drc: rework expire code
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32
33#include "new_dynarec_config.h"
34#include "../psxhle.h"
35#include "../psxinterpreter.h"
36#include "../gte.h"
37#include "emu_if.h" // emulator interface
38#include "arm_features.h"
39
40#define noinline __attribute__((noinline,noclone))
41#ifndef ARRAY_SIZE
42#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
43#endif
44#ifndef min
45#define min(a, b) ((b) < (a) ? (b) : (a))
46#endif
47#ifndef max
48#define max(a, b) ((b) > (a) ? (b) : (a))
49#endif
50
51//#define DISASM
52//#define ASSEM_PRINT
53//#define STAT_PRINT
54
55#ifdef ASSEM_PRINT
56#define assem_debug printf
57#else
58#define assem_debug(...)
59#endif
60//#define inv_debug printf
61#define inv_debug(...)
62
63#ifdef __i386__
64#include "assem_x86.h"
65#endif
66#ifdef __x86_64__
67#include "assem_x64.h"
68#endif
69#ifdef __arm__
70#include "assem_arm.h"
71#endif
72#ifdef __aarch64__
73#include "assem_arm64.h"
74#endif
75
76#define RAM_SIZE 0x200000
77#define MAXBLOCK 4096
78#define MAX_OUTPUT_BLOCK_SIZE 262144
79#define EXPIRITY_OFFSET (MAX_OUTPUT_BLOCK_SIZE * 2)
80#define PAGE_COUNT 1024
81
82#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
83#define INVALIDATE_USE_COND_CALL
84#endif
85
86#ifdef VITA
87// apparently Vita has a 16MB limit, so either we cut tc in half,
88// or use this hack (it's a hack because tc size was designed to be power-of-2)
89#define TC_REDUCE_BYTES 4096
90#else
91#define TC_REDUCE_BYTES 0
92#endif
93
94struct ndrc_mem
95{
96 u_char translation_cache[(1 << TARGET_SIZE_2) - TC_REDUCE_BYTES];
97 struct
98 {
99 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
100 const void *f[2048 / sizeof(void *)];
101 } tramp;
102};
103
104#ifdef BASE_ADDR_DYNAMIC
105static struct ndrc_mem *ndrc;
106#else
107static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
108static struct ndrc_mem *ndrc = &ndrc_;
109#endif
110
111// stubs
112enum stub_type {
113 CC_STUB = 1,
114 FP_STUB = 2,
115 LOADB_STUB = 3,
116 LOADH_STUB = 4,
117 LOADW_STUB = 5,
118 LOADD_STUB = 6,
119 LOADBU_STUB = 7,
120 LOADHU_STUB = 8,
121 STOREB_STUB = 9,
122 STOREH_STUB = 10,
123 STOREW_STUB = 11,
124 STORED_STUB = 12,
125 STORELR_STUB = 13,
126 INVCODE_STUB = 14,
127};
128
129// regmap_pre[i] - regs before [i] insn starts; dirty things here that
130// don't match .regmap will be written back
131// [i].regmap_entry - regs that must be set up if someone jumps here
132// [i].regmap - regs [i] insn will read/(over)write
133// branch_regs[i].* - same as above but for branches, takes delay slot into account
134struct regstat
135{
136 signed char regmap_entry[HOST_REGS];
137 signed char regmap[HOST_REGS];
138 uint64_t wasdirty;
139 uint64_t dirty;
140 uint64_t u;
141 u_int wasconst; // before; for example 'lw r2, (r2)' wasconst is true
142 u_int isconst; // ... but isconst is false when r2 is known
143 u_int loadedconst; // host regs that have constants loaded
144 u_int waswritten; // MIPS regs that were used as store base before
145};
146
147// note: asm depends on this layout
148struct ll_entry
149{
150 u_int vaddr;
151 void *addr;
152 struct ll_entry *next;
153};
154
155struct ht_entry
156{
157 u_int vaddr[2];
158 void *tcaddr[2];
159};
160
161struct code_stub
162{
163 enum stub_type type;
164 void *addr;
165 void *retaddr;
166 u_int a;
167 uintptr_t b;
168 uintptr_t c;
169 u_int d;
170 u_int e;
171};
172
173struct link_entry
174{
175 void *addr;
176 u_int target;
177 u_int internal;
178};
179
180struct block_info
181{
182 struct block_info *next;
183 const void *source;
184 const void *copy;
185 u_int start; // vaddr of the block start
186 u_int len; // of the whole block source
187 u_int tc_offs;
188 //u_int tc_len;
189 u_int reg_sv_flags;
190 u_short is_dirty;
191 u_short jump_in_cnt;
192 struct {
193 u_int vaddr;
194 void *addr;
195 } jump_in[0];
196};
197
198static struct decoded_insn
199{
200 u_char itype;
201 u_char opcode;
202 u_char opcode2;
203 u_char rs1;
204 u_char rs2;
205 u_char rt1;
206 u_char rt2;
207 u_char use_lt1:1;
208 u_char bt:1;
209 u_char ooo:1;
210 u_char is_ds:1;
211 u_char is_jump:1;
212 u_char is_ujump:1;
213 u_char is_load:1;
214 u_char is_store:1;
215} dops[MAXBLOCK];
216
217 static u_char *out;
218 static struct ht_entry hash_table[65536];
219 static struct block_info *blocks[PAGE_COUNT];
220 static struct ll_entry *jump_out[PAGE_COUNT];
221 static u_int start;
222 static u_int *source;
223 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
224 static uint64_t gte_rt[MAXBLOCK];
225 static uint64_t gte_unneeded[MAXBLOCK];
226 static u_int smrv[32]; // speculated MIPS register values
227 static u_int smrv_strong; // mask or regs that are likely to have correct values
228 static u_int smrv_weak; // same, but somewhat less likely
229 static u_int smrv_strong_next; // same, but after current insn executes
230 static u_int smrv_weak_next;
231 static int imm[MAXBLOCK];
232 static u_int ba[MAXBLOCK];
233 static uint64_t unneeded_reg[MAXBLOCK];
234 static uint64_t branch_unneeded_reg[MAXBLOCK];
235 // see 'struct regstat' for a description
236 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
237 // contains 'real' consts at [i] insn, but may differ from what's actually
238 // loaded in host reg as 'final' value is always loaded, see get_final_value()
239 static uint32_t current_constmap[HOST_REGS];
240 static uint32_t constmap[MAXBLOCK][HOST_REGS];
241 static struct regstat regs[MAXBLOCK];
242 static struct regstat branch_regs[MAXBLOCK];
243 static signed char minimum_free_regs[MAXBLOCK];
244 static int ccadj[MAXBLOCK];
245 static int slen;
246 static void *instr_addr[MAXBLOCK];
247 static struct link_entry link_addr[MAXBLOCK];
248 static int linkcount;
249 static struct code_stub stubs[MAXBLOCK*3];
250 static int stubcount;
251 static u_int literals[1024][2];
252 static int literalcount;
253 static int is_delayslot;
254 static char shadow[1048576] __attribute__((aligned(16)));
255 static void *copy;
256 static u_int expirep;
257 static u_int stop_after_jal;
258 static u_int f1_hack;
259#ifdef STAT_PRINT
260 static int stat_bc_direct;
261 static int stat_bc_pre;
262 static int stat_bc_restore;
263 static int stat_ht_lookups;
264 static int stat_jump_in_lookups;
265 static int stat_restore_tries;
266 static int stat_restore_compares;
267 static int stat_inv_addr_calls;
268 static int stat_inv_hits;
269 static int stat_blocks;
270 static int stat_links;
271 #define stat_inc(s) s++
272 #define stat_dec(s) s--
273 #define stat_clear(s) s = 0
274#else
275 #define stat_inc(s)
276 #define stat_dec(s)
277 #define stat_clear(s)
278#endif
279
280 int new_dynarec_hacks;
281 int new_dynarec_hacks_pergame;
282 int new_dynarec_hacks_old;
283 int new_dynarec_did_compile;
284
285 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
286
287 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
288 extern int last_count; // last absolute target, often = next_interupt
289 extern int pcaddr;
290 extern int pending_exception;
291 extern int branch_target;
292 extern uintptr_t ram_offset;
293 extern uintptr_t mini_ht[32][2];
294
295 /* registers that may be allocated */
296 /* 1-31 gpr */
297#define LOREG 32 // lo
298#define HIREG 33 // hi
299//#define FSREG 34 // FPU status (FCSR)
300#define CSREG 35 // Coprocessor status
301#define CCREG 36 // Cycle count
302#define INVCP 37 // Pointer to invalid_code
303//#define MMREG 38 // Pointer to memory_map
304#define ROREG 39 // ram offset (if rdram!=0x80000000)
305#define TEMPREG 40
306#define FTEMP 40 // FPU temporary register
307#define PTEMP 41 // Prefetch temporary register
308//#define TLREG 42 // TLB mapping offset
309#define RHASH 43 // Return address hash
310#define RHTBL 44 // Return address hash table address
311#define RTEMP 45 // JR/JALR address register
312#define MAXREG 45
313#define AGEN1 46 // Address generation temporary register
314//#define AGEN2 47 // Address generation temporary register
315//#define MGEN1 48 // Maptable address generation temporary register
316//#define MGEN2 49 // Maptable address generation temporary register
317#define BTREG 50 // Branch target temporary register
318
319 /* instruction types */
320#define NOP 0 // No operation
321#define LOAD 1 // Load
322#define STORE 2 // Store
323#define LOADLR 3 // Unaligned load
324#define STORELR 4 // Unaligned store
325#define MOV 5 // Move
326#define ALU 6 // Arithmetic/logic
327#define MULTDIV 7 // Multiply/divide
328#define SHIFT 8 // Shift by register
329#define SHIFTIMM 9// Shift by immediate
330#define IMM16 10 // 16-bit immediate
331#define RJUMP 11 // Unconditional jump to register
332#define UJUMP 12 // Unconditional jump
333#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
334#define SJUMP 14 // Conditional branch (regimm format)
335#define COP0 15 // Coprocessor 0
336#define COP1 16 // Coprocessor 1
337#define C1LS 17 // Coprocessor 1 load/store
338//#define FJUMP 18 // Conditional branch (floating point)
339//#define FLOAT 19 // Floating point unit
340//#define FCONV 20 // Convert integer to float
341//#define FCOMP 21 // Floating point compare (sets FSREG)
342#define SYSCALL 22// SYSCALL,BREAK
343#define OTHER 23 // Other
344//#define SPAN 24 // Branch/delay slot spans 2 pages
345#define NI 25 // Not implemented
346#define HLECALL 26// PCSX fake opcodes for HLE
347#define COP2 27 // Coprocessor 2 move
348#define C2LS 28 // Coprocessor 2 load/store
349#define C2OP 29 // Coprocessor 2 operation
350#define INTCALL 30// Call interpreter to handle rare corner cases
351
352 /* branch codes */
353#define TAKEN 1
354#define NOTTAKEN 2
355#define NULLDS 3
356
357#define DJT_1 (void *)1l // no function, just a label in assem_debug log
358#define DJT_2 (void *)2l
359
360// asm linkage
361void dyna_linker();
362void cc_interrupt();
363void fp_exception();
364void fp_exception_ds();
365void jump_syscall (u_int u0, u_int u1, u_int pc);
366void jump_syscall_ds(u_int u0, u_int u1, u_int pc);
367void jump_break (u_int u0, u_int u1, u_int pc);
368void jump_break_ds(u_int u0, u_int u1, u_int pc);
369void jump_to_new_pc();
370void call_gteStall();
371void new_dyna_leave();
372
373void *ndrc_get_addr_ht_param(u_int vaddr, int can_compile);
374void *ndrc_get_addr_ht(u_int vaddr);
375void ndrc_invalidate_addr(u_int addr);
376void ndrc_add_jump_out(u_int vaddr, void *src);
377
378static int new_recompile_block(u_int addr);
379static void invalidate_block(struct block_info *block);
380
381// Needed by assembler
382static void wb_register(signed char r, const signed char regmap[], uint64_t dirty);
383static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty);
384static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr);
385static void load_all_regs(const signed char i_regmap[]);
386static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[]);
387static void load_regs_entry(int t);
388static void load_all_consts(const signed char regmap[], u_int dirty, int i);
389static u_int get_host_reglist(const signed char *regmap);
390
391static int get_final_value(int hr, int i, int *value);
392static void add_stub(enum stub_type type, void *addr, void *retaddr,
393 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
394static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
395 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
396static void add_to_linker(void *addr, u_int target, int ext);
397static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
398 int addr, int *offset_reg, int *addr_reg_override);
399static void *get_direct_memhandler(void *table, u_int addr,
400 enum stub_type type, uintptr_t *addr_host);
401static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
402static void pass_args(int a0, int a1);
403static void emit_far_jump(const void *f);
404static void emit_far_call(const void *f);
405
406#ifdef VITA
407#include <psp2/kernel/sysmem.h>
408static int sceBlock;
409// note: this interacts with RetroArch's Vita bootstrap code: bootstrap/vita/sbrk.c
410extern int getVMBlock();
411int _newlib_vm_size_user = sizeof(*ndrc);
412#endif
413
414static void mprotect_w_x(void *start, void *end, int is_x)
415{
416#ifdef NO_WRITE_EXEC
417 #if defined(VITA)
418 // *Open* enables write on all memory that was
419 // allocated by sceKernelAllocMemBlockForVM()?
420 if (is_x)
421 sceKernelCloseVMDomain();
422 else
423 sceKernelOpenVMDomain();
424 #else
425 u_long mstart = (u_long)start & ~4095ul;
426 u_long mend = (u_long)end;
427 if (mprotect((void *)mstart, mend - mstart,
428 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
429 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
430 #endif
431#endif
432}
433
434static void start_tcache_write(void *start, void *end)
435{
436 mprotect_w_x(start, end, 0);
437}
438
439static void end_tcache_write(void *start, void *end)
440{
441#if defined(__arm__) || defined(__aarch64__)
442 size_t len = (char *)end - (char *)start;
443 #if defined(__BLACKBERRY_QNX__)
444 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
445 #elif defined(__MACH__)
446 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
447 #elif defined(VITA)
448 sceKernelSyncVMDomain(sceBlock, start, len);
449 #elif defined(_3DS)
450 ctr_flush_invalidate_cache();
451 #elif defined(__aarch64__)
452 // as of 2021, __clear_cache() is still broken on arm64
453 // so here is a custom one :(
454 clear_cache_arm64(start, end);
455 #else
456 __clear_cache(start, end);
457 #endif
458 (void)len;
459#endif
460
461 mprotect_w_x(start, end, 1);
462}
463
464static void *start_block(void)
465{
466 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
467 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
468 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
469 start_tcache_write(out, end);
470 return out;
471}
472
473static void end_block(void *start)
474{
475 end_tcache_write(start, out);
476}
477
478// also takes care of w^x mappings when patching code
479static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
480
481static void mark_clear_cache(void *target)
482{
483 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
484 u_int mask = 1u << ((offset >> 12) & 31);
485 if (!(needs_clear_cache[offset >> 17] & mask)) {
486 char *start = (char *)((uintptr_t)target & ~4095l);
487 start_tcache_write(start, start + 4095);
488 needs_clear_cache[offset >> 17] |= mask;
489 }
490}
491
492// Clearing the cache is rather slow on ARM Linux, so mark the areas
493// that need to be cleared, and then only clear these areas once.
494static void do_clear_cache(void)
495{
496 int i, j;
497 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
498 {
499 u_int bitmap = needs_clear_cache[i];
500 if (!bitmap)
501 continue;
502 for (j = 0; j < 32; j++)
503 {
504 u_char *start, *end;
505 if (!(bitmap & (1u << j)))
506 continue;
507
508 start = ndrc->translation_cache + i*131072 + j*4096;
509 end = start + 4095;
510 for (j++; j < 32; j++) {
511 if (!(bitmap & (1u << j)))
512 break;
513 end += 4096;
514 }
515 end_tcache_write(start, end);
516 }
517 needs_clear_cache[i] = 0;
518 }
519}
520
521//#define DEBUG_CYCLE_COUNT 1
522
523#define NO_CYCLE_PENALTY_THR 12
524
525int cycle_multiplier = CYCLE_MULT_DEFAULT; // 100 for 1.0
526int cycle_multiplier_override;
527int cycle_multiplier_old;
528static int cycle_multiplier_active;
529
530static int CLOCK_ADJUST(int x)
531{
532 int m = cycle_multiplier_active;
533 int s = (x >> 31) | 1;
534 return (x * m + s * 50) / 100;
535}
536
537static int ds_writes_rjump_rs(int i)
538{
539 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
540}
541
542// psx addr mirror masking (for invalidation)
543static u_int pmmask(u_int vaddr)
544{
545 vaddr &= ~0xe0000000;
546 if (vaddr < 0x01000000)
547 vaddr &= ~0x00e00000; // RAM mirrors
548 return vaddr;
549}
550
551static u_int get_page(u_int vaddr)
552{
553 u_int page = pmmask(vaddr) >> 12;
554 if (page >= PAGE_COUNT / 2)
555 page = PAGE_COUNT / 2 + (page & (PAGE_COUNT / 2 - 1));
556 return page;
557}
558
559// get a page for looking for a block that has vaddr
560// (needed because the block may start in previous page)
561static u_int get_page_prev(u_int vaddr)
562{
563 assert(MAXBLOCK <= (1 << 12));
564 u_int page = get_page(vaddr);
565 if (page & 511)
566 page--;
567 return page;
568}
569
570static struct ht_entry *hash_table_get(u_int vaddr)
571{
572 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
573}
574
575static void hash_table_add(u_int vaddr, void *tcaddr)
576{
577 struct ht_entry *ht_bin = hash_table_get(vaddr);
578 assert(tcaddr);
579 ht_bin->vaddr[1] = ht_bin->vaddr[0];
580 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
581 ht_bin->vaddr[0] = vaddr;
582 ht_bin->tcaddr[0] = tcaddr;
583}
584
585static void hash_table_remove(int vaddr)
586{
587 //printf("remove hash: %x\n",vaddr);
588 struct ht_entry *ht_bin = hash_table_get(vaddr);
589 if (ht_bin->vaddr[1] == vaddr) {
590 ht_bin->vaddr[1] = -1;
591 ht_bin->tcaddr[1] = NULL;
592 }
593 if (ht_bin->vaddr[0] == vaddr) {
594 ht_bin->vaddr[0] = ht_bin->vaddr[1];
595 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
596 ht_bin->vaddr[1] = -1;
597 ht_bin->tcaddr[1] = NULL;
598 }
599}
600
601static void mark_invalid_code(u_int vaddr, u_int len, char invalid)
602{
603 u_int i, j;
604 vaddr &= 0x1fffffff;
605 for (i = vaddr & ~0xfff; i < vaddr + len; i += 0x1000) {
606 // ram mirrors, but should not hurt bios
607 for (j = 0; j < 0x800000; j += 0x200000) {
608 invalid_code[(i|j) >> 12] =
609 invalid_code[(i|j|0x80000000u) >> 12] =
610 invalid_code[(i|j|0xa0000000u) >> 12] = invalid;
611 }
612 }
613 if (!invalid && vaddr + len > inv_code_start && vaddr <= inv_code_end)
614 inv_code_start = inv_code_end = ~0;
615}
616
617static int doesnt_expire_soon(u_char *tcaddr)
618{
619 u_int diff = (u_int)(tcaddr - out) & ((1u << TARGET_SIZE_2) - 1u);
620 return diff > EXPIRITY_OFFSET + MAX_OUTPUT_BLOCK_SIZE;
621}
622
623static void *try_restore_block(u_int vaddr, u_int start_page, u_int end_page)
624{
625 void *found_clean = NULL;
626 u_int i, page;
627
628 stat_inc(stat_restore_tries);
629 for (page = start_page; page <= end_page; page++) {
630 struct block_info *block;
631 for (block = blocks[page]; block != NULL; block = block->next) {
632 if (vaddr < block->start)
633 break;
634 if (!block->is_dirty || vaddr >= block->start + block->len)
635 continue;
636 for (i = 0; i < block->jump_in_cnt; i++)
637 if (block->jump_in[i].vaddr == vaddr)
638 break;
639 if (i == block->jump_in_cnt)
640 continue;
641 assert(block->source && block->copy);
642 stat_inc(stat_restore_compares);
643 if (memcmp(block->source, block->copy, block->len))
644 continue;
645
646 block->is_dirty = 0;
647 found_clean = block->jump_in[i].addr;
648 hash_table_add(vaddr, found_clean);
649 mark_invalid_code(block->start, block->len, 0);
650 stat_inc(stat_bc_restore);
651 inv_debug("INV: restored %08x %p (%d)\n", vaddr, found_clean, block->jump_in_cnt);
652 return found_clean;
653 }
654 }
655 return NULL;
656}
657
658// Get address from virtual address
659// This is called from the recompiled JR/JALR instructions
660static void noinline *get_addr(u_int vaddr, int can_compile)
661{
662 u_int start_page = get_page_prev(vaddr);
663 u_int i, page, end_page = get_page(vaddr);
664 void *found_clean = NULL;
665
666 stat_inc(stat_jump_in_lookups);
667 for (page = start_page; page <= end_page; page++) {
668 const struct block_info *block;
669 for (block = blocks[page]; block != NULL; block = block->next) {
670 if (vaddr < block->start)
671 break;
672 if (block->is_dirty || vaddr >= block->start + block->len)
673 continue;
674 for (i = 0; i < block->jump_in_cnt; i++)
675 if (block->jump_in[i].vaddr == vaddr)
676 break;
677 if (i == block->jump_in_cnt)
678 continue;
679 found_clean = block->jump_in[i].addr;
680 hash_table_add(vaddr, found_clean);
681 return found_clean;
682 }
683 }
684 found_clean = try_restore_block(vaddr, start_page, end_page);
685 if (found_clean)
686 return found_clean;
687
688 if (!can_compile)
689 return NULL;
690
691 int r = new_recompile_block(vaddr);
692 if (r == 0)
693 return ndrc_get_addr_ht(vaddr);
694
695 // generate an address error
696 Status|=2;
697 Cause=(vaddr<<31)|(4<<2);
698 EPC=(vaddr&1)?vaddr-5:vaddr;
699 BadVAddr=(vaddr&~1);
700 return ndrc_get_addr_ht(0x80000080);
701}
702
703// Look up address in hash table first
704void *ndrc_get_addr_ht_param(u_int vaddr, int can_compile)
705{
706 const struct ht_entry *ht_bin = hash_table_get(vaddr);
707 stat_inc(stat_ht_lookups);
708 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
709 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
710 return get_addr(vaddr, can_compile);
711}
712
713void *ndrc_get_addr_ht(u_int vaddr)
714{
715 return ndrc_get_addr_ht_param(vaddr, 1);
716}
717
718static void clear_all_regs(signed char regmap[])
719{
720 memset(regmap, -1, sizeof(regmap[0]) * HOST_REGS);
721}
722
723// get_reg: get allocated host reg from mips reg
724// returns -1 if no such mips reg was allocated
725#if defined(__arm__) && defined(HAVE_ARMV6) && HOST_REGS == 13 && EXCLUDE_REG == 11
726
727extern signed char get_reg(const signed char regmap[], signed char r);
728
729#else
730
731static signed char get_reg(const signed char regmap[], signed char r)
732{
733 int hr;
734 for (hr = 0; hr < HOST_REGS; hr++) {
735 if (hr == EXCLUDE_REG)
736 continue;
737 if (regmap[hr] == r)
738 return hr;
739 }
740 return -1;
741}
742
743#endif
744
745// get reg as mask bit (1 << hr)
746static u_int get_regm(const signed char regmap[], signed char r)
747{
748 return (1u << (get_reg(regmap, r) & 31)) & ~(1u << 31);
749}
750
751static signed char get_reg_temp(const signed char regmap[])
752{
753 int hr;
754 for (hr = 0; hr < HOST_REGS; hr++) {
755 if (hr == EXCLUDE_REG)
756 continue;
757 if (regmap[hr] == (signed char)-1)
758 return hr;
759 }
760 return -1;
761}
762
763// Find a register that is available for two consecutive cycles
764static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
765{
766 int hr;
767 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
768 return -1;
769}
770
771// reverse reg map: mips -> host
772#define RRMAP_SIZE 64
773static void make_rregs(const signed char regmap[], signed char rrmap[RRMAP_SIZE],
774 u_int *regs_can_change)
775{
776 u_int r, hr, hr_can_change = 0;
777 memset(rrmap, -1, RRMAP_SIZE);
778 for (hr = 0; hr < HOST_REGS; )
779 {
780 r = regmap[hr];
781 rrmap[r & (RRMAP_SIZE - 1)] = hr;
782 // only add mips $1-$31+$lo, others shifted out
783 hr_can_change |= (uint64_t)1 << (hr + ((r - 1) & 32));
784 hr++;
785 if (hr == EXCLUDE_REG)
786 hr++;
787 }
788 hr_can_change |= 1u << (rrmap[33] & 31);
789 hr_can_change |= 1u << (rrmap[CCREG] & 31);
790 hr_can_change &= ~(1u << 31);
791 *regs_can_change = hr_can_change;
792}
793
794// same as get_reg, but takes rrmap
795static signed char get_rreg(signed char rrmap[RRMAP_SIZE], signed char r)
796{
797 assert(0 <= r && r < RRMAP_SIZE);
798 return rrmap[r];
799}
800
801static int count_free_regs(const signed char regmap[])
802{
803 int count=0;
804 int hr;
805 for(hr=0;hr<HOST_REGS;hr++)
806 {
807 if(hr!=EXCLUDE_REG) {
808 if(regmap[hr]<0) count++;
809 }
810 }
811 return count;
812}
813
814static void dirty_reg(struct regstat *cur, signed char reg)
815{
816 int hr;
817 if (!reg) return;
818 hr = get_reg(cur->regmap, reg);
819 if (hr >= 0)
820 cur->dirty |= 1<<hr;
821}
822
823static void set_const(struct regstat *cur, signed char reg, uint32_t value)
824{
825 int hr;
826 if (!reg) return;
827 hr = get_reg(cur->regmap, reg);
828 if (hr >= 0) {
829 cur->isconst |= 1<<hr;
830 current_constmap[hr] = value;
831 }
832}
833
834static void clear_const(struct regstat *cur, signed char reg)
835{
836 int hr;
837 if (!reg) return;
838 hr = get_reg(cur->regmap, reg);
839 if (hr >= 0)
840 cur->isconst &= ~(1<<hr);
841}
842
843static int is_const(const struct regstat *cur, signed char reg)
844{
845 int hr;
846 if (reg < 0) return 0;
847 if (!reg) return 1;
848 hr = get_reg(cur->regmap, reg);
849 if (hr >= 0)
850 return (cur->isconst>>hr)&1;
851 return 0;
852}
853
854static uint32_t get_const(const struct regstat *cur, signed char reg)
855{
856 int hr;
857 if (!reg) return 0;
858 hr = get_reg(cur->regmap, reg);
859 if (hr >= 0)
860 return current_constmap[hr];
861
862 SysPrintf("Unknown constant in r%d\n", reg);
863 abort();
864}
865
866// Least soon needed registers
867// Look at the next ten instructions and see which registers
868// will be used. Try not to reallocate these.
869static void lsn(u_char hsn[], int i, int *preferred_reg)
870{
871 int j;
872 int b=-1;
873 for(j=0;j<9;j++)
874 {
875 if(i+j>=slen) {
876 j=slen-i-1;
877 break;
878 }
879 if (dops[i+j].is_ujump)
880 {
881 // Don't go past an unconditonal jump
882 j++;
883 break;
884 }
885 }
886 for(;j>=0;j--)
887 {
888 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
889 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
890 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
891 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
892 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
893 // Stores can allocate zero
894 hsn[dops[i+j].rs1]=j;
895 hsn[dops[i+j].rs2]=j;
896 }
897 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
898 hsn[ROREG] = j;
899 // On some architectures stores need invc_ptr
900 #if defined(HOST_IMM8)
901 if (dops[i+j].is_store)
902 hsn[INVCP] = j;
903 #endif
904 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
905 {
906 hsn[CCREG]=j;
907 b=j;
908 }
909 }
910 if(b>=0)
911 {
912 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
913 {
914 // Follow first branch
915 int t=(ba[i+b]-start)>>2;
916 j=7-b;if(t+j>=slen) j=slen-t-1;
917 for(;j>=0;j--)
918 {
919 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
920 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
921 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
922 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
923 }
924 }
925 // TODO: preferred register based on backward branch
926 }
927 // Delay slot should preferably not overwrite branch conditions or cycle count
928 if (i > 0 && dops[i-1].is_jump) {
929 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
930 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
931 hsn[CCREG]=1;
932 // ...or hash tables
933 hsn[RHASH]=1;
934 hsn[RHTBL]=1;
935 }
936 // Coprocessor load/store needs FTEMP, even if not declared
937 if(dops[i].itype==C2LS) {
938 hsn[FTEMP]=0;
939 }
940 // Load L/R also uses FTEMP as a temporary register
941 if(dops[i].itype==LOADLR) {
942 hsn[FTEMP]=0;
943 }
944 // Also SWL/SWR/SDL/SDR
945 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
946 hsn[FTEMP]=0;
947 }
948 // Don't remove the miniht registers
949 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
950 {
951 hsn[RHASH]=0;
952 hsn[RHTBL]=0;
953 }
954}
955
956// We only want to allocate registers if we're going to use them again soon
957static int needed_again(int r, int i)
958{
959 int j;
960 int b=-1;
961 int rn=10;
962
963 if (i > 0 && dops[i-1].is_ujump)
964 {
965 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
966 return 0; // Don't need any registers if exiting the block
967 }
968 for(j=0;j<9;j++)
969 {
970 if(i+j>=slen) {
971 j=slen-i-1;
972 break;
973 }
974 if (dops[i+j].is_ujump)
975 {
976 // Don't go past an unconditonal jump
977 j++;
978 break;
979 }
980 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
981 {
982 break;
983 }
984 }
985 for(;j>=1;j--)
986 {
987 if(dops[i+j].rs1==r) rn=j;
988 if(dops[i+j].rs2==r) rn=j;
989 if((unneeded_reg[i+j]>>r)&1) rn=10;
990 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
991 {
992 b=j;
993 }
994 }
995 if(rn<10) return 1;
996 (void)b;
997 return 0;
998}
999
1000// Try to match register allocations at the end of a loop with those
1001// at the beginning
1002static int loop_reg(int i, int r, int hr)
1003{
1004 int j,k;
1005 for(j=0;j<9;j++)
1006 {
1007 if(i+j>=slen) {
1008 j=slen-i-1;
1009 break;
1010 }
1011 if (dops[i+j].is_ujump)
1012 {
1013 // Don't go past an unconditonal jump
1014 j++;
1015 break;
1016 }
1017 }
1018 k=0;
1019 if(i>0){
1020 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
1021 k--;
1022 }
1023 for(;k<j;k++)
1024 {
1025 assert(r < 64);
1026 if((unneeded_reg[i+k]>>r)&1) return hr;
1027 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
1028 {
1029 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
1030 {
1031 int t=(ba[i+k]-start)>>2;
1032 int reg=get_reg(regs[t].regmap_entry,r);
1033 if(reg>=0) return reg;
1034 //reg=get_reg(regs[t+1].regmap_entry,r);
1035 //if(reg>=0) return reg;
1036 }
1037 }
1038 }
1039 return hr;
1040}
1041
1042
1043// Allocate every register, preserving source/target regs
1044static void alloc_all(struct regstat *cur,int i)
1045{
1046 int hr;
1047
1048 for(hr=0;hr<HOST_REGS;hr++) {
1049 if(hr!=EXCLUDE_REG) {
1050 if((cur->regmap[hr]!=dops[i].rs1)&&(cur->regmap[hr]!=dops[i].rs2)&&
1051 (cur->regmap[hr]!=dops[i].rt1)&&(cur->regmap[hr]!=dops[i].rt2))
1052 {
1053 cur->regmap[hr]=-1;
1054 cur->dirty&=~(1<<hr);
1055 }
1056 // Don't need zeros
1057 if(cur->regmap[hr]==0)
1058 {
1059 cur->regmap[hr]=-1;
1060 cur->dirty&=~(1<<hr);
1061 }
1062 }
1063 }
1064}
1065
1066#ifndef NDEBUG
1067static int host_tempreg_in_use;
1068
1069static void host_tempreg_acquire(void)
1070{
1071 assert(!host_tempreg_in_use);
1072 host_tempreg_in_use = 1;
1073}
1074
1075static void host_tempreg_release(void)
1076{
1077 host_tempreg_in_use = 0;
1078}
1079#else
1080static void host_tempreg_acquire(void) {}
1081static void host_tempreg_release(void) {}
1082#endif
1083
1084#ifdef ASSEM_PRINT
1085extern void gen_interupt();
1086extern void do_insn_cmp();
1087#define FUNCNAME(f) { f, " " #f }
1088static const struct {
1089 void *addr;
1090 const char *name;
1091} function_names[] = {
1092 FUNCNAME(cc_interrupt),
1093 FUNCNAME(gen_interupt),
1094 FUNCNAME(ndrc_get_addr_ht),
1095 FUNCNAME(jump_handler_read8),
1096 FUNCNAME(jump_handler_read16),
1097 FUNCNAME(jump_handler_read32),
1098 FUNCNAME(jump_handler_write8),
1099 FUNCNAME(jump_handler_write16),
1100 FUNCNAME(jump_handler_write32),
1101 FUNCNAME(ndrc_invalidate_addr),
1102 FUNCNAME(jump_to_new_pc),
1103 FUNCNAME(jump_break),
1104 FUNCNAME(jump_break_ds),
1105 FUNCNAME(jump_syscall),
1106 FUNCNAME(jump_syscall_ds),
1107 FUNCNAME(call_gteStall),
1108 FUNCNAME(new_dyna_leave),
1109 FUNCNAME(pcsx_mtc0),
1110 FUNCNAME(pcsx_mtc0_ds),
1111#ifdef DRC_DBG
1112 FUNCNAME(do_insn_cmp),
1113#endif
1114};
1115
1116static const char *func_name(const void *a)
1117{
1118 int i;
1119 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
1120 if (function_names[i].addr == a)
1121 return function_names[i].name;
1122 return "";
1123}
1124#else
1125#define func_name(x) ""
1126#endif
1127
1128#ifdef __i386__
1129#include "assem_x86.c"
1130#endif
1131#ifdef __x86_64__
1132#include "assem_x64.c"
1133#endif
1134#ifdef __arm__
1135#include "assem_arm.c"
1136#endif
1137#ifdef __aarch64__
1138#include "assem_arm64.c"
1139#endif
1140
1141static void *get_trampoline(const void *f)
1142{
1143 size_t i;
1144
1145 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
1146 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
1147 break;
1148 }
1149 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
1150 SysPrintf("trampoline table is full, last func %p\n", f);
1151 abort();
1152 }
1153 if (ndrc->tramp.f[i] == NULL) {
1154 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1155 ndrc->tramp.f[i] = f;
1156 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1157 }
1158 return &ndrc->tramp.ops[i];
1159}
1160
1161static void emit_far_jump(const void *f)
1162{
1163 if (can_jump_or_call(f)) {
1164 emit_jmp(f);
1165 return;
1166 }
1167
1168 f = get_trampoline(f);
1169 emit_jmp(f);
1170}
1171
1172static void emit_far_call(const void *f)
1173{
1174 if (can_jump_or_call(f)) {
1175 emit_call(f);
1176 return;
1177 }
1178
1179 f = get_trampoline(f);
1180 emit_call(f);
1181}
1182
1183// Add virtual address mapping to linked list
1184static void ll_add(struct ll_entry **head,int vaddr,void *addr)
1185{
1186 struct ll_entry *new_entry;
1187 new_entry=malloc(sizeof(struct ll_entry));
1188 assert(new_entry!=NULL);
1189 new_entry->vaddr=vaddr;
1190 new_entry->addr=addr;
1191 new_entry->next=*head;
1192 *head=new_entry;
1193}
1194
1195// Check if an address is already compiled
1196// but don't return addresses which are about to expire from the cache
1197static void *check_addr(u_int vaddr)
1198{
1199 struct ht_entry *ht_bin = hash_table_get(vaddr);
1200 size_t i;
1201 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1202 if (ht_bin->vaddr[i] == vaddr)
1203 if (doesnt_expire_soon(ht_bin->tcaddr[i]))
1204 return ht_bin->tcaddr[i];
1205 }
1206
1207 // refactor to get_addr_nocompile?
1208 u_int start_page = get_page_prev(vaddr);
1209 u_int page, end_page = get_page(vaddr);
1210
1211 stat_inc(stat_jump_in_lookups);
1212 for (page = start_page; page <= end_page; page++) {
1213 const struct block_info *block;
1214 for (block = blocks[page]; block != NULL; block = block->next) {
1215 if (vaddr < block->start)
1216 break;
1217 if (block->is_dirty || vaddr >= block->start + block->len)
1218 continue;
1219 if (!doesnt_expire_soon(ndrc->translation_cache + block->tc_offs))
1220 continue;
1221 for (i = 0; i < block->jump_in_cnt; i++)
1222 if (block->jump_in[i].vaddr == vaddr)
1223 break;
1224 if (i == block->jump_in_cnt)
1225 continue;
1226
1227 // Update existing entry with current address
1228 void *addr = block->jump_in[i].addr;
1229 if (ht_bin->vaddr[0] == vaddr) {
1230 ht_bin->tcaddr[0] = addr;
1231 return addr;
1232 }
1233 if (ht_bin->vaddr[1] == vaddr) {
1234 ht_bin->tcaddr[1] = addr;
1235 return addr;
1236 }
1237 // Insert into hash table with low priority.
1238 // Don't evict existing entries, as they are probably
1239 // addresses that are being accessed frequently.
1240 if (ht_bin->vaddr[0] == -1) {
1241 ht_bin->vaddr[0] = vaddr;
1242 ht_bin->tcaddr[0] = addr;
1243 }
1244 else if (ht_bin->vaddr[1] == -1) {
1245 ht_bin->vaddr[1] = vaddr;
1246 ht_bin->tcaddr[1] = addr;
1247 }
1248 return addr;
1249 }
1250 }
1251 return NULL;
1252}
1253
1254static void ll_remove_matching_addrs(struct ll_entry **head, u_int base_offs, int shift)
1255{
1256 struct ll_entry *next;
1257 while (*head) {
1258 u_int tc_offs = (u_char *)((*head)->addr) - ndrc->translation_cache;
1259 if (((tc_offs ^ base_offs) >> shift) == 0) {
1260 inv_debug("EXP: rm link from tc_offs %x)\n", tc_offs);
1261 next = (*head)->next;
1262 free(*head);
1263 *head = next;
1264 }
1265 else
1266 {
1267 head = &((*head)->next);
1268 }
1269 }
1270}
1271
1272// Remove all entries from linked list
1273static void ll_clear(struct ll_entry **head)
1274{
1275 struct ll_entry *cur;
1276 struct ll_entry *next;
1277 if((cur=*head)) {
1278 *head=0;
1279 while(cur) {
1280 next=cur->next;
1281 free(cur);
1282 cur=next;
1283 }
1284 }
1285}
1286
1287static void blocks_clear(struct block_info **head)
1288{
1289 struct block_info *cur, *next;
1290
1291 if ((cur = *head)) {
1292 *head = NULL;
1293 while (cur) {
1294 next = cur->next;
1295 free(cur);
1296 cur = next;
1297 }
1298 }
1299}
1300
1301static int blocks_remove_matching_addrs(struct block_info **head,
1302 u_int base_offs, int shift)
1303{
1304 struct block_info *next;
1305 int hit = 0;
1306 while (*head) {
1307 if ((((*head)->tc_offs ^ base_offs) >> shift) == 0) {
1308 inv_debug("EXP: rm block %08x (tc_offs %zx)\n", (*head)->start, (*head)->tc_offs);
1309 invalidate_block(*head);
1310 next = (*head)->next;
1311 free(*head);
1312 *head = next;
1313 stat_dec(stat_blocks);
1314 hit = 1;
1315 }
1316 else
1317 {
1318 head = &((*head)->next);
1319 }
1320 }
1321 return hit;
1322}
1323
1324// This is called when we write to a compiled block (see do_invstub)
1325static void unlink_jumps_range(u_int start, u_int end)
1326{
1327 u_int page, start_page = get_page(start), end_page = get_page(end - 1);
1328 struct ll_entry **head, *next;
1329
1330 for (page = start_page; page <= end_page; page++) {
1331 for (head = &jump_out[page]; *head; ) {
1332 if ((*head)->vaddr < start || (*head)->vaddr >= end) {
1333 head = &((*head)->next);
1334 continue;
1335 }
1336 inv_debug("INV: rm link to %08x (tc_offs %zx)\n",
1337 (*head)->vaddr, (u_char *)((*head)->addr) - ndrc->translation_cache);
1338 void *host_addr = find_extjump_insn((*head)->addr);
1339 mark_clear_cache(host_addr);
1340 set_jump_target(host_addr, (*head)->addr); // point back to dyna_linker stub
1341
1342 next = (*head)->next;
1343 free(*head);
1344 *head = next;
1345 stat_dec(stat_links);
1346 }
1347 }
1348}
1349
1350static void invalidate_block(struct block_info *block)
1351{
1352 u_int i;
1353
1354 block->is_dirty = 1;
1355 unlink_jumps_range(block->start, block->start + block->len);
1356 for (i = 0; i < block->jump_in_cnt; i++)
1357 hash_table_remove(block->jump_in[i].vaddr);
1358}
1359
1360static int invalidate_range(u_int start, u_int end,
1361 u32 *inv_start_ret, u32 *inv_end_ret)
1362{
1363 u_int start_page = get_page_prev(start);
1364 u_int end_page = get_page(end - 1);
1365 u_int start_m = pmmask(start);
1366 u_int end_m = pmmask(end);
1367 u_int inv_start, inv_end;
1368 u_int blk_start_m, blk_end_m;
1369 u_int page;
1370 int hit = 0;
1371
1372 // additional area without code (to supplement invalid_code[]), [start, end)
1373 // avoids excessive ndrc_invalidate_addr() calls
1374 inv_start = start_m & ~0xfff;
1375 inv_end = end_m | 0xfff;
1376
1377 for (page = start_page; page <= end_page; page++) {
1378 struct block_info *block;
1379 for (block = blocks[page]; block != NULL; block = block->next) {
1380 if (block->is_dirty)
1381 continue;
1382 blk_end_m = pmmask(block->start + block->len);
1383 if (blk_end_m <= start_m) {
1384 inv_start = max(inv_start, blk_end_m);
1385 continue;
1386 }
1387 blk_start_m = pmmask(block->start);
1388 if (end_m <= blk_start_m) {
1389 inv_end = min(inv_end, blk_start_m - 1);
1390 continue;
1391 }
1392 if (!block->source) // "hack" block - leave it alone
1393 continue;
1394
1395 hit++;
1396 invalidate_block(block);
1397 stat_inc(stat_inv_hits);
1398 }
1399 }
1400
1401 if (hit) {
1402 do_clear_cache();
1403#ifdef USE_MINI_HT
1404 memset(mini_ht, -1, sizeof(mini_ht));
1405#endif
1406 }
1407 if (inv_start <= (start_m & ~0xfff) && inv_end >= (start_m | 0xfff))
1408 // the whole page is empty now
1409 mark_invalid_code(start, 1, 1);
1410
1411 if (inv_start_ret) *inv_start_ret = inv_start | (start & 0xe0000000);
1412 if (inv_end_ret) *inv_end_ret = inv_end | (end & 0xe0000000);
1413 return hit;
1414}
1415
1416void new_dynarec_invalidate_range(unsigned int start, unsigned int end)
1417{
1418 invalidate_range(start, end, NULL, NULL);
1419}
1420
1421void ndrc_invalidate_addr(u_int addr)
1422{
1423 // this check is done by the caller
1424 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1425 int ret = invalidate_range(addr, addr + 4, &inv_code_start, &inv_code_end);
1426 if (ret)
1427 inv_debug("INV ADDR: %08x hit %d blocks\n", addr, ret);
1428 else
1429 inv_debug("INV ADDR: %08x miss, inv %08x-%08x\n", addr, inv_code_start, inv_code_end);
1430 stat_inc(stat_inv_addr_calls);
1431}
1432
1433// This is called when loading a save state.
1434// Anything could have changed, so invalidate everything.
1435void new_dynarec_invalidate_all_pages(void)
1436{
1437 struct block_info *block;
1438 u_int page;
1439 for (page = 0; page < ARRAY_SIZE(blocks); page++) {
1440 for (block = blocks[page]; block != NULL; block = block->next) {
1441 if (block->is_dirty)
1442 continue;
1443 if (!block->source) // hack block?
1444 continue;
1445 invalidate_block(block);
1446 }
1447 }
1448
1449 #ifdef USE_MINI_HT
1450 memset(mini_ht, -1, sizeof(mini_ht));
1451 #endif
1452 do_clear_cache();
1453}
1454
1455static void do_invstub(int n)
1456{
1457 literal_pool(20);
1458 u_int reglist = stubs[n].a;
1459 set_jump_target(stubs[n].addr, out);
1460 save_regs(reglist);
1461 if (stubs[n].b != 0)
1462 emit_mov(stubs[n].b, 0);
1463 emit_readword(&inv_code_start, 1);
1464 emit_readword(&inv_code_end, 2);
1465 emit_cmp(0, 1);
1466 emit_cmpcs(2, 0);
1467 void *jaddr = out;
1468 emit_jc(0);
1469 emit_far_call(ndrc_invalidate_addr);
1470 set_jump_target(jaddr, out);
1471 restore_regs(reglist);
1472 emit_jmp(stubs[n].retaddr); // return address
1473}
1474
1475// Add an entry to jump_out after making a link
1476// src should point to code by emit_extjump()
1477void ndrc_add_jump_out(u_int vaddr,void *src)
1478{
1479 u_int page=get_page(vaddr);
1480 inv_debug("ndrc_add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1481 check_extjump2(src);
1482 ll_add(jump_out+page,vaddr,src);
1483 //inv_debug("ndrc_add_jump_out: to %p\n",get_pointer(src));
1484 stat_inc(stat_links);
1485}
1486
1487/* Register allocation */
1488
1489// Note: registers are allocated clean (unmodified state)
1490// if you intend to modify the register, you must call dirty_reg().
1491static void alloc_reg(struct regstat *cur,int i,signed char reg)
1492{
1493 int r,hr;
1494 int preferred_reg = PREFERRED_REG_FIRST
1495 + reg % (PREFERRED_REG_LAST - PREFERRED_REG_FIRST + 1);
1496 if (reg == CCREG) preferred_reg = HOST_CCREG;
1497 if (reg == PTEMP || reg == FTEMP) preferred_reg = 12;
1498 assert(PREFERRED_REG_FIRST != EXCLUDE_REG && EXCLUDE_REG != HOST_REGS);
1499 assert(reg >= 0);
1500
1501 // Don't allocate unused registers
1502 if((cur->u>>reg)&1) return;
1503
1504 // see if it's already allocated
1505 if (get_reg(cur->regmap, reg) >= 0)
1506 return;
1507
1508 // Keep the same mapping if the register was already allocated in a loop
1509 preferred_reg = loop_reg(i,reg,preferred_reg);
1510
1511 // Try to allocate the preferred register
1512 if(cur->regmap[preferred_reg]==-1) {
1513 cur->regmap[preferred_reg]=reg;
1514 cur->dirty&=~(1<<preferred_reg);
1515 cur->isconst&=~(1<<preferred_reg);
1516 return;
1517 }
1518 r=cur->regmap[preferred_reg];
1519 assert(r < 64);
1520 if((cur->u>>r)&1) {
1521 cur->regmap[preferred_reg]=reg;
1522 cur->dirty&=~(1<<preferred_reg);
1523 cur->isconst&=~(1<<preferred_reg);
1524 return;
1525 }
1526
1527 // Clear any unneeded registers
1528 // We try to keep the mapping consistent, if possible, because it
1529 // makes branches easier (especially loops). So we try to allocate
1530 // first (see above) before removing old mappings. If this is not
1531 // possible then go ahead and clear out the registers that are no
1532 // longer needed.
1533 for(hr=0;hr<HOST_REGS;hr++)
1534 {
1535 r=cur->regmap[hr];
1536 if(r>=0) {
1537 assert(r < 64);
1538 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1539 }
1540 }
1541
1542 // Try to allocate any available register, but prefer
1543 // registers that have not been used recently.
1544 if (i > 0) {
1545 for (hr = PREFERRED_REG_FIRST; ; ) {
1546 if (cur->regmap[hr] < 0) {
1547 int oldreg = regs[i-1].regmap[hr];
1548 if (oldreg < 0 || (oldreg != dops[i-1].rs1 && oldreg != dops[i-1].rs2
1549 && oldreg != dops[i-1].rt1 && oldreg != dops[i-1].rt2))
1550 {
1551 cur->regmap[hr]=reg;
1552 cur->dirty&=~(1<<hr);
1553 cur->isconst&=~(1<<hr);
1554 return;
1555 }
1556 }
1557 hr++;
1558 if (hr == EXCLUDE_REG)
1559 hr++;
1560 if (hr == HOST_REGS)
1561 hr = 0;
1562 if (hr == PREFERRED_REG_FIRST)
1563 break;
1564 }
1565 }
1566
1567 // Try to allocate any available register
1568 for (hr = PREFERRED_REG_FIRST; ; ) {
1569 if (cur->regmap[hr] < 0) {
1570 cur->regmap[hr]=reg;
1571 cur->dirty&=~(1<<hr);
1572 cur->isconst&=~(1<<hr);
1573 return;
1574 }
1575 hr++;
1576 if (hr == EXCLUDE_REG)
1577 hr++;
1578 if (hr == HOST_REGS)
1579 hr = 0;
1580 if (hr == PREFERRED_REG_FIRST)
1581 break;
1582 }
1583
1584 // Ok, now we have to evict someone
1585 // Pick a register we hopefully won't need soon
1586 u_char hsn[MAXREG+1];
1587 memset(hsn,10,sizeof(hsn));
1588 int j;
1589 lsn(hsn,i,&preferred_reg);
1590 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1591 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1592 if(i>0) {
1593 // Don't evict the cycle count at entry points, otherwise the entry
1594 // stub will have to write it.
1595 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1596 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1597 for(j=10;j>=3;j--)
1598 {
1599 // Alloc preferred register if available
1600 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1601 for(hr=0;hr<HOST_REGS;hr++) {
1602 // Evict both parts of a 64-bit register
1603 if(cur->regmap[hr]==r) {
1604 cur->regmap[hr]=-1;
1605 cur->dirty&=~(1<<hr);
1606 cur->isconst&=~(1<<hr);
1607 }
1608 }
1609 cur->regmap[preferred_reg]=reg;
1610 return;
1611 }
1612 for(r=1;r<=MAXREG;r++)
1613 {
1614 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1615 for(hr=0;hr<HOST_REGS;hr++) {
1616 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1617 if(cur->regmap[hr]==r) {
1618 cur->regmap[hr]=reg;
1619 cur->dirty&=~(1<<hr);
1620 cur->isconst&=~(1<<hr);
1621 return;
1622 }
1623 }
1624 }
1625 }
1626 }
1627 }
1628 }
1629 for(j=10;j>=0;j--)
1630 {
1631 for(r=1;r<=MAXREG;r++)
1632 {
1633 if(hsn[r]==j) {
1634 for(hr=0;hr<HOST_REGS;hr++) {
1635 if(cur->regmap[hr]==r) {
1636 cur->regmap[hr]=reg;
1637 cur->dirty&=~(1<<hr);
1638 cur->isconst&=~(1<<hr);
1639 return;
1640 }
1641 }
1642 }
1643 }
1644 }
1645 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1646}
1647
1648// Allocate a temporary register. This is done without regard to
1649// dirty status or whether the register we request is on the unneeded list
1650// Note: This will only allocate one register, even if called multiple times
1651static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1652{
1653 int r,hr;
1654 int preferred_reg = -1;
1655
1656 // see if it's already allocated
1657 for(hr=0;hr<HOST_REGS;hr++)
1658 {
1659 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1660 }
1661
1662 // Try to allocate any available register
1663 for(hr=HOST_REGS-1;hr>=0;hr--) {
1664 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1665 cur->regmap[hr]=reg;
1666 cur->dirty&=~(1<<hr);
1667 cur->isconst&=~(1<<hr);
1668 return;
1669 }
1670 }
1671
1672 // Find an unneeded register
1673 for(hr=HOST_REGS-1;hr>=0;hr--)
1674 {
1675 r=cur->regmap[hr];
1676 if(r>=0) {
1677 assert(r < 64);
1678 if((cur->u>>r)&1) {
1679 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1680 cur->regmap[hr]=reg;
1681 cur->dirty&=~(1<<hr);
1682 cur->isconst&=~(1<<hr);
1683 return;
1684 }
1685 }
1686 }
1687 }
1688
1689 // Ok, now we have to evict someone
1690 // Pick a register we hopefully won't need soon
1691 // TODO: we might want to follow unconditional jumps here
1692 // TODO: get rid of dupe code and make this into a function
1693 u_char hsn[MAXREG+1];
1694 memset(hsn,10,sizeof(hsn));
1695 int j;
1696 lsn(hsn,i,&preferred_reg);
1697 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1698 if(i>0) {
1699 // Don't evict the cycle count at entry points, otherwise the entry
1700 // stub will have to write it.
1701 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1702 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1703 for(j=10;j>=3;j--)
1704 {
1705 for(r=1;r<=MAXREG;r++)
1706 {
1707 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1708 for(hr=0;hr<HOST_REGS;hr++) {
1709 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1710 if(cur->regmap[hr]==r) {
1711 cur->regmap[hr]=reg;
1712 cur->dirty&=~(1<<hr);
1713 cur->isconst&=~(1<<hr);
1714 return;
1715 }
1716 }
1717 }
1718 }
1719 }
1720 }
1721 }
1722 for(j=10;j>=0;j--)
1723 {
1724 for(r=1;r<=MAXREG;r++)
1725 {
1726 if(hsn[r]==j) {
1727 for(hr=0;hr<HOST_REGS;hr++) {
1728 if(cur->regmap[hr]==r) {
1729 cur->regmap[hr]=reg;
1730 cur->dirty&=~(1<<hr);
1731 cur->isconst&=~(1<<hr);
1732 return;
1733 }
1734 }
1735 }
1736 }
1737 }
1738 SysPrintf("This shouldn't happen");abort();
1739}
1740
1741static void mov_alloc(struct regstat *current,int i)
1742{
1743 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1744 alloc_cc(current,i); // for stalls
1745 dirty_reg(current,CCREG);
1746 }
1747
1748 // Note: Don't need to actually alloc the source registers
1749 //alloc_reg(current,i,dops[i].rs1);
1750 alloc_reg(current,i,dops[i].rt1);
1751
1752 clear_const(current,dops[i].rs1);
1753 clear_const(current,dops[i].rt1);
1754 dirty_reg(current,dops[i].rt1);
1755}
1756
1757static void shiftimm_alloc(struct regstat *current,int i)
1758{
1759 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1760 {
1761 if(dops[i].rt1) {
1762 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1763 else dops[i].use_lt1=!!dops[i].rs1;
1764 alloc_reg(current,i,dops[i].rt1);
1765 dirty_reg(current,dops[i].rt1);
1766 if(is_const(current,dops[i].rs1)) {
1767 int v=get_const(current,dops[i].rs1);
1768 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1769 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1770 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1771 }
1772 else clear_const(current,dops[i].rt1);
1773 }
1774 }
1775 else
1776 {
1777 clear_const(current,dops[i].rs1);
1778 clear_const(current,dops[i].rt1);
1779 }
1780
1781 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1782 {
1783 assert(0);
1784 }
1785 if(dops[i].opcode2==0x3c) // DSLL32
1786 {
1787 assert(0);
1788 }
1789 if(dops[i].opcode2==0x3e) // DSRL32
1790 {
1791 assert(0);
1792 }
1793 if(dops[i].opcode2==0x3f) // DSRA32
1794 {
1795 assert(0);
1796 }
1797}
1798
1799static void shift_alloc(struct regstat *current,int i)
1800{
1801 if(dops[i].rt1) {
1802 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1803 {
1804 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1805 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1806 alloc_reg(current,i,dops[i].rt1);
1807 if(dops[i].rt1==dops[i].rs2) {
1808 alloc_reg_temp(current,i,-1);
1809 minimum_free_regs[i]=1;
1810 }
1811 } else { // DSLLV/DSRLV/DSRAV
1812 assert(0);
1813 }
1814 clear_const(current,dops[i].rs1);
1815 clear_const(current,dops[i].rs2);
1816 clear_const(current,dops[i].rt1);
1817 dirty_reg(current,dops[i].rt1);
1818 }
1819}
1820
1821static void alu_alloc(struct regstat *current,int i)
1822{
1823 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1824 if(dops[i].rt1) {
1825 if(dops[i].rs1&&dops[i].rs2) {
1826 alloc_reg(current,i,dops[i].rs1);
1827 alloc_reg(current,i,dops[i].rs2);
1828 }
1829 else {
1830 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1831 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1832 }
1833 alloc_reg(current,i,dops[i].rt1);
1834 }
1835 }
1836 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1837 if(dops[i].rt1) {
1838 alloc_reg(current,i,dops[i].rs1);
1839 alloc_reg(current,i,dops[i].rs2);
1840 alloc_reg(current,i,dops[i].rt1);
1841 }
1842 }
1843 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1844 if(dops[i].rt1) {
1845 if(dops[i].rs1&&dops[i].rs2) {
1846 alloc_reg(current,i,dops[i].rs1);
1847 alloc_reg(current,i,dops[i].rs2);
1848 }
1849 else
1850 {
1851 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1852 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1853 }
1854 alloc_reg(current,i,dops[i].rt1);
1855 }
1856 }
1857 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1858 assert(0);
1859 }
1860 clear_const(current,dops[i].rs1);
1861 clear_const(current,dops[i].rs2);
1862 clear_const(current,dops[i].rt1);
1863 dirty_reg(current,dops[i].rt1);
1864}
1865
1866static void imm16_alloc(struct regstat *current,int i)
1867{
1868 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1869 else dops[i].use_lt1=!!dops[i].rs1;
1870 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1871 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1872 assert(0);
1873 }
1874 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1875 clear_const(current,dops[i].rs1);
1876 clear_const(current,dops[i].rt1);
1877 }
1878 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1879 if(is_const(current,dops[i].rs1)) {
1880 int v=get_const(current,dops[i].rs1);
1881 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1882 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1883 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1884 }
1885 else clear_const(current,dops[i].rt1);
1886 }
1887 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1888 if(is_const(current,dops[i].rs1)) {
1889 int v=get_const(current,dops[i].rs1);
1890 set_const(current,dops[i].rt1,v+imm[i]);
1891 }
1892 else clear_const(current,dops[i].rt1);
1893 }
1894 else {
1895 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1896 }
1897 dirty_reg(current,dops[i].rt1);
1898}
1899
1900static void load_alloc(struct regstat *current,int i)
1901{
1902 clear_const(current,dops[i].rt1);
1903 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1904 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1905 if (needed_again(dops[i].rs1, i))
1906 alloc_reg(current, i, dops[i].rs1);
1907 if (ram_offset)
1908 alloc_reg(current, i, ROREG);
1909 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1910 alloc_reg(current,i,dops[i].rt1);
1911 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1912 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1913 {
1914 assert(0);
1915 }
1916 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1917 {
1918 assert(0);
1919 }
1920 dirty_reg(current,dops[i].rt1);
1921 // LWL/LWR need a temporary register for the old value
1922 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1923 {
1924 alloc_reg(current,i,FTEMP);
1925 alloc_reg_temp(current,i,-1);
1926 minimum_free_regs[i]=1;
1927 }
1928 }
1929 else
1930 {
1931 // Load to r0 or unneeded register (dummy load)
1932 // but we still need a register to calculate the address
1933 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1934 {
1935 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1936 }
1937 alloc_reg_temp(current,i,-1);
1938 minimum_free_regs[i]=1;
1939 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1940 {
1941 assert(0);
1942 }
1943 }
1944}
1945
1946static void store_alloc(struct regstat *current,int i)
1947{
1948 clear_const(current,dops[i].rs2);
1949 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1950 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1951 alloc_reg(current,i,dops[i].rs2);
1952 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1953 assert(0);
1954 }
1955 if (ram_offset)
1956 alloc_reg(current, i, ROREG);
1957 #if defined(HOST_IMM8)
1958 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1959 alloc_reg(current, i, INVCP);
1960 #endif
1961 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1962 alloc_reg(current,i,FTEMP);
1963 }
1964 // We need a temporary register for address generation
1965 alloc_reg_temp(current,i,-1);
1966 minimum_free_regs[i]=1;
1967}
1968
1969static void c1ls_alloc(struct regstat *current,int i)
1970{
1971 clear_const(current,dops[i].rt1);
1972 alloc_reg(current,i,CSREG); // Status
1973}
1974
1975static void c2ls_alloc(struct regstat *current,int i)
1976{
1977 clear_const(current,dops[i].rt1);
1978 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1979 alloc_reg(current,i,FTEMP);
1980 if (ram_offset)
1981 alloc_reg(current, i, ROREG);
1982 #if defined(HOST_IMM8)
1983 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1984 if (dops[i].opcode == 0x3a) // SWC2
1985 alloc_reg(current,i,INVCP);
1986 #endif
1987 // We need a temporary register for address generation
1988 alloc_reg_temp(current,i,-1);
1989 minimum_free_regs[i]=1;
1990}
1991
1992#ifndef multdiv_alloc
1993static void multdiv_alloc(struct regstat *current,int i)
1994{
1995 // case 0x18: MULT
1996 // case 0x19: MULTU
1997 // case 0x1A: DIV
1998 // case 0x1B: DIVU
1999 // case 0x1C: DMULT
2000 // case 0x1D: DMULTU
2001 // case 0x1E: DDIV
2002 // case 0x1F: DDIVU
2003 clear_const(current,dops[i].rs1);
2004 clear_const(current,dops[i].rs2);
2005 alloc_cc(current,i); // for stalls
2006 if(dops[i].rs1&&dops[i].rs2)
2007 {
2008 if((dops[i].opcode2&4)==0) // 32-bit
2009 {
2010 current->u&=~(1LL<<HIREG);
2011 current->u&=~(1LL<<LOREG);
2012 alloc_reg(current,i,HIREG);
2013 alloc_reg(current,i,LOREG);
2014 alloc_reg(current,i,dops[i].rs1);
2015 alloc_reg(current,i,dops[i].rs2);
2016 dirty_reg(current,HIREG);
2017 dirty_reg(current,LOREG);
2018 }
2019 else // 64-bit
2020 {
2021 assert(0);
2022 }
2023 }
2024 else
2025 {
2026 // Multiply by zero is zero.
2027 // MIPS does not have a divide by zero exception.
2028 // The result is undefined, we return zero.
2029 alloc_reg(current,i,HIREG);
2030 alloc_reg(current,i,LOREG);
2031 dirty_reg(current,HIREG);
2032 dirty_reg(current,LOREG);
2033 }
2034}
2035#endif
2036
2037static void cop0_alloc(struct regstat *current,int i)
2038{
2039 if(dops[i].opcode2==0) // MFC0
2040 {
2041 if(dops[i].rt1) {
2042 clear_const(current,dops[i].rt1);
2043 alloc_all(current,i);
2044 alloc_reg(current,i,dops[i].rt1);
2045 dirty_reg(current,dops[i].rt1);
2046 }
2047 }
2048 else if(dops[i].opcode2==4) // MTC0
2049 {
2050 if(dops[i].rs1){
2051 clear_const(current,dops[i].rs1);
2052 alloc_reg(current,i,dops[i].rs1);
2053 alloc_all(current,i);
2054 }
2055 else {
2056 alloc_all(current,i); // FIXME: Keep r0
2057 current->u&=~1LL;
2058 alloc_reg(current,i,0);
2059 }
2060 }
2061 else
2062 {
2063 // TLBR/TLBWI/TLBWR/TLBP/ERET
2064 assert(dops[i].opcode2==0x10);
2065 alloc_all(current,i);
2066 }
2067 minimum_free_regs[i]=HOST_REGS;
2068}
2069
2070static void cop2_alloc(struct regstat *current,int i)
2071{
2072 if (dops[i].opcode2 < 3) // MFC2/CFC2
2073 {
2074 alloc_cc(current,i); // for stalls
2075 dirty_reg(current,CCREG);
2076 if(dops[i].rt1){
2077 clear_const(current,dops[i].rt1);
2078 alloc_reg(current,i,dops[i].rt1);
2079 dirty_reg(current,dops[i].rt1);
2080 }
2081 }
2082 else if (dops[i].opcode2 > 3) // MTC2/CTC2
2083 {
2084 if(dops[i].rs1){
2085 clear_const(current,dops[i].rs1);
2086 alloc_reg(current,i,dops[i].rs1);
2087 }
2088 else {
2089 current->u&=~1LL;
2090 alloc_reg(current,i,0);
2091 }
2092 }
2093 alloc_reg_temp(current,i,-1);
2094 minimum_free_regs[i]=1;
2095}
2096
2097static void c2op_alloc(struct regstat *current,int i)
2098{
2099 alloc_cc(current,i); // for stalls
2100 dirty_reg(current,CCREG);
2101 alloc_reg_temp(current,i,-1);
2102}
2103
2104static void syscall_alloc(struct regstat *current,int i)
2105{
2106 alloc_cc(current,i);
2107 dirty_reg(current,CCREG);
2108 alloc_all(current,i);
2109 minimum_free_regs[i]=HOST_REGS;
2110 current->isconst=0;
2111}
2112
2113static void delayslot_alloc(struct regstat *current,int i)
2114{
2115 switch(dops[i].itype) {
2116 case UJUMP:
2117 case CJUMP:
2118 case SJUMP:
2119 case RJUMP:
2120 case SYSCALL:
2121 case HLECALL:
2122 case IMM16:
2123 imm16_alloc(current,i);
2124 break;
2125 case LOAD:
2126 case LOADLR:
2127 load_alloc(current,i);
2128 break;
2129 case STORE:
2130 case STORELR:
2131 store_alloc(current,i);
2132 break;
2133 case ALU:
2134 alu_alloc(current,i);
2135 break;
2136 case SHIFT:
2137 shift_alloc(current,i);
2138 break;
2139 case MULTDIV:
2140 multdiv_alloc(current,i);
2141 break;
2142 case SHIFTIMM:
2143 shiftimm_alloc(current,i);
2144 break;
2145 case MOV:
2146 mov_alloc(current,i);
2147 break;
2148 case COP0:
2149 cop0_alloc(current,i);
2150 break;
2151 case COP1:
2152 break;
2153 case COP2:
2154 cop2_alloc(current,i);
2155 break;
2156 case C1LS:
2157 c1ls_alloc(current,i);
2158 break;
2159 case C2LS:
2160 c2ls_alloc(current,i);
2161 break;
2162 case C2OP:
2163 c2op_alloc(current,i);
2164 break;
2165 }
2166}
2167
2168static void add_stub(enum stub_type type, void *addr, void *retaddr,
2169 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2170{
2171 assert(stubcount < ARRAY_SIZE(stubs));
2172 stubs[stubcount].type = type;
2173 stubs[stubcount].addr = addr;
2174 stubs[stubcount].retaddr = retaddr;
2175 stubs[stubcount].a = a;
2176 stubs[stubcount].b = b;
2177 stubs[stubcount].c = c;
2178 stubs[stubcount].d = d;
2179 stubs[stubcount].e = e;
2180 stubcount++;
2181}
2182
2183static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2184 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2185{
2186 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2187}
2188
2189// Write out a single register
2190static void wb_register(signed char r, const signed char regmap[], uint64_t dirty)
2191{
2192 int hr;
2193 for(hr=0;hr<HOST_REGS;hr++) {
2194 if(hr!=EXCLUDE_REG) {
2195 if(regmap[hr]==r) {
2196 if((dirty>>hr)&1) {
2197 assert(regmap[hr]<64);
2198 emit_storereg(r,hr);
2199 }
2200 }
2201 }
2202 }
2203}
2204
2205static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2206{
2207 //if(dirty_pre==dirty) return;
2208 int hr, r;
2209 for (hr = 0; hr < HOST_REGS; hr++) {
2210 r = pre[hr];
2211 if (r < 1 || r > 33 || ((u >> r) & 1))
2212 continue;
2213 if (((dirty_pre & ~dirty) >> hr) & 1)
2214 emit_storereg(r, hr);
2215 }
2216}
2217
2218// trashes r2
2219static void pass_args(int a0, int a1)
2220{
2221 if(a0==1&&a1==0) {
2222 // must swap
2223 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2224 }
2225 else if(a0!=0&&a1==0) {
2226 emit_mov(a1,1);
2227 if (a0>=0) emit_mov(a0,0);
2228 }
2229 else {
2230 if(a0>=0&&a0!=0) emit_mov(a0,0);
2231 if(a1>=0&&a1!=1) emit_mov(a1,1);
2232 }
2233}
2234
2235static void alu_assemble(int i, const struct regstat *i_regs)
2236{
2237 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2238 if(dops[i].rt1) {
2239 signed char s1,s2,t;
2240 t=get_reg(i_regs->regmap,dops[i].rt1);
2241 if(t>=0) {
2242 s1=get_reg(i_regs->regmap,dops[i].rs1);
2243 s2=get_reg(i_regs->regmap,dops[i].rs2);
2244 if(dops[i].rs1&&dops[i].rs2) {
2245 assert(s1>=0);
2246 assert(s2>=0);
2247 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2248 else emit_add(s1,s2,t);
2249 }
2250 else if(dops[i].rs1) {
2251 if(s1>=0) emit_mov(s1,t);
2252 else emit_loadreg(dops[i].rs1,t);
2253 }
2254 else if(dops[i].rs2) {
2255 if(s2>=0) {
2256 if(dops[i].opcode2&2) emit_neg(s2,t);
2257 else emit_mov(s2,t);
2258 }
2259 else {
2260 emit_loadreg(dops[i].rs2,t);
2261 if(dops[i].opcode2&2) emit_neg(t,t);
2262 }
2263 }
2264 else emit_zeroreg(t);
2265 }
2266 }
2267 }
2268 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2269 assert(0);
2270 }
2271 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2272 if(dops[i].rt1) {
2273 signed char s1l,s2l,t;
2274 {
2275 t=get_reg(i_regs->regmap,dops[i].rt1);
2276 //assert(t>=0);
2277 if(t>=0) {
2278 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2279 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2280 if(dops[i].rs2==0) // rx<r0
2281 {
2282 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2283 assert(s1l>=0);
2284 emit_shrimm(s1l,31,t);
2285 }
2286 else // SLTU (unsigned can not be less than zero, 0<0)
2287 emit_zeroreg(t);
2288 }
2289 else if(dops[i].rs1==0) // r0<rx
2290 {
2291 assert(s2l>=0);
2292 if(dops[i].opcode2==0x2a) // SLT
2293 emit_set_gz32(s2l,t);
2294 else // SLTU (set if not zero)
2295 emit_set_nz32(s2l,t);
2296 }
2297 else{
2298 assert(s1l>=0);assert(s2l>=0);
2299 if(dops[i].opcode2==0x2a) // SLT
2300 emit_set_if_less32(s1l,s2l,t);
2301 else // SLTU
2302 emit_set_if_carry32(s1l,s2l,t);
2303 }
2304 }
2305 }
2306 }
2307 }
2308 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2309 if(dops[i].rt1) {
2310 signed char s1l,s2l,tl;
2311 tl=get_reg(i_regs->regmap,dops[i].rt1);
2312 {
2313 if(tl>=0) {
2314 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2315 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2316 if(dops[i].rs1&&dops[i].rs2) {
2317 assert(s1l>=0);
2318 assert(s2l>=0);
2319 if(dops[i].opcode2==0x24) { // AND
2320 emit_and(s1l,s2l,tl);
2321 } else
2322 if(dops[i].opcode2==0x25) { // OR
2323 emit_or(s1l,s2l,tl);
2324 } else
2325 if(dops[i].opcode2==0x26) { // XOR
2326 emit_xor(s1l,s2l,tl);
2327 } else
2328 if(dops[i].opcode2==0x27) { // NOR
2329 emit_or(s1l,s2l,tl);
2330 emit_not(tl,tl);
2331 }
2332 }
2333 else
2334 {
2335 if(dops[i].opcode2==0x24) { // AND
2336 emit_zeroreg(tl);
2337 } else
2338 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2339 if(dops[i].rs1){
2340 if(s1l>=0) emit_mov(s1l,tl);
2341 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2342 }
2343 else
2344 if(dops[i].rs2){
2345 if(s2l>=0) emit_mov(s2l,tl);
2346 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2347 }
2348 else emit_zeroreg(tl);
2349 } else
2350 if(dops[i].opcode2==0x27) { // NOR
2351 if(dops[i].rs1){
2352 if(s1l>=0) emit_not(s1l,tl);
2353 else {
2354 emit_loadreg(dops[i].rs1,tl);
2355 emit_not(tl,tl);
2356 }
2357 }
2358 else
2359 if(dops[i].rs2){
2360 if(s2l>=0) emit_not(s2l,tl);
2361 else {
2362 emit_loadreg(dops[i].rs2,tl);
2363 emit_not(tl,tl);
2364 }
2365 }
2366 else emit_movimm(-1,tl);
2367 }
2368 }
2369 }
2370 }
2371 }
2372 }
2373}
2374
2375static void imm16_assemble(int i, const struct regstat *i_regs)
2376{
2377 if (dops[i].opcode==0x0f) { // LUI
2378 if(dops[i].rt1) {
2379 signed char t;
2380 t=get_reg(i_regs->regmap,dops[i].rt1);
2381 //assert(t>=0);
2382 if(t>=0) {
2383 if(!((i_regs->isconst>>t)&1))
2384 emit_movimm(imm[i]<<16,t);
2385 }
2386 }
2387 }
2388 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2389 if(dops[i].rt1) {
2390 signed char s,t;
2391 t=get_reg(i_regs->regmap,dops[i].rt1);
2392 s=get_reg(i_regs->regmap,dops[i].rs1);
2393 if(dops[i].rs1) {
2394 //assert(t>=0);
2395 //assert(s>=0);
2396 if(t>=0) {
2397 if(!((i_regs->isconst>>t)&1)) {
2398 if(s<0) {
2399 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2400 emit_addimm(t,imm[i],t);
2401 }else{
2402 if(!((i_regs->wasconst>>s)&1))
2403 emit_addimm(s,imm[i],t);
2404 else
2405 emit_movimm(constmap[i][s]+imm[i],t);
2406 }
2407 }
2408 }
2409 } else {
2410 if(t>=0) {
2411 if(!((i_regs->isconst>>t)&1))
2412 emit_movimm(imm[i],t);
2413 }
2414 }
2415 }
2416 }
2417 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2418 if(dops[i].rt1) {
2419 signed char sl,tl;
2420 tl=get_reg(i_regs->regmap,dops[i].rt1);
2421 sl=get_reg(i_regs->regmap,dops[i].rs1);
2422 if(tl>=0) {
2423 if(dops[i].rs1) {
2424 assert(sl>=0);
2425 emit_addimm(sl,imm[i],tl);
2426 } else {
2427 emit_movimm(imm[i],tl);
2428 }
2429 }
2430 }
2431 }
2432 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2433 if(dops[i].rt1) {
2434 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2435 signed char sl,t;
2436 t=get_reg(i_regs->regmap,dops[i].rt1);
2437 sl=get_reg(i_regs->regmap,dops[i].rs1);
2438 //assert(t>=0);
2439 if(t>=0) {
2440 if(dops[i].rs1>0) {
2441 if(dops[i].opcode==0x0a) { // SLTI
2442 if(sl<0) {
2443 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2444 emit_slti32(t,imm[i],t);
2445 }else{
2446 emit_slti32(sl,imm[i],t);
2447 }
2448 }
2449 else { // SLTIU
2450 if(sl<0) {
2451 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2452 emit_sltiu32(t,imm[i],t);
2453 }else{
2454 emit_sltiu32(sl,imm[i],t);
2455 }
2456 }
2457 }else{
2458 // SLTI(U) with r0 is just stupid,
2459 // nonetheless examples can be found
2460 if(dops[i].opcode==0x0a) // SLTI
2461 if(0<imm[i]) emit_movimm(1,t);
2462 else emit_zeroreg(t);
2463 else // SLTIU
2464 {
2465 if(imm[i]) emit_movimm(1,t);
2466 else emit_zeroreg(t);
2467 }
2468 }
2469 }
2470 }
2471 }
2472 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2473 if(dops[i].rt1) {
2474 signed char sl,tl;
2475 tl=get_reg(i_regs->regmap,dops[i].rt1);
2476 sl=get_reg(i_regs->regmap,dops[i].rs1);
2477 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2478 if(dops[i].opcode==0x0c) //ANDI
2479 {
2480 if(dops[i].rs1) {
2481 if(sl<0) {
2482 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2483 emit_andimm(tl,imm[i],tl);
2484 }else{
2485 if(!((i_regs->wasconst>>sl)&1))
2486 emit_andimm(sl,imm[i],tl);
2487 else
2488 emit_movimm(constmap[i][sl]&imm[i],tl);
2489 }
2490 }
2491 else
2492 emit_zeroreg(tl);
2493 }
2494 else
2495 {
2496 if(dops[i].rs1) {
2497 if(sl<0) {
2498 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2499 }
2500 if(dops[i].opcode==0x0d) { // ORI
2501 if(sl<0) {
2502 emit_orimm(tl,imm[i],tl);
2503 }else{
2504 if(!((i_regs->wasconst>>sl)&1))
2505 emit_orimm(sl,imm[i],tl);
2506 else
2507 emit_movimm(constmap[i][sl]|imm[i],tl);
2508 }
2509 }
2510 if(dops[i].opcode==0x0e) { // XORI
2511 if(sl<0) {
2512 emit_xorimm(tl,imm[i],tl);
2513 }else{
2514 if(!((i_regs->wasconst>>sl)&1))
2515 emit_xorimm(sl,imm[i],tl);
2516 else
2517 emit_movimm(constmap[i][sl]^imm[i],tl);
2518 }
2519 }
2520 }
2521 else {
2522 emit_movimm(imm[i],tl);
2523 }
2524 }
2525 }
2526 }
2527 }
2528}
2529
2530static void shiftimm_assemble(int i, const struct regstat *i_regs)
2531{
2532 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2533 {
2534 if(dops[i].rt1) {
2535 signed char s,t;
2536 t=get_reg(i_regs->regmap,dops[i].rt1);
2537 s=get_reg(i_regs->regmap,dops[i].rs1);
2538 //assert(t>=0);
2539 if(t>=0&&!((i_regs->isconst>>t)&1)){
2540 if(dops[i].rs1==0)
2541 {
2542 emit_zeroreg(t);
2543 }
2544 else
2545 {
2546 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2547 if(imm[i]) {
2548 if(dops[i].opcode2==0) // SLL
2549 {
2550 emit_shlimm(s<0?t:s,imm[i],t);
2551 }
2552 if(dops[i].opcode2==2) // SRL
2553 {
2554 emit_shrimm(s<0?t:s,imm[i],t);
2555 }
2556 if(dops[i].opcode2==3) // SRA
2557 {
2558 emit_sarimm(s<0?t:s,imm[i],t);
2559 }
2560 }else{
2561 // Shift by zero
2562 if(s>=0 && s!=t) emit_mov(s,t);
2563 }
2564 }
2565 }
2566 //emit_storereg(dops[i].rt1,t); //DEBUG
2567 }
2568 }
2569 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2570 {
2571 assert(0);
2572 }
2573 if(dops[i].opcode2==0x3c) // DSLL32
2574 {
2575 assert(0);
2576 }
2577 if(dops[i].opcode2==0x3e) // DSRL32
2578 {
2579 assert(0);
2580 }
2581 if(dops[i].opcode2==0x3f) // DSRA32
2582 {
2583 assert(0);
2584 }
2585}
2586
2587#ifndef shift_assemble
2588static void shift_assemble(int i, const struct regstat *i_regs)
2589{
2590 signed char s,t,shift;
2591 if (dops[i].rt1 == 0)
2592 return;
2593 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2594 t = get_reg(i_regs->regmap, dops[i].rt1);
2595 s = get_reg(i_regs->regmap, dops[i].rs1);
2596 shift = get_reg(i_regs->regmap, dops[i].rs2);
2597 if (t < 0)
2598 return;
2599
2600 if(dops[i].rs1==0)
2601 emit_zeroreg(t);
2602 else if(dops[i].rs2==0) {
2603 assert(s>=0);
2604 if(s!=t) emit_mov(s,t);
2605 }
2606 else {
2607 host_tempreg_acquire();
2608 emit_andimm(shift,31,HOST_TEMPREG);
2609 switch(dops[i].opcode2) {
2610 case 4: // SLLV
2611 emit_shl(s,HOST_TEMPREG,t);
2612 break;
2613 case 6: // SRLV
2614 emit_shr(s,HOST_TEMPREG,t);
2615 break;
2616 case 7: // SRAV
2617 emit_sar(s,HOST_TEMPREG,t);
2618 break;
2619 default:
2620 assert(0);
2621 }
2622 host_tempreg_release();
2623 }
2624}
2625
2626#endif
2627
2628enum {
2629 MTYPE_8000 = 0,
2630 MTYPE_8020,
2631 MTYPE_0000,
2632 MTYPE_A000,
2633 MTYPE_1F80,
2634};
2635
2636static int get_ptr_mem_type(u_int a)
2637{
2638 if(a < 0x00200000) {
2639 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2640 // return wrong, must use memhandler for BIOS self-test to pass
2641 // 007 does similar stuff from a00 mirror, weird stuff
2642 return MTYPE_8000;
2643 return MTYPE_0000;
2644 }
2645 if(0x1f800000 <= a && a < 0x1f801000)
2646 return MTYPE_1F80;
2647 if(0x80200000 <= a && a < 0x80800000)
2648 return MTYPE_8020;
2649 if(0xa0000000 <= a && a < 0xa0200000)
2650 return MTYPE_A000;
2651 return MTYPE_8000;
2652}
2653
2654static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2655{
2656 int r = get_reg(i_regs->regmap, ROREG);
2657 if (r < 0 && host_tempreg_free) {
2658 host_tempreg_acquire();
2659 emit_loadreg(ROREG, r = HOST_TEMPREG);
2660 }
2661 if (r < 0)
2662 abort();
2663 return r;
2664}
2665
2666static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2667 int addr, int *offset_reg, int *addr_reg_override)
2668{
2669 void *jaddr = NULL;
2670 int type = 0;
2671 int mr = dops[i].rs1;
2672 *offset_reg = -1;
2673 if(((smrv_strong|smrv_weak)>>mr)&1) {
2674 type=get_ptr_mem_type(smrv[mr]);
2675 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2676 }
2677 else {
2678 // use the mirror we are running on
2679 type=get_ptr_mem_type(start);
2680 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2681 }
2682
2683 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2684 host_tempreg_acquire();
2685 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2686 addr=*addr_reg_override=HOST_TEMPREG;
2687 type=0;
2688 }
2689 else if(type==MTYPE_0000) { // RAM 0 mirror
2690 host_tempreg_acquire();
2691 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2692 addr=*addr_reg_override=HOST_TEMPREG;
2693 type=0;
2694 }
2695 else if(type==MTYPE_A000) { // RAM A mirror
2696 host_tempreg_acquire();
2697 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2698 addr=*addr_reg_override=HOST_TEMPREG;
2699 type=0;
2700 }
2701 else if(type==MTYPE_1F80) { // scratchpad
2702 if (psxH == (void *)0x1f800000) {
2703 host_tempreg_acquire();
2704 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2705 emit_cmpimm(HOST_TEMPREG,0x1000);
2706 host_tempreg_release();
2707 jaddr=out;
2708 emit_jc(0);
2709 }
2710 else {
2711 // do the usual RAM check, jump will go to the right handler
2712 type=0;
2713 }
2714 }
2715
2716 if (type == 0) // need ram check
2717 {
2718 emit_cmpimm(addr,RAM_SIZE);
2719 jaddr = out;
2720 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2721 // Hint to branch predictor that the branch is unlikely to be taken
2722 if (dops[i].rs1 >= 28)
2723 emit_jno_unlikely(0);
2724 else
2725 #endif
2726 emit_jno(0);
2727 if (ram_offset != 0)
2728 *offset_reg = get_ro_reg(i_regs, 0);
2729 }
2730
2731 return jaddr;
2732}
2733
2734// return memhandler, or get directly accessable address and return 0
2735static void *get_direct_memhandler(void *table, u_int addr,
2736 enum stub_type type, uintptr_t *addr_host)
2737{
2738 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2739 uintptr_t l1, l2 = 0;
2740 l1 = ((uintptr_t *)table)[addr>>12];
2741 if (!(l1 & msb)) {
2742 uintptr_t v = l1 << 1;
2743 *addr_host = v + addr;
2744 return NULL;
2745 }
2746 else {
2747 l1 <<= 1;
2748 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2749 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2750 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2751 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2752 else
2753 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2754 if (!(l2 & msb)) {
2755 uintptr_t v = l2 << 1;
2756 *addr_host = v + (addr&0xfff);
2757 return NULL;
2758 }
2759 return (void *)(l2 << 1);
2760 }
2761}
2762
2763static u_int get_host_reglist(const signed char *regmap)
2764{
2765 u_int reglist = 0, hr;
2766 for (hr = 0; hr < HOST_REGS; hr++) {
2767 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2768 reglist |= 1 << hr;
2769 }
2770 return reglist;
2771}
2772
2773static u_int reglist_exclude(u_int reglist, int r1, int r2)
2774{
2775 if (r1 >= 0)
2776 reglist &= ~(1u << r1);
2777 if (r2 >= 0)
2778 reglist &= ~(1u << r2);
2779 return reglist;
2780}
2781
2782// find a temp caller-saved register not in reglist (so assumed to be free)
2783static int reglist_find_free(u_int reglist)
2784{
2785 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2786 if (free_regs == 0)
2787 return -1;
2788 return __builtin_ctz(free_regs);
2789}
2790
2791static void do_load_word(int a, int rt, int offset_reg)
2792{
2793 if (offset_reg >= 0)
2794 emit_ldr_dualindexed(offset_reg, a, rt);
2795 else
2796 emit_readword_indexed(0, a, rt);
2797}
2798
2799static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2800{
2801 if (offset_reg < 0) {
2802 emit_writeword_indexed(rt, ofs, a);
2803 return;
2804 }
2805 if (ofs != 0)
2806 emit_addimm(a, ofs, a);
2807 emit_str_dualindexed(offset_reg, a, rt);
2808 if (ofs != 0 && preseve_a)
2809 emit_addimm(a, -ofs, a);
2810}
2811
2812static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2813{
2814 if (offset_reg < 0) {
2815 emit_writehword_indexed(rt, ofs, a);
2816 return;
2817 }
2818 if (ofs != 0)
2819 emit_addimm(a, ofs, a);
2820 emit_strh_dualindexed(offset_reg, a, rt);
2821 if (ofs != 0 && preseve_a)
2822 emit_addimm(a, -ofs, a);
2823}
2824
2825static void do_store_byte(int a, int rt, int offset_reg)
2826{
2827 if (offset_reg >= 0)
2828 emit_strb_dualindexed(offset_reg, a, rt);
2829 else
2830 emit_writebyte_indexed(rt, 0, a);
2831}
2832
2833static void load_assemble(int i, const struct regstat *i_regs, int ccadj_)
2834{
2835 int s,tl,addr;
2836 int offset;
2837 void *jaddr=0;
2838 int memtarget=0,c=0;
2839 int offset_reg = -1;
2840 int fastio_reg_override = -1;
2841 u_int reglist=get_host_reglist(i_regs->regmap);
2842 tl=get_reg(i_regs->regmap,dops[i].rt1);
2843 s=get_reg(i_regs->regmap,dops[i].rs1);
2844 offset=imm[i];
2845 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2846 if(s>=0) {
2847 c=(i_regs->wasconst>>s)&1;
2848 if (c) {
2849 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2850 }
2851 }
2852 //printf("load_assemble: c=%d\n",c);
2853 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2854 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2855 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2856 ||dops[i].rt1==0) {
2857 // could be FIFO, must perform the read
2858 // ||dummy read
2859 assem_debug("(forced read)\n");
2860 tl=get_reg_temp(i_regs->regmap);
2861 assert(tl>=0);
2862 }
2863 if(offset||s<0||c) addr=tl;
2864 else addr=s;
2865 //if(tl<0) tl=get_reg_temp(i_regs->regmap);
2866 if(tl>=0) {
2867 //printf("load_assemble: c=%d\n",c);
2868 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2869 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2870 reglist&=~(1<<tl);
2871 if(!c) {
2872 #ifdef R29_HACK
2873 // Strmnnrmn's speed hack
2874 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2875 #endif
2876 {
2877 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
2878 &offset_reg, &fastio_reg_override);
2879 }
2880 }
2881 else if (ram_offset && memtarget) {
2882 offset_reg = get_ro_reg(i_regs, 0);
2883 }
2884 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2885 switch (dops[i].opcode) {
2886 case 0x20: // LB
2887 if(!c||memtarget) {
2888 if(!dummy) {
2889 int a = tl;
2890 if (!c) a = addr;
2891 if (fastio_reg_override >= 0)
2892 a = fastio_reg_override;
2893
2894 if (offset_reg >= 0)
2895 emit_ldrsb_dualindexed(offset_reg, a, tl);
2896 else
2897 emit_movsbl_indexed(0, a, tl);
2898 }
2899 if(jaddr)
2900 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2901 }
2902 else
2903 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2904 break;
2905 case 0x21: // LH
2906 if(!c||memtarget) {
2907 if(!dummy) {
2908 int a = tl;
2909 if (!c) a = addr;
2910 if (fastio_reg_override >= 0)
2911 a = fastio_reg_override;
2912 if (offset_reg >= 0)
2913 emit_ldrsh_dualindexed(offset_reg, a, tl);
2914 else
2915 emit_movswl_indexed(0, a, tl);
2916 }
2917 if(jaddr)
2918 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2919 }
2920 else
2921 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2922 break;
2923 case 0x23: // LW
2924 if(!c||memtarget) {
2925 if(!dummy) {
2926 int a = addr;
2927 if (fastio_reg_override >= 0)
2928 a = fastio_reg_override;
2929 do_load_word(a, tl, offset_reg);
2930 }
2931 if(jaddr)
2932 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2933 }
2934 else
2935 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2936 break;
2937 case 0x24: // LBU
2938 if(!c||memtarget) {
2939 if(!dummy) {
2940 int a = tl;
2941 if (!c) a = addr;
2942 if (fastio_reg_override >= 0)
2943 a = fastio_reg_override;
2944
2945 if (offset_reg >= 0)
2946 emit_ldrb_dualindexed(offset_reg, a, tl);
2947 else
2948 emit_movzbl_indexed(0, a, tl);
2949 }
2950 if(jaddr)
2951 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2952 }
2953 else
2954 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2955 break;
2956 case 0x25: // LHU
2957 if(!c||memtarget) {
2958 if(!dummy) {
2959 int a = tl;
2960 if(!c) a = addr;
2961 if (fastio_reg_override >= 0)
2962 a = fastio_reg_override;
2963 if (offset_reg >= 0)
2964 emit_ldrh_dualindexed(offset_reg, a, tl);
2965 else
2966 emit_movzwl_indexed(0, a, tl);
2967 }
2968 if(jaddr)
2969 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2970 }
2971 else
2972 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2973 break;
2974 case 0x27: // LWU
2975 case 0x37: // LD
2976 default:
2977 assert(0);
2978 }
2979 }
2980 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
2981 host_tempreg_release();
2982}
2983
2984#ifndef loadlr_assemble
2985static void loadlr_assemble(int i, const struct regstat *i_regs, int ccadj_)
2986{
2987 int s,tl,temp,temp2,addr;
2988 int offset;
2989 void *jaddr=0;
2990 int memtarget=0,c=0;
2991 int offset_reg = -1;
2992 int fastio_reg_override = -1;
2993 u_int reglist=get_host_reglist(i_regs->regmap);
2994 tl=get_reg(i_regs->regmap,dops[i].rt1);
2995 s=get_reg(i_regs->regmap,dops[i].rs1);
2996 temp=get_reg_temp(i_regs->regmap);
2997 temp2=get_reg(i_regs->regmap,FTEMP);
2998 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2999 assert(addr<0);
3000 offset=imm[i];
3001 reglist|=1<<temp;
3002 if(offset||s<0||c) addr=temp2;
3003 else addr=s;
3004 if(s>=0) {
3005 c=(i_regs->wasconst>>s)&1;
3006 if(c) {
3007 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3008 }
3009 }
3010 if(!c) {
3011 emit_shlimm(addr,3,temp);
3012 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3013 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
3014 }else{
3015 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
3016 }
3017 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
3018 &offset_reg, &fastio_reg_override);
3019 }
3020 else {
3021 if (ram_offset && memtarget) {
3022 offset_reg = get_ro_reg(i_regs, 0);
3023 }
3024 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3025 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
3026 }else{
3027 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
3028 }
3029 }
3030 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
3031 if(!c||memtarget) {
3032 int a = temp2;
3033 if (fastio_reg_override >= 0)
3034 a = fastio_reg_override;
3035 do_load_word(a, temp2, offset_reg);
3036 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3037 host_tempreg_release();
3038 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj_,reglist);
3039 }
3040 else
3041 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj_,reglist);
3042 if(dops[i].rt1) {
3043 assert(tl>=0);
3044 emit_andimm(temp,24,temp);
3045 if (dops[i].opcode==0x22) // LWL
3046 emit_xorimm(temp,24,temp);
3047 host_tempreg_acquire();
3048 emit_movimm(-1,HOST_TEMPREG);
3049 if (dops[i].opcode==0x26) {
3050 emit_shr(temp2,temp,temp2);
3051 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
3052 }else{
3053 emit_shl(temp2,temp,temp2);
3054 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
3055 }
3056 host_tempreg_release();
3057 emit_or(temp2,tl,tl);
3058 }
3059 //emit_storereg(dops[i].rt1,tl); // DEBUG
3060 }
3061 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
3062 assert(0);
3063 }
3064}
3065#endif
3066
3067static void store_assemble(int i, const struct regstat *i_regs, int ccadj_)
3068{
3069 int s,tl;
3070 int addr,temp;
3071 int offset;
3072 void *jaddr=0;
3073 enum stub_type type=0;
3074 int memtarget=0,c=0;
3075 int agr=AGEN1+(i&1);
3076 int offset_reg = -1;
3077 int fastio_reg_override = -1;
3078 u_int reglist=get_host_reglist(i_regs->regmap);
3079 tl=get_reg(i_regs->regmap,dops[i].rs2);
3080 s=get_reg(i_regs->regmap,dops[i].rs1);
3081 temp=get_reg(i_regs->regmap,agr);
3082 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3083 offset=imm[i];
3084 if(s>=0) {
3085 c=(i_regs->wasconst>>s)&1;
3086 if(c) {
3087 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3088 }
3089 }
3090 assert(tl>=0);
3091 assert(temp>=0);
3092 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3093 if(offset||s<0||c) addr=temp;
3094 else addr=s;
3095 if (!c) {
3096 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3097 &offset_reg, &fastio_reg_override);
3098 }
3099 else if (ram_offset && memtarget) {
3100 offset_reg = get_ro_reg(i_regs, 0);
3101 }
3102
3103 switch (dops[i].opcode) {
3104 case 0x28: // SB
3105 if(!c||memtarget) {
3106 int a = temp;
3107 if (!c) a = addr;
3108 if (fastio_reg_override >= 0)
3109 a = fastio_reg_override;
3110 do_store_byte(a, tl, offset_reg);
3111 }
3112 type = STOREB_STUB;
3113 break;
3114 case 0x29: // SH
3115 if(!c||memtarget) {
3116 int a = temp;
3117 if (!c) a = addr;
3118 if (fastio_reg_override >= 0)
3119 a = fastio_reg_override;
3120 do_store_hword(a, 0, tl, offset_reg, 1);
3121 }
3122 type = STOREH_STUB;
3123 break;
3124 case 0x2B: // SW
3125 if(!c||memtarget) {
3126 int a = addr;
3127 if (fastio_reg_override >= 0)
3128 a = fastio_reg_override;
3129 do_store_word(a, 0, tl, offset_reg, 1);
3130 }
3131 type = STOREW_STUB;
3132 break;
3133 case 0x3F: // SD
3134 default:
3135 assert(0);
3136 }
3137 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3138 host_tempreg_release();
3139 if(jaddr) {
3140 // PCSX store handlers don't check invcode again
3141 reglist|=1<<addr;
3142 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3143 jaddr=0;
3144 }
3145 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3146 if(!c||memtarget) {
3147 #ifdef DESTRUCTIVE_SHIFT
3148 // The x86 shift operation is 'destructive'; it overwrites the
3149 // source register, so we need to make a copy first and use that.
3150 addr=temp;
3151 #endif
3152 #if defined(HOST_IMM8)
3153 int ir=get_reg(i_regs->regmap,INVCP);
3154 assert(ir>=0);
3155 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3156 #else
3157 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3158 #endif
3159 #ifdef INVALIDATE_USE_COND_CALL
3160 emit_callne(invalidate_addr_reg[addr]);
3161 #else
3162 void *jaddr2 = out;
3163 emit_jne(0);
3164 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3165 #endif
3166 }
3167 }
3168 u_int addr_val=constmap[i][s]+offset;
3169 if(jaddr) {
3170 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3171 } else if(c&&!memtarget) {
3172 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj_,reglist);
3173 }
3174 // basic current block modification detection..
3175 // not looking back as that should be in mips cache already
3176 // (see Spyro2 title->attract mode)
3177 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3178 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3179 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3180 if(i_regs->regmap==regs[i].regmap) {
3181 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3182 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3183 emit_movimm(start+i*4+4,0);
3184 emit_writeword(0,&pcaddr);
3185 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3186 emit_far_call(ndrc_get_addr_ht);
3187 emit_jmpreg(0);
3188 }
3189 }
3190}
3191
3192static void storelr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3193{
3194 int s,tl;
3195 int temp;
3196 int offset;
3197 void *jaddr=0;
3198 void *case1, *case23, *case3;
3199 void *done0, *done1, *done2;
3200 int memtarget=0,c=0;
3201 int agr=AGEN1+(i&1);
3202 int offset_reg = -1;
3203 u_int reglist=get_host_reglist(i_regs->regmap);
3204 tl=get_reg(i_regs->regmap,dops[i].rs2);
3205 s=get_reg(i_regs->regmap,dops[i].rs1);
3206 temp=get_reg(i_regs->regmap,agr);
3207 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3208 offset=imm[i];
3209 if(s>=0) {
3210 c=(i_regs->isconst>>s)&1;
3211 if(c) {
3212 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3213 }
3214 }
3215 assert(tl>=0);
3216 assert(temp>=0);
3217 if(!c) {
3218 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3219 if(!offset&&s!=temp) emit_mov(s,temp);
3220 jaddr=out;
3221 emit_jno(0);
3222 }
3223 else
3224 {
3225 if(!memtarget||!dops[i].rs1) {
3226 jaddr=out;
3227 emit_jmp(0);
3228 }
3229 }
3230 if (ram_offset)
3231 offset_reg = get_ro_reg(i_regs, 0);
3232
3233 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3234 assert(0);
3235 }
3236
3237 emit_testimm(temp,2);
3238 case23=out;
3239 emit_jne(0);
3240 emit_testimm(temp,1);
3241 case1=out;
3242 emit_jne(0);
3243 // 0
3244 if (dops[i].opcode == 0x2A) { // SWL
3245 // Write msb into least significant byte
3246 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3247 do_store_byte(temp, tl, offset_reg);
3248 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3249 }
3250 else if (dops[i].opcode == 0x2E) { // SWR
3251 // Write entire word
3252 do_store_word(temp, 0, tl, offset_reg, 1);
3253 }
3254 done0 = out;
3255 emit_jmp(0);
3256 // 1
3257 set_jump_target(case1, out);
3258 if (dops[i].opcode == 0x2A) { // SWL
3259 // Write two msb into two least significant bytes
3260 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3261 do_store_hword(temp, -1, tl, offset_reg, 0);
3262 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3263 }
3264 else if (dops[i].opcode == 0x2E) { // SWR
3265 // Write 3 lsb into three most significant bytes
3266 do_store_byte(temp, tl, offset_reg);
3267 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3268 do_store_hword(temp, 1, tl, offset_reg, 0);
3269 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3270 }
3271 done1=out;
3272 emit_jmp(0);
3273 // 2,3
3274 set_jump_target(case23, out);
3275 emit_testimm(temp,1);
3276 case3 = out;
3277 emit_jne(0);
3278 // 2
3279 if (dops[i].opcode==0x2A) { // SWL
3280 // Write 3 msb into three least significant bytes
3281 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3282 do_store_hword(temp, -2, tl, offset_reg, 1);
3283 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3284 do_store_byte(temp, tl, offset_reg);
3285 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3286 }
3287 else if (dops[i].opcode == 0x2E) { // SWR
3288 // Write two lsb into two most significant bytes
3289 do_store_hword(temp, 0, tl, offset_reg, 1);
3290 }
3291 done2 = out;
3292 emit_jmp(0);
3293 // 3
3294 set_jump_target(case3, out);
3295 if (dops[i].opcode == 0x2A) { // SWL
3296 do_store_word(temp, -3, tl, offset_reg, 0);
3297 }
3298 else if (dops[i].opcode == 0x2E) { // SWR
3299 do_store_byte(temp, tl, offset_reg);
3300 }
3301 set_jump_target(done0, out);
3302 set_jump_target(done1, out);
3303 set_jump_target(done2, out);
3304 if (offset_reg == HOST_TEMPREG)
3305 host_tempreg_release();
3306 if(!c||!memtarget)
3307 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj_,reglist);
3308 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3309 #if defined(HOST_IMM8)
3310 int ir=get_reg(i_regs->regmap,INVCP);
3311 assert(ir>=0);
3312 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3313 #else
3314 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3315 #endif
3316 #ifdef INVALIDATE_USE_COND_CALL
3317 emit_callne(invalidate_addr_reg[temp]);
3318 #else
3319 void *jaddr2 = out;
3320 emit_jne(0);
3321 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3322 #endif
3323 }
3324}
3325
3326static void cop0_assemble(int i, const struct regstat *i_regs, int ccadj_)
3327{
3328 if(dops[i].opcode2==0) // MFC0
3329 {
3330 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3331 u_int copr=(source[i]>>11)&0x1f;
3332 //assert(t>=0); // Why does this happen? OOT is weird
3333 if(t>=0&&dops[i].rt1!=0) {
3334 emit_readword(&reg_cop0[copr],t);
3335 }
3336 }
3337 else if(dops[i].opcode2==4) // MTC0
3338 {
3339 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3340 char copr=(source[i]>>11)&0x1f;
3341 assert(s>=0);
3342 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3343 if(copr==9||copr==11||copr==12||copr==13) {
3344 emit_readword(&last_count,HOST_TEMPREG);
3345 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3346 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3347 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3348 emit_writeword(HOST_CCREG,&Count);
3349 }
3350 // What a mess. The status register (12) can enable interrupts,
3351 // so needs a special case to handle a pending interrupt.
3352 // The interrupt must be taken immediately, because a subsequent
3353 // instruction might disable interrupts again.
3354 if(copr==12||copr==13) {
3355 if (is_delayslot) {
3356 // burn cycles to cause cc_interrupt, which will
3357 // reschedule next_interupt. Relies on CCREG from above.
3358 assem_debug("MTC0 DS %d\n", copr);
3359 emit_writeword(HOST_CCREG,&last_count);
3360 emit_movimm(0,HOST_CCREG);
3361 emit_storereg(CCREG,HOST_CCREG);
3362 emit_loadreg(dops[i].rs1,1);
3363 emit_movimm(copr,0);
3364 emit_far_call(pcsx_mtc0_ds);
3365 emit_loadreg(dops[i].rs1,s);
3366 return;
3367 }
3368 emit_movimm(start+i*4+4,HOST_TEMPREG);
3369 emit_writeword(HOST_TEMPREG,&pcaddr);
3370 emit_movimm(0,HOST_TEMPREG);
3371 emit_writeword(HOST_TEMPREG,&pending_exception);
3372 }
3373 if(s==HOST_CCREG)
3374 emit_loadreg(dops[i].rs1,1);
3375 else if(s!=1)
3376 emit_mov(s,1);
3377 emit_movimm(copr,0);
3378 emit_far_call(pcsx_mtc0);
3379 if(copr==9||copr==11||copr==12||copr==13) {
3380 emit_readword(&Count,HOST_CCREG);
3381 emit_readword(&next_interupt,HOST_TEMPREG);
3382 emit_addimm(HOST_CCREG,-ccadj_,HOST_CCREG);
3383 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3384 emit_writeword(HOST_TEMPREG,&last_count);
3385 emit_storereg(CCREG,HOST_CCREG);
3386 }
3387 if(copr==12||copr==13) {
3388 assert(!is_delayslot);
3389 emit_readword(&pending_exception,14);
3390 emit_test(14,14);
3391 void *jaddr = out;
3392 emit_jeq(0);
3393 emit_readword(&pcaddr, 0);
3394 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3395 emit_far_call(ndrc_get_addr_ht);
3396 emit_jmpreg(0);
3397 set_jump_target(jaddr, out);
3398 }
3399 emit_loadreg(dops[i].rs1,s);
3400 }
3401 else
3402 {
3403 assert(dops[i].opcode2==0x10);
3404 //if((source[i]&0x3f)==0x10) // RFE
3405 {
3406 emit_readword(&Status,0);
3407 emit_andimm(0,0x3c,1);
3408 emit_andimm(0,~0xf,0);
3409 emit_orrshr_imm(1,2,0);
3410 emit_writeword(0,&Status);
3411 }
3412 }
3413}
3414
3415static void cop1_unusable(int i, const struct regstat *i_regs)
3416{
3417 // XXX: should just just do the exception instead
3418 //if(!cop1_usable)
3419 {
3420 void *jaddr=out;
3421 emit_jmp(0);
3422 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3423 }
3424}
3425
3426static void cop1_assemble(int i, const struct regstat *i_regs)
3427{
3428 cop1_unusable(i, i_regs);
3429}
3430
3431static void c1ls_assemble(int i, const struct regstat *i_regs)
3432{
3433 cop1_unusable(i, i_regs);
3434}
3435
3436// FP_STUB
3437static void do_cop1stub(int n)
3438{
3439 literal_pool(256);
3440 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3441 set_jump_target(stubs[n].addr, out);
3442 int i=stubs[n].a;
3443// int rs=stubs[n].b;
3444 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3445 int ds=stubs[n].d;
3446 if(!ds) {
3447 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3448 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3449 }
3450 //else {printf("fp exception in delay slot\n");}
3451 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3452 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3453 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3454 emit_addimm(HOST_CCREG,ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3455 emit_far_jump(ds?fp_exception_ds:fp_exception);
3456}
3457
3458static int cop2_is_stalling_op(int i, int *cycles)
3459{
3460 if (dops[i].opcode == 0x3a) { // SWC2
3461 *cycles = 0;
3462 return 1;
3463 }
3464 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3465 *cycles = 0;
3466 return 1;
3467 }
3468 if (dops[i].itype == C2OP) {
3469 *cycles = gte_cycletab[source[i] & 0x3f];
3470 return 1;
3471 }
3472 // ... what about MTC2/CTC2/LWC2?
3473 return 0;
3474}
3475
3476#if 0
3477static void log_gte_stall(int stall, u_int cycle)
3478{
3479 if ((u_int)stall <= 44)
3480 printf("x stall %2d %u\n", stall, cycle + last_count);
3481}
3482
3483static void emit_log_gte_stall(int i, int stall, u_int reglist)
3484{
3485 save_regs(reglist);
3486 if (stall > 0)
3487 emit_movimm(stall, 0);
3488 else
3489 emit_mov(HOST_TEMPREG, 0);
3490 emit_addimm(HOST_CCREG, ccadj[i], 1);
3491 emit_far_call(log_gte_stall);
3492 restore_regs(reglist);
3493}
3494#endif
3495
3496static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3497{
3498 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3499 int rtmp = reglist_find_free(reglist);
3500
3501 if (HACK_ENABLED(NDHACK_NO_STALLS))
3502 return;
3503 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3504 // happens occasionally... cc evicted? Don't bother then
3505 //printf("no cc %08x\n", start + i*4);
3506 return;
3507 }
3508 if (!dops[i].bt) {
3509 for (j = i - 1; j >= 0; j--) {
3510 //if (dops[j].is_ds) break;
3511 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3512 break;
3513 if (j > 0 && ccadj[j - 1] > ccadj[j])
3514 break;
3515 }
3516 j = max(j, 0);
3517 }
3518 cycles_passed = ccadj[i] - ccadj[j];
3519 if (other_gte_op_cycles >= 0)
3520 stall = other_gte_op_cycles - cycles_passed;
3521 else if (cycles_passed >= 44)
3522 stall = 0; // can't stall
3523 if (stall == -MAXBLOCK && rtmp >= 0) {
3524 // unknown stall, do the expensive runtime check
3525 assem_debug("; cop2_do_stall_check\n");
3526#if 0 // too slow
3527 save_regs(reglist);
3528 emit_movimm(gte_cycletab[op], 0);
3529 emit_addimm(HOST_CCREG, ccadj[i], 1);
3530 emit_far_call(call_gteStall);
3531 restore_regs(reglist);
3532#else
3533 host_tempreg_acquire();
3534 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3535 emit_addimm(rtmp, -ccadj[i], rtmp);
3536 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3537 emit_cmpimm(HOST_TEMPREG, 44);
3538 emit_cmovb_reg(rtmp, HOST_CCREG);
3539 //emit_log_gte_stall(i, 0, reglist);
3540 host_tempreg_release();
3541#endif
3542 }
3543 else if (stall > 0) {
3544 //emit_log_gte_stall(i, stall, reglist);
3545 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3546 }
3547
3548 // save gteBusyCycle, if needed
3549 if (gte_cycletab[op] == 0)
3550 return;
3551 other_gte_op_cycles = -1;
3552 for (j = i + 1; j < slen; j++) {
3553 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3554 break;
3555 if (dops[j].is_jump) {
3556 // check ds
3557 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3558 j++;
3559 break;
3560 }
3561 }
3562 if (other_gte_op_cycles >= 0)
3563 // will handle stall when assembling that op
3564 return;
3565 cycles_passed = ccadj[min(j, slen -1)] - ccadj[i];
3566 if (cycles_passed >= 44)
3567 return;
3568 assem_debug("; save gteBusyCycle\n");
3569 host_tempreg_acquire();
3570#if 0
3571 emit_readword(&last_count, HOST_TEMPREG);
3572 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3573 emit_addimm(HOST_TEMPREG, ccadj[i], HOST_TEMPREG);
3574 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3575 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3576#else
3577 emit_addimm(HOST_CCREG, ccadj[i] + gte_cycletab[op], HOST_TEMPREG);
3578 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3579#endif
3580 host_tempreg_release();
3581}
3582
3583static int is_mflohi(int i)
3584{
3585 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3586}
3587
3588static int check_multdiv(int i, int *cycles)
3589{
3590 if (dops[i].itype != MULTDIV)
3591 return 0;
3592 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3593 *cycles = 11; // approx from 7 11 14
3594 else
3595 *cycles = 37;
3596 return 1;
3597}
3598
3599static void multdiv_prepare_stall(int i, const struct regstat *i_regs, int ccadj_)
3600{
3601 int j, found = 0, c = 0;
3602 if (HACK_ENABLED(NDHACK_NO_STALLS))
3603 return;
3604 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3605 // happens occasionally... cc evicted? Don't bother then
3606 return;
3607 }
3608 for (j = i + 1; j < slen; j++) {
3609 if (dops[j].bt)
3610 break;
3611 if ((found = is_mflohi(j)))
3612 break;
3613 if (dops[j].is_jump) {
3614 // check ds
3615 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3616 j++;
3617 break;
3618 }
3619 }
3620 if (found)
3621 // handle all in multdiv_do_stall()
3622 return;
3623 check_multdiv(i, &c);
3624 assert(c > 0);
3625 assem_debug("; muldiv prepare stall %d\n", c);
3626 host_tempreg_acquire();
3627 emit_addimm(HOST_CCREG, ccadj_ + c, HOST_TEMPREG);
3628 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3629 host_tempreg_release();
3630}
3631
3632static void multdiv_do_stall(int i, const struct regstat *i_regs)
3633{
3634 int j, known_cycles = 0;
3635 u_int reglist = get_host_reglist(i_regs->regmap);
3636 int rtmp = get_reg_temp(i_regs->regmap);
3637 if (rtmp < 0)
3638 rtmp = reglist_find_free(reglist);
3639 if (HACK_ENABLED(NDHACK_NO_STALLS))
3640 return;
3641 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3642 // happens occasionally... cc evicted? Don't bother then
3643 //printf("no cc/rtmp %08x\n", start + i*4);
3644 return;
3645 }
3646 if (!dops[i].bt) {
3647 for (j = i - 1; j >= 0; j--) {
3648 if (dops[j].is_ds) break;
3649 if (check_multdiv(j, &known_cycles))
3650 break;
3651 if (is_mflohi(j))
3652 // already handled by this op
3653 return;
3654 if (dops[j].bt || (j > 0 && ccadj[j - 1] > ccadj[j]))
3655 break;
3656 }
3657 j = max(j, 0);
3658 }
3659 if (known_cycles > 0) {
3660 known_cycles -= ccadj[i] - ccadj[j];
3661 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3662 if (known_cycles > 0)
3663 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3664 return;
3665 }
3666 assem_debug("; muldiv stall unresolved\n");
3667 host_tempreg_acquire();
3668 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3669 emit_addimm(rtmp, -ccadj[i], rtmp);
3670 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3671 emit_cmpimm(HOST_TEMPREG, 37);
3672 emit_cmovb_reg(rtmp, HOST_CCREG);
3673 //emit_log_gte_stall(i, 0, reglist);
3674 host_tempreg_release();
3675}
3676
3677static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3678{
3679 switch (copr) {
3680 case 1:
3681 case 3:
3682 case 5:
3683 case 8:
3684 case 9:
3685 case 10:
3686 case 11:
3687 emit_readword(&reg_cop2d[copr],tl);
3688 emit_signextend16(tl,tl);
3689 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3690 break;
3691 case 7:
3692 case 16:
3693 case 17:
3694 case 18:
3695 case 19:
3696 emit_readword(&reg_cop2d[copr],tl);
3697 emit_andimm(tl,0xffff,tl);
3698 emit_writeword(tl,&reg_cop2d[copr]);
3699 break;
3700 case 15:
3701 emit_readword(&reg_cop2d[14],tl); // SXY2
3702 emit_writeword(tl,&reg_cop2d[copr]);
3703 break;
3704 case 28:
3705 case 29:
3706 c2op_mfc2_29_assemble(tl,temp);
3707 break;
3708 default:
3709 emit_readword(&reg_cop2d[copr],tl);
3710 break;
3711 }
3712}
3713
3714static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3715{
3716 switch (copr) {
3717 case 15:
3718 emit_readword(&reg_cop2d[13],temp); // SXY1
3719 emit_writeword(sl,&reg_cop2d[copr]);
3720 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3721 emit_readword(&reg_cop2d[14],temp); // SXY2
3722 emit_writeword(sl,&reg_cop2d[14]);
3723 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3724 break;
3725 case 28:
3726 emit_andimm(sl,0x001f,temp);
3727 emit_shlimm(temp,7,temp);
3728 emit_writeword(temp,&reg_cop2d[9]);
3729 emit_andimm(sl,0x03e0,temp);
3730 emit_shlimm(temp,2,temp);
3731 emit_writeword(temp,&reg_cop2d[10]);
3732 emit_andimm(sl,0x7c00,temp);
3733 emit_shrimm(temp,3,temp);
3734 emit_writeword(temp,&reg_cop2d[11]);
3735 emit_writeword(sl,&reg_cop2d[28]);
3736 break;
3737 case 30:
3738 emit_xorsar_imm(sl,sl,31,temp);
3739#if defined(HAVE_ARMV5) || defined(__aarch64__)
3740 emit_clz(temp,temp);
3741#else
3742 emit_movs(temp,HOST_TEMPREG);
3743 emit_movimm(0,temp);
3744 emit_jeq((int)out+4*4);
3745 emit_addpl_imm(temp,1,temp);
3746 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3747 emit_jns((int)out-2*4);
3748#endif
3749 emit_writeword(sl,&reg_cop2d[30]);
3750 emit_writeword(temp,&reg_cop2d[31]);
3751 break;
3752 case 31:
3753 break;
3754 default:
3755 emit_writeword(sl,&reg_cop2d[copr]);
3756 break;
3757 }
3758}
3759
3760static void c2ls_assemble(int i, const struct regstat *i_regs, int ccadj_)
3761{
3762 int s,tl;
3763 int ar;
3764 int offset;
3765 int memtarget=0,c=0;
3766 void *jaddr2=NULL;
3767 enum stub_type type;
3768 int agr=AGEN1+(i&1);
3769 int offset_reg = -1;
3770 int fastio_reg_override = -1;
3771 u_int reglist=get_host_reglist(i_regs->regmap);
3772 u_int copr=(source[i]>>16)&0x1f;
3773 s=get_reg(i_regs->regmap,dops[i].rs1);
3774 tl=get_reg(i_regs->regmap,FTEMP);
3775 offset=imm[i];
3776 assert(dops[i].rs1>0);
3777 assert(tl>=0);
3778
3779 if(i_regs->regmap[HOST_CCREG]==CCREG)
3780 reglist&=~(1<<HOST_CCREG);
3781
3782 // get the address
3783 if (dops[i].opcode==0x3a) { // SWC2
3784 ar=get_reg(i_regs->regmap,agr);
3785 if(ar<0) ar=get_reg_temp(i_regs->regmap);
3786 reglist|=1<<ar;
3787 } else { // LWC2
3788 ar=tl;
3789 }
3790 if(s>=0) c=(i_regs->wasconst>>s)&1;
3791 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3792 if (!offset&&!c&&s>=0) ar=s;
3793 assert(ar>=0);
3794
3795 cop2_do_stall_check(0, i, i_regs, reglist);
3796
3797 if (dops[i].opcode==0x3a) { // SWC2
3798 cop2_get_dreg(copr,tl,-1);
3799 type=STOREW_STUB;
3800 }
3801 else
3802 type=LOADW_STUB;
3803
3804 if(c&&!memtarget) {
3805 jaddr2=out;
3806 emit_jmp(0); // inline_readstub/inline_writestub?
3807 }
3808 else {
3809 if(!c) {
3810 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3811 &offset_reg, &fastio_reg_override);
3812 }
3813 else if (ram_offset && memtarget) {
3814 offset_reg = get_ro_reg(i_regs, 0);
3815 }
3816 switch (dops[i].opcode) {
3817 case 0x32: { // LWC2
3818 int a = ar;
3819 if (fastio_reg_override >= 0)
3820 a = fastio_reg_override;
3821 do_load_word(a, tl, offset_reg);
3822 break;
3823 }
3824 case 0x3a: { // SWC2
3825 #ifdef DESTRUCTIVE_SHIFT
3826 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3827 #endif
3828 int a = ar;
3829 if (fastio_reg_override >= 0)
3830 a = fastio_reg_override;
3831 do_store_word(a, 0, tl, offset_reg, 1);
3832 break;
3833 }
3834 default:
3835 assert(0);
3836 }
3837 }
3838 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3839 host_tempreg_release();
3840 if(jaddr2)
3841 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj_,reglist);
3842 if(dops[i].opcode==0x3a) // SWC2
3843 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3844#if defined(HOST_IMM8)
3845 int ir=get_reg(i_regs->regmap,INVCP);
3846 assert(ir>=0);
3847 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3848#else
3849 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3850#endif
3851 #ifdef INVALIDATE_USE_COND_CALL
3852 emit_callne(invalidate_addr_reg[ar]);
3853 #else
3854 void *jaddr3 = out;
3855 emit_jne(0);
3856 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3857 #endif
3858 }
3859 if (dops[i].opcode==0x32) { // LWC2
3860 host_tempreg_acquire();
3861 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3862 host_tempreg_release();
3863 }
3864}
3865
3866static void cop2_assemble(int i, const struct regstat *i_regs)
3867{
3868 u_int copr = (source[i]>>11) & 0x1f;
3869 signed char temp = get_reg_temp(i_regs->regmap);
3870
3871 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3872 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3873 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3874 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3875 reglist = reglist_exclude(reglist, tl, -1);
3876 }
3877 cop2_do_stall_check(0, i, i_regs, reglist);
3878 }
3879 if (dops[i].opcode2==0) { // MFC2
3880 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3881 if(tl>=0&&dops[i].rt1!=0)
3882 cop2_get_dreg(copr,tl,temp);
3883 }
3884 else if (dops[i].opcode2==4) { // MTC2
3885 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3886 cop2_put_dreg(copr,sl,temp);
3887 }
3888 else if (dops[i].opcode2==2) // CFC2
3889 {
3890 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3891 if(tl>=0&&dops[i].rt1!=0)
3892 emit_readword(&reg_cop2c[copr],tl);
3893 }
3894 else if (dops[i].opcode2==6) // CTC2
3895 {
3896 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3897 switch(copr) {
3898 case 4:
3899 case 12:
3900 case 20:
3901 case 26:
3902 case 27:
3903 case 29:
3904 case 30:
3905 emit_signextend16(sl,temp);
3906 break;
3907 case 31:
3908 c2op_ctc2_31_assemble(sl,temp);
3909 break;
3910 default:
3911 temp=sl;
3912 break;
3913 }
3914 emit_writeword(temp,&reg_cop2c[copr]);
3915 assert(sl>=0);
3916 }
3917}
3918
3919static void do_unalignedwritestub(int n)
3920{
3921 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3922 literal_pool(256);
3923 set_jump_target(stubs[n].addr, out);
3924
3925 int i=stubs[n].a;
3926 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3927 int addr=stubs[n].b;
3928 u_int reglist=stubs[n].e;
3929 signed char *i_regmap=i_regs->regmap;
3930 int temp2=get_reg(i_regmap,FTEMP);
3931 int rt;
3932 rt=get_reg(i_regmap,dops[i].rs2);
3933 assert(rt>=0);
3934 assert(addr>=0);
3935 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3936 reglist|=(1<<addr);
3937 reglist&=~(1<<temp2);
3938
3939 // don't bother with it and call write handler
3940 save_regs(reglist);
3941 pass_args(addr,rt);
3942 int cc=get_reg(i_regmap,CCREG);
3943 if(cc<0)
3944 emit_loadreg(CCREG,2);
3945 emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
3946 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3947 emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
3948 if(cc<0)
3949 emit_storereg(CCREG,2);
3950 restore_regs(reglist);
3951 emit_jmp(stubs[n].retaddr); // return address
3952}
3953
3954#ifndef multdiv_assemble
3955void multdiv_assemble(int i,struct regstat *i_regs)
3956{
3957 printf("Need multdiv_assemble for this architecture.\n");
3958 abort();
3959}
3960#endif
3961
3962static void mov_assemble(int i, const struct regstat *i_regs)
3963{
3964 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3965 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3966 if(dops[i].rt1) {
3967 signed char sl,tl;
3968 tl=get_reg(i_regs->regmap,dops[i].rt1);
3969 //assert(tl>=0);
3970 if(tl>=0) {
3971 sl=get_reg(i_regs->regmap,dops[i].rs1);
3972 if(sl>=0) emit_mov(sl,tl);
3973 else emit_loadreg(dops[i].rs1,tl);
3974 }
3975 }
3976 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3977 multdiv_do_stall(i, i_regs);
3978}
3979
3980// call interpreter, exception handler, things that change pc/regs/cycles ...
3981static void call_c_cpu_handler(int i, const struct regstat *i_regs, int ccadj_, u_int pc, void *func)
3982{
3983 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3984 assert(ccreg==HOST_CCREG);
3985 assert(!is_delayslot);
3986 (void)ccreg;
3987
3988 emit_movimm(pc,3); // Get PC
3989 emit_readword(&last_count,2);
3990 emit_writeword(3,&psxRegs.pc);
3991 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3992 emit_add(2,HOST_CCREG,2);
3993 emit_writeword(2,&psxRegs.cycle);
3994 emit_far_call(func);
3995 emit_far_jump(jump_to_new_pc);
3996}
3997
3998static void syscall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3999{
4000 // 'break' tends to be littered around to catch things like
4001 // division by 0 and is almost never executed, so don't emit much code here
4002 void *func = (dops[i].opcode2 == 0x0C)
4003 ? (is_delayslot ? jump_syscall_ds : jump_syscall)
4004 : (is_delayslot ? jump_break_ds : jump_break);
4005 assert(get_reg(i_regs->regmap, CCREG) == HOST_CCREG);
4006 emit_movimm(start + i*4, 2); // pc
4007 emit_addimm(HOST_CCREG, ccadj_ + CLOCK_ADJUST(1), HOST_CCREG);
4008 emit_far_jump(func);
4009}
4010
4011static void hlecall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4012{
4013 void *hlefunc = psxNULL;
4014 uint32_t hleCode = source[i] & 0x03ffffff;
4015 if (hleCode < ARRAY_SIZE(psxHLEt))
4016 hlefunc = psxHLEt[hleCode];
4017
4018 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4+4, hlefunc);
4019}
4020
4021static void intcall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4022{
4023 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4, execI);
4024}
4025
4026static void speculate_mov(int rs,int rt)
4027{
4028 if(rt!=0) {
4029 smrv_strong_next|=1<<rt;
4030 smrv[rt]=smrv[rs];
4031 }
4032}
4033
4034static void speculate_mov_weak(int rs,int rt)
4035{
4036 if(rt!=0) {
4037 smrv_weak_next|=1<<rt;
4038 smrv[rt]=smrv[rs];
4039 }
4040}
4041
4042static void speculate_register_values(int i)
4043{
4044 if(i==0) {
4045 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
4046 // gp,sp are likely to stay the same throughout the block
4047 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
4048 smrv_weak_next=~smrv_strong_next;
4049 //printf(" llr %08x\n", smrv[4]);
4050 }
4051 smrv_strong=smrv_strong_next;
4052 smrv_weak=smrv_weak_next;
4053 switch(dops[i].itype) {
4054 case ALU:
4055 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4056 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
4057 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4058 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
4059 else {
4060 smrv_strong_next&=~(1<<dops[i].rt1);
4061 smrv_weak_next&=~(1<<dops[i].rt1);
4062 }
4063 break;
4064 case SHIFTIMM:
4065 smrv_strong_next&=~(1<<dops[i].rt1);
4066 smrv_weak_next&=~(1<<dops[i].rt1);
4067 // fallthrough
4068 case IMM16:
4069 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
4070 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
4071 if(hr>=0) {
4072 if(get_final_value(hr,i,&value))
4073 smrv[dops[i].rt1]=value;
4074 else smrv[dops[i].rt1]=constmap[i][hr];
4075 smrv_strong_next|=1<<dops[i].rt1;
4076 }
4077 }
4078 else {
4079 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4080 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4081 }
4082 break;
4083 case LOAD:
4084 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
4085 // special case for BIOS
4086 smrv[dops[i].rt1]=0xa0000000;
4087 smrv_strong_next|=1<<dops[i].rt1;
4088 break;
4089 }
4090 // fallthrough
4091 case SHIFT:
4092 case LOADLR:
4093 case MOV:
4094 smrv_strong_next&=~(1<<dops[i].rt1);
4095 smrv_weak_next&=~(1<<dops[i].rt1);
4096 break;
4097 case COP0:
4098 case COP2:
4099 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
4100 smrv_strong_next&=~(1<<dops[i].rt1);
4101 smrv_weak_next&=~(1<<dops[i].rt1);
4102 }
4103 break;
4104 case C2LS:
4105 if (dops[i].opcode==0x32) { // LWC2
4106 smrv_strong_next&=~(1<<dops[i].rt1);
4107 smrv_weak_next&=~(1<<dops[i].rt1);
4108 }
4109 break;
4110 }
4111#if 0
4112 int r=4;
4113 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4114 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4115#endif
4116}
4117
4118static void ujump_assemble(int i, const struct regstat *i_regs);
4119static void rjump_assemble(int i, const struct regstat *i_regs);
4120static void cjump_assemble(int i, const struct regstat *i_regs);
4121static void sjump_assemble(int i, const struct regstat *i_regs);
4122
4123static int assemble(int i, const struct regstat *i_regs, int ccadj_)
4124{
4125 int ds = 0;
4126 switch (dops[i].itype) {
4127 case ALU:
4128 alu_assemble(i, i_regs);
4129 break;
4130 case IMM16:
4131 imm16_assemble(i, i_regs);
4132 break;
4133 case SHIFT:
4134 shift_assemble(i, i_regs);
4135 break;
4136 case SHIFTIMM:
4137 shiftimm_assemble(i, i_regs);
4138 break;
4139 case LOAD:
4140 load_assemble(i, i_regs, ccadj_);
4141 break;
4142 case LOADLR:
4143 loadlr_assemble(i, i_regs, ccadj_);
4144 break;
4145 case STORE:
4146 store_assemble(i, i_regs, ccadj_);
4147 break;
4148 case STORELR:
4149 storelr_assemble(i, i_regs, ccadj_);
4150 break;
4151 case COP0:
4152 cop0_assemble(i, i_regs, ccadj_);
4153 break;
4154 case COP1:
4155 cop1_assemble(i, i_regs);
4156 break;
4157 case C1LS:
4158 c1ls_assemble(i, i_regs);
4159 break;
4160 case COP2:
4161 cop2_assemble(i, i_regs);
4162 break;
4163 case C2LS:
4164 c2ls_assemble(i, i_regs, ccadj_);
4165 break;
4166 case C2OP:
4167 c2op_assemble(i, i_regs);
4168 break;
4169 case MULTDIV:
4170 multdiv_assemble(i, i_regs);
4171 multdiv_prepare_stall(i, i_regs, ccadj_);
4172 break;
4173 case MOV:
4174 mov_assemble(i, i_regs);
4175 break;
4176 case SYSCALL:
4177 syscall_assemble(i, i_regs, ccadj_);
4178 break;
4179 case HLECALL:
4180 hlecall_assemble(i, i_regs, ccadj_);
4181 break;
4182 case INTCALL:
4183 intcall_assemble(i, i_regs, ccadj_);
4184 break;
4185 case UJUMP:
4186 ujump_assemble(i, i_regs);
4187 ds = 1;
4188 break;
4189 case RJUMP:
4190 rjump_assemble(i, i_regs);
4191 ds = 1;
4192 break;
4193 case CJUMP:
4194 cjump_assemble(i, i_regs);
4195 ds = 1;
4196 break;
4197 case SJUMP:
4198 sjump_assemble(i, i_regs);
4199 ds = 1;
4200 break;
4201 case NOP:
4202 case OTHER:
4203 case NI:
4204 // not handled, just skip
4205 break;
4206 default:
4207 assert(0);
4208 }
4209 return ds;
4210}
4211
4212static void ds_assemble(int i, const struct regstat *i_regs)
4213{
4214 speculate_register_values(i);
4215 is_delayslot = 1;
4216 switch (dops[i].itype) {
4217 case SYSCALL:
4218 case HLECALL:
4219 case INTCALL:
4220 case UJUMP:
4221 case RJUMP:
4222 case CJUMP:
4223 case SJUMP:
4224 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4225 break;
4226 default:
4227 assemble(i, i_regs, ccadj[i]);
4228 }
4229 is_delayslot = 0;
4230}
4231
4232// Is the branch target a valid internal jump?
4233static int internal_branch(int addr)
4234{
4235 if(addr&1) return 0; // Indirect (register) jump
4236 if(addr>=start && addr<start+slen*4-4)
4237 {
4238 return 1;
4239 }
4240 return 0;
4241}
4242
4243static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4244{
4245 int hr;
4246 for(hr=0;hr<HOST_REGS;hr++) {
4247 if(hr!=EXCLUDE_REG) {
4248 if(pre[hr]!=entry[hr]) {
4249 if(pre[hr]>=0) {
4250 if((dirty>>hr)&1) {
4251 if(get_reg(entry,pre[hr])<0) {
4252 assert(pre[hr]<64);
4253 if(!((u>>pre[hr])&1))
4254 emit_storereg(pre[hr],hr);
4255 }
4256 }
4257 }
4258 }
4259 }
4260 }
4261 // Move from one register to another (no writeback)
4262 for(hr=0;hr<HOST_REGS;hr++) {
4263 if(hr!=EXCLUDE_REG) {
4264 if(pre[hr]!=entry[hr]) {
4265 if(pre[hr]>=0&&pre[hr]<TEMPREG) {
4266 int nr;
4267 if((nr=get_reg(entry,pre[hr]))>=0) {
4268 emit_mov(hr,nr);
4269 }
4270 }
4271 }
4272 }
4273 }
4274}
4275
4276// Load the specified registers
4277// This only loads the registers given as arguments because
4278// we don't want to load things that will be overwritten
4279static inline void load_reg(signed char entry[], signed char regmap[], int rs)
4280{
4281 int hr = get_reg(regmap, rs);
4282 if (hr >= 0 && entry[hr] != regmap[hr])
4283 emit_loadreg(regmap[hr], hr);
4284}
4285
4286static void load_regs(signed char entry[], signed char regmap[], int rs1, int rs2)
4287{
4288 load_reg(entry, regmap, rs1);
4289 if (rs1 != rs2)
4290 load_reg(entry, regmap, rs2);
4291}
4292
4293// Load registers prior to the start of a loop
4294// so that they are not loaded within the loop
4295static void loop_preload(signed char pre[],signed char entry[])
4296{
4297 int hr;
4298 for (hr = 0; hr < HOST_REGS; hr++) {
4299 int r = entry[hr];
4300 if (r >= 0 && pre[hr] != r && get_reg(pre, r) < 0) {
4301 assem_debug("loop preload:\n");
4302 if (r < TEMPREG)
4303 emit_loadreg(r, hr);
4304 }
4305 }
4306}
4307
4308// Generate address for load/store instruction
4309// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4310static void address_generation(int i, const struct regstat *i_regs, signed char entry[])
4311{
4312 if (dops[i].is_load || dops[i].is_store) {
4313 int ra=-1;
4314 int agr=AGEN1+(i&1);
4315 if(dops[i].itype==LOAD) {
4316 ra=get_reg(i_regs->regmap,dops[i].rt1);
4317 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4318 assert(ra>=0);
4319 }
4320 if(dops[i].itype==LOADLR) {
4321 ra=get_reg(i_regs->regmap,FTEMP);
4322 }
4323 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4324 ra=get_reg(i_regs->regmap,agr);
4325 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4326 }
4327 if(dops[i].itype==C2LS) {
4328 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4329 ra=get_reg(i_regs->regmap,FTEMP);
4330 else { // SWC1/SDC1/SWC2/SDC2
4331 ra=get_reg(i_regs->regmap,agr);
4332 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4333 }
4334 }
4335 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4336 if(ra>=0) {
4337 int offset=imm[i];
4338 int c=(i_regs->wasconst>>rs)&1;
4339 if(dops[i].rs1==0) {
4340 // Using r0 as a base address
4341 if(!entry||entry[ra]!=agr) {
4342 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4343 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4344 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4345 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4346 }else{
4347 emit_movimm(offset,ra);
4348 }
4349 } // else did it in the previous cycle
4350 }
4351 else if(rs<0) {
4352 if(!entry||entry[ra]!=dops[i].rs1)
4353 emit_loadreg(dops[i].rs1,ra);
4354 //if(!entry||entry[ra]!=dops[i].rs1)
4355 // printf("poor load scheduling!\n");
4356 }
4357 else if(c) {
4358 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4359 if(!entry||entry[ra]!=agr) {
4360 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4361 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4362 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4363 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4364 }else{
4365 emit_movimm(constmap[i][rs]+offset,ra);
4366 regs[i].loadedconst|=1<<ra;
4367 }
4368 } // else did it in the previous cycle
4369 } // else load_consts already did it
4370 }
4371 if(offset&&!c&&dops[i].rs1) {
4372 if(rs>=0) {
4373 emit_addimm(rs,offset,ra);
4374 }else{
4375 emit_addimm(ra,offset,ra);
4376 }
4377 }
4378 }
4379 }
4380 // Preload constants for next instruction
4381 if (dops[i+1].is_load || dops[i+1].is_store) {
4382 int agr,ra;
4383 // Actual address
4384 agr=AGEN1+((i+1)&1);
4385 ra=get_reg(i_regs->regmap,agr);
4386 if(ra>=0) {
4387 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4388 int offset=imm[i+1];
4389 int c=(regs[i+1].wasconst>>rs)&1;
4390 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4391 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4392 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4393 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4394 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4395 }else{
4396 emit_movimm(constmap[i+1][rs]+offset,ra);
4397 regs[i+1].loadedconst|=1<<ra;
4398 }
4399 }
4400 else if(dops[i+1].rs1==0) {
4401 // Using r0 as a base address
4402 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4403 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4404 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4405 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4406 }else{
4407 emit_movimm(offset,ra);
4408 }
4409 }
4410 }
4411 }
4412}
4413
4414static int get_final_value(int hr, int i, int *value)
4415{
4416 int reg=regs[i].regmap[hr];
4417 while(i<slen-1) {
4418 if(regs[i+1].regmap[hr]!=reg) break;
4419 if(!((regs[i+1].isconst>>hr)&1)) break;
4420 if(dops[i+1].bt) break;
4421 i++;
4422 }
4423 if(i<slen-1) {
4424 if (dops[i].is_jump) {
4425 *value=constmap[i][hr];
4426 return 1;
4427 }
4428 if(!dops[i+1].bt) {
4429 if (dops[i+1].is_jump) {
4430 // Load in delay slot, out-of-order execution
4431 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4432 {
4433 // Precompute load address
4434 *value=constmap[i][hr]+imm[i+2];
4435 return 1;
4436 }
4437 }
4438 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4439 {
4440 // Precompute load address
4441 *value=constmap[i][hr]+imm[i+1];
4442 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4443 return 1;
4444 }
4445 }
4446 }
4447 *value=constmap[i][hr];
4448 //printf("c=%lx\n",(long)constmap[i][hr]);
4449 if(i==slen-1) return 1;
4450 assert(reg < 64);
4451 return !((unneeded_reg[i+1]>>reg)&1);
4452}
4453
4454// Load registers with known constants
4455static void load_consts(signed char pre[],signed char regmap[],int i)
4456{
4457 int hr,hr2;
4458 // propagate loaded constant flags
4459 if(i==0||dops[i].bt)
4460 regs[i].loadedconst=0;
4461 else {
4462 for(hr=0;hr<HOST_REGS;hr++) {
4463 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4464 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4465 {
4466 regs[i].loadedconst|=1<<hr;
4467 }
4468 }
4469 }
4470 // Load 32-bit regs
4471 for(hr=0;hr<HOST_REGS;hr++) {
4472 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4473 //if(entry[hr]!=regmap[hr]) {
4474 if(!((regs[i].loadedconst>>hr)&1)) {
4475 assert(regmap[hr]<64);
4476 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4477 int value,similar=0;
4478 if(get_final_value(hr,i,&value)) {
4479 // see if some other register has similar value
4480 for(hr2=0;hr2<HOST_REGS;hr2++) {
4481 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4482 if(is_similar_value(value,constmap[i][hr2])) {
4483 similar=1;
4484 break;
4485 }
4486 }
4487 }
4488 if(similar) {
4489 int value2;
4490 if(get_final_value(hr2,i,&value2)) // is this needed?
4491 emit_movimm_from(value2,hr2,value,hr);
4492 else
4493 emit_movimm(value,hr);
4494 }
4495 else if(value==0) {
4496 emit_zeroreg(hr);
4497 }
4498 else {
4499 emit_movimm(value,hr);
4500 }
4501 }
4502 regs[i].loadedconst|=1<<hr;
4503 }
4504 }
4505 }
4506 }
4507}
4508
4509static void load_all_consts(const signed char regmap[], u_int dirty, int i)
4510{
4511 int hr;
4512 // Load 32-bit regs
4513 for(hr=0;hr<HOST_REGS;hr++) {
4514 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4515 assert(regmap[hr] < 64);
4516 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4517 int value=constmap[i][hr];
4518 if(value==0) {
4519 emit_zeroreg(hr);
4520 }
4521 else {
4522 emit_movimm(value,hr);
4523 }
4524 }
4525 }
4526 }
4527}
4528
4529// Write out all dirty registers (except cycle count)
4530static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty)
4531{
4532 int hr;
4533 for(hr=0;hr<HOST_REGS;hr++) {
4534 if(hr!=EXCLUDE_REG) {
4535 if(i_regmap[hr]>0) {
4536 if(i_regmap[hr]!=CCREG) {
4537 if((i_dirty>>hr)&1) {
4538 assert(i_regmap[hr]<64);
4539 emit_storereg(i_regmap[hr],hr);
4540 }
4541 }
4542 }
4543 }
4544 }
4545}
4546
4547// Write out dirty registers that we need to reload (pair with load_needed_regs)
4548// This writes the registers not written by store_regs_bt
4549static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr)
4550{
4551 int hr;
4552 int t=(addr-start)>>2;
4553 for(hr=0;hr<HOST_REGS;hr++) {
4554 if(hr!=EXCLUDE_REG) {
4555 if(i_regmap[hr]>0) {
4556 if(i_regmap[hr]!=CCREG) {
4557 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4558 if((i_dirty>>hr)&1) {
4559 assert(i_regmap[hr]<64);
4560 emit_storereg(i_regmap[hr],hr);
4561 }
4562 }
4563 }
4564 }
4565 }
4566 }
4567}
4568
4569// Load all registers (except cycle count)
4570static void load_all_regs(const signed char i_regmap[])
4571{
4572 int hr;
4573 for(hr=0;hr<HOST_REGS;hr++) {
4574 if(hr!=EXCLUDE_REG) {
4575 if(i_regmap[hr]==0) {
4576 emit_zeroreg(hr);
4577 }
4578 else
4579 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4580 {
4581 emit_loadreg(i_regmap[hr],hr);
4582 }
4583 }
4584 }
4585}
4586
4587// Load all current registers also needed by next instruction
4588static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[])
4589{
4590 int hr;
4591 for(hr=0;hr<HOST_REGS;hr++) {
4592 if(hr!=EXCLUDE_REG) {
4593 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4594 if(i_regmap[hr]==0) {
4595 emit_zeroreg(hr);
4596 }
4597 else
4598 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4599 {
4600 emit_loadreg(i_regmap[hr],hr);
4601 }
4602 }
4603 }
4604 }
4605}
4606
4607// Load all regs, storing cycle count if necessary
4608static void load_regs_entry(int t)
4609{
4610 int hr;
4611 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4612 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t],HOST_CCREG);
4613 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4614 emit_storereg(CCREG,HOST_CCREG);
4615 }
4616 // Load 32-bit regs
4617 for(hr=0;hr<HOST_REGS;hr++) {
4618 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4619 if(regs[t].regmap_entry[hr]==0) {
4620 emit_zeroreg(hr);
4621 }
4622 else if(regs[t].regmap_entry[hr]!=CCREG)
4623 {
4624 emit_loadreg(regs[t].regmap_entry[hr],hr);
4625 }
4626 }
4627 }
4628}
4629
4630// Store dirty registers prior to branch
4631static void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4632{
4633 if(internal_branch(addr))
4634 {
4635 int t=(addr-start)>>2;
4636 int hr;
4637 for(hr=0;hr<HOST_REGS;hr++) {
4638 if(hr!=EXCLUDE_REG) {
4639 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4640 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4641 if((i_dirty>>hr)&1) {
4642 assert(i_regmap[hr]<64);
4643 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4644 emit_storereg(i_regmap[hr],hr);
4645 }
4646 }
4647 }
4648 }
4649 }
4650 }
4651 else
4652 {
4653 // Branch out of this block, write out all dirty regs
4654 wb_dirtys(i_regmap,i_dirty);
4655 }
4656}
4657
4658// Load all needed registers for branch target
4659static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4660{
4661 //if(addr>=start && addr<(start+slen*4))
4662 if(internal_branch(addr))
4663 {
4664 int t=(addr-start)>>2;
4665 int hr;
4666 // Store the cycle count before loading something else
4667 if(i_regmap[HOST_CCREG]!=CCREG) {
4668 assert(i_regmap[HOST_CCREG]==-1);
4669 }
4670 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4671 emit_storereg(CCREG,HOST_CCREG);
4672 }
4673 // Load 32-bit regs
4674 for(hr=0;hr<HOST_REGS;hr++) {
4675 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4676 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4677 if(regs[t].regmap_entry[hr]==0) {
4678 emit_zeroreg(hr);
4679 }
4680 else if(regs[t].regmap_entry[hr]!=CCREG)
4681 {
4682 emit_loadreg(regs[t].regmap_entry[hr],hr);
4683 }
4684 }
4685 }
4686 }
4687 }
4688}
4689
4690static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4691{
4692 if(addr>=start && addr<start+slen*4-4)
4693 {
4694 int t=(addr-start)>>2;
4695 int hr;
4696 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4697 for(hr=0;hr<HOST_REGS;hr++)
4698 {
4699 if(hr!=EXCLUDE_REG)
4700 {
4701 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4702 {
4703 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4704 {
4705 return 0;
4706 }
4707 else
4708 if((i_dirty>>hr)&1)
4709 {
4710 if(i_regmap[hr]<TEMPREG)
4711 {
4712 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4713 return 0;
4714 }
4715 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4716 {
4717 assert(0);
4718 }
4719 }
4720 }
4721 else // Same register but is it 32-bit or dirty?
4722 if(i_regmap[hr]>=0)
4723 {
4724 if(!((regs[t].dirty>>hr)&1))
4725 {
4726 if((i_dirty>>hr)&1)
4727 {
4728 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4729 {
4730 //printf("%x: dirty no match\n",addr);
4731 return 0;
4732 }
4733 }
4734 }
4735 }
4736 }
4737 }
4738 // Delay slots are not valid branch targets
4739 //if(t>0&&(dops[t-1].is_jump) return 0;
4740 // Delay slots require additional processing, so do not match
4741 if(dops[t].is_ds) return 0;
4742 }
4743 else
4744 {
4745 int hr;
4746 for(hr=0;hr<HOST_REGS;hr++)
4747 {
4748 if(hr!=EXCLUDE_REG)
4749 {
4750 if(i_regmap[hr]>=0)
4751 {
4752 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4753 {
4754 if((i_dirty>>hr)&1)
4755 {
4756 return 0;
4757 }
4758 }
4759 }
4760 }
4761 }
4762 }
4763 return 1;
4764}
4765
4766#ifdef DRC_DBG
4767static void drc_dbg_emit_do_cmp(int i, int ccadj_)
4768{
4769 extern void do_insn_cmp();
4770 //extern int cycle;
4771 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4772
4773 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4774 save_regs(reglist);
4775 // write out changed consts to match the interpreter
4776 if (i > 0 && !dops[i].bt) {
4777 for (hr = 0; hr < HOST_REGS; hr++) {
4778 int reg = regs[i].regmap_entry[hr]; // regs[i-1].regmap[hr];
4779 if (hr == EXCLUDE_REG || reg < 0)
4780 continue;
4781 if (!((regs[i-1].isconst >> hr) & 1))
4782 continue;
4783 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4784 continue;
4785 emit_movimm(constmap[i-1][hr],0);
4786 emit_storereg(reg, 0);
4787 }
4788 }
4789 emit_movimm(start+i*4,0);
4790 emit_writeword(0,&pcaddr);
4791 int cc = get_reg(regs[i].regmap_entry, CCREG);
4792 if (cc < 0)
4793 emit_loadreg(CCREG, cc = 0);
4794 emit_addimm(cc, ccadj_, 0);
4795 emit_writeword(0, &psxRegs.cycle);
4796 emit_far_call(do_insn_cmp);
4797 //emit_readword(&cycle,0);
4798 //emit_addimm(0,2,0);
4799 //emit_writeword(0,&cycle);
4800 (void)get_reg2;
4801 restore_regs(reglist);
4802 assem_debug("\\\\do_insn_cmp\n");
4803}
4804#else
4805#define drc_dbg_emit_do_cmp(x,y)
4806#endif
4807
4808// Used when a branch jumps into the delay slot of another branch
4809static void ds_assemble_entry(int i)
4810{
4811 int t = (ba[i] - start) >> 2;
4812 int ccadj_ = -CLOCK_ADJUST(1);
4813 if (!instr_addr[t])
4814 instr_addr[t] = out;
4815 assem_debug("Assemble delay slot at %x\n",ba[i]);
4816 assem_debug("<->\n");
4817 drc_dbg_emit_do_cmp(t, ccadj_);
4818 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4819 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4820 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4821 address_generation(t,&regs[t],regs[t].regmap_entry);
4822 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4823 load_reg(regs[t].regmap_entry,regs[t].regmap,ROREG);
4824 if (dops[t].is_store)
4825 load_reg(regs[t].regmap_entry,regs[t].regmap,INVCP);
4826 is_delayslot=0;
4827 switch (dops[t].itype) {
4828 case SYSCALL:
4829 case HLECALL:
4830 case INTCALL:
4831 case UJUMP:
4832 case RJUMP:
4833 case CJUMP:
4834 case SJUMP:
4835 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4836 break;
4837 default:
4838 assemble(t, &regs[t], ccadj_);
4839 }
4840 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4841 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4842 if(internal_branch(ba[i]+4))
4843 assem_debug("branch: internal\n");
4844 else
4845 assem_debug("branch: external\n");
4846 assert(internal_branch(ba[i]+4));
4847 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4848 emit_jmp(0);
4849}
4850
4851// Load 2 immediates optimizing for small code size
4852static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4853{
4854 emit_movimm(imm1,rt1);
4855 emit_movimm_from(imm1,rt1,imm2,rt2);
4856}
4857
4858static void do_cc(int i, const signed char i_regmap[], int *adj,
4859 int addr, int taken, int invert)
4860{
4861 int count, count_plus2;
4862 void *jaddr;
4863 void *idle=NULL;
4864 int t=0;
4865 if(dops[i].itype==RJUMP)
4866 {
4867 *adj=0;
4868 }
4869 //if(ba[i]>=start && ba[i]<(start+slen*4))
4870 if(internal_branch(ba[i]))
4871 {
4872 t=(ba[i]-start)>>2;
4873 if(dops[t].is_ds) *adj=-CLOCK_ADJUST(1); // Branch into delay slot adds an extra cycle
4874 else *adj=ccadj[t];
4875 }
4876 else
4877 {
4878 *adj=0;
4879 }
4880 count = ccadj[i];
4881 count_plus2 = count + CLOCK_ADJUST(2);
4882 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4883 // Idle loop
4884 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4885 idle=out;
4886 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4887 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4888 jaddr=out;
4889 emit_jmp(0);
4890 }
4891 else if(*adj==0||invert) {
4892 int cycles = count_plus2;
4893 // faster loop HACK
4894#if 0
4895 if (t&&*adj) {
4896 int rel=t-i;
4897 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4898 cycles=*adj+count+2-*adj;
4899 }
4900#endif
4901 emit_addimm_and_set_flags(cycles, HOST_CCREG);
4902 jaddr = out;
4903 emit_jns(0);
4904 }
4905 else
4906 {
4907 emit_cmpimm(HOST_CCREG, -count_plus2);
4908 jaddr = out;
4909 emit_jns(0);
4910 }
4911 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:count_plus2,i,addr,taken,0);
4912}
4913
4914static void do_ccstub(int n)
4915{
4916 literal_pool(256);
4917 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4918 set_jump_target(stubs[n].addr, out);
4919 int i=stubs[n].b;
4920 if(stubs[n].d==NULLDS) {
4921 // Delay slot instruction is nullified ("likely" branch)
4922 wb_dirtys(regs[i].regmap,regs[i].dirty);
4923 }
4924 else if(stubs[n].d!=TAKEN) {
4925 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4926 }
4927 else {
4928 if(internal_branch(ba[i]))
4929 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4930 }
4931 if(stubs[n].c!=-1)
4932 {
4933 // Save PC as return address
4934 emit_movimm(stubs[n].c,EAX);
4935 emit_writeword(EAX,&pcaddr);
4936 }
4937 else
4938 {
4939 // Return address depends on which way the branch goes
4940 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4941 {
4942 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4943 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4944 if(dops[i].rs1==0)
4945 {
4946 s1l=s2l;
4947 s2l=-1;
4948 }
4949 else if(dops[i].rs2==0)
4950 {
4951 s2l=-1;
4952 }
4953 assert(s1l>=0);
4954 #ifdef DESTRUCTIVE_WRITEBACK
4955 if(dops[i].rs1) {
4956 if((branch_regs[i].dirty>>s1l)&&1)
4957 emit_loadreg(dops[i].rs1,s1l);
4958 }
4959 else {
4960 if((branch_regs[i].dirty>>s1l)&1)
4961 emit_loadreg(dops[i].rs2,s1l);
4962 }
4963 if(s2l>=0)
4964 if((branch_regs[i].dirty>>s2l)&1)
4965 emit_loadreg(dops[i].rs2,s2l);
4966 #endif
4967 int hr=0;
4968 int addr=-1,alt=-1,ntaddr=-1;
4969 while(hr<HOST_REGS)
4970 {
4971 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4972 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4973 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4974 {
4975 addr=hr++;break;
4976 }
4977 hr++;
4978 }
4979 while(hr<HOST_REGS)
4980 {
4981 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4982 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4983 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4984 {
4985 alt=hr++;break;
4986 }
4987 hr++;
4988 }
4989 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
4990 {
4991 while(hr<HOST_REGS)
4992 {
4993 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4994 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4995 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4996 {
4997 ntaddr=hr;break;
4998 }
4999 hr++;
5000 }
5001 assert(hr<HOST_REGS);
5002 }
5003 if((dops[i].opcode&0x2f)==4) // BEQ
5004 {
5005 #ifdef HAVE_CMOV_IMM
5006 if(s2l>=0) emit_cmp(s1l,s2l);
5007 else emit_test(s1l,s1l);
5008 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5009 #else
5010 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5011 if(s2l>=0) emit_cmp(s1l,s2l);
5012 else emit_test(s1l,s1l);
5013 emit_cmovne_reg(alt,addr);
5014 #endif
5015 }
5016 if((dops[i].opcode&0x2f)==5) // BNE
5017 {
5018 #ifdef HAVE_CMOV_IMM
5019 if(s2l>=0) emit_cmp(s1l,s2l);
5020 else emit_test(s1l,s1l);
5021 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5022 #else
5023 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5024 if(s2l>=0) emit_cmp(s1l,s2l);
5025 else emit_test(s1l,s1l);
5026 emit_cmovne_reg(alt,addr);
5027 #endif
5028 }
5029 if((dops[i].opcode&0x2f)==6) // BLEZ
5030 {
5031 //emit_movimm(ba[i],alt);
5032 //emit_movimm(start+i*4+8,addr);
5033 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5034 emit_cmpimm(s1l,1);
5035 emit_cmovl_reg(alt,addr);
5036 }
5037 if((dops[i].opcode&0x2f)==7) // BGTZ
5038 {
5039 //emit_movimm(ba[i],addr);
5040 //emit_movimm(start+i*4+8,ntaddr);
5041 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5042 emit_cmpimm(s1l,1);
5043 emit_cmovl_reg(ntaddr,addr);
5044 }
5045 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
5046 {
5047 //emit_movimm(ba[i],alt);
5048 //emit_movimm(start+i*4+8,addr);
5049 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5050 emit_test(s1l,s1l);
5051 emit_cmovs_reg(alt,addr);
5052 }
5053 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
5054 {
5055 //emit_movimm(ba[i],addr);
5056 //emit_movimm(start+i*4+8,alt);
5057 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5058 emit_test(s1l,s1l);
5059 emit_cmovs_reg(alt,addr);
5060 }
5061 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5062 if(source[i]&0x10000) // BC1T
5063 {
5064 //emit_movimm(ba[i],alt);
5065 //emit_movimm(start+i*4+8,addr);
5066 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5067 emit_testimm(s1l,0x800000);
5068 emit_cmovne_reg(alt,addr);
5069 }
5070 else // BC1F
5071 {
5072 //emit_movimm(ba[i],addr);
5073 //emit_movimm(start+i*4+8,alt);
5074 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5075 emit_testimm(s1l,0x800000);
5076 emit_cmovne_reg(alt,addr);
5077 }
5078 }
5079 emit_writeword(addr,&pcaddr);
5080 }
5081 else
5082 if(dops[i].itype==RJUMP)
5083 {
5084 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
5085 if (ds_writes_rjump_rs(i)) {
5086 r=get_reg(branch_regs[i].regmap,RTEMP);
5087 }
5088 emit_writeword(r,&pcaddr);
5089 }
5090 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
5091 }
5092 // Update cycle count
5093 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5094 if(stubs[n].a) emit_addimm(HOST_CCREG,(int)stubs[n].a,HOST_CCREG);
5095 emit_far_call(cc_interrupt);
5096 if(stubs[n].a) emit_addimm(HOST_CCREG,-(int)stubs[n].a,HOST_CCREG);
5097 if(stubs[n].d==TAKEN) {
5098 if(internal_branch(ba[i]))
5099 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5100 else if(dops[i].itype==RJUMP) {
5101 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5102 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5103 else
5104 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
5105 }
5106 }else if(stubs[n].d==NOTTAKEN) {
5107 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5108 else load_all_regs(branch_regs[i].regmap);
5109 }else if(stubs[n].d==NULLDS) {
5110 // Delay slot instruction is nullified ("likely" branch)
5111 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5112 else load_all_regs(regs[i].regmap);
5113 }else{
5114 load_all_regs(branch_regs[i].regmap);
5115 }
5116 if (stubs[n].retaddr)
5117 emit_jmp(stubs[n].retaddr);
5118 else
5119 do_jump_vaddr(stubs[n].e);
5120}
5121
5122static void add_to_linker(void *addr, u_int target, int is_internal)
5123{
5124 assert(linkcount < ARRAY_SIZE(link_addr));
5125 link_addr[linkcount].addr = addr;
5126 link_addr[linkcount].target = target;
5127 link_addr[linkcount].internal = is_internal;
5128 linkcount++;
5129}
5130
5131static void ujump_assemble_write_ra(int i)
5132{
5133 int rt;
5134 unsigned int return_address;
5135 rt=get_reg(branch_regs[i].regmap,31);
5136 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5137 //assert(rt>=0);
5138 return_address=start+i*4+8;
5139 if(rt>=0) {
5140 #ifdef USE_MINI_HT
5141 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5142 int temp=-1; // note: must be ds-safe
5143 #ifdef HOST_TEMPREG
5144 temp=HOST_TEMPREG;
5145 #endif
5146 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5147 else emit_movimm(return_address,rt);
5148 }
5149 else
5150 #endif
5151 {
5152 #ifdef REG_PREFETCH
5153 if(temp>=0)
5154 {
5155 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5156 }
5157 #endif
5158 emit_movimm(return_address,rt); // PC into link register
5159 #ifdef IMM_PREFETCH
5160 emit_prefetch(hash_table_get(return_address));
5161 #endif
5162 }
5163 }
5164}
5165
5166static void ujump_assemble(int i, const struct regstat *i_regs)
5167{
5168 int ra_done=0;
5169 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5170 address_generation(i+1,i_regs,regs[i].regmap_entry);
5171 #ifdef REG_PREFETCH
5172 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5173 if(dops[i].rt1==31&&temp>=0)
5174 {
5175 signed char *i_regmap=i_regs->regmap;
5176 int return_address=start+i*4+8;
5177 if(get_reg(branch_regs[i].regmap,31)>0)
5178 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5179 }
5180 #endif
5181 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5182 ujump_assemble_write_ra(i); // writeback ra for DS
5183 ra_done=1;
5184 }
5185 ds_assemble(i+1,i_regs);
5186 uint64_t bc_unneeded=branch_regs[i].u;
5187 bc_unneeded|=1|(1LL<<dops[i].rt1);
5188 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5189 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5190 if(!ra_done&&dops[i].rt1==31)
5191 ujump_assemble_write_ra(i);
5192 int cc,adj;
5193 cc=get_reg(branch_regs[i].regmap,CCREG);
5194 assert(cc==HOST_CCREG);
5195 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5196 #ifdef REG_PREFETCH
5197 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5198 #endif
5199 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5200 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5201 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5202 if(internal_branch(ba[i]))
5203 assem_debug("branch: internal\n");
5204 else
5205 assem_debug("branch: external\n");
5206 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5207 ds_assemble_entry(i);
5208 }
5209 else {
5210 add_to_linker(out,ba[i],internal_branch(ba[i]));
5211 emit_jmp(0);
5212 }
5213}
5214
5215static void rjump_assemble_write_ra(int i)
5216{
5217 int rt,return_address;
5218 assert(dops[i+1].rt1!=dops[i].rt1);
5219 assert(dops[i+1].rt2!=dops[i].rt1);
5220 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5221 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5222 assert(rt>=0);
5223 return_address=start+i*4+8;
5224 #ifdef REG_PREFETCH
5225 if(temp>=0)
5226 {
5227 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5228 }
5229 #endif
5230 emit_movimm(return_address,rt); // PC into link register
5231 #ifdef IMM_PREFETCH
5232 emit_prefetch(hash_table_get(return_address));
5233 #endif
5234}
5235
5236static void rjump_assemble(int i, const struct regstat *i_regs)
5237{
5238 int temp;
5239 int rs,cc;
5240 int ra_done=0;
5241 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5242 assert(rs>=0);
5243 if (ds_writes_rjump_rs(i)) {
5244 // Delay slot abuse, make a copy of the branch address register
5245 temp=get_reg(branch_regs[i].regmap,RTEMP);
5246 assert(temp>=0);
5247 assert(regs[i].regmap[temp]==RTEMP);
5248 emit_mov(rs,temp);
5249 rs=temp;
5250 }
5251 address_generation(i+1,i_regs,regs[i].regmap_entry);
5252 #ifdef REG_PREFETCH
5253 if(dops[i].rt1==31)
5254 {
5255 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5256 signed char *i_regmap=i_regs->regmap;
5257 int return_address=start+i*4+8;
5258 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5259 }
5260 }
5261 #endif
5262 #ifdef USE_MINI_HT
5263 if(dops[i].rs1==31) {
5264 int rh=get_reg(regs[i].regmap,RHASH);
5265 if(rh>=0) do_preload_rhash(rh);
5266 }
5267 #endif
5268 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5269 rjump_assemble_write_ra(i);
5270 ra_done=1;
5271 }
5272 ds_assemble(i+1,i_regs);
5273 uint64_t bc_unneeded=branch_regs[i].u;
5274 bc_unneeded|=1|(1LL<<dops[i].rt1);
5275 bc_unneeded&=~(1LL<<dops[i].rs1);
5276 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5277 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5278 if(!ra_done&&dops[i].rt1!=0)
5279 rjump_assemble_write_ra(i);
5280 cc=get_reg(branch_regs[i].regmap,CCREG);
5281 assert(cc==HOST_CCREG);
5282 (void)cc;
5283 #ifdef USE_MINI_HT
5284 int rh=get_reg(branch_regs[i].regmap,RHASH);
5285 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5286 if(dops[i].rs1==31) {
5287 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5288 do_preload_rhtbl(ht);
5289 do_rhash(rs,rh);
5290 }
5291 #endif
5292 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5293 #ifdef DESTRUCTIVE_WRITEBACK
5294 if((branch_regs[i].dirty>>rs)&1) {
5295 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5296 emit_loadreg(dops[i].rs1,rs);
5297 }
5298 }
5299 #endif
5300 #ifdef REG_PREFETCH
5301 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5302 #endif
5303 #ifdef USE_MINI_HT
5304 if(dops[i].rs1==31) {
5305 do_miniht_load(ht,rh);
5306 }
5307 #endif
5308 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5309 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5310 //assert(adj==0);
5311 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5312 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5313 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5314 // special case for RFE
5315 emit_jmp(0);
5316 else
5317 emit_jns(0);
5318 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5319 #ifdef USE_MINI_HT
5320 if(dops[i].rs1==31) {
5321 do_miniht_jump(rs,rh,ht);
5322 }
5323 else
5324 #endif
5325 {
5326 do_jump_vaddr(rs);
5327 }
5328 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5329 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5330 #endif
5331}
5332
5333static void cjump_assemble(int i, const struct regstat *i_regs)
5334{
5335 const signed char *i_regmap = i_regs->regmap;
5336 int cc;
5337 int match;
5338 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5339 assem_debug("match=%d\n",match);
5340 int s1l,s2l;
5341 int unconditional=0,nop=0;
5342 int invert=0;
5343 int internal=internal_branch(ba[i]);
5344 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5345 if(!match) invert=1;
5346 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5347 if(i>(ba[i]-start)>>2) invert=1;
5348 #endif
5349 #ifdef __aarch64__
5350 invert=1; // because of near cond. branches
5351 #endif
5352
5353 if(dops[i].ooo) {
5354 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5355 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5356 }
5357 else {
5358 s1l=get_reg(i_regmap,dops[i].rs1);
5359 s2l=get_reg(i_regmap,dops[i].rs2);
5360 }
5361 if(dops[i].rs1==0&&dops[i].rs2==0)
5362 {
5363 if(dops[i].opcode&1) nop=1;
5364 else unconditional=1;
5365 //assert(dops[i].opcode!=5);
5366 //assert(dops[i].opcode!=7);
5367 //assert(dops[i].opcode!=0x15);
5368 //assert(dops[i].opcode!=0x17);
5369 }
5370 else if(dops[i].rs1==0)
5371 {
5372 s1l=s2l;
5373 s2l=-1;
5374 }
5375 else if(dops[i].rs2==0)
5376 {
5377 s2l=-1;
5378 }
5379
5380 if(dops[i].ooo) {
5381 // Out of order execution (delay slot first)
5382 //printf("OOOE\n");
5383 address_generation(i+1,i_regs,regs[i].regmap_entry);
5384 ds_assemble(i+1,i_regs);
5385 int adj;
5386 uint64_t bc_unneeded=branch_regs[i].u;
5387 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5388 bc_unneeded|=1;
5389 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5390 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5391 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5392 cc=get_reg(branch_regs[i].regmap,CCREG);
5393 assert(cc==HOST_CCREG);
5394 if(unconditional)
5395 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5396 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5397 //assem_debug("cycle count (adj)\n");
5398 if(unconditional) {
5399 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5400 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5401 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5402 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5403 if(internal)
5404 assem_debug("branch: internal\n");
5405 else
5406 assem_debug("branch: external\n");
5407 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5408 ds_assemble_entry(i);
5409 }
5410 else {
5411 add_to_linker(out,ba[i],internal);
5412 emit_jmp(0);
5413 }
5414 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5415 if(((u_int)out)&7) emit_addnop(0);
5416 #endif
5417 }
5418 }
5419 else if(nop) {
5420 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5421 void *jaddr=out;
5422 emit_jns(0);
5423 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5424 }
5425 else {
5426 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5427 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5428 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5429
5430 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5431 assert(s1l>=0);
5432 if(dops[i].opcode==4) // BEQ
5433 {
5434 if(s2l>=0) emit_cmp(s1l,s2l);
5435 else emit_test(s1l,s1l);
5436 if(invert){
5437 nottaken=out;
5438 emit_jne(DJT_1);
5439 }else{
5440 add_to_linker(out,ba[i],internal);
5441 emit_jeq(0);
5442 }
5443 }
5444 if(dops[i].opcode==5) // BNE
5445 {
5446 if(s2l>=0) emit_cmp(s1l,s2l);
5447 else emit_test(s1l,s1l);
5448 if(invert){
5449 nottaken=out;
5450 emit_jeq(DJT_1);
5451 }else{
5452 add_to_linker(out,ba[i],internal);
5453 emit_jne(0);
5454 }
5455 }
5456 if(dops[i].opcode==6) // BLEZ
5457 {
5458 emit_cmpimm(s1l,1);
5459 if(invert){
5460 nottaken=out;
5461 emit_jge(DJT_1);
5462 }else{
5463 add_to_linker(out,ba[i],internal);
5464 emit_jl(0);
5465 }
5466 }
5467 if(dops[i].opcode==7) // BGTZ
5468 {
5469 emit_cmpimm(s1l,1);
5470 if(invert){
5471 nottaken=out;
5472 emit_jl(DJT_1);
5473 }else{
5474 add_to_linker(out,ba[i],internal);
5475 emit_jge(0);
5476 }
5477 }
5478 if(invert) {
5479 if(taken) set_jump_target(taken, out);
5480 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5481 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5482 if(adj) {
5483 emit_addimm(cc,-adj,cc);
5484 add_to_linker(out,ba[i],internal);
5485 }else{
5486 emit_addnop(13);
5487 add_to_linker(out,ba[i],internal*2);
5488 }
5489 emit_jmp(0);
5490 }else
5491 #endif
5492 {
5493 if(adj) emit_addimm(cc,-adj,cc);
5494 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5495 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5496 if(internal)
5497 assem_debug("branch: internal\n");
5498 else
5499 assem_debug("branch: external\n");
5500 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5501 ds_assemble_entry(i);
5502 }
5503 else {
5504 add_to_linker(out,ba[i],internal);
5505 emit_jmp(0);
5506 }
5507 }
5508 set_jump_target(nottaken, out);
5509 }
5510
5511 if(nottaken1) set_jump_target(nottaken1, out);
5512 if(adj) {
5513 if(!invert) emit_addimm(cc,adj,cc);
5514 }
5515 } // (!unconditional)
5516 } // if(ooo)
5517 else
5518 {
5519 // In-order execution (branch first)
5520 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5521 if(!unconditional&&!nop) {
5522 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5523 assert(s1l>=0);
5524 if((dops[i].opcode&0x2f)==4) // BEQ
5525 {
5526 if(s2l>=0) emit_cmp(s1l,s2l);
5527 else emit_test(s1l,s1l);
5528 nottaken=out;
5529 emit_jne(DJT_2);
5530 }
5531 if((dops[i].opcode&0x2f)==5) // BNE
5532 {
5533 if(s2l>=0) emit_cmp(s1l,s2l);
5534 else emit_test(s1l,s1l);
5535 nottaken=out;
5536 emit_jeq(DJT_2);
5537 }
5538 if((dops[i].opcode&0x2f)==6) // BLEZ
5539 {
5540 emit_cmpimm(s1l,1);
5541 nottaken=out;
5542 emit_jge(DJT_2);
5543 }
5544 if((dops[i].opcode&0x2f)==7) // BGTZ
5545 {
5546 emit_cmpimm(s1l,1);
5547 nottaken=out;
5548 emit_jl(DJT_2);
5549 }
5550 } // if(!unconditional)
5551 int adj;
5552 uint64_t ds_unneeded=branch_regs[i].u;
5553 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5554 ds_unneeded|=1;
5555 // branch taken
5556 if(!nop) {
5557 if(taken) set_jump_target(taken, out);
5558 assem_debug("1:\n");
5559 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5560 // load regs
5561 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5562 address_generation(i+1,&branch_regs[i],0);
5563 if (ram_offset)
5564 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5565 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5566 ds_assemble(i+1,&branch_regs[i]);
5567 cc=get_reg(branch_regs[i].regmap,CCREG);
5568 if(cc==-1) {
5569 emit_loadreg(CCREG,cc=HOST_CCREG);
5570 // CHECK: Is the following instruction (fall thru) allocated ok?
5571 }
5572 assert(cc==HOST_CCREG);
5573 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5574 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5575 assem_debug("cycle count (adj)\n");
5576 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5577 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5578 if(internal)
5579 assem_debug("branch: internal\n");
5580 else
5581 assem_debug("branch: external\n");
5582 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5583 ds_assemble_entry(i);
5584 }
5585 else {
5586 add_to_linker(out,ba[i],internal);
5587 emit_jmp(0);
5588 }
5589 }
5590 // branch not taken
5591 if(!unconditional) {
5592 if(nottaken1) set_jump_target(nottaken1, out);
5593 set_jump_target(nottaken, out);
5594 assem_debug("2:\n");
5595 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5596 // load regs
5597 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5598 address_generation(i+1,&branch_regs[i],0);
5599 if (ram_offset)
5600 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5601 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5602 ds_assemble(i+1,&branch_regs[i]);
5603 cc=get_reg(branch_regs[i].regmap,CCREG);
5604 if (cc == -1) {
5605 // Cycle count isn't in a register, temporarily load it then write it out
5606 emit_loadreg(CCREG,HOST_CCREG);
5607 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5608 void *jaddr=out;
5609 emit_jns(0);
5610 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5611 emit_storereg(CCREG,HOST_CCREG);
5612 }
5613 else{
5614 cc=get_reg(i_regmap,CCREG);
5615 assert(cc==HOST_CCREG);
5616 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5617 void *jaddr=out;
5618 emit_jns(0);
5619 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5620 }
5621 }
5622 }
5623}
5624
5625static void sjump_assemble(int i, const struct regstat *i_regs)
5626{
5627 const signed char *i_regmap = i_regs->regmap;
5628 int cc;
5629 int match;
5630 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5631 assem_debug("smatch=%d ooo=%d\n", match, dops[i].ooo);
5632 int s1l;
5633 int unconditional=0,nevertaken=0;
5634 int invert=0;
5635 int internal=internal_branch(ba[i]);
5636 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5637 if(!match) invert=1;
5638 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5639 if(i>(ba[i]-start)>>2) invert=1;
5640 #endif
5641 #ifdef __aarch64__
5642 invert=1; // because of near cond. branches
5643 #endif
5644
5645 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5646 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5647
5648 if(dops[i].ooo) {
5649 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5650 }
5651 else {
5652 s1l=get_reg(i_regmap,dops[i].rs1);
5653 }
5654 if(dops[i].rs1==0)
5655 {
5656 if(dops[i].opcode2&1) unconditional=1;
5657 else nevertaken=1;
5658 // These are never taken (r0 is never less than zero)
5659 //assert(dops[i].opcode2!=0);
5660 //assert(dops[i].opcode2!=2);
5661 //assert(dops[i].opcode2!=0x10);
5662 //assert(dops[i].opcode2!=0x12);
5663 }
5664
5665 if(dops[i].ooo) {
5666 // Out of order execution (delay slot first)
5667 //printf("OOOE\n");
5668 address_generation(i+1,i_regs,regs[i].regmap_entry);
5669 ds_assemble(i+1,i_regs);
5670 int adj;
5671 uint64_t bc_unneeded=branch_regs[i].u;
5672 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5673 bc_unneeded|=1;
5674 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5675 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5676 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5677 if(dops[i].rt1==31) {
5678 int rt,return_address;
5679 rt=get_reg(branch_regs[i].regmap,31);
5680 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5681 if(rt>=0) {
5682 // Save the PC even if the branch is not taken
5683 return_address=start+i*4+8;
5684 emit_movimm(return_address,rt); // PC into link register
5685 #ifdef IMM_PREFETCH
5686 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5687 #endif
5688 }
5689 }
5690 cc=get_reg(branch_regs[i].regmap,CCREG);
5691 assert(cc==HOST_CCREG);
5692 if(unconditional)
5693 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5694 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5695 assem_debug("cycle count (adj)\n");
5696 if(unconditional) {
5697 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5698 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5699 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5700 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5701 if(internal)
5702 assem_debug("branch: internal\n");
5703 else
5704 assem_debug("branch: external\n");
5705 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5706 ds_assemble_entry(i);
5707 }
5708 else {
5709 add_to_linker(out,ba[i],internal);
5710 emit_jmp(0);
5711 }
5712 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5713 if(((u_int)out)&7) emit_addnop(0);
5714 #endif
5715 }
5716 }
5717 else if(nevertaken) {
5718 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5719 void *jaddr=out;
5720 emit_jns(0);
5721 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5722 }
5723 else {
5724 void *nottaken = NULL;
5725 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5726 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5727 {
5728 assert(s1l>=0);
5729 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5730 {
5731 emit_test(s1l,s1l);
5732 if(invert){
5733 nottaken=out;
5734 emit_jns(DJT_1);
5735 }else{
5736 add_to_linker(out,ba[i],internal);
5737 emit_js(0);
5738 }
5739 }
5740 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5741 {
5742 emit_test(s1l,s1l);
5743 if(invert){
5744 nottaken=out;
5745 emit_js(DJT_1);
5746 }else{
5747 add_to_linker(out,ba[i],internal);
5748 emit_jns(0);
5749 }
5750 }
5751 }
5752
5753 if(invert) {
5754 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5755 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5756 if(adj) {
5757 emit_addimm(cc,-adj,cc);
5758 add_to_linker(out,ba[i],internal);
5759 }else{
5760 emit_addnop(13);
5761 add_to_linker(out,ba[i],internal*2);
5762 }
5763 emit_jmp(0);
5764 }else
5765 #endif
5766 {
5767 if(adj) emit_addimm(cc,-adj,cc);
5768 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5769 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5770 if(internal)
5771 assem_debug("branch: internal\n");
5772 else
5773 assem_debug("branch: external\n");
5774 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5775 ds_assemble_entry(i);
5776 }
5777 else {
5778 add_to_linker(out,ba[i],internal);
5779 emit_jmp(0);
5780 }
5781 }
5782 set_jump_target(nottaken, out);
5783 }
5784
5785 if(adj) {
5786 if(!invert) emit_addimm(cc,adj,cc);
5787 }
5788 } // (!unconditional)
5789 } // if(ooo)
5790 else
5791 {
5792 // In-order execution (branch first)
5793 //printf("IOE\n");
5794 void *nottaken = NULL;
5795 if(dops[i].rt1==31) {
5796 int rt,return_address;
5797 rt=get_reg(branch_regs[i].regmap,31);
5798 if(rt>=0) {
5799 // Save the PC even if the branch is not taken
5800 return_address=start+i*4+8;
5801 emit_movimm(return_address,rt); // PC into link register
5802 #ifdef IMM_PREFETCH
5803 emit_prefetch(hash_table_get(return_address));
5804 #endif
5805 }
5806 }
5807 if(!unconditional) {
5808 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5809 assert(s1l>=0);
5810 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5811 {
5812 emit_test(s1l,s1l);
5813 nottaken=out;
5814 emit_jns(DJT_1);
5815 }
5816 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5817 {
5818 emit_test(s1l,s1l);
5819 nottaken=out;
5820 emit_js(DJT_1);
5821 }
5822 } // if(!unconditional)
5823 int adj;
5824 uint64_t ds_unneeded=branch_regs[i].u;
5825 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5826 ds_unneeded|=1;
5827 // branch taken
5828 if(!nevertaken) {
5829 //assem_debug("1:\n");
5830 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5831 // load regs
5832 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5833 address_generation(i+1,&branch_regs[i],0);
5834 if (ram_offset)
5835 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5836 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5837 ds_assemble(i+1,&branch_regs[i]);
5838 cc=get_reg(branch_regs[i].regmap,CCREG);
5839 if(cc==-1) {
5840 emit_loadreg(CCREG,cc=HOST_CCREG);
5841 // CHECK: Is the following instruction (fall thru) allocated ok?
5842 }
5843 assert(cc==HOST_CCREG);
5844 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5845 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5846 assem_debug("cycle count (adj)\n");
5847 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5848 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5849 if(internal)
5850 assem_debug("branch: internal\n");
5851 else
5852 assem_debug("branch: external\n");
5853 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5854 ds_assemble_entry(i);
5855 }
5856 else {
5857 add_to_linker(out,ba[i],internal);
5858 emit_jmp(0);
5859 }
5860 }
5861 // branch not taken
5862 if(!unconditional) {
5863 set_jump_target(nottaken, out);
5864 assem_debug("1:\n");
5865 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5866 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5867 address_generation(i+1,&branch_regs[i],0);
5868 if (ram_offset)
5869 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5870 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5871 ds_assemble(i+1,&branch_regs[i]);
5872 cc=get_reg(branch_regs[i].regmap,CCREG);
5873 if (cc == -1) {
5874 // Cycle count isn't in a register, temporarily load it then write it out
5875 emit_loadreg(CCREG,HOST_CCREG);
5876 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5877 void *jaddr=out;
5878 emit_jns(0);
5879 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5880 emit_storereg(CCREG,HOST_CCREG);
5881 }
5882 else{
5883 cc=get_reg(i_regmap,CCREG);
5884 assert(cc==HOST_CCREG);
5885 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5886 void *jaddr=out;
5887 emit_jns(0);
5888 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5889 }
5890 }
5891 }
5892}
5893
5894static void check_regmap(signed char *regmap)
5895{
5896#ifndef NDEBUG
5897 int i,j;
5898 for (i = 0; i < HOST_REGS; i++) {
5899 if (regmap[i] < 0)
5900 continue;
5901 for (j = i + 1; j < HOST_REGS; j++)
5902 assert(regmap[i] != regmap[j]);
5903 }
5904#endif
5905}
5906
5907#ifdef DISASM
5908#include <inttypes.h>
5909static char insn[MAXBLOCK][10];
5910
5911#define set_mnemonic(i_, n_) \
5912 strcpy(insn[i_], n_)
5913
5914void print_regmap(const char *name, const signed char *regmap)
5915{
5916 char buf[5];
5917 int i, l;
5918 fputs(name, stdout);
5919 for (i = 0; i < HOST_REGS; i++) {
5920 l = 0;
5921 if (regmap[i] >= 0)
5922 l = snprintf(buf, sizeof(buf), "$%d", regmap[i]);
5923 for (; l < 3; l++)
5924 buf[l] = ' ';
5925 buf[l] = 0;
5926 printf(" r%d=%s", i, buf);
5927 }
5928 fputs("\n", stdout);
5929}
5930
5931 /* disassembly */
5932void disassemble_inst(int i)
5933{
5934 if (dops[i].bt) printf("*"); else printf(" ");
5935 switch(dops[i].itype) {
5936 case UJUMP:
5937 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
5938 case CJUMP:
5939 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
5940 case SJUMP:
5941 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
5942 case RJUMP:
5943 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
5944 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
5945 else
5946 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
5947 break;
5948 case IMM16:
5949 if(dops[i].opcode==0xf) //LUI
5950 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
5951 else
5952 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
5953 break;
5954 case LOAD:
5955 case LOADLR:
5956 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
5957 break;
5958 case STORE:
5959 case STORELR:
5960 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
5961 break;
5962 case ALU:
5963 case SHIFT:
5964 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
5965 break;
5966 case MULTDIV:
5967 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
5968 break;
5969 case SHIFTIMM:
5970 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
5971 break;
5972 case MOV:
5973 if((dops[i].opcode2&0x1d)==0x10)
5974 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
5975 else if((dops[i].opcode2&0x1d)==0x11)
5976 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
5977 else
5978 printf (" %x: %s\n",start+i*4,insn[i]);
5979 break;
5980 case COP0:
5981 if(dops[i].opcode2==0)
5982 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
5983 else if(dops[i].opcode2==4)
5984 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
5985 else printf (" %x: %s\n",start+i*4,insn[i]);
5986 break;
5987 case COP1:
5988 if(dops[i].opcode2<3)
5989 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
5990 else if(dops[i].opcode2>3)
5991 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
5992 else printf (" %x: %s\n",start+i*4,insn[i]);
5993 break;
5994 case COP2:
5995 if(dops[i].opcode2<3)
5996 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
5997 else if(dops[i].opcode2>3)
5998 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
5999 else printf (" %x: %s\n",start+i*4,insn[i]);
6000 break;
6001 case C1LS:
6002 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6003 break;
6004 case C2LS:
6005 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6006 break;
6007 case INTCALL:
6008 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6009 break;
6010 default:
6011 //printf (" %s %8x\n",insn[i],source[i]);
6012 printf (" %x: %s\n",start+i*4,insn[i]);
6013 }
6014 return;
6015 printf("D: %"PRIu64" WD: %"PRIu64" U: %"PRIu64"\n",
6016 regs[i].dirty, regs[i].wasdirty, unneeded_reg[i]);
6017 print_regmap("pre: ", regmap_pre[i]);
6018 print_regmap("entry: ", regs[i].regmap_entry);
6019 print_regmap("map: ", regs[i].regmap);
6020 if (dops[i].is_jump) {
6021 print_regmap("bentry:", branch_regs[i].regmap_entry);
6022 print_regmap("bmap: ", branch_regs[i].regmap);
6023 }
6024}
6025#else
6026#define set_mnemonic(i_, n_)
6027static void disassemble_inst(int i) {}
6028#endif // DISASM
6029
6030#define DRC_TEST_VAL 0x74657374
6031
6032static void new_dynarec_test(void)
6033{
6034 int (*testfunc)(void);
6035 void *beginning;
6036 int ret[2];
6037 size_t i;
6038
6039 // check structure linkage
6040 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6041 {
6042 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6043 }
6044
6045 SysPrintf("testing if we can run recompiled code @%p...\n", out);
6046 ((volatile u_int *)out)[0]++; // make cache dirty
6047
6048 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6049 out = ndrc->translation_cache;
6050 beginning = start_block();
6051 emit_movimm(DRC_TEST_VAL + i, 0); // test
6052 emit_ret();
6053 literal_pool(0);
6054 end_block(beginning);
6055 testfunc = beginning;
6056 ret[i] = testfunc();
6057 }
6058
6059 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6060 SysPrintf("test passed.\n");
6061 else
6062 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6063 out = ndrc->translation_cache;
6064}
6065
6066// clear the state completely, instead of just marking
6067// things invalid like invalidate_all_pages() does
6068void new_dynarec_clear_full(void)
6069{
6070 int n;
6071 out = ndrc->translation_cache;
6072 memset(invalid_code,1,sizeof(invalid_code));
6073 memset(hash_table,0xff,sizeof(hash_table));
6074 memset(mini_ht,-1,sizeof(mini_ht));
6075 memset(shadow,0,sizeof(shadow));
6076 copy=shadow;
6077 expirep = EXPIRITY_OFFSET;
6078 pending_exception=0;
6079 literalcount=0;
6080 stop_after_jal=0;
6081 inv_code_start=inv_code_end=~0;
6082 hack_addr=0;
6083 f1_hack=0;
6084 for (n = 0; n < ARRAY_SIZE(blocks); n++)
6085 blocks_clear(&blocks[n]);
6086 for (n = 0; n < ARRAY_SIZE(jump_out); n++)
6087 ll_clear(&jump_out[n]);
6088 stat_clear(stat_blocks);
6089 stat_clear(stat_links);
6090
6091 cycle_multiplier_old = cycle_multiplier;
6092 new_dynarec_hacks_old = new_dynarec_hacks;
6093}
6094
6095void new_dynarec_init(void)
6096{
6097 SysPrintf("Init new dynarec, ndrc size %x\n", (int)sizeof(*ndrc));
6098
6099#ifdef _3DS
6100 check_rosalina();
6101#endif
6102#ifdef BASE_ADDR_DYNAMIC
6103 #ifdef VITA
6104 sceBlock = getVMBlock(); //sceKernelAllocMemBlockForVM("code", sizeof(*ndrc));
6105 if (sceBlock <= 0)
6106 SysPrintf("sceKernelAllocMemBlockForVM failed: %x\n", sceBlock);
6107 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6108 if (ret < 0)
6109 SysPrintf("sceKernelGetMemBlockBase failed: %x\n", ret);
6110 sceKernelOpenVMDomain();
6111 sceClibPrintf("translation_cache = 0x%08lx\n ", (long)ndrc->translation_cache);
6112 #elif defined(_MSC_VER)
6113 ndrc = VirtualAlloc(NULL, sizeof(*ndrc), MEM_COMMIT | MEM_RESERVE,
6114 PAGE_EXECUTE_READWRITE);
6115 #else
6116 uintptr_t desired_addr = 0;
6117 #ifdef __ELF__
6118 extern char _end;
6119 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6120 #endif
6121 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6122 PROT_READ | PROT_WRITE | PROT_EXEC,
6123 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6124 if (ndrc == MAP_FAILED) {
6125 SysPrintf("mmap() failed: %s\n", strerror(errno));
6126 abort();
6127 }
6128 #endif
6129#else
6130 #ifndef NO_WRITE_EXEC
6131 // not all systems allow execute in data segment by default
6132 // size must be 4K aligned for 3DS?
6133 if (mprotect(ndrc, sizeof(*ndrc),
6134 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6135 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6136 #endif
6137#endif
6138 out = ndrc->translation_cache;
6139 cycle_multiplier=200;
6140 new_dynarec_clear_full();
6141#ifdef HOST_IMM8
6142 // Copy this into local area so we don't have to put it in every literal pool
6143 invc_ptr=invalid_code;
6144#endif
6145 arch_init();
6146 new_dynarec_test();
6147 ram_offset=(uintptr_t)rdram-0x80000000;
6148 if (ram_offset!=0)
6149 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6150 SysPrintf("Mapped (RAM/scrp/ROM/LUTs/TC):\n");
6151 SysPrintf("%p/%p/%p/%p/%p\n", psxM, psxH, psxR, mem_rtab, out);
6152}
6153
6154void new_dynarec_cleanup(void)
6155{
6156 int n;
6157#ifdef BASE_ADDR_DYNAMIC
6158 #ifdef VITA
6159 // sceBlock is managed by retroarch's bootstrap code
6160 //sceKernelFreeMemBlock(sceBlock);
6161 //sceBlock = -1;
6162 #else
6163 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6164 SysPrintf("munmap() failed\n");
6165 #endif
6166#endif
6167 for (n = 0; n < ARRAY_SIZE(blocks); n++)
6168 blocks_clear(&blocks[n]);
6169 for (n = 0; n < ARRAY_SIZE(jump_out); n++)
6170 ll_clear(&jump_out[n]);
6171 stat_clear(stat_blocks);
6172 stat_clear(stat_links);
6173 #ifdef ROM_COPY
6174 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6175 #endif
6176 new_dynarec_print_stats();
6177}
6178
6179static u_int *get_source_start(u_int addr, u_int *limit)
6180{
6181 if (addr < 0x00200000 ||
6182 (0xa0000000 <= addr && addr < 0xa0200000))
6183 {
6184 // used for BIOS calls mostly?
6185 *limit = (addr&0xa0000000)|0x00200000;
6186 return (u_int *)(rdram + (addr&0x1fffff));
6187 }
6188 else if (!Config.HLE && (
6189 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6190 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6191 {
6192 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6193 // but timings in PCSX are too tied to the interpreter's BIAS
6194 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6195 cycle_multiplier_active = 200;
6196
6197 *limit = (addr & 0xfff00000) | 0x80000;
6198 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6199 }
6200 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6201 *limit = (addr & 0x80600000) + 0x00200000;
6202 return (u_int *)(rdram + (addr&0x1fffff));
6203 }
6204 return NULL;
6205}
6206
6207static u_int scan_for_ret(u_int addr)
6208{
6209 u_int limit = 0;
6210 u_int *mem;
6211
6212 mem = get_source_start(addr, &limit);
6213 if (mem == NULL)
6214 return addr;
6215
6216 if (limit > addr + 0x1000)
6217 limit = addr + 0x1000;
6218 for (; addr < limit; addr += 4, mem++) {
6219 if (*mem == 0x03e00008) // jr $ra
6220 return addr + 8;
6221 }
6222 return addr;
6223}
6224
6225struct savestate_block {
6226 uint32_t addr;
6227 uint32_t regflags;
6228};
6229
6230static int addr_cmp(const void *p1_, const void *p2_)
6231{
6232 const struct savestate_block *p1 = p1_, *p2 = p2_;
6233 return p1->addr - p2->addr;
6234}
6235
6236int new_dynarec_save_blocks(void *save, int size)
6237{
6238 struct savestate_block *sblocks = save;
6239 int maxcount = size / sizeof(sblocks[0]);
6240 struct savestate_block tmp_blocks[1024];
6241 struct block_info *block;
6242 int p, s, d, o, bcnt;
6243 u_int addr;
6244
6245 o = 0;
6246 for (p = 0; p < ARRAY_SIZE(blocks); p++) {
6247 bcnt = 0;
6248 for (block = blocks[p]; block != NULL; block = block->next) {
6249 if (block->is_dirty)
6250 continue;
6251 tmp_blocks[bcnt].addr = block->start;
6252 tmp_blocks[bcnt].regflags = block->reg_sv_flags;
6253 bcnt++;
6254 }
6255 if (bcnt < 1)
6256 continue;
6257 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6258
6259 addr = tmp_blocks[0].addr;
6260 for (s = d = 0; s < bcnt; s++) {
6261 if (tmp_blocks[s].addr < addr)
6262 continue;
6263 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6264 tmp_blocks[d++] = tmp_blocks[s];
6265 addr = scan_for_ret(tmp_blocks[s].addr);
6266 }
6267
6268 if (o + d > maxcount)
6269 d = maxcount - o;
6270 memcpy(&sblocks[o], tmp_blocks, d * sizeof(sblocks[0]));
6271 o += d;
6272 }
6273
6274 return o * sizeof(sblocks[0]);
6275}
6276
6277void new_dynarec_load_blocks(const void *save, int size)
6278{
6279 const struct savestate_block *sblocks = save;
6280 int count = size / sizeof(sblocks[0]);
6281 struct block_info *block;
6282 u_int regs_save[32];
6283 u_int page;
6284 uint32_t f;
6285 int i, b;
6286
6287 // restore clean blocks, if any
6288 for (page = 0, b = i = 0; page < ARRAY_SIZE(blocks); page++) {
6289 for (block = blocks[page]; block != NULL; block = block->next, b++) {
6290 if (!block->is_dirty)
6291 continue;
6292 assert(block->source && block->copy);
6293 if (memcmp(block->source, block->copy, block->len))
6294 continue;
6295
6296 // see try_restore_block
6297 block->is_dirty = 0;
6298 mark_invalid_code(block->start, block->len, 0);
6299 i++;
6300 }
6301 }
6302 inv_debug("load_blocks: %d/%d clean blocks\n", i, b);
6303
6304 // change GPRs for speculation to at least partially work..
6305 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6306 for (i = 1; i < 32; i++)
6307 psxRegs.GPR.r[i] = 0x80000000;
6308
6309 for (b = 0; b < count; b++) {
6310 for (f = sblocks[b].regflags, i = 0; f; f >>= 1, i++) {
6311 if (f & 1)
6312 psxRegs.GPR.r[i] = 0x1f800000;
6313 }
6314
6315 ndrc_get_addr_ht(sblocks[b].addr);
6316
6317 for (f = sblocks[b].regflags, i = 0; f; f >>= 1, i++) {
6318 if (f & 1)
6319 psxRegs.GPR.r[i] = 0x80000000;
6320 }
6321 }
6322
6323 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6324}
6325
6326void new_dynarec_print_stats(void)
6327{
6328#ifdef STAT_PRINT
6329 printf("cc %3d,%3d,%3d lu%6d,%3d,%3d c%3d inv%3d,%3d tc_offs %zu b %u,%u\n",
6330 stat_bc_pre, stat_bc_direct, stat_bc_restore,
6331 stat_ht_lookups, stat_jump_in_lookups, stat_restore_tries,
6332 stat_restore_compares, stat_inv_addr_calls, stat_inv_hits,
6333 out - ndrc->translation_cache, stat_blocks, stat_links);
6334 stat_bc_direct = stat_bc_pre = stat_bc_restore =
6335 stat_ht_lookups = stat_jump_in_lookups = stat_restore_tries =
6336 stat_restore_compares = stat_inv_addr_calls = stat_inv_hits = 0;
6337#endif
6338}
6339
6340static int apply_hacks(void)
6341{
6342 int i;
6343 if (HACK_ENABLED(NDHACK_NO_COMPAT_HACKS))
6344 return 0;
6345 /* special hack(s) */
6346 for (i = 0; i < slen - 4; i++)
6347 {
6348 // lui a4, 0xf200; jal <rcnt_read>; addu a0, 2; slti v0, 28224
6349 if (source[i] == 0x3c04f200 && dops[i+1].itype == UJUMP
6350 && source[i+2] == 0x34840002 && dops[i+3].opcode == 0x0a
6351 && imm[i+3] == 0x6e40 && dops[i+3].rs1 == 2)
6352 {
6353 SysPrintf("PE2 hack @%08x\n", start + (i+3)*4);
6354 dops[i + 3].itype = NOP;
6355 }
6356 }
6357 i = slen;
6358 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
6359 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
6360 && dops[i-7].itype == STORE)
6361 {
6362 i = i-8;
6363 if (dops[i].itype == IMM16)
6364 i--;
6365 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
6366 if (dops[i].itype == STORELR && dops[i].rs1 == 6
6367 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
6368 {
6369 SysPrintf("F1 hack from %08x, old dst %08x\n", start, hack_addr);
6370 f1_hack = 1;
6371 return 1;
6372 }
6373 }
6374 return 0;
6375}
6376
6377static noinline void pass1_disassemble(u_int pagelimit)
6378{
6379 int i, j, done = 0, ni_count = 0;
6380 unsigned int type,op,op2;
6381
6382 for (i = 0; !done; i++)
6383 {
6384 memset(&dops[i], 0, sizeof(dops[i]));
6385 op2=0;
6386 minimum_free_regs[i]=0;
6387 dops[i].opcode=op=source[i]>>26;
6388 switch(op)
6389 {
6390 case 0x00: set_mnemonic(i, "special"); type=NI;
6391 op2=source[i]&0x3f;
6392 switch(op2)
6393 {
6394 case 0x00: set_mnemonic(i, "SLL"); type=SHIFTIMM; break;
6395 case 0x02: set_mnemonic(i, "SRL"); type=SHIFTIMM; break;
6396 case 0x03: set_mnemonic(i, "SRA"); type=SHIFTIMM; break;
6397 case 0x04: set_mnemonic(i, "SLLV"); type=SHIFT; break;
6398 case 0x06: set_mnemonic(i, "SRLV"); type=SHIFT; break;
6399 case 0x07: set_mnemonic(i, "SRAV"); type=SHIFT; break;
6400 case 0x08: set_mnemonic(i, "JR"); type=RJUMP; break;
6401 case 0x09: set_mnemonic(i, "JALR"); type=RJUMP; break;
6402 case 0x0C: set_mnemonic(i, "SYSCALL"); type=SYSCALL; break;
6403 case 0x0D: set_mnemonic(i, "BREAK"); type=SYSCALL; break;
6404 case 0x0F: set_mnemonic(i, "SYNC"); type=OTHER; break;
6405 case 0x10: set_mnemonic(i, "MFHI"); type=MOV; break;
6406 case 0x11: set_mnemonic(i, "MTHI"); type=MOV; break;
6407 case 0x12: set_mnemonic(i, "MFLO"); type=MOV; break;
6408 case 0x13: set_mnemonic(i, "MTLO"); type=MOV; break;
6409 case 0x18: set_mnemonic(i, "MULT"); type=MULTDIV; break;
6410 case 0x19: set_mnemonic(i, "MULTU"); type=MULTDIV; break;
6411 case 0x1A: set_mnemonic(i, "DIV"); type=MULTDIV; break;
6412 case 0x1B: set_mnemonic(i, "DIVU"); type=MULTDIV; break;
6413 case 0x20: set_mnemonic(i, "ADD"); type=ALU; break;
6414 case 0x21: set_mnemonic(i, "ADDU"); type=ALU; break;
6415 case 0x22: set_mnemonic(i, "SUB"); type=ALU; break;
6416 case 0x23: set_mnemonic(i, "SUBU"); type=ALU; break;
6417 case 0x24: set_mnemonic(i, "AND"); type=ALU; break;
6418 case 0x25: set_mnemonic(i, "OR"); type=ALU; break;
6419 case 0x26: set_mnemonic(i, "XOR"); type=ALU; break;
6420 case 0x27: set_mnemonic(i, "NOR"); type=ALU; break;
6421 case 0x2A: set_mnemonic(i, "SLT"); type=ALU; break;
6422 case 0x2B: set_mnemonic(i, "SLTU"); type=ALU; break;
6423 case 0x30: set_mnemonic(i, "TGE"); type=NI; break;
6424 case 0x31: set_mnemonic(i, "TGEU"); type=NI; break;
6425 case 0x32: set_mnemonic(i, "TLT"); type=NI; break;
6426 case 0x33: set_mnemonic(i, "TLTU"); type=NI; break;
6427 case 0x34: set_mnemonic(i, "TEQ"); type=NI; break;
6428 case 0x36: set_mnemonic(i, "TNE"); type=NI; break;
6429#if 0
6430 case 0x14: set_mnemonic(i, "DSLLV"); type=SHIFT; break;
6431 case 0x16: set_mnemonic(i, "DSRLV"); type=SHIFT; break;
6432 case 0x17: set_mnemonic(i, "DSRAV"); type=SHIFT; break;
6433 case 0x1C: set_mnemonic(i, "DMULT"); type=MULTDIV; break;
6434 case 0x1D: set_mnemonic(i, "DMULTU"); type=MULTDIV; break;
6435 case 0x1E: set_mnemonic(i, "DDIV"); type=MULTDIV; break;
6436 case 0x1F: set_mnemonic(i, "DDIVU"); type=MULTDIV; break;
6437 case 0x2C: set_mnemonic(i, "DADD"); type=ALU; break;
6438 case 0x2D: set_mnemonic(i, "DADDU"); type=ALU; break;
6439 case 0x2E: set_mnemonic(i, "DSUB"); type=ALU; break;
6440 case 0x2F: set_mnemonic(i, "DSUBU"); type=ALU; break;
6441 case 0x38: set_mnemonic(i, "DSLL"); type=SHIFTIMM; break;
6442 case 0x3A: set_mnemonic(i, "DSRL"); type=SHIFTIMM; break;
6443 case 0x3B: set_mnemonic(i, "DSRA"); type=SHIFTIMM; break;
6444 case 0x3C: set_mnemonic(i, "DSLL32"); type=SHIFTIMM; break;
6445 case 0x3E: set_mnemonic(i, "DSRL32"); type=SHIFTIMM; break;
6446 case 0x3F: set_mnemonic(i, "DSRA32"); type=SHIFTIMM; break;
6447#endif
6448 }
6449 break;
6450 case 0x01: set_mnemonic(i, "regimm"); type=NI;
6451 op2=(source[i]>>16)&0x1f;
6452 switch(op2)
6453 {
6454 case 0x00: set_mnemonic(i, "BLTZ"); type=SJUMP; break;
6455 case 0x01: set_mnemonic(i, "BGEZ"); type=SJUMP; break;
6456 //case 0x02: set_mnemonic(i, "BLTZL"); type=SJUMP; break;
6457 //case 0x03: set_mnemonic(i, "BGEZL"); type=SJUMP; break;
6458 //case 0x08: set_mnemonic(i, "TGEI"); type=NI; break;
6459 //case 0x09: set_mnemonic(i, "TGEIU"); type=NI; break;
6460 //case 0x0A: set_mnemonic(i, "TLTI"); type=NI; break;
6461 //case 0x0B: set_mnemonic(i, "TLTIU"); type=NI; break;
6462 //case 0x0C: set_mnemonic(i, "TEQI"); type=NI; break;
6463 //case 0x0E: set_mnemonic(i, "TNEI"); type=NI; break;
6464 case 0x10: set_mnemonic(i, "BLTZAL"); type=SJUMP; break;
6465 case 0x11: set_mnemonic(i, "BGEZAL"); type=SJUMP; break;
6466 //case 0x12: set_mnemonic(i, "BLTZALL"); type=SJUMP; break;
6467 //case 0x13: set_mnemonic(i, "BGEZALL"); type=SJUMP; break;
6468 }
6469 break;
6470 case 0x02: set_mnemonic(i, "J"); type=UJUMP; break;
6471 case 0x03: set_mnemonic(i, "JAL"); type=UJUMP; break;
6472 case 0x04: set_mnemonic(i, "BEQ"); type=CJUMP; break;
6473 case 0x05: set_mnemonic(i, "BNE"); type=CJUMP; break;
6474 case 0x06: set_mnemonic(i, "BLEZ"); type=CJUMP; break;
6475 case 0x07: set_mnemonic(i, "BGTZ"); type=CJUMP; break;
6476 case 0x08: set_mnemonic(i, "ADDI"); type=IMM16; break;
6477 case 0x09: set_mnemonic(i, "ADDIU"); type=IMM16; break;
6478 case 0x0A: set_mnemonic(i, "SLTI"); type=IMM16; break;
6479 case 0x0B: set_mnemonic(i, "SLTIU"); type=IMM16; break;
6480 case 0x0C: set_mnemonic(i, "ANDI"); type=IMM16; break;
6481 case 0x0D: set_mnemonic(i, "ORI"); type=IMM16; break;
6482 case 0x0E: set_mnemonic(i, "XORI"); type=IMM16; break;
6483 case 0x0F: set_mnemonic(i, "LUI"); type=IMM16; break;
6484 case 0x10: set_mnemonic(i, "cop0"); type=NI;
6485 op2=(source[i]>>21)&0x1f;
6486 switch(op2)
6487 {
6488 case 0x00: set_mnemonic(i, "MFC0"); type=COP0; break;
6489 case 0x02: set_mnemonic(i, "CFC0"); type=COP0; break;
6490 case 0x04: set_mnemonic(i, "MTC0"); type=COP0; break;
6491 case 0x06: set_mnemonic(i, "CTC0"); type=COP0; break;
6492 case 0x10: set_mnemonic(i, "RFE"); type=COP0; break;
6493 }
6494 break;
6495 case 0x11: set_mnemonic(i, "cop1"); type=COP1;
6496 op2=(source[i]>>21)&0x1f;
6497 break;
6498#if 0
6499 case 0x14: set_mnemonic(i, "BEQL"); type=CJUMP; break;
6500 case 0x15: set_mnemonic(i, "BNEL"); type=CJUMP; break;
6501 case 0x16: set_mnemonic(i, "BLEZL"); type=CJUMP; break;
6502 case 0x17: set_mnemonic(i, "BGTZL"); type=CJUMP; break;
6503 case 0x18: set_mnemonic(i, "DADDI"); type=IMM16; break;
6504 case 0x19: set_mnemonic(i, "DADDIU"); type=IMM16; break;
6505 case 0x1A: set_mnemonic(i, "LDL"); type=LOADLR; break;
6506 case 0x1B: set_mnemonic(i, "LDR"); type=LOADLR; break;
6507#endif
6508 case 0x20: set_mnemonic(i, "LB"); type=LOAD; break;
6509 case 0x21: set_mnemonic(i, "LH"); type=LOAD; break;
6510 case 0x22: set_mnemonic(i, "LWL"); type=LOADLR; break;
6511 case 0x23: set_mnemonic(i, "LW"); type=LOAD; break;
6512 case 0x24: set_mnemonic(i, "LBU"); type=LOAD; break;
6513 case 0x25: set_mnemonic(i, "LHU"); type=LOAD; break;
6514 case 0x26: set_mnemonic(i, "LWR"); type=LOADLR; break;
6515#if 0
6516 case 0x27: set_mnemonic(i, "LWU"); type=LOAD; break;
6517#endif
6518 case 0x28: set_mnemonic(i, "SB"); type=STORE; break;
6519 case 0x29: set_mnemonic(i, "SH"); type=STORE; break;
6520 case 0x2A: set_mnemonic(i, "SWL"); type=STORELR; break;
6521 case 0x2B: set_mnemonic(i, "SW"); type=STORE; break;
6522#if 0
6523 case 0x2C: set_mnemonic(i, "SDL"); type=STORELR; break;
6524 case 0x2D: set_mnemonic(i, "SDR"); type=STORELR; break;
6525#endif
6526 case 0x2E: set_mnemonic(i, "SWR"); type=STORELR; break;
6527 case 0x2F: set_mnemonic(i, "CACHE"); type=NOP; break;
6528 case 0x30: set_mnemonic(i, "LL"); type=NI; break;
6529 case 0x31: set_mnemonic(i, "LWC1"); type=C1LS; break;
6530#if 0
6531 case 0x34: set_mnemonic(i, "LLD"); type=NI; break;
6532 case 0x35: set_mnemonic(i, "LDC1"); type=C1LS; break;
6533 case 0x37: set_mnemonic(i, "LD"); type=LOAD; break;
6534#endif
6535 case 0x38: set_mnemonic(i, "SC"); type=NI; break;
6536 case 0x39: set_mnemonic(i, "SWC1"); type=C1LS; break;
6537#if 0
6538 case 0x3C: set_mnemonic(i, "SCD"); type=NI; break;
6539 case 0x3D: set_mnemonic(i, "SDC1"); type=C1LS; break;
6540 case 0x3F: set_mnemonic(i, "SD"); type=STORE; break;
6541#endif
6542 case 0x12: set_mnemonic(i, "COP2"); type=NI;
6543 op2=(source[i]>>21)&0x1f;
6544 //if (op2 & 0x10)
6545 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
6546 if (gte_handlers[source[i]&0x3f]!=NULL) {
6547#ifdef DISASM
6548 if (gte_regnames[source[i]&0x3f]!=NULL)
6549 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
6550 else
6551 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
6552#endif
6553 type=C2OP;
6554 }
6555 }
6556 else switch(op2)
6557 {
6558 case 0x00: set_mnemonic(i, "MFC2"); type=COP2; break;
6559 case 0x02: set_mnemonic(i, "CFC2"); type=COP2; break;
6560 case 0x04: set_mnemonic(i, "MTC2"); type=COP2; break;
6561 case 0x06: set_mnemonic(i, "CTC2"); type=COP2; break;
6562 }
6563 break;
6564 case 0x32: set_mnemonic(i, "LWC2"); type=C2LS; break;
6565 case 0x3A: set_mnemonic(i, "SWC2"); type=C2LS; break;
6566 case 0x3B: set_mnemonic(i, "HLECALL"); type=HLECALL; break;
6567 default: set_mnemonic(i, "???"); type=NI;
6568 SysPrintf("NI %08x @%08x (%08x)\n", source[i], start + i*4, start);
6569 break;
6570 }
6571 dops[i].itype=type;
6572 dops[i].opcode2=op2;
6573 /* Get registers/immediates */
6574 dops[i].use_lt1=0;
6575 gte_rs[i]=gte_rt[i]=0;
6576 switch(type) {
6577 case LOAD:
6578 dops[i].rs1=(source[i]>>21)&0x1f;
6579 dops[i].rs2=0;
6580 dops[i].rt1=(source[i]>>16)&0x1f;
6581 dops[i].rt2=0;
6582 imm[i]=(short)source[i];
6583 break;
6584 case STORE:
6585 case STORELR:
6586 dops[i].rs1=(source[i]>>21)&0x1f;
6587 dops[i].rs2=(source[i]>>16)&0x1f;
6588 dops[i].rt1=0;
6589 dops[i].rt2=0;
6590 imm[i]=(short)source[i];
6591 break;
6592 case LOADLR:
6593 // LWL/LWR only load part of the register,
6594 // therefore the target register must be treated as a source too
6595 dops[i].rs1=(source[i]>>21)&0x1f;
6596 dops[i].rs2=(source[i]>>16)&0x1f;
6597 dops[i].rt1=(source[i]>>16)&0x1f;
6598 dops[i].rt2=0;
6599 imm[i]=(short)source[i];
6600 break;
6601 case IMM16:
6602 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
6603 else dops[i].rs1=(source[i]>>21)&0x1f;
6604 dops[i].rs2=0;
6605 dops[i].rt1=(source[i]>>16)&0x1f;
6606 dops[i].rt2=0;
6607 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
6608 imm[i]=(unsigned short)source[i];
6609 }else{
6610 imm[i]=(short)source[i];
6611 }
6612 break;
6613 case UJUMP:
6614 dops[i].rs1=0;
6615 dops[i].rs2=0;
6616 dops[i].rt1=0;
6617 dops[i].rt2=0;
6618 // The JAL instruction writes to r31.
6619 if (op&1) {
6620 dops[i].rt1=31;
6621 }
6622 dops[i].rs2=CCREG;
6623 break;
6624 case RJUMP:
6625 dops[i].rs1=(source[i]>>21)&0x1f;
6626 dops[i].rs2=0;
6627 dops[i].rt1=0;
6628 dops[i].rt2=0;
6629 // The JALR instruction writes to rd.
6630 if (op2&1) {
6631 dops[i].rt1=(source[i]>>11)&0x1f;
6632 }
6633 dops[i].rs2=CCREG;
6634 break;
6635 case CJUMP:
6636 dops[i].rs1=(source[i]>>21)&0x1f;
6637 dops[i].rs2=(source[i]>>16)&0x1f;
6638 dops[i].rt1=0;
6639 dops[i].rt2=0;
6640 if(op&2) { // BGTZ/BLEZ
6641 dops[i].rs2=0;
6642 }
6643 break;
6644 case SJUMP:
6645 dops[i].rs1=(source[i]>>21)&0x1f;
6646 dops[i].rs2=CCREG;
6647 dops[i].rt1=0;
6648 dops[i].rt2=0;
6649 if(op2&0x10) { // BxxAL
6650 dops[i].rt1=31;
6651 // NOTE: If the branch is not taken, r31 is still overwritten
6652 }
6653 break;
6654 case ALU:
6655 dops[i].rs1=(source[i]>>21)&0x1f; // source
6656 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
6657 dops[i].rt1=(source[i]>>11)&0x1f; // destination
6658 dops[i].rt2=0;
6659 break;
6660 case MULTDIV:
6661 dops[i].rs1=(source[i]>>21)&0x1f; // source
6662 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
6663 dops[i].rt1=HIREG;
6664 dops[i].rt2=LOREG;
6665 break;
6666 case MOV:
6667 dops[i].rs1=0;
6668 dops[i].rs2=0;
6669 dops[i].rt1=0;
6670 dops[i].rt2=0;
6671 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
6672 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
6673 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
6674 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
6675 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
6676 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
6677 break;
6678 case SHIFT:
6679 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
6680 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
6681 dops[i].rt1=(source[i]>>11)&0x1f; // destination
6682 dops[i].rt2=0;
6683 break;
6684 case SHIFTIMM:
6685 dops[i].rs1=(source[i]>>16)&0x1f;
6686 dops[i].rs2=0;
6687 dops[i].rt1=(source[i]>>11)&0x1f;
6688 dops[i].rt2=0;
6689 imm[i]=(source[i]>>6)&0x1f;
6690 // DSxx32 instructions
6691 if(op2>=0x3c) imm[i]|=0x20;
6692 break;
6693 case COP0:
6694 dops[i].rs1=0;
6695 dops[i].rs2=0;
6696 dops[i].rt1=0;
6697 dops[i].rt2=0;
6698 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
6699 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
6700 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
6701 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
6702 break;
6703 case COP1:
6704 dops[i].rs1=0;
6705 dops[i].rs2=0;
6706 dops[i].rt1=0;
6707 dops[i].rt2=0;
6708 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
6709 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
6710 dops[i].rs2=CSREG;
6711 break;
6712 case COP2:
6713 dops[i].rs1=0;
6714 dops[i].rs2=0;
6715 dops[i].rt1=0;
6716 dops[i].rt2=0;
6717 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
6718 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
6719 dops[i].rs2=CSREG;
6720 int gr=(source[i]>>11)&0x1F;
6721 switch(op2)
6722 {
6723 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
6724 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
6725 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
6726 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
6727 }
6728 break;
6729 case C1LS:
6730 dops[i].rs1=(source[i]>>21)&0x1F;
6731 dops[i].rs2=CSREG;
6732 dops[i].rt1=0;
6733 dops[i].rt2=0;
6734 imm[i]=(short)source[i];
6735 break;
6736 case C2LS:
6737 dops[i].rs1=(source[i]>>21)&0x1F;
6738 dops[i].rs2=0;
6739 dops[i].rt1=0;
6740 dops[i].rt2=0;
6741 imm[i]=(short)source[i];
6742 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
6743 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
6744 break;
6745 case C2OP:
6746 dops[i].rs1=0;
6747 dops[i].rs2=0;
6748 dops[i].rt1=0;
6749 dops[i].rt2=0;
6750 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
6751 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
6752 gte_rt[i]|=1ll<<63; // every op changes flags
6753 if((source[i]&0x3f)==GTE_MVMVA) {
6754 int v = (source[i] >> 15) & 3;
6755 gte_rs[i]&=~0xe3fll;
6756 if(v==3) gte_rs[i]|=0xe00ll;
6757 else gte_rs[i]|=3ll<<(v*2);
6758 }
6759 break;
6760 case SYSCALL:
6761 case HLECALL:
6762 case INTCALL:
6763 dops[i].rs1=CCREG;
6764 dops[i].rs2=0;
6765 dops[i].rt1=0;
6766 dops[i].rt2=0;
6767 break;
6768 default:
6769 dops[i].rs1=0;
6770 dops[i].rs2=0;
6771 dops[i].rt1=0;
6772 dops[i].rt2=0;
6773 }
6774 /* Calculate branch target addresses */
6775 if(type==UJUMP)
6776 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
6777 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
6778 ba[i]=start+i*4+8; // Ignore never taken branch
6779 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
6780 ba[i]=start+i*4+8; // Ignore never taken branch
6781 else if(type==CJUMP||type==SJUMP)
6782 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
6783 else ba[i]=-1;
6784
6785 /* simplify always (not)taken branches */
6786 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
6787 dops[i].rs1 = dops[i].rs2 = 0;
6788 if (!(op & 1)) {
6789 dops[i].itype = type = UJUMP;
6790 dops[i].rs2 = CCREG;
6791 }
6792 }
6793 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
6794 dops[i].itype = type = UJUMP;
6795
6796 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
6797 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
6798 dops[i].is_load = (dops[i].itype == LOAD || dops[i].itype == LOADLR || op == 0x32); // LWC2
6799 dops[i].is_store = (dops[i].itype == STORE || dops[i].itype == STORELR || op == 0x3a); // SWC2
6800
6801 /* messy cases to just pass over to the interpreter */
6802 if (i > 0 && dops[i-1].is_jump) {
6803 int do_in_intrp=0;
6804 // branch in delay slot?
6805 if (dops[i].is_jump) {
6806 // don't handle first branch and call interpreter if it's hit
6807 SysPrintf("branch in delay slot @%08x (%08x)\n", start + i*4, start);
6808 do_in_intrp=1;
6809 }
6810 // basic load delay detection
6811 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
6812 int t=(ba[i-1]-start)/4;
6813 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
6814 // jump target wants DS result - potential load delay effect
6815 SysPrintf("load delay @%08x (%08x)\n", start + i*4, start);
6816 do_in_intrp=1;
6817 dops[t+1].bt=1; // expected return from interpreter
6818 }
6819 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
6820 !(i>=3&&dops[i-3].is_jump)) {
6821 // v0 overwrite like this is a sign of trouble, bail out
6822 SysPrintf("v0 overwrite @%08x (%08x)\n", start + i*4, start);
6823 do_in_intrp=1;
6824 }
6825 }
6826 if (do_in_intrp) {
6827 memset(&dops[i-1], 0, sizeof(dops[i-1]));
6828 dops[i-1].itype = INTCALL;
6829 dops[i-1].rs1 = CCREG;
6830 ba[i-1] = -1;
6831 done = 2;
6832 i--; // don't compile the DS
6833 }
6834 }
6835
6836 /* Is this the end of the block? */
6837 if (i > 0 && dops[i-1].is_ujump) {
6838 if (dops[i-1].rt1 == 0) { // not jal
6839 int found_bbranch = 0, t = (ba[i-1] - start) / 4;
6840 if ((u_int)(t - i) < 64 && start + (t+64)*4 < pagelimit) {
6841 // scan for a branch back to i+1
6842 for (j = t; j < t + 64; j++) {
6843 int tmpop = source[j] >> 26;
6844 if (tmpop == 1 || ((tmpop & ~3) == 4)) {
6845 int t2 = j + 1 + (int)(signed short)source[j];
6846 if (t2 == i + 1) {
6847 //printf("blk expand %08x<-%08x\n", start + (i+1)*4, start + j*4);
6848 found_bbranch = 1;
6849 break;
6850 }
6851 }
6852 }
6853 }
6854 if (!found_bbranch)
6855 done = 2;
6856 }
6857 else {
6858 if(stop_after_jal) done=1;
6859 // Stop on BREAK
6860 if((source[i+1]&0xfc00003f)==0x0d) done=1;
6861 }
6862 // Don't recompile stuff that's already compiled
6863 if(check_addr(start+i*4+4)) done=1;
6864 // Don't get too close to the limit
6865 if(i>MAXBLOCK/2) done=1;
6866 }
6867 if (dops[i].itype == SYSCALL || dops[i].itype == HLECALL || dops[i].itype == INTCALL)
6868 done = stop_after_jal ? 1 : 2;
6869 if (done == 2) {
6870 // Does the block continue due to a branch?
6871 for(j=i-1;j>=0;j--)
6872 {
6873 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
6874 if(ba[j]==start+i*4+4) done=j=0;
6875 if(ba[j]==start+i*4+8) done=j=0;
6876 }
6877 }
6878 //assert(i<MAXBLOCK-1);
6879 if(start+i*4==pagelimit-4) done=1;
6880 assert(start+i*4<pagelimit);
6881 if (i==MAXBLOCK-1) done=1;
6882 // Stop if we're compiling junk
6883 if(dops[i].itype == NI && (++ni_count > 8 || dops[i].opcode == 0x11)) {
6884 done=stop_after_jal=1;
6885 SysPrintf("Disabled speculative precompilation\n");
6886 }
6887 }
6888 while (i > 0 && dops[i-1].is_jump)
6889 i--;
6890 assert(i > 0);
6891 assert(!dops[i-1].is_jump);
6892 slen = i;
6893}
6894
6895// Basic liveness analysis for MIPS registers
6896static noinline void pass2_unneeded_regs(int istart,int iend,int r)
6897{
6898 int i;
6899 uint64_t u,gte_u,b,gte_b;
6900 uint64_t temp_u,temp_gte_u=0;
6901 uint64_t gte_u_unknown=0;
6902 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6903 gte_u_unknown=~0ll;
6904 if(iend==slen-1) {
6905 u=1;
6906 gte_u=gte_u_unknown;
6907 }else{
6908 //u=unneeded_reg[iend+1];
6909 u=1;
6910 gte_u=gte_unneeded[iend+1];
6911 }
6912
6913 for (i=iend;i>=istart;i--)
6914 {
6915 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6916 if(dops[i].is_jump)
6917 {
6918 // If subroutine call, flag return address as a possible branch target
6919 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6920
6921 if(ba[i]<start || ba[i]>=(start+slen*4))
6922 {
6923 // Branch out of this block, flush all regs
6924 u=1;
6925 gte_u=gte_u_unknown;
6926 branch_unneeded_reg[i]=u;
6927 // Merge in delay slot
6928 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6929 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6930 u|=1;
6931 gte_u|=gte_rt[i+1];
6932 gte_u&=~gte_rs[i+1];
6933 }
6934 else
6935 {
6936 // Internal branch, flag target
6937 dops[(ba[i]-start)>>2].bt=1;
6938 if(ba[i]<=start+i*4) {
6939 // Backward branch
6940 if(dops[i].is_ujump)
6941 {
6942 // Unconditional branch
6943 temp_u=1;
6944 temp_gte_u=0;
6945 } else {
6946 // Conditional branch (not taken case)
6947 temp_u=unneeded_reg[i+2];
6948 temp_gte_u&=gte_unneeded[i+2];
6949 }
6950 // Merge in delay slot
6951 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6952 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6953 temp_u|=1;
6954 temp_gte_u|=gte_rt[i+1];
6955 temp_gte_u&=~gte_rs[i+1];
6956 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6957 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6958 temp_u|=1;
6959 temp_gte_u|=gte_rt[i];
6960 temp_gte_u&=~gte_rs[i];
6961 unneeded_reg[i]=temp_u;
6962 gte_unneeded[i]=temp_gte_u;
6963 // Only go three levels deep. This recursion can take an
6964 // excessive amount of time if there are a lot of nested loops.
6965 if(r<2) {
6966 pass2_unneeded_regs((ba[i]-start)>>2,i-1,r+1);
6967 }else{
6968 unneeded_reg[(ba[i]-start)>>2]=1;
6969 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6970 }
6971 } /*else*/ if(1) {
6972 if (dops[i].is_ujump)
6973 {
6974 // Unconditional branch
6975 u=unneeded_reg[(ba[i]-start)>>2];
6976 gte_u=gte_unneeded[(ba[i]-start)>>2];
6977 branch_unneeded_reg[i]=u;
6978 // Merge in delay slot
6979 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6980 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6981 u|=1;
6982 gte_u|=gte_rt[i+1];
6983 gte_u&=~gte_rs[i+1];
6984 } else {
6985 // Conditional branch
6986 b=unneeded_reg[(ba[i]-start)>>2];
6987 gte_b=gte_unneeded[(ba[i]-start)>>2];
6988 branch_unneeded_reg[i]=b;
6989 // Branch delay slot
6990 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6991 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6992 b|=1;
6993 gte_b|=gte_rt[i+1];
6994 gte_b&=~gte_rs[i+1];
6995 u&=b;
6996 gte_u&=gte_b;
6997 if(i<slen-1) {
6998 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6999 } else {
7000 branch_unneeded_reg[i]=1;
7001 }
7002 }
7003 }
7004 }
7005 }
7006 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
7007 {
7008 // SYSCALL instruction (software interrupt)
7009 u=1;
7010 }
7011 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
7012 {
7013 // ERET instruction (return from interrupt)
7014 u=1;
7015 }
7016 //u=1; // DEBUG
7017 // Written registers are unneeded
7018 u|=1LL<<dops[i].rt1;
7019 u|=1LL<<dops[i].rt2;
7020 gte_u|=gte_rt[i];
7021 // Accessed registers are needed
7022 u&=~(1LL<<dops[i].rs1);
7023 u&=~(1LL<<dops[i].rs2);
7024 gte_u&=~gte_rs[i];
7025 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
7026 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
7027 // Source-target dependencies
7028 // R0 is always unneeded
7029 u|=1;
7030 // Save it
7031 unneeded_reg[i]=u;
7032 gte_unneeded[i]=gte_u;
7033 /*
7034 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7035 printf("U:");
7036 int r;
7037 for(r=1;r<=CCREG;r++) {
7038 if((unneeded_reg[i]>>r)&1) {
7039 if(r==HIREG) printf(" HI");
7040 else if(r==LOREG) printf(" LO");
7041 else printf(" r%d",r);
7042 }
7043 }
7044 printf("\n");
7045 */
7046 }
7047}
7048
7049static noinline void pass3_register_alloc(u_int addr)
7050{
7051 struct regstat current; // Current register allocations/status
7052 clear_all_regs(current.regmap_entry);
7053 clear_all_regs(current.regmap);
7054 current.wasdirty = current.dirty = 0;
7055 current.u = unneeded_reg[0];
7056 alloc_reg(&current, 0, CCREG);
7057 dirty_reg(&current, CCREG);
7058 current.wasconst = 0;
7059 current.isconst = 0;
7060 current.loadedconst = 0;
7061 current.waswritten = 0;
7062 int ds=0;
7063 int cc=0;
7064 int hr;
7065 int i, j;
7066
7067 if (addr & 1) {
7068 // First instruction is delay slot
7069 cc=-1;
7070 dops[1].bt=1;
7071 ds=1;
7072 unneeded_reg[0]=1;
7073 current.regmap[HOST_BTREG]=BTREG;
7074 }
7075
7076 for(i=0;i<slen;i++)
7077 {
7078 if(dops[i].bt)
7079 {
7080 for(hr=0;hr<HOST_REGS;hr++)
7081 {
7082 // Is this really necessary?
7083 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7084 }
7085 current.isconst=0;
7086 current.waswritten=0;
7087 }
7088
7089 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7090 regs[i].wasconst=current.isconst;
7091 regs[i].wasdirty=current.dirty;
7092 regs[i].dirty=0;
7093 regs[i].u=0;
7094 regs[i].isconst=0;
7095 regs[i].loadedconst=0;
7096 if (!dops[i].is_jump) {
7097 if(i+1<slen) {
7098 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7099 current.u|=1;
7100 } else {
7101 current.u=1;
7102 }
7103 } else {
7104 if(i+1<slen) {
7105 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7106 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7107 current.u|=1;
7108 } else {
7109 SysPrintf("oops, branch at end of block with no delay slot @%08x\n", start + i*4);
7110 abort();
7111 }
7112 }
7113 dops[i].is_ds=ds;
7114 if(ds) {
7115 ds=0; // Skip delay slot, already allocated as part of branch
7116 // ...but we need to alloc it in case something jumps here
7117 if(i+1<slen) {
7118 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7119 }else{
7120 current.u=branch_unneeded_reg[i-1];
7121 }
7122 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7123 current.u|=1;
7124 struct regstat temp;
7125 memcpy(&temp,&current,sizeof(current));
7126 temp.wasdirty=temp.dirty;
7127 // TODO: Take into account unconditional branches, as below
7128 delayslot_alloc(&temp,i);
7129 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7130 regs[i].wasdirty=temp.wasdirty;
7131 regs[i].dirty=temp.dirty;
7132 regs[i].isconst=0;
7133 regs[i].wasconst=0;
7134 current.isconst=0;
7135 // Create entry (branch target) regmap
7136 for(hr=0;hr<HOST_REGS;hr++)
7137 {
7138 int r=temp.regmap[hr];
7139 if(r>=0) {
7140 if(r!=regmap_pre[i][hr]) {
7141 regs[i].regmap_entry[hr]=-1;
7142 }
7143 else
7144 {
7145 assert(r < 64);
7146 if((current.u>>r)&1) {
7147 regs[i].regmap_entry[hr]=-1;
7148 regs[i].regmap[hr]=-1;
7149 //Don't clear regs in the delay slot as the branch might need them
7150 //current.regmap[hr]=-1;
7151 }else
7152 regs[i].regmap_entry[hr]=r;
7153 }
7154 } else {
7155 // First instruction expects CCREG to be allocated
7156 if(i==0&&hr==HOST_CCREG)
7157 regs[i].regmap_entry[hr]=CCREG;
7158 else
7159 regs[i].regmap_entry[hr]=-1;
7160 }
7161 }
7162 }
7163 else { // Not delay slot
7164 switch(dops[i].itype) {
7165 case UJUMP:
7166 //current.isconst=0; // DEBUG
7167 //current.wasconst=0; // DEBUG
7168 //regs[i].wasconst=0; // DEBUG
7169 clear_const(&current,dops[i].rt1);
7170 alloc_cc(&current,i);
7171 dirty_reg(&current,CCREG);
7172 if (dops[i].rt1==31) {
7173 alloc_reg(&current,i,31);
7174 dirty_reg(&current,31);
7175 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7176 //assert(dops[i+1].rt1!=dops[i].rt1);
7177 #ifdef REG_PREFETCH
7178 alloc_reg(&current,i,PTEMP);
7179 #endif
7180 }
7181 dops[i].ooo=1;
7182 delayslot_alloc(&current,i+1);
7183 //current.isconst=0; // DEBUG
7184 ds=1;
7185 //printf("i=%d, isconst=%x\n",i,current.isconst);
7186 break;
7187 case RJUMP:
7188 //current.isconst=0;
7189 //current.wasconst=0;
7190 //regs[i].wasconst=0;
7191 clear_const(&current,dops[i].rs1);
7192 clear_const(&current,dops[i].rt1);
7193 alloc_cc(&current,i);
7194 dirty_reg(&current,CCREG);
7195 if (!ds_writes_rjump_rs(i)) {
7196 alloc_reg(&current,i,dops[i].rs1);
7197 if (dops[i].rt1!=0) {
7198 alloc_reg(&current,i,dops[i].rt1);
7199 dirty_reg(&current,dops[i].rt1);
7200 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7201 assert(dops[i+1].rt1!=dops[i].rt1);
7202 #ifdef REG_PREFETCH
7203 alloc_reg(&current,i,PTEMP);
7204 #endif
7205 }
7206 #ifdef USE_MINI_HT
7207 if(dops[i].rs1==31) { // JALR
7208 alloc_reg(&current,i,RHASH);
7209 alloc_reg(&current,i,RHTBL);
7210 }
7211 #endif
7212 delayslot_alloc(&current,i+1);
7213 } else {
7214 // The delay slot overwrites our source register,
7215 // allocate a temporary register to hold the old value.
7216 current.isconst=0;
7217 current.wasconst=0;
7218 regs[i].wasconst=0;
7219 delayslot_alloc(&current,i+1);
7220 current.isconst=0;
7221 alloc_reg(&current,i,RTEMP);
7222 }
7223 //current.isconst=0; // DEBUG
7224 dops[i].ooo=1;
7225 ds=1;
7226 break;
7227 case CJUMP:
7228 //current.isconst=0;
7229 //current.wasconst=0;
7230 //regs[i].wasconst=0;
7231 clear_const(&current,dops[i].rs1);
7232 clear_const(&current,dops[i].rs2);
7233 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7234 {
7235 alloc_cc(&current,i);
7236 dirty_reg(&current,CCREG);
7237 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7238 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7239 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7240 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7241 // The delay slot overwrites one of our conditions.
7242 // Allocate the branch condition registers instead.
7243 current.isconst=0;
7244 current.wasconst=0;
7245 regs[i].wasconst=0;
7246 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7247 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7248 }
7249 else
7250 {
7251 dops[i].ooo=1;
7252 delayslot_alloc(&current,i+1);
7253 }
7254 }
7255 else
7256 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7257 {
7258 alloc_cc(&current,i);
7259 dirty_reg(&current,CCREG);
7260 alloc_reg(&current,i,dops[i].rs1);
7261 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7262 // The delay slot overwrites one of our conditions.
7263 // Allocate the branch condition registers instead.
7264 current.isconst=0;
7265 current.wasconst=0;
7266 regs[i].wasconst=0;
7267 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7268 }
7269 else
7270 {
7271 dops[i].ooo=1;
7272 delayslot_alloc(&current,i+1);
7273 }
7274 }
7275 else
7276 // Don't alloc the delay slot yet because we might not execute it
7277 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7278 {
7279 current.isconst=0;
7280 current.wasconst=0;
7281 regs[i].wasconst=0;
7282 alloc_cc(&current,i);
7283 dirty_reg(&current,CCREG);
7284 alloc_reg(&current,i,dops[i].rs1);
7285 alloc_reg(&current,i,dops[i].rs2);
7286 }
7287 else
7288 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7289 {
7290 current.isconst=0;
7291 current.wasconst=0;
7292 regs[i].wasconst=0;
7293 alloc_cc(&current,i);
7294 dirty_reg(&current,CCREG);
7295 alloc_reg(&current,i,dops[i].rs1);
7296 }
7297 ds=1;
7298 //current.isconst=0;
7299 break;
7300 case SJUMP:
7301 //current.isconst=0;
7302 //current.wasconst=0;
7303 //regs[i].wasconst=0;
7304 clear_const(&current,dops[i].rs1);
7305 clear_const(&current,dops[i].rt1);
7306 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
7307 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
7308 {
7309 alloc_cc(&current,i);
7310 dirty_reg(&current,CCREG);
7311 alloc_reg(&current,i,dops[i].rs1);
7312 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
7313 alloc_reg(&current,i,31);
7314 dirty_reg(&current,31);
7315 //#ifdef REG_PREFETCH
7316 //alloc_reg(&current,i,PTEMP);
7317 //#endif
7318 }
7319 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7320 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7321 // Allocate the branch condition registers instead.
7322 current.isconst=0;
7323 current.wasconst=0;
7324 regs[i].wasconst=0;
7325 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7326 }
7327 else
7328 {
7329 dops[i].ooo=1;
7330 delayslot_alloc(&current,i+1);
7331 }
7332 }
7333 else
7334 // Don't alloc the delay slot yet because we might not execute it
7335 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
7336 {
7337 current.isconst=0;
7338 current.wasconst=0;
7339 regs[i].wasconst=0;
7340 alloc_cc(&current,i);
7341 dirty_reg(&current,CCREG);
7342 alloc_reg(&current,i,dops[i].rs1);
7343 }
7344 ds=1;
7345 //current.isconst=0;
7346 break;
7347 case IMM16:
7348 imm16_alloc(&current,i);
7349 break;
7350 case LOAD:
7351 case LOADLR:
7352 load_alloc(&current,i);
7353 break;
7354 case STORE:
7355 case STORELR:
7356 store_alloc(&current,i);
7357 break;
7358 case ALU:
7359 alu_alloc(&current,i);
7360 break;
7361 case SHIFT:
7362 shift_alloc(&current,i);
7363 break;
7364 case MULTDIV:
7365 multdiv_alloc(&current,i);
7366 break;
7367 case SHIFTIMM:
7368 shiftimm_alloc(&current,i);
7369 break;
7370 case MOV:
7371 mov_alloc(&current,i);
7372 break;
7373 case COP0:
7374 cop0_alloc(&current,i);
7375 break;
7376 case COP1:
7377 break;
7378 case COP2:
7379 cop2_alloc(&current,i);
7380 break;
7381 case C1LS:
7382 c1ls_alloc(&current,i);
7383 break;
7384 case C2LS:
7385 c2ls_alloc(&current,i);
7386 break;
7387 case C2OP:
7388 c2op_alloc(&current,i);
7389 break;
7390 case SYSCALL:
7391 case HLECALL:
7392 case INTCALL:
7393 syscall_alloc(&current,i);
7394 break;
7395 }
7396
7397 // Create entry (branch target) regmap
7398 for(hr=0;hr<HOST_REGS;hr++)
7399 {
7400 int r,or;
7401 r=current.regmap[hr];
7402 if(r>=0) {
7403 if(r!=regmap_pre[i][hr]) {
7404 // TODO: delay slot (?)
7405 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7406 if(or<0||r>=TEMPREG){
7407 regs[i].regmap_entry[hr]=-1;
7408 }
7409 else
7410 {
7411 // Just move it to a different register
7412 regs[i].regmap_entry[hr]=r;
7413 // If it was dirty before, it's still dirty
7414 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r);
7415 }
7416 }
7417 else
7418 {
7419 // Unneeded
7420 if(r==0){
7421 regs[i].regmap_entry[hr]=0;
7422 }
7423 else
7424 {
7425 assert(r<64);
7426 if((current.u>>r)&1) {
7427 regs[i].regmap_entry[hr]=-1;
7428 //regs[i].regmap[hr]=-1;
7429 current.regmap[hr]=-1;
7430 }else
7431 regs[i].regmap_entry[hr]=r;
7432 }
7433 }
7434 } else {
7435 // Branches expect CCREG to be allocated at the target
7436 if(regmap_pre[i][hr]==CCREG)
7437 regs[i].regmap_entry[hr]=CCREG;
7438 else
7439 regs[i].regmap_entry[hr]=-1;
7440 }
7441 }
7442 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7443 }
7444
7445 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
7446 current.waswritten|=1<<dops[i-1].rs1;
7447 current.waswritten&=~(1<<dops[i].rt1);
7448 current.waswritten&=~(1<<dops[i].rt2);
7449 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
7450 current.waswritten&=~(1<<dops[i].rs1);
7451
7452 /* Branch post-alloc */
7453 if(i>0)
7454 {
7455 current.wasdirty=current.dirty;
7456 switch(dops[i-1].itype) {
7457 case UJUMP:
7458 memcpy(&branch_regs[i-1],&current,sizeof(current));
7459 branch_regs[i-1].isconst=0;
7460 branch_regs[i-1].wasconst=0;
7461 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7462 alloc_cc(&branch_regs[i-1],i-1);
7463 dirty_reg(&branch_regs[i-1],CCREG);
7464 if(dops[i-1].rt1==31) { // JAL
7465 alloc_reg(&branch_regs[i-1],i-1,31);
7466 dirty_reg(&branch_regs[i-1],31);
7467 }
7468 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7469 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7470 break;
7471 case RJUMP:
7472 memcpy(&branch_regs[i-1],&current,sizeof(current));
7473 branch_regs[i-1].isconst=0;
7474 branch_regs[i-1].wasconst=0;
7475 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7476 alloc_cc(&branch_regs[i-1],i-1);
7477 dirty_reg(&branch_regs[i-1],CCREG);
7478 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
7479 if(dops[i-1].rt1!=0) { // JALR
7480 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
7481 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
7482 }
7483 #ifdef USE_MINI_HT
7484 if(dops[i-1].rs1==31) { // JALR
7485 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7486 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7487 }
7488 #endif
7489 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7490 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7491 break;
7492 case CJUMP:
7493 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
7494 {
7495 alloc_cc(&current,i-1);
7496 dirty_reg(&current,CCREG);
7497 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
7498 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
7499 // The delay slot overwrote one of our conditions
7500 // Delay slot goes after the test (in order)
7501 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7502 current.u|=1;
7503 delayslot_alloc(&current,i);
7504 current.isconst=0;
7505 }
7506 else
7507 {
7508 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7509 // Alloc the branch condition registers
7510 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
7511 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
7512 }
7513 memcpy(&branch_regs[i-1],&current,sizeof(current));
7514 branch_regs[i-1].isconst=0;
7515 branch_regs[i-1].wasconst=0;
7516 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7517 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7518 }
7519 else
7520 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
7521 {
7522 alloc_cc(&current,i-1);
7523 dirty_reg(&current,CCREG);
7524 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7525 // The delay slot overwrote the branch condition
7526 // Delay slot goes after the test (in order)
7527 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7528 current.u|=1;
7529 delayslot_alloc(&current,i);
7530 current.isconst=0;
7531 }
7532 else
7533 {
7534 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7535 // Alloc the branch condition register
7536 alloc_reg(&current,i-1,dops[i-1].rs1);
7537 }
7538 memcpy(&branch_regs[i-1],&current,sizeof(current));
7539 branch_regs[i-1].isconst=0;
7540 branch_regs[i-1].wasconst=0;
7541 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7542 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7543 }
7544 else
7545 // Alloc the delay slot in case the branch is taken
7546 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
7547 {
7548 memcpy(&branch_regs[i-1],&current,sizeof(current));
7549 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7550 alloc_cc(&branch_regs[i-1],i);
7551 dirty_reg(&branch_regs[i-1],CCREG);
7552 delayslot_alloc(&branch_regs[i-1],i);
7553 branch_regs[i-1].isconst=0;
7554 alloc_reg(&current,i,CCREG); // Not taken path
7555 dirty_reg(&current,CCREG);
7556 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7557 }
7558 else
7559 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
7560 {
7561 memcpy(&branch_regs[i-1],&current,sizeof(current));
7562 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7563 alloc_cc(&branch_regs[i-1],i);
7564 dirty_reg(&branch_regs[i-1],CCREG);
7565 delayslot_alloc(&branch_regs[i-1],i);
7566 branch_regs[i-1].isconst=0;
7567 alloc_reg(&current,i,CCREG); // Not taken path
7568 dirty_reg(&current,CCREG);
7569 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7570 }
7571 break;
7572 case SJUMP:
7573 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
7574 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
7575 {
7576 alloc_cc(&current,i-1);
7577 dirty_reg(&current,CCREG);
7578 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7579 // The delay slot overwrote the branch condition
7580 // Delay slot goes after the test (in order)
7581 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7582 current.u|=1;
7583 delayslot_alloc(&current,i);
7584 current.isconst=0;
7585 }
7586 else
7587 {
7588 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7589 // Alloc the branch condition register
7590 alloc_reg(&current,i-1,dops[i-1].rs1);
7591 }
7592 memcpy(&branch_regs[i-1],&current,sizeof(current));
7593 branch_regs[i-1].isconst=0;
7594 branch_regs[i-1].wasconst=0;
7595 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7596 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7597 }
7598 else
7599 // Alloc the delay slot in case the branch is taken
7600 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
7601 {
7602 memcpy(&branch_regs[i-1],&current,sizeof(current));
7603 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7604 alloc_cc(&branch_regs[i-1],i);
7605 dirty_reg(&branch_regs[i-1],CCREG);
7606 delayslot_alloc(&branch_regs[i-1],i);
7607 branch_regs[i-1].isconst=0;
7608 alloc_reg(&current,i,CCREG); // Not taken path
7609 dirty_reg(&current,CCREG);
7610 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7611 }
7612 // FIXME: BLTZAL/BGEZAL
7613 if(dops[i-1].opcode2&0x10) { // BxxZAL
7614 alloc_reg(&branch_regs[i-1],i-1,31);
7615 dirty_reg(&branch_regs[i-1],31);
7616 }
7617 break;
7618 }
7619
7620 if (dops[i-1].is_ujump)
7621 {
7622 if(dops[i-1].rt1==31) // JAL/JALR
7623 {
7624 // Subroutine call will return here, don't alloc any registers
7625 current.dirty=0;
7626 clear_all_regs(current.regmap);
7627 alloc_reg(&current,i,CCREG);
7628 dirty_reg(&current,CCREG);
7629 }
7630 else if(i+1<slen)
7631 {
7632 // Internal branch will jump here, match registers to caller
7633 current.dirty=0;
7634 clear_all_regs(current.regmap);
7635 alloc_reg(&current,i,CCREG);
7636 dirty_reg(&current,CCREG);
7637 for(j=i-1;j>=0;j--)
7638 {
7639 if(ba[j]==start+i*4+4) {
7640 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
7641 current.dirty=branch_regs[j].dirty;
7642 break;
7643 }
7644 }
7645 while(j>=0) {
7646 if(ba[j]==start+i*4+4) {
7647 for(hr=0;hr<HOST_REGS;hr++) {
7648 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
7649 current.regmap[hr]=-1;
7650 }
7651 current.dirty&=branch_regs[j].dirty;
7652 }
7653 }
7654 j--;
7655 }
7656 }
7657 }
7658 }
7659
7660 // Count cycles in between branches
7661 ccadj[i] = CLOCK_ADJUST(cc);
7662 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
7663 {
7664 cc=0;
7665 }
7666#if !defined(DRC_DBG)
7667 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
7668 {
7669 // this should really be removed since the real stalls have been implemented,
7670 // but doing so causes sizeable perf regression against the older version
7671 u_int gtec = gte_cycletab[source[i] & 0x3f];
7672 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
7673 }
7674 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
7675 {
7676 cc+=4;
7677 }
7678 else if(dops[i].itype==C2LS)
7679 {
7680 // same as with C2OP
7681 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
7682 }
7683#endif
7684 else
7685 {
7686 cc++;
7687 }
7688
7689 if(!dops[i].is_ds) {
7690 regs[i].dirty=current.dirty;
7691 regs[i].isconst=current.isconst;
7692 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
7693 }
7694 for(hr=0;hr<HOST_REGS;hr++) {
7695 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
7696 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
7697 regs[i].wasconst&=~(1<<hr);
7698 }
7699 }
7700 }
7701 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
7702 regs[i].waswritten=current.waswritten;
7703 }
7704}
7705
7706static noinline void pass4_cull_unused_regs(void)
7707{
7708 u_int last_needed_regs[4] = {0,0,0,0};
7709 u_int nr=0;
7710 int i;
7711
7712 for (i=slen-1;i>=0;i--)
7713 {
7714 int hr;
7715 __builtin_prefetch(regs[i-2].regmap);
7716 if(dops[i].is_jump)
7717 {
7718 if(ba[i]<start || ba[i]>=(start+slen*4))
7719 {
7720 // Branch out of this block, don't need anything
7721 nr=0;
7722 }
7723 else
7724 {
7725 // Internal branch
7726 // Need whatever matches the target
7727 nr=0;
7728 int t=(ba[i]-start)>>2;
7729 for(hr=0;hr<HOST_REGS;hr++)
7730 {
7731 if(regs[i].regmap_entry[hr]>=0) {
7732 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
7733 }
7734 }
7735 }
7736 // Conditional branch may need registers for following instructions
7737 if (!dops[i].is_ujump)
7738 {
7739 if(i<slen-2) {
7740 nr |= last_needed_regs[(i+2) & 3];
7741 for(hr=0;hr<HOST_REGS;hr++)
7742 {
7743 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
7744 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
7745 }
7746 }
7747 }
7748 // Don't need stuff which is overwritten
7749 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7750 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7751 // Merge in delay slot
7752 if (dops[i+1].rt1) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt1);
7753 if (dops[i+1].rt2) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt2);
7754 nr |= get_regm(regmap_pre[i], dops[i+1].rs1);
7755 nr |= get_regm(regmap_pre[i], dops[i+1].rs2);
7756 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs1);
7757 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs2);
7758 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
7759 nr |= get_regm(regmap_pre[i], ROREG);
7760 nr |= get_regm(regs[i].regmap_entry, ROREG);
7761 }
7762 if (dops[i+1].is_store) {
7763 nr |= get_regm(regmap_pre[i], INVCP);
7764 nr |= get_regm(regs[i].regmap_entry, INVCP);
7765 }
7766 }
7767 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
7768 {
7769 // SYSCALL instruction (software interrupt)
7770 nr=0;
7771 }
7772 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
7773 {
7774 // ERET instruction (return from interrupt)
7775 nr=0;
7776 }
7777 else // Non-branch
7778 {
7779 if(i<slen-1) {
7780 for(hr=0;hr<HOST_REGS;hr++) {
7781 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
7782 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
7783 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7784 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7785 }
7786 }
7787 }
7788 // Overwritten registers are not needed
7789 if (dops[i].rt1) nr &= ~get_regm(regs[i].regmap, dops[i].rt1);
7790 if (dops[i].rt2) nr &= ~get_regm(regs[i].regmap, dops[i].rt2);
7791 nr &= ~get_regm(regs[i].regmap, FTEMP);
7792 // Source registers are needed
7793 nr |= get_regm(regmap_pre[i], dops[i].rs1);
7794 nr |= get_regm(regmap_pre[i], dops[i].rs2);
7795 nr |= get_regm(regs[i].regmap_entry, dops[i].rs1);
7796 nr |= get_regm(regs[i].regmap_entry, dops[i].rs2);
7797 if (ram_offset && (dops[i].is_load || dops[i].is_store)) {
7798 nr |= get_regm(regmap_pre[i], ROREG);
7799 nr |= get_regm(regs[i].regmap_entry, ROREG);
7800 }
7801 if (dops[i].is_store) {
7802 nr |= get_regm(regmap_pre[i], INVCP);
7803 nr |= get_regm(regs[i].regmap_entry, INVCP);
7804 }
7805
7806 if (i > 0 && !dops[i].bt && regs[i].wasdirty)
7807 for(hr=0;hr<HOST_REGS;hr++)
7808 {
7809 // Don't store a register immediately after writing it,
7810 // may prevent dual-issue.
7811 // But do so if this is a branch target, otherwise we
7812 // might have to load the register before the branch.
7813 if((regs[i].wasdirty>>hr)&1) {
7814 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
7815 if(dops[i-1].rt1==regmap_pre[i][hr]) nr|=1<<hr;
7816 if(dops[i-1].rt2==regmap_pre[i][hr]) nr|=1<<hr;
7817 }
7818 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
7819 if(dops[i-1].rt1==regs[i].regmap_entry[hr]) nr|=1<<hr;
7820 if(dops[i-1].rt2==regs[i].regmap_entry[hr]) nr|=1<<hr;
7821 }
7822 }
7823 }
7824 // Cycle count is needed at branches. Assume it is needed at the target too.
7825 if(i==0||dops[i].bt||dops[i].itype==CJUMP) {
7826 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
7827 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
7828 }
7829 // Save it
7830 last_needed_regs[i & 3] = nr;
7831
7832 // Deallocate unneeded registers
7833 for(hr=0;hr<HOST_REGS;hr++)
7834 {
7835 if(!((nr>>hr)&1)) {
7836 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
7837 if(dops[i].is_jump)
7838 {
7839 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
7840 if (dops[i+1].is_load || dops[i+1].is_store)
7841 map1 = ROREG;
7842 if (dops[i+1].is_store)
7843 map2 = INVCP;
7844 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
7845 temp = FTEMP;
7846 if(regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
7847 regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
7848 regs[i].regmap[hr]!=dops[i+1].rt1 && regs[i].regmap[hr]!=dops[i+1].rt2 &&
7849 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
7850 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=PTEMP &&
7851 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
7852 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
7853 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
7854 {
7855 regs[i].regmap[hr]=-1;
7856 regs[i].isconst&=~(1<<hr);
7857 regs[i].dirty&=~(1<<hr);
7858 regs[i+1].wasdirty&=~(1<<hr);
7859 if(branch_regs[i].regmap[hr]!=dops[i].rs1 && branch_regs[i].regmap[hr]!=dops[i].rs2 &&
7860 branch_regs[i].regmap[hr]!=dops[i].rt1 && branch_regs[i].regmap[hr]!=dops[i].rt2 &&
7861 branch_regs[i].regmap[hr]!=dops[i+1].rt1 && branch_regs[i].regmap[hr]!=dops[i+1].rt2 &&
7862 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
7863 branch_regs[i].regmap[hr]!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
7864 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
7865 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
7866 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
7867 {
7868 branch_regs[i].regmap[hr]=-1;
7869 branch_regs[i].regmap_entry[hr]=-1;
7870 if (!dops[i].is_ujump)
7871 {
7872 if (i < slen-2) {
7873 regmap_pre[i+2][hr]=-1;
7874 regs[i+2].wasconst&=~(1<<hr);
7875 }
7876 }
7877 }
7878 }
7879 }
7880 else
7881 {
7882 // Non-branch
7883 if(i>0)
7884 {
7885 int map1 = -1, map2 = -1, temp=-1;
7886 if (dops[i].is_load || dops[i].is_store)
7887 map1 = ROREG;
7888 if (dops[i].is_store)
7889 map2 = INVCP;
7890 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
7891 temp = FTEMP;
7892 if(regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
7893 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
7894 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
7895 //(dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG)
7896 regs[i].regmap[hr] != CCREG)
7897 {
7898 if(i<slen-1&&!dops[i].is_ds) {
7899 assert(regs[i].regmap[hr]<64);
7900 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
7901 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
7902 {
7903 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
7904 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
7905 }
7906 regmap_pre[i+1][hr]=-1;
7907 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
7908 regs[i+1].wasconst&=~(1<<hr);
7909 }
7910 regs[i].regmap[hr]=-1;
7911 regs[i].isconst&=~(1<<hr);
7912 regs[i].dirty&=~(1<<hr);
7913 regs[i+1].wasdirty&=~(1<<hr);
7914 }
7915 }
7916 }
7917 } // if needed
7918 } // for hr
7919 }
7920}
7921
7922// If a register is allocated during a loop, try to allocate it for the
7923// entire loop, if possible. This avoids loading/storing registers
7924// inside of the loop.
7925static noinline void pass5a_preallocate1(void)
7926{
7927 int i, j, hr;
7928 signed char f_regmap[HOST_REGS];
7929 clear_all_regs(f_regmap);
7930 for(i=0;i<slen-1;i++)
7931 {
7932 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
7933 {
7934 if(ba[i]>=start && ba[i]<(start+i*4))
7935 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
7936 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
7937 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
7938 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
7939 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
7940 {
7941 int t=(ba[i]-start)>>2;
7942 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
7943 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
7944 for(hr=0;hr<HOST_REGS;hr++)
7945 {
7946 if(regs[i].regmap[hr]>=0) {
7947 if(f_regmap[hr]!=regs[i].regmap[hr]) {
7948 // dealloc old register
7949 int n;
7950 for(n=0;n<HOST_REGS;n++)
7951 {
7952 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
7953 }
7954 // and alloc new one
7955 f_regmap[hr]=regs[i].regmap[hr];
7956 }
7957 }
7958 if(branch_regs[i].regmap[hr]>=0) {
7959 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
7960 // dealloc old register
7961 int n;
7962 for(n=0;n<HOST_REGS;n++)
7963 {
7964 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
7965 }
7966 // and alloc new one
7967 f_regmap[hr]=branch_regs[i].regmap[hr];
7968 }
7969 }
7970 if(dops[i].ooo) {
7971 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
7972 f_regmap[hr]=branch_regs[i].regmap[hr];
7973 }else{
7974 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
7975 f_regmap[hr]=branch_regs[i].regmap[hr];
7976 }
7977 // Avoid dirty->clean transition
7978 #ifdef DESTRUCTIVE_WRITEBACK
7979 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
7980 #endif
7981 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
7982 // case above, however it's always a good idea. We can't hoist the
7983 // load if the register was already allocated, so there's no point
7984 // wasting time analyzing most of these cases. It only "succeeds"
7985 // when the mapping was different and the load can be replaced with
7986 // a mov, which is of negligible benefit. So such cases are
7987 // skipped below.
7988 if(f_regmap[hr]>0) {
7989 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
7990 int r=f_regmap[hr];
7991 for(j=t;j<=i;j++)
7992 {
7993 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
7994 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
7995 assert(r < 64);
7996 if(regs[j].regmap[hr]==f_regmap[hr]&&f_regmap[hr]<TEMPREG) {
7997 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
7998 int k;
7999 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8000 if(get_reg(regs[i].regmap,f_regmap[hr])>=0) break;
8001 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8002 k=i;
8003 while(k>1&&regs[k-1].regmap[hr]==-1) {
8004 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8005 //printf("no free regs for store %x\n",start+(k-1)*4);
8006 break;
8007 }
8008 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8009 //printf("no-match due to different register\n");
8010 break;
8011 }
8012 if (dops[k-2].is_jump) {
8013 //printf("no-match due to branch\n");
8014 break;
8015 }
8016 // call/ret fast path assumes no registers allocated
8017 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8018 break;
8019 }
8020 k--;
8021 }
8022 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8023 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8024 while(k<i) {
8025 regs[k].regmap_entry[hr]=f_regmap[hr];
8026 regs[k].regmap[hr]=f_regmap[hr];
8027 regmap_pre[k+1][hr]=f_regmap[hr];
8028 regs[k].wasdirty&=~(1<<hr);
8029 regs[k].dirty&=~(1<<hr);
8030 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8031 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8032 regs[k].wasconst&=~(1<<hr);
8033 regs[k].isconst&=~(1<<hr);
8034 k++;
8035 }
8036 }
8037 else {
8038 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8039 break;
8040 }
8041 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8042 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8043 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8044 regs[i].regmap_entry[hr]=f_regmap[hr];
8045 regs[i].regmap[hr]=f_regmap[hr];
8046 regs[i].wasdirty&=~(1<<hr);
8047 regs[i].dirty&=~(1<<hr);
8048 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8049 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8050 regs[i].wasconst&=~(1<<hr);
8051 regs[i].isconst&=~(1<<hr);
8052 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8053 branch_regs[i].wasdirty&=~(1<<hr);
8054 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8055 branch_regs[i].regmap[hr]=f_regmap[hr];
8056 branch_regs[i].dirty&=~(1<<hr);
8057 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8058 branch_regs[i].wasconst&=~(1<<hr);
8059 branch_regs[i].isconst&=~(1<<hr);
8060 if (!dops[i].is_ujump) {
8061 regmap_pre[i+2][hr]=f_regmap[hr];
8062 regs[i+2].wasdirty&=~(1<<hr);
8063 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8064 }
8065 }
8066 }
8067 for(k=t;k<j;k++) {
8068 // Alloc register clean at beginning of loop,
8069 // but may dirty it in pass 6
8070 regs[k].regmap_entry[hr]=f_regmap[hr];
8071 regs[k].regmap[hr]=f_regmap[hr];
8072 regs[k].dirty&=~(1<<hr);
8073 regs[k].wasconst&=~(1<<hr);
8074 regs[k].isconst&=~(1<<hr);
8075 if (dops[k].is_jump) {
8076 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8077 branch_regs[k].regmap[hr]=f_regmap[hr];
8078 branch_regs[k].dirty&=~(1<<hr);
8079 branch_regs[k].wasconst&=~(1<<hr);
8080 branch_regs[k].isconst&=~(1<<hr);
8081 if (!dops[k].is_ujump) {
8082 regmap_pre[k+2][hr]=f_regmap[hr];
8083 regs[k+2].wasdirty&=~(1<<hr);
8084 }
8085 }
8086 else
8087 {
8088 regmap_pre[k+1][hr]=f_regmap[hr];
8089 regs[k+1].wasdirty&=~(1<<hr);
8090 }
8091 }
8092 if(regs[j].regmap[hr]==f_regmap[hr])
8093 regs[j].regmap_entry[hr]=f_regmap[hr];
8094 break;
8095 }
8096 if(j==i) break;
8097 if(regs[j].regmap[hr]>=0)
8098 break;
8099 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8100 //printf("no-match due to different register\n");
8101 break;
8102 }
8103 if (dops[j].is_ujump)
8104 {
8105 // Stop on unconditional branch
8106 break;
8107 }
8108 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8109 {
8110 if(dops[j].ooo) {
8111 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8112 break;
8113 }else{
8114 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8115 break;
8116 }
8117 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8118 //printf("no-match due to different register (branch)\n");
8119 break;
8120 }
8121 }
8122 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8123 //printf("No free regs for store %x\n",start+j*4);
8124 break;
8125 }
8126 assert(f_regmap[hr]<64);
8127 }
8128 }
8129 }
8130 }
8131 }
8132 }else{
8133 // Non branch or undetermined branch target
8134 for(hr=0;hr<HOST_REGS;hr++)
8135 {
8136 if(hr!=EXCLUDE_REG) {
8137 if(regs[i].regmap[hr]>=0) {
8138 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8139 // dealloc old register
8140 int n;
8141 for(n=0;n<HOST_REGS;n++)
8142 {
8143 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8144 }
8145 // and alloc new one
8146 f_regmap[hr]=regs[i].regmap[hr];
8147 }
8148 }
8149 }
8150 }
8151 // Try to restore cycle count at branch targets
8152 if(dops[i].bt) {
8153 for(j=i;j<slen-1;j++) {
8154 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8155 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8156 //printf("no free regs for store %x\n",start+j*4);
8157 break;
8158 }
8159 }
8160 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8161 int k=i;
8162 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8163 while(k<j) {
8164 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8165 regs[k].regmap[HOST_CCREG]=CCREG;
8166 regmap_pre[k+1][HOST_CCREG]=CCREG;
8167 regs[k+1].wasdirty|=1<<HOST_CCREG;
8168 regs[k].dirty|=1<<HOST_CCREG;
8169 regs[k].wasconst&=~(1<<HOST_CCREG);
8170 regs[k].isconst&=~(1<<HOST_CCREG);
8171 k++;
8172 }
8173 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8174 }
8175 // Work backwards from the branch target
8176 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8177 {
8178 //printf("Extend backwards\n");
8179 int k;
8180 k=i;
8181 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8182 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8183 //printf("no free regs for store %x\n",start+(k-1)*4);
8184 break;
8185 }
8186 k--;
8187 }
8188 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8189 //printf("Extend CC, %x ->\n",start+k*4);
8190 while(k<=i) {
8191 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8192 regs[k].regmap[HOST_CCREG]=CCREG;
8193 regmap_pre[k+1][HOST_CCREG]=CCREG;
8194 regs[k+1].wasdirty|=1<<HOST_CCREG;
8195 regs[k].dirty|=1<<HOST_CCREG;
8196 regs[k].wasconst&=~(1<<HOST_CCREG);
8197 regs[k].isconst&=~(1<<HOST_CCREG);
8198 k++;
8199 }
8200 }
8201 else {
8202 //printf("Fail Extend CC, %x ->\n",start+k*4);
8203 }
8204 }
8205 }
8206 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8207 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8208 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8209 {
8210 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8211 }
8212 }
8213 }
8214}
8215
8216// This allocates registers (if possible) one instruction prior
8217// to use, which can avoid a load-use penalty on certain CPUs.
8218static noinline void pass5b_preallocate2(void)
8219{
8220 int i, hr;
8221 for(i=0;i<slen-1;i++)
8222 {
8223 if (!i || !dops[i-1].is_jump)
8224 {
8225 if(!dops[i+1].bt)
8226 {
8227 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8228 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8229 {
8230 if(dops[i+1].rs1) {
8231 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8232 {
8233 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8234 {
8235 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8236 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8237 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8238 regs[i].isconst&=~(1<<hr);
8239 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8240 constmap[i][hr]=constmap[i+1][hr];
8241 regs[i+1].wasdirty&=~(1<<hr);
8242 regs[i].dirty&=~(1<<hr);
8243 }
8244 }
8245 }
8246 if(dops[i+1].rs2) {
8247 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8248 {
8249 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8250 {
8251 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8252 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8253 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8254 regs[i].isconst&=~(1<<hr);
8255 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8256 constmap[i][hr]=constmap[i+1][hr];
8257 regs[i+1].wasdirty&=~(1<<hr);
8258 regs[i].dirty&=~(1<<hr);
8259 }
8260 }
8261 }
8262 // Preload target address for load instruction (non-constant)
8263 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8264 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8265 {
8266 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8267 {
8268 regs[i].regmap[hr]=dops[i+1].rs1;
8269 regmap_pre[i+1][hr]=dops[i+1].rs1;
8270 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8271 regs[i].isconst&=~(1<<hr);
8272 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8273 constmap[i][hr]=constmap[i+1][hr];
8274 regs[i+1].wasdirty&=~(1<<hr);
8275 regs[i].dirty&=~(1<<hr);
8276 }
8277 }
8278 }
8279 // Load source into target register
8280 if(dops[i+1].use_lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8281 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8282 {
8283 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8284 {
8285 regs[i].regmap[hr]=dops[i+1].rs1;
8286 regmap_pre[i+1][hr]=dops[i+1].rs1;
8287 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8288 regs[i].isconst&=~(1<<hr);
8289 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8290 constmap[i][hr]=constmap[i+1][hr];
8291 regs[i+1].wasdirty&=~(1<<hr);
8292 regs[i].dirty&=~(1<<hr);
8293 }
8294 }
8295 }
8296 // Address for store instruction (non-constant)
8297 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8298 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8299 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8300 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8301 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8302 else {
8303 regs[i+1].regmap[hr]=AGEN1+((i+1)&1);
8304 regs[i+1].isconst&=~(1<<hr);
8305 }
8306 assert(hr>=0);
8307 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8308 {
8309 regs[i].regmap[hr]=dops[i+1].rs1;
8310 regmap_pre[i+1][hr]=dops[i+1].rs1;
8311 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8312 regs[i].isconst&=~(1<<hr);
8313 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8314 constmap[i][hr]=constmap[i+1][hr];
8315 regs[i+1].wasdirty&=~(1<<hr);
8316 regs[i].dirty&=~(1<<hr);
8317 }
8318 }
8319 }
8320 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8321 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8322 int nr;
8323 hr=get_reg(regs[i+1].regmap,FTEMP);
8324 assert(hr>=0);
8325 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8326 {
8327 regs[i].regmap[hr]=dops[i+1].rs1;
8328 regmap_pre[i+1][hr]=dops[i+1].rs1;
8329 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8330 regs[i].isconst&=~(1<<hr);
8331 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8332 constmap[i][hr]=constmap[i+1][hr];
8333 regs[i+1].wasdirty&=~(1<<hr);
8334 regs[i].dirty&=~(1<<hr);
8335 }
8336 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8337 {
8338 // move it to another register
8339 regs[i+1].regmap[hr]=-1;
8340 regmap_pre[i+2][hr]=-1;
8341 regs[i+1].regmap[nr]=FTEMP;
8342 regmap_pre[i+2][nr]=FTEMP;
8343 regs[i].regmap[nr]=dops[i+1].rs1;
8344 regmap_pre[i+1][nr]=dops[i+1].rs1;
8345 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8346 regs[i].isconst&=~(1<<nr);
8347 regs[i+1].isconst&=~(1<<nr);
8348 regs[i].dirty&=~(1<<nr);
8349 regs[i+1].wasdirty&=~(1<<nr);
8350 regs[i+1].dirty&=~(1<<nr);
8351 regs[i+2].wasdirty&=~(1<<nr);
8352 }
8353 }
8354 }
8355 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
8356 hr = -1;
8357 if(dops[i+1].itype==LOAD)
8358 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
8359 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8360 hr=get_reg(regs[i+1].regmap,FTEMP);
8361 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8362 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8363 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8364 }
8365 if(hr>=0&&regs[i].regmap[hr]<0) {
8366 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8367 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8368 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8369 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8370 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8371 regs[i].isconst&=~(1<<hr);
8372 regs[i+1].wasdirty&=~(1<<hr);
8373 regs[i].dirty&=~(1<<hr);
8374 }
8375 }
8376 }
8377 }
8378 }
8379 }
8380 }
8381}
8382
8383// Write back dirty registers as soon as we will no longer modify them,
8384// so that we don't end up with lots of writes at the branches.
8385static noinline void pass6_clean_registers(int istart, int iend, int wr)
8386{
8387 static u_int wont_dirty[MAXBLOCK];
8388 static u_int will_dirty[MAXBLOCK];
8389 int i;
8390 int r;
8391 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
8392 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
8393 if(iend==slen-1) {
8394 will_dirty_i=will_dirty_next=0;
8395 wont_dirty_i=wont_dirty_next=0;
8396 }else{
8397 will_dirty_i=will_dirty_next=will_dirty[iend+1];
8398 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
8399 }
8400 for (i=iend;i>=istart;i--)
8401 {
8402 signed char rregmap_i[RRMAP_SIZE];
8403 u_int hr_candirty = 0;
8404 assert(HOST_REGS < 32);
8405 make_rregs(regs[i].regmap, rregmap_i, &hr_candirty);
8406 __builtin_prefetch(regs[i-1].regmap);
8407 if(dops[i].is_jump)
8408 {
8409 signed char branch_rregmap_i[RRMAP_SIZE];
8410 u_int branch_hr_candirty = 0;
8411 make_rregs(branch_regs[i].regmap, branch_rregmap_i, &branch_hr_candirty);
8412 if(ba[i]<start || ba[i]>=(start+slen*4))
8413 {
8414 // Branch out of this block, flush all regs
8415 will_dirty_i = 0;
8416 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8417 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8418 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8419 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8420 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8421 will_dirty_i &= branch_hr_candirty;
8422 if (dops[i].is_ujump)
8423 {
8424 // Unconditional branch
8425 wont_dirty_i = 0;
8426 // Merge in delay slot (will dirty)
8427 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8428 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8429 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8430 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8431 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8432 will_dirty_i &= hr_candirty;
8433 }
8434 else
8435 {
8436 // Conditional branch
8437 wont_dirty_i = wont_dirty_next;
8438 // Merge in delay slot (will dirty)
8439 // (the original code had no explanation why these 2 are commented out)
8440 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8441 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8442 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8443 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8444 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8445 will_dirty_i &= hr_candirty;
8446 }
8447 // Merge in delay slot (wont dirty)
8448 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8449 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8450 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8451 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8452 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8453 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8454 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8455 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8456 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8457 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8458 wont_dirty_i &= ~(1u << 31);
8459 if(wr) {
8460 #ifndef DESTRUCTIVE_WRITEBACK
8461 branch_regs[i].dirty&=wont_dirty_i;
8462 #endif
8463 branch_regs[i].dirty|=will_dirty_i;
8464 }
8465 }
8466 else
8467 {
8468 // Internal branch
8469 if(ba[i]<=start+i*4) {
8470 // Backward branch
8471 if (dops[i].is_ujump)
8472 {
8473 // Unconditional branch
8474 temp_will_dirty=0;
8475 temp_wont_dirty=0;
8476 // Merge in delay slot (will dirty)
8477 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8478 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8479 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8480 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8481 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8482 temp_will_dirty &= branch_hr_candirty;
8483 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8484 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8485 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8486 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8487 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8488 temp_will_dirty &= hr_candirty;
8489 } else {
8490 // Conditional branch (not taken case)
8491 temp_will_dirty=will_dirty_next;
8492 temp_wont_dirty=wont_dirty_next;
8493 // Merge in delay slot (will dirty)
8494 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8495 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8496 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8497 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8498 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8499 temp_will_dirty &= branch_hr_candirty;
8500 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8501 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8502 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8503 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8504 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8505 temp_will_dirty &= hr_candirty;
8506 }
8507 // Merge in delay slot (wont dirty)
8508 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8509 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8510 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8511 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8512 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8513 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8514 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8515 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8516 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8517 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8518 temp_wont_dirty &= ~(1u << 31);
8519 // Deal with changed mappings
8520 if(i<iend) {
8521 for(r=0;r<HOST_REGS;r++) {
8522 if(r!=EXCLUDE_REG) {
8523 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
8524 temp_will_dirty&=~(1<<r);
8525 temp_wont_dirty&=~(1<<r);
8526 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8527 temp_will_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8528 temp_wont_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8529 } else {
8530 temp_will_dirty|=1<<r;
8531 temp_wont_dirty|=1<<r;
8532 }
8533 }
8534 }
8535 }
8536 }
8537 if(wr) {
8538 will_dirty[i]=temp_will_dirty;
8539 wont_dirty[i]=temp_wont_dirty;
8540 pass6_clean_registers((ba[i]-start)>>2,i-1,0);
8541 }else{
8542 // Limit recursion. It can take an excessive amount
8543 // of time if there are a lot of nested loops.
8544 will_dirty[(ba[i]-start)>>2]=0;
8545 wont_dirty[(ba[i]-start)>>2]=-1;
8546 }
8547 }
8548 /*else*/ if(1)
8549 {
8550 if (dops[i].is_ujump)
8551 {
8552 // Unconditional branch
8553 will_dirty_i=0;
8554 wont_dirty_i=0;
8555 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
8556 for(r=0;r<HOST_REGS;r++) {
8557 if(r!=EXCLUDE_REG) {
8558 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
8559 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
8560 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
8561 }
8562 if(branch_regs[i].regmap[r]>=0) {
8563 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8564 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8565 }
8566 }
8567 }
8568 //}
8569 // Merge in delay slot
8570 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8571 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8572 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8573 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8574 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8575 will_dirty_i &= branch_hr_candirty;
8576 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8577 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8578 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8579 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8580 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8581 will_dirty_i &= hr_candirty;
8582 } else {
8583 // Conditional branch
8584 will_dirty_i=will_dirty_next;
8585 wont_dirty_i=wont_dirty_next;
8586 //if(ba[i]>start+i*4) // Disable recursion (for debugging)
8587 for(r=0;r<HOST_REGS;r++) {
8588 if(r!=EXCLUDE_REG) {
8589 signed char target_reg=branch_regs[i].regmap[r];
8590 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
8591 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
8592 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
8593 }
8594 else if(target_reg>=0) {
8595 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
8596 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
8597 }
8598 }
8599 }
8600 // Merge in delay slot
8601 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8602 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8603 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8604 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8605 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8606 will_dirty_i &= branch_hr_candirty;
8607 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8608 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8609 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8610 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8611 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8612 will_dirty_i &= hr_candirty;
8613 }
8614 // Merge in delay slot (won't dirty)
8615 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8616 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8617 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8618 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8619 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8620 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8621 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8622 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8623 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8624 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8625 wont_dirty_i &= ~(1u << 31);
8626 if(wr) {
8627 #ifndef DESTRUCTIVE_WRITEBACK
8628 branch_regs[i].dirty&=wont_dirty_i;
8629 #endif
8630 branch_regs[i].dirty|=will_dirty_i;
8631 }
8632 }
8633 }
8634 }
8635 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8636 {
8637 // SYSCALL instruction (software interrupt)
8638 will_dirty_i=0;
8639 wont_dirty_i=0;
8640 }
8641 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8642 {
8643 // ERET instruction (return from interrupt)
8644 will_dirty_i=0;
8645 wont_dirty_i=0;
8646 }
8647 will_dirty_next=will_dirty_i;
8648 wont_dirty_next=wont_dirty_i;
8649 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8650 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8651 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8652 will_dirty_i &= hr_candirty;
8653 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8654 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8655 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8656 wont_dirty_i &= ~(1u << 31);
8657 if (i > istart && !dops[i].is_jump) {
8658 // Don't store a register immediately after writing it,
8659 // may prevent dual-issue.
8660 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt1) & 31);
8661 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt2) & 31);
8662 }
8663 // Save it
8664 will_dirty[i]=will_dirty_i;
8665 wont_dirty[i]=wont_dirty_i;
8666 // Mark registers that won't be dirtied as not dirty
8667 if(wr) {
8668 regs[i].dirty|=will_dirty_i;
8669 #ifndef DESTRUCTIVE_WRITEBACK
8670 regs[i].dirty&=wont_dirty_i;
8671 if(dops[i].is_jump)
8672 {
8673 if (i < iend-1 && !dops[i].is_ujump) {
8674 for(r=0;r<HOST_REGS;r++) {
8675 if(r!=EXCLUDE_REG) {
8676 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
8677 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
8678 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8679 }
8680 }
8681 }
8682 }
8683 else
8684 {
8685 if(i<iend) {
8686 for(r=0;r<HOST_REGS;r++) {
8687 if(r!=EXCLUDE_REG) {
8688 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
8689 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
8690 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8691 }
8692 }
8693 }
8694 }
8695 #endif
8696 }
8697 // Deal with changed mappings
8698 temp_will_dirty=will_dirty_i;
8699 temp_wont_dirty=wont_dirty_i;
8700 for(r=0;r<HOST_REGS;r++) {
8701 if(r!=EXCLUDE_REG) {
8702 int nr;
8703 if(regs[i].regmap[r]==regmap_pre[i][r]) {
8704 if(wr) {
8705 #ifndef DESTRUCTIVE_WRITEBACK
8706 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8707 #endif
8708 regs[i].wasdirty|=will_dirty_i&(1<<r);
8709 }
8710 }
8711 else if(regmap_pre[i][r]>=0&&(nr=get_rreg(rregmap_i,regmap_pre[i][r]))>=0) {
8712 // Register moved to a different register
8713 will_dirty_i&=~(1<<r);
8714 wont_dirty_i&=~(1<<r);
8715 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
8716 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
8717 if(wr) {
8718 #ifndef DESTRUCTIVE_WRITEBACK
8719 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8720 #endif
8721 regs[i].wasdirty|=will_dirty_i&(1<<r);
8722 }
8723 }
8724 else {
8725 will_dirty_i&=~(1<<r);
8726 wont_dirty_i&=~(1<<r);
8727 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8728 will_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8729 wont_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8730 } else {
8731 wont_dirty_i|=1<<r;
8732 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
8733 }
8734 }
8735 }
8736 }
8737 }
8738}
8739
8740static noinline void pass10_expire_blocks(void)
8741{
8742 u_int step = MAX_OUTPUT_BLOCK_SIZE / PAGE_COUNT / 2;
8743 // not sizeof(ndrc->translation_cache) due to vita hack
8744 u_int step_mask = ((1u << TARGET_SIZE_2) - 1u) & ~(step - 1u);
8745 u_int end = (out - ndrc->translation_cache + EXPIRITY_OFFSET) & step_mask;
8746 u_int base_shift = __builtin_ctz(MAX_OUTPUT_BLOCK_SIZE);
8747 int hit;
8748
8749 for (; expirep != end; expirep = ((expirep + step) & step_mask))
8750 {
8751 u_int base_offs = expirep & ~(MAX_OUTPUT_BLOCK_SIZE - 1);
8752 u_int block_i = expirep / step & (PAGE_COUNT - 1);
8753 u_int phase = (expirep >> (base_shift - 1)) & 1u;
8754 if (!(expirep & (MAX_OUTPUT_BLOCK_SIZE / 2 - 1))) {
8755 inv_debug("EXP: base_offs %x/%x phase %u\n", base_offs,
8756 out - ndrc->translation_cache phase);
8757 }
8758
8759 if (!phase) {
8760 hit = blocks_remove_matching_addrs(&blocks[block_i], base_offs, base_shift);
8761 if (hit) {
8762 do_clear_cache();
8763 #ifdef USE_MINI_HT
8764 memset(mini_ht, -1, sizeof(mini_ht));
8765 #endif
8766 }
8767 }
8768 else
8769 ll_remove_matching_addrs(&jump_out[block_i], base_offs, base_shift);
8770 }
8771}
8772
8773static struct block_info *new_block_info(u_int start, u_int len,
8774 const void *source, const void *copy, u_char *beginning, u_short jump_in_count)
8775{
8776 struct block_info **b_pptr;
8777 struct block_info *block;
8778 u_int page = get_page(start);
8779
8780 block = malloc(sizeof(*block) + jump_in_count * sizeof(block->jump_in[0]));
8781 assert(block);
8782 assert(jump_in_count > 0);
8783 block->source = source;
8784 block->copy = copy;
8785 block->start = start;
8786 block->len = len;
8787 block->reg_sv_flags = 0;
8788 block->tc_offs = beginning - ndrc->translation_cache;
8789 //block->tc_len = out - beginning;
8790 block->is_dirty = 0;
8791 block->jump_in_cnt = jump_in_count;
8792
8793 // insert sorted by start mirror-unmasked vaddr
8794 for (b_pptr = &blocks[page]; ; b_pptr = &((*b_pptr)->next)) {
8795 if (*b_pptr == NULL || (*b_pptr)->start >= start) {
8796 block->next = *b_pptr;
8797 *b_pptr = block;
8798 break;
8799 }
8800 }
8801 stat_inc(stat_blocks);
8802 return block;
8803}
8804
8805static int new_recompile_block(u_int addr)
8806{
8807 u_int pagelimit = 0;
8808 u_int state_rflags = 0;
8809 int i;
8810
8811 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
8812
8813 // this is just for speculation
8814 for (i = 1; i < 32; i++) {
8815 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
8816 state_rflags |= 1 << i;
8817 }
8818
8819 assert(!(addr & 3));
8820 start = addr & ~3;
8821 new_dynarec_did_compile=1;
8822 if (Config.HLE && start == 0x80001000) // hlecall
8823 {
8824 // XXX: is this enough? Maybe check hleSoftCall?
8825 void *beginning = start_block();
8826
8827 emit_movimm(start,0);
8828 emit_writeword(0,&pcaddr);
8829 emit_far_jump(new_dyna_leave);
8830 literal_pool(0);
8831 end_block(beginning);
8832 struct block_info *block = new_block_info(start, 4, NULL, NULL, beginning, 1);
8833 block->jump_in[0].vaddr = start;
8834 block->jump_in[0].addr = beginning;
8835 return 0;
8836 }
8837 else if (f1_hack && hack_addr == 0) {
8838 void *beginning = start_block();
8839 emit_movimm(start, 0);
8840 emit_writeword(0, &hack_addr);
8841 emit_readword(&psxRegs.GPR.n.sp, 0);
8842 emit_readptr(&mem_rtab, 1);
8843 emit_shrimm(0, 12, 2);
8844 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
8845 emit_addimm(0, 0x18, 0);
8846 emit_adds_ptr(1, 1, 1);
8847 emit_ldr_dualindexed(1, 0, 0);
8848 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
8849 emit_far_call(ndrc_get_addr_ht);
8850 emit_jmpreg(0); // jr k0
8851 literal_pool(0);
8852 end_block(beginning);
8853
8854 struct block_info *block = new_block_info(start, 4, NULL, NULL, beginning, 1);
8855 block->jump_in[0].vaddr = start;
8856 block->jump_in[0].addr = beginning;
8857 SysPrintf("F1 hack to %08x\n", start);
8858 return 0;
8859 }
8860
8861 cycle_multiplier_active = cycle_multiplier_override && cycle_multiplier == CYCLE_MULT_DEFAULT
8862 ? cycle_multiplier_override : cycle_multiplier;
8863
8864 source = get_source_start(start, &pagelimit);
8865 if (source == NULL) {
8866 if (addr != hack_addr) {
8867 SysPrintf("Compile at bogus memory address: %08x\n", addr);
8868 hack_addr = addr;
8869 }
8870 //abort();
8871 return -1;
8872 }
8873
8874 /* Pass 1: disassemble */
8875 /* Pass 2: register dependencies, branch targets */
8876 /* Pass 3: register allocation */
8877 /* Pass 4: branch dependencies */
8878 /* Pass 5: pre-alloc */
8879 /* Pass 6: optimize clean/dirty state */
8880 /* Pass 7: flag 32-bit registers */
8881 /* Pass 8: assembly */
8882 /* Pass 9: linker */
8883 /* Pass 10: garbage collection / free memory */
8884
8885 /* Pass 1 disassembly */
8886
8887 pass1_disassemble(pagelimit);
8888
8889 int clear_hack_addr = apply_hacks();
8890
8891 /* Pass 2 - Register dependencies and branch targets */
8892
8893 pass2_unneeded_regs(0,slen-1,0);
8894
8895 /* Pass 3 - Register allocation */
8896
8897 pass3_register_alloc(addr);
8898
8899 /* Pass 4 - Cull unused host registers */
8900
8901 pass4_cull_unused_regs();
8902
8903 /* Pass 5 - Pre-allocate registers */
8904
8905 pass5a_preallocate1();
8906 pass5b_preallocate2();
8907
8908 /* Pass 6 - Optimize clean/dirty state */
8909 pass6_clean_registers(0, slen-1, 1);
8910
8911 /* Pass 7 - Identify 32-bit registers */
8912 for (i=slen-1;i>=0;i--)
8913 {
8914 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8915 {
8916 // Conditional branch
8917 if((source[i]>>16)!=0x1000&&i<slen-2) {
8918 // Mark this address as a branch target since it may be called
8919 // upon return from interrupt
8920 dops[i+2].bt=1;
8921 }
8922 }
8923 }
8924
8925 /* Pass 8 - Assembly */
8926 linkcount=0;stubcount=0;
8927 is_delayslot=0;
8928 u_int dirty_pre=0;
8929 void *beginning=start_block();
8930 void *instr_addr0_override = NULL;
8931 int ds = 0;
8932
8933 if (start == 0x80030000) {
8934 // nasty hack for the fastbios thing
8935 // override block entry to this code
8936 instr_addr0_override = out;
8937 emit_movimm(start,0);
8938 // abuse io address var as a flag that we
8939 // have already returned here once
8940 emit_readword(&address,1);
8941 emit_writeword(0,&pcaddr);
8942 emit_writeword(0,&address);
8943 emit_cmp(0,1);
8944 #ifdef __aarch64__
8945 emit_jeq(out + 4*2);
8946 emit_far_jump(new_dyna_leave);
8947 #else
8948 emit_jne(new_dyna_leave);
8949 #endif
8950 }
8951 for(i=0;i<slen;i++)
8952 {
8953 __builtin_prefetch(regs[i+1].regmap);
8954 check_regmap(regmap_pre[i]);
8955 check_regmap(regs[i].regmap_entry);
8956 check_regmap(regs[i].regmap);
8957 //if(ds) printf("ds: ");
8958 disassemble_inst(i);
8959 if(ds) {
8960 ds=0; // Skip delay slot
8961 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
8962 instr_addr[i] = NULL;
8963 } else {
8964 speculate_register_values(i);
8965 #ifndef DESTRUCTIVE_WRITEBACK
8966 if (i < 2 || !dops[i-2].is_ujump)
8967 {
8968 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
8969 }
8970 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
8971 dirty_pre=branch_regs[i].dirty;
8972 }else{
8973 dirty_pre=regs[i].dirty;
8974 }
8975 #endif
8976 // write back
8977 if (i < 2 || !dops[i-2].is_ujump)
8978 {
8979 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
8980 loop_preload(regmap_pre[i],regs[i].regmap_entry);
8981 }
8982 // branch target entry point
8983 instr_addr[i] = out;
8984 assem_debug("<->\n");
8985 drc_dbg_emit_do_cmp(i, ccadj[i]);
8986 if (clear_hack_addr) {
8987 emit_movimm(0, 0);
8988 emit_writeword(0, &hack_addr);
8989 clear_hack_addr = 0;
8990 }
8991
8992 // load regs
8993 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
8994 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
8995 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
8996 address_generation(i,&regs[i],regs[i].regmap_entry);
8997 load_consts(regmap_pre[i],regs[i].regmap,i);
8998 if(dops[i].is_jump)
8999 {
9000 // Load the delay slot registers if necessary
9001 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9002 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9003 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9004 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9005 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
9006 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
9007 if (dops[i+1].is_store)
9008 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
9009 }
9010 else if(i+1<slen)
9011 {
9012 // Preload registers for following instruction
9013 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9014 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9015 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9016 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9017 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9018 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9019 }
9020 // TODO: if(is_ooo(i)) address_generation(i+1);
9021 if (!dops[i].is_jump || dops[i].itype == CJUMP)
9022 load_reg(regs[i].regmap_entry,regs[i].regmap,CCREG);
9023 if (ram_offset && (dops[i].is_load || dops[i].is_store))
9024 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
9025 if (dops[i].is_store)
9026 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
9027
9028 ds = assemble(i, &regs[i], ccadj[i]);
9029
9030 if (dops[i].is_ujump)
9031 literal_pool(1024);
9032 else
9033 literal_pool_jumpover(256);
9034 }
9035 }
9036
9037 assert(slen > 0);
9038 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9039 // no ending needed for this block since INTCALL never returns
9040 }
9041 // If the block did not end with an unconditional branch,
9042 // add a jump to the next instruction.
9043 else if (i > 1) {
9044 if (!dops[i-2].is_ujump) {
9045 assert(!dops[i-1].is_jump);
9046 assert(i==slen);
9047 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9048 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9049 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9050 emit_loadreg(CCREG,HOST_CCREG);
9051 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9052 }
9053 else
9054 {
9055 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9056 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9057 }
9058 add_to_linker(out,start+i*4,0);
9059 emit_jmp(0);
9060 }
9061 }
9062 else
9063 {
9064 assert(i>0);
9065 assert(!dops[i-1].is_jump);
9066 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9067 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9068 emit_loadreg(CCREG,HOST_CCREG);
9069 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9070 add_to_linker(out,start+i*4,0);
9071 emit_jmp(0);
9072 }
9073
9074 // TODO: delay slot stubs?
9075 // Stubs
9076 for(i=0;i<stubcount;i++)
9077 {
9078 switch(stubs[i].type)
9079 {
9080 case LOADB_STUB:
9081 case LOADH_STUB:
9082 case LOADW_STUB:
9083 case LOADD_STUB:
9084 case LOADBU_STUB:
9085 case LOADHU_STUB:
9086 do_readstub(i);break;
9087 case STOREB_STUB:
9088 case STOREH_STUB:
9089 case STOREW_STUB:
9090 case STORED_STUB:
9091 do_writestub(i);break;
9092 case CC_STUB:
9093 do_ccstub(i);break;
9094 case INVCODE_STUB:
9095 do_invstub(i);break;
9096 case FP_STUB:
9097 do_cop1stub(i);break;
9098 case STORELR_STUB:
9099 do_unalignedwritestub(i);break;
9100 }
9101 }
9102
9103 if (instr_addr0_override)
9104 instr_addr[0] = instr_addr0_override;
9105
9106#if 0
9107 /* check for improper expiration */
9108 for (i = 0; i < ARRAY_SIZE(jumps); i++) {
9109 int j;
9110 if (!jumps[i])
9111 continue;
9112 for (j = 0; j < jumps[i]->count; j++)
9113 assert(jumps[i]->e[j].stub < beginning || (u_char *)jumps[i]->e[j].stub > out);
9114 }
9115#endif
9116
9117 /* Pass 9 - Linker */
9118 for(i=0;i<linkcount;i++)
9119 {
9120 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9121 literal_pool(64);
9122 if (!link_addr[i].internal)
9123 {
9124 void *stub = out;
9125 void *addr = check_addr(link_addr[i].target);
9126 emit_extjump(link_addr[i].addr, link_addr[i].target);
9127 if (addr) {
9128 set_jump_target(link_addr[i].addr, addr);
9129 ndrc_add_jump_out(link_addr[i].target,stub);
9130 }
9131 else
9132 set_jump_target(link_addr[i].addr, stub);
9133 }
9134 else
9135 {
9136 // Internal branch
9137 int target=(link_addr[i].target-start)>>2;
9138 assert(target>=0&&target<slen);
9139 assert(instr_addr[target]);
9140 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9141 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9142 //#else
9143 set_jump_target(link_addr[i].addr, instr_addr[target]);
9144 //#endif
9145 }
9146 }
9147
9148 u_int source_len = slen*4;
9149 if (dops[slen-1].itype == INTCALL && source_len > 4)
9150 // no need to treat the last instruction as compiled
9151 // as interpreter fully handles it
9152 source_len -= 4;
9153
9154 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9155 copy = shadow;
9156
9157 // External Branch Targets (jump_in)
9158 int jump_in_count = 1;
9159 assert(instr_addr[0]);
9160 for (i = 1; i < slen; i++)
9161 {
9162 if (dops[i].bt && instr_addr[i])
9163 jump_in_count++;
9164 }
9165
9166 struct block_info *block =
9167 new_block_info(start, slen * 4, source, copy, beginning, jump_in_count);
9168 block->reg_sv_flags = state_rflags;
9169
9170 int jump_in_i = 0;
9171 for (i = 0; i < slen; i++)
9172 {
9173 if ((i == 0 || dops[i].bt) && instr_addr[i])
9174 {
9175 assem_debug("%p (%d) <- %8x\n", instr_addr[i], i, start + i*4);
9176 u_int vaddr = start + i*4;
9177
9178 literal_pool(256);
9179 void *entry = out;
9180 load_regs_entry(i);
9181 if (entry == out)
9182 entry = instr_addr[i];
9183 else
9184 emit_jmp(instr_addr[i]);
9185
9186 block->jump_in[jump_in_i].vaddr = vaddr;
9187 block->jump_in[jump_in_i].addr = entry;
9188 jump_in_i++;
9189 }
9190 }
9191 assert(jump_in_i == jump_in_count);
9192 hash_table_add(block->jump_in[0].vaddr, block->jump_in[0].addr);
9193 // Write out the literal pool if necessary
9194 literal_pool(0);
9195 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9196 // Align code
9197 if(((u_int)out)&7) emit_addnop(13);
9198 #endif
9199 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9200 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9201 memcpy(copy, source, source_len);
9202 copy += source_len;
9203
9204 end_block(beginning);
9205
9206 // If we're within 256K of the end of the buffer,
9207 // start over from the beginning. (Is 256K enough?)
9208 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9209 out = ndrc->translation_cache;
9210
9211 // Trap writes to any of the pages we compiled
9212 mark_invalid_code(start, slen*4, 0);
9213
9214 /* Pass 10 - Free memory by expiring oldest blocks */
9215
9216 pass10_expire_blocks();
9217
9218#ifdef ASSEM_PRINT
9219 fflush(stdout);
9220#endif
9221 stat_inc(stat_bc_direct);
9222 return 0;
9223}
9224
9225// vim:shiftwidth=2:expandtab