drc: update cache flushing
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "emu_if.h" //emulator interface
41
42#define noinline __attribute__((noinline,noclone))
43#ifndef ARRAY_SIZE
44#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
45#endif
46
47//#define DISASM
48//#define assem_debug printf
49//#define inv_debug printf
50#define assem_debug(...)
51#define inv_debug(...)
52
53#ifdef __i386__
54#include "assem_x86.h"
55#endif
56#ifdef __x86_64__
57#include "assem_x64.h"
58#endif
59#ifdef __arm__
60#include "assem_arm.h"
61#endif
62#ifdef __aarch64__
63#include "assem_arm64.h"
64#endif
65
66#define MAXBLOCK 4096
67#define MAX_OUTPUT_BLOCK_SIZE 262144
68
69struct ndrc_mem
70{
71 u_char translation_cache[1 << TARGET_SIZE_2];
72 struct
73 {
74 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
75 const void *f[2048 / sizeof(void *)];
76 } tramp;
77};
78
79#ifdef BASE_ADDR_DYNAMIC
80static struct ndrc_mem *ndrc;
81#else
82static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
83static struct ndrc_mem *ndrc = &ndrc_;
84#endif
85
86// stubs
87enum stub_type {
88 CC_STUB = 1,
89 FP_STUB = 2,
90 LOADB_STUB = 3,
91 LOADH_STUB = 4,
92 LOADW_STUB = 5,
93 LOADD_STUB = 6,
94 LOADBU_STUB = 7,
95 LOADHU_STUB = 8,
96 STOREB_STUB = 9,
97 STOREH_STUB = 10,
98 STOREW_STUB = 11,
99 STORED_STUB = 12,
100 STORELR_STUB = 13,
101 INVCODE_STUB = 14,
102};
103
104struct regstat
105{
106 signed char regmap_entry[HOST_REGS];
107 signed char regmap[HOST_REGS];
108 uint64_t wasdirty;
109 uint64_t dirty;
110 uint64_t u;
111 u_int wasconst;
112 u_int isconst;
113 u_int loadedconst; // host regs that have constants loaded
114 u_int waswritten; // MIPS regs that were used as store base before
115};
116
117// note: asm depends on this layout
118struct ll_entry
119{
120 u_int vaddr;
121 u_int reg_sv_flags;
122 void *addr;
123 struct ll_entry *next;
124};
125
126struct ht_entry
127{
128 u_int vaddr[2];
129 void *tcaddr[2];
130};
131
132struct code_stub
133{
134 enum stub_type type;
135 void *addr;
136 void *retaddr;
137 u_int a;
138 uintptr_t b;
139 uintptr_t c;
140 u_int d;
141 u_int e;
142};
143
144struct link_entry
145{
146 void *addr;
147 u_int target;
148 u_int ext;
149};
150
151 // used by asm:
152 u_char *out;
153 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
154 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
155 struct ll_entry *jump_dirty[4096];
156
157 static struct ll_entry *jump_out[4096];
158 static u_int start;
159 static u_int *source;
160 static char insn[MAXBLOCK][10];
161 static u_char itype[MAXBLOCK];
162 static u_char opcode[MAXBLOCK];
163 static u_char opcode2[MAXBLOCK];
164 static u_char bt[MAXBLOCK];
165 static u_char rs1[MAXBLOCK];
166 static u_char rs2[MAXBLOCK];
167 static u_char rt1[MAXBLOCK];
168 static u_char rt2[MAXBLOCK];
169 static u_char dep1[MAXBLOCK];
170 static u_char dep2[MAXBLOCK];
171 static u_char lt1[MAXBLOCK];
172 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
173 static uint64_t gte_rt[MAXBLOCK];
174 static uint64_t gte_unneeded[MAXBLOCK];
175 static u_int smrv[32]; // speculated MIPS register values
176 static u_int smrv_strong; // mask or regs that are likely to have correct values
177 static u_int smrv_weak; // same, but somewhat less likely
178 static u_int smrv_strong_next; // same, but after current insn executes
179 static u_int smrv_weak_next;
180 static int imm[MAXBLOCK];
181 static u_int ba[MAXBLOCK];
182 static char likely[MAXBLOCK];
183 static char is_ds[MAXBLOCK];
184 static char ooo[MAXBLOCK];
185 static uint64_t unneeded_reg[MAXBLOCK];
186 static uint64_t branch_unneeded_reg[MAXBLOCK];
187 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
188 static uint64_t current_constmap[HOST_REGS];
189 static uint64_t constmap[MAXBLOCK][HOST_REGS];
190 static struct regstat regs[MAXBLOCK];
191 static struct regstat branch_regs[MAXBLOCK];
192 static signed char minimum_free_regs[MAXBLOCK];
193 static u_int needed_reg[MAXBLOCK];
194 static u_int wont_dirty[MAXBLOCK];
195 static u_int will_dirty[MAXBLOCK];
196 static int ccadj[MAXBLOCK];
197 static int slen;
198 static void *instr_addr[MAXBLOCK];
199 static struct link_entry link_addr[MAXBLOCK];
200 static int linkcount;
201 static struct code_stub stubs[MAXBLOCK*3];
202 static int stubcount;
203 static u_int literals[1024][2];
204 static int literalcount;
205 static int is_delayslot;
206 static char shadow[1048576] __attribute__((aligned(16)));
207 static void *copy;
208 static int expirep;
209 static u_int stop_after_jal;
210#ifndef RAM_FIXED
211 static uintptr_t ram_offset;
212#else
213 static const uintptr_t ram_offset=0;
214#endif
215
216 int new_dynarec_hacks;
217 int new_dynarec_did_compile;
218
219 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
220 extern int last_count; // last absolute target, often = next_interupt
221 extern int pcaddr;
222 extern int pending_exception;
223 extern int branch_target;
224 extern uintptr_t mini_ht[32][2];
225 extern u_char restore_candidate[512];
226
227 /* registers that may be allocated */
228 /* 1-31 gpr */
229#define LOREG 32 // lo
230#define HIREG 33 // hi
231//#define FSREG 34 // FPU status (FCSR)
232#define CSREG 35 // Coprocessor status
233#define CCREG 36 // Cycle count
234#define INVCP 37 // Pointer to invalid_code
235//#define MMREG 38 // Pointer to memory_map
236//#define ROREG 39 // ram offset (if rdram!=0x80000000)
237#define TEMPREG 40
238#define FTEMP 40 // FPU temporary register
239#define PTEMP 41 // Prefetch temporary register
240//#define TLREG 42 // TLB mapping offset
241#define RHASH 43 // Return address hash
242#define RHTBL 44 // Return address hash table address
243#define RTEMP 45 // JR/JALR address register
244#define MAXREG 45
245#define AGEN1 46 // Address generation temporary register
246//#define AGEN2 47 // Address generation temporary register
247//#define MGEN1 48 // Maptable address generation temporary register
248//#define MGEN2 49 // Maptable address generation temporary register
249#define BTREG 50 // Branch target temporary register
250
251 /* instruction types */
252#define NOP 0 // No operation
253#define LOAD 1 // Load
254#define STORE 2 // Store
255#define LOADLR 3 // Unaligned load
256#define STORELR 4 // Unaligned store
257#define MOV 5 // Move
258#define ALU 6 // Arithmetic/logic
259#define MULTDIV 7 // Multiply/divide
260#define SHIFT 8 // Shift by register
261#define SHIFTIMM 9// Shift by immediate
262#define IMM16 10 // 16-bit immediate
263#define RJUMP 11 // Unconditional jump to register
264#define UJUMP 12 // Unconditional jump
265#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
266#define SJUMP 14 // Conditional branch (regimm format)
267#define COP0 15 // Coprocessor 0
268#define COP1 16 // Coprocessor 1
269#define C1LS 17 // Coprocessor 1 load/store
270//#define FJUMP 18 // Conditional branch (floating point)
271//#define FLOAT 19 // Floating point unit
272//#define FCONV 20 // Convert integer to float
273//#define FCOMP 21 // Floating point compare (sets FSREG)
274#define SYSCALL 22// SYSCALL
275#define OTHER 23 // Other
276#define SPAN 24 // Branch/delay slot spans 2 pages
277#define NI 25 // Not implemented
278#define HLECALL 26// PCSX fake opcodes for HLE
279#define COP2 27 // Coprocessor 2 move
280#define C2LS 28 // Coprocessor 2 load/store
281#define C2OP 29 // Coprocessor 2 operation
282#define INTCALL 30// Call interpreter to handle rare corner cases
283
284 /* branch codes */
285#define TAKEN 1
286#define NOTTAKEN 2
287#define NULLDS 3
288
289#define DJT_1 (void *)1l // no function, just a label in assem_debug log
290#define DJT_2 (void *)2l
291
292// asm linkage
293int new_recompile_block(u_int addr);
294void *get_addr_ht(u_int vaddr);
295void invalidate_block(u_int block);
296void invalidate_addr(u_int addr);
297void remove_hash(int vaddr);
298void dyna_linker();
299void dyna_linker_ds();
300void verify_code();
301void verify_code_ds();
302void cc_interrupt();
303void fp_exception();
304void fp_exception_ds();
305void jump_to_new_pc();
306void new_dyna_leave();
307
308// Needed by assembler
309static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
310static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
311static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
312static void load_all_regs(signed char i_regmap[]);
313static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
314static void load_regs_entry(int t);
315static void load_all_consts(signed char regmap[],u_int dirty,int i);
316
317static int verify_dirty(const u_int *ptr);
318static int get_final_value(int hr, int i, int *value);
319static void add_stub(enum stub_type type, void *addr, void *retaddr,
320 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
321static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
322 int i, int addr_reg, struct regstat *i_regs, int ccadj, u_int reglist);
323static void add_to_linker(void *addr, u_int target, int ext);
324static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override);
325static void *get_direct_memhandler(void *table, u_int addr,
326 enum stub_type type, uintptr_t *addr_host);
327static void pass_args(int a0, int a1);
328static void emit_far_jump(const void *f);
329static void emit_far_call(const void *f);
330
331static void mprotect_w_x(void *start, void *end, int is_x)
332{
333#ifdef NO_WRITE_EXEC
334 #if defined(VITA)
335 // *Open* enables write on all memory that was
336 // allocated by sceKernelAllocMemBlockForVM()?
337 if (is_x)
338 sceKernelCloseVMDomain();
339 else
340 sceKernelOpenVMDomain();
341 #else
342 u_long mstart = (u_long)start & ~4095ul;
343 u_long mend = (u_long)end;
344 if (mprotect((void *)mstart, mend - mstart,
345 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
346 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
347 #endif
348#endif
349}
350
351static void start_tcache_write(void *start, void *end)
352{
353 mprotect_w_x(start, end, 0);
354}
355
356static void end_tcache_write(void *start, void *end)
357{
358#if defined(__arm__) || defined(__aarch64__)
359 size_t len = (char *)end - (char *)start;
360 #if defined(__BLACKBERRY_QNX__)
361 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
362 #elif defined(__MACH__)
363 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
364 #elif defined(VITA)
365 sceKernelSyncVMDomain(sceBlock, start, len);
366 #elif defined(_3DS)
367 ctr_flush_invalidate_cache();
368 #elif defined(__aarch64__)
369 // as of 2021, __clear_cache() is still broken on arm64
370 // so here is a custom one :(
371 clear_cache_arm64(start, end);
372 #else
373 __clear_cache(start, end);
374 #endif
375 (void)len;
376#endif
377
378 mprotect_w_x(start, end, 1);
379}
380
381static void *start_block(void)
382{
383 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
384 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
385 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
386 start_tcache_write(out, end);
387 return out;
388}
389
390static void end_block(void *start)
391{
392 end_tcache_write(start, out);
393}
394
395// also takes care of w^x mappings when patching code
396static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
397
398static void mark_clear_cache(void *target)
399{
400 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
401 u_int mask = 1u << ((offset >> 12) & 31);
402 if (!(needs_clear_cache[offset >> 17] & mask)) {
403 char *start = (char *)((uintptr_t)target & ~4095l);
404 start_tcache_write(start, start + 4095);
405 needs_clear_cache[offset >> 17] |= mask;
406 }
407}
408
409// Clearing the cache is rather slow on ARM Linux, so mark the areas
410// that need to be cleared, and then only clear these areas once.
411static void do_clear_cache(void)
412{
413 int i, j;
414 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
415 {
416 u_int bitmap = needs_clear_cache[i];
417 if (!bitmap)
418 continue;
419 for (j = 0; j < 32; j++)
420 {
421 u_char *start, *end;
422 if (!(bitmap & (1<<j)))
423 continue;
424
425 start = ndrc->translation_cache + i*131072 + j*4096;
426 end = start + 4095;
427 for (j++; j < 32; j++) {
428 if (!(bitmap & (1<<j)))
429 break;
430 end += 4096;
431 }
432 end_tcache_write(start, end);
433 }
434 needs_clear_cache[i] = 0;
435 }
436}
437
438//#define DEBUG_CYCLE_COUNT 1
439
440#define NO_CYCLE_PENALTY_THR 12
441
442int cycle_multiplier; // 100 for 1.0
443
444static int CLOCK_ADJUST(int x)
445{
446 int s=(x>>31)|1;
447 return (x * cycle_multiplier + s * 50) / 100;
448}
449
450static u_int get_page(u_int vaddr)
451{
452 u_int page=vaddr&~0xe0000000;
453 if (page < 0x1000000)
454 page &= ~0x0e00000; // RAM mirrors
455 page>>=12;
456 if(page>2048) page=2048+(page&2047);
457 return page;
458}
459
460// no virtual mem in PCSX
461static u_int get_vpage(u_int vaddr)
462{
463 return get_page(vaddr);
464}
465
466static struct ht_entry *hash_table_get(u_int vaddr)
467{
468 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
469}
470
471static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
472{
473 ht_bin->vaddr[1] = ht_bin->vaddr[0];
474 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
475 ht_bin->vaddr[0] = vaddr;
476 ht_bin->tcaddr[0] = tcaddr;
477}
478
479// some messy ari64's code, seems to rely on unsigned 32bit overflow
480static int doesnt_expire_soon(void *tcaddr)
481{
482 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
483 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
484}
485
486// Get address from virtual address
487// This is called from the recompiled JR/JALR instructions
488void noinline *get_addr(u_int vaddr)
489{
490 u_int page=get_page(vaddr);
491 u_int vpage=get_vpage(vaddr);
492 struct ll_entry *head;
493 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
494 head=jump_in[page];
495 while(head!=NULL) {
496 if(head->vaddr==vaddr) {
497 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
498 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
499 return head->addr;
500 }
501 head=head->next;
502 }
503 head=jump_dirty[vpage];
504 while(head!=NULL) {
505 if(head->vaddr==vaddr) {
506 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
507 // Don't restore blocks which are about to expire from the cache
508 if (doesnt_expire_soon(head->addr))
509 if (verify_dirty(head->addr)) {
510 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
511 invalid_code[vaddr>>12]=0;
512 inv_code_start=inv_code_end=~0;
513 if(vpage<2048) {
514 restore_candidate[vpage>>3]|=1<<(vpage&7);
515 }
516 else restore_candidate[page>>3]|=1<<(page&7);
517 struct ht_entry *ht_bin = hash_table_get(vaddr);
518 if (ht_bin->vaddr[0] == vaddr)
519 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
520 else
521 hash_table_add(ht_bin, vaddr, head->addr);
522
523 return head->addr;
524 }
525 }
526 head=head->next;
527 }
528 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
529 int r=new_recompile_block(vaddr);
530 if(r==0) return get_addr(vaddr);
531 // Execute in unmapped page, generate pagefault execption
532 Status|=2;
533 Cause=(vaddr<<31)|0x8;
534 EPC=(vaddr&1)?vaddr-5:vaddr;
535 BadVAddr=(vaddr&~1);
536 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
537 EntryHi=BadVAddr&0xFFFFE000;
538 return get_addr_ht(0x80000000);
539}
540// Look up address in hash table first
541void *get_addr_ht(u_int vaddr)
542{
543 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
544 const struct ht_entry *ht_bin = hash_table_get(vaddr);
545 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
546 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
547 return get_addr(vaddr);
548}
549
550void clear_all_regs(signed char regmap[])
551{
552 int hr;
553 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
554}
555
556static signed char get_reg(const signed char regmap[],int r)
557{
558 int hr;
559 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
560 return -1;
561}
562
563// Find a register that is available for two consecutive cycles
564static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
565{
566 int hr;
567 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
568 return -1;
569}
570
571int count_free_regs(signed char regmap[])
572{
573 int count=0;
574 int hr;
575 for(hr=0;hr<HOST_REGS;hr++)
576 {
577 if(hr!=EXCLUDE_REG) {
578 if(regmap[hr]<0) count++;
579 }
580 }
581 return count;
582}
583
584void dirty_reg(struct regstat *cur,signed char reg)
585{
586 int hr;
587 if(!reg) return;
588 for (hr=0;hr<HOST_REGS;hr++) {
589 if((cur->regmap[hr]&63)==reg) {
590 cur->dirty|=1<<hr;
591 }
592 }
593}
594
595void set_const(struct regstat *cur,signed char reg,uint64_t value)
596{
597 int hr;
598 if(!reg) return;
599 for (hr=0;hr<HOST_REGS;hr++) {
600 if(cur->regmap[hr]==reg) {
601 cur->isconst|=1<<hr;
602 current_constmap[hr]=value;
603 }
604 }
605}
606
607void clear_const(struct regstat *cur,signed char reg)
608{
609 int hr;
610 if(!reg) return;
611 for (hr=0;hr<HOST_REGS;hr++) {
612 if((cur->regmap[hr]&63)==reg) {
613 cur->isconst&=~(1<<hr);
614 }
615 }
616}
617
618int is_const(struct regstat *cur,signed char reg)
619{
620 int hr;
621 if(reg<0) return 0;
622 if(!reg) return 1;
623 for (hr=0;hr<HOST_REGS;hr++) {
624 if((cur->regmap[hr]&63)==reg) {
625 return (cur->isconst>>hr)&1;
626 }
627 }
628 return 0;
629}
630uint64_t get_const(struct regstat *cur,signed char reg)
631{
632 int hr;
633 if(!reg) return 0;
634 for (hr=0;hr<HOST_REGS;hr++) {
635 if(cur->regmap[hr]==reg) {
636 return current_constmap[hr];
637 }
638 }
639 SysPrintf("Unknown constant in r%d\n",reg);
640 abort();
641}
642
643// Least soon needed registers
644// Look at the next ten instructions and see which registers
645// will be used. Try not to reallocate these.
646void lsn(u_char hsn[], int i, int *preferred_reg)
647{
648 int j;
649 int b=-1;
650 for(j=0;j<9;j++)
651 {
652 if(i+j>=slen) {
653 j=slen-i-1;
654 break;
655 }
656 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
657 {
658 // Don't go past an unconditonal jump
659 j++;
660 break;
661 }
662 }
663 for(;j>=0;j--)
664 {
665 if(rs1[i+j]) hsn[rs1[i+j]]=j;
666 if(rs2[i+j]) hsn[rs2[i+j]]=j;
667 if(rt1[i+j]) hsn[rt1[i+j]]=j;
668 if(rt2[i+j]) hsn[rt2[i+j]]=j;
669 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
670 // Stores can allocate zero
671 hsn[rs1[i+j]]=j;
672 hsn[rs2[i+j]]=j;
673 }
674 // On some architectures stores need invc_ptr
675 #if defined(HOST_IMM8)
676 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
677 hsn[INVCP]=j;
678 }
679 #endif
680 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
681 {
682 hsn[CCREG]=j;
683 b=j;
684 }
685 }
686 if(b>=0)
687 {
688 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
689 {
690 // Follow first branch
691 int t=(ba[i+b]-start)>>2;
692 j=7-b;if(t+j>=slen) j=slen-t-1;
693 for(;j>=0;j--)
694 {
695 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
696 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
697 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
698 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
699 }
700 }
701 // TODO: preferred register based on backward branch
702 }
703 // Delay slot should preferably not overwrite branch conditions or cycle count
704 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)) {
705 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
706 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
707 hsn[CCREG]=1;
708 // ...or hash tables
709 hsn[RHASH]=1;
710 hsn[RHTBL]=1;
711 }
712 // Coprocessor load/store needs FTEMP, even if not declared
713 if(itype[i]==C1LS||itype[i]==C2LS) {
714 hsn[FTEMP]=0;
715 }
716 // Load L/R also uses FTEMP as a temporary register
717 if(itype[i]==LOADLR) {
718 hsn[FTEMP]=0;
719 }
720 // Also SWL/SWR/SDL/SDR
721 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
722 hsn[FTEMP]=0;
723 }
724 // Don't remove the miniht registers
725 if(itype[i]==UJUMP||itype[i]==RJUMP)
726 {
727 hsn[RHASH]=0;
728 hsn[RHTBL]=0;
729 }
730}
731
732// We only want to allocate registers if we're going to use them again soon
733int needed_again(int r, int i)
734{
735 int j;
736 int b=-1;
737 int rn=10;
738
739 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
740 {
741 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
742 return 0; // Don't need any registers if exiting the block
743 }
744 for(j=0;j<9;j++)
745 {
746 if(i+j>=slen) {
747 j=slen-i-1;
748 break;
749 }
750 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
751 {
752 // Don't go past an unconditonal jump
753 j++;
754 break;
755 }
756 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
757 {
758 break;
759 }
760 }
761 for(;j>=1;j--)
762 {
763 if(rs1[i+j]==r) rn=j;
764 if(rs2[i+j]==r) rn=j;
765 if((unneeded_reg[i+j]>>r)&1) rn=10;
766 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
767 {
768 b=j;
769 }
770 }
771 /*
772 if(b>=0)
773 {
774 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
775 {
776 // Follow first branch
777 int o=rn;
778 int t=(ba[i+b]-start)>>2;
779 j=7-b;if(t+j>=slen) j=slen-t-1;
780 for(;j>=0;j--)
781 {
782 if(!((unneeded_reg[t+j]>>r)&1)) {
783 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
784 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
785 }
786 else rn=o;
787 }
788 }
789 }*/
790 if(rn<10) return 1;
791 (void)b;
792 return 0;
793}
794
795// Try to match register allocations at the end of a loop with those
796// at the beginning
797int loop_reg(int i, int r, int hr)
798{
799 int j,k;
800 for(j=0;j<9;j++)
801 {
802 if(i+j>=slen) {
803 j=slen-i-1;
804 break;
805 }
806 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
807 {
808 // Don't go past an unconditonal jump
809 j++;
810 break;
811 }
812 }
813 k=0;
814 if(i>0){
815 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)
816 k--;
817 }
818 for(;k<j;k++)
819 {
820 assert(r < 64);
821 if((unneeded_reg[i+k]>>r)&1) return hr;
822 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP))
823 {
824 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
825 {
826 int t=(ba[i+k]-start)>>2;
827 int reg=get_reg(regs[t].regmap_entry,r);
828 if(reg>=0) return reg;
829 //reg=get_reg(regs[t+1].regmap_entry,r);
830 //if(reg>=0) return reg;
831 }
832 }
833 }
834 return hr;
835}
836
837
838// Allocate every register, preserving source/target regs
839void alloc_all(struct regstat *cur,int i)
840{
841 int hr;
842
843 for(hr=0;hr<HOST_REGS;hr++) {
844 if(hr!=EXCLUDE_REG) {
845 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
846 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
847 {
848 cur->regmap[hr]=-1;
849 cur->dirty&=~(1<<hr);
850 }
851 // Don't need zeros
852 if((cur->regmap[hr]&63)==0)
853 {
854 cur->regmap[hr]=-1;
855 cur->dirty&=~(1<<hr);
856 }
857 }
858 }
859}
860
861#ifndef NDEBUG
862static int host_tempreg_in_use;
863
864static void host_tempreg_acquire(void)
865{
866 assert(!host_tempreg_in_use);
867 host_tempreg_in_use = 1;
868}
869
870static void host_tempreg_release(void)
871{
872 host_tempreg_in_use = 0;
873}
874#else
875static void host_tempreg_acquire(void) {}
876static void host_tempreg_release(void) {}
877#endif
878
879#ifdef DRC_DBG
880extern void gen_interupt();
881extern void do_insn_cmp();
882#define FUNCNAME(f) { f, " " #f }
883static const struct {
884 void *addr;
885 const char *name;
886} function_names[] = {
887 FUNCNAME(cc_interrupt),
888 FUNCNAME(gen_interupt),
889 FUNCNAME(get_addr_ht),
890 FUNCNAME(get_addr),
891 FUNCNAME(jump_handler_read8),
892 FUNCNAME(jump_handler_read16),
893 FUNCNAME(jump_handler_read32),
894 FUNCNAME(jump_handler_write8),
895 FUNCNAME(jump_handler_write16),
896 FUNCNAME(jump_handler_write32),
897 FUNCNAME(invalidate_addr),
898 FUNCNAME(jump_to_new_pc),
899 FUNCNAME(new_dyna_leave),
900 FUNCNAME(pcsx_mtc0),
901 FUNCNAME(pcsx_mtc0_ds),
902 FUNCNAME(do_insn_cmp),
903#ifdef __arm__
904 FUNCNAME(verify_code),
905#endif
906};
907
908static const char *func_name(const void *a)
909{
910 int i;
911 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
912 if (function_names[i].addr == a)
913 return function_names[i].name;
914 return "";
915}
916#else
917#define func_name(x) ""
918#endif
919
920#ifdef __i386__
921#include "assem_x86.c"
922#endif
923#ifdef __x86_64__
924#include "assem_x64.c"
925#endif
926#ifdef __arm__
927#include "assem_arm.c"
928#endif
929#ifdef __aarch64__
930#include "assem_arm64.c"
931#endif
932
933static void *get_trampoline(const void *f)
934{
935 size_t i;
936
937 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
938 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
939 break;
940 }
941 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
942 SysPrintf("trampoline table is full, last func %p\n", f);
943 abort();
944 }
945 if (ndrc->tramp.f[i] == NULL) {
946 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
947 ndrc->tramp.f[i] = f;
948 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
949 }
950 return &ndrc->tramp.ops[i];
951}
952
953static void emit_far_jump(const void *f)
954{
955 if (can_jump_or_call(f)) {
956 emit_jmp(f);
957 return;
958 }
959
960 f = get_trampoline(f);
961 emit_jmp(f);
962}
963
964static void emit_far_call(const void *f)
965{
966 if (can_jump_or_call(f)) {
967 emit_call(f);
968 return;
969 }
970
971 f = get_trampoline(f);
972 emit_call(f);
973}
974
975// Add virtual address mapping to linked list
976void ll_add(struct ll_entry **head,int vaddr,void *addr)
977{
978 struct ll_entry *new_entry;
979 new_entry=malloc(sizeof(struct ll_entry));
980 assert(new_entry!=NULL);
981 new_entry->vaddr=vaddr;
982 new_entry->reg_sv_flags=0;
983 new_entry->addr=addr;
984 new_entry->next=*head;
985 *head=new_entry;
986}
987
988void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
989{
990 ll_add(head,vaddr,addr);
991 (*head)->reg_sv_flags=reg_sv_flags;
992}
993
994// Check if an address is already compiled
995// but don't return addresses which are about to expire from the cache
996void *check_addr(u_int vaddr)
997{
998 struct ht_entry *ht_bin = hash_table_get(vaddr);
999 size_t i;
1000 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1001 if (ht_bin->vaddr[i] == vaddr)
1002 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1003 if (isclean(ht_bin->tcaddr[i]))
1004 return ht_bin->tcaddr[i];
1005 }
1006 u_int page=get_page(vaddr);
1007 struct ll_entry *head;
1008 head=jump_in[page];
1009 while (head != NULL) {
1010 if (head->vaddr == vaddr) {
1011 if (doesnt_expire_soon(head->addr)) {
1012 // Update existing entry with current address
1013 if (ht_bin->vaddr[0] == vaddr) {
1014 ht_bin->tcaddr[0] = head->addr;
1015 return head->addr;
1016 }
1017 if (ht_bin->vaddr[1] == vaddr) {
1018 ht_bin->tcaddr[1] = head->addr;
1019 return head->addr;
1020 }
1021 // Insert into hash table with low priority.
1022 // Don't evict existing entries, as they are probably
1023 // addresses that are being accessed frequently.
1024 if (ht_bin->vaddr[0] == -1) {
1025 ht_bin->vaddr[0] = vaddr;
1026 ht_bin->tcaddr[0] = head->addr;
1027 }
1028 else if (ht_bin->vaddr[1] == -1) {
1029 ht_bin->vaddr[1] = vaddr;
1030 ht_bin->tcaddr[1] = head->addr;
1031 }
1032 return head->addr;
1033 }
1034 }
1035 head=head->next;
1036 }
1037 return 0;
1038}
1039
1040void remove_hash(int vaddr)
1041{
1042 //printf("remove hash: %x\n",vaddr);
1043 struct ht_entry *ht_bin = hash_table_get(vaddr);
1044 if (ht_bin->vaddr[1] == vaddr) {
1045 ht_bin->vaddr[1] = -1;
1046 ht_bin->tcaddr[1] = NULL;
1047 }
1048 if (ht_bin->vaddr[0] == vaddr) {
1049 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1050 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1051 ht_bin->vaddr[1] = -1;
1052 ht_bin->tcaddr[1] = NULL;
1053 }
1054}
1055
1056void ll_remove_matching_addrs(struct ll_entry **head,uintptr_t addr,int shift)
1057{
1058 struct ll_entry *next;
1059 while(*head) {
1060 if(((uintptr_t)((*head)->addr)>>shift)==(addr>>shift) ||
1061 ((uintptr_t)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1062 {
1063 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1064 remove_hash((*head)->vaddr);
1065 next=(*head)->next;
1066 free(*head);
1067 *head=next;
1068 }
1069 else
1070 {
1071 head=&((*head)->next);
1072 }
1073 }
1074}
1075
1076// Remove all entries from linked list
1077void ll_clear(struct ll_entry **head)
1078{
1079 struct ll_entry *cur;
1080 struct ll_entry *next;
1081 if((cur=*head)) {
1082 *head=0;
1083 while(cur) {
1084 next=cur->next;
1085 free(cur);
1086 cur=next;
1087 }
1088 }
1089}
1090
1091// Dereference the pointers and remove if it matches
1092static void ll_kill_pointers(struct ll_entry *head,uintptr_t addr,int shift)
1093{
1094 while(head) {
1095 uintptr_t ptr = (uintptr_t)get_pointer(head->addr);
1096 inv_debug("EXP: Lookup pointer to %lx at %p (%x)\n",(long)ptr,head->addr,head->vaddr);
1097 if(((ptr>>shift)==(addr>>shift)) ||
1098 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1099 {
1100 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1101 void *host_addr=find_extjump_insn(head->addr);
1102 mark_clear_cache(host_addr);
1103 set_jump_target(host_addr, head->addr);
1104 }
1105 head=head->next;
1106 }
1107}
1108
1109// This is called when we write to a compiled block (see do_invstub)
1110static void invalidate_page(u_int page)
1111{
1112 struct ll_entry *head;
1113 struct ll_entry *next;
1114 head=jump_in[page];
1115 jump_in[page]=0;
1116 while(head!=NULL) {
1117 inv_debug("INVALIDATE: %x\n",head->vaddr);
1118 remove_hash(head->vaddr);
1119 next=head->next;
1120 free(head);
1121 head=next;
1122 }
1123 head=jump_out[page];
1124 jump_out[page]=0;
1125 while(head!=NULL) {
1126 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1127 void *host_addr=find_extjump_insn(head->addr);
1128 mark_clear_cache(host_addr);
1129 set_jump_target(host_addr, head->addr);
1130 next=head->next;
1131 free(head);
1132 head=next;
1133 }
1134}
1135
1136static void invalidate_block_range(u_int block, u_int first, u_int last)
1137{
1138 u_int page=get_page(block<<12);
1139 //printf("first=%d last=%d\n",first,last);
1140 invalidate_page(page);
1141 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1142 assert(last<page+5);
1143 // Invalidate the adjacent pages if a block crosses a 4K boundary
1144 while(first<page) {
1145 invalidate_page(first);
1146 first++;
1147 }
1148 for(first=page+1;first<last;first++) {
1149 invalidate_page(first);
1150 }
1151 do_clear_cache();
1152
1153 // Don't trap writes
1154 invalid_code[block]=1;
1155
1156 #ifdef USE_MINI_HT
1157 memset(mini_ht,-1,sizeof(mini_ht));
1158 #endif
1159}
1160
1161void invalidate_block(u_int block)
1162{
1163 u_int page=get_page(block<<12);
1164 u_int vpage=get_vpage(block<<12);
1165 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1166 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1167 u_int first,last;
1168 first=last=page;
1169 struct ll_entry *head;
1170 head=jump_dirty[vpage];
1171 //printf("page=%d vpage=%d\n",page,vpage);
1172 while(head!=NULL) {
1173 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1174 u_char *start, *end;
1175 get_bounds(head->addr, &start, &end);
1176 //printf("start: %p end: %p\n", start, end);
1177 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1178 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1179 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1180 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1181 }
1182 }
1183 }
1184 head=head->next;
1185 }
1186 invalidate_block_range(block,first,last);
1187}
1188
1189void invalidate_addr(u_int addr)
1190{
1191 //static int rhits;
1192 // this check is done by the caller
1193 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1194 u_int page=get_vpage(addr);
1195 if(page<2048) { // RAM
1196 struct ll_entry *head;
1197 u_int addr_min=~0, addr_max=0;
1198 u_int mask=RAM_SIZE-1;
1199 u_int addr_main=0x80000000|(addr&mask);
1200 int pg1;
1201 inv_code_start=addr_main&~0xfff;
1202 inv_code_end=addr_main|0xfff;
1203 pg1=page;
1204 if (pg1>0) {
1205 // must check previous page too because of spans..
1206 pg1--;
1207 inv_code_start-=0x1000;
1208 }
1209 for(;pg1<=page;pg1++) {
1210 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1211 u_char *start_h, *end_h;
1212 u_int start, end;
1213 get_bounds(head->addr, &start_h, &end_h);
1214 start = (uintptr_t)start_h - ram_offset;
1215 end = (uintptr_t)end_h - ram_offset;
1216 if(start<=addr_main&&addr_main<end) {
1217 if(start<addr_min) addr_min=start;
1218 if(end>addr_max) addr_max=end;
1219 }
1220 else if(addr_main<start) {
1221 if(start<inv_code_end)
1222 inv_code_end=start-1;
1223 }
1224 else {
1225 if(end>inv_code_start)
1226 inv_code_start=end;
1227 }
1228 }
1229 }
1230 if (addr_min!=~0) {
1231 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1232 inv_code_start=inv_code_end=~0;
1233 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1234 return;
1235 }
1236 else {
1237 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1238 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1239 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1240 return;
1241 }
1242 }
1243 invalidate_block(addr>>12);
1244}
1245
1246// This is called when loading a save state.
1247// Anything could have changed, so invalidate everything.
1248void invalidate_all_pages(void)
1249{
1250 u_int page;
1251 for(page=0;page<4096;page++)
1252 invalidate_page(page);
1253 for(page=0;page<1048576;page++)
1254 if(!invalid_code[page]) {
1255 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1256 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1257 }
1258 #ifdef USE_MINI_HT
1259 memset(mini_ht,-1,sizeof(mini_ht));
1260 #endif
1261 do_clear_cache();
1262}
1263
1264static void do_invstub(int n)
1265{
1266 literal_pool(20);
1267 u_int reglist=stubs[n].a;
1268 set_jump_target(stubs[n].addr, out);
1269 save_regs(reglist);
1270 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1271 emit_far_call(invalidate_addr);
1272 restore_regs(reglist);
1273 emit_jmp(stubs[n].retaddr); // return address
1274}
1275
1276// Add an entry to jump_out after making a link
1277// src should point to code by emit_extjump2()
1278void add_link(u_int vaddr,void *src)
1279{
1280 u_int page=get_page(vaddr);
1281 inv_debug("add_link: %p -> %x (%d)\n",src,vaddr,page);
1282 check_extjump2(src);
1283 ll_add(jump_out+page,vaddr,src);
1284 //void *ptr=get_pointer(src);
1285 //inv_debug("add_link: Pointer is to %p\n",ptr);
1286}
1287
1288// If a code block was found to be unmodified (bit was set in
1289// restore_candidate) and it remains unmodified (bit is clear
1290// in invalid_code) then move the entries for that 4K page from
1291// the dirty list to the clean list.
1292void clean_blocks(u_int page)
1293{
1294 struct ll_entry *head;
1295 inv_debug("INV: clean_blocks page=%d\n",page);
1296 head=jump_dirty[page];
1297 while(head!=NULL) {
1298 if(!invalid_code[head->vaddr>>12]) {
1299 // Don't restore blocks which are about to expire from the cache
1300 if (doesnt_expire_soon(head->addr)) {
1301 if(verify_dirty(head->addr)) {
1302 u_char *start, *end;
1303 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1304 u_int i;
1305 u_int inv=0;
1306 get_bounds(head->addr, &start, &end);
1307 if (start - rdram < RAM_SIZE) {
1308 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1309 inv|=invalid_code[i];
1310 }
1311 }
1312 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1313 inv=1;
1314 }
1315 if(!inv) {
1316 void *clean_addr = get_clean_addr(head->addr);
1317 if (doesnt_expire_soon(clean_addr)) {
1318 u_int ppage=page;
1319 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1320 //printf("page=%x, addr=%x\n",page,head->vaddr);
1321 //assert(head->vaddr>>12==(page|0x80000));
1322 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1323 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1324 if (ht_bin->vaddr[0] == head->vaddr)
1325 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1326 if (ht_bin->vaddr[1] == head->vaddr)
1327 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1328 }
1329 }
1330 }
1331 }
1332 }
1333 head=head->next;
1334 }
1335}
1336
1337/* Register allocation */
1338
1339// Note: registers are allocated clean (unmodified state)
1340// if you intend to modify the register, you must call dirty_reg().
1341static void alloc_reg(struct regstat *cur,int i,signed char reg)
1342{
1343 int r,hr;
1344 int preferred_reg = (reg&7);
1345 if(reg==CCREG) preferred_reg=HOST_CCREG;
1346 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1347
1348 // Don't allocate unused registers
1349 if((cur->u>>reg)&1) return;
1350
1351 // see if it's already allocated
1352 for(hr=0;hr<HOST_REGS;hr++)
1353 {
1354 if(cur->regmap[hr]==reg) return;
1355 }
1356
1357 // Keep the same mapping if the register was already allocated in a loop
1358 preferred_reg = loop_reg(i,reg,preferred_reg);
1359
1360 // Try to allocate the preferred register
1361 if(cur->regmap[preferred_reg]==-1) {
1362 cur->regmap[preferred_reg]=reg;
1363 cur->dirty&=~(1<<preferred_reg);
1364 cur->isconst&=~(1<<preferred_reg);
1365 return;
1366 }
1367 r=cur->regmap[preferred_reg];
1368 assert(r < 64);
1369 if((cur->u>>r)&1) {
1370 cur->regmap[preferred_reg]=reg;
1371 cur->dirty&=~(1<<preferred_reg);
1372 cur->isconst&=~(1<<preferred_reg);
1373 return;
1374 }
1375
1376 // Clear any unneeded registers
1377 // We try to keep the mapping consistent, if possible, because it
1378 // makes branches easier (especially loops). So we try to allocate
1379 // first (see above) before removing old mappings. If this is not
1380 // possible then go ahead and clear out the registers that are no
1381 // longer needed.
1382 for(hr=0;hr<HOST_REGS;hr++)
1383 {
1384 r=cur->regmap[hr];
1385 if(r>=0) {
1386 assert(r < 64);
1387 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1388 }
1389 }
1390 // Try to allocate any available register, but prefer
1391 // registers that have not been used recently.
1392 if(i>0) {
1393 for(hr=0;hr<HOST_REGS;hr++) {
1394 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1395 if(regs[i-1].regmap[hr]!=rs1[i-1]&&regs[i-1].regmap[hr]!=rs2[i-1]&&regs[i-1].regmap[hr]!=rt1[i-1]&&regs[i-1].regmap[hr]!=rt2[i-1]) {
1396 cur->regmap[hr]=reg;
1397 cur->dirty&=~(1<<hr);
1398 cur->isconst&=~(1<<hr);
1399 return;
1400 }
1401 }
1402 }
1403 }
1404 // Try to allocate any available register
1405 for(hr=0;hr<HOST_REGS;hr++) {
1406 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1407 cur->regmap[hr]=reg;
1408 cur->dirty&=~(1<<hr);
1409 cur->isconst&=~(1<<hr);
1410 return;
1411 }
1412 }
1413
1414 // Ok, now we have to evict someone
1415 // Pick a register we hopefully won't need soon
1416 u_char hsn[MAXREG+1];
1417 memset(hsn,10,sizeof(hsn));
1418 int j;
1419 lsn(hsn,i,&preferred_reg);
1420 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1421 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1422 if(i>0) {
1423 // Don't evict the cycle count at entry points, otherwise the entry
1424 // stub will have to write it.
1425 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1426 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1427 for(j=10;j>=3;j--)
1428 {
1429 // Alloc preferred register if available
1430 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1431 for(hr=0;hr<HOST_REGS;hr++) {
1432 // Evict both parts of a 64-bit register
1433 if((cur->regmap[hr]&63)==r) {
1434 cur->regmap[hr]=-1;
1435 cur->dirty&=~(1<<hr);
1436 cur->isconst&=~(1<<hr);
1437 }
1438 }
1439 cur->regmap[preferred_reg]=reg;
1440 return;
1441 }
1442 for(r=1;r<=MAXREG;r++)
1443 {
1444 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1445 for(hr=0;hr<HOST_REGS;hr++) {
1446 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1447 if(cur->regmap[hr]==r) {
1448 cur->regmap[hr]=reg;
1449 cur->dirty&=~(1<<hr);
1450 cur->isconst&=~(1<<hr);
1451 return;
1452 }
1453 }
1454 }
1455 }
1456 }
1457 }
1458 }
1459 for(j=10;j>=0;j--)
1460 {
1461 for(r=1;r<=MAXREG;r++)
1462 {
1463 if(hsn[r]==j) {
1464 for(hr=0;hr<HOST_REGS;hr++) {
1465 if(cur->regmap[hr]==r) {
1466 cur->regmap[hr]=reg;
1467 cur->dirty&=~(1<<hr);
1468 cur->isconst&=~(1<<hr);
1469 return;
1470 }
1471 }
1472 }
1473 }
1474 }
1475 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1476}
1477
1478// Allocate a temporary register. This is done without regard to
1479// dirty status or whether the register we request is on the unneeded list
1480// Note: This will only allocate one register, even if called multiple times
1481static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1482{
1483 int r,hr;
1484 int preferred_reg = -1;
1485
1486 // see if it's already allocated
1487 for(hr=0;hr<HOST_REGS;hr++)
1488 {
1489 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1490 }
1491
1492 // Try to allocate any available register
1493 for(hr=HOST_REGS-1;hr>=0;hr--) {
1494 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1495 cur->regmap[hr]=reg;
1496 cur->dirty&=~(1<<hr);
1497 cur->isconst&=~(1<<hr);
1498 return;
1499 }
1500 }
1501
1502 // Find an unneeded register
1503 for(hr=HOST_REGS-1;hr>=0;hr--)
1504 {
1505 r=cur->regmap[hr];
1506 if(r>=0) {
1507 assert(r < 64);
1508 if((cur->u>>r)&1) {
1509 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1510 cur->regmap[hr]=reg;
1511 cur->dirty&=~(1<<hr);
1512 cur->isconst&=~(1<<hr);
1513 return;
1514 }
1515 }
1516 }
1517 }
1518
1519 // Ok, now we have to evict someone
1520 // Pick a register we hopefully won't need soon
1521 // TODO: we might want to follow unconditional jumps here
1522 // TODO: get rid of dupe code and make this into a function
1523 u_char hsn[MAXREG+1];
1524 memset(hsn,10,sizeof(hsn));
1525 int j;
1526 lsn(hsn,i,&preferred_reg);
1527 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1528 if(i>0) {
1529 // Don't evict the cycle count at entry points, otherwise the entry
1530 // stub will have to write it.
1531 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1532 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1533 for(j=10;j>=3;j--)
1534 {
1535 for(r=1;r<=MAXREG;r++)
1536 {
1537 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1538 for(hr=0;hr<HOST_REGS;hr++) {
1539 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1540 if(cur->regmap[hr]==r) {
1541 cur->regmap[hr]=reg;
1542 cur->dirty&=~(1<<hr);
1543 cur->isconst&=~(1<<hr);
1544 return;
1545 }
1546 }
1547 }
1548 }
1549 }
1550 }
1551 }
1552 for(j=10;j>=0;j--)
1553 {
1554 for(r=1;r<=MAXREG;r++)
1555 {
1556 if(hsn[r]==j) {
1557 for(hr=0;hr<HOST_REGS;hr++) {
1558 if(cur->regmap[hr]==r) {
1559 cur->regmap[hr]=reg;
1560 cur->dirty&=~(1<<hr);
1561 cur->isconst&=~(1<<hr);
1562 return;
1563 }
1564 }
1565 }
1566 }
1567 }
1568 SysPrintf("This shouldn't happen");abort();
1569}
1570
1571static void mov_alloc(struct regstat *current,int i)
1572{
1573 // Note: Don't need to actually alloc the source registers
1574 //alloc_reg(current,i,rs1[i]);
1575 alloc_reg(current,i,rt1[i]);
1576
1577 clear_const(current,rs1[i]);
1578 clear_const(current,rt1[i]);
1579 dirty_reg(current,rt1[i]);
1580}
1581
1582static void shiftimm_alloc(struct regstat *current,int i)
1583{
1584 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1585 {
1586 if(rt1[i]) {
1587 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1588 else lt1[i]=rs1[i];
1589 alloc_reg(current,i,rt1[i]);
1590 dirty_reg(current,rt1[i]);
1591 if(is_const(current,rs1[i])) {
1592 int v=get_const(current,rs1[i]);
1593 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1594 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1595 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1596 }
1597 else clear_const(current,rt1[i]);
1598 }
1599 }
1600 else
1601 {
1602 clear_const(current,rs1[i]);
1603 clear_const(current,rt1[i]);
1604 }
1605
1606 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1607 {
1608 assert(0);
1609 }
1610 if(opcode2[i]==0x3c) // DSLL32
1611 {
1612 assert(0);
1613 }
1614 if(opcode2[i]==0x3e) // DSRL32
1615 {
1616 assert(0);
1617 }
1618 if(opcode2[i]==0x3f) // DSRA32
1619 {
1620 assert(0);
1621 }
1622}
1623
1624static void shift_alloc(struct regstat *current,int i)
1625{
1626 if(rt1[i]) {
1627 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1628 {
1629 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1630 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1631 alloc_reg(current,i,rt1[i]);
1632 if(rt1[i]==rs2[i]) {
1633 alloc_reg_temp(current,i,-1);
1634 minimum_free_regs[i]=1;
1635 }
1636 } else { // DSLLV/DSRLV/DSRAV
1637 assert(0);
1638 }
1639 clear_const(current,rs1[i]);
1640 clear_const(current,rs2[i]);
1641 clear_const(current,rt1[i]);
1642 dirty_reg(current,rt1[i]);
1643 }
1644}
1645
1646static void alu_alloc(struct regstat *current,int i)
1647{
1648 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1649 if(rt1[i]) {
1650 if(rs1[i]&&rs2[i]) {
1651 alloc_reg(current,i,rs1[i]);
1652 alloc_reg(current,i,rs2[i]);
1653 }
1654 else {
1655 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1656 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1657 }
1658 alloc_reg(current,i,rt1[i]);
1659 }
1660 }
1661 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1662 if(rt1[i]) {
1663 alloc_reg(current,i,rs1[i]);
1664 alloc_reg(current,i,rs2[i]);
1665 alloc_reg(current,i,rt1[i]);
1666 }
1667 }
1668 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1669 if(rt1[i]) {
1670 if(rs1[i]&&rs2[i]) {
1671 alloc_reg(current,i,rs1[i]);
1672 alloc_reg(current,i,rs2[i]);
1673 }
1674 else
1675 {
1676 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1677 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1678 }
1679 alloc_reg(current,i,rt1[i]);
1680 }
1681 }
1682 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1683 assert(0);
1684 }
1685 clear_const(current,rs1[i]);
1686 clear_const(current,rs2[i]);
1687 clear_const(current,rt1[i]);
1688 dirty_reg(current,rt1[i]);
1689}
1690
1691static void imm16_alloc(struct regstat *current,int i)
1692{
1693 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1694 else lt1[i]=rs1[i];
1695 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1696 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1697 assert(0);
1698 }
1699 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1700 clear_const(current,rs1[i]);
1701 clear_const(current,rt1[i]);
1702 }
1703 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1704 if(is_const(current,rs1[i])) {
1705 int v=get_const(current,rs1[i]);
1706 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1707 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1708 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1709 }
1710 else clear_const(current,rt1[i]);
1711 }
1712 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1713 if(is_const(current,rs1[i])) {
1714 int v=get_const(current,rs1[i]);
1715 set_const(current,rt1[i],v+imm[i]);
1716 }
1717 else clear_const(current,rt1[i]);
1718 }
1719 else {
1720 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1721 }
1722 dirty_reg(current,rt1[i]);
1723}
1724
1725static void load_alloc(struct regstat *current,int i)
1726{
1727 clear_const(current,rt1[i]);
1728 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1729 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1730 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1731 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1732 alloc_reg(current,i,rt1[i]);
1733 assert(get_reg(current->regmap,rt1[i])>=0);
1734 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1735 {
1736 assert(0);
1737 }
1738 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1739 {
1740 assert(0);
1741 }
1742 dirty_reg(current,rt1[i]);
1743 // LWL/LWR need a temporary register for the old value
1744 if(opcode[i]==0x22||opcode[i]==0x26)
1745 {
1746 alloc_reg(current,i,FTEMP);
1747 alloc_reg_temp(current,i,-1);
1748 minimum_free_regs[i]=1;
1749 }
1750 }
1751 else
1752 {
1753 // Load to r0 or unneeded register (dummy load)
1754 // but we still need a register to calculate the address
1755 if(opcode[i]==0x22||opcode[i]==0x26)
1756 {
1757 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1758 }
1759 alloc_reg_temp(current,i,-1);
1760 minimum_free_regs[i]=1;
1761 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1762 {
1763 assert(0);
1764 }
1765 }
1766}
1767
1768void store_alloc(struct regstat *current,int i)
1769{
1770 clear_const(current,rs2[i]);
1771 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1772 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1773 alloc_reg(current,i,rs2[i]);
1774 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1775 assert(0);
1776 }
1777 #if defined(HOST_IMM8)
1778 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1779 else alloc_reg(current,i,INVCP);
1780 #endif
1781 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1782 alloc_reg(current,i,FTEMP);
1783 }
1784 // We need a temporary register for address generation
1785 alloc_reg_temp(current,i,-1);
1786 minimum_free_regs[i]=1;
1787}
1788
1789void c1ls_alloc(struct regstat *current,int i)
1790{
1791 //clear_const(current,rs1[i]); // FIXME
1792 clear_const(current,rt1[i]);
1793 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1794 alloc_reg(current,i,CSREG); // Status
1795 alloc_reg(current,i,FTEMP);
1796 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1797 assert(0);
1798 }
1799 #if defined(HOST_IMM8)
1800 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1801 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1802 alloc_reg(current,i,INVCP);
1803 #endif
1804 // We need a temporary register for address generation
1805 alloc_reg_temp(current,i,-1);
1806}
1807
1808void c2ls_alloc(struct regstat *current,int i)
1809{
1810 clear_const(current,rt1[i]);
1811 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1812 alloc_reg(current,i,FTEMP);
1813 #if defined(HOST_IMM8)
1814 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1815 if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1816 alloc_reg(current,i,INVCP);
1817 #endif
1818 // We need a temporary register for address generation
1819 alloc_reg_temp(current,i,-1);
1820 minimum_free_regs[i]=1;
1821}
1822
1823#ifndef multdiv_alloc
1824void multdiv_alloc(struct regstat *current,int i)
1825{
1826 // case 0x18: MULT
1827 // case 0x19: MULTU
1828 // case 0x1A: DIV
1829 // case 0x1B: DIVU
1830 // case 0x1C: DMULT
1831 // case 0x1D: DMULTU
1832 // case 0x1E: DDIV
1833 // case 0x1F: DDIVU
1834 clear_const(current,rs1[i]);
1835 clear_const(current,rs2[i]);
1836 if(rs1[i]&&rs2[i])
1837 {
1838 if((opcode2[i]&4)==0) // 32-bit
1839 {
1840 current->u&=~(1LL<<HIREG);
1841 current->u&=~(1LL<<LOREG);
1842 alloc_reg(current,i,HIREG);
1843 alloc_reg(current,i,LOREG);
1844 alloc_reg(current,i,rs1[i]);
1845 alloc_reg(current,i,rs2[i]);
1846 dirty_reg(current,HIREG);
1847 dirty_reg(current,LOREG);
1848 }
1849 else // 64-bit
1850 {
1851 assert(0);
1852 }
1853 }
1854 else
1855 {
1856 // Multiply by zero is zero.
1857 // MIPS does not have a divide by zero exception.
1858 // The result is undefined, we return zero.
1859 alloc_reg(current,i,HIREG);
1860 alloc_reg(current,i,LOREG);
1861 dirty_reg(current,HIREG);
1862 dirty_reg(current,LOREG);
1863 }
1864}
1865#endif
1866
1867void cop0_alloc(struct regstat *current,int i)
1868{
1869 if(opcode2[i]==0) // MFC0
1870 {
1871 if(rt1[i]) {
1872 clear_const(current,rt1[i]);
1873 alloc_all(current,i);
1874 alloc_reg(current,i,rt1[i]);
1875 dirty_reg(current,rt1[i]);
1876 }
1877 }
1878 else if(opcode2[i]==4) // MTC0
1879 {
1880 if(rs1[i]){
1881 clear_const(current,rs1[i]);
1882 alloc_reg(current,i,rs1[i]);
1883 alloc_all(current,i);
1884 }
1885 else {
1886 alloc_all(current,i); // FIXME: Keep r0
1887 current->u&=~1LL;
1888 alloc_reg(current,i,0);
1889 }
1890 }
1891 else
1892 {
1893 // TLBR/TLBWI/TLBWR/TLBP/ERET
1894 assert(opcode2[i]==0x10);
1895 alloc_all(current,i);
1896 }
1897 minimum_free_regs[i]=HOST_REGS;
1898}
1899
1900static void cop12_alloc(struct regstat *current,int i)
1901{
1902 alloc_reg(current,i,CSREG); // Load status
1903 if(opcode2[i]<3) // MFC1/CFC1
1904 {
1905 if(rt1[i]){
1906 clear_const(current,rt1[i]);
1907 alloc_reg(current,i,rt1[i]);
1908 dirty_reg(current,rt1[i]);
1909 }
1910 alloc_reg_temp(current,i,-1);
1911 }
1912 else if(opcode2[i]>3) // MTC1/CTC1
1913 {
1914 if(rs1[i]){
1915 clear_const(current,rs1[i]);
1916 alloc_reg(current,i,rs1[i]);
1917 }
1918 else {
1919 current->u&=~1LL;
1920 alloc_reg(current,i,0);
1921 }
1922 alloc_reg_temp(current,i,-1);
1923 }
1924 minimum_free_regs[i]=1;
1925}
1926
1927void c2op_alloc(struct regstat *current,int i)
1928{
1929 alloc_reg_temp(current,i,-1);
1930}
1931
1932void syscall_alloc(struct regstat *current,int i)
1933{
1934 alloc_cc(current,i);
1935 dirty_reg(current,CCREG);
1936 alloc_all(current,i);
1937 minimum_free_regs[i]=HOST_REGS;
1938 current->isconst=0;
1939}
1940
1941void delayslot_alloc(struct regstat *current,int i)
1942{
1943 switch(itype[i]) {
1944 case UJUMP:
1945 case CJUMP:
1946 case SJUMP:
1947 case RJUMP:
1948 case SYSCALL:
1949 case HLECALL:
1950 case SPAN:
1951 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
1952 SysPrintf("Disabled speculative precompilation\n");
1953 stop_after_jal=1;
1954 break;
1955 case IMM16:
1956 imm16_alloc(current,i);
1957 break;
1958 case LOAD:
1959 case LOADLR:
1960 load_alloc(current,i);
1961 break;
1962 case STORE:
1963 case STORELR:
1964 store_alloc(current,i);
1965 break;
1966 case ALU:
1967 alu_alloc(current,i);
1968 break;
1969 case SHIFT:
1970 shift_alloc(current,i);
1971 break;
1972 case MULTDIV:
1973 multdiv_alloc(current,i);
1974 break;
1975 case SHIFTIMM:
1976 shiftimm_alloc(current,i);
1977 break;
1978 case MOV:
1979 mov_alloc(current,i);
1980 break;
1981 case COP0:
1982 cop0_alloc(current,i);
1983 break;
1984 case COP1:
1985 case COP2:
1986 cop12_alloc(current,i);
1987 break;
1988 case C1LS:
1989 c1ls_alloc(current,i);
1990 break;
1991 case C2LS:
1992 c2ls_alloc(current,i);
1993 break;
1994 case C2OP:
1995 c2op_alloc(current,i);
1996 break;
1997 }
1998}
1999
2000// Special case where a branch and delay slot span two pages in virtual memory
2001static void pagespan_alloc(struct regstat *current,int i)
2002{
2003 current->isconst=0;
2004 current->wasconst=0;
2005 regs[i].wasconst=0;
2006 minimum_free_regs[i]=HOST_REGS;
2007 alloc_all(current,i);
2008 alloc_cc(current,i);
2009 dirty_reg(current,CCREG);
2010 if(opcode[i]==3) // JAL
2011 {
2012 alloc_reg(current,i,31);
2013 dirty_reg(current,31);
2014 }
2015 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2016 {
2017 alloc_reg(current,i,rs1[i]);
2018 if (rt1[i]!=0) {
2019 alloc_reg(current,i,rt1[i]);
2020 dirty_reg(current,rt1[i]);
2021 }
2022 }
2023 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2024 {
2025 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2026 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2027 }
2028 else
2029 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2030 {
2031 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2032 }
2033 //else ...
2034}
2035
2036static void add_stub(enum stub_type type, void *addr, void *retaddr,
2037 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2038{
2039 assert(stubcount < ARRAY_SIZE(stubs));
2040 stubs[stubcount].type = type;
2041 stubs[stubcount].addr = addr;
2042 stubs[stubcount].retaddr = retaddr;
2043 stubs[stubcount].a = a;
2044 stubs[stubcount].b = b;
2045 stubs[stubcount].c = c;
2046 stubs[stubcount].d = d;
2047 stubs[stubcount].e = e;
2048 stubcount++;
2049}
2050
2051static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2052 int i, int addr_reg, struct regstat *i_regs, int ccadj, u_int reglist)
2053{
2054 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2055}
2056
2057// Write out a single register
2058static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2059{
2060 int hr;
2061 for(hr=0;hr<HOST_REGS;hr++) {
2062 if(hr!=EXCLUDE_REG) {
2063 if((regmap[hr]&63)==r) {
2064 if((dirty>>hr)&1) {
2065 assert(regmap[hr]<64);
2066 emit_storereg(r,hr);
2067 }
2068 }
2069 }
2070 }
2071}
2072
2073static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2074{
2075 //if(dirty_pre==dirty) return;
2076 int hr,reg;
2077 for(hr=0;hr<HOST_REGS;hr++) {
2078 if(hr!=EXCLUDE_REG) {
2079 reg=pre[hr];
2080 if(((~u)>>(reg&63))&1) {
2081 if(reg>0) {
2082 if(((dirty_pre&~dirty)>>hr)&1) {
2083 if(reg>0&&reg<34) {
2084 emit_storereg(reg,hr);
2085 }
2086 else if(reg>=64) {
2087 assert(0);
2088 }
2089 }
2090 }
2091 }
2092 }
2093 }
2094}
2095
2096// trashes r2
2097static void pass_args(int a0, int a1)
2098{
2099 if(a0==1&&a1==0) {
2100 // must swap
2101 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2102 }
2103 else if(a0!=0&&a1==0) {
2104 emit_mov(a1,1);
2105 if (a0>=0) emit_mov(a0,0);
2106 }
2107 else {
2108 if(a0>=0&&a0!=0) emit_mov(a0,0);
2109 if(a1>=0&&a1!=1) emit_mov(a1,1);
2110 }
2111}
2112
2113static void alu_assemble(int i,struct regstat *i_regs)
2114{
2115 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2116 if(rt1[i]) {
2117 signed char s1,s2,t;
2118 t=get_reg(i_regs->regmap,rt1[i]);
2119 if(t>=0) {
2120 s1=get_reg(i_regs->regmap,rs1[i]);
2121 s2=get_reg(i_regs->regmap,rs2[i]);
2122 if(rs1[i]&&rs2[i]) {
2123 assert(s1>=0);
2124 assert(s2>=0);
2125 if(opcode2[i]&2) emit_sub(s1,s2,t);
2126 else emit_add(s1,s2,t);
2127 }
2128 else if(rs1[i]) {
2129 if(s1>=0) emit_mov(s1,t);
2130 else emit_loadreg(rs1[i],t);
2131 }
2132 else if(rs2[i]) {
2133 if(s2>=0) {
2134 if(opcode2[i]&2) emit_neg(s2,t);
2135 else emit_mov(s2,t);
2136 }
2137 else {
2138 emit_loadreg(rs2[i],t);
2139 if(opcode2[i]&2) emit_neg(t,t);
2140 }
2141 }
2142 else emit_zeroreg(t);
2143 }
2144 }
2145 }
2146 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2147 assert(0);
2148 }
2149 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2150 if(rt1[i]) {
2151 signed char s1l,s2l,t;
2152 {
2153 t=get_reg(i_regs->regmap,rt1[i]);
2154 //assert(t>=0);
2155 if(t>=0) {
2156 s1l=get_reg(i_regs->regmap,rs1[i]);
2157 s2l=get_reg(i_regs->regmap,rs2[i]);
2158 if(rs2[i]==0) // rx<r0
2159 {
2160 assert(s1l>=0);
2161 if(opcode2[i]==0x2a) // SLT
2162 emit_shrimm(s1l,31,t);
2163 else // SLTU (unsigned can not be less than zero)
2164 emit_zeroreg(t);
2165 }
2166 else if(rs1[i]==0) // r0<rx
2167 {
2168 assert(s2l>=0);
2169 if(opcode2[i]==0x2a) // SLT
2170 emit_set_gz32(s2l,t);
2171 else // SLTU (set if not zero)
2172 emit_set_nz32(s2l,t);
2173 }
2174 else{
2175 assert(s1l>=0);assert(s2l>=0);
2176 if(opcode2[i]==0x2a) // SLT
2177 emit_set_if_less32(s1l,s2l,t);
2178 else // SLTU
2179 emit_set_if_carry32(s1l,s2l,t);
2180 }
2181 }
2182 }
2183 }
2184 }
2185 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2186 if(rt1[i]) {
2187 signed char s1l,s2l,tl;
2188 tl=get_reg(i_regs->regmap,rt1[i]);
2189 {
2190 if(tl>=0) {
2191 s1l=get_reg(i_regs->regmap,rs1[i]);
2192 s2l=get_reg(i_regs->regmap,rs2[i]);
2193 if(rs1[i]&&rs2[i]) {
2194 assert(s1l>=0);
2195 assert(s2l>=0);
2196 if(opcode2[i]==0x24) { // AND
2197 emit_and(s1l,s2l,tl);
2198 } else
2199 if(opcode2[i]==0x25) { // OR
2200 emit_or(s1l,s2l,tl);
2201 } else
2202 if(opcode2[i]==0x26) { // XOR
2203 emit_xor(s1l,s2l,tl);
2204 } else
2205 if(opcode2[i]==0x27) { // NOR
2206 emit_or(s1l,s2l,tl);
2207 emit_not(tl,tl);
2208 }
2209 }
2210 else
2211 {
2212 if(opcode2[i]==0x24) { // AND
2213 emit_zeroreg(tl);
2214 } else
2215 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2216 if(rs1[i]){
2217 if(s1l>=0) emit_mov(s1l,tl);
2218 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2219 }
2220 else
2221 if(rs2[i]){
2222 if(s2l>=0) emit_mov(s2l,tl);
2223 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2224 }
2225 else emit_zeroreg(tl);
2226 } else
2227 if(opcode2[i]==0x27) { // NOR
2228 if(rs1[i]){
2229 if(s1l>=0) emit_not(s1l,tl);
2230 else {
2231 emit_loadreg(rs1[i],tl);
2232 emit_not(tl,tl);
2233 }
2234 }
2235 else
2236 if(rs2[i]){
2237 if(s2l>=0) emit_not(s2l,tl);
2238 else {
2239 emit_loadreg(rs2[i],tl);
2240 emit_not(tl,tl);
2241 }
2242 }
2243 else emit_movimm(-1,tl);
2244 }
2245 }
2246 }
2247 }
2248 }
2249 }
2250}
2251
2252void imm16_assemble(int i,struct regstat *i_regs)
2253{
2254 if (opcode[i]==0x0f) { // LUI
2255 if(rt1[i]) {
2256 signed char t;
2257 t=get_reg(i_regs->regmap,rt1[i]);
2258 //assert(t>=0);
2259 if(t>=0) {
2260 if(!((i_regs->isconst>>t)&1))
2261 emit_movimm(imm[i]<<16,t);
2262 }
2263 }
2264 }
2265 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2266 if(rt1[i]) {
2267 signed char s,t;
2268 t=get_reg(i_regs->regmap,rt1[i]);
2269 s=get_reg(i_regs->regmap,rs1[i]);
2270 if(rs1[i]) {
2271 //assert(t>=0);
2272 //assert(s>=0);
2273 if(t>=0) {
2274 if(!((i_regs->isconst>>t)&1)) {
2275 if(s<0) {
2276 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2277 emit_addimm(t,imm[i],t);
2278 }else{
2279 if(!((i_regs->wasconst>>s)&1))
2280 emit_addimm(s,imm[i],t);
2281 else
2282 emit_movimm(constmap[i][s]+imm[i],t);
2283 }
2284 }
2285 }
2286 } else {
2287 if(t>=0) {
2288 if(!((i_regs->isconst>>t)&1))
2289 emit_movimm(imm[i],t);
2290 }
2291 }
2292 }
2293 }
2294 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2295 if(rt1[i]) {
2296 signed char sl,tl;
2297 tl=get_reg(i_regs->regmap,rt1[i]);
2298 sl=get_reg(i_regs->regmap,rs1[i]);
2299 if(tl>=0) {
2300 if(rs1[i]) {
2301 assert(sl>=0);
2302 emit_addimm(sl,imm[i],tl);
2303 } else {
2304 emit_movimm(imm[i],tl);
2305 }
2306 }
2307 }
2308 }
2309 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2310 if(rt1[i]) {
2311 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2312 signed char sl,t;
2313 t=get_reg(i_regs->regmap,rt1[i]);
2314 sl=get_reg(i_regs->regmap,rs1[i]);
2315 //assert(t>=0);
2316 if(t>=0) {
2317 if(rs1[i]>0) {
2318 if(opcode[i]==0x0a) { // SLTI
2319 if(sl<0) {
2320 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2321 emit_slti32(t,imm[i],t);
2322 }else{
2323 emit_slti32(sl,imm[i],t);
2324 }
2325 }
2326 else { // SLTIU
2327 if(sl<0) {
2328 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2329 emit_sltiu32(t,imm[i],t);
2330 }else{
2331 emit_sltiu32(sl,imm[i],t);
2332 }
2333 }
2334 }else{
2335 // SLTI(U) with r0 is just stupid,
2336 // nonetheless examples can be found
2337 if(opcode[i]==0x0a) // SLTI
2338 if(0<imm[i]) emit_movimm(1,t);
2339 else emit_zeroreg(t);
2340 else // SLTIU
2341 {
2342 if(imm[i]) emit_movimm(1,t);
2343 else emit_zeroreg(t);
2344 }
2345 }
2346 }
2347 }
2348 }
2349 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2350 if(rt1[i]) {
2351 signed char sl,tl;
2352 tl=get_reg(i_regs->regmap,rt1[i]);
2353 sl=get_reg(i_regs->regmap,rs1[i]);
2354 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2355 if(opcode[i]==0x0c) //ANDI
2356 {
2357 if(rs1[i]) {
2358 if(sl<0) {
2359 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2360 emit_andimm(tl,imm[i],tl);
2361 }else{
2362 if(!((i_regs->wasconst>>sl)&1))
2363 emit_andimm(sl,imm[i],tl);
2364 else
2365 emit_movimm(constmap[i][sl]&imm[i],tl);
2366 }
2367 }
2368 else
2369 emit_zeroreg(tl);
2370 }
2371 else
2372 {
2373 if(rs1[i]) {
2374 if(sl<0) {
2375 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2376 }
2377 if(opcode[i]==0x0d) { // ORI
2378 if(sl<0) {
2379 emit_orimm(tl,imm[i],tl);
2380 }else{
2381 if(!((i_regs->wasconst>>sl)&1))
2382 emit_orimm(sl,imm[i],tl);
2383 else
2384 emit_movimm(constmap[i][sl]|imm[i],tl);
2385 }
2386 }
2387 if(opcode[i]==0x0e) { // XORI
2388 if(sl<0) {
2389 emit_xorimm(tl,imm[i],tl);
2390 }else{
2391 if(!((i_regs->wasconst>>sl)&1))
2392 emit_xorimm(sl,imm[i],tl);
2393 else
2394 emit_movimm(constmap[i][sl]^imm[i],tl);
2395 }
2396 }
2397 }
2398 else {
2399 emit_movimm(imm[i],tl);
2400 }
2401 }
2402 }
2403 }
2404 }
2405}
2406
2407void shiftimm_assemble(int i,struct regstat *i_regs)
2408{
2409 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2410 {
2411 if(rt1[i]) {
2412 signed char s,t;
2413 t=get_reg(i_regs->regmap,rt1[i]);
2414 s=get_reg(i_regs->regmap,rs1[i]);
2415 //assert(t>=0);
2416 if(t>=0&&!((i_regs->isconst>>t)&1)){
2417 if(rs1[i]==0)
2418 {
2419 emit_zeroreg(t);
2420 }
2421 else
2422 {
2423 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2424 if(imm[i]) {
2425 if(opcode2[i]==0) // SLL
2426 {
2427 emit_shlimm(s<0?t:s,imm[i],t);
2428 }
2429 if(opcode2[i]==2) // SRL
2430 {
2431 emit_shrimm(s<0?t:s,imm[i],t);
2432 }
2433 if(opcode2[i]==3) // SRA
2434 {
2435 emit_sarimm(s<0?t:s,imm[i],t);
2436 }
2437 }else{
2438 // Shift by zero
2439 if(s>=0 && s!=t) emit_mov(s,t);
2440 }
2441 }
2442 }
2443 //emit_storereg(rt1[i],t); //DEBUG
2444 }
2445 }
2446 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2447 {
2448 assert(0);
2449 }
2450 if(opcode2[i]==0x3c) // DSLL32
2451 {
2452 assert(0);
2453 }
2454 if(opcode2[i]==0x3e) // DSRL32
2455 {
2456 assert(0);
2457 }
2458 if(opcode2[i]==0x3f) // DSRA32
2459 {
2460 assert(0);
2461 }
2462}
2463
2464#ifndef shift_assemble
2465static void shift_assemble(int i,struct regstat *i_regs)
2466{
2467 signed char s,t,shift;
2468 if (rt1[i] == 0)
2469 return;
2470 assert(opcode2[i]<=0x07); // SLLV/SRLV/SRAV
2471 t = get_reg(i_regs->regmap, rt1[i]);
2472 s = get_reg(i_regs->regmap, rs1[i]);
2473 shift = get_reg(i_regs->regmap, rs2[i]);
2474 if (t < 0)
2475 return;
2476
2477 if(rs1[i]==0)
2478 emit_zeroreg(t);
2479 else if(rs2[i]==0) {
2480 assert(s>=0);
2481 if(s!=t) emit_mov(s,t);
2482 }
2483 else {
2484 host_tempreg_acquire();
2485 emit_andimm(shift,31,HOST_TEMPREG);
2486 switch(opcode2[i]) {
2487 case 4: // SLLV
2488 emit_shl(s,HOST_TEMPREG,t);
2489 break;
2490 case 6: // SRLV
2491 emit_shr(s,HOST_TEMPREG,t);
2492 break;
2493 case 7: // SRAV
2494 emit_sar(s,HOST_TEMPREG,t);
2495 break;
2496 default:
2497 assert(0);
2498 }
2499 host_tempreg_release();
2500 }
2501}
2502
2503#endif
2504
2505enum {
2506 MTYPE_8000 = 0,
2507 MTYPE_8020,
2508 MTYPE_0000,
2509 MTYPE_A000,
2510 MTYPE_1F80,
2511};
2512
2513static int get_ptr_mem_type(u_int a)
2514{
2515 if(a < 0x00200000) {
2516 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2517 // return wrong, must use memhandler for BIOS self-test to pass
2518 // 007 does similar stuff from a00 mirror, weird stuff
2519 return MTYPE_8000;
2520 return MTYPE_0000;
2521 }
2522 if(0x1f800000 <= a && a < 0x1f801000)
2523 return MTYPE_1F80;
2524 if(0x80200000 <= a && a < 0x80800000)
2525 return MTYPE_8020;
2526 if(0xa0000000 <= a && a < 0xa0200000)
2527 return MTYPE_A000;
2528 return MTYPE_8000;
2529}
2530
2531static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override)
2532{
2533 void *jaddr = NULL;
2534 int type=0;
2535 int mr=rs1[i];
2536 if(((smrv_strong|smrv_weak)>>mr)&1) {
2537 type=get_ptr_mem_type(smrv[mr]);
2538 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2539 }
2540 else {
2541 // use the mirror we are running on
2542 type=get_ptr_mem_type(start);
2543 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2544 }
2545
2546 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2547 host_tempreg_acquire();
2548 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2549 addr=*addr_reg_override=HOST_TEMPREG;
2550 type=0;
2551 }
2552 else if(type==MTYPE_0000) { // RAM 0 mirror
2553 host_tempreg_acquire();
2554 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2555 addr=*addr_reg_override=HOST_TEMPREG;
2556 type=0;
2557 }
2558 else if(type==MTYPE_A000) { // RAM A mirror
2559 host_tempreg_acquire();
2560 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2561 addr=*addr_reg_override=HOST_TEMPREG;
2562 type=0;
2563 }
2564 else if(type==MTYPE_1F80) { // scratchpad
2565 if (psxH == (void *)0x1f800000) {
2566 host_tempreg_acquire();
2567 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2568 emit_cmpimm(HOST_TEMPREG,0x1000);
2569 host_tempreg_release();
2570 jaddr=out;
2571 emit_jc(0);
2572 }
2573 else {
2574 // do the usual RAM check, jump will go to the right handler
2575 type=0;
2576 }
2577 }
2578
2579 if(type==0)
2580 {
2581 emit_cmpimm(addr,RAM_SIZE);
2582 jaddr=out;
2583 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2584 // Hint to branch predictor that the branch is unlikely to be taken
2585 if(rs1[i]>=28)
2586 emit_jno_unlikely(0);
2587 else
2588 #endif
2589 emit_jno(0);
2590 if(ram_offset!=0) {
2591 host_tempreg_acquire();
2592 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2593 addr=*addr_reg_override=HOST_TEMPREG;
2594 }
2595 }
2596
2597 return jaddr;
2598}
2599
2600// return memhandler, or get directly accessable address and return 0
2601static void *get_direct_memhandler(void *table, u_int addr,
2602 enum stub_type type, uintptr_t *addr_host)
2603{
2604 uintptr_t l1, l2 = 0;
2605 l1 = ((uintptr_t *)table)[addr>>12];
2606 if ((l1 & (1ul << (sizeof(l1)*8-1))) == 0) {
2607 uintptr_t v = l1 << 1;
2608 *addr_host = v + addr;
2609 return NULL;
2610 }
2611 else {
2612 l1 <<= 1;
2613 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2614 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2615 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2616 l2=((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2617 else
2618 l2=((uintptr_t *)l1)[(addr&0xfff)/4];
2619 if ((l2 & (1<<31)) == 0) {
2620 uintptr_t v = l2 << 1;
2621 *addr_host = v + (addr&0xfff);
2622 return NULL;
2623 }
2624 return (void *)(l2 << 1);
2625 }
2626}
2627
2628static void load_assemble(int i,struct regstat *i_regs)
2629{
2630 int s,tl,addr;
2631 int offset;
2632 void *jaddr=0;
2633 int memtarget=0,c=0;
2634 int fastio_reg_override=-1;
2635 u_int hr,reglist=0;
2636 tl=get_reg(i_regs->regmap,rt1[i]);
2637 s=get_reg(i_regs->regmap,rs1[i]);
2638 offset=imm[i];
2639 for(hr=0;hr<HOST_REGS;hr++) {
2640 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2641 }
2642 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2643 if(s>=0) {
2644 c=(i_regs->wasconst>>s)&1;
2645 if (c) {
2646 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2647 }
2648 }
2649 //printf("load_assemble: c=%d\n",c);
2650 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2651 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2652 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2653 ||rt1[i]==0) {
2654 // could be FIFO, must perform the read
2655 // ||dummy read
2656 assem_debug("(forced read)\n");
2657 tl=get_reg(i_regs->regmap,-1);
2658 assert(tl>=0);
2659 }
2660 if(offset||s<0||c) addr=tl;
2661 else addr=s;
2662 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2663 if(tl>=0) {
2664 //printf("load_assemble: c=%d\n",c);
2665 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2666 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2667 reglist&=~(1<<tl);
2668 if(!c) {
2669 #ifdef R29_HACK
2670 // Strmnnrmn's speed hack
2671 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2672 #endif
2673 {
2674 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2675 }
2676 }
2677 else if(ram_offset&&memtarget) {
2678 host_tempreg_acquire();
2679 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2680 fastio_reg_override=HOST_TEMPREG;
2681 }
2682 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2683 if (opcode[i]==0x20) { // LB
2684 if(!c||memtarget) {
2685 if(!dummy) {
2686 {
2687 int x=0,a=tl;
2688 if(!c) a=addr;
2689 if(fastio_reg_override>=0) a=fastio_reg_override;
2690
2691 emit_movsbl_indexed(x,a,tl);
2692 }
2693 }
2694 if(jaddr)
2695 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2696 }
2697 else
2698 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2699 }
2700 if (opcode[i]==0x21) { // LH
2701 if(!c||memtarget) {
2702 if(!dummy) {
2703 int x=0,a=tl;
2704 if(!c) a=addr;
2705 if(fastio_reg_override>=0) a=fastio_reg_override;
2706 emit_movswl_indexed(x,a,tl);
2707 }
2708 if(jaddr)
2709 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2710 }
2711 else
2712 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2713 }
2714 if (opcode[i]==0x23) { // LW
2715 if(!c||memtarget) {
2716 if(!dummy) {
2717 int a=addr;
2718 if(fastio_reg_override>=0) a=fastio_reg_override;
2719 emit_readword_indexed(0,a,tl);
2720 }
2721 if(jaddr)
2722 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2723 }
2724 else
2725 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2726 }
2727 if (opcode[i]==0x24) { // LBU
2728 if(!c||memtarget) {
2729 if(!dummy) {
2730 int x=0,a=tl;
2731 if(!c) a=addr;
2732 if(fastio_reg_override>=0) a=fastio_reg_override;
2733
2734 emit_movzbl_indexed(x,a,tl);
2735 }
2736 if(jaddr)
2737 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2738 }
2739 else
2740 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2741 }
2742 if (opcode[i]==0x25) { // LHU
2743 if(!c||memtarget) {
2744 if(!dummy) {
2745 int x=0,a=tl;
2746 if(!c) a=addr;
2747 if(fastio_reg_override>=0) a=fastio_reg_override;
2748 emit_movzwl_indexed(x,a,tl);
2749 }
2750 if(jaddr)
2751 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2752 }
2753 else
2754 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2755 }
2756 if (opcode[i]==0x27) { // LWU
2757 assert(0);
2758 }
2759 if (opcode[i]==0x37) { // LD
2760 assert(0);
2761 }
2762 }
2763 if (fastio_reg_override == HOST_TEMPREG)
2764 host_tempreg_release();
2765}
2766
2767#ifndef loadlr_assemble
2768static void loadlr_assemble(int i,struct regstat *i_regs)
2769{
2770 int s,tl,temp,temp2,addr;
2771 int offset;
2772 void *jaddr=0;
2773 int memtarget=0,c=0;
2774 int fastio_reg_override=-1;
2775 u_int hr,reglist=0;
2776 tl=get_reg(i_regs->regmap,rt1[i]);
2777 s=get_reg(i_regs->regmap,rs1[i]);
2778 temp=get_reg(i_regs->regmap,-1);
2779 temp2=get_reg(i_regs->regmap,FTEMP);
2780 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2781 assert(addr<0);
2782 offset=imm[i];
2783 for(hr=0;hr<HOST_REGS;hr++) {
2784 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2785 }
2786 reglist|=1<<temp;
2787 if(offset||s<0||c) addr=temp2;
2788 else addr=s;
2789 if(s>=0) {
2790 c=(i_regs->wasconst>>s)&1;
2791 if(c) {
2792 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2793 }
2794 }
2795 if(!c) {
2796 emit_shlimm(addr,3,temp);
2797 if (opcode[i]==0x22||opcode[i]==0x26) {
2798 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2799 }else{
2800 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2801 }
2802 jaddr=emit_fastpath_cmp_jump(i,temp2,&fastio_reg_override);
2803 }
2804 else {
2805 if(ram_offset&&memtarget) {
2806 host_tempreg_acquire();
2807 emit_addimm(temp2,ram_offset,HOST_TEMPREG);
2808 fastio_reg_override=HOST_TEMPREG;
2809 }
2810 if (opcode[i]==0x22||opcode[i]==0x26) {
2811 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2812 }else{
2813 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2814 }
2815 }
2816 if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
2817 if(!c||memtarget) {
2818 int a=temp2;
2819 if(fastio_reg_override>=0) a=fastio_reg_override;
2820 emit_readword_indexed(0,a,temp2);
2821 if(fastio_reg_override==HOST_TEMPREG) host_tempreg_release();
2822 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2823 }
2824 else
2825 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2826 if(rt1[i]) {
2827 assert(tl>=0);
2828 emit_andimm(temp,24,temp);
2829 if (opcode[i]==0x22) // LWL
2830 emit_xorimm(temp,24,temp);
2831 host_tempreg_acquire();
2832 emit_movimm(-1,HOST_TEMPREG);
2833 if (opcode[i]==0x26) {
2834 emit_shr(temp2,temp,temp2);
2835 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2836 }else{
2837 emit_shl(temp2,temp,temp2);
2838 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2839 }
2840 host_tempreg_release();
2841 emit_or(temp2,tl,tl);
2842 }
2843 //emit_storereg(rt1[i],tl); // DEBUG
2844 }
2845 if (opcode[i]==0x1A||opcode[i]==0x1B) { // LDL/LDR
2846 assert(0);
2847 }
2848}
2849#endif
2850
2851void store_assemble(int i,struct regstat *i_regs)
2852{
2853 int s,tl;
2854 int addr,temp;
2855 int offset;
2856 void *jaddr=0;
2857 enum stub_type type;
2858 int memtarget=0,c=0;
2859 int agr=AGEN1+(i&1);
2860 int fastio_reg_override=-1;
2861 u_int hr,reglist=0;
2862 tl=get_reg(i_regs->regmap,rs2[i]);
2863 s=get_reg(i_regs->regmap,rs1[i]);
2864 temp=get_reg(i_regs->regmap,agr);
2865 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2866 offset=imm[i];
2867 if(s>=0) {
2868 c=(i_regs->wasconst>>s)&1;
2869 if(c) {
2870 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2871 }
2872 }
2873 assert(tl>=0);
2874 assert(temp>=0);
2875 for(hr=0;hr<HOST_REGS;hr++) {
2876 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2877 }
2878 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2879 if(offset||s<0||c) addr=temp;
2880 else addr=s;
2881 if(!c) {
2882 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2883 }
2884 else if(ram_offset&&memtarget) {
2885 host_tempreg_acquire();
2886 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2887 fastio_reg_override=HOST_TEMPREG;
2888 }
2889
2890 if (opcode[i]==0x28) { // SB
2891 if(!c||memtarget) {
2892 int x=0,a=temp;
2893 if(!c) a=addr;
2894 if(fastio_reg_override>=0) a=fastio_reg_override;
2895 emit_writebyte_indexed(tl,x,a);
2896 }
2897 type=STOREB_STUB;
2898 }
2899 if (opcode[i]==0x29) { // SH
2900 if(!c||memtarget) {
2901 int x=0,a=temp;
2902 if(!c) a=addr;
2903 if(fastio_reg_override>=0) a=fastio_reg_override;
2904 emit_writehword_indexed(tl,x,a);
2905 }
2906 type=STOREH_STUB;
2907 }
2908 if (opcode[i]==0x2B) { // SW
2909 if(!c||memtarget) {
2910 int a=addr;
2911 if(fastio_reg_override>=0) a=fastio_reg_override;
2912 emit_writeword_indexed(tl,0,a);
2913 }
2914 type=STOREW_STUB;
2915 }
2916 if (opcode[i]==0x3F) { // SD
2917 assert(0);
2918 type=STORED_STUB;
2919 }
2920 if(fastio_reg_override==HOST_TEMPREG)
2921 host_tempreg_release();
2922 if(jaddr) {
2923 // PCSX store handlers don't check invcode again
2924 reglist|=1<<addr;
2925 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2926 jaddr=0;
2927 }
2928 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
2929 if(!c||memtarget) {
2930 #ifdef DESTRUCTIVE_SHIFT
2931 // The x86 shift operation is 'destructive'; it overwrites the
2932 // source register, so we need to make a copy first and use that.
2933 addr=temp;
2934 #endif
2935 #if defined(HOST_IMM8)
2936 int ir=get_reg(i_regs->regmap,INVCP);
2937 assert(ir>=0);
2938 emit_cmpmem_indexedsr12_reg(ir,addr,1);
2939 #else
2940 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
2941 #endif
2942 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2943 emit_callne(invalidate_addr_reg[addr]);
2944 #else
2945 void *jaddr2 = out;
2946 emit_jne(0);
2947 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
2948 #endif
2949 }
2950 }
2951 u_int addr_val=constmap[i][s]+offset;
2952 if(jaddr) {
2953 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2954 } else if(c&&!memtarget) {
2955 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
2956 }
2957 // basic current block modification detection..
2958 // not looking back as that should be in mips cache already
2959 // (see Spyro2 title->attract mode)
2960 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
2961 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
2962 assert(i_regs->regmap==regs[i].regmap); // not delay slot
2963 if(i_regs->regmap==regs[i].regmap) {
2964 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
2965 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
2966 emit_movimm(start+i*4+4,0);
2967 emit_writeword(0,&pcaddr);
2968 emit_addimm(HOST_CCREG,2,HOST_CCREG);
2969 emit_far_call(get_addr_ht);
2970 emit_jmpreg(0);
2971 }
2972 }
2973}
2974
2975static void storelr_assemble(int i,struct regstat *i_regs)
2976{
2977 int s,tl;
2978 int temp;
2979 int offset;
2980 void *jaddr=0;
2981 void *case1, *case2, *case3;
2982 void *done0, *done1, *done2;
2983 int memtarget=0,c=0;
2984 int agr=AGEN1+(i&1);
2985 u_int hr,reglist=0;
2986 tl=get_reg(i_regs->regmap,rs2[i]);
2987 s=get_reg(i_regs->regmap,rs1[i]);
2988 temp=get_reg(i_regs->regmap,agr);
2989 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2990 offset=imm[i];
2991 if(s>=0) {
2992 c=(i_regs->isconst>>s)&1;
2993 if(c) {
2994 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2995 }
2996 }
2997 assert(tl>=0);
2998 for(hr=0;hr<HOST_REGS;hr++) {
2999 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3000 }
3001 assert(temp>=0);
3002 if(!c) {
3003 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3004 if(!offset&&s!=temp) emit_mov(s,temp);
3005 jaddr=out;
3006 emit_jno(0);
3007 }
3008 else
3009 {
3010 if(!memtarget||!rs1[i]) {
3011 jaddr=out;
3012 emit_jmp(0);
3013 }
3014 }
3015 if(ram_offset)
3016 emit_addimm_no_flags(ram_offset,temp);
3017
3018 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3019 assert(0);
3020 }
3021
3022 emit_xorimm(temp,3,temp);
3023 emit_testimm(temp,2);
3024 case2=out;
3025 emit_jne(0);
3026 emit_testimm(temp,1);
3027 case1=out;
3028 emit_jne(0);
3029 // 0
3030 if (opcode[i]==0x2A) { // SWL
3031 emit_writeword_indexed(tl,0,temp);
3032 }
3033 else if (opcode[i]==0x2E) { // SWR
3034 emit_writebyte_indexed(tl,3,temp);
3035 }
3036 else
3037 assert(0);
3038 done0=out;
3039 emit_jmp(0);
3040 // 1
3041 set_jump_target(case1, out);
3042 if (opcode[i]==0x2A) { // SWL
3043 // Write 3 msb into three least significant bytes
3044 if(rs2[i]) emit_rorimm(tl,8,tl);
3045 emit_writehword_indexed(tl,-1,temp);
3046 if(rs2[i]) emit_rorimm(tl,16,tl);
3047 emit_writebyte_indexed(tl,1,temp);
3048 if(rs2[i]) emit_rorimm(tl,8,tl);
3049 }
3050 else if (opcode[i]==0x2E) { // SWR
3051 // Write two lsb into two most significant bytes
3052 emit_writehword_indexed(tl,1,temp);
3053 }
3054 done1=out;
3055 emit_jmp(0);
3056 // 2
3057 set_jump_target(case2, out);
3058 emit_testimm(temp,1);
3059 case3=out;
3060 emit_jne(0);
3061 if (opcode[i]==0x2A) { // SWL
3062 // Write two msb into two least significant bytes
3063 if(rs2[i]) emit_rorimm(tl,16,tl);
3064 emit_writehword_indexed(tl,-2,temp);
3065 if(rs2[i]) emit_rorimm(tl,16,tl);
3066 }
3067 else if (opcode[i]==0x2E) { // SWR
3068 // Write 3 lsb into three most significant bytes
3069 emit_writebyte_indexed(tl,-1,temp);
3070 if(rs2[i]) emit_rorimm(tl,8,tl);
3071 emit_writehword_indexed(tl,0,temp);
3072 if(rs2[i]) emit_rorimm(tl,24,tl);
3073 }
3074 done2=out;
3075 emit_jmp(0);
3076 // 3
3077 set_jump_target(case3, out);
3078 if (opcode[i]==0x2A) { // SWL
3079 // Write msb into least significant byte
3080 if(rs2[i]) emit_rorimm(tl,24,tl);
3081 emit_writebyte_indexed(tl,-3,temp);
3082 if(rs2[i]) emit_rorimm(tl,8,tl);
3083 }
3084 else if (opcode[i]==0x2E) { // SWR
3085 // Write entire word
3086 emit_writeword_indexed(tl,-3,temp);
3087 }
3088 set_jump_target(done0, out);
3089 set_jump_target(done1, out);
3090 set_jump_target(done2, out);
3091 if(!c||!memtarget)
3092 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3093 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3094 emit_addimm_no_flags(-ram_offset,temp);
3095 #if defined(HOST_IMM8)
3096 int ir=get_reg(i_regs->regmap,INVCP);
3097 assert(ir>=0);
3098 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3099 #else
3100 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3101 #endif
3102 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3103 emit_callne(invalidate_addr_reg[temp]);
3104 #else
3105 void *jaddr2 = out;
3106 emit_jne(0);
3107 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3108 #endif
3109 }
3110}
3111
3112static void cop0_assemble(int i,struct regstat *i_regs)
3113{
3114 if(opcode2[i]==0) // MFC0
3115 {
3116 signed char t=get_reg(i_regs->regmap,rt1[i]);
3117 u_int copr=(source[i]>>11)&0x1f;
3118 //assert(t>=0); // Why does this happen? OOT is weird
3119 if(t>=0&&rt1[i]!=0) {
3120 emit_readword(&reg_cop0[copr],t);
3121 }
3122 }
3123 else if(opcode2[i]==4) // MTC0
3124 {
3125 signed char s=get_reg(i_regs->regmap,rs1[i]);
3126 char copr=(source[i]>>11)&0x1f;
3127 assert(s>=0);
3128 wb_register(rs1[i],i_regs->regmap,i_regs->dirty);
3129 if(copr==9||copr==11||copr==12||copr==13) {
3130 emit_readword(&last_count,HOST_TEMPREG);
3131 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3132 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3133 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3134 emit_writeword(HOST_CCREG,&Count);
3135 }
3136 // What a mess. The status register (12) can enable interrupts,
3137 // so needs a special case to handle a pending interrupt.
3138 // The interrupt must be taken immediately, because a subsequent
3139 // instruction might disable interrupts again.
3140 if(copr==12||copr==13) {
3141 if (is_delayslot) {
3142 // burn cycles to cause cc_interrupt, which will
3143 // reschedule next_interupt. Relies on CCREG from above.
3144 assem_debug("MTC0 DS %d\n", copr);
3145 emit_writeword(HOST_CCREG,&last_count);
3146 emit_movimm(0,HOST_CCREG);
3147 emit_storereg(CCREG,HOST_CCREG);
3148 emit_loadreg(rs1[i],1);
3149 emit_movimm(copr,0);
3150 emit_far_call(pcsx_mtc0_ds);
3151 emit_loadreg(rs1[i],s);
3152 return;
3153 }
3154 emit_movimm(start+i*4+4,HOST_TEMPREG);
3155 emit_writeword(HOST_TEMPREG,&pcaddr);
3156 emit_movimm(0,HOST_TEMPREG);
3157 emit_writeword(HOST_TEMPREG,&pending_exception);
3158 }
3159 if(s==HOST_CCREG)
3160 emit_loadreg(rs1[i],1);
3161 else if(s!=1)
3162 emit_mov(s,1);
3163 emit_movimm(copr,0);
3164 emit_far_call(pcsx_mtc0);
3165 if(copr==9||copr==11||copr==12||copr==13) {
3166 emit_readword(&Count,HOST_CCREG);
3167 emit_readword(&next_interupt,HOST_TEMPREG);
3168 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3169 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3170 emit_writeword(HOST_TEMPREG,&last_count);
3171 emit_storereg(CCREG,HOST_CCREG);
3172 }
3173 if(copr==12||copr==13) {
3174 assert(!is_delayslot);
3175 emit_readword(&pending_exception,14);
3176 emit_test(14,14);
3177 void *jaddr = out;
3178 emit_jeq(0);
3179 emit_readword(&pcaddr, 0);
3180 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3181 emit_far_call(get_addr_ht);
3182 emit_jmpreg(0);
3183 set_jump_target(jaddr, out);
3184 }
3185 emit_loadreg(rs1[i],s);
3186 }
3187 else
3188 {
3189 assert(opcode2[i]==0x10);
3190 //if((source[i]&0x3f)==0x10) // RFE
3191 {
3192 emit_readword(&Status,0);
3193 emit_andimm(0,0x3c,1);
3194 emit_andimm(0,~0xf,0);
3195 emit_orrshr_imm(1,2,0);
3196 emit_writeword(0,&Status);
3197 }
3198 }
3199}
3200
3201static void cop1_unusable(int i,struct regstat *i_regs)
3202{
3203 // XXX: should just just do the exception instead
3204 //if(!cop1_usable)
3205 {
3206 void *jaddr=out;
3207 emit_jmp(0);
3208 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3209 }
3210}
3211
3212static void cop1_assemble(int i,struct regstat *i_regs)
3213{
3214 cop1_unusable(i, i_regs);
3215}
3216
3217static void c1ls_assemble(int i,struct regstat *i_regs)
3218{
3219 cop1_unusable(i, i_regs);
3220}
3221
3222// FP_STUB
3223static void do_cop1stub(int n)
3224{
3225 literal_pool(256);
3226 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3227 set_jump_target(stubs[n].addr, out);
3228 int i=stubs[n].a;
3229// int rs=stubs[n].b;
3230 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3231 int ds=stubs[n].d;
3232 if(!ds) {
3233 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3234 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3235 }
3236 //else {printf("fp exception in delay slot\n");}
3237 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3238 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3239 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3240 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3241 emit_far_jump(ds?fp_exception_ds:fp_exception);
3242}
3243
3244static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3245{
3246 switch (copr) {
3247 case 1:
3248 case 3:
3249 case 5:
3250 case 8:
3251 case 9:
3252 case 10:
3253 case 11:
3254 emit_readword(&reg_cop2d[copr],tl);
3255 emit_signextend16(tl,tl);
3256 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3257 break;
3258 case 7:
3259 case 16:
3260 case 17:
3261 case 18:
3262 case 19:
3263 emit_readword(&reg_cop2d[copr],tl);
3264 emit_andimm(tl,0xffff,tl);
3265 emit_writeword(tl,&reg_cop2d[copr]);
3266 break;
3267 case 15:
3268 emit_readword(&reg_cop2d[14],tl); // SXY2
3269 emit_writeword(tl,&reg_cop2d[copr]);
3270 break;
3271 case 28:
3272 case 29:
3273 c2op_mfc2_29_assemble(tl,temp);
3274 break;
3275 default:
3276 emit_readword(&reg_cop2d[copr],tl);
3277 break;
3278 }
3279}
3280
3281static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3282{
3283 switch (copr) {
3284 case 15:
3285 emit_readword(&reg_cop2d[13],temp); // SXY1
3286 emit_writeword(sl,&reg_cop2d[copr]);
3287 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3288 emit_readword(&reg_cop2d[14],temp); // SXY2
3289 emit_writeword(sl,&reg_cop2d[14]);
3290 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3291 break;
3292 case 28:
3293 emit_andimm(sl,0x001f,temp);
3294 emit_shlimm(temp,7,temp);
3295 emit_writeword(temp,&reg_cop2d[9]);
3296 emit_andimm(sl,0x03e0,temp);
3297 emit_shlimm(temp,2,temp);
3298 emit_writeword(temp,&reg_cop2d[10]);
3299 emit_andimm(sl,0x7c00,temp);
3300 emit_shrimm(temp,3,temp);
3301 emit_writeword(temp,&reg_cop2d[11]);
3302 emit_writeword(sl,&reg_cop2d[28]);
3303 break;
3304 case 30:
3305 emit_xorsar_imm(sl,sl,31,temp);
3306#if defined(HAVE_ARMV5) || defined(__aarch64__)
3307 emit_clz(temp,temp);
3308#else
3309 emit_movs(temp,HOST_TEMPREG);
3310 emit_movimm(0,temp);
3311 emit_jeq((int)out+4*4);
3312 emit_addpl_imm(temp,1,temp);
3313 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3314 emit_jns((int)out-2*4);
3315#endif
3316 emit_writeword(sl,&reg_cop2d[30]);
3317 emit_writeword(temp,&reg_cop2d[31]);
3318 break;
3319 case 31:
3320 break;
3321 default:
3322 emit_writeword(sl,&reg_cop2d[copr]);
3323 break;
3324 }
3325}
3326
3327static void c2ls_assemble(int i,struct regstat *i_regs)
3328{
3329 int s,tl;
3330 int ar;
3331 int offset;
3332 int memtarget=0,c=0;
3333 void *jaddr2=NULL;
3334 enum stub_type type;
3335 int agr=AGEN1+(i&1);
3336 int fastio_reg_override=-1;
3337 u_int hr,reglist=0;
3338 u_int copr=(source[i]>>16)&0x1f;
3339 s=get_reg(i_regs->regmap,rs1[i]);
3340 tl=get_reg(i_regs->regmap,FTEMP);
3341 offset=imm[i];
3342 assert(rs1[i]>0);
3343 assert(tl>=0);
3344
3345 for(hr=0;hr<HOST_REGS;hr++) {
3346 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3347 }
3348 if(i_regs->regmap[HOST_CCREG]==CCREG)
3349 reglist&=~(1<<HOST_CCREG);
3350
3351 // get the address
3352 if (opcode[i]==0x3a) { // SWC2
3353 ar=get_reg(i_regs->regmap,agr);
3354 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3355 reglist|=1<<ar;
3356 } else { // LWC2
3357 ar=tl;
3358 }
3359 if(s>=0) c=(i_regs->wasconst>>s)&1;
3360 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3361 if (!offset&&!c&&s>=0) ar=s;
3362 assert(ar>=0);
3363
3364 if (opcode[i]==0x3a) { // SWC2
3365 cop2_get_dreg(copr,tl,-1);
3366 type=STOREW_STUB;
3367 }
3368 else
3369 type=LOADW_STUB;
3370
3371 if(c&&!memtarget) {
3372 jaddr2=out;
3373 emit_jmp(0); // inline_readstub/inline_writestub?
3374 }
3375 else {
3376 if(!c) {
3377 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3378 }
3379 else if(ram_offset&&memtarget) {
3380 host_tempreg_acquire();
3381 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3382 fastio_reg_override=HOST_TEMPREG;
3383 }
3384 if (opcode[i]==0x32) { // LWC2
3385 int a=ar;
3386 if(fastio_reg_override>=0) a=fastio_reg_override;
3387 emit_readword_indexed(0,a,tl);
3388 }
3389 if (opcode[i]==0x3a) { // SWC2
3390 #ifdef DESTRUCTIVE_SHIFT
3391 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3392 #endif
3393 int a=ar;
3394 if(fastio_reg_override>=0) a=fastio_reg_override;
3395 emit_writeword_indexed(tl,0,a);
3396 }
3397 }
3398 if(fastio_reg_override==HOST_TEMPREG)
3399 host_tempreg_release();
3400 if(jaddr2)
3401 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3402 if(opcode[i]==0x3a) // SWC2
3403 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3404#if defined(HOST_IMM8)
3405 int ir=get_reg(i_regs->regmap,INVCP);
3406 assert(ir>=0);
3407 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3408#else
3409 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3410#endif
3411 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3412 emit_callne(invalidate_addr_reg[ar]);
3413 #else
3414 void *jaddr3 = out;
3415 emit_jne(0);
3416 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3417 #endif
3418 }
3419 if (opcode[i]==0x32) { // LWC2
3420 host_tempreg_acquire();
3421 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3422 host_tempreg_release();
3423 }
3424}
3425
3426static void cop2_assemble(int i,struct regstat *i_regs)
3427{
3428 u_int copr=(source[i]>>11)&0x1f;
3429 signed char temp=get_reg(i_regs->regmap,-1);
3430 if (opcode2[i]==0) { // MFC2
3431 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3432 if(tl>=0&&rt1[i]!=0)
3433 cop2_get_dreg(copr,tl,temp);
3434 }
3435 else if (opcode2[i]==4) { // MTC2
3436 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3437 cop2_put_dreg(copr,sl,temp);
3438 }
3439 else if (opcode2[i]==2) // CFC2
3440 {
3441 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3442 if(tl>=0&&rt1[i]!=0)
3443 emit_readword(&reg_cop2c[copr],tl);
3444 }
3445 else if (opcode2[i]==6) // CTC2
3446 {
3447 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3448 switch(copr) {
3449 case 4:
3450 case 12:
3451 case 20:
3452 case 26:
3453 case 27:
3454 case 29:
3455 case 30:
3456 emit_signextend16(sl,temp);
3457 break;
3458 case 31:
3459 c2op_ctc2_31_assemble(sl,temp);
3460 break;
3461 default:
3462 temp=sl;
3463 break;
3464 }
3465 emit_writeword(temp,&reg_cop2c[copr]);
3466 assert(sl>=0);
3467 }
3468}
3469
3470static void do_unalignedwritestub(int n)
3471{
3472 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3473 literal_pool(256);
3474 set_jump_target(stubs[n].addr, out);
3475
3476 int i=stubs[n].a;
3477 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3478 int addr=stubs[n].b;
3479 u_int reglist=stubs[n].e;
3480 signed char *i_regmap=i_regs->regmap;
3481 int temp2=get_reg(i_regmap,FTEMP);
3482 int rt;
3483 rt=get_reg(i_regmap,rs2[i]);
3484 assert(rt>=0);
3485 assert(addr>=0);
3486 assert(opcode[i]==0x2a||opcode[i]==0x2e); // SWL/SWR only implemented
3487 reglist|=(1<<addr);
3488 reglist&=~(1<<temp2);
3489
3490#if 1
3491 // don't bother with it and call write handler
3492 save_regs(reglist);
3493 pass_args(addr,rt);
3494 int cc=get_reg(i_regmap,CCREG);
3495 if(cc<0)
3496 emit_loadreg(CCREG,2);
3497 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3498 emit_far_call((opcode[i]==0x2a?jump_handle_swl:jump_handle_swr));
3499 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3500 if(cc<0)
3501 emit_storereg(CCREG,2);
3502 restore_regs(reglist);
3503 emit_jmp(stubs[n].retaddr); // return address
3504#else
3505 emit_andimm(addr,0xfffffffc,temp2);
3506 emit_writeword(temp2,&address);
3507
3508 save_regs(reglist);
3509 emit_shrimm(addr,16,1);
3510 int cc=get_reg(i_regmap,CCREG);
3511 if(cc<0) {
3512 emit_loadreg(CCREG,2);
3513 }
3514 emit_movimm((u_int)readmem,0);
3515 emit_addimm(cc<0?2:cc,2*stubs[n].d+2,2);
3516 emit_call((int)&indirect_jump_indexed);
3517 restore_regs(reglist);
3518
3519 emit_readword(&readmem_dword,temp2);
3520 int temp=addr; //hmh
3521 emit_shlimm(addr,3,temp);
3522 emit_andimm(temp,24,temp);
3523 if (opcode[i]==0x2a) // SWL
3524 emit_xorimm(temp,24,temp);
3525 emit_movimm(-1,HOST_TEMPREG);
3526 if (opcode[i]==0x2a) { // SWL
3527 emit_bic_lsr(temp2,HOST_TEMPREG,temp,temp2);
3528 emit_orrshr(rt,temp,temp2);
3529 }else{
3530 emit_bic_lsl(temp2,HOST_TEMPREG,temp,temp2);
3531 emit_orrshl(rt,temp,temp2);
3532 }
3533 emit_readword(&address,addr);
3534 emit_writeword(temp2,&word);
3535 //save_regs(reglist); // don't need to, no state changes
3536 emit_shrimm(addr,16,1);
3537 emit_movimm((u_int)writemem,0);
3538 //emit_call((int)&indirect_jump_indexed);
3539 emit_mov(15,14);
3540 emit_readword_dualindexedx4(0,1,15);
3541 emit_readword(&Count,HOST_TEMPREG);
3542 emit_readword(&next_interupt,2);
3543 emit_addimm(HOST_TEMPREG,-2*stubs[n].d-2,HOST_TEMPREG);
3544 emit_writeword(2,&last_count);
3545 emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc);
3546 if(cc<0) {
3547 emit_storereg(CCREG,HOST_TEMPREG);
3548 }
3549 restore_regs(reglist);
3550 emit_jmp(stubs[n].retaddr); // return address
3551#endif
3552}
3553
3554#ifndef multdiv_assemble
3555void multdiv_assemble(int i,struct regstat *i_regs)
3556{
3557 printf("Need multdiv_assemble for this architecture.\n");
3558 abort();
3559}
3560#endif
3561
3562static void mov_assemble(int i,struct regstat *i_regs)
3563{
3564 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3565 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3566 if(rt1[i]) {
3567 signed char sl,tl;
3568 tl=get_reg(i_regs->regmap,rt1[i]);
3569 //assert(tl>=0);
3570 if(tl>=0) {
3571 sl=get_reg(i_regs->regmap,rs1[i]);
3572 if(sl>=0) emit_mov(sl,tl);
3573 else emit_loadreg(rs1[i],tl);
3574 }
3575 }
3576}
3577
3578// call interpreter, exception handler, things that change pc/regs/cycles ...
3579static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3580{
3581 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3582 assert(ccreg==HOST_CCREG);
3583 assert(!is_delayslot);
3584 (void)ccreg;
3585
3586 emit_movimm(pc,3); // Get PC
3587 emit_readword(&last_count,2);
3588 emit_writeword(3,&psxRegs.pc);
3589 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3590 emit_add(2,HOST_CCREG,2);
3591 emit_writeword(2,&psxRegs.cycle);
3592 emit_far_call(func);
3593 emit_far_jump(jump_to_new_pc);
3594}
3595
3596static void syscall_assemble(int i,struct regstat *i_regs)
3597{
3598 emit_movimm(0x20,0); // cause code
3599 emit_movimm(0,1); // not in delay slot
3600 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3601}
3602
3603static void hlecall_assemble(int i,struct regstat *i_regs)
3604{
3605 void *hlefunc = psxNULL;
3606 uint32_t hleCode = source[i] & 0x03ffffff;
3607 if (hleCode < ARRAY_SIZE(psxHLEt))
3608 hlefunc = psxHLEt[hleCode];
3609
3610 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3611}
3612
3613static void intcall_assemble(int i,struct regstat *i_regs)
3614{
3615 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3616}
3617
3618static void speculate_mov(int rs,int rt)
3619{
3620 if(rt!=0) {
3621 smrv_strong_next|=1<<rt;
3622 smrv[rt]=smrv[rs];
3623 }
3624}
3625
3626static void speculate_mov_weak(int rs,int rt)
3627{
3628 if(rt!=0) {
3629 smrv_weak_next|=1<<rt;
3630 smrv[rt]=smrv[rs];
3631 }
3632}
3633
3634static void speculate_register_values(int i)
3635{
3636 if(i==0) {
3637 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3638 // gp,sp are likely to stay the same throughout the block
3639 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3640 smrv_weak_next=~smrv_strong_next;
3641 //printf(" llr %08x\n", smrv[4]);
3642 }
3643 smrv_strong=smrv_strong_next;
3644 smrv_weak=smrv_weak_next;
3645 switch(itype[i]) {
3646 case ALU:
3647 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3648 else if((smrv_strong>>rs2[i])&1) speculate_mov(rs2[i],rt1[i]);
3649 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3650 else if((smrv_weak>>rs2[i])&1) speculate_mov_weak(rs2[i],rt1[i]);
3651 else {
3652 smrv_strong_next&=~(1<<rt1[i]);
3653 smrv_weak_next&=~(1<<rt1[i]);
3654 }
3655 break;
3656 case SHIFTIMM:
3657 smrv_strong_next&=~(1<<rt1[i]);
3658 smrv_weak_next&=~(1<<rt1[i]);
3659 // fallthrough
3660 case IMM16:
3661 if(rt1[i]&&is_const(&regs[i],rt1[i])) {
3662 int value,hr=get_reg(regs[i].regmap,rt1[i]);
3663 if(hr>=0) {
3664 if(get_final_value(hr,i,&value))
3665 smrv[rt1[i]]=value;
3666 else smrv[rt1[i]]=constmap[i][hr];
3667 smrv_strong_next|=1<<rt1[i];
3668 }
3669 }
3670 else {
3671 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3672 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3673 }
3674 break;
3675 case LOAD:
3676 if(start<0x2000&&(rt1[i]==26||(smrv[rt1[i]]>>24)==0xa0)) {
3677 // special case for BIOS
3678 smrv[rt1[i]]=0xa0000000;
3679 smrv_strong_next|=1<<rt1[i];
3680 break;
3681 }
3682 // fallthrough
3683 case SHIFT:
3684 case LOADLR:
3685 case MOV:
3686 smrv_strong_next&=~(1<<rt1[i]);
3687 smrv_weak_next&=~(1<<rt1[i]);
3688 break;
3689 case COP0:
3690 case COP2:
3691 if(opcode2[i]==0||opcode2[i]==2) { // MFC/CFC
3692 smrv_strong_next&=~(1<<rt1[i]);
3693 smrv_weak_next&=~(1<<rt1[i]);
3694 }
3695 break;
3696 case C2LS:
3697 if (opcode[i]==0x32) { // LWC2
3698 smrv_strong_next&=~(1<<rt1[i]);
3699 smrv_weak_next&=~(1<<rt1[i]);
3700 }
3701 break;
3702 }
3703#if 0
3704 int r=4;
3705 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
3706 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
3707#endif
3708}
3709
3710static void ds_assemble(int i,struct regstat *i_regs)
3711{
3712 speculate_register_values(i);
3713 is_delayslot=1;
3714 switch(itype[i]) {
3715 case ALU:
3716 alu_assemble(i,i_regs);break;
3717 case IMM16:
3718 imm16_assemble(i,i_regs);break;
3719 case SHIFT:
3720 shift_assemble(i,i_regs);break;
3721 case SHIFTIMM:
3722 shiftimm_assemble(i,i_regs);break;
3723 case LOAD:
3724 load_assemble(i,i_regs);break;
3725 case LOADLR:
3726 loadlr_assemble(i,i_regs);break;
3727 case STORE:
3728 store_assemble(i,i_regs);break;
3729 case STORELR:
3730 storelr_assemble(i,i_regs);break;
3731 case COP0:
3732 cop0_assemble(i,i_regs);break;
3733 case COP1:
3734 cop1_assemble(i,i_regs);break;
3735 case C1LS:
3736 c1ls_assemble(i,i_regs);break;
3737 case COP2:
3738 cop2_assemble(i,i_regs);break;
3739 case C2LS:
3740 c2ls_assemble(i,i_regs);break;
3741 case C2OP:
3742 c2op_assemble(i,i_regs);break;
3743 case MULTDIV:
3744 multdiv_assemble(i,i_regs);break;
3745 case MOV:
3746 mov_assemble(i,i_regs);break;
3747 case SYSCALL:
3748 case HLECALL:
3749 case INTCALL:
3750 case SPAN:
3751 case UJUMP:
3752 case RJUMP:
3753 case CJUMP:
3754 case SJUMP:
3755 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
3756 }
3757 is_delayslot=0;
3758}
3759
3760// Is the branch target a valid internal jump?
3761static int internal_branch(int addr)
3762{
3763 if(addr&1) return 0; // Indirect (register) jump
3764 if(addr>=start && addr<start+slen*4-4)
3765 {
3766 return 1;
3767 }
3768 return 0;
3769}
3770
3771static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
3772{
3773 int hr;
3774 for(hr=0;hr<HOST_REGS;hr++) {
3775 if(hr!=EXCLUDE_REG) {
3776 if(pre[hr]!=entry[hr]) {
3777 if(pre[hr]>=0) {
3778 if((dirty>>hr)&1) {
3779 if(get_reg(entry,pre[hr])<0) {
3780 assert(pre[hr]<64);
3781 if(!((u>>pre[hr])&1))
3782 emit_storereg(pre[hr],hr);
3783 }
3784 }
3785 }
3786 }
3787 }
3788 }
3789 // Move from one register to another (no writeback)
3790 for(hr=0;hr<HOST_REGS;hr++) {
3791 if(hr!=EXCLUDE_REG) {
3792 if(pre[hr]!=entry[hr]) {
3793 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3794 int nr;
3795 if((nr=get_reg(entry,pre[hr]))>=0) {
3796 emit_mov(hr,nr);
3797 }
3798 }
3799 }
3800 }
3801 }
3802}
3803
3804// Load the specified registers
3805// This only loads the registers given as arguments because
3806// we don't want to load things that will be overwritten
3807static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
3808{
3809 int hr;
3810 // Load 32-bit regs
3811 for(hr=0;hr<HOST_REGS;hr++) {
3812 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3813 if(entry[hr]!=regmap[hr]) {
3814 if(regmap[hr]==rs1||regmap[hr]==rs2)
3815 {
3816 if(regmap[hr]==0) {
3817 emit_zeroreg(hr);
3818 }
3819 else
3820 {
3821 emit_loadreg(regmap[hr],hr);
3822 }
3823 }
3824 }
3825 }
3826 }
3827}
3828
3829// Load registers prior to the start of a loop
3830// so that they are not loaded within the loop
3831static void loop_preload(signed char pre[],signed char entry[])
3832{
3833 int hr;
3834 for(hr=0;hr<HOST_REGS;hr++) {
3835 if(hr!=EXCLUDE_REG) {
3836 if(pre[hr]!=entry[hr]) {
3837 if(entry[hr]>=0) {
3838 if(get_reg(pre,entry[hr])<0) {
3839 assem_debug("loop preload:\n");
3840 //printf("loop preload: %d\n",hr);
3841 if(entry[hr]==0) {
3842 emit_zeroreg(hr);
3843 }
3844 else if(entry[hr]<TEMPREG)
3845 {
3846 emit_loadreg(entry[hr],hr);
3847 }
3848 else if(entry[hr]-64<TEMPREG)
3849 {
3850 emit_loadreg(entry[hr],hr);
3851 }
3852 }
3853 }
3854 }
3855 }
3856 }
3857}
3858
3859// Generate address for load/store instruction
3860// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3861void address_generation(int i,struct regstat *i_regs,signed char entry[])
3862{
3863 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3864 int ra=-1;
3865 int agr=AGEN1+(i&1);
3866 if(itype[i]==LOAD) {
3867 ra=get_reg(i_regs->regmap,rt1[i]);
3868 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3869 assert(ra>=0);
3870 }
3871 if(itype[i]==LOADLR) {
3872 ra=get_reg(i_regs->regmap,FTEMP);
3873 }
3874 if(itype[i]==STORE||itype[i]==STORELR) {
3875 ra=get_reg(i_regs->regmap,agr);
3876 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3877 }
3878 if(itype[i]==C1LS||itype[i]==C2LS) {
3879 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3880 ra=get_reg(i_regs->regmap,FTEMP);
3881 else { // SWC1/SDC1/SWC2/SDC2
3882 ra=get_reg(i_regs->regmap,agr);
3883 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3884 }
3885 }
3886 int rs=get_reg(i_regs->regmap,rs1[i]);
3887 if(ra>=0) {
3888 int offset=imm[i];
3889 int c=(i_regs->wasconst>>rs)&1;
3890 if(rs1[i]==0) {
3891 // Using r0 as a base address
3892 if(!entry||entry[ra]!=agr) {
3893 if (opcode[i]==0x22||opcode[i]==0x26) {
3894 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3895 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3896 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3897 }else{
3898 emit_movimm(offset,ra);
3899 }
3900 } // else did it in the previous cycle
3901 }
3902 else if(rs<0) {
3903 if(!entry||entry[ra]!=rs1[i])
3904 emit_loadreg(rs1[i],ra);
3905 //if(!entry||entry[ra]!=rs1[i])
3906 // printf("poor load scheduling!\n");
3907 }
3908 else if(c) {
3909 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3910 if(!entry||entry[ra]!=agr) {
3911 if (opcode[i]==0x22||opcode[i]==0x26) {
3912 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3913 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3914 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3915 }else{
3916 emit_movimm(constmap[i][rs]+offset,ra);
3917 regs[i].loadedconst|=1<<ra;
3918 }
3919 } // else did it in the previous cycle
3920 } // else load_consts already did it
3921 }
3922 if(offset&&!c&&rs1[i]) {
3923 if(rs>=0) {
3924 emit_addimm(rs,offset,ra);
3925 }else{
3926 emit_addimm(ra,offset,ra);
3927 }
3928 }
3929 }
3930 }
3931 // Preload constants for next instruction
3932 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
3933 int agr,ra;
3934 // Actual address
3935 agr=AGEN1+((i+1)&1);
3936 ra=get_reg(i_regs->regmap,agr);
3937 if(ra>=0) {
3938 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3939 int offset=imm[i+1];
3940 int c=(regs[i+1].wasconst>>rs)&1;
3941 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3942 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3943 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3944 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3945 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3946 }else{
3947 emit_movimm(constmap[i+1][rs]+offset,ra);
3948 regs[i+1].loadedconst|=1<<ra;
3949 }
3950 }
3951 else if(rs1[i+1]==0) {
3952 // Using r0 as a base address
3953 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3954 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3955 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3956 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3957 }else{
3958 emit_movimm(offset,ra);
3959 }
3960 }
3961 }
3962 }
3963}
3964
3965static int get_final_value(int hr, int i, int *value)
3966{
3967 int reg=regs[i].regmap[hr];
3968 while(i<slen-1) {
3969 if(regs[i+1].regmap[hr]!=reg) break;
3970 if(!((regs[i+1].isconst>>hr)&1)) break;
3971 if(bt[i+1]) break;
3972 i++;
3973 }
3974 if(i<slen-1) {
3975 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3976 *value=constmap[i][hr];
3977 return 1;
3978 }
3979 if(!bt[i+1]) {
3980 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3981 // Load in delay slot, out-of-order execution
3982 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3983 {
3984 // Precompute load address
3985 *value=constmap[i][hr]+imm[i+2];
3986 return 1;
3987 }
3988 }
3989 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3990 {
3991 // Precompute load address
3992 *value=constmap[i][hr]+imm[i+1];
3993 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
3994 return 1;
3995 }
3996 }
3997 }
3998 *value=constmap[i][hr];
3999 //printf("c=%lx\n",(long)constmap[i][hr]);
4000 if(i==slen-1) return 1;
4001 assert(reg < 64);
4002 return !((unneeded_reg[i+1]>>reg)&1);
4003}
4004
4005// Load registers with known constants
4006static void load_consts(signed char pre[],signed char regmap[],int i)
4007{
4008 int hr,hr2;
4009 // propagate loaded constant flags
4010 if(i==0||bt[i])
4011 regs[i].loadedconst=0;
4012 else {
4013 for(hr=0;hr<HOST_REGS;hr++) {
4014 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4015 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4016 {
4017 regs[i].loadedconst|=1<<hr;
4018 }
4019 }
4020 }
4021 // Load 32-bit regs
4022 for(hr=0;hr<HOST_REGS;hr++) {
4023 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4024 //if(entry[hr]!=regmap[hr]) {
4025 if(!((regs[i].loadedconst>>hr)&1)) {
4026 assert(regmap[hr]<64);
4027 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4028 int value,similar=0;
4029 if(get_final_value(hr,i,&value)) {
4030 // see if some other register has similar value
4031 for(hr2=0;hr2<HOST_REGS;hr2++) {
4032 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4033 if(is_similar_value(value,constmap[i][hr2])) {
4034 similar=1;
4035 break;
4036 }
4037 }
4038 }
4039 if(similar) {
4040 int value2;
4041 if(get_final_value(hr2,i,&value2)) // is this needed?
4042 emit_movimm_from(value2,hr2,value,hr);
4043 else
4044 emit_movimm(value,hr);
4045 }
4046 else if(value==0) {
4047 emit_zeroreg(hr);
4048 }
4049 else {
4050 emit_movimm(value,hr);
4051 }
4052 }
4053 regs[i].loadedconst|=1<<hr;
4054 }
4055 }
4056 }
4057 }
4058}
4059
4060void load_all_consts(signed char regmap[], u_int dirty, int i)
4061{
4062 int hr;
4063 // Load 32-bit regs
4064 for(hr=0;hr<HOST_REGS;hr++) {
4065 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4066 assert(regmap[hr] < 64);
4067 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4068 int value=constmap[i][hr];
4069 if(value==0) {
4070 emit_zeroreg(hr);
4071 }
4072 else {
4073 emit_movimm(value,hr);
4074 }
4075 }
4076 }
4077 }
4078}
4079
4080// Write out all dirty registers (except cycle count)
4081static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4082{
4083 int hr;
4084 for(hr=0;hr<HOST_REGS;hr++) {
4085 if(hr!=EXCLUDE_REG) {
4086 if(i_regmap[hr]>0) {
4087 if(i_regmap[hr]!=CCREG) {
4088 if((i_dirty>>hr)&1) {
4089 assert(i_regmap[hr]<64);
4090 emit_storereg(i_regmap[hr],hr);
4091 }
4092 }
4093 }
4094 }
4095 }
4096}
4097
4098// Write out dirty registers that we need to reload (pair with load_needed_regs)
4099// This writes the registers not written by store_regs_bt
4100void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4101{
4102 int hr;
4103 int t=(addr-start)>>2;
4104 for(hr=0;hr<HOST_REGS;hr++) {
4105 if(hr!=EXCLUDE_REG) {
4106 if(i_regmap[hr]>0) {
4107 if(i_regmap[hr]!=CCREG) {
4108 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4109 if((i_dirty>>hr)&1) {
4110 assert(i_regmap[hr]<64);
4111 emit_storereg(i_regmap[hr],hr);
4112 }
4113 }
4114 }
4115 }
4116 }
4117 }
4118}
4119
4120// Load all registers (except cycle count)
4121void load_all_regs(signed char i_regmap[])
4122{
4123 int hr;
4124 for(hr=0;hr<HOST_REGS;hr++) {
4125 if(hr!=EXCLUDE_REG) {
4126 if(i_regmap[hr]==0) {
4127 emit_zeroreg(hr);
4128 }
4129 else
4130 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4131 {
4132 emit_loadreg(i_regmap[hr],hr);
4133 }
4134 }
4135 }
4136}
4137
4138// Load all current registers also needed by next instruction
4139void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4140{
4141 int hr;
4142 for(hr=0;hr<HOST_REGS;hr++) {
4143 if(hr!=EXCLUDE_REG) {
4144 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4145 if(i_regmap[hr]==0) {
4146 emit_zeroreg(hr);
4147 }
4148 else
4149 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4150 {
4151 emit_loadreg(i_regmap[hr],hr);
4152 }
4153 }
4154 }
4155 }
4156}
4157
4158// Load all regs, storing cycle count if necessary
4159void load_regs_entry(int t)
4160{
4161 int hr;
4162 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4163 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4164 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4165 emit_storereg(CCREG,HOST_CCREG);
4166 }
4167 // Load 32-bit regs
4168 for(hr=0;hr<HOST_REGS;hr++) {
4169 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4170 if(regs[t].regmap_entry[hr]==0) {
4171 emit_zeroreg(hr);
4172 }
4173 else if(regs[t].regmap_entry[hr]!=CCREG)
4174 {
4175 emit_loadreg(regs[t].regmap_entry[hr],hr);
4176 }
4177 }
4178 }
4179}
4180
4181// Store dirty registers prior to branch
4182void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4183{
4184 if(internal_branch(addr))
4185 {
4186 int t=(addr-start)>>2;
4187 int hr;
4188 for(hr=0;hr<HOST_REGS;hr++) {
4189 if(hr!=EXCLUDE_REG) {
4190 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4191 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4192 if((i_dirty>>hr)&1) {
4193 assert(i_regmap[hr]<64);
4194 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4195 emit_storereg(i_regmap[hr],hr);
4196 }
4197 }
4198 }
4199 }
4200 }
4201 }
4202 else
4203 {
4204 // Branch out of this block, write out all dirty regs
4205 wb_dirtys(i_regmap,i_dirty);
4206 }
4207}
4208
4209// Load all needed registers for branch target
4210static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4211{
4212 //if(addr>=start && addr<(start+slen*4))
4213 if(internal_branch(addr))
4214 {
4215 int t=(addr-start)>>2;
4216 int hr;
4217 // Store the cycle count before loading something else
4218 if(i_regmap[HOST_CCREG]!=CCREG) {
4219 assert(i_regmap[HOST_CCREG]==-1);
4220 }
4221 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4222 emit_storereg(CCREG,HOST_CCREG);
4223 }
4224 // Load 32-bit regs
4225 for(hr=0;hr<HOST_REGS;hr++) {
4226 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4227 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4228 if(regs[t].regmap_entry[hr]==0) {
4229 emit_zeroreg(hr);
4230 }
4231 else if(regs[t].regmap_entry[hr]!=CCREG)
4232 {
4233 emit_loadreg(regs[t].regmap_entry[hr],hr);
4234 }
4235 }
4236 }
4237 }
4238 }
4239}
4240
4241static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4242{
4243 if(addr>=start && addr<start+slen*4-4)
4244 {
4245 int t=(addr-start)>>2;
4246 int hr;
4247 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4248 for(hr=0;hr<HOST_REGS;hr++)
4249 {
4250 if(hr!=EXCLUDE_REG)
4251 {
4252 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4253 {
4254 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4255 {
4256 return 0;
4257 }
4258 else
4259 if((i_dirty>>hr)&1)
4260 {
4261 if(i_regmap[hr]<TEMPREG)
4262 {
4263 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4264 return 0;
4265 }
4266 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4267 {
4268 assert(0);
4269 }
4270 }
4271 }
4272 else // Same register but is it 32-bit or dirty?
4273 if(i_regmap[hr]>=0)
4274 {
4275 if(!((regs[t].dirty>>hr)&1))
4276 {
4277 if((i_dirty>>hr)&1)
4278 {
4279 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4280 {
4281 //printf("%x: dirty no match\n",addr);
4282 return 0;
4283 }
4284 }
4285 }
4286 }
4287 }
4288 }
4289 // Delay slots are not valid branch targets
4290 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP)) return 0;
4291 // Delay slots require additional processing, so do not match
4292 if(is_ds[t]) return 0;
4293 }
4294 else
4295 {
4296 int hr;
4297 for(hr=0;hr<HOST_REGS;hr++)
4298 {
4299 if(hr!=EXCLUDE_REG)
4300 {
4301 if(i_regmap[hr]>=0)
4302 {
4303 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4304 {
4305 if((i_dirty>>hr)&1)
4306 {
4307 return 0;
4308 }
4309 }
4310 }
4311 }
4312 }
4313 }
4314 return 1;
4315}
4316
4317#ifdef DRC_DBG
4318static void drc_dbg_emit_do_cmp(int i)
4319{
4320 extern void do_insn_cmp();
4321 //extern int cycle;
4322 u_int hr,reglist=0;
4323
4324 for(hr=0;hr<HOST_REGS;hr++)
4325 if(regs[i].regmap[hr]>=0) reglist|=1<<hr;
4326 save_regs(reglist);
4327 emit_movimm(start+i*4,0);
4328 emit_writeword(0,&pcaddr);
4329 emit_far_call(do_insn_cmp);
4330 //emit_readword(&cycle,0);
4331 //emit_addimm(0,2,0);
4332 //emit_writeword(0,&cycle);
4333 (void)get_reg2;
4334 restore_regs(reglist);
4335}
4336#else
4337#define drc_dbg_emit_do_cmp(x)
4338#endif
4339
4340// Used when a branch jumps into the delay slot of another branch
4341static void ds_assemble_entry(int i)
4342{
4343 int t=(ba[i]-start)>>2;
4344 if (!instr_addr[t])
4345 instr_addr[t] = out;
4346 assem_debug("Assemble delay slot at %x\n",ba[i]);
4347 assem_debug("<->\n");
4348 drc_dbg_emit_do_cmp(t);
4349 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4350 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4351 load_regs(regs[t].regmap_entry,regs[t].regmap,rs1[t],rs2[t]);
4352 address_generation(t,&regs[t],regs[t].regmap_entry);
4353 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4354 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4355 is_delayslot=0;
4356 switch(itype[t]) {
4357 case ALU:
4358 alu_assemble(t,&regs[t]);break;
4359 case IMM16:
4360 imm16_assemble(t,&regs[t]);break;
4361 case SHIFT:
4362 shift_assemble(t,&regs[t]);break;
4363 case SHIFTIMM:
4364 shiftimm_assemble(t,&regs[t]);break;
4365 case LOAD:
4366 load_assemble(t,&regs[t]);break;
4367 case LOADLR:
4368 loadlr_assemble(t,&regs[t]);break;
4369 case STORE:
4370 store_assemble(t,&regs[t]);break;
4371 case STORELR:
4372 storelr_assemble(t,&regs[t]);break;
4373 case COP0:
4374 cop0_assemble(t,&regs[t]);break;
4375 case COP1:
4376 cop1_assemble(t,&regs[t]);break;
4377 case C1LS:
4378 c1ls_assemble(t,&regs[t]);break;
4379 case COP2:
4380 cop2_assemble(t,&regs[t]);break;
4381 case C2LS:
4382 c2ls_assemble(t,&regs[t]);break;
4383 case C2OP:
4384 c2op_assemble(t,&regs[t]);break;
4385 case MULTDIV:
4386 multdiv_assemble(t,&regs[t]);break;
4387 case MOV:
4388 mov_assemble(t,&regs[t]);break;
4389 case SYSCALL:
4390 case HLECALL:
4391 case INTCALL:
4392 case SPAN:
4393 case UJUMP:
4394 case RJUMP:
4395 case CJUMP:
4396 case SJUMP:
4397 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4398 }
4399 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4400 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4401 if(internal_branch(ba[i]+4))
4402 assem_debug("branch: internal\n");
4403 else
4404 assem_debug("branch: external\n");
4405 assert(internal_branch(ba[i]+4));
4406 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4407 emit_jmp(0);
4408}
4409
4410static void emit_extjump(void *addr, u_int target)
4411{
4412 emit_extjump2(addr, target, dyna_linker);
4413}
4414
4415static void emit_extjump_ds(void *addr, u_int target)
4416{
4417 emit_extjump2(addr, target, dyna_linker_ds);
4418}
4419
4420// Load 2 immediates optimizing for small code size
4421static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4422{
4423 emit_movimm(imm1,rt1);
4424 emit_movimm_from(imm1,rt1,imm2,rt2);
4425}
4426
4427void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4428{
4429 int count;
4430 void *jaddr;
4431 void *idle=NULL;
4432 int t=0;
4433 if(itype[i]==RJUMP)
4434 {
4435 *adj=0;
4436 }
4437 //if(ba[i]>=start && ba[i]<(start+slen*4))
4438 if(internal_branch(ba[i]))
4439 {
4440 t=(ba[i]-start)>>2;
4441 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4442 else *adj=ccadj[t];
4443 }
4444 else
4445 {
4446 *adj=0;
4447 }
4448 count=ccadj[i];
4449 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4450 // Idle loop
4451 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4452 idle=out;
4453 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4454 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4455 jaddr=out;
4456 emit_jmp(0);
4457 }
4458 else if(*adj==0||invert) {
4459 int cycles=CLOCK_ADJUST(count+2);
4460 // faster loop HACK
4461 if (t&&*adj) {
4462 int rel=t-i;
4463 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4464 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4465 }
4466 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4467 jaddr=out;
4468 emit_jns(0);
4469 }
4470 else
4471 {
4472 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4473 jaddr=out;
4474 emit_jns(0);
4475 }
4476 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4477}
4478
4479static void do_ccstub(int n)
4480{
4481 literal_pool(256);
4482 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4483 set_jump_target(stubs[n].addr, out);
4484 int i=stubs[n].b;
4485 if(stubs[n].d==NULLDS) {
4486 // Delay slot instruction is nullified ("likely" branch)
4487 wb_dirtys(regs[i].regmap,regs[i].dirty);
4488 }
4489 else if(stubs[n].d!=TAKEN) {
4490 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4491 }
4492 else {
4493 if(internal_branch(ba[i]))
4494 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4495 }
4496 if(stubs[n].c!=-1)
4497 {
4498 // Save PC as return address
4499 emit_movimm(stubs[n].c,EAX);
4500 emit_writeword(EAX,&pcaddr);
4501 }
4502 else
4503 {
4504 // Return address depends on which way the branch goes
4505 if(itype[i]==CJUMP||itype[i]==SJUMP)
4506 {
4507 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4508 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4509 if(rs1[i]==0)
4510 {
4511 s1l=s2l;
4512 s2l=-1;
4513 }
4514 else if(rs2[i]==0)
4515 {
4516 s2l=-1;
4517 }
4518 assert(s1l>=0);
4519 #ifdef DESTRUCTIVE_WRITEBACK
4520 if(rs1[i]) {
4521 if((branch_regs[i].dirty>>s1l)&&1)
4522 emit_loadreg(rs1[i],s1l);
4523 }
4524 else {
4525 if((branch_regs[i].dirty>>s1l)&1)
4526 emit_loadreg(rs2[i],s1l);
4527 }
4528 if(s2l>=0)
4529 if((branch_regs[i].dirty>>s2l)&1)
4530 emit_loadreg(rs2[i],s2l);
4531 #endif
4532 int hr=0;
4533 int addr=-1,alt=-1,ntaddr=-1;
4534 while(hr<HOST_REGS)
4535 {
4536 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4537 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4538 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4539 {
4540 addr=hr++;break;
4541 }
4542 hr++;
4543 }
4544 while(hr<HOST_REGS)
4545 {
4546 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4547 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4548 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4549 {
4550 alt=hr++;break;
4551 }
4552 hr++;
4553 }
4554 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4555 {
4556 while(hr<HOST_REGS)
4557 {
4558 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4559 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4560 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4561 {
4562 ntaddr=hr;break;
4563 }
4564 hr++;
4565 }
4566 assert(hr<HOST_REGS);
4567 }
4568 if((opcode[i]&0x2f)==4) // BEQ
4569 {
4570 #ifdef HAVE_CMOV_IMM
4571 if(s2l>=0) emit_cmp(s1l,s2l);
4572 else emit_test(s1l,s1l);
4573 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4574 #else
4575 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4576 if(s2l>=0) emit_cmp(s1l,s2l);
4577 else emit_test(s1l,s1l);
4578 emit_cmovne_reg(alt,addr);
4579 #endif
4580 }
4581 if((opcode[i]&0x2f)==5) // BNE
4582 {
4583 #ifdef HAVE_CMOV_IMM
4584 if(s2l>=0) emit_cmp(s1l,s2l);
4585 else emit_test(s1l,s1l);
4586 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4587 #else
4588 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4589 if(s2l>=0) emit_cmp(s1l,s2l);
4590 else emit_test(s1l,s1l);
4591 emit_cmovne_reg(alt,addr);
4592 #endif
4593 }
4594 if((opcode[i]&0x2f)==6) // BLEZ
4595 {
4596 //emit_movimm(ba[i],alt);
4597 //emit_movimm(start+i*4+8,addr);
4598 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4599 emit_cmpimm(s1l,1);
4600 emit_cmovl_reg(alt,addr);
4601 }
4602 if((opcode[i]&0x2f)==7) // BGTZ
4603 {
4604 //emit_movimm(ba[i],addr);
4605 //emit_movimm(start+i*4+8,ntaddr);
4606 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4607 emit_cmpimm(s1l,1);
4608 emit_cmovl_reg(ntaddr,addr);
4609 }
4610 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4611 {
4612 //emit_movimm(ba[i],alt);
4613 //emit_movimm(start+i*4+8,addr);
4614 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4615 emit_test(s1l,s1l);
4616 emit_cmovs_reg(alt,addr);
4617 }
4618 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4619 {
4620 //emit_movimm(ba[i],addr);
4621 //emit_movimm(start+i*4+8,alt);
4622 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4623 emit_test(s1l,s1l);
4624 emit_cmovs_reg(alt,addr);
4625 }
4626 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4627 if(source[i]&0x10000) // BC1T
4628 {
4629 //emit_movimm(ba[i],alt);
4630 //emit_movimm(start+i*4+8,addr);
4631 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4632 emit_testimm(s1l,0x800000);
4633 emit_cmovne_reg(alt,addr);
4634 }
4635 else // BC1F
4636 {
4637 //emit_movimm(ba[i],addr);
4638 //emit_movimm(start+i*4+8,alt);
4639 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4640 emit_testimm(s1l,0x800000);
4641 emit_cmovne_reg(alt,addr);
4642 }
4643 }
4644 emit_writeword(addr,&pcaddr);
4645 }
4646 else
4647 if(itype[i]==RJUMP)
4648 {
4649 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4650 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4651 r=get_reg(branch_regs[i].regmap,RTEMP);
4652 }
4653 emit_writeword(r,&pcaddr);
4654 }
4655 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4656 }
4657 // Update cycle count
4658 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4659 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4660 emit_far_call(cc_interrupt);
4661 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4662 if(stubs[n].d==TAKEN) {
4663 if(internal_branch(ba[i]))
4664 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4665 else if(itype[i]==RJUMP) {
4666 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4667 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4668 else
4669 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4670 }
4671 }else if(stubs[n].d==NOTTAKEN) {
4672 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4673 else load_all_regs(branch_regs[i].regmap);
4674 }else if(stubs[n].d==NULLDS) {
4675 // Delay slot instruction is nullified ("likely" branch)
4676 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4677 else load_all_regs(regs[i].regmap);
4678 }else{
4679 load_all_regs(branch_regs[i].regmap);
4680 }
4681 if (stubs[n].retaddr)
4682 emit_jmp(stubs[n].retaddr);
4683 else
4684 do_jump_vaddr(stubs[n].e);
4685}
4686
4687static void add_to_linker(void *addr, u_int target, int ext)
4688{
4689 assert(linkcount < ARRAY_SIZE(link_addr));
4690 link_addr[linkcount].addr = addr;
4691 link_addr[linkcount].target = target;
4692 link_addr[linkcount].ext = ext;
4693 linkcount++;
4694}
4695
4696static void ujump_assemble_write_ra(int i)
4697{
4698 int rt;
4699 unsigned int return_address;
4700 rt=get_reg(branch_regs[i].regmap,31);
4701 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4702 //assert(rt>=0);
4703 return_address=start+i*4+8;
4704 if(rt>=0) {
4705 #ifdef USE_MINI_HT
4706 if(internal_branch(return_address)&&rt1[i+1]!=31) {
4707 int temp=-1; // note: must be ds-safe
4708 #ifdef HOST_TEMPREG
4709 temp=HOST_TEMPREG;
4710 #endif
4711 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4712 else emit_movimm(return_address,rt);
4713 }
4714 else
4715 #endif
4716 {
4717 #ifdef REG_PREFETCH
4718 if(temp>=0)
4719 {
4720 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4721 }
4722 #endif
4723 emit_movimm(return_address,rt); // PC into link register
4724 #ifdef IMM_PREFETCH
4725 emit_prefetch(hash_table_get(return_address));
4726 #endif
4727 }
4728 }
4729}
4730
4731static void ujump_assemble(int i,struct regstat *i_regs)
4732{
4733 int ra_done=0;
4734 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4735 address_generation(i+1,i_regs,regs[i].regmap_entry);
4736 #ifdef REG_PREFETCH
4737 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4738 if(rt1[i]==31&&temp>=0)
4739 {
4740 signed char *i_regmap=i_regs->regmap;
4741 int return_address=start+i*4+8;
4742 if(get_reg(branch_regs[i].regmap,31)>0)
4743 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4744 }
4745 #endif
4746 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4747 ujump_assemble_write_ra(i); // writeback ra for DS
4748 ra_done=1;
4749 }
4750 ds_assemble(i+1,i_regs);
4751 uint64_t bc_unneeded=branch_regs[i].u;
4752 bc_unneeded|=1|(1LL<<rt1[i]);
4753 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4754 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
4755 if(!ra_done&&rt1[i]==31)
4756 ujump_assemble_write_ra(i);
4757 int cc,adj;
4758 cc=get_reg(branch_regs[i].regmap,CCREG);
4759 assert(cc==HOST_CCREG);
4760 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4761 #ifdef REG_PREFETCH
4762 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4763 #endif
4764 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4765 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4766 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4767 if(internal_branch(ba[i]))
4768 assem_debug("branch: internal\n");
4769 else
4770 assem_debug("branch: external\n");
4771 if(internal_branch(ba[i])&&is_ds[(ba[i]-start)>>2]) {
4772 ds_assemble_entry(i);
4773 }
4774 else {
4775 add_to_linker(out,ba[i],internal_branch(ba[i]));
4776 emit_jmp(0);
4777 }
4778}
4779
4780static void rjump_assemble_write_ra(int i)
4781{
4782 int rt,return_address;
4783 assert(rt1[i+1]!=rt1[i]);
4784 assert(rt2[i+1]!=rt1[i]);
4785 rt=get_reg(branch_regs[i].regmap,rt1[i]);
4786 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4787 assert(rt>=0);
4788 return_address=start+i*4+8;
4789 #ifdef REG_PREFETCH
4790 if(temp>=0)
4791 {
4792 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4793 }
4794 #endif
4795 emit_movimm(return_address,rt); // PC into link register
4796 #ifdef IMM_PREFETCH
4797 emit_prefetch(hash_table_get(return_address));
4798 #endif
4799}
4800
4801static void rjump_assemble(int i,struct regstat *i_regs)
4802{
4803 int temp;
4804 int rs,cc;
4805 int ra_done=0;
4806 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4807 assert(rs>=0);
4808 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4809 // Delay slot abuse, make a copy of the branch address register
4810 temp=get_reg(branch_regs[i].regmap,RTEMP);
4811 assert(temp>=0);
4812 assert(regs[i].regmap[temp]==RTEMP);
4813 emit_mov(rs,temp);
4814 rs=temp;
4815 }
4816 address_generation(i+1,i_regs,regs[i].regmap_entry);
4817 #ifdef REG_PREFETCH
4818 if(rt1[i]==31)
4819 {
4820 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4821 signed char *i_regmap=i_regs->regmap;
4822 int return_address=start+i*4+8;
4823 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
4824 }
4825 }
4826 #endif
4827 #ifdef USE_MINI_HT
4828 if(rs1[i]==31) {
4829 int rh=get_reg(regs[i].regmap,RHASH);
4830 if(rh>=0) do_preload_rhash(rh);
4831 }
4832 #endif
4833 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4834 rjump_assemble_write_ra(i);
4835 ra_done=1;
4836 }
4837 ds_assemble(i+1,i_regs);
4838 uint64_t bc_unneeded=branch_regs[i].u;
4839 bc_unneeded|=1|(1LL<<rt1[i]);
4840 bc_unneeded&=~(1LL<<rs1[i]);
4841 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4842 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],CCREG);
4843 if(!ra_done&&rt1[i]!=0)
4844 rjump_assemble_write_ra(i);
4845 cc=get_reg(branch_regs[i].regmap,CCREG);
4846 assert(cc==HOST_CCREG);
4847 (void)cc;
4848 #ifdef USE_MINI_HT
4849 int rh=get_reg(branch_regs[i].regmap,RHASH);
4850 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4851 if(rs1[i]==31) {
4852 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4853 do_preload_rhtbl(ht);
4854 do_rhash(rs,rh);
4855 }
4856 #endif
4857 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
4858 #ifdef DESTRUCTIVE_WRITEBACK
4859 if((branch_regs[i].dirty>>rs)&1) {
4860 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4861 emit_loadreg(rs1[i],rs);
4862 }
4863 }
4864 #endif
4865 #ifdef REG_PREFETCH
4866 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4867 #endif
4868 #ifdef USE_MINI_HT
4869 if(rs1[i]==31) {
4870 do_miniht_load(ht,rh);
4871 }
4872 #endif
4873 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4874 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4875 //assert(adj==0);
4876 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
4877 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
4878 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4879 // special case for RFE
4880 emit_jmp(0);
4881 else
4882 emit_jns(0);
4883 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
4884 #ifdef USE_MINI_HT
4885 if(rs1[i]==31) {
4886 do_miniht_jump(rs,rh,ht);
4887 }
4888 else
4889 #endif
4890 {
4891 do_jump_vaddr(rs);
4892 }
4893 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4894 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4895 #endif
4896}
4897
4898static void cjump_assemble(int i,struct regstat *i_regs)
4899{
4900 signed char *i_regmap=i_regs->regmap;
4901 int cc;
4902 int match;
4903 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4904 assem_debug("match=%d\n",match);
4905 int s1l,s2l;
4906 int unconditional=0,nop=0;
4907 int invert=0;
4908 int internal=internal_branch(ba[i]);
4909 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4910 if(!match) invert=1;
4911 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4912 if(i>(ba[i]-start)>>2) invert=1;
4913 #endif
4914 #ifdef __aarch64__
4915 invert=1; // because of near cond. branches
4916 #endif
4917
4918 if(ooo[i]) {
4919 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4920 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4921 }
4922 else {
4923 s1l=get_reg(i_regmap,rs1[i]);
4924 s2l=get_reg(i_regmap,rs2[i]);
4925 }
4926 if(rs1[i]==0&&rs2[i]==0)
4927 {
4928 if(opcode[i]&1) nop=1;
4929 else unconditional=1;
4930 //assert(opcode[i]!=5);
4931 //assert(opcode[i]!=7);
4932 //assert(opcode[i]!=0x15);
4933 //assert(opcode[i]!=0x17);
4934 }
4935 else if(rs1[i]==0)
4936 {
4937 s1l=s2l;
4938 s2l=-1;
4939 }
4940 else if(rs2[i]==0)
4941 {
4942 s2l=-1;
4943 }
4944
4945 if(ooo[i]) {
4946 // Out of order execution (delay slot first)
4947 //printf("OOOE\n");
4948 address_generation(i+1,i_regs,regs[i].regmap_entry);
4949 ds_assemble(i+1,i_regs);
4950 int adj;
4951 uint64_t bc_unneeded=branch_regs[i].u;
4952 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
4953 bc_unneeded|=1;
4954 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
4955 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs2[i]);
4956 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
4957 cc=get_reg(branch_regs[i].regmap,CCREG);
4958 assert(cc==HOST_CCREG);
4959 if(unconditional)
4960 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4961 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
4962 //assem_debug("cycle count (adj)\n");
4963 if(unconditional) {
4964 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4965 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
4966 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4967 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4968 if(internal)
4969 assem_debug("branch: internal\n");
4970 else
4971 assem_debug("branch: external\n");
4972 if(internal&&is_ds[(ba[i]-start)>>2]) {
4973 ds_assemble_entry(i);
4974 }
4975 else {
4976 add_to_linker(out,ba[i],internal);
4977 emit_jmp(0);
4978 }
4979 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4980 if(((u_int)out)&7) emit_addnop(0);
4981 #endif
4982 }
4983 }
4984 else if(nop) {
4985 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
4986 void *jaddr=out;
4987 emit_jns(0);
4988 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
4989 }
4990 else {
4991 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
4992 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
4993 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4994
4995 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4996 assert(s1l>=0);
4997 if(opcode[i]==4) // BEQ
4998 {
4999 if(s2l>=0) emit_cmp(s1l,s2l);
5000 else emit_test(s1l,s1l);
5001 if(invert){
5002 nottaken=out;
5003 emit_jne(DJT_1);
5004 }else{
5005 add_to_linker(out,ba[i],internal);
5006 emit_jeq(0);
5007 }
5008 }
5009 if(opcode[i]==5) // BNE
5010 {
5011 if(s2l>=0) emit_cmp(s1l,s2l);
5012 else emit_test(s1l,s1l);
5013 if(invert){
5014 nottaken=out;
5015 emit_jeq(DJT_1);
5016 }else{
5017 add_to_linker(out,ba[i],internal);
5018 emit_jne(0);
5019 }
5020 }
5021 if(opcode[i]==6) // BLEZ
5022 {
5023 emit_cmpimm(s1l,1);
5024 if(invert){
5025 nottaken=out;
5026 emit_jge(DJT_1);
5027 }else{
5028 add_to_linker(out,ba[i],internal);
5029 emit_jl(0);
5030 }
5031 }
5032 if(opcode[i]==7) // BGTZ
5033 {
5034 emit_cmpimm(s1l,1);
5035 if(invert){
5036 nottaken=out;
5037 emit_jl(DJT_1);
5038 }else{
5039 add_to_linker(out,ba[i],internal);
5040 emit_jge(0);
5041 }
5042 }
5043 if(invert) {
5044 if(taken) set_jump_target(taken, out);
5045 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5046 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5047 if(adj) {
5048 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5049 add_to_linker(out,ba[i],internal);
5050 }else{
5051 emit_addnop(13);
5052 add_to_linker(out,ba[i],internal*2);
5053 }
5054 emit_jmp(0);
5055 }else
5056 #endif
5057 {
5058 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5059 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5060 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5061 if(internal)
5062 assem_debug("branch: internal\n");
5063 else
5064 assem_debug("branch: external\n");
5065 if(internal&&is_ds[(ba[i]-start)>>2]) {
5066 ds_assemble_entry(i);
5067 }
5068 else {
5069 add_to_linker(out,ba[i],internal);
5070 emit_jmp(0);
5071 }
5072 }
5073 set_jump_target(nottaken, out);
5074 }
5075
5076 if(nottaken1) set_jump_target(nottaken1, out);
5077 if(adj) {
5078 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5079 }
5080 } // (!unconditional)
5081 } // if(ooo)
5082 else
5083 {
5084 // In-order execution (branch first)
5085 //if(likely[i]) printf("IOL\n");
5086 //else
5087 //printf("IOE\n");
5088 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5089 if(!unconditional&&!nop) {
5090 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5091 assert(s1l>=0);
5092 if((opcode[i]&0x2f)==4) // BEQ
5093 {
5094 if(s2l>=0) emit_cmp(s1l,s2l);
5095 else emit_test(s1l,s1l);
5096 nottaken=out;
5097 emit_jne(DJT_2);
5098 }
5099 if((opcode[i]&0x2f)==5) // BNE
5100 {
5101 if(s2l>=0) emit_cmp(s1l,s2l);
5102 else emit_test(s1l,s1l);
5103 nottaken=out;
5104 emit_jeq(DJT_2);
5105 }
5106 if((opcode[i]&0x2f)==6) // BLEZ
5107 {
5108 emit_cmpimm(s1l,1);
5109 nottaken=out;
5110 emit_jge(DJT_2);
5111 }
5112 if((opcode[i]&0x2f)==7) // BGTZ
5113 {
5114 emit_cmpimm(s1l,1);
5115 nottaken=out;
5116 emit_jl(DJT_2);
5117 }
5118 } // if(!unconditional)
5119 int adj;
5120 uint64_t ds_unneeded=branch_regs[i].u;
5121 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5122 ds_unneeded|=1;
5123 // branch taken
5124 if(!nop) {
5125 if(taken) set_jump_target(taken, out);
5126 assem_debug("1:\n");
5127 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5128 // load regs
5129 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5130 address_generation(i+1,&branch_regs[i],0);
5131 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5132 ds_assemble(i+1,&branch_regs[i]);
5133 cc=get_reg(branch_regs[i].regmap,CCREG);
5134 if(cc==-1) {
5135 emit_loadreg(CCREG,cc=HOST_CCREG);
5136 // CHECK: Is the following instruction (fall thru) allocated ok?
5137 }
5138 assert(cc==HOST_CCREG);
5139 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5140 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5141 assem_debug("cycle count (adj)\n");
5142 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5143 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5144 if(internal)
5145 assem_debug("branch: internal\n");
5146 else
5147 assem_debug("branch: external\n");
5148 if(internal&&is_ds[(ba[i]-start)>>2]) {
5149 ds_assemble_entry(i);
5150 }
5151 else {
5152 add_to_linker(out,ba[i],internal);
5153 emit_jmp(0);
5154 }
5155 }
5156 // branch not taken
5157 if(!unconditional) {
5158 if(nottaken1) set_jump_target(nottaken1, out);
5159 set_jump_target(nottaken, out);
5160 assem_debug("2:\n");
5161 if(!likely[i]) {
5162 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5163 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5164 address_generation(i+1,&branch_regs[i],0);
5165 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5166 ds_assemble(i+1,&branch_regs[i]);
5167 }
5168 cc=get_reg(branch_regs[i].regmap,CCREG);
5169 if(cc==-1&&!likely[i]) {
5170 // Cycle count isn't in a register, temporarily load it then write it out
5171 emit_loadreg(CCREG,HOST_CCREG);
5172 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5173 void *jaddr=out;
5174 emit_jns(0);
5175 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5176 emit_storereg(CCREG,HOST_CCREG);
5177 }
5178 else{
5179 cc=get_reg(i_regmap,CCREG);
5180 assert(cc==HOST_CCREG);
5181 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5182 void *jaddr=out;
5183 emit_jns(0);
5184 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5185 }
5186 }
5187 }
5188}
5189
5190static void sjump_assemble(int i,struct regstat *i_regs)
5191{
5192 signed char *i_regmap=i_regs->regmap;
5193 int cc;
5194 int match;
5195 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5196 assem_debug("smatch=%d\n",match);
5197 int s1l;
5198 int unconditional=0,nevertaken=0;
5199 int invert=0;
5200 int internal=internal_branch(ba[i]);
5201 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5202 if(!match) invert=1;
5203 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5204 if(i>(ba[i]-start)>>2) invert=1;
5205 #endif
5206 #ifdef __aarch64__
5207 invert=1; // because of near cond. branches
5208 #endif
5209
5210 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5211 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5212
5213 if(ooo[i]) {
5214 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5215 }
5216 else {
5217 s1l=get_reg(i_regmap,rs1[i]);
5218 }
5219 if(rs1[i]==0)
5220 {
5221 if(opcode2[i]&1) unconditional=1;
5222 else nevertaken=1;
5223 // These are never taken (r0 is never less than zero)
5224 //assert(opcode2[i]!=0);
5225 //assert(opcode2[i]!=2);
5226 //assert(opcode2[i]!=0x10);
5227 //assert(opcode2[i]!=0x12);
5228 }
5229
5230 if(ooo[i]) {
5231 // Out of order execution (delay slot first)
5232 //printf("OOOE\n");
5233 address_generation(i+1,i_regs,regs[i].regmap_entry);
5234 ds_assemble(i+1,i_regs);
5235 int adj;
5236 uint64_t bc_unneeded=branch_regs[i].u;
5237 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5238 bc_unneeded|=1;
5239 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5240 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs1[i]);
5241 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5242 if(rt1[i]==31) {
5243 int rt,return_address;
5244 rt=get_reg(branch_regs[i].regmap,31);
5245 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5246 if(rt>=0) {
5247 // Save the PC even if the branch is not taken
5248 return_address=start+i*4+8;
5249 emit_movimm(return_address,rt); // PC into link register
5250 #ifdef IMM_PREFETCH
5251 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5252 #endif
5253 }
5254 }
5255 cc=get_reg(branch_regs[i].regmap,CCREG);
5256 assert(cc==HOST_CCREG);
5257 if(unconditional)
5258 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5259 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5260 assem_debug("cycle count (adj)\n");
5261 if(unconditional) {
5262 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5263 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5264 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5265 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5266 if(internal)
5267 assem_debug("branch: internal\n");
5268 else
5269 assem_debug("branch: external\n");
5270 if(internal&&is_ds[(ba[i]-start)>>2]) {
5271 ds_assemble_entry(i);
5272 }
5273 else {
5274 add_to_linker(out,ba[i],internal);
5275 emit_jmp(0);
5276 }
5277 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5278 if(((u_int)out)&7) emit_addnop(0);
5279 #endif
5280 }
5281 }
5282 else if(nevertaken) {
5283 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5284 void *jaddr=out;
5285 emit_jns(0);
5286 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5287 }
5288 else {
5289 void *nottaken = NULL;
5290 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5291 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5292 {
5293 assert(s1l>=0);
5294 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5295 {
5296 emit_test(s1l,s1l);
5297 if(invert){
5298 nottaken=out;
5299 emit_jns(DJT_1);
5300 }else{
5301 add_to_linker(out,ba[i],internal);
5302 emit_js(0);
5303 }
5304 }
5305 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5306 {
5307 emit_test(s1l,s1l);
5308 if(invert){
5309 nottaken=out;
5310 emit_js(DJT_1);
5311 }else{
5312 add_to_linker(out,ba[i],internal);
5313 emit_jns(0);
5314 }
5315 }
5316 }
5317
5318 if(invert) {
5319 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5320 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5321 if(adj) {
5322 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5323 add_to_linker(out,ba[i],internal);
5324 }else{
5325 emit_addnop(13);
5326 add_to_linker(out,ba[i],internal*2);
5327 }
5328 emit_jmp(0);
5329 }else
5330 #endif
5331 {
5332 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5333 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5334 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5335 if(internal)
5336 assem_debug("branch: internal\n");
5337 else
5338 assem_debug("branch: external\n");
5339 if(internal&&is_ds[(ba[i]-start)>>2]) {
5340 ds_assemble_entry(i);
5341 }
5342 else {
5343 add_to_linker(out,ba[i],internal);
5344 emit_jmp(0);
5345 }
5346 }
5347 set_jump_target(nottaken, out);
5348 }
5349
5350 if(adj) {
5351 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5352 }
5353 } // (!unconditional)
5354 } // if(ooo)
5355 else
5356 {
5357 // In-order execution (branch first)
5358 //printf("IOE\n");
5359 void *nottaken = NULL;
5360 if(rt1[i]==31) {
5361 int rt,return_address;
5362 rt=get_reg(branch_regs[i].regmap,31);
5363 if(rt>=0) {
5364 // Save the PC even if the branch is not taken
5365 return_address=start+i*4+8;
5366 emit_movimm(return_address,rt); // PC into link register
5367 #ifdef IMM_PREFETCH
5368 emit_prefetch(hash_table_get(return_address));
5369 #endif
5370 }
5371 }
5372 if(!unconditional) {
5373 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5374 assert(s1l>=0);
5375 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5376 {
5377 emit_test(s1l,s1l);
5378 nottaken=out;
5379 emit_jns(DJT_1);
5380 }
5381 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5382 {
5383 emit_test(s1l,s1l);
5384 nottaken=out;
5385 emit_js(DJT_1);
5386 }
5387 } // if(!unconditional)
5388 int adj;
5389 uint64_t ds_unneeded=branch_regs[i].u;
5390 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5391 ds_unneeded|=1;
5392 // branch taken
5393 if(!nevertaken) {
5394 //assem_debug("1:\n");
5395 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5396 // load regs
5397 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5398 address_generation(i+1,&branch_regs[i],0);
5399 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5400 ds_assemble(i+1,&branch_regs[i]);
5401 cc=get_reg(branch_regs[i].regmap,CCREG);
5402 if(cc==-1) {
5403 emit_loadreg(CCREG,cc=HOST_CCREG);
5404 // CHECK: Is the following instruction (fall thru) allocated ok?
5405 }
5406 assert(cc==HOST_CCREG);
5407 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5408 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5409 assem_debug("cycle count (adj)\n");
5410 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5411 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5412 if(internal)
5413 assem_debug("branch: internal\n");
5414 else
5415 assem_debug("branch: external\n");
5416 if(internal&&is_ds[(ba[i]-start)>>2]) {
5417 ds_assemble_entry(i);
5418 }
5419 else {
5420 add_to_linker(out,ba[i],internal);
5421 emit_jmp(0);
5422 }
5423 }
5424 // branch not taken
5425 if(!unconditional) {
5426 set_jump_target(nottaken, out);
5427 assem_debug("1:\n");
5428 if(!likely[i]) {
5429 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5430 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5431 address_generation(i+1,&branch_regs[i],0);
5432 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5433 ds_assemble(i+1,&branch_regs[i]);
5434 }
5435 cc=get_reg(branch_regs[i].regmap,CCREG);
5436 if(cc==-1&&!likely[i]) {
5437 // Cycle count isn't in a register, temporarily load it then write it out
5438 emit_loadreg(CCREG,HOST_CCREG);
5439 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5440 void *jaddr=out;
5441 emit_jns(0);
5442 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5443 emit_storereg(CCREG,HOST_CCREG);
5444 }
5445 else{
5446 cc=get_reg(i_regmap,CCREG);
5447 assert(cc==HOST_CCREG);
5448 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5449 void *jaddr=out;
5450 emit_jns(0);
5451 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5452 }
5453 }
5454 }
5455}
5456
5457static void pagespan_assemble(int i,struct regstat *i_regs)
5458{
5459 int s1l=get_reg(i_regs->regmap,rs1[i]);
5460 int s2l=get_reg(i_regs->regmap,rs2[i]);
5461 void *taken = NULL;
5462 void *nottaken = NULL;
5463 int unconditional=0;
5464 if(rs1[i]==0)
5465 {
5466 s1l=s2l;
5467 s2l=-1;
5468 }
5469 else if(rs2[i]==0)
5470 {
5471 s2l=-1;
5472 }
5473 int hr=0;
5474 int addr=-1,alt=-1,ntaddr=-1;
5475 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5476 else {
5477 while(hr<HOST_REGS)
5478 {
5479 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5480 (i_regs->regmap[hr]&63)!=rs1[i] &&
5481 (i_regs->regmap[hr]&63)!=rs2[i] )
5482 {
5483 addr=hr++;break;
5484 }
5485 hr++;
5486 }
5487 }
5488 while(hr<HOST_REGS)
5489 {
5490 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5491 (i_regs->regmap[hr]&63)!=rs1[i] &&
5492 (i_regs->regmap[hr]&63)!=rs2[i] )
5493 {
5494 alt=hr++;break;
5495 }
5496 hr++;
5497 }
5498 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5499 {
5500 while(hr<HOST_REGS)
5501 {
5502 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5503 (i_regs->regmap[hr]&63)!=rs1[i] &&
5504 (i_regs->regmap[hr]&63)!=rs2[i] )
5505 {
5506 ntaddr=hr;break;
5507 }
5508 hr++;
5509 }
5510 }
5511 assert(hr<HOST_REGS);
5512 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5513 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5514 }
5515 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5516 if(opcode[i]==2) // J
5517 {
5518 unconditional=1;
5519 }
5520 if(opcode[i]==3) // JAL
5521 {
5522 // TODO: mini_ht
5523 int rt=get_reg(i_regs->regmap,31);
5524 emit_movimm(start+i*4+8,rt);
5525 unconditional=1;
5526 }
5527 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5528 {
5529 emit_mov(s1l,addr);
5530 if(opcode2[i]==9) // JALR
5531 {
5532 int rt=get_reg(i_regs->regmap,rt1[i]);
5533 emit_movimm(start+i*4+8,rt);
5534 }
5535 }
5536 if((opcode[i]&0x3f)==4) // BEQ
5537 {
5538 if(rs1[i]==rs2[i])
5539 {
5540 unconditional=1;
5541 }
5542 else
5543 #ifdef HAVE_CMOV_IMM
5544 if(1) {
5545 if(s2l>=0) emit_cmp(s1l,s2l);
5546 else emit_test(s1l,s1l);
5547 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5548 }
5549 else
5550 #endif
5551 {
5552 assert(s1l>=0);
5553 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5554 if(s2l>=0) emit_cmp(s1l,s2l);
5555 else emit_test(s1l,s1l);
5556 emit_cmovne_reg(alt,addr);
5557 }
5558 }
5559 if((opcode[i]&0x3f)==5) // BNE
5560 {
5561 #ifdef HAVE_CMOV_IMM
5562 if(s2l>=0) emit_cmp(s1l,s2l);
5563 else emit_test(s1l,s1l);
5564 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5565 #else
5566 assert(s1l>=0);
5567 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5568 if(s2l>=0) emit_cmp(s1l,s2l);
5569 else emit_test(s1l,s1l);
5570 emit_cmovne_reg(alt,addr);
5571 #endif
5572 }
5573 if((opcode[i]&0x3f)==0x14) // BEQL
5574 {
5575 if(s2l>=0) emit_cmp(s1l,s2l);
5576 else emit_test(s1l,s1l);
5577 if(nottaken) set_jump_target(nottaken, out);
5578 nottaken=out;
5579 emit_jne(0);
5580 }
5581 if((opcode[i]&0x3f)==0x15) // BNEL
5582 {
5583 if(s2l>=0) emit_cmp(s1l,s2l);
5584 else emit_test(s1l,s1l);
5585 nottaken=out;
5586 emit_jeq(0);
5587 if(taken) set_jump_target(taken, out);
5588 }
5589 if((opcode[i]&0x3f)==6) // BLEZ
5590 {
5591 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5592 emit_cmpimm(s1l,1);
5593 emit_cmovl_reg(alt,addr);
5594 }
5595 if((opcode[i]&0x3f)==7) // BGTZ
5596 {
5597 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5598 emit_cmpimm(s1l,1);
5599 emit_cmovl_reg(ntaddr,addr);
5600 }
5601 if((opcode[i]&0x3f)==0x16) // BLEZL
5602 {
5603 assert((opcode[i]&0x3f)!=0x16);
5604 }
5605 if((opcode[i]&0x3f)==0x17) // BGTZL
5606 {
5607 assert((opcode[i]&0x3f)!=0x17);
5608 }
5609 assert(opcode[i]!=1); // BLTZ/BGEZ
5610
5611 //FIXME: Check CSREG
5612 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5613 if((source[i]&0x30000)==0) // BC1F
5614 {
5615 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5616 emit_testimm(s1l,0x800000);
5617 emit_cmovne_reg(alt,addr);
5618 }
5619 if((source[i]&0x30000)==0x10000) // BC1T
5620 {
5621 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5622 emit_testimm(s1l,0x800000);
5623 emit_cmovne_reg(alt,addr);
5624 }
5625 if((source[i]&0x30000)==0x20000) // BC1FL
5626 {
5627 emit_testimm(s1l,0x800000);
5628 nottaken=out;
5629 emit_jne(0);
5630 }
5631 if((source[i]&0x30000)==0x30000) // BC1TL
5632 {
5633 emit_testimm(s1l,0x800000);
5634 nottaken=out;
5635 emit_jeq(0);
5636 }
5637 }
5638
5639 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5640 wb_dirtys(regs[i].regmap,regs[i].dirty);
5641 if(likely[i]||unconditional)
5642 {
5643 emit_movimm(ba[i],HOST_BTREG);
5644 }
5645 else if(addr!=HOST_BTREG)
5646 {
5647 emit_mov(addr,HOST_BTREG);
5648 }
5649 void *branch_addr=out;
5650 emit_jmp(0);
5651 int target_addr=start+i*4+5;
5652 void *stub=out;
5653 void *compiled_target_addr=check_addr(target_addr);
5654 emit_extjump_ds(branch_addr, target_addr);
5655 if(compiled_target_addr) {
5656 set_jump_target(branch_addr, compiled_target_addr);
5657 add_link(target_addr,stub);
5658 }
5659 else set_jump_target(branch_addr, stub);
5660 if(likely[i]) {
5661 // Not-taken path
5662 set_jump_target(nottaken, out);
5663 wb_dirtys(regs[i].regmap,regs[i].dirty);
5664 void *branch_addr=out;
5665 emit_jmp(0);
5666 int target_addr=start+i*4+8;
5667 void *stub=out;
5668 void *compiled_target_addr=check_addr(target_addr);
5669 emit_extjump_ds(branch_addr, target_addr);
5670 if(compiled_target_addr) {
5671 set_jump_target(branch_addr, compiled_target_addr);
5672 add_link(target_addr,stub);
5673 }
5674 else set_jump_target(branch_addr, stub);
5675 }
5676}
5677
5678// Assemble the delay slot for the above
5679static void pagespan_ds()
5680{
5681 assem_debug("initial delay slot:\n");
5682 u_int vaddr=start+1;
5683 u_int page=get_page(vaddr);
5684 u_int vpage=get_vpage(vaddr);
5685 ll_add(jump_dirty+vpage,vaddr,(void *)out);
5686 do_dirty_stub_ds();
5687 ll_add(jump_in+page,vaddr,(void *)out);
5688 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
5689 if(regs[0].regmap[HOST_CCREG]!=CCREG)
5690 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
5691 if(regs[0].regmap[HOST_BTREG]!=BTREG)
5692 emit_writeword(HOST_BTREG,&branch_target);
5693 load_regs(regs[0].regmap_entry,regs[0].regmap,rs1[0],rs2[0]);
5694 address_generation(0,&regs[0],regs[0].regmap_entry);
5695 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
5696 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
5697 is_delayslot=0;
5698 switch(itype[0]) {
5699 case ALU:
5700 alu_assemble(0,&regs[0]);break;
5701 case IMM16:
5702 imm16_assemble(0,&regs[0]);break;
5703 case SHIFT:
5704 shift_assemble(0,&regs[0]);break;
5705 case SHIFTIMM:
5706 shiftimm_assemble(0,&regs[0]);break;
5707 case LOAD:
5708 load_assemble(0,&regs[0]);break;
5709 case LOADLR:
5710 loadlr_assemble(0,&regs[0]);break;
5711 case STORE:
5712 store_assemble(0,&regs[0]);break;
5713 case STORELR:
5714 storelr_assemble(0,&regs[0]);break;
5715 case COP0:
5716 cop0_assemble(0,&regs[0]);break;
5717 case COP1:
5718 cop1_assemble(0,&regs[0]);break;
5719 case C1LS:
5720 c1ls_assemble(0,&regs[0]);break;
5721 case COP2:
5722 cop2_assemble(0,&regs[0]);break;
5723 case C2LS:
5724 c2ls_assemble(0,&regs[0]);break;
5725 case C2OP:
5726 c2op_assemble(0,&regs[0]);break;
5727 case MULTDIV:
5728 multdiv_assemble(0,&regs[0]);break;
5729 case MOV:
5730 mov_assemble(0,&regs[0]);break;
5731 case SYSCALL:
5732 case HLECALL:
5733 case INTCALL:
5734 case SPAN:
5735 case UJUMP:
5736 case RJUMP:
5737 case CJUMP:
5738 case SJUMP:
5739 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
5740 }
5741 int btaddr=get_reg(regs[0].regmap,BTREG);
5742 if(btaddr<0) {
5743 btaddr=get_reg(regs[0].regmap,-1);
5744 emit_readword(&branch_target,btaddr);
5745 }
5746 assert(btaddr!=HOST_CCREG);
5747 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
5748#ifdef HOST_IMM8
5749 host_tempreg_acquire();
5750 emit_movimm(start+4,HOST_TEMPREG);
5751 emit_cmp(btaddr,HOST_TEMPREG);
5752 host_tempreg_release();
5753#else
5754 emit_cmpimm(btaddr,start+4);
5755#endif
5756 void *branch = out;
5757 emit_jeq(0);
5758 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
5759 do_jump_vaddr(btaddr);
5760 set_jump_target(branch, out);
5761 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5762 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
5763}
5764
5765// Basic liveness analysis for MIPS registers
5766void unneeded_registers(int istart,int iend,int r)
5767{
5768 int i;
5769 uint64_t u,gte_u,b,gte_b;
5770 uint64_t temp_u,temp_gte_u=0;
5771 uint64_t gte_u_unknown=0;
5772 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
5773 gte_u_unknown=~0ll;
5774 if(iend==slen-1) {
5775 u=1;
5776 gte_u=gte_u_unknown;
5777 }else{
5778 //u=unneeded_reg[iend+1];
5779 u=1;
5780 gte_u=gte_unneeded[iend+1];
5781 }
5782
5783 for (i=iend;i>=istart;i--)
5784 {
5785 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
5786 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
5787 {
5788 // If subroutine call, flag return address as a possible branch target
5789 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
5790
5791 if(ba[i]<start || ba[i]>=(start+slen*4))
5792 {
5793 // Branch out of this block, flush all regs
5794 u=1;
5795 gte_u=gte_u_unknown;
5796 branch_unneeded_reg[i]=u;
5797 // Merge in delay slot
5798 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5799 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5800 u|=1;
5801 gte_u|=gte_rt[i+1];
5802 gte_u&=~gte_rs[i+1];
5803 // If branch is "likely" (and conditional)
5804 // then we skip the delay slot on the fall-thru path
5805 if(likely[i]) {
5806 if(i<slen-1) {
5807 u&=unneeded_reg[i+2];
5808 gte_u&=gte_unneeded[i+2];
5809 }
5810 else
5811 {
5812 u=1;
5813 gte_u=gte_u_unknown;
5814 }
5815 }
5816 }
5817 else
5818 {
5819 // Internal branch, flag target
5820 bt[(ba[i]-start)>>2]=1;
5821 if(ba[i]<=start+i*4) {
5822 // Backward branch
5823 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
5824 {
5825 // Unconditional branch
5826 temp_u=1;
5827 temp_gte_u=0;
5828 } else {
5829 // Conditional branch (not taken case)
5830 temp_u=unneeded_reg[i+2];
5831 temp_gte_u&=gte_unneeded[i+2];
5832 }
5833 // Merge in delay slot
5834 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5835 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5836 temp_u|=1;
5837 temp_gte_u|=gte_rt[i+1];
5838 temp_gte_u&=~gte_rs[i+1];
5839 // If branch is "likely" (and conditional)
5840 // then we skip the delay slot on the fall-thru path
5841 if(likely[i]) {
5842 if(i<slen-1) {
5843 temp_u&=unneeded_reg[i+2];
5844 temp_gte_u&=gte_unneeded[i+2];
5845 }
5846 else
5847 {
5848 temp_u=1;
5849 temp_gte_u=gte_u_unknown;
5850 }
5851 }
5852 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
5853 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5854 temp_u|=1;
5855 temp_gte_u|=gte_rt[i];
5856 temp_gte_u&=~gte_rs[i];
5857 unneeded_reg[i]=temp_u;
5858 gte_unneeded[i]=temp_gte_u;
5859 // Only go three levels deep. This recursion can take an
5860 // excessive amount of time if there are a lot of nested loops.
5861 if(r<2) {
5862 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
5863 }else{
5864 unneeded_reg[(ba[i]-start)>>2]=1;
5865 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
5866 }
5867 } /*else*/ if(1) {
5868 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
5869 {
5870 // Unconditional branch
5871 u=unneeded_reg[(ba[i]-start)>>2];
5872 gte_u=gte_unneeded[(ba[i]-start)>>2];
5873 branch_unneeded_reg[i]=u;
5874 // Merge in delay slot
5875 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5876 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5877 u|=1;
5878 gte_u|=gte_rt[i+1];
5879 gte_u&=~gte_rs[i+1];
5880 } else {
5881 // Conditional branch
5882 b=unneeded_reg[(ba[i]-start)>>2];
5883 gte_b=gte_unneeded[(ba[i]-start)>>2];
5884 branch_unneeded_reg[i]=b;
5885 // Branch delay slot
5886 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
5887 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5888 b|=1;
5889 gte_b|=gte_rt[i+1];
5890 gte_b&=~gte_rs[i+1];
5891 // If branch is "likely" then we skip the
5892 // delay slot on the fall-thru path
5893 if(likely[i]) {
5894 u=b;
5895 gte_u=gte_b;
5896 if(i<slen-1) {
5897 u&=unneeded_reg[i+2];
5898 gte_u&=gte_unneeded[i+2];
5899 }
5900 } else {
5901 u&=b;
5902 gte_u&=gte_b;
5903 }
5904 if(i<slen-1) {
5905 branch_unneeded_reg[i]&=unneeded_reg[i+2];
5906 } else {
5907 branch_unneeded_reg[i]=1;
5908 }
5909 }
5910 }
5911 }
5912 }
5913 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
5914 {
5915 // SYSCALL instruction (software interrupt)
5916 u=1;
5917 }
5918 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
5919 {
5920 // ERET instruction (return from interrupt)
5921 u=1;
5922 }
5923 //u=1; // DEBUG
5924 // Written registers are unneeded
5925 u|=1LL<<rt1[i];
5926 u|=1LL<<rt2[i];
5927 gte_u|=gte_rt[i];
5928 // Accessed registers are needed
5929 u&=~(1LL<<rs1[i]);
5930 u&=~(1LL<<rs2[i]);
5931 gte_u&=~gte_rs[i];
5932 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
5933 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
5934 // Source-target dependencies
5935 // R0 is always unneeded
5936 u|=1;
5937 // Save it
5938 unneeded_reg[i]=u;
5939 gte_unneeded[i]=gte_u;
5940 /*
5941 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
5942 printf("U:");
5943 int r;
5944 for(r=1;r<=CCREG;r++) {
5945 if((unneeded_reg[i]>>r)&1) {
5946 if(r==HIREG) printf(" HI");
5947 else if(r==LOREG) printf(" LO");
5948 else printf(" r%d",r);
5949 }
5950 }
5951 printf("\n");
5952 */
5953 }
5954}
5955
5956// Write back dirty registers as soon as we will no longer modify them,
5957// so that we don't end up with lots of writes at the branches.
5958void clean_registers(int istart,int iend,int wr)
5959{
5960 int i;
5961 int r;
5962 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
5963 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
5964 if(iend==slen-1) {
5965 will_dirty_i=will_dirty_next=0;
5966 wont_dirty_i=wont_dirty_next=0;
5967 }else{
5968 will_dirty_i=will_dirty_next=will_dirty[iend+1];
5969 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
5970 }
5971 for (i=iend;i>=istart;i--)
5972 {
5973 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
5974 {
5975 if(ba[i]<start || ba[i]>=(start+slen*4))
5976 {
5977 // Branch out of this block, flush all regs
5978 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
5979 {
5980 // Unconditional branch
5981 will_dirty_i=0;
5982 wont_dirty_i=0;
5983 // Merge in delay slot (will dirty)
5984 for(r=0;r<HOST_REGS;r++) {
5985 if(r!=EXCLUDE_REG) {
5986 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
5987 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
5988 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
5989 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
5990 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
5991 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
5992 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
5993 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
5994 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
5995 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
5996 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
5997 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
5998 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
5999 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6000 }
6001 }
6002 }
6003 else
6004 {
6005 // Conditional branch
6006 will_dirty_i=0;
6007 wont_dirty_i=wont_dirty_next;
6008 // Merge in delay slot (will dirty)
6009 for(r=0;r<HOST_REGS;r++) {
6010 if(r!=EXCLUDE_REG) {
6011 if(!likely[i]) {
6012 // Might not dirty if likely branch is not taken
6013 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6014 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6015 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6016 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6017 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6018 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6019 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6020 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6021 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6022 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6023 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6024 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6025 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6026 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6027 }
6028 }
6029 }
6030 }
6031 // Merge in delay slot (wont dirty)
6032 for(r=0;r<HOST_REGS;r++) {
6033 if(r!=EXCLUDE_REG) {
6034 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6035 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6036 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6037 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6038 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6039 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6040 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6041 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6042 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6043 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6044 }
6045 }
6046 if(wr) {
6047 #ifndef DESTRUCTIVE_WRITEBACK
6048 branch_regs[i].dirty&=wont_dirty_i;
6049 #endif
6050 branch_regs[i].dirty|=will_dirty_i;
6051 }
6052 }
6053 else
6054 {
6055 // Internal branch
6056 if(ba[i]<=start+i*4) {
6057 // Backward branch
6058 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6059 {
6060 // Unconditional branch
6061 temp_will_dirty=0;
6062 temp_wont_dirty=0;
6063 // Merge in delay slot (will dirty)
6064 for(r=0;r<HOST_REGS;r++) {
6065 if(r!=EXCLUDE_REG) {
6066 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6067 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6068 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6069 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6070 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6071 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6072 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6073 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6074 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6075 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6076 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6077 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6078 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6079 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6080 }
6081 }
6082 } else {
6083 // Conditional branch (not taken case)
6084 temp_will_dirty=will_dirty_next;
6085 temp_wont_dirty=wont_dirty_next;
6086 // Merge in delay slot (will dirty)
6087 for(r=0;r<HOST_REGS;r++) {
6088 if(r!=EXCLUDE_REG) {
6089 if(!likely[i]) {
6090 // Will not dirty if likely branch is not taken
6091 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6092 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6093 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6094 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6095 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6096 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6097 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6098 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6099 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6100 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6101 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6102 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6103 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6104 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6105 }
6106 }
6107 }
6108 }
6109 // Merge in delay slot (wont dirty)
6110 for(r=0;r<HOST_REGS;r++) {
6111 if(r!=EXCLUDE_REG) {
6112 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6113 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6114 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6115 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6116 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6117 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6118 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6119 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6120 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6121 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6122 }
6123 }
6124 // Deal with changed mappings
6125 if(i<iend) {
6126 for(r=0;r<HOST_REGS;r++) {
6127 if(r!=EXCLUDE_REG) {
6128 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6129 temp_will_dirty&=~(1<<r);
6130 temp_wont_dirty&=~(1<<r);
6131 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6132 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6133 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6134 } else {
6135 temp_will_dirty|=1<<r;
6136 temp_wont_dirty|=1<<r;
6137 }
6138 }
6139 }
6140 }
6141 }
6142 if(wr) {
6143 will_dirty[i]=temp_will_dirty;
6144 wont_dirty[i]=temp_wont_dirty;
6145 clean_registers((ba[i]-start)>>2,i-1,0);
6146 }else{
6147 // Limit recursion. It can take an excessive amount
6148 // of time if there are a lot of nested loops.
6149 will_dirty[(ba[i]-start)>>2]=0;
6150 wont_dirty[(ba[i]-start)>>2]=-1;
6151 }
6152 }
6153 /*else*/ if(1)
6154 {
6155 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6156 {
6157 // Unconditional branch
6158 will_dirty_i=0;
6159 wont_dirty_i=0;
6160 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6161 for(r=0;r<HOST_REGS;r++) {
6162 if(r!=EXCLUDE_REG) {
6163 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6164 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6165 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6166 }
6167 if(branch_regs[i].regmap[r]>=0) {
6168 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6169 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6170 }
6171 }
6172 }
6173 //}
6174 // Merge in delay slot
6175 for(r=0;r<HOST_REGS;r++) {
6176 if(r!=EXCLUDE_REG) {
6177 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6178 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6179 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6180 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6181 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6182 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6183 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6184 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6185 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6186 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6187 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6188 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6189 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6190 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6191 }
6192 }
6193 } else {
6194 // Conditional branch
6195 will_dirty_i=will_dirty_next;
6196 wont_dirty_i=wont_dirty_next;
6197 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6198 for(r=0;r<HOST_REGS;r++) {
6199 if(r!=EXCLUDE_REG) {
6200 signed char target_reg=branch_regs[i].regmap[r];
6201 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6202 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6203 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6204 }
6205 else if(target_reg>=0) {
6206 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6207 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6208 }
6209 // Treat delay slot as part of branch too
6210 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6211 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6212 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6213 }
6214 else
6215 {
6216 will_dirty[i+1]&=~(1<<r);
6217 }*/
6218 }
6219 }
6220 //}
6221 // Merge in delay slot
6222 for(r=0;r<HOST_REGS;r++) {
6223 if(r!=EXCLUDE_REG) {
6224 if(!likely[i]) {
6225 // Might not dirty if likely branch is not taken
6226 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6227 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6228 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6229 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6230 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6231 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6232 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6233 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6234 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6235 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6236 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6237 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6238 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6239 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6240 }
6241 }
6242 }
6243 }
6244 // Merge in delay slot (won't dirty)
6245 for(r=0;r<HOST_REGS;r++) {
6246 if(r!=EXCLUDE_REG) {
6247 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6248 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6249 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6250 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6251 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6252 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6253 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6254 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6255 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6256 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6257 }
6258 }
6259 if(wr) {
6260 #ifndef DESTRUCTIVE_WRITEBACK
6261 branch_regs[i].dirty&=wont_dirty_i;
6262 #endif
6263 branch_regs[i].dirty|=will_dirty_i;
6264 }
6265 }
6266 }
6267 }
6268 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6269 {
6270 // SYSCALL instruction (software interrupt)
6271 will_dirty_i=0;
6272 wont_dirty_i=0;
6273 }
6274 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6275 {
6276 // ERET instruction (return from interrupt)
6277 will_dirty_i=0;
6278 wont_dirty_i=0;
6279 }
6280 will_dirty_next=will_dirty_i;
6281 wont_dirty_next=wont_dirty_i;
6282 for(r=0;r<HOST_REGS;r++) {
6283 if(r!=EXCLUDE_REG) {
6284 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6285 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6286 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6287 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6288 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6289 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6290 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6291 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6292 if(i>istart) {
6293 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP)
6294 {
6295 // Don't store a register immediately after writing it,
6296 // may prevent dual-issue.
6297 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6298 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6299 }
6300 }
6301 }
6302 }
6303 // Save it
6304 will_dirty[i]=will_dirty_i;
6305 wont_dirty[i]=wont_dirty_i;
6306 // Mark registers that won't be dirtied as not dirty
6307 if(wr) {
6308 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6309 for(r=0;r<HOST_REGS;r++) {
6310 if((will_dirty_i>>r)&1) {
6311 printf(" r%d",r);
6312 }
6313 }
6314 printf("\n");*/
6315
6316 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP)) {
6317 regs[i].dirty|=will_dirty_i;
6318 #ifndef DESTRUCTIVE_WRITEBACK
6319 regs[i].dirty&=wont_dirty_i;
6320 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6321 {
6322 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6323 for(r=0;r<HOST_REGS;r++) {
6324 if(r!=EXCLUDE_REG) {
6325 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6326 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6327 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6328 }
6329 }
6330 }
6331 }
6332 else
6333 {
6334 if(i<iend) {
6335 for(r=0;r<HOST_REGS;r++) {
6336 if(r!=EXCLUDE_REG) {
6337 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6338 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6339 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6340 }
6341 }
6342 }
6343 }
6344 #endif
6345 //}
6346 }
6347 // Deal with changed mappings
6348 temp_will_dirty=will_dirty_i;
6349 temp_wont_dirty=wont_dirty_i;
6350 for(r=0;r<HOST_REGS;r++) {
6351 if(r!=EXCLUDE_REG) {
6352 int nr;
6353 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6354 if(wr) {
6355 #ifndef DESTRUCTIVE_WRITEBACK
6356 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6357 #endif
6358 regs[i].wasdirty|=will_dirty_i&(1<<r);
6359 }
6360 }
6361 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6362 // Register moved to a different register
6363 will_dirty_i&=~(1<<r);
6364 wont_dirty_i&=~(1<<r);
6365 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6366 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6367 if(wr) {
6368 #ifndef DESTRUCTIVE_WRITEBACK
6369 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6370 #endif
6371 regs[i].wasdirty|=will_dirty_i&(1<<r);
6372 }
6373 }
6374 else {
6375 will_dirty_i&=~(1<<r);
6376 wont_dirty_i&=~(1<<r);
6377 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6378 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6379 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6380 } else {
6381 wont_dirty_i|=1<<r;
6382 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6383 }
6384 }
6385 }
6386 }
6387 }
6388}
6389
6390#ifdef DISASM
6391 /* disassembly */
6392void disassemble_inst(int i)
6393{
6394 if (bt[i]) printf("*"); else printf(" ");
6395 switch(itype[i]) {
6396 case UJUMP:
6397 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6398 case CJUMP:
6399 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6400 case SJUMP:
6401 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6402 case RJUMP:
6403 if (opcode[i]==0x9&&rt1[i]!=31)
6404 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6405 else
6406 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6407 break;
6408 case SPAN:
6409 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6410 case IMM16:
6411 if(opcode[i]==0xf) //LUI
6412 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6413 else
6414 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6415 break;
6416 case LOAD:
6417 case LOADLR:
6418 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6419 break;
6420 case STORE:
6421 case STORELR:
6422 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6423 break;
6424 case ALU:
6425 case SHIFT:
6426 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6427 break;
6428 case MULTDIV:
6429 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6430 break;
6431 case SHIFTIMM:
6432 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6433 break;
6434 case MOV:
6435 if((opcode2[i]&0x1d)==0x10)
6436 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6437 else if((opcode2[i]&0x1d)==0x11)
6438 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6439 else
6440 printf (" %x: %s\n",start+i*4,insn[i]);
6441 break;
6442 case COP0:
6443 if(opcode2[i]==0)
6444 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6445 else if(opcode2[i]==4)
6446 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6447 else printf (" %x: %s\n",start+i*4,insn[i]);
6448 break;
6449 case COP1:
6450 if(opcode2[i]<3)
6451 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6452 else if(opcode2[i]>3)
6453 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6454 else printf (" %x: %s\n",start+i*4,insn[i]);
6455 break;
6456 case COP2:
6457 if(opcode2[i]<3)
6458 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6459 else if(opcode2[i]>3)
6460 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6461 else printf (" %x: %s\n",start+i*4,insn[i]);
6462 break;
6463 case C1LS:
6464 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6465 break;
6466 case C2LS:
6467 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6468 break;
6469 case INTCALL:
6470 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6471 break;
6472 default:
6473 //printf (" %s %8x\n",insn[i],source[i]);
6474 printf (" %x: %s\n",start+i*4,insn[i]);
6475 }
6476}
6477#else
6478static void disassemble_inst(int i) {}
6479#endif // DISASM
6480
6481#define DRC_TEST_VAL 0x74657374
6482
6483static void new_dynarec_test(void)
6484{
6485 int (*testfunc)(void);
6486 void *beginning;
6487 int ret[2];
6488 size_t i;
6489
6490 // check structure linkage
6491 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6492 {
6493 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6494 }
6495
6496 SysPrintf("testing if we can run recompiled code...\n");
6497 ((volatile u_int *)out)[0]++; // make cache dirty
6498
6499 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6500 out = ndrc->translation_cache;
6501 beginning = start_block();
6502 emit_movimm(DRC_TEST_VAL + i, 0); // test
6503 emit_ret();
6504 literal_pool(0);
6505 end_block(beginning);
6506 testfunc = beginning;
6507 ret[i] = testfunc();
6508 }
6509
6510 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6511 SysPrintf("test passed.\n");
6512 else
6513 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6514 out = ndrc->translation_cache;
6515}
6516
6517// clear the state completely, instead of just marking
6518// things invalid like invalidate_all_pages() does
6519void new_dynarec_clear_full(void)
6520{
6521 int n;
6522 out = ndrc->translation_cache;
6523 memset(invalid_code,1,sizeof(invalid_code));
6524 memset(hash_table,0xff,sizeof(hash_table));
6525 memset(mini_ht,-1,sizeof(mini_ht));
6526 memset(restore_candidate,0,sizeof(restore_candidate));
6527 memset(shadow,0,sizeof(shadow));
6528 copy=shadow;
6529 expirep=16384; // Expiry pointer, +2 blocks
6530 pending_exception=0;
6531 literalcount=0;
6532 stop_after_jal=0;
6533 inv_code_start=inv_code_end=~0;
6534 // TLB
6535 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6536 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6537 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6538}
6539
6540void new_dynarec_init(void)
6541{
6542 SysPrintf("Init new dynarec\n");
6543
6544#ifdef BASE_ADDR_DYNAMIC
6545 #ifdef VITA
6546 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6547 if (sceBlock < 0)
6548 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6549 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6550 if (ret < 0)
6551 SysPrintf("sceKernelGetMemBlockBase failed\n");
6552 #else
6553 uintptr_t desired_addr = 0;
6554 #ifdef __ELF__
6555 extern char _end;
6556 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6557 #endif
6558 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6559 PROT_READ | PROT_WRITE | PROT_EXEC,
6560 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6561 if (ndrc == MAP_FAILED) {
6562 SysPrintf("mmap() failed: %s\n", strerror(errno));
6563 abort();
6564 }
6565 #endif
6566#else
6567 #ifndef NO_WRITE_EXEC
6568 // not all systems allow execute in data segment by default
6569 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6570 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6571 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6572 #endif
6573#endif
6574 out = ndrc->translation_cache;
6575 cycle_multiplier=200;
6576 new_dynarec_clear_full();
6577#ifdef HOST_IMM8
6578 // Copy this into local area so we don't have to put it in every literal pool
6579 invc_ptr=invalid_code;
6580#endif
6581 arch_init();
6582 new_dynarec_test();
6583#ifndef RAM_FIXED
6584 ram_offset=(uintptr_t)rdram-0x80000000;
6585#endif
6586 if (ram_offset!=0)
6587 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6588}
6589
6590void new_dynarec_cleanup(void)
6591{
6592 int n;
6593#ifdef BASE_ADDR_DYNAMIC
6594 #ifdef VITA
6595 sceKernelFreeMemBlock(sceBlock);
6596 sceBlock = -1;
6597 #else
6598 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6599 SysPrintf("munmap() failed\n");
6600 #endif
6601#endif
6602 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6603 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6604 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6605 #ifdef ROM_COPY
6606 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6607 #endif
6608}
6609
6610static u_int *get_source_start(u_int addr, u_int *limit)
6611{
6612 if (addr < 0x00200000 ||
6613 (0xa0000000 <= addr && addr < 0xa0200000)) {
6614 // used for BIOS calls mostly?
6615 *limit = (addr&0xa0000000)|0x00200000;
6616 return (u_int *)(rdram + (addr&0x1fffff));
6617 }
6618 else if (!Config.HLE && (
6619 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6620 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
6621 // BIOS
6622 *limit = (addr & 0xfff00000) | 0x80000;
6623 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6624 }
6625 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6626 *limit = (addr & 0x80600000) + 0x00200000;
6627 return (u_int *)(rdram + (addr&0x1fffff));
6628 }
6629 return NULL;
6630}
6631
6632static u_int scan_for_ret(u_int addr)
6633{
6634 u_int limit = 0;
6635 u_int *mem;
6636
6637 mem = get_source_start(addr, &limit);
6638 if (mem == NULL)
6639 return addr;
6640
6641 if (limit > addr + 0x1000)
6642 limit = addr + 0x1000;
6643 for (; addr < limit; addr += 4, mem++) {
6644 if (*mem == 0x03e00008) // jr $ra
6645 return addr + 8;
6646 }
6647 return addr;
6648}
6649
6650struct savestate_block {
6651 uint32_t addr;
6652 uint32_t regflags;
6653};
6654
6655static int addr_cmp(const void *p1_, const void *p2_)
6656{
6657 const struct savestate_block *p1 = p1_, *p2 = p2_;
6658 return p1->addr - p2->addr;
6659}
6660
6661int new_dynarec_save_blocks(void *save, int size)
6662{
6663 struct savestate_block *blocks = save;
6664 int maxcount = size / sizeof(blocks[0]);
6665 struct savestate_block tmp_blocks[1024];
6666 struct ll_entry *head;
6667 int p, s, d, o, bcnt;
6668 u_int addr;
6669
6670 o = 0;
6671 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
6672 bcnt = 0;
6673 for (head = jump_in[p]; head != NULL; head = head->next) {
6674 tmp_blocks[bcnt].addr = head->vaddr;
6675 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
6676 bcnt++;
6677 }
6678 if (bcnt < 1)
6679 continue;
6680 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6681
6682 addr = tmp_blocks[0].addr;
6683 for (s = d = 0; s < bcnt; s++) {
6684 if (tmp_blocks[s].addr < addr)
6685 continue;
6686 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6687 tmp_blocks[d++] = tmp_blocks[s];
6688 addr = scan_for_ret(tmp_blocks[s].addr);
6689 }
6690
6691 if (o + d > maxcount)
6692 d = maxcount - o;
6693 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
6694 o += d;
6695 }
6696
6697 return o * sizeof(blocks[0]);
6698}
6699
6700void new_dynarec_load_blocks(const void *save, int size)
6701{
6702 const struct savestate_block *blocks = save;
6703 int count = size / sizeof(blocks[0]);
6704 u_int regs_save[32];
6705 uint32_t f;
6706 int i, b;
6707
6708 get_addr(psxRegs.pc);
6709
6710 // change GPRs for speculation to at least partially work..
6711 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6712 for (i = 1; i < 32; i++)
6713 psxRegs.GPR.r[i] = 0x80000000;
6714
6715 for (b = 0; b < count; b++) {
6716 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6717 if (f & 1)
6718 psxRegs.GPR.r[i] = 0x1f800000;
6719 }
6720
6721 get_addr(blocks[b].addr);
6722
6723 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6724 if (f & 1)
6725 psxRegs.GPR.r[i] = 0x80000000;
6726 }
6727 }
6728
6729 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6730}
6731
6732int new_recompile_block(u_int addr)
6733{
6734 u_int pagelimit = 0;
6735 u_int state_rflags = 0;
6736 int i;
6737
6738 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
6739 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
6740 //if(debug)
6741 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
6742
6743 // this is just for speculation
6744 for (i = 1; i < 32; i++) {
6745 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
6746 state_rflags |= 1 << i;
6747 }
6748
6749 start = (u_int)addr&~3;
6750 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
6751 new_dynarec_did_compile=1;
6752 if (Config.HLE && start == 0x80001000) // hlecall
6753 {
6754 // XXX: is this enough? Maybe check hleSoftCall?
6755 void *beginning=start_block();
6756 u_int page=get_page(start);
6757
6758 invalid_code[start>>12]=0;
6759 emit_movimm(start,0);
6760 emit_writeword(0,&pcaddr);
6761 emit_far_jump(new_dyna_leave);
6762 literal_pool(0);
6763 end_block(beginning);
6764 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
6765 return 0;
6766 }
6767
6768 source = get_source_start(start, &pagelimit);
6769 if (source == NULL) {
6770 SysPrintf("Compile at bogus memory address: %08x\n", addr);
6771 abort();
6772 }
6773
6774 /* Pass 1: disassemble */
6775 /* Pass 2: register dependencies, branch targets */
6776 /* Pass 3: register allocation */
6777 /* Pass 4: branch dependencies */
6778 /* Pass 5: pre-alloc */
6779 /* Pass 6: optimize clean/dirty state */
6780 /* Pass 7: flag 32-bit registers */
6781 /* Pass 8: assembly */
6782 /* Pass 9: linker */
6783 /* Pass 10: garbage collection / free memory */
6784
6785 int j;
6786 int done=0;
6787 unsigned int type,op,op2;
6788
6789 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
6790
6791 /* Pass 1 disassembly */
6792
6793 for(i=0;!done;i++) {
6794 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
6795 minimum_free_regs[i]=0;
6796 opcode[i]=op=source[i]>>26;
6797 switch(op)
6798 {
6799 case 0x00: strcpy(insn[i],"special"); type=NI;
6800 op2=source[i]&0x3f;
6801 switch(op2)
6802 {
6803 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
6804 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
6805 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
6806 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
6807 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
6808 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
6809 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
6810 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
6811 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
6812 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
6813 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
6814 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
6815 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
6816 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
6817 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
6818 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
6819 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
6820 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
6821 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
6822 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
6823 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
6824 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
6825 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
6826 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
6827 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
6828 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
6829 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
6830 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
6831 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
6832 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
6833 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
6834 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
6835 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
6836 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
6837 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
6838#if 0
6839 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
6840 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
6841 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
6842 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
6843 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
6844 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
6845 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
6846 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
6847 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
6848 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
6849 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
6850 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
6851 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
6852 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
6853 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
6854 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
6855 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
6856#endif
6857 }
6858 break;
6859 case 0x01: strcpy(insn[i],"regimm"); type=NI;
6860 op2=(source[i]>>16)&0x1f;
6861 switch(op2)
6862 {
6863 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
6864 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
6865 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
6866 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
6867 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
6868 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
6869 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
6870 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
6871 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
6872 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
6873 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
6874 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
6875 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
6876 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
6877 }
6878 break;
6879 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
6880 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
6881 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
6882 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
6883 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
6884 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
6885 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
6886 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
6887 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
6888 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
6889 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
6890 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
6891 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
6892 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
6893 case 0x10: strcpy(insn[i],"cop0"); type=NI;
6894 op2=(source[i]>>21)&0x1f;
6895 switch(op2)
6896 {
6897 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
6898 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
6899 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
6900 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
6901 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
6902 }
6903 break;
6904 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
6905 op2=(source[i]>>21)&0x1f;
6906 break;
6907#if 0
6908 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
6909 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
6910 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
6911 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
6912 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
6913 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
6914 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
6915 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
6916#endif
6917 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
6918 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
6919 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
6920 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
6921 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
6922 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
6923 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
6924#if 0
6925 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
6926#endif
6927 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
6928 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
6929 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
6930 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
6931#if 0
6932 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
6933 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
6934#endif
6935 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
6936 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
6937 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
6938 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
6939#if 0
6940 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
6941 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
6942 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
6943#endif
6944 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
6945 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
6946#if 0
6947 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
6948 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
6949 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
6950#endif
6951 case 0x12: strcpy(insn[i],"COP2"); type=NI;
6952 op2=(source[i]>>21)&0x1f;
6953 //if (op2 & 0x10)
6954 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
6955 if (gte_handlers[source[i]&0x3f]!=NULL) {
6956 if (gte_regnames[source[i]&0x3f]!=NULL)
6957 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
6958 else
6959 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
6960 type=C2OP;
6961 }
6962 }
6963 else switch(op2)
6964 {
6965 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
6966 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
6967 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
6968 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
6969 }
6970 break;
6971 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
6972 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
6973 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
6974 default: strcpy(insn[i],"???"); type=NI;
6975 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
6976 break;
6977 }
6978 itype[i]=type;
6979 opcode2[i]=op2;
6980 /* Get registers/immediates */
6981 lt1[i]=0;
6982 dep1[i]=0;
6983 dep2[i]=0;
6984 gte_rs[i]=gte_rt[i]=0;
6985 switch(type) {
6986 case LOAD:
6987 rs1[i]=(source[i]>>21)&0x1f;
6988 rs2[i]=0;
6989 rt1[i]=(source[i]>>16)&0x1f;
6990 rt2[i]=0;
6991 imm[i]=(short)source[i];
6992 break;
6993 case STORE:
6994 case STORELR:
6995 rs1[i]=(source[i]>>21)&0x1f;
6996 rs2[i]=(source[i]>>16)&0x1f;
6997 rt1[i]=0;
6998 rt2[i]=0;
6999 imm[i]=(short)source[i];
7000 break;
7001 case LOADLR:
7002 // LWL/LWR only load part of the register,
7003 // therefore the target register must be treated as a source too
7004 rs1[i]=(source[i]>>21)&0x1f;
7005 rs2[i]=(source[i]>>16)&0x1f;
7006 rt1[i]=(source[i]>>16)&0x1f;
7007 rt2[i]=0;
7008 imm[i]=(short)source[i];
7009 if(op==0x26) dep1[i]=rt1[i]; // LWR
7010 break;
7011 case IMM16:
7012 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7013 else rs1[i]=(source[i]>>21)&0x1f;
7014 rs2[i]=0;
7015 rt1[i]=(source[i]>>16)&0x1f;
7016 rt2[i]=0;
7017 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7018 imm[i]=(unsigned short)source[i];
7019 }else{
7020 imm[i]=(short)source[i];
7021 }
7022 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7023 break;
7024 case UJUMP:
7025 rs1[i]=0;
7026 rs2[i]=0;
7027 rt1[i]=0;
7028 rt2[i]=0;
7029 // The JAL instruction writes to r31.
7030 if (op&1) {
7031 rt1[i]=31;
7032 }
7033 rs2[i]=CCREG;
7034 break;
7035 case RJUMP:
7036 rs1[i]=(source[i]>>21)&0x1f;
7037 rs2[i]=0;
7038 rt1[i]=0;
7039 rt2[i]=0;
7040 // The JALR instruction writes to rd.
7041 if (op2&1) {
7042 rt1[i]=(source[i]>>11)&0x1f;
7043 }
7044 rs2[i]=CCREG;
7045 break;
7046 case CJUMP:
7047 rs1[i]=(source[i]>>21)&0x1f;
7048 rs2[i]=(source[i]>>16)&0x1f;
7049 rt1[i]=0;
7050 rt2[i]=0;
7051 if(op&2) { // BGTZ/BLEZ
7052 rs2[i]=0;
7053 }
7054 likely[i]=op>>4;
7055 break;
7056 case SJUMP:
7057 rs1[i]=(source[i]>>21)&0x1f;
7058 rs2[i]=CCREG;
7059 rt1[i]=0;
7060 rt2[i]=0;
7061 if(op2&0x10) { // BxxAL
7062 rt1[i]=31;
7063 // NOTE: If the branch is not taken, r31 is still overwritten
7064 }
7065 likely[i]=(op2&2)>>1;
7066 break;
7067 case ALU:
7068 rs1[i]=(source[i]>>21)&0x1f; // source
7069 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7070 rt1[i]=(source[i]>>11)&0x1f; // destination
7071 rt2[i]=0;
7072 if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7073 dep1[i]=rs1[i];dep2[i]=rs2[i];
7074 }
7075 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7076 dep1[i]=rs1[i];dep2[i]=rs2[i];
7077 }
7078 break;
7079 case MULTDIV:
7080 rs1[i]=(source[i]>>21)&0x1f; // source
7081 rs2[i]=(source[i]>>16)&0x1f; // divisor
7082 rt1[i]=HIREG;
7083 rt2[i]=LOREG;
7084 break;
7085 case MOV:
7086 rs1[i]=0;
7087 rs2[i]=0;
7088 rt1[i]=0;
7089 rt2[i]=0;
7090 if(op2==0x10) rs1[i]=HIREG; // MFHI
7091 if(op2==0x11) rt1[i]=HIREG; // MTHI
7092 if(op2==0x12) rs1[i]=LOREG; // MFLO
7093 if(op2==0x13) rt1[i]=LOREG; // MTLO
7094 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7095 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7096 dep1[i]=rs1[i];
7097 break;
7098 case SHIFT:
7099 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7100 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7101 rt1[i]=(source[i]>>11)&0x1f; // destination
7102 rt2[i]=0;
7103 break;
7104 case SHIFTIMM:
7105 rs1[i]=(source[i]>>16)&0x1f;
7106 rs2[i]=0;
7107 rt1[i]=(source[i]>>11)&0x1f;
7108 rt2[i]=0;
7109 imm[i]=(source[i]>>6)&0x1f;
7110 // DSxx32 instructions
7111 if(op2>=0x3c) imm[i]|=0x20;
7112 break;
7113 case COP0:
7114 rs1[i]=0;
7115 rs2[i]=0;
7116 rt1[i]=0;
7117 rt2[i]=0;
7118 if(op2==0||op2==2) rt1[i]=(source[i]>>16)&0x1F; // MFC0/CFC0
7119 if(op2==4||op2==6) rs1[i]=(source[i]>>16)&0x1F; // MTC0/CTC0
7120 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7121 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7122 break;
7123 case COP1:
7124 rs1[i]=0;
7125 rs2[i]=0;
7126 rt1[i]=0;
7127 rt2[i]=0;
7128 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7129 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7130 rs2[i]=CSREG;
7131 break;
7132 case COP2:
7133 rs1[i]=0;
7134 rs2[i]=0;
7135 rt1[i]=0;
7136 rt2[i]=0;
7137 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7138 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7139 rs2[i]=CSREG;
7140 int gr=(source[i]>>11)&0x1F;
7141 switch(op2)
7142 {
7143 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7144 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7145 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7146 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7147 }
7148 break;
7149 case C1LS:
7150 rs1[i]=(source[i]>>21)&0x1F;
7151 rs2[i]=CSREG;
7152 rt1[i]=0;
7153 rt2[i]=0;
7154 imm[i]=(short)source[i];
7155 break;
7156 case C2LS:
7157 rs1[i]=(source[i]>>21)&0x1F;
7158 rs2[i]=0;
7159 rt1[i]=0;
7160 rt2[i]=0;
7161 imm[i]=(short)source[i];
7162 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7163 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7164 break;
7165 case C2OP:
7166 rs1[i]=0;
7167 rs2[i]=0;
7168 rt1[i]=0;
7169 rt2[i]=0;
7170 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7171 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7172 gte_rt[i]|=1ll<<63; // every op changes flags
7173 if((source[i]&0x3f)==GTE_MVMVA) {
7174 int v = (source[i] >> 15) & 3;
7175 gte_rs[i]&=~0xe3fll;
7176 if(v==3) gte_rs[i]|=0xe00ll;
7177 else gte_rs[i]|=3ll<<(v*2);
7178 }
7179 break;
7180 case SYSCALL:
7181 case HLECALL:
7182 case INTCALL:
7183 rs1[i]=CCREG;
7184 rs2[i]=0;
7185 rt1[i]=0;
7186 rt2[i]=0;
7187 break;
7188 default:
7189 rs1[i]=0;
7190 rs2[i]=0;
7191 rt1[i]=0;
7192 rt2[i]=0;
7193 }
7194 /* Calculate branch target addresses */
7195 if(type==UJUMP)
7196 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7197 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7198 ba[i]=start+i*4+8; // Ignore never taken branch
7199 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7200 ba[i]=start+i*4+8; // Ignore never taken branch
7201 else if(type==CJUMP||type==SJUMP)
7202 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7203 else ba[i]=-1;
7204 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)) {
7205 int do_in_intrp=0;
7206 // branch in delay slot?
7207 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP) {
7208 // don't handle first branch and call interpreter if it's hit
7209 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7210 do_in_intrp=1;
7211 }
7212 // basic load delay detection
7213 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7214 int t=(ba[i-1]-start)/4;
7215 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7216 // jump target wants DS result - potential load delay effect
7217 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7218 do_in_intrp=1;
7219 bt[t+1]=1; // expected return from interpreter
7220 }
7221 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7222 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7223 // v0 overwrite like this is a sign of trouble, bail out
7224 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7225 do_in_intrp=1;
7226 }
7227 }
7228 if(do_in_intrp) {
7229 rs1[i-1]=CCREG;
7230 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7231 ba[i-1]=-1;
7232 itype[i-1]=INTCALL;
7233 done=2;
7234 i--; // don't compile the DS
7235 }
7236 }
7237 /* Is this the end of the block? */
7238 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
7239 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7240 done=2;
7241 }
7242 else {
7243 if(stop_after_jal) done=1;
7244 // Stop on BREAK
7245 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7246 }
7247 // Don't recompile stuff that's already compiled
7248 if(check_addr(start+i*4+4)) done=1;
7249 // Don't get too close to the limit
7250 if(i>MAXBLOCK/2) done=1;
7251 }
7252 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7253 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7254 if(done==2) {
7255 // Does the block continue due to a branch?
7256 for(j=i-1;j>=0;j--)
7257 {
7258 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7259 if(ba[j]==start+i*4+4) done=j=0;
7260 if(ba[j]==start+i*4+8) done=j=0;
7261 }
7262 }
7263 //assert(i<MAXBLOCK-1);
7264 if(start+i*4==pagelimit-4) done=1;
7265 assert(start+i*4<pagelimit);
7266 if (i==MAXBLOCK-1) done=1;
7267 // Stop if we're compiling junk
7268 if(itype[i]==NI&&opcode[i]==0x11) {
7269 done=stop_after_jal=1;
7270 SysPrintf("Disabled speculative precompilation\n");
7271 }
7272 }
7273 slen=i;
7274 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP) {
7275 if(start+i*4==pagelimit) {
7276 itype[i-1]=SPAN;
7277 }
7278 }
7279 assert(slen>0);
7280
7281 /* Pass 2 - Register dependencies and branch targets */
7282
7283 unneeded_registers(0,slen-1,0);
7284
7285 /* Pass 3 - Register allocation */
7286
7287 struct regstat current; // Current register allocations/status
7288 current.dirty=0;
7289 current.u=unneeded_reg[0];
7290 clear_all_regs(current.regmap);
7291 alloc_reg(&current,0,CCREG);
7292 dirty_reg(&current,CCREG);
7293 current.isconst=0;
7294 current.wasconst=0;
7295 current.waswritten=0;
7296 int ds=0;
7297 int cc=0;
7298 int hr=-1;
7299
7300 if((u_int)addr&1) {
7301 // First instruction is delay slot
7302 cc=-1;
7303 bt[1]=1;
7304 ds=1;
7305 unneeded_reg[0]=1;
7306 current.regmap[HOST_BTREG]=BTREG;
7307 }
7308
7309 for(i=0;i<slen;i++)
7310 {
7311 if(bt[i])
7312 {
7313 int hr;
7314 for(hr=0;hr<HOST_REGS;hr++)
7315 {
7316 // Is this really necessary?
7317 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7318 }
7319 current.isconst=0;
7320 current.waswritten=0;
7321 }
7322
7323 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7324 regs[i].wasconst=current.isconst;
7325 regs[i].wasdirty=current.dirty;
7326 regs[i].loadedconst=0;
7327 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP) {
7328 if(i+1<slen) {
7329 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7330 current.u|=1;
7331 } else {
7332 current.u=1;
7333 }
7334 } else {
7335 if(i+1<slen) {
7336 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7337 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7338 current.u|=1;
7339 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7340 }
7341 is_ds[i]=ds;
7342 if(ds) {
7343 ds=0; // Skip delay slot, already allocated as part of branch
7344 // ...but we need to alloc it in case something jumps here
7345 if(i+1<slen) {
7346 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7347 }else{
7348 current.u=branch_unneeded_reg[i-1];
7349 }
7350 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7351 current.u|=1;
7352 struct regstat temp;
7353 memcpy(&temp,&current,sizeof(current));
7354 temp.wasdirty=temp.dirty;
7355 // TODO: Take into account unconditional branches, as below
7356 delayslot_alloc(&temp,i);
7357 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7358 regs[i].wasdirty=temp.wasdirty;
7359 regs[i].dirty=temp.dirty;
7360 regs[i].isconst=0;
7361 regs[i].wasconst=0;
7362 current.isconst=0;
7363 // Create entry (branch target) regmap
7364 for(hr=0;hr<HOST_REGS;hr++)
7365 {
7366 int r=temp.regmap[hr];
7367 if(r>=0) {
7368 if(r!=regmap_pre[i][hr]) {
7369 regs[i].regmap_entry[hr]=-1;
7370 }
7371 else
7372 {
7373 assert(r < 64);
7374 if((current.u>>r)&1) {
7375 regs[i].regmap_entry[hr]=-1;
7376 regs[i].regmap[hr]=-1;
7377 //Don't clear regs in the delay slot as the branch might need them
7378 //current.regmap[hr]=-1;
7379 }else
7380 regs[i].regmap_entry[hr]=r;
7381 }
7382 } else {
7383 // First instruction expects CCREG to be allocated
7384 if(i==0&&hr==HOST_CCREG)
7385 regs[i].regmap_entry[hr]=CCREG;
7386 else
7387 regs[i].regmap_entry[hr]=-1;
7388 }
7389 }
7390 }
7391 else { // Not delay slot
7392 switch(itype[i]) {
7393 case UJUMP:
7394 //current.isconst=0; // DEBUG
7395 //current.wasconst=0; // DEBUG
7396 //regs[i].wasconst=0; // DEBUG
7397 clear_const(&current,rt1[i]);
7398 alloc_cc(&current,i);
7399 dirty_reg(&current,CCREG);
7400 if (rt1[i]==31) {
7401 alloc_reg(&current,i,31);
7402 dirty_reg(&current,31);
7403 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
7404 //assert(rt1[i+1]!=rt1[i]);
7405 #ifdef REG_PREFETCH
7406 alloc_reg(&current,i,PTEMP);
7407 #endif
7408 }
7409 ooo[i]=1;
7410 delayslot_alloc(&current,i+1);
7411 //current.isconst=0; // DEBUG
7412 ds=1;
7413 //printf("i=%d, isconst=%x\n",i,current.isconst);
7414 break;
7415 case RJUMP:
7416 //current.isconst=0;
7417 //current.wasconst=0;
7418 //regs[i].wasconst=0;
7419 clear_const(&current,rs1[i]);
7420 clear_const(&current,rt1[i]);
7421 alloc_cc(&current,i);
7422 dirty_reg(&current,CCREG);
7423 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
7424 alloc_reg(&current,i,rs1[i]);
7425 if (rt1[i]!=0) {
7426 alloc_reg(&current,i,rt1[i]);
7427 dirty_reg(&current,rt1[i]);
7428 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
7429 assert(rt1[i+1]!=rt1[i]);
7430 #ifdef REG_PREFETCH
7431 alloc_reg(&current,i,PTEMP);
7432 #endif
7433 }
7434 #ifdef USE_MINI_HT
7435 if(rs1[i]==31) { // JALR
7436 alloc_reg(&current,i,RHASH);
7437 alloc_reg(&current,i,RHTBL);
7438 }
7439 #endif
7440 delayslot_alloc(&current,i+1);
7441 } else {
7442 // The delay slot overwrites our source register,
7443 // allocate a temporary register to hold the old value.
7444 current.isconst=0;
7445 current.wasconst=0;
7446 regs[i].wasconst=0;
7447 delayslot_alloc(&current,i+1);
7448 current.isconst=0;
7449 alloc_reg(&current,i,RTEMP);
7450 }
7451 //current.isconst=0; // DEBUG
7452 ooo[i]=1;
7453 ds=1;
7454 break;
7455 case CJUMP:
7456 //current.isconst=0;
7457 //current.wasconst=0;
7458 //regs[i].wasconst=0;
7459 clear_const(&current,rs1[i]);
7460 clear_const(&current,rs2[i]);
7461 if((opcode[i]&0x3E)==4) // BEQ/BNE
7462 {
7463 alloc_cc(&current,i);
7464 dirty_reg(&current,CCREG);
7465 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7466 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7467 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
7468 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
7469 // The delay slot overwrites one of our conditions.
7470 // Allocate the branch condition registers instead.
7471 current.isconst=0;
7472 current.wasconst=0;
7473 regs[i].wasconst=0;
7474 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7475 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7476 }
7477 else
7478 {
7479 ooo[i]=1;
7480 delayslot_alloc(&current,i+1);
7481 }
7482 }
7483 else
7484 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
7485 {
7486 alloc_cc(&current,i);
7487 dirty_reg(&current,CCREG);
7488 alloc_reg(&current,i,rs1[i]);
7489 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
7490 // The delay slot overwrites one of our conditions.
7491 // Allocate the branch condition registers instead.
7492 current.isconst=0;
7493 current.wasconst=0;
7494 regs[i].wasconst=0;
7495 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7496 }
7497 else
7498 {
7499 ooo[i]=1;
7500 delayslot_alloc(&current,i+1);
7501 }
7502 }
7503 else
7504 // Don't alloc the delay slot yet because we might not execute it
7505 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
7506 {
7507 current.isconst=0;
7508 current.wasconst=0;
7509 regs[i].wasconst=0;
7510 alloc_cc(&current,i);
7511 dirty_reg(&current,CCREG);
7512 alloc_reg(&current,i,rs1[i]);
7513 alloc_reg(&current,i,rs2[i]);
7514 }
7515 else
7516 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
7517 {
7518 current.isconst=0;
7519 current.wasconst=0;
7520 regs[i].wasconst=0;
7521 alloc_cc(&current,i);
7522 dirty_reg(&current,CCREG);
7523 alloc_reg(&current,i,rs1[i]);
7524 }
7525 ds=1;
7526 //current.isconst=0;
7527 break;
7528 case SJUMP:
7529 //current.isconst=0;
7530 //current.wasconst=0;
7531 //regs[i].wasconst=0;
7532 clear_const(&current,rs1[i]);
7533 clear_const(&current,rt1[i]);
7534 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
7535 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
7536 {
7537 alloc_cc(&current,i);
7538 dirty_reg(&current,CCREG);
7539 alloc_reg(&current,i,rs1[i]);
7540 if (rt1[i]==31) { // BLTZAL/BGEZAL
7541 alloc_reg(&current,i,31);
7542 dirty_reg(&current,31);
7543 //#ifdef REG_PREFETCH
7544 //alloc_reg(&current,i,PTEMP);
7545 //#endif
7546 }
7547 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
7548 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
7549 // Allocate the branch condition registers instead.
7550 current.isconst=0;
7551 current.wasconst=0;
7552 regs[i].wasconst=0;
7553 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7554 }
7555 else
7556 {
7557 ooo[i]=1;
7558 delayslot_alloc(&current,i+1);
7559 }
7560 }
7561 else
7562 // Don't alloc the delay slot yet because we might not execute it
7563 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
7564 {
7565 current.isconst=0;
7566 current.wasconst=0;
7567 regs[i].wasconst=0;
7568 alloc_cc(&current,i);
7569 dirty_reg(&current,CCREG);
7570 alloc_reg(&current,i,rs1[i]);
7571 }
7572 ds=1;
7573 //current.isconst=0;
7574 break;
7575 case IMM16:
7576 imm16_alloc(&current,i);
7577 break;
7578 case LOAD:
7579 case LOADLR:
7580 load_alloc(&current,i);
7581 break;
7582 case STORE:
7583 case STORELR:
7584 store_alloc(&current,i);
7585 break;
7586 case ALU:
7587 alu_alloc(&current,i);
7588 break;
7589 case SHIFT:
7590 shift_alloc(&current,i);
7591 break;
7592 case MULTDIV:
7593 multdiv_alloc(&current,i);
7594 break;
7595 case SHIFTIMM:
7596 shiftimm_alloc(&current,i);
7597 break;
7598 case MOV:
7599 mov_alloc(&current,i);
7600 break;
7601 case COP0:
7602 cop0_alloc(&current,i);
7603 break;
7604 case COP1:
7605 case COP2:
7606 cop12_alloc(&current,i);
7607 break;
7608 case C1LS:
7609 c1ls_alloc(&current,i);
7610 break;
7611 case C2LS:
7612 c2ls_alloc(&current,i);
7613 break;
7614 case C2OP:
7615 c2op_alloc(&current,i);
7616 break;
7617 case SYSCALL:
7618 case HLECALL:
7619 case INTCALL:
7620 syscall_alloc(&current,i);
7621 break;
7622 case SPAN:
7623 pagespan_alloc(&current,i);
7624 break;
7625 }
7626
7627 // Create entry (branch target) regmap
7628 for(hr=0;hr<HOST_REGS;hr++)
7629 {
7630 int r,or;
7631 r=current.regmap[hr];
7632 if(r>=0) {
7633 if(r!=regmap_pre[i][hr]) {
7634 // TODO: delay slot (?)
7635 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7636 if(or<0||(r&63)>=TEMPREG){
7637 regs[i].regmap_entry[hr]=-1;
7638 }
7639 else
7640 {
7641 // Just move it to a different register
7642 regs[i].regmap_entry[hr]=r;
7643 // If it was dirty before, it's still dirty
7644 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7645 }
7646 }
7647 else
7648 {
7649 // Unneeded
7650 if(r==0){
7651 regs[i].regmap_entry[hr]=0;
7652 }
7653 else
7654 {
7655 assert(r<64);
7656 if((current.u>>r)&1) {
7657 regs[i].regmap_entry[hr]=-1;
7658 //regs[i].regmap[hr]=-1;
7659 current.regmap[hr]=-1;
7660 }else
7661 regs[i].regmap_entry[hr]=r;
7662 }
7663 }
7664 } else {
7665 // Branches expect CCREG to be allocated at the target
7666 if(regmap_pre[i][hr]==CCREG)
7667 regs[i].regmap_entry[hr]=CCREG;
7668 else
7669 regs[i].regmap_entry[hr]=-1;
7670 }
7671 }
7672 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7673 }
7674
7675 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
7676 current.waswritten|=1<<rs1[i-1];
7677 current.waswritten&=~(1<<rt1[i]);
7678 current.waswritten&=~(1<<rt2[i]);
7679 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
7680 current.waswritten&=~(1<<rs1[i]);
7681
7682 /* Branch post-alloc */
7683 if(i>0)
7684 {
7685 current.wasdirty=current.dirty;
7686 switch(itype[i-1]) {
7687 case UJUMP:
7688 memcpy(&branch_regs[i-1],&current,sizeof(current));
7689 branch_regs[i-1].isconst=0;
7690 branch_regs[i-1].wasconst=0;
7691 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
7692 alloc_cc(&branch_regs[i-1],i-1);
7693 dirty_reg(&branch_regs[i-1],CCREG);
7694 if(rt1[i-1]==31) { // JAL
7695 alloc_reg(&branch_regs[i-1],i-1,31);
7696 dirty_reg(&branch_regs[i-1],31);
7697 }
7698 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7699 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7700 break;
7701 case RJUMP:
7702 memcpy(&branch_regs[i-1],&current,sizeof(current));
7703 branch_regs[i-1].isconst=0;
7704 branch_regs[i-1].wasconst=0;
7705 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
7706 alloc_cc(&branch_regs[i-1],i-1);
7707 dirty_reg(&branch_regs[i-1],CCREG);
7708 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
7709 if(rt1[i-1]!=0) { // JALR
7710 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
7711 dirty_reg(&branch_regs[i-1],rt1[i-1]);
7712 }
7713 #ifdef USE_MINI_HT
7714 if(rs1[i-1]==31) { // JALR
7715 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7716 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7717 }
7718 #endif
7719 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7720 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7721 break;
7722 case CJUMP:
7723 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
7724 {
7725 alloc_cc(&current,i-1);
7726 dirty_reg(&current,CCREG);
7727 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
7728 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
7729 // The delay slot overwrote one of our conditions
7730 // Delay slot goes after the test (in order)
7731 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7732 current.u|=1;
7733 delayslot_alloc(&current,i);
7734 current.isconst=0;
7735 }
7736 else
7737 {
7738 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
7739 // Alloc the branch condition registers
7740 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
7741 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
7742 }
7743 memcpy(&branch_regs[i-1],&current,sizeof(current));
7744 branch_regs[i-1].isconst=0;
7745 branch_regs[i-1].wasconst=0;
7746 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7747 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7748 }
7749 else
7750 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
7751 {
7752 alloc_cc(&current,i-1);
7753 dirty_reg(&current,CCREG);
7754 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
7755 // The delay slot overwrote the branch condition
7756 // Delay slot goes after the test (in order)
7757 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7758 current.u|=1;
7759 delayslot_alloc(&current,i);
7760 current.isconst=0;
7761 }
7762 else
7763 {
7764 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
7765 // Alloc the branch condition register
7766 alloc_reg(&current,i-1,rs1[i-1]);
7767 }
7768 memcpy(&branch_regs[i-1],&current,sizeof(current));
7769 branch_regs[i-1].isconst=0;
7770 branch_regs[i-1].wasconst=0;
7771 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7772 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7773 }
7774 else
7775 // Alloc the delay slot in case the branch is taken
7776 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
7777 {
7778 memcpy(&branch_regs[i-1],&current,sizeof(current));
7779 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
7780 alloc_cc(&branch_regs[i-1],i);
7781 dirty_reg(&branch_regs[i-1],CCREG);
7782 delayslot_alloc(&branch_regs[i-1],i);
7783 branch_regs[i-1].isconst=0;
7784 alloc_reg(&current,i,CCREG); // Not taken path
7785 dirty_reg(&current,CCREG);
7786 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7787 }
7788 else
7789 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
7790 {
7791 memcpy(&branch_regs[i-1],&current,sizeof(current));
7792 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
7793 alloc_cc(&branch_regs[i-1],i);
7794 dirty_reg(&branch_regs[i-1],CCREG);
7795 delayslot_alloc(&branch_regs[i-1],i);
7796 branch_regs[i-1].isconst=0;
7797 alloc_reg(&current,i,CCREG); // Not taken path
7798 dirty_reg(&current,CCREG);
7799 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7800 }
7801 break;
7802 case SJUMP:
7803 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
7804 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
7805 {
7806 alloc_cc(&current,i-1);
7807 dirty_reg(&current,CCREG);
7808 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
7809 // The delay slot overwrote the branch condition
7810 // Delay slot goes after the test (in order)
7811 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7812 current.u|=1;
7813 delayslot_alloc(&current,i);
7814 current.isconst=0;
7815 }
7816 else
7817 {
7818 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
7819 // Alloc the branch condition register
7820 alloc_reg(&current,i-1,rs1[i-1]);
7821 }
7822 memcpy(&branch_regs[i-1],&current,sizeof(current));
7823 branch_regs[i-1].isconst=0;
7824 branch_regs[i-1].wasconst=0;
7825 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7826 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
7827 }
7828 else
7829 // Alloc the delay slot in case the branch is taken
7830 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
7831 {
7832 memcpy(&branch_regs[i-1],&current,sizeof(current));
7833 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
7834 alloc_cc(&branch_regs[i-1],i);
7835 dirty_reg(&branch_regs[i-1],CCREG);
7836 delayslot_alloc(&branch_regs[i-1],i);
7837 branch_regs[i-1].isconst=0;
7838 alloc_reg(&current,i,CCREG); // Not taken path
7839 dirty_reg(&current,CCREG);
7840 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7841 }
7842 // FIXME: BLTZAL/BGEZAL
7843 if(opcode2[i-1]&0x10) { // BxxZAL
7844 alloc_reg(&branch_regs[i-1],i-1,31);
7845 dirty_reg(&branch_regs[i-1],31);
7846 }
7847 break;
7848 }
7849
7850 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7851 {
7852 if(rt1[i-1]==31) // JAL/JALR
7853 {
7854 // Subroutine call will return here, don't alloc any registers
7855 current.dirty=0;
7856 clear_all_regs(current.regmap);
7857 alloc_reg(&current,i,CCREG);
7858 dirty_reg(&current,CCREG);
7859 }
7860 else if(i+1<slen)
7861 {
7862 // Internal branch will jump here, match registers to caller
7863 current.dirty=0;
7864 clear_all_regs(current.regmap);
7865 alloc_reg(&current,i,CCREG);
7866 dirty_reg(&current,CCREG);
7867 for(j=i-1;j>=0;j--)
7868 {
7869 if(ba[j]==start+i*4+4) {
7870 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
7871 current.dirty=branch_regs[j].dirty;
7872 break;
7873 }
7874 }
7875 while(j>=0) {
7876 if(ba[j]==start+i*4+4) {
7877 for(hr=0;hr<HOST_REGS;hr++) {
7878 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
7879 current.regmap[hr]=-1;
7880 }
7881 current.dirty&=branch_regs[j].dirty;
7882 }
7883 }
7884 j--;
7885 }
7886 }
7887 }
7888 }
7889
7890 // Count cycles in between branches
7891 ccadj[i]=cc;
7892 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
7893 {
7894 cc=0;
7895 }
7896#if !defined(DRC_DBG)
7897 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
7898 {
7899 // GTE runs in parallel until accessed, divide by 2 for a rough guess
7900 cc+=gte_cycletab[source[i]&0x3f]/2;
7901 }
7902 else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
7903 {
7904 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
7905 }
7906 else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
7907 {
7908 cc+=4;
7909 }
7910 else if(itype[i]==C2LS)
7911 {
7912 cc+=4;
7913 }
7914#endif
7915 else
7916 {
7917 cc++;
7918 }
7919
7920 if(!is_ds[i]) {
7921 regs[i].dirty=current.dirty;
7922 regs[i].isconst=current.isconst;
7923 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
7924 }
7925 for(hr=0;hr<HOST_REGS;hr++) {
7926 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
7927 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
7928 regs[i].wasconst&=~(1<<hr);
7929 }
7930 }
7931 }
7932 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
7933 regs[i].waswritten=current.waswritten;
7934 }
7935
7936 /* Pass 4 - Cull unused host registers */
7937
7938 uint64_t nr=0;
7939
7940 for (i=slen-1;i>=0;i--)
7941 {
7942 int hr;
7943 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
7944 {
7945 if(ba[i]<start || ba[i]>=(start+slen*4))
7946 {
7947 // Branch out of this block, don't need anything
7948 nr=0;
7949 }
7950 else
7951 {
7952 // Internal branch
7953 // Need whatever matches the target
7954 nr=0;
7955 int t=(ba[i]-start)>>2;
7956 for(hr=0;hr<HOST_REGS;hr++)
7957 {
7958 if(regs[i].regmap_entry[hr]>=0) {
7959 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
7960 }
7961 }
7962 }
7963 // Conditional branch may need registers for following instructions
7964 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7965 {
7966 if(i<slen-2) {
7967 nr|=needed_reg[i+2];
7968 for(hr=0;hr<HOST_REGS;hr++)
7969 {
7970 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
7971 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
7972 }
7973 }
7974 }
7975 // Don't need stuff which is overwritten
7976 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7977 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7978 // Merge in delay slot
7979 for(hr=0;hr<HOST_REGS;hr++)
7980 {
7981 if(!likely[i]) {
7982 // These are overwritten unless the branch is "likely"
7983 // and the delay slot is nullified if not taken
7984 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
7985 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
7986 }
7987 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
7988 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
7989 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
7990 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
7991 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
7992 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
7993 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
7994 }
7995 }
7996 }
7997 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7998 {
7999 // SYSCALL instruction (software interrupt)
8000 nr=0;
8001 }
8002 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8003 {
8004 // ERET instruction (return from interrupt)
8005 nr=0;
8006 }
8007 else // Non-branch
8008 {
8009 if(i<slen-1) {
8010 for(hr=0;hr<HOST_REGS;hr++) {
8011 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8012 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8013 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8014 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8015 }
8016 }
8017 }
8018 for(hr=0;hr<HOST_REGS;hr++)
8019 {
8020 // Overwritten registers are not needed
8021 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8022 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8023 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8024 // Source registers are needed
8025 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8026 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8027 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8028 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8029 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8030 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8031 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8032 }
8033 // Don't store a register immediately after writing it,
8034 // may prevent dual-issue.
8035 // But do so if this is a branch target, otherwise we
8036 // might have to load the register before the branch.
8037 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8038 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8039 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8040 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8041 }
8042 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8043 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8044 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8045 }
8046 }
8047 }
8048 // Cycle count is needed at branches. Assume it is needed at the target too.
8049 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==SPAN) {
8050 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8051 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8052 }
8053 // Save it
8054 needed_reg[i]=nr;
8055
8056 // Deallocate unneeded registers
8057 for(hr=0;hr<HOST_REGS;hr++)
8058 {
8059 if(!((nr>>hr)&1)) {
8060 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8061 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8062 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8063 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8064 {
8065 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8066 {
8067 if(likely[i]) {
8068 regs[i].regmap[hr]=-1;
8069 regs[i].isconst&=~(1<<hr);
8070 if(i<slen-2) {
8071 regmap_pre[i+2][hr]=-1;
8072 regs[i+2].wasconst&=~(1<<hr);
8073 }
8074 }
8075 }
8076 }
8077 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8078 {
8079 int map=0,temp=0;
8080 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8081 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8082 map=INVCP;
8083 }
8084 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
8085 itype[i+1]==C1LS || itype[i+1]==C2LS)
8086 temp=FTEMP;
8087 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8088 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8089 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8090 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8091 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8092 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8093 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8094 regs[i].regmap[hr]!=map )
8095 {
8096 regs[i].regmap[hr]=-1;
8097 regs[i].isconst&=~(1<<hr);
8098 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8099 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8100 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8101 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8102 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8103 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8104 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8105 branch_regs[i].regmap[hr]!=map)
8106 {
8107 branch_regs[i].regmap[hr]=-1;
8108 branch_regs[i].regmap_entry[hr]=-1;
8109 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8110 {
8111 if(!likely[i]&&i<slen-2) {
8112 regmap_pre[i+2][hr]=-1;
8113 regs[i+2].wasconst&=~(1<<hr);
8114 }
8115 }
8116 }
8117 }
8118 }
8119 else
8120 {
8121 // Non-branch
8122 if(i>0)
8123 {
8124 int map=-1,temp=-1;
8125 if(itype[i]==STORE || itype[i]==STORELR ||
8126 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8127 map=INVCP;
8128 }
8129 if(itype[i]==LOADLR || itype[i]==STORELR ||
8130 itype[i]==C1LS || itype[i]==C2LS)
8131 temp=FTEMP;
8132 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8133 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
8134 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8135 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
8136 {
8137 if(i<slen-1&&!is_ds[i]) {
8138 assert(regs[i].regmap[hr]<64);
8139 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8140 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8141 {
8142 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8143 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8144 }
8145 regmap_pre[i+1][hr]=-1;
8146 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8147 regs[i+1].wasconst&=~(1<<hr);
8148 }
8149 regs[i].regmap[hr]=-1;
8150 regs[i].isconst&=~(1<<hr);
8151 }
8152 }
8153 }
8154 } // if needed
8155 } // for hr
8156 }
8157
8158 /* Pass 5 - Pre-allocate registers */
8159
8160 // If a register is allocated during a loop, try to allocate it for the
8161 // entire loop, if possible. This avoids loading/storing registers
8162 // inside of the loop.
8163
8164 signed char f_regmap[HOST_REGS];
8165 clear_all_regs(f_regmap);
8166 for(i=0;i<slen-1;i++)
8167 {
8168 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8169 {
8170 if(ba[i]>=start && ba[i]<(start+i*4))
8171 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
8172 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
8173 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
8174 ||itype[i+1]==SHIFT||itype[i+1]==COP1
8175 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
8176 {
8177 int t=(ba[i]-start)>>2;
8178 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP)) // loop_preload can't handle jumps into delay slots
8179 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
8180 for(hr=0;hr<HOST_REGS;hr++)
8181 {
8182 if(regs[i].regmap[hr]>=0) {
8183 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8184 // dealloc old register
8185 int n;
8186 for(n=0;n<HOST_REGS;n++)
8187 {
8188 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8189 }
8190 // and alloc new one
8191 f_regmap[hr]=regs[i].regmap[hr];
8192 }
8193 }
8194 if(branch_regs[i].regmap[hr]>=0) {
8195 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8196 // dealloc old register
8197 int n;
8198 for(n=0;n<HOST_REGS;n++)
8199 {
8200 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8201 }
8202 // and alloc new one
8203 f_regmap[hr]=branch_regs[i].regmap[hr];
8204 }
8205 }
8206 if(ooo[i]) {
8207 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8208 f_regmap[hr]=branch_regs[i].regmap[hr];
8209 }else{
8210 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8211 f_regmap[hr]=branch_regs[i].regmap[hr];
8212 }
8213 // Avoid dirty->clean transition
8214 #ifdef DESTRUCTIVE_WRITEBACK
8215 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8216 #endif
8217 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8218 // case above, however it's always a good idea. We can't hoist the
8219 // load if the register was already allocated, so there's no point
8220 // wasting time analyzing most of these cases. It only "succeeds"
8221 // when the mapping was different and the load can be replaced with
8222 // a mov, which is of negligible benefit. So such cases are
8223 // skipped below.
8224 if(f_regmap[hr]>0) {
8225 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8226 int r=f_regmap[hr];
8227 for(j=t;j<=i;j++)
8228 {
8229 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8230 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8231 assert(r < 64);
8232 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8233 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8234 int k;
8235 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8236 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8237 if(r>63) {
8238 if(get_reg(regs[i].regmap,r&63)<0) break;
8239 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8240 }
8241 k=i;
8242 while(k>1&&regs[k-1].regmap[hr]==-1) {
8243 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8244 //printf("no free regs for store %x\n",start+(k-1)*4);
8245 break;
8246 }
8247 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8248 //printf("no-match due to different register\n");
8249 break;
8250 }
8251 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP) {
8252 //printf("no-match due to branch\n");
8253 break;
8254 }
8255 // call/ret fast path assumes no registers allocated
8256 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
8257 break;
8258 }
8259 assert(r < 64);
8260 k--;
8261 }
8262 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8263 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8264 while(k<i) {
8265 regs[k].regmap_entry[hr]=f_regmap[hr];
8266 regs[k].regmap[hr]=f_regmap[hr];
8267 regmap_pre[k+1][hr]=f_regmap[hr];
8268 regs[k].wasdirty&=~(1<<hr);
8269 regs[k].dirty&=~(1<<hr);
8270 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8271 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8272 regs[k].wasconst&=~(1<<hr);
8273 regs[k].isconst&=~(1<<hr);
8274 k++;
8275 }
8276 }
8277 else {
8278 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8279 break;
8280 }
8281 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8282 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8283 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8284 regs[i].regmap_entry[hr]=f_regmap[hr];
8285 regs[i].regmap[hr]=f_regmap[hr];
8286 regs[i].wasdirty&=~(1<<hr);
8287 regs[i].dirty&=~(1<<hr);
8288 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8289 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8290 regs[i].wasconst&=~(1<<hr);
8291 regs[i].isconst&=~(1<<hr);
8292 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8293 branch_regs[i].wasdirty&=~(1<<hr);
8294 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8295 branch_regs[i].regmap[hr]=f_regmap[hr];
8296 branch_regs[i].dirty&=~(1<<hr);
8297 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8298 branch_regs[i].wasconst&=~(1<<hr);
8299 branch_regs[i].isconst&=~(1<<hr);
8300 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
8301 regmap_pre[i+2][hr]=f_regmap[hr];
8302 regs[i+2].wasdirty&=~(1<<hr);
8303 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8304 }
8305 }
8306 }
8307 for(k=t;k<j;k++) {
8308 // Alloc register clean at beginning of loop,
8309 // but may dirty it in pass 6
8310 regs[k].regmap_entry[hr]=f_regmap[hr];
8311 regs[k].regmap[hr]=f_regmap[hr];
8312 regs[k].dirty&=~(1<<hr);
8313 regs[k].wasconst&=~(1<<hr);
8314 regs[k].isconst&=~(1<<hr);
8315 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP) {
8316 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8317 branch_regs[k].regmap[hr]=f_regmap[hr];
8318 branch_regs[k].dirty&=~(1<<hr);
8319 branch_regs[k].wasconst&=~(1<<hr);
8320 branch_regs[k].isconst&=~(1<<hr);
8321 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
8322 regmap_pre[k+2][hr]=f_regmap[hr];
8323 regs[k+2].wasdirty&=~(1<<hr);
8324 }
8325 }
8326 else
8327 {
8328 regmap_pre[k+1][hr]=f_regmap[hr];
8329 regs[k+1].wasdirty&=~(1<<hr);
8330 }
8331 }
8332 if(regs[j].regmap[hr]==f_regmap[hr])
8333 regs[j].regmap_entry[hr]=f_regmap[hr];
8334 break;
8335 }
8336 if(j==i) break;
8337 if(regs[j].regmap[hr]>=0)
8338 break;
8339 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8340 //printf("no-match due to different register\n");
8341 break;
8342 }
8343 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
8344 {
8345 // Stop on unconditional branch
8346 break;
8347 }
8348 if(itype[j]==CJUMP||itype[j]==SJUMP)
8349 {
8350 if(ooo[j]) {
8351 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8352 break;
8353 }else{
8354 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8355 break;
8356 }
8357 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8358 //printf("no-match due to different register (branch)\n");
8359 break;
8360 }
8361 }
8362 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8363 //printf("No free regs for store %x\n",start+j*4);
8364 break;
8365 }
8366 assert(f_regmap[hr]<64);
8367 }
8368 }
8369 }
8370 }
8371 }
8372 }else{
8373 // Non branch or undetermined branch target
8374 for(hr=0;hr<HOST_REGS;hr++)
8375 {
8376 if(hr!=EXCLUDE_REG) {
8377 if(regs[i].regmap[hr]>=0) {
8378 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8379 // dealloc old register
8380 int n;
8381 for(n=0;n<HOST_REGS;n++)
8382 {
8383 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8384 }
8385 // and alloc new one
8386 f_regmap[hr]=regs[i].regmap[hr];
8387 }
8388 }
8389 }
8390 }
8391 // Try to restore cycle count at branch targets
8392 if(bt[i]) {
8393 for(j=i;j<slen-1;j++) {
8394 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8395 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8396 //printf("no free regs for store %x\n",start+j*4);
8397 break;
8398 }
8399 }
8400 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8401 int k=i;
8402 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8403 while(k<j) {
8404 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8405 regs[k].regmap[HOST_CCREG]=CCREG;
8406 regmap_pre[k+1][HOST_CCREG]=CCREG;
8407 regs[k+1].wasdirty|=1<<HOST_CCREG;
8408 regs[k].dirty|=1<<HOST_CCREG;
8409 regs[k].wasconst&=~(1<<HOST_CCREG);
8410 regs[k].isconst&=~(1<<HOST_CCREG);
8411 k++;
8412 }
8413 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8414 }
8415 // Work backwards from the branch target
8416 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8417 {
8418 //printf("Extend backwards\n");
8419 int k;
8420 k=i;
8421 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8422 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8423 //printf("no free regs for store %x\n",start+(k-1)*4);
8424 break;
8425 }
8426 k--;
8427 }
8428 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8429 //printf("Extend CC, %x ->\n",start+k*4);
8430 while(k<=i) {
8431 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8432 regs[k].regmap[HOST_CCREG]=CCREG;
8433 regmap_pre[k+1][HOST_CCREG]=CCREG;
8434 regs[k+1].wasdirty|=1<<HOST_CCREG;
8435 regs[k].dirty|=1<<HOST_CCREG;
8436 regs[k].wasconst&=~(1<<HOST_CCREG);
8437 regs[k].isconst&=~(1<<HOST_CCREG);
8438 k++;
8439 }
8440 }
8441 else {
8442 //printf("Fail Extend CC, %x ->\n",start+k*4);
8443 }
8444 }
8445 }
8446 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
8447 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
8448 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1)
8449 {
8450 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8451 }
8452 }
8453 }
8454
8455 // This allocates registers (if possible) one instruction prior
8456 // to use, which can avoid a load-use penalty on certain CPUs.
8457 for(i=0;i<slen-1;i++)
8458 {
8459 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP))
8460 {
8461 if(!bt[i+1])
8462 {
8463 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
8464 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
8465 {
8466 if(rs1[i+1]) {
8467 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
8468 {
8469 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8470 {
8471 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8472 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8473 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8474 regs[i].isconst&=~(1<<hr);
8475 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8476 constmap[i][hr]=constmap[i+1][hr];
8477 regs[i+1].wasdirty&=~(1<<hr);
8478 regs[i].dirty&=~(1<<hr);
8479 }
8480 }
8481 }
8482 if(rs2[i+1]) {
8483 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
8484 {
8485 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8486 {
8487 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8488 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8489 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8490 regs[i].isconst&=~(1<<hr);
8491 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8492 constmap[i][hr]=constmap[i+1][hr];
8493 regs[i+1].wasdirty&=~(1<<hr);
8494 regs[i].dirty&=~(1<<hr);
8495 }
8496 }
8497 }
8498 // Preload target address for load instruction (non-constant)
8499 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8500 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8501 {
8502 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8503 {
8504 regs[i].regmap[hr]=rs1[i+1];
8505 regmap_pre[i+1][hr]=rs1[i+1];
8506 regs[i+1].regmap_entry[hr]=rs1[i+1];
8507 regs[i].isconst&=~(1<<hr);
8508 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8509 constmap[i][hr]=constmap[i+1][hr];
8510 regs[i+1].wasdirty&=~(1<<hr);
8511 regs[i].dirty&=~(1<<hr);
8512 }
8513 }
8514 }
8515 // Load source into target register
8516 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8517 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8518 {
8519 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8520 {
8521 regs[i].regmap[hr]=rs1[i+1];
8522 regmap_pre[i+1][hr]=rs1[i+1];
8523 regs[i+1].regmap_entry[hr]=rs1[i+1];
8524 regs[i].isconst&=~(1<<hr);
8525 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8526 constmap[i][hr]=constmap[i+1][hr];
8527 regs[i+1].wasdirty&=~(1<<hr);
8528 regs[i].dirty&=~(1<<hr);
8529 }
8530 }
8531 }
8532 // Address for store instruction (non-constant)
8533 if(itype[i+1]==STORE||itype[i+1]==STORELR
8534 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8535 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8536 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8537 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8538 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8539 assert(hr>=0);
8540 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8541 {
8542 regs[i].regmap[hr]=rs1[i+1];
8543 regmap_pre[i+1][hr]=rs1[i+1];
8544 regs[i+1].regmap_entry[hr]=rs1[i+1];
8545 regs[i].isconst&=~(1<<hr);
8546 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8547 constmap[i][hr]=constmap[i+1][hr];
8548 regs[i+1].wasdirty&=~(1<<hr);
8549 regs[i].dirty&=~(1<<hr);
8550 }
8551 }
8552 }
8553 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8554 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8555 int nr;
8556 hr=get_reg(regs[i+1].regmap,FTEMP);
8557 assert(hr>=0);
8558 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8559 {
8560 regs[i].regmap[hr]=rs1[i+1];
8561 regmap_pre[i+1][hr]=rs1[i+1];
8562 regs[i+1].regmap_entry[hr]=rs1[i+1];
8563 regs[i].isconst&=~(1<<hr);
8564 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8565 constmap[i][hr]=constmap[i+1][hr];
8566 regs[i+1].wasdirty&=~(1<<hr);
8567 regs[i].dirty&=~(1<<hr);
8568 }
8569 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8570 {
8571 // move it to another register
8572 regs[i+1].regmap[hr]=-1;
8573 regmap_pre[i+2][hr]=-1;
8574 regs[i+1].regmap[nr]=FTEMP;
8575 regmap_pre[i+2][nr]=FTEMP;
8576 regs[i].regmap[nr]=rs1[i+1];
8577 regmap_pre[i+1][nr]=rs1[i+1];
8578 regs[i+1].regmap_entry[nr]=rs1[i+1];
8579 regs[i].isconst&=~(1<<nr);
8580 regs[i+1].isconst&=~(1<<nr);
8581 regs[i].dirty&=~(1<<nr);
8582 regs[i+1].wasdirty&=~(1<<nr);
8583 regs[i+1].dirty&=~(1<<nr);
8584 regs[i+2].wasdirty&=~(1<<nr);
8585 }
8586 }
8587 }
8588 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
8589 if(itype[i+1]==LOAD)
8590 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
8591 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8592 hr=get_reg(regs[i+1].regmap,FTEMP);
8593 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8594 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8595 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8596 }
8597 if(hr>=0&&regs[i].regmap[hr]<0) {
8598 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
8599 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8600 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8601 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8602 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8603 regs[i].isconst&=~(1<<hr);
8604 regs[i+1].wasdirty&=~(1<<hr);
8605 regs[i].dirty&=~(1<<hr);
8606 }
8607 }
8608 }
8609 }
8610 }
8611 }
8612 }
8613
8614 /* Pass 6 - Optimize clean/dirty state */
8615 clean_registers(0,slen-1,1);
8616
8617 /* Pass 7 - Identify 32-bit registers */
8618 for (i=slen-1;i>=0;i--)
8619 {
8620 if(itype[i]==CJUMP||itype[i]==SJUMP)
8621 {
8622 // Conditional branch
8623 if((source[i]>>16)!=0x1000&&i<slen-2) {
8624 // Mark this address as a branch target since it may be called
8625 // upon return from interrupt
8626 bt[i+2]=1;
8627 }
8628 }
8629 }
8630
8631 if(itype[slen-1]==SPAN) {
8632 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
8633 }
8634
8635#ifdef DISASM
8636 /* Debug/disassembly */
8637 for(i=0;i<slen;i++)
8638 {
8639 printf("U:");
8640 int r;
8641 for(r=1;r<=CCREG;r++) {
8642 if((unneeded_reg[i]>>r)&1) {
8643 if(r==HIREG) printf(" HI");
8644 else if(r==LOREG) printf(" LO");
8645 else printf(" r%d",r);
8646 }
8647 }
8648 printf("\n");
8649 #if defined(__i386__) || defined(__x86_64__)
8650 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8651 #endif
8652 #ifdef __arm__
8653 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8654 #endif
8655 #if defined(__i386__) || defined(__x86_64__)
8656 printf("needs: ");
8657 if(needed_reg[i]&1) printf("eax ");
8658 if((needed_reg[i]>>1)&1) printf("ecx ");
8659 if((needed_reg[i]>>2)&1) printf("edx ");
8660 if((needed_reg[i]>>3)&1) printf("ebx ");
8661 if((needed_reg[i]>>5)&1) printf("ebp ");
8662 if((needed_reg[i]>>6)&1) printf("esi ");
8663 if((needed_reg[i]>>7)&1) printf("edi ");
8664 printf("\n");
8665 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8666 printf("dirty: ");
8667 if(regs[i].wasdirty&1) printf("eax ");
8668 if((regs[i].wasdirty>>1)&1) printf("ecx ");
8669 if((regs[i].wasdirty>>2)&1) printf("edx ");
8670 if((regs[i].wasdirty>>3)&1) printf("ebx ");
8671 if((regs[i].wasdirty>>5)&1) printf("ebp ");
8672 if((regs[i].wasdirty>>6)&1) printf("esi ");
8673 if((regs[i].wasdirty>>7)&1) printf("edi ");
8674 #endif
8675 #ifdef __arm__
8676 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
8677 printf("dirty: ");
8678 if(regs[i].wasdirty&1) printf("r0 ");
8679 if((regs[i].wasdirty>>1)&1) printf("r1 ");
8680 if((regs[i].wasdirty>>2)&1) printf("r2 ");
8681 if((regs[i].wasdirty>>3)&1) printf("r3 ");
8682 if((regs[i].wasdirty>>4)&1) printf("r4 ");
8683 if((regs[i].wasdirty>>5)&1) printf("r5 ");
8684 if((regs[i].wasdirty>>6)&1) printf("r6 ");
8685 if((regs[i].wasdirty>>7)&1) printf("r7 ");
8686 if((regs[i].wasdirty>>8)&1) printf("r8 ");
8687 if((regs[i].wasdirty>>9)&1) printf("r9 ");
8688 if((regs[i].wasdirty>>10)&1) printf("r10 ");
8689 if((regs[i].wasdirty>>12)&1) printf("r12 ");
8690 #endif
8691 printf("\n");
8692 disassemble_inst(i);
8693 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
8694 #if defined(__i386__) || defined(__x86_64__)
8695 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
8696 if(regs[i].dirty&1) printf("eax ");
8697 if((regs[i].dirty>>1)&1) printf("ecx ");
8698 if((regs[i].dirty>>2)&1) printf("edx ");
8699 if((regs[i].dirty>>3)&1) printf("ebx ");
8700 if((regs[i].dirty>>5)&1) printf("ebp ");
8701 if((regs[i].dirty>>6)&1) printf("esi ");
8702 if((regs[i].dirty>>7)&1) printf("edi ");
8703 #endif
8704 #ifdef __arm__
8705 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
8706 if(regs[i].dirty&1) printf("r0 ");
8707 if((regs[i].dirty>>1)&1) printf("r1 ");
8708 if((regs[i].dirty>>2)&1) printf("r2 ");
8709 if((regs[i].dirty>>3)&1) printf("r3 ");
8710 if((regs[i].dirty>>4)&1) printf("r4 ");
8711 if((regs[i].dirty>>5)&1) printf("r5 ");
8712 if((regs[i].dirty>>6)&1) printf("r6 ");
8713 if((regs[i].dirty>>7)&1) printf("r7 ");
8714 if((regs[i].dirty>>8)&1) printf("r8 ");
8715 if((regs[i].dirty>>9)&1) printf("r9 ");
8716 if((regs[i].dirty>>10)&1) printf("r10 ");
8717 if((regs[i].dirty>>12)&1) printf("r12 ");
8718 #endif
8719 printf("\n");
8720 if(regs[i].isconst) {
8721 printf("constants: ");
8722 #if defined(__i386__) || defined(__x86_64__)
8723 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
8724 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
8725 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
8726 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
8727 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
8728 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
8729 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
8730 #endif
8731 #if defined(__arm__) || defined(__aarch64__)
8732 int r;
8733 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
8734 if ((regs[i].isconst >> r) & 1)
8735 printf(" r%d=%x", r, (u_int)constmap[i][r]);
8736 #endif
8737 printf("\n");
8738 }
8739 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
8740 #if defined(__i386__) || defined(__x86_64__)
8741 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
8742 if(branch_regs[i].dirty&1) printf("eax ");
8743 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
8744 if((branch_regs[i].dirty>>2)&1) printf("edx ");
8745 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
8746 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
8747 if((branch_regs[i].dirty>>6)&1) printf("esi ");
8748 if((branch_regs[i].dirty>>7)&1) printf("edi ");
8749 #endif
8750 #ifdef __arm__
8751 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
8752 if(branch_regs[i].dirty&1) printf("r0 ");
8753 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
8754 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
8755 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
8756 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
8757 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
8758 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
8759 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
8760 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
8761 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
8762 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
8763 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
8764 #endif
8765 }
8766 }
8767#endif // DISASM
8768
8769 /* Pass 8 - Assembly */
8770 linkcount=0;stubcount=0;
8771 ds=0;is_delayslot=0;
8772 u_int dirty_pre=0;
8773 void *beginning=start_block();
8774 if((u_int)addr&1) {
8775 ds=1;
8776 pagespan_ds();
8777 }
8778 void *instr_addr0_override = NULL;
8779
8780 if (start == 0x80030000) {
8781 // nasty hack for the fastbios thing
8782 // override block entry to this code
8783 instr_addr0_override = out;
8784 emit_movimm(start,0);
8785 // abuse io address var as a flag that we
8786 // have already returned here once
8787 emit_readword(&address,1);
8788 emit_writeword(0,&pcaddr);
8789 emit_writeword(0,&address);
8790 emit_cmp(0,1);
8791 #ifdef __aarch64__
8792 emit_jeq(out + 4*2);
8793 emit_far_jump(new_dyna_leave);
8794 #else
8795 emit_jne(new_dyna_leave);
8796 #endif
8797 }
8798 for(i=0;i<slen;i++)
8799 {
8800 //if(ds) printf("ds: ");
8801 disassemble_inst(i);
8802 if(ds) {
8803 ds=0; // Skip delay slot
8804 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
8805 instr_addr[i] = NULL;
8806 } else {
8807 speculate_register_values(i);
8808 #ifndef DESTRUCTIVE_WRITEBACK
8809 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
8810 {
8811 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
8812 }
8813 if((itype[i]==CJUMP||itype[i]==SJUMP)&&!likely[i]) {
8814 dirty_pre=branch_regs[i].dirty;
8815 }else{
8816 dirty_pre=regs[i].dirty;
8817 }
8818 #endif
8819 // write back
8820 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
8821 {
8822 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
8823 loop_preload(regmap_pre[i],regs[i].regmap_entry);
8824 }
8825 // branch target entry point
8826 instr_addr[i] = out;
8827 assem_debug("<->\n");
8828 drc_dbg_emit_do_cmp(i);
8829
8830 // load regs
8831 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
8832 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
8833 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i],rs2[i]);
8834 address_generation(i,&regs[i],regs[i].regmap_entry);
8835 load_consts(regmap_pre[i],regs[i].regmap,i);
8836 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8837 {
8838 // Load the delay slot registers if necessary
8839 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
8840 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
8841 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
8842 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
8843 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
8844 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
8845 }
8846 else if(i+1<slen)
8847 {
8848 // Preload registers for following instruction
8849 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
8850 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
8851 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
8852 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
8853 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
8854 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
8855 }
8856 // TODO: if(is_ooo(i)) address_generation(i+1);
8857 if(itype[i]==CJUMP)
8858 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
8859 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
8860 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
8861 // assemble
8862 switch(itype[i]) {
8863 case ALU:
8864 alu_assemble(i,&regs[i]);break;
8865 case IMM16:
8866 imm16_assemble(i,&regs[i]);break;
8867 case SHIFT:
8868 shift_assemble(i,&regs[i]);break;
8869 case SHIFTIMM:
8870 shiftimm_assemble(i,&regs[i]);break;
8871 case LOAD:
8872 load_assemble(i,&regs[i]);break;
8873 case LOADLR:
8874 loadlr_assemble(i,&regs[i]);break;
8875 case STORE:
8876 store_assemble(i,&regs[i]);break;
8877 case STORELR:
8878 storelr_assemble(i,&regs[i]);break;
8879 case COP0:
8880 cop0_assemble(i,&regs[i]);break;
8881 case COP1:
8882 cop1_assemble(i,&regs[i]);break;
8883 case C1LS:
8884 c1ls_assemble(i,&regs[i]);break;
8885 case COP2:
8886 cop2_assemble(i,&regs[i]);break;
8887 case C2LS:
8888 c2ls_assemble(i,&regs[i]);break;
8889 case C2OP:
8890 c2op_assemble(i,&regs[i]);break;
8891 case MULTDIV:
8892 multdiv_assemble(i,&regs[i]);break;
8893 case MOV:
8894 mov_assemble(i,&regs[i]);break;
8895 case SYSCALL:
8896 syscall_assemble(i,&regs[i]);break;
8897 case HLECALL:
8898 hlecall_assemble(i,&regs[i]);break;
8899 case INTCALL:
8900 intcall_assemble(i,&regs[i]);break;
8901 case UJUMP:
8902 ujump_assemble(i,&regs[i]);ds=1;break;
8903 case RJUMP:
8904 rjump_assemble(i,&regs[i]);ds=1;break;
8905 case CJUMP:
8906 cjump_assemble(i,&regs[i]);ds=1;break;
8907 case SJUMP:
8908 sjump_assemble(i,&regs[i]);ds=1;break;
8909 case SPAN:
8910 pagespan_assemble(i,&regs[i]);break;
8911 }
8912 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
8913 literal_pool(1024);
8914 else
8915 literal_pool_jumpover(256);
8916 }
8917 }
8918 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
8919 // If the block did not end with an unconditional branch,
8920 // add a jump to the next instruction.
8921 if(i>1) {
8922 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
8923 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
8924 assert(i==slen);
8925 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP) {
8926 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
8927 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
8928 emit_loadreg(CCREG,HOST_CCREG);
8929 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
8930 }
8931 else if(!likely[i-2])
8932 {
8933 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
8934 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
8935 }
8936 else
8937 {
8938 store_regs_bt(regs[i-2].regmap,regs[i-2].dirty,start+i*4);
8939 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
8940 }
8941 add_to_linker(out,start+i*4,0);
8942 emit_jmp(0);
8943 }
8944 }
8945 else
8946 {
8947 assert(i>0);
8948 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
8949 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
8950 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
8951 emit_loadreg(CCREG,HOST_CCREG);
8952 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
8953 add_to_linker(out,start+i*4,0);
8954 emit_jmp(0);
8955 }
8956
8957 // TODO: delay slot stubs?
8958 // Stubs
8959 for(i=0;i<stubcount;i++)
8960 {
8961 switch(stubs[i].type)
8962 {
8963 case LOADB_STUB:
8964 case LOADH_STUB:
8965 case LOADW_STUB:
8966 case LOADD_STUB:
8967 case LOADBU_STUB:
8968 case LOADHU_STUB:
8969 do_readstub(i);break;
8970 case STOREB_STUB:
8971 case STOREH_STUB:
8972 case STOREW_STUB:
8973 case STORED_STUB:
8974 do_writestub(i);break;
8975 case CC_STUB:
8976 do_ccstub(i);break;
8977 case INVCODE_STUB:
8978 do_invstub(i);break;
8979 case FP_STUB:
8980 do_cop1stub(i);break;
8981 case STORELR_STUB:
8982 do_unalignedwritestub(i);break;
8983 }
8984 }
8985
8986 if (instr_addr0_override)
8987 instr_addr[0] = instr_addr0_override;
8988
8989 /* Pass 9 - Linker */
8990 for(i=0;i<linkcount;i++)
8991 {
8992 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
8993 literal_pool(64);
8994 if (!link_addr[i].ext)
8995 {
8996 void *stub = out;
8997 void *addr = check_addr(link_addr[i].target);
8998 emit_extjump(link_addr[i].addr, link_addr[i].target);
8999 if (addr) {
9000 set_jump_target(link_addr[i].addr, addr);
9001 add_link(link_addr[i].target,stub);
9002 }
9003 else
9004 set_jump_target(link_addr[i].addr, stub);
9005 }
9006 else
9007 {
9008 // Internal branch
9009 int target=(link_addr[i].target-start)>>2;
9010 assert(target>=0&&target<slen);
9011 assert(instr_addr[target]);
9012 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9013 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9014 //#else
9015 set_jump_target(link_addr[i].addr, instr_addr[target]);
9016 //#endif
9017 }
9018 }
9019 // External Branch Targets (jump_in)
9020 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
9021 for(i=0;i<slen;i++)
9022 {
9023 if(bt[i]||i==0)
9024 {
9025 if(instr_addr[i]) // TODO - delay slots (=null)
9026 {
9027 u_int vaddr=start+i*4;
9028 u_int page=get_page(vaddr);
9029 u_int vpage=get_vpage(vaddr);
9030 literal_pool(256);
9031 {
9032 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9033 assem_debug("jump_in: %x\n",start+i*4);
9034 ll_add(jump_dirty+vpage,vaddr,out);
9035 void *entry_point = do_dirty_stub(i);
9036 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9037 // If there was an existing entry in the hash table,
9038 // replace it with the new address.
9039 // Don't add new entries. We'll insert the
9040 // ones that actually get used in check_addr().
9041 struct ht_entry *ht_bin = hash_table_get(vaddr);
9042 if (ht_bin->vaddr[0] == vaddr)
9043 ht_bin->tcaddr[0] = entry_point;
9044 if (ht_bin->vaddr[1] == vaddr)
9045 ht_bin->tcaddr[1] = entry_point;
9046 }
9047 }
9048 }
9049 }
9050 // Write out the literal pool if necessary
9051 literal_pool(0);
9052 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9053 // Align code
9054 if(((u_int)out)&7) emit_addnop(13);
9055 #endif
9056 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9057 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9058 memcpy(copy,source,slen*4);
9059 copy+=slen*4;
9060
9061 end_block(beginning);
9062
9063 // If we're within 256K of the end of the buffer,
9064 // start over from the beginning. (Is 256K enough?)
9065 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9066 out = ndrc->translation_cache;
9067
9068 // Trap writes to any of the pages we compiled
9069 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9070 invalid_code[i]=0;
9071 }
9072 inv_code_start=inv_code_end=~0;
9073
9074 // for PCSX we need to mark all mirrors too
9075 if(get_page(start)<(RAM_SIZE>>12))
9076 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9077 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9078 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9079 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9080
9081 /* Pass 10 - Free memory by expiring oldest blocks */
9082
9083 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9084 while(expirep!=end)
9085 {
9086 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9087 uintptr_t base=(uintptr_t)ndrc->translation_cache+((expirep>>13)<<shift); // Base address of this block
9088 inv_debug("EXP: Phase %d\n",expirep);
9089 switch((expirep>>11)&3)
9090 {
9091 case 0:
9092 // Clear jump_in and jump_dirty
9093 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
9094 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
9095 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
9096 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
9097 break;
9098 case 1:
9099 // Clear pointers
9100 ll_kill_pointers(jump_out[expirep&2047],base,shift);
9101 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
9102 break;
9103 case 2:
9104 // Clear hash table
9105 for(i=0;i<32;i++) {
9106 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9107 if (((uintptr_t)ht_bin->tcaddr[1]>>shift) == (base>>shift) ||
9108 (((uintptr_t)ht_bin->tcaddr[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
9109 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9110 ht_bin->vaddr[1] = -1;
9111 ht_bin->tcaddr[1] = NULL;
9112 }
9113 if (((uintptr_t)ht_bin->tcaddr[0]>>shift) == (base>>shift) ||
9114 (((uintptr_t)ht_bin->tcaddr[0]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
9115 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9116 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9117 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9118 ht_bin->vaddr[1] = -1;
9119 ht_bin->tcaddr[1] = NULL;
9120 }
9121 }
9122 break;
9123 case 3:
9124 // Clear jump_out
9125 if((expirep&2047)==0)
9126 do_clear_cache();
9127 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
9128 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
9129 break;
9130 }
9131 expirep=(expirep+1)&65535;
9132 }
9133 return 0;
9134}
9135
9136// vim:shiftwidth=2:expandtab