebx ");
9952 if((needed_reg[i]>>5)&1) printf("ebp ");
9953 if((needed_reg[i]>>6)&1) printf("esi ");
9954 if((needed_reg[i]>>7)&1) printf("edi ");
9955 printf("r:");
9956 for(r=0;r<=CCREG;r++) {
9957 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9958 if((requires_32bit[i]>>r)&1) {
9959 if(r==CCREG) printf(" CC");
9960 else if(r==HIREG) printf(" HI");
9961 else if(r==LOREG) printf(" LO");
9962 else printf(" r%d",r);
9963 }
9964 }
9965 printf("\n");
9966 /*printf("pr:");
9967 for(r=0;r<=CCREG;r++) {
9968 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9969 if((pr32[i]>>r)&1) {
9970 if(r==CCREG) printf(" CC");
9971 else if(r==HIREG) printf(" HI");
9972 else if(r==LOREG) printf(" LO");
9973 else printf(" r%d",r);
9974 }
9975 }
9976 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
9977 printf("\n");*/
9978 #if defined(__i386__) || defined(__x86_64__)
9979 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9980 printf("dirty: ");
9981 if(regs[i].wasdirty&1) printf("eax ");
9982 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9983 if((regs[i].wasdirty>>2)&1) printf("edx ");
9984 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9985 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9986 if((regs[i].wasdirty>>6)&1) printf("esi ");
9987 if((regs[i].wasdirty>>7)&1) printf("edi ");
9988 #endif
9989 #ifdef __arm__
9990 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9991 printf("dirty: ");
9992 if(regs[i].wasdirty&1) printf("r0 ");
9993 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9994 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9995 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9996 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9997 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9998 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9999 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10000 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10001 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10002 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10003 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10004 #endif
10005 printf("\n");
10006 disassemble_inst(i);
10007 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10008 #if defined(__i386__) || defined(__x86_64__)
10009 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10010 if(regs[i].dirty&1) printf("eax ");
10011 if((regs[i].dirty>>1)&1) printf("ecx ");
10012 if((regs[i].dirty>>2)&1) printf("edx ");
10013 if((regs[i].dirty>>3)&1) printf("ebx ");
10014 if((regs[i].dirty>>5)&1) printf("ebp ");
10015 if((regs[i].dirty>>6)&1) printf("esi ");
10016 if((regs[i].dirty>>7)&1) printf("edi ");
10017 #endif
10018 #ifdef __arm__
10019 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10020 if(regs[i].dirty&1) printf("r0 ");
10021 if((regs[i].dirty>>1)&1) printf("r1 ");
10022 if((regs[i].dirty>>2)&1) printf("r2 ");
10023 if((regs[i].dirty>>3)&1) printf("r3 ");
10024 if((regs[i].dirty>>4)&1) printf("r4 ");
10025 if((regs[i].dirty>>5)&1) printf("r5 ");
10026 if((regs[i].dirty>>6)&1) printf("r6 ");
10027 if((regs[i].dirty>>7)&1) printf("r7 ");
10028 if((regs[i].dirty>>8)&1) printf("r8 ");
10029 if((regs[i].dirty>>9)&1) printf("r9 ");
10030 if((regs[i].dirty>>10)&1) printf("r10 ");
10031 if((regs[i].dirty>>12)&1) printf("r12 ");
10032 #endif
10033 printf("\n");
10034 if(regs[i].isconst) {
10035 printf("constants: ");
10036 #if defined(__i386__) || defined(__x86_64__)
10037 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10038 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10039 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10040 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10041 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10042 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10043 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10044 #endif
10045 #ifdef __arm__
10046 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10047 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10048 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10049 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10050 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10051 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10052 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10053 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10054 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10055 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10056 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10057 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10058 #endif
10059 printf("\n");
10060 }
10061 printf(" 32:");
10062 for(r=0;r<=CCREG;r++) {
10063 if((regs[i].is32>>r)&1) {
10064 if(r==CCREG) printf(" CC");
10065 else if(r==HIREG) printf(" HI");
10066 else if(r==LOREG) printf(" LO");
10067 else printf(" r%d",r);
10068 }
10069 }
10070 printf("\n");
10071 /*printf(" p32:");
10072 for(r=0;r<=CCREG;r++) {
10073 if((p32[i]>>r)&1) {
10074 if(r==CCREG) printf(" CC");
10075 else if(r==HIREG) printf(" HI");
10076 else if(r==LOREG) printf(" LO");
10077 else printf(" r%d",r);
10078 }
10079 }
10080 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10081 else printf("\n");*/
10082 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10083 #if defined(__i386__) || defined(__x86_64__)
10084 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10085 if(branch_regs[i].dirty&1) printf("eax ");
10086 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10087 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10088 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10089 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10090 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10091 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10092 #endif
10093 #ifdef __arm__
10094 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10095 if(branch_regs[i].dirty&1) printf("r0 ");
10096 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10097 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10098 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10099 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10100 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10101 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10102 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10103 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10104 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10105 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10106 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10107 #endif
10108 printf(" 32:");
10109 for(r=0;r<=CCREG;r++) {
10110 if((branch_regs[i].is32>>r)&1) {
10111 if(r==CCREG) printf(" CC");
10112 else if(r==HIREG) printf(" HI");
10113 else if(r==LOREG) printf(" LO");
10114 else printf(" r%d",r);
10115 }
10116 }
10117 printf("\n");
10118 }
10119 }
10120
10121 /* Pass 8 - Assembly */
10122 linkcount=0;stubcount=0;
10123 ds=0;is_delayslot=0;
10124 cop1_usable=0;
10125 uint64_t is32_pre=0;
10126 u_int dirty_pre=0;
10127 u_int beginning=(u_int)out;
10128 if((u_int)addr&1) {
10129 ds=1;
10130 pagespan_ds();
10131 }
10132 for(i=0;i<slen;i++)
10133 {
10134 //if(ds) printf("ds: ");
10135 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10136 if(ds) {
10137 ds=0; // Skip delay slot
10138 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10139 instr_addr[i]=0;
10140 } else {
10141 #ifndef DESTRUCTIVE_WRITEBACK
10142 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10143 {
10144 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10145 unneeded_reg[i],unneeded_reg_upper[i]);
10146 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10147 unneeded_reg[i],unneeded_reg_upper[i]);
10148 }
10149 is32_pre=regs[i].is32;
10150 dirty_pre=regs[i].dirty;
10151 #endif
10152 // write back
10153 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10154 {
10155 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10156 unneeded_reg[i],unneeded_reg_upper[i]);
10157 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10158 }
10159 // branch target entry point
10160 instr_addr[i]=(u_int)out;
10161 assem_debug("<->\n");
10162 // load regs
10163 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10164 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10165 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10166 address_generation(i,&regs[i],regs[i].regmap_entry);
10167 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10168 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10169 {
10170 // Load the delay slot registers if necessary
10171 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10172 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10173 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10174 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10175 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
10176 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10177 }
10178 else if(i+1<slen)
10179 {
10180 // Preload registers for following instruction
10181 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10182 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10183 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10184 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10185 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10186 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10187 }
10188 // TODO: if(is_ooo(i)) address_generation(i+1);
10189 if(itype[i]==CJUMP||itype[i]==FJUMP)
10190 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10191 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
10192 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10193 if(bt[i]) cop1_usable=0;
10194 // assemble
10195 switch(itype[i]) {
10196 case ALU:
10197 alu_assemble(i,&regs[i]);break;
10198 case IMM16:
10199 imm16_assemble(i,&regs[i]);break;
10200 case SHIFT:
10201 shift_assemble(i,&regs[i]);break;
10202 case SHIFTIMM:
10203 shiftimm_assemble(i,&regs[i]);break;
10204 case LOAD:
10205 load_assemble(i,&regs[i]);break;
10206 case LOADLR:
10207 loadlr_assemble(i,&regs[i]);break;
10208 case STORE:
10209 store_assemble(i,&regs[i]);break;
10210 case STORELR:
10211 storelr_assemble(i,&regs[i]);break;
10212 case COP0:
10213 cop0_assemble(i,&regs[i]);break;
10214 case COP1:
10215 cop1_assemble(i,&regs[i]);break;
10216 case C1LS:
10217 c1ls_assemble(i,&regs[i]);break;
10218 case FCONV:
10219 fconv_assemble(i,&regs[i]);break;
10220 case FLOAT:
10221 float_assemble(i,&regs[i]);break;
10222 case FCOMP:
10223 fcomp_assemble(i,&regs[i]);break;
10224 case MULTDIV:
10225 multdiv_assemble(i,&regs[i]);break;
10226 case MOV:
10227 mov_assemble(i,&regs[i]);break;
10228 case SYSCALL:
10229 syscall_assemble(i,&regs[i]);break;
10230 case UJUMP:
10231 ujump_assemble(i,&regs[i]);ds=1;break;
10232 case RJUMP:
10233 rjump_assemble(i,&regs[i]);ds=1;break;
10234 case CJUMP:
10235 cjump_assemble(i,&regs[i]);ds=1;break;
10236 case SJUMP:
10237 sjump_assemble(i,&regs[i]);ds=1;break;
10238 case FJUMP:
10239 fjump_assemble(i,&regs[i]);ds=1;break;
10240 case SPAN:
10241 pagespan_assemble(i,&regs[i]);break;
10242 }
10243 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10244 literal_pool(1024);
10245 else
10246 literal_pool_jumpover(256);
10247 }
10248 }
10249 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10250 // If the block did not end with an unconditional branch,
10251 // add a jump to the next instruction.
10252 if(i>1) {
10253 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10254 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10255 assert(i==slen);
10256 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10257 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10258 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10259 emit_loadreg(CCREG,HOST_CCREG);
10260 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10261 }
10262 else if(!likely[i-2])
10263 {
10264 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10265 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10266 }
10267 else
10268 {
10269 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10270 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10271 }
10272 add_to_linker((int)out,start+i*4,0);
10273 emit_jmp(0);
10274 }
10275 }
10276 else
10277 {
10278 assert(i>0);
10279 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10280 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10281 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10282 emit_loadreg(CCREG,HOST_CCREG);
10283 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10284 add_to_linker((int)out,start+i*4,0);
10285 emit_jmp(0);
10286 }
10287
10288 // TODO: delay slot stubs?
10289 // Stubs
10290 for(i=0;i<stubcount;i++)
10291 {
10292 switch(stubs[i][0])
10293 {
10294 case LOADB_STUB:
10295 case LOADH_STUB:
10296 case LOADW_STUB:
10297 case LOADD_STUB:
10298 case LOADBU_STUB:
10299 case LOADHU_STUB:
10300 do_readstub(i);break;
10301 case STOREB_STUB:
10302 case STOREH_STUB:
10303 case STOREW_STUB:
10304 case STORED_STUB:
10305 do_writestub(i);break;
10306 case CC_STUB:
10307 do_ccstub(i);break;
10308 case INVCODE_STUB:
10309 do_invstub(i);break;
10310 case FP_STUB:
10311 do_cop1stub(i);break;
10312 case STORELR_STUB:
10313 do_unalignedwritestub(i);break;
10314 }
10315 }
10316
10317 /* Pass 9 - Linker */
10318 for(i=0;i<linkcount;i++)
10319 {
10320 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10321 literal_pool(64);
10322 if(!link_addr[i][2])
10323 {
10324 void *stub=out;
10325 void *addr=check_addr(link_addr[i][1]);
10326 emit_extjump(link_addr[i][0],link_addr[i][1]);
10327 if(addr) {
10328 set_jump_target(link_addr[i][0],(int)addr);
10329 add_link(link_addr[i][1],stub);
10330 }
10331 else set_jump_target(link_addr[i][0],(int)stub);
10332 }
10333 else
10334 {
10335 // Internal branch
10336 int target=(link_addr[i][1]-start)>>2;
10337 assert(target>=0&&target<slen);
10338 assert(instr_addr[target]);
10339 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10340 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10341 //#else
10342 set_jump_target(link_addr[i][0],instr_addr[target]);
10343 //#endif
10344 }
10345 }
10346 // External Branch Targets (jump_in)
10347 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10348 for(i=0;i<slen;i++)
10349 {
10350 if(bt[i]||i==0)
10351 {
10352 if(instr_addr[i]) // TODO - delay slots (=null)
10353 {
10354 u_int vaddr=start+i*4;
10355 u_int page=(0x80000000^vaddr)>>12;
10356 u_int vpage=page;
10357 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
10358 if(page>2048) page=2048+(page&2047);
10359 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
10360 if(vpage>2048) vpage=2048+(vpage&2047);
10361 literal_pool(256);
10362 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10363 if(!requires_32bit[i])
10364 {
10365 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10366 assem_debug("jump_in: %x\n",start+i*4);
10367 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10368 int entry_point=do_dirty_stub(i);
10369 ll_add(jump_in+page,vaddr,(void *)entry_point);
10370 // If there was an existing entry in the hash table,
10371 // replace it with the new address.
10372 // Don't add new entries. We'll insert the
10373 // ones that actually get used in check_addr().
10374 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10375 if(ht_bin[0]==vaddr) {
10376 ht_bin[1]=entry_point;
10377 }
10378 if(ht_bin[2]==vaddr) {
10379 ht_bin[3]=entry_point;
10380 }
10381 }
10382 else
10383 {
10384 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10385 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10386 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10387 //int entry_point=(int)out;
10388 ////assem_debug("entry_point: %x\n",entry_point);
10389 //load_regs_entry(i);
10390 //if(entry_point==(int)out)
10391 // entry_point=instr_addr[i];
10392 //else
10393 // emit_jmp(instr_addr[i]);
10394 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10395 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10396 int entry_point=do_dirty_stub(i);
10397 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10398 }
10399 }
10400 }
10401 }
10402 // Write out the literal pool if necessary
10403 literal_pool(0);
10404 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10405 // Align code
10406 if(((u_int)out)&7) emit_addnop(13);
10407 #endif
10408 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10409 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10410 memcpy(copy,source,slen*4);
10411 copy+=slen*4;
10412
10413 #ifdef __arm__
10414 __clear_cache((void *)beginning,out);
10415 #endif
10416
10417 // If we're within 256K of the end of the buffer,
10418 // start over from the beginning. (Is 256K enough?)
10419 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10420
10421 // Trap writes to any of the pages we compiled
10422 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10423 invalid_code[i]=0;
10424 memory_map[i]|=0x40000000;
10425 if((signed int)start>=(signed int)0xC0000000) {
10426 assert(using_tlb);
10427 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10428 invalid_code[j]=0;
10429 memory_map[j]|=0x40000000;
10430 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10431 }
10432 }
10433
10434 /* Pass 10 - Free memory by expiring oldest blocks */
10435
10436 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10437 while(expirep!=end)
10438 {
10439 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10440 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10441 inv_debug("EXP: Phase %d\n",expirep);
10442 switch((expirep>>11)&3)
10443 {
10444 case 0:
10445 // Clear jump_in and jump_dirty
10446 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10447 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10448 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10449 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10450 break;
10451 case 1:
10452 // Clear pointers
10453 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10454 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10455 break;
10456 case 2:
10457 // Clear hash table
10458 for(i=0;i<32;i++) {
10459 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10460 if((ht_bin[3]>>shift)==(base>>shift) ||
10461 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10462 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10463 ht_bin[2]=ht_bin[3]=-1;
10464 }
10465 if((ht_bin[1]>>shift)==(base>>shift) ||
10466 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10467 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10468 ht_bin[0]=ht_bin[2];
10469 ht_bin[1]=ht_bin[3];
10470 ht_bin[2]=ht_bin[3]=-1;
10471 }
10472 }
10473 break;
10474 case 3:
10475 // Clear jump_out
10476 #ifdef __arm__
10477 if((expirep&2047)==0)
10478 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
10479 #endif
10480 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10481 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10482 break;
10483 }
10484 expirep=(expirep+1)&65535;
10485 }
10486 return 0;
10487}