drc: use optimized get_reg
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32
33#include "new_dynarec_config.h"
34#include "../psxhle.h"
35#include "../psxinterpreter.h"
36#include "../gte.h"
37#include "emu_if.h" // emulator interface
38#include "arm_features.h"
39
40#define noinline __attribute__((noinline,noclone))
41#ifndef ARRAY_SIZE
42#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
43#endif
44#ifndef min
45#define min(a, b) ((b) < (a) ? (b) : (a))
46#endif
47#ifndef max
48#define max(a, b) ((b) > (a) ? (b) : (a))
49#endif
50
51//#define DISASM
52//#define ASSEM_PRINT
53//#define REG_ALLOC_PRINT
54
55#ifdef ASSEM_PRINT
56#define assem_debug printf
57#else
58#define assem_debug(...)
59#endif
60//#define inv_debug printf
61#define inv_debug(...)
62
63#ifdef __i386__
64#include "assem_x86.h"
65#endif
66#ifdef __x86_64__
67#include "assem_x64.h"
68#endif
69#ifdef __arm__
70#include "assem_arm.h"
71#endif
72#ifdef __aarch64__
73#include "assem_arm64.h"
74#endif
75
76#define RAM_SIZE 0x200000
77#define MAXBLOCK 4096
78#define MAX_OUTPUT_BLOCK_SIZE 262144
79
80#ifdef VITA
81// apparently Vita has a 16MB limit, so either we cut tc in half,
82// or use this hack (it's a hack because tc size was designed to be power-of-2)
83#define TC_REDUCE_BYTES 4096
84#else
85#define TC_REDUCE_BYTES 0
86#endif
87
88struct ndrc_mem
89{
90 u_char translation_cache[(1 << TARGET_SIZE_2) - TC_REDUCE_BYTES];
91 struct
92 {
93 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
94 const void *f[2048 / sizeof(void *)];
95 } tramp;
96};
97
98#ifdef BASE_ADDR_DYNAMIC
99static struct ndrc_mem *ndrc;
100#else
101static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
102static struct ndrc_mem *ndrc = &ndrc_;
103#endif
104
105// stubs
106enum stub_type {
107 CC_STUB = 1,
108 FP_STUB = 2,
109 LOADB_STUB = 3,
110 LOADH_STUB = 4,
111 LOADW_STUB = 5,
112 LOADD_STUB = 6,
113 LOADBU_STUB = 7,
114 LOADHU_STUB = 8,
115 STOREB_STUB = 9,
116 STOREH_STUB = 10,
117 STOREW_STUB = 11,
118 STORED_STUB = 12,
119 STORELR_STUB = 13,
120 INVCODE_STUB = 14,
121};
122
123// regmap_pre[i] - regs before [i] insn starts; dirty things here that
124// don't match .regmap will be written back
125// [i].regmap_entry - regs that must be set up if someone jumps here
126// [i].regmap - regs [i] insn will read/(over)write
127// branch_regs[i].* - same as above but for branches, takes delay slot into account
128struct regstat
129{
130 signed char regmap_entry[HOST_REGS];
131 signed char regmap[HOST_REGS];
132 uint64_t wasdirty;
133 uint64_t dirty;
134 uint64_t u;
135 u_int wasconst; // before; for example 'lw r2, (r2)' wasconst is true
136 u_int isconst; // ... but isconst is false when r2 is known
137 u_int loadedconst; // host regs that have constants loaded
138 u_int waswritten; // MIPS regs that were used as store base before
139};
140
141// note: asm depends on this layout
142struct ll_entry
143{
144 u_int vaddr;
145 u_int reg_sv_flags;
146 void *addr;
147 struct ll_entry *next;
148};
149
150struct ht_entry
151{
152 u_int vaddr[2];
153 void *tcaddr[2];
154};
155
156struct code_stub
157{
158 enum stub_type type;
159 void *addr;
160 void *retaddr;
161 u_int a;
162 uintptr_t b;
163 uintptr_t c;
164 u_int d;
165 u_int e;
166};
167
168struct link_entry
169{
170 void *addr;
171 u_int target;
172 u_int ext;
173};
174
175static struct decoded_insn
176{
177 u_char itype;
178 u_char opcode;
179 u_char opcode2;
180 u_char rs1;
181 u_char rs2;
182 u_char rt1;
183 u_char rt2;
184 u_char lt1;
185 u_char bt:1;
186 u_char ooo:1;
187 u_char is_ds:1;
188 u_char is_jump:1;
189 u_char is_ujump:1;
190 u_char is_load:1;
191 u_char is_store:1;
192} dops[MAXBLOCK];
193
194 // used by asm:
195 u_char *out;
196 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
197 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
198 struct ll_entry *jump_dirty[4096];
199
200 static struct ll_entry *jump_out[4096];
201 static u_int start;
202 static u_int *source;
203 static char insn[MAXBLOCK][10];
204 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
205 static uint64_t gte_rt[MAXBLOCK];
206 static uint64_t gte_unneeded[MAXBLOCK];
207 static u_int smrv[32]; // speculated MIPS register values
208 static u_int smrv_strong; // mask or regs that are likely to have correct values
209 static u_int smrv_weak; // same, but somewhat less likely
210 static u_int smrv_strong_next; // same, but after current insn executes
211 static u_int smrv_weak_next;
212 static int imm[MAXBLOCK];
213 static u_int ba[MAXBLOCK];
214 static uint64_t unneeded_reg[MAXBLOCK];
215 static uint64_t branch_unneeded_reg[MAXBLOCK];
216 // see 'struct regstat' for a description
217 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
218 // contains 'real' consts at [i] insn, but may differ from what's actually
219 // loaded in host reg as 'final' value is always loaded, see get_final_value()
220 static uint32_t current_constmap[HOST_REGS];
221 static uint32_t constmap[MAXBLOCK][HOST_REGS];
222 static struct regstat regs[MAXBLOCK];
223 static struct regstat branch_regs[MAXBLOCK];
224 static signed char minimum_free_regs[MAXBLOCK];
225 static u_int needed_reg[MAXBLOCK];
226 static u_int wont_dirty[MAXBLOCK];
227 static u_int will_dirty[MAXBLOCK];
228 static int ccadj[MAXBLOCK];
229 static int slen;
230 static void *instr_addr[MAXBLOCK];
231 static struct link_entry link_addr[MAXBLOCK];
232 static int linkcount;
233 static struct code_stub stubs[MAXBLOCK*3];
234 static int stubcount;
235 static u_int literals[1024][2];
236 static int literalcount;
237 static int is_delayslot;
238 static char shadow[1048576] __attribute__((aligned(16)));
239 static void *copy;
240 static int expirep;
241 static u_int stop_after_jal;
242 static u_int f1_hack;
243
244 int new_dynarec_hacks;
245 int new_dynarec_hacks_pergame;
246 int new_dynarec_hacks_old;
247 int new_dynarec_did_compile;
248
249 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
250
251 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
252 extern int last_count; // last absolute target, often = next_interupt
253 extern int pcaddr;
254 extern int pending_exception;
255 extern int branch_target;
256 extern uintptr_t ram_offset;
257 extern uintptr_t mini_ht[32][2];
258 extern u_char restore_candidate[512];
259
260 /* registers that may be allocated */
261 /* 1-31 gpr */
262#define LOREG 32 // lo
263#define HIREG 33 // hi
264//#define FSREG 34 // FPU status (FCSR)
265#define CSREG 35 // Coprocessor status
266#define CCREG 36 // Cycle count
267#define INVCP 37 // Pointer to invalid_code
268//#define MMREG 38 // Pointer to memory_map
269#define ROREG 39 // ram offset (if rdram!=0x80000000)
270#define TEMPREG 40
271#define FTEMP 40 // FPU temporary register
272#define PTEMP 41 // Prefetch temporary register
273//#define TLREG 42 // TLB mapping offset
274#define RHASH 43 // Return address hash
275#define RHTBL 44 // Return address hash table address
276#define RTEMP 45 // JR/JALR address register
277#define MAXREG 45
278#define AGEN1 46 // Address generation temporary register
279//#define AGEN2 47 // Address generation temporary register
280//#define MGEN1 48 // Maptable address generation temporary register
281//#define MGEN2 49 // Maptable address generation temporary register
282#define BTREG 50 // Branch target temporary register
283
284 /* instruction types */
285#define NOP 0 // No operation
286#define LOAD 1 // Load
287#define STORE 2 // Store
288#define LOADLR 3 // Unaligned load
289#define STORELR 4 // Unaligned store
290#define MOV 5 // Move
291#define ALU 6 // Arithmetic/logic
292#define MULTDIV 7 // Multiply/divide
293#define SHIFT 8 // Shift by register
294#define SHIFTIMM 9// Shift by immediate
295#define IMM16 10 // 16-bit immediate
296#define RJUMP 11 // Unconditional jump to register
297#define UJUMP 12 // Unconditional jump
298#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
299#define SJUMP 14 // Conditional branch (regimm format)
300#define COP0 15 // Coprocessor 0
301#define COP1 16 // Coprocessor 1
302#define C1LS 17 // Coprocessor 1 load/store
303//#define FJUMP 18 // Conditional branch (floating point)
304//#define FLOAT 19 // Floating point unit
305//#define FCONV 20 // Convert integer to float
306//#define FCOMP 21 // Floating point compare (sets FSREG)
307#define SYSCALL 22// SYSCALL,BREAK
308#define OTHER 23 // Other
309#define SPAN 24 // Branch/delay slot spans 2 pages
310#define NI 25 // Not implemented
311#define HLECALL 26// PCSX fake opcodes for HLE
312#define COP2 27 // Coprocessor 2 move
313#define C2LS 28 // Coprocessor 2 load/store
314#define C2OP 29 // Coprocessor 2 operation
315#define INTCALL 30// Call interpreter to handle rare corner cases
316
317 /* branch codes */
318#define TAKEN 1
319#define NOTTAKEN 2
320#define NULLDS 3
321
322#define DJT_1 (void *)1l // no function, just a label in assem_debug log
323#define DJT_2 (void *)2l
324
325// asm linkage
326int new_recompile_block(u_int addr);
327void *get_addr_ht(u_int vaddr);
328void invalidate_block(u_int block);
329void invalidate_addr(u_int addr);
330void remove_hash(int vaddr);
331void dyna_linker();
332void dyna_linker_ds();
333void verify_code();
334void verify_code_ds();
335void cc_interrupt();
336void fp_exception();
337void fp_exception_ds();
338void jump_syscall (u_int u0, u_int u1, u_int pc);
339void jump_syscall_ds(u_int u0, u_int u1, u_int pc);
340void jump_break (u_int u0, u_int u1, u_int pc);
341void jump_break_ds(u_int u0, u_int u1, u_int pc);
342void jump_to_new_pc();
343void call_gteStall();
344void new_dyna_leave();
345
346// Needed by assembler
347static void wb_register(signed char r, const signed char regmap[], uint64_t dirty);
348static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty);
349static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr);
350static void load_all_regs(const signed char i_regmap[]);
351static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[]);
352static void load_regs_entry(int t);
353static void load_all_consts(const signed char regmap[], u_int dirty, int i);
354static u_int get_host_reglist(const signed char *regmap);
355
356static int verify_dirty(const u_int *ptr);
357static int get_final_value(int hr, int i, int *value);
358static void add_stub(enum stub_type type, void *addr, void *retaddr,
359 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
360static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
361 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
362static void add_to_linker(void *addr, u_int target, int ext);
363static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
364 int addr, int *offset_reg, int *addr_reg_override);
365static void *get_direct_memhandler(void *table, u_int addr,
366 enum stub_type type, uintptr_t *addr_host);
367static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
368static void pass_args(int a0, int a1);
369static void emit_far_jump(const void *f);
370static void emit_far_call(const void *f);
371
372#ifdef VITA
373#include <psp2/kernel/sysmem.h>
374static int sceBlock;
375// note: this interacts with RetroArch's Vita bootstrap code: bootstrap/vita/sbrk.c
376extern int getVMBlock();
377int _newlib_vm_size_user = sizeof(*ndrc);
378#endif
379
380static void mprotect_w_x(void *start, void *end, int is_x)
381{
382#ifdef NO_WRITE_EXEC
383 #if defined(VITA)
384 // *Open* enables write on all memory that was
385 // allocated by sceKernelAllocMemBlockForVM()?
386 if (is_x)
387 sceKernelCloseVMDomain();
388 else
389 sceKernelOpenVMDomain();
390 #else
391 u_long mstart = (u_long)start & ~4095ul;
392 u_long mend = (u_long)end;
393 if (mprotect((void *)mstart, mend - mstart,
394 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
395 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
396 #endif
397#endif
398}
399
400static void start_tcache_write(void *start, void *end)
401{
402 mprotect_w_x(start, end, 0);
403}
404
405static void end_tcache_write(void *start, void *end)
406{
407#if defined(__arm__) || defined(__aarch64__)
408 size_t len = (char *)end - (char *)start;
409 #if defined(__BLACKBERRY_QNX__)
410 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
411 #elif defined(__MACH__)
412 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
413 #elif defined(VITA)
414 sceKernelSyncVMDomain(sceBlock, start, len);
415 #elif defined(_3DS)
416 ctr_flush_invalidate_cache();
417 #elif defined(__aarch64__)
418 // as of 2021, __clear_cache() is still broken on arm64
419 // so here is a custom one :(
420 clear_cache_arm64(start, end);
421 #else
422 __clear_cache(start, end);
423 #endif
424 (void)len;
425#endif
426
427 mprotect_w_x(start, end, 1);
428}
429
430static void *start_block(void)
431{
432 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
433 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
434 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
435 start_tcache_write(out, end);
436 return out;
437}
438
439static void end_block(void *start)
440{
441 end_tcache_write(start, out);
442}
443
444// also takes care of w^x mappings when patching code
445static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
446
447static void mark_clear_cache(void *target)
448{
449 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
450 u_int mask = 1u << ((offset >> 12) & 31);
451 if (!(needs_clear_cache[offset >> 17] & mask)) {
452 char *start = (char *)((uintptr_t)target & ~4095l);
453 start_tcache_write(start, start + 4095);
454 needs_clear_cache[offset >> 17] |= mask;
455 }
456}
457
458// Clearing the cache is rather slow on ARM Linux, so mark the areas
459// that need to be cleared, and then only clear these areas once.
460static void do_clear_cache(void)
461{
462 int i, j;
463 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
464 {
465 u_int bitmap = needs_clear_cache[i];
466 if (!bitmap)
467 continue;
468 for (j = 0; j < 32; j++)
469 {
470 u_char *start, *end;
471 if (!(bitmap & (1<<j)))
472 continue;
473
474 start = ndrc->translation_cache + i*131072 + j*4096;
475 end = start + 4095;
476 for (j++; j < 32; j++) {
477 if (!(bitmap & (1<<j)))
478 break;
479 end += 4096;
480 }
481 end_tcache_write(start, end);
482 }
483 needs_clear_cache[i] = 0;
484 }
485}
486
487//#define DEBUG_CYCLE_COUNT 1
488
489#define NO_CYCLE_PENALTY_THR 12
490
491int cycle_multiplier = CYCLE_MULT_DEFAULT; // 100 for 1.0
492int cycle_multiplier_override;
493int cycle_multiplier_old;
494static int cycle_multiplier_active;
495
496static int CLOCK_ADJUST(int x)
497{
498 int m = cycle_multiplier_active;
499 int s = (x >> 31) | 1;
500 return (x * m + s * 50) / 100;
501}
502
503static int ds_writes_rjump_rs(int i)
504{
505 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
506}
507
508static u_int get_page(u_int vaddr)
509{
510 u_int page=vaddr&~0xe0000000;
511 if (page < 0x1000000)
512 page &= ~0x0e00000; // RAM mirrors
513 page>>=12;
514 if(page>2048) page=2048+(page&2047);
515 return page;
516}
517
518// no virtual mem in PCSX
519static u_int get_vpage(u_int vaddr)
520{
521 return get_page(vaddr);
522}
523
524static struct ht_entry *hash_table_get(u_int vaddr)
525{
526 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
527}
528
529static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
530{
531 ht_bin->vaddr[1] = ht_bin->vaddr[0];
532 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
533 ht_bin->vaddr[0] = vaddr;
534 ht_bin->tcaddr[0] = tcaddr;
535}
536
537// some messy ari64's code, seems to rely on unsigned 32bit overflow
538static int doesnt_expire_soon(void *tcaddr)
539{
540 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
541 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
542}
543
544// Get address from virtual address
545// This is called from the recompiled JR/JALR instructions
546void noinline *get_addr(u_int vaddr)
547{
548 u_int page=get_page(vaddr);
549 u_int vpage=get_vpage(vaddr);
550 struct ll_entry *head;
551 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
552 head=jump_in[page];
553 while(head!=NULL) {
554 if(head->vaddr==vaddr) {
555 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
556 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
557 return head->addr;
558 }
559 head=head->next;
560 }
561 head=jump_dirty[vpage];
562 while(head!=NULL) {
563 if(head->vaddr==vaddr) {
564 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
565 // Don't restore blocks which are about to expire from the cache
566 if (doesnt_expire_soon(head->addr))
567 if (verify_dirty(head->addr)) {
568 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
569 invalid_code[vaddr>>12]=0;
570 inv_code_start=inv_code_end=~0;
571 if(vpage<2048) {
572 restore_candidate[vpage>>3]|=1<<(vpage&7);
573 }
574 else restore_candidate[page>>3]|=1<<(page&7);
575 struct ht_entry *ht_bin = hash_table_get(vaddr);
576 if (ht_bin->vaddr[0] == vaddr)
577 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
578 else
579 hash_table_add(ht_bin, vaddr, head->addr);
580
581 return head->addr;
582 }
583 }
584 head=head->next;
585 }
586 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
587 int r=new_recompile_block(vaddr);
588 if(r==0) return get_addr(vaddr);
589 // generate an address error
590 Status|=2;
591 Cause=(vaddr<<31)|(4<<2);
592 EPC=(vaddr&1)?vaddr-5:vaddr;
593 BadVAddr=(vaddr&~1);
594 return get_addr_ht(0x80000080);
595}
596// Look up address in hash table first
597void *get_addr_ht(u_int vaddr)
598{
599 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
600 const struct ht_entry *ht_bin = hash_table_get(vaddr);
601 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
602 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
603 return get_addr(vaddr);
604}
605
606static void clear_all_regs(signed char regmap[])
607{
608 memset(regmap, -1, sizeof(regmap[0]) * HOST_REGS);
609}
610
611#if defined(__arm__) && defined(HAVE_ARMV6) && HOST_REGS == 13 && EXCLUDE_REG == 11
612
613extern signed char get_reg(const signed char regmap[], signed char r);
614
615#else
616
617static signed char get_reg(const signed char regmap[], signed char r)
618{
619 int hr;
620 for (hr = 0; hr < HOST_REGS; hr++) {
621 if (hr == EXCLUDE_REG)
622 continue;
623 if (regmap[hr] == r)
624 return hr;
625 }
626 return -1;
627}
628
629#endif
630
631static signed char get_reg_temp(const signed char regmap[])
632{
633 int hr;
634 for (hr = 0; hr < HOST_REGS; hr++) {
635 if (hr == EXCLUDE_REG)
636 continue;
637 if (regmap[hr] == (signed char)-1)
638 return hr;
639 }
640 return -1;
641}
642
643// Find a register that is available for two consecutive cycles
644static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
645{
646 int hr;
647 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
648 return -1;
649}
650
651static int count_free_regs(const signed char regmap[])
652{
653 int count=0;
654 int hr;
655 for(hr=0;hr<HOST_REGS;hr++)
656 {
657 if(hr!=EXCLUDE_REG) {
658 if(regmap[hr]<0) count++;
659 }
660 }
661 return count;
662}
663
664static void dirty_reg(struct regstat *cur, signed char reg)
665{
666 int hr;
667 if (!reg) return;
668 hr = get_reg(cur->regmap, reg);
669 if (hr >= 0)
670 cur->dirty |= 1<<hr;
671}
672
673static void set_const(struct regstat *cur, signed char reg, uint32_t value)
674{
675 int hr;
676 if (!reg) return;
677 hr = get_reg(cur->regmap, reg);
678 if (hr >= 0) {
679 cur->isconst |= 1<<hr;
680 current_constmap[hr] = value;
681 }
682}
683
684static void clear_const(struct regstat *cur, signed char reg)
685{
686 int hr;
687 if (!reg) return;
688 hr = get_reg(cur->regmap, reg);
689 if (hr >= 0)
690 cur->isconst &= ~(1<<hr);
691}
692
693static int is_const(const struct regstat *cur, signed char reg)
694{
695 int hr;
696 if (reg < 0) return 0;
697 if (!reg) return 1;
698 hr = get_reg(cur->regmap, reg);
699 if (hr >= 0)
700 return (cur->isconst>>hr)&1;
701 return 0;
702}
703
704static uint32_t get_const(const struct regstat *cur, signed char reg)
705{
706 int hr;
707 if (!reg) return 0;
708 hr = get_reg(cur->regmap, reg);
709 if (hr >= 0)
710 return current_constmap[hr];
711
712 SysPrintf("Unknown constant in r%d\n", reg);
713 abort();
714}
715
716// Least soon needed registers
717// Look at the next ten instructions and see which registers
718// will be used. Try not to reallocate these.
719void lsn(u_char hsn[], int i, int *preferred_reg)
720{
721 int j;
722 int b=-1;
723 for(j=0;j<9;j++)
724 {
725 if(i+j>=slen) {
726 j=slen-i-1;
727 break;
728 }
729 if (dops[i+j].is_ujump)
730 {
731 // Don't go past an unconditonal jump
732 j++;
733 break;
734 }
735 }
736 for(;j>=0;j--)
737 {
738 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
739 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
740 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
741 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
742 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
743 // Stores can allocate zero
744 hsn[dops[i+j].rs1]=j;
745 hsn[dops[i+j].rs2]=j;
746 }
747 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
748 hsn[ROREG] = j;
749 // On some architectures stores need invc_ptr
750 #if defined(HOST_IMM8)
751 if (dops[i+j].is_store)
752 hsn[INVCP] = j;
753 #endif
754 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
755 {
756 hsn[CCREG]=j;
757 b=j;
758 }
759 }
760 if(b>=0)
761 {
762 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
763 {
764 // Follow first branch
765 int t=(ba[i+b]-start)>>2;
766 j=7-b;if(t+j>=slen) j=slen-t-1;
767 for(;j>=0;j--)
768 {
769 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
770 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
771 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
772 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
773 }
774 }
775 // TODO: preferred register based on backward branch
776 }
777 // Delay slot should preferably not overwrite branch conditions or cycle count
778 if (i > 0 && dops[i-1].is_jump) {
779 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
780 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
781 hsn[CCREG]=1;
782 // ...or hash tables
783 hsn[RHASH]=1;
784 hsn[RHTBL]=1;
785 }
786 // Coprocessor load/store needs FTEMP, even if not declared
787 if(dops[i].itype==C2LS) {
788 hsn[FTEMP]=0;
789 }
790 // Load L/R also uses FTEMP as a temporary register
791 if(dops[i].itype==LOADLR) {
792 hsn[FTEMP]=0;
793 }
794 // Also SWL/SWR/SDL/SDR
795 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
796 hsn[FTEMP]=0;
797 }
798 // Don't remove the miniht registers
799 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
800 {
801 hsn[RHASH]=0;
802 hsn[RHTBL]=0;
803 }
804}
805
806// We only want to allocate registers if we're going to use them again soon
807int needed_again(int r, int i)
808{
809 int j;
810 int b=-1;
811 int rn=10;
812
813 if (i > 0 && dops[i-1].is_ujump)
814 {
815 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
816 return 0; // Don't need any registers if exiting the block
817 }
818 for(j=0;j<9;j++)
819 {
820 if(i+j>=slen) {
821 j=slen-i-1;
822 break;
823 }
824 if (dops[i+j].is_ujump)
825 {
826 // Don't go past an unconditonal jump
827 j++;
828 break;
829 }
830 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
831 {
832 break;
833 }
834 }
835 for(;j>=1;j--)
836 {
837 if(dops[i+j].rs1==r) rn=j;
838 if(dops[i+j].rs2==r) rn=j;
839 if((unneeded_reg[i+j]>>r)&1) rn=10;
840 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
841 {
842 b=j;
843 }
844 }
845 if(rn<10) return 1;
846 (void)b;
847 return 0;
848}
849
850// Try to match register allocations at the end of a loop with those
851// at the beginning
852int loop_reg(int i, int r, int hr)
853{
854 int j,k;
855 for(j=0;j<9;j++)
856 {
857 if(i+j>=slen) {
858 j=slen-i-1;
859 break;
860 }
861 if (dops[i+j].is_ujump)
862 {
863 // Don't go past an unconditonal jump
864 j++;
865 break;
866 }
867 }
868 k=0;
869 if(i>0){
870 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
871 k--;
872 }
873 for(;k<j;k++)
874 {
875 assert(r < 64);
876 if((unneeded_reg[i+k]>>r)&1) return hr;
877 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
878 {
879 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
880 {
881 int t=(ba[i+k]-start)>>2;
882 int reg=get_reg(regs[t].regmap_entry,r);
883 if(reg>=0) return reg;
884 //reg=get_reg(regs[t+1].regmap_entry,r);
885 //if(reg>=0) return reg;
886 }
887 }
888 }
889 return hr;
890}
891
892
893// Allocate every register, preserving source/target regs
894void alloc_all(struct regstat *cur,int i)
895{
896 int hr;
897
898 for(hr=0;hr<HOST_REGS;hr++) {
899 if(hr!=EXCLUDE_REG) {
900 if((cur->regmap[hr]!=dops[i].rs1)&&(cur->regmap[hr]!=dops[i].rs2)&&
901 (cur->regmap[hr]!=dops[i].rt1)&&(cur->regmap[hr]!=dops[i].rt2))
902 {
903 cur->regmap[hr]=-1;
904 cur->dirty&=~(1<<hr);
905 }
906 // Don't need zeros
907 if(cur->regmap[hr]==0)
908 {
909 cur->regmap[hr]=-1;
910 cur->dirty&=~(1<<hr);
911 }
912 }
913 }
914}
915
916#ifndef NDEBUG
917static int host_tempreg_in_use;
918
919static void host_tempreg_acquire(void)
920{
921 assert(!host_tempreg_in_use);
922 host_tempreg_in_use = 1;
923}
924
925static void host_tempreg_release(void)
926{
927 host_tempreg_in_use = 0;
928}
929#else
930static void host_tempreg_acquire(void) {}
931static void host_tempreg_release(void) {}
932#endif
933
934#ifdef ASSEM_PRINT
935extern void gen_interupt();
936extern void do_insn_cmp();
937#define FUNCNAME(f) { f, " " #f }
938static const struct {
939 void *addr;
940 const char *name;
941} function_names[] = {
942 FUNCNAME(cc_interrupt),
943 FUNCNAME(gen_interupt),
944 FUNCNAME(get_addr_ht),
945 FUNCNAME(get_addr),
946 FUNCNAME(jump_handler_read8),
947 FUNCNAME(jump_handler_read16),
948 FUNCNAME(jump_handler_read32),
949 FUNCNAME(jump_handler_write8),
950 FUNCNAME(jump_handler_write16),
951 FUNCNAME(jump_handler_write32),
952 FUNCNAME(invalidate_addr),
953 FUNCNAME(jump_to_new_pc),
954 FUNCNAME(jump_break),
955 FUNCNAME(jump_break_ds),
956 FUNCNAME(jump_syscall),
957 FUNCNAME(jump_syscall_ds),
958 FUNCNAME(call_gteStall),
959 FUNCNAME(new_dyna_leave),
960 FUNCNAME(pcsx_mtc0),
961 FUNCNAME(pcsx_mtc0_ds),
962#ifdef DRC_DBG
963 FUNCNAME(do_insn_cmp),
964#endif
965#ifdef __arm__
966 FUNCNAME(verify_code),
967#endif
968};
969
970static const char *func_name(const void *a)
971{
972 int i;
973 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
974 if (function_names[i].addr == a)
975 return function_names[i].name;
976 return "";
977}
978#else
979#define func_name(x) ""
980#endif
981
982#ifdef __i386__
983#include "assem_x86.c"
984#endif
985#ifdef __x86_64__
986#include "assem_x64.c"
987#endif
988#ifdef __arm__
989#include "assem_arm.c"
990#endif
991#ifdef __aarch64__
992#include "assem_arm64.c"
993#endif
994
995static void *get_trampoline(const void *f)
996{
997 size_t i;
998
999 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
1000 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
1001 break;
1002 }
1003 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
1004 SysPrintf("trampoline table is full, last func %p\n", f);
1005 abort();
1006 }
1007 if (ndrc->tramp.f[i] == NULL) {
1008 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1009 ndrc->tramp.f[i] = f;
1010 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1011 }
1012 return &ndrc->tramp.ops[i];
1013}
1014
1015static void emit_far_jump(const void *f)
1016{
1017 if (can_jump_or_call(f)) {
1018 emit_jmp(f);
1019 return;
1020 }
1021
1022 f = get_trampoline(f);
1023 emit_jmp(f);
1024}
1025
1026static void emit_far_call(const void *f)
1027{
1028 if (can_jump_or_call(f)) {
1029 emit_call(f);
1030 return;
1031 }
1032
1033 f = get_trampoline(f);
1034 emit_call(f);
1035}
1036
1037// Add virtual address mapping to linked list
1038void ll_add(struct ll_entry **head,int vaddr,void *addr)
1039{
1040 struct ll_entry *new_entry;
1041 new_entry=malloc(sizeof(struct ll_entry));
1042 assert(new_entry!=NULL);
1043 new_entry->vaddr=vaddr;
1044 new_entry->reg_sv_flags=0;
1045 new_entry->addr=addr;
1046 new_entry->next=*head;
1047 *head=new_entry;
1048}
1049
1050void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1051{
1052 ll_add(head,vaddr,addr);
1053 (*head)->reg_sv_flags=reg_sv_flags;
1054}
1055
1056// Check if an address is already compiled
1057// but don't return addresses which are about to expire from the cache
1058void *check_addr(u_int vaddr)
1059{
1060 struct ht_entry *ht_bin = hash_table_get(vaddr);
1061 size_t i;
1062 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1063 if (ht_bin->vaddr[i] == vaddr)
1064 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1065 if (isclean(ht_bin->tcaddr[i]))
1066 return ht_bin->tcaddr[i];
1067 }
1068 u_int page=get_page(vaddr);
1069 struct ll_entry *head;
1070 head=jump_in[page];
1071 while (head != NULL) {
1072 if (head->vaddr == vaddr) {
1073 if (doesnt_expire_soon(head->addr)) {
1074 // Update existing entry with current address
1075 if (ht_bin->vaddr[0] == vaddr) {
1076 ht_bin->tcaddr[0] = head->addr;
1077 return head->addr;
1078 }
1079 if (ht_bin->vaddr[1] == vaddr) {
1080 ht_bin->tcaddr[1] = head->addr;
1081 return head->addr;
1082 }
1083 // Insert into hash table with low priority.
1084 // Don't evict existing entries, as they are probably
1085 // addresses that are being accessed frequently.
1086 if (ht_bin->vaddr[0] == -1) {
1087 ht_bin->vaddr[0] = vaddr;
1088 ht_bin->tcaddr[0] = head->addr;
1089 }
1090 else if (ht_bin->vaddr[1] == -1) {
1091 ht_bin->vaddr[1] = vaddr;
1092 ht_bin->tcaddr[1] = head->addr;
1093 }
1094 return head->addr;
1095 }
1096 }
1097 head=head->next;
1098 }
1099 return 0;
1100}
1101
1102void remove_hash(int vaddr)
1103{
1104 //printf("remove hash: %x\n",vaddr);
1105 struct ht_entry *ht_bin = hash_table_get(vaddr);
1106 if (ht_bin->vaddr[1] == vaddr) {
1107 ht_bin->vaddr[1] = -1;
1108 ht_bin->tcaddr[1] = NULL;
1109 }
1110 if (ht_bin->vaddr[0] == vaddr) {
1111 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1112 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1113 ht_bin->vaddr[1] = -1;
1114 ht_bin->tcaddr[1] = NULL;
1115 }
1116}
1117
1118static void ll_remove_matching_addrs(struct ll_entry **head,
1119 uintptr_t base_offs_s, int shift)
1120{
1121 struct ll_entry *next;
1122 while(*head) {
1123 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1124 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1125 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1126 {
1127 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1128 remove_hash((*head)->vaddr);
1129 next=(*head)->next;
1130 free(*head);
1131 *head=next;
1132 }
1133 else
1134 {
1135 head=&((*head)->next);
1136 }
1137 }
1138}
1139
1140// Remove all entries from linked list
1141void ll_clear(struct ll_entry **head)
1142{
1143 struct ll_entry *cur;
1144 struct ll_entry *next;
1145 if((cur=*head)) {
1146 *head=0;
1147 while(cur) {
1148 next=cur->next;
1149 free(cur);
1150 cur=next;
1151 }
1152 }
1153}
1154
1155// Dereference the pointers and remove if it matches
1156static void ll_kill_pointers(struct ll_entry *head,
1157 uintptr_t base_offs_s, int shift)
1158{
1159 while(head) {
1160 u_char *ptr = get_pointer(head->addr);
1161 uintptr_t o1 = ptr - ndrc->translation_cache;
1162 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1163 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1164 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1165 {
1166 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1167 void *host_addr=find_extjump_insn(head->addr);
1168 mark_clear_cache(host_addr);
1169 set_jump_target(host_addr, head->addr);
1170 }
1171 head=head->next;
1172 }
1173}
1174
1175// This is called when we write to a compiled block (see do_invstub)
1176static void invalidate_page(u_int page)
1177{
1178 struct ll_entry *head;
1179 struct ll_entry *next;
1180 head=jump_in[page];
1181 jump_in[page]=0;
1182 while(head!=NULL) {
1183 inv_debug("INVALIDATE: %x\n",head->vaddr);
1184 remove_hash(head->vaddr);
1185 next=head->next;
1186 free(head);
1187 head=next;
1188 }
1189 head=jump_out[page];
1190 jump_out[page]=0;
1191 while(head!=NULL) {
1192 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1193 void *host_addr=find_extjump_insn(head->addr);
1194 mark_clear_cache(host_addr);
1195 set_jump_target(host_addr, head->addr); // point back to dyna_linker
1196 next=head->next;
1197 free(head);
1198 head=next;
1199 }
1200}
1201
1202static void invalidate_block_range(u_int block, u_int first, u_int last)
1203{
1204 u_int page=get_page(block<<12);
1205 //printf("first=%d last=%d\n",first,last);
1206 invalidate_page(page);
1207 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1208 assert(last<page+5);
1209 // Invalidate the adjacent pages if a block crosses a 4K boundary
1210 while(first<page) {
1211 invalidate_page(first);
1212 first++;
1213 }
1214 for(first=page+1;first<last;first++) {
1215 invalidate_page(first);
1216 }
1217 do_clear_cache();
1218
1219 // Don't trap writes
1220 invalid_code[block]=1;
1221
1222 #ifdef USE_MINI_HT
1223 memset(mini_ht,-1,sizeof(mini_ht));
1224 #endif
1225}
1226
1227void invalidate_block(u_int block)
1228{
1229 u_int page=get_page(block<<12);
1230 u_int vpage=get_vpage(block<<12);
1231 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1232 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1233 u_int first,last;
1234 first=last=page;
1235 struct ll_entry *head;
1236 head=jump_dirty[vpage];
1237 //printf("page=%d vpage=%d\n",page,vpage);
1238 while(head!=NULL) {
1239 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1240 u_char *start, *end;
1241 get_bounds(head->addr, &start, &end);
1242 //printf("start: %p end: %p\n", start, end);
1243 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1244 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1245 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1246 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1247 }
1248 }
1249 }
1250 head=head->next;
1251 }
1252 invalidate_block_range(block,first,last);
1253}
1254
1255void invalidate_addr(u_int addr)
1256{
1257 //static int rhits;
1258 // this check is done by the caller
1259 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1260 u_int page=get_vpage(addr);
1261 if(page<2048) { // RAM
1262 struct ll_entry *head;
1263 u_int addr_min=~0, addr_max=0;
1264 u_int mask=RAM_SIZE-1;
1265 u_int addr_main=0x80000000|(addr&mask);
1266 int pg1;
1267 inv_code_start=addr_main&~0xfff;
1268 inv_code_end=addr_main|0xfff;
1269 pg1=page;
1270 if (pg1>0) {
1271 // must check previous page too because of spans..
1272 pg1--;
1273 inv_code_start-=0x1000;
1274 }
1275 for(;pg1<=page;pg1++) {
1276 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1277 u_char *start_h, *end_h;
1278 u_int start, end;
1279 get_bounds(head->addr, &start_h, &end_h);
1280 start = (uintptr_t)start_h - ram_offset;
1281 end = (uintptr_t)end_h - ram_offset;
1282 if(start<=addr_main&&addr_main<end) {
1283 if(start<addr_min) addr_min=start;
1284 if(end>addr_max) addr_max=end;
1285 }
1286 else if(addr_main<start) {
1287 if(start<inv_code_end)
1288 inv_code_end=start-1;
1289 }
1290 else {
1291 if(end>inv_code_start)
1292 inv_code_start=end;
1293 }
1294 }
1295 }
1296 if (addr_min!=~0) {
1297 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1298 inv_code_start=inv_code_end=~0;
1299 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1300 return;
1301 }
1302 else {
1303 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1304 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1305 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1306 return;
1307 }
1308 }
1309 invalidate_block(addr>>12);
1310}
1311
1312// This is called when loading a save state.
1313// Anything could have changed, so invalidate everything.
1314void invalidate_all_pages(void)
1315{
1316 u_int page;
1317 for(page=0;page<4096;page++)
1318 invalidate_page(page);
1319 for(page=0;page<1048576;page++)
1320 if(!invalid_code[page]) {
1321 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1322 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1323 }
1324 #ifdef USE_MINI_HT
1325 memset(mini_ht,-1,sizeof(mini_ht));
1326 #endif
1327 do_clear_cache();
1328}
1329
1330static void do_invstub(int n)
1331{
1332 literal_pool(20);
1333 u_int reglist=stubs[n].a;
1334 set_jump_target(stubs[n].addr, out);
1335 save_regs(reglist);
1336 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1337 emit_far_call(invalidate_addr);
1338 restore_regs(reglist);
1339 emit_jmp(stubs[n].retaddr); // return address
1340}
1341
1342// Add an entry to jump_out after making a link
1343// src should point to code by emit_extjump2()
1344void add_jump_out(u_int vaddr,void *src)
1345{
1346 u_int page=get_page(vaddr);
1347 inv_debug("add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1348 check_extjump2(src);
1349 ll_add(jump_out+page,vaddr,src);
1350 //inv_debug("add_jump_out: to %p\n",get_pointer(src));
1351}
1352
1353// If a code block was found to be unmodified (bit was set in
1354// restore_candidate) and it remains unmodified (bit is clear
1355// in invalid_code) then move the entries for that 4K page from
1356// the dirty list to the clean list.
1357void clean_blocks(u_int page)
1358{
1359 struct ll_entry *head;
1360 inv_debug("INV: clean_blocks page=%d\n",page);
1361 head=jump_dirty[page];
1362 while(head!=NULL) {
1363 if(!invalid_code[head->vaddr>>12]) {
1364 // Don't restore blocks which are about to expire from the cache
1365 if (doesnt_expire_soon(head->addr)) {
1366 if(verify_dirty(head->addr)) {
1367 u_char *start, *end;
1368 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1369 u_int i;
1370 u_int inv=0;
1371 get_bounds(head->addr, &start, &end);
1372 if (start - rdram < RAM_SIZE) {
1373 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1374 inv|=invalid_code[i];
1375 }
1376 }
1377 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1378 inv=1;
1379 }
1380 if(!inv) {
1381 void *clean_addr = get_clean_addr(head->addr);
1382 if (doesnt_expire_soon(clean_addr)) {
1383 u_int ppage=page;
1384 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1385 //printf("page=%x, addr=%x\n",page,head->vaddr);
1386 //assert(head->vaddr>>12==(page|0x80000));
1387 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1388 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1389 if (ht_bin->vaddr[0] == head->vaddr)
1390 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1391 if (ht_bin->vaddr[1] == head->vaddr)
1392 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1393 }
1394 }
1395 }
1396 }
1397 }
1398 head=head->next;
1399 }
1400}
1401
1402/* Register allocation */
1403
1404// Note: registers are allocated clean (unmodified state)
1405// if you intend to modify the register, you must call dirty_reg().
1406static void alloc_reg(struct regstat *cur,int i,signed char reg)
1407{
1408 int r,hr;
1409 int preferred_reg = PREFERRED_REG_FIRST
1410 + reg % (PREFERRED_REG_LAST - PREFERRED_REG_FIRST + 1);
1411 if (reg == CCREG) preferred_reg = HOST_CCREG;
1412 if (reg == PTEMP || reg == FTEMP) preferred_reg = 12;
1413 assert(PREFERRED_REG_FIRST != EXCLUDE_REG && EXCLUDE_REG != HOST_REGS);
1414
1415 // Don't allocate unused registers
1416 if((cur->u>>reg)&1) return;
1417
1418 // see if it's already allocated
1419 for(hr=0;hr<HOST_REGS;hr++)
1420 {
1421 if(cur->regmap[hr]==reg) return;
1422 }
1423
1424 // Keep the same mapping if the register was already allocated in a loop
1425 preferred_reg = loop_reg(i,reg,preferred_reg);
1426
1427 // Try to allocate the preferred register
1428 if(cur->regmap[preferred_reg]==-1) {
1429 cur->regmap[preferred_reg]=reg;
1430 cur->dirty&=~(1<<preferred_reg);
1431 cur->isconst&=~(1<<preferred_reg);
1432 return;
1433 }
1434 r=cur->regmap[preferred_reg];
1435 assert(r < 64);
1436 if((cur->u>>r)&1) {
1437 cur->regmap[preferred_reg]=reg;
1438 cur->dirty&=~(1<<preferred_reg);
1439 cur->isconst&=~(1<<preferred_reg);
1440 return;
1441 }
1442
1443 // Clear any unneeded registers
1444 // We try to keep the mapping consistent, if possible, because it
1445 // makes branches easier (especially loops). So we try to allocate
1446 // first (see above) before removing old mappings. If this is not
1447 // possible then go ahead and clear out the registers that are no
1448 // longer needed.
1449 for(hr=0;hr<HOST_REGS;hr++)
1450 {
1451 r=cur->regmap[hr];
1452 if(r>=0) {
1453 assert(r < 64);
1454 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1455 }
1456 }
1457
1458 // Try to allocate any available register, but prefer
1459 // registers that have not been used recently.
1460 if (i > 0) {
1461 for (hr = PREFERRED_REG_FIRST; ; ) {
1462 if (cur->regmap[hr] < 0) {
1463 int oldreg = regs[i-1].regmap[hr];
1464 if (oldreg < 0 || (oldreg != dops[i-1].rs1 && oldreg != dops[i-1].rs2
1465 && oldreg != dops[i-1].rt1 && oldreg != dops[i-1].rt2))
1466 {
1467 cur->regmap[hr]=reg;
1468 cur->dirty&=~(1<<hr);
1469 cur->isconst&=~(1<<hr);
1470 return;
1471 }
1472 }
1473 hr++;
1474 if (hr == EXCLUDE_REG)
1475 hr++;
1476 if (hr == HOST_REGS)
1477 hr = 0;
1478 if (hr == PREFERRED_REG_FIRST)
1479 break;
1480 }
1481 }
1482
1483 // Try to allocate any available register
1484 for (hr = PREFERRED_REG_FIRST; ; ) {
1485 if (cur->regmap[hr] < 0) {
1486 cur->regmap[hr]=reg;
1487 cur->dirty&=~(1<<hr);
1488 cur->isconst&=~(1<<hr);
1489 return;
1490 }
1491 hr++;
1492 if (hr == EXCLUDE_REG)
1493 hr++;
1494 if (hr == HOST_REGS)
1495 hr = 0;
1496 if (hr == PREFERRED_REG_FIRST)
1497 break;
1498 }
1499
1500 // Ok, now we have to evict someone
1501 // Pick a register we hopefully won't need soon
1502 u_char hsn[MAXREG+1];
1503 memset(hsn,10,sizeof(hsn));
1504 int j;
1505 lsn(hsn,i,&preferred_reg);
1506 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1507 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1508 if(i>0) {
1509 // Don't evict the cycle count at entry points, otherwise the entry
1510 // stub will have to write it.
1511 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1512 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1513 for(j=10;j>=3;j--)
1514 {
1515 // Alloc preferred register if available
1516 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1517 for(hr=0;hr<HOST_REGS;hr++) {
1518 // Evict both parts of a 64-bit register
1519 if(cur->regmap[hr]==r) {
1520 cur->regmap[hr]=-1;
1521 cur->dirty&=~(1<<hr);
1522 cur->isconst&=~(1<<hr);
1523 }
1524 }
1525 cur->regmap[preferred_reg]=reg;
1526 return;
1527 }
1528 for(r=1;r<=MAXREG;r++)
1529 {
1530 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1531 for(hr=0;hr<HOST_REGS;hr++) {
1532 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1533 if(cur->regmap[hr]==r) {
1534 cur->regmap[hr]=reg;
1535 cur->dirty&=~(1<<hr);
1536 cur->isconst&=~(1<<hr);
1537 return;
1538 }
1539 }
1540 }
1541 }
1542 }
1543 }
1544 }
1545 for(j=10;j>=0;j--)
1546 {
1547 for(r=1;r<=MAXREG;r++)
1548 {
1549 if(hsn[r]==j) {
1550 for(hr=0;hr<HOST_REGS;hr++) {
1551 if(cur->regmap[hr]==r) {
1552 cur->regmap[hr]=reg;
1553 cur->dirty&=~(1<<hr);
1554 cur->isconst&=~(1<<hr);
1555 return;
1556 }
1557 }
1558 }
1559 }
1560 }
1561 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1562}
1563
1564// Allocate a temporary register. This is done without regard to
1565// dirty status or whether the register we request is on the unneeded list
1566// Note: This will only allocate one register, even if called multiple times
1567static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1568{
1569 int r,hr;
1570 int preferred_reg = -1;
1571
1572 // see if it's already allocated
1573 for(hr=0;hr<HOST_REGS;hr++)
1574 {
1575 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1576 }
1577
1578 // Try to allocate any available register
1579 for(hr=HOST_REGS-1;hr>=0;hr--) {
1580 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1581 cur->regmap[hr]=reg;
1582 cur->dirty&=~(1<<hr);
1583 cur->isconst&=~(1<<hr);
1584 return;
1585 }
1586 }
1587
1588 // Find an unneeded register
1589 for(hr=HOST_REGS-1;hr>=0;hr--)
1590 {
1591 r=cur->regmap[hr];
1592 if(r>=0) {
1593 assert(r < 64);
1594 if((cur->u>>r)&1) {
1595 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1596 cur->regmap[hr]=reg;
1597 cur->dirty&=~(1<<hr);
1598 cur->isconst&=~(1<<hr);
1599 return;
1600 }
1601 }
1602 }
1603 }
1604
1605 // Ok, now we have to evict someone
1606 // Pick a register we hopefully won't need soon
1607 // TODO: we might want to follow unconditional jumps here
1608 // TODO: get rid of dupe code and make this into a function
1609 u_char hsn[MAXREG+1];
1610 memset(hsn,10,sizeof(hsn));
1611 int j;
1612 lsn(hsn,i,&preferred_reg);
1613 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1614 if(i>0) {
1615 // Don't evict the cycle count at entry points, otherwise the entry
1616 // stub will have to write it.
1617 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1618 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1619 for(j=10;j>=3;j--)
1620 {
1621 for(r=1;r<=MAXREG;r++)
1622 {
1623 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1624 for(hr=0;hr<HOST_REGS;hr++) {
1625 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1626 if(cur->regmap[hr]==r) {
1627 cur->regmap[hr]=reg;
1628 cur->dirty&=~(1<<hr);
1629 cur->isconst&=~(1<<hr);
1630 return;
1631 }
1632 }
1633 }
1634 }
1635 }
1636 }
1637 }
1638 for(j=10;j>=0;j--)
1639 {
1640 for(r=1;r<=MAXREG;r++)
1641 {
1642 if(hsn[r]==j) {
1643 for(hr=0;hr<HOST_REGS;hr++) {
1644 if(cur->regmap[hr]==r) {
1645 cur->regmap[hr]=reg;
1646 cur->dirty&=~(1<<hr);
1647 cur->isconst&=~(1<<hr);
1648 return;
1649 }
1650 }
1651 }
1652 }
1653 }
1654 SysPrintf("This shouldn't happen");abort();
1655}
1656
1657static void mov_alloc(struct regstat *current,int i)
1658{
1659 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1660 alloc_cc(current,i); // for stalls
1661 dirty_reg(current,CCREG);
1662 }
1663
1664 // Note: Don't need to actually alloc the source registers
1665 //alloc_reg(current,i,dops[i].rs1);
1666 alloc_reg(current,i,dops[i].rt1);
1667
1668 clear_const(current,dops[i].rs1);
1669 clear_const(current,dops[i].rt1);
1670 dirty_reg(current,dops[i].rt1);
1671}
1672
1673static void shiftimm_alloc(struct regstat *current,int i)
1674{
1675 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1676 {
1677 if(dops[i].rt1) {
1678 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1679 else dops[i].lt1=dops[i].rs1;
1680 alloc_reg(current,i,dops[i].rt1);
1681 dirty_reg(current,dops[i].rt1);
1682 if(is_const(current,dops[i].rs1)) {
1683 int v=get_const(current,dops[i].rs1);
1684 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1685 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1686 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1687 }
1688 else clear_const(current,dops[i].rt1);
1689 }
1690 }
1691 else
1692 {
1693 clear_const(current,dops[i].rs1);
1694 clear_const(current,dops[i].rt1);
1695 }
1696
1697 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1698 {
1699 assert(0);
1700 }
1701 if(dops[i].opcode2==0x3c) // DSLL32
1702 {
1703 assert(0);
1704 }
1705 if(dops[i].opcode2==0x3e) // DSRL32
1706 {
1707 assert(0);
1708 }
1709 if(dops[i].opcode2==0x3f) // DSRA32
1710 {
1711 assert(0);
1712 }
1713}
1714
1715static void shift_alloc(struct regstat *current,int i)
1716{
1717 if(dops[i].rt1) {
1718 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1719 {
1720 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1721 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1722 alloc_reg(current,i,dops[i].rt1);
1723 if(dops[i].rt1==dops[i].rs2) {
1724 alloc_reg_temp(current,i,-1);
1725 minimum_free_regs[i]=1;
1726 }
1727 } else { // DSLLV/DSRLV/DSRAV
1728 assert(0);
1729 }
1730 clear_const(current,dops[i].rs1);
1731 clear_const(current,dops[i].rs2);
1732 clear_const(current,dops[i].rt1);
1733 dirty_reg(current,dops[i].rt1);
1734 }
1735}
1736
1737static void alu_alloc(struct regstat *current,int i)
1738{
1739 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1740 if(dops[i].rt1) {
1741 if(dops[i].rs1&&dops[i].rs2) {
1742 alloc_reg(current,i,dops[i].rs1);
1743 alloc_reg(current,i,dops[i].rs2);
1744 }
1745 else {
1746 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1747 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1748 }
1749 alloc_reg(current,i,dops[i].rt1);
1750 }
1751 }
1752 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1753 if(dops[i].rt1) {
1754 alloc_reg(current,i,dops[i].rs1);
1755 alloc_reg(current,i,dops[i].rs2);
1756 alloc_reg(current,i,dops[i].rt1);
1757 }
1758 }
1759 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1760 if(dops[i].rt1) {
1761 if(dops[i].rs1&&dops[i].rs2) {
1762 alloc_reg(current,i,dops[i].rs1);
1763 alloc_reg(current,i,dops[i].rs2);
1764 }
1765 else
1766 {
1767 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1768 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1769 }
1770 alloc_reg(current,i,dops[i].rt1);
1771 }
1772 }
1773 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1774 assert(0);
1775 }
1776 clear_const(current,dops[i].rs1);
1777 clear_const(current,dops[i].rs2);
1778 clear_const(current,dops[i].rt1);
1779 dirty_reg(current,dops[i].rt1);
1780}
1781
1782static void imm16_alloc(struct regstat *current,int i)
1783{
1784 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1785 else dops[i].lt1=dops[i].rs1;
1786 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1787 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1788 assert(0);
1789 }
1790 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1791 clear_const(current,dops[i].rs1);
1792 clear_const(current,dops[i].rt1);
1793 }
1794 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1795 if(is_const(current,dops[i].rs1)) {
1796 int v=get_const(current,dops[i].rs1);
1797 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1798 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1799 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1800 }
1801 else clear_const(current,dops[i].rt1);
1802 }
1803 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1804 if(is_const(current,dops[i].rs1)) {
1805 int v=get_const(current,dops[i].rs1);
1806 set_const(current,dops[i].rt1,v+imm[i]);
1807 }
1808 else clear_const(current,dops[i].rt1);
1809 }
1810 else {
1811 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1812 }
1813 dirty_reg(current,dops[i].rt1);
1814}
1815
1816static void load_alloc(struct regstat *current,int i)
1817{
1818 clear_const(current,dops[i].rt1);
1819 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1820 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1821 if (needed_again(dops[i].rs1, i))
1822 alloc_reg(current, i, dops[i].rs1);
1823 if (ram_offset)
1824 alloc_reg(current, i, ROREG);
1825 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1826 alloc_reg(current,i,dops[i].rt1);
1827 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1828 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1829 {
1830 assert(0);
1831 }
1832 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1833 {
1834 assert(0);
1835 }
1836 dirty_reg(current,dops[i].rt1);
1837 // LWL/LWR need a temporary register for the old value
1838 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1839 {
1840 alloc_reg(current,i,FTEMP);
1841 alloc_reg_temp(current,i,-1);
1842 minimum_free_regs[i]=1;
1843 }
1844 }
1845 else
1846 {
1847 // Load to r0 or unneeded register (dummy load)
1848 // but we still need a register to calculate the address
1849 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1850 {
1851 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1852 }
1853 alloc_reg_temp(current,i,-1);
1854 minimum_free_regs[i]=1;
1855 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1856 {
1857 assert(0);
1858 }
1859 }
1860}
1861
1862void store_alloc(struct regstat *current,int i)
1863{
1864 clear_const(current,dops[i].rs2);
1865 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1866 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1867 alloc_reg(current,i,dops[i].rs2);
1868 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1869 assert(0);
1870 }
1871 if (ram_offset)
1872 alloc_reg(current, i, ROREG);
1873 #if defined(HOST_IMM8)
1874 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1875 alloc_reg(current, i, INVCP);
1876 #endif
1877 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1878 alloc_reg(current,i,FTEMP);
1879 }
1880 // We need a temporary register for address generation
1881 alloc_reg_temp(current,i,-1);
1882 minimum_free_regs[i]=1;
1883}
1884
1885void c1ls_alloc(struct regstat *current,int i)
1886{
1887 clear_const(current,dops[i].rt1);
1888 alloc_reg(current,i,CSREG); // Status
1889}
1890
1891void c2ls_alloc(struct regstat *current,int i)
1892{
1893 clear_const(current,dops[i].rt1);
1894 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1895 alloc_reg(current,i,FTEMP);
1896 if (ram_offset)
1897 alloc_reg(current, i, ROREG);
1898 #if defined(HOST_IMM8)
1899 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1900 if (dops[i].opcode == 0x3a) // SWC2
1901 alloc_reg(current,i,INVCP);
1902 #endif
1903 // We need a temporary register for address generation
1904 alloc_reg_temp(current,i,-1);
1905 minimum_free_regs[i]=1;
1906}
1907
1908#ifndef multdiv_alloc
1909void multdiv_alloc(struct regstat *current,int i)
1910{
1911 // case 0x18: MULT
1912 // case 0x19: MULTU
1913 // case 0x1A: DIV
1914 // case 0x1B: DIVU
1915 // case 0x1C: DMULT
1916 // case 0x1D: DMULTU
1917 // case 0x1E: DDIV
1918 // case 0x1F: DDIVU
1919 clear_const(current,dops[i].rs1);
1920 clear_const(current,dops[i].rs2);
1921 alloc_cc(current,i); // for stalls
1922 if(dops[i].rs1&&dops[i].rs2)
1923 {
1924 if((dops[i].opcode2&4)==0) // 32-bit
1925 {
1926 current->u&=~(1LL<<HIREG);
1927 current->u&=~(1LL<<LOREG);
1928 alloc_reg(current,i,HIREG);
1929 alloc_reg(current,i,LOREG);
1930 alloc_reg(current,i,dops[i].rs1);
1931 alloc_reg(current,i,dops[i].rs2);
1932 dirty_reg(current,HIREG);
1933 dirty_reg(current,LOREG);
1934 }
1935 else // 64-bit
1936 {
1937 assert(0);
1938 }
1939 }
1940 else
1941 {
1942 // Multiply by zero is zero.
1943 // MIPS does not have a divide by zero exception.
1944 // The result is undefined, we return zero.
1945 alloc_reg(current,i,HIREG);
1946 alloc_reg(current,i,LOREG);
1947 dirty_reg(current,HIREG);
1948 dirty_reg(current,LOREG);
1949 }
1950}
1951#endif
1952
1953void cop0_alloc(struct regstat *current,int i)
1954{
1955 if(dops[i].opcode2==0) // MFC0
1956 {
1957 if(dops[i].rt1) {
1958 clear_const(current,dops[i].rt1);
1959 alloc_all(current,i);
1960 alloc_reg(current,i,dops[i].rt1);
1961 dirty_reg(current,dops[i].rt1);
1962 }
1963 }
1964 else if(dops[i].opcode2==4) // MTC0
1965 {
1966 if(dops[i].rs1){
1967 clear_const(current,dops[i].rs1);
1968 alloc_reg(current,i,dops[i].rs1);
1969 alloc_all(current,i);
1970 }
1971 else {
1972 alloc_all(current,i); // FIXME: Keep r0
1973 current->u&=~1LL;
1974 alloc_reg(current,i,0);
1975 }
1976 }
1977 else
1978 {
1979 // TLBR/TLBWI/TLBWR/TLBP/ERET
1980 assert(dops[i].opcode2==0x10);
1981 alloc_all(current,i);
1982 }
1983 minimum_free_regs[i]=HOST_REGS;
1984}
1985
1986static void cop2_alloc(struct regstat *current,int i)
1987{
1988 if (dops[i].opcode2 < 3) // MFC2/CFC2
1989 {
1990 alloc_cc(current,i); // for stalls
1991 dirty_reg(current,CCREG);
1992 if(dops[i].rt1){
1993 clear_const(current,dops[i].rt1);
1994 alloc_reg(current,i,dops[i].rt1);
1995 dirty_reg(current,dops[i].rt1);
1996 }
1997 }
1998 else if (dops[i].opcode2 > 3) // MTC2/CTC2
1999 {
2000 if(dops[i].rs1){
2001 clear_const(current,dops[i].rs1);
2002 alloc_reg(current,i,dops[i].rs1);
2003 }
2004 else {
2005 current->u&=~1LL;
2006 alloc_reg(current,i,0);
2007 }
2008 }
2009 alloc_reg_temp(current,i,-1);
2010 minimum_free_regs[i]=1;
2011}
2012
2013void c2op_alloc(struct regstat *current,int i)
2014{
2015 alloc_cc(current,i); // for stalls
2016 dirty_reg(current,CCREG);
2017 alloc_reg_temp(current,i,-1);
2018}
2019
2020void syscall_alloc(struct regstat *current,int i)
2021{
2022 alloc_cc(current,i);
2023 dirty_reg(current,CCREG);
2024 alloc_all(current,i);
2025 minimum_free_regs[i]=HOST_REGS;
2026 current->isconst=0;
2027}
2028
2029void delayslot_alloc(struct regstat *current,int i)
2030{
2031 switch(dops[i].itype) {
2032 case UJUMP:
2033 case CJUMP:
2034 case SJUMP:
2035 case RJUMP:
2036 case SYSCALL:
2037 case HLECALL:
2038 case SPAN:
2039 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
2040 SysPrintf("Disabled speculative precompilation\n");
2041 stop_after_jal=1;
2042 break;
2043 case IMM16:
2044 imm16_alloc(current,i);
2045 break;
2046 case LOAD:
2047 case LOADLR:
2048 load_alloc(current,i);
2049 break;
2050 case STORE:
2051 case STORELR:
2052 store_alloc(current,i);
2053 break;
2054 case ALU:
2055 alu_alloc(current,i);
2056 break;
2057 case SHIFT:
2058 shift_alloc(current,i);
2059 break;
2060 case MULTDIV:
2061 multdiv_alloc(current,i);
2062 break;
2063 case SHIFTIMM:
2064 shiftimm_alloc(current,i);
2065 break;
2066 case MOV:
2067 mov_alloc(current,i);
2068 break;
2069 case COP0:
2070 cop0_alloc(current,i);
2071 break;
2072 case COP1:
2073 break;
2074 case COP2:
2075 cop2_alloc(current,i);
2076 break;
2077 case C1LS:
2078 c1ls_alloc(current,i);
2079 break;
2080 case C2LS:
2081 c2ls_alloc(current,i);
2082 break;
2083 case C2OP:
2084 c2op_alloc(current,i);
2085 break;
2086 }
2087}
2088
2089// Special case where a branch and delay slot span two pages in virtual memory
2090static void pagespan_alloc(struct regstat *current,int i)
2091{
2092 current->isconst=0;
2093 current->wasconst=0;
2094 regs[i].wasconst=0;
2095 minimum_free_regs[i]=HOST_REGS;
2096 alloc_all(current,i);
2097 alloc_cc(current,i);
2098 dirty_reg(current,CCREG);
2099 if(dops[i].opcode==3) // JAL
2100 {
2101 alloc_reg(current,i,31);
2102 dirty_reg(current,31);
2103 }
2104 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
2105 {
2106 alloc_reg(current,i,dops[i].rs1);
2107 if (dops[i].rt1!=0) {
2108 alloc_reg(current,i,dops[i].rt1);
2109 dirty_reg(current,dops[i].rt1);
2110 }
2111 }
2112 if((dops[i].opcode&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2113 {
2114 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2115 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
2116 }
2117 else
2118 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2119 {
2120 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2121 }
2122 //else ...
2123}
2124
2125static void add_stub(enum stub_type type, void *addr, void *retaddr,
2126 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2127{
2128 assert(stubcount < ARRAY_SIZE(stubs));
2129 stubs[stubcount].type = type;
2130 stubs[stubcount].addr = addr;
2131 stubs[stubcount].retaddr = retaddr;
2132 stubs[stubcount].a = a;
2133 stubs[stubcount].b = b;
2134 stubs[stubcount].c = c;
2135 stubs[stubcount].d = d;
2136 stubs[stubcount].e = e;
2137 stubcount++;
2138}
2139
2140static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2141 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2142{
2143 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2144}
2145
2146// Write out a single register
2147static void wb_register(signed char r, const signed char regmap[], uint64_t dirty)
2148{
2149 int hr;
2150 for(hr=0;hr<HOST_REGS;hr++) {
2151 if(hr!=EXCLUDE_REG) {
2152 if(regmap[hr]==r) {
2153 if((dirty>>hr)&1) {
2154 assert(regmap[hr]<64);
2155 emit_storereg(r,hr);
2156 }
2157 }
2158 }
2159 }
2160}
2161
2162static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2163{
2164 //if(dirty_pre==dirty) return;
2165 int hr,reg;
2166 for(hr=0;hr<HOST_REGS;hr++) {
2167 if(hr!=EXCLUDE_REG) {
2168 reg=pre[hr];
2169 if(((~u)>>reg)&1) {
2170 if(reg>0) {
2171 if(((dirty_pre&~dirty)>>hr)&1) {
2172 if(reg>0&&reg<34) {
2173 emit_storereg(reg,hr);
2174 }
2175 else if(reg>=64) {
2176 assert(0);
2177 }
2178 }
2179 }
2180 }
2181 }
2182 }
2183}
2184
2185// trashes r2
2186static void pass_args(int a0, int a1)
2187{
2188 if(a0==1&&a1==0) {
2189 // must swap
2190 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2191 }
2192 else if(a0!=0&&a1==0) {
2193 emit_mov(a1,1);
2194 if (a0>=0) emit_mov(a0,0);
2195 }
2196 else {
2197 if(a0>=0&&a0!=0) emit_mov(a0,0);
2198 if(a1>=0&&a1!=1) emit_mov(a1,1);
2199 }
2200}
2201
2202static void alu_assemble(int i, const struct regstat *i_regs)
2203{
2204 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2205 if(dops[i].rt1) {
2206 signed char s1,s2,t;
2207 t=get_reg(i_regs->regmap,dops[i].rt1);
2208 if(t>=0) {
2209 s1=get_reg(i_regs->regmap,dops[i].rs1);
2210 s2=get_reg(i_regs->regmap,dops[i].rs2);
2211 if(dops[i].rs1&&dops[i].rs2) {
2212 assert(s1>=0);
2213 assert(s2>=0);
2214 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2215 else emit_add(s1,s2,t);
2216 }
2217 else if(dops[i].rs1) {
2218 if(s1>=0) emit_mov(s1,t);
2219 else emit_loadreg(dops[i].rs1,t);
2220 }
2221 else if(dops[i].rs2) {
2222 if(s2>=0) {
2223 if(dops[i].opcode2&2) emit_neg(s2,t);
2224 else emit_mov(s2,t);
2225 }
2226 else {
2227 emit_loadreg(dops[i].rs2,t);
2228 if(dops[i].opcode2&2) emit_neg(t,t);
2229 }
2230 }
2231 else emit_zeroreg(t);
2232 }
2233 }
2234 }
2235 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2236 assert(0);
2237 }
2238 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2239 if(dops[i].rt1) {
2240 signed char s1l,s2l,t;
2241 {
2242 t=get_reg(i_regs->regmap,dops[i].rt1);
2243 //assert(t>=0);
2244 if(t>=0) {
2245 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2246 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2247 if(dops[i].rs2==0) // rx<r0
2248 {
2249 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2250 assert(s1l>=0);
2251 emit_shrimm(s1l,31,t);
2252 }
2253 else // SLTU (unsigned can not be less than zero, 0<0)
2254 emit_zeroreg(t);
2255 }
2256 else if(dops[i].rs1==0) // r0<rx
2257 {
2258 assert(s2l>=0);
2259 if(dops[i].opcode2==0x2a) // SLT
2260 emit_set_gz32(s2l,t);
2261 else // SLTU (set if not zero)
2262 emit_set_nz32(s2l,t);
2263 }
2264 else{
2265 assert(s1l>=0);assert(s2l>=0);
2266 if(dops[i].opcode2==0x2a) // SLT
2267 emit_set_if_less32(s1l,s2l,t);
2268 else // SLTU
2269 emit_set_if_carry32(s1l,s2l,t);
2270 }
2271 }
2272 }
2273 }
2274 }
2275 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2276 if(dops[i].rt1) {
2277 signed char s1l,s2l,tl;
2278 tl=get_reg(i_regs->regmap,dops[i].rt1);
2279 {
2280 if(tl>=0) {
2281 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2282 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2283 if(dops[i].rs1&&dops[i].rs2) {
2284 assert(s1l>=0);
2285 assert(s2l>=0);
2286 if(dops[i].opcode2==0x24) { // AND
2287 emit_and(s1l,s2l,tl);
2288 } else
2289 if(dops[i].opcode2==0x25) { // OR
2290 emit_or(s1l,s2l,tl);
2291 } else
2292 if(dops[i].opcode2==0x26) { // XOR
2293 emit_xor(s1l,s2l,tl);
2294 } else
2295 if(dops[i].opcode2==0x27) { // NOR
2296 emit_or(s1l,s2l,tl);
2297 emit_not(tl,tl);
2298 }
2299 }
2300 else
2301 {
2302 if(dops[i].opcode2==0x24) { // AND
2303 emit_zeroreg(tl);
2304 } else
2305 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2306 if(dops[i].rs1){
2307 if(s1l>=0) emit_mov(s1l,tl);
2308 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2309 }
2310 else
2311 if(dops[i].rs2){
2312 if(s2l>=0) emit_mov(s2l,tl);
2313 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2314 }
2315 else emit_zeroreg(tl);
2316 } else
2317 if(dops[i].opcode2==0x27) { // NOR
2318 if(dops[i].rs1){
2319 if(s1l>=0) emit_not(s1l,tl);
2320 else {
2321 emit_loadreg(dops[i].rs1,tl);
2322 emit_not(tl,tl);
2323 }
2324 }
2325 else
2326 if(dops[i].rs2){
2327 if(s2l>=0) emit_not(s2l,tl);
2328 else {
2329 emit_loadreg(dops[i].rs2,tl);
2330 emit_not(tl,tl);
2331 }
2332 }
2333 else emit_movimm(-1,tl);
2334 }
2335 }
2336 }
2337 }
2338 }
2339 }
2340}
2341
2342static void imm16_assemble(int i, const struct regstat *i_regs)
2343{
2344 if (dops[i].opcode==0x0f) { // LUI
2345 if(dops[i].rt1) {
2346 signed char t;
2347 t=get_reg(i_regs->regmap,dops[i].rt1);
2348 //assert(t>=0);
2349 if(t>=0) {
2350 if(!((i_regs->isconst>>t)&1))
2351 emit_movimm(imm[i]<<16,t);
2352 }
2353 }
2354 }
2355 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2356 if(dops[i].rt1) {
2357 signed char s,t;
2358 t=get_reg(i_regs->regmap,dops[i].rt1);
2359 s=get_reg(i_regs->regmap,dops[i].rs1);
2360 if(dops[i].rs1) {
2361 //assert(t>=0);
2362 //assert(s>=0);
2363 if(t>=0) {
2364 if(!((i_regs->isconst>>t)&1)) {
2365 if(s<0) {
2366 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2367 emit_addimm(t,imm[i],t);
2368 }else{
2369 if(!((i_regs->wasconst>>s)&1))
2370 emit_addimm(s,imm[i],t);
2371 else
2372 emit_movimm(constmap[i][s]+imm[i],t);
2373 }
2374 }
2375 }
2376 } else {
2377 if(t>=0) {
2378 if(!((i_regs->isconst>>t)&1))
2379 emit_movimm(imm[i],t);
2380 }
2381 }
2382 }
2383 }
2384 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2385 if(dops[i].rt1) {
2386 signed char sl,tl;
2387 tl=get_reg(i_regs->regmap,dops[i].rt1);
2388 sl=get_reg(i_regs->regmap,dops[i].rs1);
2389 if(tl>=0) {
2390 if(dops[i].rs1) {
2391 assert(sl>=0);
2392 emit_addimm(sl,imm[i],tl);
2393 } else {
2394 emit_movimm(imm[i],tl);
2395 }
2396 }
2397 }
2398 }
2399 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2400 if(dops[i].rt1) {
2401 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2402 signed char sl,t;
2403 t=get_reg(i_regs->regmap,dops[i].rt1);
2404 sl=get_reg(i_regs->regmap,dops[i].rs1);
2405 //assert(t>=0);
2406 if(t>=0) {
2407 if(dops[i].rs1>0) {
2408 if(dops[i].opcode==0x0a) { // SLTI
2409 if(sl<0) {
2410 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2411 emit_slti32(t,imm[i],t);
2412 }else{
2413 emit_slti32(sl,imm[i],t);
2414 }
2415 }
2416 else { // SLTIU
2417 if(sl<0) {
2418 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2419 emit_sltiu32(t,imm[i],t);
2420 }else{
2421 emit_sltiu32(sl,imm[i],t);
2422 }
2423 }
2424 }else{
2425 // SLTI(U) with r0 is just stupid,
2426 // nonetheless examples can be found
2427 if(dops[i].opcode==0x0a) // SLTI
2428 if(0<imm[i]) emit_movimm(1,t);
2429 else emit_zeroreg(t);
2430 else // SLTIU
2431 {
2432 if(imm[i]) emit_movimm(1,t);
2433 else emit_zeroreg(t);
2434 }
2435 }
2436 }
2437 }
2438 }
2439 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2440 if(dops[i].rt1) {
2441 signed char sl,tl;
2442 tl=get_reg(i_regs->regmap,dops[i].rt1);
2443 sl=get_reg(i_regs->regmap,dops[i].rs1);
2444 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2445 if(dops[i].opcode==0x0c) //ANDI
2446 {
2447 if(dops[i].rs1) {
2448 if(sl<0) {
2449 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2450 emit_andimm(tl,imm[i],tl);
2451 }else{
2452 if(!((i_regs->wasconst>>sl)&1))
2453 emit_andimm(sl,imm[i],tl);
2454 else
2455 emit_movimm(constmap[i][sl]&imm[i],tl);
2456 }
2457 }
2458 else
2459 emit_zeroreg(tl);
2460 }
2461 else
2462 {
2463 if(dops[i].rs1) {
2464 if(sl<0) {
2465 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2466 }
2467 if(dops[i].opcode==0x0d) { // ORI
2468 if(sl<0) {
2469 emit_orimm(tl,imm[i],tl);
2470 }else{
2471 if(!((i_regs->wasconst>>sl)&1))
2472 emit_orimm(sl,imm[i],tl);
2473 else
2474 emit_movimm(constmap[i][sl]|imm[i],tl);
2475 }
2476 }
2477 if(dops[i].opcode==0x0e) { // XORI
2478 if(sl<0) {
2479 emit_xorimm(tl,imm[i],tl);
2480 }else{
2481 if(!((i_regs->wasconst>>sl)&1))
2482 emit_xorimm(sl,imm[i],tl);
2483 else
2484 emit_movimm(constmap[i][sl]^imm[i],tl);
2485 }
2486 }
2487 }
2488 else {
2489 emit_movimm(imm[i],tl);
2490 }
2491 }
2492 }
2493 }
2494 }
2495}
2496
2497static void shiftimm_assemble(int i, const struct regstat *i_regs)
2498{
2499 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2500 {
2501 if(dops[i].rt1) {
2502 signed char s,t;
2503 t=get_reg(i_regs->regmap,dops[i].rt1);
2504 s=get_reg(i_regs->regmap,dops[i].rs1);
2505 //assert(t>=0);
2506 if(t>=0&&!((i_regs->isconst>>t)&1)){
2507 if(dops[i].rs1==0)
2508 {
2509 emit_zeroreg(t);
2510 }
2511 else
2512 {
2513 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2514 if(imm[i]) {
2515 if(dops[i].opcode2==0) // SLL
2516 {
2517 emit_shlimm(s<0?t:s,imm[i],t);
2518 }
2519 if(dops[i].opcode2==2) // SRL
2520 {
2521 emit_shrimm(s<0?t:s,imm[i],t);
2522 }
2523 if(dops[i].opcode2==3) // SRA
2524 {
2525 emit_sarimm(s<0?t:s,imm[i],t);
2526 }
2527 }else{
2528 // Shift by zero
2529 if(s>=0 && s!=t) emit_mov(s,t);
2530 }
2531 }
2532 }
2533 //emit_storereg(dops[i].rt1,t); //DEBUG
2534 }
2535 }
2536 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2537 {
2538 assert(0);
2539 }
2540 if(dops[i].opcode2==0x3c) // DSLL32
2541 {
2542 assert(0);
2543 }
2544 if(dops[i].opcode2==0x3e) // DSRL32
2545 {
2546 assert(0);
2547 }
2548 if(dops[i].opcode2==0x3f) // DSRA32
2549 {
2550 assert(0);
2551 }
2552}
2553
2554#ifndef shift_assemble
2555static void shift_assemble(int i, const struct regstat *i_regs)
2556{
2557 signed char s,t,shift;
2558 if (dops[i].rt1 == 0)
2559 return;
2560 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2561 t = get_reg(i_regs->regmap, dops[i].rt1);
2562 s = get_reg(i_regs->regmap, dops[i].rs1);
2563 shift = get_reg(i_regs->regmap, dops[i].rs2);
2564 if (t < 0)
2565 return;
2566
2567 if(dops[i].rs1==0)
2568 emit_zeroreg(t);
2569 else if(dops[i].rs2==0) {
2570 assert(s>=0);
2571 if(s!=t) emit_mov(s,t);
2572 }
2573 else {
2574 host_tempreg_acquire();
2575 emit_andimm(shift,31,HOST_TEMPREG);
2576 switch(dops[i].opcode2) {
2577 case 4: // SLLV
2578 emit_shl(s,HOST_TEMPREG,t);
2579 break;
2580 case 6: // SRLV
2581 emit_shr(s,HOST_TEMPREG,t);
2582 break;
2583 case 7: // SRAV
2584 emit_sar(s,HOST_TEMPREG,t);
2585 break;
2586 default:
2587 assert(0);
2588 }
2589 host_tempreg_release();
2590 }
2591}
2592
2593#endif
2594
2595enum {
2596 MTYPE_8000 = 0,
2597 MTYPE_8020,
2598 MTYPE_0000,
2599 MTYPE_A000,
2600 MTYPE_1F80,
2601};
2602
2603static int get_ptr_mem_type(u_int a)
2604{
2605 if(a < 0x00200000) {
2606 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2607 // return wrong, must use memhandler for BIOS self-test to pass
2608 // 007 does similar stuff from a00 mirror, weird stuff
2609 return MTYPE_8000;
2610 return MTYPE_0000;
2611 }
2612 if(0x1f800000 <= a && a < 0x1f801000)
2613 return MTYPE_1F80;
2614 if(0x80200000 <= a && a < 0x80800000)
2615 return MTYPE_8020;
2616 if(0xa0000000 <= a && a < 0xa0200000)
2617 return MTYPE_A000;
2618 return MTYPE_8000;
2619}
2620
2621static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2622{
2623 int r = get_reg(i_regs->regmap, ROREG);
2624 if (r < 0 && host_tempreg_free) {
2625 host_tempreg_acquire();
2626 emit_loadreg(ROREG, r = HOST_TEMPREG);
2627 }
2628 if (r < 0)
2629 abort();
2630 return r;
2631}
2632
2633static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2634 int addr, int *offset_reg, int *addr_reg_override)
2635{
2636 void *jaddr = NULL;
2637 int type = 0;
2638 int mr = dops[i].rs1;
2639 *offset_reg = -1;
2640 if(((smrv_strong|smrv_weak)>>mr)&1) {
2641 type=get_ptr_mem_type(smrv[mr]);
2642 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2643 }
2644 else {
2645 // use the mirror we are running on
2646 type=get_ptr_mem_type(start);
2647 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2648 }
2649
2650 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2651 host_tempreg_acquire();
2652 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2653 addr=*addr_reg_override=HOST_TEMPREG;
2654 type=0;
2655 }
2656 else if(type==MTYPE_0000) { // RAM 0 mirror
2657 host_tempreg_acquire();
2658 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2659 addr=*addr_reg_override=HOST_TEMPREG;
2660 type=0;
2661 }
2662 else if(type==MTYPE_A000) { // RAM A mirror
2663 host_tempreg_acquire();
2664 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2665 addr=*addr_reg_override=HOST_TEMPREG;
2666 type=0;
2667 }
2668 else if(type==MTYPE_1F80) { // scratchpad
2669 if (psxH == (void *)0x1f800000) {
2670 host_tempreg_acquire();
2671 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2672 emit_cmpimm(HOST_TEMPREG,0x1000);
2673 host_tempreg_release();
2674 jaddr=out;
2675 emit_jc(0);
2676 }
2677 else {
2678 // do the usual RAM check, jump will go to the right handler
2679 type=0;
2680 }
2681 }
2682
2683 if (type == 0) // need ram check
2684 {
2685 emit_cmpimm(addr,RAM_SIZE);
2686 jaddr = out;
2687 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2688 // Hint to branch predictor that the branch is unlikely to be taken
2689 if (dops[i].rs1 >= 28)
2690 emit_jno_unlikely(0);
2691 else
2692 #endif
2693 emit_jno(0);
2694 if (ram_offset != 0)
2695 *offset_reg = get_ro_reg(i_regs, 0);
2696 }
2697
2698 return jaddr;
2699}
2700
2701// return memhandler, or get directly accessable address and return 0
2702static void *get_direct_memhandler(void *table, u_int addr,
2703 enum stub_type type, uintptr_t *addr_host)
2704{
2705 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2706 uintptr_t l1, l2 = 0;
2707 l1 = ((uintptr_t *)table)[addr>>12];
2708 if (!(l1 & msb)) {
2709 uintptr_t v = l1 << 1;
2710 *addr_host = v + addr;
2711 return NULL;
2712 }
2713 else {
2714 l1 <<= 1;
2715 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2716 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2717 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2718 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2719 else
2720 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2721 if (!(l2 & msb)) {
2722 uintptr_t v = l2 << 1;
2723 *addr_host = v + (addr&0xfff);
2724 return NULL;
2725 }
2726 return (void *)(l2 << 1);
2727 }
2728}
2729
2730static u_int get_host_reglist(const signed char *regmap)
2731{
2732 u_int reglist = 0, hr;
2733 for (hr = 0; hr < HOST_REGS; hr++) {
2734 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2735 reglist |= 1 << hr;
2736 }
2737 return reglist;
2738}
2739
2740static u_int reglist_exclude(u_int reglist, int r1, int r2)
2741{
2742 if (r1 >= 0)
2743 reglist &= ~(1u << r1);
2744 if (r2 >= 0)
2745 reglist &= ~(1u << r2);
2746 return reglist;
2747}
2748
2749// find a temp caller-saved register not in reglist (so assumed to be free)
2750static int reglist_find_free(u_int reglist)
2751{
2752 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2753 if (free_regs == 0)
2754 return -1;
2755 return __builtin_ctz(free_regs);
2756}
2757
2758static void do_load_word(int a, int rt, int offset_reg)
2759{
2760 if (offset_reg >= 0)
2761 emit_ldr_dualindexed(offset_reg, a, rt);
2762 else
2763 emit_readword_indexed(0, a, rt);
2764}
2765
2766static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2767{
2768 if (offset_reg < 0) {
2769 emit_writeword_indexed(rt, ofs, a);
2770 return;
2771 }
2772 if (ofs != 0)
2773 emit_addimm(a, ofs, a);
2774 emit_str_dualindexed(offset_reg, a, rt);
2775 if (ofs != 0 && preseve_a)
2776 emit_addimm(a, -ofs, a);
2777}
2778
2779static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2780{
2781 if (offset_reg < 0) {
2782 emit_writehword_indexed(rt, ofs, a);
2783 return;
2784 }
2785 if (ofs != 0)
2786 emit_addimm(a, ofs, a);
2787 emit_strh_dualindexed(offset_reg, a, rt);
2788 if (ofs != 0 && preseve_a)
2789 emit_addimm(a, -ofs, a);
2790}
2791
2792static void do_store_byte(int a, int rt, int offset_reg)
2793{
2794 if (offset_reg >= 0)
2795 emit_strb_dualindexed(offset_reg, a, rt);
2796 else
2797 emit_writebyte_indexed(rt, 0, a);
2798}
2799
2800static void load_assemble(int i, const struct regstat *i_regs, int ccadj_)
2801{
2802 int s,tl,addr;
2803 int offset;
2804 void *jaddr=0;
2805 int memtarget=0,c=0;
2806 int offset_reg = -1;
2807 int fastio_reg_override = -1;
2808 u_int reglist=get_host_reglist(i_regs->regmap);
2809 tl=get_reg(i_regs->regmap,dops[i].rt1);
2810 s=get_reg(i_regs->regmap,dops[i].rs1);
2811 offset=imm[i];
2812 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2813 if(s>=0) {
2814 c=(i_regs->wasconst>>s)&1;
2815 if (c) {
2816 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2817 }
2818 }
2819 //printf("load_assemble: c=%d\n",c);
2820 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2821 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2822 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2823 ||dops[i].rt1==0) {
2824 // could be FIFO, must perform the read
2825 // ||dummy read
2826 assem_debug("(forced read)\n");
2827 tl=get_reg_temp(i_regs->regmap);
2828 assert(tl>=0);
2829 }
2830 if(offset||s<0||c) addr=tl;
2831 else addr=s;
2832 //if(tl<0) tl=get_reg_temp(i_regs->regmap);
2833 if(tl>=0) {
2834 //printf("load_assemble: c=%d\n",c);
2835 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2836 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2837 reglist&=~(1<<tl);
2838 if(!c) {
2839 #ifdef R29_HACK
2840 // Strmnnrmn's speed hack
2841 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2842 #endif
2843 {
2844 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
2845 &offset_reg, &fastio_reg_override);
2846 }
2847 }
2848 else if (ram_offset && memtarget) {
2849 offset_reg = get_ro_reg(i_regs, 0);
2850 }
2851 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2852 switch (dops[i].opcode) {
2853 case 0x20: // LB
2854 if(!c||memtarget) {
2855 if(!dummy) {
2856 int a = tl;
2857 if (!c) a = addr;
2858 if (fastio_reg_override >= 0)
2859 a = fastio_reg_override;
2860
2861 if (offset_reg >= 0)
2862 emit_ldrsb_dualindexed(offset_reg, a, tl);
2863 else
2864 emit_movsbl_indexed(0, a, tl);
2865 }
2866 if(jaddr)
2867 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2868 }
2869 else
2870 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2871 break;
2872 case 0x21: // LH
2873 if(!c||memtarget) {
2874 if(!dummy) {
2875 int a = tl;
2876 if (!c) a = addr;
2877 if (fastio_reg_override >= 0)
2878 a = fastio_reg_override;
2879 if (offset_reg >= 0)
2880 emit_ldrsh_dualindexed(offset_reg, a, tl);
2881 else
2882 emit_movswl_indexed(0, a, tl);
2883 }
2884 if(jaddr)
2885 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2886 }
2887 else
2888 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2889 break;
2890 case 0x23: // LW
2891 if(!c||memtarget) {
2892 if(!dummy) {
2893 int a = addr;
2894 if (fastio_reg_override >= 0)
2895 a = fastio_reg_override;
2896 do_load_word(a, tl, offset_reg);
2897 }
2898 if(jaddr)
2899 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2900 }
2901 else
2902 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2903 break;
2904 case 0x24: // LBU
2905 if(!c||memtarget) {
2906 if(!dummy) {
2907 int a = tl;
2908 if (!c) a = addr;
2909 if (fastio_reg_override >= 0)
2910 a = fastio_reg_override;
2911
2912 if (offset_reg >= 0)
2913 emit_ldrb_dualindexed(offset_reg, a, tl);
2914 else
2915 emit_movzbl_indexed(0, a, tl);
2916 }
2917 if(jaddr)
2918 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2919 }
2920 else
2921 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2922 break;
2923 case 0x25: // LHU
2924 if(!c||memtarget) {
2925 if(!dummy) {
2926 int a = tl;
2927 if(!c) a = addr;
2928 if (fastio_reg_override >= 0)
2929 a = fastio_reg_override;
2930 if (offset_reg >= 0)
2931 emit_ldrh_dualindexed(offset_reg, a, tl);
2932 else
2933 emit_movzwl_indexed(0, a, tl);
2934 }
2935 if(jaddr)
2936 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2937 }
2938 else
2939 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2940 break;
2941 case 0x27: // LWU
2942 case 0x37: // LD
2943 default:
2944 assert(0);
2945 }
2946 }
2947 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
2948 host_tempreg_release();
2949}
2950
2951#ifndef loadlr_assemble
2952static void loadlr_assemble(int i, const struct regstat *i_regs, int ccadj_)
2953{
2954 int s,tl,temp,temp2,addr;
2955 int offset;
2956 void *jaddr=0;
2957 int memtarget=0,c=0;
2958 int offset_reg = -1;
2959 int fastio_reg_override = -1;
2960 u_int reglist=get_host_reglist(i_regs->regmap);
2961 tl=get_reg(i_regs->regmap,dops[i].rt1);
2962 s=get_reg(i_regs->regmap,dops[i].rs1);
2963 temp=get_reg_temp(i_regs->regmap);
2964 temp2=get_reg(i_regs->regmap,FTEMP);
2965 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2966 assert(addr<0);
2967 offset=imm[i];
2968 reglist|=1<<temp;
2969 if(offset||s<0||c) addr=temp2;
2970 else addr=s;
2971 if(s>=0) {
2972 c=(i_regs->wasconst>>s)&1;
2973 if(c) {
2974 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2975 }
2976 }
2977 if(!c) {
2978 emit_shlimm(addr,3,temp);
2979 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2980 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2981 }else{
2982 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2983 }
2984 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
2985 &offset_reg, &fastio_reg_override);
2986 }
2987 else {
2988 if (ram_offset && memtarget) {
2989 offset_reg = get_ro_reg(i_regs, 0);
2990 }
2991 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2992 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2993 }else{
2994 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2995 }
2996 }
2997 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
2998 if(!c||memtarget) {
2999 int a = temp2;
3000 if (fastio_reg_override >= 0)
3001 a = fastio_reg_override;
3002 do_load_word(a, temp2, offset_reg);
3003 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3004 host_tempreg_release();
3005 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj_,reglist);
3006 }
3007 else
3008 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj_,reglist);
3009 if(dops[i].rt1) {
3010 assert(tl>=0);
3011 emit_andimm(temp,24,temp);
3012 if (dops[i].opcode==0x22) // LWL
3013 emit_xorimm(temp,24,temp);
3014 host_tempreg_acquire();
3015 emit_movimm(-1,HOST_TEMPREG);
3016 if (dops[i].opcode==0x26) {
3017 emit_shr(temp2,temp,temp2);
3018 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
3019 }else{
3020 emit_shl(temp2,temp,temp2);
3021 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
3022 }
3023 host_tempreg_release();
3024 emit_or(temp2,tl,tl);
3025 }
3026 //emit_storereg(dops[i].rt1,tl); // DEBUG
3027 }
3028 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
3029 assert(0);
3030 }
3031}
3032#endif
3033
3034static void store_assemble(int i, const struct regstat *i_regs, int ccadj_)
3035{
3036 int s,tl;
3037 int addr,temp;
3038 int offset;
3039 void *jaddr=0;
3040 enum stub_type type=0;
3041 int memtarget=0,c=0;
3042 int agr=AGEN1+(i&1);
3043 int offset_reg = -1;
3044 int fastio_reg_override = -1;
3045 u_int reglist=get_host_reglist(i_regs->regmap);
3046 tl=get_reg(i_regs->regmap,dops[i].rs2);
3047 s=get_reg(i_regs->regmap,dops[i].rs1);
3048 temp=get_reg(i_regs->regmap,agr);
3049 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3050 offset=imm[i];
3051 if(s>=0) {
3052 c=(i_regs->wasconst>>s)&1;
3053 if(c) {
3054 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3055 }
3056 }
3057 assert(tl>=0);
3058 assert(temp>=0);
3059 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3060 if(offset||s<0||c) addr=temp;
3061 else addr=s;
3062 if (!c) {
3063 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3064 &offset_reg, &fastio_reg_override);
3065 }
3066 else if (ram_offset && memtarget) {
3067 offset_reg = get_ro_reg(i_regs, 0);
3068 }
3069
3070 switch (dops[i].opcode) {
3071 case 0x28: // SB
3072 if(!c||memtarget) {
3073 int a = temp;
3074 if (!c) a = addr;
3075 if (fastio_reg_override >= 0)
3076 a = fastio_reg_override;
3077 do_store_byte(a, tl, offset_reg);
3078 }
3079 type = STOREB_STUB;
3080 break;
3081 case 0x29: // SH
3082 if(!c||memtarget) {
3083 int a = temp;
3084 if (!c) a = addr;
3085 if (fastio_reg_override >= 0)
3086 a = fastio_reg_override;
3087 do_store_hword(a, 0, tl, offset_reg, 1);
3088 }
3089 type = STOREH_STUB;
3090 break;
3091 case 0x2B: // SW
3092 if(!c||memtarget) {
3093 int a = addr;
3094 if (fastio_reg_override >= 0)
3095 a = fastio_reg_override;
3096 do_store_word(a, 0, tl, offset_reg, 1);
3097 }
3098 type = STOREW_STUB;
3099 break;
3100 case 0x3F: // SD
3101 default:
3102 assert(0);
3103 }
3104 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3105 host_tempreg_release();
3106 if(jaddr) {
3107 // PCSX store handlers don't check invcode again
3108 reglist|=1<<addr;
3109 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3110 jaddr=0;
3111 }
3112 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3113 if(!c||memtarget) {
3114 #ifdef DESTRUCTIVE_SHIFT
3115 // The x86 shift operation is 'destructive'; it overwrites the
3116 // source register, so we need to make a copy first and use that.
3117 addr=temp;
3118 #endif
3119 #if defined(HOST_IMM8)
3120 int ir=get_reg(i_regs->regmap,INVCP);
3121 assert(ir>=0);
3122 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3123 #else
3124 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3125 #endif
3126 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3127 emit_callne(invalidate_addr_reg[addr]);
3128 #else
3129 void *jaddr2 = out;
3130 emit_jne(0);
3131 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3132 #endif
3133 }
3134 }
3135 u_int addr_val=constmap[i][s]+offset;
3136 if(jaddr) {
3137 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3138 } else if(c&&!memtarget) {
3139 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj_,reglist);
3140 }
3141 // basic current block modification detection..
3142 // not looking back as that should be in mips cache already
3143 // (see Spyro2 title->attract mode)
3144 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3145 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3146 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3147 if(i_regs->regmap==regs[i].regmap) {
3148 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3149 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3150 emit_movimm(start+i*4+4,0);
3151 emit_writeword(0,&pcaddr);
3152 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3153 emit_far_call(get_addr_ht);
3154 emit_jmpreg(0);
3155 }
3156 }
3157}
3158
3159static void storelr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3160{
3161 int s,tl;
3162 int temp;
3163 int offset;
3164 void *jaddr=0;
3165 void *case1, *case23, *case3;
3166 void *done0, *done1, *done2;
3167 int memtarget=0,c=0;
3168 int agr=AGEN1+(i&1);
3169 int offset_reg = -1;
3170 u_int reglist=get_host_reglist(i_regs->regmap);
3171 tl=get_reg(i_regs->regmap,dops[i].rs2);
3172 s=get_reg(i_regs->regmap,dops[i].rs1);
3173 temp=get_reg(i_regs->regmap,agr);
3174 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3175 offset=imm[i];
3176 if(s>=0) {
3177 c=(i_regs->isconst>>s)&1;
3178 if(c) {
3179 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3180 }
3181 }
3182 assert(tl>=0);
3183 assert(temp>=0);
3184 if(!c) {
3185 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3186 if(!offset&&s!=temp) emit_mov(s,temp);
3187 jaddr=out;
3188 emit_jno(0);
3189 }
3190 else
3191 {
3192 if(!memtarget||!dops[i].rs1) {
3193 jaddr=out;
3194 emit_jmp(0);
3195 }
3196 }
3197 if (ram_offset)
3198 offset_reg = get_ro_reg(i_regs, 0);
3199
3200 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3201 assert(0);
3202 }
3203
3204 emit_testimm(temp,2);
3205 case23=out;
3206 emit_jne(0);
3207 emit_testimm(temp,1);
3208 case1=out;
3209 emit_jne(0);
3210 // 0
3211 if (dops[i].opcode == 0x2A) { // SWL
3212 // Write msb into least significant byte
3213 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3214 do_store_byte(temp, tl, offset_reg);
3215 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3216 }
3217 else if (dops[i].opcode == 0x2E) { // SWR
3218 // Write entire word
3219 do_store_word(temp, 0, tl, offset_reg, 1);
3220 }
3221 done0 = out;
3222 emit_jmp(0);
3223 // 1
3224 set_jump_target(case1, out);
3225 if (dops[i].opcode == 0x2A) { // SWL
3226 // Write two msb into two least significant bytes
3227 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3228 do_store_hword(temp, -1, tl, offset_reg, 0);
3229 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3230 }
3231 else if (dops[i].opcode == 0x2E) { // SWR
3232 // Write 3 lsb into three most significant bytes
3233 do_store_byte(temp, tl, offset_reg);
3234 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3235 do_store_hword(temp, 1, tl, offset_reg, 0);
3236 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3237 }
3238 done1=out;
3239 emit_jmp(0);
3240 // 2,3
3241 set_jump_target(case23, out);
3242 emit_testimm(temp,1);
3243 case3 = out;
3244 emit_jne(0);
3245 // 2
3246 if (dops[i].opcode==0x2A) { // SWL
3247 // Write 3 msb into three least significant bytes
3248 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3249 do_store_hword(temp, -2, tl, offset_reg, 1);
3250 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3251 do_store_byte(temp, tl, offset_reg);
3252 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3253 }
3254 else if (dops[i].opcode == 0x2E) { // SWR
3255 // Write two lsb into two most significant bytes
3256 do_store_hword(temp, 0, tl, offset_reg, 1);
3257 }
3258 done2 = out;
3259 emit_jmp(0);
3260 // 3
3261 set_jump_target(case3, out);
3262 if (dops[i].opcode == 0x2A) { // SWL
3263 do_store_word(temp, -3, tl, offset_reg, 0);
3264 }
3265 else if (dops[i].opcode == 0x2E) { // SWR
3266 do_store_byte(temp, tl, offset_reg);
3267 }
3268 set_jump_target(done0, out);
3269 set_jump_target(done1, out);
3270 set_jump_target(done2, out);
3271 if (offset_reg == HOST_TEMPREG)
3272 host_tempreg_release();
3273 if(!c||!memtarget)
3274 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj_,reglist);
3275 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3276 #if defined(HOST_IMM8)
3277 int ir=get_reg(i_regs->regmap,INVCP);
3278 assert(ir>=0);
3279 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3280 #else
3281 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3282 #endif
3283 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3284 emit_callne(invalidate_addr_reg[temp]);
3285 #else
3286 void *jaddr2 = out;
3287 emit_jne(0);
3288 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3289 #endif
3290 }
3291}
3292
3293static void cop0_assemble(int i, const struct regstat *i_regs, int ccadj_)
3294{
3295 if(dops[i].opcode2==0) // MFC0
3296 {
3297 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3298 u_int copr=(source[i]>>11)&0x1f;
3299 //assert(t>=0); // Why does this happen? OOT is weird
3300 if(t>=0&&dops[i].rt1!=0) {
3301 emit_readword(&reg_cop0[copr],t);
3302 }
3303 }
3304 else if(dops[i].opcode2==4) // MTC0
3305 {
3306 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3307 char copr=(source[i]>>11)&0x1f;
3308 assert(s>=0);
3309 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3310 if(copr==9||copr==11||copr==12||copr==13) {
3311 emit_readword(&last_count,HOST_TEMPREG);
3312 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3313 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3314 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3315 emit_writeword(HOST_CCREG,&Count);
3316 }
3317 // What a mess. The status register (12) can enable interrupts,
3318 // so needs a special case to handle a pending interrupt.
3319 // The interrupt must be taken immediately, because a subsequent
3320 // instruction might disable interrupts again.
3321 if(copr==12||copr==13) {
3322 if (is_delayslot) {
3323 // burn cycles to cause cc_interrupt, which will
3324 // reschedule next_interupt. Relies on CCREG from above.
3325 assem_debug("MTC0 DS %d\n", copr);
3326 emit_writeword(HOST_CCREG,&last_count);
3327 emit_movimm(0,HOST_CCREG);
3328 emit_storereg(CCREG,HOST_CCREG);
3329 emit_loadreg(dops[i].rs1,1);
3330 emit_movimm(copr,0);
3331 emit_far_call(pcsx_mtc0_ds);
3332 emit_loadreg(dops[i].rs1,s);
3333 return;
3334 }
3335 emit_movimm(start+i*4+4,HOST_TEMPREG);
3336 emit_writeword(HOST_TEMPREG,&pcaddr);
3337 emit_movimm(0,HOST_TEMPREG);
3338 emit_writeword(HOST_TEMPREG,&pending_exception);
3339 }
3340 if(s==HOST_CCREG)
3341 emit_loadreg(dops[i].rs1,1);
3342 else if(s!=1)
3343 emit_mov(s,1);
3344 emit_movimm(copr,0);
3345 emit_far_call(pcsx_mtc0);
3346 if(copr==9||copr==11||copr==12||copr==13) {
3347 emit_readword(&Count,HOST_CCREG);
3348 emit_readword(&next_interupt,HOST_TEMPREG);
3349 emit_addimm(HOST_CCREG,-ccadj_,HOST_CCREG);
3350 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3351 emit_writeword(HOST_TEMPREG,&last_count);
3352 emit_storereg(CCREG,HOST_CCREG);
3353 }
3354 if(copr==12||copr==13) {
3355 assert(!is_delayslot);
3356 emit_readword(&pending_exception,14);
3357 emit_test(14,14);
3358 void *jaddr = out;
3359 emit_jeq(0);
3360 emit_readword(&pcaddr, 0);
3361 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3362 emit_far_call(get_addr_ht);
3363 emit_jmpreg(0);
3364 set_jump_target(jaddr, out);
3365 }
3366 emit_loadreg(dops[i].rs1,s);
3367 }
3368 else
3369 {
3370 assert(dops[i].opcode2==0x10);
3371 //if((source[i]&0x3f)==0x10) // RFE
3372 {
3373 emit_readword(&Status,0);
3374 emit_andimm(0,0x3c,1);
3375 emit_andimm(0,~0xf,0);
3376 emit_orrshr_imm(1,2,0);
3377 emit_writeword(0,&Status);
3378 }
3379 }
3380}
3381
3382static void cop1_unusable(int i, const struct regstat *i_regs)
3383{
3384 // XXX: should just just do the exception instead
3385 //if(!cop1_usable)
3386 {
3387 void *jaddr=out;
3388 emit_jmp(0);
3389 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3390 }
3391}
3392
3393static void cop1_assemble(int i, const struct regstat *i_regs)
3394{
3395 cop1_unusable(i, i_regs);
3396}
3397
3398static void c1ls_assemble(int i, const struct regstat *i_regs)
3399{
3400 cop1_unusable(i, i_regs);
3401}
3402
3403// FP_STUB
3404static void do_cop1stub(int n)
3405{
3406 literal_pool(256);
3407 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3408 set_jump_target(stubs[n].addr, out);
3409 int i=stubs[n].a;
3410// int rs=stubs[n].b;
3411 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3412 int ds=stubs[n].d;
3413 if(!ds) {
3414 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3415 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3416 }
3417 //else {printf("fp exception in delay slot\n");}
3418 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3419 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3420 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3421 emit_addimm(HOST_CCREG,ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3422 emit_far_jump(ds?fp_exception_ds:fp_exception);
3423}
3424
3425static int cop2_is_stalling_op(int i, int *cycles)
3426{
3427 if (dops[i].opcode == 0x3a) { // SWC2
3428 *cycles = 0;
3429 return 1;
3430 }
3431 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3432 *cycles = 0;
3433 return 1;
3434 }
3435 if (dops[i].itype == C2OP) {
3436 *cycles = gte_cycletab[source[i] & 0x3f];
3437 return 1;
3438 }
3439 // ... what about MTC2/CTC2/LWC2?
3440 return 0;
3441}
3442
3443#if 0
3444static void log_gte_stall(int stall, u_int cycle)
3445{
3446 if ((u_int)stall <= 44)
3447 printf("x stall %2d %u\n", stall, cycle + last_count);
3448}
3449
3450static void emit_log_gte_stall(int i, int stall, u_int reglist)
3451{
3452 save_regs(reglist);
3453 if (stall > 0)
3454 emit_movimm(stall, 0);
3455 else
3456 emit_mov(HOST_TEMPREG, 0);
3457 emit_addimm(HOST_CCREG, ccadj[i], 1);
3458 emit_far_call(log_gte_stall);
3459 restore_regs(reglist);
3460}
3461#endif
3462
3463static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3464{
3465 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3466 int rtmp = reglist_find_free(reglist);
3467
3468 if (HACK_ENABLED(NDHACK_NO_STALLS))
3469 return;
3470 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3471 // happens occasionally... cc evicted? Don't bother then
3472 //printf("no cc %08x\n", start + i*4);
3473 return;
3474 }
3475 if (!dops[i].bt) {
3476 for (j = i - 1; j >= 0; j--) {
3477 //if (dops[j].is_ds) break;
3478 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3479 break;
3480 if (j > 0 && ccadj[j - 1] > ccadj[j])
3481 break;
3482 }
3483 j = max(j, 0);
3484 }
3485 cycles_passed = ccadj[i] - ccadj[j];
3486 if (other_gte_op_cycles >= 0)
3487 stall = other_gte_op_cycles - cycles_passed;
3488 else if (cycles_passed >= 44)
3489 stall = 0; // can't stall
3490 if (stall == -MAXBLOCK && rtmp >= 0) {
3491 // unknown stall, do the expensive runtime check
3492 assem_debug("; cop2_do_stall_check\n");
3493#if 0 // too slow
3494 save_regs(reglist);
3495 emit_movimm(gte_cycletab[op], 0);
3496 emit_addimm(HOST_CCREG, ccadj[i], 1);
3497 emit_far_call(call_gteStall);
3498 restore_regs(reglist);
3499#else
3500 host_tempreg_acquire();
3501 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3502 emit_addimm(rtmp, -ccadj[i], rtmp);
3503 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3504 emit_cmpimm(HOST_TEMPREG, 44);
3505 emit_cmovb_reg(rtmp, HOST_CCREG);
3506 //emit_log_gte_stall(i, 0, reglist);
3507 host_tempreg_release();
3508#endif
3509 }
3510 else if (stall > 0) {
3511 //emit_log_gte_stall(i, stall, reglist);
3512 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3513 }
3514
3515 // save gteBusyCycle, if needed
3516 if (gte_cycletab[op] == 0)
3517 return;
3518 other_gte_op_cycles = -1;
3519 for (j = i + 1; j < slen; j++) {
3520 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3521 break;
3522 if (dops[j].is_jump) {
3523 // check ds
3524 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3525 j++;
3526 break;
3527 }
3528 }
3529 if (other_gte_op_cycles >= 0)
3530 // will handle stall when assembling that op
3531 return;
3532 cycles_passed = ccadj[min(j, slen -1)] - ccadj[i];
3533 if (cycles_passed >= 44)
3534 return;
3535 assem_debug("; save gteBusyCycle\n");
3536 host_tempreg_acquire();
3537#if 0
3538 emit_readword(&last_count, HOST_TEMPREG);
3539 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3540 emit_addimm(HOST_TEMPREG, ccadj[i], HOST_TEMPREG);
3541 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3542 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3543#else
3544 emit_addimm(HOST_CCREG, ccadj[i] + gte_cycletab[op], HOST_TEMPREG);
3545 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3546#endif
3547 host_tempreg_release();
3548}
3549
3550static int is_mflohi(int i)
3551{
3552 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3553}
3554
3555static int check_multdiv(int i, int *cycles)
3556{
3557 if (dops[i].itype != MULTDIV)
3558 return 0;
3559 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3560 *cycles = 11; // approx from 7 11 14
3561 else
3562 *cycles = 37;
3563 return 1;
3564}
3565
3566static void multdiv_prepare_stall(int i, const struct regstat *i_regs, int ccadj_)
3567{
3568 int j, found = 0, c = 0;
3569 if (HACK_ENABLED(NDHACK_NO_STALLS))
3570 return;
3571 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3572 // happens occasionally... cc evicted? Don't bother then
3573 return;
3574 }
3575 for (j = i + 1; j < slen; j++) {
3576 if (dops[j].bt)
3577 break;
3578 if ((found = is_mflohi(j)))
3579 break;
3580 if (dops[j].is_jump) {
3581 // check ds
3582 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3583 j++;
3584 break;
3585 }
3586 }
3587 if (found)
3588 // handle all in multdiv_do_stall()
3589 return;
3590 check_multdiv(i, &c);
3591 assert(c > 0);
3592 assem_debug("; muldiv prepare stall %d\n", c);
3593 host_tempreg_acquire();
3594 emit_addimm(HOST_CCREG, ccadj_ + c, HOST_TEMPREG);
3595 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3596 host_tempreg_release();
3597}
3598
3599static void multdiv_do_stall(int i, const struct regstat *i_regs)
3600{
3601 int j, known_cycles = 0;
3602 u_int reglist = get_host_reglist(i_regs->regmap);
3603 int rtmp = get_reg_temp(i_regs->regmap);
3604 if (rtmp < 0)
3605 rtmp = reglist_find_free(reglist);
3606 if (HACK_ENABLED(NDHACK_NO_STALLS))
3607 return;
3608 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3609 // happens occasionally... cc evicted? Don't bother then
3610 //printf("no cc/rtmp %08x\n", start + i*4);
3611 return;
3612 }
3613 if (!dops[i].bt) {
3614 for (j = i - 1; j >= 0; j--) {
3615 if (dops[j].is_ds) break;
3616 if (check_multdiv(j, &known_cycles))
3617 break;
3618 if (is_mflohi(j))
3619 // already handled by this op
3620 return;
3621 if (dops[j].bt || (j > 0 && ccadj[j - 1] > ccadj[j]))
3622 break;
3623 }
3624 j = max(j, 0);
3625 }
3626 if (known_cycles > 0) {
3627 known_cycles -= ccadj[i] - ccadj[j];
3628 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3629 if (known_cycles > 0)
3630 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3631 return;
3632 }
3633 assem_debug("; muldiv stall unresolved\n");
3634 host_tempreg_acquire();
3635 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3636 emit_addimm(rtmp, -ccadj[i], rtmp);
3637 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3638 emit_cmpimm(HOST_TEMPREG, 37);
3639 emit_cmovb_reg(rtmp, HOST_CCREG);
3640 //emit_log_gte_stall(i, 0, reglist);
3641 host_tempreg_release();
3642}
3643
3644static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3645{
3646 switch (copr) {
3647 case 1:
3648 case 3:
3649 case 5:
3650 case 8:
3651 case 9:
3652 case 10:
3653 case 11:
3654 emit_readword(&reg_cop2d[copr],tl);
3655 emit_signextend16(tl,tl);
3656 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3657 break;
3658 case 7:
3659 case 16:
3660 case 17:
3661 case 18:
3662 case 19:
3663 emit_readword(&reg_cop2d[copr],tl);
3664 emit_andimm(tl,0xffff,tl);
3665 emit_writeword(tl,&reg_cop2d[copr]);
3666 break;
3667 case 15:
3668 emit_readword(&reg_cop2d[14],tl); // SXY2
3669 emit_writeword(tl,&reg_cop2d[copr]);
3670 break;
3671 case 28:
3672 case 29:
3673 c2op_mfc2_29_assemble(tl,temp);
3674 break;
3675 default:
3676 emit_readword(&reg_cop2d[copr],tl);
3677 break;
3678 }
3679}
3680
3681static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3682{
3683 switch (copr) {
3684 case 15:
3685 emit_readword(&reg_cop2d[13],temp); // SXY1
3686 emit_writeword(sl,&reg_cop2d[copr]);
3687 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3688 emit_readword(&reg_cop2d[14],temp); // SXY2
3689 emit_writeword(sl,&reg_cop2d[14]);
3690 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3691 break;
3692 case 28:
3693 emit_andimm(sl,0x001f,temp);
3694 emit_shlimm(temp,7,temp);
3695 emit_writeword(temp,&reg_cop2d[9]);
3696 emit_andimm(sl,0x03e0,temp);
3697 emit_shlimm(temp,2,temp);
3698 emit_writeword(temp,&reg_cop2d[10]);
3699 emit_andimm(sl,0x7c00,temp);
3700 emit_shrimm(temp,3,temp);
3701 emit_writeword(temp,&reg_cop2d[11]);
3702 emit_writeword(sl,&reg_cop2d[28]);
3703 break;
3704 case 30:
3705 emit_xorsar_imm(sl,sl,31,temp);
3706#if defined(HAVE_ARMV5) || defined(__aarch64__)
3707 emit_clz(temp,temp);
3708#else
3709 emit_movs(temp,HOST_TEMPREG);
3710 emit_movimm(0,temp);
3711 emit_jeq((int)out+4*4);
3712 emit_addpl_imm(temp,1,temp);
3713 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3714 emit_jns((int)out-2*4);
3715#endif
3716 emit_writeword(sl,&reg_cop2d[30]);
3717 emit_writeword(temp,&reg_cop2d[31]);
3718 break;
3719 case 31:
3720 break;
3721 default:
3722 emit_writeword(sl,&reg_cop2d[copr]);
3723 break;
3724 }
3725}
3726
3727static void c2ls_assemble(int i, const struct regstat *i_regs, int ccadj_)
3728{
3729 int s,tl;
3730 int ar;
3731 int offset;
3732 int memtarget=0,c=0;
3733 void *jaddr2=NULL;
3734 enum stub_type type;
3735 int agr=AGEN1+(i&1);
3736 int offset_reg = -1;
3737 int fastio_reg_override = -1;
3738 u_int reglist=get_host_reglist(i_regs->regmap);
3739 u_int copr=(source[i]>>16)&0x1f;
3740 s=get_reg(i_regs->regmap,dops[i].rs1);
3741 tl=get_reg(i_regs->regmap,FTEMP);
3742 offset=imm[i];
3743 assert(dops[i].rs1>0);
3744 assert(tl>=0);
3745
3746 if(i_regs->regmap[HOST_CCREG]==CCREG)
3747 reglist&=~(1<<HOST_CCREG);
3748
3749 // get the address
3750 if (dops[i].opcode==0x3a) { // SWC2
3751 ar=get_reg(i_regs->regmap,agr);
3752 if(ar<0) ar=get_reg_temp(i_regs->regmap);
3753 reglist|=1<<ar;
3754 } else { // LWC2
3755 ar=tl;
3756 }
3757 if(s>=0) c=(i_regs->wasconst>>s)&1;
3758 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3759 if (!offset&&!c&&s>=0) ar=s;
3760 assert(ar>=0);
3761
3762 cop2_do_stall_check(0, i, i_regs, reglist);
3763
3764 if (dops[i].opcode==0x3a) { // SWC2
3765 cop2_get_dreg(copr,tl,-1);
3766 type=STOREW_STUB;
3767 }
3768 else
3769 type=LOADW_STUB;
3770
3771 if(c&&!memtarget) {
3772 jaddr2=out;
3773 emit_jmp(0); // inline_readstub/inline_writestub?
3774 }
3775 else {
3776 if(!c) {
3777 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3778 &offset_reg, &fastio_reg_override);
3779 }
3780 else if (ram_offset && memtarget) {
3781 offset_reg = get_ro_reg(i_regs, 0);
3782 }
3783 switch (dops[i].opcode) {
3784 case 0x32: { // LWC2
3785 int a = ar;
3786 if (fastio_reg_override >= 0)
3787 a = fastio_reg_override;
3788 do_load_word(a, tl, offset_reg);
3789 break;
3790 }
3791 case 0x3a: { // SWC2
3792 #ifdef DESTRUCTIVE_SHIFT
3793 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3794 #endif
3795 int a = ar;
3796 if (fastio_reg_override >= 0)
3797 a = fastio_reg_override;
3798 do_store_word(a, 0, tl, offset_reg, 1);
3799 break;
3800 }
3801 default:
3802 assert(0);
3803 }
3804 }
3805 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3806 host_tempreg_release();
3807 if(jaddr2)
3808 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj_,reglist);
3809 if(dops[i].opcode==0x3a) // SWC2
3810 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3811#if defined(HOST_IMM8)
3812 int ir=get_reg(i_regs->regmap,INVCP);
3813 assert(ir>=0);
3814 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3815#else
3816 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3817#endif
3818 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3819 emit_callne(invalidate_addr_reg[ar]);
3820 #else
3821 void *jaddr3 = out;
3822 emit_jne(0);
3823 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3824 #endif
3825 }
3826 if (dops[i].opcode==0x32) { // LWC2
3827 host_tempreg_acquire();
3828 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3829 host_tempreg_release();
3830 }
3831}
3832
3833static void cop2_assemble(int i, const struct regstat *i_regs)
3834{
3835 u_int copr = (source[i]>>11) & 0x1f;
3836 signed char temp = get_reg_temp(i_regs->regmap);
3837
3838 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3839 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3840 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3841 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3842 reglist = reglist_exclude(reglist, tl, -1);
3843 }
3844 cop2_do_stall_check(0, i, i_regs, reglist);
3845 }
3846 if (dops[i].opcode2==0) { // MFC2
3847 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3848 if(tl>=0&&dops[i].rt1!=0)
3849 cop2_get_dreg(copr,tl,temp);
3850 }
3851 else if (dops[i].opcode2==4) { // MTC2
3852 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3853 cop2_put_dreg(copr,sl,temp);
3854 }
3855 else if (dops[i].opcode2==2) // CFC2
3856 {
3857 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3858 if(tl>=0&&dops[i].rt1!=0)
3859 emit_readword(&reg_cop2c[copr],tl);
3860 }
3861 else if (dops[i].opcode2==6) // CTC2
3862 {
3863 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3864 switch(copr) {
3865 case 4:
3866 case 12:
3867 case 20:
3868 case 26:
3869 case 27:
3870 case 29:
3871 case 30:
3872 emit_signextend16(sl,temp);
3873 break;
3874 case 31:
3875 c2op_ctc2_31_assemble(sl,temp);
3876 break;
3877 default:
3878 temp=sl;
3879 break;
3880 }
3881 emit_writeword(temp,&reg_cop2c[copr]);
3882 assert(sl>=0);
3883 }
3884}
3885
3886static void do_unalignedwritestub(int n)
3887{
3888 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3889 literal_pool(256);
3890 set_jump_target(stubs[n].addr, out);
3891
3892 int i=stubs[n].a;
3893 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3894 int addr=stubs[n].b;
3895 u_int reglist=stubs[n].e;
3896 signed char *i_regmap=i_regs->regmap;
3897 int temp2=get_reg(i_regmap,FTEMP);
3898 int rt;
3899 rt=get_reg(i_regmap,dops[i].rs2);
3900 assert(rt>=0);
3901 assert(addr>=0);
3902 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3903 reglist|=(1<<addr);
3904 reglist&=~(1<<temp2);
3905
3906 // don't bother with it and call write handler
3907 save_regs(reglist);
3908 pass_args(addr,rt);
3909 int cc=get_reg(i_regmap,CCREG);
3910 if(cc<0)
3911 emit_loadreg(CCREG,2);
3912 emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
3913 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3914 emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
3915 if(cc<0)
3916 emit_storereg(CCREG,2);
3917 restore_regs(reglist);
3918 emit_jmp(stubs[n].retaddr); // return address
3919}
3920
3921#ifndef multdiv_assemble
3922void multdiv_assemble(int i,struct regstat *i_regs)
3923{
3924 printf("Need multdiv_assemble for this architecture.\n");
3925 abort();
3926}
3927#endif
3928
3929static void mov_assemble(int i, const struct regstat *i_regs)
3930{
3931 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3932 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3933 if(dops[i].rt1) {
3934 signed char sl,tl;
3935 tl=get_reg(i_regs->regmap,dops[i].rt1);
3936 //assert(tl>=0);
3937 if(tl>=0) {
3938 sl=get_reg(i_regs->regmap,dops[i].rs1);
3939 if(sl>=0) emit_mov(sl,tl);
3940 else emit_loadreg(dops[i].rs1,tl);
3941 }
3942 }
3943 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3944 multdiv_do_stall(i, i_regs);
3945}
3946
3947// call interpreter, exception handler, things that change pc/regs/cycles ...
3948static void call_c_cpu_handler(int i, const struct regstat *i_regs, int ccadj_, u_int pc, void *func)
3949{
3950 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3951 assert(ccreg==HOST_CCREG);
3952 assert(!is_delayslot);
3953 (void)ccreg;
3954
3955 emit_movimm(pc,3); // Get PC
3956 emit_readword(&last_count,2);
3957 emit_writeword(3,&psxRegs.pc);
3958 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3959 emit_add(2,HOST_CCREG,2);
3960 emit_writeword(2,&psxRegs.cycle);
3961 emit_far_call(func);
3962 emit_far_jump(jump_to_new_pc);
3963}
3964
3965static void syscall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3966{
3967 // 'break' tends to be littered around to catch things like
3968 // division by 0 and is almost never executed, so don't emit much code here
3969 void *func = (dops[i].opcode2 == 0x0C)
3970 ? (is_delayslot ? jump_syscall_ds : jump_syscall)
3971 : (is_delayslot ? jump_break_ds : jump_break);
3972 assert(get_reg(i_regs->regmap, CCREG) == HOST_CCREG);
3973 emit_movimm(start + i*4, 2); // pc
3974 emit_addimm(HOST_CCREG, ccadj_ + CLOCK_ADJUST(1), HOST_CCREG);
3975 emit_far_jump(func);
3976}
3977
3978static void hlecall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3979{
3980 void *hlefunc = psxNULL;
3981 uint32_t hleCode = source[i] & 0x03ffffff;
3982 if (hleCode < ARRAY_SIZE(psxHLEt))
3983 hlefunc = psxHLEt[hleCode];
3984
3985 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4+4, hlefunc);
3986}
3987
3988static void intcall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3989{
3990 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4, execI);
3991}
3992
3993static void speculate_mov(int rs,int rt)
3994{
3995 if(rt!=0) {
3996 smrv_strong_next|=1<<rt;
3997 smrv[rt]=smrv[rs];
3998 }
3999}
4000
4001static void speculate_mov_weak(int rs,int rt)
4002{
4003 if(rt!=0) {
4004 smrv_weak_next|=1<<rt;
4005 smrv[rt]=smrv[rs];
4006 }
4007}
4008
4009static void speculate_register_values(int i)
4010{
4011 if(i==0) {
4012 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
4013 // gp,sp are likely to stay the same throughout the block
4014 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
4015 smrv_weak_next=~smrv_strong_next;
4016 //printf(" llr %08x\n", smrv[4]);
4017 }
4018 smrv_strong=smrv_strong_next;
4019 smrv_weak=smrv_weak_next;
4020 switch(dops[i].itype) {
4021 case ALU:
4022 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4023 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
4024 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4025 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
4026 else {
4027 smrv_strong_next&=~(1<<dops[i].rt1);
4028 smrv_weak_next&=~(1<<dops[i].rt1);
4029 }
4030 break;
4031 case SHIFTIMM:
4032 smrv_strong_next&=~(1<<dops[i].rt1);
4033 smrv_weak_next&=~(1<<dops[i].rt1);
4034 // fallthrough
4035 case IMM16:
4036 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
4037 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
4038 if(hr>=0) {
4039 if(get_final_value(hr,i,&value))
4040 smrv[dops[i].rt1]=value;
4041 else smrv[dops[i].rt1]=constmap[i][hr];
4042 smrv_strong_next|=1<<dops[i].rt1;
4043 }
4044 }
4045 else {
4046 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4047 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4048 }
4049 break;
4050 case LOAD:
4051 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
4052 // special case for BIOS
4053 smrv[dops[i].rt1]=0xa0000000;
4054 smrv_strong_next|=1<<dops[i].rt1;
4055 break;
4056 }
4057 // fallthrough
4058 case SHIFT:
4059 case LOADLR:
4060 case MOV:
4061 smrv_strong_next&=~(1<<dops[i].rt1);
4062 smrv_weak_next&=~(1<<dops[i].rt1);
4063 break;
4064 case COP0:
4065 case COP2:
4066 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
4067 smrv_strong_next&=~(1<<dops[i].rt1);
4068 smrv_weak_next&=~(1<<dops[i].rt1);
4069 }
4070 break;
4071 case C2LS:
4072 if (dops[i].opcode==0x32) { // LWC2
4073 smrv_strong_next&=~(1<<dops[i].rt1);
4074 smrv_weak_next&=~(1<<dops[i].rt1);
4075 }
4076 break;
4077 }
4078#if 0
4079 int r=4;
4080 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4081 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4082#endif
4083}
4084
4085static void ujump_assemble(int i, const struct regstat *i_regs);
4086static void rjump_assemble(int i, const struct regstat *i_regs);
4087static void cjump_assemble(int i, const struct regstat *i_regs);
4088static void sjump_assemble(int i, const struct regstat *i_regs);
4089static void pagespan_assemble(int i, const struct regstat *i_regs);
4090
4091static int assemble(int i, const struct regstat *i_regs, int ccadj_)
4092{
4093 int ds = 0;
4094 switch (dops[i].itype) {
4095 case ALU:
4096 alu_assemble(i, i_regs);
4097 break;
4098 case IMM16:
4099 imm16_assemble(i, i_regs);
4100 break;
4101 case SHIFT:
4102 shift_assemble(i, i_regs);
4103 break;
4104 case SHIFTIMM:
4105 shiftimm_assemble(i, i_regs);
4106 break;
4107 case LOAD:
4108 load_assemble(i, i_regs, ccadj_);
4109 break;
4110 case LOADLR:
4111 loadlr_assemble(i, i_regs, ccadj_);
4112 break;
4113 case STORE:
4114 store_assemble(i, i_regs, ccadj_);
4115 break;
4116 case STORELR:
4117 storelr_assemble(i, i_regs, ccadj_);
4118 break;
4119 case COP0:
4120 cop0_assemble(i, i_regs, ccadj_);
4121 break;
4122 case COP1:
4123 cop1_assemble(i, i_regs);
4124 break;
4125 case C1LS:
4126 c1ls_assemble(i, i_regs);
4127 break;
4128 case COP2:
4129 cop2_assemble(i, i_regs);
4130 break;
4131 case C2LS:
4132 c2ls_assemble(i, i_regs, ccadj_);
4133 break;
4134 case C2OP:
4135 c2op_assemble(i, i_regs);
4136 break;
4137 case MULTDIV:
4138 multdiv_assemble(i, i_regs);
4139 multdiv_prepare_stall(i, i_regs, ccadj_);
4140 break;
4141 case MOV:
4142 mov_assemble(i, i_regs);
4143 break;
4144 case SYSCALL:
4145 syscall_assemble(i, i_regs, ccadj_);
4146 break;
4147 case HLECALL:
4148 hlecall_assemble(i, i_regs, ccadj_);
4149 break;
4150 case INTCALL:
4151 intcall_assemble(i, i_regs, ccadj_);
4152 break;
4153 case UJUMP:
4154 ujump_assemble(i, i_regs);
4155 ds = 1;
4156 break;
4157 case RJUMP:
4158 rjump_assemble(i, i_regs);
4159 ds = 1;
4160 break;
4161 case CJUMP:
4162 cjump_assemble(i, i_regs);
4163 ds = 1;
4164 break;
4165 case SJUMP:
4166 sjump_assemble(i, i_regs);
4167 ds = 1;
4168 break;
4169 case SPAN:
4170 pagespan_assemble(i, i_regs);
4171 break;
4172 case NOP:
4173 case OTHER:
4174 case NI:
4175 // not handled, just skip
4176 break;
4177 default:
4178 assert(0);
4179 }
4180 return ds;
4181}
4182
4183static void ds_assemble(int i, const struct regstat *i_regs)
4184{
4185 speculate_register_values(i);
4186 is_delayslot = 1;
4187 switch (dops[i].itype) {
4188 case SYSCALL:
4189 case HLECALL:
4190 case INTCALL:
4191 case SPAN:
4192 case UJUMP:
4193 case RJUMP:
4194 case CJUMP:
4195 case SJUMP:
4196 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4197 break;
4198 default:
4199 assemble(i, i_regs, ccadj[i]);
4200 }
4201 is_delayslot = 0;
4202}
4203
4204// Is the branch target a valid internal jump?
4205static int internal_branch(int addr)
4206{
4207 if(addr&1) return 0; // Indirect (register) jump
4208 if(addr>=start && addr<start+slen*4-4)
4209 {
4210 return 1;
4211 }
4212 return 0;
4213}
4214
4215static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4216{
4217 int hr;
4218 for(hr=0;hr<HOST_REGS;hr++) {
4219 if(hr!=EXCLUDE_REG) {
4220 if(pre[hr]!=entry[hr]) {
4221 if(pre[hr]>=0) {
4222 if((dirty>>hr)&1) {
4223 if(get_reg(entry,pre[hr])<0) {
4224 assert(pre[hr]<64);
4225 if(!((u>>pre[hr])&1))
4226 emit_storereg(pre[hr],hr);
4227 }
4228 }
4229 }
4230 }
4231 }
4232 }
4233 // Move from one register to another (no writeback)
4234 for(hr=0;hr<HOST_REGS;hr++) {
4235 if(hr!=EXCLUDE_REG) {
4236 if(pre[hr]!=entry[hr]) {
4237 if(pre[hr]>=0&&pre[hr]<TEMPREG) {
4238 int nr;
4239 if((nr=get_reg(entry,pre[hr]))>=0) {
4240 emit_mov(hr,nr);
4241 }
4242 }
4243 }
4244 }
4245 }
4246}
4247
4248// Load the specified registers
4249// This only loads the registers given as arguments because
4250// we don't want to load things that will be overwritten
4251static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4252{
4253 int hr;
4254 // Load 32-bit regs
4255 for(hr=0;hr<HOST_REGS;hr++) {
4256 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4257 if(entry[hr]!=regmap[hr]) {
4258 if(regmap[hr]==rs1||regmap[hr]==rs2)
4259 {
4260 if(regmap[hr]==0) {
4261 emit_zeroreg(hr);
4262 }
4263 else
4264 {
4265 emit_loadreg(regmap[hr],hr);
4266 }
4267 }
4268 }
4269 }
4270 }
4271}
4272
4273// Load registers prior to the start of a loop
4274// so that they are not loaded within the loop
4275static void loop_preload(signed char pre[],signed char entry[])
4276{
4277 int hr;
4278 for(hr=0;hr<HOST_REGS;hr++) {
4279 if(hr!=EXCLUDE_REG) {
4280 if(pre[hr]!=entry[hr]) {
4281 if(entry[hr]>=0) {
4282 if(get_reg(pre,entry[hr])<0) {
4283 assem_debug("loop preload:\n");
4284 //printf("loop preload: %d\n",hr);
4285 if(entry[hr]==0) {
4286 emit_zeroreg(hr);
4287 }
4288 else if(entry[hr]<TEMPREG)
4289 {
4290 emit_loadreg(entry[hr],hr);
4291 }
4292 else if(entry[hr]-64<TEMPREG)
4293 {
4294 emit_loadreg(entry[hr],hr);
4295 }
4296 }
4297 }
4298 }
4299 }
4300 }
4301}
4302
4303// Generate address for load/store instruction
4304// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4305void address_generation(int i, const struct regstat *i_regs, signed char entry[])
4306{
4307 if (dops[i].is_load || dops[i].is_store) {
4308 int ra=-1;
4309 int agr=AGEN1+(i&1);
4310 if(dops[i].itype==LOAD) {
4311 ra=get_reg(i_regs->regmap,dops[i].rt1);
4312 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4313 assert(ra>=0);
4314 }
4315 if(dops[i].itype==LOADLR) {
4316 ra=get_reg(i_regs->regmap,FTEMP);
4317 }
4318 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4319 ra=get_reg(i_regs->regmap,agr);
4320 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4321 }
4322 if(dops[i].itype==C2LS) {
4323 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4324 ra=get_reg(i_regs->regmap,FTEMP);
4325 else { // SWC1/SDC1/SWC2/SDC2
4326 ra=get_reg(i_regs->regmap,agr);
4327 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4328 }
4329 }
4330 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4331 if(ra>=0) {
4332 int offset=imm[i];
4333 int c=(i_regs->wasconst>>rs)&1;
4334 if(dops[i].rs1==0) {
4335 // Using r0 as a base address
4336 if(!entry||entry[ra]!=agr) {
4337 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4338 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4339 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4340 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4341 }else{
4342 emit_movimm(offset,ra);
4343 }
4344 } // else did it in the previous cycle
4345 }
4346 else if(rs<0) {
4347 if(!entry||entry[ra]!=dops[i].rs1)
4348 emit_loadreg(dops[i].rs1,ra);
4349 //if(!entry||entry[ra]!=dops[i].rs1)
4350 // printf("poor load scheduling!\n");
4351 }
4352 else if(c) {
4353 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4354 if(!entry||entry[ra]!=agr) {
4355 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4356 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4357 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4358 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4359 }else{
4360 emit_movimm(constmap[i][rs]+offset,ra);
4361 regs[i].loadedconst|=1<<ra;
4362 }
4363 } // else did it in the previous cycle
4364 } // else load_consts already did it
4365 }
4366 if(offset&&!c&&dops[i].rs1) {
4367 if(rs>=0) {
4368 emit_addimm(rs,offset,ra);
4369 }else{
4370 emit_addimm(ra,offset,ra);
4371 }
4372 }
4373 }
4374 }
4375 // Preload constants for next instruction
4376 if (dops[i+1].is_load || dops[i+1].is_store) {
4377 int agr,ra;
4378 // Actual address
4379 agr=AGEN1+((i+1)&1);
4380 ra=get_reg(i_regs->regmap,agr);
4381 if(ra>=0) {
4382 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4383 int offset=imm[i+1];
4384 int c=(regs[i+1].wasconst>>rs)&1;
4385 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4386 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4387 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4388 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4389 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4390 }else{
4391 emit_movimm(constmap[i+1][rs]+offset,ra);
4392 regs[i+1].loadedconst|=1<<ra;
4393 }
4394 }
4395 else if(dops[i+1].rs1==0) {
4396 // Using r0 as a base address
4397 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4398 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4399 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4400 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4401 }else{
4402 emit_movimm(offset,ra);
4403 }
4404 }
4405 }
4406 }
4407}
4408
4409static int get_final_value(int hr, int i, int *value)
4410{
4411 int reg=regs[i].regmap[hr];
4412 while(i<slen-1) {
4413 if(regs[i+1].regmap[hr]!=reg) break;
4414 if(!((regs[i+1].isconst>>hr)&1)) break;
4415 if(dops[i+1].bt) break;
4416 i++;
4417 }
4418 if(i<slen-1) {
4419 if (dops[i].is_jump) {
4420 *value=constmap[i][hr];
4421 return 1;
4422 }
4423 if(!dops[i+1].bt) {
4424 if (dops[i+1].is_jump) {
4425 // Load in delay slot, out-of-order execution
4426 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4427 {
4428 // Precompute load address
4429 *value=constmap[i][hr]+imm[i+2];
4430 return 1;
4431 }
4432 }
4433 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4434 {
4435 // Precompute load address
4436 *value=constmap[i][hr]+imm[i+1];
4437 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4438 return 1;
4439 }
4440 }
4441 }
4442 *value=constmap[i][hr];
4443 //printf("c=%lx\n",(long)constmap[i][hr]);
4444 if(i==slen-1) return 1;
4445 assert(reg < 64);
4446 return !((unneeded_reg[i+1]>>reg)&1);
4447}
4448
4449// Load registers with known constants
4450static void load_consts(signed char pre[],signed char regmap[],int i)
4451{
4452 int hr,hr2;
4453 // propagate loaded constant flags
4454 if(i==0||dops[i].bt)
4455 regs[i].loadedconst=0;
4456 else {
4457 for(hr=0;hr<HOST_REGS;hr++) {
4458 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4459 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4460 {
4461 regs[i].loadedconst|=1<<hr;
4462 }
4463 }
4464 }
4465 // Load 32-bit regs
4466 for(hr=0;hr<HOST_REGS;hr++) {
4467 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4468 //if(entry[hr]!=regmap[hr]) {
4469 if(!((regs[i].loadedconst>>hr)&1)) {
4470 assert(regmap[hr]<64);
4471 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4472 int value,similar=0;
4473 if(get_final_value(hr,i,&value)) {
4474 // see if some other register has similar value
4475 for(hr2=0;hr2<HOST_REGS;hr2++) {
4476 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4477 if(is_similar_value(value,constmap[i][hr2])) {
4478 similar=1;
4479 break;
4480 }
4481 }
4482 }
4483 if(similar) {
4484 int value2;
4485 if(get_final_value(hr2,i,&value2)) // is this needed?
4486 emit_movimm_from(value2,hr2,value,hr);
4487 else
4488 emit_movimm(value,hr);
4489 }
4490 else if(value==0) {
4491 emit_zeroreg(hr);
4492 }
4493 else {
4494 emit_movimm(value,hr);
4495 }
4496 }
4497 regs[i].loadedconst|=1<<hr;
4498 }
4499 }
4500 }
4501 }
4502}
4503
4504static void load_all_consts(const signed char regmap[], u_int dirty, int i)
4505{
4506 int hr;
4507 // Load 32-bit regs
4508 for(hr=0;hr<HOST_REGS;hr++) {
4509 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4510 assert(regmap[hr] < 64);
4511 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4512 int value=constmap[i][hr];
4513 if(value==0) {
4514 emit_zeroreg(hr);
4515 }
4516 else {
4517 emit_movimm(value,hr);
4518 }
4519 }
4520 }
4521 }
4522}
4523
4524// Write out all dirty registers (except cycle count)
4525static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty)
4526{
4527 int hr;
4528 for(hr=0;hr<HOST_REGS;hr++) {
4529 if(hr!=EXCLUDE_REG) {
4530 if(i_regmap[hr]>0) {
4531 if(i_regmap[hr]!=CCREG) {
4532 if((i_dirty>>hr)&1) {
4533 assert(i_regmap[hr]<64);
4534 emit_storereg(i_regmap[hr],hr);
4535 }
4536 }
4537 }
4538 }
4539 }
4540}
4541
4542// Write out dirty registers that we need to reload (pair with load_needed_regs)
4543// This writes the registers not written by store_regs_bt
4544static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr)
4545{
4546 int hr;
4547 int t=(addr-start)>>2;
4548 for(hr=0;hr<HOST_REGS;hr++) {
4549 if(hr!=EXCLUDE_REG) {
4550 if(i_regmap[hr]>0) {
4551 if(i_regmap[hr]!=CCREG) {
4552 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4553 if((i_dirty>>hr)&1) {
4554 assert(i_regmap[hr]<64);
4555 emit_storereg(i_regmap[hr],hr);
4556 }
4557 }
4558 }
4559 }
4560 }
4561 }
4562}
4563
4564// Load all registers (except cycle count)
4565static void load_all_regs(const signed char i_regmap[])
4566{
4567 int hr;
4568 for(hr=0;hr<HOST_REGS;hr++) {
4569 if(hr!=EXCLUDE_REG) {
4570 if(i_regmap[hr]==0) {
4571 emit_zeroreg(hr);
4572 }
4573 else
4574 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4575 {
4576 emit_loadreg(i_regmap[hr],hr);
4577 }
4578 }
4579 }
4580}
4581
4582// Load all current registers also needed by next instruction
4583static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[])
4584{
4585 int hr;
4586 for(hr=0;hr<HOST_REGS;hr++) {
4587 if(hr!=EXCLUDE_REG) {
4588 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4589 if(i_regmap[hr]==0) {
4590 emit_zeroreg(hr);
4591 }
4592 else
4593 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4594 {
4595 emit_loadreg(i_regmap[hr],hr);
4596 }
4597 }
4598 }
4599 }
4600}
4601
4602// Load all regs, storing cycle count if necessary
4603static void load_regs_entry(int t)
4604{
4605 int hr;
4606 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4607 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t],HOST_CCREG);
4608 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4609 emit_storereg(CCREG,HOST_CCREG);
4610 }
4611 // Load 32-bit regs
4612 for(hr=0;hr<HOST_REGS;hr++) {
4613 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4614 if(regs[t].regmap_entry[hr]==0) {
4615 emit_zeroreg(hr);
4616 }
4617 else if(regs[t].regmap_entry[hr]!=CCREG)
4618 {
4619 emit_loadreg(regs[t].regmap_entry[hr],hr);
4620 }
4621 }
4622 }
4623}
4624
4625// Store dirty registers prior to branch
4626void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4627{
4628 if(internal_branch(addr))
4629 {
4630 int t=(addr-start)>>2;
4631 int hr;
4632 for(hr=0;hr<HOST_REGS;hr++) {
4633 if(hr!=EXCLUDE_REG) {
4634 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4635 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4636 if((i_dirty>>hr)&1) {
4637 assert(i_regmap[hr]<64);
4638 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4639 emit_storereg(i_regmap[hr],hr);
4640 }
4641 }
4642 }
4643 }
4644 }
4645 }
4646 else
4647 {
4648 // Branch out of this block, write out all dirty regs
4649 wb_dirtys(i_regmap,i_dirty);
4650 }
4651}
4652
4653// Load all needed registers for branch target
4654static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4655{
4656 //if(addr>=start && addr<(start+slen*4))
4657 if(internal_branch(addr))
4658 {
4659 int t=(addr-start)>>2;
4660 int hr;
4661 // Store the cycle count before loading something else
4662 if(i_regmap[HOST_CCREG]!=CCREG) {
4663 assert(i_regmap[HOST_CCREG]==-1);
4664 }
4665 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4666 emit_storereg(CCREG,HOST_CCREG);
4667 }
4668 // Load 32-bit regs
4669 for(hr=0;hr<HOST_REGS;hr++) {
4670 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4671 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4672 if(regs[t].regmap_entry[hr]==0) {
4673 emit_zeroreg(hr);
4674 }
4675 else if(regs[t].regmap_entry[hr]!=CCREG)
4676 {
4677 emit_loadreg(regs[t].regmap_entry[hr],hr);
4678 }
4679 }
4680 }
4681 }
4682 }
4683}
4684
4685static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4686{
4687 if(addr>=start && addr<start+slen*4-4)
4688 {
4689 int t=(addr-start)>>2;
4690 int hr;
4691 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4692 for(hr=0;hr<HOST_REGS;hr++)
4693 {
4694 if(hr!=EXCLUDE_REG)
4695 {
4696 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4697 {
4698 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4699 {
4700 return 0;
4701 }
4702 else
4703 if((i_dirty>>hr)&1)
4704 {
4705 if(i_regmap[hr]<TEMPREG)
4706 {
4707 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4708 return 0;
4709 }
4710 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4711 {
4712 assert(0);
4713 }
4714 }
4715 }
4716 else // Same register but is it 32-bit or dirty?
4717 if(i_regmap[hr]>=0)
4718 {
4719 if(!((regs[t].dirty>>hr)&1))
4720 {
4721 if((i_dirty>>hr)&1)
4722 {
4723 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4724 {
4725 //printf("%x: dirty no match\n",addr);
4726 return 0;
4727 }
4728 }
4729 }
4730 }
4731 }
4732 }
4733 // Delay slots are not valid branch targets
4734 //if(t>0&&(dops[t-1].is_jump) return 0;
4735 // Delay slots require additional processing, so do not match
4736 if(dops[t].is_ds) return 0;
4737 }
4738 else
4739 {
4740 int hr;
4741 for(hr=0;hr<HOST_REGS;hr++)
4742 {
4743 if(hr!=EXCLUDE_REG)
4744 {
4745 if(i_regmap[hr]>=0)
4746 {
4747 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4748 {
4749 if((i_dirty>>hr)&1)
4750 {
4751 return 0;
4752 }
4753 }
4754 }
4755 }
4756 }
4757 }
4758 return 1;
4759}
4760
4761#ifdef DRC_DBG
4762static void drc_dbg_emit_do_cmp(int i, int ccadj_)
4763{
4764 extern void do_insn_cmp();
4765 //extern int cycle;
4766 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4767
4768 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4769 save_regs(reglist);
4770 // write out changed consts to match the interpreter
4771 if (i > 0 && !dops[i].bt) {
4772 for (hr = 0; hr < HOST_REGS; hr++) {
4773 int reg = regs[i].regmap_entry[hr]; // regs[i-1].regmap[hr];
4774 if (hr == EXCLUDE_REG || reg < 0)
4775 continue;
4776 if (!((regs[i-1].isconst >> hr) & 1))
4777 continue;
4778 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4779 continue;
4780 emit_movimm(constmap[i-1][hr],0);
4781 emit_storereg(reg, 0);
4782 }
4783 }
4784 emit_movimm(start+i*4,0);
4785 emit_writeword(0,&pcaddr);
4786 int cc = get_reg(regs[i].regmap_entry, CCREG);
4787 if (cc < 0)
4788 emit_loadreg(CCREG, cc = 0);
4789 emit_addimm(cc, ccadj_, 0);
4790 emit_writeword(0, &psxRegs.cycle);
4791 emit_far_call(do_insn_cmp);
4792 //emit_readword(&cycle,0);
4793 //emit_addimm(0,2,0);
4794 //emit_writeword(0,&cycle);
4795 (void)get_reg2;
4796 restore_regs(reglist);
4797 assem_debug("\\\\do_insn_cmp\n");
4798}
4799#else
4800#define drc_dbg_emit_do_cmp(x,y)
4801#endif
4802
4803// Used when a branch jumps into the delay slot of another branch
4804static void ds_assemble_entry(int i)
4805{
4806 int t = (ba[i] - start) >> 2;
4807 int ccadj_ = -CLOCK_ADJUST(1);
4808 if (!instr_addr[t])
4809 instr_addr[t] = out;
4810 assem_debug("Assemble delay slot at %x\n",ba[i]);
4811 assem_debug("<->\n");
4812 drc_dbg_emit_do_cmp(t, ccadj_);
4813 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4814 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4815 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4816 address_generation(t,&regs[t],regs[t].regmap_entry);
4817 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4818 load_regs(regs[t].regmap_entry,regs[t].regmap,ROREG,ROREG);
4819 if (dops[t].is_store)
4820 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4821 is_delayslot=0;
4822 switch (dops[t].itype) {
4823 case SYSCALL:
4824 case HLECALL:
4825 case INTCALL:
4826 case SPAN:
4827 case UJUMP:
4828 case RJUMP:
4829 case CJUMP:
4830 case SJUMP:
4831 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4832 break;
4833 default:
4834 assemble(t, &regs[t], ccadj_);
4835 }
4836 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4837 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4838 if(internal_branch(ba[i]+4))
4839 assem_debug("branch: internal\n");
4840 else
4841 assem_debug("branch: external\n");
4842 assert(internal_branch(ba[i]+4));
4843 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4844 emit_jmp(0);
4845}
4846
4847static void emit_extjump(void *addr, u_int target)
4848{
4849 emit_extjump2(addr, target, dyna_linker);
4850}
4851
4852static void emit_extjump_ds(void *addr, u_int target)
4853{
4854 emit_extjump2(addr, target, dyna_linker_ds);
4855}
4856
4857// Load 2 immediates optimizing for small code size
4858static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4859{
4860 emit_movimm(imm1,rt1);
4861 emit_movimm_from(imm1,rt1,imm2,rt2);
4862}
4863
4864static void do_cc(int i, const signed char i_regmap[], int *adj,
4865 int addr, int taken, int invert)
4866{
4867 int count, count_plus2;
4868 void *jaddr;
4869 void *idle=NULL;
4870 int t=0;
4871 if(dops[i].itype==RJUMP)
4872 {
4873 *adj=0;
4874 }
4875 //if(ba[i]>=start && ba[i]<(start+slen*4))
4876 if(internal_branch(ba[i]))
4877 {
4878 t=(ba[i]-start)>>2;
4879 if(dops[t].is_ds) *adj=-CLOCK_ADJUST(1); // Branch into delay slot adds an extra cycle
4880 else *adj=ccadj[t];
4881 }
4882 else
4883 {
4884 *adj=0;
4885 }
4886 count = ccadj[i];
4887 count_plus2 = count + CLOCK_ADJUST(2);
4888 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4889 // Idle loop
4890 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4891 idle=out;
4892 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4893 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4894 jaddr=out;
4895 emit_jmp(0);
4896 }
4897 else if(*adj==0||invert) {
4898 int cycles = count_plus2;
4899 // faster loop HACK
4900#if 0
4901 if (t&&*adj) {
4902 int rel=t-i;
4903 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4904 cycles=*adj+count+2-*adj;
4905 }
4906#endif
4907 emit_addimm_and_set_flags(cycles, HOST_CCREG);
4908 jaddr = out;
4909 emit_jns(0);
4910 }
4911 else
4912 {
4913 emit_cmpimm(HOST_CCREG, -count_plus2);
4914 jaddr = out;
4915 emit_jns(0);
4916 }
4917 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:count_plus2,i,addr,taken,0);
4918}
4919
4920static void do_ccstub(int n)
4921{
4922 literal_pool(256);
4923 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4924 set_jump_target(stubs[n].addr, out);
4925 int i=stubs[n].b;
4926 if(stubs[n].d==NULLDS) {
4927 // Delay slot instruction is nullified ("likely" branch)
4928 wb_dirtys(regs[i].regmap,regs[i].dirty);
4929 }
4930 else if(stubs[n].d!=TAKEN) {
4931 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4932 }
4933 else {
4934 if(internal_branch(ba[i]))
4935 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4936 }
4937 if(stubs[n].c!=-1)
4938 {
4939 // Save PC as return address
4940 emit_movimm(stubs[n].c,EAX);
4941 emit_writeword(EAX,&pcaddr);
4942 }
4943 else
4944 {
4945 // Return address depends on which way the branch goes
4946 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4947 {
4948 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4949 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4950 if(dops[i].rs1==0)
4951 {
4952 s1l=s2l;
4953 s2l=-1;
4954 }
4955 else if(dops[i].rs2==0)
4956 {
4957 s2l=-1;
4958 }
4959 assert(s1l>=0);
4960 #ifdef DESTRUCTIVE_WRITEBACK
4961 if(dops[i].rs1) {
4962 if((branch_regs[i].dirty>>s1l)&&1)
4963 emit_loadreg(dops[i].rs1,s1l);
4964 }
4965 else {
4966 if((branch_regs[i].dirty>>s1l)&1)
4967 emit_loadreg(dops[i].rs2,s1l);
4968 }
4969 if(s2l>=0)
4970 if((branch_regs[i].dirty>>s2l)&1)
4971 emit_loadreg(dops[i].rs2,s2l);
4972 #endif
4973 int hr=0;
4974 int addr=-1,alt=-1,ntaddr=-1;
4975 while(hr<HOST_REGS)
4976 {
4977 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4978 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4979 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4980 {
4981 addr=hr++;break;
4982 }
4983 hr++;
4984 }
4985 while(hr<HOST_REGS)
4986 {
4987 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4988 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4989 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4990 {
4991 alt=hr++;break;
4992 }
4993 hr++;
4994 }
4995 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
4996 {
4997 while(hr<HOST_REGS)
4998 {
4999 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5000 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5001 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5002 {
5003 ntaddr=hr;break;
5004 }
5005 hr++;
5006 }
5007 assert(hr<HOST_REGS);
5008 }
5009 if((dops[i].opcode&0x2f)==4) // BEQ
5010 {
5011 #ifdef HAVE_CMOV_IMM
5012 if(s2l>=0) emit_cmp(s1l,s2l);
5013 else emit_test(s1l,s1l);
5014 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5015 #else
5016 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5017 if(s2l>=0) emit_cmp(s1l,s2l);
5018 else emit_test(s1l,s1l);
5019 emit_cmovne_reg(alt,addr);
5020 #endif
5021 }
5022 if((dops[i].opcode&0x2f)==5) // BNE
5023 {
5024 #ifdef HAVE_CMOV_IMM
5025 if(s2l>=0) emit_cmp(s1l,s2l);
5026 else emit_test(s1l,s1l);
5027 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5028 #else
5029 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5030 if(s2l>=0) emit_cmp(s1l,s2l);
5031 else emit_test(s1l,s1l);
5032 emit_cmovne_reg(alt,addr);
5033 #endif
5034 }
5035 if((dops[i].opcode&0x2f)==6) // BLEZ
5036 {
5037 //emit_movimm(ba[i],alt);
5038 //emit_movimm(start+i*4+8,addr);
5039 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5040 emit_cmpimm(s1l,1);
5041 emit_cmovl_reg(alt,addr);
5042 }
5043 if((dops[i].opcode&0x2f)==7) // BGTZ
5044 {
5045 //emit_movimm(ba[i],addr);
5046 //emit_movimm(start+i*4+8,ntaddr);
5047 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5048 emit_cmpimm(s1l,1);
5049 emit_cmovl_reg(ntaddr,addr);
5050 }
5051 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
5052 {
5053 //emit_movimm(ba[i],alt);
5054 //emit_movimm(start+i*4+8,addr);
5055 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5056 emit_test(s1l,s1l);
5057 emit_cmovs_reg(alt,addr);
5058 }
5059 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
5060 {
5061 //emit_movimm(ba[i],addr);
5062 //emit_movimm(start+i*4+8,alt);
5063 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5064 emit_test(s1l,s1l);
5065 emit_cmovs_reg(alt,addr);
5066 }
5067 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5068 if(source[i]&0x10000) // BC1T
5069 {
5070 //emit_movimm(ba[i],alt);
5071 //emit_movimm(start+i*4+8,addr);
5072 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5073 emit_testimm(s1l,0x800000);
5074 emit_cmovne_reg(alt,addr);
5075 }
5076 else // BC1F
5077 {
5078 //emit_movimm(ba[i],addr);
5079 //emit_movimm(start+i*4+8,alt);
5080 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5081 emit_testimm(s1l,0x800000);
5082 emit_cmovne_reg(alt,addr);
5083 }
5084 }
5085 emit_writeword(addr,&pcaddr);
5086 }
5087 else
5088 if(dops[i].itype==RJUMP)
5089 {
5090 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
5091 if (ds_writes_rjump_rs(i)) {
5092 r=get_reg(branch_regs[i].regmap,RTEMP);
5093 }
5094 emit_writeword(r,&pcaddr);
5095 }
5096 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
5097 }
5098 // Update cycle count
5099 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5100 if(stubs[n].a) emit_addimm(HOST_CCREG,(int)stubs[n].a,HOST_CCREG);
5101 emit_far_call(cc_interrupt);
5102 if(stubs[n].a) emit_addimm(HOST_CCREG,-(int)stubs[n].a,HOST_CCREG);
5103 if(stubs[n].d==TAKEN) {
5104 if(internal_branch(ba[i]))
5105 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5106 else if(dops[i].itype==RJUMP) {
5107 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5108 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5109 else
5110 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
5111 }
5112 }else if(stubs[n].d==NOTTAKEN) {
5113 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5114 else load_all_regs(branch_regs[i].regmap);
5115 }else if(stubs[n].d==NULLDS) {
5116 // Delay slot instruction is nullified ("likely" branch)
5117 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5118 else load_all_regs(regs[i].regmap);
5119 }else{
5120 load_all_regs(branch_regs[i].regmap);
5121 }
5122 if (stubs[n].retaddr)
5123 emit_jmp(stubs[n].retaddr);
5124 else
5125 do_jump_vaddr(stubs[n].e);
5126}
5127
5128static void add_to_linker(void *addr, u_int target, int ext)
5129{
5130 assert(linkcount < ARRAY_SIZE(link_addr));
5131 link_addr[linkcount].addr = addr;
5132 link_addr[linkcount].target = target;
5133 link_addr[linkcount].ext = ext;
5134 linkcount++;
5135}
5136
5137static void ujump_assemble_write_ra(int i)
5138{
5139 int rt;
5140 unsigned int return_address;
5141 rt=get_reg(branch_regs[i].regmap,31);
5142 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5143 //assert(rt>=0);
5144 return_address=start+i*4+8;
5145 if(rt>=0) {
5146 #ifdef USE_MINI_HT
5147 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5148 int temp=-1; // note: must be ds-safe
5149 #ifdef HOST_TEMPREG
5150 temp=HOST_TEMPREG;
5151 #endif
5152 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5153 else emit_movimm(return_address,rt);
5154 }
5155 else
5156 #endif
5157 {
5158 #ifdef REG_PREFETCH
5159 if(temp>=0)
5160 {
5161 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5162 }
5163 #endif
5164 emit_movimm(return_address,rt); // PC into link register
5165 #ifdef IMM_PREFETCH
5166 emit_prefetch(hash_table_get(return_address));
5167 #endif
5168 }
5169 }
5170}
5171
5172static void ujump_assemble(int i, const struct regstat *i_regs)
5173{
5174 int ra_done=0;
5175 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5176 address_generation(i+1,i_regs,regs[i].regmap_entry);
5177 #ifdef REG_PREFETCH
5178 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5179 if(dops[i].rt1==31&&temp>=0)
5180 {
5181 signed char *i_regmap=i_regs->regmap;
5182 int return_address=start+i*4+8;
5183 if(get_reg(branch_regs[i].regmap,31)>0)
5184 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5185 }
5186 #endif
5187 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5188 ujump_assemble_write_ra(i); // writeback ra for DS
5189 ra_done=1;
5190 }
5191 ds_assemble(i+1,i_regs);
5192 uint64_t bc_unneeded=branch_regs[i].u;
5193 bc_unneeded|=1|(1LL<<dops[i].rt1);
5194 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5195 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5196 if(!ra_done&&dops[i].rt1==31)
5197 ujump_assemble_write_ra(i);
5198 int cc,adj;
5199 cc=get_reg(branch_regs[i].regmap,CCREG);
5200 assert(cc==HOST_CCREG);
5201 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5202 #ifdef REG_PREFETCH
5203 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5204 #endif
5205 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5206 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5207 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5208 if(internal_branch(ba[i]))
5209 assem_debug("branch: internal\n");
5210 else
5211 assem_debug("branch: external\n");
5212 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5213 ds_assemble_entry(i);
5214 }
5215 else {
5216 add_to_linker(out,ba[i],internal_branch(ba[i]));
5217 emit_jmp(0);
5218 }
5219}
5220
5221static void rjump_assemble_write_ra(int i)
5222{
5223 int rt,return_address;
5224 assert(dops[i+1].rt1!=dops[i].rt1);
5225 assert(dops[i+1].rt2!=dops[i].rt1);
5226 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5227 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5228 assert(rt>=0);
5229 return_address=start+i*4+8;
5230 #ifdef REG_PREFETCH
5231 if(temp>=0)
5232 {
5233 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5234 }
5235 #endif
5236 emit_movimm(return_address,rt); // PC into link register
5237 #ifdef IMM_PREFETCH
5238 emit_prefetch(hash_table_get(return_address));
5239 #endif
5240}
5241
5242static void rjump_assemble(int i, const struct regstat *i_regs)
5243{
5244 int temp;
5245 int rs,cc;
5246 int ra_done=0;
5247 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5248 assert(rs>=0);
5249 if (ds_writes_rjump_rs(i)) {
5250 // Delay slot abuse, make a copy of the branch address register
5251 temp=get_reg(branch_regs[i].regmap,RTEMP);
5252 assert(temp>=0);
5253 assert(regs[i].regmap[temp]==RTEMP);
5254 emit_mov(rs,temp);
5255 rs=temp;
5256 }
5257 address_generation(i+1,i_regs,regs[i].regmap_entry);
5258 #ifdef REG_PREFETCH
5259 if(dops[i].rt1==31)
5260 {
5261 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5262 signed char *i_regmap=i_regs->regmap;
5263 int return_address=start+i*4+8;
5264 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5265 }
5266 }
5267 #endif
5268 #ifdef USE_MINI_HT
5269 if(dops[i].rs1==31) {
5270 int rh=get_reg(regs[i].regmap,RHASH);
5271 if(rh>=0) do_preload_rhash(rh);
5272 }
5273 #endif
5274 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5275 rjump_assemble_write_ra(i);
5276 ra_done=1;
5277 }
5278 ds_assemble(i+1,i_regs);
5279 uint64_t bc_unneeded=branch_regs[i].u;
5280 bc_unneeded|=1|(1LL<<dops[i].rt1);
5281 bc_unneeded&=~(1LL<<dops[i].rs1);
5282 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5283 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5284 if(!ra_done&&dops[i].rt1!=0)
5285 rjump_assemble_write_ra(i);
5286 cc=get_reg(branch_regs[i].regmap,CCREG);
5287 assert(cc==HOST_CCREG);
5288 (void)cc;
5289 #ifdef USE_MINI_HT
5290 int rh=get_reg(branch_regs[i].regmap,RHASH);
5291 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5292 if(dops[i].rs1==31) {
5293 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5294 do_preload_rhtbl(ht);
5295 do_rhash(rs,rh);
5296 }
5297 #endif
5298 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5299 #ifdef DESTRUCTIVE_WRITEBACK
5300 if((branch_regs[i].dirty>>rs)&1) {
5301 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5302 emit_loadreg(dops[i].rs1,rs);
5303 }
5304 }
5305 #endif
5306 #ifdef REG_PREFETCH
5307 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5308 #endif
5309 #ifdef USE_MINI_HT
5310 if(dops[i].rs1==31) {
5311 do_miniht_load(ht,rh);
5312 }
5313 #endif
5314 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5315 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5316 //assert(adj==0);
5317 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5318 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5319 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5320 // special case for RFE
5321 emit_jmp(0);
5322 else
5323 emit_jns(0);
5324 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5325 #ifdef USE_MINI_HT
5326 if(dops[i].rs1==31) {
5327 do_miniht_jump(rs,rh,ht);
5328 }
5329 else
5330 #endif
5331 {
5332 do_jump_vaddr(rs);
5333 }
5334 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5335 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5336 #endif
5337}
5338
5339static void cjump_assemble(int i, const struct regstat *i_regs)
5340{
5341 const signed char *i_regmap = i_regs->regmap;
5342 int cc;
5343 int match;
5344 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5345 assem_debug("match=%d\n",match);
5346 int s1l,s2l;
5347 int unconditional=0,nop=0;
5348 int invert=0;
5349 int internal=internal_branch(ba[i]);
5350 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5351 if(!match) invert=1;
5352 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5353 if(i>(ba[i]-start)>>2) invert=1;
5354 #endif
5355 #ifdef __aarch64__
5356 invert=1; // because of near cond. branches
5357 #endif
5358
5359 if(dops[i].ooo) {
5360 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5361 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5362 }
5363 else {
5364 s1l=get_reg(i_regmap,dops[i].rs1);
5365 s2l=get_reg(i_regmap,dops[i].rs2);
5366 }
5367 if(dops[i].rs1==0&&dops[i].rs2==0)
5368 {
5369 if(dops[i].opcode&1) nop=1;
5370 else unconditional=1;
5371 //assert(dops[i].opcode!=5);
5372 //assert(dops[i].opcode!=7);
5373 //assert(dops[i].opcode!=0x15);
5374 //assert(dops[i].opcode!=0x17);
5375 }
5376 else if(dops[i].rs1==0)
5377 {
5378 s1l=s2l;
5379 s2l=-1;
5380 }
5381 else if(dops[i].rs2==0)
5382 {
5383 s2l=-1;
5384 }
5385
5386 if(dops[i].ooo) {
5387 // Out of order execution (delay slot first)
5388 //printf("OOOE\n");
5389 address_generation(i+1,i_regs,regs[i].regmap_entry);
5390 ds_assemble(i+1,i_regs);
5391 int adj;
5392 uint64_t bc_unneeded=branch_regs[i].u;
5393 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5394 bc_unneeded|=1;
5395 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5396 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5397 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5398 cc=get_reg(branch_regs[i].regmap,CCREG);
5399 assert(cc==HOST_CCREG);
5400 if(unconditional)
5401 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5402 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5403 //assem_debug("cycle count (adj)\n");
5404 if(unconditional) {
5405 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5406 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5407 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5408 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5409 if(internal)
5410 assem_debug("branch: internal\n");
5411 else
5412 assem_debug("branch: external\n");
5413 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5414 ds_assemble_entry(i);
5415 }
5416 else {
5417 add_to_linker(out,ba[i],internal);
5418 emit_jmp(0);
5419 }
5420 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5421 if(((u_int)out)&7) emit_addnop(0);
5422 #endif
5423 }
5424 }
5425 else if(nop) {
5426 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5427 void *jaddr=out;
5428 emit_jns(0);
5429 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5430 }
5431 else {
5432 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5433 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5434 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5435
5436 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5437 assert(s1l>=0);
5438 if(dops[i].opcode==4) // BEQ
5439 {
5440 if(s2l>=0) emit_cmp(s1l,s2l);
5441 else emit_test(s1l,s1l);
5442 if(invert){
5443 nottaken=out;
5444 emit_jne(DJT_1);
5445 }else{
5446 add_to_linker(out,ba[i],internal);
5447 emit_jeq(0);
5448 }
5449 }
5450 if(dops[i].opcode==5) // BNE
5451 {
5452 if(s2l>=0) emit_cmp(s1l,s2l);
5453 else emit_test(s1l,s1l);
5454 if(invert){
5455 nottaken=out;
5456 emit_jeq(DJT_1);
5457 }else{
5458 add_to_linker(out,ba[i],internal);
5459 emit_jne(0);
5460 }
5461 }
5462 if(dops[i].opcode==6) // BLEZ
5463 {
5464 emit_cmpimm(s1l,1);
5465 if(invert){
5466 nottaken=out;
5467 emit_jge(DJT_1);
5468 }else{
5469 add_to_linker(out,ba[i],internal);
5470 emit_jl(0);
5471 }
5472 }
5473 if(dops[i].opcode==7) // BGTZ
5474 {
5475 emit_cmpimm(s1l,1);
5476 if(invert){
5477 nottaken=out;
5478 emit_jl(DJT_1);
5479 }else{
5480 add_to_linker(out,ba[i],internal);
5481 emit_jge(0);
5482 }
5483 }
5484 if(invert) {
5485 if(taken) set_jump_target(taken, out);
5486 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5487 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5488 if(adj) {
5489 emit_addimm(cc,-adj,cc);
5490 add_to_linker(out,ba[i],internal);
5491 }else{
5492 emit_addnop(13);
5493 add_to_linker(out,ba[i],internal*2);
5494 }
5495 emit_jmp(0);
5496 }else
5497 #endif
5498 {
5499 if(adj) emit_addimm(cc,-adj,cc);
5500 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5501 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5502 if(internal)
5503 assem_debug("branch: internal\n");
5504 else
5505 assem_debug("branch: external\n");
5506 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5507 ds_assemble_entry(i);
5508 }
5509 else {
5510 add_to_linker(out,ba[i],internal);
5511 emit_jmp(0);
5512 }
5513 }
5514 set_jump_target(nottaken, out);
5515 }
5516
5517 if(nottaken1) set_jump_target(nottaken1, out);
5518 if(adj) {
5519 if(!invert) emit_addimm(cc,adj,cc);
5520 }
5521 } // (!unconditional)
5522 } // if(ooo)
5523 else
5524 {
5525 // In-order execution (branch first)
5526 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5527 if(!unconditional&&!nop) {
5528 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5529 assert(s1l>=0);
5530 if((dops[i].opcode&0x2f)==4) // BEQ
5531 {
5532 if(s2l>=0) emit_cmp(s1l,s2l);
5533 else emit_test(s1l,s1l);
5534 nottaken=out;
5535 emit_jne(DJT_2);
5536 }
5537 if((dops[i].opcode&0x2f)==5) // BNE
5538 {
5539 if(s2l>=0) emit_cmp(s1l,s2l);
5540 else emit_test(s1l,s1l);
5541 nottaken=out;
5542 emit_jeq(DJT_2);
5543 }
5544 if((dops[i].opcode&0x2f)==6) // BLEZ
5545 {
5546 emit_cmpimm(s1l,1);
5547 nottaken=out;
5548 emit_jge(DJT_2);
5549 }
5550 if((dops[i].opcode&0x2f)==7) // BGTZ
5551 {
5552 emit_cmpimm(s1l,1);
5553 nottaken=out;
5554 emit_jl(DJT_2);
5555 }
5556 } // if(!unconditional)
5557 int adj;
5558 uint64_t ds_unneeded=branch_regs[i].u;
5559 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5560 ds_unneeded|=1;
5561 // branch taken
5562 if(!nop) {
5563 if(taken) set_jump_target(taken, out);
5564 assem_debug("1:\n");
5565 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5566 // load regs
5567 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5568 address_generation(i+1,&branch_regs[i],0);
5569 if (ram_offset)
5570 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5571 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5572 ds_assemble(i+1,&branch_regs[i]);
5573 cc=get_reg(branch_regs[i].regmap,CCREG);
5574 if(cc==-1) {
5575 emit_loadreg(CCREG,cc=HOST_CCREG);
5576 // CHECK: Is the following instruction (fall thru) allocated ok?
5577 }
5578 assert(cc==HOST_CCREG);
5579 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5580 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5581 assem_debug("cycle count (adj)\n");
5582 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5583 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5584 if(internal)
5585 assem_debug("branch: internal\n");
5586 else
5587 assem_debug("branch: external\n");
5588 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5589 ds_assemble_entry(i);
5590 }
5591 else {
5592 add_to_linker(out,ba[i],internal);
5593 emit_jmp(0);
5594 }
5595 }
5596 // branch not taken
5597 if(!unconditional) {
5598 if(nottaken1) set_jump_target(nottaken1, out);
5599 set_jump_target(nottaken, out);
5600 assem_debug("2:\n");
5601 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5602 // load regs
5603 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5604 address_generation(i+1,&branch_regs[i],0);
5605 if (ram_offset)
5606 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5607 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5608 ds_assemble(i+1,&branch_regs[i]);
5609 cc=get_reg(branch_regs[i].regmap,CCREG);
5610 if (cc == -1) {
5611 // Cycle count isn't in a register, temporarily load it then write it out
5612 emit_loadreg(CCREG,HOST_CCREG);
5613 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5614 void *jaddr=out;
5615 emit_jns(0);
5616 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5617 emit_storereg(CCREG,HOST_CCREG);
5618 }
5619 else{
5620 cc=get_reg(i_regmap,CCREG);
5621 assert(cc==HOST_CCREG);
5622 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5623 void *jaddr=out;
5624 emit_jns(0);
5625 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5626 }
5627 }
5628 }
5629}
5630
5631static void sjump_assemble(int i, const struct regstat *i_regs)
5632{
5633 const signed char *i_regmap = i_regs->regmap;
5634 int cc;
5635 int match;
5636 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5637 assem_debug("smatch=%d ooo=%d\n", match, dops[i].ooo);
5638 int s1l;
5639 int unconditional=0,nevertaken=0;
5640 int invert=0;
5641 int internal=internal_branch(ba[i]);
5642 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5643 if(!match) invert=1;
5644 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5645 if(i>(ba[i]-start)>>2) invert=1;
5646 #endif
5647 #ifdef __aarch64__
5648 invert=1; // because of near cond. branches
5649 #endif
5650
5651 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5652 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5653
5654 if(dops[i].ooo) {
5655 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5656 }
5657 else {
5658 s1l=get_reg(i_regmap,dops[i].rs1);
5659 }
5660 if(dops[i].rs1==0)
5661 {
5662 if(dops[i].opcode2&1) unconditional=1;
5663 else nevertaken=1;
5664 // These are never taken (r0 is never less than zero)
5665 //assert(dops[i].opcode2!=0);
5666 //assert(dops[i].opcode2!=2);
5667 //assert(dops[i].opcode2!=0x10);
5668 //assert(dops[i].opcode2!=0x12);
5669 }
5670
5671 if(dops[i].ooo) {
5672 // Out of order execution (delay slot first)
5673 //printf("OOOE\n");
5674 address_generation(i+1,i_regs,regs[i].regmap_entry);
5675 ds_assemble(i+1,i_regs);
5676 int adj;
5677 uint64_t bc_unneeded=branch_regs[i].u;
5678 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5679 bc_unneeded|=1;
5680 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5681 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5682 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5683 if(dops[i].rt1==31) {
5684 int rt,return_address;
5685 rt=get_reg(branch_regs[i].regmap,31);
5686 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5687 if(rt>=0) {
5688 // Save the PC even if the branch is not taken
5689 return_address=start+i*4+8;
5690 emit_movimm(return_address,rt); // PC into link register
5691 #ifdef IMM_PREFETCH
5692 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5693 #endif
5694 }
5695 }
5696 cc=get_reg(branch_regs[i].regmap,CCREG);
5697 assert(cc==HOST_CCREG);
5698 if(unconditional)
5699 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5700 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5701 assem_debug("cycle count (adj)\n");
5702 if(unconditional) {
5703 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5704 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5705 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5706 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5707 if(internal)
5708 assem_debug("branch: internal\n");
5709 else
5710 assem_debug("branch: external\n");
5711 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5712 ds_assemble_entry(i);
5713 }
5714 else {
5715 add_to_linker(out,ba[i],internal);
5716 emit_jmp(0);
5717 }
5718 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5719 if(((u_int)out)&7) emit_addnop(0);
5720 #endif
5721 }
5722 }
5723 else if(nevertaken) {
5724 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5725 void *jaddr=out;
5726 emit_jns(0);
5727 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5728 }
5729 else {
5730 void *nottaken = NULL;
5731 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5732 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5733 {
5734 assert(s1l>=0);
5735 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5736 {
5737 emit_test(s1l,s1l);
5738 if(invert){
5739 nottaken=out;
5740 emit_jns(DJT_1);
5741 }else{
5742 add_to_linker(out,ba[i],internal);
5743 emit_js(0);
5744 }
5745 }
5746 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5747 {
5748 emit_test(s1l,s1l);
5749 if(invert){
5750 nottaken=out;
5751 emit_js(DJT_1);
5752 }else{
5753 add_to_linker(out,ba[i],internal);
5754 emit_jns(0);
5755 }
5756 }
5757 }
5758
5759 if(invert) {
5760 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5761 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5762 if(adj) {
5763 emit_addimm(cc,-adj,cc);
5764 add_to_linker(out,ba[i],internal);
5765 }else{
5766 emit_addnop(13);
5767 add_to_linker(out,ba[i],internal*2);
5768 }
5769 emit_jmp(0);
5770 }else
5771 #endif
5772 {
5773 if(adj) emit_addimm(cc,-adj,cc);
5774 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5775 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5776 if(internal)
5777 assem_debug("branch: internal\n");
5778 else
5779 assem_debug("branch: external\n");
5780 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5781 ds_assemble_entry(i);
5782 }
5783 else {
5784 add_to_linker(out,ba[i],internal);
5785 emit_jmp(0);
5786 }
5787 }
5788 set_jump_target(nottaken, out);
5789 }
5790
5791 if(adj) {
5792 if(!invert) emit_addimm(cc,adj,cc);
5793 }
5794 } // (!unconditional)
5795 } // if(ooo)
5796 else
5797 {
5798 // In-order execution (branch first)
5799 //printf("IOE\n");
5800 void *nottaken = NULL;
5801 if(dops[i].rt1==31) {
5802 int rt,return_address;
5803 rt=get_reg(branch_regs[i].regmap,31);
5804 if(rt>=0) {
5805 // Save the PC even if the branch is not taken
5806 return_address=start+i*4+8;
5807 emit_movimm(return_address,rt); // PC into link register
5808 #ifdef IMM_PREFETCH
5809 emit_prefetch(hash_table_get(return_address));
5810 #endif
5811 }
5812 }
5813 if(!unconditional) {
5814 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5815 assert(s1l>=0);
5816 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5817 {
5818 emit_test(s1l,s1l);
5819 nottaken=out;
5820 emit_jns(DJT_1);
5821 }
5822 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5823 {
5824 emit_test(s1l,s1l);
5825 nottaken=out;
5826 emit_js(DJT_1);
5827 }
5828 } // if(!unconditional)
5829 int adj;
5830 uint64_t ds_unneeded=branch_regs[i].u;
5831 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5832 ds_unneeded|=1;
5833 // branch taken
5834 if(!nevertaken) {
5835 //assem_debug("1:\n");
5836 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5837 // load regs
5838 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5839 address_generation(i+1,&branch_regs[i],0);
5840 if (ram_offset)
5841 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5842 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5843 ds_assemble(i+1,&branch_regs[i]);
5844 cc=get_reg(branch_regs[i].regmap,CCREG);
5845 if(cc==-1) {
5846 emit_loadreg(CCREG,cc=HOST_CCREG);
5847 // CHECK: Is the following instruction (fall thru) allocated ok?
5848 }
5849 assert(cc==HOST_CCREG);
5850 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5851 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5852 assem_debug("cycle count (adj)\n");
5853 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5854 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5855 if(internal)
5856 assem_debug("branch: internal\n");
5857 else
5858 assem_debug("branch: external\n");
5859 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5860 ds_assemble_entry(i);
5861 }
5862 else {
5863 add_to_linker(out,ba[i],internal);
5864 emit_jmp(0);
5865 }
5866 }
5867 // branch not taken
5868 if(!unconditional) {
5869 set_jump_target(nottaken, out);
5870 assem_debug("1:\n");
5871 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5872 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5873 address_generation(i+1,&branch_regs[i],0);
5874 if (ram_offset)
5875 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5876 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5877 ds_assemble(i+1,&branch_regs[i]);
5878 cc=get_reg(branch_regs[i].regmap,CCREG);
5879 if (cc == -1) {
5880 // Cycle count isn't in a register, temporarily load it then write it out
5881 emit_loadreg(CCREG,HOST_CCREG);
5882 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5883 void *jaddr=out;
5884 emit_jns(0);
5885 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5886 emit_storereg(CCREG,HOST_CCREG);
5887 }
5888 else{
5889 cc=get_reg(i_regmap,CCREG);
5890 assert(cc==HOST_CCREG);
5891 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5892 void *jaddr=out;
5893 emit_jns(0);
5894 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5895 }
5896 }
5897 }
5898}
5899
5900static void pagespan_assemble(int i, const struct regstat *i_regs)
5901{
5902 int s1l=get_reg(i_regs->regmap,dops[i].rs1);
5903 int s2l=get_reg(i_regs->regmap,dops[i].rs2);
5904 void *taken = NULL;
5905 void *nottaken = NULL;
5906 int unconditional=0;
5907 if(dops[i].rs1==0)
5908 {
5909 s1l=s2l;
5910 s2l=-1;
5911 }
5912 else if(dops[i].rs2==0)
5913 {
5914 s2l=-1;
5915 }
5916 int hr=0;
5917 int addr=-1,alt=-1,ntaddr=-1;
5918 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5919 else {
5920 while(hr<HOST_REGS)
5921 {
5922 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5923 i_regs->regmap[hr]!=dops[i].rs1 &&
5924 i_regs->regmap[hr]!=dops[i].rs2 )
5925 {
5926 addr=hr++;break;
5927 }
5928 hr++;
5929 }
5930 }
5931 while(hr<HOST_REGS)
5932 {
5933 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5934 i_regs->regmap[hr]!=dops[i].rs1 &&
5935 i_regs->regmap[hr]!=dops[i].rs2 )
5936 {
5937 alt=hr++;break;
5938 }
5939 hr++;
5940 }
5941 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5942 {
5943 while(hr<HOST_REGS)
5944 {
5945 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5946 i_regs->regmap[hr]!=dops[i].rs1 &&
5947 i_regs->regmap[hr]!=dops[i].rs2 )
5948 {
5949 ntaddr=hr;break;
5950 }
5951 hr++;
5952 }
5953 }
5954 assert(hr<HOST_REGS);
5955 if((dops[i].opcode&0x2e)==4||dops[i].opcode==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5956 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5957 }
5958 emit_addimm(HOST_CCREG, ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5959 if(dops[i].opcode==2) // J
5960 {
5961 unconditional=1;
5962 }
5963 if(dops[i].opcode==3) // JAL
5964 {
5965 // TODO: mini_ht
5966 int rt=get_reg(i_regs->regmap,31);
5967 emit_movimm(start+i*4+8,rt);
5968 unconditional=1;
5969 }
5970 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
5971 {
5972 emit_mov(s1l,addr);
5973 if(dops[i].opcode2==9) // JALR
5974 {
5975 int rt=get_reg(i_regs->regmap,dops[i].rt1);
5976 emit_movimm(start+i*4+8,rt);
5977 }
5978 }
5979 if((dops[i].opcode&0x3f)==4) // BEQ
5980 {
5981 if(dops[i].rs1==dops[i].rs2)
5982 {
5983 unconditional=1;
5984 }
5985 else
5986 #ifdef HAVE_CMOV_IMM
5987 if(1) {
5988 if(s2l>=0) emit_cmp(s1l,s2l);
5989 else emit_test(s1l,s1l);
5990 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5991 }
5992 else
5993 #endif
5994 {
5995 assert(s1l>=0);
5996 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5997 if(s2l>=0) emit_cmp(s1l,s2l);
5998 else emit_test(s1l,s1l);
5999 emit_cmovne_reg(alt,addr);
6000 }
6001 }
6002 if((dops[i].opcode&0x3f)==5) // BNE
6003 {
6004 #ifdef HAVE_CMOV_IMM
6005 if(s2l>=0) emit_cmp(s1l,s2l);
6006 else emit_test(s1l,s1l);
6007 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6008 #else
6009 assert(s1l>=0);
6010 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6011 if(s2l>=0) emit_cmp(s1l,s2l);
6012 else emit_test(s1l,s1l);
6013 emit_cmovne_reg(alt,addr);
6014 #endif
6015 }
6016 if((dops[i].opcode&0x3f)==0x14) // BEQL
6017 {
6018 if(s2l>=0) emit_cmp(s1l,s2l);
6019 else emit_test(s1l,s1l);
6020 if(nottaken) set_jump_target(nottaken, out);
6021 nottaken=out;
6022 emit_jne(0);
6023 }
6024 if((dops[i].opcode&0x3f)==0x15) // BNEL
6025 {
6026 if(s2l>=0) emit_cmp(s1l,s2l);
6027 else emit_test(s1l,s1l);
6028 nottaken=out;
6029 emit_jeq(0);
6030 if(taken) set_jump_target(taken, out);
6031 }
6032 if((dops[i].opcode&0x3f)==6) // BLEZ
6033 {
6034 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6035 emit_cmpimm(s1l,1);
6036 emit_cmovl_reg(alt,addr);
6037 }
6038 if((dops[i].opcode&0x3f)==7) // BGTZ
6039 {
6040 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6041 emit_cmpimm(s1l,1);
6042 emit_cmovl_reg(ntaddr,addr);
6043 }
6044 if((dops[i].opcode&0x3f)==0x16) // BLEZL
6045 {
6046 assert((dops[i].opcode&0x3f)!=0x16);
6047 }
6048 if((dops[i].opcode&0x3f)==0x17) // BGTZL
6049 {
6050 assert((dops[i].opcode&0x3f)!=0x17);
6051 }
6052 assert(dops[i].opcode!=1); // BLTZ/BGEZ
6053
6054 //FIXME: Check CSREG
6055 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
6056 if((source[i]&0x30000)==0) // BC1F
6057 {
6058 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6059 emit_testimm(s1l,0x800000);
6060 emit_cmovne_reg(alt,addr);
6061 }
6062 if((source[i]&0x30000)==0x10000) // BC1T
6063 {
6064 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6065 emit_testimm(s1l,0x800000);
6066 emit_cmovne_reg(alt,addr);
6067 }
6068 if((source[i]&0x30000)==0x20000) // BC1FL
6069 {
6070 emit_testimm(s1l,0x800000);
6071 nottaken=out;
6072 emit_jne(0);
6073 }
6074 if((source[i]&0x30000)==0x30000) // BC1TL
6075 {
6076 emit_testimm(s1l,0x800000);
6077 nottaken=out;
6078 emit_jeq(0);
6079 }
6080 }
6081
6082 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6083 wb_dirtys(regs[i].regmap,regs[i].dirty);
6084 if(unconditional)
6085 {
6086 emit_movimm(ba[i],HOST_BTREG);
6087 }
6088 else if(addr!=HOST_BTREG)
6089 {
6090 emit_mov(addr,HOST_BTREG);
6091 }
6092 void *branch_addr=out;
6093 emit_jmp(0);
6094 int target_addr=start+i*4+5;
6095 void *stub=out;
6096 void *compiled_target_addr=check_addr(target_addr);
6097 emit_extjump_ds(branch_addr, target_addr);
6098 if(compiled_target_addr) {
6099 set_jump_target(branch_addr, compiled_target_addr);
6100 add_jump_out(target_addr,stub);
6101 }
6102 else set_jump_target(branch_addr, stub);
6103}
6104
6105// Assemble the delay slot for the above
6106static void pagespan_ds()
6107{
6108 assem_debug("initial delay slot:\n");
6109 u_int vaddr=start+1;
6110 u_int page=get_page(vaddr);
6111 u_int vpage=get_vpage(vaddr);
6112 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6113 do_dirty_stub_ds(slen*4);
6114 ll_add(jump_in+page,vaddr,(void *)out);
6115 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6116 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6117 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
6118 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6119 emit_writeword(HOST_BTREG,&branch_target);
6120 load_regs(regs[0].regmap_entry,regs[0].regmap,dops[0].rs1,dops[0].rs2);
6121 address_generation(0,&regs[0],regs[0].regmap_entry);
6122 if (ram_offset && (dops[0].is_load || dops[0].is_store))
6123 load_regs(regs[0].regmap_entry,regs[0].regmap,ROREG,ROREG);
6124 if (dops[0].is_store)
6125 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
6126 is_delayslot=0;
6127 switch (dops[0].itype) {
6128 case SYSCALL:
6129 case HLECALL:
6130 case INTCALL:
6131 case SPAN:
6132 case UJUMP:
6133 case RJUMP:
6134 case CJUMP:
6135 case SJUMP:
6136 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
6137 break;
6138 default:
6139 assemble(0, &regs[0], 0);
6140 }
6141 int btaddr=get_reg(regs[0].regmap,BTREG);
6142 if(btaddr<0) {
6143 btaddr=get_reg_temp(regs[0].regmap);
6144 emit_readword(&branch_target,btaddr);
6145 }
6146 assert(btaddr!=HOST_CCREG);
6147 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6148#ifdef HOST_IMM8
6149 host_tempreg_acquire();
6150 emit_movimm(start+4,HOST_TEMPREG);
6151 emit_cmp(btaddr,HOST_TEMPREG);
6152 host_tempreg_release();
6153#else
6154 emit_cmpimm(btaddr,start+4);
6155#endif
6156 void *branch = out;
6157 emit_jeq(0);
6158 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
6159 do_jump_vaddr(btaddr);
6160 set_jump_target(branch, out);
6161 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6162 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6163}
6164
6165static void check_regmap(signed char *regmap)
6166{
6167#ifndef NDEBUG
6168 int i,j;
6169 for (i = 0; i < HOST_REGS; i++) {
6170 if (regmap[i] < 0)
6171 continue;
6172 for (j = i + 1; j < HOST_REGS; j++)
6173 assert(regmap[i] != regmap[j]);
6174 }
6175#endif
6176}
6177
6178// Basic liveness analysis for MIPS registers
6179static void unneeded_registers(int istart,int iend,int r)
6180{
6181 int i;
6182 uint64_t u,gte_u,b,gte_b;
6183 uint64_t temp_u,temp_gte_u=0;
6184 uint64_t gte_u_unknown=0;
6185 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6186 gte_u_unknown=~0ll;
6187 if(iend==slen-1) {
6188 u=1;
6189 gte_u=gte_u_unknown;
6190 }else{
6191 //u=unneeded_reg[iend+1];
6192 u=1;
6193 gte_u=gte_unneeded[iend+1];
6194 }
6195
6196 for (i=iend;i>=istart;i--)
6197 {
6198 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6199 if(dops[i].is_jump)
6200 {
6201 // If subroutine call, flag return address as a possible branch target
6202 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6203
6204 if(ba[i]<start || ba[i]>=(start+slen*4))
6205 {
6206 // Branch out of this block, flush all regs
6207 u=1;
6208 gte_u=gte_u_unknown;
6209 branch_unneeded_reg[i]=u;
6210 // Merge in delay slot
6211 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6212 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6213 u|=1;
6214 gte_u|=gte_rt[i+1];
6215 gte_u&=~gte_rs[i+1];
6216 }
6217 else
6218 {
6219 // Internal branch, flag target
6220 dops[(ba[i]-start)>>2].bt=1;
6221 if(ba[i]<=start+i*4) {
6222 // Backward branch
6223 if(dops[i].is_ujump)
6224 {
6225 // Unconditional branch
6226 temp_u=1;
6227 temp_gte_u=0;
6228 } else {
6229 // Conditional branch (not taken case)
6230 temp_u=unneeded_reg[i+2];
6231 temp_gte_u&=gte_unneeded[i+2];
6232 }
6233 // Merge in delay slot
6234 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6235 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6236 temp_u|=1;
6237 temp_gte_u|=gte_rt[i+1];
6238 temp_gte_u&=~gte_rs[i+1];
6239 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6240 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6241 temp_u|=1;
6242 temp_gte_u|=gte_rt[i];
6243 temp_gte_u&=~gte_rs[i];
6244 unneeded_reg[i]=temp_u;
6245 gte_unneeded[i]=temp_gte_u;
6246 // Only go three levels deep. This recursion can take an
6247 // excessive amount of time if there are a lot of nested loops.
6248 if(r<2) {
6249 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6250 }else{
6251 unneeded_reg[(ba[i]-start)>>2]=1;
6252 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6253 }
6254 } /*else*/ if(1) {
6255 if (dops[i].is_ujump)
6256 {
6257 // Unconditional branch
6258 u=unneeded_reg[(ba[i]-start)>>2];
6259 gte_u=gte_unneeded[(ba[i]-start)>>2];
6260 branch_unneeded_reg[i]=u;
6261 // Merge in delay slot
6262 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6263 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6264 u|=1;
6265 gte_u|=gte_rt[i+1];
6266 gte_u&=~gte_rs[i+1];
6267 } else {
6268 // Conditional branch
6269 b=unneeded_reg[(ba[i]-start)>>2];
6270 gte_b=gte_unneeded[(ba[i]-start)>>2];
6271 branch_unneeded_reg[i]=b;
6272 // Branch delay slot
6273 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6274 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6275 b|=1;
6276 gte_b|=gte_rt[i+1];
6277 gte_b&=~gte_rs[i+1];
6278 u&=b;
6279 gte_u&=gte_b;
6280 if(i<slen-1) {
6281 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6282 } else {
6283 branch_unneeded_reg[i]=1;
6284 }
6285 }
6286 }
6287 }
6288 }
6289 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6290 {
6291 // SYSCALL instruction (software interrupt)
6292 u=1;
6293 }
6294 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6295 {
6296 // ERET instruction (return from interrupt)
6297 u=1;
6298 }
6299 //u=1; // DEBUG
6300 // Written registers are unneeded
6301 u|=1LL<<dops[i].rt1;
6302 u|=1LL<<dops[i].rt2;
6303 gte_u|=gte_rt[i];
6304 // Accessed registers are needed
6305 u&=~(1LL<<dops[i].rs1);
6306 u&=~(1LL<<dops[i].rs2);
6307 gte_u&=~gte_rs[i];
6308 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
6309 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6310 // Source-target dependencies
6311 // R0 is always unneeded
6312 u|=1;
6313 // Save it
6314 unneeded_reg[i]=u;
6315 gte_unneeded[i]=gte_u;
6316 /*
6317 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6318 printf("U:");
6319 int r;
6320 for(r=1;r<=CCREG;r++) {
6321 if((unneeded_reg[i]>>r)&1) {
6322 if(r==HIREG) printf(" HI");
6323 else if(r==LOREG) printf(" LO");
6324 else printf(" r%d",r);
6325 }
6326 }
6327 printf("\n");
6328 */
6329 }
6330}
6331
6332// Write back dirty registers as soon as we will no longer modify them,
6333// so that we don't end up with lots of writes at the branches.
6334void clean_registers(int istart,int iend,int wr)
6335{
6336 int i;
6337 int r;
6338 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6339 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6340 if(iend==slen-1) {
6341 will_dirty_i=will_dirty_next=0;
6342 wont_dirty_i=wont_dirty_next=0;
6343 }else{
6344 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6345 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6346 }
6347 for (i=iend;i>=istart;i--)
6348 {
6349 __builtin_prefetch(regs[i-1].regmap);
6350 if(dops[i].is_jump)
6351 {
6352 if(ba[i]<start || ba[i]>=(start+slen*4))
6353 {
6354 // Branch out of this block, flush all regs
6355 if (dops[i].is_ujump)
6356 {
6357 // Unconditional branch
6358 will_dirty_i=0;
6359 wont_dirty_i=0;
6360 // Merge in delay slot (will dirty)
6361 for(r=0;r<HOST_REGS;r++) {
6362 if(r!=EXCLUDE_REG) {
6363 if(branch_regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6364 if(branch_regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6365 if(branch_regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6366 if(branch_regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6367 if(branch_regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6368 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6369 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6370 if(regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6371 if(regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6372 if(regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6373 if(regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6374 if(regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6375 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6376 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6377 }
6378 }
6379 }
6380 else
6381 {
6382 // Conditional branch
6383 will_dirty_i=0;
6384 wont_dirty_i=wont_dirty_next;
6385 // Merge in delay slot (will dirty)
6386 for(r=0;r<HOST_REGS;r++) {
6387 if(r!=EXCLUDE_REG) {
6388 if (1) { // !dops[i].likely)
6389 // Might not dirty if likely branch is not taken
6390 if(branch_regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6391 if(branch_regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6392 if(branch_regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6393 if(branch_regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6394 if(branch_regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6395 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6396 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6397 //if(regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6398 //if(regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6399 if(regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6400 if(regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6401 if(regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6402 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6403 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6404 }
6405 }
6406 }
6407 }
6408 // Merge in delay slot (wont dirty)
6409 for(r=0;r<HOST_REGS;r++) {
6410 if(r!=EXCLUDE_REG) {
6411 if(regs[i].regmap[r]==dops[i].rt1) wont_dirty_i|=1<<r;
6412 if(regs[i].regmap[r]==dops[i].rt2) wont_dirty_i|=1<<r;
6413 if(regs[i].regmap[r]==dops[i+1].rt1) wont_dirty_i|=1<<r;
6414 if(regs[i].regmap[r]==dops[i+1].rt2) wont_dirty_i|=1<<r;
6415 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6416 if(branch_regs[i].regmap[r]==dops[i].rt1) wont_dirty_i|=1<<r;
6417 if(branch_regs[i].regmap[r]==dops[i].rt2) wont_dirty_i|=1<<r;
6418 if(branch_regs[i].regmap[r]==dops[i+1].rt1) wont_dirty_i|=1<<r;
6419 if(branch_regs[i].regmap[r]==dops[i+1].rt2) wont_dirty_i|=1<<r;
6420 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6421 }
6422 }
6423 if(wr) {
6424 #ifndef DESTRUCTIVE_WRITEBACK
6425 branch_regs[i].dirty&=wont_dirty_i;
6426 #endif
6427 branch_regs[i].dirty|=will_dirty_i;
6428 }
6429 }
6430 else
6431 {
6432 // Internal branch
6433 if(ba[i]<=start+i*4) {
6434 // Backward branch
6435 if (dops[i].is_ujump)
6436 {
6437 // Unconditional branch
6438 temp_will_dirty=0;
6439 temp_wont_dirty=0;
6440 // Merge in delay slot (will dirty)
6441 for(r=0;r<HOST_REGS;r++) {
6442 if(r!=EXCLUDE_REG) {
6443 if(branch_regs[i].regmap[r]==dops[i].rt1) temp_will_dirty|=1<<r;
6444 if(branch_regs[i].regmap[r]==dops[i].rt2) temp_will_dirty|=1<<r;
6445 if(branch_regs[i].regmap[r]==dops[i+1].rt1) temp_will_dirty|=1<<r;
6446 if(branch_regs[i].regmap[r]==dops[i+1].rt2) temp_will_dirty|=1<<r;
6447 if(branch_regs[i].regmap[r]>33) temp_will_dirty&=~(1<<r);
6448 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6449 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6450 if(regs[i].regmap[r]==dops[i].rt1) temp_will_dirty|=1<<r;
6451 if(regs[i].regmap[r]==dops[i].rt2) temp_will_dirty|=1<<r;
6452 if(regs[i].regmap[r]==dops[i+1].rt1) temp_will_dirty|=1<<r;
6453 if(regs[i].regmap[r]==dops[i+1].rt2) temp_will_dirty|=1<<r;
6454 if(regs[i].regmap[r]>33) temp_will_dirty&=~(1<<r);
6455 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6456 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6457 }
6458 }
6459 } else {
6460 // Conditional branch (not taken case)
6461 temp_will_dirty=will_dirty_next;
6462 temp_wont_dirty=wont_dirty_next;
6463 // Merge in delay slot (will dirty)
6464 for(r=0;r<HOST_REGS;r++) {
6465 if(r!=EXCLUDE_REG) {
6466 if (1) { // !dops[i].likely)
6467 // Will not dirty if likely branch is not taken
6468 if(branch_regs[i].regmap[r]==dops[i].rt1) temp_will_dirty|=1<<r;
6469 if(branch_regs[i].regmap[r]==dops[i].rt2) temp_will_dirty|=1<<r;
6470 if(branch_regs[i].regmap[r]==dops[i+1].rt1) temp_will_dirty|=1<<r;
6471 if(branch_regs[i].regmap[r]==dops[i+1].rt2) temp_will_dirty|=1<<r;
6472 if(branch_regs[i].regmap[r]>33) temp_will_dirty&=~(1<<r);
6473 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6474 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6475 //if(regs[i].regmap[r]==dops[i].rt1) temp_will_dirty|=1<<r;
6476 //if(regs[i].regmap[r]==dops[i].rt2) temp_will_dirty|=1<<r;
6477 if(regs[i].regmap[r]==dops[i+1].rt1) temp_will_dirty|=1<<r;
6478 if(regs[i].regmap[r]==dops[i+1].rt2) temp_will_dirty|=1<<r;
6479 if(regs[i].regmap[r]>33) temp_will_dirty&=~(1<<r);
6480 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6481 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6482 }
6483 }
6484 }
6485 }
6486 // Merge in delay slot (wont dirty)
6487 for(r=0;r<HOST_REGS;r++) {
6488 if(r!=EXCLUDE_REG) {
6489 if(regs[i].regmap[r]==dops[i].rt1) temp_wont_dirty|=1<<r;
6490 if(regs[i].regmap[r]==dops[i].rt2) temp_wont_dirty|=1<<r;
6491 if(regs[i].regmap[r]==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6492 if(regs[i].regmap[r]==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6493 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6494 if(branch_regs[i].regmap[r]==dops[i].rt1) temp_wont_dirty|=1<<r;
6495 if(branch_regs[i].regmap[r]==dops[i].rt2) temp_wont_dirty|=1<<r;
6496 if(branch_regs[i].regmap[r]==dops[i+1].rt1) temp_wont_dirty|=1<<r;
6497 if(branch_regs[i].regmap[r]==dops[i+1].rt2) temp_wont_dirty|=1<<r;
6498 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6499 }
6500 }
6501 // Deal with changed mappings
6502 if(i<iend) {
6503 for(r=0;r<HOST_REGS;r++) {
6504 if(r!=EXCLUDE_REG) {
6505 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6506 temp_will_dirty&=~(1<<r);
6507 temp_wont_dirty&=~(1<<r);
6508 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
6509 temp_will_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6510 temp_wont_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6511 } else {
6512 temp_will_dirty|=1<<r;
6513 temp_wont_dirty|=1<<r;
6514 }
6515 }
6516 }
6517 }
6518 }
6519 if(wr) {
6520 will_dirty[i]=temp_will_dirty;
6521 wont_dirty[i]=temp_wont_dirty;
6522 clean_registers((ba[i]-start)>>2,i-1,0);
6523 }else{
6524 // Limit recursion. It can take an excessive amount
6525 // of time if there are a lot of nested loops.
6526 will_dirty[(ba[i]-start)>>2]=0;
6527 wont_dirty[(ba[i]-start)>>2]=-1;
6528 }
6529 }
6530 /*else*/ if(1)
6531 {
6532 if (dops[i].is_ujump)
6533 {
6534 // Unconditional branch
6535 will_dirty_i=0;
6536 wont_dirty_i=0;
6537 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6538 for(r=0;r<HOST_REGS;r++) {
6539 if(r!=EXCLUDE_REG) {
6540 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6541 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6542 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6543 }
6544 if(branch_regs[i].regmap[r]>=0) {
6545 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
6546 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
6547 }
6548 }
6549 }
6550 //}
6551 // Merge in delay slot
6552 for(r=0;r<HOST_REGS;r++) {
6553 if(r!=EXCLUDE_REG) {
6554 if(branch_regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6555 if(branch_regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6556 if(branch_regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6557 if(branch_regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6558 if(branch_regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6559 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6560 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6561 if(regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6562 if(regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6563 if(regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6564 if(regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6565 if(regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6566 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6567 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6568 }
6569 }
6570 } else {
6571 // Conditional branch
6572 will_dirty_i=will_dirty_next;
6573 wont_dirty_i=wont_dirty_next;
6574 //if(ba[i]>start+i*4) // Disable recursion (for debugging)
6575 for(r=0;r<HOST_REGS;r++) {
6576 if(r!=EXCLUDE_REG) {
6577 signed char target_reg=branch_regs[i].regmap[r];
6578 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6579 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6580 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6581 }
6582 else if(target_reg>=0) {
6583 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
6584 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
6585 }
6586 }
6587 }
6588 // Merge in delay slot
6589 for(r=0;r<HOST_REGS;r++) {
6590 if(r!=EXCLUDE_REG) {
6591 if (1) { // !dops[i].likely)
6592 // Might not dirty if likely branch is not taken
6593 if(branch_regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6594 if(branch_regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6595 if(branch_regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6596 if(branch_regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6597 if(branch_regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6598 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6599 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6600 //if(regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6601 //if(regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6602 if(regs[i].regmap[r]==dops[i+1].rt1) will_dirty_i|=1<<r;
6603 if(regs[i].regmap[r]==dops[i+1].rt2) will_dirty_i|=1<<r;
6604 if(regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6605 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6606 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6607 }
6608 }
6609 }
6610 }
6611 // Merge in delay slot (won't dirty)
6612 for(r=0;r<HOST_REGS;r++) {
6613 if(r!=EXCLUDE_REG) {
6614 if(regs[i].regmap[r]==dops[i].rt1) wont_dirty_i|=1<<r;
6615 if(regs[i].regmap[r]==dops[i].rt2) wont_dirty_i|=1<<r;
6616 if(regs[i].regmap[r]==dops[i+1].rt1) wont_dirty_i|=1<<r;
6617 if(regs[i].regmap[r]==dops[i+1].rt2) wont_dirty_i|=1<<r;
6618 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6619 if(branch_regs[i].regmap[r]==dops[i].rt1) wont_dirty_i|=1<<r;
6620 if(branch_regs[i].regmap[r]==dops[i].rt2) wont_dirty_i|=1<<r;
6621 if(branch_regs[i].regmap[r]==dops[i+1].rt1) wont_dirty_i|=1<<r;
6622 if(branch_regs[i].regmap[r]==dops[i+1].rt2) wont_dirty_i|=1<<r;
6623 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6624 }
6625 }
6626 if(wr) {
6627 #ifndef DESTRUCTIVE_WRITEBACK
6628 branch_regs[i].dirty&=wont_dirty_i;
6629 #endif
6630 branch_regs[i].dirty|=will_dirty_i;
6631 }
6632 }
6633 }
6634 }
6635 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6636 {
6637 // SYSCALL instruction (software interrupt)
6638 will_dirty_i=0;
6639 wont_dirty_i=0;
6640 }
6641 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6642 {
6643 // ERET instruction (return from interrupt)
6644 will_dirty_i=0;
6645 wont_dirty_i=0;
6646 }
6647 will_dirty_next=will_dirty_i;
6648 wont_dirty_next=wont_dirty_i;
6649 for(r=0;r<HOST_REGS;r++) {
6650 if(r!=EXCLUDE_REG) {
6651 if(regs[i].regmap[r]==dops[i].rt1) will_dirty_i|=1<<r;
6652 if(regs[i].regmap[r]==dops[i].rt2) will_dirty_i|=1<<r;
6653 if(regs[i].regmap[r]>33) will_dirty_i&=~(1<<r);
6654 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6655 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6656 if(regs[i].regmap[r]==dops[i].rt1) wont_dirty_i|=1<<r;
6657 if(regs[i].regmap[r]==dops[i].rt2) wont_dirty_i|=1<<r;
6658 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6659 if(i>istart) {
6660 if (!dops[i].is_jump)
6661 {
6662 // Don't store a register immediately after writing it,
6663 // may prevent dual-issue.
6664 if(regs[i].regmap[r]==dops[i-1].rt1) wont_dirty_i|=1<<r;
6665 if(regs[i].regmap[r]==dops[i-1].rt2) wont_dirty_i|=1<<r;
6666 }
6667 }
6668 }
6669 }
6670 // Save it
6671 will_dirty[i]=will_dirty_i;
6672 wont_dirty[i]=wont_dirty_i;
6673 // Mark registers that won't be dirtied as not dirty
6674 if(wr) {
6675 regs[i].dirty|=will_dirty_i;
6676 #ifndef DESTRUCTIVE_WRITEBACK
6677 regs[i].dirty&=wont_dirty_i;
6678 if(dops[i].is_jump)
6679 {
6680 if (i < iend-1 && !dops[i].is_ujump) {
6681 for(r=0;r<HOST_REGS;r++) {
6682 if(r!=EXCLUDE_REG) {
6683 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6684 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6685 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6686 }
6687 }
6688 }
6689 }
6690 else
6691 {
6692 if(i<iend) {
6693 for(r=0;r<HOST_REGS;r++) {
6694 if(r!=EXCLUDE_REG) {
6695 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6696 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6697 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6698 }
6699 }
6700 }
6701 }
6702 #endif
6703 }
6704 // Deal with changed mappings
6705 temp_will_dirty=will_dirty_i;
6706 temp_wont_dirty=wont_dirty_i;
6707 for(r=0;r<HOST_REGS;r++) {
6708 if(r!=EXCLUDE_REG) {
6709 int nr;
6710 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6711 if(wr) {
6712 #ifndef DESTRUCTIVE_WRITEBACK
6713 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6714 #endif
6715 regs[i].wasdirty|=will_dirty_i&(1<<r);
6716 }
6717 }
6718 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6719 // Register moved to a different register
6720 will_dirty_i&=~(1<<r);
6721 wont_dirty_i&=~(1<<r);
6722 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6723 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6724 if(wr) {
6725 #ifndef DESTRUCTIVE_WRITEBACK
6726 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6727 #endif
6728 regs[i].wasdirty|=will_dirty_i&(1<<r);
6729 }
6730 }
6731 else {
6732 will_dirty_i&=~(1<<r);
6733 wont_dirty_i&=~(1<<r);
6734 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
6735 will_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6736 wont_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6737 } else {
6738 wont_dirty_i|=1<<r;
6739 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6740 }
6741 }
6742 }
6743 }
6744 }
6745}
6746
6747#ifdef DISASM
6748#include <inttypes.h>
6749void print_regmap(const char *name, const signed char *regmap)
6750{
6751 char buf[5];
6752 int i, l;
6753 fputs(name, stdout);
6754 for (i = 0; i < HOST_REGS; i++) {
6755 l = 0;
6756 if (regmap[i] >= 0)
6757 l = snprintf(buf, sizeof(buf), "$%d", regmap[i]);
6758 for (; l < 3; l++)
6759 buf[l] = ' ';
6760 buf[l] = 0;
6761 printf(" r%d=%s", i, buf);
6762 }
6763 fputs("\n", stdout);
6764}
6765
6766 /* disassembly */
6767void disassemble_inst(int i)
6768{
6769 if (dops[i].bt) printf("*"); else printf(" ");
6770 switch(dops[i].itype) {
6771 case UJUMP:
6772 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6773 case CJUMP:
6774 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6775 case SJUMP:
6776 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6777 case RJUMP:
6778 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
6779 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6780 else
6781 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6782 break;
6783 case SPAN:
6784 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,ba[i]);break;
6785 case IMM16:
6786 if(dops[i].opcode==0xf) //LUI
6787 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
6788 else
6789 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6790 break;
6791 case LOAD:
6792 case LOADLR:
6793 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6794 break;
6795 case STORE:
6796 case STORELR:
6797 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
6798 break;
6799 case ALU:
6800 case SHIFT:
6801 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6802 break;
6803 case MULTDIV:
6804 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6805 break;
6806 case SHIFTIMM:
6807 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6808 break;
6809 case MOV:
6810 if((dops[i].opcode2&0x1d)==0x10)
6811 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6812 else if((dops[i].opcode2&0x1d)==0x11)
6813 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6814 else
6815 printf (" %x: %s\n",start+i*4,insn[i]);
6816 break;
6817 case COP0:
6818 if(dops[i].opcode2==0)
6819 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6820 else if(dops[i].opcode2==4)
6821 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6822 else printf (" %x: %s\n",start+i*4,insn[i]);
6823 break;
6824 case COP1:
6825 if(dops[i].opcode2<3)
6826 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
6827 else if(dops[i].opcode2>3)
6828 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
6829 else printf (" %x: %s\n",start+i*4,insn[i]);
6830 break;
6831 case COP2:
6832 if(dops[i].opcode2<3)
6833 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6834 else if(dops[i].opcode2>3)
6835 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6836 else printf (" %x: %s\n",start+i*4,insn[i]);
6837 break;
6838 case C1LS:
6839 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6840 break;
6841 case C2LS:
6842 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6843 break;
6844 case INTCALL:
6845 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6846 break;
6847 default:
6848 //printf (" %s %8x\n",insn[i],source[i]);
6849 printf (" %x: %s\n",start+i*4,insn[i]);
6850 }
6851 return;
6852 printf("D: %"PRIu64" WD: %"PRIu64" U: %"PRIu64"\n",
6853 regs[i].dirty, regs[i].wasdirty, unneeded_reg[i]);
6854 print_regmap("pre: ", regmap_pre[i]);
6855 print_regmap("entry: ", regs[i].regmap_entry);
6856 print_regmap("map: ", regs[i].regmap);
6857 if (dops[i].is_jump) {
6858 print_regmap("bentry:", branch_regs[i].regmap_entry);
6859 print_regmap("bmap: ", branch_regs[i].regmap);
6860 }
6861}
6862#else
6863static void disassemble_inst(int i) {}
6864#endif // DISASM
6865
6866#define DRC_TEST_VAL 0x74657374
6867
6868static void new_dynarec_test(void)
6869{
6870 int (*testfunc)(void);
6871 void *beginning;
6872 int ret[2];
6873 size_t i;
6874
6875 // check structure linkage
6876 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6877 {
6878 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6879 }
6880
6881 SysPrintf("testing if we can run recompiled code @%p...\n", out);
6882 ((volatile u_int *)out)[0]++; // make cache dirty
6883
6884 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6885 out = ndrc->translation_cache;
6886 beginning = start_block();
6887 emit_movimm(DRC_TEST_VAL + i, 0); // test
6888 emit_ret();
6889 literal_pool(0);
6890 end_block(beginning);
6891 testfunc = beginning;
6892 ret[i] = testfunc();
6893 }
6894
6895 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6896 SysPrintf("test passed.\n");
6897 else
6898 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6899 out = ndrc->translation_cache;
6900}
6901
6902// clear the state completely, instead of just marking
6903// things invalid like invalidate_all_pages() does
6904void new_dynarec_clear_full(void)
6905{
6906 int n;
6907 out = ndrc->translation_cache;
6908 memset(invalid_code,1,sizeof(invalid_code));
6909 memset(hash_table,0xff,sizeof(hash_table));
6910 memset(mini_ht,-1,sizeof(mini_ht));
6911 memset(restore_candidate,0,sizeof(restore_candidate));
6912 memset(shadow,0,sizeof(shadow));
6913 copy=shadow;
6914 expirep=16384; // Expiry pointer, +2 blocks
6915 pending_exception=0;
6916 literalcount=0;
6917 stop_after_jal=0;
6918 inv_code_start=inv_code_end=~0;
6919 hack_addr=0;
6920 f1_hack=0;
6921 // TLB
6922 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6923 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6924 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6925
6926 cycle_multiplier_old = cycle_multiplier;
6927 new_dynarec_hacks_old = new_dynarec_hacks;
6928}
6929
6930void new_dynarec_init(void)
6931{
6932 SysPrintf("Init new dynarec, ndrc size %x\n", (int)sizeof(*ndrc));
6933
6934#ifdef _3DS
6935 check_rosalina();
6936#endif
6937#ifdef BASE_ADDR_DYNAMIC
6938 #ifdef VITA
6939 sceBlock = getVMBlock(); //sceKernelAllocMemBlockForVM("code", sizeof(*ndrc));
6940 if (sceBlock <= 0)
6941 SysPrintf("sceKernelAllocMemBlockForVM failed: %x\n", sceBlock);
6942 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6943 if (ret < 0)
6944 SysPrintf("sceKernelGetMemBlockBase failed: %x\n", ret);
6945 sceKernelOpenVMDomain();
6946 sceClibPrintf("translation_cache = 0x%08lx\n ", (long)ndrc->translation_cache);
6947 #elif defined(_MSC_VER)
6948 ndrc = VirtualAlloc(NULL, sizeof(*ndrc), MEM_COMMIT | MEM_RESERVE,
6949 PAGE_EXECUTE_READWRITE);
6950 #else
6951 uintptr_t desired_addr = 0;
6952 #ifdef __ELF__
6953 extern char _end;
6954 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6955 #endif
6956 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6957 PROT_READ | PROT_WRITE | PROT_EXEC,
6958 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6959 if (ndrc == MAP_FAILED) {
6960 SysPrintf("mmap() failed: %s\n", strerror(errno));
6961 abort();
6962 }
6963 #endif
6964#else
6965 #ifndef NO_WRITE_EXEC
6966 // not all systems allow execute in data segment by default
6967 // size must be 4K aligned for 3DS?
6968 if (mprotect(ndrc, sizeof(*ndrc),
6969 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6970 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6971 #endif
6972#endif
6973 out = ndrc->translation_cache;
6974 cycle_multiplier=200;
6975 new_dynarec_clear_full();
6976#ifdef HOST_IMM8
6977 // Copy this into local area so we don't have to put it in every literal pool
6978 invc_ptr=invalid_code;
6979#endif
6980 arch_init();
6981 new_dynarec_test();
6982 ram_offset=(uintptr_t)rdram-0x80000000;
6983 if (ram_offset!=0)
6984 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6985}
6986
6987void new_dynarec_cleanup(void)
6988{
6989 int n;
6990#ifdef BASE_ADDR_DYNAMIC
6991 #ifdef VITA
6992 // sceBlock is managed by retroarch's bootstrap code
6993 //sceKernelFreeMemBlock(sceBlock);
6994 //sceBlock = -1;
6995 #else
6996 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6997 SysPrintf("munmap() failed\n");
6998 #endif
6999#endif
7000 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7001 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7002 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7003 #ifdef ROM_COPY
7004 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
7005 #endif
7006}
7007
7008static u_int *get_source_start(u_int addr, u_int *limit)
7009{
7010 if (addr < 0x00200000 ||
7011 (0xa0000000 <= addr && addr < 0xa0200000))
7012 {
7013 // used for BIOS calls mostly?
7014 *limit = (addr&0xa0000000)|0x00200000;
7015 return (u_int *)(rdram + (addr&0x1fffff));
7016 }
7017 else if (!Config.HLE && (
7018 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7019 (0xbfc00000 <= addr && addr < 0xbfc80000)))
7020 {
7021 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
7022 // but timings in PCSX are too tied to the interpreter's BIAS
7023 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
7024 cycle_multiplier_active = 200;
7025
7026 *limit = (addr & 0xfff00000) | 0x80000;
7027 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
7028 }
7029 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7030 *limit = (addr & 0x80600000) + 0x00200000;
7031 return (u_int *)(rdram + (addr&0x1fffff));
7032 }
7033 return NULL;
7034}
7035
7036static u_int scan_for_ret(u_int addr)
7037{
7038 u_int limit = 0;
7039 u_int *mem;
7040
7041 mem = get_source_start(addr, &limit);
7042 if (mem == NULL)
7043 return addr;
7044
7045 if (limit > addr + 0x1000)
7046 limit = addr + 0x1000;
7047 for (; addr < limit; addr += 4, mem++) {
7048 if (*mem == 0x03e00008) // jr $ra
7049 return addr + 8;
7050 }
7051 return addr;
7052}
7053
7054struct savestate_block {
7055 uint32_t addr;
7056 uint32_t regflags;
7057};
7058
7059static int addr_cmp(const void *p1_, const void *p2_)
7060{
7061 const struct savestate_block *p1 = p1_, *p2 = p2_;
7062 return p1->addr - p2->addr;
7063}
7064
7065int new_dynarec_save_blocks(void *save, int size)
7066{
7067 struct savestate_block *blocks = save;
7068 int maxcount = size / sizeof(blocks[0]);
7069 struct savestate_block tmp_blocks[1024];
7070 struct ll_entry *head;
7071 int p, s, d, o, bcnt;
7072 u_int addr;
7073
7074 o = 0;
7075 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
7076 bcnt = 0;
7077 for (head = jump_in[p]; head != NULL; head = head->next) {
7078 tmp_blocks[bcnt].addr = head->vaddr;
7079 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7080 bcnt++;
7081 }
7082 if (bcnt < 1)
7083 continue;
7084 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7085
7086 addr = tmp_blocks[0].addr;
7087 for (s = d = 0; s < bcnt; s++) {
7088 if (tmp_blocks[s].addr < addr)
7089 continue;
7090 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7091 tmp_blocks[d++] = tmp_blocks[s];
7092 addr = scan_for_ret(tmp_blocks[s].addr);
7093 }
7094
7095 if (o + d > maxcount)
7096 d = maxcount - o;
7097 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7098 o += d;
7099 }
7100
7101 return o * sizeof(blocks[0]);
7102}
7103
7104void new_dynarec_load_blocks(const void *save, int size)
7105{
7106 const struct savestate_block *blocks = save;
7107 int count = size / sizeof(blocks[0]);
7108 u_int regs_save[32];
7109 uint32_t f;
7110 int i, b;
7111
7112 get_addr(psxRegs.pc);
7113
7114 // change GPRs for speculation to at least partially work..
7115 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7116 for (i = 1; i < 32; i++)
7117 psxRegs.GPR.r[i] = 0x80000000;
7118
7119 for (b = 0; b < count; b++) {
7120 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7121 if (f & 1)
7122 psxRegs.GPR.r[i] = 0x1f800000;
7123 }
7124
7125 get_addr(blocks[b].addr);
7126
7127 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7128 if (f & 1)
7129 psxRegs.GPR.r[i] = 0x80000000;
7130 }
7131 }
7132
7133 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7134}
7135
7136static int apply_hacks(void)
7137{
7138 int i;
7139 if (HACK_ENABLED(NDHACK_NO_COMPAT_HACKS))
7140 return 0;
7141 /* special hack(s) */
7142 for (i = 0; i < slen - 4; i++)
7143 {
7144 // lui a4, 0xf200; jal <rcnt_read>; addu a0, 2; slti v0, 28224
7145 if (source[i] == 0x3c04f200 && dops[i+1].itype == UJUMP
7146 && source[i+2] == 0x34840002 && dops[i+3].opcode == 0x0a
7147 && imm[i+3] == 0x6e40 && dops[i+3].rs1 == 2)
7148 {
7149 SysPrintf("PE2 hack @%08x\n", start + (i+3)*4);
7150 dops[i + 3].itype = NOP;
7151 }
7152 }
7153 i = slen;
7154 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
7155 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
7156 && dops[i-7].itype == STORE)
7157 {
7158 i = i-8;
7159 if (dops[i].itype == IMM16)
7160 i--;
7161 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
7162 if (dops[i].itype == STORELR && dops[i].rs1 == 6
7163 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
7164 {
7165 SysPrintf("F1 hack from %08x, old dst %08x\n", start, hack_addr);
7166 f1_hack = 1;
7167 return 1;
7168 }
7169 }
7170 return 0;
7171}
7172
7173int new_recompile_block(u_int addr)
7174{
7175 u_int pagelimit = 0;
7176 u_int state_rflags = 0;
7177 int i;
7178
7179 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
7180 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7181 //if(debug)
7182 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7183
7184 // this is just for speculation
7185 for (i = 1; i < 32; i++) {
7186 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7187 state_rflags |= 1 << i;
7188 }
7189
7190 start = (u_int)addr&~3;
7191 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
7192 new_dynarec_did_compile=1;
7193 if (Config.HLE && start == 0x80001000) // hlecall
7194 {
7195 // XXX: is this enough? Maybe check hleSoftCall?
7196 void *beginning=start_block();
7197 u_int page=get_page(start);
7198
7199 invalid_code[start>>12]=0;
7200 emit_movimm(start,0);
7201 emit_writeword(0,&pcaddr);
7202 emit_far_jump(new_dyna_leave);
7203 literal_pool(0);
7204 end_block(beginning);
7205 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7206 return 0;
7207 }
7208 else if (f1_hack && hack_addr == 0) {
7209 void *beginning = start_block();
7210 u_int page = get_page(start);
7211 emit_movimm(start, 0);
7212 emit_writeword(0, &hack_addr);
7213 emit_readword(&psxRegs.GPR.n.sp, 0);
7214 emit_readptr(&mem_rtab, 1);
7215 emit_shrimm(0, 12, 2);
7216 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
7217 emit_addimm(0, 0x18, 0);
7218 emit_adds_ptr(1, 1, 1);
7219 emit_ldr_dualindexed(1, 0, 0);
7220 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
7221 emit_far_call(get_addr_ht);
7222 emit_jmpreg(0); // jr k0
7223 literal_pool(0);
7224 end_block(beginning);
7225
7226 ll_add_flags(jump_in + page, start, state_rflags, beginning);
7227 SysPrintf("F1 hack to %08x\n", start);
7228 return 0;
7229 }
7230
7231 cycle_multiplier_active = cycle_multiplier_override && cycle_multiplier == CYCLE_MULT_DEFAULT
7232 ? cycle_multiplier_override : cycle_multiplier;
7233
7234 source = get_source_start(start, &pagelimit);
7235 if (source == NULL) {
7236 if (addr != hack_addr) {
7237 SysPrintf("Compile at bogus memory address: %08x\n", addr);
7238 hack_addr = addr;
7239 }
7240 //abort();
7241 return -1;
7242 }
7243
7244 /* Pass 1: disassemble */
7245 /* Pass 2: register dependencies, branch targets */
7246 /* Pass 3: register allocation */
7247 /* Pass 4: branch dependencies */
7248 /* Pass 5: pre-alloc */
7249 /* Pass 6: optimize clean/dirty state */
7250 /* Pass 7: flag 32-bit registers */
7251 /* Pass 8: assembly */
7252 /* Pass 9: linker */
7253 /* Pass 10: garbage collection / free memory */
7254
7255 int j;
7256 int done = 0, ni_count = 0;
7257 unsigned int type,op,op2;
7258
7259 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7260
7261 /* Pass 1 disassembly */
7262
7263 for (i = 0; !done; i++)
7264 {
7265 memset(&dops[i], 0, sizeof(dops[i]));
7266 op2=0;
7267 minimum_free_regs[i]=0;
7268 dops[i].opcode=op=source[i]>>26;
7269 switch(op)
7270 {
7271 case 0x00: strcpy(insn[i],"special"); type=NI;
7272 op2=source[i]&0x3f;
7273 switch(op2)
7274 {
7275 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7276 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7277 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7278 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7279 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7280 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7281 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7282 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7283 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7284 case 0x0D: strcpy(insn[i],"BREAK"); type=SYSCALL; break;
7285 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7286 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7287 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7288 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7289 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7290 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7291 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7292 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7293 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7294 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7295 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7296 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7297 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7298 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7299 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7300 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7301 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7302 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7303 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7304 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7305 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7306 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7307 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7308 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7309 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7310#if 0
7311 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7312 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7313 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7314 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7315 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7316 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7317 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7318 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7319 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7320 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7321 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7322 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7323 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7324 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7325 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7326 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7327 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7328#endif
7329 }
7330 break;
7331 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7332 op2=(source[i]>>16)&0x1f;
7333 switch(op2)
7334 {
7335 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7336 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7337 //case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7338 //case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7339 //case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7340 //case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7341 //case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7342 //case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7343 //case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7344 //case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7345 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7346 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7347 //case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7348 //case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7349 }
7350 break;
7351 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7352 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7353 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7354 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7355 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7356 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7357 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7358 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7359 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7360 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7361 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7362 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7363 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7364 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7365 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7366 op2=(source[i]>>21)&0x1f;
7367 switch(op2)
7368 {
7369 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7370 case 0x02: strcpy(insn[i],"CFC0"); type=COP0; break;
7371 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7372 case 0x06: strcpy(insn[i],"CTC0"); type=COP0; break;
7373 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7374 }
7375 break;
7376 case 0x11: strcpy(insn[i],"cop1"); type=COP1;
7377 op2=(source[i]>>21)&0x1f;
7378 break;
7379#if 0
7380 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7381 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7382 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7383 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7384 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7385 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7386 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7387 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7388#endif
7389 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7390 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7391 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7392 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7393 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7394 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7395 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7396#if 0
7397 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7398#endif
7399 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7400 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7401 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7402 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7403#if 0
7404 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7405 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7406#endif
7407 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7408 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7409 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7410 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7411#if 0
7412 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7413 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7414 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7415#endif
7416 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7417 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7418#if 0
7419 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7420 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7421 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7422#endif
7423 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7424 op2=(source[i]>>21)&0x1f;
7425 //if (op2 & 0x10)
7426 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7427 if (gte_handlers[source[i]&0x3f]!=NULL) {
7428 if (gte_regnames[source[i]&0x3f]!=NULL)
7429 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7430 else
7431 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7432 type=C2OP;
7433 }
7434 }
7435 else switch(op2)
7436 {
7437 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7438 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7439 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7440 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7441 }
7442 break;
7443 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7444 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7445 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7446 default: strcpy(insn[i],"???"); type=NI;
7447 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7448 break;
7449 }
7450 dops[i].itype=type;
7451 dops[i].opcode2=op2;
7452 /* Get registers/immediates */
7453 dops[i].lt1=0;
7454 gte_rs[i]=gte_rt[i]=0;
7455 switch(type) {
7456 case LOAD:
7457 dops[i].rs1=(source[i]>>21)&0x1f;
7458 dops[i].rs2=0;
7459 dops[i].rt1=(source[i]>>16)&0x1f;
7460 dops[i].rt2=0;
7461 imm[i]=(short)source[i];
7462 break;
7463 case STORE:
7464 case STORELR:
7465 dops[i].rs1=(source[i]>>21)&0x1f;
7466 dops[i].rs2=(source[i]>>16)&0x1f;
7467 dops[i].rt1=0;
7468 dops[i].rt2=0;
7469 imm[i]=(short)source[i];
7470 break;
7471 case LOADLR:
7472 // LWL/LWR only load part of the register,
7473 // therefore the target register must be treated as a source too
7474 dops[i].rs1=(source[i]>>21)&0x1f;
7475 dops[i].rs2=(source[i]>>16)&0x1f;
7476 dops[i].rt1=(source[i]>>16)&0x1f;
7477 dops[i].rt2=0;
7478 imm[i]=(short)source[i];
7479 break;
7480 case IMM16:
7481 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
7482 else dops[i].rs1=(source[i]>>21)&0x1f;
7483 dops[i].rs2=0;
7484 dops[i].rt1=(source[i]>>16)&0x1f;
7485 dops[i].rt2=0;
7486 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7487 imm[i]=(unsigned short)source[i];
7488 }else{
7489 imm[i]=(short)source[i];
7490 }
7491 break;
7492 case UJUMP:
7493 dops[i].rs1=0;
7494 dops[i].rs2=0;
7495 dops[i].rt1=0;
7496 dops[i].rt2=0;
7497 // The JAL instruction writes to r31.
7498 if (op&1) {
7499 dops[i].rt1=31;
7500 }
7501 dops[i].rs2=CCREG;
7502 break;
7503 case RJUMP:
7504 dops[i].rs1=(source[i]>>21)&0x1f;
7505 dops[i].rs2=0;
7506 dops[i].rt1=0;
7507 dops[i].rt2=0;
7508 // The JALR instruction writes to rd.
7509 if (op2&1) {
7510 dops[i].rt1=(source[i]>>11)&0x1f;
7511 }
7512 dops[i].rs2=CCREG;
7513 break;
7514 case CJUMP:
7515 dops[i].rs1=(source[i]>>21)&0x1f;
7516 dops[i].rs2=(source[i]>>16)&0x1f;
7517 dops[i].rt1=0;
7518 dops[i].rt2=0;
7519 if(op&2) { // BGTZ/BLEZ
7520 dops[i].rs2=0;
7521 }
7522 break;
7523 case SJUMP:
7524 dops[i].rs1=(source[i]>>21)&0x1f;
7525 dops[i].rs2=CCREG;
7526 dops[i].rt1=0;
7527 dops[i].rt2=0;
7528 if(op2&0x10) { // BxxAL
7529 dops[i].rt1=31;
7530 // NOTE: If the branch is not taken, r31 is still overwritten
7531 }
7532 break;
7533 case ALU:
7534 dops[i].rs1=(source[i]>>21)&0x1f; // source
7535 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
7536 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7537 dops[i].rt2=0;
7538 break;
7539 case MULTDIV:
7540 dops[i].rs1=(source[i]>>21)&0x1f; // source
7541 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
7542 dops[i].rt1=HIREG;
7543 dops[i].rt2=LOREG;
7544 break;
7545 case MOV:
7546 dops[i].rs1=0;
7547 dops[i].rs2=0;
7548 dops[i].rt1=0;
7549 dops[i].rt2=0;
7550 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
7551 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
7552 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
7553 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
7554 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
7555 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
7556 break;
7557 case SHIFT:
7558 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
7559 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
7560 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7561 dops[i].rt2=0;
7562 break;
7563 case SHIFTIMM:
7564 dops[i].rs1=(source[i]>>16)&0x1f;
7565 dops[i].rs2=0;
7566 dops[i].rt1=(source[i]>>11)&0x1f;
7567 dops[i].rt2=0;
7568 imm[i]=(source[i]>>6)&0x1f;
7569 // DSxx32 instructions
7570 if(op2>=0x3c) imm[i]|=0x20;
7571 break;
7572 case COP0:
7573 dops[i].rs1=0;
7574 dops[i].rs2=0;
7575 dops[i].rt1=0;
7576 dops[i].rt2=0;
7577 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
7578 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
7579 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
7580 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
7581 break;
7582 case COP1:
7583 dops[i].rs1=0;
7584 dops[i].rs2=0;
7585 dops[i].rt1=0;
7586 dops[i].rt2=0;
7587 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7588 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7589 dops[i].rs2=CSREG;
7590 break;
7591 case COP2:
7592 dops[i].rs1=0;
7593 dops[i].rs2=0;
7594 dops[i].rt1=0;
7595 dops[i].rt2=0;
7596 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
7597 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
7598 dops[i].rs2=CSREG;
7599 int gr=(source[i]>>11)&0x1F;
7600 switch(op2)
7601 {
7602 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7603 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7604 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7605 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7606 }
7607 break;
7608 case C1LS:
7609 dops[i].rs1=(source[i]>>21)&0x1F;
7610 dops[i].rs2=CSREG;
7611 dops[i].rt1=0;
7612 dops[i].rt2=0;
7613 imm[i]=(short)source[i];
7614 break;
7615 case C2LS:
7616 dops[i].rs1=(source[i]>>21)&0x1F;
7617 dops[i].rs2=0;
7618 dops[i].rt1=0;
7619 dops[i].rt2=0;
7620 imm[i]=(short)source[i];
7621 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7622 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7623 break;
7624 case C2OP:
7625 dops[i].rs1=0;
7626 dops[i].rs2=0;
7627 dops[i].rt1=0;
7628 dops[i].rt2=0;
7629 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7630 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7631 gte_rt[i]|=1ll<<63; // every op changes flags
7632 if((source[i]&0x3f)==GTE_MVMVA) {
7633 int v = (source[i] >> 15) & 3;
7634 gte_rs[i]&=~0xe3fll;
7635 if(v==3) gte_rs[i]|=0xe00ll;
7636 else gte_rs[i]|=3ll<<(v*2);
7637 }
7638 break;
7639 case SYSCALL:
7640 case HLECALL:
7641 case INTCALL:
7642 dops[i].rs1=CCREG;
7643 dops[i].rs2=0;
7644 dops[i].rt1=0;
7645 dops[i].rt2=0;
7646 break;
7647 default:
7648 dops[i].rs1=0;
7649 dops[i].rs2=0;
7650 dops[i].rt1=0;
7651 dops[i].rt2=0;
7652 }
7653 /* Calculate branch target addresses */
7654 if(type==UJUMP)
7655 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7656 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
7657 ba[i]=start+i*4+8; // Ignore never taken branch
7658 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
7659 ba[i]=start+i*4+8; // Ignore never taken branch
7660 else if(type==CJUMP||type==SJUMP)
7661 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7662 else ba[i]=-1;
7663
7664 /* simplify always (not)taken branches */
7665 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
7666 dops[i].rs1 = dops[i].rs2 = 0;
7667 if (!(op & 1)) {
7668 dops[i].itype = type = UJUMP;
7669 dops[i].rs2 = CCREG;
7670 }
7671 }
7672 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
7673 dops[i].itype = type = UJUMP;
7674
7675 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
7676 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
7677 dops[i].is_load = (dops[i].itype == LOAD || dops[i].itype == LOADLR || op == 0x32); // LWC2
7678 dops[i].is_store = (dops[i].itype == STORE || dops[i].itype == STORELR || op == 0x3a); // SWC2
7679
7680 /* messy cases to just pass over to the interpreter */
7681 if (i > 0 && dops[i-1].is_jump) {
7682 int do_in_intrp=0;
7683 // branch in delay slot?
7684 if (dops[i].is_jump) {
7685 // don't handle first branch and call interpreter if it's hit
7686 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7687 do_in_intrp=1;
7688 }
7689 // basic load delay detection
7690 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
7691 int t=(ba[i-1]-start)/4;
7692 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
7693 // jump target wants DS result - potential load delay effect
7694 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7695 do_in_intrp=1;
7696 dops[t+1].bt=1; // expected return from interpreter
7697 }
7698 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
7699 !(i>=3&&dops[i-3].is_jump)) {
7700 // v0 overwrite like this is a sign of trouble, bail out
7701 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7702 do_in_intrp=1;
7703 }
7704 }
7705 if (do_in_intrp) {
7706 memset(&dops[i-1], 0, sizeof(dops[i-1]));
7707 dops[i-1].itype = INTCALL;
7708 dops[i-1].rs1 = CCREG;
7709 ba[i-1] = -1;
7710 done = 2;
7711 i--; // don't compile the DS
7712 }
7713 }
7714
7715 /* Is this the end of the block? */
7716 if (i > 0 && dops[i-1].is_ujump) {
7717 if(dops[i-1].rt1==0) { // Continue past subroutine call (JAL)
7718 done=2;
7719 }
7720 else {
7721 if(stop_after_jal) done=1;
7722 // Stop on BREAK
7723 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7724 }
7725 // Don't recompile stuff that's already compiled
7726 if(check_addr(start+i*4+4)) done=1;
7727 // Don't get too close to the limit
7728 if(i>MAXBLOCK/2) done=1;
7729 }
7730 if (dops[i].itype == SYSCALL || dops[i].itype == HLECALL || dops[i].itype == INTCALL)
7731 done = stop_after_jal ? 1 : 2;
7732 if (done == 2) {
7733 // Does the block continue due to a branch?
7734 for(j=i-1;j>=0;j--)
7735 {
7736 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7737 if(ba[j]==start+i*4+4) done=j=0;
7738 if(ba[j]==start+i*4+8) done=j=0;
7739 }
7740 }
7741 //assert(i<MAXBLOCK-1);
7742 if(start+i*4==pagelimit-4) done=1;
7743 assert(start+i*4<pagelimit);
7744 if (i==MAXBLOCK-1) done=1;
7745 // Stop if we're compiling junk
7746 if(dops[i].itype == NI && (++ni_count > 8 || dops[i].opcode == 0x11)) {
7747 done=stop_after_jal=1;
7748 SysPrintf("Disabled speculative precompilation\n");
7749 }
7750 }
7751 slen=i;
7752 if (dops[i-1].is_jump) {
7753 if(start+i*4==pagelimit) {
7754 dops[i-1].itype=SPAN;
7755 }
7756 }
7757 assert(slen>0);
7758
7759 int clear_hack_addr = apply_hacks();
7760
7761 /* Pass 2 - Register dependencies and branch targets */
7762
7763 unneeded_registers(0,slen-1,0);
7764
7765 /* Pass 3 - Register allocation */
7766
7767 struct regstat current; // Current register allocations/status
7768 clear_all_regs(current.regmap_entry);
7769 clear_all_regs(current.regmap);
7770 current.wasdirty = current.dirty = 0;
7771 current.u = unneeded_reg[0];
7772 alloc_reg(&current, 0, CCREG);
7773 dirty_reg(&current, CCREG);
7774 current.wasconst = 0;
7775 current.isconst = 0;
7776 current.loadedconst = 0;
7777 current.waswritten = 0;
7778 int ds=0;
7779 int cc=0;
7780 int hr=-1;
7781
7782 if((u_int)addr&1) {
7783 // First instruction is delay slot
7784 cc=-1;
7785 dops[1].bt=1;
7786 ds=1;
7787 unneeded_reg[0]=1;
7788 current.regmap[HOST_BTREG]=BTREG;
7789 }
7790
7791 for(i=0;i<slen;i++)
7792 {
7793 if(dops[i].bt)
7794 {
7795 int hr;
7796 for(hr=0;hr<HOST_REGS;hr++)
7797 {
7798 // Is this really necessary?
7799 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7800 }
7801 current.isconst=0;
7802 current.waswritten=0;
7803 }
7804
7805 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7806 regs[i].wasconst=current.isconst;
7807 regs[i].wasdirty=current.dirty;
7808 regs[i].dirty=0;
7809 regs[i].u=0;
7810 regs[i].isconst=0;
7811 regs[i].loadedconst=0;
7812 if (!dops[i].is_jump) {
7813 if(i+1<slen) {
7814 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7815 current.u|=1;
7816 } else {
7817 current.u=1;
7818 }
7819 } else {
7820 if(i+1<slen) {
7821 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7822 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7823 current.u|=1;
7824 } else {
7825 SysPrintf("oops, branch at end of block with no delay slot @%08x\n", start + i*4);
7826 abort();
7827 }
7828 }
7829 dops[i].is_ds=ds;
7830 if(ds) {
7831 ds=0; // Skip delay slot, already allocated as part of branch
7832 // ...but we need to alloc it in case something jumps here
7833 if(i+1<slen) {
7834 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7835 }else{
7836 current.u=branch_unneeded_reg[i-1];
7837 }
7838 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7839 current.u|=1;
7840 struct regstat temp;
7841 memcpy(&temp,&current,sizeof(current));
7842 temp.wasdirty=temp.dirty;
7843 // TODO: Take into account unconditional branches, as below
7844 delayslot_alloc(&temp,i);
7845 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7846 regs[i].wasdirty=temp.wasdirty;
7847 regs[i].dirty=temp.dirty;
7848 regs[i].isconst=0;
7849 regs[i].wasconst=0;
7850 current.isconst=0;
7851 // Create entry (branch target) regmap
7852 for(hr=0;hr<HOST_REGS;hr++)
7853 {
7854 int r=temp.regmap[hr];
7855 if(r>=0) {
7856 if(r!=regmap_pre[i][hr]) {
7857 regs[i].regmap_entry[hr]=-1;
7858 }
7859 else
7860 {
7861 assert(r < 64);
7862 if((current.u>>r)&1) {
7863 regs[i].regmap_entry[hr]=-1;
7864 regs[i].regmap[hr]=-1;
7865 //Don't clear regs in the delay slot as the branch might need them
7866 //current.regmap[hr]=-1;
7867 }else
7868 regs[i].regmap_entry[hr]=r;
7869 }
7870 } else {
7871 // First instruction expects CCREG to be allocated
7872 if(i==0&&hr==HOST_CCREG)
7873 regs[i].regmap_entry[hr]=CCREG;
7874 else
7875 regs[i].regmap_entry[hr]=-1;
7876 }
7877 }
7878 }
7879 else { // Not delay slot
7880 switch(dops[i].itype) {
7881 case UJUMP:
7882 //current.isconst=0; // DEBUG
7883 //current.wasconst=0; // DEBUG
7884 //regs[i].wasconst=0; // DEBUG
7885 clear_const(&current,dops[i].rt1);
7886 alloc_cc(&current,i);
7887 dirty_reg(&current,CCREG);
7888 if (dops[i].rt1==31) {
7889 alloc_reg(&current,i,31);
7890 dirty_reg(&current,31);
7891 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7892 //assert(dops[i+1].rt1!=dops[i].rt1);
7893 #ifdef REG_PREFETCH
7894 alloc_reg(&current,i,PTEMP);
7895 #endif
7896 }
7897 dops[i].ooo=1;
7898 delayslot_alloc(&current,i+1);
7899 //current.isconst=0; // DEBUG
7900 ds=1;
7901 //printf("i=%d, isconst=%x\n",i,current.isconst);
7902 break;
7903 case RJUMP:
7904 //current.isconst=0;
7905 //current.wasconst=0;
7906 //regs[i].wasconst=0;
7907 clear_const(&current,dops[i].rs1);
7908 clear_const(&current,dops[i].rt1);
7909 alloc_cc(&current,i);
7910 dirty_reg(&current,CCREG);
7911 if (!ds_writes_rjump_rs(i)) {
7912 alloc_reg(&current,i,dops[i].rs1);
7913 if (dops[i].rt1!=0) {
7914 alloc_reg(&current,i,dops[i].rt1);
7915 dirty_reg(&current,dops[i].rt1);
7916 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7917 assert(dops[i+1].rt1!=dops[i].rt1);
7918 #ifdef REG_PREFETCH
7919 alloc_reg(&current,i,PTEMP);
7920 #endif
7921 }
7922 #ifdef USE_MINI_HT
7923 if(dops[i].rs1==31) { // JALR
7924 alloc_reg(&current,i,RHASH);
7925 alloc_reg(&current,i,RHTBL);
7926 }
7927 #endif
7928 delayslot_alloc(&current,i+1);
7929 } else {
7930 // The delay slot overwrites our source register,
7931 // allocate a temporary register to hold the old value.
7932 current.isconst=0;
7933 current.wasconst=0;
7934 regs[i].wasconst=0;
7935 delayslot_alloc(&current,i+1);
7936 current.isconst=0;
7937 alloc_reg(&current,i,RTEMP);
7938 }
7939 //current.isconst=0; // DEBUG
7940 dops[i].ooo=1;
7941 ds=1;
7942 break;
7943 case CJUMP:
7944 //current.isconst=0;
7945 //current.wasconst=0;
7946 //regs[i].wasconst=0;
7947 clear_const(&current,dops[i].rs1);
7948 clear_const(&current,dops[i].rs2);
7949 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7950 {
7951 alloc_cc(&current,i);
7952 dirty_reg(&current,CCREG);
7953 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7954 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7955 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7956 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7957 // The delay slot overwrites one of our conditions.
7958 // Allocate the branch condition registers instead.
7959 current.isconst=0;
7960 current.wasconst=0;
7961 regs[i].wasconst=0;
7962 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7963 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7964 }
7965 else
7966 {
7967 dops[i].ooo=1;
7968 delayslot_alloc(&current,i+1);
7969 }
7970 }
7971 else
7972 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7973 {
7974 alloc_cc(&current,i);
7975 dirty_reg(&current,CCREG);
7976 alloc_reg(&current,i,dops[i].rs1);
7977 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7978 // The delay slot overwrites one of our conditions.
7979 // Allocate the branch condition registers instead.
7980 current.isconst=0;
7981 current.wasconst=0;
7982 regs[i].wasconst=0;
7983 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7984 }
7985 else
7986 {
7987 dops[i].ooo=1;
7988 delayslot_alloc(&current,i+1);
7989 }
7990 }
7991 else
7992 // Don't alloc the delay slot yet because we might not execute it
7993 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7994 {
7995 current.isconst=0;
7996 current.wasconst=0;
7997 regs[i].wasconst=0;
7998 alloc_cc(&current,i);
7999 dirty_reg(&current,CCREG);
8000 alloc_reg(&current,i,dops[i].rs1);
8001 alloc_reg(&current,i,dops[i].rs2);
8002 }
8003 else
8004 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
8005 {
8006 current.isconst=0;
8007 current.wasconst=0;
8008 regs[i].wasconst=0;
8009 alloc_cc(&current,i);
8010 dirty_reg(&current,CCREG);
8011 alloc_reg(&current,i,dops[i].rs1);
8012 }
8013 ds=1;
8014 //current.isconst=0;
8015 break;
8016 case SJUMP:
8017 //current.isconst=0;
8018 //current.wasconst=0;
8019 //regs[i].wasconst=0;
8020 clear_const(&current,dops[i].rs1);
8021 clear_const(&current,dops[i].rt1);
8022 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
8023 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
8024 {
8025 alloc_cc(&current,i);
8026 dirty_reg(&current,CCREG);
8027 alloc_reg(&current,i,dops[i].rs1);
8028 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
8029 alloc_reg(&current,i,31);
8030 dirty_reg(&current,31);
8031 //#ifdef REG_PREFETCH
8032 //alloc_reg(&current,i,PTEMP);
8033 //#endif
8034 }
8035 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
8036 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
8037 // Allocate the branch condition registers instead.
8038 current.isconst=0;
8039 current.wasconst=0;
8040 regs[i].wasconst=0;
8041 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
8042 }
8043 else
8044 {
8045 dops[i].ooo=1;
8046 delayslot_alloc(&current,i+1);
8047 }
8048 }
8049 else
8050 // Don't alloc the delay slot yet because we might not execute it
8051 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
8052 {
8053 current.isconst=0;
8054 current.wasconst=0;
8055 regs[i].wasconst=0;
8056 alloc_cc(&current,i);
8057 dirty_reg(&current,CCREG);
8058 alloc_reg(&current,i,dops[i].rs1);
8059 }
8060 ds=1;
8061 //current.isconst=0;
8062 break;
8063 case IMM16:
8064 imm16_alloc(&current,i);
8065 break;
8066 case LOAD:
8067 case LOADLR:
8068 load_alloc(&current,i);
8069 break;
8070 case STORE:
8071 case STORELR:
8072 store_alloc(&current,i);
8073 break;
8074 case ALU:
8075 alu_alloc(&current,i);
8076 break;
8077 case SHIFT:
8078 shift_alloc(&current,i);
8079 break;
8080 case MULTDIV:
8081 multdiv_alloc(&current,i);
8082 break;
8083 case SHIFTIMM:
8084 shiftimm_alloc(&current,i);
8085 break;
8086 case MOV:
8087 mov_alloc(&current,i);
8088 break;
8089 case COP0:
8090 cop0_alloc(&current,i);
8091 break;
8092 case COP1:
8093 break;
8094 case COP2:
8095 cop2_alloc(&current,i);
8096 break;
8097 case C1LS:
8098 c1ls_alloc(&current,i);
8099 break;
8100 case C2LS:
8101 c2ls_alloc(&current,i);
8102 break;
8103 case C2OP:
8104 c2op_alloc(&current,i);
8105 break;
8106 case SYSCALL:
8107 case HLECALL:
8108 case INTCALL:
8109 syscall_alloc(&current,i);
8110 break;
8111 case SPAN:
8112 pagespan_alloc(&current,i);
8113 break;
8114 }
8115
8116 // Create entry (branch target) regmap
8117 for(hr=0;hr<HOST_REGS;hr++)
8118 {
8119 int r,or;
8120 r=current.regmap[hr];
8121 if(r>=0) {
8122 if(r!=regmap_pre[i][hr]) {
8123 // TODO: delay slot (?)
8124 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8125 if(or<0||r>=TEMPREG){
8126 regs[i].regmap_entry[hr]=-1;
8127 }
8128 else
8129 {
8130 // Just move it to a different register
8131 regs[i].regmap_entry[hr]=r;
8132 // If it was dirty before, it's still dirty
8133 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r);
8134 }
8135 }
8136 else
8137 {
8138 // Unneeded
8139 if(r==0){
8140 regs[i].regmap_entry[hr]=0;
8141 }
8142 else
8143 {
8144 assert(r<64);
8145 if((current.u>>r)&1) {
8146 regs[i].regmap_entry[hr]=-1;
8147 //regs[i].regmap[hr]=-1;
8148 current.regmap[hr]=-1;
8149 }else
8150 regs[i].regmap_entry[hr]=r;
8151 }
8152 }
8153 } else {
8154 // Branches expect CCREG to be allocated at the target
8155 if(regmap_pre[i][hr]==CCREG)
8156 regs[i].regmap_entry[hr]=CCREG;
8157 else
8158 regs[i].regmap_entry[hr]=-1;
8159 }
8160 }
8161 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8162 }
8163
8164 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
8165 current.waswritten|=1<<dops[i-1].rs1;
8166 current.waswritten&=~(1<<dops[i].rt1);
8167 current.waswritten&=~(1<<dops[i].rt2);
8168 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
8169 current.waswritten&=~(1<<dops[i].rs1);
8170
8171 /* Branch post-alloc */
8172 if(i>0)
8173 {
8174 current.wasdirty=current.dirty;
8175 switch(dops[i-1].itype) {
8176 case UJUMP:
8177 memcpy(&branch_regs[i-1],&current,sizeof(current));
8178 branch_regs[i-1].isconst=0;
8179 branch_regs[i-1].wasconst=0;
8180 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8181 alloc_cc(&branch_regs[i-1],i-1);
8182 dirty_reg(&branch_regs[i-1],CCREG);
8183 if(dops[i-1].rt1==31) { // JAL
8184 alloc_reg(&branch_regs[i-1],i-1,31);
8185 dirty_reg(&branch_regs[i-1],31);
8186 }
8187 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8188 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8189 break;
8190 case RJUMP:
8191 memcpy(&branch_regs[i-1],&current,sizeof(current));
8192 branch_regs[i-1].isconst=0;
8193 branch_regs[i-1].wasconst=0;
8194 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8195 alloc_cc(&branch_regs[i-1],i-1);
8196 dirty_reg(&branch_regs[i-1],CCREG);
8197 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
8198 if(dops[i-1].rt1!=0) { // JALR
8199 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
8200 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
8201 }
8202 #ifdef USE_MINI_HT
8203 if(dops[i-1].rs1==31) { // JALR
8204 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8205 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8206 }
8207 #endif
8208 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8209 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8210 break;
8211 case CJUMP:
8212 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
8213 {
8214 alloc_cc(&current,i-1);
8215 dirty_reg(&current,CCREG);
8216 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
8217 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
8218 // The delay slot overwrote one of our conditions
8219 // Delay slot goes after the test (in order)
8220 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8221 current.u|=1;
8222 delayslot_alloc(&current,i);
8223 current.isconst=0;
8224 }
8225 else
8226 {
8227 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8228 // Alloc the branch condition registers
8229 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
8230 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
8231 }
8232 memcpy(&branch_regs[i-1],&current,sizeof(current));
8233 branch_regs[i-1].isconst=0;
8234 branch_regs[i-1].wasconst=0;
8235 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8236 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8237 }
8238 else
8239 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
8240 {
8241 alloc_cc(&current,i-1);
8242 dirty_reg(&current,CCREG);
8243 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8244 // The delay slot overwrote the branch condition
8245 // Delay slot goes after the test (in order)
8246 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8247 current.u|=1;
8248 delayslot_alloc(&current,i);
8249 current.isconst=0;
8250 }
8251 else
8252 {
8253 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8254 // Alloc the branch condition register
8255 alloc_reg(&current,i-1,dops[i-1].rs1);
8256 }
8257 memcpy(&branch_regs[i-1],&current,sizeof(current));
8258 branch_regs[i-1].isconst=0;
8259 branch_regs[i-1].wasconst=0;
8260 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8261 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8262 }
8263 else
8264 // Alloc the delay slot in case the branch is taken
8265 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
8266 {
8267 memcpy(&branch_regs[i-1],&current,sizeof(current));
8268 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8269 alloc_cc(&branch_regs[i-1],i);
8270 dirty_reg(&branch_regs[i-1],CCREG);
8271 delayslot_alloc(&branch_regs[i-1],i);
8272 branch_regs[i-1].isconst=0;
8273 alloc_reg(&current,i,CCREG); // Not taken path
8274 dirty_reg(&current,CCREG);
8275 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8276 }
8277 else
8278 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
8279 {
8280 memcpy(&branch_regs[i-1],&current,sizeof(current));
8281 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8282 alloc_cc(&branch_regs[i-1],i);
8283 dirty_reg(&branch_regs[i-1],CCREG);
8284 delayslot_alloc(&branch_regs[i-1],i);
8285 branch_regs[i-1].isconst=0;
8286 alloc_reg(&current,i,CCREG); // Not taken path
8287 dirty_reg(&current,CCREG);
8288 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8289 }
8290 break;
8291 case SJUMP:
8292 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
8293 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
8294 {
8295 alloc_cc(&current,i-1);
8296 dirty_reg(&current,CCREG);
8297 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8298 // The delay slot overwrote the branch condition
8299 // Delay slot goes after the test (in order)
8300 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8301 current.u|=1;
8302 delayslot_alloc(&current,i);
8303 current.isconst=0;
8304 }
8305 else
8306 {
8307 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8308 // Alloc the branch condition register
8309 alloc_reg(&current,i-1,dops[i-1].rs1);
8310 }
8311 memcpy(&branch_regs[i-1],&current,sizeof(current));
8312 branch_regs[i-1].isconst=0;
8313 branch_regs[i-1].wasconst=0;
8314 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8315 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8316 }
8317 else
8318 // Alloc the delay slot in case the branch is taken
8319 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
8320 {
8321 memcpy(&branch_regs[i-1],&current,sizeof(current));
8322 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8323 alloc_cc(&branch_regs[i-1],i);
8324 dirty_reg(&branch_regs[i-1],CCREG);
8325 delayslot_alloc(&branch_regs[i-1],i);
8326 branch_regs[i-1].isconst=0;
8327 alloc_reg(&current,i,CCREG); // Not taken path
8328 dirty_reg(&current,CCREG);
8329 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8330 }
8331 // FIXME: BLTZAL/BGEZAL
8332 if(dops[i-1].opcode2&0x10) { // BxxZAL
8333 alloc_reg(&branch_regs[i-1],i-1,31);
8334 dirty_reg(&branch_regs[i-1],31);
8335 }
8336 break;
8337 }
8338
8339 if (dops[i-1].is_ujump)
8340 {
8341 if(dops[i-1].rt1==31) // JAL/JALR
8342 {
8343 // Subroutine call will return here, don't alloc any registers
8344 current.dirty=0;
8345 clear_all_regs(current.regmap);
8346 alloc_reg(&current,i,CCREG);
8347 dirty_reg(&current,CCREG);
8348 }
8349 else if(i+1<slen)
8350 {
8351 // Internal branch will jump here, match registers to caller
8352 current.dirty=0;
8353 clear_all_regs(current.regmap);
8354 alloc_reg(&current,i,CCREG);
8355 dirty_reg(&current,CCREG);
8356 for(j=i-1;j>=0;j--)
8357 {
8358 if(ba[j]==start+i*4+4) {
8359 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8360 current.dirty=branch_regs[j].dirty;
8361 break;
8362 }
8363 }
8364 while(j>=0) {
8365 if(ba[j]==start+i*4+4) {
8366 for(hr=0;hr<HOST_REGS;hr++) {
8367 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8368 current.regmap[hr]=-1;
8369 }
8370 current.dirty&=branch_regs[j].dirty;
8371 }
8372 }
8373 j--;
8374 }
8375 }
8376 }
8377 }
8378
8379 // Count cycles in between branches
8380 ccadj[i] = CLOCK_ADJUST(cc);
8381 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
8382 {
8383 cc=0;
8384 }
8385#if !defined(DRC_DBG)
8386 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8387 {
8388 // this should really be removed since the real stalls have been implemented,
8389 // but doing so causes sizeable perf regression against the older version
8390 u_int gtec = gte_cycletab[source[i] & 0x3f];
8391 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8392 }
8393 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
8394 {
8395 cc+=4;
8396 }
8397 else if(dops[i].itype==C2LS)
8398 {
8399 // same as with C2OP
8400 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8401 }
8402#endif
8403 else
8404 {
8405 cc++;
8406 }
8407
8408 if(!dops[i].is_ds) {
8409 regs[i].dirty=current.dirty;
8410 regs[i].isconst=current.isconst;
8411 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8412 }
8413 for(hr=0;hr<HOST_REGS;hr++) {
8414 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8415 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8416 regs[i].wasconst&=~(1<<hr);
8417 }
8418 }
8419 }
8420 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8421 regs[i].waswritten=current.waswritten;
8422 }
8423
8424 /* Pass 4 - Cull unused host registers */
8425
8426 uint64_t nr=0;
8427
8428 for (i=slen-1;i>=0;i--)
8429 {
8430 int hr;
8431 if(dops[i].is_jump)
8432 {
8433 if(ba[i]<start || ba[i]>=(start+slen*4))
8434 {
8435 // Branch out of this block, don't need anything
8436 nr=0;
8437 }
8438 else
8439 {
8440 // Internal branch
8441 // Need whatever matches the target
8442 nr=0;
8443 int t=(ba[i]-start)>>2;
8444 for(hr=0;hr<HOST_REGS;hr++)
8445 {
8446 if(regs[i].regmap_entry[hr]>=0) {
8447 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8448 }
8449 }
8450 }
8451 // Conditional branch may need registers for following instructions
8452 if (!dops[i].is_ujump)
8453 {
8454 if(i<slen-2) {
8455 nr|=needed_reg[i+2];
8456 for(hr=0;hr<HOST_REGS;hr++)
8457 {
8458 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8459 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8460 }
8461 }
8462 }
8463 // Don't need stuff which is overwritten
8464 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8465 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8466 // Merge in delay slot
8467 for(hr=0;hr<HOST_REGS;hr++)
8468 {
8469 if(dops[i+1].rt1&&dops[i+1].rt1==regs[i].regmap[hr]) nr&=~(1<<hr);
8470 if(dops[i+1].rt2&&dops[i+1].rt2==regs[i].regmap[hr]) nr&=~(1<<hr);
8471 if(dops[i+1].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8472 if(dops[i+1].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8473 if(dops[i+1].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8474 if(dops[i+1].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8475 if(ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
8476 if(regmap_pre[i][hr]==ROREG) nr|=1<<hr;
8477 if(regs[i].regmap_entry[hr]==ROREG) nr|=1<<hr;
8478 }
8479 if(dops[i+1].is_store) {
8480 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8481 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8482 }
8483 }
8484 }
8485 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8486 {
8487 // SYSCALL instruction (software interrupt)
8488 nr=0;
8489 }
8490 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8491 {
8492 // ERET instruction (return from interrupt)
8493 nr=0;
8494 }
8495 else // Non-branch
8496 {
8497 if(i<slen-1) {
8498 for(hr=0;hr<HOST_REGS;hr++) {
8499 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8500 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8501 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8502 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8503 }
8504 }
8505 }
8506 for(hr=0;hr<HOST_REGS;hr++)
8507 {
8508 // Overwritten registers are not needed
8509 if(dops[i].rt1&&dops[i].rt1==regs[i].regmap[hr]) nr&=~(1<<hr);
8510 if(dops[i].rt2&&dops[i].rt2==regs[i].regmap[hr]) nr&=~(1<<hr);
8511 if(FTEMP==regs[i].regmap[hr]) nr&=~(1<<hr);
8512 // Source registers are needed
8513 if(dops[i].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8514 if(dops[i].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8515 if(dops[i].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8516 if(dops[i].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8517 if(ram_offset && (dops[i].is_load || dops[i].is_store)) {
8518 if(regmap_pre[i][hr]==ROREG) nr|=1<<hr;
8519 if(regs[i].regmap_entry[hr]==ROREG) nr|=1<<hr;
8520 }
8521 if(dops[i].is_store) {
8522 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8523 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8524 }
8525 // Don't store a register immediately after writing it,
8526 // may prevent dual-issue.
8527 // But do so if this is a branch target, otherwise we
8528 // might have to load the register before the branch.
8529 if(i>0&&!dops[i].bt&&((regs[i].wasdirty>>hr)&1)) {
8530 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8531 if(dops[i-1].rt1==regmap_pre[i][hr]) nr|=1<<hr;
8532 if(dops[i-1].rt2==regmap_pre[i][hr]) nr|=1<<hr;
8533 }
8534 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8535 if(dops[i-1].rt1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8536 if(dops[i-1].rt2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8537 }
8538 }
8539 }
8540 // Cycle count is needed at branches. Assume it is needed at the target too.
8541 if(i==0||dops[i].bt||dops[i].itype==CJUMP||dops[i].itype==SPAN) {
8542 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8543 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8544 }
8545 // Save it
8546 needed_reg[i]=nr;
8547
8548 // Deallocate unneeded registers
8549 for(hr=0;hr<HOST_REGS;hr++)
8550 {
8551 if(!((nr>>hr)&1)) {
8552 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8553 if(dops[i].is_jump)
8554 {
8555 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
8556 if (dops[i+1].is_load || dops[i+1].is_store)
8557 map1 = ROREG;
8558 if (dops[i+1].is_store)
8559 map2 = INVCP;
8560 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
8561 temp = FTEMP;
8562 if(regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8563 regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
8564 regs[i].regmap[hr]!=dops[i+1].rt1 && regs[i].regmap[hr]!=dops[i+1].rt2 &&
8565 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
8566 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=PTEMP &&
8567 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8568 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8569 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
8570 {
8571 regs[i].regmap[hr]=-1;
8572 regs[i].isconst&=~(1<<hr);
8573 regs[i].dirty&=~(1<<hr);
8574 regs[i+1].wasdirty&=~(1<<hr);
8575 if(branch_regs[i].regmap[hr]!=dops[i].rs1 && branch_regs[i].regmap[hr]!=dops[i].rs2 &&
8576 branch_regs[i].regmap[hr]!=dops[i].rt1 && branch_regs[i].regmap[hr]!=dops[i].rt2 &&
8577 branch_regs[i].regmap[hr]!=dops[i+1].rt1 && branch_regs[i].regmap[hr]!=dops[i+1].rt2 &&
8578 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
8579 branch_regs[i].regmap[hr]!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8580 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8581 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8582 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
8583 {
8584 branch_regs[i].regmap[hr]=-1;
8585 branch_regs[i].regmap_entry[hr]=-1;
8586 if (!dops[i].is_ujump)
8587 {
8588 if (i < slen-2) {
8589 regmap_pre[i+2][hr]=-1;
8590 regs[i+2].wasconst&=~(1<<hr);
8591 }
8592 }
8593 }
8594 }
8595 }
8596 else
8597 {
8598 // Non-branch
8599 if(i>0)
8600 {
8601 int map1 = -1, map2 = -1, temp=-1;
8602 if (dops[i].is_load || dops[i].is_store)
8603 map1 = ROREG;
8604 if (dops[i].is_store)
8605 map2 = INVCP;
8606 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
8607 temp = FTEMP;
8608 if(regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
8609 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8610 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
8611 //(dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG)
8612 regs[i].regmap[hr] != CCREG)
8613 {
8614 if(i<slen-1&&!dops[i].is_ds) {
8615 assert(regs[i].regmap[hr]<64);
8616 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8617 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8618 {
8619 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8620 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8621 }
8622 regmap_pre[i+1][hr]=-1;
8623 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8624 regs[i+1].wasconst&=~(1<<hr);
8625 }
8626 regs[i].regmap[hr]=-1;
8627 regs[i].isconst&=~(1<<hr);
8628 regs[i].dirty&=~(1<<hr);
8629 regs[i+1].wasdirty&=~(1<<hr);
8630 }
8631 }
8632 }
8633 } // if needed
8634 } // for hr
8635 }
8636
8637 /* Pass 5 - Pre-allocate registers */
8638
8639 // If a register is allocated during a loop, try to allocate it for the
8640 // entire loop, if possible. This avoids loading/storing registers
8641 // inside of the loop.
8642
8643 signed char f_regmap[HOST_REGS];
8644 clear_all_regs(f_regmap);
8645 for(i=0;i<slen-1;i++)
8646 {
8647 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8648 {
8649 if(ba[i]>=start && ba[i]<(start+i*4))
8650 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8651 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8652 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
8653 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
8654 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8655 {
8656 int t=(ba[i]-start)>>2;
8657 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8658 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8659 for(hr=0;hr<HOST_REGS;hr++)
8660 {
8661 if(regs[i].regmap[hr]>=0) {
8662 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8663 // dealloc old register
8664 int n;
8665 for(n=0;n<HOST_REGS;n++)
8666 {
8667 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8668 }
8669 // and alloc new one
8670 f_regmap[hr]=regs[i].regmap[hr];
8671 }
8672 }
8673 if(branch_regs[i].regmap[hr]>=0) {
8674 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8675 // dealloc old register
8676 int n;
8677 for(n=0;n<HOST_REGS;n++)
8678 {
8679 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8680 }
8681 // and alloc new one
8682 f_regmap[hr]=branch_regs[i].regmap[hr];
8683 }
8684 }
8685 if(dops[i].ooo) {
8686 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8687 f_regmap[hr]=branch_regs[i].regmap[hr];
8688 }else{
8689 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8690 f_regmap[hr]=branch_regs[i].regmap[hr];
8691 }
8692 // Avoid dirty->clean transition
8693 #ifdef DESTRUCTIVE_WRITEBACK
8694 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8695 #endif
8696 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8697 // case above, however it's always a good idea. We can't hoist the
8698 // load if the register was already allocated, so there's no point
8699 // wasting time analyzing most of these cases. It only "succeeds"
8700 // when the mapping was different and the load can be replaced with
8701 // a mov, which is of negligible benefit. So such cases are
8702 // skipped below.
8703 if(f_regmap[hr]>0) {
8704 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8705 int r=f_regmap[hr];
8706 for(j=t;j<=i;j++)
8707 {
8708 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8709 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8710 assert(r < 64);
8711 if(regs[j].regmap[hr]==f_regmap[hr]&&f_regmap[hr]<TEMPREG) {
8712 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8713 int k;
8714 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8715 if(get_reg(regs[i].regmap,f_regmap[hr])>=0) break;
8716 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8717 k=i;
8718 while(k>1&&regs[k-1].regmap[hr]==-1) {
8719 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8720 //printf("no free regs for store %x\n",start+(k-1)*4);
8721 break;
8722 }
8723 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8724 //printf("no-match due to different register\n");
8725 break;
8726 }
8727 if (dops[k-2].is_jump) {
8728 //printf("no-match due to branch\n");
8729 break;
8730 }
8731 // call/ret fast path assumes no registers allocated
8732 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8733 break;
8734 }
8735 k--;
8736 }
8737 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8738 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8739 while(k<i) {
8740 regs[k].regmap_entry[hr]=f_regmap[hr];
8741 regs[k].regmap[hr]=f_regmap[hr];
8742 regmap_pre[k+1][hr]=f_regmap[hr];
8743 regs[k].wasdirty&=~(1<<hr);
8744 regs[k].dirty&=~(1<<hr);
8745 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8746 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8747 regs[k].wasconst&=~(1<<hr);
8748 regs[k].isconst&=~(1<<hr);
8749 k++;
8750 }
8751 }
8752 else {
8753 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8754 break;
8755 }
8756 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8757 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8758 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8759 regs[i].regmap_entry[hr]=f_regmap[hr];
8760 regs[i].regmap[hr]=f_regmap[hr];
8761 regs[i].wasdirty&=~(1<<hr);
8762 regs[i].dirty&=~(1<<hr);
8763 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8764 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8765 regs[i].wasconst&=~(1<<hr);
8766 regs[i].isconst&=~(1<<hr);
8767 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8768 branch_regs[i].wasdirty&=~(1<<hr);
8769 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8770 branch_regs[i].regmap[hr]=f_regmap[hr];
8771 branch_regs[i].dirty&=~(1<<hr);
8772 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8773 branch_regs[i].wasconst&=~(1<<hr);
8774 branch_regs[i].isconst&=~(1<<hr);
8775 if (!dops[i].is_ujump) {
8776 regmap_pre[i+2][hr]=f_regmap[hr];
8777 regs[i+2].wasdirty&=~(1<<hr);
8778 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8779 }
8780 }
8781 }
8782 for(k=t;k<j;k++) {
8783 // Alloc register clean at beginning of loop,
8784 // but may dirty it in pass 6
8785 regs[k].regmap_entry[hr]=f_regmap[hr];
8786 regs[k].regmap[hr]=f_regmap[hr];
8787 regs[k].dirty&=~(1<<hr);
8788 regs[k].wasconst&=~(1<<hr);
8789 regs[k].isconst&=~(1<<hr);
8790 if (dops[k].is_jump) {
8791 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8792 branch_regs[k].regmap[hr]=f_regmap[hr];
8793 branch_regs[k].dirty&=~(1<<hr);
8794 branch_regs[k].wasconst&=~(1<<hr);
8795 branch_regs[k].isconst&=~(1<<hr);
8796 if (!dops[k].is_ujump) {
8797 regmap_pre[k+2][hr]=f_regmap[hr];
8798 regs[k+2].wasdirty&=~(1<<hr);
8799 }
8800 }
8801 else
8802 {
8803 regmap_pre[k+1][hr]=f_regmap[hr];
8804 regs[k+1].wasdirty&=~(1<<hr);
8805 }
8806 }
8807 if(regs[j].regmap[hr]==f_regmap[hr])
8808 regs[j].regmap_entry[hr]=f_regmap[hr];
8809 break;
8810 }
8811 if(j==i) break;
8812 if(regs[j].regmap[hr]>=0)
8813 break;
8814 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8815 //printf("no-match due to different register\n");
8816 break;
8817 }
8818 if (dops[j].is_ujump)
8819 {
8820 // Stop on unconditional branch
8821 break;
8822 }
8823 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8824 {
8825 if(dops[j].ooo) {
8826 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8827 break;
8828 }else{
8829 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8830 break;
8831 }
8832 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8833 //printf("no-match due to different register (branch)\n");
8834 break;
8835 }
8836 }
8837 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8838 //printf("No free regs for store %x\n",start+j*4);
8839 break;
8840 }
8841 assert(f_regmap[hr]<64);
8842 }
8843 }
8844 }
8845 }
8846 }
8847 }else{
8848 // Non branch or undetermined branch target
8849 for(hr=0;hr<HOST_REGS;hr++)
8850 {
8851 if(hr!=EXCLUDE_REG) {
8852 if(regs[i].regmap[hr]>=0) {
8853 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8854 // dealloc old register
8855 int n;
8856 for(n=0;n<HOST_REGS;n++)
8857 {
8858 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8859 }
8860 // and alloc new one
8861 f_regmap[hr]=regs[i].regmap[hr];
8862 }
8863 }
8864 }
8865 }
8866 // Try to restore cycle count at branch targets
8867 if(dops[i].bt) {
8868 for(j=i;j<slen-1;j++) {
8869 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8870 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8871 //printf("no free regs for store %x\n",start+j*4);
8872 break;
8873 }
8874 }
8875 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8876 int k=i;
8877 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8878 while(k<j) {
8879 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8880 regs[k].regmap[HOST_CCREG]=CCREG;
8881 regmap_pre[k+1][HOST_CCREG]=CCREG;
8882 regs[k+1].wasdirty|=1<<HOST_CCREG;
8883 regs[k].dirty|=1<<HOST_CCREG;
8884 regs[k].wasconst&=~(1<<HOST_CCREG);
8885 regs[k].isconst&=~(1<<HOST_CCREG);
8886 k++;
8887 }
8888 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8889 }
8890 // Work backwards from the branch target
8891 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8892 {
8893 //printf("Extend backwards\n");
8894 int k;
8895 k=i;
8896 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8897 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8898 //printf("no free regs for store %x\n",start+(k-1)*4);
8899 break;
8900 }
8901 k--;
8902 }
8903 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8904 //printf("Extend CC, %x ->\n",start+k*4);
8905 while(k<=i) {
8906 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8907 regs[k].regmap[HOST_CCREG]=CCREG;
8908 regmap_pre[k+1][HOST_CCREG]=CCREG;
8909 regs[k+1].wasdirty|=1<<HOST_CCREG;
8910 regs[k].dirty|=1<<HOST_CCREG;
8911 regs[k].wasconst&=~(1<<HOST_CCREG);
8912 regs[k].isconst&=~(1<<HOST_CCREG);
8913 k++;
8914 }
8915 }
8916 else {
8917 //printf("Fail Extend CC, %x ->\n",start+k*4);
8918 }
8919 }
8920 }
8921 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8922 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8923 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8924 {
8925 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8926 }
8927 }
8928 }
8929
8930 // This allocates registers (if possible) one instruction prior
8931 // to use, which can avoid a load-use penalty on certain CPUs.
8932 for(i=0;i<slen-1;i++)
8933 {
8934 if (!i || !dops[i-1].is_jump)
8935 {
8936 if(!dops[i+1].bt)
8937 {
8938 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8939 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8940 {
8941 if(dops[i+1].rs1) {
8942 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8943 {
8944 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8945 {
8946 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8947 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8948 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8949 regs[i].isconst&=~(1<<hr);
8950 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8951 constmap[i][hr]=constmap[i+1][hr];
8952 regs[i+1].wasdirty&=~(1<<hr);
8953 regs[i].dirty&=~(1<<hr);
8954 }
8955 }
8956 }
8957 if(dops[i+1].rs2) {
8958 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8959 {
8960 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8961 {
8962 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8963 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8964 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8965 regs[i].isconst&=~(1<<hr);
8966 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8967 constmap[i][hr]=constmap[i+1][hr];
8968 regs[i+1].wasdirty&=~(1<<hr);
8969 regs[i].dirty&=~(1<<hr);
8970 }
8971 }
8972 }
8973 // Preload target address for load instruction (non-constant)
8974 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8975 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8976 {
8977 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8978 {
8979 regs[i].regmap[hr]=dops[i+1].rs1;
8980 regmap_pre[i+1][hr]=dops[i+1].rs1;
8981 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8982 regs[i].isconst&=~(1<<hr);
8983 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8984 constmap[i][hr]=constmap[i+1][hr];
8985 regs[i+1].wasdirty&=~(1<<hr);
8986 regs[i].dirty&=~(1<<hr);
8987 }
8988 }
8989 }
8990 // Load source into target register
8991 if(dops[i+1].lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8992 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8993 {
8994 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8995 {
8996 regs[i].regmap[hr]=dops[i+1].rs1;
8997 regmap_pre[i+1][hr]=dops[i+1].rs1;
8998 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8999 regs[i].isconst&=~(1<<hr);
9000 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9001 constmap[i][hr]=constmap[i+1][hr];
9002 regs[i+1].wasdirty&=~(1<<hr);
9003 regs[i].dirty&=~(1<<hr);
9004 }
9005 }
9006 }
9007 // Address for store instruction (non-constant)
9008 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
9009 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
9010 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
9011 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9012 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
9013 else {
9014 regs[i+1].regmap[hr]=AGEN1+((i+1)&1);
9015 regs[i+1].isconst&=~(1<<hr);
9016 }
9017 assert(hr>=0);
9018 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9019 {
9020 regs[i].regmap[hr]=dops[i+1].rs1;
9021 regmap_pre[i+1][hr]=dops[i+1].rs1;
9022 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
9023 regs[i].isconst&=~(1<<hr);
9024 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9025 constmap[i][hr]=constmap[i+1][hr];
9026 regs[i+1].wasdirty&=~(1<<hr);
9027 regs[i].dirty&=~(1<<hr);
9028 }
9029 }
9030 }
9031 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
9032 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
9033 int nr;
9034 hr=get_reg(regs[i+1].regmap,FTEMP);
9035 assert(hr>=0);
9036 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9037 {
9038 regs[i].regmap[hr]=dops[i+1].rs1;
9039 regmap_pre[i+1][hr]=dops[i+1].rs1;
9040 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
9041 regs[i].isconst&=~(1<<hr);
9042 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9043 constmap[i][hr]=constmap[i+1][hr];
9044 regs[i+1].wasdirty&=~(1<<hr);
9045 regs[i].dirty&=~(1<<hr);
9046 }
9047 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9048 {
9049 // move it to another register
9050 regs[i+1].regmap[hr]=-1;
9051 regmap_pre[i+2][hr]=-1;
9052 regs[i+1].regmap[nr]=FTEMP;
9053 regmap_pre[i+2][nr]=FTEMP;
9054 regs[i].regmap[nr]=dops[i+1].rs1;
9055 regmap_pre[i+1][nr]=dops[i+1].rs1;
9056 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
9057 regs[i].isconst&=~(1<<nr);
9058 regs[i+1].isconst&=~(1<<nr);
9059 regs[i].dirty&=~(1<<nr);
9060 regs[i+1].wasdirty&=~(1<<nr);
9061 regs[i+1].dirty&=~(1<<nr);
9062 regs[i+2].wasdirty&=~(1<<nr);
9063 }
9064 }
9065 }
9066 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
9067 if(dops[i+1].itype==LOAD)
9068 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
9069 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
9070 hr=get_reg(regs[i+1].regmap,FTEMP);
9071 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
9072 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9073 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
9074 }
9075 if(hr>=0&&regs[i].regmap[hr]<0) {
9076 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
9077 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9078 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9079 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9080 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9081 regs[i].isconst&=~(1<<hr);
9082 regs[i+1].wasdirty&=~(1<<hr);
9083 regs[i].dirty&=~(1<<hr);
9084 }
9085 }
9086 }
9087 }
9088 }
9089 }
9090 }
9091
9092 /* Pass 6 - Optimize clean/dirty state */
9093 clean_registers(0,slen-1,1);
9094
9095 /* Pass 7 - Identify 32-bit registers */
9096 for (i=slen-1;i>=0;i--)
9097 {
9098 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
9099 {
9100 // Conditional branch
9101 if((source[i]>>16)!=0x1000&&i<slen-2) {
9102 // Mark this address as a branch target since it may be called
9103 // upon return from interrupt
9104 dops[i+2].bt=1;
9105 }
9106 }
9107 }
9108
9109 if(dops[slen-1].itype==SPAN) {
9110 dops[slen-1].bt=1; // Mark as a branch target so instruction can restart after exception
9111 }
9112
9113#ifdef REG_ALLOC_PRINT
9114 /* Debug/disassembly */
9115 for(i=0;i<slen;i++)
9116 {
9117 printf("U:");
9118 int r;
9119 for(r=1;r<=CCREG;r++) {
9120 if((unneeded_reg[i]>>r)&1) {
9121 if(r==HIREG) printf(" HI");
9122 else if(r==LOREG) printf(" LO");
9123 else printf(" r%d",r);
9124 }
9125 }
9126 printf("\n");
9127 #if defined(__i386__) || defined(__x86_64__)
9128 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9129 #endif
9130 #ifdef __arm__
9131 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9132 #endif
9133 #if defined(__i386__) || defined(__x86_64__)
9134 printf("needs: ");
9135 if(needed_reg[i]&1) printf("eax ");
9136 if((needed_reg[i]>>1)&1) printf("ecx ");
9137 if((needed_reg[i]>>2)&1) printf("edx ");
9138 if((needed_reg[i]>>3)&1) printf("ebx ");
9139 if((needed_reg[i]>>5)&1) printf("ebp ");
9140 if((needed_reg[i]>>6)&1) printf("esi ");
9141 if((needed_reg[i]>>7)&1) printf("edi ");
9142 printf("\n");
9143 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9144 printf("dirty: ");
9145 if(regs[i].wasdirty&1) printf("eax ");
9146 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9147 if((regs[i].wasdirty>>2)&1) printf("edx ");
9148 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9149 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9150 if((regs[i].wasdirty>>6)&1) printf("esi ");
9151 if((regs[i].wasdirty>>7)&1) printf("edi ");
9152 #endif
9153 #ifdef __arm__
9154 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9155 printf("dirty: ");
9156 if(regs[i].wasdirty&1) printf("r0 ");
9157 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9158 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9159 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9160 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9161 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9162 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9163 if((regs[i].wasdirty>>7)&1) printf("r7 ");
9164 if((regs[i].wasdirty>>8)&1) printf("r8 ");
9165 if((regs[i].wasdirty>>9)&1) printf("r9 ");
9166 if((regs[i].wasdirty>>10)&1) printf("r10 ");
9167 if((regs[i].wasdirty>>12)&1) printf("r12 ");
9168 #endif
9169 printf("\n");
9170 disassemble_inst(i);
9171 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9172 #if defined(__i386__) || defined(__x86_64__)
9173 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9174 if(regs[i].dirty&1) printf("eax ");
9175 if((regs[i].dirty>>1)&1) printf("ecx ");
9176 if((regs[i].dirty>>2)&1) printf("edx ");
9177 if((regs[i].dirty>>3)&1) printf("ebx ");
9178 if((regs[i].dirty>>5)&1) printf("ebp ");
9179 if((regs[i].dirty>>6)&1) printf("esi ");
9180 if((regs[i].dirty>>7)&1) printf("edi ");
9181 #endif
9182 #ifdef __arm__
9183 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9184 if(regs[i].dirty&1) printf("r0 ");
9185 if((regs[i].dirty>>1)&1) printf("r1 ");
9186 if((regs[i].dirty>>2)&1) printf("r2 ");
9187 if((regs[i].dirty>>3)&1) printf("r3 ");
9188 if((regs[i].dirty>>4)&1) printf("r4 ");
9189 if((regs[i].dirty>>5)&1) printf("r5 ");
9190 if((regs[i].dirty>>6)&1) printf("r6 ");
9191 if((regs[i].dirty>>7)&1) printf("r7 ");
9192 if((regs[i].dirty>>8)&1) printf("r8 ");
9193 if((regs[i].dirty>>9)&1) printf("r9 ");
9194 if((regs[i].dirty>>10)&1) printf("r10 ");
9195 if((regs[i].dirty>>12)&1) printf("r12 ");
9196 #endif
9197 printf("\n");
9198 if(regs[i].isconst) {
9199 printf("constants: ");
9200 #if defined(__i386__) || defined(__x86_64__)
9201 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
9202 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
9203 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
9204 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
9205 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
9206 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
9207 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
9208 #endif
9209 #if defined(__arm__) || defined(__aarch64__)
9210 int r;
9211 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
9212 if ((regs[i].isconst >> r) & 1)
9213 printf(" r%d=%x", r, (u_int)constmap[i][r]);
9214 #endif
9215 printf("\n");
9216 }
9217 if(dops[i].is_jump) {
9218 #if defined(__i386__) || defined(__x86_64__)
9219 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9220 if(branch_regs[i].dirty&1) printf("eax ");
9221 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9222 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9223 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9224 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9225 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9226 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9227 #endif
9228 #ifdef __arm__
9229 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9230 if(branch_regs[i].dirty&1) printf("r0 ");
9231 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9232 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9233 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9234 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9235 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9236 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9237 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9238 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9239 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9240 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9241 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9242 #endif
9243 }
9244 }
9245#endif // REG_ALLOC_PRINT
9246
9247 /* Pass 8 - Assembly */
9248 linkcount=0;stubcount=0;
9249 ds=0;is_delayslot=0;
9250 u_int dirty_pre=0;
9251 void *beginning=start_block();
9252 if((u_int)addr&1) {
9253 ds=1;
9254 pagespan_ds();
9255 }
9256 void *instr_addr0_override = NULL;
9257
9258 if (start == 0x80030000) {
9259 // nasty hack for the fastbios thing
9260 // override block entry to this code
9261 instr_addr0_override = out;
9262 emit_movimm(start,0);
9263 // abuse io address var as a flag that we
9264 // have already returned here once
9265 emit_readword(&address,1);
9266 emit_writeword(0,&pcaddr);
9267 emit_writeword(0,&address);
9268 emit_cmp(0,1);
9269 #ifdef __aarch64__
9270 emit_jeq(out + 4*2);
9271 emit_far_jump(new_dyna_leave);
9272 #else
9273 emit_jne(new_dyna_leave);
9274 #endif
9275 }
9276 for(i=0;i<slen;i++)
9277 {
9278 __builtin_prefetch(regs[i+1].regmap);
9279 check_regmap(regmap_pre[i]);
9280 check_regmap(regs[i].regmap_entry);
9281 check_regmap(regs[i].regmap);
9282 //if(ds) printf("ds: ");
9283 disassemble_inst(i);
9284 if(ds) {
9285 ds=0; // Skip delay slot
9286 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
9287 instr_addr[i] = NULL;
9288 } else {
9289 speculate_register_values(i);
9290 #ifndef DESTRUCTIVE_WRITEBACK
9291 if (i < 2 || !dops[i-2].is_ujump)
9292 {
9293 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9294 }
9295 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
9296 dirty_pre=branch_regs[i].dirty;
9297 }else{
9298 dirty_pre=regs[i].dirty;
9299 }
9300 #endif
9301 // write back
9302 if (i < 2 || !dops[i-2].is_ujump)
9303 {
9304 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9305 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9306 }
9307 // branch target entry point
9308 instr_addr[i] = out;
9309 assem_debug("<->\n");
9310 drc_dbg_emit_do_cmp(i, ccadj[i]);
9311 if (clear_hack_addr) {
9312 emit_movimm(0, 0);
9313 emit_writeword(0, &hack_addr);
9314 clear_hack_addr = 0;
9315 }
9316
9317 // load regs
9318 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9319 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9320 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9321 address_generation(i,&regs[i],regs[i].regmap_entry);
9322 load_consts(regmap_pre[i],regs[i].regmap,i);
9323 if(dops[i].is_jump)
9324 {
9325 // Load the delay slot registers if necessary
9326 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9327 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9328 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9329 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9330 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
9331 load_regs(regs[i].regmap_entry,regs[i].regmap,ROREG,ROREG);
9332 if (dops[i+1].is_store)
9333 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9334 }
9335 else if(i+1<slen)
9336 {
9337 // Preload registers for following instruction
9338 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9339 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9340 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9341 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9342 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9343 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9344 }
9345 // TODO: if(is_ooo(i)) address_generation(i+1);
9346 if (!dops[i].is_jump || dops[i].itype == CJUMP)
9347 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9348 if (ram_offset && (dops[i].is_load || dops[i].is_store))
9349 load_regs(regs[i].regmap_entry,regs[i].regmap,ROREG,ROREG);
9350 if (dops[i].is_store)
9351 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9352
9353 ds = assemble(i, &regs[i], ccadj[i]);
9354
9355 if (dops[i].is_ujump)
9356 literal_pool(1024);
9357 else
9358 literal_pool_jumpover(256);
9359 }
9360 }
9361
9362 assert(slen > 0);
9363 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9364 // no ending needed for this block since INTCALL never returns
9365 }
9366 // If the block did not end with an unconditional branch,
9367 // add a jump to the next instruction.
9368 else if (i > 1) {
9369 if (!dops[i-2].is_ujump && dops[i-1].itype != SPAN) {
9370 assert(!dops[i-1].is_jump);
9371 assert(i==slen);
9372 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9373 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9374 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9375 emit_loadreg(CCREG,HOST_CCREG);
9376 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9377 }
9378 else
9379 {
9380 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9381 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9382 }
9383 add_to_linker(out,start+i*4,0);
9384 emit_jmp(0);
9385 }
9386 }
9387 else
9388 {
9389 assert(i>0);
9390 assert(!dops[i-1].is_jump);
9391 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9392 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9393 emit_loadreg(CCREG,HOST_CCREG);
9394 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9395 add_to_linker(out,start+i*4,0);
9396 emit_jmp(0);
9397 }
9398
9399 // TODO: delay slot stubs?
9400 // Stubs
9401 for(i=0;i<stubcount;i++)
9402 {
9403 switch(stubs[i].type)
9404 {
9405 case LOADB_STUB:
9406 case LOADH_STUB:
9407 case LOADW_STUB:
9408 case LOADD_STUB:
9409 case LOADBU_STUB:
9410 case LOADHU_STUB:
9411 do_readstub(i);break;
9412 case STOREB_STUB:
9413 case STOREH_STUB:
9414 case STOREW_STUB:
9415 case STORED_STUB:
9416 do_writestub(i);break;
9417 case CC_STUB:
9418 do_ccstub(i);break;
9419 case INVCODE_STUB:
9420 do_invstub(i);break;
9421 case FP_STUB:
9422 do_cop1stub(i);break;
9423 case STORELR_STUB:
9424 do_unalignedwritestub(i);break;
9425 }
9426 }
9427
9428 if (instr_addr0_override)
9429 instr_addr[0] = instr_addr0_override;
9430
9431 /* Pass 9 - Linker */
9432 for(i=0;i<linkcount;i++)
9433 {
9434 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9435 literal_pool(64);
9436 if (!link_addr[i].ext)
9437 {
9438 void *stub = out;
9439 void *addr = check_addr(link_addr[i].target);
9440 emit_extjump(link_addr[i].addr, link_addr[i].target);
9441 if (addr) {
9442 set_jump_target(link_addr[i].addr, addr);
9443 add_jump_out(link_addr[i].target,stub);
9444 }
9445 else
9446 set_jump_target(link_addr[i].addr, stub);
9447 }
9448 else
9449 {
9450 // Internal branch
9451 int target=(link_addr[i].target-start)>>2;
9452 assert(target>=0&&target<slen);
9453 assert(instr_addr[target]);
9454 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9455 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9456 //#else
9457 set_jump_target(link_addr[i].addr, instr_addr[target]);
9458 //#endif
9459 }
9460 }
9461
9462 u_int source_len = slen*4;
9463 if (dops[slen-1].itype == INTCALL && source_len > 4)
9464 // no need to treat the last instruction as compiled
9465 // as interpreter fully handles it
9466 source_len -= 4;
9467
9468 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9469 copy = shadow;
9470
9471 // External Branch Targets (jump_in)
9472 for(i=0;i<slen;i++)
9473 {
9474 if(dops[i].bt||i==0)
9475 {
9476 if(instr_addr[i]) // TODO - delay slots (=null)
9477 {
9478 u_int vaddr=start+i*4;
9479 u_int page=get_page(vaddr);
9480 u_int vpage=get_vpage(vaddr);
9481 literal_pool(256);
9482 {
9483 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9484 assem_debug("jump_in: %x\n",start+i*4);
9485 ll_add(jump_dirty+vpage,vaddr,out);
9486 void *entry_point = do_dirty_stub(i, source_len);
9487 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9488 // If there was an existing entry in the hash table,
9489 // replace it with the new address.
9490 // Don't add new entries. We'll insert the
9491 // ones that actually get used in check_addr().
9492 struct ht_entry *ht_bin = hash_table_get(vaddr);
9493 if (ht_bin->vaddr[0] == vaddr)
9494 ht_bin->tcaddr[0] = entry_point;
9495 if (ht_bin->vaddr[1] == vaddr)
9496 ht_bin->tcaddr[1] = entry_point;
9497 }
9498 }
9499 }
9500 }
9501 // Write out the literal pool if necessary
9502 literal_pool(0);
9503 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9504 // Align code
9505 if(((u_int)out)&7) emit_addnop(13);
9506 #endif
9507 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9508 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9509 memcpy(copy, source, source_len);
9510 copy += source_len;
9511
9512 end_block(beginning);
9513
9514 // If we're within 256K of the end of the buffer,
9515 // start over from the beginning. (Is 256K enough?)
9516 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9517 out = ndrc->translation_cache;
9518
9519 // Trap writes to any of the pages we compiled
9520 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9521 invalid_code[i]=0;
9522 }
9523 inv_code_start=inv_code_end=~0;
9524
9525 // for PCSX we need to mark all mirrors too
9526 if(get_page(start)<(RAM_SIZE>>12))
9527 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9528 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9529 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9530 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9531
9532 /* Pass 10 - Free memory by expiring oldest blocks */
9533
9534 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9535 while(expirep!=end)
9536 {
9537 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9538 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
9539 uintptr_t base_offs_s = base_offs >> shift;
9540 inv_debug("EXP: Phase %d\n",expirep);
9541 switch((expirep>>11)&3)
9542 {
9543 case 0:
9544 // Clear jump_in and jump_dirty
9545 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
9546 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
9547 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
9548 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
9549 break;
9550 case 1:
9551 // Clear pointers
9552 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
9553 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
9554 break;
9555 case 2:
9556 // Clear hash table
9557 for(i=0;i<32;i++) {
9558 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9559 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
9560 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9561 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9562 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9563 ht_bin->vaddr[1] = -1;
9564 ht_bin->tcaddr[1] = NULL;
9565 }
9566 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
9567 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9568 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9569 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9570 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9571 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9572 ht_bin->vaddr[1] = -1;
9573 ht_bin->tcaddr[1] = NULL;
9574 }
9575 }
9576 break;
9577 case 3:
9578 // Clear jump_out
9579 if((expirep&2047)==0)
9580 do_clear_cache();
9581 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
9582 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
9583 break;
9584 }
9585 expirep=(expirep+1)&65535;
9586 }
9587#ifdef ASSEM_PRINT
9588 fflush(stdout);
9589#endif
9590 return 0;
9591}
9592
9593// vim:shiftwidth=2:expandtab