drc: fix block expire
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42
43#define noinline __attribute__((noinline,noclone))
44#ifndef ARRAY_SIZE
45#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
46#endif
47#ifndef min
48#define min(a, b) ((b) < (a) ? (b) : (a))
49#endif
50#ifndef max
51#define max(a, b) ((b) > (a) ? (b) : (a))
52#endif
53
54//#define DISASM
55//#define ASSEM_PRINT
56
57#ifdef ASSEM_PRINT
58#define assem_debug printf
59#else
60#define assem_debug(...)
61#endif
62//#define inv_debug printf
63#define inv_debug(...)
64
65#ifdef __i386__
66#include "assem_x86.h"
67#endif
68#ifdef __x86_64__
69#include "assem_x64.h"
70#endif
71#ifdef __arm__
72#include "assem_arm.h"
73#endif
74#ifdef __aarch64__
75#include "assem_arm64.h"
76#endif
77
78#define RAM_SIZE 0x200000
79#define MAXBLOCK 4096
80#define MAX_OUTPUT_BLOCK_SIZE 262144
81
82struct ndrc_mem
83{
84 u_char translation_cache[1 << TARGET_SIZE_2];
85 struct
86 {
87 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
88 const void *f[2048 / sizeof(void *)];
89 } tramp;
90};
91
92#ifdef BASE_ADDR_DYNAMIC
93static struct ndrc_mem *ndrc;
94#else
95static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
96static struct ndrc_mem *ndrc = &ndrc_;
97#endif
98
99// stubs
100enum stub_type {
101 CC_STUB = 1,
102 FP_STUB = 2,
103 LOADB_STUB = 3,
104 LOADH_STUB = 4,
105 LOADW_STUB = 5,
106 LOADD_STUB = 6,
107 LOADBU_STUB = 7,
108 LOADHU_STUB = 8,
109 STOREB_STUB = 9,
110 STOREH_STUB = 10,
111 STOREW_STUB = 11,
112 STORED_STUB = 12,
113 STORELR_STUB = 13,
114 INVCODE_STUB = 14,
115};
116
117struct regstat
118{
119 signed char regmap_entry[HOST_REGS];
120 signed char regmap[HOST_REGS];
121 uint64_t wasdirty;
122 uint64_t dirty;
123 uint64_t u;
124 u_int wasconst;
125 u_int isconst;
126 u_int loadedconst; // host regs that have constants loaded
127 u_int waswritten; // MIPS regs that were used as store base before
128};
129
130// note: asm depends on this layout
131struct ll_entry
132{
133 u_int vaddr;
134 u_int reg_sv_flags;
135 void *addr;
136 struct ll_entry *next;
137};
138
139struct ht_entry
140{
141 u_int vaddr[2];
142 void *tcaddr[2];
143};
144
145struct code_stub
146{
147 enum stub_type type;
148 void *addr;
149 void *retaddr;
150 u_int a;
151 uintptr_t b;
152 uintptr_t c;
153 u_int d;
154 u_int e;
155};
156
157struct link_entry
158{
159 void *addr;
160 u_int target;
161 u_int ext;
162};
163
164 // used by asm:
165 u_char *out;
166 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
167 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
168 struct ll_entry *jump_dirty[4096];
169
170 static struct ll_entry *jump_out[4096];
171 static u_int start;
172 static u_int *source;
173 static char insn[MAXBLOCK][10];
174 static u_char itype[MAXBLOCK];
175 static u_char opcode[MAXBLOCK];
176 static u_char opcode2[MAXBLOCK];
177 static u_char bt[MAXBLOCK];
178 static u_char rs1[MAXBLOCK];
179 static u_char rs2[MAXBLOCK];
180 static u_char rt1[MAXBLOCK];
181 static u_char rt2[MAXBLOCK];
182 static u_char dep1[MAXBLOCK];
183 static u_char dep2[MAXBLOCK];
184 static u_char lt1[MAXBLOCK];
185 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
186 static uint64_t gte_rt[MAXBLOCK];
187 static uint64_t gte_unneeded[MAXBLOCK];
188 static u_int smrv[32]; // speculated MIPS register values
189 static u_int smrv_strong; // mask or regs that are likely to have correct values
190 static u_int smrv_weak; // same, but somewhat less likely
191 static u_int smrv_strong_next; // same, but after current insn executes
192 static u_int smrv_weak_next;
193 static int imm[MAXBLOCK];
194 static u_int ba[MAXBLOCK];
195 static char likely[MAXBLOCK];
196 static char is_ds[MAXBLOCK];
197 static char ooo[MAXBLOCK];
198 static uint64_t unneeded_reg[MAXBLOCK];
199 static uint64_t branch_unneeded_reg[MAXBLOCK];
200 static signed char regmap_pre[MAXBLOCK][HOST_REGS]; // pre-instruction i?
201 // contains 'real' consts at [i] insn, but may differ from what's actually
202 // loaded in host reg as 'final' value is always loaded, see get_final_value()
203 static uint32_t current_constmap[HOST_REGS];
204 static uint32_t constmap[MAXBLOCK][HOST_REGS];
205 static struct regstat regs[MAXBLOCK];
206 static struct regstat branch_regs[MAXBLOCK];
207 static signed char minimum_free_regs[MAXBLOCK];
208 static u_int needed_reg[MAXBLOCK];
209 static u_int wont_dirty[MAXBLOCK];
210 static u_int will_dirty[MAXBLOCK];
211 static int ccadj[MAXBLOCK];
212 static int slen;
213 static void *instr_addr[MAXBLOCK];
214 static struct link_entry link_addr[MAXBLOCK];
215 static int linkcount;
216 static struct code_stub stubs[MAXBLOCK*3];
217 static int stubcount;
218 static u_int literals[1024][2];
219 static int literalcount;
220 static int is_delayslot;
221 static char shadow[1048576] __attribute__((aligned(16)));
222 static void *copy;
223 static int expirep;
224 static u_int stop_after_jal;
225#ifndef RAM_FIXED
226 static uintptr_t ram_offset;
227#else
228 static const uintptr_t ram_offset=0;
229#endif
230
231 int new_dynarec_hacks;
232 int new_dynarec_hacks_pergame;
233 int new_dynarec_hacks_old;
234 int new_dynarec_did_compile;
235
236 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
237
238 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
239 extern int last_count; // last absolute target, often = next_interupt
240 extern int pcaddr;
241 extern int pending_exception;
242 extern int branch_target;
243 extern uintptr_t mini_ht[32][2];
244 extern u_char restore_candidate[512];
245
246 /* registers that may be allocated */
247 /* 1-31 gpr */
248#define LOREG 32 // lo
249#define HIREG 33 // hi
250//#define FSREG 34 // FPU status (FCSR)
251#define CSREG 35 // Coprocessor status
252#define CCREG 36 // Cycle count
253#define INVCP 37 // Pointer to invalid_code
254//#define MMREG 38 // Pointer to memory_map
255//#define ROREG 39 // ram offset (if rdram!=0x80000000)
256#define TEMPREG 40
257#define FTEMP 40 // FPU temporary register
258#define PTEMP 41 // Prefetch temporary register
259//#define TLREG 42 // TLB mapping offset
260#define RHASH 43 // Return address hash
261#define RHTBL 44 // Return address hash table address
262#define RTEMP 45 // JR/JALR address register
263#define MAXREG 45
264#define AGEN1 46 // Address generation temporary register
265//#define AGEN2 47 // Address generation temporary register
266//#define MGEN1 48 // Maptable address generation temporary register
267//#define MGEN2 49 // Maptable address generation temporary register
268#define BTREG 50 // Branch target temporary register
269
270 /* instruction types */
271#define NOP 0 // No operation
272#define LOAD 1 // Load
273#define STORE 2 // Store
274#define LOADLR 3 // Unaligned load
275#define STORELR 4 // Unaligned store
276#define MOV 5 // Move
277#define ALU 6 // Arithmetic/logic
278#define MULTDIV 7 // Multiply/divide
279#define SHIFT 8 // Shift by register
280#define SHIFTIMM 9// Shift by immediate
281#define IMM16 10 // 16-bit immediate
282#define RJUMP 11 // Unconditional jump to register
283#define UJUMP 12 // Unconditional jump
284#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
285#define SJUMP 14 // Conditional branch (regimm format)
286#define COP0 15 // Coprocessor 0
287#define COP1 16 // Coprocessor 1
288#define C1LS 17 // Coprocessor 1 load/store
289//#define FJUMP 18 // Conditional branch (floating point)
290//#define FLOAT 19 // Floating point unit
291//#define FCONV 20 // Convert integer to float
292//#define FCOMP 21 // Floating point compare (sets FSREG)
293#define SYSCALL 22// SYSCALL
294#define OTHER 23 // Other
295#define SPAN 24 // Branch/delay slot spans 2 pages
296#define NI 25 // Not implemented
297#define HLECALL 26// PCSX fake opcodes for HLE
298#define COP2 27 // Coprocessor 2 move
299#define C2LS 28 // Coprocessor 2 load/store
300#define C2OP 29 // Coprocessor 2 operation
301#define INTCALL 30// Call interpreter to handle rare corner cases
302
303 /* branch codes */
304#define TAKEN 1
305#define NOTTAKEN 2
306#define NULLDS 3
307
308#define DJT_1 (void *)1l // no function, just a label in assem_debug log
309#define DJT_2 (void *)2l
310
311// asm linkage
312int new_recompile_block(u_int addr);
313void *get_addr_ht(u_int vaddr);
314void invalidate_block(u_int block);
315void invalidate_addr(u_int addr);
316void remove_hash(int vaddr);
317void dyna_linker();
318void dyna_linker_ds();
319void verify_code();
320void verify_code_ds();
321void cc_interrupt();
322void fp_exception();
323void fp_exception_ds();
324void jump_to_new_pc();
325void call_gteStall();
326void new_dyna_leave();
327
328// Needed by assembler
329static void wb_register(signed char r,signed char regmap[],uint64_t dirty);
330static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty);
331static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr);
332static void load_all_regs(signed char i_regmap[]);
333static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
334static void load_regs_entry(int t);
335static void load_all_consts(signed char regmap[],u_int dirty,int i);
336static u_int get_host_reglist(const signed char *regmap);
337
338static int verify_dirty(const u_int *ptr);
339static int get_final_value(int hr, int i, int *value);
340static void add_stub(enum stub_type type, void *addr, void *retaddr,
341 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
342static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
343 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
344static void add_to_linker(void *addr, u_int target, int ext);
345static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override);
346static void *get_direct_memhandler(void *table, u_int addr,
347 enum stub_type type, uintptr_t *addr_host);
348static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
349static void pass_args(int a0, int a1);
350static void emit_far_jump(const void *f);
351static void emit_far_call(const void *f);
352
353static void mprotect_w_x(void *start, void *end, int is_x)
354{
355#ifdef NO_WRITE_EXEC
356 #if defined(VITA)
357 // *Open* enables write on all memory that was
358 // allocated by sceKernelAllocMemBlockForVM()?
359 if (is_x)
360 sceKernelCloseVMDomain();
361 else
362 sceKernelOpenVMDomain();
363 #else
364 u_long mstart = (u_long)start & ~4095ul;
365 u_long mend = (u_long)end;
366 if (mprotect((void *)mstart, mend - mstart,
367 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
368 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
369 #endif
370#endif
371}
372
373static void start_tcache_write(void *start, void *end)
374{
375 mprotect_w_x(start, end, 0);
376}
377
378static void end_tcache_write(void *start, void *end)
379{
380#if defined(__arm__) || defined(__aarch64__)
381 size_t len = (char *)end - (char *)start;
382 #if defined(__BLACKBERRY_QNX__)
383 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
384 #elif defined(__MACH__)
385 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
386 #elif defined(VITA)
387 sceKernelSyncVMDomain(sceBlock, start, len);
388 #elif defined(_3DS)
389 ctr_flush_invalidate_cache();
390 #elif defined(__aarch64__)
391 // as of 2021, __clear_cache() is still broken on arm64
392 // so here is a custom one :(
393 clear_cache_arm64(start, end);
394 #else
395 __clear_cache(start, end);
396 #endif
397 (void)len;
398#endif
399
400 mprotect_w_x(start, end, 1);
401}
402
403static void *start_block(void)
404{
405 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
406 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
407 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
408 start_tcache_write(out, end);
409 return out;
410}
411
412static void end_block(void *start)
413{
414 end_tcache_write(start, out);
415}
416
417// also takes care of w^x mappings when patching code
418static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
419
420static void mark_clear_cache(void *target)
421{
422 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
423 u_int mask = 1u << ((offset >> 12) & 31);
424 if (!(needs_clear_cache[offset >> 17] & mask)) {
425 char *start = (char *)((uintptr_t)target & ~4095l);
426 start_tcache_write(start, start + 4095);
427 needs_clear_cache[offset >> 17] |= mask;
428 }
429}
430
431// Clearing the cache is rather slow on ARM Linux, so mark the areas
432// that need to be cleared, and then only clear these areas once.
433static void do_clear_cache(void)
434{
435 int i, j;
436 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
437 {
438 u_int bitmap = needs_clear_cache[i];
439 if (!bitmap)
440 continue;
441 for (j = 0; j < 32; j++)
442 {
443 u_char *start, *end;
444 if (!(bitmap & (1<<j)))
445 continue;
446
447 start = ndrc->translation_cache + i*131072 + j*4096;
448 end = start + 4095;
449 for (j++; j < 32; j++) {
450 if (!(bitmap & (1<<j)))
451 break;
452 end += 4096;
453 }
454 end_tcache_write(start, end);
455 }
456 needs_clear_cache[i] = 0;
457 }
458}
459
460//#define DEBUG_CYCLE_COUNT 1
461
462#define NO_CYCLE_PENALTY_THR 12
463
464int cycle_multiplier; // 100 for 1.0
465int cycle_multiplier_override;
466int cycle_multiplier_old;
467
468static int CLOCK_ADJUST(int x)
469{
470 int m = cycle_multiplier_override
471 ? cycle_multiplier_override : cycle_multiplier;
472 int s=(x>>31)|1;
473 return (x * m + s * 50) / 100;
474}
475
476// is the op an unconditional jump?
477static int is_ujump(int i)
478{
479 return itype[i] == UJUMP || itype[i] == RJUMP
480 || (source[i] >> 16) == 0x1000; // beq r0, r0, offset // b offset
481}
482
483static int is_jump(int i)
484{
485 return itype[i] == RJUMP || itype[i] == UJUMP || itype[i] == CJUMP || itype[i] == SJUMP;
486}
487
488static u_int get_page(u_int vaddr)
489{
490 u_int page=vaddr&~0xe0000000;
491 if (page < 0x1000000)
492 page &= ~0x0e00000; // RAM mirrors
493 page>>=12;
494 if(page>2048) page=2048+(page&2047);
495 return page;
496}
497
498// no virtual mem in PCSX
499static u_int get_vpage(u_int vaddr)
500{
501 return get_page(vaddr);
502}
503
504static struct ht_entry *hash_table_get(u_int vaddr)
505{
506 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
507}
508
509static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
510{
511 ht_bin->vaddr[1] = ht_bin->vaddr[0];
512 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
513 ht_bin->vaddr[0] = vaddr;
514 ht_bin->tcaddr[0] = tcaddr;
515}
516
517// some messy ari64's code, seems to rely on unsigned 32bit overflow
518static int doesnt_expire_soon(void *tcaddr)
519{
520 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
521 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
522}
523
524// Get address from virtual address
525// This is called from the recompiled JR/JALR instructions
526void noinline *get_addr(u_int vaddr)
527{
528 u_int page=get_page(vaddr);
529 u_int vpage=get_vpage(vaddr);
530 struct ll_entry *head;
531 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
532 head=jump_in[page];
533 while(head!=NULL) {
534 if(head->vaddr==vaddr) {
535 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
536 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
537 return head->addr;
538 }
539 head=head->next;
540 }
541 head=jump_dirty[vpage];
542 while(head!=NULL) {
543 if(head->vaddr==vaddr) {
544 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
545 // Don't restore blocks which are about to expire from the cache
546 if (doesnt_expire_soon(head->addr))
547 if (verify_dirty(head->addr)) {
548 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
549 invalid_code[vaddr>>12]=0;
550 inv_code_start=inv_code_end=~0;
551 if(vpage<2048) {
552 restore_candidate[vpage>>3]|=1<<(vpage&7);
553 }
554 else restore_candidate[page>>3]|=1<<(page&7);
555 struct ht_entry *ht_bin = hash_table_get(vaddr);
556 if (ht_bin->vaddr[0] == vaddr)
557 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
558 else
559 hash_table_add(ht_bin, vaddr, head->addr);
560
561 return head->addr;
562 }
563 }
564 head=head->next;
565 }
566 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
567 int r=new_recompile_block(vaddr);
568 if(r==0) return get_addr(vaddr);
569 // Execute in unmapped page, generate pagefault execption
570 Status|=2;
571 Cause=(vaddr<<31)|0x8;
572 EPC=(vaddr&1)?vaddr-5:vaddr;
573 BadVAddr=(vaddr&~1);
574 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
575 EntryHi=BadVAddr&0xFFFFE000;
576 return get_addr_ht(0x80000000);
577}
578// Look up address in hash table first
579void *get_addr_ht(u_int vaddr)
580{
581 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
582 const struct ht_entry *ht_bin = hash_table_get(vaddr);
583 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
584 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
585 return get_addr(vaddr);
586}
587
588void clear_all_regs(signed char regmap[])
589{
590 int hr;
591 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
592}
593
594static signed char get_reg(const signed char regmap[],int r)
595{
596 int hr;
597 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
598 return -1;
599}
600
601// Find a register that is available for two consecutive cycles
602static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
603{
604 int hr;
605 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
606 return -1;
607}
608
609int count_free_regs(signed char regmap[])
610{
611 int count=0;
612 int hr;
613 for(hr=0;hr<HOST_REGS;hr++)
614 {
615 if(hr!=EXCLUDE_REG) {
616 if(regmap[hr]<0) count++;
617 }
618 }
619 return count;
620}
621
622void dirty_reg(struct regstat *cur,signed char reg)
623{
624 int hr;
625 if(!reg) return;
626 for (hr=0;hr<HOST_REGS;hr++) {
627 if((cur->regmap[hr]&63)==reg) {
628 cur->dirty|=1<<hr;
629 }
630 }
631}
632
633static void set_const(struct regstat *cur, signed char reg, uint32_t value)
634{
635 int hr;
636 if(!reg) return;
637 for (hr=0;hr<HOST_REGS;hr++) {
638 if(cur->regmap[hr]==reg) {
639 cur->isconst|=1<<hr;
640 current_constmap[hr]=value;
641 }
642 }
643}
644
645static void clear_const(struct regstat *cur, signed char reg)
646{
647 int hr;
648 if(!reg) return;
649 for (hr=0;hr<HOST_REGS;hr++) {
650 if((cur->regmap[hr]&63)==reg) {
651 cur->isconst&=~(1<<hr);
652 }
653 }
654}
655
656static int is_const(struct regstat *cur, signed char reg)
657{
658 int hr;
659 if(reg<0) return 0;
660 if(!reg) return 1;
661 for (hr=0;hr<HOST_REGS;hr++) {
662 if((cur->regmap[hr]&63)==reg) {
663 return (cur->isconst>>hr)&1;
664 }
665 }
666 return 0;
667}
668
669static uint32_t get_const(struct regstat *cur, signed char reg)
670{
671 int hr;
672 if(!reg) return 0;
673 for (hr=0;hr<HOST_REGS;hr++) {
674 if(cur->regmap[hr]==reg) {
675 return current_constmap[hr];
676 }
677 }
678 SysPrintf("Unknown constant in r%d\n",reg);
679 abort();
680}
681
682// Least soon needed registers
683// Look at the next ten instructions and see which registers
684// will be used. Try not to reallocate these.
685void lsn(u_char hsn[], int i, int *preferred_reg)
686{
687 int j;
688 int b=-1;
689 for(j=0;j<9;j++)
690 {
691 if(i+j>=slen) {
692 j=slen-i-1;
693 break;
694 }
695 if (is_ujump(i+j))
696 {
697 // Don't go past an unconditonal jump
698 j++;
699 break;
700 }
701 }
702 for(;j>=0;j--)
703 {
704 if(rs1[i+j]) hsn[rs1[i+j]]=j;
705 if(rs2[i+j]) hsn[rs2[i+j]]=j;
706 if(rt1[i+j]) hsn[rt1[i+j]]=j;
707 if(rt2[i+j]) hsn[rt2[i+j]]=j;
708 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
709 // Stores can allocate zero
710 hsn[rs1[i+j]]=j;
711 hsn[rs2[i+j]]=j;
712 }
713 // On some architectures stores need invc_ptr
714 #if defined(HOST_IMM8)
715 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
716 hsn[INVCP]=j;
717 }
718 #endif
719 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
720 {
721 hsn[CCREG]=j;
722 b=j;
723 }
724 }
725 if(b>=0)
726 {
727 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
728 {
729 // Follow first branch
730 int t=(ba[i+b]-start)>>2;
731 j=7-b;if(t+j>=slen) j=slen-t-1;
732 for(;j>=0;j--)
733 {
734 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
735 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
736 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
737 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
738 }
739 }
740 // TODO: preferred register based on backward branch
741 }
742 // Delay slot should preferably not overwrite branch conditions or cycle count
743 if (i > 0 && is_jump(i-1)) {
744 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
745 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
746 hsn[CCREG]=1;
747 // ...or hash tables
748 hsn[RHASH]=1;
749 hsn[RHTBL]=1;
750 }
751 // Coprocessor load/store needs FTEMP, even if not declared
752 if(itype[i]==C1LS||itype[i]==C2LS) {
753 hsn[FTEMP]=0;
754 }
755 // Load L/R also uses FTEMP as a temporary register
756 if(itype[i]==LOADLR) {
757 hsn[FTEMP]=0;
758 }
759 // Also SWL/SWR/SDL/SDR
760 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
761 hsn[FTEMP]=0;
762 }
763 // Don't remove the miniht registers
764 if(itype[i]==UJUMP||itype[i]==RJUMP)
765 {
766 hsn[RHASH]=0;
767 hsn[RHTBL]=0;
768 }
769}
770
771// We only want to allocate registers if we're going to use them again soon
772int needed_again(int r, int i)
773{
774 int j;
775 int b=-1;
776 int rn=10;
777
778 if (i > 0 && is_ujump(i-1))
779 {
780 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
781 return 0; // Don't need any registers if exiting the block
782 }
783 for(j=0;j<9;j++)
784 {
785 if(i+j>=slen) {
786 j=slen-i-1;
787 break;
788 }
789 if (is_ujump(i+j))
790 {
791 // Don't go past an unconditonal jump
792 j++;
793 break;
794 }
795 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
796 {
797 break;
798 }
799 }
800 for(;j>=1;j--)
801 {
802 if(rs1[i+j]==r) rn=j;
803 if(rs2[i+j]==r) rn=j;
804 if((unneeded_reg[i+j]>>r)&1) rn=10;
805 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP))
806 {
807 b=j;
808 }
809 }
810 /*
811 if(b>=0)
812 {
813 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
814 {
815 // Follow first branch
816 int o=rn;
817 int t=(ba[i+b]-start)>>2;
818 j=7-b;if(t+j>=slen) j=slen-t-1;
819 for(;j>=0;j--)
820 {
821 if(!((unneeded_reg[t+j]>>r)&1)) {
822 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
823 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
824 }
825 else rn=o;
826 }
827 }
828 }*/
829 if(rn<10) return 1;
830 (void)b;
831 return 0;
832}
833
834// Try to match register allocations at the end of a loop with those
835// at the beginning
836int loop_reg(int i, int r, int hr)
837{
838 int j,k;
839 for(j=0;j<9;j++)
840 {
841 if(i+j>=slen) {
842 j=slen-i-1;
843 break;
844 }
845 if (is_ujump(i+j))
846 {
847 // Don't go past an unconditonal jump
848 j++;
849 break;
850 }
851 }
852 k=0;
853 if(i>0){
854 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP)
855 k--;
856 }
857 for(;k<j;k++)
858 {
859 assert(r < 64);
860 if((unneeded_reg[i+k]>>r)&1) return hr;
861 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP))
862 {
863 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
864 {
865 int t=(ba[i+k]-start)>>2;
866 int reg=get_reg(regs[t].regmap_entry,r);
867 if(reg>=0) return reg;
868 //reg=get_reg(regs[t+1].regmap_entry,r);
869 //if(reg>=0) return reg;
870 }
871 }
872 }
873 return hr;
874}
875
876
877// Allocate every register, preserving source/target regs
878void alloc_all(struct regstat *cur,int i)
879{
880 int hr;
881
882 for(hr=0;hr<HOST_REGS;hr++) {
883 if(hr!=EXCLUDE_REG) {
884 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
885 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
886 {
887 cur->regmap[hr]=-1;
888 cur->dirty&=~(1<<hr);
889 }
890 // Don't need zeros
891 if((cur->regmap[hr]&63)==0)
892 {
893 cur->regmap[hr]=-1;
894 cur->dirty&=~(1<<hr);
895 }
896 }
897 }
898}
899
900#ifndef NDEBUG
901static int host_tempreg_in_use;
902
903static void host_tempreg_acquire(void)
904{
905 assert(!host_tempreg_in_use);
906 host_tempreg_in_use = 1;
907}
908
909static void host_tempreg_release(void)
910{
911 host_tempreg_in_use = 0;
912}
913#else
914static void host_tempreg_acquire(void) {}
915static void host_tempreg_release(void) {}
916#endif
917
918#ifdef ASSEM_PRINT
919extern void gen_interupt();
920extern void do_insn_cmp();
921#define FUNCNAME(f) { f, " " #f }
922static const struct {
923 void *addr;
924 const char *name;
925} function_names[] = {
926 FUNCNAME(cc_interrupt),
927 FUNCNAME(gen_interupt),
928 FUNCNAME(get_addr_ht),
929 FUNCNAME(get_addr),
930 FUNCNAME(jump_handler_read8),
931 FUNCNAME(jump_handler_read16),
932 FUNCNAME(jump_handler_read32),
933 FUNCNAME(jump_handler_write8),
934 FUNCNAME(jump_handler_write16),
935 FUNCNAME(jump_handler_write32),
936 FUNCNAME(invalidate_addr),
937 FUNCNAME(jump_to_new_pc),
938 FUNCNAME(call_gteStall),
939 FUNCNAME(new_dyna_leave),
940 FUNCNAME(pcsx_mtc0),
941 FUNCNAME(pcsx_mtc0_ds),
942#ifdef DRC_DBG
943 FUNCNAME(do_insn_cmp),
944#endif
945#ifdef __arm__
946 FUNCNAME(verify_code),
947#endif
948};
949
950static const char *func_name(const void *a)
951{
952 int i;
953 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
954 if (function_names[i].addr == a)
955 return function_names[i].name;
956 return "";
957}
958#else
959#define func_name(x) ""
960#endif
961
962#ifdef __i386__
963#include "assem_x86.c"
964#endif
965#ifdef __x86_64__
966#include "assem_x64.c"
967#endif
968#ifdef __arm__
969#include "assem_arm.c"
970#endif
971#ifdef __aarch64__
972#include "assem_arm64.c"
973#endif
974
975static void *get_trampoline(const void *f)
976{
977 size_t i;
978
979 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
980 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
981 break;
982 }
983 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
984 SysPrintf("trampoline table is full, last func %p\n", f);
985 abort();
986 }
987 if (ndrc->tramp.f[i] == NULL) {
988 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
989 ndrc->tramp.f[i] = f;
990 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
991 }
992 return &ndrc->tramp.ops[i];
993}
994
995static void emit_far_jump(const void *f)
996{
997 if (can_jump_or_call(f)) {
998 emit_jmp(f);
999 return;
1000 }
1001
1002 f = get_trampoline(f);
1003 emit_jmp(f);
1004}
1005
1006static void emit_far_call(const void *f)
1007{
1008 if (can_jump_or_call(f)) {
1009 emit_call(f);
1010 return;
1011 }
1012
1013 f = get_trampoline(f);
1014 emit_call(f);
1015}
1016
1017// Add virtual address mapping to linked list
1018void ll_add(struct ll_entry **head,int vaddr,void *addr)
1019{
1020 struct ll_entry *new_entry;
1021 new_entry=malloc(sizeof(struct ll_entry));
1022 assert(new_entry!=NULL);
1023 new_entry->vaddr=vaddr;
1024 new_entry->reg_sv_flags=0;
1025 new_entry->addr=addr;
1026 new_entry->next=*head;
1027 *head=new_entry;
1028}
1029
1030void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1031{
1032 ll_add(head,vaddr,addr);
1033 (*head)->reg_sv_flags=reg_sv_flags;
1034}
1035
1036// Check if an address is already compiled
1037// but don't return addresses which are about to expire from the cache
1038void *check_addr(u_int vaddr)
1039{
1040 struct ht_entry *ht_bin = hash_table_get(vaddr);
1041 size_t i;
1042 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1043 if (ht_bin->vaddr[i] == vaddr)
1044 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1045 if (isclean(ht_bin->tcaddr[i]))
1046 return ht_bin->tcaddr[i];
1047 }
1048 u_int page=get_page(vaddr);
1049 struct ll_entry *head;
1050 head=jump_in[page];
1051 while (head != NULL) {
1052 if (head->vaddr == vaddr) {
1053 if (doesnt_expire_soon(head->addr)) {
1054 // Update existing entry with current address
1055 if (ht_bin->vaddr[0] == vaddr) {
1056 ht_bin->tcaddr[0] = head->addr;
1057 return head->addr;
1058 }
1059 if (ht_bin->vaddr[1] == vaddr) {
1060 ht_bin->tcaddr[1] = head->addr;
1061 return head->addr;
1062 }
1063 // Insert into hash table with low priority.
1064 // Don't evict existing entries, as they are probably
1065 // addresses that are being accessed frequently.
1066 if (ht_bin->vaddr[0] == -1) {
1067 ht_bin->vaddr[0] = vaddr;
1068 ht_bin->tcaddr[0] = head->addr;
1069 }
1070 else if (ht_bin->vaddr[1] == -1) {
1071 ht_bin->vaddr[1] = vaddr;
1072 ht_bin->tcaddr[1] = head->addr;
1073 }
1074 return head->addr;
1075 }
1076 }
1077 head=head->next;
1078 }
1079 return 0;
1080}
1081
1082void remove_hash(int vaddr)
1083{
1084 //printf("remove hash: %x\n",vaddr);
1085 struct ht_entry *ht_bin = hash_table_get(vaddr);
1086 if (ht_bin->vaddr[1] == vaddr) {
1087 ht_bin->vaddr[1] = -1;
1088 ht_bin->tcaddr[1] = NULL;
1089 }
1090 if (ht_bin->vaddr[0] == vaddr) {
1091 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1092 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1093 ht_bin->vaddr[1] = -1;
1094 ht_bin->tcaddr[1] = NULL;
1095 }
1096}
1097
1098static void ll_remove_matching_addrs(struct ll_entry **head,
1099 uintptr_t base_offs_s, int shift)
1100{
1101 struct ll_entry *next;
1102 while(*head) {
1103 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1104 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1105 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1106 {
1107 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1108 remove_hash((*head)->vaddr);
1109 next=(*head)->next;
1110 free(*head);
1111 *head=next;
1112 }
1113 else
1114 {
1115 head=&((*head)->next);
1116 }
1117 }
1118}
1119
1120// Remove all entries from linked list
1121void ll_clear(struct ll_entry **head)
1122{
1123 struct ll_entry *cur;
1124 struct ll_entry *next;
1125 if((cur=*head)) {
1126 *head=0;
1127 while(cur) {
1128 next=cur->next;
1129 free(cur);
1130 cur=next;
1131 }
1132 }
1133}
1134
1135// Dereference the pointers and remove if it matches
1136static void ll_kill_pointers(struct ll_entry *head,
1137 uintptr_t base_offs_s, int shift)
1138{
1139 while(head) {
1140 u_char *ptr = get_pointer(head->addr);
1141 uintptr_t o1 = ptr - ndrc->translation_cache;
1142 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1143 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1144 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1145 {
1146 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1147 void *host_addr=find_extjump_insn(head->addr);
1148 mark_clear_cache(host_addr);
1149 set_jump_target(host_addr, head->addr);
1150 }
1151 head=head->next;
1152 }
1153}
1154
1155// This is called when we write to a compiled block (see do_invstub)
1156static void invalidate_page(u_int page)
1157{
1158 struct ll_entry *head;
1159 struct ll_entry *next;
1160 head=jump_in[page];
1161 jump_in[page]=0;
1162 while(head!=NULL) {
1163 inv_debug("INVALIDATE: %x\n",head->vaddr);
1164 remove_hash(head->vaddr);
1165 next=head->next;
1166 free(head);
1167 head=next;
1168 }
1169 head=jump_out[page];
1170 jump_out[page]=0;
1171 while(head!=NULL) {
1172 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1173 void *host_addr=find_extjump_insn(head->addr);
1174 mark_clear_cache(host_addr);
1175 set_jump_target(host_addr, head->addr);
1176 next=head->next;
1177 free(head);
1178 head=next;
1179 }
1180}
1181
1182static void invalidate_block_range(u_int block, u_int first, u_int last)
1183{
1184 u_int page=get_page(block<<12);
1185 //printf("first=%d last=%d\n",first,last);
1186 invalidate_page(page);
1187 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1188 assert(last<page+5);
1189 // Invalidate the adjacent pages if a block crosses a 4K boundary
1190 while(first<page) {
1191 invalidate_page(first);
1192 first++;
1193 }
1194 for(first=page+1;first<last;first++) {
1195 invalidate_page(first);
1196 }
1197 do_clear_cache();
1198
1199 // Don't trap writes
1200 invalid_code[block]=1;
1201
1202 #ifdef USE_MINI_HT
1203 memset(mini_ht,-1,sizeof(mini_ht));
1204 #endif
1205}
1206
1207void invalidate_block(u_int block)
1208{
1209 u_int page=get_page(block<<12);
1210 u_int vpage=get_vpage(block<<12);
1211 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1212 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1213 u_int first,last;
1214 first=last=page;
1215 struct ll_entry *head;
1216 head=jump_dirty[vpage];
1217 //printf("page=%d vpage=%d\n",page,vpage);
1218 while(head!=NULL) {
1219 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1220 u_char *start, *end;
1221 get_bounds(head->addr, &start, &end);
1222 //printf("start: %p end: %p\n", start, end);
1223 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1224 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1225 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1226 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1227 }
1228 }
1229 }
1230 head=head->next;
1231 }
1232 invalidate_block_range(block,first,last);
1233}
1234
1235void invalidate_addr(u_int addr)
1236{
1237 //static int rhits;
1238 // this check is done by the caller
1239 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1240 u_int page=get_vpage(addr);
1241 if(page<2048) { // RAM
1242 struct ll_entry *head;
1243 u_int addr_min=~0, addr_max=0;
1244 u_int mask=RAM_SIZE-1;
1245 u_int addr_main=0x80000000|(addr&mask);
1246 int pg1;
1247 inv_code_start=addr_main&~0xfff;
1248 inv_code_end=addr_main|0xfff;
1249 pg1=page;
1250 if (pg1>0) {
1251 // must check previous page too because of spans..
1252 pg1--;
1253 inv_code_start-=0x1000;
1254 }
1255 for(;pg1<=page;pg1++) {
1256 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1257 u_char *start_h, *end_h;
1258 u_int start, end;
1259 get_bounds(head->addr, &start_h, &end_h);
1260 start = (uintptr_t)start_h - ram_offset;
1261 end = (uintptr_t)end_h - ram_offset;
1262 if(start<=addr_main&&addr_main<end) {
1263 if(start<addr_min) addr_min=start;
1264 if(end>addr_max) addr_max=end;
1265 }
1266 else if(addr_main<start) {
1267 if(start<inv_code_end)
1268 inv_code_end=start-1;
1269 }
1270 else {
1271 if(end>inv_code_start)
1272 inv_code_start=end;
1273 }
1274 }
1275 }
1276 if (addr_min!=~0) {
1277 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1278 inv_code_start=inv_code_end=~0;
1279 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1280 return;
1281 }
1282 else {
1283 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1284 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1285 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1286 return;
1287 }
1288 }
1289 invalidate_block(addr>>12);
1290}
1291
1292// This is called when loading a save state.
1293// Anything could have changed, so invalidate everything.
1294void invalidate_all_pages(void)
1295{
1296 u_int page;
1297 for(page=0;page<4096;page++)
1298 invalidate_page(page);
1299 for(page=0;page<1048576;page++)
1300 if(!invalid_code[page]) {
1301 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1302 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1303 }
1304 #ifdef USE_MINI_HT
1305 memset(mini_ht,-1,sizeof(mini_ht));
1306 #endif
1307 do_clear_cache();
1308}
1309
1310static void do_invstub(int n)
1311{
1312 literal_pool(20);
1313 u_int reglist=stubs[n].a;
1314 set_jump_target(stubs[n].addr, out);
1315 save_regs(reglist);
1316 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1317 emit_far_call(invalidate_addr);
1318 restore_regs(reglist);
1319 emit_jmp(stubs[n].retaddr); // return address
1320}
1321
1322// Add an entry to jump_out after making a link
1323// src should point to code by emit_extjump2()
1324void add_link(u_int vaddr,void *src)
1325{
1326 u_int page=get_page(vaddr);
1327 inv_debug("add_link: %p -> %x (%d)\n",src,vaddr,page);
1328 check_extjump2(src);
1329 ll_add(jump_out+page,vaddr,src);
1330 //void *ptr=get_pointer(src);
1331 //inv_debug("add_link: Pointer is to %p\n",ptr);
1332}
1333
1334// If a code block was found to be unmodified (bit was set in
1335// restore_candidate) and it remains unmodified (bit is clear
1336// in invalid_code) then move the entries for that 4K page from
1337// the dirty list to the clean list.
1338void clean_blocks(u_int page)
1339{
1340 struct ll_entry *head;
1341 inv_debug("INV: clean_blocks page=%d\n",page);
1342 head=jump_dirty[page];
1343 while(head!=NULL) {
1344 if(!invalid_code[head->vaddr>>12]) {
1345 // Don't restore blocks which are about to expire from the cache
1346 if (doesnt_expire_soon(head->addr)) {
1347 if(verify_dirty(head->addr)) {
1348 u_char *start, *end;
1349 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1350 u_int i;
1351 u_int inv=0;
1352 get_bounds(head->addr, &start, &end);
1353 if (start - rdram < RAM_SIZE) {
1354 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1355 inv|=invalid_code[i];
1356 }
1357 }
1358 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1359 inv=1;
1360 }
1361 if(!inv) {
1362 void *clean_addr = get_clean_addr(head->addr);
1363 if (doesnt_expire_soon(clean_addr)) {
1364 u_int ppage=page;
1365 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1366 //printf("page=%x, addr=%x\n",page,head->vaddr);
1367 //assert(head->vaddr>>12==(page|0x80000));
1368 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1369 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1370 if (ht_bin->vaddr[0] == head->vaddr)
1371 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1372 if (ht_bin->vaddr[1] == head->vaddr)
1373 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1374 }
1375 }
1376 }
1377 }
1378 }
1379 head=head->next;
1380 }
1381}
1382
1383/* Register allocation */
1384
1385// Note: registers are allocated clean (unmodified state)
1386// if you intend to modify the register, you must call dirty_reg().
1387static void alloc_reg(struct regstat *cur,int i,signed char reg)
1388{
1389 int r,hr;
1390 int preferred_reg = (reg&7);
1391 if(reg==CCREG) preferred_reg=HOST_CCREG;
1392 if(reg==PTEMP||reg==FTEMP) preferred_reg=12;
1393
1394 // Don't allocate unused registers
1395 if((cur->u>>reg)&1) return;
1396
1397 // see if it's already allocated
1398 for(hr=0;hr<HOST_REGS;hr++)
1399 {
1400 if(cur->regmap[hr]==reg) return;
1401 }
1402
1403 // Keep the same mapping if the register was already allocated in a loop
1404 preferred_reg = loop_reg(i,reg,preferred_reg);
1405
1406 // Try to allocate the preferred register
1407 if(cur->regmap[preferred_reg]==-1) {
1408 cur->regmap[preferred_reg]=reg;
1409 cur->dirty&=~(1<<preferred_reg);
1410 cur->isconst&=~(1<<preferred_reg);
1411 return;
1412 }
1413 r=cur->regmap[preferred_reg];
1414 assert(r < 64);
1415 if((cur->u>>r)&1) {
1416 cur->regmap[preferred_reg]=reg;
1417 cur->dirty&=~(1<<preferred_reg);
1418 cur->isconst&=~(1<<preferred_reg);
1419 return;
1420 }
1421
1422 // Clear any unneeded registers
1423 // We try to keep the mapping consistent, if possible, because it
1424 // makes branches easier (especially loops). So we try to allocate
1425 // first (see above) before removing old mappings. If this is not
1426 // possible then go ahead and clear out the registers that are no
1427 // longer needed.
1428 for(hr=0;hr<HOST_REGS;hr++)
1429 {
1430 r=cur->regmap[hr];
1431 if(r>=0) {
1432 assert(r < 64);
1433 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1434 }
1435 }
1436 // Try to allocate any available register, but prefer
1437 // registers that have not been used recently.
1438 if(i>0) {
1439 for(hr=0;hr<HOST_REGS;hr++) {
1440 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1441 if(regs[i-1].regmap[hr]!=rs1[i-1]&&regs[i-1].regmap[hr]!=rs2[i-1]&&regs[i-1].regmap[hr]!=rt1[i-1]&&regs[i-1].regmap[hr]!=rt2[i-1]) {
1442 cur->regmap[hr]=reg;
1443 cur->dirty&=~(1<<hr);
1444 cur->isconst&=~(1<<hr);
1445 return;
1446 }
1447 }
1448 }
1449 }
1450 // Try to allocate any available register
1451 for(hr=0;hr<HOST_REGS;hr++) {
1452 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1453 cur->regmap[hr]=reg;
1454 cur->dirty&=~(1<<hr);
1455 cur->isconst&=~(1<<hr);
1456 return;
1457 }
1458 }
1459
1460 // Ok, now we have to evict someone
1461 // Pick a register we hopefully won't need soon
1462 u_char hsn[MAXREG+1];
1463 memset(hsn,10,sizeof(hsn));
1464 int j;
1465 lsn(hsn,i,&preferred_reg);
1466 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1467 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1468 if(i>0) {
1469 // Don't evict the cycle count at entry points, otherwise the entry
1470 // stub will have to write it.
1471 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1472 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1473 for(j=10;j>=3;j--)
1474 {
1475 // Alloc preferred register if available
1476 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1477 for(hr=0;hr<HOST_REGS;hr++) {
1478 // Evict both parts of a 64-bit register
1479 if((cur->regmap[hr]&63)==r) {
1480 cur->regmap[hr]=-1;
1481 cur->dirty&=~(1<<hr);
1482 cur->isconst&=~(1<<hr);
1483 }
1484 }
1485 cur->regmap[preferred_reg]=reg;
1486 return;
1487 }
1488 for(r=1;r<=MAXREG;r++)
1489 {
1490 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1491 for(hr=0;hr<HOST_REGS;hr++) {
1492 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1493 if(cur->regmap[hr]==r) {
1494 cur->regmap[hr]=reg;
1495 cur->dirty&=~(1<<hr);
1496 cur->isconst&=~(1<<hr);
1497 return;
1498 }
1499 }
1500 }
1501 }
1502 }
1503 }
1504 }
1505 for(j=10;j>=0;j--)
1506 {
1507 for(r=1;r<=MAXREG;r++)
1508 {
1509 if(hsn[r]==j) {
1510 for(hr=0;hr<HOST_REGS;hr++) {
1511 if(cur->regmap[hr]==r) {
1512 cur->regmap[hr]=reg;
1513 cur->dirty&=~(1<<hr);
1514 cur->isconst&=~(1<<hr);
1515 return;
1516 }
1517 }
1518 }
1519 }
1520 }
1521 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1522}
1523
1524// Allocate a temporary register. This is done without regard to
1525// dirty status or whether the register we request is on the unneeded list
1526// Note: This will only allocate one register, even if called multiple times
1527static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1528{
1529 int r,hr;
1530 int preferred_reg = -1;
1531
1532 // see if it's already allocated
1533 for(hr=0;hr<HOST_REGS;hr++)
1534 {
1535 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1536 }
1537
1538 // Try to allocate any available register
1539 for(hr=HOST_REGS-1;hr>=0;hr--) {
1540 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1541 cur->regmap[hr]=reg;
1542 cur->dirty&=~(1<<hr);
1543 cur->isconst&=~(1<<hr);
1544 return;
1545 }
1546 }
1547
1548 // Find an unneeded register
1549 for(hr=HOST_REGS-1;hr>=0;hr--)
1550 {
1551 r=cur->regmap[hr];
1552 if(r>=0) {
1553 assert(r < 64);
1554 if((cur->u>>r)&1) {
1555 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1556 cur->regmap[hr]=reg;
1557 cur->dirty&=~(1<<hr);
1558 cur->isconst&=~(1<<hr);
1559 return;
1560 }
1561 }
1562 }
1563 }
1564
1565 // Ok, now we have to evict someone
1566 // Pick a register we hopefully won't need soon
1567 // TODO: we might want to follow unconditional jumps here
1568 // TODO: get rid of dupe code and make this into a function
1569 u_char hsn[MAXREG+1];
1570 memset(hsn,10,sizeof(hsn));
1571 int j;
1572 lsn(hsn,i,&preferred_reg);
1573 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1574 if(i>0) {
1575 // Don't evict the cycle count at entry points, otherwise the entry
1576 // stub will have to write it.
1577 if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2;
1578 if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP)) hsn[CCREG]=2;
1579 for(j=10;j>=3;j--)
1580 {
1581 for(r=1;r<=MAXREG;r++)
1582 {
1583 if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) {
1584 for(hr=0;hr<HOST_REGS;hr++) {
1585 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1586 if(cur->regmap[hr]==r) {
1587 cur->regmap[hr]=reg;
1588 cur->dirty&=~(1<<hr);
1589 cur->isconst&=~(1<<hr);
1590 return;
1591 }
1592 }
1593 }
1594 }
1595 }
1596 }
1597 }
1598 for(j=10;j>=0;j--)
1599 {
1600 for(r=1;r<=MAXREG;r++)
1601 {
1602 if(hsn[r]==j) {
1603 for(hr=0;hr<HOST_REGS;hr++) {
1604 if(cur->regmap[hr]==r) {
1605 cur->regmap[hr]=reg;
1606 cur->dirty&=~(1<<hr);
1607 cur->isconst&=~(1<<hr);
1608 return;
1609 }
1610 }
1611 }
1612 }
1613 }
1614 SysPrintf("This shouldn't happen");abort();
1615}
1616
1617static void mov_alloc(struct regstat *current,int i)
1618{
1619 if (rs1[i] == HIREG || rs1[i] == LOREG) {
1620 // logically this is needed but just won't work, no idea why
1621 //alloc_cc(current,i); // for stalls
1622 //dirty_reg(current,CCREG);
1623 }
1624
1625 // Note: Don't need to actually alloc the source registers
1626 //alloc_reg(current,i,rs1[i]);
1627 alloc_reg(current,i,rt1[i]);
1628
1629 clear_const(current,rs1[i]);
1630 clear_const(current,rt1[i]);
1631 dirty_reg(current,rt1[i]);
1632}
1633
1634static void shiftimm_alloc(struct regstat *current,int i)
1635{
1636 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1637 {
1638 if(rt1[i]) {
1639 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1640 else lt1[i]=rs1[i];
1641 alloc_reg(current,i,rt1[i]);
1642 dirty_reg(current,rt1[i]);
1643 if(is_const(current,rs1[i])) {
1644 int v=get_const(current,rs1[i]);
1645 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1646 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1647 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1648 }
1649 else clear_const(current,rt1[i]);
1650 }
1651 }
1652 else
1653 {
1654 clear_const(current,rs1[i]);
1655 clear_const(current,rt1[i]);
1656 }
1657
1658 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1659 {
1660 assert(0);
1661 }
1662 if(opcode2[i]==0x3c) // DSLL32
1663 {
1664 assert(0);
1665 }
1666 if(opcode2[i]==0x3e) // DSRL32
1667 {
1668 assert(0);
1669 }
1670 if(opcode2[i]==0x3f) // DSRA32
1671 {
1672 assert(0);
1673 }
1674}
1675
1676static void shift_alloc(struct regstat *current,int i)
1677{
1678 if(rt1[i]) {
1679 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1680 {
1681 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1682 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1683 alloc_reg(current,i,rt1[i]);
1684 if(rt1[i]==rs2[i]) {
1685 alloc_reg_temp(current,i,-1);
1686 minimum_free_regs[i]=1;
1687 }
1688 } else { // DSLLV/DSRLV/DSRAV
1689 assert(0);
1690 }
1691 clear_const(current,rs1[i]);
1692 clear_const(current,rs2[i]);
1693 clear_const(current,rt1[i]);
1694 dirty_reg(current,rt1[i]);
1695 }
1696}
1697
1698static void alu_alloc(struct regstat *current,int i)
1699{
1700 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1701 if(rt1[i]) {
1702 if(rs1[i]&&rs2[i]) {
1703 alloc_reg(current,i,rs1[i]);
1704 alloc_reg(current,i,rs2[i]);
1705 }
1706 else {
1707 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1708 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1709 }
1710 alloc_reg(current,i,rt1[i]);
1711 }
1712 }
1713 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1714 if(rt1[i]) {
1715 alloc_reg(current,i,rs1[i]);
1716 alloc_reg(current,i,rs2[i]);
1717 alloc_reg(current,i,rt1[i]);
1718 }
1719 }
1720 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1721 if(rt1[i]) {
1722 if(rs1[i]&&rs2[i]) {
1723 alloc_reg(current,i,rs1[i]);
1724 alloc_reg(current,i,rs2[i]);
1725 }
1726 else
1727 {
1728 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1729 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1730 }
1731 alloc_reg(current,i,rt1[i]);
1732 }
1733 }
1734 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1735 assert(0);
1736 }
1737 clear_const(current,rs1[i]);
1738 clear_const(current,rs2[i]);
1739 clear_const(current,rt1[i]);
1740 dirty_reg(current,rt1[i]);
1741}
1742
1743static void imm16_alloc(struct regstat *current,int i)
1744{
1745 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1746 else lt1[i]=rs1[i];
1747 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1748 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1749 assert(0);
1750 }
1751 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1752 clear_const(current,rs1[i]);
1753 clear_const(current,rt1[i]);
1754 }
1755 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1756 if(is_const(current,rs1[i])) {
1757 int v=get_const(current,rs1[i]);
1758 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1759 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1760 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1761 }
1762 else clear_const(current,rt1[i]);
1763 }
1764 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1765 if(is_const(current,rs1[i])) {
1766 int v=get_const(current,rs1[i]);
1767 set_const(current,rt1[i],v+imm[i]);
1768 }
1769 else clear_const(current,rt1[i]);
1770 }
1771 else {
1772 set_const(current,rt1[i],imm[i]<<16); // LUI
1773 }
1774 dirty_reg(current,rt1[i]);
1775}
1776
1777static void load_alloc(struct regstat *current,int i)
1778{
1779 clear_const(current,rt1[i]);
1780 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1781 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1782 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1783 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1784 alloc_reg(current,i,rt1[i]);
1785 assert(get_reg(current->regmap,rt1[i])>=0);
1786 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1787 {
1788 assert(0);
1789 }
1790 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1791 {
1792 assert(0);
1793 }
1794 dirty_reg(current,rt1[i]);
1795 // LWL/LWR need a temporary register for the old value
1796 if(opcode[i]==0x22||opcode[i]==0x26)
1797 {
1798 alloc_reg(current,i,FTEMP);
1799 alloc_reg_temp(current,i,-1);
1800 minimum_free_regs[i]=1;
1801 }
1802 }
1803 else
1804 {
1805 // Load to r0 or unneeded register (dummy load)
1806 // but we still need a register to calculate the address
1807 if(opcode[i]==0x22||opcode[i]==0x26)
1808 {
1809 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1810 }
1811 alloc_reg_temp(current,i,-1);
1812 minimum_free_regs[i]=1;
1813 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1814 {
1815 assert(0);
1816 }
1817 }
1818}
1819
1820void store_alloc(struct regstat *current,int i)
1821{
1822 clear_const(current,rs2[i]);
1823 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1824 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1825 alloc_reg(current,i,rs2[i]);
1826 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1827 assert(0);
1828 }
1829 #if defined(HOST_IMM8)
1830 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1831 else alloc_reg(current,i,INVCP);
1832 #endif
1833 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1834 alloc_reg(current,i,FTEMP);
1835 }
1836 // We need a temporary register for address generation
1837 alloc_reg_temp(current,i,-1);
1838 minimum_free_regs[i]=1;
1839}
1840
1841void c1ls_alloc(struct regstat *current,int i)
1842{
1843 //clear_const(current,rs1[i]); // FIXME
1844 clear_const(current,rt1[i]);
1845 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1846 alloc_reg(current,i,CSREG); // Status
1847 alloc_reg(current,i,FTEMP);
1848 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1849 assert(0);
1850 }
1851 #if defined(HOST_IMM8)
1852 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1853 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1854 alloc_reg(current,i,INVCP);
1855 #endif
1856 // We need a temporary register for address generation
1857 alloc_reg_temp(current,i,-1);
1858}
1859
1860void c2ls_alloc(struct regstat *current,int i)
1861{
1862 clear_const(current,rt1[i]);
1863 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1864 alloc_reg(current,i,FTEMP);
1865 #if defined(HOST_IMM8)
1866 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1867 if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1868 alloc_reg(current,i,INVCP);
1869 #endif
1870 // We need a temporary register for address generation
1871 alloc_reg_temp(current,i,-1);
1872 minimum_free_regs[i]=1;
1873}
1874
1875#ifndef multdiv_alloc
1876void multdiv_alloc(struct regstat *current,int i)
1877{
1878 // case 0x18: MULT
1879 // case 0x19: MULTU
1880 // case 0x1A: DIV
1881 // case 0x1B: DIVU
1882 // case 0x1C: DMULT
1883 // case 0x1D: DMULTU
1884 // case 0x1E: DDIV
1885 // case 0x1F: DDIVU
1886 clear_const(current,rs1[i]);
1887 clear_const(current,rs2[i]);
1888 alloc_cc(current,i); // for stalls
1889 if(rs1[i]&&rs2[i])
1890 {
1891 if((opcode2[i]&4)==0) // 32-bit
1892 {
1893 current->u&=~(1LL<<HIREG);
1894 current->u&=~(1LL<<LOREG);
1895 alloc_reg(current,i,HIREG);
1896 alloc_reg(current,i,LOREG);
1897 alloc_reg(current,i,rs1[i]);
1898 alloc_reg(current,i,rs2[i]);
1899 dirty_reg(current,HIREG);
1900 dirty_reg(current,LOREG);
1901 }
1902 else // 64-bit
1903 {
1904 assert(0);
1905 }
1906 }
1907 else
1908 {
1909 // Multiply by zero is zero.
1910 // MIPS does not have a divide by zero exception.
1911 // The result is undefined, we return zero.
1912 alloc_reg(current,i,HIREG);
1913 alloc_reg(current,i,LOREG);
1914 dirty_reg(current,HIREG);
1915 dirty_reg(current,LOREG);
1916 }
1917}
1918#endif
1919
1920void cop0_alloc(struct regstat *current,int i)
1921{
1922 if(opcode2[i]==0) // MFC0
1923 {
1924 if(rt1[i]) {
1925 clear_const(current,rt1[i]);
1926 alloc_all(current,i);
1927 alloc_reg(current,i,rt1[i]);
1928 dirty_reg(current,rt1[i]);
1929 }
1930 }
1931 else if(opcode2[i]==4) // MTC0
1932 {
1933 if(rs1[i]){
1934 clear_const(current,rs1[i]);
1935 alloc_reg(current,i,rs1[i]);
1936 alloc_all(current,i);
1937 }
1938 else {
1939 alloc_all(current,i); // FIXME: Keep r0
1940 current->u&=~1LL;
1941 alloc_reg(current,i,0);
1942 }
1943 }
1944 else
1945 {
1946 // TLBR/TLBWI/TLBWR/TLBP/ERET
1947 assert(opcode2[i]==0x10);
1948 alloc_all(current,i);
1949 }
1950 minimum_free_regs[i]=HOST_REGS;
1951}
1952
1953static void cop2_alloc(struct regstat *current,int i)
1954{
1955 if (opcode2[i] < 3) // MFC2/CFC2
1956 {
1957 alloc_cc(current,i); // for stalls
1958 dirty_reg(current,CCREG);
1959 if(rt1[i]){
1960 clear_const(current,rt1[i]);
1961 alloc_reg(current,i,rt1[i]);
1962 dirty_reg(current,rt1[i]);
1963 }
1964 }
1965 else if (opcode2[i] > 3) // MTC2/CTC2
1966 {
1967 if(rs1[i]){
1968 clear_const(current,rs1[i]);
1969 alloc_reg(current,i,rs1[i]);
1970 }
1971 else {
1972 current->u&=~1LL;
1973 alloc_reg(current,i,0);
1974 }
1975 }
1976 alloc_reg_temp(current,i,-1);
1977 minimum_free_regs[i]=1;
1978}
1979
1980void c2op_alloc(struct regstat *current,int i)
1981{
1982 alloc_cc(current,i); // for stalls
1983 dirty_reg(current,CCREG);
1984 alloc_reg_temp(current,i,-1);
1985}
1986
1987void syscall_alloc(struct regstat *current,int i)
1988{
1989 alloc_cc(current,i);
1990 dirty_reg(current,CCREG);
1991 alloc_all(current,i);
1992 minimum_free_regs[i]=HOST_REGS;
1993 current->isconst=0;
1994}
1995
1996void delayslot_alloc(struct regstat *current,int i)
1997{
1998 switch(itype[i]) {
1999 case UJUMP:
2000 case CJUMP:
2001 case SJUMP:
2002 case RJUMP:
2003 case SYSCALL:
2004 case HLECALL:
2005 case SPAN:
2006 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
2007 SysPrintf("Disabled speculative precompilation\n");
2008 stop_after_jal=1;
2009 break;
2010 case IMM16:
2011 imm16_alloc(current,i);
2012 break;
2013 case LOAD:
2014 case LOADLR:
2015 load_alloc(current,i);
2016 break;
2017 case STORE:
2018 case STORELR:
2019 store_alloc(current,i);
2020 break;
2021 case ALU:
2022 alu_alloc(current,i);
2023 break;
2024 case SHIFT:
2025 shift_alloc(current,i);
2026 break;
2027 case MULTDIV:
2028 multdiv_alloc(current,i);
2029 break;
2030 case SHIFTIMM:
2031 shiftimm_alloc(current,i);
2032 break;
2033 case MOV:
2034 mov_alloc(current,i);
2035 break;
2036 case COP0:
2037 cop0_alloc(current,i);
2038 break;
2039 case COP1:
2040 break;
2041 case COP2:
2042 cop2_alloc(current,i);
2043 break;
2044 case C1LS:
2045 c1ls_alloc(current,i);
2046 break;
2047 case C2LS:
2048 c2ls_alloc(current,i);
2049 break;
2050 case C2OP:
2051 c2op_alloc(current,i);
2052 break;
2053 }
2054}
2055
2056// Special case where a branch and delay slot span two pages in virtual memory
2057static void pagespan_alloc(struct regstat *current,int i)
2058{
2059 current->isconst=0;
2060 current->wasconst=0;
2061 regs[i].wasconst=0;
2062 minimum_free_regs[i]=HOST_REGS;
2063 alloc_all(current,i);
2064 alloc_cc(current,i);
2065 dirty_reg(current,CCREG);
2066 if(opcode[i]==3) // JAL
2067 {
2068 alloc_reg(current,i,31);
2069 dirty_reg(current,31);
2070 }
2071 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2072 {
2073 alloc_reg(current,i,rs1[i]);
2074 if (rt1[i]!=0) {
2075 alloc_reg(current,i,rt1[i]);
2076 dirty_reg(current,rt1[i]);
2077 }
2078 }
2079 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2080 {
2081 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2082 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2083 }
2084 else
2085 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2086 {
2087 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2088 }
2089 //else ...
2090}
2091
2092static void add_stub(enum stub_type type, void *addr, void *retaddr,
2093 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2094{
2095 assert(stubcount < ARRAY_SIZE(stubs));
2096 stubs[stubcount].type = type;
2097 stubs[stubcount].addr = addr;
2098 stubs[stubcount].retaddr = retaddr;
2099 stubs[stubcount].a = a;
2100 stubs[stubcount].b = b;
2101 stubs[stubcount].c = c;
2102 stubs[stubcount].d = d;
2103 stubs[stubcount].e = e;
2104 stubcount++;
2105}
2106
2107static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2108 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2109{
2110 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2111}
2112
2113// Write out a single register
2114static void wb_register(signed char r,signed char regmap[],uint64_t dirty)
2115{
2116 int hr;
2117 for(hr=0;hr<HOST_REGS;hr++) {
2118 if(hr!=EXCLUDE_REG) {
2119 if((regmap[hr]&63)==r) {
2120 if((dirty>>hr)&1) {
2121 assert(regmap[hr]<64);
2122 emit_storereg(r,hr);
2123 }
2124 }
2125 }
2126 }
2127}
2128
2129static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2130{
2131 //if(dirty_pre==dirty) return;
2132 int hr,reg;
2133 for(hr=0;hr<HOST_REGS;hr++) {
2134 if(hr!=EXCLUDE_REG) {
2135 reg=pre[hr];
2136 if(((~u)>>(reg&63))&1) {
2137 if(reg>0) {
2138 if(((dirty_pre&~dirty)>>hr)&1) {
2139 if(reg>0&&reg<34) {
2140 emit_storereg(reg,hr);
2141 }
2142 else if(reg>=64) {
2143 assert(0);
2144 }
2145 }
2146 }
2147 }
2148 }
2149 }
2150}
2151
2152// trashes r2
2153static void pass_args(int a0, int a1)
2154{
2155 if(a0==1&&a1==0) {
2156 // must swap
2157 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2158 }
2159 else if(a0!=0&&a1==0) {
2160 emit_mov(a1,1);
2161 if (a0>=0) emit_mov(a0,0);
2162 }
2163 else {
2164 if(a0>=0&&a0!=0) emit_mov(a0,0);
2165 if(a1>=0&&a1!=1) emit_mov(a1,1);
2166 }
2167}
2168
2169static void alu_assemble(int i,struct regstat *i_regs)
2170{
2171 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2172 if(rt1[i]) {
2173 signed char s1,s2,t;
2174 t=get_reg(i_regs->regmap,rt1[i]);
2175 if(t>=0) {
2176 s1=get_reg(i_regs->regmap,rs1[i]);
2177 s2=get_reg(i_regs->regmap,rs2[i]);
2178 if(rs1[i]&&rs2[i]) {
2179 assert(s1>=0);
2180 assert(s2>=0);
2181 if(opcode2[i]&2) emit_sub(s1,s2,t);
2182 else emit_add(s1,s2,t);
2183 }
2184 else if(rs1[i]) {
2185 if(s1>=0) emit_mov(s1,t);
2186 else emit_loadreg(rs1[i],t);
2187 }
2188 else if(rs2[i]) {
2189 if(s2>=0) {
2190 if(opcode2[i]&2) emit_neg(s2,t);
2191 else emit_mov(s2,t);
2192 }
2193 else {
2194 emit_loadreg(rs2[i],t);
2195 if(opcode2[i]&2) emit_neg(t,t);
2196 }
2197 }
2198 else emit_zeroreg(t);
2199 }
2200 }
2201 }
2202 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2203 assert(0);
2204 }
2205 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2206 if(rt1[i]) {
2207 signed char s1l,s2l,t;
2208 {
2209 t=get_reg(i_regs->regmap,rt1[i]);
2210 //assert(t>=0);
2211 if(t>=0) {
2212 s1l=get_reg(i_regs->regmap,rs1[i]);
2213 s2l=get_reg(i_regs->regmap,rs2[i]);
2214 if(rs2[i]==0) // rx<r0
2215 {
2216 if(opcode2[i]==0x2a&&rs1[i]!=0) { // SLT
2217 assert(s1l>=0);
2218 emit_shrimm(s1l,31,t);
2219 }
2220 else // SLTU (unsigned can not be less than zero, 0<0)
2221 emit_zeroreg(t);
2222 }
2223 else if(rs1[i]==0) // r0<rx
2224 {
2225 assert(s2l>=0);
2226 if(opcode2[i]==0x2a) // SLT
2227 emit_set_gz32(s2l,t);
2228 else // SLTU (set if not zero)
2229 emit_set_nz32(s2l,t);
2230 }
2231 else{
2232 assert(s1l>=0);assert(s2l>=0);
2233 if(opcode2[i]==0x2a) // SLT
2234 emit_set_if_less32(s1l,s2l,t);
2235 else // SLTU
2236 emit_set_if_carry32(s1l,s2l,t);
2237 }
2238 }
2239 }
2240 }
2241 }
2242 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2243 if(rt1[i]) {
2244 signed char s1l,s2l,tl;
2245 tl=get_reg(i_regs->regmap,rt1[i]);
2246 {
2247 if(tl>=0) {
2248 s1l=get_reg(i_regs->regmap,rs1[i]);
2249 s2l=get_reg(i_regs->regmap,rs2[i]);
2250 if(rs1[i]&&rs2[i]) {
2251 assert(s1l>=0);
2252 assert(s2l>=0);
2253 if(opcode2[i]==0x24) { // AND
2254 emit_and(s1l,s2l,tl);
2255 } else
2256 if(opcode2[i]==0x25) { // OR
2257 emit_or(s1l,s2l,tl);
2258 } else
2259 if(opcode2[i]==0x26) { // XOR
2260 emit_xor(s1l,s2l,tl);
2261 } else
2262 if(opcode2[i]==0x27) { // NOR
2263 emit_or(s1l,s2l,tl);
2264 emit_not(tl,tl);
2265 }
2266 }
2267 else
2268 {
2269 if(opcode2[i]==0x24) { // AND
2270 emit_zeroreg(tl);
2271 } else
2272 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2273 if(rs1[i]){
2274 if(s1l>=0) emit_mov(s1l,tl);
2275 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2276 }
2277 else
2278 if(rs2[i]){
2279 if(s2l>=0) emit_mov(s2l,tl);
2280 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2281 }
2282 else emit_zeroreg(tl);
2283 } else
2284 if(opcode2[i]==0x27) { // NOR
2285 if(rs1[i]){
2286 if(s1l>=0) emit_not(s1l,tl);
2287 else {
2288 emit_loadreg(rs1[i],tl);
2289 emit_not(tl,tl);
2290 }
2291 }
2292 else
2293 if(rs2[i]){
2294 if(s2l>=0) emit_not(s2l,tl);
2295 else {
2296 emit_loadreg(rs2[i],tl);
2297 emit_not(tl,tl);
2298 }
2299 }
2300 else emit_movimm(-1,tl);
2301 }
2302 }
2303 }
2304 }
2305 }
2306 }
2307}
2308
2309void imm16_assemble(int i,struct regstat *i_regs)
2310{
2311 if (opcode[i]==0x0f) { // LUI
2312 if(rt1[i]) {
2313 signed char t;
2314 t=get_reg(i_regs->regmap,rt1[i]);
2315 //assert(t>=0);
2316 if(t>=0) {
2317 if(!((i_regs->isconst>>t)&1))
2318 emit_movimm(imm[i]<<16,t);
2319 }
2320 }
2321 }
2322 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2323 if(rt1[i]) {
2324 signed char s,t;
2325 t=get_reg(i_regs->regmap,rt1[i]);
2326 s=get_reg(i_regs->regmap,rs1[i]);
2327 if(rs1[i]) {
2328 //assert(t>=0);
2329 //assert(s>=0);
2330 if(t>=0) {
2331 if(!((i_regs->isconst>>t)&1)) {
2332 if(s<0) {
2333 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2334 emit_addimm(t,imm[i],t);
2335 }else{
2336 if(!((i_regs->wasconst>>s)&1))
2337 emit_addimm(s,imm[i],t);
2338 else
2339 emit_movimm(constmap[i][s]+imm[i],t);
2340 }
2341 }
2342 }
2343 } else {
2344 if(t>=0) {
2345 if(!((i_regs->isconst>>t)&1))
2346 emit_movimm(imm[i],t);
2347 }
2348 }
2349 }
2350 }
2351 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2352 if(rt1[i]) {
2353 signed char sl,tl;
2354 tl=get_reg(i_regs->regmap,rt1[i]);
2355 sl=get_reg(i_regs->regmap,rs1[i]);
2356 if(tl>=0) {
2357 if(rs1[i]) {
2358 assert(sl>=0);
2359 emit_addimm(sl,imm[i],tl);
2360 } else {
2361 emit_movimm(imm[i],tl);
2362 }
2363 }
2364 }
2365 }
2366 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2367 if(rt1[i]) {
2368 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2369 signed char sl,t;
2370 t=get_reg(i_regs->regmap,rt1[i]);
2371 sl=get_reg(i_regs->regmap,rs1[i]);
2372 //assert(t>=0);
2373 if(t>=0) {
2374 if(rs1[i]>0) {
2375 if(opcode[i]==0x0a) { // SLTI
2376 if(sl<0) {
2377 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2378 emit_slti32(t,imm[i],t);
2379 }else{
2380 emit_slti32(sl,imm[i],t);
2381 }
2382 }
2383 else { // SLTIU
2384 if(sl<0) {
2385 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2386 emit_sltiu32(t,imm[i],t);
2387 }else{
2388 emit_sltiu32(sl,imm[i],t);
2389 }
2390 }
2391 }else{
2392 // SLTI(U) with r0 is just stupid,
2393 // nonetheless examples can be found
2394 if(opcode[i]==0x0a) // SLTI
2395 if(0<imm[i]) emit_movimm(1,t);
2396 else emit_zeroreg(t);
2397 else // SLTIU
2398 {
2399 if(imm[i]) emit_movimm(1,t);
2400 else emit_zeroreg(t);
2401 }
2402 }
2403 }
2404 }
2405 }
2406 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2407 if(rt1[i]) {
2408 signed char sl,tl;
2409 tl=get_reg(i_regs->regmap,rt1[i]);
2410 sl=get_reg(i_regs->regmap,rs1[i]);
2411 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2412 if(opcode[i]==0x0c) //ANDI
2413 {
2414 if(rs1[i]) {
2415 if(sl<0) {
2416 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2417 emit_andimm(tl,imm[i],tl);
2418 }else{
2419 if(!((i_regs->wasconst>>sl)&1))
2420 emit_andimm(sl,imm[i],tl);
2421 else
2422 emit_movimm(constmap[i][sl]&imm[i],tl);
2423 }
2424 }
2425 else
2426 emit_zeroreg(tl);
2427 }
2428 else
2429 {
2430 if(rs1[i]) {
2431 if(sl<0) {
2432 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2433 }
2434 if(opcode[i]==0x0d) { // ORI
2435 if(sl<0) {
2436 emit_orimm(tl,imm[i],tl);
2437 }else{
2438 if(!((i_regs->wasconst>>sl)&1))
2439 emit_orimm(sl,imm[i],tl);
2440 else
2441 emit_movimm(constmap[i][sl]|imm[i],tl);
2442 }
2443 }
2444 if(opcode[i]==0x0e) { // XORI
2445 if(sl<0) {
2446 emit_xorimm(tl,imm[i],tl);
2447 }else{
2448 if(!((i_regs->wasconst>>sl)&1))
2449 emit_xorimm(sl,imm[i],tl);
2450 else
2451 emit_movimm(constmap[i][sl]^imm[i],tl);
2452 }
2453 }
2454 }
2455 else {
2456 emit_movimm(imm[i],tl);
2457 }
2458 }
2459 }
2460 }
2461 }
2462}
2463
2464void shiftimm_assemble(int i,struct regstat *i_regs)
2465{
2466 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2467 {
2468 if(rt1[i]) {
2469 signed char s,t;
2470 t=get_reg(i_regs->regmap,rt1[i]);
2471 s=get_reg(i_regs->regmap,rs1[i]);
2472 //assert(t>=0);
2473 if(t>=0&&!((i_regs->isconst>>t)&1)){
2474 if(rs1[i]==0)
2475 {
2476 emit_zeroreg(t);
2477 }
2478 else
2479 {
2480 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2481 if(imm[i]) {
2482 if(opcode2[i]==0) // SLL
2483 {
2484 emit_shlimm(s<0?t:s,imm[i],t);
2485 }
2486 if(opcode2[i]==2) // SRL
2487 {
2488 emit_shrimm(s<0?t:s,imm[i],t);
2489 }
2490 if(opcode2[i]==3) // SRA
2491 {
2492 emit_sarimm(s<0?t:s,imm[i],t);
2493 }
2494 }else{
2495 // Shift by zero
2496 if(s>=0 && s!=t) emit_mov(s,t);
2497 }
2498 }
2499 }
2500 //emit_storereg(rt1[i],t); //DEBUG
2501 }
2502 }
2503 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2504 {
2505 assert(0);
2506 }
2507 if(opcode2[i]==0x3c) // DSLL32
2508 {
2509 assert(0);
2510 }
2511 if(opcode2[i]==0x3e) // DSRL32
2512 {
2513 assert(0);
2514 }
2515 if(opcode2[i]==0x3f) // DSRA32
2516 {
2517 assert(0);
2518 }
2519}
2520
2521#ifndef shift_assemble
2522static void shift_assemble(int i,struct regstat *i_regs)
2523{
2524 signed char s,t,shift;
2525 if (rt1[i] == 0)
2526 return;
2527 assert(opcode2[i]<=0x07); // SLLV/SRLV/SRAV
2528 t = get_reg(i_regs->regmap, rt1[i]);
2529 s = get_reg(i_regs->regmap, rs1[i]);
2530 shift = get_reg(i_regs->regmap, rs2[i]);
2531 if (t < 0)
2532 return;
2533
2534 if(rs1[i]==0)
2535 emit_zeroreg(t);
2536 else if(rs2[i]==0) {
2537 assert(s>=0);
2538 if(s!=t) emit_mov(s,t);
2539 }
2540 else {
2541 host_tempreg_acquire();
2542 emit_andimm(shift,31,HOST_TEMPREG);
2543 switch(opcode2[i]) {
2544 case 4: // SLLV
2545 emit_shl(s,HOST_TEMPREG,t);
2546 break;
2547 case 6: // SRLV
2548 emit_shr(s,HOST_TEMPREG,t);
2549 break;
2550 case 7: // SRAV
2551 emit_sar(s,HOST_TEMPREG,t);
2552 break;
2553 default:
2554 assert(0);
2555 }
2556 host_tempreg_release();
2557 }
2558}
2559
2560#endif
2561
2562enum {
2563 MTYPE_8000 = 0,
2564 MTYPE_8020,
2565 MTYPE_0000,
2566 MTYPE_A000,
2567 MTYPE_1F80,
2568};
2569
2570static int get_ptr_mem_type(u_int a)
2571{
2572 if(a < 0x00200000) {
2573 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2574 // return wrong, must use memhandler for BIOS self-test to pass
2575 // 007 does similar stuff from a00 mirror, weird stuff
2576 return MTYPE_8000;
2577 return MTYPE_0000;
2578 }
2579 if(0x1f800000 <= a && a < 0x1f801000)
2580 return MTYPE_1F80;
2581 if(0x80200000 <= a && a < 0x80800000)
2582 return MTYPE_8020;
2583 if(0xa0000000 <= a && a < 0xa0200000)
2584 return MTYPE_A000;
2585 return MTYPE_8000;
2586}
2587
2588static void *emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override)
2589{
2590 void *jaddr = NULL;
2591 int type=0;
2592 int mr=rs1[i];
2593 if(((smrv_strong|smrv_weak)>>mr)&1) {
2594 type=get_ptr_mem_type(smrv[mr]);
2595 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2596 }
2597 else {
2598 // use the mirror we are running on
2599 type=get_ptr_mem_type(start);
2600 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2601 }
2602
2603 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2604 host_tempreg_acquire();
2605 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2606 addr=*addr_reg_override=HOST_TEMPREG;
2607 type=0;
2608 }
2609 else if(type==MTYPE_0000) { // RAM 0 mirror
2610 host_tempreg_acquire();
2611 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2612 addr=*addr_reg_override=HOST_TEMPREG;
2613 type=0;
2614 }
2615 else if(type==MTYPE_A000) { // RAM A mirror
2616 host_tempreg_acquire();
2617 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2618 addr=*addr_reg_override=HOST_TEMPREG;
2619 type=0;
2620 }
2621 else if(type==MTYPE_1F80) { // scratchpad
2622 if (psxH == (void *)0x1f800000) {
2623 host_tempreg_acquire();
2624 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2625 emit_cmpimm(HOST_TEMPREG,0x1000);
2626 host_tempreg_release();
2627 jaddr=out;
2628 emit_jc(0);
2629 }
2630 else {
2631 // do the usual RAM check, jump will go to the right handler
2632 type=0;
2633 }
2634 }
2635
2636 if(type==0)
2637 {
2638 emit_cmpimm(addr,RAM_SIZE);
2639 jaddr=out;
2640 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2641 // Hint to branch predictor that the branch is unlikely to be taken
2642 if(rs1[i]>=28)
2643 emit_jno_unlikely(0);
2644 else
2645 #endif
2646 emit_jno(0);
2647 if(ram_offset!=0) {
2648 host_tempreg_acquire();
2649 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2650 addr=*addr_reg_override=HOST_TEMPREG;
2651 }
2652 }
2653
2654 return jaddr;
2655}
2656
2657// return memhandler, or get directly accessable address and return 0
2658static void *get_direct_memhandler(void *table, u_int addr,
2659 enum stub_type type, uintptr_t *addr_host)
2660{
2661 uintptr_t l1, l2 = 0;
2662 l1 = ((uintptr_t *)table)[addr>>12];
2663 if ((l1 & (1ul << (sizeof(l1)*8-1))) == 0) {
2664 uintptr_t v = l1 << 1;
2665 *addr_host = v + addr;
2666 return NULL;
2667 }
2668 else {
2669 l1 <<= 1;
2670 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2671 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2672 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2673 l2=((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2674 else
2675 l2=((uintptr_t *)l1)[(addr&0xfff)/4];
2676 if ((l2 & (1<<31)) == 0) {
2677 uintptr_t v = l2 << 1;
2678 *addr_host = v + (addr&0xfff);
2679 return NULL;
2680 }
2681 return (void *)(l2 << 1);
2682 }
2683}
2684
2685static u_int get_host_reglist(const signed char *regmap)
2686{
2687 u_int reglist = 0, hr;
2688 for (hr = 0; hr < HOST_REGS; hr++) {
2689 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2690 reglist |= 1 << hr;
2691 }
2692 return reglist;
2693}
2694
2695static u_int reglist_exclude(u_int reglist, int r1, int r2)
2696{
2697 if (r1 >= 0)
2698 reglist &= ~(1u << r1);
2699 if (r2 >= 0)
2700 reglist &= ~(1u << r2);
2701 return reglist;
2702}
2703
2704// find a temp caller-saved register not in reglist (so assumed to be free)
2705static int reglist_find_free(u_int reglist)
2706{
2707 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2708 if (free_regs == 0)
2709 return -1;
2710 return __builtin_ctz(free_regs);
2711}
2712
2713static void load_assemble(int i, const struct regstat *i_regs)
2714{
2715 int s,tl,addr;
2716 int offset;
2717 void *jaddr=0;
2718 int memtarget=0,c=0;
2719 int fastio_reg_override=-1;
2720 u_int reglist=get_host_reglist(i_regs->regmap);
2721 tl=get_reg(i_regs->regmap,rt1[i]);
2722 s=get_reg(i_regs->regmap,rs1[i]);
2723 offset=imm[i];
2724 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2725 if(s>=0) {
2726 c=(i_regs->wasconst>>s)&1;
2727 if (c) {
2728 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2729 }
2730 }
2731 //printf("load_assemble: c=%d\n",c);
2732 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2733 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2734 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2735 ||rt1[i]==0) {
2736 // could be FIFO, must perform the read
2737 // ||dummy read
2738 assem_debug("(forced read)\n");
2739 tl=get_reg(i_regs->regmap,-1);
2740 assert(tl>=0);
2741 }
2742 if(offset||s<0||c) addr=tl;
2743 else addr=s;
2744 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2745 if(tl>=0) {
2746 //printf("load_assemble: c=%d\n",c);
2747 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2748 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2749 reglist&=~(1<<tl);
2750 if(!c) {
2751 #ifdef R29_HACK
2752 // Strmnnrmn's speed hack
2753 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2754 #endif
2755 {
2756 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2757 }
2758 }
2759 else if(ram_offset&&memtarget) {
2760 host_tempreg_acquire();
2761 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2762 fastio_reg_override=HOST_TEMPREG;
2763 }
2764 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2765 if (opcode[i]==0x20) { // LB
2766 if(!c||memtarget) {
2767 if(!dummy) {
2768 {
2769 int x=0,a=tl;
2770 if(!c) a=addr;
2771 if(fastio_reg_override>=0) a=fastio_reg_override;
2772
2773 emit_movsbl_indexed(x,a,tl);
2774 }
2775 }
2776 if(jaddr)
2777 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2778 }
2779 else
2780 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2781 }
2782 if (opcode[i]==0x21) { // LH
2783 if(!c||memtarget) {
2784 if(!dummy) {
2785 int x=0,a=tl;
2786 if(!c) a=addr;
2787 if(fastio_reg_override>=0) a=fastio_reg_override;
2788 emit_movswl_indexed(x,a,tl);
2789 }
2790 if(jaddr)
2791 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2792 }
2793 else
2794 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2795 }
2796 if (opcode[i]==0x23) { // LW
2797 if(!c||memtarget) {
2798 if(!dummy) {
2799 int a=addr;
2800 if(fastio_reg_override>=0) a=fastio_reg_override;
2801 emit_readword_indexed(0,a,tl);
2802 }
2803 if(jaddr)
2804 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2805 }
2806 else
2807 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2808 }
2809 if (opcode[i]==0x24) { // LBU
2810 if(!c||memtarget) {
2811 if(!dummy) {
2812 int x=0,a=tl;
2813 if(!c) a=addr;
2814 if(fastio_reg_override>=0) a=fastio_reg_override;
2815
2816 emit_movzbl_indexed(x,a,tl);
2817 }
2818 if(jaddr)
2819 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2820 }
2821 else
2822 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2823 }
2824 if (opcode[i]==0x25) { // LHU
2825 if(!c||memtarget) {
2826 if(!dummy) {
2827 int x=0,a=tl;
2828 if(!c) a=addr;
2829 if(fastio_reg_override>=0) a=fastio_reg_override;
2830 emit_movzwl_indexed(x,a,tl);
2831 }
2832 if(jaddr)
2833 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
2834 }
2835 else
2836 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2837 }
2838 if (opcode[i]==0x27) { // LWU
2839 assert(0);
2840 }
2841 if (opcode[i]==0x37) { // LD
2842 assert(0);
2843 }
2844 }
2845 if (fastio_reg_override == HOST_TEMPREG)
2846 host_tempreg_release();
2847}
2848
2849#ifndef loadlr_assemble
2850static void loadlr_assemble(int i, const struct regstat *i_regs)
2851{
2852 int s,tl,temp,temp2,addr;
2853 int offset;
2854 void *jaddr=0;
2855 int memtarget=0,c=0;
2856 int fastio_reg_override=-1;
2857 u_int reglist=get_host_reglist(i_regs->regmap);
2858 tl=get_reg(i_regs->regmap,rt1[i]);
2859 s=get_reg(i_regs->regmap,rs1[i]);
2860 temp=get_reg(i_regs->regmap,-1);
2861 temp2=get_reg(i_regs->regmap,FTEMP);
2862 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2863 assert(addr<0);
2864 offset=imm[i];
2865 reglist|=1<<temp;
2866 if(offset||s<0||c) addr=temp2;
2867 else addr=s;
2868 if(s>=0) {
2869 c=(i_regs->wasconst>>s)&1;
2870 if(c) {
2871 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2872 }
2873 }
2874 if(!c) {
2875 emit_shlimm(addr,3,temp);
2876 if (opcode[i]==0x22||opcode[i]==0x26) {
2877 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2878 }else{
2879 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2880 }
2881 jaddr=emit_fastpath_cmp_jump(i,temp2,&fastio_reg_override);
2882 }
2883 else {
2884 if(ram_offset&&memtarget) {
2885 host_tempreg_acquire();
2886 emit_addimm(temp2,ram_offset,HOST_TEMPREG);
2887 fastio_reg_override=HOST_TEMPREG;
2888 }
2889 if (opcode[i]==0x22||opcode[i]==0x26) {
2890 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2891 }else{
2892 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2893 }
2894 }
2895 if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
2896 if(!c||memtarget) {
2897 int a=temp2;
2898 if(fastio_reg_override>=0) a=fastio_reg_override;
2899 emit_readword_indexed(0,a,temp2);
2900 if(fastio_reg_override==HOST_TEMPREG) host_tempreg_release();
2901 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj[i],reglist);
2902 }
2903 else
2904 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist);
2905 if(rt1[i]) {
2906 assert(tl>=0);
2907 emit_andimm(temp,24,temp);
2908 if (opcode[i]==0x22) // LWL
2909 emit_xorimm(temp,24,temp);
2910 host_tempreg_acquire();
2911 emit_movimm(-1,HOST_TEMPREG);
2912 if (opcode[i]==0x26) {
2913 emit_shr(temp2,temp,temp2);
2914 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
2915 }else{
2916 emit_shl(temp2,temp,temp2);
2917 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
2918 }
2919 host_tempreg_release();
2920 emit_or(temp2,tl,tl);
2921 }
2922 //emit_storereg(rt1[i],tl); // DEBUG
2923 }
2924 if (opcode[i]==0x1A||opcode[i]==0x1B) { // LDL/LDR
2925 assert(0);
2926 }
2927}
2928#endif
2929
2930void store_assemble(int i, const struct regstat *i_regs)
2931{
2932 int s,tl;
2933 int addr,temp;
2934 int offset;
2935 void *jaddr=0;
2936 enum stub_type type;
2937 int memtarget=0,c=0;
2938 int agr=AGEN1+(i&1);
2939 int fastio_reg_override=-1;
2940 u_int reglist=get_host_reglist(i_regs->regmap);
2941 tl=get_reg(i_regs->regmap,rs2[i]);
2942 s=get_reg(i_regs->regmap,rs1[i]);
2943 temp=get_reg(i_regs->regmap,agr);
2944 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2945 offset=imm[i];
2946 if(s>=0) {
2947 c=(i_regs->wasconst>>s)&1;
2948 if(c) {
2949 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2950 }
2951 }
2952 assert(tl>=0);
2953 assert(temp>=0);
2954 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2955 if(offset||s<0||c) addr=temp;
2956 else addr=s;
2957 if(!c) {
2958 jaddr=emit_fastpath_cmp_jump(i,addr,&fastio_reg_override);
2959 }
2960 else if(ram_offset&&memtarget) {
2961 host_tempreg_acquire();
2962 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2963 fastio_reg_override=HOST_TEMPREG;
2964 }
2965
2966 if (opcode[i]==0x28) { // SB
2967 if(!c||memtarget) {
2968 int x=0,a=temp;
2969 if(!c) a=addr;
2970 if(fastio_reg_override>=0) a=fastio_reg_override;
2971 emit_writebyte_indexed(tl,x,a);
2972 }
2973 type=STOREB_STUB;
2974 }
2975 if (opcode[i]==0x29) { // SH
2976 if(!c||memtarget) {
2977 int x=0,a=temp;
2978 if(!c) a=addr;
2979 if(fastio_reg_override>=0) a=fastio_reg_override;
2980 emit_writehword_indexed(tl,x,a);
2981 }
2982 type=STOREH_STUB;
2983 }
2984 if (opcode[i]==0x2B) { // SW
2985 if(!c||memtarget) {
2986 int a=addr;
2987 if(fastio_reg_override>=0) a=fastio_reg_override;
2988 emit_writeword_indexed(tl,0,a);
2989 }
2990 type=STOREW_STUB;
2991 }
2992 if (opcode[i]==0x3F) { // SD
2993 assert(0);
2994 type=STORED_STUB;
2995 }
2996 if(fastio_reg_override==HOST_TEMPREG)
2997 host_tempreg_release();
2998 if(jaddr) {
2999 // PCSX store handlers don't check invcode again
3000 reglist|=1<<addr;
3001 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3002 jaddr=0;
3003 }
3004 if(!(i_regs->waswritten&(1<<rs1[i])) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3005 if(!c||memtarget) {
3006 #ifdef DESTRUCTIVE_SHIFT
3007 // The x86 shift operation is 'destructive'; it overwrites the
3008 // source register, so we need to make a copy first and use that.
3009 addr=temp;
3010 #endif
3011 #if defined(HOST_IMM8)
3012 int ir=get_reg(i_regs->regmap,INVCP);
3013 assert(ir>=0);
3014 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3015 #else
3016 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3017 #endif
3018 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3019 emit_callne(invalidate_addr_reg[addr]);
3020 #else
3021 void *jaddr2 = out;
3022 emit_jne(0);
3023 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3024 #endif
3025 }
3026 }
3027 u_int addr_val=constmap[i][s]+offset;
3028 if(jaddr) {
3029 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3030 } else if(c&&!memtarget) {
3031 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3032 }
3033 // basic current block modification detection..
3034 // not looking back as that should be in mips cache already
3035 // (see Spyro2 title->attract mode)
3036 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3037 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3038 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3039 if(i_regs->regmap==regs[i].regmap) {
3040 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3041 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3042 emit_movimm(start+i*4+4,0);
3043 emit_writeword(0,&pcaddr);
3044 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3045 emit_far_call(get_addr_ht);
3046 emit_jmpreg(0);
3047 }
3048 }
3049}
3050
3051static void storelr_assemble(int i, const struct regstat *i_regs)
3052{
3053 int s,tl;
3054 int temp;
3055 int offset;
3056 void *jaddr=0;
3057 void *case1, *case2, *case3;
3058 void *done0, *done1, *done2;
3059 int memtarget=0,c=0;
3060 int agr=AGEN1+(i&1);
3061 u_int reglist=get_host_reglist(i_regs->regmap);
3062 tl=get_reg(i_regs->regmap,rs2[i]);
3063 s=get_reg(i_regs->regmap,rs1[i]);
3064 temp=get_reg(i_regs->regmap,agr);
3065 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3066 offset=imm[i];
3067 if(s>=0) {
3068 c=(i_regs->isconst>>s)&1;
3069 if(c) {
3070 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3071 }
3072 }
3073 assert(tl>=0);
3074 assert(temp>=0);
3075 if(!c) {
3076 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3077 if(!offset&&s!=temp) emit_mov(s,temp);
3078 jaddr=out;
3079 emit_jno(0);
3080 }
3081 else
3082 {
3083 if(!memtarget||!rs1[i]) {
3084 jaddr=out;
3085 emit_jmp(0);
3086 }
3087 }
3088 if(ram_offset)
3089 emit_addimm_no_flags(ram_offset,temp);
3090
3091 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3092 assert(0);
3093 }
3094
3095 emit_xorimm(temp,3,temp);
3096 emit_testimm(temp,2);
3097 case2=out;
3098 emit_jne(0);
3099 emit_testimm(temp,1);
3100 case1=out;
3101 emit_jne(0);
3102 // 0
3103 if (opcode[i]==0x2A) { // SWL
3104 emit_writeword_indexed(tl,0,temp);
3105 }
3106 else if (opcode[i]==0x2E) { // SWR
3107 emit_writebyte_indexed(tl,3,temp);
3108 }
3109 else
3110 assert(0);
3111 done0=out;
3112 emit_jmp(0);
3113 // 1
3114 set_jump_target(case1, out);
3115 if (opcode[i]==0x2A) { // SWL
3116 // Write 3 msb into three least significant bytes
3117 if(rs2[i]) emit_rorimm(tl,8,tl);
3118 emit_writehword_indexed(tl,-1,temp);
3119 if(rs2[i]) emit_rorimm(tl,16,tl);
3120 emit_writebyte_indexed(tl,1,temp);
3121 if(rs2[i]) emit_rorimm(tl,8,tl);
3122 }
3123 else if (opcode[i]==0x2E) { // SWR
3124 // Write two lsb into two most significant bytes
3125 emit_writehword_indexed(tl,1,temp);
3126 }
3127 done1=out;
3128 emit_jmp(0);
3129 // 2
3130 set_jump_target(case2, out);
3131 emit_testimm(temp,1);
3132 case3=out;
3133 emit_jne(0);
3134 if (opcode[i]==0x2A) { // SWL
3135 // Write two msb into two least significant bytes
3136 if(rs2[i]) emit_rorimm(tl,16,tl);
3137 emit_writehword_indexed(tl,-2,temp);
3138 if(rs2[i]) emit_rorimm(tl,16,tl);
3139 }
3140 else if (opcode[i]==0x2E) { // SWR
3141 // Write 3 lsb into three most significant bytes
3142 emit_writebyte_indexed(tl,-1,temp);
3143 if(rs2[i]) emit_rorimm(tl,8,tl);
3144 emit_writehword_indexed(tl,0,temp);
3145 if(rs2[i]) emit_rorimm(tl,24,tl);
3146 }
3147 done2=out;
3148 emit_jmp(0);
3149 // 3
3150 set_jump_target(case3, out);
3151 if (opcode[i]==0x2A) { // SWL
3152 // Write msb into least significant byte
3153 if(rs2[i]) emit_rorimm(tl,24,tl);
3154 emit_writebyte_indexed(tl,-3,temp);
3155 if(rs2[i]) emit_rorimm(tl,8,tl);
3156 }
3157 else if (opcode[i]==0x2E) { // SWR
3158 // Write entire word
3159 emit_writeword_indexed(tl,-3,temp);
3160 }
3161 set_jump_target(done0, out);
3162 set_jump_target(done1, out);
3163 set_jump_target(done2, out);
3164 if(!c||!memtarget)
3165 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
3166 if(!(i_regs->waswritten&(1<<rs1[i])) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3167 emit_addimm_no_flags(-ram_offset,temp);
3168 #if defined(HOST_IMM8)
3169 int ir=get_reg(i_regs->regmap,INVCP);
3170 assert(ir>=0);
3171 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3172 #else
3173 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3174 #endif
3175 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3176 emit_callne(invalidate_addr_reg[temp]);
3177 #else
3178 void *jaddr2 = out;
3179 emit_jne(0);
3180 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3181 #endif
3182 }
3183}
3184
3185static void cop0_assemble(int i,struct regstat *i_regs)
3186{
3187 if(opcode2[i]==0) // MFC0
3188 {
3189 signed char t=get_reg(i_regs->regmap,rt1[i]);
3190 u_int copr=(source[i]>>11)&0x1f;
3191 //assert(t>=0); // Why does this happen? OOT is weird
3192 if(t>=0&&rt1[i]!=0) {
3193 emit_readword(&reg_cop0[copr],t);
3194 }
3195 }
3196 else if(opcode2[i]==4) // MTC0
3197 {
3198 signed char s=get_reg(i_regs->regmap,rs1[i]);
3199 char copr=(source[i]>>11)&0x1f;
3200 assert(s>=0);
3201 wb_register(rs1[i],i_regs->regmap,i_regs->dirty);
3202 if(copr==9||copr==11||copr==12||copr==13) {
3203 emit_readword(&last_count,HOST_TEMPREG);
3204 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3205 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3206 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3207 emit_writeword(HOST_CCREG,&Count);
3208 }
3209 // What a mess. The status register (12) can enable interrupts,
3210 // so needs a special case to handle a pending interrupt.
3211 // The interrupt must be taken immediately, because a subsequent
3212 // instruction might disable interrupts again.
3213 if(copr==12||copr==13) {
3214 if (is_delayslot) {
3215 // burn cycles to cause cc_interrupt, which will
3216 // reschedule next_interupt. Relies on CCREG from above.
3217 assem_debug("MTC0 DS %d\n", copr);
3218 emit_writeword(HOST_CCREG,&last_count);
3219 emit_movimm(0,HOST_CCREG);
3220 emit_storereg(CCREG,HOST_CCREG);
3221 emit_loadreg(rs1[i],1);
3222 emit_movimm(copr,0);
3223 emit_far_call(pcsx_mtc0_ds);
3224 emit_loadreg(rs1[i],s);
3225 return;
3226 }
3227 emit_movimm(start+i*4+4,HOST_TEMPREG);
3228 emit_writeword(HOST_TEMPREG,&pcaddr);
3229 emit_movimm(0,HOST_TEMPREG);
3230 emit_writeword(HOST_TEMPREG,&pending_exception);
3231 }
3232 if(s==HOST_CCREG)
3233 emit_loadreg(rs1[i],1);
3234 else if(s!=1)
3235 emit_mov(s,1);
3236 emit_movimm(copr,0);
3237 emit_far_call(pcsx_mtc0);
3238 if(copr==9||copr==11||copr==12||copr==13) {
3239 emit_readword(&Count,HOST_CCREG);
3240 emit_readword(&next_interupt,HOST_TEMPREG);
3241 emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3242 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3243 emit_writeword(HOST_TEMPREG,&last_count);
3244 emit_storereg(CCREG,HOST_CCREG);
3245 }
3246 if(copr==12||copr==13) {
3247 assert(!is_delayslot);
3248 emit_readword(&pending_exception,14);
3249 emit_test(14,14);
3250 void *jaddr = out;
3251 emit_jeq(0);
3252 emit_readword(&pcaddr, 0);
3253 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3254 emit_far_call(get_addr_ht);
3255 emit_jmpreg(0);
3256 set_jump_target(jaddr, out);
3257 }
3258 emit_loadreg(rs1[i],s);
3259 }
3260 else
3261 {
3262 assert(opcode2[i]==0x10);
3263 //if((source[i]&0x3f)==0x10) // RFE
3264 {
3265 emit_readword(&Status,0);
3266 emit_andimm(0,0x3c,1);
3267 emit_andimm(0,~0xf,0);
3268 emit_orrshr_imm(1,2,0);
3269 emit_writeword(0,&Status);
3270 }
3271 }
3272}
3273
3274static void cop1_unusable(int i,struct regstat *i_regs)
3275{
3276 // XXX: should just just do the exception instead
3277 //if(!cop1_usable)
3278 {
3279 void *jaddr=out;
3280 emit_jmp(0);
3281 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3282 }
3283}
3284
3285static void cop1_assemble(int i,struct regstat *i_regs)
3286{
3287 cop1_unusable(i, i_regs);
3288}
3289
3290static void c1ls_assemble(int i,struct regstat *i_regs)
3291{
3292 cop1_unusable(i, i_regs);
3293}
3294
3295// FP_STUB
3296static void do_cop1stub(int n)
3297{
3298 literal_pool(256);
3299 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3300 set_jump_target(stubs[n].addr, out);
3301 int i=stubs[n].a;
3302// int rs=stubs[n].b;
3303 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3304 int ds=stubs[n].d;
3305 if(!ds) {
3306 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3307 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3308 }
3309 //else {printf("fp exception in delay slot\n");}
3310 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3311 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3312 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3313 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3314 emit_far_jump(ds?fp_exception_ds:fp_exception);
3315}
3316
3317static int cop2_is_stalling_op(int i, int *cycles)
3318{
3319 if (opcode[i] == 0x3a) { // SWC2
3320 *cycles = 0;
3321 return 1;
3322 }
3323 if (itype[i] == COP2 && (opcode2[i] == 0 || opcode2[i] == 2)) { // MFC2/CFC2
3324 *cycles = 0;
3325 return 1;
3326 }
3327 if (itype[i] == C2OP) {
3328 *cycles = gte_cycletab[source[i] & 0x3f];
3329 return 1;
3330 }
3331 // ... what about MTC2/CTC2/LWC2?
3332 return 0;
3333}
3334
3335#if 0
3336static void log_gte_stall(int stall, u_int cycle)
3337{
3338 if ((u_int)stall <= 44)
3339 printf("x stall %2d %u\n", stall, cycle + last_count);
3340}
3341
3342static void emit_log_gte_stall(int i, int stall, u_int reglist)
3343{
3344 save_regs(reglist);
3345 if (stall > 0)
3346 emit_movimm(stall, 0);
3347 else
3348 emit_mov(HOST_TEMPREG, 0);
3349 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3350 emit_far_call(log_gte_stall);
3351 restore_regs(reglist);
3352}
3353#endif
3354
3355static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3356{
3357 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3358 int rtmp = reglist_find_free(reglist);
3359
3360 if (HACK_ENABLED(NDHACK_NO_STALLS))
3361 return;
3362 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3363 // happens occasionally... cc evicted? Don't bother then
3364 //printf("no cc %08x\n", start + i*4);
3365 return;
3366 }
3367 if (!bt[i]) {
3368 for (j = i - 1; j >= 0; j--) {
3369 //if (is_ds[j]) break;
3370 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || bt[j])
3371 break;
3372 }
3373 j = max(j, 0);
3374 }
3375 cycles_passed = CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3376 if (other_gte_op_cycles >= 0)
3377 stall = other_gte_op_cycles - cycles_passed;
3378 else if (cycles_passed >= 44)
3379 stall = 0; // can't stall
3380 if (stall == -MAXBLOCK && rtmp >= 0) {
3381 // unknown stall, do the expensive runtime check
3382 assem_debug("; cop2_do_stall_check\n");
3383#if 0 // too slow
3384 save_regs(reglist);
3385 emit_movimm(gte_cycletab[op], 0);
3386 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]), 1);
3387 emit_far_call(call_gteStall);
3388 restore_regs(reglist);
3389#else
3390 host_tempreg_acquire();
3391 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3392 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3393 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3394 emit_cmpimm(HOST_TEMPREG, 44);
3395 emit_cmovb_reg(rtmp, HOST_CCREG);
3396 //emit_log_gte_stall(i, 0, reglist);
3397 host_tempreg_release();
3398#endif
3399 }
3400 else if (stall > 0) {
3401 //emit_log_gte_stall(i, stall, reglist);
3402 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3403 }
3404
3405 // save gteBusyCycle, if needed
3406 if (gte_cycletab[op] == 0)
3407 return;
3408 other_gte_op_cycles = -1;
3409 for (j = i + 1; j < slen; j++) {
3410 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3411 break;
3412 if (is_jump(j)) {
3413 // check ds
3414 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3415 j++;
3416 break;
3417 }
3418 }
3419 if (other_gte_op_cycles >= 0)
3420 // will handle stall when assembling that op
3421 return;
3422 cycles_passed = CLOCK_ADJUST(ccadj[min(j, slen -1)] - ccadj[i]);
3423 if (cycles_passed >= 44)
3424 return;
3425 assem_debug("; save gteBusyCycle\n");
3426 host_tempreg_acquire();
3427#if 0
3428 emit_readword(&last_count, HOST_TEMPREG);
3429 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3430 emit_addimm(HOST_TEMPREG, CLOCK_ADJUST(ccadj[i]), HOST_TEMPREG);
3431 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3432 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3433#else
3434 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + gte_cycletab[op], HOST_TEMPREG);
3435 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3436#endif
3437 host_tempreg_release();
3438}
3439
3440static int is_mflohi(int i)
3441{
3442 return (itype[i] == MOV && (rs1[i] == HIREG || rs1[i] == LOREG));
3443}
3444
3445static int check_multdiv(int i, int *cycles)
3446{
3447 if (itype[i] != MULTDIV)
3448 return 0;
3449 if (opcode2[i] == 0x18 || opcode2[i] == 0x19) // MULT(U)
3450 *cycles = 11; // approx from 7 11 14
3451 else
3452 *cycles = 37;
3453 return 1;
3454}
3455
3456static void multdiv_prepare_stall(int i, const struct regstat *i_regs)
3457{
3458 int j, found = 0, c = 0;
3459 if (HACK_ENABLED(NDHACK_NO_STALLS))
3460 return;
3461 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3462 // happens occasionally... cc evicted? Don't bother then
3463 return;
3464 }
3465 for (j = i + 1; j < slen; j++) {
3466 if (bt[j])
3467 break;
3468 if ((found = is_mflohi(j)))
3469 break;
3470 if (is_jump(j)) {
3471 // check ds
3472 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3473 j++;
3474 break;
3475 }
3476 }
3477 if (found)
3478 // handle all in multdiv_do_stall()
3479 return;
3480 check_multdiv(i, &c);
3481 assert(c > 0);
3482 assem_debug("; muldiv prepare stall %d\n", c);
3483 host_tempreg_acquire();
3484 emit_addimm(HOST_CCREG, CLOCK_ADJUST(ccadj[i]) + c, HOST_TEMPREG);
3485 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3486 host_tempreg_release();
3487}
3488
3489static void multdiv_do_stall(int i, const struct regstat *i_regs)
3490{
3491 int j, known_cycles = 0;
3492 u_int reglist = get_host_reglist(i_regs->regmap);
3493 int rtmp = get_reg(i_regs->regmap, -1);
3494 if (rtmp < 0)
3495 rtmp = reglist_find_free(reglist);
3496 if (HACK_ENABLED(NDHACK_NO_STALLS))
3497 return;
3498 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3499 // happens occasionally... cc evicted? Don't bother then
3500 //printf("no cc/rtmp %08x\n", start + i*4);
3501 return;
3502 }
3503 if (!bt[i]) {
3504 for (j = i - 1; j >= 0; j--) {
3505 if (is_ds[j]) break;
3506 if (check_multdiv(j, &known_cycles) || bt[j])
3507 break;
3508 if (is_mflohi(j))
3509 // already handled by this op
3510 return;
3511 }
3512 j = max(j, 0);
3513 }
3514 if (known_cycles > 0) {
3515 known_cycles -= CLOCK_ADJUST(ccadj[i] - ccadj[j]);
3516 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3517 if (known_cycles > 0)
3518 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3519 return;
3520 }
3521 assem_debug("; muldiv stall unresolved\n");
3522 host_tempreg_acquire();
3523 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3524 emit_addimm(rtmp, -CLOCK_ADJUST(ccadj[i]), rtmp);
3525 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3526 emit_cmpimm(HOST_TEMPREG, 37);
3527 emit_cmovb_reg(rtmp, HOST_CCREG);
3528 //emit_log_gte_stall(i, 0, reglist);
3529 host_tempreg_release();
3530}
3531
3532static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3533{
3534 switch (copr) {
3535 case 1:
3536 case 3:
3537 case 5:
3538 case 8:
3539 case 9:
3540 case 10:
3541 case 11:
3542 emit_readword(&reg_cop2d[copr],tl);
3543 emit_signextend16(tl,tl);
3544 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3545 break;
3546 case 7:
3547 case 16:
3548 case 17:
3549 case 18:
3550 case 19:
3551 emit_readword(&reg_cop2d[copr],tl);
3552 emit_andimm(tl,0xffff,tl);
3553 emit_writeword(tl,&reg_cop2d[copr]);
3554 break;
3555 case 15:
3556 emit_readword(&reg_cop2d[14],tl); // SXY2
3557 emit_writeword(tl,&reg_cop2d[copr]);
3558 break;
3559 case 28:
3560 case 29:
3561 c2op_mfc2_29_assemble(tl,temp);
3562 break;
3563 default:
3564 emit_readword(&reg_cop2d[copr],tl);
3565 break;
3566 }
3567}
3568
3569static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3570{
3571 switch (copr) {
3572 case 15:
3573 emit_readword(&reg_cop2d[13],temp); // SXY1
3574 emit_writeword(sl,&reg_cop2d[copr]);
3575 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3576 emit_readword(&reg_cop2d[14],temp); // SXY2
3577 emit_writeword(sl,&reg_cop2d[14]);
3578 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3579 break;
3580 case 28:
3581 emit_andimm(sl,0x001f,temp);
3582 emit_shlimm(temp,7,temp);
3583 emit_writeword(temp,&reg_cop2d[9]);
3584 emit_andimm(sl,0x03e0,temp);
3585 emit_shlimm(temp,2,temp);
3586 emit_writeword(temp,&reg_cop2d[10]);
3587 emit_andimm(sl,0x7c00,temp);
3588 emit_shrimm(temp,3,temp);
3589 emit_writeword(temp,&reg_cop2d[11]);
3590 emit_writeword(sl,&reg_cop2d[28]);
3591 break;
3592 case 30:
3593 emit_xorsar_imm(sl,sl,31,temp);
3594#if defined(HAVE_ARMV5) || defined(__aarch64__)
3595 emit_clz(temp,temp);
3596#else
3597 emit_movs(temp,HOST_TEMPREG);
3598 emit_movimm(0,temp);
3599 emit_jeq((int)out+4*4);
3600 emit_addpl_imm(temp,1,temp);
3601 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3602 emit_jns((int)out-2*4);
3603#endif
3604 emit_writeword(sl,&reg_cop2d[30]);
3605 emit_writeword(temp,&reg_cop2d[31]);
3606 break;
3607 case 31:
3608 break;
3609 default:
3610 emit_writeword(sl,&reg_cop2d[copr]);
3611 break;
3612 }
3613}
3614
3615static void c2ls_assemble(int i, const struct regstat *i_regs)
3616{
3617 int s,tl;
3618 int ar;
3619 int offset;
3620 int memtarget=0,c=0;
3621 void *jaddr2=NULL;
3622 enum stub_type type;
3623 int agr=AGEN1+(i&1);
3624 int fastio_reg_override=-1;
3625 u_int reglist=get_host_reglist(i_regs->regmap);
3626 u_int copr=(source[i]>>16)&0x1f;
3627 s=get_reg(i_regs->regmap,rs1[i]);
3628 tl=get_reg(i_regs->regmap,FTEMP);
3629 offset=imm[i];
3630 assert(rs1[i]>0);
3631 assert(tl>=0);
3632
3633 if(i_regs->regmap[HOST_CCREG]==CCREG)
3634 reglist&=~(1<<HOST_CCREG);
3635
3636 // get the address
3637 if (opcode[i]==0x3a) { // SWC2
3638 ar=get_reg(i_regs->regmap,agr);
3639 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3640 reglist|=1<<ar;
3641 } else { // LWC2
3642 ar=tl;
3643 }
3644 if(s>=0) c=(i_regs->wasconst>>s)&1;
3645 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3646 if (!offset&&!c&&s>=0) ar=s;
3647 assert(ar>=0);
3648
3649 cop2_do_stall_check(0, i, i_regs, reglist);
3650
3651 if (opcode[i]==0x3a) { // SWC2
3652 cop2_get_dreg(copr,tl,-1);
3653 type=STOREW_STUB;
3654 }
3655 else
3656 type=LOADW_STUB;
3657
3658 if(c&&!memtarget) {
3659 jaddr2=out;
3660 emit_jmp(0); // inline_readstub/inline_writestub?
3661 }
3662 else {
3663 if(!c) {
3664 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3665 }
3666 else if(ram_offset&&memtarget) {
3667 host_tempreg_acquire();
3668 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3669 fastio_reg_override=HOST_TEMPREG;
3670 }
3671 if (opcode[i]==0x32) { // LWC2
3672 int a=ar;
3673 if(fastio_reg_override>=0) a=fastio_reg_override;
3674 emit_readword_indexed(0,a,tl);
3675 }
3676 if (opcode[i]==0x3a) { // SWC2
3677 #ifdef DESTRUCTIVE_SHIFT
3678 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3679 #endif
3680 int a=ar;
3681 if(fastio_reg_override>=0) a=fastio_reg_override;
3682 emit_writeword_indexed(tl,0,a);
3683 }
3684 }
3685 if(fastio_reg_override==HOST_TEMPREG)
3686 host_tempreg_release();
3687 if(jaddr2)
3688 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
3689 if(opcode[i]==0x3a) // SWC2
3690 if(!(i_regs->waswritten&(1<<rs1[i])) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3691#if defined(HOST_IMM8)
3692 int ir=get_reg(i_regs->regmap,INVCP);
3693 assert(ir>=0);
3694 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3695#else
3696 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3697#endif
3698 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3699 emit_callne(invalidate_addr_reg[ar]);
3700 #else
3701 void *jaddr3 = out;
3702 emit_jne(0);
3703 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3704 #endif
3705 }
3706 if (opcode[i]==0x32) { // LWC2
3707 host_tempreg_acquire();
3708 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3709 host_tempreg_release();
3710 }
3711}
3712
3713static void cop2_assemble(int i, const struct regstat *i_regs)
3714{
3715 u_int copr = (source[i]>>11) & 0x1f;
3716 signed char temp = get_reg(i_regs->regmap, -1);
3717
3718 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3719 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3720 if (opcode2[i] == 0 || opcode2[i] == 2) { // MFC2/CFC2
3721 signed char tl = get_reg(i_regs->regmap, rt1[i]);
3722 reglist = reglist_exclude(reglist, tl, -1);
3723 }
3724 cop2_do_stall_check(0, i, i_regs, reglist);
3725 }
3726 if (opcode2[i]==0) { // MFC2
3727 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3728 if(tl>=0&&rt1[i]!=0)
3729 cop2_get_dreg(copr,tl,temp);
3730 }
3731 else if (opcode2[i]==4) { // MTC2
3732 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3733 cop2_put_dreg(copr,sl,temp);
3734 }
3735 else if (opcode2[i]==2) // CFC2
3736 {
3737 signed char tl=get_reg(i_regs->regmap,rt1[i]);
3738 if(tl>=0&&rt1[i]!=0)
3739 emit_readword(&reg_cop2c[copr],tl);
3740 }
3741 else if (opcode2[i]==6) // CTC2
3742 {
3743 signed char sl=get_reg(i_regs->regmap,rs1[i]);
3744 switch(copr) {
3745 case 4:
3746 case 12:
3747 case 20:
3748 case 26:
3749 case 27:
3750 case 29:
3751 case 30:
3752 emit_signextend16(sl,temp);
3753 break;
3754 case 31:
3755 c2op_ctc2_31_assemble(sl,temp);
3756 break;
3757 default:
3758 temp=sl;
3759 break;
3760 }
3761 emit_writeword(temp,&reg_cop2c[copr]);
3762 assert(sl>=0);
3763 }
3764}
3765
3766static void do_unalignedwritestub(int n)
3767{
3768 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3769 literal_pool(256);
3770 set_jump_target(stubs[n].addr, out);
3771
3772 int i=stubs[n].a;
3773 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3774 int addr=stubs[n].b;
3775 u_int reglist=stubs[n].e;
3776 signed char *i_regmap=i_regs->regmap;
3777 int temp2=get_reg(i_regmap,FTEMP);
3778 int rt;
3779 rt=get_reg(i_regmap,rs2[i]);
3780 assert(rt>=0);
3781 assert(addr>=0);
3782 assert(opcode[i]==0x2a||opcode[i]==0x2e); // SWL/SWR only implemented
3783 reglist|=(1<<addr);
3784 reglist&=~(1<<temp2);
3785
3786#if 1
3787 // don't bother with it and call write handler
3788 save_regs(reglist);
3789 pass_args(addr,rt);
3790 int cc=get_reg(i_regmap,CCREG);
3791 if(cc<0)
3792 emit_loadreg(CCREG,2);
3793 emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n].d+1),2);
3794 emit_far_call((opcode[i]==0x2a?jump_handle_swl:jump_handle_swr));
3795 emit_addimm(0,-CLOCK_ADJUST((int)stubs[n].d+1),cc<0?2:cc);
3796 if(cc<0)
3797 emit_storereg(CCREG,2);
3798 restore_regs(reglist);
3799 emit_jmp(stubs[n].retaddr); // return address
3800#else
3801 emit_andimm(addr,0xfffffffc,temp2);
3802 emit_writeword(temp2,&address);
3803
3804 save_regs(reglist);
3805 emit_shrimm(addr,16,1);
3806 int cc=get_reg(i_regmap,CCREG);
3807 if(cc<0) {
3808 emit_loadreg(CCREG,2);
3809 }
3810 emit_movimm((u_int)readmem,0);
3811 emit_addimm(cc<0?2:cc,2*stubs[n].d+2,2);
3812 emit_call((int)&indirect_jump_indexed);
3813 restore_regs(reglist);
3814
3815 emit_readword(&readmem_dword,temp2);
3816 int temp=addr; //hmh
3817 emit_shlimm(addr,3,temp);
3818 emit_andimm(temp,24,temp);
3819 if (opcode[i]==0x2a) // SWL
3820 emit_xorimm(temp,24,temp);
3821 emit_movimm(-1,HOST_TEMPREG);
3822 if (opcode[i]==0x2a) { // SWL
3823 emit_bic_lsr(temp2,HOST_TEMPREG,temp,temp2);
3824 emit_orrshr(rt,temp,temp2);
3825 }else{
3826 emit_bic_lsl(temp2,HOST_TEMPREG,temp,temp2);
3827 emit_orrshl(rt,temp,temp2);
3828 }
3829 emit_readword(&address,addr);
3830 emit_writeword(temp2,&word);
3831 //save_regs(reglist); // don't need to, no state changes
3832 emit_shrimm(addr,16,1);
3833 emit_movimm((u_int)writemem,0);
3834 //emit_call((int)&indirect_jump_indexed);
3835 emit_mov(15,14);
3836 emit_readword_dualindexedx4(0,1,15);
3837 emit_readword(&Count,HOST_TEMPREG);
3838 emit_readword(&next_interupt,2);
3839 emit_addimm(HOST_TEMPREG,-2*stubs[n].d-2,HOST_TEMPREG);
3840 emit_writeword(2,&last_count);
3841 emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc);
3842 if(cc<0) {
3843 emit_storereg(CCREG,HOST_TEMPREG);
3844 }
3845 restore_regs(reglist);
3846 emit_jmp(stubs[n].retaddr); // return address
3847#endif
3848}
3849
3850#ifndef multdiv_assemble
3851void multdiv_assemble(int i,struct regstat *i_regs)
3852{
3853 printf("Need multdiv_assemble for this architecture.\n");
3854 abort();
3855}
3856#endif
3857
3858static void mov_assemble(int i,struct regstat *i_regs)
3859{
3860 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3861 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3862 if(rt1[i]) {
3863 signed char sl,tl;
3864 tl=get_reg(i_regs->regmap,rt1[i]);
3865 //assert(tl>=0);
3866 if(tl>=0) {
3867 sl=get_reg(i_regs->regmap,rs1[i]);
3868 if(sl>=0) emit_mov(sl,tl);
3869 else emit_loadreg(rs1[i],tl);
3870 }
3871 }
3872 if (rs1[i] == HIREG || rs1[i] == LOREG) // MFHI/MFLO
3873 multdiv_do_stall(i, i_regs);
3874}
3875
3876// call interpreter, exception handler, things that change pc/regs/cycles ...
3877static void call_c_cpu_handler(int i, const struct regstat *i_regs, u_int pc, void *func)
3878{
3879 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3880 assert(ccreg==HOST_CCREG);
3881 assert(!is_delayslot);
3882 (void)ccreg;
3883
3884 emit_movimm(pc,3); // Get PC
3885 emit_readword(&last_count,2);
3886 emit_writeword(3,&psxRegs.pc);
3887 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3888 emit_add(2,HOST_CCREG,2);
3889 emit_writeword(2,&psxRegs.cycle);
3890 emit_far_call(func);
3891 emit_far_jump(jump_to_new_pc);
3892}
3893
3894static void syscall_assemble(int i,struct regstat *i_regs)
3895{
3896 emit_movimm(0x20,0); // cause code
3897 emit_movimm(0,1); // not in delay slot
3898 call_c_cpu_handler(i,i_regs,start+i*4,psxException);
3899}
3900
3901static void hlecall_assemble(int i,struct regstat *i_regs)
3902{
3903 void *hlefunc = psxNULL;
3904 uint32_t hleCode = source[i] & 0x03ffffff;
3905 if (hleCode < ARRAY_SIZE(psxHLEt))
3906 hlefunc = psxHLEt[hleCode];
3907
3908 call_c_cpu_handler(i,i_regs,start+i*4+4,hlefunc);
3909}
3910
3911static void intcall_assemble(int i,struct regstat *i_regs)
3912{
3913 call_c_cpu_handler(i,i_regs,start+i*4,execI);
3914}
3915
3916static void speculate_mov(int rs,int rt)
3917{
3918 if(rt!=0) {
3919 smrv_strong_next|=1<<rt;
3920 smrv[rt]=smrv[rs];
3921 }
3922}
3923
3924static void speculate_mov_weak(int rs,int rt)
3925{
3926 if(rt!=0) {
3927 smrv_weak_next|=1<<rt;
3928 smrv[rt]=smrv[rs];
3929 }
3930}
3931
3932static void speculate_register_values(int i)
3933{
3934 if(i==0) {
3935 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
3936 // gp,sp are likely to stay the same throughout the block
3937 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
3938 smrv_weak_next=~smrv_strong_next;
3939 //printf(" llr %08x\n", smrv[4]);
3940 }
3941 smrv_strong=smrv_strong_next;
3942 smrv_weak=smrv_weak_next;
3943 switch(itype[i]) {
3944 case ALU:
3945 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3946 else if((smrv_strong>>rs2[i])&1) speculate_mov(rs2[i],rt1[i]);
3947 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3948 else if((smrv_weak>>rs2[i])&1) speculate_mov_weak(rs2[i],rt1[i]);
3949 else {
3950 smrv_strong_next&=~(1<<rt1[i]);
3951 smrv_weak_next&=~(1<<rt1[i]);
3952 }
3953 break;
3954 case SHIFTIMM:
3955 smrv_strong_next&=~(1<<rt1[i]);
3956 smrv_weak_next&=~(1<<rt1[i]);
3957 // fallthrough
3958 case IMM16:
3959 if(rt1[i]&&is_const(&regs[i],rt1[i])) {
3960 int value,hr=get_reg(regs[i].regmap,rt1[i]);
3961 if(hr>=0) {
3962 if(get_final_value(hr,i,&value))
3963 smrv[rt1[i]]=value;
3964 else smrv[rt1[i]]=constmap[i][hr];
3965 smrv_strong_next|=1<<rt1[i];
3966 }
3967 }
3968 else {
3969 if ((smrv_strong>>rs1[i])&1) speculate_mov(rs1[i],rt1[i]);
3970 else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]);
3971 }
3972 break;
3973 case LOAD:
3974 if(start<0x2000&&(rt1[i]==26||(smrv[rt1[i]]>>24)==0xa0)) {
3975 // special case for BIOS
3976 smrv[rt1[i]]=0xa0000000;
3977 smrv_strong_next|=1<<rt1[i];
3978 break;
3979 }
3980 // fallthrough
3981 case SHIFT:
3982 case LOADLR:
3983 case MOV:
3984 smrv_strong_next&=~(1<<rt1[i]);
3985 smrv_weak_next&=~(1<<rt1[i]);
3986 break;
3987 case COP0:
3988 case COP2:
3989 if(opcode2[i]==0||opcode2[i]==2) { // MFC/CFC
3990 smrv_strong_next&=~(1<<rt1[i]);
3991 smrv_weak_next&=~(1<<rt1[i]);
3992 }
3993 break;
3994 case C2LS:
3995 if (opcode[i]==0x32) { // LWC2
3996 smrv_strong_next&=~(1<<rt1[i]);
3997 smrv_weak_next&=~(1<<rt1[i]);
3998 }
3999 break;
4000 }
4001#if 0
4002 int r=4;
4003 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4004 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4005#endif
4006}
4007
4008static void ds_assemble(int i,struct regstat *i_regs)
4009{
4010 speculate_register_values(i);
4011 is_delayslot=1;
4012 switch(itype[i]) {
4013 case ALU:
4014 alu_assemble(i,i_regs);break;
4015 case IMM16:
4016 imm16_assemble(i,i_regs);break;
4017 case SHIFT:
4018 shift_assemble(i,i_regs);break;
4019 case SHIFTIMM:
4020 shiftimm_assemble(i,i_regs);break;
4021 case LOAD:
4022 load_assemble(i,i_regs);break;
4023 case LOADLR:
4024 loadlr_assemble(i,i_regs);break;
4025 case STORE:
4026 store_assemble(i,i_regs);break;
4027 case STORELR:
4028 storelr_assemble(i,i_regs);break;
4029 case COP0:
4030 cop0_assemble(i,i_regs);break;
4031 case COP1:
4032 cop1_assemble(i,i_regs);break;
4033 case C1LS:
4034 c1ls_assemble(i,i_regs);break;
4035 case COP2:
4036 cop2_assemble(i,i_regs);break;
4037 case C2LS:
4038 c2ls_assemble(i,i_regs);break;
4039 case C2OP:
4040 c2op_assemble(i,i_regs);break;
4041 case MULTDIV:
4042 multdiv_assemble(i,i_regs);
4043 multdiv_prepare_stall(i,i_regs);
4044 break;
4045 case MOV:
4046 mov_assemble(i,i_regs);break;
4047 case SYSCALL:
4048 case HLECALL:
4049 case INTCALL:
4050 case SPAN:
4051 case UJUMP:
4052 case RJUMP:
4053 case CJUMP:
4054 case SJUMP:
4055 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4056 }
4057 is_delayslot=0;
4058}
4059
4060// Is the branch target a valid internal jump?
4061static int internal_branch(int addr)
4062{
4063 if(addr&1) return 0; // Indirect (register) jump
4064 if(addr>=start && addr<start+slen*4-4)
4065 {
4066 return 1;
4067 }
4068 return 0;
4069}
4070
4071static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4072{
4073 int hr;
4074 for(hr=0;hr<HOST_REGS;hr++) {
4075 if(hr!=EXCLUDE_REG) {
4076 if(pre[hr]!=entry[hr]) {
4077 if(pre[hr]>=0) {
4078 if((dirty>>hr)&1) {
4079 if(get_reg(entry,pre[hr])<0) {
4080 assert(pre[hr]<64);
4081 if(!((u>>pre[hr])&1))
4082 emit_storereg(pre[hr],hr);
4083 }
4084 }
4085 }
4086 }
4087 }
4088 }
4089 // Move from one register to another (no writeback)
4090 for(hr=0;hr<HOST_REGS;hr++) {
4091 if(hr!=EXCLUDE_REG) {
4092 if(pre[hr]!=entry[hr]) {
4093 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4094 int nr;
4095 if((nr=get_reg(entry,pre[hr]))>=0) {
4096 emit_mov(hr,nr);
4097 }
4098 }
4099 }
4100 }
4101 }
4102}
4103
4104// Load the specified registers
4105// This only loads the registers given as arguments because
4106// we don't want to load things that will be overwritten
4107static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4108{
4109 int hr;
4110 // Load 32-bit regs
4111 for(hr=0;hr<HOST_REGS;hr++) {
4112 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4113 if(entry[hr]!=regmap[hr]) {
4114 if(regmap[hr]==rs1||regmap[hr]==rs2)
4115 {
4116 if(regmap[hr]==0) {
4117 emit_zeroreg(hr);
4118 }
4119 else
4120 {
4121 emit_loadreg(regmap[hr],hr);
4122 }
4123 }
4124 }
4125 }
4126 }
4127}
4128
4129// Load registers prior to the start of a loop
4130// so that they are not loaded within the loop
4131static void loop_preload(signed char pre[],signed char entry[])
4132{
4133 int hr;
4134 for(hr=0;hr<HOST_REGS;hr++) {
4135 if(hr!=EXCLUDE_REG) {
4136 if(pre[hr]!=entry[hr]) {
4137 if(entry[hr]>=0) {
4138 if(get_reg(pre,entry[hr])<0) {
4139 assem_debug("loop preload:\n");
4140 //printf("loop preload: %d\n",hr);
4141 if(entry[hr]==0) {
4142 emit_zeroreg(hr);
4143 }
4144 else if(entry[hr]<TEMPREG)
4145 {
4146 emit_loadreg(entry[hr],hr);
4147 }
4148 else if(entry[hr]-64<TEMPREG)
4149 {
4150 emit_loadreg(entry[hr],hr);
4151 }
4152 }
4153 }
4154 }
4155 }
4156 }
4157}
4158
4159// Generate address for load/store instruction
4160// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4161void address_generation(int i,struct regstat *i_regs,signed char entry[])
4162{
4163 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4164 int ra=-1;
4165 int agr=AGEN1+(i&1);
4166 if(itype[i]==LOAD) {
4167 ra=get_reg(i_regs->regmap,rt1[i]);
4168 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4169 assert(ra>=0);
4170 }
4171 if(itype[i]==LOADLR) {
4172 ra=get_reg(i_regs->regmap,FTEMP);
4173 }
4174 if(itype[i]==STORE||itype[i]==STORELR) {
4175 ra=get_reg(i_regs->regmap,agr);
4176 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4177 }
4178 if(itype[i]==C1LS||itype[i]==C2LS) {
4179 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4180 ra=get_reg(i_regs->regmap,FTEMP);
4181 else { // SWC1/SDC1/SWC2/SDC2
4182 ra=get_reg(i_regs->regmap,agr);
4183 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4184 }
4185 }
4186 int rs=get_reg(i_regs->regmap,rs1[i]);
4187 if(ra>=0) {
4188 int offset=imm[i];
4189 int c=(i_regs->wasconst>>rs)&1;
4190 if(rs1[i]==0) {
4191 // Using r0 as a base address
4192 if(!entry||entry[ra]!=agr) {
4193 if (opcode[i]==0x22||opcode[i]==0x26) {
4194 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4195 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4196 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4197 }else{
4198 emit_movimm(offset,ra);
4199 }
4200 } // else did it in the previous cycle
4201 }
4202 else if(rs<0) {
4203 if(!entry||entry[ra]!=rs1[i])
4204 emit_loadreg(rs1[i],ra);
4205 //if(!entry||entry[ra]!=rs1[i])
4206 // printf("poor load scheduling!\n");
4207 }
4208 else if(c) {
4209 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4210 if(!entry||entry[ra]!=agr) {
4211 if (opcode[i]==0x22||opcode[i]==0x26) {
4212 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4213 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4214 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4215 }else{
4216 emit_movimm(constmap[i][rs]+offset,ra);
4217 regs[i].loadedconst|=1<<ra;
4218 }
4219 } // else did it in the previous cycle
4220 } // else load_consts already did it
4221 }
4222 if(offset&&!c&&rs1[i]) {
4223 if(rs>=0) {
4224 emit_addimm(rs,offset,ra);
4225 }else{
4226 emit_addimm(ra,offset,ra);
4227 }
4228 }
4229 }
4230 }
4231 // Preload constants for next instruction
4232 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4233 int agr,ra;
4234 // Actual address
4235 agr=AGEN1+((i+1)&1);
4236 ra=get_reg(i_regs->regmap,agr);
4237 if(ra>=0) {
4238 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4239 int offset=imm[i+1];
4240 int c=(regs[i+1].wasconst>>rs)&1;
4241 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4242 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4243 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4244 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4245 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4246 }else{
4247 emit_movimm(constmap[i+1][rs]+offset,ra);
4248 regs[i+1].loadedconst|=1<<ra;
4249 }
4250 }
4251 else if(rs1[i+1]==0) {
4252 // Using r0 as a base address
4253 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4254 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4255 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4256 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4257 }else{
4258 emit_movimm(offset,ra);
4259 }
4260 }
4261 }
4262 }
4263}
4264
4265static int get_final_value(int hr, int i, int *value)
4266{
4267 int reg=regs[i].regmap[hr];
4268 while(i<slen-1) {
4269 if(regs[i+1].regmap[hr]!=reg) break;
4270 if(!((regs[i+1].isconst>>hr)&1)) break;
4271 if(bt[i+1]) break;
4272 i++;
4273 }
4274 if(i<slen-1) {
4275 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4276 *value=constmap[i][hr];
4277 return 1;
4278 }
4279 if(!bt[i+1]) {
4280 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4281 // Load in delay slot, out-of-order execution
4282 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4283 {
4284 // Precompute load address
4285 *value=constmap[i][hr]+imm[i+2];
4286 return 1;
4287 }
4288 }
4289 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4290 {
4291 // Precompute load address
4292 *value=constmap[i][hr]+imm[i+1];
4293 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4294 return 1;
4295 }
4296 }
4297 }
4298 *value=constmap[i][hr];
4299 //printf("c=%lx\n",(long)constmap[i][hr]);
4300 if(i==slen-1) return 1;
4301 assert(reg < 64);
4302 return !((unneeded_reg[i+1]>>reg)&1);
4303}
4304
4305// Load registers with known constants
4306static void load_consts(signed char pre[],signed char regmap[],int i)
4307{
4308 int hr,hr2;
4309 // propagate loaded constant flags
4310 if(i==0||bt[i])
4311 regs[i].loadedconst=0;
4312 else {
4313 for(hr=0;hr<HOST_REGS;hr++) {
4314 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4315 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4316 {
4317 regs[i].loadedconst|=1<<hr;
4318 }
4319 }
4320 }
4321 // Load 32-bit regs
4322 for(hr=0;hr<HOST_REGS;hr++) {
4323 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4324 //if(entry[hr]!=regmap[hr]) {
4325 if(!((regs[i].loadedconst>>hr)&1)) {
4326 assert(regmap[hr]<64);
4327 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4328 int value,similar=0;
4329 if(get_final_value(hr,i,&value)) {
4330 // see if some other register has similar value
4331 for(hr2=0;hr2<HOST_REGS;hr2++) {
4332 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4333 if(is_similar_value(value,constmap[i][hr2])) {
4334 similar=1;
4335 break;
4336 }
4337 }
4338 }
4339 if(similar) {
4340 int value2;
4341 if(get_final_value(hr2,i,&value2)) // is this needed?
4342 emit_movimm_from(value2,hr2,value,hr);
4343 else
4344 emit_movimm(value,hr);
4345 }
4346 else if(value==0) {
4347 emit_zeroreg(hr);
4348 }
4349 else {
4350 emit_movimm(value,hr);
4351 }
4352 }
4353 regs[i].loadedconst|=1<<hr;
4354 }
4355 }
4356 }
4357 }
4358}
4359
4360void load_all_consts(signed char regmap[], u_int dirty, int i)
4361{
4362 int hr;
4363 // Load 32-bit regs
4364 for(hr=0;hr<HOST_REGS;hr++) {
4365 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4366 assert(regmap[hr] < 64);
4367 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4368 int value=constmap[i][hr];
4369 if(value==0) {
4370 emit_zeroreg(hr);
4371 }
4372 else {
4373 emit_movimm(value,hr);
4374 }
4375 }
4376 }
4377 }
4378}
4379
4380// Write out all dirty registers (except cycle count)
4381static void wb_dirtys(signed char i_regmap[],uint64_t i_dirty)
4382{
4383 int hr;
4384 for(hr=0;hr<HOST_REGS;hr++) {
4385 if(hr!=EXCLUDE_REG) {
4386 if(i_regmap[hr]>0) {
4387 if(i_regmap[hr]!=CCREG) {
4388 if((i_dirty>>hr)&1) {
4389 assert(i_regmap[hr]<64);
4390 emit_storereg(i_regmap[hr],hr);
4391 }
4392 }
4393 }
4394 }
4395 }
4396}
4397
4398// Write out dirty registers that we need to reload (pair with load_needed_regs)
4399// This writes the registers not written by store_regs_bt
4400void wb_needed_dirtys(signed char i_regmap[],uint64_t i_dirty,int addr)
4401{
4402 int hr;
4403 int t=(addr-start)>>2;
4404 for(hr=0;hr<HOST_REGS;hr++) {
4405 if(hr!=EXCLUDE_REG) {
4406 if(i_regmap[hr]>0) {
4407 if(i_regmap[hr]!=CCREG) {
4408 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4409 if((i_dirty>>hr)&1) {
4410 assert(i_regmap[hr]<64);
4411 emit_storereg(i_regmap[hr],hr);
4412 }
4413 }
4414 }
4415 }
4416 }
4417 }
4418}
4419
4420// Load all registers (except cycle count)
4421void load_all_regs(signed char i_regmap[])
4422{
4423 int hr;
4424 for(hr=0;hr<HOST_REGS;hr++) {
4425 if(hr!=EXCLUDE_REG) {
4426 if(i_regmap[hr]==0) {
4427 emit_zeroreg(hr);
4428 }
4429 else
4430 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4431 {
4432 emit_loadreg(i_regmap[hr],hr);
4433 }
4434 }
4435 }
4436}
4437
4438// Load all current registers also needed by next instruction
4439void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4440{
4441 int hr;
4442 for(hr=0;hr<HOST_REGS;hr++) {
4443 if(hr!=EXCLUDE_REG) {
4444 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4445 if(i_regmap[hr]==0) {
4446 emit_zeroreg(hr);
4447 }
4448 else
4449 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4450 {
4451 emit_loadreg(i_regmap[hr],hr);
4452 }
4453 }
4454 }
4455 }
4456}
4457
4458// Load all regs, storing cycle count if necessary
4459void load_regs_entry(int t)
4460{
4461 int hr;
4462 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4463 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4464 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4465 emit_storereg(CCREG,HOST_CCREG);
4466 }
4467 // Load 32-bit regs
4468 for(hr=0;hr<HOST_REGS;hr++) {
4469 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4470 if(regs[t].regmap_entry[hr]==0) {
4471 emit_zeroreg(hr);
4472 }
4473 else if(regs[t].regmap_entry[hr]!=CCREG)
4474 {
4475 emit_loadreg(regs[t].regmap_entry[hr],hr);
4476 }
4477 }
4478 }
4479}
4480
4481// Store dirty registers prior to branch
4482void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4483{
4484 if(internal_branch(addr))
4485 {
4486 int t=(addr-start)>>2;
4487 int hr;
4488 for(hr=0;hr<HOST_REGS;hr++) {
4489 if(hr!=EXCLUDE_REG) {
4490 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4491 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4492 if((i_dirty>>hr)&1) {
4493 assert(i_regmap[hr]<64);
4494 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4495 emit_storereg(i_regmap[hr],hr);
4496 }
4497 }
4498 }
4499 }
4500 }
4501 }
4502 else
4503 {
4504 // Branch out of this block, write out all dirty regs
4505 wb_dirtys(i_regmap,i_dirty);
4506 }
4507}
4508
4509// Load all needed registers for branch target
4510static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4511{
4512 //if(addr>=start && addr<(start+slen*4))
4513 if(internal_branch(addr))
4514 {
4515 int t=(addr-start)>>2;
4516 int hr;
4517 // Store the cycle count before loading something else
4518 if(i_regmap[HOST_CCREG]!=CCREG) {
4519 assert(i_regmap[HOST_CCREG]==-1);
4520 }
4521 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4522 emit_storereg(CCREG,HOST_CCREG);
4523 }
4524 // Load 32-bit regs
4525 for(hr=0;hr<HOST_REGS;hr++) {
4526 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4527 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4528 if(regs[t].regmap_entry[hr]==0) {
4529 emit_zeroreg(hr);
4530 }
4531 else if(regs[t].regmap_entry[hr]!=CCREG)
4532 {
4533 emit_loadreg(regs[t].regmap_entry[hr],hr);
4534 }
4535 }
4536 }
4537 }
4538 }
4539}
4540
4541static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4542{
4543 if(addr>=start && addr<start+slen*4-4)
4544 {
4545 int t=(addr-start)>>2;
4546 int hr;
4547 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4548 for(hr=0;hr<HOST_REGS;hr++)
4549 {
4550 if(hr!=EXCLUDE_REG)
4551 {
4552 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4553 {
4554 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4555 {
4556 return 0;
4557 }
4558 else
4559 if((i_dirty>>hr)&1)
4560 {
4561 if(i_regmap[hr]<TEMPREG)
4562 {
4563 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4564 return 0;
4565 }
4566 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4567 {
4568 assert(0);
4569 }
4570 }
4571 }
4572 else // Same register but is it 32-bit or dirty?
4573 if(i_regmap[hr]>=0)
4574 {
4575 if(!((regs[t].dirty>>hr)&1))
4576 {
4577 if((i_dirty>>hr)&1)
4578 {
4579 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4580 {
4581 //printf("%x: dirty no match\n",addr);
4582 return 0;
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589 // Delay slots are not valid branch targets
4590 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP)) return 0;
4591 // Delay slots require additional processing, so do not match
4592 if(is_ds[t]) return 0;
4593 }
4594 else
4595 {
4596 int hr;
4597 for(hr=0;hr<HOST_REGS;hr++)
4598 {
4599 if(hr!=EXCLUDE_REG)
4600 {
4601 if(i_regmap[hr]>=0)
4602 {
4603 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4604 {
4605 if((i_dirty>>hr)&1)
4606 {
4607 return 0;
4608 }
4609 }
4610 }
4611 }
4612 }
4613 }
4614 return 1;
4615}
4616
4617#ifdef DRC_DBG
4618static void drc_dbg_emit_do_cmp(int i)
4619{
4620 extern void do_insn_cmp();
4621 //extern int cycle;
4622 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4623
4624 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4625 save_regs(reglist);
4626 // write out changed consts to match the interpreter
4627 if (i > 0 && !bt[i]) {
4628 for (hr = 0; hr < HOST_REGS; hr++) {
4629 int reg = regs[i-1].regmap[hr];
4630 if (hr == EXCLUDE_REG || reg < 0)
4631 continue;
4632 if (!((regs[i-1].isconst >> hr) & 1))
4633 continue;
4634 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4635 continue;
4636 emit_movimm(constmap[i-1][hr],0);
4637 emit_storereg(reg, 0);
4638 }
4639 }
4640 emit_movimm(start+i*4,0);
4641 emit_writeword(0,&pcaddr);
4642 emit_far_call(do_insn_cmp);
4643 //emit_readword(&cycle,0);
4644 //emit_addimm(0,2,0);
4645 //emit_writeword(0,&cycle);
4646 (void)get_reg2;
4647 restore_regs(reglist);
4648 assem_debug("\\\\do_insn_cmp\n");
4649}
4650#else
4651#define drc_dbg_emit_do_cmp(x)
4652#endif
4653
4654// Used when a branch jumps into the delay slot of another branch
4655static void ds_assemble_entry(int i)
4656{
4657 int t=(ba[i]-start)>>2;
4658 if (!instr_addr[t])
4659 instr_addr[t] = out;
4660 assem_debug("Assemble delay slot at %x\n",ba[i]);
4661 assem_debug("<->\n");
4662 drc_dbg_emit_do_cmp(t);
4663 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4664 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4665 load_regs(regs[t].regmap_entry,regs[t].regmap,rs1[t],rs2[t]);
4666 address_generation(t,&regs[t],regs[t].regmap_entry);
4667 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4668 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4669 is_delayslot=0;
4670 switch(itype[t]) {
4671 case ALU:
4672 alu_assemble(t,&regs[t]);break;
4673 case IMM16:
4674 imm16_assemble(t,&regs[t]);break;
4675 case SHIFT:
4676 shift_assemble(t,&regs[t]);break;
4677 case SHIFTIMM:
4678 shiftimm_assemble(t,&regs[t]);break;
4679 case LOAD:
4680 load_assemble(t,&regs[t]);break;
4681 case LOADLR:
4682 loadlr_assemble(t,&regs[t]);break;
4683 case STORE:
4684 store_assemble(t,&regs[t]);break;
4685 case STORELR:
4686 storelr_assemble(t,&regs[t]);break;
4687 case COP0:
4688 cop0_assemble(t,&regs[t]);break;
4689 case COP1:
4690 cop1_assemble(t,&regs[t]);break;
4691 case C1LS:
4692 c1ls_assemble(t,&regs[t]);break;
4693 case COP2:
4694 cop2_assemble(t,&regs[t]);break;
4695 case C2LS:
4696 c2ls_assemble(t,&regs[t]);break;
4697 case C2OP:
4698 c2op_assemble(t,&regs[t]);break;
4699 case MULTDIV:
4700 multdiv_assemble(t,&regs[t]);
4701 multdiv_prepare_stall(i,&regs[t]);
4702 break;
4703 case MOV:
4704 mov_assemble(t,&regs[t]);break;
4705 case SYSCALL:
4706 case HLECALL:
4707 case INTCALL:
4708 case SPAN:
4709 case UJUMP:
4710 case RJUMP:
4711 case CJUMP:
4712 case SJUMP:
4713 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4714 }
4715 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4716 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4717 if(internal_branch(ba[i]+4))
4718 assem_debug("branch: internal\n");
4719 else
4720 assem_debug("branch: external\n");
4721 assert(internal_branch(ba[i]+4));
4722 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4723 emit_jmp(0);
4724}
4725
4726static void emit_extjump(void *addr, u_int target)
4727{
4728 emit_extjump2(addr, target, dyna_linker);
4729}
4730
4731static void emit_extjump_ds(void *addr, u_int target)
4732{
4733 emit_extjump2(addr, target, dyna_linker_ds);
4734}
4735
4736// Load 2 immediates optimizing for small code size
4737static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4738{
4739 emit_movimm(imm1,rt1);
4740 emit_movimm_from(imm1,rt1,imm2,rt2);
4741}
4742
4743void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4744{
4745 int count;
4746 void *jaddr;
4747 void *idle=NULL;
4748 int t=0;
4749 if(itype[i]==RJUMP)
4750 {
4751 *adj=0;
4752 }
4753 //if(ba[i]>=start && ba[i]<(start+slen*4))
4754 if(internal_branch(ba[i]))
4755 {
4756 t=(ba[i]-start)>>2;
4757 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4758 else *adj=ccadj[t];
4759 }
4760 else
4761 {
4762 *adj=0;
4763 }
4764 count=ccadj[i];
4765 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4766 // Idle loop
4767 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4768 idle=out;
4769 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4770 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4771 jaddr=out;
4772 emit_jmp(0);
4773 }
4774 else if(*adj==0||invert) {
4775 int cycles=CLOCK_ADJUST(count+2);
4776 // faster loop HACK
4777#if 0
4778 if (t&&*adj) {
4779 int rel=t-i;
4780 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4781 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4782 }
4783#endif
4784 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4785 jaddr=out;
4786 emit_jns(0);
4787 }
4788 else
4789 {
4790 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4791 jaddr=out;
4792 emit_jns(0);
4793 }
4794 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4795}
4796
4797static void do_ccstub(int n)
4798{
4799 literal_pool(256);
4800 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4801 set_jump_target(stubs[n].addr, out);
4802 int i=stubs[n].b;
4803 if(stubs[n].d==NULLDS) {
4804 // Delay slot instruction is nullified ("likely" branch)
4805 wb_dirtys(regs[i].regmap,regs[i].dirty);
4806 }
4807 else if(stubs[n].d!=TAKEN) {
4808 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4809 }
4810 else {
4811 if(internal_branch(ba[i]))
4812 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4813 }
4814 if(stubs[n].c!=-1)
4815 {
4816 // Save PC as return address
4817 emit_movimm(stubs[n].c,EAX);
4818 emit_writeword(EAX,&pcaddr);
4819 }
4820 else
4821 {
4822 // Return address depends on which way the branch goes
4823 if(itype[i]==CJUMP||itype[i]==SJUMP)
4824 {
4825 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4826 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4827 if(rs1[i]==0)
4828 {
4829 s1l=s2l;
4830 s2l=-1;
4831 }
4832 else if(rs2[i]==0)
4833 {
4834 s2l=-1;
4835 }
4836 assert(s1l>=0);
4837 #ifdef DESTRUCTIVE_WRITEBACK
4838 if(rs1[i]) {
4839 if((branch_regs[i].dirty>>s1l)&&1)
4840 emit_loadreg(rs1[i],s1l);
4841 }
4842 else {
4843 if((branch_regs[i].dirty>>s1l)&1)
4844 emit_loadreg(rs2[i],s1l);
4845 }
4846 if(s2l>=0)
4847 if((branch_regs[i].dirty>>s2l)&1)
4848 emit_loadreg(rs2[i],s2l);
4849 #endif
4850 int hr=0;
4851 int addr=-1,alt=-1,ntaddr=-1;
4852 while(hr<HOST_REGS)
4853 {
4854 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4855 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4856 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4857 {
4858 addr=hr++;break;
4859 }
4860 hr++;
4861 }
4862 while(hr<HOST_REGS)
4863 {
4864 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4865 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4866 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4867 {
4868 alt=hr++;break;
4869 }
4870 hr++;
4871 }
4872 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4873 {
4874 while(hr<HOST_REGS)
4875 {
4876 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4877 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4878 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4879 {
4880 ntaddr=hr;break;
4881 }
4882 hr++;
4883 }
4884 assert(hr<HOST_REGS);
4885 }
4886 if((opcode[i]&0x2f)==4) // BEQ
4887 {
4888 #ifdef HAVE_CMOV_IMM
4889 if(s2l>=0) emit_cmp(s1l,s2l);
4890 else emit_test(s1l,s1l);
4891 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4892 #else
4893 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4894 if(s2l>=0) emit_cmp(s1l,s2l);
4895 else emit_test(s1l,s1l);
4896 emit_cmovne_reg(alt,addr);
4897 #endif
4898 }
4899 if((opcode[i]&0x2f)==5) // BNE
4900 {
4901 #ifdef HAVE_CMOV_IMM
4902 if(s2l>=0) emit_cmp(s1l,s2l);
4903 else emit_test(s1l,s1l);
4904 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4905 #else
4906 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4907 if(s2l>=0) emit_cmp(s1l,s2l);
4908 else emit_test(s1l,s1l);
4909 emit_cmovne_reg(alt,addr);
4910 #endif
4911 }
4912 if((opcode[i]&0x2f)==6) // BLEZ
4913 {
4914 //emit_movimm(ba[i],alt);
4915 //emit_movimm(start+i*4+8,addr);
4916 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4917 emit_cmpimm(s1l,1);
4918 emit_cmovl_reg(alt,addr);
4919 }
4920 if((opcode[i]&0x2f)==7) // BGTZ
4921 {
4922 //emit_movimm(ba[i],addr);
4923 //emit_movimm(start+i*4+8,ntaddr);
4924 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4925 emit_cmpimm(s1l,1);
4926 emit_cmovl_reg(ntaddr,addr);
4927 }
4928 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4929 {
4930 //emit_movimm(ba[i],alt);
4931 //emit_movimm(start+i*4+8,addr);
4932 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4933 emit_test(s1l,s1l);
4934 emit_cmovs_reg(alt,addr);
4935 }
4936 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4937 {
4938 //emit_movimm(ba[i],addr);
4939 //emit_movimm(start+i*4+8,alt);
4940 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4941 emit_test(s1l,s1l);
4942 emit_cmovs_reg(alt,addr);
4943 }
4944 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4945 if(source[i]&0x10000) // BC1T
4946 {
4947 //emit_movimm(ba[i],alt);
4948 //emit_movimm(start+i*4+8,addr);
4949 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4950 emit_testimm(s1l,0x800000);
4951 emit_cmovne_reg(alt,addr);
4952 }
4953 else // BC1F
4954 {
4955 //emit_movimm(ba[i],addr);
4956 //emit_movimm(start+i*4+8,alt);
4957 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4958 emit_testimm(s1l,0x800000);
4959 emit_cmovne_reg(alt,addr);
4960 }
4961 }
4962 emit_writeword(addr,&pcaddr);
4963 }
4964 else
4965 if(itype[i]==RJUMP)
4966 {
4967 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4968 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4969 r=get_reg(branch_regs[i].regmap,RTEMP);
4970 }
4971 emit_writeword(r,&pcaddr);
4972 }
4973 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
4974 }
4975 // Update cycle count
4976 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4977 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4978 emit_far_call(cc_interrupt);
4979 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((signed int)stubs[n].a),HOST_CCREG);
4980 if(stubs[n].d==TAKEN) {
4981 if(internal_branch(ba[i]))
4982 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4983 else if(itype[i]==RJUMP) {
4984 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4985 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4986 else
4987 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4988 }
4989 }else if(stubs[n].d==NOTTAKEN) {
4990 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4991 else load_all_regs(branch_regs[i].regmap);
4992 }else if(stubs[n].d==NULLDS) {
4993 // Delay slot instruction is nullified ("likely" branch)
4994 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4995 else load_all_regs(regs[i].regmap);
4996 }else{
4997 load_all_regs(branch_regs[i].regmap);
4998 }
4999 if (stubs[n].retaddr)
5000 emit_jmp(stubs[n].retaddr);
5001 else
5002 do_jump_vaddr(stubs[n].e);
5003}
5004
5005static void add_to_linker(void *addr, u_int target, int ext)
5006{
5007 assert(linkcount < ARRAY_SIZE(link_addr));
5008 link_addr[linkcount].addr = addr;
5009 link_addr[linkcount].target = target;
5010 link_addr[linkcount].ext = ext;
5011 linkcount++;
5012}
5013
5014static void ujump_assemble_write_ra(int i)
5015{
5016 int rt;
5017 unsigned int return_address;
5018 rt=get_reg(branch_regs[i].regmap,31);
5019 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5020 //assert(rt>=0);
5021 return_address=start+i*4+8;
5022 if(rt>=0) {
5023 #ifdef USE_MINI_HT
5024 if(internal_branch(return_address)&&rt1[i+1]!=31) {
5025 int temp=-1; // note: must be ds-safe
5026 #ifdef HOST_TEMPREG
5027 temp=HOST_TEMPREG;
5028 #endif
5029 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5030 else emit_movimm(return_address,rt);
5031 }
5032 else
5033 #endif
5034 {
5035 #ifdef REG_PREFETCH
5036 if(temp>=0)
5037 {
5038 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5039 }
5040 #endif
5041 emit_movimm(return_address,rt); // PC into link register
5042 #ifdef IMM_PREFETCH
5043 emit_prefetch(hash_table_get(return_address));
5044 #endif
5045 }
5046 }
5047}
5048
5049static void ujump_assemble(int i,struct regstat *i_regs)
5050{
5051 int ra_done=0;
5052 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5053 address_generation(i+1,i_regs,regs[i].regmap_entry);
5054 #ifdef REG_PREFETCH
5055 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5056 if(rt1[i]==31&&temp>=0)
5057 {
5058 signed char *i_regmap=i_regs->regmap;
5059 int return_address=start+i*4+8;
5060 if(get_reg(branch_regs[i].regmap,31)>0)
5061 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5062 }
5063 #endif
5064 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5065 ujump_assemble_write_ra(i); // writeback ra for DS
5066 ra_done=1;
5067 }
5068 ds_assemble(i+1,i_regs);
5069 uint64_t bc_unneeded=branch_regs[i].u;
5070 bc_unneeded|=1|(1LL<<rt1[i]);
5071 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5072 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5073 if(!ra_done&&rt1[i]==31)
5074 ujump_assemble_write_ra(i);
5075 int cc,adj;
5076 cc=get_reg(branch_regs[i].regmap,CCREG);
5077 assert(cc==HOST_CCREG);
5078 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5079 #ifdef REG_PREFETCH
5080 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5081 #endif
5082 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5083 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5084 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5085 if(internal_branch(ba[i]))
5086 assem_debug("branch: internal\n");
5087 else
5088 assem_debug("branch: external\n");
5089 if(internal_branch(ba[i])&&is_ds[(ba[i]-start)>>2]) {
5090 ds_assemble_entry(i);
5091 }
5092 else {
5093 add_to_linker(out,ba[i],internal_branch(ba[i]));
5094 emit_jmp(0);
5095 }
5096}
5097
5098static void rjump_assemble_write_ra(int i)
5099{
5100 int rt,return_address;
5101 assert(rt1[i+1]!=rt1[i]);
5102 assert(rt2[i+1]!=rt1[i]);
5103 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5104 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5105 assert(rt>=0);
5106 return_address=start+i*4+8;
5107 #ifdef REG_PREFETCH
5108 if(temp>=0)
5109 {
5110 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5111 }
5112 #endif
5113 emit_movimm(return_address,rt); // PC into link register
5114 #ifdef IMM_PREFETCH
5115 emit_prefetch(hash_table_get(return_address));
5116 #endif
5117}
5118
5119static void rjump_assemble(int i,struct regstat *i_regs)
5120{
5121 int temp;
5122 int rs,cc;
5123 int ra_done=0;
5124 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5125 assert(rs>=0);
5126 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5127 // Delay slot abuse, make a copy of the branch address register
5128 temp=get_reg(branch_regs[i].regmap,RTEMP);
5129 assert(temp>=0);
5130 assert(regs[i].regmap[temp]==RTEMP);
5131 emit_mov(rs,temp);
5132 rs=temp;
5133 }
5134 address_generation(i+1,i_regs,regs[i].regmap_entry);
5135 #ifdef REG_PREFETCH
5136 if(rt1[i]==31)
5137 {
5138 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5139 signed char *i_regmap=i_regs->regmap;
5140 int return_address=start+i*4+8;
5141 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5142 }
5143 }
5144 #endif
5145 #ifdef USE_MINI_HT
5146 if(rs1[i]==31) {
5147 int rh=get_reg(regs[i].regmap,RHASH);
5148 if(rh>=0) do_preload_rhash(rh);
5149 }
5150 #endif
5151 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5152 rjump_assemble_write_ra(i);
5153 ra_done=1;
5154 }
5155 ds_assemble(i+1,i_regs);
5156 uint64_t bc_unneeded=branch_regs[i].u;
5157 bc_unneeded|=1|(1LL<<rt1[i]);
5158 bc_unneeded&=~(1LL<<rs1[i]);
5159 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5160 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],CCREG);
5161 if(!ra_done&&rt1[i]!=0)
5162 rjump_assemble_write_ra(i);
5163 cc=get_reg(branch_regs[i].regmap,CCREG);
5164 assert(cc==HOST_CCREG);
5165 (void)cc;
5166 #ifdef USE_MINI_HT
5167 int rh=get_reg(branch_regs[i].regmap,RHASH);
5168 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5169 if(rs1[i]==31) {
5170 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5171 do_preload_rhtbl(ht);
5172 do_rhash(rs,rh);
5173 }
5174 #endif
5175 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5176 #ifdef DESTRUCTIVE_WRITEBACK
5177 if((branch_regs[i].dirty>>rs)&1) {
5178 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5179 emit_loadreg(rs1[i],rs);
5180 }
5181 }
5182 #endif
5183 #ifdef REG_PREFETCH
5184 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5185 #endif
5186 #ifdef USE_MINI_HT
5187 if(rs1[i]==31) {
5188 do_miniht_load(ht,rh);
5189 }
5190 #endif
5191 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5192 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5193 //assert(adj==0);
5194 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5195 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5196 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5197 // special case for RFE
5198 emit_jmp(0);
5199 else
5200 emit_jns(0);
5201 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5202 #ifdef USE_MINI_HT
5203 if(rs1[i]==31) {
5204 do_miniht_jump(rs,rh,ht);
5205 }
5206 else
5207 #endif
5208 {
5209 do_jump_vaddr(rs);
5210 }
5211 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5212 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5213 #endif
5214}
5215
5216static void cjump_assemble(int i,struct regstat *i_regs)
5217{
5218 signed char *i_regmap=i_regs->regmap;
5219 int cc;
5220 int match;
5221 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5222 assem_debug("match=%d\n",match);
5223 int s1l,s2l;
5224 int unconditional=0,nop=0;
5225 int invert=0;
5226 int internal=internal_branch(ba[i]);
5227 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5228 if(!match) invert=1;
5229 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5230 if(i>(ba[i]-start)>>2) invert=1;
5231 #endif
5232 #ifdef __aarch64__
5233 invert=1; // because of near cond. branches
5234 #endif
5235
5236 if(ooo[i]) {
5237 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5238 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5239 }
5240 else {
5241 s1l=get_reg(i_regmap,rs1[i]);
5242 s2l=get_reg(i_regmap,rs2[i]);
5243 }
5244 if(rs1[i]==0&&rs2[i]==0)
5245 {
5246 if(opcode[i]&1) nop=1;
5247 else unconditional=1;
5248 //assert(opcode[i]!=5);
5249 //assert(opcode[i]!=7);
5250 //assert(opcode[i]!=0x15);
5251 //assert(opcode[i]!=0x17);
5252 }
5253 else if(rs1[i]==0)
5254 {
5255 s1l=s2l;
5256 s2l=-1;
5257 }
5258 else if(rs2[i]==0)
5259 {
5260 s2l=-1;
5261 }
5262
5263 if(ooo[i]) {
5264 // Out of order execution (delay slot first)
5265 //printf("OOOE\n");
5266 address_generation(i+1,i_regs,regs[i].regmap_entry);
5267 ds_assemble(i+1,i_regs);
5268 int adj;
5269 uint64_t bc_unneeded=branch_regs[i].u;
5270 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5271 bc_unneeded|=1;
5272 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5273 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs2[i]);
5274 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5275 cc=get_reg(branch_regs[i].regmap,CCREG);
5276 assert(cc==HOST_CCREG);
5277 if(unconditional)
5278 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5279 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5280 //assem_debug("cycle count (adj)\n");
5281 if(unconditional) {
5282 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5283 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5284 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5285 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5286 if(internal)
5287 assem_debug("branch: internal\n");
5288 else
5289 assem_debug("branch: external\n");
5290 if(internal&&is_ds[(ba[i]-start)>>2]) {
5291 ds_assemble_entry(i);
5292 }
5293 else {
5294 add_to_linker(out,ba[i],internal);
5295 emit_jmp(0);
5296 }
5297 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5298 if(((u_int)out)&7) emit_addnop(0);
5299 #endif
5300 }
5301 }
5302 else if(nop) {
5303 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5304 void *jaddr=out;
5305 emit_jns(0);
5306 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5307 }
5308 else {
5309 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5310 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5311 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5312
5313 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5314 assert(s1l>=0);
5315 if(opcode[i]==4) // BEQ
5316 {
5317 if(s2l>=0) emit_cmp(s1l,s2l);
5318 else emit_test(s1l,s1l);
5319 if(invert){
5320 nottaken=out;
5321 emit_jne(DJT_1);
5322 }else{
5323 add_to_linker(out,ba[i],internal);
5324 emit_jeq(0);
5325 }
5326 }
5327 if(opcode[i]==5) // BNE
5328 {
5329 if(s2l>=0) emit_cmp(s1l,s2l);
5330 else emit_test(s1l,s1l);
5331 if(invert){
5332 nottaken=out;
5333 emit_jeq(DJT_1);
5334 }else{
5335 add_to_linker(out,ba[i],internal);
5336 emit_jne(0);
5337 }
5338 }
5339 if(opcode[i]==6) // BLEZ
5340 {
5341 emit_cmpimm(s1l,1);
5342 if(invert){
5343 nottaken=out;
5344 emit_jge(DJT_1);
5345 }else{
5346 add_to_linker(out,ba[i],internal);
5347 emit_jl(0);
5348 }
5349 }
5350 if(opcode[i]==7) // BGTZ
5351 {
5352 emit_cmpimm(s1l,1);
5353 if(invert){
5354 nottaken=out;
5355 emit_jl(DJT_1);
5356 }else{
5357 add_to_linker(out,ba[i],internal);
5358 emit_jge(0);
5359 }
5360 }
5361 if(invert) {
5362 if(taken) set_jump_target(taken, out);
5363 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5364 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5365 if(adj) {
5366 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5367 add_to_linker(out,ba[i],internal);
5368 }else{
5369 emit_addnop(13);
5370 add_to_linker(out,ba[i],internal*2);
5371 }
5372 emit_jmp(0);
5373 }else
5374 #endif
5375 {
5376 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5377 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5378 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5379 if(internal)
5380 assem_debug("branch: internal\n");
5381 else
5382 assem_debug("branch: external\n");
5383 if(internal&&is_ds[(ba[i]-start)>>2]) {
5384 ds_assemble_entry(i);
5385 }
5386 else {
5387 add_to_linker(out,ba[i],internal);
5388 emit_jmp(0);
5389 }
5390 }
5391 set_jump_target(nottaken, out);
5392 }
5393
5394 if(nottaken1) set_jump_target(nottaken1, out);
5395 if(adj) {
5396 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5397 }
5398 } // (!unconditional)
5399 } // if(ooo)
5400 else
5401 {
5402 // In-order execution (branch first)
5403 //if(likely[i]) printf("IOL\n");
5404 //else
5405 //printf("IOE\n");
5406 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5407 if(!unconditional&&!nop) {
5408 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5409 assert(s1l>=0);
5410 if((opcode[i]&0x2f)==4) // BEQ
5411 {
5412 if(s2l>=0) emit_cmp(s1l,s2l);
5413 else emit_test(s1l,s1l);
5414 nottaken=out;
5415 emit_jne(DJT_2);
5416 }
5417 if((opcode[i]&0x2f)==5) // BNE
5418 {
5419 if(s2l>=0) emit_cmp(s1l,s2l);
5420 else emit_test(s1l,s1l);
5421 nottaken=out;
5422 emit_jeq(DJT_2);
5423 }
5424 if((opcode[i]&0x2f)==6) // BLEZ
5425 {
5426 emit_cmpimm(s1l,1);
5427 nottaken=out;
5428 emit_jge(DJT_2);
5429 }
5430 if((opcode[i]&0x2f)==7) // BGTZ
5431 {
5432 emit_cmpimm(s1l,1);
5433 nottaken=out;
5434 emit_jl(DJT_2);
5435 }
5436 } // if(!unconditional)
5437 int adj;
5438 uint64_t ds_unneeded=branch_regs[i].u;
5439 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5440 ds_unneeded|=1;
5441 // branch taken
5442 if(!nop) {
5443 if(taken) set_jump_target(taken, out);
5444 assem_debug("1:\n");
5445 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5446 // load regs
5447 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5448 address_generation(i+1,&branch_regs[i],0);
5449 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5450 ds_assemble(i+1,&branch_regs[i]);
5451 cc=get_reg(branch_regs[i].regmap,CCREG);
5452 if(cc==-1) {
5453 emit_loadreg(CCREG,cc=HOST_CCREG);
5454 // CHECK: Is the following instruction (fall thru) allocated ok?
5455 }
5456 assert(cc==HOST_CCREG);
5457 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5458 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5459 assem_debug("cycle count (adj)\n");
5460 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5461 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5462 if(internal)
5463 assem_debug("branch: internal\n");
5464 else
5465 assem_debug("branch: external\n");
5466 if(internal&&is_ds[(ba[i]-start)>>2]) {
5467 ds_assemble_entry(i);
5468 }
5469 else {
5470 add_to_linker(out,ba[i],internal);
5471 emit_jmp(0);
5472 }
5473 }
5474 // branch not taken
5475 if(!unconditional) {
5476 if(nottaken1) set_jump_target(nottaken1, out);
5477 set_jump_target(nottaken, out);
5478 assem_debug("2:\n");
5479 if(!likely[i]) {
5480 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5481 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5482 address_generation(i+1,&branch_regs[i],0);
5483 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5484 ds_assemble(i+1,&branch_regs[i]);
5485 }
5486 cc=get_reg(branch_regs[i].regmap,CCREG);
5487 if(cc==-1&&!likely[i]) {
5488 // Cycle count isn't in a register, temporarily load it then write it out
5489 emit_loadreg(CCREG,HOST_CCREG);
5490 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5491 void *jaddr=out;
5492 emit_jns(0);
5493 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5494 emit_storereg(CCREG,HOST_CCREG);
5495 }
5496 else{
5497 cc=get_reg(i_regmap,CCREG);
5498 assert(cc==HOST_CCREG);
5499 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5500 void *jaddr=out;
5501 emit_jns(0);
5502 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5503 }
5504 }
5505 }
5506}
5507
5508static void sjump_assemble(int i,struct regstat *i_regs)
5509{
5510 signed char *i_regmap=i_regs->regmap;
5511 int cc;
5512 int match;
5513 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5514 assem_debug("smatch=%d\n",match);
5515 int s1l;
5516 int unconditional=0,nevertaken=0;
5517 int invert=0;
5518 int internal=internal_branch(ba[i]);
5519 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5520 if(!match) invert=1;
5521 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5522 if(i>(ba[i]-start)>>2) invert=1;
5523 #endif
5524 #ifdef __aarch64__
5525 invert=1; // because of near cond. branches
5526 #endif
5527
5528 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5529 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5530
5531 if(ooo[i]) {
5532 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5533 }
5534 else {
5535 s1l=get_reg(i_regmap,rs1[i]);
5536 }
5537 if(rs1[i]==0)
5538 {
5539 if(opcode2[i]&1) unconditional=1;
5540 else nevertaken=1;
5541 // These are never taken (r0 is never less than zero)
5542 //assert(opcode2[i]!=0);
5543 //assert(opcode2[i]!=2);
5544 //assert(opcode2[i]!=0x10);
5545 //assert(opcode2[i]!=0x12);
5546 }
5547
5548 if(ooo[i]) {
5549 // Out of order execution (delay slot first)
5550 //printf("OOOE\n");
5551 address_generation(i+1,i_regs,regs[i].regmap_entry);
5552 ds_assemble(i+1,i_regs);
5553 int adj;
5554 uint64_t bc_unneeded=branch_regs[i].u;
5555 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5556 bc_unneeded|=1;
5557 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5558 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i],rs1[i]);
5559 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5560 if(rt1[i]==31) {
5561 int rt,return_address;
5562 rt=get_reg(branch_regs[i].regmap,31);
5563 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5564 if(rt>=0) {
5565 // Save the PC even if the branch is not taken
5566 return_address=start+i*4+8;
5567 emit_movimm(return_address,rt); // PC into link register
5568 #ifdef IMM_PREFETCH
5569 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5570 #endif
5571 }
5572 }
5573 cc=get_reg(branch_regs[i].regmap,CCREG);
5574 assert(cc==HOST_CCREG);
5575 if(unconditional)
5576 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5577 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5578 assem_debug("cycle count (adj)\n");
5579 if(unconditional) {
5580 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5581 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5582 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5583 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5584 if(internal)
5585 assem_debug("branch: internal\n");
5586 else
5587 assem_debug("branch: external\n");
5588 if(internal&&is_ds[(ba[i]-start)>>2]) {
5589 ds_assemble_entry(i);
5590 }
5591 else {
5592 add_to_linker(out,ba[i],internal);
5593 emit_jmp(0);
5594 }
5595 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5596 if(((u_int)out)&7) emit_addnop(0);
5597 #endif
5598 }
5599 }
5600 else if(nevertaken) {
5601 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5602 void *jaddr=out;
5603 emit_jns(0);
5604 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5605 }
5606 else {
5607 void *nottaken = NULL;
5608 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5609 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5610 {
5611 assert(s1l>=0);
5612 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5613 {
5614 emit_test(s1l,s1l);
5615 if(invert){
5616 nottaken=out;
5617 emit_jns(DJT_1);
5618 }else{
5619 add_to_linker(out,ba[i],internal);
5620 emit_js(0);
5621 }
5622 }
5623 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5624 {
5625 emit_test(s1l,s1l);
5626 if(invert){
5627 nottaken=out;
5628 emit_js(DJT_1);
5629 }else{
5630 add_to_linker(out,ba[i],internal);
5631 emit_jns(0);
5632 }
5633 }
5634 }
5635
5636 if(invert) {
5637 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5638 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5639 if(adj) {
5640 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5641 add_to_linker(out,ba[i],internal);
5642 }else{
5643 emit_addnop(13);
5644 add_to_linker(out,ba[i],internal*2);
5645 }
5646 emit_jmp(0);
5647 }else
5648 #endif
5649 {
5650 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5651 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5652 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5653 if(internal)
5654 assem_debug("branch: internal\n");
5655 else
5656 assem_debug("branch: external\n");
5657 if(internal&&is_ds[(ba[i]-start)>>2]) {
5658 ds_assemble_entry(i);
5659 }
5660 else {
5661 add_to_linker(out,ba[i],internal);
5662 emit_jmp(0);
5663 }
5664 }
5665 set_jump_target(nottaken, out);
5666 }
5667
5668 if(adj) {
5669 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5670 }
5671 } // (!unconditional)
5672 } // if(ooo)
5673 else
5674 {
5675 // In-order execution (branch first)
5676 //printf("IOE\n");
5677 void *nottaken = NULL;
5678 if(rt1[i]==31) {
5679 int rt,return_address;
5680 rt=get_reg(branch_regs[i].regmap,31);
5681 if(rt>=0) {
5682 // Save the PC even if the branch is not taken
5683 return_address=start+i*4+8;
5684 emit_movimm(return_address,rt); // PC into link register
5685 #ifdef IMM_PREFETCH
5686 emit_prefetch(hash_table_get(return_address));
5687 #endif
5688 }
5689 }
5690 if(!unconditional) {
5691 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5692 assert(s1l>=0);
5693 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5694 {
5695 emit_test(s1l,s1l);
5696 nottaken=out;
5697 emit_jns(DJT_1);
5698 }
5699 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5700 {
5701 emit_test(s1l,s1l);
5702 nottaken=out;
5703 emit_js(DJT_1);
5704 }
5705 } // if(!unconditional)
5706 int adj;
5707 uint64_t ds_unneeded=branch_regs[i].u;
5708 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5709 ds_unneeded|=1;
5710 // branch taken
5711 if(!nevertaken) {
5712 //assem_debug("1:\n");
5713 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5714 // load regs
5715 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5716 address_generation(i+1,&branch_regs[i],0);
5717 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5718 ds_assemble(i+1,&branch_regs[i]);
5719 cc=get_reg(branch_regs[i].regmap,CCREG);
5720 if(cc==-1) {
5721 emit_loadreg(CCREG,cc=HOST_CCREG);
5722 // CHECK: Is the following instruction (fall thru) allocated ok?
5723 }
5724 assert(cc==HOST_CCREG);
5725 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5726 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5727 assem_debug("cycle count (adj)\n");
5728 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5729 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5730 if(internal)
5731 assem_debug("branch: internal\n");
5732 else
5733 assem_debug("branch: external\n");
5734 if(internal&&is_ds[(ba[i]-start)>>2]) {
5735 ds_assemble_entry(i);
5736 }
5737 else {
5738 add_to_linker(out,ba[i],internal);
5739 emit_jmp(0);
5740 }
5741 }
5742 // branch not taken
5743 if(!unconditional) {
5744 set_jump_target(nottaken, out);
5745 assem_debug("1:\n");
5746 if(!likely[i]) {
5747 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5748 load_regs(regs[i].regmap,branch_regs[i].regmap,rs1[i+1],rs2[i+1]);
5749 address_generation(i+1,&branch_regs[i],0);
5750 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5751 ds_assemble(i+1,&branch_regs[i]);
5752 }
5753 cc=get_reg(branch_regs[i].regmap,CCREG);
5754 if(cc==-1&&!likely[i]) {
5755 // Cycle count isn't in a register, temporarily load it then write it out
5756 emit_loadreg(CCREG,HOST_CCREG);
5757 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5758 void *jaddr=out;
5759 emit_jns(0);
5760 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5761 emit_storereg(CCREG,HOST_CCREG);
5762 }
5763 else{
5764 cc=get_reg(i_regmap,CCREG);
5765 assert(cc==HOST_CCREG);
5766 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5767 void *jaddr=out;
5768 emit_jns(0);
5769 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5770 }
5771 }
5772 }
5773}
5774
5775static void pagespan_assemble(int i,struct regstat *i_regs)
5776{
5777 int s1l=get_reg(i_regs->regmap,rs1[i]);
5778 int s2l=get_reg(i_regs->regmap,rs2[i]);
5779 void *taken = NULL;
5780 void *nottaken = NULL;
5781 int unconditional=0;
5782 if(rs1[i]==0)
5783 {
5784 s1l=s2l;
5785 s2l=-1;
5786 }
5787 else if(rs2[i]==0)
5788 {
5789 s2l=-1;
5790 }
5791 int hr=0;
5792 int addr=-1,alt=-1,ntaddr=-1;
5793 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5794 else {
5795 while(hr<HOST_REGS)
5796 {
5797 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5798 (i_regs->regmap[hr]&63)!=rs1[i] &&
5799 (i_regs->regmap[hr]&63)!=rs2[i] )
5800 {
5801 addr=hr++;break;
5802 }
5803 hr++;
5804 }
5805 }
5806 while(hr<HOST_REGS)
5807 {
5808 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5809 (i_regs->regmap[hr]&63)!=rs1[i] &&
5810 (i_regs->regmap[hr]&63)!=rs2[i] )
5811 {
5812 alt=hr++;break;
5813 }
5814 hr++;
5815 }
5816 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5817 {
5818 while(hr<HOST_REGS)
5819 {
5820 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5821 (i_regs->regmap[hr]&63)!=rs1[i] &&
5822 (i_regs->regmap[hr]&63)!=rs2[i] )
5823 {
5824 ntaddr=hr;break;
5825 }
5826 hr++;
5827 }
5828 }
5829 assert(hr<HOST_REGS);
5830 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5831 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5832 }
5833 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5834 if(opcode[i]==2) // J
5835 {
5836 unconditional=1;
5837 }
5838 if(opcode[i]==3) // JAL
5839 {
5840 // TODO: mini_ht
5841 int rt=get_reg(i_regs->regmap,31);
5842 emit_movimm(start+i*4+8,rt);
5843 unconditional=1;
5844 }
5845 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5846 {
5847 emit_mov(s1l,addr);
5848 if(opcode2[i]==9) // JALR
5849 {
5850 int rt=get_reg(i_regs->regmap,rt1[i]);
5851 emit_movimm(start+i*4+8,rt);
5852 }
5853 }
5854 if((opcode[i]&0x3f)==4) // BEQ
5855 {
5856 if(rs1[i]==rs2[i])
5857 {
5858 unconditional=1;
5859 }
5860 else
5861 #ifdef HAVE_CMOV_IMM
5862 if(1) {
5863 if(s2l>=0) emit_cmp(s1l,s2l);
5864 else emit_test(s1l,s1l);
5865 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5866 }
5867 else
5868 #endif
5869 {
5870 assert(s1l>=0);
5871 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5872 if(s2l>=0) emit_cmp(s1l,s2l);
5873 else emit_test(s1l,s1l);
5874 emit_cmovne_reg(alt,addr);
5875 }
5876 }
5877 if((opcode[i]&0x3f)==5) // BNE
5878 {
5879 #ifdef HAVE_CMOV_IMM
5880 if(s2l>=0) emit_cmp(s1l,s2l);
5881 else emit_test(s1l,s1l);
5882 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5883 #else
5884 assert(s1l>=0);
5885 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5886 if(s2l>=0) emit_cmp(s1l,s2l);
5887 else emit_test(s1l,s1l);
5888 emit_cmovne_reg(alt,addr);
5889 #endif
5890 }
5891 if((opcode[i]&0x3f)==0x14) // BEQL
5892 {
5893 if(s2l>=0) emit_cmp(s1l,s2l);
5894 else emit_test(s1l,s1l);
5895 if(nottaken) set_jump_target(nottaken, out);
5896 nottaken=out;
5897 emit_jne(0);
5898 }
5899 if((opcode[i]&0x3f)==0x15) // BNEL
5900 {
5901 if(s2l>=0) emit_cmp(s1l,s2l);
5902 else emit_test(s1l,s1l);
5903 nottaken=out;
5904 emit_jeq(0);
5905 if(taken) set_jump_target(taken, out);
5906 }
5907 if((opcode[i]&0x3f)==6) // BLEZ
5908 {
5909 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5910 emit_cmpimm(s1l,1);
5911 emit_cmovl_reg(alt,addr);
5912 }
5913 if((opcode[i]&0x3f)==7) // BGTZ
5914 {
5915 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5916 emit_cmpimm(s1l,1);
5917 emit_cmovl_reg(ntaddr,addr);
5918 }
5919 if((opcode[i]&0x3f)==0x16) // BLEZL
5920 {
5921 assert((opcode[i]&0x3f)!=0x16);
5922 }
5923 if((opcode[i]&0x3f)==0x17) // BGTZL
5924 {
5925 assert((opcode[i]&0x3f)!=0x17);
5926 }
5927 assert(opcode[i]!=1); // BLTZ/BGEZ
5928
5929 //FIXME: Check CSREG
5930 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5931 if((source[i]&0x30000)==0) // BC1F
5932 {
5933 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5934 emit_testimm(s1l,0x800000);
5935 emit_cmovne_reg(alt,addr);
5936 }
5937 if((source[i]&0x30000)==0x10000) // BC1T
5938 {
5939 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5940 emit_testimm(s1l,0x800000);
5941 emit_cmovne_reg(alt,addr);
5942 }
5943 if((source[i]&0x30000)==0x20000) // BC1FL
5944 {
5945 emit_testimm(s1l,0x800000);
5946 nottaken=out;
5947 emit_jne(0);
5948 }
5949 if((source[i]&0x30000)==0x30000) // BC1TL
5950 {
5951 emit_testimm(s1l,0x800000);
5952 nottaken=out;
5953 emit_jeq(0);
5954 }
5955 }
5956
5957 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5958 wb_dirtys(regs[i].regmap,regs[i].dirty);
5959 if(likely[i]||unconditional)
5960 {
5961 emit_movimm(ba[i],HOST_BTREG);
5962 }
5963 else if(addr!=HOST_BTREG)
5964 {
5965 emit_mov(addr,HOST_BTREG);
5966 }
5967 void *branch_addr=out;
5968 emit_jmp(0);
5969 int target_addr=start+i*4+5;
5970 void *stub=out;
5971 void *compiled_target_addr=check_addr(target_addr);
5972 emit_extjump_ds(branch_addr, target_addr);
5973 if(compiled_target_addr) {
5974 set_jump_target(branch_addr, compiled_target_addr);
5975 add_link(target_addr,stub);
5976 }
5977 else set_jump_target(branch_addr, stub);
5978 if(likely[i]) {
5979 // Not-taken path
5980 set_jump_target(nottaken, out);
5981 wb_dirtys(regs[i].regmap,regs[i].dirty);
5982 void *branch_addr=out;
5983 emit_jmp(0);
5984 int target_addr=start+i*4+8;
5985 void *stub=out;
5986 void *compiled_target_addr=check_addr(target_addr);
5987 emit_extjump_ds(branch_addr, target_addr);
5988 if(compiled_target_addr) {
5989 set_jump_target(branch_addr, compiled_target_addr);
5990 add_link(target_addr,stub);
5991 }
5992 else set_jump_target(branch_addr, stub);
5993 }
5994}
5995
5996// Assemble the delay slot for the above
5997static void pagespan_ds()
5998{
5999 assem_debug("initial delay slot:\n");
6000 u_int vaddr=start+1;
6001 u_int page=get_page(vaddr);
6002 u_int vpage=get_vpage(vaddr);
6003 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6004 do_dirty_stub_ds();
6005 ll_add(jump_in+page,vaddr,(void *)out);
6006 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6007 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6008 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
6009 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6010 emit_writeword(HOST_BTREG,&branch_target);
6011 load_regs(regs[0].regmap_entry,regs[0].regmap,rs1[0],rs2[0]);
6012 address_generation(0,&regs[0],regs[0].regmap_entry);
6013 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6014 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
6015 is_delayslot=0;
6016 switch(itype[0]) {
6017 case ALU:
6018 alu_assemble(0,&regs[0]);break;
6019 case IMM16:
6020 imm16_assemble(0,&regs[0]);break;
6021 case SHIFT:
6022 shift_assemble(0,&regs[0]);break;
6023 case SHIFTIMM:
6024 shiftimm_assemble(0,&regs[0]);break;
6025 case LOAD:
6026 load_assemble(0,&regs[0]);break;
6027 case LOADLR:
6028 loadlr_assemble(0,&regs[0]);break;
6029 case STORE:
6030 store_assemble(0,&regs[0]);break;
6031 case STORELR:
6032 storelr_assemble(0,&regs[0]);break;
6033 case COP0:
6034 cop0_assemble(0,&regs[0]);break;
6035 case COP1:
6036 cop1_assemble(0,&regs[0]);break;
6037 case C1LS:
6038 c1ls_assemble(0,&regs[0]);break;
6039 case COP2:
6040 cop2_assemble(0,&regs[0]);break;
6041 case C2LS:
6042 c2ls_assemble(0,&regs[0]);break;
6043 case C2OP:
6044 c2op_assemble(0,&regs[0]);break;
6045 case MULTDIV:
6046 multdiv_assemble(0,&regs[0]);
6047 multdiv_prepare_stall(0,&regs[0]);
6048 break;
6049 case MOV:
6050 mov_assemble(0,&regs[0]);break;
6051 case SYSCALL:
6052 case HLECALL:
6053 case INTCALL:
6054 case SPAN:
6055 case UJUMP:
6056 case RJUMP:
6057 case CJUMP:
6058 case SJUMP:
6059 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
6060 }
6061 int btaddr=get_reg(regs[0].regmap,BTREG);
6062 if(btaddr<0) {
6063 btaddr=get_reg(regs[0].regmap,-1);
6064 emit_readword(&branch_target,btaddr);
6065 }
6066 assert(btaddr!=HOST_CCREG);
6067 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6068#ifdef HOST_IMM8
6069 host_tempreg_acquire();
6070 emit_movimm(start+4,HOST_TEMPREG);
6071 emit_cmp(btaddr,HOST_TEMPREG);
6072 host_tempreg_release();
6073#else
6074 emit_cmpimm(btaddr,start+4);
6075#endif
6076 void *branch = out;
6077 emit_jeq(0);
6078 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
6079 do_jump_vaddr(btaddr);
6080 set_jump_target(branch, out);
6081 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6082 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6083}
6084
6085// Basic liveness analysis for MIPS registers
6086void unneeded_registers(int istart,int iend,int r)
6087{
6088 int i;
6089 uint64_t u,gte_u,b,gte_b;
6090 uint64_t temp_u,temp_gte_u=0;
6091 uint64_t gte_u_unknown=0;
6092 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6093 gte_u_unknown=~0ll;
6094 if(iend==slen-1) {
6095 u=1;
6096 gte_u=gte_u_unknown;
6097 }else{
6098 //u=unneeded_reg[iend+1];
6099 u=1;
6100 gte_u=gte_unneeded[iend+1];
6101 }
6102
6103 for (i=iend;i>=istart;i--)
6104 {
6105 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6106 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6107 {
6108 // If subroutine call, flag return address as a possible branch target
6109 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6110
6111 if(ba[i]<start || ba[i]>=(start+slen*4))
6112 {
6113 // Branch out of this block, flush all regs
6114 u=1;
6115 gte_u=gte_u_unknown;
6116 branch_unneeded_reg[i]=u;
6117 // Merge in delay slot
6118 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6119 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6120 u|=1;
6121 gte_u|=gte_rt[i+1];
6122 gte_u&=~gte_rs[i+1];
6123 // If branch is "likely" (and conditional)
6124 // then we skip the delay slot on the fall-thru path
6125 if(likely[i]) {
6126 if(i<slen-1) {
6127 u&=unneeded_reg[i+2];
6128 gte_u&=gte_unneeded[i+2];
6129 }
6130 else
6131 {
6132 u=1;
6133 gte_u=gte_u_unknown;
6134 }
6135 }
6136 }
6137 else
6138 {
6139 // Internal branch, flag target
6140 bt[(ba[i]-start)>>2]=1;
6141 if(ba[i]<=start+i*4) {
6142 // Backward branch
6143 if(is_ujump(i))
6144 {
6145 // Unconditional branch
6146 temp_u=1;
6147 temp_gte_u=0;
6148 } else {
6149 // Conditional branch (not taken case)
6150 temp_u=unneeded_reg[i+2];
6151 temp_gte_u&=gte_unneeded[i+2];
6152 }
6153 // Merge in delay slot
6154 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6155 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6156 temp_u|=1;
6157 temp_gte_u|=gte_rt[i+1];
6158 temp_gte_u&=~gte_rs[i+1];
6159 // If branch is "likely" (and conditional)
6160 // then we skip the delay slot on the fall-thru path
6161 if(likely[i]) {
6162 if(i<slen-1) {
6163 temp_u&=unneeded_reg[i+2];
6164 temp_gte_u&=gte_unneeded[i+2];
6165 }
6166 else
6167 {
6168 temp_u=1;
6169 temp_gte_u=gte_u_unknown;
6170 }
6171 }
6172 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6173 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6174 temp_u|=1;
6175 temp_gte_u|=gte_rt[i];
6176 temp_gte_u&=~gte_rs[i];
6177 unneeded_reg[i]=temp_u;
6178 gte_unneeded[i]=temp_gte_u;
6179 // Only go three levels deep. This recursion can take an
6180 // excessive amount of time if there are a lot of nested loops.
6181 if(r<2) {
6182 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6183 }else{
6184 unneeded_reg[(ba[i]-start)>>2]=1;
6185 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6186 }
6187 } /*else*/ if(1) {
6188 if (is_ujump(i))
6189 {
6190 // Unconditional branch
6191 u=unneeded_reg[(ba[i]-start)>>2];
6192 gte_u=gte_unneeded[(ba[i]-start)>>2];
6193 branch_unneeded_reg[i]=u;
6194 // Merge in delay slot
6195 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6196 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6197 u|=1;
6198 gte_u|=gte_rt[i+1];
6199 gte_u&=~gte_rs[i+1];
6200 } else {
6201 // Conditional branch
6202 b=unneeded_reg[(ba[i]-start)>>2];
6203 gte_b=gte_unneeded[(ba[i]-start)>>2];
6204 branch_unneeded_reg[i]=b;
6205 // Branch delay slot
6206 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6207 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6208 b|=1;
6209 gte_b|=gte_rt[i+1];
6210 gte_b&=~gte_rs[i+1];
6211 // If branch is "likely" then we skip the
6212 // delay slot on the fall-thru path
6213 if(likely[i]) {
6214 u=b;
6215 gte_u=gte_b;
6216 if(i<slen-1) {
6217 u&=unneeded_reg[i+2];
6218 gte_u&=gte_unneeded[i+2];
6219 }
6220 } else {
6221 u&=b;
6222 gte_u&=gte_b;
6223 }
6224 if(i<slen-1) {
6225 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6226 } else {
6227 branch_unneeded_reg[i]=1;
6228 }
6229 }
6230 }
6231 }
6232 }
6233 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6234 {
6235 // SYSCALL instruction (software interrupt)
6236 u=1;
6237 }
6238 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6239 {
6240 // ERET instruction (return from interrupt)
6241 u=1;
6242 }
6243 //u=1; // DEBUG
6244 // Written registers are unneeded
6245 u|=1LL<<rt1[i];
6246 u|=1LL<<rt2[i];
6247 gte_u|=gte_rt[i];
6248 // Accessed registers are needed
6249 u&=~(1LL<<rs1[i]);
6250 u&=~(1LL<<rs2[i]);
6251 gte_u&=~gte_rs[i];
6252 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
6253 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6254 // Source-target dependencies
6255 // R0 is always unneeded
6256 u|=1;
6257 // Save it
6258 unneeded_reg[i]=u;
6259 gte_unneeded[i]=gte_u;
6260 /*
6261 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6262 printf("U:");
6263 int r;
6264 for(r=1;r<=CCREG;r++) {
6265 if((unneeded_reg[i]>>r)&1) {
6266 if(r==HIREG) printf(" HI");
6267 else if(r==LOREG) printf(" LO");
6268 else printf(" r%d",r);
6269 }
6270 }
6271 printf("\n");
6272 */
6273 }
6274}
6275
6276// Write back dirty registers as soon as we will no longer modify them,
6277// so that we don't end up with lots of writes at the branches.
6278void clean_registers(int istart,int iend,int wr)
6279{
6280 int i;
6281 int r;
6282 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6283 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6284 if(iend==slen-1) {
6285 will_dirty_i=will_dirty_next=0;
6286 wont_dirty_i=wont_dirty_next=0;
6287 }else{
6288 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6289 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6290 }
6291 for (i=iend;i>=istart;i--)
6292 {
6293 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6294 {
6295 if(ba[i]<start || ba[i]>=(start+slen*4))
6296 {
6297 // Branch out of this block, flush all regs
6298 if (is_ujump(i))
6299 {
6300 // Unconditional branch
6301 will_dirty_i=0;
6302 wont_dirty_i=0;
6303 // Merge in delay slot (will dirty)
6304 for(r=0;r<HOST_REGS;r++) {
6305 if(r!=EXCLUDE_REG) {
6306 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6307 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6308 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6309 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6310 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6311 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6312 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6313 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6314 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6315 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6316 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6317 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6318 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6319 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6320 }
6321 }
6322 }
6323 else
6324 {
6325 // Conditional branch
6326 will_dirty_i=0;
6327 wont_dirty_i=wont_dirty_next;
6328 // Merge in delay slot (will dirty)
6329 for(r=0;r<HOST_REGS;r++) {
6330 if(r!=EXCLUDE_REG) {
6331 if(!likely[i]) {
6332 // Might not dirty if likely branch is not taken
6333 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6334 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6335 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6336 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6337 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6338 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6339 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6340 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6341 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6342 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6343 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6344 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6345 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6346 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6347 }
6348 }
6349 }
6350 }
6351 // Merge in delay slot (wont dirty)
6352 for(r=0;r<HOST_REGS;r++) {
6353 if(r!=EXCLUDE_REG) {
6354 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6355 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6356 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6357 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6358 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6359 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6360 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6361 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6362 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6363 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6364 }
6365 }
6366 if(wr) {
6367 #ifndef DESTRUCTIVE_WRITEBACK
6368 branch_regs[i].dirty&=wont_dirty_i;
6369 #endif
6370 branch_regs[i].dirty|=will_dirty_i;
6371 }
6372 }
6373 else
6374 {
6375 // Internal branch
6376 if(ba[i]<=start+i*4) {
6377 // Backward branch
6378 if (is_ujump(i))
6379 {
6380 // Unconditional branch
6381 temp_will_dirty=0;
6382 temp_wont_dirty=0;
6383 // Merge in delay slot (will dirty)
6384 for(r=0;r<HOST_REGS;r++) {
6385 if(r!=EXCLUDE_REG) {
6386 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6387 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6388 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6389 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6390 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6391 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6392 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6393 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6394 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6395 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6396 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6397 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6398 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6399 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6400 }
6401 }
6402 } else {
6403 // Conditional branch (not taken case)
6404 temp_will_dirty=will_dirty_next;
6405 temp_wont_dirty=wont_dirty_next;
6406 // Merge in delay slot (will dirty)
6407 for(r=0;r<HOST_REGS;r++) {
6408 if(r!=EXCLUDE_REG) {
6409 if(!likely[i]) {
6410 // Will not dirty if likely branch is not taken
6411 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6412 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6413 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6414 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6415 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6416 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6417 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6418 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6419 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6420 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6421 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6422 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6423 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6424 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6425 }
6426 }
6427 }
6428 }
6429 // Merge in delay slot (wont dirty)
6430 for(r=0;r<HOST_REGS;r++) {
6431 if(r!=EXCLUDE_REG) {
6432 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6433 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6434 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6435 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6436 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6437 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6438 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6439 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6440 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6441 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6442 }
6443 }
6444 // Deal with changed mappings
6445 if(i<iend) {
6446 for(r=0;r<HOST_REGS;r++) {
6447 if(r!=EXCLUDE_REG) {
6448 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6449 temp_will_dirty&=~(1<<r);
6450 temp_wont_dirty&=~(1<<r);
6451 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6452 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6453 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6454 } else {
6455 temp_will_dirty|=1<<r;
6456 temp_wont_dirty|=1<<r;
6457 }
6458 }
6459 }
6460 }
6461 }
6462 if(wr) {
6463 will_dirty[i]=temp_will_dirty;
6464 wont_dirty[i]=temp_wont_dirty;
6465 clean_registers((ba[i]-start)>>2,i-1,0);
6466 }else{
6467 // Limit recursion. It can take an excessive amount
6468 // of time if there are a lot of nested loops.
6469 will_dirty[(ba[i]-start)>>2]=0;
6470 wont_dirty[(ba[i]-start)>>2]=-1;
6471 }
6472 }
6473 /*else*/ if(1)
6474 {
6475 if (is_ujump(i))
6476 {
6477 // Unconditional branch
6478 will_dirty_i=0;
6479 wont_dirty_i=0;
6480 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6481 for(r=0;r<HOST_REGS;r++) {
6482 if(r!=EXCLUDE_REG) {
6483 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6484 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6485 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6486 }
6487 if(branch_regs[i].regmap[r]>=0) {
6488 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6489 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6490 }
6491 }
6492 }
6493 //}
6494 // Merge in delay slot
6495 for(r=0;r<HOST_REGS;r++) {
6496 if(r!=EXCLUDE_REG) {
6497 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6498 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6499 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6500 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6501 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6502 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6503 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6504 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6505 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6506 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6507 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6508 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6509 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6510 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6511 }
6512 }
6513 } else {
6514 // Conditional branch
6515 will_dirty_i=will_dirty_next;
6516 wont_dirty_i=wont_dirty_next;
6517 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6518 for(r=0;r<HOST_REGS;r++) {
6519 if(r!=EXCLUDE_REG) {
6520 signed char target_reg=branch_regs[i].regmap[r];
6521 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6522 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6523 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6524 }
6525 else if(target_reg>=0) {
6526 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6527 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6528 }
6529 // Treat delay slot as part of branch too
6530 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6531 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6532 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6533 }
6534 else
6535 {
6536 will_dirty[i+1]&=~(1<<r);
6537 }*/
6538 }
6539 }
6540 //}
6541 // Merge in delay slot
6542 for(r=0;r<HOST_REGS;r++) {
6543 if(r!=EXCLUDE_REG) {
6544 if(!likely[i]) {
6545 // Might not dirty if likely branch is not taken
6546 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6547 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6548 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6549 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6550 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6551 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6552 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6553 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6554 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6555 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6556 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6557 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6558 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6559 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6560 }
6561 }
6562 }
6563 }
6564 // Merge in delay slot (won't dirty)
6565 for(r=0;r<HOST_REGS;r++) {
6566 if(r!=EXCLUDE_REG) {
6567 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6568 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6569 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6570 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6571 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6572 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6573 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6574 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6575 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6576 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6577 }
6578 }
6579 if(wr) {
6580 #ifndef DESTRUCTIVE_WRITEBACK
6581 branch_regs[i].dirty&=wont_dirty_i;
6582 #endif
6583 branch_regs[i].dirty|=will_dirty_i;
6584 }
6585 }
6586 }
6587 }
6588 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6589 {
6590 // SYSCALL instruction (software interrupt)
6591 will_dirty_i=0;
6592 wont_dirty_i=0;
6593 }
6594 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6595 {
6596 // ERET instruction (return from interrupt)
6597 will_dirty_i=0;
6598 wont_dirty_i=0;
6599 }
6600 will_dirty_next=will_dirty_i;
6601 wont_dirty_next=wont_dirty_i;
6602 for(r=0;r<HOST_REGS;r++) {
6603 if(r!=EXCLUDE_REG) {
6604 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6605 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6606 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6607 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6608 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6609 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6610 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6611 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6612 if(i>istart) {
6613 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP)
6614 {
6615 // Don't store a register immediately after writing it,
6616 // may prevent dual-issue.
6617 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6618 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6619 }
6620 }
6621 }
6622 }
6623 // Save it
6624 will_dirty[i]=will_dirty_i;
6625 wont_dirty[i]=wont_dirty_i;
6626 // Mark registers that won't be dirtied as not dirty
6627 if(wr) {
6628 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6629 for(r=0;r<HOST_REGS;r++) {
6630 if((will_dirty_i>>r)&1) {
6631 printf(" r%d",r);
6632 }
6633 }
6634 printf("\n");*/
6635
6636 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP)) {
6637 regs[i].dirty|=will_dirty_i;
6638 #ifndef DESTRUCTIVE_WRITEBACK
6639 regs[i].dirty&=wont_dirty_i;
6640 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
6641 {
6642 if (i < iend-1 && !is_ujump(i)) {
6643 for(r=0;r<HOST_REGS;r++) {
6644 if(r!=EXCLUDE_REG) {
6645 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6646 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6647 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6648 }
6649 }
6650 }
6651 }
6652 else
6653 {
6654 if(i<iend) {
6655 for(r=0;r<HOST_REGS;r++) {
6656 if(r!=EXCLUDE_REG) {
6657 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6658 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6659 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6660 }
6661 }
6662 }
6663 }
6664 #endif
6665 //}
6666 }
6667 // Deal with changed mappings
6668 temp_will_dirty=will_dirty_i;
6669 temp_wont_dirty=wont_dirty_i;
6670 for(r=0;r<HOST_REGS;r++) {
6671 if(r!=EXCLUDE_REG) {
6672 int nr;
6673 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6674 if(wr) {
6675 #ifndef DESTRUCTIVE_WRITEBACK
6676 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6677 #endif
6678 regs[i].wasdirty|=will_dirty_i&(1<<r);
6679 }
6680 }
6681 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6682 // Register moved to a different register
6683 will_dirty_i&=~(1<<r);
6684 wont_dirty_i&=~(1<<r);
6685 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6686 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6687 if(wr) {
6688 #ifndef DESTRUCTIVE_WRITEBACK
6689 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6690 #endif
6691 regs[i].wasdirty|=will_dirty_i&(1<<r);
6692 }
6693 }
6694 else {
6695 will_dirty_i&=~(1<<r);
6696 wont_dirty_i&=~(1<<r);
6697 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6698 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6699 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6700 } else {
6701 wont_dirty_i|=1<<r;
6702 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6703 }
6704 }
6705 }
6706 }
6707 }
6708}
6709
6710#ifdef DISASM
6711 /* disassembly */
6712void disassemble_inst(int i)
6713{
6714 if (bt[i]) printf("*"); else printf(" ");
6715 switch(itype[i]) {
6716 case UJUMP:
6717 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6718 case CJUMP:
6719 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6720 case SJUMP:
6721 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6722 case RJUMP:
6723 if (opcode[i]==0x9&&rt1[i]!=31)
6724 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6725 else
6726 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6727 break;
6728 case SPAN:
6729 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6730 case IMM16:
6731 if(opcode[i]==0xf) //LUI
6732 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6733 else
6734 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6735 break;
6736 case LOAD:
6737 case LOADLR:
6738 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6739 break;
6740 case STORE:
6741 case STORELR:
6742 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6743 break;
6744 case ALU:
6745 case SHIFT:
6746 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6747 break;
6748 case MULTDIV:
6749 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6750 break;
6751 case SHIFTIMM:
6752 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6753 break;
6754 case MOV:
6755 if((opcode2[i]&0x1d)==0x10)
6756 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6757 else if((opcode2[i]&0x1d)==0x11)
6758 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6759 else
6760 printf (" %x: %s\n",start+i*4,insn[i]);
6761 break;
6762 case COP0:
6763 if(opcode2[i]==0)
6764 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6765 else if(opcode2[i]==4)
6766 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6767 else printf (" %x: %s\n",start+i*4,insn[i]);
6768 break;
6769 case COP1:
6770 if(opcode2[i]<3)
6771 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6772 else if(opcode2[i]>3)
6773 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6774 else printf (" %x: %s\n",start+i*4,insn[i]);
6775 break;
6776 case COP2:
6777 if(opcode2[i]<3)
6778 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6779 else if(opcode2[i]>3)
6780 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6781 else printf (" %x: %s\n",start+i*4,insn[i]);
6782 break;
6783 case C1LS:
6784 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6785 break;
6786 case C2LS:
6787 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6788 break;
6789 case INTCALL:
6790 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6791 break;
6792 default:
6793 //printf (" %s %8x\n",insn[i],source[i]);
6794 printf (" %x: %s\n",start+i*4,insn[i]);
6795 }
6796}
6797#else
6798static void disassemble_inst(int i) {}
6799#endif // DISASM
6800
6801#define DRC_TEST_VAL 0x74657374
6802
6803static void new_dynarec_test(void)
6804{
6805 int (*testfunc)(void);
6806 void *beginning;
6807 int ret[2];
6808 size_t i;
6809
6810 // check structure linkage
6811 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6812 {
6813 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6814 }
6815
6816 SysPrintf("testing if we can run recompiled code...\n");
6817 ((volatile u_int *)out)[0]++; // make cache dirty
6818
6819 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6820 out = ndrc->translation_cache;
6821 beginning = start_block();
6822 emit_movimm(DRC_TEST_VAL + i, 0); // test
6823 emit_ret();
6824 literal_pool(0);
6825 end_block(beginning);
6826 testfunc = beginning;
6827 ret[i] = testfunc();
6828 }
6829
6830 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6831 SysPrintf("test passed.\n");
6832 else
6833 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6834 out = ndrc->translation_cache;
6835}
6836
6837// clear the state completely, instead of just marking
6838// things invalid like invalidate_all_pages() does
6839void new_dynarec_clear_full(void)
6840{
6841 int n;
6842 out = ndrc->translation_cache;
6843 memset(invalid_code,1,sizeof(invalid_code));
6844 memset(hash_table,0xff,sizeof(hash_table));
6845 memset(mini_ht,-1,sizeof(mini_ht));
6846 memset(restore_candidate,0,sizeof(restore_candidate));
6847 memset(shadow,0,sizeof(shadow));
6848 copy=shadow;
6849 expirep=16384; // Expiry pointer, +2 blocks
6850 pending_exception=0;
6851 literalcount=0;
6852 stop_after_jal=0;
6853 inv_code_start=inv_code_end=~0;
6854 // TLB
6855 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6856 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6857 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6858
6859 cycle_multiplier_old = cycle_multiplier;
6860 new_dynarec_hacks_old = new_dynarec_hacks;
6861}
6862
6863void new_dynarec_init(void)
6864{
6865 SysPrintf("Init new dynarec\n");
6866
6867#ifdef BASE_ADDR_DYNAMIC
6868 #ifdef VITA
6869 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6870 if (sceBlock < 0)
6871 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6872 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6873 if (ret < 0)
6874 SysPrintf("sceKernelGetMemBlockBase failed\n");
6875 #else
6876 uintptr_t desired_addr = 0;
6877 #ifdef __ELF__
6878 extern char _end;
6879 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6880 #endif
6881 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6882 PROT_READ | PROT_WRITE | PROT_EXEC,
6883 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6884 if (ndrc == MAP_FAILED) {
6885 SysPrintf("mmap() failed: %s\n", strerror(errno));
6886 abort();
6887 }
6888 #endif
6889#else
6890 #ifndef NO_WRITE_EXEC
6891 // not all systems allow execute in data segment by default
6892 if (mprotect(ndrc, sizeof(ndrc->translation_cache) + sizeof(ndrc->tramp.ops),
6893 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6894 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6895 #endif
6896#endif
6897 out = ndrc->translation_cache;
6898 cycle_multiplier=200;
6899 new_dynarec_clear_full();
6900#ifdef HOST_IMM8
6901 // Copy this into local area so we don't have to put it in every literal pool
6902 invc_ptr=invalid_code;
6903#endif
6904 arch_init();
6905 new_dynarec_test();
6906#ifndef RAM_FIXED
6907 ram_offset=(uintptr_t)rdram-0x80000000;
6908#endif
6909 if (ram_offset!=0)
6910 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6911}
6912
6913void new_dynarec_cleanup(void)
6914{
6915 int n;
6916#ifdef BASE_ADDR_DYNAMIC
6917 #ifdef VITA
6918 sceKernelFreeMemBlock(sceBlock);
6919 sceBlock = -1;
6920 #else
6921 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6922 SysPrintf("munmap() failed\n");
6923 #endif
6924#endif
6925 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6926 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6927 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6928 #ifdef ROM_COPY
6929 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6930 #endif
6931}
6932
6933static u_int *get_source_start(u_int addr, u_int *limit)
6934{
6935 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6936 cycle_multiplier_override = 0;
6937
6938 if (addr < 0x00200000 ||
6939 (0xa0000000 <= addr && addr < 0xa0200000))
6940 {
6941 // used for BIOS calls mostly?
6942 *limit = (addr&0xa0000000)|0x00200000;
6943 return (u_int *)(rdram + (addr&0x1fffff));
6944 }
6945 else if (!Config.HLE && (
6946 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6947 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6948 {
6949 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6950 // but timings in PCSX are too tied to the interpreter's BIAS
6951 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6952 cycle_multiplier_override = 200;
6953
6954 *limit = (addr & 0xfff00000) | 0x80000;
6955 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6956 }
6957 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6958 *limit = (addr & 0x80600000) + 0x00200000;
6959 return (u_int *)(rdram + (addr&0x1fffff));
6960 }
6961 return NULL;
6962}
6963
6964static u_int scan_for_ret(u_int addr)
6965{
6966 u_int limit = 0;
6967 u_int *mem;
6968
6969 mem = get_source_start(addr, &limit);
6970 if (mem == NULL)
6971 return addr;
6972
6973 if (limit > addr + 0x1000)
6974 limit = addr + 0x1000;
6975 for (; addr < limit; addr += 4, mem++) {
6976 if (*mem == 0x03e00008) // jr $ra
6977 return addr + 8;
6978 }
6979 return addr;
6980}
6981
6982struct savestate_block {
6983 uint32_t addr;
6984 uint32_t regflags;
6985};
6986
6987static int addr_cmp(const void *p1_, const void *p2_)
6988{
6989 const struct savestate_block *p1 = p1_, *p2 = p2_;
6990 return p1->addr - p2->addr;
6991}
6992
6993int new_dynarec_save_blocks(void *save, int size)
6994{
6995 struct savestate_block *blocks = save;
6996 int maxcount = size / sizeof(blocks[0]);
6997 struct savestate_block tmp_blocks[1024];
6998 struct ll_entry *head;
6999 int p, s, d, o, bcnt;
7000 u_int addr;
7001
7002 o = 0;
7003 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
7004 bcnt = 0;
7005 for (head = jump_in[p]; head != NULL; head = head->next) {
7006 tmp_blocks[bcnt].addr = head->vaddr;
7007 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7008 bcnt++;
7009 }
7010 if (bcnt < 1)
7011 continue;
7012 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7013
7014 addr = tmp_blocks[0].addr;
7015 for (s = d = 0; s < bcnt; s++) {
7016 if (tmp_blocks[s].addr < addr)
7017 continue;
7018 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7019 tmp_blocks[d++] = tmp_blocks[s];
7020 addr = scan_for_ret(tmp_blocks[s].addr);
7021 }
7022
7023 if (o + d > maxcount)
7024 d = maxcount - o;
7025 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7026 o += d;
7027 }
7028
7029 return o * sizeof(blocks[0]);
7030}
7031
7032void new_dynarec_load_blocks(const void *save, int size)
7033{
7034 const struct savestate_block *blocks = save;
7035 int count = size / sizeof(blocks[0]);
7036 u_int regs_save[32];
7037 uint32_t f;
7038 int i, b;
7039
7040 get_addr(psxRegs.pc);
7041
7042 // change GPRs for speculation to at least partially work..
7043 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7044 for (i = 1; i < 32; i++)
7045 psxRegs.GPR.r[i] = 0x80000000;
7046
7047 for (b = 0; b < count; b++) {
7048 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7049 if (f & 1)
7050 psxRegs.GPR.r[i] = 0x1f800000;
7051 }
7052
7053 get_addr(blocks[b].addr);
7054
7055 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7056 if (f & 1)
7057 psxRegs.GPR.r[i] = 0x80000000;
7058 }
7059 }
7060
7061 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7062}
7063
7064int new_recompile_block(u_int addr)
7065{
7066 u_int pagelimit = 0;
7067 u_int state_rflags = 0;
7068 int i;
7069
7070 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
7071 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7072 //if(debug)
7073 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7074
7075 // this is just for speculation
7076 for (i = 1; i < 32; i++) {
7077 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7078 state_rflags |= 1 << i;
7079 }
7080
7081 start = (u_int)addr&~3;
7082 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
7083 new_dynarec_did_compile=1;
7084 if (Config.HLE && start == 0x80001000) // hlecall
7085 {
7086 // XXX: is this enough? Maybe check hleSoftCall?
7087 void *beginning=start_block();
7088 u_int page=get_page(start);
7089
7090 invalid_code[start>>12]=0;
7091 emit_movimm(start,0);
7092 emit_writeword(0,&pcaddr);
7093 emit_far_jump(new_dyna_leave);
7094 literal_pool(0);
7095 end_block(beginning);
7096 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7097 return 0;
7098 }
7099
7100 source = get_source_start(start, &pagelimit);
7101 if (source == NULL) {
7102 SysPrintf("Compile at bogus memory address: %08x\n", addr);
7103 abort();
7104 }
7105
7106 /* Pass 1: disassemble */
7107 /* Pass 2: register dependencies, branch targets */
7108 /* Pass 3: register allocation */
7109 /* Pass 4: branch dependencies */
7110 /* Pass 5: pre-alloc */
7111 /* Pass 6: optimize clean/dirty state */
7112 /* Pass 7: flag 32-bit registers */
7113 /* Pass 8: assembly */
7114 /* Pass 9: linker */
7115 /* Pass 10: garbage collection / free memory */
7116
7117 int j;
7118 int done=0;
7119 unsigned int type,op,op2;
7120
7121 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7122
7123 /* Pass 1 disassembly */
7124
7125 for(i=0;!done;i++) {
7126 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7127 minimum_free_regs[i]=0;
7128 opcode[i]=op=source[i]>>26;
7129 switch(op)
7130 {
7131 case 0x00: strcpy(insn[i],"special"); type=NI;
7132 op2=source[i]&0x3f;
7133 switch(op2)
7134 {
7135 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7136 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7137 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7138 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7139 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7140 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7141 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7142 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7143 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7144 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7145 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7146 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7147 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7148 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7149 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7150 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7151 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7152 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7153 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7154 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7155 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7156 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7157 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7158 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7159 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7160 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7161 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7162 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7163 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7164 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7165 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7166 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7167 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7168 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7169 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7170#if 0
7171 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7172 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7173 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7174 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7175 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7176 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7177 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7178 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7179 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7180 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7181 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7182 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7183 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7184 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7185 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7186 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7187 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7188#endif
7189 }
7190 break;
7191 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7192 op2=(source[i]>>16)&0x1f;
7193 switch(op2)
7194 {
7195 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7196 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7197 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7198 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7199 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7200 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7201 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7202 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7203 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7204 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7205 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7206 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7207 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7208 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7209 }
7210 break;
7211 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7212 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7213 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7214 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7215 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7216 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7217 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7218 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7219 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7220 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7221 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7222 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7223 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7224 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7225 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7226 op2=(source[i]>>21)&0x1f;
7227 switch(op2)
7228 {
7229 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7230 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
7231 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7232 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
7233 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7234 }
7235 break;
7236 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
7237 op2=(source[i]>>21)&0x1f;
7238 break;
7239#if 0
7240 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7241 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7242 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7243 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7244 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7245 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7246 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7247 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7248#endif
7249 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7250 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7251 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7252 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7253 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7254 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7255 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7256#if 0
7257 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7258#endif
7259 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7260 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7261 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7262 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7263#if 0
7264 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7265 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7266#endif
7267 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7268 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7269 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7270 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7271#if 0
7272 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7273 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7274 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7275#endif
7276 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7277 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7278#if 0
7279 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7280 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7281 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7282#endif
7283 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7284 op2=(source[i]>>21)&0x1f;
7285 //if (op2 & 0x10)
7286 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7287 if (gte_handlers[source[i]&0x3f]!=NULL) {
7288 if (gte_regnames[source[i]&0x3f]!=NULL)
7289 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7290 else
7291 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7292 type=C2OP;
7293 }
7294 }
7295 else switch(op2)
7296 {
7297 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7298 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7299 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7300 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7301 }
7302 break;
7303 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7304 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7305 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7306 default: strcpy(insn[i],"???"); type=NI;
7307 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7308 break;
7309 }
7310 itype[i]=type;
7311 opcode2[i]=op2;
7312 /* Get registers/immediates */
7313 lt1[i]=0;
7314 dep1[i]=0;
7315 dep2[i]=0;
7316 gte_rs[i]=gte_rt[i]=0;
7317 switch(type) {
7318 case LOAD:
7319 rs1[i]=(source[i]>>21)&0x1f;
7320 rs2[i]=0;
7321 rt1[i]=(source[i]>>16)&0x1f;
7322 rt2[i]=0;
7323 imm[i]=(short)source[i];
7324 break;
7325 case STORE:
7326 case STORELR:
7327 rs1[i]=(source[i]>>21)&0x1f;
7328 rs2[i]=(source[i]>>16)&0x1f;
7329 rt1[i]=0;
7330 rt2[i]=0;
7331 imm[i]=(short)source[i];
7332 break;
7333 case LOADLR:
7334 // LWL/LWR only load part of the register,
7335 // therefore the target register must be treated as a source too
7336 rs1[i]=(source[i]>>21)&0x1f;
7337 rs2[i]=(source[i]>>16)&0x1f;
7338 rt1[i]=(source[i]>>16)&0x1f;
7339 rt2[i]=0;
7340 imm[i]=(short)source[i];
7341 if(op==0x26) dep1[i]=rt1[i]; // LWR
7342 break;
7343 case IMM16:
7344 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7345 else rs1[i]=(source[i]>>21)&0x1f;
7346 rs2[i]=0;
7347 rt1[i]=(source[i]>>16)&0x1f;
7348 rt2[i]=0;
7349 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7350 imm[i]=(unsigned short)source[i];
7351 }else{
7352 imm[i]=(short)source[i];
7353 }
7354 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7355 break;
7356 case UJUMP:
7357 rs1[i]=0;
7358 rs2[i]=0;
7359 rt1[i]=0;
7360 rt2[i]=0;
7361 // The JAL instruction writes to r31.
7362 if (op&1) {
7363 rt1[i]=31;
7364 }
7365 rs2[i]=CCREG;
7366 break;
7367 case RJUMP:
7368 rs1[i]=(source[i]>>21)&0x1f;
7369 rs2[i]=0;
7370 rt1[i]=0;
7371 rt2[i]=0;
7372 // The JALR instruction writes to rd.
7373 if (op2&1) {
7374 rt1[i]=(source[i]>>11)&0x1f;
7375 }
7376 rs2[i]=CCREG;
7377 break;
7378 case CJUMP:
7379 rs1[i]=(source[i]>>21)&0x1f;
7380 rs2[i]=(source[i]>>16)&0x1f;
7381 rt1[i]=0;
7382 rt2[i]=0;
7383 if(op&2) { // BGTZ/BLEZ
7384 rs2[i]=0;
7385 }
7386 likely[i]=op>>4;
7387 break;
7388 case SJUMP:
7389 rs1[i]=(source[i]>>21)&0x1f;
7390 rs2[i]=CCREG;
7391 rt1[i]=0;
7392 rt2[i]=0;
7393 if(op2&0x10) { // BxxAL
7394 rt1[i]=31;
7395 // NOTE: If the branch is not taken, r31 is still overwritten
7396 }
7397 likely[i]=(op2&2)>>1;
7398 break;
7399 case ALU:
7400 rs1[i]=(source[i]>>21)&0x1f; // source
7401 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7402 rt1[i]=(source[i]>>11)&0x1f; // destination
7403 rt2[i]=0;
7404 if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7405 dep1[i]=rs1[i];dep2[i]=rs2[i];
7406 }
7407 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7408 dep1[i]=rs1[i];dep2[i]=rs2[i];
7409 }
7410 break;
7411 case MULTDIV:
7412 rs1[i]=(source[i]>>21)&0x1f; // source
7413 rs2[i]=(source[i]>>16)&0x1f; // divisor
7414 rt1[i]=HIREG;
7415 rt2[i]=LOREG;
7416 break;
7417 case MOV:
7418 rs1[i]=0;
7419 rs2[i]=0;
7420 rt1[i]=0;
7421 rt2[i]=0;
7422 if(op2==0x10) rs1[i]=HIREG; // MFHI
7423 if(op2==0x11) rt1[i]=HIREG; // MTHI
7424 if(op2==0x12) rs1[i]=LOREG; // MFLO
7425 if(op2==0x13) rt1[i]=LOREG; // MTLO
7426 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7427 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7428 dep1[i]=rs1[i];
7429 break;
7430 case SHIFT:
7431 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7432 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7433 rt1[i]=(source[i]>>11)&0x1f; // destination
7434 rt2[i]=0;
7435 break;
7436 case SHIFTIMM:
7437 rs1[i]=(source[i]>>16)&0x1f;
7438 rs2[i]=0;
7439 rt1[i]=(source[i]>>11)&0x1f;
7440 rt2[i]=0;
7441 imm[i]=(source[i]>>6)&0x1f;
7442 // DSxx32 instructions
7443 if(op2>=0x3c) imm[i]|=0x20;
7444 break;
7445 case COP0:
7446 rs1[i]=0;
7447 rs2[i]=0;
7448 rt1[i]=0;
7449 rt2[i]=0;
7450 if(op2==0||op2==2) rt1[i]=(source[i]>>16)&0x1F; // MFC0/CFC0
7451 if(op2==4||op2==6) rs1[i]=(source[i]>>16)&0x1F; // MTC0/CTC0
7452 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7453 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7454 break;
7455 case COP1:
7456 rs1[i]=0;
7457 rs2[i]=0;
7458 rt1[i]=0;
7459 rt2[i]=0;
7460 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7461 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7462 rs2[i]=CSREG;
7463 break;
7464 case COP2:
7465 rs1[i]=0;
7466 rs2[i]=0;
7467 rt1[i]=0;
7468 rt2[i]=0;
7469 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7470 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7471 rs2[i]=CSREG;
7472 int gr=(source[i]>>11)&0x1F;
7473 switch(op2)
7474 {
7475 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7476 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7477 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7478 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7479 }
7480 break;
7481 case C1LS:
7482 rs1[i]=(source[i]>>21)&0x1F;
7483 rs2[i]=CSREG;
7484 rt1[i]=0;
7485 rt2[i]=0;
7486 imm[i]=(short)source[i];
7487 break;
7488 case C2LS:
7489 rs1[i]=(source[i]>>21)&0x1F;
7490 rs2[i]=0;
7491 rt1[i]=0;
7492 rt2[i]=0;
7493 imm[i]=(short)source[i];
7494 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7495 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7496 break;
7497 case C2OP:
7498 rs1[i]=0;
7499 rs2[i]=0;
7500 rt1[i]=0;
7501 rt2[i]=0;
7502 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7503 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7504 gte_rt[i]|=1ll<<63; // every op changes flags
7505 if((source[i]&0x3f)==GTE_MVMVA) {
7506 int v = (source[i] >> 15) & 3;
7507 gte_rs[i]&=~0xe3fll;
7508 if(v==3) gte_rs[i]|=0xe00ll;
7509 else gte_rs[i]|=3ll<<(v*2);
7510 }
7511 break;
7512 case SYSCALL:
7513 case HLECALL:
7514 case INTCALL:
7515 rs1[i]=CCREG;
7516 rs2[i]=0;
7517 rt1[i]=0;
7518 rt2[i]=0;
7519 break;
7520 default:
7521 rs1[i]=0;
7522 rs2[i]=0;
7523 rt1[i]=0;
7524 rt2[i]=0;
7525 }
7526 /* Calculate branch target addresses */
7527 if(type==UJUMP)
7528 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7529 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7530 ba[i]=start+i*4+8; // Ignore never taken branch
7531 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7532 ba[i]=start+i*4+8; // Ignore never taken branch
7533 else if(type==CJUMP||type==SJUMP)
7534 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7535 else ba[i]=-1;
7536 if (i > 0 && is_jump(i-1)) {
7537 int do_in_intrp=0;
7538 // branch in delay slot?
7539 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP) {
7540 // don't handle first branch and call interpreter if it's hit
7541 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7542 do_in_intrp=1;
7543 }
7544 // basic load delay detection
7545 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7546 int t=(ba[i-1]-start)/4;
7547 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7548 // jump target wants DS result - potential load delay effect
7549 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7550 do_in_intrp=1;
7551 bt[t+1]=1; // expected return from interpreter
7552 }
7553 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7554 !(i>=3&&is_jump(i-3))) {
7555 // v0 overwrite like this is a sign of trouble, bail out
7556 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7557 do_in_intrp=1;
7558 }
7559 }
7560 if(do_in_intrp) {
7561 rs1[i-1]=CCREG;
7562 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7563 ba[i-1]=-1;
7564 itype[i-1]=INTCALL;
7565 done=2;
7566 i--; // don't compile the DS
7567 }
7568 }
7569 /* Is this the end of the block? */
7570 if (i > 0 && is_ujump(i-1)) {
7571 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7572 done=2;
7573 }
7574 else {
7575 if(stop_after_jal) done=1;
7576 // Stop on BREAK
7577 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7578 }
7579 // Don't recompile stuff that's already compiled
7580 if(check_addr(start+i*4+4)) done=1;
7581 // Don't get too close to the limit
7582 if(i>MAXBLOCK/2) done=1;
7583 }
7584 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7585 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7586 if(done==2) {
7587 // Does the block continue due to a branch?
7588 for(j=i-1;j>=0;j--)
7589 {
7590 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7591 if(ba[j]==start+i*4+4) done=j=0;
7592 if(ba[j]==start+i*4+8) done=j=0;
7593 }
7594 }
7595 //assert(i<MAXBLOCK-1);
7596 if(start+i*4==pagelimit-4) done=1;
7597 assert(start+i*4<pagelimit);
7598 if (i==MAXBLOCK-1) done=1;
7599 // Stop if we're compiling junk
7600 if(itype[i]==NI&&opcode[i]==0x11) {
7601 done=stop_after_jal=1;
7602 SysPrintf("Disabled speculative precompilation\n");
7603 }
7604 }
7605 slen=i;
7606 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP) {
7607 if(start+i*4==pagelimit) {
7608 itype[i-1]=SPAN;
7609 }
7610 }
7611 assert(slen>0);
7612
7613 /* Pass 2 - Register dependencies and branch targets */
7614
7615 unneeded_registers(0,slen-1,0);
7616
7617 /* Pass 3 - Register allocation */
7618
7619 struct regstat current; // Current register allocations/status
7620 current.dirty=0;
7621 current.u=unneeded_reg[0];
7622 clear_all_regs(current.regmap);
7623 alloc_reg(&current,0,CCREG);
7624 dirty_reg(&current,CCREG);
7625 current.isconst=0;
7626 current.wasconst=0;
7627 current.waswritten=0;
7628 int ds=0;
7629 int cc=0;
7630 int hr=-1;
7631
7632 if((u_int)addr&1) {
7633 // First instruction is delay slot
7634 cc=-1;
7635 bt[1]=1;
7636 ds=1;
7637 unneeded_reg[0]=1;
7638 current.regmap[HOST_BTREG]=BTREG;
7639 }
7640
7641 for(i=0;i<slen;i++)
7642 {
7643 if(bt[i])
7644 {
7645 int hr;
7646 for(hr=0;hr<HOST_REGS;hr++)
7647 {
7648 // Is this really necessary?
7649 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7650 }
7651 current.isconst=0;
7652 current.waswritten=0;
7653 }
7654
7655 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7656 regs[i].wasconst=current.isconst;
7657 regs[i].wasdirty=current.dirty;
7658 regs[i].loadedconst=0;
7659 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP) {
7660 if(i+1<slen) {
7661 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7662 current.u|=1;
7663 } else {
7664 current.u=1;
7665 }
7666 } else {
7667 if(i+1<slen) {
7668 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7669 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7670 current.u|=1;
7671 } else { SysPrintf("oops, branch at end of block with no delay slot\n");abort(); }
7672 }
7673 is_ds[i]=ds;
7674 if(ds) {
7675 ds=0; // Skip delay slot, already allocated as part of branch
7676 // ...but we need to alloc it in case something jumps here
7677 if(i+1<slen) {
7678 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7679 }else{
7680 current.u=branch_unneeded_reg[i-1];
7681 }
7682 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7683 current.u|=1;
7684 struct regstat temp;
7685 memcpy(&temp,&current,sizeof(current));
7686 temp.wasdirty=temp.dirty;
7687 // TODO: Take into account unconditional branches, as below
7688 delayslot_alloc(&temp,i);
7689 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7690 regs[i].wasdirty=temp.wasdirty;
7691 regs[i].dirty=temp.dirty;
7692 regs[i].isconst=0;
7693 regs[i].wasconst=0;
7694 current.isconst=0;
7695 // Create entry (branch target) regmap
7696 for(hr=0;hr<HOST_REGS;hr++)
7697 {
7698 int r=temp.regmap[hr];
7699 if(r>=0) {
7700 if(r!=regmap_pre[i][hr]) {
7701 regs[i].regmap_entry[hr]=-1;
7702 }
7703 else
7704 {
7705 assert(r < 64);
7706 if((current.u>>r)&1) {
7707 regs[i].regmap_entry[hr]=-1;
7708 regs[i].regmap[hr]=-1;
7709 //Don't clear regs in the delay slot as the branch might need them
7710 //current.regmap[hr]=-1;
7711 }else
7712 regs[i].regmap_entry[hr]=r;
7713 }
7714 } else {
7715 // First instruction expects CCREG to be allocated
7716 if(i==0&&hr==HOST_CCREG)
7717 regs[i].regmap_entry[hr]=CCREG;
7718 else
7719 regs[i].regmap_entry[hr]=-1;
7720 }
7721 }
7722 }
7723 else { // Not delay slot
7724 switch(itype[i]) {
7725 case UJUMP:
7726 //current.isconst=0; // DEBUG
7727 //current.wasconst=0; // DEBUG
7728 //regs[i].wasconst=0; // DEBUG
7729 clear_const(&current,rt1[i]);
7730 alloc_cc(&current,i);
7731 dirty_reg(&current,CCREG);
7732 if (rt1[i]==31) {
7733 alloc_reg(&current,i,31);
7734 dirty_reg(&current,31);
7735 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
7736 //assert(rt1[i+1]!=rt1[i]);
7737 #ifdef REG_PREFETCH
7738 alloc_reg(&current,i,PTEMP);
7739 #endif
7740 }
7741 ooo[i]=1;
7742 delayslot_alloc(&current,i+1);
7743 //current.isconst=0; // DEBUG
7744 ds=1;
7745 //printf("i=%d, isconst=%x\n",i,current.isconst);
7746 break;
7747 case RJUMP:
7748 //current.isconst=0;
7749 //current.wasconst=0;
7750 //regs[i].wasconst=0;
7751 clear_const(&current,rs1[i]);
7752 clear_const(&current,rt1[i]);
7753 alloc_cc(&current,i);
7754 dirty_reg(&current,CCREG);
7755 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
7756 alloc_reg(&current,i,rs1[i]);
7757 if (rt1[i]!=0) {
7758 alloc_reg(&current,i,rt1[i]);
7759 dirty_reg(&current,rt1[i]);
7760 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
7761 assert(rt1[i+1]!=rt1[i]);
7762 #ifdef REG_PREFETCH
7763 alloc_reg(&current,i,PTEMP);
7764 #endif
7765 }
7766 #ifdef USE_MINI_HT
7767 if(rs1[i]==31) { // JALR
7768 alloc_reg(&current,i,RHASH);
7769 alloc_reg(&current,i,RHTBL);
7770 }
7771 #endif
7772 delayslot_alloc(&current,i+1);
7773 } else {
7774 // The delay slot overwrites our source register,
7775 // allocate a temporary register to hold the old value.
7776 current.isconst=0;
7777 current.wasconst=0;
7778 regs[i].wasconst=0;
7779 delayslot_alloc(&current,i+1);
7780 current.isconst=0;
7781 alloc_reg(&current,i,RTEMP);
7782 }
7783 //current.isconst=0; // DEBUG
7784 ooo[i]=1;
7785 ds=1;
7786 break;
7787 case CJUMP:
7788 //current.isconst=0;
7789 //current.wasconst=0;
7790 //regs[i].wasconst=0;
7791 clear_const(&current,rs1[i]);
7792 clear_const(&current,rs2[i]);
7793 if((opcode[i]&0x3E)==4) // BEQ/BNE
7794 {
7795 alloc_cc(&current,i);
7796 dirty_reg(&current,CCREG);
7797 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7798 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7799 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
7800 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
7801 // The delay slot overwrites one of our conditions.
7802 // Allocate the branch condition registers instead.
7803 current.isconst=0;
7804 current.wasconst=0;
7805 regs[i].wasconst=0;
7806 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7807 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
7808 }
7809 else
7810 {
7811 ooo[i]=1;
7812 delayslot_alloc(&current,i+1);
7813 }
7814 }
7815 else
7816 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
7817 {
7818 alloc_cc(&current,i);
7819 dirty_reg(&current,CCREG);
7820 alloc_reg(&current,i,rs1[i]);
7821 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
7822 // The delay slot overwrites one of our conditions.
7823 // Allocate the branch condition registers instead.
7824 current.isconst=0;
7825 current.wasconst=0;
7826 regs[i].wasconst=0;
7827 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7828 }
7829 else
7830 {
7831 ooo[i]=1;
7832 delayslot_alloc(&current,i+1);
7833 }
7834 }
7835 else
7836 // Don't alloc the delay slot yet because we might not execute it
7837 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
7838 {
7839 current.isconst=0;
7840 current.wasconst=0;
7841 regs[i].wasconst=0;
7842 alloc_cc(&current,i);
7843 dirty_reg(&current,CCREG);
7844 alloc_reg(&current,i,rs1[i]);
7845 alloc_reg(&current,i,rs2[i]);
7846 }
7847 else
7848 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
7849 {
7850 current.isconst=0;
7851 current.wasconst=0;
7852 regs[i].wasconst=0;
7853 alloc_cc(&current,i);
7854 dirty_reg(&current,CCREG);
7855 alloc_reg(&current,i,rs1[i]);
7856 }
7857 ds=1;
7858 //current.isconst=0;
7859 break;
7860 case SJUMP:
7861 //current.isconst=0;
7862 //current.wasconst=0;
7863 //regs[i].wasconst=0;
7864 clear_const(&current,rs1[i]);
7865 clear_const(&current,rt1[i]);
7866 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
7867 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
7868 {
7869 alloc_cc(&current,i);
7870 dirty_reg(&current,CCREG);
7871 alloc_reg(&current,i,rs1[i]);
7872 if (rt1[i]==31) { // BLTZAL/BGEZAL
7873 alloc_reg(&current,i,31);
7874 dirty_reg(&current,31);
7875 //#ifdef REG_PREFETCH
7876 //alloc_reg(&current,i,PTEMP);
7877 //#endif
7878 }
7879 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
7880 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
7881 // Allocate the branch condition registers instead.
7882 current.isconst=0;
7883 current.wasconst=0;
7884 regs[i].wasconst=0;
7885 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
7886 }
7887 else
7888 {
7889 ooo[i]=1;
7890 delayslot_alloc(&current,i+1);
7891 }
7892 }
7893 else
7894 // Don't alloc the delay slot yet because we might not execute it
7895 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
7896 {
7897 current.isconst=0;
7898 current.wasconst=0;
7899 regs[i].wasconst=0;
7900 alloc_cc(&current,i);
7901 dirty_reg(&current,CCREG);
7902 alloc_reg(&current,i,rs1[i]);
7903 }
7904 ds=1;
7905 //current.isconst=0;
7906 break;
7907 case IMM16:
7908 imm16_alloc(&current,i);
7909 break;
7910 case LOAD:
7911 case LOADLR:
7912 load_alloc(&current,i);
7913 break;
7914 case STORE:
7915 case STORELR:
7916 store_alloc(&current,i);
7917 break;
7918 case ALU:
7919 alu_alloc(&current,i);
7920 break;
7921 case SHIFT:
7922 shift_alloc(&current,i);
7923 break;
7924 case MULTDIV:
7925 multdiv_alloc(&current,i);
7926 break;
7927 case SHIFTIMM:
7928 shiftimm_alloc(&current,i);
7929 break;
7930 case MOV:
7931 mov_alloc(&current,i);
7932 break;
7933 case COP0:
7934 cop0_alloc(&current,i);
7935 break;
7936 case COP1:
7937 break;
7938 case COP2:
7939 cop2_alloc(&current,i);
7940 break;
7941 case C1LS:
7942 c1ls_alloc(&current,i);
7943 break;
7944 case C2LS:
7945 c2ls_alloc(&current,i);
7946 break;
7947 case C2OP:
7948 c2op_alloc(&current,i);
7949 break;
7950 case SYSCALL:
7951 case HLECALL:
7952 case INTCALL:
7953 syscall_alloc(&current,i);
7954 break;
7955 case SPAN:
7956 pagespan_alloc(&current,i);
7957 break;
7958 }
7959
7960 // Create entry (branch target) regmap
7961 for(hr=0;hr<HOST_REGS;hr++)
7962 {
7963 int r,or;
7964 r=current.regmap[hr];
7965 if(r>=0) {
7966 if(r!=regmap_pre[i][hr]) {
7967 // TODO: delay slot (?)
7968 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7969 if(or<0||(r&63)>=TEMPREG){
7970 regs[i].regmap_entry[hr]=-1;
7971 }
7972 else
7973 {
7974 // Just move it to a different register
7975 regs[i].regmap_entry[hr]=r;
7976 // If it was dirty before, it's still dirty
7977 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
7978 }
7979 }
7980 else
7981 {
7982 // Unneeded
7983 if(r==0){
7984 regs[i].regmap_entry[hr]=0;
7985 }
7986 else
7987 {
7988 assert(r<64);
7989 if((current.u>>r)&1) {
7990 regs[i].regmap_entry[hr]=-1;
7991 //regs[i].regmap[hr]=-1;
7992 current.regmap[hr]=-1;
7993 }else
7994 regs[i].regmap_entry[hr]=r;
7995 }
7996 }
7997 } else {
7998 // Branches expect CCREG to be allocated at the target
7999 if(regmap_pre[i][hr]==CCREG)
8000 regs[i].regmap_entry[hr]=CCREG;
8001 else
8002 regs[i].regmap_entry[hr]=-1;
8003 }
8004 }
8005 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8006 }
8007
8008 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8009 current.waswritten|=1<<rs1[i-1];
8010 current.waswritten&=~(1<<rt1[i]);
8011 current.waswritten&=~(1<<rt2[i]);
8012 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8013 current.waswritten&=~(1<<rs1[i]);
8014
8015 /* Branch post-alloc */
8016 if(i>0)
8017 {
8018 current.wasdirty=current.dirty;
8019 switch(itype[i-1]) {
8020 case UJUMP:
8021 memcpy(&branch_regs[i-1],&current,sizeof(current));
8022 branch_regs[i-1].isconst=0;
8023 branch_regs[i-1].wasconst=0;
8024 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8025 alloc_cc(&branch_regs[i-1],i-1);
8026 dirty_reg(&branch_regs[i-1],CCREG);
8027 if(rt1[i-1]==31) { // JAL
8028 alloc_reg(&branch_regs[i-1],i-1,31);
8029 dirty_reg(&branch_regs[i-1],31);
8030 }
8031 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8032 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8033 break;
8034 case RJUMP:
8035 memcpy(&branch_regs[i-1],&current,sizeof(current));
8036 branch_regs[i-1].isconst=0;
8037 branch_regs[i-1].wasconst=0;
8038 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8039 alloc_cc(&branch_regs[i-1],i-1);
8040 dirty_reg(&branch_regs[i-1],CCREG);
8041 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8042 if(rt1[i-1]!=0) { // JALR
8043 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8044 dirty_reg(&branch_regs[i-1],rt1[i-1]);
8045 }
8046 #ifdef USE_MINI_HT
8047 if(rs1[i-1]==31) { // JALR
8048 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8049 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8050 }
8051 #endif
8052 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8053 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8054 break;
8055 case CJUMP:
8056 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8057 {
8058 alloc_cc(&current,i-1);
8059 dirty_reg(&current,CCREG);
8060 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8061 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8062 // The delay slot overwrote one of our conditions
8063 // Delay slot goes after the test (in order)
8064 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8065 current.u|=1;
8066 delayslot_alloc(&current,i);
8067 current.isconst=0;
8068 }
8069 else
8070 {
8071 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8072 // Alloc the branch condition registers
8073 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8074 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8075 }
8076 memcpy(&branch_regs[i-1],&current,sizeof(current));
8077 branch_regs[i-1].isconst=0;
8078 branch_regs[i-1].wasconst=0;
8079 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8080 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8081 }
8082 else
8083 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8084 {
8085 alloc_cc(&current,i-1);
8086 dirty_reg(&current,CCREG);
8087 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8088 // The delay slot overwrote the branch condition
8089 // Delay slot goes after the test (in order)
8090 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8091 current.u|=1;
8092 delayslot_alloc(&current,i);
8093 current.isconst=0;
8094 }
8095 else
8096 {
8097 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8098 // Alloc the branch condition register
8099 alloc_reg(&current,i-1,rs1[i-1]);
8100 }
8101 memcpy(&branch_regs[i-1],&current,sizeof(current));
8102 branch_regs[i-1].isconst=0;
8103 branch_regs[i-1].wasconst=0;
8104 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8105 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8106 }
8107 else
8108 // Alloc the delay slot in case the branch is taken
8109 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8110 {
8111 memcpy(&branch_regs[i-1],&current,sizeof(current));
8112 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8113 alloc_cc(&branch_regs[i-1],i);
8114 dirty_reg(&branch_regs[i-1],CCREG);
8115 delayslot_alloc(&branch_regs[i-1],i);
8116 branch_regs[i-1].isconst=0;
8117 alloc_reg(&current,i,CCREG); // Not taken path
8118 dirty_reg(&current,CCREG);
8119 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8120 }
8121 else
8122 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8123 {
8124 memcpy(&branch_regs[i-1],&current,sizeof(current));
8125 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8126 alloc_cc(&branch_regs[i-1],i);
8127 dirty_reg(&branch_regs[i-1],CCREG);
8128 delayslot_alloc(&branch_regs[i-1],i);
8129 branch_regs[i-1].isconst=0;
8130 alloc_reg(&current,i,CCREG); // Not taken path
8131 dirty_reg(&current,CCREG);
8132 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8133 }
8134 break;
8135 case SJUMP:
8136 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8137 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8138 {
8139 alloc_cc(&current,i-1);
8140 dirty_reg(&current,CCREG);
8141 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8142 // The delay slot overwrote the branch condition
8143 // Delay slot goes after the test (in order)
8144 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8145 current.u|=1;
8146 delayslot_alloc(&current,i);
8147 current.isconst=0;
8148 }
8149 else
8150 {
8151 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8152 // Alloc the branch condition register
8153 alloc_reg(&current,i-1,rs1[i-1]);
8154 }
8155 memcpy(&branch_regs[i-1],&current,sizeof(current));
8156 branch_regs[i-1].isconst=0;
8157 branch_regs[i-1].wasconst=0;
8158 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8159 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8160 }
8161 else
8162 // Alloc the delay slot in case the branch is taken
8163 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8164 {
8165 memcpy(&branch_regs[i-1],&current,sizeof(current));
8166 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8167 alloc_cc(&branch_regs[i-1],i);
8168 dirty_reg(&branch_regs[i-1],CCREG);
8169 delayslot_alloc(&branch_regs[i-1],i);
8170 branch_regs[i-1].isconst=0;
8171 alloc_reg(&current,i,CCREG); // Not taken path
8172 dirty_reg(&current,CCREG);
8173 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8174 }
8175 // FIXME: BLTZAL/BGEZAL
8176 if(opcode2[i-1]&0x10) { // BxxZAL
8177 alloc_reg(&branch_regs[i-1],i-1,31);
8178 dirty_reg(&branch_regs[i-1],31);
8179 }
8180 break;
8181 }
8182
8183 if (is_ujump(i-1))
8184 {
8185 if(rt1[i-1]==31) // JAL/JALR
8186 {
8187 // Subroutine call will return here, don't alloc any registers
8188 current.dirty=0;
8189 clear_all_regs(current.regmap);
8190 alloc_reg(&current,i,CCREG);
8191 dirty_reg(&current,CCREG);
8192 }
8193 else if(i+1<slen)
8194 {
8195 // Internal branch will jump here, match registers to caller
8196 current.dirty=0;
8197 clear_all_regs(current.regmap);
8198 alloc_reg(&current,i,CCREG);
8199 dirty_reg(&current,CCREG);
8200 for(j=i-1;j>=0;j--)
8201 {
8202 if(ba[j]==start+i*4+4) {
8203 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8204 current.dirty=branch_regs[j].dirty;
8205 break;
8206 }
8207 }
8208 while(j>=0) {
8209 if(ba[j]==start+i*4+4) {
8210 for(hr=0;hr<HOST_REGS;hr++) {
8211 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8212 current.regmap[hr]=-1;
8213 }
8214 current.dirty&=branch_regs[j].dirty;
8215 }
8216 }
8217 j--;
8218 }
8219 }
8220 }
8221 }
8222
8223 // Count cycles in between branches
8224 ccadj[i]=cc;
8225 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
8226 {
8227 cc=0;
8228 }
8229#if !defined(DRC_DBG)
8230 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8231 {
8232 // this should really be removed since the real stalls have been implemented,
8233 // but doing so causes sizeable perf regression against the older version
8234 u_int gtec = gte_cycletab[source[i] & 0x3f];
8235 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8236 }
8237 else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8238 {
8239 cc+=4;
8240 }
8241 else if(itype[i]==C2LS)
8242 {
8243 // same as with C2OP
8244 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8245 }
8246#endif
8247 else
8248 {
8249 cc++;
8250 }
8251
8252 if(!is_ds[i]) {
8253 regs[i].dirty=current.dirty;
8254 regs[i].isconst=current.isconst;
8255 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8256 }
8257 for(hr=0;hr<HOST_REGS;hr++) {
8258 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8259 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8260 regs[i].wasconst&=~(1<<hr);
8261 }
8262 }
8263 }
8264 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8265 regs[i].waswritten=current.waswritten;
8266 }
8267
8268 /* Pass 4 - Cull unused host registers */
8269
8270 uint64_t nr=0;
8271
8272 for (i=slen-1;i>=0;i--)
8273 {
8274 int hr;
8275 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8276 {
8277 if(ba[i]<start || ba[i]>=(start+slen*4))
8278 {
8279 // Branch out of this block, don't need anything
8280 nr=0;
8281 }
8282 else
8283 {
8284 // Internal branch
8285 // Need whatever matches the target
8286 nr=0;
8287 int t=(ba[i]-start)>>2;
8288 for(hr=0;hr<HOST_REGS;hr++)
8289 {
8290 if(regs[i].regmap_entry[hr]>=0) {
8291 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8292 }
8293 }
8294 }
8295 // Conditional branch may need registers for following instructions
8296 if (!is_ujump(i))
8297 {
8298 if(i<slen-2) {
8299 nr|=needed_reg[i+2];
8300 for(hr=0;hr<HOST_REGS;hr++)
8301 {
8302 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8303 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8304 }
8305 }
8306 }
8307 // Don't need stuff which is overwritten
8308 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8309 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8310 // Merge in delay slot
8311 for(hr=0;hr<HOST_REGS;hr++)
8312 {
8313 if(!likely[i]) {
8314 // These are overwritten unless the branch is "likely"
8315 // and the delay slot is nullified if not taken
8316 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8317 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8318 }
8319 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8320 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8321 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8322 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8323 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
8324 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8325 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8326 }
8327 }
8328 }
8329 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
8330 {
8331 // SYSCALL instruction (software interrupt)
8332 nr=0;
8333 }
8334 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8335 {
8336 // ERET instruction (return from interrupt)
8337 nr=0;
8338 }
8339 else // Non-branch
8340 {
8341 if(i<slen-1) {
8342 for(hr=0;hr<HOST_REGS;hr++) {
8343 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8344 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8345 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8346 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8347 }
8348 }
8349 }
8350 for(hr=0;hr<HOST_REGS;hr++)
8351 {
8352 // Overwritten registers are not needed
8353 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8354 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8355 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8356 // Source registers are needed
8357 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8358 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8359 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8360 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8361 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8362 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8363 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8364 }
8365 // Don't store a register immediately after writing it,
8366 // may prevent dual-issue.
8367 // But do so if this is a branch target, otherwise we
8368 // might have to load the register before the branch.
8369 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8370 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8371 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8372 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8373 }
8374 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8375 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8376 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8377 }
8378 }
8379 }
8380 // Cycle count is needed at branches. Assume it is needed at the target too.
8381 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==SPAN) {
8382 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8383 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8384 }
8385 // Save it
8386 needed_reg[i]=nr;
8387
8388 // Deallocate unneeded registers
8389 for(hr=0;hr<HOST_REGS;hr++)
8390 {
8391 if(!((nr>>hr)&1)) {
8392 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8393 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8394 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8395 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8396 {
8397 if (!is_ujump(i))
8398 {
8399 if(likely[i]) {
8400 regs[i].regmap[hr]=-1;
8401 regs[i].isconst&=~(1<<hr);
8402 if(i<slen-2) {
8403 regmap_pre[i+2][hr]=-1;
8404 regs[i+2].wasconst&=~(1<<hr);
8405 }
8406 }
8407 }
8408 }
8409 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8410 {
8411 int map=0,temp=0;
8412 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8413 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8414 map=INVCP;
8415 }
8416 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
8417 itype[i+1]==C1LS || itype[i+1]==C2LS)
8418 temp=FTEMP;
8419 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8420 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8421 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8422 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8423 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8424 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8425 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8426 regs[i].regmap[hr]!=map )
8427 {
8428 regs[i].regmap[hr]=-1;
8429 regs[i].isconst&=~(1<<hr);
8430 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8431 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8432 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8433 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8434 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8435 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8436 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8437 branch_regs[i].regmap[hr]!=map)
8438 {
8439 branch_regs[i].regmap[hr]=-1;
8440 branch_regs[i].regmap_entry[hr]=-1;
8441 if (!is_ujump(i))
8442 {
8443 if(!likely[i]&&i<slen-2) {
8444 regmap_pre[i+2][hr]=-1;
8445 regs[i+2].wasconst&=~(1<<hr);
8446 }
8447 }
8448 }
8449 }
8450 }
8451 else
8452 {
8453 // Non-branch
8454 if(i>0)
8455 {
8456 int map=-1,temp=-1;
8457 if(itype[i]==STORE || itype[i]==STORELR ||
8458 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8459 map=INVCP;
8460 }
8461 if(itype[i]==LOADLR || itype[i]==STORELR ||
8462 itype[i]==C1LS || itype[i]==C2LS)
8463 temp=FTEMP;
8464 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8465 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
8466 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8467 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
8468 {
8469 if(i<slen-1&&!is_ds[i]) {
8470 assert(regs[i].regmap[hr]<64);
8471 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8472 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8473 {
8474 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8475 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8476 }
8477 regmap_pre[i+1][hr]=-1;
8478 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8479 regs[i+1].wasconst&=~(1<<hr);
8480 }
8481 regs[i].regmap[hr]=-1;
8482 regs[i].isconst&=~(1<<hr);
8483 }
8484 }
8485 }
8486 } // if needed
8487 } // for hr
8488 }
8489
8490 /* Pass 5 - Pre-allocate registers */
8491
8492 // If a register is allocated during a loop, try to allocate it for the
8493 // entire loop, if possible. This avoids loading/storing registers
8494 // inside of the loop.
8495
8496 signed char f_regmap[HOST_REGS];
8497 clear_all_regs(f_regmap);
8498 for(i=0;i<slen-1;i++)
8499 {
8500 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
8501 {
8502 if(ba[i]>=start && ba[i]<(start+i*4))
8503 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
8504 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
8505 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
8506 ||itype[i+1]==SHIFT||itype[i+1]==COP1
8507 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
8508 {
8509 int t=(ba[i]-start)>>2;
8510 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP)) // loop_preload can't handle jumps into delay slots
8511 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
8512 for(hr=0;hr<HOST_REGS;hr++)
8513 {
8514 if(regs[i].regmap[hr]>=0) {
8515 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8516 // dealloc old register
8517 int n;
8518 for(n=0;n<HOST_REGS;n++)
8519 {
8520 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8521 }
8522 // and alloc new one
8523 f_regmap[hr]=regs[i].regmap[hr];
8524 }
8525 }
8526 if(branch_regs[i].regmap[hr]>=0) {
8527 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8528 // dealloc old register
8529 int n;
8530 for(n=0;n<HOST_REGS;n++)
8531 {
8532 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8533 }
8534 // and alloc new one
8535 f_regmap[hr]=branch_regs[i].regmap[hr];
8536 }
8537 }
8538 if(ooo[i]) {
8539 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8540 f_regmap[hr]=branch_regs[i].regmap[hr];
8541 }else{
8542 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8543 f_regmap[hr]=branch_regs[i].regmap[hr];
8544 }
8545 // Avoid dirty->clean transition
8546 #ifdef DESTRUCTIVE_WRITEBACK
8547 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8548 #endif
8549 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8550 // case above, however it's always a good idea. We can't hoist the
8551 // load if the register was already allocated, so there's no point
8552 // wasting time analyzing most of these cases. It only "succeeds"
8553 // when the mapping was different and the load can be replaced with
8554 // a mov, which is of negligible benefit. So such cases are
8555 // skipped below.
8556 if(f_regmap[hr]>0) {
8557 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8558 int r=f_regmap[hr];
8559 for(j=t;j<=i;j++)
8560 {
8561 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8562 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8563 assert(r < 64);
8564 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
8565 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8566 int k;
8567 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8568 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8569 if(r>63) {
8570 if(get_reg(regs[i].regmap,r&63)<0) break;
8571 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
8572 }
8573 k=i;
8574 while(k>1&&regs[k-1].regmap[hr]==-1) {
8575 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8576 //printf("no free regs for store %x\n",start+(k-1)*4);
8577 break;
8578 }
8579 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8580 //printf("no-match due to different register\n");
8581 break;
8582 }
8583 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP) {
8584 //printf("no-match due to branch\n");
8585 break;
8586 }
8587 // call/ret fast path assumes no registers allocated
8588 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
8589 break;
8590 }
8591 assert(r < 64);
8592 k--;
8593 }
8594 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8595 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8596 while(k<i) {
8597 regs[k].regmap_entry[hr]=f_regmap[hr];
8598 regs[k].regmap[hr]=f_regmap[hr];
8599 regmap_pre[k+1][hr]=f_regmap[hr];
8600 regs[k].wasdirty&=~(1<<hr);
8601 regs[k].dirty&=~(1<<hr);
8602 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8603 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8604 regs[k].wasconst&=~(1<<hr);
8605 regs[k].isconst&=~(1<<hr);
8606 k++;
8607 }
8608 }
8609 else {
8610 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8611 break;
8612 }
8613 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8614 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8615 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8616 regs[i].regmap_entry[hr]=f_regmap[hr];
8617 regs[i].regmap[hr]=f_regmap[hr];
8618 regs[i].wasdirty&=~(1<<hr);
8619 regs[i].dirty&=~(1<<hr);
8620 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8621 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8622 regs[i].wasconst&=~(1<<hr);
8623 regs[i].isconst&=~(1<<hr);
8624 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8625 branch_regs[i].wasdirty&=~(1<<hr);
8626 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8627 branch_regs[i].regmap[hr]=f_regmap[hr];
8628 branch_regs[i].dirty&=~(1<<hr);
8629 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8630 branch_regs[i].wasconst&=~(1<<hr);
8631 branch_regs[i].isconst&=~(1<<hr);
8632 if (!is_ujump(i)) {
8633 regmap_pre[i+2][hr]=f_regmap[hr];
8634 regs[i+2].wasdirty&=~(1<<hr);
8635 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8636 }
8637 }
8638 }
8639 for(k=t;k<j;k++) {
8640 // Alloc register clean at beginning of loop,
8641 // but may dirty it in pass 6
8642 regs[k].regmap_entry[hr]=f_regmap[hr];
8643 regs[k].regmap[hr]=f_regmap[hr];
8644 regs[k].dirty&=~(1<<hr);
8645 regs[k].wasconst&=~(1<<hr);
8646 regs[k].isconst&=~(1<<hr);
8647 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP) {
8648 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8649 branch_regs[k].regmap[hr]=f_regmap[hr];
8650 branch_regs[k].dirty&=~(1<<hr);
8651 branch_regs[k].wasconst&=~(1<<hr);
8652 branch_regs[k].isconst&=~(1<<hr);
8653 if (!is_ujump(k)) {
8654 regmap_pre[k+2][hr]=f_regmap[hr];
8655 regs[k+2].wasdirty&=~(1<<hr);
8656 }
8657 }
8658 else
8659 {
8660 regmap_pre[k+1][hr]=f_regmap[hr];
8661 regs[k+1].wasdirty&=~(1<<hr);
8662 }
8663 }
8664 if(regs[j].regmap[hr]==f_regmap[hr])
8665 regs[j].regmap_entry[hr]=f_regmap[hr];
8666 break;
8667 }
8668 if(j==i) break;
8669 if(regs[j].regmap[hr]>=0)
8670 break;
8671 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8672 //printf("no-match due to different register\n");
8673 break;
8674 }
8675 if (is_ujump(j))
8676 {
8677 // Stop on unconditional branch
8678 break;
8679 }
8680 if(itype[j]==CJUMP||itype[j]==SJUMP)
8681 {
8682 if(ooo[j]) {
8683 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8684 break;
8685 }else{
8686 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8687 break;
8688 }
8689 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8690 //printf("no-match due to different register (branch)\n");
8691 break;
8692 }
8693 }
8694 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8695 //printf("No free regs for store %x\n",start+j*4);
8696 break;
8697 }
8698 assert(f_regmap[hr]<64);
8699 }
8700 }
8701 }
8702 }
8703 }
8704 }else{
8705 // Non branch or undetermined branch target
8706 for(hr=0;hr<HOST_REGS;hr++)
8707 {
8708 if(hr!=EXCLUDE_REG) {
8709 if(regs[i].regmap[hr]>=0) {
8710 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8711 // dealloc old register
8712 int n;
8713 for(n=0;n<HOST_REGS;n++)
8714 {
8715 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8716 }
8717 // and alloc new one
8718 f_regmap[hr]=regs[i].regmap[hr];
8719 }
8720 }
8721 }
8722 }
8723 // Try to restore cycle count at branch targets
8724 if(bt[i]) {
8725 for(j=i;j<slen-1;j++) {
8726 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8727 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8728 //printf("no free regs for store %x\n",start+j*4);
8729 break;
8730 }
8731 }
8732 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8733 int k=i;
8734 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8735 while(k<j) {
8736 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8737 regs[k].regmap[HOST_CCREG]=CCREG;
8738 regmap_pre[k+1][HOST_CCREG]=CCREG;
8739 regs[k+1].wasdirty|=1<<HOST_CCREG;
8740 regs[k].dirty|=1<<HOST_CCREG;
8741 regs[k].wasconst&=~(1<<HOST_CCREG);
8742 regs[k].isconst&=~(1<<HOST_CCREG);
8743 k++;
8744 }
8745 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8746 }
8747 // Work backwards from the branch target
8748 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8749 {
8750 //printf("Extend backwards\n");
8751 int k;
8752 k=i;
8753 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8754 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8755 //printf("no free regs for store %x\n",start+(k-1)*4);
8756 break;
8757 }
8758 k--;
8759 }
8760 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8761 //printf("Extend CC, %x ->\n",start+k*4);
8762 while(k<=i) {
8763 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8764 regs[k].regmap[HOST_CCREG]=CCREG;
8765 regmap_pre[k+1][HOST_CCREG]=CCREG;
8766 regs[k+1].wasdirty|=1<<HOST_CCREG;
8767 regs[k].dirty|=1<<HOST_CCREG;
8768 regs[k].wasconst&=~(1<<HOST_CCREG);
8769 regs[k].isconst&=~(1<<HOST_CCREG);
8770 k++;
8771 }
8772 }
8773 else {
8774 //printf("Fail Extend CC, %x ->\n",start+k*4);
8775 }
8776 }
8777 }
8778 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
8779 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
8780 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1)
8781 {
8782 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8783 }
8784 }
8785 }
8786
8787 // This allocates registers (if possible) one instruction prior
8788 // to use, which can avoid a load-use penalty on certain CPUs.
8789 for(i=0;i<slen-1;i++)
8790 {
8791 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP))
8792 {
8793 if(!bt[i+1])
8794 {
8795 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
8796 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
8797 {
8798 if(rs1[i+1]) {
8799 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
8800 {
8801 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8802 {
8803 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8804 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8805 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8806 regs[i].isconst&=~(1<<hr);
8807 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8808 constmap[i][hr]=constmap[i+1][hr];
8809 regs[i+1].wasdirty&=~(1<<hr);
8810 regs[i].dirty&=~(1<<hr);
8811 }
8812 }
8813 }
8814 if(rs2[i+1]) {
8815 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
8816 {
8817 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8818 {
8819 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8820 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8821 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8822 regs[i].isconst&=~(1<<hr);
8823 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8824 constmap[i][hr]=constmap[i+1][hr];
8825 regs[i+1].wasdirty&=~(1<<hr);
8826 regs[i].dirty&=~(1<<hr);
8827 }
8828 }
8829 }
8830 // Preload target address for load instruction (non-constant)
8831 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8832 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8833 {
8834 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8835 {
8836 regs[i].regmap[hr]=rs1[i+1];
8837 regmap_pre[i+1][hr]=rs1[i+1];
8838 regs[i+1].regmap_entry[hr]=rs1[i+1];
8839 regs[i].isconst&=~(1<<hr);
8840 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8841 constmap[i][hr]=constmap[i+1][hr];
8842 regs[i+1].wasdirty&=~(1<<hr);
8843 regs[i].dirty&=~(1<<hr);
8844 }
8845 }
8846 }
8847 // Load source into target register
8848 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8849 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
8850 {
8851 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8852 {
8853 regs[i].regmap[hr]=rs1[i+1];
8854 regmap_pre[i+1][hr]=rs1[i+1];
8855 regs[i+1].regmap_entry[hr]=rs1[i+1];
8856 regs[i].isconst&=~(1<<hr);
8857 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8858 constmap[i][hr]=constmap[i+1][hr];
8859 regs[i+1].wasdirty&=~(1<<hr);
8860 regs[i].dirty&=~(1<<hr);
8861 }
8862 }
8863 }
8864 // Address for store instruction (non-constant)
8865 if(itype[i+1]==STORE||itype[i+1]==STORELR
8866 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8867 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8868 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8869 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8870 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
8871 assert(hr>=0);
8872 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8873 {
8874 regs[i].regmap[hr]=rs1[i+1];
8875 regmap_pre[i+1][hr]=rs1[i+1];
8876 regs[i+1].regmap_entry[hr]=rs1[i+1];
8877 regs[i].isconst&=~(1<<hr);
8878 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8879 constmap[i][hr]=constmap[i+1][hr];
8880 regs[i+1].wasdirty&=~(1<<hr);
8881 regs[i].dirty&=~(1<<hr);
8882 }
8883 }
8884 }
8885 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8886 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
8887 int nr;
8888 hr=get_reg(regs[i+1].regmap,FTEMP);
8889 assert(hr>=0);
8890 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8891 {
8892 regs[i].regmap[hr]=rs1[i+1];
8893 regmap_pre[i+1][hr]=rs1[i+1];
8894 regs[i+1].regmap_entry[hr]=rs1[i+1];
8895 regs[i].isconst&=~(1<<hr);
8896 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8897 constmap[i][hr]=constmap[i+1][hr];
8898 regs[i+1].wasdirty&=~(1<<hr);
8899 regs[i].dirty&=~(1<<hr);
8900 }
8901 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8902 {
8903 // move it to another register
8904 regs[i+1].regmap[hr]=-1;
8905 regmap_pre[i+2][hr]=-1;
8906 regs[i+1].regmap[nr]=FTEMP;
8907 regmap_pre[i+2][nr]=FTEMP;
8908 regs[i].regmap[nr]=rs1[i+1];
8909 regmap_pre[i+1][nr]=rs1[i+1];
8910 regs[i+1].regmap_entry[nr]=rs1[i+1];
8911 regs[i].isconst&=~(1<<nr);
8912 regs[i+1].isconst&=~(1<<nr);
8913 regs[i].dirty&=~(1<<nr);
8914 regs[i+1].wasdirty&=~(1<<nr);
8915 regs[i+1].dirty&=~(1<<nr);
8916 regs[i+2].wasdirty&=~(1<<nr);
8917 }
8918 }
8919 }
8920 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
8921 if(itype[i+1]==LOAD)
8922 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
8923 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8924 hr=get_reg(regs[i+1].regmap,FTEMP);
8925 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8926 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8927 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
8928 }
8929 if(hr>=0&&regs[i].regmap[hr]<0) {
8930 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
8931 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8932 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8933 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8934 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8935 regs[i].isconst&=~(1<<hr);
8936 regs[i+1].wasdirty&=~(1<<hr);
8937 regs[i].dirty&=~(1<<hr);
8938 }
8939 }
8940 }
8941 }
8942 }
8943 }
8944 }
8945
8946 /* Pass 6 - Optimize clean/dirty state */
8947 clean_registers(0,slen-1,1);
8948
8949 /* Pass 7 - Identify 32-bit registers */
8950 for (i=slen-1;i>=0;i--)
8951 {
8952 if(itype[i]==CJUMP||itype[i]==SJUMP)
8953 {
8954 // Conditional branch
8955 if((source[i]>>16)!=0x1000&&i<slen-2) {
8956 // Mark this address as a branch target since it may be called
8957 // upon return from interrupt
8958 bt[i+2]=1;
8959 }
8960 }
8961 }
8962
8963 if(itype[slen-1]==SPAN) {
8964 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
8965 }
8966
8967#ifdef DISASM
8968 /* Debug/disassembly */
8969 for(i=0;i<slen;i++)
8970 {
8971 printf("U:");
8972 int r;
8973 for(r=1;r<=CCREG;r++) {
8974 if((unneeded_reg[i]>>r)&1) {
8975 if(r==HIREG) printf(" HI");
8976 else if(r==LOREG) printf(" LO");
8977 else printf(" r%d",r);
8978 }
8979 }
8980 printf("\n");
8981 #if defined(__i386__) || defined(__x86_64__)
8982 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
8983 #endif
8984 #ifdef __arm__
8985 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
8986 #endif
8987 #if defined(__i386__) || defined(__x86_64__)
8988 printf("needs: ");
8989 if(needed_reg[i]&1) printf("eax ");
8990 if((needed_reg[i]>>1)&1) printf("ecx ");
8991 if((needed_reg[i]>>2)&1) printf("edx ");
8992 if((needed_reg[i]>>3)&1) printf("ebx ");
8993 if((needed_reg[i]>>5)&1) printf("ebp ");
8994 if((needed_reg[i]>>6)&1) printf("esi ");
8995 if((needed_reg[i]>>7)&1) printf("edi ");
8996 printf("\n");
8997 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
8998 printf("dirty: ");
8999 if(regs[i].wasdirty&1) printf("eax ");
9000 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9001 if((regs[i].wasdirty>>2)&1) printf("edx ");
9002 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9003 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9004 if((regs[i].wasdirty>>6)&1) printf("esi ");
9005 if((regs[i].wasdirty>>7)&1) printf("edi ");
9006 #endif
9007 #ifdef __arm__
9008 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9009 printf("dirty: ");
9010 if(regs[i].wasdirty&1) printf("r0 ");
9011 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9012 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9013 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9014 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9015 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9016 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9017 if((regs[i].wasdirty>>7)&1) printf("r7 ");
9018 if((regs[i].wasdirty>>8)&1) printf("r8 ");
9019 if((regs[i].wasdirty>>9)&1) printf("r9 ");
9020 if((regs[i].wasdirty>>10)&1) printf("r10 ");
9021 if((regs[i].wasdirty>>12)&1) printf("r12 ");
9022 #endif
9023 printf("\n");
9024 disassemble_inst(i);
9025 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9026 #if defined(__i386__) || defined(__x86_64__)
9027 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9028 if(regs[i].dirty&1) printf("eax ");
9029 if((regs[i].dirty>>1)&1) printf("ecx ");
9030 if((regs[i].dirty>>2)&1) printf("edx ");
9031 if((regs[i].dirty>>3)&1) printf("ebx ");
9032 if((regs[i].dirty>>5)&1) printf("ebp ");
9033 if((regs[i].dirty>>6)&1) printf("esi ");
9034 if((regs[i].dirty>>7)&1) printf("edi ");
9035 #endif
9036 #ifdef __arm__
9037 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9038 if(regs[i].dirty&1) printf("r0 ");
9039 if((regs[i].dirty>>1)&1) printf("r1 ");
9040 if((regs[i].dirty>>2)&1) printf("r2 ");
9041 if((regs[i].dirty>>3)&1) printf("r3 ");
9042 if((regs[i].dirty>>4)&1) printf("r4 ");
9043 if((regs[i].dirty>>5)&1) printf("r5 ");
9044 if((regs[i].dirty>>6)&1) printf("r6 ");
9045 if((regs[i].dirty>>7)&1) printf("r7 ");
9046 if((regs[i].dirty>>8)&1) printf("r8 ");
9047 if((regs[i].dirty>>9)&1) printf("r9 ");
9048 if((regs[i].dirty>>10)&1) printf("r10 ");
9049 if((regs[i].dirty>>12)&1) printf("r12 ");
9050 #endif
9051 printf("\n");
9052 if(regs[i].isconst) {
9053 printf("constants: ");
9054 #if defined(__i386__) || defined(__x86_64__)
9055 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
9056 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
9057 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
9058 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
9059 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
9060 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
9061 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
9062 #endif
9063 #if defined(__arm__) || defined(__aarch64__)
9064 int r;
9065 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
9066 if ((regs[i].isconst >> r) & 1)
9067 printf(" r%d=%x", r, (u_int)constmap[i][r]);
9068 #endif
9069 printf("\n");
9070 }
9071 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
9072 #if defined(__i386__) || defined(__x86_64__)
9073 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9074 if(branch_regs[i].dirty&1) printf("eax ");
9075 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9076 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9077 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9078 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9079 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9080 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9081 #endif
9082 #ifdef __arm__
9083 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9084 if(branch_regs[i].dirty&1) printf("r0 ");
9085 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9086 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9087 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9088 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9089 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9090 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9091 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9092 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9093 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9094 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9095 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9096 #endif
9097 }
9098 }
9099#endif // DISASM
9100
9101 /* Pass 8 - Assembly */
9102 linkcount=0;stubcount=0;
9103 ds=0;is_delayslot=0;
9104 u_int dirty_pre=0;
9105 void *beginning=start_block();
9106 if((u_int)addr&1) {
9107 ds=1;
9108 pagespan_ds();
9109 }
9110 void *instr_addr0_override = NULL;
9111
9112 if (start == 0x80030000) {
9113 // nasty hack for the fastbios thing
9114 // override block entry to this code
9115 instr_addr0_override = out;
9116 emit_movimm(start,0);
9117 // abuse io address var as a flag that we
9118 // have already returned here once
9119 emit_readword(&address,1);
9120 emit_writeword(0,&pcaddr);
9121 emit_writeword(0,&address);
9122 emit_cmp(0,1);
9123 #ifdef __aarch64__
9124 emit_jeq(out + 4*2);
9125 emit_far_jump(new_dyna_leave);
9126 #else
9127 emit_jne(new_dyna_leave);
9128 #endif
9129 }
9130 for(i=0;i<slen;i++)
9131 {
9132 //if(ds) printf("ds: ");
9133 disassemble_inst(i);
9134 if(ds) {
9135 ds=0; // Skip delay slot
9136 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
9137 instr_addr[i] = NULL;
9138 } else {
9139 speculate_register_values(i);
9140 #ifndef DESTRUCTIVE_WRITEBACK
9141 if (i < 2 || !is_ujump(i-2))
9142 {
9143 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9144 }
9145 if((itype[i]==CJUMP||itype[i]==SJUMP)&&!likely[i]) {
9146 dirty_pre=branch_regs[i].dirty;
9147 }else{
9148 dirty_pre=regs[i].dirty;
9149 }
9150 #endif
9151 // write back
9152 if (i < 2 || !is_ujump(i-2))
9153 {
9154 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9155 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9156 }
9157 // branch target entry point
9158 instr_addr[i] = out;
9159 assem_debug("<->\n");
9160 drc_dbg_emit_do_cmp(i);
9161
9162 // load regs
9163 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9164 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9165 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i],rs2[i]);
9166 address_generation(i,&regs[i],regs[i].regmap_entry);
9167 load_consts(regmap_pre[i],regs[i].regmap,i);
9168 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP)
9169 {
9170 // Load the delay slot registers if necessary
9171 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
9172 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
9173 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
9174 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
9175 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
9176 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9177 }
9178 else if(i+1<slen)
9179 {
9180 // Preload registers for following instruction
9181 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
9182 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
9183 load_regs(regs[i].regmap_entry,regs[i].regmap,rs1[i+1],rs1[i+1]);
9184 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
9185 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
9186 load_regs(regs[i].regmap_entry,regs[i].regmap,rs2[i+1],rs2[i+1]);
9187 }
9188 // TODO: if(is_ooo(i)) address_generation(i+1);
9189 if(itype[i]==CJUMP)
9190 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9191 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
9192 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9193 // assemble
9194 switch(itype[i]) {
9195 case ALU:
9196 alu_assemble(i,&regs[i]);break;
9197 case IMM16:
9198 imm16_assemble(i,&regs[i]);break;
9199 case SHIFT:
9200 shift_assemble(i,&regs[i]);break;
9201 case SHIFTIMM:
9202 shiftimm_assemble(i,&regs[i]);break;
9203 case LOAD:
9204 load_assemble(i,&regs[i]);break;
9205 case LOADLR:
9206 loadlr_assemble(i,&regs[i]);break;
9207 case STORE:
9208 store_assemble(i,&regs[i]);break;
9209 case STORELR:
9210 storelr_assemble(i,&regs[i]);break;
9211 case COP0:
9212 cop0_assemble(i,&regs[i]);break;
9213 case COP1:
9214 cop1_assemble(i,&regs[i]);break;
9215 case C1LS:
9216 c1ls_assemble(i,&regs[i]);break;
9217 case COP2:
9218 cop2_assemble(i,&regs[i]);break;
9219 case C2LS:
9220 c2ls_assemble(i,&regs[i]);break;
9221 case C2OP:
9222 c2op_assemble(i,&regs[i]);break;
9223 case MULTDIV:
9224 multdiv_assemble(i,&regs[i]);
9225 multdiv_prepare_stall(i,&regs[i]);
9226 break;
9227 case MOV:
9228 mov_assemble(i,&regs[i]);break;
9229 case SYSCALL:
9230 syscall_assemble(i,&regs[i]);break;
9231 case HLECALL:
9232 hlecall_assemble(i,&regs[i]);break;
9233 case INTCALL:
9234 intcall_assemble(i,&regs[i]);break;
9235 case UJUMP:
9236 ujump_assemble(i,&regs[i]);ds=1;break;
9237 case RJUMP:
9238 rjump_assemble(i,&regs[i]);ds=1;break;
9239 case CJUMP:
9240 cjump_assemble(i,&regs[i]);ds=1;break;
9241 case SJUMP:
9242 sjump_assemble(i,&regs[i]);ds=1;break;
9243 case SPAN:
9244 pagespan_assemble(i,&regs[i]);break;
9245 }
9246 if (is_ujump(i))
9247 literal_pool(1024);
9248 else
9249 literal_pool_jumpover(256);
9250 }
9251 }
9252 //assert(is_ujump(i-2));
9253 // If the block did not end with an unconditional branch,
9254 // add a jump to the next instruction.
9255 if(i>1) {
9256 if(!is_ujump(i-2)&&itype[i-1]!=SPAN) {
9257 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
9258 assert(i==slen);
9259 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP) {
9260 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9261 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9262 emit_loadreg(CCREG,HOST_CCREG);
9263 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9264 }
9265 else if(!likely[i-2])
9266 {
9267 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9268 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9269 }
9270 else
9271 {
9272 store_regs_bt(regs[i-2].regmap,regs[i-2].dirty,start+i*4);
9273 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
9274 }
9275 add_to_linker(out,start+i*4,0);
9276 emit_jmp(0);
9277 }
9278 }
9279 else
9280 {
9281 assert(i>0);
9282 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP);
9283 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9284 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9285 emit_loadreg(CCREG,HOST_CCREG);
9286 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
9287 add_to_linker(out,start+i*4,0);
9288 emit_jmp(0);
9289 }
9290
9291 // TODO: delay slot stubs?
9292 // Stubs
9293 for(i=0;i<stubcount;i++)
9294 {
9295 switch(stubs[i].type)
9296 {
9297 case LOADB_STUB:
9298 case LOADH_STUB:
9299 case LOADW_STUB:
9300 case LOADD_STUB:
9301 case LOADBU_STUB:
9302 case LOADHU_STUB:
9303 do_readstub(i);break;
9304 case STOREB_STUB:
9305 case STOREH_STUB:
9306 case STOREW_STUB:
9307 case STORED_STUB:
9308 do_writestub(i);break;
9309 case CC_STUB:
9310 do_ccstub(i);break;
9311 case INVCODE_STUB:
9312 do_invstub(i);break;
9313 case FP_STUB:
9314 do_cop1stub(i);break;
9315 case STORELR_STUB:
9316 do_unalignedwritestub(i);break;
9317 }
9318 }
9319
9320 if (instr_addr0_override)
9321 instr_addr[0] = instr_addr0_override;
9322
9323 /* Pass 9 - Linker */
9324 for(i=0;i<linkcount;i++)
9325 {
9326 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9327 literal_pool(64);
9328 if (!link_addr[i].ext)
9329 {
9330 void *stub = out;
9331 void *addr = check_addr(link_addr[i].target);
9332 emit_extjump(link_addr[i].addr, link_addr[i].target);
9333 if (addr) {
9334 set_jump_target(link_addr[i].addr, addr);
9335 add_link(link_addr[i].target,stub);
9336 }
9337 else
9338 set_jump_target(link_addr[i].addr, stub);
9339 }
9340 else
9341 {
9342 // Internal branch
9343 int target=(link_addr[i].target-start)>>2;
9344 assert(target>=0&&target<slen);
9345 assert(instr_addr[target]);
9346 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9347 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9348 //#else
9349 set_jump_target(link_addr[i].addr, instr_addr[target]);
9350 //#endif
9351 }
9352 }
9353 // External Branch Targets (jump_in)
9354 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
9355 for(i=0;i<slen;i++)
9356 {
9357 if(bt[i]||i==0)
9358 {
9359 if(instr_addr[i]) // TODO - delay slots (=null)
9360 {
9361 u_int vaddr=start+i*4;
9362 u_int page=get_page(vaddr);
9363 u_int vpage=get_vpage(vaddr);
9364 literal_pool(256);
9365 {
9366 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9367 assem_debug("jump_in: %x\n",start+i*4);
9368 ll_add(jump_dirty+vpage,vaddr,out);
9369 void *entry_point = do_dirty_stub(i);
9370 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9371 // If there was an existing entry in the hash table,
9372 // replace it with the new address.
9373 // Don't add new entries. We'll insert the
9374 // ones that actually get used in check_addr().
9375 struct ht_entry *ht_bin = hash_table_get(vaddr);
9376 if (ht_bin->vaddr[0] == vaddr)
9377 ht_bin->tcaddr[0] = entry_point;
9378 if (ht_bin->vaddr[1] == vaddr)
9379 ht_bin->tcaddr[1] = entry_point;
9380 }
9381 }
9382 }
9383 }
9384 // Write out the literal pool if necessary
9385 literal_pool(0);
9386 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9387 // Align code
9388 if(((u_int)out)&7) emit_addnop(13);
9389 #endif
9390 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9391 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9392 memcpy(copy,source,slen*4);
9393 copy+=slen*4;
9394
9395 end_block(beginning);
9396
9397 // If we're within 256K of the end of the buffer,
9398 // start over from the beginning. (Is 256K enough?)
9399 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9400 out = ndrc->translation_cache;
9401
9402 // Trap writes to any of the pages we compiled
9403 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9404 invalid_code[i]=0;
9405 }
9406 inv_code_start=inv_code_end=~0;
9407
9408 // for PCSX we need to mark all mirrors too
9409 if(get_page(start)<(RAM_SIZE>>12))
9410 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9411 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9412 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9413 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9414
9415 /* Pass 10 - Free memory by expiring oldest blocks */
9416
9417 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9418 while(expirep!=end)
9419 {
9420 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9421 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
9422 uintptr_t base_offs_s = base_offs >> shift;
9423 inv_debug("EXP: Phase %d\n",expirep);
9424 switch((expirep>>11)&3)
9425 {
9426 case 0:
9427 // Clear jump_in and jump_dirty
9428 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
9429 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
9430 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
9431 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
9432 break;
9433 case 1:
9434 // Clear pointers
9435 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
9436 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
9437 break;
9438 case 2:
9439 // Clear hash table
9440 for(i=0;i<32;i++) {
9441 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9442 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
9443 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9444 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9445 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9446 ht_bin->vaddr[1] = -1;
9447 ht_bin->tcaddr[1] = NULL;
9448 }
9449 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
9450 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9451 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9452 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9453 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9454 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9455 ht_bin->vaddr[1] = -1;
9456 ht_bin->tcaddr[1] = NULL;
9457 }
9458 }
9459 break;
9460 case 3:
9461 // Clear jump_out
9462 if((expirep&2047)==0)
9463 do_clear_cache();
9464 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
9465 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
9466 break;
9467 }
9468 expirep=(expirep+1)&65535;
9469 }
9470 return 0;
9471}
9472
9473// vim:shiftwidth=2:expandtab