drc: don't read readmem_dword to r0 or on dummy reads
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
25#include "emu_if.h" //emulator interface
26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 uint64_t unneeded_reg[MAXBLOCK];
88 uint64_t unneeded_reg_upper[MAXBLOCK];
89 uint64_t branch_unneeded_reg[MAXBLOCK];
90 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91 uint64_t p32[MAXBLOCK];
92 uint64_t pr32[MAXBLOCK];
93 signed char regmap_pre[MAXBLOCK][HOST_REGS];
94 signed char regmap[MAXBLOCK][HOST_REGS];
95 signed char regmap_entry[MAXBLOCK][HOST_REGS];
96 uint64_t constmap[MAXBLOCK][HOST_REGS];
97 uint64_t known_value[HOST_REGS];
98 u_int known_reg;
99 struct regstat regs[MAXBLOCK];
100 struct regstat branch_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
138#define FTEMP 38 // FPU/LDL/LDR temporary register
139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
178#define HLECALL 26// PCSX fake opcodes for HLE
179#define COP2 27 // Coprocessor 2 move
180#define C2LS 28 // Coprocessor 2 load/store
181#define C2OP 29 // Coprocessor 2 operation
182
183 /* stubs */
184#define CC_STUB 1
185#define FP_STUB 2
186#define LOADB_STUB 3
187#define LOADH_STUB 4
188#define LOADW_STUB 5
189#define LOADD_STUB 6
190#define LOADBU_STUB 7
191#define LOADHU_STUB 8
192#define STOREB_STUB 9
193#define STOREH_STUB 10
194#define STOREW_STUB 11
195#define STORED_STUB 12
196#define STORELR_STUB 13
197#define INVCODE_STUB 14
198
199 /* branch codes */
200#define TAKEN 1
201#define NOTTAKEN 2
202#define NULLDS 3
203
204// asm linkage
205int new_recompile_block(int addr);
206void *get_addr_ht(u_int vaddr);
207void invalidate_block(u_int block);
208void invalidate_addr(u_int addr);
209void remove_hash(int vaddr);
210void jump_vaddr();
211void dyna_linker();
212void dyna_linker_ds();
213void verify_code();
214void verify_code_vm();
215void verify_code_ds();
216void cc_interrupt();
217void fp_exception();
218void fp_exception_ds();
219void jump_syscall();
220void jump_syscall_hle();
221void jump_eret();
222void jump_hlecall();
223void new_dyna_leave();
224
225// TLB
226void TLBWI_new();
227void TLBWR_new();
228void read_nomem_new();
229void read_nomemb_new();
230void read_nomemh_new();
231void read_nomemd_new();
232void write_nomem_new();
233void write_nomemb_new();
234void write_nomemh_new();
235void write_nomemd_new();
236void write_rdram_new();
237void write_rdramb_new();
238void write_rdramh_new();
239void write_rdramd_new();
240extern u_int memory_map[1048576];
241
242// Needed by assembler
243void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246void load_all_regs(signed char i_regmap[]);
247void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248void load_regs_entry(int t);
249void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251int tracedebug=0;
252
253//#define DEBUG_CYCLE_COUNT 1
254
255void nullf() {}
256//#define assem_debug printf
257//#define inv_debug printf
258#define assem_debug nullf
259#define inv_debug nullf
260
261static void tlb_hacks()
262{
263#ifndef DISABLE_TLB
264 // Goldeneye hack
265 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
266 {
267 u_int addr;
268 int n;
269 switch (ROM_HEADER->Country_code&0xFF)
270 {
271 case 0x45: // U
272 addr=0x34b30;
273 break;
274 case 0x4A: // J
275 addr=0x34b70;
276 break;
277 case 0x50: // E
278 addr=0x329f0;
279 break;
280 default:
281 // Unknown country code
282 addr=0;
283 break;
284 }
285 u_int rom_addr=(u_int)rom;
286 #ifdef ROM_COPY
287 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
288 // in the lower 4G of memory to use this hack. Copy it if necessary.
289 if((void *)rom>(void *)0xffffffff) {
290 munmap(ROM_COPY, 67108864);
291 if(mmap(ROM_COPY, 12582912,
292 PROT_READ | PROT_WRITE,
293 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
294 -1, 0) <= 0) {printf("mmap() failed\n");}
295 memcpy(ROM_COPY,rom,12582912);
296 rom_addr=(u_int)ROM_COPY;
297 }
298 #endif
299 if(addr) {
300 for(n=0x7F000;n<0x80000;n++) {
301 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
302 }
303 }
304 }
305#endif
306}
307
308static u_int get_page(u_int vaddr)
309{
310 u_int page=(vaddr^0x80000000)>>12;
311#ifndef DISABLE_TLB
312 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
313#endif
314 if(page>2048) page=2048+(page&2047);
315 return page;
316}
317
318static u_int get_vpage(u_int vaddr)
319{
320 u_int vpage=(vaddr^0x80000000)>>12;
321#ifndef DISABLE_TLB
322 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
323#endif
324 if(vpage>2048) vpage=2048+(vpage&2047);
325 return vpage;
326}
327
328// Get address from virtual address
329// This is called from the recompiled JR/JALR instructions
330void *get_addr(u_int vaddr)
331{
332 u_int page=get_page(vaddr);
333 u_int vpage=get_vpage(vaddr);
334 struct ll_entry *head;
335 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
336 head=jump_in[page];
337 while(head!=NULL) {
338 if(head->vaddr==vaddr&&head->reg32==0) {
339 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
340 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
341 ht_bin[3]=ht_bin[1];
342 ht_bin[2]=ht_bin[0];
343 ht_bin[1]=(int)head->addr;
344 ht_bin[0]=vaddr;
345 return head->addr;
346 }
347 head=head->next;
348 }
349 head=jump_dirty[vpage];
350 while(head!=NULL) {
351 if(head->vaddr==vaddr&&head->reg32==0) {
352 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
353 // Don't restore blocks which are about to expire from the cache
354 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
355 if(verify_dirty(head->addr)) {
356 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
357 invalid_code[vaddr>>12]=0;
358 memory_map[vaddr>>12]|=0x40000000;
359 if(vpage<2048) {
360#ifndef DISABLE_TLB
361 if(tlb_LUT_r[vaddr>>12]) {
362 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
363 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
364 }
365#endif
366 restore_candidate[vpage>>3]|=1<<(vpage&7);
367 }
368 else restore_candidate[page>>3]|=1<<(page&7);
369 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370 if(ht_bin[0]==vaddr) {
371 ht_bin[1]=(int)head->addr; // Replace existing entry
372 }
373 else
374 {
375 ht_bin[3]=ht_bin[1];
376 ht_bin[2]=ht_bin[0];
377 ht_bin[1]=(int)head->addr;
378 ht_bin[0]=vaddr;
379 }
380 return head->addr;
381 }
382 }
383 head=head->next;
384 }
385 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
386 int r=new_recompile_block(vaddr);
387 if(r==0) return get_addr(vaddr);
388 // Execute in unmapped page, generate pagefault execption
389 Status|=2;
390 Cause=(vaddr<<31)|0x8;
391 EPC=(vaddr&1)?vaddr-5:vaddr;
392 BadVAddr=(vaddr&~1);
393 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
394 EntryHi=BadVAddr&0xFFFFE000;
395 return get_addr_ht(0x80000000);
396}
397// Look up address in hash table first
398void *get_addr_ht(u_int vaddr)
399{
400 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
401 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
403 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
404 return get_addr(vaddr);
405}
406
407void *get_addr_32(u_int vaddr,u_int flags)
408{
409#ifdef FORCE32
410 return get_addr(vaddr);
411#endif
412 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
413 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
414 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
415 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
416 u_int page=get_page(vaddr);
417 u_int vpage=get_vpage(vaddr);
418 struct ll_entry *head;
419 head=jump_in[page];
420 while(head!=NULL) {
421 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
422 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
423 if(head->reg32==0) {
424 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425 if(ht_bin[0]==-1) {
426 ht_bin[1]=(int)head->addr;
427 ht_bin[0]=vaddr;
428 }else if(ht_bin[2]==-1) {
429 ht_bin[3]=(int)head->addr;
430 ht_bin[2]=vaddr;
431 }
432 //ht_bin[3]=ht_bin[1];
433 //ht_bin[2]=ht_bin[0];
434 //ht_bin[1]=(int)head->addr;
435 //ht_bin[0]=vaddr;
436 }
437 return head->addr;
438 }
439 head=head->next;
440 }
441 head=jump_dirty[vpage];
442 while(head!=NULL) {
443 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
444 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
445 // Don't restore blocks which are about to expire from the cache
446 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
447 if(verify_dirty(head->addr)) {
448 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
449 invalid_code[vaddr>>12]=0;
450 memory_map[vaddr>>12]|=0x40000000;
451 if(vpage<2048) {
452#ifndef DISABLE_TLB
453 if(tlb_LUT_r[vaddr>>12]) {
454 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
455 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
456 }
457#endif
458 restore_candidate[vpage>>3]|=1<<(vpage&7);
459 }
460 else restore_candidate[page>>3]|=1<<(page&7);
461 if(head->reg32==0) {
462 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
463 if(ht_bin[0]==-1) {
464 ht_bin[1]=(int)head->addr;
465 ht_bin[0]=vaddr;
466 }else if(ht_bin[2]==-1) {
467 ht_bin[3]=(int)head->addr;
468 ht_bin[2]=vaddr;
469 }
470 //ht_bin[3]=ht_bin[1];
471 //ht_bin[2]=ht_bin[0];
472 //ht_bin[1]=(int)head->addr;
473 //ht_bin[0]=vaddr;
474 }
475 return head->addr;
476 }
477 }
478 head=head->next;
479 }
480 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
481 int r=new_recompile_block(vaddr);
482 if(r==0) return get_addr(vaddr);
483 // Execute in unmapped page, generate pagefault execption
484 Status|=2;
485 Cause=(vaddr<<31)|0x8;
486 EPC=(vaddr&1)?vaddr-5:vaddr;
487 BadVAddr=(vaddr&~1);
488 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
489 EntryHi=BadVAddr&0xFFFFE000;
490 return get_addr_ht(0x80000000);
491}
492
493void clear_all_regs(signed char regmap[])
494{
495 int hr;
496 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
497}
498
499signed char get_reg(signed char regmap[],int r)
500{
501 int hr;
502 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
503 return -1;
504}
505
506// Find a register that is available for two consecutive cycles
507signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
508{
509 int hr;
510 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
511 return -1;
512}
513
514int count_free_regs(signed char regmap[])
515{
516 int count=0;
517 int hr;
518 for(hr=0;hr<HOST_REGS;hr++)
519 {
520 if(hr!=EXCLUDE_REG) {
521 if(regmap[hr]<0) count++;
522 }
523 }
524 return count;
525}
526
527void dirty_reg(struct regstat *cur,signed char reg)
528{
529 int hr;
530 if(!reg) return;
531 for (hr=0;hr<HOST_REGS;hr++) {
532 if((cur->regmap[hr]&63)==reg) {
533 cur->dirty|=1<<hr;
534 }
535 }
536}
537
538// If we dirty the lower half of a 64 bit register which is now being
539// sign-extended, we need to dump the upper half.
540// Note: Do this only after completion of the instruction, because
541// some instructions may need to read the full 64-bit value even if
542// overwriting it (eg SLTI, DSRA32).
543static void flush_dirty_uppers(struct regstat *cur)
544{
545 int hr,reg;
546 for (hr=0;hr<HOST_REGS;hr++) {
547 if((cur->dirty>>hr)&1) {
548 reg=cur->regmap[hr];
549 if(reg>=64)
550 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
551 }
552 }
553}
554
555void set_const(struct regstat *cur,signed char reg,uint64_t value)
556{
557 int hr;
558 if(!reg) return;
559 for (hr=0;hr<HOST_REGS;hr++) {
560 if(cur->regmap[hr]==reg) {
561 cur->isconst|=1<<hr;
562 cur->constmap[hr]=value;
563 }
564 else if((cur->regmap[hr]^64)==reg) {
565 cur->isconst|=1<<hr;
566 cur->constmap[hr]=value>>32;
567 }
568 }
569}
570
571void clear_const(struct regstat *cur,signed char reg)
572{
573 int hr;
574 if(!reg) return;
575 for (hr=0;hr<HOST_REGS;hr++) {
576 if((cur->regmap[hr]&63)==reg) {
577 cur->isconst&=~(1<<hr);
578 }
579 }
580}
581
582int is_const(struct regstat *cur,signed char reg)
583{
584 int hr;
585 if(!reg) return 1;
586 for (hr=0;hr<HOST_REGS;hr++) {
587 if((cur->regmap[hr]&63)==reg) {
588 return (cur->isconst>>hr)&1;
589 }
590 }
591 return 0;
592}
593uint64_t get_const(struct regstat *cur,signed char reg)
594{
595 int hr;
596 if(!reg) return 0;
597 for (hr=0;hr<HOST_REGS;hr++) {
598 if(cur->regmap[hr]==reg) {
599 return cur->constmap[hr];
600 }
601 }
602 printf("Unknown constant in r%d\n",reg);
603 exit(1);
604}
605
606// Least soon needed registers
607// Look at the next ten instructions and see which registers
608// will be used. Try not to reallocate these.
609void lsn(u_char hsn[], int i, int *preferred_reg)
610{
611 int j;
612 int b=-1;
613 for(j=0;j<9;j++)
614 {
615 if(i+j>=slen) {
616 j=slen-i-1;
617 break;
618 }
619 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
620 {
621 // Don't go past an unconditonal jump
622 j++;
623 break;
624 }
625 }
626 for(;j>=0;j--)
627 {
628 if(rs1[i+j]) hsn[rs1[i+j]]=j;
629 if(rs2[i+j]) hsn[rs2[i+j]]=j;
630 if(rt1[i+j]) hsn[rt1[i+j]]=j;
631 if(rt2[i+j]) hsn[rt2[i+j]]=j;
632 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
633 // Stores can allocate zero
634 hsn[rs1[i+j]]=j;
635 hsn[rs2[i+j]]=j;
636 }
637 // On some architectures stores need invc_ptr
638 #if defined(HOST_IMM8)
639 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
640 hsn[INVCP]=j;
641 }
642 #endif
643 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
644 {
645 hsn[CCREG]=j;
646 b=j;
647 }
648 }
649 if(b>=0)
650 {
651 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
652 {
653 // Follow first branch
654 int t=(ba[i+b]-start)>>2;
655 j=7-b;if(t+j>=slen) j=slen-t-1;
656 for(;j>=0;j--)
657 {
658 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
659 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
660 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
661 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
662 }
663 }
664 // TODO: preferred register based on backward branch
665 }
666 // Delay slot should preferably not overwrite branch conditions or cycle count
667 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
668 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
669 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
670 hsn[CCREG]=1;
671 // ...or hash tables
672 hsn[RHASH]=1;
673 hsn[RHTBL]=1;
674 }
675 // Coprocessor load/store needs FTEMP, even if not declared
676 if(itype[i]==C1LS||itype[i]==C2LS) {
677 hsn[FTEMP]=0;
678 }
679 // Load L/R also uses FTEMP as a temporary register
680 if(itype[i]==LOADLR) {
681 hsn[FTEMP]=0;
682 }
683 // Also SWL/SWR/SDL/SDR
684 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
685 hsn[FTEMP]=0;
686 }
687 // Don't remove the TLB registers either
688 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
689 hsn[TLREG]=0;
690 }
691 // Don't remove the miniht registers
692 if(itype[i]==UJUMP||itype[i]==RJUMP)
693 {
694 hsn[RHASH]=0;
695 hsn[RHTBL]=0;
696 }
697}
698
699// We only want to allocate registers if we're going to use them again soon
700int needed_again(int r, int i)
701{
702 int j;
703 int b=-1;
704 int rn=10;
705 int hr;
706 u_char hsn[MAXREG+1];
707 int preferred_reg;
708
709 memset(hsn,10,sizeof(hsn));
710 lsn(hsn,i,&preferred_reg);
711
712 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
713 {
714 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
715 return 0; // Don't need any registers if exiting the block
716 }
717 for(j=0;j<9;j++)
718 {
719 if(i+j>=slen) {
720 j=slen-i-1;
721 break;
722 }
723 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
724 {
725 // Don't go past an unconditonal jump
726 j++;
727 break;
728 }
729 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||((source[i+j]&0xfc00003f)==0x0d))
730 {
731 break;
732 }
733 }
734 for(;j>=1;j--)
735 {
736 if(rs1[i+j]==r) rn=j;
737 if(rs2[i+j]==r) rn=j;
738 if((unneeded_reg[i+j]>>r)&1) rn=10;
739 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
740 {
741 b=j;
742 }
743 }
744 /*
745 if(b>=0)
746 {
747 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
748 {
749 // Follow first branch
750 int o=rn;
751 int t=(ba[i+b]-start)>>2;
752 j=7-b;if(t+j>=slen) j=slen-t-1;
753 for(;j>=0;j--)
754 {
755 if(!((unneeded_reg[t+j]>>r)&1)) {
756 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
757 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
758 }
759 else rn=o;
760 }
761 }
762 }*/
763 for(hr=0;hr<HOST_REGS;hr++) {
764 if(hr!=EXCLUDE_REG) {
765 if(rn<hsn[hr]) return 1;
766 }
767 }
768 return 0;
769}
770
771// Try to match register allocations at the end of a loop with those
772// at the beginning
773int loop_reg(int i, int r, int hr)
774{
775 int j,k;
776 for(j=0;j<9;j++)
777 {
778 if(i+j>=slen) {
779 j=slen-i-1;
780 break;
781 }
782 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
783 {
784 // Don't go past an unconditonal jump
785 j++;
786 break;
787 }
788 }
789 k=0;
790 if(i>0){
791 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
792 k--;
793 }
794 for(;k<j;k++)
795 {
796 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
797 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
798 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
799 {
800 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
801 {
802 int t=(ba[i+k]-start)>>2;
803 int reg=get_reg(regs[t].regmap_entry,r);
804 if(reg>=0) return reg;
805 //reg=get_reg(regs[t+1].regmap_entry,r);
806 //if(reg>=0) return reg;
807 }
808 }
809 }
810 return hr;
811}
812
813
814// Allocate every register, preserving source/target regs
815void alloc_all(struct regstat *cur,int i)
816{
817 int hr;
818
819 for(hr=0;hr<HOST_REGS;hr++) {
820 if(hr!=EXCLUDE_REG) {
821 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
822 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
823 {
824 cur->regmap[hr]=-1;
825 cur->dirty&=~(1<<hr);
826 }
827 // Don't need zeros
828 if((cur->regmap[hr]&63)==0)
829 {
830 cur->regmap[hr]=-1;
831 cur->dirty&=~(1<<hr);
832 }
833 }
834 }
835}
836
837
838void div64(int64_t dividend,int64_t divisor)
839{
840 lo=dividend/divisor;
841 hi=dividend%divisor;
842 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
843 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
844}
845void divu64(uint64_t dividend,uint64_t divisor)
846{
847 lo=dividend/divisor;
848 hi=dividend%divisor;
849 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
850 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
851}
852
853void mult64(uint64_t m1,uint64_t m2)
854{
855 unsigned long long int op1, op2, op3, op4;
856 unsigned long long int result1, result2, result3, result4;
857 unsigned long long int temp1, temp2, temp3, temp4;
858 int sign = 0;
859
860 if (m1 < 0)
861 {
862 op2 = -m1;
863 sign = 1 - sign;
864 }
865 else op2 = m1;
866 if (m2 < 0)
867 {
868 op4 = -m2;
869 sign = 1 - sign;
870 }
871 else op4 = m2;
872
873 op1 = op2 & 0xFFFFFFFF;
874 op2 = (op2 >> 32) & 0xFFFFFFFF;
875 op3 = op4 & 0xFFFFFFFF;
876 op4 = (op4 >> 32) & 0xFFFFFFFF;
877
878 temp1 = op1 * op3;
879 temp2 = (temp1 >> 32) + op1 * op4;
880 temp3 = op2 * op3;
881 temp4 = (temp3 >> 32) + op2 * op4;
882
883 result1 = temp1 & 0xFFFFFFFF;
884 result2 = temp2 + (temp3 & 0xFFFFFFFF);
885 result3 = (result2 >> 32) + temp4;
886 result4 = (result3 >> 32);
887
888 lo = result1 | (result2 << 32);
889 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
890 if (sign)
891 {
892 hi = ~hi;
893 if (!lo) hi++;
894 else lo = ~lo + 1;
895 }
896}
897
898void multu64(uint64_t m1,uint64_t m2)
899{
900 unsigned long long int op1, op2, op3, op4;
901 unsigned long long int result1, result2, result3, result4;
902 unsigned long long int temp1, temp2, temp3, temp4;
903
904 op1 = m1 & 0xFFFFFFFF;
905 op2 = (m1 >> 32) & 0xFFFFFFFF;
906 op3 = m2 & 0xFFFFFFFF;
907 op4 = (m2 >> 32) & 0xFFFFFFFF;
908
909 temp1 = op1 * op3;
910 temp2 = (temp1 >> 32) + op1 * op4;
911 temp3 = op2 * op3;
912 temp4 = (temp3 >> 32) + op2 * op4;
913
914 result1 = temp1 & 0xFFFFFFFF;
915 result2 = temp2 + (temp3 & 0xFFFFFFFF);
916 result3 = (result2 >> 32) + temp4;
917 result4 = (result3 >> 32);
918
919 lo = result1 | (result2 << 32);
920 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
921
922 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
923 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
924}
925
926uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
927{
928 if(bits) {
929 original<<=64-bits;
930 original>>=64-bits;
931 loaded<<=bits;
932 original|=loaded;
933 }
934 else original=loaded;
935 return original;
936}
937uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
938{
939 if(bits^56) {
940 original>>=64-(bits^56);
941 original<<=64-(bits^56);
942 loaded>>=bits^56;
943 original|=loaded;
944 }
945 else original=loaded;
946 return original;
947}
948
949#ifdef __i386__
950#include "assem_x86.c"
951#endif
952#ifdef __x86_64__
953#include "assem_x64.c"
954#endif
955#ifdef __arm__
956#include "assem_arm.c"
957#endif
958
959// Add virtual address mapping to linked list
960void ll_add(struct ll_entry **head,int vaddr,void *addr)
961{
962 struct ll_entry *new_entry;
963 new_entry=malloc(sizeof(struct ll_entry));
964 assert(new_entry!=NULL);
965 new_entry->vaddr=vaddr;
966 new_entry->reg32=0;
967 new_entry->addr=addr;
968 new_entry->next=*head;
969 *head=new_entry;
970}
971
972// Add virtual address mapping for 32-bit compiled block
973void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
974{
975 ll_add(head,vaddr,addr);
976#ifndef FORCE32
977 (*head)->reg32=reg32;
978#endif
979}
980
981// Check if an address is already compiled
982// but don't return addresses which are about to expire from the cache
983void *check_addr(u_int vaddr)
984{
985 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
986 if(ht_bin[0]==vaddr) {
987 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
988 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
989 }
990 if(ht_bin[2]==vaddr) {
991 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
992 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
993 }
994 u_int page=get_page(vaddr);
995 struct ll_entry *head;
996 head=jump_in[page];
997 while(head!=NULL) {
998 if(head->vaddr==vaddr&&head->reg32==0) {
999 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1000 // Update existing entry with current address
1001 if(ht_bin[0]==vaddr) {
1002 ht_bin[1]=(int)head->addr;
1003 return head->addr;
1004 }
1005 if(ht_bin[2]==vaddr) {
1006 ht_bin[3]=(int)head->addr;
1007 return head->addr;
1008 }
1009 // Insert into hash table with low priority.
1010 // Don't evict existing entries, as they are probably
1011 // addresses that are being accessed frequently.
1012 if(ht_bin[0]==-1) {
1013 ht_bin[1]=(int)head->addr;
1014 ht_bin[0]=vaddr;
1015 }else if(ht_bin[2]==-1) {
1016 ht_bin[3]=(int)head->addr;
1017 ht_bin[2]=vaddr;
1018 }
1019 return head->addr;
1020 }
1021 }
1022 head=head->next;
1023 }
1024 return 0;
1025}
1026
1027void remove_hash(int vaddr)
1028{
1029 //printf("remove hash: %x\n",vaddr);
1030 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1031 if(ht_bin[2]==vaddr) {
1032 ht_bin[2]=ht_bin[3]=-1;
1033 }
1034 if(ht_bin[0]==vaddr) {
1035 ht_bin[0]=ht_bin[2];
1036 ht_bin[1]=ht_bin[3];
1037 ht_bin[2]=ht_bin[3]=-1;
1038 }
1039}
1040
1041void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1042{
1043 struct ll_entry *next;
1044 while(*head) {
1045 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1046 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1047 {
1048 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1049 remove_hash((*head)->vaddr);
1050 next=(*head)->next;
1051 free(*head);
1052 *head=next;
1053 }
1054 else
1055 {
1056 head=&((*head)->next);
1057 }
1058 }
1059}
1060
1061// Remove all entries from linked list
1062void ll_clear(struct ll_entry **head)
1063{
1064 struct ll_entry *cur;
1065 struct ll_entry *next;
1066 if(cur=*head) {
1067 *head=0;
1068 while(cur) {
1069 next=cur->next;
1070 free(cur);
1071 cur=next;
1072 }
1073 }
1074}
1075
1076// Dereference the pointers and remove if it matches
1077void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1078{
1079 u_int old_host_addr=0;
1080 while(head) {
1081 int ptr=get_pointer(head->addr);
1082 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1083 if(((ptr>>shift)==(addr>>shift)) ||
1084 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1085 {
1086 printf("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1087 u_int host_addr=(u_int)kill_pointer(head->addr);
1088
1089 if((host_addr>>12)!=(old_host_addr>>12)) {
1090 #ifdef __arm__
1091 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1092 #endif
1093 old_host_addr=host_addr;
1094 }
1095 }
1096 head=head->next;
1097 }
1098 #ifdef __arm__
1099 if (old_host_addr)
1100 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1101 #endif
1102}
1103
1104// This is called when we write to a compiled block (see do_invstub)
1105void invalidate_page(u_int page)
1106{
1107 struct ll_entry *head;
1108 struct ll_entry *next;
1109 u_int old_host_addr=0;
1110 head=jump_in[page];
1111 jump_in[page]=0;
1112 while(head!=NULL) {
1113 inv_debug("INVALIDATE: %x\n",head->vaddr);
1114 remove_hash(head->vaddr);
1115 next=head->next;
1116 free(head);
1117 head=next;
1118 }
1119 head=jump_out[page];
1120 jump_out[page]=0;
1121 while(head!=NULL) {
1122 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1123 u_int host_addr=(u_int)kill_pointer(head->addr);
1124
1125 if((host_addr>>12)!=(old_host_addr>>12)) {
1126 #ifdef __arm__
1127 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1128 #endif
1129 old_host_addr=host_addr;
1130 }
1131 next=head->next;
1132 free(head);
1133 head=next;
1134 }
1135 #ifdef __arm__
1136 if (old_host_addr)
1137 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1138 #endif
1139}
1140void invalidate_block(u_int block)
1141{
1142 u_int page=get_page(block<<12);
1143 u_int vpage=get_vpage(block<<12);
1144 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1145 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1146 u_int first,last;
1147 first=last=page;
1148 struct ll_entry *head;
1149 head=jump_dirty[vpage];
1150 //printf("page=%d vpage=%d\n",page,vpage);
1151 while(head!=NULL) {
1152 u_int start,end;
1153 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1154 get_bounds((int)head->addr,&start,&end);
1155 //printf("start: %x end: %x\n",start,end);
1156 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1157 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1158 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1159 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1160 }
1161 }
1162#ifndef DISABLE_TLB
1163 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1164 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1165 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1166 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1167 }
1168 }
1169#endif
1170 }
1171 head=head->next;
1172 }
1173 //printf("first=%d last=%d\n",first,last);
1174 invalidate_page(page);
1175 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1176 assert(last<page+5);
1177 // Invalidate the adjacent pages if a block crosses a 4K boundary
1178 while(first<page) {
1179 invalidate_page(first);
1180 first++;
1181 }
1182 for(first=page+1;first<last;first++) {
1183 invalidate_page(first);
1184 }
1185
1186 // Don't trap writes
1187 invalid_code[block]=1;
1188#ifndef DISABLE_TLB
1189 // If there is a valid TLB entry for this page, remove write protect
1190 if(tlb_LUT_w[block]) {
1191 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1192 // CHECK: Is this right?
1193 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1194 u_int real_block=tlb_LUT_w[block]>>12;
1195 invalid_code[real_block]=1;
1196 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1197 }
1198 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1199#endif
1200
1201 #ifdef USE_MINI_HT
1202 memset(mini_ht,-1,sizeof(mini_ht));
1203 #endif
1204}
1205void invalidate_addr(u_int addr)
1206{
1207 invalidate_block(addr>>12);
1208}
1209void invalidate_all_pages()
1210{
1211 u_int page,n;
1212 for(page=0;page<4096;page++)
1213 invalidate_page(page);
1214 for(page=0;page<1048576;page++)
1215 if(!invalid_code[page]) {
1216 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1217 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1218 }
1219 #ifdef __arm__
1220 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1221 #endif
1222 #ifdef USE_MINI_HT
1223 memset(mini_ht,-1,sizeof(mini_ht));
1224 #endif
1225 #ifndef DISABLE_TLB
1226 // TLB
1227 for(page=0;page<0x100000;page++) {
1228 if(tlb_LUT_r[page]) {
1229 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1230 if(!tlb_LUT_w[page]||!invalid_code[page])
1231 memory_map[page]|=0x40000000; // Write protect
1232 }
1233 else memory_map[page]=-1;
1234 if(page==0x80000) page=0xC0000;
1235 }
1236 tlb_hacks();
1237 #endif
1238}
1239
1240// Add an entry to jump_out after making a link
1241void add_link(u_int vaddr,void *src)
1242{
1243 u_int page=get_page(vaddr);
1244 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1245 ll_add(jump_out+page,vaddr,src);
1246 //int ptr=get_pointer(src);
1247 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1248}
1249
1250// If a code block was found to be unmodified (bit was set in
1251// restore_candidate) and it remains unmodified (bit is clear
1252// in invalid_code) then move the entries for that 4K page from
1253// the dirty list to the clean list.
1254void clean_blocks(u_int page)
1255{
1256 struct ll_entry *head;
1257 inv_debug("INV: clean_blocks page=%d\n",page);
1258 head=jump_dirty[page];
1259 while(head!=NULL) {
1260 if(!invalid_code[head->vaddr>>12]) {
1261 // Don't restore blocks which are about to expire from the cache
1262 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1263 u_int start,end;
1264 if(verify_dirty((int)head->addr)) {
1265 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1266 u_int i;
1267 u_int inv=0;
1268 get_bounds((int)head->addr,&start,&end);
1269 if(start-(u_int)rdram<RAM_SIZE) {
1270 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1271 inv|=invalid_code[i];
1272 }
1273 }
1274 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1275 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1276 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1277 if(addr<start||addr>=end) inv=1;
1278 }
1279 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1280 inv=1;
1281 }
1282 if(!inv) {
1283 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1284 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1285 u_int ppage=page;
1286#ifndef DISABLE_TLB
1287 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1288#endif
1289 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1290 //printf("page=%x, addr=%x\n",page,head->vaddr);
1291 //assert(head->vaddr>>12==(page|0x80000));
1292 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1293 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1294 if(!head->reg32) {
1295 if(ht_bin[0]==head->vaddr) {
1296 ht_bin[1]=(int)clean_addr; // Replace existing entry
1297 }
1298 if(ht_bin[2]==head->vaddr) {
1299 ht_bin[3]=(int)clean_addr; // Replace existing entry
1300 }
1301 }
1302 }
1303 }
1304 }
1305 }
1306 }
1307 head=head->next;
1308 }
1309}
1310
1311
1312void mov_alloc(struct regstat *current,int i)
1313{
1314 // Note: Don't need to actually alloc the source registers
1315 if((~current->is32>>rs1[i])&1) {
1316 //alloc_reg64(current,i,rs1[i]);
1317 alloc_reg64(current,i,rt1[i]);
1318 current->is32&=~(1LL<<rt1[i]);
1319 } else {
1320 //alloc_reg(current,i,rs1[i]);
1321 alloc_reg(current,i,rt1[i]);
1322 current->is32|=(1LL<<rt1[i]);
1323 }
1324 clear_const(current,rs1[i]);
1325 clear_const(current,rt1[i]);
1326 dirty_reg(current,rt1[i]);
1327}
1328
1329void shiftimm_alloc(struct regstat *current,int i)
1330{
1331 clear_const(current,rs1[i]);
1332 clear_const(current,rt1[i]);
1333 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1334 {
1335 if(rt1[i]) {
1336 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1337 else lt1[i]=rs1[i];
1338 alloc_reg(current,i,rt1[i]);
1339 current->is32|=1LL<<rt1[i];
1340 dirty_reg(current,rt1[i]);
1341 }
1342 }
1343 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1344 {
1345 if(rt1[i]) {
1346 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1347 alloc_reg64(current,i,rt1[i]);
1348 current->is32&=~(1LL<<rt1[i]);
1349 dirty_reg(current,rt1[i]);
1350 }
1351 }
1352 if(opcode2[i]==0x3c) // DSLL32
1353 {
1354 if(rt1[i]) {
1355 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1356 alloc_reg64(current,i,rt1[i]);
1357 current->is32&=~(1LL<<rt1[i]);
1358 dirty_reg(current,rt1[i]);
1359 }
1360 }
1361 if(opcode2[i]==0x3e) // DSRL32
1362 {
1363 if(rt1[i]) {
1364 alloc_reg64(current,i,rs1[i]);
1365 if(imm[i]==32) {
1366 alloc_reg64(current,i,rt1[i]);
1367 current->is32&=~(1LL<<rt1[i]);
1368 } else {
1369 alloc_reg(current,i,rt1[i]);
1370 current->is32|=1LL<<rt1[i];
1371 }
1372 dirty_reg(current,rt1[i]);
1373 }
1374 }
1375 if(opcode2[i]==0x3f) // DSRA32
1376 {
1377 if(rt1[i]) {
1378 alloc_reg64(current,i,rs1[i]);
1379 alloc_reg(current,i,rt1[i]);
1380 current->is32|=1LL<<rt1[i];
1381 dirty_reg(current,rt1[i]);
1382 }
1383 }
1384}
1385
1386void shift_alloc(struct regstat *current,int i)
1387{
1388 if(rt1[i]) {
1389 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1390 {
1391 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1392 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1393 alloc_reg(current,i,rt1[i]);
1394 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1395 current->is32|=1LL<<rt1[i];
1396 } else { // DSLLV/DSRLV/DSRAV
1397 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1398 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1399 alloc_reg64(current,i,rt1[i]);
1400 current->is32&=~(1LL<<rt1[i]);
1401 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1402 alloc_reg_temp(current,i,-1);
1403 }
1404 clear_const(current,rs1[i]);
1405 clear_const(current,rs2[i]);
1406 clear_const(current,rt1[i]);
1407 dirty_reg(current,rt1[i]);
1408 }
1409}
1410
1411void alu_alloc(struct regstat *current,int i)
1412{
1413 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1414 if(rt1[i]) {
1415 if(rs1[i]&&rs2[i]) {
1416 alloc_reg(current,i,rs1[i]);
1417 alloc_reg(current,i,rs2[i]);
1418 }
1419 else {
1420 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1421 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1422 }
1423 alloc_reg(current,i,rt1[i]);
1424 }
1425 current->is32|=1LL<<rt1[i];
1426 }
1427 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1428 if(rt1[i]) {
1429 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1430 {
1431 alloc_reg64(current,i,rs1[i]);
1432 alloc_reg64(current,i,rs2[i]);
1433 alloc_reg(current,i,rt1[i]);
1434 } else {
1435 alloc_reg(current,i,rs1[i]);
1436 alloc_reg(current,i,rs2[i]);
1437 alloc_reg(current,i,rt1[i]);
1438 }
1439 }
1440 current->is32|=1LL<<rt1[i];
1441 }
1442 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1443 if(rt1[i]) {
1444 if(rs1[i]&&rs2[i]) {
1445 alloc_reg(current,i,rs1[i]);
1446 alloc_reg(current,i,rs2[i]);
1447 }
1448 else
1449 {
1450 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1451 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1452 }
1453 alloc_reg(current,i,rt1[i]);
1454 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1455 {
1456 if(!((current->uu>>rt1[i])&1)) {
1457 alloc_reg64(current,i,rt1[i]);
1458 }
1459 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1460 if(rs1[i]&&rs2[i]) {
1461 alloc_reg64(current,i,rs1[i]);
1462 alloc_reg64(current,i,rs2[i]);
1463 }
1464 else
1465 {
1466 // Is is really worth it to keep 64-bit values in registers?
1467 #ifdef NATIVE_64BIT
1468 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1469 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1470 #endif
1471 }
1472 }
1473 current->is32&=~(1LL<<rt1[i]);
1474 } else {
1475 current->is32|=1LL<<rt1[i];
1476 }
1477 }
1478 }
1479 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1480 if(rt1[i]) {
1481 if(rs1[i]&&rs2[i]) {
1482 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1483 alloc_reg64(current,i,rs1[i]);
1484 alloc_reg64(current,i,rs2[i]);
1485 alloc_reg64(current,i,rt1[i]);
1486 } else {
1487 alloc_reg(current,i,rs1[i]);
1488 alloc_reg(current,i,rs2[i]);
1489 alloc_reg(current,i,rt1[i]);
1490 }
1491 }
1492 else {
1493 alloc_reg(current,i,rt1[i]);
1494 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1495 // DADD used as move, or zeroing
1496 // If we have a 64-bit source, then make the target 64 bits too
1497 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1498 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1499 alloc_reg64(current,i,rt1[i]);
1500 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1501 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1502 alloc_reg64(current,i,rt1[i]);
1503 }
1504 if(opcode2[i]>=0x2e&&rs2[i]) {
1505 // DSUB used as negation - 64-bit result
1506 // If we have a 32-bit register, extend it to 64 bits
1507 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1508 alloc_reg64(current,i,rt1[i]);
1509 }
1510 }
1511 }
1512 if(rs1[i]&&rs2[i]) {
1513 current->is32&=~(1LL<<rt1[i]);
1514 } else if(rs1[i]) {
1515 current->is32&=~(1LL<<rt1[i]);
1516 if((current->is32>>rs1[i])&1)
1517 current->is32|=1LL<<rt1[i];
1518 } else if(rs2[i]) {
1519 current->is32&=~(1LL<<rt1[i]);
1520 if((current->is32>>rs2[i])&1)
1521 current->is32|=1LL<<rt1[i];
1522 } else {
1523 current->is32|=1LL<<rt1[i];
1524 }
1525 }
1526 }
1527 clear_const(current,rs1[i]);
1528 clear_const(current,rs2[i]);
1529 clear_const(current,rt1[i]);
1530 dirty_reg(current,rt1[i]);
1531}
1532
1533void imm16_alloc(struct regstat *current,int i)
1534{
1535 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1536 else lt1[i]=rs1[i];
1537 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1538 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1539 current->is32&=~(1LL<<rt1[i]);
1540 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1541 // TODO: Could preserve the 32-bit flag if the immediate is zero
1542 alloc_reg64(current,i,rt1[i]);
1543 alloc_reg64(current,i,rs1[i]);
1544 }
1545 clear_const(current,rs1[i]);
1546 clear_const(current,rt1[i]);
1547 }
1548 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1549 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1550 current->is32|=1LL<<rt1[i];
1551 clear_const(current,rs1[i]);
1552 clear_const(current,rt1[i]);
1553 }
1554 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1555 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1556 if(rs1[i]!=rt1[i]) {
1557 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1558 alloc_reg64(current,i,rt1[i]);
1559 current->is32&=~(1LL<<rt1[i]);
1560 }
1561 }
1562 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1563 if(is_const(current,rs1[i])) {
1564 int v=get_const(current,rs1[i]);
1565 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1566 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1567 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1568 }
1569 else clear_const(current,rt1[i]);
1570 }
1571 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1572 if(is_const(current,rs1[i])) {
1573 int v=get_const(current,rs1[i]);
1574 set_const(current,rt1[i],v+imm[i]);
1575 }
1576 else clear_const(current,rt1[i]);
1577 current->is32|=1LL<<rt1[i];
1578 }
1579 else {
1580 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1581 current->is32|=1LL<<rt1[i];
1582 }
1583 dirty_reg(current,rt1[i]);
1584}
1585
1586void load_alloc(struct regstat *current,int i)
1587{
1588 clear_const(current,rt1[i]);
1589 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1590 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1591 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1592 if(rt1[i]) {
1593 alloc_reg(current,i,rt1[i]);
1594 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1595 {
1596 current->is32&=~(1LL<<rt1[i]);
1597 alloc_reg64(current,i,rt1[i]);
1598 }
1599 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1600 {
1601 current->is32&=~(1LL<<rt1[i]);
1602 alloc_reg64(current,i,rt1[i]);
1603 alloc_all(current,i);
1604 alloc_reg64(current,i,FTEMP);
1605 }
1606 else current->is32|=1LL<<rt1[i];
1607 dirty_reg(current,rt1[i]);
1608 // If using TLB, need a register for pointer to the mapping table
1609 if(using_tlb) alloc_reg(current,i,TLREG);
1610 // LWL/LWR need a temporary register for the old value
1611 if(opcode[i]==0x22||opcode[i]==0x26)
1612 {
1613 alloc_reg(current,i,FTEMP);
1614 alloc_reg_temp(current,i,-1);
1615 }
1616 }
1617 else
1618 {
1619 // Load to r0 (dummy load)
1620 // but we still need a register to calculate the address
1621 alloc_reg_temp(current,i,-1);
1622 }
1623}
1624
1625void store_alloc(struct regstat *current,int i)
1626{
1627 clear_const(current,rs2[i]);
1628 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1629 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1630 alloc_reg(current,i,rs2[i]);
1631 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1632 alloc_reg64(current,i,rs2[i]);
1633 if(rs2[i]) alloc_reg(current,i,FTEMP);
1634 }
1635 // If using TLB, need a register for pointer to the mapping table
1636 if(using_tlb) alloc_reg(current,i,TLREG);
1637 #if defined(HOST_IMM8)
1638 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1639 else alloc_reg(current,i,INVCP);
1640 #endif
1641 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1642 alloc_reg(current,i,FTEMP);
1643 }
1644 // We need a temporary register for address generation
1645 alloc_reg_temp(current,i,-1);
1646}
1647
1648void c1ls_alloc(struct regstat *current,int i)
1649{
1650 //clear_const(current,rs1[i]); // FIXME
1651 clear_const(current,rt1[i]);
1652 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1653 alloc_reg(current,i,CSREG); // Status
1654 alloc_reg(current,i,FTEMP);
1655 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1656 alloc_reg64(current,i,FTEMP);
1657 }
1658 // If using TLB, need a register for pointer to the mapping table
1659 if(using_tlb) alloc_reg(current,i,TLREG);
1660 #if defined(HOST_IMM8)
1661 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1662 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1663 alloc_reg(current,i,INVCP);
1664 #endif
1665 // We need a temporary register for address generation
1666 alloc_reg_temp(current,i,-1);
1667}
1668
1669void c2ls_alloc(struct regstat *current,int i)
1670{
1671 clear_const(current,rt1[i]);
1672 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1673 alloc_reg(current,i,FTEMP);
1674 // If using TLB, need a register for pointer to the mapping table
1675 if(using_tlb) alloc_reg(current,i,TLREG);
1676 #if defined(HOST_IMM8)
1677 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1678 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1679 alloc_reg(current,i,INVCP);
1680 #endif
1681 // We need a temporary register for address generation
1682 alloc_reg_temp(current,i,-1);
1683}
1684
1685#ifndef multdiv_alloc
1686void multdiv_alloc(struct regstat *current,int i)
1687{
1688 // case 0x18: MULT
1689 // case 0x19: MULTU
1690 // case 0x1A: DIV
1691 // case 0x1B: DIVU
1692 // case 0x1C: DMULT
1693 // case 0x1D: DMULTU
1694 // case 0x1E: DDIV
1695 // case 0x1F: DDIVU
1696 clear_const(current,rs1[i]);
1697 clear_const(current,rs2[i]);
1698 if(rs1[i]&&rs2[i])
1699 {
1700 if((opcode2[i]&4)==0) // 32-bit
1701 {
1702 current->u&=~(1LL<<HIREG);
1703 current->u&=~(1LL<<LOREG);
1704 alloc_reg(current,i,HIREG);
1705 alloc_reg(current,i,LOREG);
1706 alloc_reg(current,i,rs1[i]);
1707 alloc_reg(current,i,rs2[i]);
1708 current->is32|=1LL<<HIREG;
1709 current->is32|=1LL<<LOREG;
1710 dirty_reg(current,HIREG);
1711 dirty_reg(current,LOREG);
1712 }
1713 else // 64-bit
1714 {
1715 current->u&=~(1LL<<HIREG);
1716 current->u&=~(1LL<<LOREG);
1717 current->uu&=~(1LL<<HIREG);
1718 current->uu&=~(1LL<<LOREG);
1719 alloc_reg64(current,i,HIREG);
1720 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1721 alloc_reg64(current,i,rs1[i]);
1722 alloc_reg64(current,i,rs2[i]);
1723 alloc_all(current,i);
1724 current->is32&=~(1LL<<HIREG);
1725 current->is32&=~(1LL<<LOREG);
1726 dirty_reg(current,HIREG);
1727 dirty_reg(current,LOREG);
1728 }
1729 }
1730 else
1731 {
1732 // Multiply by zero is zero.
1733 // MIPS does not have a divide by zero exception.
1734 // The result is undefined, we return zero.
1735 alloc_reg(current,i,HIREG);
1736 alloc_reg(current,i,LOREG);
1737 current->is32|=1LL<<HIREG;
1738 current->is32|=1LL<<LOREG;
1739 dirty_reg(current,HIREG);
1740 dirty_reg(current,LOREG);
1741 }
1742}
1743#endif
1744
1745void cop0_alloc(struct regstat *current,int i)
1746{
1747 if(opcode2[i]==0) // MFC0
1748 {
1749 if(rt1[i]) {
1750 clear_const(current,rt1[i]);
1751 alloc_all(current,i);
1752 alloc_reg(current,i,rt1[i]);
1753 current->is32|=1LL<<rt1[i];
1754 dirty_reg(current,rt1[i]);
1755 }
1756 }
1757 else if(opcode2[i]==4) // MTC0
1758 {
1759 if(rs1[i]){
1760 clear_const(current,rs1[i]);
1761 alloc_reg(current,i,rs1[i]);
1762 alloc_all(current,i);
1763 }
1764 else {
1765 alloc_all(current,i); // FIXME: Keep r0
1766 current->u&=~1LL;
1767 alloc_reg(current,i,0);
1768 }
1769 }
1770 else
1771 {
1772 // TLBR/TLBWI/TLBWR/TLBP/ERET
1773 assert(opcode2[i]==0x10);
1774 alloc_all(current,i);
1775 }
1776}
1777
1778void cop1_alloc(struct regstat *current,int i)
1779{
1780 alloc_reg(current,i,CSREG); // Load status
1781 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1782 {
1783 assert(rt1[i]);
1784 clear_const(current,rt1[i]);
1785 if(opcode2[i]==1) {
1786 alloc_reg64(current,i,rt1[i]); // DMFC1
1787 current->is32&=~(1LL<<rt1[i]);
1788 }else{
1789 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1790 current->is32|=1LL<<rt1[i];
1791 }
1792 dirty_reg(current,rt1[i]);
1793 alloc_reg_temp(current,i,-1);
1794 }
1795 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1796 {
1797 if(rs1[i]){
1798 clear_const(current,rs1[i]);
1799 if(opcode2[i]==5)
1800 alloc_reg64(current,i,rs1[i]); // DMTC1
1801 else
1802 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1803 alloc_reg_temp(current,i,-1);
1804 }
1805 else {
1806 current->u&=~1LL;
1807 alloc_reg(current,i,0);
1808 alloc_reg_temp(current,i,-1);
1809 }
1810 }
1811}
1812void fconv_alloc(struct regstat *current,int i)
1813{
1814 alloc_reg(current,i,CSREG); // Load status
1815 alloc_reg_temp(current,i,-1);
1816}
1817void float_alloc(struct regstat *current,int i)
1818{
1819 alloc_reg(current,i,CSREG); // Load status
1820 alloc_reg_temp(current,i,-1);
1821}
1822void c2op_alloc(struct regstat *current,int i)
1823{
1824 alloc_reg_temp(current,i,-1);
1825}
1826void fcomp_alloc(struct regstat *current,int i)
1827{
1828 alloc_reg(current,i,CSREG); // Load status
1829 alloc_reg(current,i,FSREG); // Load flags
1830 dirty_reg(current,FSREG); // Flag will be modified
1831 alloc_reg_temp(current,i,-1);
1832}
1833
1834void syscall_alloc(struct regstat *current,int i)
1835{
1836 alloc_cc(current,i);
1837 dirty_reg(current,CCREG);
1838 alloc_all(current,i);
1839 current->isconst=0;
1840}
1841
1842void delayslot_alloc(struct regstat *current,int i)
1843{
1844 switch(itype[i]) {
1845 case UJUMP:
1846 case CJUMP:
1847 case SJUMP:
1848 case RJUMP:
1849 case FJUMP:
1850 case SYSCALL:
1851 case HLECALL:
1852 case SPAN:
1853 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1854 printf("Disabled speculative precompilation\n");
1855 stop_after_jal=1;
1856 break;
1857 case IMM16:
1858 imm16_alloc(current,i);
1859 break;
1860 case LOAD:
1861 case LOADLR:
1862 load_alloc(current,i);
1863 break;
1864 case STORE:
1865 case STORELR:
1866 store_alloc(current,i);
1867 break;
1868 case ALU:
1869 alu_alloc(current,i);
1870 break;
1871 case SHIFT:
1872 shift_alloc(current,i);
1873 break;
1874 case MULTDIV:
1875 multdiv_alloc(current,i);
1876 break;
1877 case SHIFTIMM:
1878 shiftimm_alloc(current,i);
1879 break;
1880 case MOV:
1881 mov_alloc(current,i);
1882 break;
1883 case COP0:
1884 cop0_alloc(current,i);
1885 break;
1886 case COP1:
1887 case COP2:
1888 cop1_alloc(current,i);
1889 break;
1890 case C1LS:
1891 c1ls_alloc(current,i);
1892 break;
1893 case C2LS:
1894 c2ls_alloc(current,i);
1895 break;
1896 case FCONV:
1897 fconv_alloc(current,i);
1898 break;
1899 case FLOAT:
1900 float_alloc(current,i);
1901 break;
1902 case FCOMP:
1903 fcomp_alloc(current,i);
1904 break;
1905 case C2OP:
1906 c2op_alloc(current,i);
1907 break;
1908 }
1909}
1910
1911// Special case where a branch and delay slot span two pages in virtual memory
1912static void pagespan_alloc(struct regstat *current,int i)
1913{
1914 current->isconst=0;
1915 current->wasconst=0;
1916 regs[i].wasconst=0;
1917 alloc_all(current,i);
1918 alloc_cc(current,i);
1919 dirty_reg(current,CCREG);
1920 if(opcode[i]==3) // JAL
1921 {
1922 alloc_reg(current,i,31);
1923 dirty_reg(current,31);
1924 }
1925 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1926 {
1927 alloc_reg(current,i,rs1[i]);
1928 if (rt1[i]!=0) {
1929 alloc_reg(current,i,rt1[i]);
1930 dirty_reg(current,rt1[i]);
1931 }
1932 }
1933 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1934 {
1935 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1936 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1937 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1938 {
1939 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1940 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1941 }
1942 }
1943 else
1944 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1945 {
1946 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1947 if(!((current->is32>>rs1[i])&1))
1948 {
1949 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1950 }
1951 }
1952 else
1953 if(opcode[i]==0x11) // BC1
1954 {
1955 alloc_reg(current,i,FSREG);
1956 alloc_reg(current,i,CSREG);
1957 }
1958 //else ...
1959}
1960
1961add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1962{
1963 stubs[stubcount][0]=type;
1964 stubs[stubcount][1]=addr;
1965 stubs[stubcount][2]=retaddr;
1966 stubs[stubcount][3]=a;
1967 stubs[stubcount][4]=b;
1968 stubs[stubcount][5]=c;
1969 stubs[stubcount][6]=d;
1970 stubs[stubcount][7]=e;
1971 stubcount++;
1972}
1973
1974// Write out a single register
1975void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1976{
1977 int hr;
1978 for(hr=0;hr<HOST_REGS;hr++) {
1979 if(hr!=EXCLUDE_REG) {
1980 if((regmap[hr]&63)==r) {
1981 if((dirty>>hr)&1) {
1982 if(regmap[hr]<64) {
1983 emit_storereg(r,hr);
1984#ifndef FORCE32
1985 if((is32>>regmap[hr])&1) {
1986 emit_sarimm(hr,31,hr);
1987 emit_storereg(r|64,hr);
1988 }
1989#endif
1990 }else{
1991 emit_storereg(r|64,hr);
1992 }
1993 }
1994 }
1995 }
1996 }
1997}
1998
1999int mchecksum()
2000{
2001 //if(!tracedebug) return 0;
2002 int i;
2003 int sum=0;
2004 for(i=0;i<2097152;i++) {
2005 unsigned int temp=sum;
2006 sum<<=1;
2007 sum|=(~temp)>>31;
2008 sum^=((u_int *)rdram)[i];
2009 }
2010 return sum;
2011}
2012int rchecksum()
2013{
2014 int i;
2015 int sum=0;
2016 for(i=0;i<64;i++)
2017 sum^=((u_int *)reg)[i];
2018 return sum;
2019}
2020void rlist()
2021{
2022 int i;
2023 printf("TRACE: ");
2024 for(i=0;i<32;i++)
2025 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2026 printf("\n");
2027#ifndef DISABLE_COP1
2028 printf("TRACE: ");
2029 for(i=0;i<32;i++)
2030 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2031 printf("\n");
2032#endif
2033}
2034
2035void enabletrace()
2036{
2037 tracedebug=1;
2038}
2039
2040void memdebug(int i)
2041{
2042 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2043 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2044 //rlist();
2045 //if(tracedebug) {
2046 //if(Count>=-2084597794) {
2047 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2048 //if(0) {
2049 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2050 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2051 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2052 rlist();
2053 #ifdef __i386__
2054 printf("TRACE: %x\n",(&i)[-1]);
2055 #endif
2056 #ifdef __arm__
2057 int j;
2058 printf("TRACE: %x \n",(&j)[10]);
2059 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2060 #endif
2061 //fflush(stdout);
2062 }
2063 //printf("TRACE: %x\n",(&i)[-1]);
2064}
2065
2066void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2067{
2068 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2069}
2070
2071void alu_assemble(int i,struct regstat *i_regs)
2072{
2073 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2074 if(rt1[i]) {
2075 signed char s1,s2,t;
2076 t=get_reg(i_regs->regmap,rt1[i]);
2077 if(t>=0) {
2078 s1=get_reg(i_regs->regmap,rs1[i]);
2079 s2=get_reg(i_regs->regmap,rs2[i]);
2080 if(rs1[i]&&rs2[i]) {
2081 assert(s1>=0);
2082 assert(s2>=0);
2083 if(opcode2[i]&2) emit_sub(s1,s2,t);
2084 else emit_add(s1,s2,t);
2085 }
2086 else if(rs1[i]) {
2087 if(s1>=0) emit_mov(s1,t);
2088 else emit_loadreg(rs1[i],t);
2089 }
2090 else if(rs2[i]) {
2091 if(s2>=0) {
2092 if(opcode2[i]&2) emit_neg(s2,t);
2093 else emit_mov(s2,t);
2094 }
2095 else {
2096 emit_loadreg(rs2[i],t);
2097 if(opcode2[i]&2) emit_neg(t,t);
2098 }
2099 }
2100 else emit_zeroreg(t);
2101 }
2102 }
2103 }
2104 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2105 if(rt1[i]) {
2106 signed char s1l,s2l,s1h,s2h,tl,th;
2107 tl=get_reg(i_regs->regmap,rt1[i]);
2108 th=get_reg(i_regs->regmap,rt1[i]|64);
2109 if(tl>=0) {
2110 s1l=get_reg(i_regs->regmap,rs1[i]);
2111 s2l=get_reg(i_regs->regmap,rs2[i]);
2112 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2113 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2114 if(rs1[i]&&rs2[i]) {
2115 assert(s1l>=0);
2116 assert(s2l>=0);
2117 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2118 else emit_adds(s1l,s2l,tl);
2119 if(th>=0) {
2120 #ifdef INVERTED_CARRY
2121 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2122 #else
2123 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2124 #endif
2125 else emit_add(s1h,s2h,th);
2126 }
2127 }
2128 else if(rs1[i]) {
2129 if(s1l>=0) emit_mov(s1l,tl);
2130 else emit_loadreg(rs1[i],tl);
2131 if(th>=0) {
2132 if(s1h>=0) emit_mov(s1h,th);
2133 else emit_loadreg(rs1[i]|64,th);
2134 }
2135 }
2136 else if(rs2[i]) {
2137 if(s2l>=0) {
2138 if(opcode2[i]&2) emit_negs(s2l,tl);
2139 else emit_mov(s2l,tl);
2140 }
2141 else {
2142 emit_loadreg(rs2[i],tl);
2143 if(opcode2[i]&2) emit_negs(tl,tl);
2144 }
2145 if(th>=0) {
2146 #ifdef INVERTED_CARRY
2147 if(s2h>=0) emit_mov(s2h,th);
2148 else emit_loadreg(rs2[i]|64,th);
2149 if(opcode2[i]&2) {
2150 emit_adcimm(-1,th); // x86 has inverted carry flag
2151 emit_not(th,th);
2152 }
2153 #else
2154 if(opcode2[i]&2) {
2155 if(s2h>=0) emit_rscimm(s2h,0,th);
2156 else {
2157 emit_loadreg(rs2[i]|64,th);
2158 emit_rscimm(th,0,th);
2159 }
2160 }else{
2161 if(s2h>=0) emit_mov(s2h,th);
2162 else emit_loadreg(rs2[i]|64,th);
2163 }
2164 #endif
2165 }
2166 }
2167 else {
2168 emit_zeroreg(tl);
2169 if(th>=0) emit_zeroreg(th);
2170 }
2171 }
2172 }
2173 }
2174 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2175 if(rt1[i]) {
2176 signed char s1l,s1h,s2l,s2h,t;
2177 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2178 {
2179 t=get_reg(i_regs->regmap,rt1[i]);
2180 //assert(t>=0);
2181 if(t>=0) {
2182 s1l=get_reg(i_regs->regmap,rs1[i]);
2183 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2184 s2l=get_reg(i_regs->regmap,rs2[i]);
2185 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2186 if(rs2[i]==0) // rx<r0
2187 {
2188 assert(s1h>=0);
2189 if(opcode2[i]==0x2a) // SLT
2190 emit_shrimm(s1h,31,t);
2191 else // SLTU (unsigned can not be less than zero)
2192 emit_zeroreg(t);
2193 }
2194 else if(rs1[i]==0) // r0<rx
2195 {
2196 assert(s2h>=0);
2197 if(opcode2[i]==0x2a) // SLT
2198 emit_set_gz64_32(s2h,s2l,t);
2199 else // SLTU (set if not zero)
2200 emit_set_nz64_32(s2h,s2l,t);
2201 }
2202 else {
2203 assert(s1l>=0);assert(s1h>=0);
2204 assert(s2l>=0);assert(s2h>=0);
2205 if(opcode2[i]==0x2a) // SLT
2206 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2207 else // SLTU
2208 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2209 }
2210 }
2211 } else {
2212 t=get_reg(i_regs->regmap,rt1[i]);
2213 //assert(t>=0);
2214 if(t>=0) {
2215 s1l=get_reg(i_regs->regmap,rs1[i]);
2216 s2l=get_reg(i_regs->regmap,rs2[i]);
2217 if(rs2[i]==0) // rx<r0
2218 {
2219 assert(s1l>=0);
2220 if(opcode2[i]==0x2a) // SLT
2221 emit_shrimm(s1l,31,t);
2222 else // SLTU (unsigned can not be less than zero)
2223 emit_zeroreg(t);
2224 }
2225 else if(rs1[i]==0) // r0<rx
2226 {
2227 assert(s2l>=0);
2228 if(opcode2[i]==0x2a) // SLT
2229 emit_set_gz32(s2l,t);
2230 else // SLTU (set if not zero)
2231 emit_set_nz32(s2l,t);
2232 }
2233 else{
2234 assert(s1l>=0);assert(s2l>=0);
2235 if(opcode2[i]==0x2a) // SLT
2236 emit_set_if_less32(s1l,s2l,t);
2237 else // SLTU
2238 emit_set_if_carry32(s1l,s2l,t);
2239 }
2240 }
2241 }
2242 }
2243 }
2244 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2245 if(rt1[i]) {
2246 signed char s1l,s1h,s2l,s2h,th,tl;
2247 tl=get_reg(i_regs->regmap,rt1[i]);
2248 th=get_reg(i_regs->regmap,rt1[i]|64);
2249 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2250 {
2251 assert(tl>=0);
2252 if(tl>=0) {
2253 s1l=get_reg(i_regs->regmap,rs1[i]);
2254 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2255 s2l=get_reg(i_regs->regmap,rs2[i]);
2256 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2257 if(rs1[i]&&rs2[i]) {
2258 assert(s1l>=0);assert(s1h>=0);
2259 assert(s2l>=0);assert(s2h>=0);
2260 if(opcode2[i]==0x24) { // AND
2261 emit_and(s1l,s2l,tl);
2262 emit_and(s1h,s2h,th);
2263 } else
2264 if(opcode2[i]==0x25) { // OR
2265 emit_or(s1l,s2l,tl);
2266 emit_or(s1h,s2h,th);
2267 } else
2268 if(opcode2[i]==0x26) { // XOR
2269 emit_xor(s1l,s2l,tl);
2270 emit_xor(s1h,s2h,th);
2271 } else
2272 if(opcode2[i]==0x27) { // NOR
2273 emit_or(s1l,s2l,tl);
2274 emit_or(s1h,s2h,th);
2275 emit_not(tl,tl);
2276 emit_not(th,th);
2277 }
2278 }
2279 else
2280 {
2281 if(opcode2[i]==0x24) { // AND
2282 emit_zeroreg(tl);
2283 emit_zeroreg(th);
2284 } else
2285 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2286 if(rs1[i]){
2287 if(s1l>=0) emit_mov(s1l,tl);
2288 else emit_loadreg(rs1[i],tl);
2289 if(s1h>=0) emit_mov(s1h,th);
2290 else emit_loadreg(rs1[i]|64,th);
2291 }
2292 else
2293 if(rs2[i]){
2294 if(s2l>=0) emit_mov(s2l,tl);
2295 else emit_loadreg(rs2[i],tl);
2296 if(s2h>=0) emit_mov(s2h,th);
2297 else emit_loadreg(rs2[i]|64,th);
2298 }
2299 else{
2300 emit_zeroreg(tl);
2301 emit_zeroreg(th);
2302 }
2303 } else
2304 if(opcode2[i]==0x27) { // NOR
2305 if(rs1[i]){
2306 if(s1l>=0) emit_not(s1l,tl);
2307 else{
2308 emit_loadreg(rs1[i],tl);
2309 emit_not(tl,tl);
2310 }
2311 if(s1h>=0) emit_not(s1h,th);
2312 else{
2313 emit_loadreg(rs1[i]|64,th);
2314 emit_not(th,th);
2315 }
2316 }
2317 else
2318 if(rs2[i]){
2319 if(s2l>=0) emit_not(s2l,tl);
2320 else{
2321 emit_loadreg(rs2[i],tl);
2322 emit_not(tl,tl);
2323 }
2324 if(s2h>=0) emit_not(s2h,th);
2325 else{
2326 emit_loadreg(rs2[i]|64,th);
2327 emit_not(th,th);
2328 }
2329 }
2330 else {
2331 emit_movimm(-1,tl);
2332 emit_movimm(-1,th);
2333 }
2334 }
2335 }
2336 }
2337 }
2338 else
2339 {
2340 // 32 bit
2341 if(tl>=0) {
2342 s1l=get_reg(i_regs->regmap,rs1[i]);
2343 s2l=get_reg(i_regs->regmap,rs2[i]);
2344 if(rs1[i]&&rs2[i]) {
2345 assert(s1l>=0);
2346 assert(s2l>=0);
2347 if(opcode2[i]==0x24) { // AND
2348 emit_and(s1l,s2l,tl);
2349 } else
2350 if(opcode2[i]==0x25) { // OR
2351 emit_or(s1l,s2l,tl);
2352 } else
2353 if(opcode2[i]==0x26) { // XOR
2354 emit_xor(s1l,s2l,tl);
2355 } else
2356 if(opcode2[i]==0x27) { // NOR
2357 emit_or(s1l,s2l,tl);
2358 emit_not(tl,tl);
2359 }
2360 }
2361 else
2362 {
2363 if(opcode2[i]==0x24) { // AND
2364 emit_zeroreg(tl);
2365 } else
2366 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2367 if(rs1[i]){
2368 if(s1l>=0) emit_mov(s1l,tl);
2369 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2370 }
2371 else
2372 if(rs2[i]){
2373 if(s2l>=0) emit_mov(s2l,tl);
2374 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2375 }
2376 else emit_zeroreg(tl);
2377 } else
2378 if(opcode2[i]==0x27) { // NOR
2379 if(rs1[i]){
2380 if(s1l>=0) emit_not(s1l,tl);
2381 else {
2382 emit_loadreg(rs1[i],tl);
2383 emit_not(tl,tl);
2384 }
2385 }
2386 else
2387 if(rs2[i]){
2388 if(s2l>=0) emit_not(s2l,tl);
2389 else {
2390 emit_loadreg(rs2[i],tl);
2391 emit_not(tl,tl);
2392 }
2393 }
2394 else emit_movimm(-1,tl);
2395 }
2396 }
2397 }
2398 }
2399 }
2400 }
2401}
2402
2403void imm16_assemble(int i,struct regstat *i_regs)
2404{
2405 if (opcode[i]==0x0f) { // LUI
2406 if(rt1[i]) {
2407 signed char t;
2408 t=get_reg(i_regs->regmap,rt1[i]);
2409 //assert(t>=0);
2410 if(t>=0) {
2411 if(!((i_regs->isconst>>t)&1))
2412 emit_movimm(imm[i]<<16,t);
2413 }
2414 }
2415 }
2416 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2417 if(rt1[i]) {
2418 signed char s,t;
2419 t=get_reg(i_regs->regmap,rt1[i]);
2420 s=get_reg(i_regs->regmap,rs1[i]);
2421 if(rs1[i]) {
2422 //assert(t>=0);
2423 //assert(s>=0);
2424 if(t>=0) {
2425 if(!((i_regs->isconst>>t)&1)) {
2426 if(s<0) {
2427 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2428 emit_addimm(t,imm[i],t);
2429 }else{
2430 if(!((i_regs->wasconst>>s)&1))
2431 emit_addimm(s,imm[i],t);
2432 else
2433 emit_movimm(constmap[i][s]+imm[i],t);
2434 }
2435 }
2436 }
2437 } else {
2438 if(t>=0) {
2439 if(!((i_regs->isconst>>t)&1))
2440 emit_movimm(imm[i],t);
2441 }
2442 }
2443 }
2444 }
2445 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2446 if(rt1[i]) {
2447 signed char sh,sl,th,tl;
2448 th=get_reg(i_regs->regmap,rt1[i]|64);
2449 tl=get_reg(i_regs->regmap,rt1[i]);
2450 sh=get_reg(i_regs->regmap,rs1[i]|64);
2451 sl=get_reg(i_regs->regmap,rs1[i]);
2452 if(tl>=0) {
2453 if(rs1[i]) {
2454 assert(sh>=0);
2455 assert(sl>=0);
2456 if(th>=0) {
2457 emit_addimm64_32(sh,sl,imm[i],th,tl);
2458 }
2459 else {
2460 emit_addimm(sl,imm[i],tl);
2461 }
2462 } else {
2463 emit_movimm(imm[i],tl);
2464 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2465 }
2466 }
2467 }
2468 }
2469 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2470 if(rt1[i]) {
2471 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2472 signed char sh,sl,t;
2473 t=get_reg(i_regs->regmap,rt1[i]);
2474 sh=get_reg(i_regs->regmap,rs1[i]|64);
2475 sl=get_reg(i_regs->regmap,rs1[i]);
2476 //assert(t>=0);
2477 if(t>=0) {
2478 if(rs1[i]>0) {
2479 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2480 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2481 if(opcode[i]==0x0a) { // SLTI
2482 if(sl<0) {
2483 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2484 emit_slti32(t,imm[i],t);
2485 }else{
2486 emit_slti32(sl,imm[i],t);
2487 }
2488 }
2489 else { // SLTIU
2490 if(sl<0) {
2491 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2492 emit_sltiu32(t,imm[i],t);
2493 }else{
2494 emit_sltiu32(sl,imm[i],t);
2495 }
2496 }
2497 }else{ // 64-bit
2498 assert(sl>=0);
2499 if(opcode[i]==0x0a) // SLTI
2500 emit_slti64_32(sh,sl,imm[i],t);
2501 else // SLTIU
2502 emit_sltiu64_32(sh,sl,imm[i],t);
2503 }
2504 }else{
2505 // SLTI(U) with r0 is just stupid,
2506 // nonetheless examples can be found
2507 if(opcode[i]==0x0a) // SLTI
2508 if(0<imm[i]) emit_movimm(1,t);
2509 else emit_zeroreg(t);
2510 else // SLTIU
2511 {
2512 if(imm[i]) emit_movimm(1,t);
2513 else emit_zeroreg(t);
2514 }
2515 }
2516 }
2517 }
2518 }
2519 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2520 if(rt1[i]) {
2521 signed char sh,sl,th,tl;
2522 th=get_reg(i_regs->regmap,rt1[i]|64);
2523 tl=get_reg(i_regs->regmap,rt1[i]);
2524 sh=get_reg(i_regs->regmap,rs1[i]|64);
2525 sl=get_reg(i_regs->regmap,rs1[i]);
2526 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2527 if(opcode[i]==0x0c) //ANDI
2528 {
2529 if(rs1[i]) {
2530 if(sl<0) {
2531 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2532 emit_andimm(tl,imm[i],tl);
2533 }else{
2534 if(!((i_regs->wasconst>>sl)&1))
2535 emit_andimm(sl,imm[i],tl);
2536 else
2537 emit_movimm(constmap[i][sl]&imm[i],tl);
2538 }
2539 }
2540 else
2541 emit_zeroreg(tl);
2542 if(th>=0) emit_zeroreg(th);
2543 }
2544 else
2545 {
2546 if(rs1[i]) {
2547 if(sl<0) {
2548 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2549 }
2550 if(th>=0) {
2551 if(sh<0) {
2552 emit_loadreg(rs1[i]|64,th);
2553 }else{
2554 emit_mov(sh,th);
2555 }
2556 }
2557 if(opcode[i]==0x0d) //ORI
2558 if(sl<0) {
2559 emit_orimm(tl,imm[i],tl);
2560 }else{
2561 if(!((i_regs->wasconst>>sl)&1))
2562 emit_orimm(sl,imm[i],tl);
2563 else
2564 emit_movimm(constmap[i][sl]|imm[i],tl);
2565 }
2566 if(opcode[i]==0x0e) //XORI
2567 if(sl<0) {
2568 emit_xorimm(tl,imm[i],tl);
2569 }else{
2570 if(!((i_regs->wasconst>>sl)&1))
2571 emit_xorimm(sl,imm[i],tl);
2572 else
2573 emit_movimm(constmap[i][sl]^imm[i],tl);
2574 }
2575 }
2576 else {
2577 emit_movimm(imm[i],tl);
2578 if(th>=0) emit_zeroreg(th);
2579 }
2580 }
2581 }
2582 }
2583 }
2584}
2585
2586void shiftimm_assemble(int i,struct regstat *i_regs)
2587{
2588 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2589 {
2590 if(rt1[i]) {
2591 signed char s,t;
2592 t=get_reg(i_regs->regmap,rt1[i]);
2593 s=get_reg(i_regs->regmap,rs1[i]);
2594 //assert(t>=0);
2595 if(t>=0){
2596 if(rs1[i]==0)
2597 {
2598 emit_zeroreg(t);
2599 }
2600 else
2601 {
2602 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2603 if(imm[i]) {
2604 if(opcode2[i]==0) // SLL
2605 {
2606 emit_shlimm(s<0?t:s,imm[i],t);
2607 }
2608 if(opcode2[i]==2) // SRL
2609 {
2610 emit_shrimm(s<0?t:s,imm[i],t);
2611 }
2612 if(opcode2[i]==3) // SRA
2613 {
2614 emit_sarimm(s<0?t:s,imm[i],t);
2615 }
2616 }else{
2617 // Shift by zero
2618 if(s>=0 && s!=t) emit_mov(s,t);
2619 }
2620 }
2621 }
2622 //emit_storereg(rt1[i],t); //DEBUG
2623 }
2624 }
2625 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2626 {
2627 if(rt1[i]) {
2628 signed char sh,sl,th,tl;
2629 th=get_reg(i_regs->regmap,rt1[i]|64);
2630 tl=get_reg(i_regs->regmap,rt1[i]);
2631 sh=get_reg(i_regs->regmap,rs1[i]|64);
2632 sl=get_reg(i_regs->regmap,rs1[i]);
2633 if(tl>=0) {
2634 if(rs1[i]==0)
2635 {
2636 emit_zeroreg(tl);
2637 if(th>=0) emit_zeroreg(th);
2638 }
2639 else
2640 {
2641 assert(sl>=0);
2642 assert(sh>=0);
2643 if(imm[i]) {
2644 if(opcode2[i]==0x38) // DSLL
2645 {
2646 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2647 emit_shlimm(sl,imm[i],tl);
2648 }
2649 if(opcode2[i]==0x3a) // DSRL
2650 {
2651 emit_shrdimm(sl,sh,imm[i],tl);
2652 if(th>=0) emit_shrimm(sh,imm[i],th);
2653 }
2654 if(opcode2[i]==0x3b) // DSRA
2655 {
2656 emit_shrdimm(sl,sh,imm[i],tl);
2657 if(th>=0) emit_sarimm(sh,imm[i],th);
2658 }
2659 }else{
2660 // Shift by zero
2661 if(sl!=tl) emit_mov(sl,tl);
2662 if(th>=0&&sh!=th) emit_mov(sh,th);
2663 }
2664 }
2665 }
2666 }
2667 }
2668 if(opcode2[i]==0x3c) // DSLL32
2669 {
2670 if(rt1[i]) {
2671 signed char sl,tl,th;
2672 tl=get_reg(i_regs->regmap,rt1[i]);
2673 th=get_reg(i_regs->regmap,rt1[i]|64);
2674 sl=get_reg(i_regs->regmap,rs1[i]);
2675 if(th>=0||tl>=0){
2676 assert(tl>=0);
2677 assert(th>=0);
2678 assert(sl>=0);
2679 emit_mov(sl,th);
2680 emit_zeroreg(tl);
2681 if(imm[i]>32)
2682 {
2683 emit_shlimm(th,imm[i]&31,th);
2684 }
2685 }
2686 }
2687 }
2688 if(opcode2[i]==0x3e) // DSRL32
2689 {
2690 if(rt1[i]) {
2691 signed char sh,tl,th;
2692 tl=get_reg(i_regs->regmap,rt1[i]);
2693 th=get_reg(i_regs->regmap,rt1[i]|64);
2694 sh=get_reg(i_regs->regmap,rs1[i]|64);
2695 if(tl>=0){
2696 assert(sh>=0);
2697 emit_mov(sh,tl);
2698 if(th>=0) emit_zeroreg(th);
2699 if(imm[i]>32)
2700 {
2701 emit_shrimm(tl,imm[i]&31,tl);
2702 }
2703 }
2704 }
2705 }
2706 if(opcode2[i]==0x3f) // DSRA32
2707 {
2708 if(rt1[i]) {
2709 signed char sh,tl;
2710 tl=get_reg(i_regs->regmap,rt1[i]);
2711 sh=get_reg(i_regs->regmap,rs1[i]|64);
2712 if(tl>=0){
2713 assert(sh>=0);
2714 emit_mov(sh,tl);
2715 if(imm[i]>32)
2716 {
2717 emit_sarimm(tl,imm[i]&31,tl);
2718 }
2719 }
2720 }
2721 }
2722}
2723
2724#ifndef shift_assemble
2725void shift_assemble(int i,struct regstat *i_regs)
2726{
2727 printf("Need shift_assemble for this architecture.\n");
2728 exit(1);
2729}
2730#endif
2731
2732void load_assemble(int i,struct regstat *i_regs)
2733{
2734 int s,th,tl,addr,map=-1;
2735 int offset;
2736 int jaddr=0;
2737 int memtarget=0,c=0;
2738 u_int hr,reglist=0;
2739 th=get_reg(i_regs->regmap,rt1[i]|64);
2740 tl=get_reg(i_regs->regmap,rt1[i]);
2741 s=get_reg(i_regs->regmap,rs1[i]);
2742 offset=imm[i];
2743 for(hr=0;hr<HOST_REGS;hr++) {
2744 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2745 }
2746 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2747 if(s>=0) {
2748 c=(i_regs->wasconst>>s)&1;
2749 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2750 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2751 }
2752 //printf("load_assemble: c=%d\n",c);
2753 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2754 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2755#ifdef PCSX
2756 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2757 ||rt1[i]==0) {
2758 // could be FIFO, must perform the read
2759 // ||dummy read
2760 assem_debug("(forced read)\n");
2761 tl=get_reg(i_regs->regmap,-1);
2762 assert(tl>=0);
2763 }
2764#endif
2765 if(offset||s<0||c) addr=tl;
2766 else addr=s;
2767 if(tl>=0) {
2768 //assert(tl>=0);
2769 //assert(rt1[i]);
2770 reglist&=~(1<<tl);
2771 if(th>=0) reglist&=~(1<<th);
2772 if(!using_tlb) {
2773 if(!c) {
2774//#define R29_HACK 1
2775 #ifdef R29_HACK
2776 // Strmnnrmn's speed hack
2777 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2778 #endif
2779 {
2780 emit_cmpimm(addr,RAM_SIZE);
2781 jaddr=(int)out;
2782 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2783 // Hint to branch predictor that the branch is unlikely to be taken
2784 if(rs1[i]>=28)
2785 emit_jno_unlikely(0);
2786 else
2787 #endif
2788 emit_jno(0);
2789 }
2790 }
2791 }else{ // using tlb
2792 int x=0;
2793 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2794 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2795 map=get_reg(i_regs->regmap,TLREG);
2796 assert(map>=0);
2797 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2798 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2799 }
2800 if (opcode[i]==0x20) { // LB
2801 if(!c||memtarget) {
2802 #ifdef HOST_IMM_ADDR32
2803 if(c)
2804 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2805 else
2806 #endif
2807 {
2808 //emit_xorimm(addr,3,tl);
2809 //gen_tlb_addr_r(tl,map);
2810 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2811 int x=0;
2812#ifdef BIG_ENDIAN_MIPS
2813 if(!c) emit_xorimm(addr,3,tl);
2814 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2815#else
2816 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2817 else if (tl!=addr) emit_mov(addr,tl);
2818#endif
2819 emit_movsbl_indexed_tlb(x,tl,map,tl);
2820 }
2821 if(jaddr)
2822 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2823 }
2824 else
2825 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2826 }
2827 if (opcode[i]==0x21) { // LH
2828 if(!c||memtarget) {
2829 #ifdef HOST_IMM_ADDR32
2830 if(c)
2831 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2832 else
2833 #endif
2834 {
2835 int x=0;
2836#ifdef BIG_ENDIAN_MIPS
2837 if(!c) emit_xorimm(addr,2,tl);
2838 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2839#else
2840 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2841 else if (tl!=addr) emit_mov(addr,tl);
2842#endif
2843 //#ifdef
2844 //emit_movswl_indexed_tlb(x,tl,map,tl);
2845 //else
2846 if(map>=0) {
2847 gen_tlb_addr_r(tl,map);
2848 emit_movswl_indexed(x,tl,tl);
2849 }else
2850 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2851 }
2852 if(jaddr)
2853 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2854 }
2855 else
2856 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2857 }
2858 if (opcode[i]==0x23) { // LW
2859 if(!c||memtarget) {
2860 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2861 #ifdef HOST_IMM_ADDR32
2862 if(c)
2863 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2864 else
2865 #endif
2866 emit_readword_indexed_tlb(0,addr,map,tl);
2867 if(jaddr)
2868 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2869 }
2870 else
2871 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2872 }
2873 if (opcode[i]==0x24) { // LBU
2874 if(!c||memtarget) {
2875 #ifdef HOST_IMM_ADDR32
2876 if(c)
2877 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2878 else
2879 #endif
2880 {
2881 //emit_xorimm(addr,3,tl);
2882 //gen_tlb_addr_r(tl,map);
2883 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2884 int x=0;
2885#ifdef BIG_ENDIAN_MIPS
2886 if(!c) emit_xorimm(addr,3,tl);
2887 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2888#else
2889 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2890 else if (tl!=addr) emit_mov(addr,tl);
2891#endif
2892 emit_movzbl_indexed_tlb(x,tl,map,tl);
2893 }
2894 if(jaddr)
2895 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2896 }
2897 else
2898 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2899 }
2900 if (opcode[i]==0x25) { // LHU
2901 if(!c||memtarget) {
2902 #ifdef HOST_IMM_ADDR32
2903 if(c)
2904 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2905 else
2906 #endif
2907 {
2908 int x=0;
2909#ifdef BIG_ENDIAN_MIPS
2910 if(!c) emit_xorimm(addr,2,tl);
2911 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2912#else
2913 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2914 else if (tl!=addr) emit_mov(addr,tl);
2915#endif
2916 //#ifdef
2917 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2918 //#else
2919 if(map>=0) {
2920 gen_tlb_addr_r(tl,map);
2921 emit_movzwl_indexed(x,tl,tl);
2922 }else
2923 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2924 if(jaddr)
2925 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2926 }
2927 }
2928 else
2929 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2930 }
2931 if (opcode[i]==0x27) { // LWU
2932 assert(th>=0);
2933 if(!c||memtarget) {
2934 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2935 #ifdef HOST_IMM_ADDR32
2936 if(c)
2937 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2938 else
2939 #endif
2940 emit_readword_indexed_tlb(0,addr,map,tl);
2941 if(jaddr)
2942 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2943 }
2944 else {
2945 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2946 }
2947 emit_zeroreg(th);
2948 }
2949 if (opcode[i]==0x37) { // LD
2950 if(!c||memtarget) {
2951 //gen_tlb_addr_r(tl,map);
2952 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2953 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2954 #ifdef HOST_IMM_ADDR32
2955 if(c)
2956 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2957 else
2958 #endif
2959 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2960 if(jaddr)
2961 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2962 }
2963 else
2964 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2965 }
2966 //emit_storereg(rt1[i],tl); // DEBUG
2967 }
2968 //if(opcode[i]==0x23)
2969 //if(opcode[i]==0x24)
2970 //if(opcode[i]==0x23||opcode[i]==0x24)
2971 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2972 {
2973 //emit_pusha();
2974 save_regs(0x100f);
2975 emit_readword((int)&last_count,ECX);
2976 #ifdef __i386__
2977 if(get_reg(i_regs->regmap,CCREG)<0)
2978 emit_loadreg(CCREG,HOST_CCREG);
2979 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2980 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2981 emit_writeword(HOST_CCREG,(int)&Count);
2982 #endif
2983 #ifdef __arm__
2984 if(get_reg(i_regs->regmap,CCREG)<0)
2985 emit_loadreg(CCREG,0);
2986 else
2987 emit_mov(HOST_CCREG,0);
2988 emit_add(0,ECX,0);
2989 emit_addimm(0,2*ccadj[i],0);
2990 emit_writeword(0,(int)&Count);
2991 #endif
2992 emit_call((int)memdebug);
2993 //emit_popa();
2994 restore_regs(0x100f);
2995 }/**/
2996}
2997
2998#ifndef loadlr_assemble
2999void loadlr_assemble(int i,struct regstat *i_regs)
3000{
3001 printf("Need loadlr_assemble for this architecture.\n");
3002 exit(1);
3003}
3004#endif
3005
3006void store_assemble(int i,struct regstat *i_regs)
3007{
3008 int s,th,tl,map=-1;
3009 int addr,temp;
3010 int offset;
3011 int jaddr=0,jaddr2,type;
3012 int memtarget=0,c=0;
3013 int agr=AGEN1+(i&1);
3014 u_int hr,reglist=0;
3015 th=get_reg(i_regs->regmap,rs2[i]|64);
3016 tl=get_reg(i_regs->regmap,rs2[i]);
3017 s=get_reg(i_regs->regmap,rs1[i]);
3018 temp=get_reg(i_regs->regmap,agr);
3019 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3020 offset=imm[i];
3021 if(s>=0) {
3022 c=(i_regs->wasconst>>s)&1;
3023 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3024 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3025 }
3026 assert(tl>=0);
3027 assert(temp>=0);
3028 for(hr=0;hr<HOST_REGS;hr++) {
3029 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3030 }
3031 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3032 if(offset||s<0||c) addr=temp;
3033 else addr=s;
3034 if(!using_tlb) {
3035 if(!c) {
3036 #ifdef R29_HACK
3037 // Strmnnrmn's speed hack
3038 memtarget=1;
3039 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3040 #endif
3041 emit_cmpimm(addr,RAM_SIZE);
3042 #ifdef DESTRUCTIVE_SHIFT
3043 if(s==addr) emit_mov(s,temp);
3044 #endif
3045 #ifdef R29_HACK
3046 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3047 #endif
3048 {
3049 jaddr=(int)out;
3050 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3051 // Hint to branch predictor that the branch is unlikely to be taken
3052 if(rs1[i]>=28)
3053 emit_jno_unlikely(0);
3054 else
3055 #endif
3056 emit_jno(0);
3057 }
3058 }
3059 }else{ // using tlb
3060 int x=0;
3061 if (opcode[i]==0x28) x=3; // SB
3062 if (opcode[i]==0x29) x=2; // SH
3063 map=get_reg(i_regs->regmap,TLREG);
3064 assert(map>=0);
3065 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3066 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3067 }
3068
3069 if (opcode[i]==0x28) { // SB
3070 if(!c||memtarget) {
3071 int x=0;
3072#ifdef BIG_ENDIAN_MIPS
3073 if(!c) emit_xorimm(addr,3,temp);
3074 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3075#else
3076 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3077 else if (addr!=temp) emit_mov(addr,temp);
3078#endif
3079 //gen_tlb_addr_w(temp,map);
3080 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3081 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3082 }
3083 type=STOREB_STUB;
3084 }
3085 if (opcode[i]==0x29) { // SH
3086 if(!c||memtarget) {
3087 int x=0;
3088#ifdef BIG_ENDIAN_MIPS
3089 if(!c) emit_xorimm(addr,2,temp);
3090 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3091#else
3092 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3093 else if (addr!=temp) emit_mov(addr,temp);
3094#endif
3095 //#ifdef
3096 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3097 //#else
3098 if(map>=0) {
3099 gen_tlb_addr_w(temp,map);
3100 emit_writehword_indexed(tl,x,temp);
3101 }else
3102 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3103 }
3104 type=STOREH_STUB;
3105 }
3106 if (opcode[i]==0x2B) { // SW
3107 if(!c||memtarget)
3108 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3109 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3110 type=STOREW_STUB;
3111 }
3112 if (opcode[i]==0x3F) { // SD
3113 if(!c||memtarget) {
3114 if(rs2[i]) {
3115 assert(th>=0);
3116 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3117 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3118 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3119 }else{
3120 // Store zero
3121 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3122 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3123 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3124 }
3125 }
3126 type=STORED_STUB;
3127 }
3128 if(!using_tlb&&(!c||memtarget))
3129 // addr could be a temp, make sure it survives STORE*_STUB
3130 reglist|=1<<addr;
3131 if(jaddr) {
3132 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3133 } else if(!memtarget) {
3134 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3135 }
3136 if(!using_tlb) {
3137 if(!c||memtarget) {
3138 #ifdef DESTRUCTIVE_SHIFT
3139 // The x86 shift operation is 'destructive'; it overwrites the
3140 // source register, so we need to make a copy first and use that.
3141 addr=temp;
3142 #endif
3143 #if defined(HOST_IMM8)
3144 int ir=get_reg(i_regs->regmap,INVCP);
3145 assert(ir>=0);
3146 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3147 #else
3148 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3149 #endif
3150 jaddr2=(int)out;
3151 emit_jne(0);
3152 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3153 }
3154 }
3155 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3156 //if(opcode[i]==0x2B || opcode[i]==0x28)
3157 //if(opcode[i]==0x2B || opcode[i]==0x29)
3158 //if(opcode[i]==0x2B)
3159 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3160 {
3161 //emit_pusha();
3162 save_regs(0x100f);
3163 emit_readword((int)&last_count,ECX);
3164 #ifdef __i386__
3165 if(get_reg(i_regs->regmap,CCREG)<0)
3166 emit_loadreg(CCREG,HOST_CCREG);
3167 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3168 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3169 emit_writeword(HOST_CCREG,(int)&Count);
3170 #endif
3171 #ifdef __arm__
3172 if(get_reg(i_regs->regmap,CCREG)<0)
3173 emit_loadreg(CCREG,0);
3174 else
3175 emit_mov(HOST_CCREG,0);
3176 emit_add(0,ECX,0);
3177 emit_addimm(0,2*ccadj[i],0);
3178 emit_writeword(0,(int)&Count);
3179 #endif
3180 emit_call((int)memdebug);
3181 //emit_popa();
3182 restore_regs(0x100f);
3183 }/**/
3184}
3185
3186void storelr_assemble(int i,struct regstat *i_regs)
3187{
3188 int s,th,tl;
3189 int temp;
3190 int temp2;
3191 int offset;
3192 int jaddr=0,jaddr2;
3193 int case1,case2,case3;
3194 int done0,done1,done2;
3195 int memtarget,c=0;
3196 int agr=AGEN1+(i&1);
3197 u_int hr,reglist=0;
3198 th=get_reg(i_regs->regmap,rs2[i]|64);
3199 tl=get_reg(i_regs->regmap,rs2[i]);
3200 s=get_reg(i_regs->regmap,rs1[i]);
3201 temp=get_reg(i_regs->regmap,agr);
3202 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3203 offset=imm[i];
3204 if(s>=0) {
3205 c=(i_regs->isconst>>s)&1;
3206 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3207 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3208 }
3209 assert(tl>=0);
3210 for(hr=0;hr<HOST_REGS;hr++) {
3211 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3212 }
3213 if(tl>=0) {
3214 assert(temp>=0);
3215 if(!using_tlb) {
3216 if(!c) {
3217 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3218 if(!offset&&s!=temp) emit_mov(s,temp);
3219 jaddr=(int)out;
3220 emit_jno(0);
3221 }
3222 else
3223 {
3224 if(!memtarget||!rs1[i]) {
3225 jaddr=(int)out;
3226 emit_jmp(0);
3227 }
3228 }
3229 if((u_int)rdram!=0x80000000)
3230 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3231 }else{ // using tlb
3232 int map=get_reg(i_regs->regmap,TLREG);
3233 assert(map>=0);
3234 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3235 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3236 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3237 if(!jaddr&&!memtarget) {
3238 jaddr=(int)out;
3239 emit_jmp(0);
3240 }
3241 gen_tlb_addr_w(temp,map);
3242 }
3243
3244 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3245 temp2=get_reg(i_regs->regmap,FTEMP);
3246 if(!rs2[i]) temp2=th=tl;
3247 }
3248
3249#ifndef BIG_ENDIAN_MIPS
3250 emit_xorimm(temp,3,temp);
3251#endif
3252 emit_testimm(temp,2);
3253 case2=(int)out;
3254 emit_jne(0);
3255 emit_testimm(temp,1);
3256 case1=(int)out;
3257 emit_jne(0);
3258 // 0
3259 if (opcode[i]==0x2A) { // SWL
3260 emit_writeword_indexed(tl,0,temp);
3261 }
3262 if (opcode[i]==0x2E) { // SWR
3263 emit_writebyte_indexed(tl,3,temp);
3264 }
3265 if (opcode[i]==0x2C) { // SDL
3266 emit_writeword_indexed(th,0,temp);
3267 if(rs2[i]) emit_mov(tl,temp2);
3268 }
3269 if (opcode[i]==0x2D) { // SDR
3270 emit_writebyte_indexed(tl,3,temp);
3271 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3272 }
3273 done0=(int)out;
3274 emit_jmp(0);
3275 // 1
3276 set_jump_target(case1,(int)out);
3277 if (opcode[i]==0x2A) { // SWL
3278 // Write 3 msb into three least significant bytes
3279 if(rs2[i]) emit_rorimm(tl,8,tl);
3280 emit_writehword_indexed(tl,-1,temp);
3281 if(rs2[i]) emit_rorimm(tl,16,tl);
3282 emit_writebyte_indexed(tl,1,temp);
3283 if(rs2[i]) emit_rorimm(tl,8,tl);
3284 }
3285 if (opcode[i]==0x2E) { // SWR
3286 // Write two lsb into two most significant bytes
3287 emit_writehword_indexed(tl,1,temp);
3288 }
3289 if (opcode[i]==0x2C) { // SDL
3290 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3291 // Write 3 msb into three least significant bytes
3292 if(rs2[i]) emit_rorimm(th,8,th);
3293 emit_writehword_indexed(th,-1,temp);
3294 if(rs2[i]) emit_rorimm(th,16,th);
3295 emit_writebyte_indexed(th,1,temp);
3296 if(rs2[i]) emit_rorimm(th,8,th);
3297 }
3298 if (opcode[i]==0x2D) { // SDR
3299 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3300 // Write two lsb into two most significant bytes
3301 emit_writehword_indexed(tl,1,temp);
3302 }
3303 done1=(int)out;
3304 emit_jmp(0);
3305 // 2
3306 set_jump_target(case2,(int)out);
3307 emit_testimm(temp,1);
3308 case3=(int)out;
3309 emit_jne(0);
3310 if (opcode[i]==0x2A) { // SWL
3311 // Write two msb into two least significant bytes
3312 if(rs2[i]) emit_rorimm(tl,16,tl);
3313 emit_writehword_indexed(tl,-2,temp);
3314 if(rs2[i]) emit_rorimm(tl,16,tl);
3315 }
3316 if (opcode[i]==0x2E) { // SWR
3317 // Write 3 lsb into three most significant bytes
3318 emit_writebyte_indexed(tl,-1,temp);
3319 if(rs2[i]) emit_rorimm(tl,8,tl);
3320 emit_writehword_indexed(tl,0,temp);
3321 if(rs2[i]) emit_rorimm(tl,24,tl);
3322 }
3323 if (opcode[i]==0x2C) { // SDL
3324 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3325 // Write two msb into two least significant bytes
3326 if(rs2[i]) emit_rorimm(th,16,th);
3327 emit_writehword_indexed(th,-2,temp);
3328 if(rs2[i]) emit_rorimm(th,16,th);
3329 }
3330 if (opcode[i]==0x2D) { // SDR
3331 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3332 // Write 3 lsb into three most significant bytes
3333 emit_writebyte_indexed(tl,-1,temp);
3334 if(rs2[i]) emit_rorimm(tl,8,tl);
3335 emit_writehword_indexed(tl,0,temp);
3336 if(rs2[i]) emit_rorimm(tl,24,tl);
3337 }
3338 done2=(int)out;
3339 emit_jmp(0);
3340 // 3
3341 set_jump_target(case3,(int)out);
3342 if (opcode[i]==0x2A) { // SWL
3343 // Write msb into least significant byte
3344 if(rs2[i]) emit_rorimm(tl,24,tl);
3345 emit_writebyte_indexed(tl,-3,temp);
3346 if(rs2[i]) emit_rorimm(tl,8,tl);
3347 }
3348 if (opcode[i]==0x2E) { // SWR
3349 // Write entire word
3350 emit_writeword_indexed(tl,-3,temp);
3351 }
3352 if (opcode[i]==0x2C) { // SDL
3353 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3354 // Write msb into least significant byte
3355 if(rs2[i]) emit_rorimm(th,24,th);
3356 emit_writebyte_indexed(th,-3,temp);
3357 if(rs2[i]) emit_rorimm(th,8,th);
3358 }
3359 if (opcode[i]==0x2D) { // SDR
3360 if(rs2[i]) emit_mov(th,temp2);
3361 // Write entire word
3362 emit_writeword_indexed(tl,-3,temp);
3363 }
3364 set_jump_target(done0,(int)out);
3365 set_jump_target(done1,(int)out);
3366 set_jump_target(done2,(int)out);
3367 if (opcode[i]==0x2C) { // SDL
3368 emit_testimm(temp,4);
3369 done0=(int)out;
3370 emit_jne(0);
3371 emit_andimm(temp,~3,temp);
3372 emit_writeword_indexed(temp2,4,temp);
3373 set_jump_target(done0,(int)out);
3374 }
3375 if (opcode[i]==0x2D) { // SDR
3376 emit_testimm(temp,4);
3377 done0=(int)out;
3378 emit_jeq(0);
3379 emit_andimm(temp,~3,temp);
3380 emit_writeword_indexed(temp2,-4,temp);
3381 set_jump_target(done0,(int)out);
3382 }
3383 if(!c||!memtarget)
3384 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3385 }
3386 if(!using_tlb) {
3387 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3388 #if defined(HOST_IMM8)
3389 int ir=get_reg(i_regs->regmap,INVCP);
3390 assert(ir>=0);
3391 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3392 #else
3393 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3394 #endif
3395 jaddr2=(int)out;
3396 emit_jne(0);
3397 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3398 }
3399 /*
3400 emit_pusha();
3401 //save_regs(0x100f);
3402 emit_readword((int)&last_count,ECX);
3403 if(get_reg(i_regs->regmap,CCREG)<0)
3404 emit_loadreg(CCREG,HOST_CCREG);
3405 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3406 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3407 emit_writeword(HOST_CCREG,(int)&Count);
3408 emit_call((int)memdebug);
3409 emit_popa();
3410 //restore_regs(0x100f);
3411 /**/
3412}
3413
3414void c1ls_assemble(int i,struct regstat *i_regs)
3415{
3416#ifndef DISABLE_COP1
3417 int s,th,tl;
3418 int temp,ar;
3419 int map=-1;
3420 int offset;
3421 int c=0;
3422 int jaddr,jaddr2=0,jaddr3,type;
3423 int agr=AGEN1+(i&1);
3424 u_int hr,reglist=0;
3425 th=get_reg(i_regs->regmap,FTEMP|64);
3426 tl=get_reg(i_regs->regmap,FTEMP);
3427 s=get_reg(i_regs->regmap,rs1[i]);
3428 temp=get_reg(i_regs->regmap,agr);
3429 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3430 offset=imm[i];
3431 assert(tl>=0);
3432 assert(rs1[i]>0);
3433 assert(temp>=0);
3434 for(hr=0;hr<HOST_REGS;hr++) {
3435 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3436 }
3437 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3438 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3439 {
3440 // Loads use a temporary register which we need to save
3441 reglist|=1<<temp;
3442 }
3443 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3444 ar=temp;
3445 else // LWC1/LDC1
3446 ar=tl;
3447 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3448 //else c=(i_regs->wasconst>>s)&1;
3449 if(s>=0) c=(i_regs->wasconst>>s)&1;
3450 // Check cop1 unusable
3451 if(!cop1_usable) {
3452 signed char rs=get_reg(i_regs->regmap,CSREG);
3453 assert(rs>=0);
3454 emit_testimm(rs,0x20000000);
3455 jaddr=(int)out;
3456 emit_jeq(0);
3457 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3458 cop1_usable=1;
3459 }
3460 if (opcode[i]==0x39) { // SWC1 (get float address)
3461 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3462 }
3463 if (opcode[i]==0x3D) { // SDC1 (get double address)
3464 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3465 }
3466 // Generate address + offset
3467 if(!using_tlb) {
3468 if(!c)
3469 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3470 }
3471 else
3472 {
3473 map=get_reg(i_regs->regmap,TLREG);
3474 assert(map>=0);
3475 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3476 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3477 }
3478 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3479 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3480 }
3481 }
3482 if (opcode[i]==0x39) { // SWC1 (read float)
3483 emit_readword_indexed(0,tl,tl);
3484 }
3485 if (opcode[i]==0x3D) { // SDC1 (read double)
3486 emit_readword_indexed(4,tl,th);
3487 emit_readword_indexed(0,tl,tl);
3488 }
3489 if (opcode[i]==0x31) { // LWC1 (get target address)
3490 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3491 }
3492 if (opcode[i]==0x35) { // LDC1 (get target address)
3493 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3494 }
3495 if(!using_tlb) {
3496 if(!c) {
3497 jaddr2=(int)out;
3498 emit_jno(0);
3499 }
3500 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3501 jaddr2=(int)out;
3502 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3503 }
3504 #ifdef DESTRUCTIVE_SHIFT
3505 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3506 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3507 }
3508 #endif
3509 }else{
3510 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3511 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3512 }
3513 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3514 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3515 }
3516 }
3517 if (opcode[i]==0x31) { // LWC1
3518 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3519 //gen_tlb_addr_r(ar,map);
3520 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3521 #ifdef HOST_IMM_ADDR32
3522 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3523 else
3524 #endif
3525 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3526 type=LOADW_STUB;
3527 }
3528 if (opcode[i]==0x35) { // LDC1
3529 assert(th>=0);
3530 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3531 //gen_tlb_addr_r(ar,map);
3532 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3533 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3534 #ifdef HOST_IMM_ADDR32
3535 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3536 else
3537 #endif
3538 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3539 type=LOADD_STUB;
3540 }
3541 if (opcode[i]==0x39) { // SWC1
3542 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3543 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3544 type=STOREW_STUB;
3545 }
3546 if (opcode[i]==0x3D) { // SDC1
3547 assert(th>=0);
3548 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3549 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3550 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3551 type=STORED_STUB;
3552 }
3553 if(!using_tlb) {
3554 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3555 #ifndef DESTRUCTIVE_SHIFT
3556 temp=offset||c||s<0?ar:s;
3557 #endif
3558 #if defined(HOST_IMM8)
3559 int ir=get_reg(i_regs->regmap,INVCP);
3560 assert(ir>=0);
3561 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3562 #else
3563 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3564 #endif
3565 jaddr3=(int)out;
3566 emit_jne(0);
3567 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3568 }
3569 }
3570 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3571 if (opcode[i]==0x31) { // LWC1 (write float)
3572 emit_writeword_indexed(tl,0,temp);
3573 }
3574 if (opcode[i]==0x35) { // LDC1 (write double)
3575 emit_writeword_indexed(th,4,temp);
3576 emit_writeword_indexed(tl,0,temp);
3577 }
3578 //if(opcode[i]==0x39)
3579 /*if(opcode[i]==0x39||opcode[i]==0x31)
3580 {
3581 emit_pusha();
3582 emit_readword((int)&last_count,ECX);
3583 if(get_reg(i_regs->regmap,CCREG)<0)
3584 emit_loadreg(CCREG,HOST_CCREG);
3585 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3586 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3587 emit_writeword(HOST_CCREG,(int)&Count);
3588 emit_call((int)memdebug);
3589 emit_popa();
3590 }/**/
3591#else
3592 cop1_unusable(i, i_regs);
3593#endif
3594}
3595
3596void c2ls_assemble(int i,struct regstat *i_regs)
3597{
3598 int s,tl;
3599 int ar;
3600 int offset;
3601 int memtarget=0,c=0;
3602 int jaddr,jaddr2=0,jaddr3,type;
3603 int agr=AGEN1+(i&1);
3604 u_int hr,reglist=0;
3605 u_int copr=(source[i]>>16)&0x1f;
3606 s=get_reg(i_regs->regmap,rs1[i]);
3607 tl=get_reg(i_regs->regmap,FTEMP);
3608 offset=imm[i];
3609 assert(rs1[i]>0);
3610 assert(tl>=0);
3611 assert(!using_tlb);
3612
3613 for(hr=0;hr<HOST_REGS;hr++) {
3614 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3615 }
3616 if(i_regs->regmap[HOST_CCREG]==CCREG)
3617 reglist&=~(1<<HOST_CCREG);
3618
3619 // get the address
3620 if (opcode[i]==0x3a) { // SWC2
3621 ar=get_reg(i_regs->regmap,agr);
3622 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3623 reglist|=1<<ar;
3624 } else { // LWC2
3625 ar=tl;
3626 }
3627 if(s>=0) c=(i_regs->wasconst>>s)&1;
3628 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3629 if (!offset&&!c&&s>=0) ar=s;
3630 assert(ar>=0);
3631
3632 if (opcode[i]==0x3a) { // SWC2
3633 cop2_get_dreg(copr,tl,HOST_TEMPREG);
3634 type=STOREW_STUB;
3635 }
3636 else
3637 type=LOADW_STUB;
3638
3639 if(c&&!memtarget) {
3640 jaddr2=(int)out;
3641 emit_jmp(0); // inline_readstub/inline_writestub?
3642 }
3643 else {
3644 if(!c) {
3645 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3646 jaddr2=(int)out;
3647 emit_jno(0);
3648 }
3649 if (opcode[i]==0x32) { // LWC2
3650 #ifdef HOST_IMM_ADDR32
3651 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3652 else
3653 #endif
3654 emit_readword_indexed(0,ar,tl);
3655 }
3656 if (opcode[i]==0x3a) { // SWC2
3657 #ifdef DESTRUCTIVE_SHIFT
3658 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3659 #endif
3660 emit_writeword_indexed(tl,0,ar);
3661 }
3662 }
3663 if(jaddr2)
3664 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3665 if (opcode[i]==0x3a) { // SWC2
3666#if defined(HOST_IMM8)
3667 int ir=get_reg(i_regs->regmap,INVCP);
3668 assert(ir>=0);
3669 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3670#else
3671 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3672#endif
3673 jaddr3=(int)out;
3674 emit_jne(0);
3675 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3676 }
3677 if (opcode[i]==0x32) { // LWC2
3678 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3679 }
3680}
3681
3682#ifndef multdiv_assemble
3683void multdiv_assemble(int i,struct regstat *i_regs)
3684{
3685 printf("Need multdiv_assemble for this architecture.\n");
3686 exit(1);
3687}
3688#endif
3689
3690void mov_assemble(int i,struct regstat *i_regs)
3691{
3692 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3693 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3694 assert(rt1[i]>0);
3695 if(rt1[i]) {
3696 signed char sh,sl,th,tl;
3697 th=get_reg(i_regs->regmap,rt1[i]|64);
3698 tl=get_reg(i_regs->regmap,rt1[i]);
3699 //assert(tl>=0);
3700 if(tl>=0) {
3701 sh=get_reg(i_regs->regmap,rs1[i]|64);
3702 sl=get_reg(i_regs->regmap,rs1[i]);
3703 if(sl>=0) emit_mov(sl,tl);
3704 else emit_loadreg(rs1[i],tl);
3705 if(th>=0) {
3706 if(sh>=0) emit_mov(sh,th);
3707 else emit_loadreg(rs1[i]|64,th);
3708 }
3709 }
3710 }
3711}
3712
3713#ifndef fconv_assemble
3714void fconv_assemble(int i,struct regstat *i_regs)
3715{
3716 printf("Need fconv_assemble for this architecture.\n");
3717 exit(1);
3718}
3719#endif
3720
3721#if 0
3722void float_assemble(int i,struct regstat *i_regs)
3723{
3724 printf("Need float_assemble for this architecture.\n");
3725 exit(1);
3726}
3727#endif
3728
3729void syscall_assemble(int i,struct regstat *i_regs)
3730{
3731 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3732 assert(ccreg==HOST_CCREG);
3733 assert(!is_delayslot);
3734 emit_movimm(start+i*4,EAX); // Get PC
3735 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3736 emit_jmp((int)jump_syscall_hle); // XXX
3737}
3738
3739void hlecall_assemble(int i,struct regstat *i_regs)
3740{
3741 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3742 assert(ccreg==HOST_CCREG);
3743 assert(!is_delayslot);
3744 emit_movimm(start+i*4+4,0); // Get PC
3745 emit_movimm((int)psxHLEt[source[i]&7],1);
3746 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3747 emit_jmp((int)jump_hlecall);
3748}
3749
3750void ds_assemble(int i,struct regstat *i_regs)
3751{
3752 is_delayslot=1;
3753 switch(itype[i]) {
3754 case ALU:
3755 alu_assemble(i,i_regs);break;
3756 case IMM16:
3757 imm16_assemble(i,i_regs);break;
3758 case SHIFT:
3759 shift_assemble(i,i_regs);break;
3760 case SHIFTIMM:
3761 shiftimm_assemble(i,i_regs);break;
3762 case LOAD:
3763 load_assemble(i,i_regs);break;
3764 case LOADLR:
3765 loadlr_assemble(i,i_regs);break;
3766 case STORE:
3767 store_assemble(i,i_regs);break;
3768 case STORELR:
3769 storelr_assemble(i,i_regs);break;
3770 case COP0:
3771 cop0_assemble(i,i_regs);break;
3772 case COP1:
3773 cop1_assemble(i,i_regs);break;
3774 case C1LS:
3775 c1ls_assemble(i,i_regs);break;
3776 case COP2:
3777 cop2_assemble(i,i_regs);break;
3778 case C2LS:
3779 c2ls_assemble(i,i_regs);break;
3780 case C2OP:
3781 c2op_assemble(i,i_regs);break;
3782 case FCONV:
3783 fconv_assemble(i,i_regs);break;
3784 case FLOAT:
3785 float_assemble(i,i_regs);break;
3786 case FCOMP:
3787 fcomp_assemble(i,i_regs);break;
3788 case MULTDIV:
3789 multdiv_assemble(i,i_regs);break;
3790 case MOV:
3791 mov_assemble(i,i_regs);break;
3792 case SYSCALL:
3793 case HLECALL:
3794 case SPAN:
3795 case UJUMP:
3796 case RJUMP:
3797 case CJUMP:
3798 case SJUMP:
3799 case FJUMP:
3800 printf("Jump in the delay slot. This is probably a bug.\n");
3801 }
3802 is_delayslot=0;
3803}
3804
3805// Is the branch target a valid internal jump?
3806int internal_branch(uint64_t i_is32,int addr)
3807{
3808 if(addr&1) return 0; // Indirect (register) jump
3809 if(addr>=start && addr<start+slen*4-4)
3810 {
3811 int t=(addr-start)>>2;
3812 // Delay slots are not valid branch targets
3813 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3814 // 64 -> 32 bit transition requires a recompile
3815 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3816 {
3817 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3818 else printf("optimizable: yes\n");
3819 }*/
3820 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3821 if(requires_32bit[t]&~i_is32) return 0;
3822 else return 1;
3823 }
3824 return 0;
3825}
3826
3827#ifndef wb_invalidate
3828void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3829 uint64_t u,uint64_t uu)
3830{
3831 int hr;
3832 for(hr=0;hr<HOST_REGS;hr++) {
3833 if(hr!=EXCLUDE_REG) {
3834 if(pre[hr]!=entry[hr]) {
3835 if(pre[hr]>=0) {
3836 if((dirty>>hr)&1) {
3837 if(get_reg(entry,pre[hr])<0) {
3838 if(pre[hr]<64) {
3839 if(!((u>>pre[hr])&1)) {
3840 emit_storereg(pre[hr],hr);
3841 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3842 emit_sarimm(hr,31,hr);
3843 emit_storereg(pre[hr]|64,hr);
3844 }
3845 }
3846 }else{
3847 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3848 emit_storereg(pre[hr],hr);
3849 }
3850 }
3851 }
3852 }
3853 }
3854 }
3855 }
3856 }
3857 // Move from one register to another (no writeback)
3858 for(hr=0;hr<HOST_REGS;hr++) {
3859 if(hr!=EXCLUDE_REG) {
3860 if(pre[hr]!=entry[hr]) {
3861 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3862 int nr;
3863 if((nr=get_reg(entry,pre[hr]))>=0) {
3864 emit_mov(hr,nr);
3865 }
3866 }
3867 }
3868 }
3869 }
3870}
3871#endif
3872
3873// Load the specified registers
3874// This only loads the registers given as arguments because
3875// we don't want to load things that will be overwritten
3876void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3877{
3878 int hr;
3879 // Load 32-bit regs
3880 for(hr=0;hr<HOST_REGS;hr++) {
3881 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3882 if(entry[hr]!=regmap[hr]) {
3883 if(regmap[hr]==rs1||regmap[hr]==rs2)
3884 {
3885 if(regmap[hr]==0) {
3886 emit_zeroreg(hr);
3887 }
3888 else
3889 {
3890 emit_loadreg(regmap[hr],hr);
3891 }
3892 }
3893 }
3894 }
3895 }
3896 //Load 64-bit regs
3897 for(hr=0;hr<HOST_REGS;hr++) {
3898 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3899 if(entry[hr]!=regmap[hr]) {
3900 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3901 {
3902 assert(regmap[hr]!=64);
3903 if((is32>>(regmap[hr]&63))&1) {
3904 int lr=get_reg(regmap,regmap[hr]-64);
3905 if(lr>=0)
3906 emit_sarimm(lr,31,hr);
3907 else
3908 emit_loadreg(regmap[hr],hr);
3909 }
3910 else
3911 {
3912 emit_loadreg(regmap[hr],hr);
3913 }
3914 }
3915 }
3916 }
3917 }
3918}
3919
3920// Load registers prior to the start of a loop
3921// so that they are not loaded within the loop
3922static void loop_preload(signed char pre[],signed char entry[])
3923{
3924 int hr;
3925 for(hr=0;hr<HOST_REGS;hr++) {
3926 if(hr!=EXCLUDE_REG) {
3927 if(pre[hr]!=entry[hr]) {
3928 if(entry[hr]>=0) {
3929 if(get_reg(pre,entry[hr])<0) {
3930 assem_debug("loop preload:\n");
3931 //printf("loop preload: %d\n",hr);
3932 if(entry[hr]==0) {
3933 emit_zeroreg(hr);
3934 }
3935 else if(entry[hr]<TEMPREG)
3936 {
3937 emit_loadreg(entry[hr],hr);
3938 }
3939 else if(entry[hr]-64<TEMPREG)
3940 {
3941 emit_loadreg(entry[hr],hr);
3942 }
3943 }
3944 }
3945 }
3946 }
3947 }
3948}
3949
3950// Generate address for load/store instruction
3951// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3952void address_generation(int i,struct regstat *i_regs,signed char entry[])
3953{
3954 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3955 int ra;
3956 int agr=AGEN1+(i&1);
3957 int mgr=MGEN1+(i&1);
3958 if(itype[i]==LOAD) {
3959 ra=get_reg(i_regs->regmap,rt1[i]);
3960 //if(rt1[i]) assert(ra>=0);
3961 }
3962 if(itype[i]==LOADLR) {
3963 ra=get_reg(i_regs->regmap,FTEMP);
3964 }
3965 if(itype[i]==STORE||itype[i]==STORELR) {
3966 ra=get_reg(i_regs->regmap,agr);
3967 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3968 }
3969 if(itype[i]==C1LS||itype[i]==C2LS) {
3970 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3971 ra=get_reg(i_regs->regmap,FTEMP);
3972 else { // SWC1/SDC1/SWC2/SDC2
3973 ra=get_reg(i_regs->regmap,agr);
3974 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3975 }
3976 }
3977 int rs=get_reg(i_regs->regmap,rs1[i]);
3978 int rm=get_reg(i_regs->regmap,TLREG);
3979 if(ra>=0) {
3980 int offset=imm[i];
3981 int c=(i_regs->wasconst>>rs)&1;
3982 if(rs1[i]==0) {
3983 // Using r0 as a base address
3984 /*if(rm>=0) {
3985 if(!entry||entry[rm]!=mgr) {
3986 generate_map_const(offset,rm);
3987 } // else did it in the previous cycle
3988 }*/
3989 if(!entry||entry[ra]!=agr) {
3990 if (opcode[i]==0x22||opcode[i]==0x26) {
3991 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3992 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3993 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3994 }else{
3995 emit_movimm(offset,ra);
3996 }
3997 } // else did it in the previous cycle
3998 }
3999 else if(rs<0) {
4000 if(!entry||entry[ra]!=rs1[i])
4001 emit_loadreg(rs1[i],ra);
4002 //if(!entry||entry[ra]!=rs1[i])
4003 // printf("poor load scheduling!\n");
4004 }
4005 else if(c) {
4006 if(rm>=0) {
4007 if(!entry||entry[rm]!=mgr) {
4008 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4009 // Stores to memory go thru the mapper to detect self-modifying
4010 // code, loads don't.
4011 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4012 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4013 generate_map_const(constmap[i][rs]+offset,rm);
4014 }else{
4015 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4016 generate_map_const(constmap[i][rs]+offset,rm);
4017 }
4018 }
4019 }
4020 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4021 if(!entry||entry[ra]!=agr) {
4022 if (opcode[i]==0x22||opcode[i]==0x26) {
4023 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4024 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4025 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4026 }else{
4027 #ifdef HOST_IMM_ADDR32
4028 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4029 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4030 #endif
4031 emit_movimm(constmap[i][rs]+offset,ra);
4032 }
4033 } // else did it in the previous cycle
4034 } // else load_consts already did it
4035 }
4036 if(offset&&!c&&rs1[i]) {
4037 if(rs>=0) {
4038 emit_addimm(rs,offset,ra);
4039 }else{
4040 emit_addimm(ra,offset,ra);
4041 }
4042 }
4043 }
4044 }
4045 // Preload constants for next instruction
4046 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4047 int agr,ra;
4048 #ifndef HOST_IMM_ADDR32
4049 // Mapper entry
4050 agr=MGEN1+((i+1)&1);
4051 ra=get_reg(i_regs->regmap,agr);
4052 if(ra>=0) {
4053 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4054 int offset=imm[i+1];
4055 int c=(regs[i+1].wasconst>>rs)&1;
4056 if(c) {
4057 if(itype[i+1]==STORE||itype[i+1]==STORELR
4058 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4059 // Stores to memory go thru the mapper to detect self-modifying
4060 // code, loads don't.
4061 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4062 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4063 generate_map_const(constmap[i+1][rs]+offset,ra);
4064 }else{
4065 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4066 generate_map_const(constmap[i+1][rs]+offset,ra);
4067 }
4068 }
4069 /*else if(rs1[i]==0) {
4070 generate_map_const(offset,ra);
4071 }*/
4072 }
4073 #endif
4074 // Actual address
4075 agr=AGEN1+((i+1)&1);
4076 ra=get_reg(i_regs->regmap,agr);
4077 if(ra>=0) {
4078 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4079 int offset=imm[i+1];
4080 int c=(regs[i+1].wasconst>>rs)&1;
4081 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4082 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4083 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4084 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4085 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4086 }else{
4087 #ifdef HOST_IMM_ADDR32
4088 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4089 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4090 #endif
4091 emit_movimm(constmap[i+1][rs]+offset,ra);
4092 }
4093 }
4094 else if(rs1[i+1]==0) {
4095 // Using r0 as a base address
4096 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4097 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4098 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4099 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4100 }else{
4101 emit_movimm(offset,ra);
4102 }
4103 }
4104 }
4105 }
4106}
4107
4108int get_final_value(int hr, int i, int *value)
4109{
4110 int reg=regs[i].regmap[hr];
4111 while(i<slen-1) {
4112 if(regs[i+1].regmap[hr]!=reg) break;
4113 if(!((regs[i+1].isconst>>hr)&1)) break;
4114 if(bt[i+1]) break;
4115 i++;
4116 }
4117 if(i<slen-1) {
4118 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4119 *value=constmap[i][hr];
4120 return 1;
4121 }
4122 if(!bt[i+1]) {
4123 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4124 // Load in delay slot, out-of-order execution
4125 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4126 {
4127 #ifdef HOST_IMM_ADDR32
4128 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4129 #endif
4130 // Precompute load address
4131 *value=constmap[i][hr]+imm[i+2];
4132 return 1;
4133 }
4134 }
4135 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4136 {
4137 #ifdef HOST_IMM_ADDR32
4138 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4139 #endif
4140 // Precompute load address
4141 *value=constmap[i][hr]+imm[i+1];
4142 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4143 return 1;
4144 }
4145 }
4146 }
4147 *value=constmap[i][hr];
4148 //printf("c=%x\n",(int)constmap[i][hr]);
4149 if(i==slen-1) return 1;
4150 if(reg<64) {
4151 return !((unneeded_reg[i+1]>>reg)&1);
4152 }else{
4153 return !((unneeded_reg_upper[i+1]>>reg)&1);
4154 }
4155}
4156
4157// Load registers with known constants
4158void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4159{
4160 int hr;
4161 // Load 32-bit regs
4162 for(hr=0;hr<HOST_REGS;hr++) {
4163 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4164 //if(entry[hr]!=regmap[hr]) {
4165 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4166 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4167 int value;
4168 if(get_final_value(hr,i,&value)) {
4169 if(value==0) {
4170 emit_zeroreg(hr);
4171 }
4172 else {
4173 emit_movimm(value,hr);
4174 }
4175 }
4176 }
4177 }
4178 }
4179 }
4180 // Load 64-bit regs
4181 for(hr=0;hr<HOST_REGS;hr++) {
4182 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4183 //if(entry[hr]!=regmap[hr]) {
4184 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4185 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4186 if((is32>>(regmap[hr]&63))&1) {
4187 int lr=get_reg(regmap,regmap[hr]-64);
4188 assert(lr>=0);
4189 emit_sarimm(lr,31,hr);
4190 }
4191 else
4192 {
4193 int value;
4194 if(get_final_value(hr,i,&value)) {
4195 if(value==0) {
4196 emit_zeroreg(hr);
4197 }
4198 else {
4199 emit_movimm(value,hr);
4200 }
4201 }
4202 }
4203 }
4204 }
4205 }
4206 }
4207}
4208void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4209{
4210 int hr;
4211 // Load 32-bit regs
4212 for(hr=0;hr<HOST_REGS;hr++) {
4213 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4214 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4215 int value=constmap[i][hr];
4216 if(value==0) {
4217 emit_zeroreg(hr);
4218 }
4219 else {
4220 emit_movimm(value,hr);
4221 }
4222 }
4223 }
4224 }
4225 // Load 64-bit regs
4226 for(hr=0;hr<HOST_REGS;hr++) {
4227 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4228 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4229 if((is32>>(regmap[hr]&63))&1) {
4230 int lr=get_reg(regmap,regmap[hr]-64);
4231 assert(lr>=0);
4232 emit_sarimm(lr,31,hr);
4233 }
4234 else
4235 {
4236 int value=constmap[i][hr];
4237 if(value==0) {
4238 emit_zeroreg(hr);
4239 }
4240 else {
4241 emit_movimm(value,hr);
4242 }
4243 }
4244 }
4245 }
4246 }
4247}
4248
4249// Write out all dirty registers (except cycle count)
4250void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4251{
4252 int hr;
4253 for(hr=0;hr<HOST_REGS;hr++) {
4254 if(hr!=EXCLUDE_REG) {
4255 if(i_regmap[hr]>0) {
4256 if(i_regmap[hr]!=CCREG) {
4257 if((i_dirty>>hr)&1) {
4258 if(i_regmap[hr]<64) {
4259 emit_storereg(i_regmap[hr],hr);
4260#ifndef FORCE32
4261 if( ((i_is32>>i_regmap[hr])&1) ) {
4262 #ifdef DESTRUCTIVE_WRITEBACK
4263 emit_sarimm(hr,31,hr);
4264 emit_storereg(i_regmap[hr]|64,hr);
4265 #else
4266 emit_sarimm(hr,31,HOST_TEMPREG);
4267 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4268 #endif
4269 }
4270#endif
4271 }else{
4272 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4273 emit_storereg(i_regmap[hr],hr);
4274 }
4275 }
4276 }
4277 }
4278 }
4279 }
4280 }
4281}
4282// Write out dirty registers that we need to reload (pair with load_needed_regs)
4283// This writes the registers not written by store_regs_bt
4284void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4285{
4286 int hr;
4287 int t=(addr-start)>>2;
4288 for(hr=0;hr<HOST_REGS;hr++) {
4289 if(hr!=EXCLUDE_REG) {
4290 if(i_regmap[hr]>0) {
4291 if(i_regmap[hr]!=CCREG) {
4292 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4293 if((i_dirty>>hr)&1) {
4294 if(i_regmap[hr]<64) {
4295 emit_storereg(i_regmap[hr],hr);
4296#ifndef FORCE32
4297 if( ((i_is32>>i_regmap[hr])&1) ) {
4298 #ifdef DESTRUCTIVE_WRITEBACK
4299 emit_sarimm(hr,31,hr);
4300 emit_storereg(i_regmap[hr]|64,hr);
4301 #else
4302 emit_sarimm(hr,31,HOST_TEMPREG);
4303 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4304 #endif
4305 }
4306#endif
4307 }else{
4308 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4309 emit_storereg(i_regmap[hr],hr);
4310 }
4311 }
4312 }
4313 }
4314 }
4315 }
4316 }
4317 }
4318}
4319
4320// Load all registers (except cycle count)
4321void load_all_regs(signed char i_regmap[])
4322{
4323 int hr;
4324 for(hr=0;hr<HOST_REGS;hr++) {
4325 if(hr!=EXCLUDE_REG) {
4326 if(i_regmap[hr]==0) {
4327 emit_zeroreg(hr);
4328 }
4329 else
4330 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4331 {
4332 emit_loadreg(i_regmap[hr],hr);
4333 }
4334 }
4335 }
4336}
4337
4338// Load all current registers also needed by next instruction
4339void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4340{
4341 int hr;
4342 for(hr=0;hr<HOST_REGS;hr++) {
4343 if(hr!=EXCLUDE_REG) {
4344 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4345 if(i_regmap[hr]==0) {
4346 emit_zeroreg(hr);
4347 }
4348 else
4349 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4350 {
4351 emit_loadreg(i_regmap[hr],hr);
4352 }
4353 }
4354 }
4355 }
4356}
4357
4358// Load all regs, storing cycle count if necessary
4359void load_regs_entry(int t)
4360{
4361 int hr;
4362 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4363 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4364 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4365 emit_storereg(CCREG,HOST_CCREG);
4366 }
4367 // Load 32-bit regs
4368 for(hr=0;hr<HOST_REGS;hr++) {
4369 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4370 if(regs[t].regmap_entry[hr]==0) {
4371 emit_zeroreg(hr);
4372 }
4373 else if(regs[t].regmap_entry[hr]!=CCREG)
4374 {
4375 emit_loadreg(regs[t].regmap_entry[hr],hr);
4376 }
4377 }
4378 }
4379 // Load 64-bit regs
4380 for(hr=0;hr<HOST_REGS;hr++) {
4381 if(regs[t].regmap_entry[hr]>=64) {
4382 assert(regs[t].regmap_entry[hr]!=64);
4383 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4384 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4385 if(lr<0) {
4386 emit_loadreg(regs[t].regmap_entry[hr],hr);
4387 }
4388 else
4389 {
4390 emit_sarimm(lr,31,hr);
4391 }
4392 }
4393 else
4394 {
4395 emit_loadreg(regs[t].regmap_entry[hr],hr);
4396 }
4397 }
4398 }
4399}
4400
4401// Store dirty registers prior to branch
4402void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4403{
4404 if(internal_branch(i_is32,addr))
4405 {
4406 int t=(addr-start)>>2;
4407 int hr;
4408 for(hr=0;hr<HOST_REGS;hr++) {
4409 if(hr!=EXCLUDE_REG) {
4410 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4411 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4412 if((i_dirty>>hr)&1) {
4413 if(i_regmap[hr]<64) {
4414 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4415 emit_storereg(i_regmap[hr],hr);
4416 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4417 #ifdef DESTRUCTIVE_WRITEBACK
4418 emit_sarimm(hr,31,hr);
4419 emit_storereg(i_regmap[hr]|64,hr);
4420 #else
4421 emit_sarimm(hr,31,HOST_TEMPREG);
4422 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4423 #endif
4424 }
4425 }
4426 }else{
4427 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4428 emit_storereg(i_regmap[hr],hr);
4429 }
4430 }
4431 }
4432 }
4433 }
4434 }
4435 }
4436 }
4437 else
4438 {
4439 // Branch out of this block, write out all dirty regs
4440 wb_dirtys(i_regmap,i_is32,i_dirty);
4441 }
4442}
4443
4444// Load all needed registers for branch target
4445void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4446{
4447 //if(addr>=start && addr<(start+slen*4))
4448 if(internal_branch(i_is32,addr))
4449 {
4450 int t=(addr-start)>>2;
4451 int hr;
4452 // Store the cycle count before loading something else
4453 if(i_regmap[HOST_CCREG]!=CCREG) {
4454 assert(i_regmap[HOST_CCREG]==-1);
4455 }
4456 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4457 emit_storereg(CCREG,HOST_CCREG);
4458 }
4459 // Load 32-bit regs
4460 for(hr=0;hr<HOST_REGS;hr++) {
4461 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4462 #ifdef DESTRUCTIVE_WRITEBACK
4463 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4464 #else
4465 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4466 #endif
4467 if(regs[t].regmap_entry[hr]==0) {
4468 emit_zeroreg(hr);
4469 }
4470 else if(regs[t].regmap_entry[hr]!=CCREG)
4471 {
4472 emit_loadreg(regs[t].regmap_entry[hr],hr);
4473 }
4474 }
4475 }
4476 }
4477 //Load 64-bit regs
4478 for(hr=0;hr<HOST_REGS;hr++) {
4479 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4480 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4481 assert(regs[t].regmap_entry[hr]!=64);
4482 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4483 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4484 if(lr<0) {
4485 emit_loadreg(regs[t].regmap_entry[hr],hr);
4486 }
4487 else
4488 {
4489 emit_sarimm(lr,31,hr);
4490 }
4491 }
4492 else
4493 {
4494 emit_loadreg(regs[t].regmap_entry[hr],hr);
4495 }
4496 }
4497 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4498 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4499 assert(lr>=0);
4500 emit_sarimm(lr,31,hr);
4501 }
4502 }
4503 }
4504 }
4505}
4506
4507int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4508{
4509 if(addr>=start && addr<start+slen*4-4)
4510 {
4511 int t=(addr-start)>>2;
4512 int hr;
4513 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4514 for(hr=0;hr<HOST_REGS;hr++)
4515 {
4516 if(hr!=EXCLUDE_REG)
4517 {
4518 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4519 {
4520 if(regs[t].regmap_entry[hr]!=-1)
4521 {
4522 return 0;
4523 }
4524 else
4525 if((i_dirty>>hr)&1)
4526 {
4527 if(i_regmap[hr]<64)
4528 {
4529 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4530 return 0;
4531 }
4532 else
4533 {
4534 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4535 return 0;
4536 }
4537 }
4538 }
4539 else // Same register but is it 32-bit or dirty?
4540 if(i_regmap[hr]>=0)
4541 {
4542 if(!((regs[t].dirty>>hr)&1))
4543 {
4544 if((i_dirty>>hr)&1)
4545 {
4546 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4547 {
4548 //printf("%x: dirty no match\n",addr);
4549 return 0;
4550 }
4551 }
4552 }
4553 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4554 {
4555 //printf("%x: is32 no match\n",addr);
4556 return 0;
4557 }
4558 }
4559 }
4560 }
4561 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4562 if(requires_32bit[t]&~i_is32) return 0;
4563 // Delay slots are not valid branch targets
4564 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4565 // Delay slots require additional processing, so do not match
4566 if(is_ds[t]) return 0;
4567 }
4568 else
4569 {
4570 int hr;
4571 for(hr=0;hr<HOST_REGS;hr++)
4572 {
4573 if(hr!=EXCLUDE_REG)
4574 {
4575 if(i_regmap[hr]>=0)
4576 {
4577 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4578 {
4579 if((i_dirty>>hr)&1)
4580 {
4581 return 0;
4582 }
4583 }
4584 }
4585 }
4586 }
4587 }
4588 return 1;
4589}
4590
4591// Used when a branch jumps into the delay slot of another branch
4592void ds_assemble_entry(int i)
4593{
4594 int t=(ba[i]-start)>>2;
4595 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4596 assem_debug("Assemble delay slot at %x\n",ba[i]);
4597 assem_debug("<->\n");
4598 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4599 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4600 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4601 address_generation(t,&regs[t],regs[t].regmap_entry);
4602 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4603 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4604 cop1_usable=0;
4605 is_delayslot=0;
4606 switch(itype[t]) {
4607 case ALU:
4608 alu_assemble(t,&regs[t]);break;
4609 case IMM16:
4610 imm16_assemble(t,&regs[t]);break;
4611 case SHIFT:
4612 shift_assemble(t,&regs[t]);break;
4613 case SHIFTIMM:
4614 shiftimm_assemble(t,&regs[t]);break;
4615 case LOAD:
4616 load_assemble(t,&regs[t]);break;
4617 case LOADLR:
4618 loadlr_assemble(t,&regs[t]);break;
4619 case STORE:
4620 store_assemble(t,&regs[t]);break;
4621 case STORELR:
4622 storelr_assemble(t,&regs[t]);break;
4623 case COP0:
4624 cop0_assemble(t,&regs[t]);break;
4625 case COP1:
4626 cop1_assemble(t,&regs[t]);break;
4627 case C1LS:
4628 c1ls_assemble(t,&regs[t]);break;
4629 case COP2:
4630 cop2_assemble(t,&regs[t]);break;
4631 case C2LS:
4632 c2ls_assemble(t,&regs[t]);break;
4633 case C2OP:
4634 c2op_assemble(t,&regs[t]);break;
4635 case FCONV:
4636 fconv_assemble(t,&regs[t]);break;
4637 case FLOAT:
4638 float_assemble(t,&regs[t]);break;
4639 case FCOMP:
4640 fcomp_assemble(t,&regs[t]);break;
4641 case MULTDIV:
4642 multdiv_assemble(t,&regs[t]);break;
4643 case MOV:
4644 mov_assemble(t,&regs[t]);break;
4645 case SYSCALL:
4646 case HLECALL:
4647 case SPAN:
4648 case UJUMP:
4649 case RJUMP:
4650 case CJUMP:
4651 case SJUMP:
4652 case FJUMP:
4653 printf("Jump in the delay slot. This is probably a bug.\n");
4654 }
4655 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4656 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4657 if(internal_branch(regs[t].is32,ba[i]+4))
4658 assem_debug("branch: internal\n");
4659 else
4660 assem_debug("branch: external\n");
4661 assert(internal_branch(regs[t].is32,ba[i]+4));
4662 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4663 emit_jmp(0);
4664}
4665
4666void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4667{
4668 int count;
4669 int jaddr;
4670 int idle=0;
4671 if(itype[i]==RJUMP)
4672 {
4673 *adj=0;
4674 }
4675 //if(ba[i]>=start && ba[i]<(start+slen*4))
4676 if(internal_branch(branch_regs[i].is32,ba[i]))
4677 {
4678 int t=(ba[i]-start)>>2;
4679 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4680 else *adj=ccadj[t];
4681 }
4682 else
4683 {
4684 *adj=0;
4685 }
4686 count=ccadj[i];
4687 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4688 // Idle loop
4689 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4690 idle=(int)out;
4691 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4692 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4693 jaddr=(int)out;
4694 emit_jmp(0);
4695 }
4696 else if(*adj==0||invert) {
4697 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4698 jaddr=(int)out;
4699 emit_jns(0);
4700 }
4701 else
4702 {
4703 emit_cmpimm(HOST_CCREG,-2*(count+2));
4704 jaddr=(int)out;
4705 emit_jns(0);
4706 }
4707 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4708}
4709
4710void do_ccstub(int n)
4711{
4712 literal_pool(256);
4713 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4714 set_jump_target(stubs[n][1],(int)out);
4715 int i=stubs[n][4];
4716 if(stubs[n][6]==NULLDS) {
4717 // Delay slot instruction is nullified ("likely" branch)
4718 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4719 }
4720 else if(stubs[n][6]!=TAKEN) {
4721 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4722 }
4723 else {
4724 if(internal_branch(branch_regs[i].is32,ba[i]))
4725 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4726 }
4727 if(stubs[n][5]!=-1)
4728 {
4729 // Save PC as return address
4730 emit_movimm(stubs[n][5],EAX);
4731 emit_writeword(EAX,(int)&pcaddr);
4732 }
4733 else
4734 {
4735 // Return address depends on which way the branch goes
4736 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4737 {
4738 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4739 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4740 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4741 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4742 if(rs1[i]==0)
4743 {
4744 s1l=s2l;s1h=s2h;
4745 s2l=s2h=-1;
4746 }
4747 else if(rs2[i]==0)
4748 {
4749 s2l=s2h=-1;
4750 }
4751 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4752 s1h=s2h=-1;
4753 }
4754 assert(s1l>=0);
4755 #ifdef DESTRUCTIVE_WRITEBACK
4756 if(rs1[i]) {
4757 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4758 emit_loadreg(rs1[i],s1l);
4759 }
4760 else {
4761 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4762 emit_loadreg(rs2[i],s1l);
4763 }
4764 if(s2l>=0)
4765 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4766 emit_loadreg(rs2[i],s2l);
4767 #endif
4768 int hr=0;
4769 int addr,alt,ntaddr;
4770 while(hr<HOST_REGS)
4771 {
4772 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4773 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4774 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4775 {
4776 addr=hr++;break;
4777 }
4778 hr++;
4779 }
4780 while(hr<HOST_REGS)
4781 {
4782 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4783 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4784 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4785 {
4786 alt=hr++;break;
4787 }
4788 hr++;
4789 }
4790 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4791 {
4792 while(hr<HOST_REGS)
4793 {
4794 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4795 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4796 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4797 {
4798 ntaddr=hr;break;
4799 }
4800 hr++;
4801 }
4802 assert(hr<HOST_REGS);
4803 }
4804 if((opcode[i]&0x2f)==4) // BEQ
4805 {
4806 #ifdef HAVE_CMOV_IMM
4807 if(s1h<0) {
4808 if(s2l>=0) emit_cmp(s1l,s2l);
4809 else emit_test(s1l,s1l);
4810 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4811 }
4812 else
4813 #endif
4814 {
4815 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4816 if(s1h>=0) {
4817 if(s2h>=0) emit_cmp(s1h,s2h);
4818 else emit_test(s1h,s1h);
4819 emit_cmovne_reg(alt,addr);
4820 }
4821 if(s2l>=0) emit_cmp(s1l,s2l);
4822 else emit_test(s1l,s1l);
4823 emit_cmovne_reg(alt,addr);
4824 }
4825 }
4826 if((opcode[i]&0x2f)==5) // BNE
4827 {
4828 #ifdef HAVE_CMOV_IMM
4829 if(s1h<0) {
4830 if(s2l>=0) emit_cmp(s1l,s2l);
4831 else emit_test(s1l,s1l);
4832 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4833 }
4834 else
4835 #endif
4836 {
4837 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4838 if(s1h>=0) {
4839 if(s2h>=0) emit_cmp(s1h,s2h);
4840 else emit_test(s1h,s1h);
4841 emit_cmovne_reg(alt,addr);
4842 }
4843 if(s2l>=0) emit_cmp(s1l,s2l);
4844 else emit_test(s1l,s1l);
4845 emit_cmovne_reg(alt,addr);
4846 }
4847 }
4848 if((opcode[i]&0x2f)==6) // BLEZ
4849 {
4850 //emit_movimm(ba[i],alt);
4851 //emit_movimm(start+i*4+8,addr);
4852 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4853 emit_cmpimm(s1l,1);
4854 if(s1h>=0) emit_mov(addr,ntaddr);
4855 emit_cmovl_reg(alt,addr);
4856 if(s1h>=0) {
4857 emit_test(s1h,s1h);
4858 emit_cmovne_reg(ntaddr,addr);
4859 emit_cmovs_reg(alt,addr);
4860 }
4861 }
4862 if((opcode[i]&0x2f)==7) // BGTZ
4863 {
4864 //emit_movimm(ba[i],addr);
4865 //emit_movimm(start+i*4+8,ntaddr);
4866 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4867 emit_cmpimm(s1l,1);
4868 if(s1h>=0) emit_mov(addr,alt);
4869 emit_cmovl_reg(ntaddr,addr);
4870 if(s1h>=0) {
4871 emit_test(s1h,s1h);
4872 emit_cmovne_reg(alt,addr);
4873 emit_cmovs_reg(ntaddr,addr);
4874 }
4875 }
4876 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4877 {
4878 //emit_movimm(ba[i],alt);
4879 //emit_movimm(start+i*4+8,addr);
4880 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4881 if(s1h>=0) emit_test(s1h,s1h);
4882 else emit_test(s1l,s1l);
4883 emit_cmovs_reg(alt,addr);
4884 }
4885 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4886 {
4887 //emit_movimm(ba[i],addr);
4888 //emit_movimm(start+i*4+8,alt);
4889 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4890 if(s1h>=0) emit_test(s1h,s1h);
4891 else emit_test(s1l,s1l);
4892 emit_cmovs_reg(alt,addr);
4893 }
4894 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4895 if(source[i]&0x10000) // BC1T
4896 {
4897 //emit_movimm(ba[i],alt);
4898 //emit_movimm(start+i*4+8,addr);
4899 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4900 emit_testimm(s1l,0x800000);
4901 emit_cmovne_reg(alt,addr);
4902 }
4903 else // BC1F
4904 {
4905 //emit_movimm(ba[i],addr);
4906 //emit_movimm(start+i*4+8,alt);
4907 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4908 emit_testimm(s1l,0x800000);
4909 emit_cmovne_reg(alt,addr);
4910 }
4911 }
4912 emit_writeword(addr,(int)&pcaddr);
4913 }
4914 else
4915 if(itype[i]==RJUMP)
4916 {
4917 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4918 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4919 r=get_reg(branch_regs[i].regmap,RTEMP);
4920 }
4921 emit_writeword(r,(int)&pcaddr);
4922 }
4923 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4924 }
4925 // Update cycle count
4926 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4927 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4928 emit_call((int)cc_interrupt);
4929 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4930 if(stubs[n][6]==TAKEN) {
4931 if(internal_branch(branch_regs[i].is32,ba[i]))
4932 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4933 else if(itype[i]==RJUMP) {
4934 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4935 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4936 else
4937 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4938 }
4939 }else if(stubs[n][6]==NOTTAKEN) {
4940 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4941 else load_all_regs(branch_regs[i].regmap);
4942 }else if(stubs[n][6]==NULLDS) {
4943 // Delay slot instruction is nullified ("likely" branch)
4944 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4945 else load_all_regs(regs[i].regmap);
4946 }else{
4947 load_all_regs(branch_regs[i].regmap);
4948 }
4949 emit_jmp(stubs[n][2]); // return address
4950
4951 /* This works but uses a lot of memory...
4952 emit_readword((int)&last_count,ECX);
4953 emit_add(HOST_CCREG,ECX,EAX);
4954 emit_writeword(EAX,(int)&Count);
4955 emit_call((int)gen_interupt);
4956 emit_readword((int)&Count,HOST_CCREG);
4957 emit_readword((int)&next_interupt,EAX);
4958 emit_readword((int)&pending_exception,EBX);
4959 emit_writeword(EAX,(int)&last_count);
4960 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4961 emit_test(EBX,EBX);
4962 int jne_instr=(int)out;
4963 emit_jne(0);
4964 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4965 load_all_regs(branch_regs[i].regmap);
4966 emit_jmp(stubs[n][2]); // return address
4967 set_jump_target(jne_instr,(int)out);
4968 emit_readword((int)&pcaddr,EAX);
4969 // Call get_addr_ht instead of doing the hash table here.
4970 // This code is executed infrequently and takes up a lot of space
4971 // so smaller is better.
4972 emit_storereg(CCREG,HOST_CCREG);
4973 emit_pushreg(EAX);
4974 emit_call((int)get_addr_ht);
4975 emit_loadreg(CCREG,HOST_CCREG);
4976 emit_addimm(ESP,4,ESP);
4977 emit_jmpreg(EAX);*/
4978}
4979
4980add_to_linker(int addr,int target,int ext)
4981{
4982 link_addr[linkcount][0]=addr;
4983 link_addr[linkcount][1]=target;
4984 link_addr[linkcount][2]=ext;
4985 linkcount++;
4986}
4987
4988void ujump_assemble(int i,struct regstat *i_regs)
4989{
4990 signed char *i_regmap=i_regs->regmap;
4991 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4992 address_generation(i+1,i_regs,regs[i].regmap_entry);
4993 #ifdef REG_PREFETCH
4994 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4995 if(rt1[i]==31&&temp>=0)
4996 {
4997 int return_address=start+i*4+8;
4998 if(get_reg(branch_regs[i].regmap,31)>0)
4999 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5000 }
5001 #endif
5002 ds_assemble(i+1,i_regs);
5003 uint64_t bc_unneeded=branch_regs[i].u;
5004 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5005 bc_unneeded|=1|(1LL<<rt1[i]);
5006 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5007 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5008 bc_unneeded,bc_unneeded_upper);
5009 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5010 if(rt1[i]==31) {
5011 int rt;
5012 unsigned int return_address;
5013 assert(rt1[i+1]!=31);
5014 assert(rt2[i+1]!=31);
5015 rt=get_reg(branch_regs[i].regmap,31);
5016 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5017 //assert(rt>=0);
5018 return_address=start+i*4+8;
5019 if(rt>=0) {
5020 #ifdef USE_MINI_HT
5021 if(internal_branch(branch_regs[i].is32,return_address)) {
5022 int temp=rt+1;
5023 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5024 branch_regs[i].regmap[temp]>=0)
5025 {
5026 temp=get_reg(branch_regs[i].regmap,-1);
5027 }
5028 #ifdef HOST_TEMPREG
5029 if(temp<0) temp=HOST_TEMPREG;
5030 #endif
5031 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5032 else emit_movimm(return_address,rt);
5033 }
5034 else
5035 #endif
5036 {
5037 #ifdef REG_PREFETCH
5038 if(temp>=0)
5039 {
5040 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5041 }
5042 #endif
5043 emit_movimm(return_address,rt); // PC into link register
5044 #ifdef IMM_PREFETCH
5045 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5046 #endif
5047 }
5048 }
5049 }
5050 int cc,adj;
5051 cc=get_reg(branch_regs[i].regmap,CCREG);
5052 assert(cc==HOST_CCREG);
5053 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5054 #ifdef REG_PREFETCH
5055 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5056 #endif
5057 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5058 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5059 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5060 if(internal_branch(branch_regs[i].is32,ba[i]))
5061 assem_debug("branch: internal\n");
5062 else
5063 assem_debug("branch: external\n");
5064 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5065 ds_assemble_entry(i);
5066 }
5067 else {
5068 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5069 emit_jmp(0);
5070 }
5071}
5072
5073void rjump_assemble(int i,struct regstat *i_regs)
5074{
5075 signed char *i_regmap=i_regs->regmap;
5076 int temp;
5077 int rs,cc,adj;
5078 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5079 assert(rs>=0);
5080 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5081 // Delay slot abuse, make a copy of the branch address register
5082 temp=get_reg(branch_regs[i].regmap,RTEMP);
5083 assert(temp>=0);
5084 assert(regs[i].regmap[temp]==RTEMP);
5085 emit_mov(rs,temp);
5086 rs=temp;
5087 }
5088 address_generation(i+1,i_regs,regs[i].regmap_entry);
5089 #ifdef REG_PREFETCH
5090 if(rt1[i]==31)
5091 {
5092 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5093 int return_address=start+i*4+8;
5094 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5095 }
5096 }
5097 #endif
5098 #ifdef USE_MINI_HT
5099 if(rs1[i]==31) {
5100 int rh=get_reg(regs[i].regmap,RHASH);
5101 if(rh>=0) do_preload_rhash(rh);
5102 }
5103 #endif
5104 ds_assemble(i+1,i_regs);
5105 uint64_t bc_unneeded=branch_regs[i].u;
5106 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5107 bc_unneeded|=1|(1LL<<rt1[i]);
5108 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5109 bc_unneeded&=~(1LL<<rs1[i]);
5110 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5111 bc_unneeded,bc_unneeded_upper);
5112 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5113 if(rt1[i]!=0) {
5114 int rt,return_address;
5115 assert(rt1[i+1]!=rt1[i]);
5116 assert(rt2[i+1]!=rt1[i]);
5117 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5118 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5119 assert(rt>=0);
5120 return_address=start+i*4+8;
5121 #ifdef REG_PREFETCH
5122 if(temp>=0)
5123 {
5124 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5125 }
5126 #endif
5127 emit_movimm(return_address,rt); // PC into link register
5128 #ifdef IMM_PREFETCH
5129 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5130 #endif
5131 }
5132 cc=get_reg(branch_regs[i].regmap,CCREG);
5133 assert(cc==HOST_CCREG);
5134 #ifdef USE_MINI_HT
5135 int rh=get_reg(branch_regs[i].regmap,RHASH);
5136 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5137 if(rs1[i]==31) {
5138 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5139 do_preload_rhtbl(ht);
5140 do_rhash(rs,rh);
5141 }
5142 #endif
5143 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5144 #ifdef DESTRUCTIVE_WRITEBACK
5145 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5146 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5147 emit_loadreg(rs1[i],rs);
5148 }
5149 }
5150 #endif
5151 #ifdef REG_PREFETCH
5152 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5153 #endif
5154 #ifdef USE_MINI_HT
5155 if(rs1[i]==31) {
5156 do_miniht_load(ht,rh);
5157 }
5158 #endif
5159 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5160 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5161 //assert(adj==0);
5162 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5163 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5164 emit_jns(0);
5165 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5166 #ifdef USE_MINI_HT
5167 if(rs1[i]==31) {
5168 do_miniht_jump(rs,rh,ht);
5169 }
5170 else
5171 #endif
5172 {
5173 //if(rs!=EAX) emit_mov(rs,EAX);
5174 //emit_jmp((int)jump_vaddr_eax);
5175 emit_jmp(jump_vaddr_reg[rs]);
5176 }
5177 /* Check hash table
5178 temp=!rs;
5179 emit_mov(rs,temp);
5180 emit_shrimm(rs,16,rs);
5181 emit_xor(temp,rs,rs);
5182 emit_movzwl_reg(rs,rs);
5183 emit_shlimm(rs,4,rs);
5184 emit_cmpmem_indexed((int)hash_table,rs,temp);
5185 emit_jne((int)out+14);
5186 emit_readword_indexed((int)hash_table+4,rs,rs);
5187 emit_jmpreg(rs);
5188 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5189 emit_addimm_no_flags(8,rs);
5190 emit_jeq((int)out-17);
5191 // No hit on hash table, call compiler
5192 emit_pushreg(temp);
5193//DEBUG >
5194#ifdef DEBUG_CYCLE_COUNT
5195 emit_readword((int)&last_count,ECX);
5196 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5197 emit_readword((int)&next_interupt,ECX);
5198 emit_writeword(HOST_CCREG,(int)&Count);
5199 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5200 emit_writeword(ECX,(int)&last_count);
5201#endif
5202//DEBUG <
5203 emit_storereg(CCREG,HOST_CCREG);
5204 emit_call((int)get_addr);
5205 emit_loadreg(CCREG,HOST_CCREG);
5206 emit_addimm(ESP,4,ESP);
5207 emit_jmpreg(EAX);*/
5208 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5209 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5210 #endif
5211}
5212
5213void cjump_assemble(int i,struct regstat *i_regs)
5214{
5215 signed char *i_regmap=i_regs->regmap;
5216 int cc;
5217 int match;
5218 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5219 assem_debug("match=%d\n",match);
5220 int s1h,s1l,s2h,s2l;
5221 int prev_cop1_usable=cop1_usable;
5222 int unconditional=0,nop=0;
5223 int only32=0;
5224 int ooo=1;
5225 int invert=0;
5226 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5227 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5228 if(likely[i]) ooo=0;
5229 if(!match) invert=1;
5230 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5231 if(i>(ba[i]-start)>>2) invert=1;
5232 #endif
5233
5234 if(ooo)
5235 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5236 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5237 {
5238 // Write-after-read dependency prevents out of order execution
5239 // First test branch condition, then execute delay slot, then branch
5240 ooo=0;
5241 }
5242
5243 if(ooo) {
5244 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5245 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5246 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5247 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5248 }
5249 else {
5250 s1l=get_reg(i_regmap,rs1[i]);
5251 s1h=get_reg(i_regmap,rs1[i]|64);
5252 s2l=get_reg(i_regmap,rs2[i]);
5253 s2h=get_reg(i_regmap,rs2[i]|64);
5254 }
5255 if(rs1[i]==0&&rs2[i]==0)
5256 {
5257 if(opcode[i]&1) nop=1;
5258 else unconditional=1;
5259 //assert(opcode[i]!=5);
5260 //assert(opcode[i]!=7);
5261 //assert(opcode[i]!=0x15);
5262 //assert(opcode[i]!=0x17);
5263 }
5264 else if(rs1[i]==0)
5265 {
5266 s1l=s2l;s1h=s2h;
5267 s2l=s2h=-1;
5268 only32=(regs[i].was32>>rs2[i])&1;
5269 }
5270 else if(rs2[i]==0)
5271 {
5272 s2l=s2h=-1;
5273 only32=(regs[i].was32>>rs1[i])&1;
5274 }
5275 else {
5276 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5277 }
5278
5279 if(ooo) {
5280 // Out of order execution (delay slot first)
5281 //printf("OOOE\n");
5282 address_generation(i+1,i_regs,regs[i].regmap_entry);
5283 ds_assemble(i+1,i_regs);
5284 int adj;
5285 uint64_t bc_unneeded=branch_regs[i].u;
5286 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5287 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5288 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5289 bc_unneeded|=1;
5290 bc_unneeded_upper|=1;
5291 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5292 bc_unneeded,bc_unneeded_upper);
5293 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5294 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5295 cc=get_reg(branch_regs[i].regmap,CCREG);
5296 assert(cc==HOST_CCREG);
5297 if(unconditional)
5298 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5299 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5300 //assem_debug("cycle count (adj)\n");
5301 if(unconditional) {
5302 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5303 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5304 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5305 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5306 if(internal)
5307 assem_debug("branch: internal\n");
5308 else
5309 assem_debug("branch: external\n");
5310 if(internal&&is_ds[(ba[i]-start)>>2]) {
5311 ds_assemble_entry(i);
5312 }
5313 else {
5314 add_to_linker((int)out,ba[i],internal);
5315 emit_jmp(0);
5316 }
5317 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5318 if(((u_int)out)&7) emit_addnop(0);
5319 #endif
5320 }
5321 }
5322 else if(nop) {
5323 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5324 int jaddr=(int)out;
5325 emit_jns(0);
5326 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5327 }
5328 else {
5329 int taken=0,nottaken=0,nottaken1=0;
5330 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5331 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5332 if(!only32)
5333 {
5334 assert(s1h>=0);
5335 if(opcode[i]==4) // BEQ
5336 {
5337 if(s2h>=0) emit_cmp(s1h,s2h);
5338 else emit_test(s1h,s1h);
5339 nottaken1=(int)out;
5340 emit_jne(1);
5341 }
5342 if(opcode[i]==5) // BNE
5343 {
5344 if(s2h>=0) emit_cmp(s1h,s2h);
5345 else emit_test(s1h,s1h);
5346 if(invert) taken=(int)out;
5347 else add_to_linker((int)out,ba[i],internal);
5348 emit_jne(0);
5349 }
5350 if(opcode[i]==6) // BLEZ
5351 {
5352 emit_test(s1h,s1h);
5353 if(invert) taken=(int)out;
5354 else add_to_linker((int)out,ba[i],internal);
5355 emit_js(0);
5356 nottaken1=(int)out;
5357 emit_jne(1);
5358 }
5359 if(opcode[i]==7) // BGTZ
5360 {
5361 emit_test(s1h,s1h);
5362 nottaken1=(int)out;
5363 emit_js(1);
5364 if(invert) taken=(int)out;
5365 else add_to_linker((int)out,ba[i],internal);
5366 emit_jne(0);
5367 }
5368 } // if(!only32)
5369
5370 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5371 assert(s1l>=0);
5372 if(opcode[i]==4) // BEQ
5373 {
5374 if(s2l>=0) emit_cmp(s1l,s2l);
5375 else emit_test(s1l,s1l);
5376 if(invert){
5377 nottaken=(int)out;
5378 emit_jne(1);
5379 }else{
5380 add_to_linker((int)out,ba[i],internal);
5381 emit_jeq(0);
5382 }
5383 }
5384 if(opcode[i]==5) // BNE
5385 {
5386 if(s2l>=0) emit_cmp(s1l,s2l);
5387 else emit_test(s1l,s1l);
5388 if(invert){
5389 nottaken=(int)out;
5390 emit_jeq(1);
5391 }else{
5392 add_to_linker((int)out,ba[i],internal);
5393 emit_jne(0);
5394 }
5395 }
5396 if(opcode[i]==6) // BLEZ
5397 {
5398 emit_cmpimm(s1l,1);
5399 if(invert){
5400 nottaken=(int)out;
5401 emit_jge(1);
5402 }else{
5403 add_to_linker((int)out,ba[i],internal);
5404 emit_jl(0);
5405 }
5406 }
5407 if(opcode[i]==7) // BGTZ
5408 {
5409 emit_cmpimm(s1l,1);
5410 if(invert){
5411 nottaken=(int)out;
5412 emit_jl(1);
5413 }else{
5414 add_to_linker((int)out,ba[i],internal);
5415 emit_jge(0);
5416 }
5417 }
5418 if(invert) {
5419 if(taken) set_jump_target(taken,(int)out);
5420 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5421 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5422 if(adj) {
5423 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5424 add_to_linker((int)out,ba[i],internal);
5425 }else{
5426 emit_addnop(13);
5427 add_to_linker((int)out,ba[i],internal*2);
5428 }
5429 emit_jmp(0);
5430 }else
5431 #endif
5432 {
5433 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5434 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5435 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5436 if(internal)
5437 assem_debug("branch: internal\n");
5438 else
5439 assem_debug("branch: external\n");
5440 if(internal&&is_ds[(ba[i]-start)>>2]) {
5441 ds_assemble_entry(i);
5442 }
5443 else {
5444 add_to_linker((int)out,ba[i],internal);
5445 emit_jmp(0);
5446 }
5447 }
5448 set_jump_target(nottaken,(int)out);
5449 }
5450
5451 if(nottaken1) set_jump_target(nottaken1,(int)out);
5452 if(adj) {
5453 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5454 }
5455 } // (!unconditional)
5456 } // if(ooo)
5457 else
5458 {
5459 // In-order execution (branch first)
5460 //if(likely[i]) printf("IOL\n");
5461 //else
5462 //printf("IOE\n");
5463 int taken=0,nottaken=0,nottaken1=0;
5464 if(!unconditional&&!nop) {
5465 if(!only32)
5466 {
5467 assert(s1h>=0);
5468 if((opcode[i]&0x2f)==4) // BEQ
5469 {
5470 if(s2h>=0) emit_cmp(s1h,s2h);
5471 else emit_test(s1h,s1h);
5472 nottaken1=(int)out;
5473 emit_jne(2);
5474 }
5475 if((opcode[i]&0x2f)==5) // BNE
5476 {
5477 if(s2h>=0) emit_cmp(s1h,s2h);
5478 else emit_test(s1h,s1h);
5479 taken=(int)out;
5480 emit_jne(1);
5481 }
5482 if((opcode[i]&0x2f)==6) // BLEZ
5483 {
5484 emit_test(s1h,s1h);
5485 taken=(int)out;
5486 emit_js(1);
5487 nottaken1=(int)out;
5488 emit_jne(2);
5489 }
5490 if((opcode[i]&0x2f)==7) // BGTZ
5491 {
5492 emit_test(s1h,s1h);
5493 nottaken1=(int)out;
5494 emit_js(2);
5495 taken=(int)out;
5496 emit_jne(1);
5497 }
5498 } // if(!only32)
5499
5500 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5501 assert(s1l>=0);
5502 if((opcode[i]&0x2f)==4) // BEQ
5503 {
5504 if(s2l>=0) emit_cmp(s1l,s2l);
5505 else emit_test(s1l,s1l);
5506 nottaken=(int)out;
5507 emit_jne(2);
5508 }
5509 if((opcode[i]&0x2f)==5) // BNE
5510 {
5511 if(s2l>=0) emit_cmp(s1l,s2l);
5512 else emit_test(s1l,s1l);
5513 nottaken=(int)out;
5514 emit_jeq(2);
5515 }
5516 if((opcode[i]&0x2f)==6) // BLEZ
5517 {
5518 emit_cmpimm(s1l,1);
5519 nottaken=(int)out;
5520 emit_jge(2);
5521 }
5522 if((opcode[i]&0x2f)==7) // BGTZ
5523 {
5524 emit_cmpimm(s1l,1);
5525 nottaken=(int)out;
5526 emit_jl(2);
5527 }
5528 } // if(!unconditional)
5529 int adj;
5530 uint64_t ds_unneeded=branch_regs[i].u;
5531 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5532 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5533 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5534 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5535 ds_unneeded|=1;
5536 ds_unneeded_upper|=1;
5537 // branch taken
5538 if(!nop) {
5539 if(taken) set_jump_target(taken,(int)out);
5540 assem_debug("1:\n");
5541 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5542 ds_unneeded,ds_unneeded_upper);
5543 // load regs
5544 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5545 address_generation(i+1,&branch_regs[i],0);
5546 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5547 ds_assemble(i+1,&branch_regs[i]);
5548 cc=get_reg(branch_regs[i].regmap,CCREG);
5549 if(cc==-1) {
5550 emit_loadreg(CCREG,cc=HOST_CCREG);
5551 // CHECK: Is the following instruction (fall thru) allocated ok?
5552 }
5553 assert(cc==HOST_CCREG);
5554 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5555 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5556 assem_debug("cycle count (adj)\n");
5557 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5558 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5559 if(internal)
5560 assem_debug("branch: internal\n");
5561 else
5562 assem_debug("branch: external\n");
5563 if(internal&&is_ds[(ba[i]-start)>>2]) {
5564 ds_assemble_entry(i);
5565 }
5566 else {
5567 add_to_linker((int)out,ba[i],internal);
5568 emit_jmp(0);
5569 }
5570 }
5571 // branch not taken
5572 cop1_usable=prev_cop1_usable;
5573 if(!unconditional) {
5574 if(nottaken1) set_jump_target(nottaken1,(int)out);
5575 set_jump_target(nottaken,(int)out);
5576 assem_debug("2:\n");
5577 if(!likely[i]) {
5578 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5579 ds_unneeded,ds_unneeded_upper);
5580 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5581 address_generation(i+1,&branch_regs[i],0);
5582 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5583 ds_assemble(i+1,&branch_regs[i]);
5584 }
5585 cc=get_reg(branch_regs[i].regmap,CCREG);
5586 if(cc==-1&&!likely[i]) {
5587 // Cycle count isn't in a register, temporarily load it then write it out
5588 emit_loadreg(CCREG,HOST_CCREG);
5589 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5590 int jaddr=(int)out;
5591 emit_jns(0);
5592 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5593 emit_storereg(CCREG,HOST_CCREG);
5594 }
5595 else{
5596 cc=get_reg(i_regmap,CCREG);
5597 assert(cc==HOST_CCREG);
5598 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5599 int jaddr=(int)out;
5600 emit_jns(0);
5601 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5602 }
5603 }
5604 }
5605}
5606
5607void sjump_assemble(int i,struct regstat *i_regs)
5608{
5609 signed char *i_regmap=i_regs->regmap;
5610 int cc;
5611 int match;
5612 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5613 assem_debug("smatch=%d\n",match);
5614 int s1h,s1l;
5615 int prev_cop1_usable=cop1_usable;
5616 int unconditional=0,nevertaken=0;
5617 int only32=0;
5618 int ooo=1;
5619 int invert=0;
5620 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5621 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5622 if(likely[i]) ooo=0;
5623 if(!match) invert=1;
5624 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5625 if(i>(ba[i]-start)>>2) invert=1;
5626 #endif
5627
5628 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5629 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5630
5631 if(ooo)
5632 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5633 {
5634 // Write-after-read dependency prevents out of order execution
5635 // First test branch condition, then execute delay slot, then branch
5636 ooo=0;
5637 }
5638 assert(opcode2[i]<0x10||ooo); // FIXME (BxxZALL)
5639
5640 if(ooo) {
5641 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5642 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5643 }
5644 else {
5645 s1l=get_reg(i_regmap,rs1[i]);
5646 s1h=get_reg(i_regmap,rs1[i]|64);
5647 }
5648 if(rs1[i]==0)
5649 {
5650 if(opcode2[i]&1) unconditional=1;
5651 else nevertaken=1;
5652 // These are never taken (r0 is never less than zero)
5653 //assert(opcode2[i]!=0);
5654 //assert(opcode2[i]!=2);
5655 //assert(opcode2[i]!=0x10);
5656 //assert(opcode2[i]!=0x12);
5657 }
5658 else {
5659 only32=(regs[i].was32>>rs1[i])&1;
5660 }
5661
5662 if(ooo) {
5663 // Out of order execution (delay slot first)
5664 //printf("OOOE\n");
5665 address_generation(i+1,i_regs,regs[i].regmap_entry);
5666 ds_assemble(i+1,i_regs);
5667 int adj;
5668 uint64_t bc_unneeded=branch_regs[i].u;
5669 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5670 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5671 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5672 bc_unneeded|=1;
5673 bc_unneeded_upper|=1;
5674 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5675 bc_unneeded,bc_unneeded_upper);
5676 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5677 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5678 if(rt1[i]==31) {
5679 int rt,return_address;
5680 assert(rt1[i+1]!=31);
5681 assert(rt2[i+1]!=31);
5682 rt=get_reg(branch_regs[i].regmap,31);
5683 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5684 if(rt>=0) {
5685 // Save the PC even if the branch is not taken
5686 return_address=start+i*4+8;
5687 emit_movimm(return_address,rt); // PC into link register
5688 #ifdef IMM_PREFETCH
5689 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5690 #endif
5691 }
5692 }
5693 cc=get_reg(branch_regs[i].regmap,CCREG);
5694 assert(cc==HOST_CCREG);
5695 if(unconditional)
5696 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5697 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5698 assem_debug("cycle count (adj)\n");
5699 if(unconditional) {
5700 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5701 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5702 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5703 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5704 if(internal)
5705 assem_debug("branch: internal\n");
5706 else
5707 assem_debug("branch: external\n");
5708 if(internal&&is_ds[(ba[i]-start)>>2]) {
5709 ds_assemble_entry(i);
5710 }
5711 else {
5712 add_to_linker((int)out,ba[i],internal);
5713 emit_jmp(0);
5714 }
5715 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5716 if(((u_int)out)&7) emit_addnop(0);
5717 #endif
5718 }
5719 }
5720 else if(nevertaken) {
5721 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5722 int jaddr=(int)out;
5723 emit_jns(0);
5724 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5725 }
5726 else {
5727 int nottaken=0;
5728 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5729 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5730 if(!only32)
5731 {
5732 assert(s1h>=0);
5733 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5734 {
5735 emit_test(s1h,s1h);
5736 if(invert){
5737 nottaken=(int)out;
5738 emit_jns(1);
5739 }else{
5740 add_to_linker((int)out,ba[i],internal);
5741 emit_js(0);
5742 }
5743 }
5744 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5745 {
5746 emit_test(s1h,s1h);
5747 if(invert){
5748 nottaken=(int)out;
5749 emit_js(1);
5750 }else{
5751 add_to_linker((int)out,ba[i],internal);
5752 emit_jns(0);
5753 }
5754 }
5755 } // if(!only32)
5756 else
5757 {
5758 assert(s1l>=0);
5759 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5760 {
5761 emit_test(s1l,s1l);
5762 if(invert){
5763 nottaken=(int)out;
5764 emit_jns(1);
5765 }else{
5766 add_to_linker((int)out,ba[i],internal);
5767 emit_js(0);
5768 }
5769 }
5770 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5771 {
5772 emit_test(s1l,s1l);
5773 if(invert){
5774 nottaken=(int)out;
5775 emit_js(1);
5776 }else{
5777 add_to_linker((int)out,ba[i],internal);
5778 emit_jns(0);
5779 }
5780 }
5781 } // if(!only32)
5782
5783 if(invert) {
5784 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5785 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5786 if(adj) {
5787 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5788 add_to_linker((int)out,ba[i],internal);
5789 }else{
5790 emit_addnop(13);
5791 add_to_linker((int)out,ba[i],internal*2);
5792 }
5793 emit_jmp(0);
5794 }else
5795 #endif
5796 {
5797 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5798 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5799 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5800 if(internal)
5801 assem_debug("branch: internal\n");
5802 else
5803 assem_debug("branch: external\n");
5804 if(internal&&is_ds[(ba[i]-start)>>2]) {
5805 ds_assemble_entry(i);
5806 }
5807 else {
5808 add_to_linker((int)out,ba[i],internal);
5809 emit_jmp(0);
5810 }
5811 }
5812 set_jump_target(nottaken,(int)out);
5813 }
5814
5815 if(adj) {
5816 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5817 }
5818 } // (!unconditional)
5819 } // if(ooo)
5820 else
5821 {
5822 // In-order execution (branch first)
5823 //printf("IOE\n");
5824 int nottaken=0;
5825 if(!unconditional) {
5826 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5827 if(!only32)
5828 {
5829 assert(s1h>=0);
5830 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5831 {
5832 emit_test(s1h,s1h);
5833 nottaken=(int)out;
5834 emit_jns(1);
5835 }
5836 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5837 {
5838 emit_test(s1h,s1h);
5839 nottaken=(int)out;
5840 emit_js(1);
5841 }
5842 } // if(!only32)
5843 else
5844 {
5845 assert(s1l>=0);
5846 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5847 {
5848 emit_test(s1l,s1l);
5849 nottaken=(int)out;
5850 emit_jns(1);
5851 }
5852 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5853 {
5854 emit_test(s1l,s1l);
5855 nottaken=(int)out;
5856 emit_js(1);
5857 }
5858 }
5859 } // if(!unconditional)
5860 int adj;
5861 uint64_t ds_unneeded=branch_regs[i].u;
5862 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5863 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5864 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5865 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5866 ds_unneeded|=1;
5867 ds_unneeded_upper|=1;
5868 // branch taken
5869 if(!nevertaken) {
5870 //assem_debug("1:\n");
5871 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5872 ds_unneeded,ds_unneeded_upper);
5873 // load regs
5874 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5875 address_generation(i+1,&branch_regs[i],0);
5876 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5877 ds_assemble(i+1,&branch_regs[i]);
5878 cc=get_reg(branch_regs[i].regmap,CCREG);
5879 if(cc==-1) {
5880 emit_loadreg(CCREG,cc=HOST_CCREG);
5881 // CHECK: Is the following instruction (fall thru) allocated ok?
5882 }
5883 assert(cc==HOST_CCREG);
5884 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5885 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5886 assem_debug("cycle count (adj)\n");
5887 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5888 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5889 if(internal)
5890 assem_debug("branch: internal\n");
5891 else
5892 assem_debug("branch: external\n");
5893 if(internal&&is_ds[(ba[i]-start)>>2]) {
5894 ds_assemble_entry(i);
5895 }
5896 else {
5897 add_to_linker((int)out,ba[i],internal);
5898 emit_jmp(0);
5899 }
5900 }
5901 // branch not taken
5902 cop1_usable=prev_cop1_usable;
5903 if(!unconditional) {
5904 set_jump_target(nottaken,(int)out);
5905 assem_debug("1:\n");
5906 if(!likely[i]) {
5907 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5908 ds_unneeded,ds_unneeded_upper);
5909 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5910 address_generation(i+1,&branch_regs[i],0);
5911 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5912 ds_assemble(i+1,&branch_regs[i]);
5913 }
5914 cc=get_reg(branch_regs[i].regmap,CCREG);
5915 if(cc==-1&&!likely[i]) {
5916 // Cycle count isn't in a register, temporarily load it then write it out
5917 emit_loadreg(CCREG,HOST_CCREG);
5918 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5919 int jaddr=(int)out;
5920 emit_jns(0);
5921 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5922 emit_storereg(CCREG,HOST_CCREG);
5923 }
5924 else{
5925 cc=get_reg(i_regmap,CCREG);
5926 assert(cc==HOST_CCREG);
5927 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5928 int jaddr=(int)out;
5929 emit_jns(0);
5930 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5931 }
5932 }
5933 }
5934}
5935
5936void fjump_assemble(int i,struct regstat *i_regs)
5937{
5938 signed char *i_regmap=i_regs->regmap;
5939 int cc;
5940 int match;
5941 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5942 assem_debug("fmatch=%d\n",match);
5943 int fs,cs;
5944 int eaddr;
5945 int ooo=1;
5946 int invert=0;
5947 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5948 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5949 if(likely[i]) ooo=0;
5950 if(!match) invert=1;
5951 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5952 if(i>(ba[i]-start)>>2) invert=1;
5953 #endif
5954
5955 if(ooo)
5956 if(itype[i+1]==FCOMP)
5957 {
5958 // Write-after-read dependency prevents out of order execution
5959 // First test branch condition, then execute delay slot, then branch
5960 ooo=0;
5961 }
5962
5963 if(ooo) {
5964 fs=get_reg(branch_regs[i].regmap,FSREG);
5965 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5966 }
5967 else {
5968 fs=get_reg(i_regmap,FSREG);
5969 }
5970
5971 // Check cop1 unusable
5972 if(!cop1_usable) {
5973 cs=get_reg(i_regmap,CSREG);
5974 assert(cs>=0);
5975 emit_testimm(cs,0x20000000);
5976 eaddr=(int)out;
5977 emit_jeq(0);
5978 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5979 cop1_usable=1;
5980 }
5981
5982 if(ooo) {
5983 // Out of order execution (delay slot first)
5984 //printf("OOOE\n");
5985 ds_assemble(i+1,i_regs);
5986 int adj;
5987 uint64_t bc_unneeded=branch_regs[i].u;
5988 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5989 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5990 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5991 bc_unneeded|=1;
5992 bc_unneeded_upper|=1;
5993 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5994 bc_unneeded,bc_unneeded_upper);
5995 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5996 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5997 cc=get_reg(branch_regs[i].regmap,CCREG);
5998 assert(cc==HOST_CCREG);
5999 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6000 assem_debug("cycle count (adj)\n");
6001 if(1) {
6002 int nottaken=0;
6003 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6004 if(1) {
6005 assert(fs>=0);
6006 emit_testimm(fs,0x800000);
6007 if(source[i]&0x10000) // BC1T
6008 {
6009 if(invert){
6010 nottaken=(int)out;
6011 emit_jeq(1);
6012 }else{
6013 add_to_linker((int)out,ba[i],internal);
6014 emit_jne(0);
6015 }
6016 }
6017 else // BC1F
6018 if(invert){
6019 nottaken=(int)out;
6020 emit_jne(1);
6021 }else{
6022 add_to_linker((int)out,ba[i],internal);
6023 emit_jeq(0);
6024 }
6025 {
6026 }
6027 } // if(!only32)
6028
6029 if(invert) {
6030 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6031 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6032 else if(match) emit_addnop(13);
6033 #endif
6034 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6035 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6036 if(internal)
6037 assem_debug("branch: internal\n");
6038 else
6039 assem_debug("branch: external\n");
6040 if(internal&&is_ds[(ba[i]-start)>>2]) {
6041 ds_assemble_entry(i);
6042 }
6043 else {
6044 add_to_linker((int)out,ba[i],internal);
6045 emit_jmp(0);
6046 }
6047 set_jump_target(nottaken,(int)out);
6048 }
6049
6050 if(adj) {
6051 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6052 }
6053 } // (!unconditional)
6054 } // if(ooo)
6055 else
6056 {
6057 // In-order execution (branch first)
6058 //printf("IOE\n");
6059 int nottaken=0;
6060 if(1) {
6061 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6062 if(1) {
6063 assert(fs>=0);
6064 emit_testimm(fs,0x800000);
6065 if(source[i]&0x10000) // BC1T
6066 {
6067 nottaken=(int)out;
6068 emit_jeq(1);
6069 }
6070 else // BC1F
6071 {
6072 nottaken=(int)out;
6073 emit_jne(1);
6074 }
6075 }
6076 } // if(!unconditional)
6077 int adj;
6078 uint64_t ds_unneeded=branch_regs[i].u;
6079 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6080 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6081 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6082 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6083 ds_unneeded|=1;
6084 ds_unneeded_upper|=1;
6085 // branch taken
6086 //assem_debug("1:\n");
6087 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6088 ds_unneeded,ds_unneeded_upper);
6089 // load regs
6090 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6091 address_generation(i+1,&branch_regs[i],0);
6092 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6093 ds_assemble(i+1,&branch_regs[i]);
6094 cc=get_reg(branch_regs[i].regmap,CCREG);
6095 if(cc==-1) {
6096 emit_loadreg(CCREG,cc=HOST_CCREG);
6097 // CHECK: Is the following instruction (fall thru) allocated ok?
6098 }
6099 assert(cc==HOST_CCREG);
6100 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6101 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6102 assem_debug("cycle count (adj)\n");
6103 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6104 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6105 if(internal)
6106 assem_debug("branch: internal\n");
6107 else
6108 assem_debug("branch: external\n");
6109 if(internal&&is_ds[(ba[i]-start)>>2]) {
6110 ds_assemble_entry(i);
6111 }
6112 else {
6113 add_to_linker((int)out,ba[i],internal);
6114 emit_jmp(0);
6115 }
6116
6117 // branch not taken
6118 if(1) { // <- FIXME (don't need this)
6119 set_jump_target(nottaken,(int)out);
6120 assem_debug("1:\n");
6121 if(!likely[i]) {
6122 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6123 ds_unneeded,ds_unneeded_upper);
6124 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6125 address_generation(i+1,&branch_regs[i],0);
6126 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6127 ds_assemble(i+1,&branch_regs[i]);
6128 }
6129 cc=get_reg(branch_regs[i].regmap,CCREG);
6130 if(cc==-1&&!likely[i]) {
6131 // Cycle count isn't in a register, temporarily load it then write it out
6132 emit_loadreg(CCREG,HOST_CCREG);
6133 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6134 int jaddr=(int)out;
6135 emit_jns(0);
6136 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6137 emit_storereg(CCREG,HOST_CCREG);
6138 }
6139 else{
6140 cc=get_reg(i_regmap,CCREG);
6141 assert(cc==HOST_CCREG);
6142 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6143 int jaddr=(int)out;
6144 emit_jns(0);
6145 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6146 }
6147 }
6148 }
6149}
6150
6151static void pagespan_assemble(int i,struct regstat *i_regs)
6152{
6153 int s1l=get_reg(i_regs->regmap,rs1[i]);
6154 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6155 int s2l=get_reg(i_regs->regmap,rs2[i]);
6156 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6157 void *nt_branch=NULL;
6158 int taken=0;
6159 int nottaken=0;
6160 int unconditional=0;
6161 if(rs1[i]==0)
6162 {
6163 s1l=s2l;s1h=s2h;
6164 s2l=s2h=-1;
6165 }
6166 else if(rs2[i]==0)
6167 {
6168 s2l=s2h=-1;
6169 }
6170 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6171 s1h=s2h=-1;
6172 }
6173 int hr=0;
6174 int addr,alt,ntaddr;
6175 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6176 else {
6177 while(hr<HOST_REGS)
6178 {
6179 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6180 (i_regs->regmap[hr]&63)!=rs1[i] &&
6181 (i_regs->regmap[hr]&63)!=rs2[i] )
6182 {
6183 addr=hr++;break;
6184 }
6185 hr++;
6186 }
6187 }
6188 while(hr<HOST_REGS)
6189 {
6190 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6191 (i_regs->regmap[hr]&63)!=rs1[i] &&
6192 (i_regs->regmap[hr]&63)!=rs2[i] )
6193 {
6194 alt=hr++;break;
6195 }
6196 hr++;
6197 }
6198 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6199 {
6200 while(hr<HOST_REGS)
6201 {
6202 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6203 (i_regs->regmap[hr]&63)!=rs1[i] &&
6204 (i_regs->regmap[hr]&63)!=rs2[i] )
6205 {
6206 ntaddr=hr;break;
6207 }
6208 hr++;
6209 }
6210 }
6211 assert(hr<HOST_REGS);
6212 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6213 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6214 }
6215 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6216 if(opcode[i]==2) // J
6217 {
6218 unconditional=1;
6219 }
6220 if(opcode[i]==3) // JAL
6221 {
6222 // TODO: mini_ht
6223 int rt=get_reg(i_regs->regmap,31);
6224 emit_movimm(start+i*4+8,rt);
6225 unconditional=1;
6226 }
6227 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6228 {
6229 emit_mov(s1l,addr);
6230 if(opcode2[i]==9) // JALR
6231 {
6232 int rt=get_reg(i_regs->regmap,rt1[i]);
6233 emit_movimm(start+i*4+8,rt);
6234 }
6235 }
6236 if((opcode[i]&0x3f)==4) // BEQ
6237 {
6238 if(rs1[i]==rs2[i])
6239 {
6240 unconditional=1;
6241 }
6242 else
6243 #ifdef HAVE_CMOV_IMM
6244 if(s1h<0) {
6245 if(s2l>=0) emit_cmp(s1l,s2l);
6246 else emit_test(s1l,s1l);
6247 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6248 }
6249 else
6250 #endif
6251 {
6252 assert(s1l>=0);
6253 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6254 if(s1h>=0) {
6255 if(s2h>=0) emit_cmp(s1h,s2h);
6256 else emit_test(s1h,s1h);
6257 emit_cmovne_reg(alt,addr);
6258 }
6259 if(s2l>=0) emit_cmp(s1l,s2l);
6260 else emit_test(s1l,s1l);
6261 emit_cmovne_reg(alt,addr);
6262 }
6263 }
6264 if((opcode[i]&0x3f)==5) // BNE
6265 {
6266 #ifdef HAVE_CMOV_IMM
6267 if(s1h<0) {
6268 if(s2l>=0) emit_cmp(s1l,s2l);
6269 else emit_test(s1l,s1l);
6270 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6271 }
6272 else
6273 #endif
6274 {
6275 assert(s1l>=0);
6276 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6277 if(s1h>=0) {
6278 if(s2h>=0) emit_cmp(s1h,s2h);
6279 else emit_test(s1h,s1h);
6280 emit_cmovne_reg(alt,addr);
6281 }
6282 if(s2l>=0) emit_cmp(s1l,s2l);
6283 else emit_test(s1l,s1l);
6284 emit_cmovne_reg(alt,addr);
6285 }
6286 }
6287 if((opcode[i]&0x3f)==0x14) // BEQL
6288 {
6289 if(s1h>=0) {
6290 if(s2h>=0) emit_cmp(s1h,s2h);
6291 else emit_test(s1h,s1h);
6292 nottaken=(int)out;
6293 emit_jne(0);
6294 }
6295 if(s2l>=0) emit_cmp(s1l,s2l);
6296 else emit_test(s1l,s1l);
6297 if(nottaken) set_jump_target(nottaken,(int)out);
6298 nottaken=(int)out;
6299 emit_jne(0);
6300 }
6301 if((opcode[i]&0x3f)==0x15) // BNEL
6302 {
6303 if(s1h>=0) {
6304 if(s2h>=0) emit_cmp(s1h,s2h);
6305 else emit_test(s1h,s1h);
6306 taken=(int)out;
6307 emit_jne(0);
6308 }
6309 if(s2l>=0) emit_cmp(s1l,s2l);
6310 else emit_test(s1l,s1l);
6311 nottaken=(int)out;
6312 emit_jeq(0);
6313 if(taken) set_jump_target(taken,(int)out);
6314 }
6315 if((opcode[i]&0x3f)==6) // BLEZ
6316 {
6317 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6318 emit_cmpimm(s1l,1);
6319 if(s1h>=0) emit_mov(addr,ntaddr);
6320 emit_cmovl_reg(alt,addr);
6321 if(s1h>=0) {
6322 emit_test(s1h,s1h);
6323 emit_cmovne_reg(ntaddr,addr);
6324 emit_cmovs_reg(alt,addr);
6325 }
6326 }
6327 if((opcode[i]&0x3f)==7) // BGTZ
6328 {
6329 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6330 emit_cmpimm(s1l,1);
6331 if(s1h>=0) emit_mov(addr,alt);
6332 emit_cmovl_reg(ntaddr,addr);
6333 if(s1h>=0) {
6334 emit_test(s1h,s1h);
6335 emit_cmovne_reg(alt,addr);
6336 emit_cmovs_reg(ntaddr,addr);
6337 }
6338 }
6339 if((opcode[i]&0x3f)==0x16) // BLEZL
6340 {
6341 assert((opcode[i]&0x3f)!=0x16);
6342 }
6343 if((opcode[i]&0x3f)==0x17) // BGTZL
6344 {
6345 assert((opcode[i]&0x3f)!=0x17);
6346 }
6347 assert(opcode[i]!=1); // BLTZ/BGEZ
6348
6349 //FIXME: Check CSREG
6350 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6351 if((source[i]&0x30000)==0) // BC1F
6352 {
6353 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6354 emit_testimm(s1l,0x800000);
6355 emit_cmovne_reg(alt,addr);
6356 }
6357 if((source[i]&0x30000)==0x10000) // BC1T
6358 {
6359 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6360 emit_testimm(s1l,0x800000);
6361 emit_cmovne_reg(alt,addr);
6362 }
6363 if((source[i]&0x30000)==0x20000) // BC1FL
6364 {
6365 emit_testimm(s1l,0x800000);
6366 nottaken=(int)out;
6367 emit_jne(0);
6368 }
6369 if((source[i]&0x30000)==0x30000) // BC1TL
6370 {
6371 emit_testimm(s1l,0x800000);
6372 nottaken=(int)out;
6373 emit_jeq(0);
6374 }
6375 }
6376
6377 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6378 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6379 if(likely[i]||unconditional)
6380 {
6381 emit_movimm(ba[i],HOST_BTREG);
6382 }
6383 else if(addr!=HOST_BTREG)
6384 {
6385 emit_mov(addr,HOST_BTREG);
6386 }
6387 void *branch_addr=out;
6388 emit_jmp(0);
6389 int target_addr=start+i*4+5;
6390 void *stub=out;
6391 void *compiled_target_addr=check_addr(target_addr);
6392 emit_extjump_ds((int)branch_addr,target_addr);
6393 if(compiled_target_addr) {
6394 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6395 add_link(target_addr,stub);
6396 }
6397 else set_jump_target((int)branch_addr,(int)stub);
6398 if(likely[i]) {
6399 // Not-taken path
6400 set_jump_target((int)nottaken,(int)out);
6401 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6402 void *branch_addr=out;
6403 emit_jmp(0);
6404 int target_addr=start+i*4+8;
6405 void *stub=out;
6406 void *compiled_target_addr=check_addr(target_addr);
6407 emit_extjump_ds((int)branch_addr,target_addr);
6408 if(compiled_target_addr) {
6409 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6410 add_link(target_addr,stub);
6411 }
6412 else set_jump_target((int)branch_addr,(int)stub);
6413 }
6414}
6415
6416// Assemble the delay slot for the above
6417static void pagespan_ds()
6418{
6419 assem_debug("initial delay slot:\n");
6420 u_int vaddr=start+1;
6421 u_int page=get_page(vaddr);
6422 u_int vpage=get_vpage(vaddr);
6423 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6424 do_dirty_stub_ds();
6425 ll_add(jump_in+page,vaddr,(void *)out);
6426 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6427 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6428 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6429 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6430 emit_writeword(HOST_BTREG,(int)&branch_target);
6431 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6432 address_generation(0,&regs[0],regs[0].regmap_entry);
6433 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6434 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6435 cop1_usable=0;
6436 is_delayslot=0;
6437 switch(itype[0]) {
6438 case ALU:
6439 alu_assemble(0,&regs[0]);break;
6440 case IMM16:
6441 imm16_assemble(0,&regs[0]);break;
6442 case SHIFT:
6443 shift_assemble(0,&regs[0]);break;
6444 case SHIFTIMM:
6445 shiftimm_assemble(0,&regs[0]);break;
6446 case LOAD:
6447 load_assemble(0,&regs[0]);break;
6448 case LOADLR:
6449 loadlr_assemble(0,&regs[0]);break;
6450 case STORE:
6451 store_assemble(0,&regs[0]);break;
6452 case STORELR:
6453 storelr_assemble(0,&regs[0]);break;
6454 case COP0:
6455 cop0_assemble(0,&regs[0]);break;
6456 case COP1:
6457 cop1_assemble(0,&regs[0]);break;
6458 case C1LS:
6459 c1ls_assemble(0,&regs[0]);break;
6460 case COP2:
6461 cop2_assemble(0,&regs[0]);break;
6462 case C2LS:
6463 c2ls_assemble(0,&regs[0]);break;
6464 case C2OP:
6465 c2op_assemble(0,&regs[0]);break;
6466 case FCONV:
6467 fconv_assemble(0,&regs[0]);break;
6468 case FLOAT:
6469 float_assemble(0,&regs[0]);break;
6470 case FCOMP:
6471 fcomp_assemble(0,&regs[0]);break;
6472 case MULTDIV:
6473 multdiv_assemble(0,&regs[0]);break;
6474 case MOV:
6475 mov_assemble(0,&regs[0]);break;
6476 case SYSCALL:
6477 case HLECALL:
6478 case SPAN:
6479 case UJUMP:
6480 case RJUMP:
6481 case CJUMP:
6482 case SJUMP:
6483 case FJUMP:
6484 printf("Jump in the delay slot. This is probably a bug.\n");
6485 }
6486 int btaddr=get_reg(regs[0].regmap,BTREG);
6487 if(btaddr<0) {
6488 btaddr=get_reg(regs[0].regmap,-1);
6489 emit_readword((int)&branch_target,btaddr);
6490 }
6491 assert(btaddr!=HOST_CCREG);
6492 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6493#ifdef HOST_IMM8
6494 emit_movimm(start+4,HOST_TEMPREG);
6495 emit_cmp(btaddr,HOST_TEMPREG);
6496#else
6497 emit_cmpimm(btaddr,start+4);
6498#endif
6499 int branch=(int)out;
6500 emit_jeq(0);
6501 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6502 emit_jmp(jump_vaddr_reg[btaddr]);
6503 set_jump_target(branch,(int)out);
6504 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6505 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6506}
6507
6508// Basic liveness analysis for MIPS registers
6509void unneeded_registers(int istart,int iend,int r)
6510{
6511 int i;
6512 uint64_t u,uu,b,bu;
6513 uint64_t temp_u,temp_uu;
6514 uint64_t tdep;
6515 if(iend==slen-1) {
6516 u=1;uu=1;
6517 }else{
6518 u=unneeded_reg[iend+1];
6519 uu=unneeded_reg_upper[iend+1];
6520 u=1;uu=1;
6521 }
6522 for (i=iend;i>=istart;i--)
6523 {
6524 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6525 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6526 {
6527 // If subroutine call, flag return address as a possible branch target
6528 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6529
6530 if(ba[i]<start || ba[i]>=(start+slen*4))
6531 {
6532 // Branch out of this block, flush all regs
6533 u=1;
6534 uu=1;
6535 /* Hexagon hack
6536 if(itype[i]==UJUMP&&rt1[i]==31)
6537 {
6538 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6539 }
6540 if(itype[i]==RJUMP&&rs1[i]==31)
6541 {
6542 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6543 }
6544 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6545 if(itype[i]==UJUMP&&rt1[i]==31)
6546 {
6547 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6548 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6549 }
6550 if(itype[i]==RJUMP&&rs1[i]==31)
6551 {
6552 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6553 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6554 }
6555 }*/
6556 branch_unneeded_reg[i]=u;
6557 branch_unneeded_reg_upper[i]=uu;
6558 // Merge in delay slot
6559 tdep=(~uu>>rt1[i+1])&1;
6560 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6561 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6562 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6563 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6564 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6565 u|=1;uu|=1;
6566 // If branch is "likely" (and conditional)
6567 // then we skip the delay slot on the fall-thru path
6568 if(likely[i]) {
6569 if(i<slen-1) {
6570 u&=unneeded_reg[i+2];
6571 uu&=unneeded_reg_upper[i+2];
6572 }
6573 else
6574 {
6575 u=1;
6576 uu=1;
6577 }
6578 }
6579 }
6580 else
6581 {
6582 // Internal branch, flag target
6583 bt[(ba[i]-start)>>2]=1;
6584 if(ba[i]<=start+i*4) {
6585 // Backward branch
6586 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6587 {
6588 // Unconditional branch
6589 temp_u=1;temp_uu=1;
6590 } else {
6591 // Conditional branch (not taken case)
6592 temp_u=unneeded_reg[i+2];
6593 temp_uu=unneeded_reg_upper[i+2];
6594 }
6595 // Merge in delay slot
6596 tdep=(~temp_uu>>rt1[i+1])&1;
6597 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6598 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6599 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6600 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6601 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6602 temp_u|=1;temp_uu|=1;
6603 // If branch is "likely" (and conditional)
6604 // then we skip the delay slot on the fall-thru path
6605 if(likely[i]) {
6606 if(i<slen-1) {
6607 temp_u&=unneeded_reg[i+2];
6608 temp_uu&=unneeded_reg_upper[i+2];
6609 }
6610 else
6611 {
6612 temp_u=1;
6613 temp_uu=1;
6614 }
6615 }
6616 tdep=(~temp_uu>>rt1[i])&1;
6617 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6618 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6619 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6620 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6621 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6622 temp_u|=1;temp_uu|=1;
6623 unneeded_reg[i]=temp_u;
6624 unneeded_reg_upper[i]=temp_uu;
6625 // Only go three levels deep. This recursion can take an
6626 // excessive amount of time if there are a lot of nested loops.
6627 if(r<2) {
6628 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6629 }else{
6630 unneeded_reg[(ba[i]-start)>>2]=1;
6631 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6632 }
6633 } /*else*/ if(1) {
6634 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6635 {
6636 // Unconditional branch
6637 u=unneeded_reg[(ba[i]-start)>>2];
6638 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6639 branch_unneeded_reg[i]=u;
6640 branch_unneeded_reg_upper[i]=uu;
6641 //u=1;
6642 //uu=1;
6643 //branch_unneeded_reg[i]=u;
6644 //branch_unneeded_reg_upper[i]=uu;
6645 // Merge in delay slot
6646 tdep=(~uu>>rt1[i+1])&1;
6647 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6648 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6649 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6650 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6651 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6652 u|=1;uu|=1;
6653 } else {
6654 // Conditional branch
6655 b=unneeded_reg[(ba[i]-start)>>2];
6656 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6657 branch_unneeded_reg[i]=b;
6658 branch_unneeded_reg_upper[i]=bu;
6659 //b=1;
6660 //bu=1;
6661 //branch_unneeded_reg[i]=b;
6662 //branch_unneeded_reg_upper[i]=bu;
6663 // Branch delay slot
6664 tdep=(~uu>>rt1[i+1])&1;
6665 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6666 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6667 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6668 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6669 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6670 b|=1;bu|=1;
6671 // If branch is "likely" then we skip the
6672 // delay slot on the fall-thru path
6673 if(likely[i]) {
6674 u=b;
6675 uu=bu;
6676 if(i<slen-1) {
6677 u&=unneeded_reg[i+2];
6678 uu&=unneeded_reg_upper[i+2];
6679 //u=1;
6680 //uu=1;
6681 }
6682 } else {
6683 u&=b;
6684 uu&=bu;
6685 //u=1;
6686 //uu=1;
6687 }
6688 if(i<slen-1) {
6689 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6690 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6691 //branch_unneeded_reg[i]=1;
6692 //branch_unneeded_reg_upper[i]=1;
6693 } else {
6694 branch_unneeded_reg[i]=1;
6695 branch_unneeded_reg_upper[i]=1;
6696 }
6697 }
6698 }
6699 }
6700 }
6701 else if(itype[i]==SYSCALL||itype[i]==HLECALL)
6702 {
6703 // SYSCALL instruction (software interrupt)
6704 u=1;
6705 uu=1;
6706 }
6707 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6708 {
6709 // ERET instruction (return from interrupt)
6710 u=1;
6711 uu=1;
6712 }
6713 //u=uu=1; // DEBUG
6714 tdep=(~uu>>rt1[i])&1;
6715 // Written registers are unneeded
6716 u|=1LL<<rt1[i];
6717 u|=1LL<<rt2[i];
6718 uu|=1LL<<rt1[i];
6719 uu|=1LL<<rt2[i];
6720 // Accessed registers are needed
6721 u&=~(1LL<<rs1[i]);
6722 u&=~(1LL<<rs2[i]);
6723 uu&=~(1LL<<us1[i]);
6724 uu&=~(1LL<<us2[i]);
6725 // Source-target dependencies
6726 uu&=~(tdep<<dep1[i]);
6727 uu&=~(tdep<<dep2[i]);
6728 // R0 is always unneeded
6729 u|=1;uu|=1;
6730 // Save it
6731 unneeded_reg[i]=u;
6732 unneeded_reg_upper[i]=uu;
6733 /*
6734 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6735 printf("U:");
6736 int r;
6737 for(r=1;r<=CCREG;r++) {
6738 if((unneeded_reg[i]>>r)&1) {
6739 if(r==HIREG) printf(" HI");
6740 else if(r==LOREG) printf(" LO");
6741 else printf(" r%d",r);
6742 }
6743 }
6744 printf(" UU:");
6745 for(r=1;r<=CCREG;r++) {
6746 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6747 if(r==HIREG) printf(" HI");
6748 else if(r==LOREG) printf(" LO");
6749 else printf(" r%d",r);
6750 }
6751 }
6752 printf("\n");*/
6753 }
6754#ifdef FORCE32
6755 for (i=iend;i>=istart;i--)
6756 {
6757 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6758 }
6759#endif
6760}
6761
6762// Identify registers which are likely to contain 32-bit values
6763// This is used to predict whether any branches will jump to a
6764// location with 64-bit values in registers.
6765static void provisional_32bit()
6766{
6767 int i,j;
6768 uint64_t is32=1;
6769 uint64_t lastbranch=1;
6770
6771 for(i=0;i<slen;i++)
6772 {
6773 if(i>0) {
6774 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6775 if(i>1) is32=lastbranch;
6776 else is32=1;
6777 }
6778 }
6779 if(i>1)
6780 {
6781 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6782 if(likely[i-2]) {
6783 if(i>2) is32=lastbranch;
6784 else is32=1;
6785 }
6786 }
6787 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6788 {
6789 if(rs1[i-2]==0||rs2[i-2]==0)
6790 {
6791 if(rs1[i-2]) {
6792 is32|=1LL<<rs1[i-2];
6793 }
6794 if(rs2[i-2]) {
6795 is32|=1LL<<rs2[i-2];
6796 }
6797 }
6798 }
6799 }
6800 // If something jumps here with 64-bit values
6801 // then promote those registers to 64 bits
6802 if(bt[i])
6803 {
6804 uint64_t temp_is32=is32;
6805 for(j=i-1;j>=0;j--)
6806 {
6807 if(ba[j]==start+i*4)
6808 //temp_is32&=branch_regs[j].is32;
6809 temp_is32&=p32[j];
6810 }
6811 for(j=i;j<slen;j++)
6812 {
6813 if(ba[j]==start+i*4)
6814 temp_is32=1;
6815 }
6816 is32=temp_is32;
6817 }
6818 int type=itype[i];
6819 int op=opcode[i];
6820 int op2=opcode2[i];
6821 int rt=rt1[i];
6822 int s1=rs1[i];
6823 int s2=rs2[i];
6824 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6825 // Branches don't write registers, consider the delay slot instead.
6826 type=itype[i+1];
6827 op=opcode[i+1];
6828 op2=opcode2[i+1];
6829 rt=rt1[i+1];
6830 s1=rs1[i+1];
6831 s2=rs2[i+1];
6832 lastbranch=is32;
6833 }
6834 switch(type) {
6835 case LOAD:
6836 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6837 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6838 is32&=~(1LL<<rt);
6839 else
6840 is32|=1LL<<rt;
6841 break;
6842 case STORE:
6843 case STORELR:
6844 break;
6845 case LOADLR:
6846 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6847 if(op==0x22) is32|=1LL<<rt; // LWL
6848 break;
6849 case IMM16:
6850 if (op==0x08||op==0x09|| // ADDI/ADDIU
6851 op==0x0a||op==0x0b|| // SLTI/SLTIU
6852 op==0x0c|| // ANDI
6853 op==0x0f) // LUI
6854 {
6855 is32|=1LL<<rt;
6856 }
6857 if(op==0x18||op==0x19) { // DADDI/DADDIU
6858 is32&=~(1LL<<rt);
6859 //if(imm[i]==0)
6860 // is32|=((is32>>s1)&1LL)<<rt;
6861 }
6862 if(op==0x0d||op==0x0e) { // ORI/XORI
6863 uint64_t sr=((is32>>s1)&1LL);
6864 is32&=~(1LL<<rt);
6865 is32|=sr<<rt;
6866 }
6867 break;
6868 case UJUMP:
6869 break;
6870 case RJUMP:
6871 break;
6872 case CJUMP:
6873 break;
6874 case SJUMP:
6875 break;
6876 case FJUMP:
6877 break;
6878 case ALU:
6879 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6880 is32|=1LL<<rt;
6881 }
6882 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6883 is32|=1LL<<rt;
6884 }
6885 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6886 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6887 is32&=~(1LL<<rt);
6888 is32|=sr<<rt;
6889 }
6890 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6891 if(s1==0&&s2==0) {
6892 is32|=1LL<<rt;
6893 }
6894 else if(s2==0) {
6895 uint64_t sr=((is32>>s1)&1LL);
6896 is32&=~(1LL<<rt);
6897 is32|=sr<<rt;
6898 }
6899 else if(s1==0) {
6900 uint64_t sr=((is32>>s2)&1LL);
6901 is32&=~(1LL<<rt);
6902 is32|=sr<<rt;
6903 }
6904 else {
6905 is32&=~(1LL<<rt);
6906 }
6907 }
6908 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6909 if(s1==0&&s2==0) {
6910 is32|=1LL<<rt;
6911 }
6912 else if(s2==0) {
6913 uint64_t sr=((is32>>s1)&1LL);
6914 is32&=~(1LL<<rt);
6915 is32|=sr<<rt;
6916 }
6917 else {
6918 is32&=~(1LL<<rt);
6919 }
6920 }
6921 break;
6922 case MULTDIV:
6923 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6924 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6925 }
6926 else {
6927 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6928 }
6929 break;
6930 case MOV:
6931 {
6932 uint64_t sr=((is32>>s1)&1LL);
6933 is32&=~(1LL<<rt);
6934 is32|=sr<<rt;
6935 }
6936 break;
6937 case SHIFT:
6938 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6939 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6940 break;
6941 case SHIFTIMM:
6942 is32|=1LL<<rt;
6943 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6944 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6945 break;
6946 case COP0:
6947 if(op2==0) is32|=1LL<<rt; // MFC0
6948 break;
6949 case COP1:
6950 case COP2:
6951 if(op2==0) is32|=1LL<<rt; // MFC1
6952 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6953 if(op2==2) is32|=1LL<<rt; // CFC1
6954 break;
6955 case C1LS:
6956 case C2LS:
6957 break;
6958 case FLOAT:
6959 case FCONV:
6960 break;
6961 case FCOMP:
6962 break;
6963 case C2OP:
6964 case SYSCALL:
6965 case HLECALL:
6966 break;
6967 default:
6968 break;
6969 }
6970 is32|=1;
6971 p32[i]=is32;
6972
6973 if(i>0)
6974 {
6975 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6976 {
6977 if(rt1[i-1]==31) // JAL/JALR
6978 {
6979 // Subroutine call will return here, don't alloc any registers
6980 is32=1;
6981 }
6982 else if(i+1<slen)
6983 {
6984 // Internal branch will jump here, match registers to caller
6985 is32=0x3FFFFFFFFLL;
6986 }
6987 }
6988 }
6989 }
6990}
6991
6992// Identify registers which may be assumed to contain 32-bit values
6993// and where optimizations will rely on this.
6994// This is used to determine whether backward branches can safely
6995// jump to a location with 64-bit values in registers.
6996static void provisional_r32()
6997{
6998 u_int r32=0;
6999 int i;
7000
7001 for (i=slen-1;i>=0;i--)
7002 {
7003 int hr;
7004 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7005 {
7006 if(ba[i]<start || ba[i]>=(start+slen*4))
7007 {
7008 // Branch out of this block, don't need anything
7009 r32=0;
7010 }
7011 else
7012 {
7013 // Internal branch
7014 // Need whatever matches the target
7015 // (and doesn't get overwritten by the delay slot instruction)
7016 r32=0;
7017 int t=(ba[i]-start)>>2;
7018 if(ba[i]>start+i*4) {
7019 // Forward branch
7020 //if(!(requires_32bit[t]&~regs[i].was32))
7021 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7022 if(!(pr32[t]&~regs[i].was32))
7023 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7024 }else{
7025 // Backward branch
7026 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7027 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7028 }
7029 }
7030 // Conditional branch may need registers for following instructions
7031 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7032 {
7033 if(i<slen-2) {
7034 //r32|=requires_32bit[i+2];
7035 r32|=pr32[i+2];
7036 r32&=regs[i].was32;
7037 // Mark this address as a branch target since it may be called
7038 // upon return from interrupt
7039 //bt[i+2]=1;
7040 }
7041 }
7042 // Merge in delay slot
7043 if(!likely[i]) {
7044 // These are overwritten unless the branch is "likely"
7045 // and the delay slot is nullified if not taken
7046 r32&=~(1LL<<rt1[i+1]);
7047 r32&=~(1LL<<rt2[i+1]);
7048 }
7049 // Assume these are needed (delay slot)
7050 if(us1[i+1]>0)
7051 {
7052 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7053 }
7054 if(us2[i+1]>0)
7055 {
7056 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7057 }
7058 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7059 {
7060 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7061 }
7062 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7063 {
7064 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7065 }
7066 }
7067 else if(itype[i]==SYSCALL||itype[i]==HLECALL)
7068 {
7069 // SYSCALL instruction (software interrupt)
7070 r32=0;
7071 }
7072 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7073 {
7074 // ERET instruction (return from interrupt)
7075 r32=0;
7076 }
7077 // Check 32 bits
7078 r32&=~(1LL<<rt1[i]);
7079 r32&=~(1LL<<rt2[i]);
7080 if(us1[i]>0)
7081 {
7082 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7083 }
7084 if(us2[i]>0)
7085 {
7086 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7087 }
7088 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7089 {
7090 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7091 }
7092 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7093 {
7094 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7095 }
7096 //requires_32bit[i]=r32;
7097 pr32[i]=r32;
7098
7099 // Dirty registers which are 32-bit, require 32-bit input
7100 // as they will be written as 32-bit values
7101 for(hr=0;hr<HOST_REGS;hr++)
7102 {
7103 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7104 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7105 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7106 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7107 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7108 }
7109 }
7110 }
7111 }
7112}
7113
7114// Write back dirty registers as soon as we will no longer modify them,
7115// so that we don't end up with lots of writes at the branches.
7116void clean_registers(int istart,int iend,int wr)
7117{
7118 int i;
7119 int r;
7120 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7121 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7122 if(iend==slen-1) {
7123 will_dirty_i=will_dirty_next=0;
7124 wont_dirty_i=wont_dirty_next=0;
7125 }else{
7126 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7127 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7128 }
7129 for (i=iend;i>=istart;i--)
7130 {
7131 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7132 {
7133 if(ba[i]<start || ba[i]>=(start+slen*4))
7134 {
7135 // Branch out of this block, flush all regs
7136 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7137 {
7138 // Unconditional branch
7139 will_dirty_i=0;
7140 wont_dirty_i=0;
7141 // Merge in delay slot (will dirty)
7142 for(r=0;r<HOST_REGS;r++) {
7143 if(r!=EXCLUDE_REG) {
7144 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7145 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7146 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7147 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7148 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7149 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7150 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7151 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7152 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7153 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7154 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7155 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7156 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7157 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7158 }
7159 }
7160 }
7161 else
7162 {
7163 // Conditional branch
7164 will_dirty_i=0;
7165 wont_dirty_i=wont_dirty_next;
7166 // Merge in delay slot (will dirty)
7167 for(r=0;r<HOST_REGS;r++) {
7168 if(r!=EXCLUDE_REG) {
7169 if(!likely[i]) {
7170 // Might not dirty if likely branch is not taken
7171 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7172 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7173 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7174 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7175 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7176 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7177 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7178 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7179 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7180 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7181 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7182 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7183 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7184 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7185 }
7186 }
7187 }
7188 }
7189 // Merge in delay slot (wont dirty)
7190 for(r=0;r<HOST_REGS;r++) {
7191 if(r!=EXCLUDE_REG) {
7192 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7193 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7194 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7195 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7196 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7197 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7198 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7199 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7200 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7201 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7202 }
7203 }
7204 if(wr) {
7205 #ifndef DESTRUCTIVE_WRITEBACK
7206 branch_regs[i].dirty&=wont_dirty_i;
7207 #endif
7208 branch_regs[i].dirty|=will_dirty_i;
7209 }
7210 }
7211 else
7212 {
7213 // Internal branch
7214 if(ba[i]<=start+i*4) {
7215 // Backward branch
7216 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7217 {
7218 // Unconditional branch
7219 temp_will_dirty=0;
7220 temp_wont_dirty=0;
7221 // Merge in delay slot (will dirty)
7222 for(r=0;r<HOST_REGS;r++) {
7223 if(r!=EXCLUDE_REG) {
7224 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7225 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7226 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7227 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7228 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7229 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7230 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7231 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7232 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7233 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7234 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7235 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7236 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7237 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7238 }
7239 }
7240 } else {
7241 // Conditional branch (not taken case)
7242 temp_will_dirty=will_dirty_next;
7243 temp_wont_dirty=wont_dirty_next;
7244 // Merge in delay slot (will dirty)
7245 for(r=0;r<HOST_REGS;r++) {
7246 if(r!=EXCLUDE_REG) {
7247 if(!likely[i]) {
7248 // Will not dirty if likely branch is not taken
7249 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7250 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7251 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7252 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7253 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7254 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7255 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7256 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7257 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7258 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7259 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7260 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7261 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7262 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7263 }
7264 }
7265 }
7266 }
7267 // Merge in delay slot (wont dirty)
7268 for(r=0;r<HOST_REGS;r++) {
7269 if(r!=EXCLUDE_REG) {
7270 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7271 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7272 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7273 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7274 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7275 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7276 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7277 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7278 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7279 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7280 }
7281 }
7282 // Deal with changed mappings
7283 if(i<iend) {
7284 for(r=0;r<HOST_REGS;r++) {
7285 if(r!=EXCLUDE_REG) {
7286 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7287 temp_will_dirty&=~(1<<r);
7288 temp_wont_dirty&=~(1<<r);
7289 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7290 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7291 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7292 } else {
7293 temp_will_dirty|=1<<r;
7294 temp_wont_dirty|=1<<r;
7295 }
7296 }
7297 }
7298 }
7299 }
7300 if(wr) {
7301 will_dirty[i]=temp_will_dirty;
7302 wont_dirty[i]=temp_wont_dirty;
7303 clean_registers((ba[i]-start)>>2,i-1,0);
7304 }else{
7305 // Limit recursion. It can take an excessive amount
7306 // of time if there are a lot of nested loops.
7307 will_dirty[(ba[i]-start)>>2]=0;
7308 wont_dirty[(ba[i]-start)>>2]=-1;
7309 }
7310 }
7311 /*else*/ if(1)
7312 {
7313 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7314 {
7315 // Unconditional branch
7316 will_dirty_i=0;
7317 wont_dirty_i=0;
7318 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7319 for(r=0;r<HOST_REGS;r++) {
7320 if(r!=EXCLUDE_REG) {
7321 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7322 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7323 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7324 }
7325 }
7326 }
7327 //}
7328 // Merge in delay slot
7329 for(r=0;r<HOST_REGS;r++) {
7330 if(r!=EXCLUDE_REG) {
7331 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7332 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7333 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7334 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7335 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7336 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7337 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7338 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7339 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7340 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7341 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7342 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7343 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7344 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7345 }
7346 }
7347 } else {
7348 // Conditional branch
7349 will_dirty_i=will_dirty_next;
7350 wont_dirty_i=wont_dirty_next;
7351 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7352 for(r=0;r<HOST_REGS;r++) {
7353 if(r!=EXCLUDE_REG) {
7354 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7355 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7356 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7357 }
7358 else
7359 {
7360 will_dirty_i&=~(1<<r);
7361 }
7362 // Treat delay slot as part of branch too
7363 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7364 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7365 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7366 }
7367 else
7368 {
7369 will_dirty[i+1]&=~(1<<r);
7370 }*/
7371 }
7372 }
7373 //}
7374 // Merge in delay slot
7375 for(r=0;r<HOST_REGS;r++) {
7376 if(r!=EXCLUDE_REG) {
7377 if(!likely[i]) {
7378 // Might not dirty if likely branch is not taken
7379 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7380 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7381 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7382 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7383 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7384 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7385 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7386 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7387 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7388 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7389 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7390 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7391 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7392 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7393 }
7394 }
7395 }
7396 }
7397 // Merge in delay slot
7398 for(r=0;r<HOST_REGS;r++) {
7399 if(r!=EXCLUDE_REG) {
7400 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7401 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7402 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7403 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7404 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7405 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7406 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7407 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7408 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7409 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7410 }
7411 }
7412 if(wr) {
7413 #ifndef DESTRUCTIVE_WRITEBACK
7414 branch_regs[i].dirty&=wont_dirty_i;
7415 #endif
7416 branch_regs[i].dirty|=will_dirty_i;
7417 }
7418 }
7419 }
7420 }
7421 else if(itype[i]==SYSCALL||itype[i]==HLECALL)
7422 {
7423 // SYSCALL instruction (software interrupt)
7424 will_dirty_i=0;
7425 wont_dirty_i=0;
7426 }
7427 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7428 {
7429 // ERET instruction (return from interrupt)
7430 will_dirty_i=0;
7431 wont_dirty_i=0;
7432 }
7433 will_dirty_next=will_dirty_i;
7434 wont_dirty_next=wont_dirty_i;
7435 for(r=0;r<HOST_REGS;r++) {
7436 if(r!=EXCLUDE_REG) {
7437 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7438 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7439 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7440 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7441 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7442 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7443 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7444 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7445 if(i>istart) {
7446 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7447 {
7448 // Don't store a register immediately after writing it,
7449 // may prevent dual-issue.
7450 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7451 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7452 }
7453 }
7454 }
7455 }
7456 // Save it
7457 will_dirty[i]=will_dirty_i;
7458 wont_dirty[i]=wont_dirty_i;
7459 // Mark registers that won't be dirtied as not dirty
7460 if(wr) {
7461 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7462 for(r=0;r<HOST_REGS;r++) {
7463 if((will_dirty_i>>r)&1) {
7464 printf(" r%d",r);
7465 }
7466 }
7467 printf("\n");*/
7468
7469 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7470 regs[i].dirty|=will_dirty_i;
7471 #ifndef DESTRUCTIVE_WRITEBACK
7472 regs[i].dirty&=wont_dirty_i;
7473 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7474 {
7475 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7476 for(r=0;r<HOST_REGS;r++) {
7477 if(r!=EXCLUDE_REG) {
7478 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7479 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7480 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7481 }
7482 }
7483 }
7484 }
7485 else
7486 {
7487 if(i<iend) {
7488 for(r=0;r<HOST_REGS;r++) {
7489 if(r!=EXCLUDE_REG) {
7490 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7491 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7492 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7493 }
7494 }
7495 }
7496 }
7497 #endif
7498 //}
7499 }
7500 // Deal with changed mappings
7501 temp_will_dirty=will_dirty_i;
7502 temp_wont_dirty=wont_dirty_i;
7503 for(r=0;r<HOST_REGS;r++) {
7504 if(r!=EXCLUDE_REG) {
7505 int nr;
7506 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7507 if(wr) {
7508 #ifndef DESTRUCTIVE_WRITEBACK
7509 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7510 #endif
7511 regs[i].wasdirty|=will_dirty_i&(1<<r);
7512 }
7513 }
7514 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7515 // Register moved to a different register
7516 will_dirty_i&=~(1<<r);
7517 wont_dirty_i&=~(1<<r);
7518 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7519 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7520 if(wr) {
7521 #ifndef DESTRUCTIVE_WRITEBACK
7522 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7523 #endif
7524 regs[i].wasdirty|=will_dirty_i&(1<<r);
7525 }
7526 }
7527 else {
7528 will_dirty_i&=~(1<<r);
7529 wont_dirty_i&=~(1<<r);
7530 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7531 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7532 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7533 } else {
7534 wont_dirty_i|=1<<r;
7535 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7536 }
7537 }
7538 }
7539 }
7540 }
7541}
7542
7543 /* disassembly */
7544void disassemble_inst(int i)
7545{
7546 if (bt[i]) printf("*"); else printf(" ");
7547 switch(itype[i]) {
7548 case UJUMP:
7549 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7550 case CJUMP:
7551 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7552 case SJUMP:
7553 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7554 case FJUMP:
7555 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7556 case RJUMP:
7557 if (opcode[i]==0x9&&rt1[i]!=31)
7558 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7559 else
7560 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7561 break;
7562 case SPAN:
7563 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7564 case IMM16:
7565 if(opcode[i]==0xf) //LUI
7566 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7567 else
7568 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7569 break;
7570 case LOAD:
7571 case LOADLR:
7572 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7573 break;
7574 case STORE:
7575 case STORELR:
7576 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7577 break;
7578 case ALU:
7579 case SHIFT:
7580 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7581 break;
7582 case MULTDIV:
7583 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7584 break;
7585 case SHIFTIMM:
7586 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7587 break;
7588 case MOV:
7589 if((opcode2[i]&0x1d)==0x10)
7590 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7591 else if((opcode2[i]&0x1d)==0x11)
7592 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7593 else
7594 printf (" %x: %s\n",start+i*4,insn[i]);
7595 break;
7596 case COP0:
7597 if(opcode2[i]==0)
7598 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7599 else if(opcode2[i]==4)
7600 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7601 else printf (" %x: %s\n",start+i*4,insn[i]);
7602 break;
7603 case COP1:
7604 if(opcode2[i]<3)
7605 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7606 else if(opcode2[i]>3)
7607 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7608 else printf (" %x: %s\n",start+i*4,insn[i]);
7609 break;
7610 case COP2:
7611 if(opcode2[i]<3)
7612 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7613 else if(opcode2[i]>3)
7614 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7615 else printf (" %x: %s\n",start+i*4,insn[i]);
7616 break;
7617 case C1LS:
7618 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7619 break;
7620 case C2LS:
7621 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7622 break;
7623 default:
7624 //printf (" %s %8x\n",insn[i],source[i]);
7625 printf (" %x: %s\n",start+i*4,insn[i]);
7626 }
7627}
7628
7629void new_dynarec_init()
7630{
7631 printf("Init new dynarec\n");
7632 out=(u_char *)BASE_ADDR;
7633 if (mmap (out, 1<<TARGET_SIZE_2,
7634 PROT_READ | PROT_WRITE | PROT_EXEC,
7635 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7636 -1, 0) <= 0) {printf("mmap() failed\n");}
7637#ifdef MUPEN64
7638 rdword=&readmem_dword;
7639 fake_pc.f.r.rs=&readmem_dword;
7640 fake_pc.f.r.rt=&readmem_dword;
7641 fake_pc.f.r.rd=&readmem_dword;
7642#endif
7643 int n;
7644 for(n=0x80000;n<0x80800;n++)
7645 invalid_code[n]=1;
7646 for(n=0;n<65536;n++)
7647 hash_table[n][0]=hash_table[n][2]=-1;
7648 memset(mini_ht,-1,sizeof(mini_ht));
7649 memset(restore_candidate,0,sizeof(restore_candidate));
7650 copy=shadow;
7651 expirep=16384; // Expiry pointer, +2 blocks
7652 pending_exception=0;
7653 literalcount=0;
7654#ifdef HOST_IMM8
7655 // Copy this into local area so we don't have to put it in every literal pool
7656 invc_ptr=invalid_code;
7657#endif
7658 stop_after_jal=0;
7659 // TLB
7660 using_tlb=0;
7661 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7662 memory_map[n]=-1;
7663 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7664 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7665 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7666 memory_map[n]=-1;
7667#ifdef MUPEN64
7668 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7669 writemem[n] = write_nomem_new;
7670 writememb[n] = write_nomemb_new;
7671 writememh[n] = write_nomemh_new;
7672#ifndef FORCE32
7673 writememd[n] = write_nomemd_new;
7674#endif
7675 readmem[n] = read_nomem_new;
7676 readmemb[n] = read_nomemb_new;
7677 readmemh[n] = read_nomemh_new;
7678#ifndef FORCE32
7679 readmemd[n] = read_nomemd_new;
7680#endif
7681 }
7682 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7683 writemem[n] = write_rdram_new;
7684 writememb[n] = write_rdramb_new;
7685 writememh[n] = write_rdramh_new;
7686#ifndef FORCE32
7687 writememd[n] = write_rdramd_new;
7688#endif
7689 }
7690 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7691 writemem[n] = write_nomem_new;
7692 writememb[n] = write_nomemb_new;
7693 writememh[n] = write_nomemh_new;
7694#ifndef FORCE32
7695 writememd[n] = write_nomemd_new;
7696#endif
7697 readmem[n] = read_nomem_new;
7698 readmemb[n] = read_nomemb_new;
7699 readmemh[n] = read_nomemh_new;
7700#ifndef FORCE32
7701 readmemd[n] = read_nomemd_new;
7702#endif
7703 }
7704#endif
7705 tlb_hacks();
7706 arch_init();
7707}
7708
7709void new_dynarec_cleanup()
7710{
7711 int n;
7712 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7713 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7714 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7715 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7716 #ifdef ROM_COPY
7717 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7718 #endif
7719}
7720
7721int new_recompile_block(int addr)
7722{
7723/*
7724 if(addr==0x800cd050) {
7725 int block;
7726 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7727 int n;
7728 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7729 }
7730*/
7731 //if(Count==365117028) tracedebug=1;
7732 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7733 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7734 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7735 //if(debug)
7736 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7737 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7738 /*if(Count>=312978186) {
7739 rlist();
7740 }*/
7741 //rlist();
7742 start = (u_int)addr&~3;
7743 //assert(((u_int)addr&1)==0);
7744#ifdef PCSX
7745 if (Config.HLE && start == 0x80001000) {
7746 // XXX: is this enough? Maybe check hleSoftCall?
7747 u_int beginning=(u_int)out;
7748 u_int page=get_page(start);
7749 ll_add(jump_in+page,start,out);
7750 invalid_code[start>>12]=0;
7751 emit_movimm(start,0);
7752 emit_writeword(0,(int)&pcaddr);
7753 emit_jmp((int)new_dyna_leave);
7754#ifdef __arm__
7755 __clear_cache((void *)beginning,out);
7756#endif
7757 return 0;
7758 }
7759 else if ((u_int)addr < 0x00200000) {
7760 // used for BIOS calls mostly?
7761 source = (u_int *)((u_int)rdram+start-0);
7762 pagelimit = 0x00200000;
7763 }
7764 else
7765#endif
7766#ifdef MUPEN64
7767 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7768 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7769 pagelimit = 0xa4001000;
7770 }
7771 else
7772#endif
7773 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7774 source = (u_int *)((u_int)rdram+start-0x80000000);
7775 pagelimit = 0x80000000+RAM_SIZE;
7776 }
7777#ifndef DISABLE_TLB
7778 else if ((signed int)addr >= (signed int)0xC0000000) {
7779 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7780 //if(tlb_LUT_r[start>>12])
7781 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7782 if((signed int)memory_map[start>>12]>=0) {
7783 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7784 pagelimit=(start+4096)&0xFFFFF000;
7785 int map=memory_map[start>>12];
7786 int i;
7787 for(i=0;i<5;i++) {
7788 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7789 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7790 }
7791 assem_debug("pagelimit=%x\n",pagelimit);
7792 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7793 }
7794 else {
7795 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7796 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7797 return 1; // Caller will invoke exception handler
7798 }
7799 //printf("source= %x\n",(int)source);
7800 }
7801#endif
7802 else {
7803 printf("Compile at bogus memory address: %x \n", (int)addr);
7804 exit(1);
7805 }
7806
7807 /* Pass 1: disassemble */
7808 /* Pass 2: register dependencies, branch targets */
7809 /* Pass 3: register allocation */
7810 /* Pass 4: branch dependencies */
7811 /* Pass 5: pre-alloc */
7812 /* Pass 6: optimize clean/dirty state */
7813 /* Pass 7: flag 32-bit registers */
7814 /* Pass 8: assembly */
7815 /* Pass 9: linker */
7816 /* Pass 10: garbage collection / free memory */
7817
7818 int i,j;
7819 int done=0;
7820 unsigned int type,op,op2;
7821
7822 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7823
7824 /* Pass 1 disassembly */
7825
7826 for(i=0;!done;i++) {
7827 bt[i]=0;likely[i]=0;op2=0;
7828 opcode[i]=op=source[i]>>26;
7829 switch(op)
7830 {
7831 case 0x00: strcpy(insn[i],"special"); type=NI;
7832 op2=source[i]&0x3f;
7833 switch(op2)
7834 {
7835 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7836 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7837 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7838 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7839 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7840 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7841 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7842 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7843 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7844 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7845 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7846 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7847 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7848 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7849 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7850 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7851 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7852 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7853 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7854 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7855 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7856 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7857 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7858 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7859 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7860 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7861 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7862 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7863 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7864 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7865 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7866 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7867 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7868 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7869 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7870 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7871 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7872 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7873 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7874 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7875 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7876 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7877 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7878 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7879 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7880 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7881 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7882 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7883 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7884 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7885 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7886 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7887 }
7888 break;
7889 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7890 op2=(source[i]>>16)&0x1f;
7891 switch(op2)
7892 {
7893 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7894 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7895 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7896 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7897 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7898 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7899 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7900 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7901 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7902 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7903 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7904 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7905 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7906 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7907 }
7908 break;
7909 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7910 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7911 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7912 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7913 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7914 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7915 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7916 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7917 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7918 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7919 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7920 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7921 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7922 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7923 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7924 op2=(source[i]>>21)&0x1f;
7925 switch(op2)
7926 {
7927 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7928 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7929 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7930 switch(source[i]&0x3f)
7931 {
7932 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7933 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7934 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7935 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7936#ifdef PCSX
7937 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7938#else
7939 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7940#endif
7941 }
7942 }
7943 break;
7944 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7945 op2=(source[i]>>21)&0x1f;
7946 switch(op2)
7947 {
7948 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7949 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7950 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7951 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7952 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7953 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7954 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7955 switch((source[i]>>16)&0x3)
7956 {
7957 case 0x00: strcpy(insn[i],"BC1F"); break;
7958 case 0x01: strcpy(insn[i],"BC1T"); break;
7959 case 0x02: strcpy(insn[i],"BC1FL"); break;
7960 case 0x03: strcpy(insn[i],"BC1TL"); break;
7961 }
7962 break;
7963 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7964 switch(source[i]&0x3f)
7965 {
7966 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7967 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7968 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7969 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7970 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7971 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7972 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7973 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7974 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7975 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7976 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7977 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7978 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7979 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7980 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7981 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7982 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7983 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7984 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7985 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7986 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7987 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7988 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7989 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7990 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7991 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7992 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7993 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7994 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7995 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7996 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7997 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7998 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7999 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8000 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8001 }
8002 break;
8003 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8004 switch(source[i]&0x3f)
8005 {
8006 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8007 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8008 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8009 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8010 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8011 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8012 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8013 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8014 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8015 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8016 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8017 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8018 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8019 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8020 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8021 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8022 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8023 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8024 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8025 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8026 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8027 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8028 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8029 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8030 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8031 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8032 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8033 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8034 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8035 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8036 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8037 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8038 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8039 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8040 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8041 }
8042 break;
8043 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8044 switch(source[i]&0x3f)
8045 {
8046 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8047 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8048 }
8049 break;
8050 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8051 switch(source[i]&0x3f)
8052 {
8053 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8054 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8055 }
8056 break;
8057 }
8058 break;
8059 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8060 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8061 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8062 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8063#ifndef FORCE32
8064 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8065 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8066 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8067 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8068#endif
8069 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8070 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8071 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8072 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8073 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8074 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8075 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8076 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8077 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8078 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8079 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8080 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8081#ifndef FORCE32
8082 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8083 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8084#endif
8085 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8086 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8087 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8088 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8089#ifndef FORCE32
8090 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8091 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8092 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8093#endif
8094 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8095 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8096#ifndef FORCE32
8097 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8098 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8099 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8100#endif
8101#ifdef PCSX
8102 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8103 op2=(source[i]>>21)&0x1f;
8104 switch(op2)
8105 {
8106 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8107 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8108 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8109 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8110 default:
8111 if (gte_handlers[source[i]&0x3f]!=NULL) {
8112 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8113 type=C2OP;
8114 }
8115 break;
8116 }
8117 break;
8118 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8119 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8120 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8121#endif
8122 default: strcpy(insn[i],"???"); type=NI;
8123 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8124 break;
8125 }
8126 itype[i]=type;
8127 opcode2[i]=op2;
8128 /* Get registers/immediates */
8129 lt1[i]=0;
8130 us1[i]=0;
8131 us2[i]=0;
8132 dep1[i]=0;
8133 dep2[i]=0;
8134 switch(type) {
8135 case LOAD:
8136 rs1[i]=(source[i]>>21)&0x1f;
8137 rs2[i]=0;
8138 rt1[i]=(source[i]>>16)&0x1f;
8139 rt2[i]=0;
8140 imm[i]=(short)source[i];
8141 break;
8142 case STORE:
8143 case STORELR:
8144 rs1[i]=(source[i]>>21)&0x1f;
8145 rs2[i]=(source[i]>>16)&0x1f;
8146 rt1[i]=0;
8147 rt2[i]=0;
8148 imm[i]=(short)source[i];
8149 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8150 break;
8151 case LOADLR:
8152 // LWL/LWR only load part of the register,
8153 // therefore the target register must be treated as a source too
8154 rs1[i]=(source[i]>>21)&0x1f;
8155 rs2[i]=(source[i]>>16)&0x1f;
8156 rt1[i]=(source[i]>>16)&0x1f;
8157 rt2[i]=0;
8158 imm[i]=(short)source[i];
8159 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8160 if(op==0x26) dep1[i]=rt1[i]; // LWR
8161 break;
8162 case IMM16:
8163 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8164 else rs1[i]=(source[i]>>21)&0x1f;
8165 rs2[i]=0;
8166 rt1[i]=(source[i]>>16)&0x1f;
8167 rt2[i]=0;
8168 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8169 imm[i]=(unsigned short)source[i];
8170 }else{
8171 imm[i]=(short)source[i];
8172 }
8173 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8174 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8175 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8176 break;
8177 case UJUMP:
8178 rs1[i]=0;
8179 rs2[i]=0;
8180 rt1[i]=0;
8181 rt2[i]=0;
8182 // The JAL instruction writes to r31.
8183 if (op&1) {
8184 rt1[i]=31;
8185 }
8186 rs2[i]=CCREG;
8187 break;
8188 case RJUMP:
8189 rs1[i]=(source[i]>>21)&0x1f;
8190 rs2[i]=0;
8191 rt1[i]=0;
8192 rt2[i]=0;
8193 // The JALR instruction writes to rd.
8194 if (op2&1) {
8195 rt1[i]=(source[i]>>11)&0x1f;
8196 }
8197 rs2[i]=CCREG;
8198 break;
8199 case CJUMP:
8200 rs1[i]=(source[i]>>21)&0x1f;
8201 rs2[i]=(source[i]>>16)&0x1f;
8202 rt1[i]=0;
8203 rt2[i]=0;
8204 if(op&2) { // BGTZ/BLEZ
8205 rs2[i]=0;
8206 }
8207 us1[i]=rs1[i];
8208 us2[i]=rs2[i];
8209 likely[i]=op>>4;
8210 break;
8211 case SJUMP:
8212 rs1[i]=(source[i]>>21)&0x1f;
8213 rs2[i]=CCREG;
8214 rt1[i]=0;
8215 rt2[i]=0;
8216 us1[i]=rs1[i];
8217 if(op2&0x10) { // BxxAL
8218 rt1[i]=31;
8219 // NOTE: If the branch is not taken, r31 is still overwritten
8220 }
8221 likely[i]=(op2&2)>>1;
8222 break;
8223 case FJUMP:
8224 rs1[i]=FSREG;
8225 rs2[i]=CSREG;
8226 rt1[i]=0;
8227 rt2[i]=0;
8228 likely[i]=((source[i])>>17)&1;
8229 break;
8230 case ALU:
8231 rs1[i]=(source[i]>>21)&0x1f; // source
8232 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8233 rt1[i]=(source[i]>>11)&0x1f; // destination
8234 rt2[i]=0;
8235 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8236 us1[i]=rs1[i];us2[i]=rs2[i];
8237 }
8238 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8239 dep1[i]=rs1[i];dep2[i]=rs2[i];
8240 }
8241 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8242 dep1[i]=rs1[i];dep2[i]=rs2[i];
8243 }
8244 break;
8245 case MULTDIV:
8246 rs1[i]=(source[i]>>21)&0x1f; // source
8247 rs2[i]=(source[i]>>16)&0x1f; // divisor
8248 rt1[i]=HIREG;
8249 rt2[i]=LOREG;
8250 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8251 us1[i]=rs1[i];us2[i]=rs2[i];
8252 }
8253 break;
8254 case MOV:
8255 rs1[i]=0;
8256 rs2[i]=0;
8257 rt1[i]=0;
8258 rt2[i]=0;
8259 if(op2==0x10) rs1[i]=HIREG; // MFHI
8260 if(op2==0x11) rt1[i]=HIREG; // MTHI
8261 if(op2==0x12) rs1[i]=LOREG; // MFLO
8262 if(op2==0x13) rt1[i]=LOREG; // MTLO
8263 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8264 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8265 dep1[i]=rs1[i];
8266 break;
8267 case SHIFT:
8268 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8269 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8270 rt1[i]=(source[i]>>11)&0x1f; // destination
8271 rt2[i]=0;
8272 // DSLLV/DSRLV/DSRAV are 64-bit
8273 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8274 break;
8275 case SHIFTIMM:
8276 rs1[i]=(source[i]>>16)&0x1f;
8277 rs2[i]=0;
8278 rt1[i]=(source[i]>>11)&0x1f;
8279 rt2[i]=0;
8280 imm[i]=(source[i]>>6)&0x1f;
8281 // DSxx32 instructions
8282 if(op2>=0x3c) imm[i]|=0x20;
8283 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8284 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8285 break;
8286 case COP0:
8287 rs1[i]=0;
8288 rs2[i]=0;
8289 rt1[i]=0;
8290 rt2[i]=0;
8291 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8292 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8293 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8294 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8295 break;
8296 case COP1:
8297 case COP2:
8298 rs1[i]=0;
8299 rs2[i]=0;
8300 rt1[i]=0;
8301 rt2[i]=0;
8302 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8303 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8304 if(op2==5) us1[i]=rs1[i]; // DMTC1
8305 rs2[i]=CSREG;
8306 break;
8307 case C1LS:
8308 rs1[i]=(source[i]>>21)&0x1F;
8309 rs2[i]=CSREG;
8310 rt1[i]=0;
8311 rt2[i]=0;
8312 imm[i]=(short)source[i];
8313 break;
8314 case C2LS:
8315 rs1[i]=(source[i]>>21)&0x1F;
8316 rs2[i]=0;
8317 rt1[i]=0;
8318 rt2[i]=0;
8319 imm[i]=(short)source[i];
8320 break;
8321 case FLOAT:
8322 case FCONV:
8323 rs1[i]=0;
8324 rs2[i]=CSREG;
8325 rt1[i]=0;
8326 rt2[i]=0;
8327 break;
8328 case FCOMP:
8329 rs1[i]=FSREG;
8330 rs2[i]=CSREG;
8331 rt1[i]=FSREG;
8332 rt2[i]=0;
8333 break;
8334 case SYSCALL:
8335 case HLECALL:
8336 rs1[i]=CCREG;
8337 rs2[i]=0;
8338 rt1[i]=0;
8339 rt2[i]=0;
8340 break;
8341 default:
8342 rs1[i]=0;
8343 rs2[i]=0;
8344 rt1[i]=0;
8345 rt2[i]=0;
8346 }
8347 /* Calculate branch target addresses */
8348 if(type==UJUMP)
8349 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8350 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8351 ba[i]=start+i*4+8; // Ignore never taken branch
8352 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8353 ba[i]=start+i*4+8; // Ignore never taken branch
8354 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8355 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8356 else ba[i]=-1;
8357 /* Is this the end of the block? */
8358 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8359 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8360 done=1;
8361 // Does the block continue due to a branch?
8362 for(j=i-1;j>=0;j--)
8363 {
8364 if(ba[j]==start+i*4+4) done=j=0;
8365 if(ba[j]==start+i*4+8) done=j=0;
8366 }
8367 }
8368 else {
8369 if(stop_after_jal) done=1;
8370 // Stop on BREAK
8371 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8372 }
8373 // Don't recompile stuff that's already compiled
8374 if(check_addr(start+i*4+4)) done=1;
8375 // Don't get too close to the limit
8376 if(i>MAXBLOCK/2) done=1;
8377 }
8378 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8379 if(itype[i]==HLECALL) done=1;
8380 //assert(i<MAXBLOCK-1);
8381 if(start+i*4==pagelimit-4) done=1;
8382 assert(start+i*4<pagelimit);
8383 if (i==MAXBLOCK-1) done=1;
8384 // Stop if we're compiling junk
8385 if(itype[i]==NI&&opcode[i]==0x11) {
8386 done=stop_after_jal=1;
8387 printf("Disabled speculative precompilation\n");
8388 }
8389 }
8390 slen=i;
8391 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8392 if(start+i*4==pagelimit) {
8393 itype[i-1]=SPAN;
8394 }
8395 }
8396 assert(slen>0);
8397
8398 /* Pass 2 - Register dependencies and branch targets */
8399
8400 unneeded_registers(0,slen-1,0);
8401
8402 /* Pass 3 - Register allocation */
8403
8404 struct regstat current; // Current register allocations/status
8405 current.is32=1;
8406 current.dirty=0;
8407 current.u=unneeded_reg[0];
8408 current.uu=unneeded_reg_upper[0];
8409 clear_all_regs(current.regmap);
8410 alloc_reg(&current,0,CCREG);
8411 dirty_reg(&current,CCREG);
8412 current.isconst=0;
8413 current.wasconst=0;
8414 int ds=0;
8415 int cc=0;
8416 int hr;
8417
8418 provisional_32bit();
8419
8420 if((u_int)addr&1) {
8421 // First instruction is delay slot
8422 cc=-1;
8423 bt[1]=1;
8424 ds=1;
8425 unneeded_reg[0]=1;
8426 unneeded_reg_upper[0]=1;
8427 current.regmap[HOST_BTREG]=BTREG;
8428 }
8429
8430 for(i=0;i<slen;i++)
8431 {
8432 if(bt[i])
8433 {
8434 int hr;
8435 for(hr=0;hr<HOST_REGS;hr++)
8436 {
8437 // Is this really necessary?
8438 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8439 }
8440 current.isconst=0;
8441 }
8442 if(i>1)
8443 {
8444 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8445 {
8446 if(rs1[i-2]==0||rs2[i-2]==0)
8447 {
8448 if(rs1[i-2]) {
8449 current.is32|=1LL<<rs1[i-2];
8450 int hr=get_reg(current.regmap,rs1[i-2]|64);
8451 if(hr>=0) current.regmap[hr]=-1;
8452 }
8453 if(rs2[i-2]) {
8454 current.is32|=1LL<<rs2[i-2];
8455 int hr=get_reg(current.regmap,rs2[i-2]|64);
8456 if(hr>=0) current.regmap[hr]=-1;
8457 }
8458 }
8459 }
8460 }
8461 // If something jumps here with 64-bit values
8462 // then promote those registers to 64 bits
8463 if(bt[i])
8464 {
8465 uint64_t temp_is32=current.is32;
8466 for(j=i-1;j>=0;j--)
8467 {
8468 if(ba[j]==start+i*4)
8469 temp_is32&=branch_regs[j].is32;
8470 }
8471 for(j=i;j<slen;j++)
8472 {
8473 if(ba[j]==start+i*4)
8474 //temp_is32=1;
8475 temp_is32&=p32[j];
8476 }
8477 if(temp_is32!=current.is32) {
8478 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8479 #ifdef DESTRUCTIVE_WRITEBACK
8480 for(hr=0;hr<HOST_REGS;hr++)
8481 {
8482 int r=current.regmap[hr];
8483 if(r>0&&r<64)
8484 {
8485 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8486 temp_is32|=1LL<<r;
8487 //printf("restore %d\n",r);
8488 }
8489 }
8490 }
8491 #endif
8492 current.is32=temp_is32;
8493 }
8494 }
8495#ifdef FORCE32
8496 memset(p32, 0xff, sizeof(p32));
8497 current.is32=-1LL;
8498#endif
8499
8500 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8501 regs[i].wasconst=current.isconst;
8502 regs[i].was32=current.is32;
8503 regs[i].wasdirty=current.dirty;
8504 #ifdef DESTRUCTIVE_WRITEBACK
8505 // To change a dirty register from 32 to 64 bits, we must write
8506 // it out during the previous cycle (for branches, 2 cycles)
8507 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8508 {
8509 uint64_t temp_is32=current.is32;
8510 for(j=i-1;j>=0;j--)
8511 {
8512 if(ba[j]==start+i*4+4)
8513 temp_is32&=branch_regs[j].is32;
8514 }
8515 for(j=i;j<slen;j++)
8516 {
8517 if(ba[j]==start+i*4+4)
8518 //temp_is32=1;
8519 temp_is32&=p32[j];
8520 }
8521 if(temp_is32!=current.is32) {
8522 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8523 for(hr=0;hr<HOST_REGS;hr++)
8524 {
8525 int r=current.regmap[hr];
8526 if(r>0)
8527 {
8528 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8529 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8530 {
8531 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8532 {
8533 //printf("dump %d/r%d\n",hr,r);
8534 current.regmap[hr]=-1;
8535 if(get_reg(current.regmap,r|64)>=0)
8536 current.regmap[get_reg(current.regmap,r|64)]=-1;
8537 }
8538 }
8539 }
8540 }
8541 }
8542 }
8543 }
8544 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8545 {
8546 uint64_t temp_is32=current.is32;
8547 for(j=i-1;j>=0;j--)
8548 {
8549 if(ba[j]==start+i*4+8)
8550 temp_is32&=branch_regs[j].is32;
8551 }
8552 for(j=i;j<slen;j++)
8553 {
8554 if(ba[j]==start+i*4+8)
8555 //temp_is32=1;
8556 temp_is32&=p32[j];
8557 }
8558 if(temp_is32!=current.is32) {
8559 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8560 for(hr=0;hr<HOST_REGS;hr++)
8561 {
8562 int r=current.regmap[hr];
8563 if(r>0)
8564 {
8565 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8566 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8567 {
8568 //printf("dump %d/r%d\n",hr,r);
8569 current.regmap[hr]=-1;
8570 if(get_reg(current.regmap,r|64)>=0)
8571 current.regmap[get_reg(current.regmap,r|64)]=-1;
8572 }
8573 }
8574 }
8575 }
8576 }
8577 }
8578 #endif
8579 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8580 if(i+1<slen) {
8581 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8582 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8583 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8584 current.u|=1;
8585 current.uu|=1;
8586 } else {
8587 current.u=1;
8588 current.uu=1;
8589 }
8590 } else {
8591 if(i+1<slen) {
8592 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8593 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8594 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8595 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8596 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8597 current.u|=1;
8598 current.uu|=1;
8599 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8600 }
8601 is_ds[i]=ds;
8602 if(ds) {
8603 ds=0; // Skip delay slot, already allocated as part of branch
8604 // ...but we need to alloc it in case something jumps here
8605 if(i+1<slen) {
8606 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8607 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8608 }else{
8609 current.u=branch_unneeded_reg[i-1];
8610 current.uu=branch_unneeded_reg_upper[i-1];
8611 }
8612 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8613 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8614 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8615 current.u|=1;
8616 current.uu|=1;
8617 struct regstat temp;
8618 memcpy(&temp,&current,sizeof(current));
8619 temp.wasdirty=temp.dirty;
8620 temp.was32=temp.is32;
8621 // TODO: Take into account unconditional branches, as below
8622 delayslot_alloc(&temp,i);
8623 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8624 regs[i].wasdirty=temp.wasdirty;
8625 regs[i].was32=temp.was32;
8626 regs[i].dirty=temp.dirty;
8627 regs[i].is32=temp.is32;
8628 regs[i].isconst=0;
8629 regs[i].wasconst=0;
8630 current.isconst=0;
8631 // Create entry (branch target) regmap
8632 for(hr=0;hr<HOST_REGS;hr++)
8633 {
8634 int r=temp.regmap[hr];
8635 if(r>=0) {
8636 if(r!=regmap_pre[i][hr]) {
8637 regs[i].regmap_entry[hr]=-1;
8638 }
8639 else
8640 {
8641 if(r<64){
8642 if((current.u>>r)&1) {
8643 regs[i].regmap_entry[hr]=-1;
8644 regs[i].regmap[hr]=-1;
8645 //Don't clear regs in the delay slot as the branch might need them
8646 //current.regmap[hr]=-1;
8647 }else
8648 regs[i].regmap_entry[hr]=r;
8649 }
8650 else {
8651 if((current.uu>>(r&63))&1) {
8652 regs[i].regmap_entry[hr]=-1;
8653 regs[i].regmap[hr]=-1;
8654 //Don't clear regs in the delay slot as the branch might need them
8655 //current.regmap[hr]=-1;
8656 }else
8657 regs[i].regmap_entry[hr]=r;
8658 }
8659 }
8660 } else {
8661 // First instruction expects CCREG to be allocated
8662 if(i==0&&hr==HOST_CCREG)
8663 regs[i].regmap_entry[hr]=CCREG;
8664 else
8665 regs[i].regmap_entry[hr]=-1;
8666 }
8667 }
8668 }
8669 else { // Not delay slot
8670 switch(itype[i]) {
8671 case UJUMP:
8672 //current.isconst=0; // DEBUG
8673 //current.wasconst=0; // DEBUG
8674 //regs[i].wasconst=0; // DEBUG
8675 clear_const(&current,rt1[i]);
8676 alloc_cc(&current,i);
8677 dirty_reg(&current,CCREG);
8678 if (rt1[i]==31) {
8679 alloc_reg(&current,i,31);
8680 dirty_reg(&current,31);
8681 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8682 #ifdef REG_PREFETCH
8683 alloc_reg(&current,i,PTEMP);
8684 #endif
8685 //current.is32|=1LL<<rt1[i];
8686 }
8687 delayslot_alloc(&current,i+1);
8688 //current.isconst=0; // DEBUG
8689 ds=1;
8690 //printf("i=%d, isconst=%x\n",i,current.isconst);
8691 break;
8692 case RJUMP:
8693 //current.isconst=0;
8694 //current.wasconst=0;
8695 //regs[i].wasconst=0;
8696 clear_const(&current,rs1[i]);
8697 clear_const(&current,rt1[i]);
8698 alloc_cc(&current,i);
8699 dirty_reg(&current,CCREG);
8700 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8701 alloc_reg(&current,i,rs1[i]);
8702 if (rt1[i]!=0) {
8703 alloc_reg(&current,i,rt1[i]);
8704 dirty_reg(&current,rt1[i]);
8705 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8706 #ifdef REG_PREFETCH
8707 alloc_reg(&current,i,PTEMP);
8708 #endif
8709 }
8710 #ifdef USE_MINI_HT
8711 if(rs1[i]==31) { // JALR
8712 alloc_reg(&current,i,RHASH);
8713 #ifndef HOST_IMM_ADDR32
8714 alloc_reg(&current,i,RHTBL);
8715 #endif
8716 }
8717 #endif
8718 delayslot_alloc(&current,i+1);
8719 } else {
8720 // The delay slot overwrites our source register,
8721 // allocate a temporary register to hold the old value.
8722 current.isconst=0;
8723 current.wasconst=0;
8724 regs[i].wasconst=0;
8725 delayslot_alloc(&current,i+1);
8726 current.isconst=0;
8727 alloc_reg(&current,i,RTEMP);
8728 }
8729 //current.isconst=0; // DEBUG
8730 ds=1;
8731 break;
8732 case CJUMP:
8733 //current.isconst=0;
8734 //current.wasconst=0;
8735 //regs[i].wasconst=0;
8736 clear_const(&current,rs1[i]);
8737 clear_const(&current,rs2[i]);
8738 if((opcode[i]&0x3E)==4) // BEQ/BNE
8739 {
8740 alloc_cc(&current,i);
8741 dirty_reg(&current,CCREG);
8742 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8743 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8744 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8745 {
8746 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8747 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8748 }
8749 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8750 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8751 // The delay slot overwrites one of our conditions.
8752 // Allocate the branch condition registers instead.
8753 // Note that such a sequence of instructions could
8754 // be considered a bug since the branch can not be
8755 // re-executed if an exception occurs.
8756 current.isconst=0;
8757 current.wasconst=0;
8758 regs[i].wasconst=0;
8759 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8760 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8761 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8762 {
8763 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8764 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8765 }
8766 }
8767 else delayslot_alloc(&current,i+1);
8768 }
8769 else
8770 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8771 {
8772 alloc_cc(&current,i);
8773 dirty_reg(&current,CCREG);
8774 alloc_reg(&current,i,rs1[i]);
8775 if(!(current.is32>>rs1[i]&1))
8776 {
8777 alloc_reg64(&current,i,rs1[i]);
8778 }
8779 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8780 // The delay slot overwrites one of our conditions.
8781 // Allocate the branch condition registers instead.
8782 // Note that such a sequence of instructions could
8783 // be considered a bug since the branch can not be
8784 // re-executed if an exception occurs.
8785 current.isconst=0;
8786 current.wasconst=0;
8787 regs[i].wasconst=0;
8788 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8789 if(!((current.is32>>rs1[i])&1))
8790 {
8791 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8792 }
8793 }
8794 else delayslot_alloc(&current,i+1);
8795 }
8796 else
8797 // Don't alloc the delay slot yet because we might not execute it
8798 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8799 {
8800 current.isconst=0;
8801 current.wasconst=0;
8802 regs[i].wasconst=0;
8803 alloc_cc(&current,i);
8804 dirty_reg(&current,CCREG);
8805 alloc_reg(&current,i,rs1[i]);
8806 alloc_reg(&current,i,rs2[i]);
8807 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8808 {
8809 alloc_reg64(&current,i,rs1[i]);
8810 alloc_reg64(&current,i,rs2[i]);
8811 }
8812 }
8813 else
8814 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8815 {
8816 current.isconst=0;
8817 current.wasconst=0;
8818 regs[i].wasconst=0;
8819 alloc_cc(&current,i);
8820 dirty_reg(&current,CCREG);
8821 alloc_reg(&current,i,rs1[i]);
8822 if(!(current.is32>>rs1[i]&1))
8823 {
8824 alloc_reg64(&current,i,rs1[i]);
8825 }
8826 }
8827 ds=1;
8828 //current.isconst=0;
8829 break;
8830 case SJUMP:
8831 //current.isconst=0;
8832 //current.wasconst=0;
8833 //regs[i].wasconst=0;
8834 clear_const(&current,rs1[i]);
8835 clear_const(&current,rt1[i]);
8836 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8837 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8838 {
8839 alloc_cc(&current,i);
8840 dirty_reg(&current,CCREG);
8841 alloc_reg(&current,i,rs1[i]);
8842 if(!(current.is32>>rs1[i]&1))
8843 {
8844 alloc_reg64(&current,i,rs1[i]);
8845 }
8846 if (rt1[i]==31) { // BLTZAL/BGEZAL
8847 alloc_reg(&current,i,31);
8848 dirty_reg(&current,31);
8849 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8850 //#ifdef REG_PREFETCH
8851 //alloc_reg(&current,i,PTEMP);
8852 //#endif
8853 //current.is32|=1LL<<rt1[i];
8854 }
8855 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8856 // The delay slot overwrites the branch condition.
8857 // Allocate the branch condition registers instead.
8858 // Note that such a sequence of instructions could
8859 // be considered a bug since the branch can not be
8860 // re-executed if an exception occurs.
8861 current.isconst=0;
8862 current.wasconst=0;
8863 regs[i].wasconst=0;
8864 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8865 if(!((current.is32>>rs1[i])&1))
8866 {
8867 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8868 }
8869 }
8870 else delayslot_alloc(&current,i+1);
8871 }
8872 else
8873 // Don't alloc the delay slot yet because we might not execute it
8874 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8875 {
8876 current.isconst=0;
8877 current.wasconst=0;
8878 regs[i].wasconst=0;
8879 alloc_cc(&current,i);
8880 dirty_reg(&current,CCREG);
8881 alloc_reg(&current,i,rs1[i]);
8882 if(!(current.is32>>rs1[i]&1))
8883 {
8884 alloc_reg64(&current,i,rs1[i]);
8885 }
8886 }
8887 ds=1;
8888 //current.isconst=0;
8889 break;
8890 case FJUMP:
8891 current.isconst=0;
8892 current.wasconst=0;
8893 regs[i].wasconst=0;
8894 if(likely[i]==0) // BC1F/BC1T
8895 {
8896 // TODO: Theoretically we can run out of registers here on x86.
8897 // The delay slot can allocate up to six, and we need to check
8898 // CSREG before executing the delay slot. Possibly we can drop
8899 // the cycle count and then reload it after checking that the
8900 // FPU is in a usable state, or don't do out-of-order execution.
8901 alloc_cc(&current,i);
8902 dirty_reg(&current,CCREG);
8903 alloc_reg(&current,i,FSREG);
8904 alloc_reg(&current,i,CSREG);
8905 if(itype[i+1]==FCOMP) {
8906 // The delay slot overwrites the branch condition.
8907 // Allocate the branch condition registers instead.
8908 // Note that such a sequence of instructions could
8909 // be considered a bug since the branch can not be
8910 // re-executed if an exception occurs.
8911 alloc_cc(&current,i);
8912 dirty_reg(&current,CCREG);
8913 alloc_reg(&current,i,CSREG);
8914 alloc_reg(&current,i,FSREG);
8915 }
8916 else {
8917 delayslot_alloc(&current,i+1);
8918 alloc_reg(&current,i+1,CSREG);
8919 }
8920 }
8921 else
8922 // Don't alloc the delay slot yet because we might not execute it
8923 if(likely[i]) // BC1FL/BC1TL
8924 {
8925 alloc_cc(&current,i);
8926 dirty_reg(&current,CCREG);
8927 alloc_reg(&current,i,CSREG);
8928 alloc_reg(&current,i,FSREG);
8929 }
8930 ds=1;
8931 current.isconst=0;
8932 break;
8933 case IMM16:
8934 imm16_alloc(&current,i);
8935 break;
8936 case LOAD:
8937 case LOADLR:
8938 load_alloc(&current,i);
8939 break;
8940 case STORE:
8941 case STORELR:
8942 store_alloc(&current,i);
8943 break;
8944 case ALU:
8945 alu_alloc(&current,i);
8946 break;
8947 case SHIFT:
8948 shift_alloc(&current,i);
8949 break;
8950 case MULTDIV:
8951 multdiv_alloc(&current,i);
8952 break;
8953 case SHIFTIMM:
8954 shiftimm_alloc(&current,i);
8955 break;
8956 case MOV:
8957 mov_alloc(&current,i);
8958 break;
8959 case COP0:
8960 cop0_alloc(&current,i);
8961 break;
8962 case COP1:
8963 case COP2:
8964 cop1_alloc(&current,i);
8965 break;
8966 case C1LS:
8967 c1ls_alloc(&current,i);
8968 break;
8969 case C2LS:
8970 c2ls_alloc(&current,i);
8971 break;
8972 case C2OP:
8973 c2op_alloc(&current,i);
8974 break;
8975 case FCONV:
8976 fconv_alloc(&current,i);
8977 break;
8978 case FLOAT:
8979 float_alloc(&current,i);
8980 break;
8981 case FCOMP:
8982 fcomp_alloc(&current,i);
8983 break;
8984 case SYSCALL:
8985 case HLECALL:
8986 syscall_alloc(&current,i);
8987 break;
8988 case SPAN:
8989 pagespan_alloc(&current,i);
8990 break;
8991 }
8992
8993 // Drop the upper half of registers that have become 32-bit
8994 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8995 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8996 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8997 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8998 current.uu|=1;
8999 } else {
9000 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9001 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9002 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9003 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9004 current.uu|=1;
9005 }
9006
9007 // Create entry (branch target) regmap
9008 for(hr=0;hr<HOST_REGS;hr++)
9009 {
9010 int r,or,er;
9011 r=current.regmap[hr];
9012 if(r>=0) {
9013 if(r!=regmap_pre[i][hr]) {
9014 // TODO: delay slot (?)
9015 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9016 if(or<0||(r&63)>=TEMPREG){
9017 regs[i].regmap_entry[hr]=-1;
9018 }
9019 else
9020 {
9021 // Just move it to a different register
9022 regs[i].regmap_entry[hr]=r;
9023 // If it was dirty before, it's still dirty
9024 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9025 }
9026 }
9027 else
9028 {
9029 // Unneeded
9030 if(r==0){
9031 regs[i].regmap_entry[hr]=0;
9032 }
9033 else
9034 if(r<64){
9035 if((current.u>>r)&1) {
9036 regs[i].regmap_entry[hr]=-1;
9037 //regs[i].regmap[hr]=-1;
9038 current.regmap[hr]=-1;
9039 }else
9040 regs[i].regmap_entry[hr]=r;
9041 }
9042 else {
9043 if((current.uu>>(r&63))&1) {
9044 regs[i].regmap_entry[hr]=-1;
9045 //regs[i].regmap[hr]=-1;
9046 current.regmap[hr]=-1;
9047 }else
9048 regs[i].regmap_entry[hr]=r;
9049 }
9050 }
9051 } else {
9052 // Branches expect CCREG to be allocated at the target
9053 if(regmap_pre[i][hr]==CCREG)
9054 regs[i].regmap_entry[hr]=CCREG;
9055 else
9056 regs[i].regmap_entry[hr]=-1;
9057 }
9058 }
9059 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9060 }
9061 /* Branch post-alloc */
9062 if(i>0)
9063 {
9064 current.was32=current.is32;
9065 current.wasdirty=current.dirty;
9066 switch(itype[i-1]) {
9067 case UJUMP:
9068 memcpy(&branch_regs[i-1],&current,sizeof(current));
9069 branch_regs[i-1].isconst=0;
9070 branch_regs[i-1].wasconst=0;
9071 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9072 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9073 alloc_cc(&branch_regs[i-1],i-1);
9074 dirty_reg(&branch_regs[i-1],CCREG);
9075 if(rt1[i-1]==31) { // JAL
9076 alloc_reg(&branch_regs[i-1],i-1,31);
9077 dirty_reg(&branch_regs[i-1],31);
9078 branch_regs[i-1].is32|=1LL<<31;
9079 }
9080 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9081 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9082 break;
9083 case RJUMP:
9084 memcpy(&branch_regs[i-1],&current,sizeof(current));
9085 branch_regs[i-1].isconst=0;
9086 branch_regs[i-1].wasconst=0;
9087 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9088 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9089 alloc_cc(&branch_regs[i-1],i-1);
9090 dirty_reg(&branch_regs[i-1],CCREG);
9091 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9092 if(rt1[i-1]!=0) { // JALR
9093 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9094 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9095 branch_regs[i-1].is32|=1LL<<rt1[i-1];
9096 }
9097 #ifdef USE_MINI_HT
9098 if(rs1[i-1]==31) { // JALR
9099 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9100 #ifndef HOST_IMM_ADDR32
9101 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9102 #endif
9103 }
9104 #endif
9105 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9106 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9107 break;
9108 case CJUMP:
9109 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9110 {
9111 alloc_cc(&current,i-1);
9112 dirty_reg(&current,CCREG);
9113 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9114 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9115 // The delay slot overwrote one of our conditions
9116 // Delay slot goes after the test (in order)
9117 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9118 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9119 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9120 current.u|=1;
9121 current.uu|=1;
9122 delayslot_alloc(&current,i);
9123 current.isconst=0;
9124 }
9125 else
9126 {
9127 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9128 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9129 // Alloc the branch condition registers
9130 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9131 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9132 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9133 {
9134 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9135 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9136 }
9137 }
9138 memcpy(&branch_regs[i-1],&current,sizeof(current));
9139 branch_regs[i-1].isconst=0;
9140 branch_regs[i-1].wasconst=0;
9141 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9142 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9143 }
9144 else
9145 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9146 {
9147 alloc_cc(&current,i-1);
9148 dirty_reg(&current,CCREG);
9149 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9150 // The delay slot overwrote the branch condition
9151 // Delay slot goes after the test (in order)
9152 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9153 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9154 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9155 current.u|=1;
9156 current.uu|=1;
9157 delayslot_alloc(&current,i);
9158 current.isconst=0;
9159 }
9160 else
9161 {
9162 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9163 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9164 // Alloc the branch condition register
9165 alloc_reg(&current,i-1,rs1[i-1]);
9166 if(!(current.is32>>rs1[i-1]&1))
9167 {
9168 alloc_reg64(&current,i-1,rs1[i-1]);
9169 }
9170 }
9171 memcpy(&branch_regs[i-1],&current,sizeof(current));
9172 branch_regs[i-1].isconst=0;
9173 branch_regs[i-1].wasconst=0;
9174 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9175 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9176 }
9177 else
9178 // Alloc the delay slot in case the branch is taken
9179 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9180 {
9181 memcpy(&branch_regs[i-1],&current,sizeof(current));
9182 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9183 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9184 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9185 alloc_cc(&branch_regs[i-1],i);
9186 dirty_reg(&branch_regs[i-1],CCREG);
9187 delayslot_alloc(&branch_regs[i-1],i);
9188 branch_regs[i-1].isconst=0;
9189 alloc_reg(&current,i,CCREG); // Not taken path
9190 dirty_reg(&current,CCREG);
9191 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9192 }
9193 else
9194 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9195 {
9196 memcpy(&branch_regs[i-1],&current,sizeof(current));
9197 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9198 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9199 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9200 alloc_cc(&branch_regs[i-1],i);
9201 dirty_reg(&branch_regs[i-1],CCREG);
9202 delayslot_alloc(&branch_regs[i-1],i);
9203 branch_regs[i-1].isconst=0;
9204 alloc_reg(&current,i,CCREG); // Not taken path
9205 dirty_reg(&current,CCREG);
9206 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9207 }
9208 break;
9209 case SJUMP:
9210 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9211 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9212 {
9213 alloc_cc(&current,i-1);
9214 dirty_reg(&current,CCREG);
9215 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9216 // The delay slot overwrote the branch condition
9217 // Delay slot goes after the test (in order)
9218 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9219 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9220 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9221 current.u|=1;
9222 current.uu|=1;
9223 delayslot_alloc(&current,i);
9224 current.isconst=0;
9225 }
9226 else
9227 {
9228 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9229 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9230 // Alloc the branch condition register
9231 alloc_reg(&current,i-1,rs1[i-1]);
9232 if(!(current.is32>>rs1[i-1]&1))
9233 {
9234 alloc_reg64(&current,i-1,rs1[i-1]);
9235 }
9236 }
9237 memcpy(&branch_regs[i-1],&current,sizeof(current));
9238 branch_regs[i-1].isconst=0;
9239 branch_regs[i-1].wasconst=0;
9240 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9241 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9242 }
9243 else
9244 // Alloc the delay slot in case the branch is taken
9245 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9246 {
9247 memcpy(&branch_regs[i-1],&current,sizeof(current));
9248 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9249 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9250 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9251 alloc_cc(&branch_regs[i-1],i);
9252 dirty_reg(&branch_regs[i-1],CCREG);
9253 delayslot_alloc(&branch_regs[i-1],i);
9254 branch_regs[i-1].isconst=0;
9255 alloc_reg(&current,i,CCREG); // Not taken path
9256 dirty_reg(&current,CCREG);
9257 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9258 }
9259 // FIXME: BLTZAL/BGEZAL
9260 if(opcode2[i-1]&0x10) { // BxxZAL
9261 alloc_reg(&branch_regs[i-1],i-1,31);
9262 dirty_reg(&branch_regs[i-1],31);
9263 branch_regs[i-1].is32|=1LL<<31;
9264 }
9265 break;
9266 case FJUMP:
9267 if(likely[i-1]==0) // BC1F/BC1T
9268 {
9269 alloc_cc(&current,i-1);
9270 dirty_reg(&current,CCREG);
9271 if(itype[i]==FCOMP) {
9272 // The delay slot overwrote the branch condition
9273 // Delay slot goes after the test (in order)
9274 delayslot_alloc(&current,i);
9275 current.isconst=0;
9276 }
9277 else
9278 {
9279 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9280 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9281 // Alloc the branch condition register
9282 alloc_reg(&current,i-1,FSREG);
9283 }
9284 memcpy(&branch_regs[i-1],&current,sizeof(current));
9285 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9286 }
9287 else // BC1FL/BC1TL
9288 {
9289 // Alloc the delay slot in case the branch is taken
9290 memcpy(&branch_regs[i-1],&current,sizeof(current));
9291 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9292 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9293 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9294 alloc_cc(&branch_regs[i-1],i);
9295 dirty_reg(&branch_regs[i-1],CCREG);
9296 delayslot_alloc(&branch_regs[i-1],i);
9297 branch_regs[i-1].isconst=0;
9298 alloc_reg(&current,i,CCREG); // Not taken path
9299 dirty_reg(&current,CCREG);
9300 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9301 }
9302 break;
9303 }
9304
9305 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9306 {
9307 if(rt1[i-1]==31) // JAL/JALR
9308 {
9309 // Subroutine call will return here, don't alloc any registers
9310 current.is32=1;
9311 current.dirty=0;
9312 clear_all_regs(current.regmap);
9313 alloc_reg(&current,i,CCREG);
9314 dirty_reg(&current,CCREG);
9315 }
9316 else if(i+1<slen)
9317 {
9318 // Internal branch will jump here, match registers to caller
9319 current.is32=0x3FFFFFFFFLL;
9320 current.dirty=0;
9321 clear_all_regs(current.regmap);
9322 alloc_reg(&current,i,CCREG);
9323 dirty_reg(&current,CCREG);
9324 for(j=i-1;j>=0;j--)
9325 {
9326 if(ba[j]==start+i*4+4) {
9327 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9328 current.is32=branch_regs[j].is32;
9329 current.dirty=branch_regs[j].dirty;
9330 break;
9331 }
9332 }
9333 while(j>=0) {
9334 if(ba[j]==start+i*4+4) {
9335 for(hr=0;hr<HOST_REGS;hr++) {
9336 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9337 current.regmap[hr]=-1;
9338 }
9339 current.is32&=branch_regs[j].is32;
9340 current.dirty&=branch_regs[j].dirty;
9341 }
9342 }
9343 j--;
9344 }
9345 }
9346 }
9347 }
9348
9349 // Count cycles in between branches
9350 ccadj[i]=cc;
9351 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9352 {
9353 cc=0;
9354 }
9355 else
9356 {
9357 cc++;
9358 }
9359
9360 flush_dirty_uppers(&current);
9361 if(!is_ds[i]) {
9362 regs[i].is32=current.is32;
9363 regs[i].dirty=current.dirty;
9364 regs[i].isconst=current.isconst;
9365 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9366 }
9367 for(hr=0;hr<HOST_REGS;hr++) {
9368 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9369 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9370 regs[i].wasconst&=~(1<<hr);
9371 }
9372 }
9373 }
9374 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9375 }
9376
9377 /* Pass 4 - Cull unused host registers */
9378
9379 uint64_t nr=0;
9380
9381 for (i=slen-1;i>=0;i--)
9382 {
9383 int hr;
9384 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9385 {
9386 if(ba[i]<start || ba[i]>=(start+slen*4))
9387 {
9388 // Branch out of this block, don't need anything
9389 nr=0;
9390 }
9391 else
9392 {
9393 // Internal branch
9394 // Need whatever matches the target
9395 nr=0;
9396 int t=(ba[i]-start)>>2;
9397 for(hr=0;hr<HOST_REGS;hr++)
9398 {
9399 if(regs[i].regmap_entry[hr]>=0) {
9400 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9401 }
9402 }
9403 }
9404 // Conditional branch may need registers for following instructions
9405 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9406 {
9407 if(i<slen-2) {
9408 nr|=needed_reg[i+2];
9409 for(hr=0;hr<HOST_REGS;hr++)
9410 {
9411 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9412 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9413 }
9414 }
9415 }
9416 // Don't need stuff which is overwritten
9417 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9418 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9419 // Merge in delay slot
9420 for(hr=0;hr<HOST_REGS;hr++)
9421 {
9422 if(!likely[i]) {
9423 // These are overwritten unless the branch is "likely"
9424 // and the delay slot is nullified if not taken
9425 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9426 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9427 }
9428 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9429 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9430 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9431 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9432 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9433 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9434 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9435 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9436 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9437 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9438 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9439 }
9440 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9441 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9442 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9443 }
9444 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9445 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9446 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9447 }
9448 }
9449 }
9450 else if(itype[i]==SYSCALL||itype[i]==HLECALL)
9451 {
9452 // SYSCALL instruction (software interrupt)
9453 nr=0;
9454 }
9455 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9456 {
9457 // ERET instruction (return from interrupt)
9458 nr=0;
9459 }
9460 else // Non-branch
9461 {
9462 if(i<slen-1) {
9463 for(hr=0;hr<HOST_REGS;hr++) {
9464 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9465 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9466 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9467 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9468 }
9469 }
9470 }
9471 for(hr=0;hr<HOST_REGS;hr++)
9472 {
9473 // Overwritten registers are not needed
9474 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9475 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9476 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9477 // Source registers are needed
9478 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9479 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9480 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9481 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9482 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9483 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9484 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9485 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9486 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9487 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9488 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9489 }
9490 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9491 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9492 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9493 }
9494 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9495 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9496 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9497 }
9498 // Don't store a register immediately after writing it,
9499 // may prevent dual-issue.
9500 // But do so if this is a branch target, otherwise we
9501 // might have to load the register before the branch.
9502 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9503 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9504 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9505 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9506 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9507 }
9508 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9509 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9510 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9511 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9512 }
9513 }
9514 }
9515 // Cycle count is needed at branches. Assume it is needed at the target too.
9516 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9517 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9518 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9519 }
9520 // Save it
9521 needed_reg[i]=nr;
9522
9523 // Deallocate unneeded registers
9524 for(hr=0;hr<HOST_REGS;hr++)
9525 {
9526 if(!((nr>>hr)&1)) {
9527 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9528 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9529 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9530 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9531 {
9532 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9533 {
9534 if(likely[i]) {
9535 regs[i].regmap[hr]=-1;
9536 regs[i].isconst&=~(1<<hr);
9537 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9538 }
9539 }
9540 }
9541 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9542 {
9543 int d1=0,d2=0,map=0,temp=0;
9544 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9545 {
9546 d1=dep1[i+1];
9547 d2=dep2[i+1];
9548 }
9549 if(using_tlb) {
9550 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9551 itype[i+1]==STORE || itype[i+1]==STORELR ||
9552 itype[i+1]==C1LS || itype[i+1]==C2LS)
9553 map=TLREG;
9554 } else
9555 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9556 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9557 map=INVCP;
9558 }
9559 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9560 itype[i+1]==C1LS || itype[i+1]==C2LS)
9561 temp=FTEMP;
9562 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9563 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9564 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9565 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9566 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9567 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9568 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9569 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9570 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9571 regs[i].regmap[hr]!=map )
9572 {
9573 regs[i].regmap[hr]=-1;
9574 regs[i].isconst&=~(1<<hr);
9575 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9576 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9577 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9578 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9579 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9580 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9581 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9582 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9583 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9584 branch_regs[i].regmap[hr]!=map)
9585 {
9586 branch_regs[i].regmap[hr]=-1;
9587 branch_regs[i].regmap_entry[hr]=-1;
9588 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9589 {
9590 if(!likely[i]&&i<slen-2) {
9591 regmap_pre[i+2][hr]=-1;
9592 }
9593 }
9594 }
9595 }
9596 }
9597 else
9598 {
9599 // Non-branch
9600 if(i>0)
9601 {
9602 int d1=0,d2=0,map=-1,temp=-1;
9603 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9604 {
9605 d1=dep1[i];
9606 d2=dep2[i];
9607 }
9608 if(using_tlb) {
9609 if(itype[i]==LOAD || itype[i]==LOADLR ||
9610 itype[i]==STORE || itype[i]==STORELR ||
9611 itype[i]==C1LS || itype[i]==C2LS)
9612 map=TLREG;
9613 } else if(itype[i]==STORE || itype[i]==STORELR ||
9614 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9615 map=INVCP;
9616 }
9617 if(itype[i]==LOADLR || itype[i]==STORELR ||
9618 itype[i]==C1LS || itype[i]==C2LS)
9619 temp=FTEMP;
9620 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9621 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9622 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9623 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9624 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9625 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9626 {
9627 if(i<slen-1&&!is_ds[i]) {
9628 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9629 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9630 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9631 {
9632 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9633 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9634 }
9635 regmap_pre[i+1][hr]=-1;
9636 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9637 }
9638 regs[i].regmap[hr]=-1;
9639 regs[i].isconst&=~(1<<hr);
9640 }
9641 }
9642 }
9643 }
9644 }
9645 }
9646
9647 /* Pass 5 - Pre-allocate registers */
9648
9649 // If a register is allocated during a loop, try to allocate it for the
9650 // entire loop, if possible. This avoids loading/storing registers
9651 // inside of the loop.
9652
9653 signed char f_regmap[HOST_REGS];
9654 clear_all_regs(f_regmap);
9655 for(i=0;i<slen-1;i++)
9656 {
9657 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9658 {
9659 if(ba[i]>=start && ba[i]<(start+i*4))
9660 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9661 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9662 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9663 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9664 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9665 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9666 {
9667 int t=(ba[i]-start)>>2;
9668 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9669 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9670 for(hr=0;hr<HOST_REGS;hr++)
9671 {
9672 if(regs[i].regmap[hr]>64) {
9673 if(!((regs[i].dirty>>hr)&1))
9674 f_regmap[hr]=regs[i].regmap[hr];
9675 else f_regmap[hr]=-1;
9676 }
9677 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9678 if(branch_regs[i].regmap[hr]>64) {
9679 if(!((branch_regs[i].dirty>>hr)&1))
9680 f_regmap[hr]=branch_regs[i].regmap[hr];
9681 else f_regmap[hr]=-1;
9682 }
9683 else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
9684 if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9685 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9686 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9687 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9688 {
9689 // Test both in case the delay slot is ooo,
9690 // could be done better...
9691 if(count_free_regs(branch_regs[i].regmap)<2
9692 ||count_free_regs(regs[i].regmap)<2)
9693 f_regmap[hr]=branch_regs[i].regmap[hr];
9694 }
9695 // Avoid dirty->clean transition
9696 // #ifdef DESTRUCTIVE_WRITEBACK here?
9697 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9698 if(f_regmap[hr]>0) {
9699 if(regs[t].regmap_entry[hr]<0) {
9700 int r=f_regmap[hr];
9701 for(j=t;j<=i;j++)
9702 {
9703 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9704 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9705 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9706 if(r>63) {
9707 // NB This can exclude the case where the upper-half
9708 // register is lower numbered than the lower-half
9709 // register. Not sure if it's worth fixing...
9710 if(get_reg(regs[j].regmap,r&63)<0) break;
9711 if(regs[j].is32&(1LL<<(r&63))) break;
9712 }
9713 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9714 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9715 int k;
9716 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9717 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9718 if(r>63) {
9719 if(get_reg(regs[i].regmap,r&63)<0) break;
9720 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9721 }
9722 k=i;
9723 while(k>1&&regs[k-1].regmap[hr]==-1) {
9724 if(itype[k-1]==STORE||itype[k-1]==STORELR
9725 ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9726 ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9727 ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9728 if(count_free_regs(regs[k-1].regmap)<2) {
9729 //printf("no free regs for store %x\n",start+(k-1)*4);
9730 break;
9731 }
9732 }
9733 else
9734 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9735 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9736 //printf("no-match due to different register\n");
9737 break;
9738 }
9739 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9740 //printf("no-match due to branch\n");
9741 break;
9742 }
9743 // call/ret fast path assumes no registers allocated
9744 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9745 break;
9746 }
9747 if(r>63) {
9748 // NB This can exclude the case where the upper-half
9749 // register is lower numbered than the lower-half
9750 // register. Not sure if it's worth fixing...
9751 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9752 if(regs[k-1].is32&(1LL<<(r&63))) break;
9753 }
9754 k--;
9755 }
9756 if(i<slen-1) {
9757 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9758 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9759 //printf("bad match after branch\n");
9760 break;
9761 }
9762 }
9763 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9764 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9765 while(k<i) {
9766 regs[k].regmap_entry[hr]=f_regmap[hr];
9767 regs[k].regmap[hr]=f_regmap[hr];
9768 regmap_pre[k+1][hr]=f_regmap[hr];
9769 regs[k].wasdirty&=~(1<<hr);
9770 regs[k].dirty&=~(1<<hr);
9771 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9772 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9773 regs[k].wasconst&=~(1<<hr);
9774 regs[k].isconst&=~(1<<hr);
9775 k++;
9776 }
9777 }
9778 else {
9779 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9780 break;
9781 }
9782 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9783 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9784 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9785 regs[i].regmap_entry[hr]=f_regmap[hr];
9786 regs[i].regmap[hr]=f_regmap[hr];
9787 regs[i].wasdirty&=~(1<<hr);
9788 regs[i].dirty&=~(1<<hr);
9789 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9790 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9791 regs[i].wasconst&=~(1<<hr);
9792 regs[i].isconst&=~(1<<hr);
9793 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9794 branch_regs[i].wasdirty&=~(1<<hr);
9795 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9796 branch_regs[i].regmap[hr]=f_regmap[hr];
9797 branch_regs[i].dirty&=~(1<<hr);
9798 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9799 branch_regs[i].wasconst&=~(1<<hr);
9800 branch_regs[i].isconst&=~(1<<hr);
9801 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9802 regmap_pre[i+2][hr]=f_regmap[hr];
9803 regs[i+2].wasdirty&=~(1<<hr);
9804 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9805 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9806 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9807 }
9808 }
9809 }
9810 for(k=t;k<j;k++) {
9811 regs[k].regmap_entry[hr]=f_regmap[hr];
9812 regs[k].regmap[hr]=f_regmap[hr];
9813 regmap_pre[k+1][hr]=f_regmap[hr];
9814 regs[k+1].wasdirty&=~(1<<hr);
9815 regs[k].dirty&=~(1<<hr);
9816 regs[k].wasconst&=~(1<<hr);
9817 regs[k].isconst&=~(1<<hr);
9818 }
9819 if(regs[j].regmap[hr]==f_regmap[hr])
9820 regs[j].regmap_entry[hr]=f_regmap[hr];
9821 break;
9822 }
9823 if(j==i) break;
9824 if(regs[j].regmap[hr]>=0)
9825 break;
9826 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9827 //printf("no-match due to different register\n");
9828 break;
9829 }
9830 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9831 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9832 break;
9833 }
9834 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9835 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9836 ||itype[j]==FCOMP||itype[j]==FCONV
9837 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9838 if(count_free_regs(regs[j].regmap)<2) {
9839 //printf("No free regs for store %x\n",start+j*4);
9840 break;
9841 }
9842 }
9843 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9844 if(f_regmap[hr]>=64) {
9845 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9846 break;
9847 }
9848 else
9849 {
9850 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9851 break;
9852 }
9853 }
9854 }
9855 }
9856 }
9857 }
9858 }
9859 }
9860 }else{
9861 int count=0;
9862 for(hr=0;hr<HOST_REGS;hr++)
9863 {
9864 if(hr!=EXCLUDE_REG) {
9865 if(regs[i].regmap[hr]>64) {
9866 if(!((regs[i].dirty>>hr)&1))
9867 f_regmap[hr]=regs[i].regmap[hr];
9868 }
9869 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9870 else if(regs[i].regmap[hr]<0) count++;
9871 }
9872 }
9873 // Try to restore cycle count at branch targets
9874 if(bt[i]) {
9875 for(j=i;j<slen-1;j++) {
9876 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9877 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9878 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9879 ||itype[j]==FCOMP||itype[j]==FCONV
9880 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9881 if(count_free_regs(regs[j].regmap)<2) {
9882 //printf("no free regs for store %x\n",start+j*4);
9883 break;
9884 }
9885 }
9886 else
9887 if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9888 }
9889 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9890 int k=i;
9891 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9892 while(k<j) {
9893 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9894 regs[k].regmap[HOST_CCREG]=CCREG;
9895 regmap_pre[k+1][HOST_CCREG]=CCREG;
9896 regs[k+1].wasdirty|=1<<HOST_CCREG;
9897 regs[k].dirty|=1<<HOST_CCREG;
9898 regs[k].wasconst&=~(1<<HOST_CCREG);
9899 regs[k].isconst&=~(1<<HOST_CCREG);
9900 k++;
9901 }
9902 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9903 }
9904 // Work backwards from the branch target
9905 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9906 {
9907 //printf("Extend backwards\n");
9908 int k;
9909 k=i;
9910 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9911 if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9912 ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9913 ||itype[k-1]==FCONV||itype[k-1]==FCOMP
9914 ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9915 if(count_free_regs(regs[k-1].regmap)<2) {
9916 //printf("no free regs for store %x\n",start+(k-1)*4);
9917 break;
9918 }
9919 }
9920 else
9921 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9922 k--;
9923 }
9924 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9925 //printf("Extend CC, %x ->\n",start+k*4);
9926 while(k<=i) {
9927 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9928 regs[k].regmap[HOST_CCREG]=CCREG;
9929 regmap_pre[k+1][HOST_CCREG]=CCREG;
9930 regs[k+1].wasdirty|=1<<HOST_CCREG;
9931 regs[k].dirty|=1<<HOST_CCREG;
9932 regs[k].wasconst&=~(1<<HOST_CCREG);
9933 regs[k].isconst&=~(1<<HOST_CCREG);
9934 k++;
9935 }
9936 }
9937 else {
9938 //printf("Fail Extend CC, %x ->\n",start+k*4);
9939 }
9940 }
9941 }
9942 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9943 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9944 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9945 itype[i]!=FCONV&&itype[i]!=FCOMP&&
9946 itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
9947 {
9948 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9949 }
9950 }
9951 }
9952
9953 // This allocates registers (if possible) one instruction prior
9954 // to use, which can avoid a load-use penalty on certain CPUs.
9955 for(i=0;i<slen-1;i++)
9956 {
9957 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9958 {
9959 if(!bt[i+1])
9960 {
9961 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9962 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9963 {
9964 if(rs1[i+1]) {
9965 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9966 {
9967 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9968 {
9969 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9970 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9971 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9972 regs[i].isconst&=~(1<<hr);
9973 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9974 constmap[i][hr]=constmap[i+1][hr];
9975 regs[i+1].wasdirty&=~(1<<hr);
9976 regs[i].dirty&=~(1<<hr);
9977 }
9978 }
9979 }
9980 if(rs2[i+1]) {
9981 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9982 {
9983 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9984 {
9985 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9986 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9987 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9988 regs[i].isconst&=~(1<<hr);
9989 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9990 constmap[i][hr]=constmap[i+1][hr];
9991 regs[i+1].wasdirty&=~(1<<hr);
9992 regs[i].dirty&=~(1<<hr);
9993 }
9994 }
9995 }
9996 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9997 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9998 {
9999 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10000 {
10001 regs[i].regmap[hr]=rs1[i+1];
10002 regmap_pre[i+1][hr]=rs1[i+1];
10003 regs[i+1].regmap_entry[hr]=rs1[i+1];
10004 regs[i].isconst&=~(1<<hr);
10005 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10006 constmap[i][hr]=constmap[i+1][hr];
10007 regs[i+1].wasdirty&=~(1<<hr);
10008 regs[i].dirty&=~(1<<hr);
10009 }
10010 }
10011 }
10012 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10013 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10014 {
10015 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10016 {
10017 regs[i].regmap[hr]=rs1[i+1];
10018 regmap_pre[i+1][hr]=rs1[i+1];
10019 regs[i+1].regmap_entry[hr]=rs1[i+1];
10020 regs[i].isconst&=~(1<<hr);
10021 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10022 constmap[i][hr]=constmap[i+1][hr];
10023 regs[i+1].wasdirty&=~(1<<hr);
10024 regs[i].dirty&=~(1<<hr);
10025 }
10026 }
10027 }
10028 #ifndef HOST_IMM_ADDR32
10029 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10030 hr=get_reg(regs[i+1].regmap,TLREG);
10031 if(hr>=0) {
10032 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10033 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10034 int nr;
10035 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10036 {
10037 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10038 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10039 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10040 regs[i].isconst&=~(1<<hr);
10041 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10042 constmap[i][hr]=constmap[i+1][hr];
10043 regs[i+1].wasdirty&=~(1<<hr);
10044 regs[i].dirty&=~(1<<hr);
10045 }
10046 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10047 {
10048 // move it to another register
10049 regs[i+1].regmap[hr]=-1;
10050 regmap_pre[i+2][hr]=-1;
10051 regs[i+1].regmap[nr]=TLREG;
10052 regmap_pre[i+2][nr]=TLREG;
10053 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10054 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10055 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10056 regs[i].isconst&=~(1<<nr);
10057 regs[i+1].isconst&=~(1<<nr);
10058 regs[i].dirty&=~(1<<nr);
10059 regs[i+1].wasdirty&=~(1<<nr);
10060 regs[i+1].dirty&=~(1<<nr);
10061 regs[i+2].wasdirty&=~(1<<nr);
10062 }
10063 }
10064 }
10065 }
10066 #endif
10067 if(itype[i+1]==STORE||itype[i+1]==STORELR
10068 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10069 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10070 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10071 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10072 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10073 assert(hr>=0);
10074 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10075 {
10076 regs[i].regmap[hr]=rs1[i+1];
10077 regmap_pre[i+1][hr]=rs1[i+1];
10078 regs[i+1].regmap_entry[hr]=rs1[i+1];
10079 regs[i].isconst&=~(1<<hr);
10080 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10081 constmap[i][hr]=constmap[i+1][hr];
10082 regs[i+1].wasdirty&=~(1<<hr);
10083 regs[i].dirty&=~(1<<hr);
10084 }
10085 }
10086 }
10087 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10088 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10089 int nr;
10090 hr=get_reg(regs[i+1].regmap,FTEMP);
10091 assert(hr>=0);
10092 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10093 {
10094 regs[i].regmap[hr]=rs1[i+1];
10095 regmap_pre[i+1][hr]=rs1[i+1];
10096 regs[i+1].regmap_entry[hr]=rs1[i+1];
10097 regs[i].isconst&=~(1<<hr);
10098 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10099 constmap[i][hr]=constmap[i+1][hr];
10100 regs[i+1].wasdirty&=~(1<<hr);
10101 regs[i].dirty&=~(1<<hr);
10102 }
10103 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10104 {
10105 // move it to another register
10106 regs[i+1].regmap[hr]=-1;
10107 regmap_pre[i+2][hr]=-1;
10108 regs[i+1].regmap[nr]=FTEMP;
10109 regmap_pre[i+2][nr]=FTEMP;
10110 regs[i].regmap[nr]=rs1[i+1];
10111 regmap_pre[i+1][nr]=rs1[i+1];
10112 regs[i+1].regmap_entry[nr]=rs1[i+1];
10113 regs[i].isconst&=~(1<<nr);
10114 regs[i+1].isconst&=~(1<<nr);
10115 regs[i].dirty&=~(1<<nr);
10116 regs[i+1].wasdirty&=~(1<<nr);
10117 regs[i+1].dirty&=~(1<<nr);
10118 regs[i+2].wasdirty&=~(1<<nr);
10119 }
10120 }
10121 }
10122 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10123 if(itype[i+1]==LOAD)
10124 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10125 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10126 hr=get_reg(regs[i+1].regmap,FTEMP);
10127 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10128 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10129 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10130 }
10131 if(hr>=0&&regs[i].regmap[hr]<0) {
10132 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10133 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10134 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10135 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10136 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10137 regs[i].isconst&=~(1<<hr);
10138 regs[i+1].wasdirty&=~(1<<hr);
10139 regs[i].dirty&=~(1<<hr);
10140 }
10141 }
10142 }
10143 }
10144 }
10145 }
10146 }
10147
10148 /* Pass 6 - Optimize clean/dirty state */
10149 clean_registers(0,slen-1,1);
10150
10151 /* Pass 7 - Identify 32-bit registers */
10152
10153 provisional_r32();
10154
10155 u_int r32=0;
10156
10157 for (i=slen-1;i>=0;i--)
10158 {
10159 int hr;
10160 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10161 {
10162 if(ba[i]<start || ba[i]>=(start+slen*4))
10163 {
10164 // Branch out of this block, don't need anything
10165 r32=0;
10166 }
10167 else
10168 {
10169 // Internal branch
10170 // Need whatever matches the target
10171 // (and doesn't get overwritten by the delay slot instruction)
10172 r32=0;
10173 int t=(ba[i]-start)>>2;
10174 if(ba[i]>start+i*4) {
10175 // Forward branch
10176 if(!(requires_32bit[t]&~regs[i].was32))
10177 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10178 }else{
10179 // Backward branch
10180 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10181 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10182 if(!(pr32[t]&~regs[i].was32))
10183 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10184 }
10185 }
10186 // Conditional branch may need registers for following instructions
10187 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10188 {
10189 if(i<slen-2) {
10190 r32|=requires_32bit[i+2];
10191 r32&=regs[i].was32;
10192 // Mark this address as a branch target since it may be called
10193 // upon return from interrupt
10194 bt[i+2]=1;
10195 }
10196 }
10197 // Merge in delay slot
10198 if(!likely[i]) {
10199 // These are overwritten unless the branch is "likely"
10200 // and the delay slot is nullified if not taken
10201 r32&=~(1LL<<rt1[i+1]);
10202 r32&=~(1LL<<rt2[i+1]);
10203 }
10204 // Assume these are needed (delay slot)
10205 if(us1[i+1]>0)
10206 {
10207 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10208 }
10209 if(us2[i+1]>0)
10210 {
10211 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10212 }
10213 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10214 {
10215 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10216 }
10217 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10218 {
10219 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10220 }
10221 }
10222 else if(itype[i]==SYSCALL||itype[i]==HLECALL)
10223 {
10224 // SYSCALL instruction (software interrupt)
10225 r32=0;
10226 }
10227 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10228 {
10229 // ERET instruction (return from interrupt)
10230 r32=0;
10231 }
10232 // Check 32 bits
10233 r32&=~(1LL<<rt1[i]);
10234 r32&=~(1LL<<rt2[i]);
10235 if(us1[i]>0)
10236 {
10237 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10238 }
10239 if(us2[i]>0)
10240 {
10241 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10242 }
10243 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10244 {
10245 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10246 }
10247 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10248 {
10249 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10250 }
10251 requires_32bit[i]=r32;
10252
10253 // Dirty registers which are 32-bit, require 32-bit input
10254 // as they will be written as 32-bit values
10255 for(hr=0;hr<HOST_REGS;hr++)
10256 {
10257 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10258 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10259 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10260 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10261 }
10262 }
10263 }
10264 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10265 }
10266
10267 if(itype[slen-1]==SPAN) {
10268 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10269 }
10270
10271 /* Debug/disassembly */
10272 if((void*)assem_debug==(void*)printf)
10273 for(i=0;i<slen;i++)
10274 {
10275 printf("U:");
10276 int r;
10277 for(r=1;r<=CCREG;r++) {
10278 if((unneeded_reg[i]>>r)&1) {
10279 if(r==HIREG) printf(" HI");
10280 else if(r==LOREG) printf(" LO");
10281 else printf(" r%d",r);
10282 }
10283 }
10284#ifndef FORCE32
10285 printf(" UU:");
10286 for(r=1;r<=CCREG;r++) {
10287 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10288 if(r==HIREG) printf(" HI");
10289 else if(r==LOREG) printf(" LO");
10290 else printf(" r%d",r);
10291 }
10292 }
10293 printf(" 32:");
10294 for(r=0;r<=CCREG;r++) {
10295 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10296 if((regs[i].was32>>r)&1) {
10297 if(r==CCREG) printf(" CC");
10298 else if(r==HIREG) printf(" HI");
10299 else if(r==LOREG) printf(" LO");
10300 else printf(" r%d",r);
10301 }
10302 }
10303#endif
10304 printf("\n");
10305 #if defined(__i386__) || defined(__x86_64__)
10306 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10307 #endif
10308 #ifdef __arm__
10309 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10310 #endif
10311 printf("needs: ");
10312 if(needed_reg[i]&1) printf("eax ");
10313 if((needed_reg[i]>>1)&1) printf("ecx ");
10314 if((needed_reg[i]>>2)&1) printf("edx ");
10315 if((needed_reg[i]>>3)&1) printf("ebx ");
10316 if((needed_reg[i]>>5)&1) printf("ebp ");
10317 if((needed_reg[i]>>6)&1) printf("esi ");
10318 if((needed_reg[i]>>7)&1) printf("edi ");
10319 printf("r:");
10320 for(r=0;r<=CCREG;r++) {
10321 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10322 if((requires_32bit[i]>>r)&1) {
10323 if(r==CCREG) printf(" CC");
10324 else if(r==HIREG) printf(" HI");
10325 else if(r==LOREG) printf(" LO");
10326 else printf(" r%d",r);
10327 }
10328 }
10329 printf("\n");
10330 /*printf("pr:");
10331 for(r=0;r<=CCREG;r++) {
10332 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10333 if((pr32[i]>>r)&1) {
10334 if(r==CCREG) printf(" CC");
10335 else if(r==HIREG) printf(" HI");
10336 else if(r==LOREG) printf(" LO");
10337 else printf(" r%d",r);
10338 }
10339 }
10340 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10341 printf("\n");*/
10342 #if defined(__i386__) || defined(__x86_64__)
10343 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10344 printf("dirty: ");
10345 if(regs[i].wasdirty&1) printf("eax ");
10346 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10347 if((regs[i].wasdirty>>2)&1) printf("edx ");
10348 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10349 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10350 if((regs[i].wasdirty>>6)&1) printf("esi ");
10351 if((regs[i].wasdirty>>7)&1) printf("edi ");
10352 #endif
10353 #ifdef __arm__
10354 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10355 printf("dirty: ");
10356 if(regs[i].wasdirty&1) printf("r0 ");
10357 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10358 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10359 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10360 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10361 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10362 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10363 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10364 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10365 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10366 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10367 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10368 #endif
10369 printf("\n");
10370 disassemble_inst(i);
10371 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10372 #if defined(__i386__) || defined(__x86_64__)
10373 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10374 if(regs[i].dirty&1) printf("eax ");
10375 if((regs[i].dirty>>1)&1) printf("ecx ");
10376 if((regs[i].dirty>>2)&1) printf("edx ");
10377 if((regs[i].dirty>>3)&1) printf("ebx ");
10378 if((regs[i].dirty>>5)&1) printf("ebp ");
10379 if((regs[i].dirty>>6)&1) printf("esi ");
10380 if((regs[i].dirty>>7)&1) printf("edi ");
10381 #endif
10382 #ifdef __arm__
10383 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10384 if(regs[i].dirty&1) printf("r0 ");
10385 if((regs[i].dirty>>1)&1) printf("r1 ");
10386 if((regs[i].dirty>>2)&1) printf("r2 ");
10387 if((regs[i].dirty>>3)&1) printf("r3 ");
10388 if((regs[i].dirty>>4)&1) printf("r4 ");
10389 if((regs[i].dirty>>5)&1) printf("r5 ");
10390 if((regs[i].dirty>>6)&1) printf("r6 ");
10391 if((regs[i].dirty>>7)&1) printf("r7 ");
10392 if((regs[i].dirty>>8)&1) printf("r8 ");
10393 if((regs[i].dirty>>9)&1) printf("r9 ");
10394 if((regs[i].dirty>>10)&1) printf("r10 ");
10395 if((regs[i].dirty>>12)&1) printf("r12 ");
10396 #endif
10397 printf("\n");
10398 if(regs[i].isconst) {
10399 printf("constants: ");
10400 #if defined(__i386__) || defined(__x86_64__)
10401 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10402 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10403 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10404 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10405 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10406 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10407 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10408 #endif
10409 #ifdef __arm__
10410 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10411 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10412 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10413 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10414 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10415 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10416 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10417 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10418 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10419 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10420 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10421 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10422 #endif
10423 printf("\n");
10424 }
10425#ifndef FORCE32
10426 printf(" 32:");
10427 for(r=0;r<=CCREG;r++) {
10428 if((regs[i].is32>>r)&1) {
10429 if(r==CCREG) printf(" CC");
10430 else if(r==HIREG) printf(" HI");
10431 else if(r==LOREG) printf(" LO");
10432 else printf(" r%d",r);
10433 }
10434 }
10435 printf("\n");
10436#endif
10437 /*printf(" p32:");
10438 for(r=0;r<=CCREG;r++) {
10439 if((p32[i]>>r)&1) {
10440 if(r==CCREG) printf(" CC");
10441 else if(r==HIREG) printf(" HI");
10442 else if(r==LOREG) printf(" LO");
10443 else printf(" r%d",r);
10444 }
10445 }
10446 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10447 else printf("\n");*/
10448 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10449 #if defined(__i386__) || defined(__x86_64__)
10450 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10451 if(branch_regs[i].dirty&1) printf("eax ");
10452 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10453 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10454 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10455 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10456 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10457 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10458 #endif
10459 #ifdef __arm__
10460 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10461 if(branch_regs[i].dirty&1) printf("r0 ");
10462 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10463 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10464 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10465 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10466 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10467 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10468 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10469 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10470 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10471 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10472 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10473 #endif
10474#ifndef FORCE32
10475 printf(" 32:");
10476 for(r=0;r<=CCREG;r++) {
10477 if((branch_regs[i].is32>>r)&1) {
10478 if(r==CCREG) printf(" CC");
10479 else if(r==HIREG) printf(" HI");
10480 else if(r==LOREG) printf(" LO");
10481 else printf(" r%d",r);
10482 }
10483 }
10484 printf("\n");
10485#endif
10486 }
10487 }
10488
10489 /* Pass 8 - Assembly */
10490 linkcount=0;stubcount=0;
10491 ds=0;is_delayslot=0;
10492 cop1_usable=0;
10493 uint64_t is32_pre=0;
10494 u_int dirty_pre=0;
10495 u_int beginning=(u_int)out;
10496 if((u_int)addr&1) {
10497 ds=1;
10498 pagespan_ds();
10499 }
10500 for(i=0;i<slen;i++)
10501 {
10502 //if(ds) printf("ds: ");
10503 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10504 if(ds) {
10505 ds=0; // Skip delay slot
10506 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10507 instr_addr[i]=0;
10508 } else {
10509 #ifndef DESTRUCTIVE_WRITEBACK
10510 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10511 {
10512 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10513 unneeded_reg[i],unneeded_reg_upper[i]);
10514 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10515 unneeded_reg[i],unneeded_reg_upper[i]);
10516 }
10517 is32_pre=regs[i].is32;
10518 dirty_pre=regs[i].dirty;
10519 #endif
10520 // write back
10521 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10522 {
10523 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10524 unneeded_reg[i],unneeded_reg_upper[i]);
10525 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10526 }
10527 // branch target entry point
10528 instr_addr[i]=(u_int)out;
10529 assem_debug("<->\n");
10530 // load regs
10531 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10532 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10533 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10534 address_generation(i,&regs[i],regs[i].regmap_entry);
10535 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10536 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10537 {
10538 // Load the delay slot registers if necessary
10539 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10540 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10541 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10542 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10543 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10544 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10545 }
10546 else if(i+1<slen)
10547 {
10548 // Preload registers for following instruction
10549 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10550 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10551 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10552 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10553 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10554 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10555 }
10556 // TODO: if(is_ooo(i)) address_generation(i+1);
10557 if(itype[i]==CJUMP||itype[i]==FJUMP)
10558 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10559 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10560 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10561 if(bt[i]) cop1_usable=0;
10562 // assemble
10563 switch(itype[i]) {
10564 case ALU:
10565 alu_assemble(i,&regs[i]);break;
10566 case IMM16:
10567 imm16_assemble(i,&regs[i]);break;
10568 case SHIFT:
10569 shift_assemble(i,&regs[i]);break;
10570 case SHIFTIMM:
10571 shiftimm_assemble(i,&regs[i]);break;
10572 case LOAD:
10573 load_assemble(i,&regs[i]);break;
10574 case LOADLR:
10575 loadlr_assemble(i,&regs[i]);break;
10576 case STORE:
10577 store_assemble(i,&regs[i]);break;
10578 case STORELR:
10579 storelr_assemble(i,&regs[i]);break;
10580 case COP0:
10581 cop0_assemble(i,&regs[i]);break;
10582 case COP1:
10583 cop1_assemble(i,&regs[i]);break;
10584 case C1LS:
10585 c1ls_assemble(i,&regs[i]);break;
10586 case COP2:
10587 cop2_assemble(i,&regs[i]);break;
10588 case C2LS:
10589 c2ls_assemble(i,&regs[i]);break;
10590 case C2OP:
10591 c2op_assemble(i,&regs[i]);break;
10592 case FCONV:
10593 fconv_assemble(i,&regs[i]);break;
10594 case FLOAT:
10595 float_assemble(i,&regs[i]);break;
10596 case FCOMP:
10597 fcomp_assemble(i,&regs[i]);break;
10598 case MULTDIV:
10599 multdiv_assemble(i,&regs[i]);break;
10600 case MOV:
10601 mov_assemble(i,&regs[i]);break;
10602 case SYSCALL:
10603 syscall_assemble(i,&regs[i]);break;
10604 case HLECALL:
10605 hlecall_assemble(i,&regs[i]);break;
10606 case UJUMP:
10607 ujump_assemble(i,&regs[i]);ds=1;break;
10608 case RJUMP:
10609 rjump_assemble(i,&regs[i]);ds=1;break;
10610 case CJUMP:
10611 cjump_assemble(i,&regs[i]);ds=1;break;
10612 case SJUMP:
10613 sjump_assemble(i,&regs[i]);ds=1;break;
10614 case FJUMP:
10615 fjump_assemble(i,&regs[i]);ds=1;break;
10616 case SPAN:
10617 pagespan_assemble(i,&regs[i]);break;
10618 }
10619 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10620 literal_pool(1024);
10621 else
10622 literal_pool_jumpover(256);
10623 }
10624 }
10625 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10626 // If the block did not end with an unconditional branch,
10627 // add a jump to the next instruction.
10628 if(i>1) {
10629 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10630 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10631 assert(i==slen);
10632 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10633 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10634 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10635 emit_loadreg(CCREG,HOST_CCREG);
10636 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10637 }
10638 else if(!likely[i-2])
10639 {
10640 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10641 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10642 }
10643 else
10644 {
10645 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10646 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10647 }
10648 add_to_linker((int)out,start+i*4,0);
10649 emit_jmp(0);
10650 }
10651 }
10652 else
10653 {
10654 assert(i>0);
10655 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10656 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10657 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10658 emit_loadreg(CCREG,HOST_CCREG);
10659 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10660 add_to_linker((int)out,start+i*4,0);
10661 emit_jmp(0);
10662 }
10663
10664 // TODO: delay slot stubs?
10665 // Stubs
10666 for(i=0;i<stubcount;i++)
10667 {
10668 switch(stubs[i][0])
10669 {
10670 case LOADB_STUB:
10671 case LOADH_STUB:
10672 case LOADW_STUB:
10673 case LOADD_STUB:
10674 case LOADBU_STUB:
10675 case LOADHU_STUB:
10676 do_readstub(i);break;
10677 case STOREB_STUB:
10678 case STOREH_STUB:
10679 case STOREW_STUB:
10680 case STORED_STUB:
10681 do_writestub(i);break;
10682 case CC_STUB:
10683 do_ccstub(i);break;
10684 case INVCODE_STUB:
10685 do_invstub(i);break;
10686 case FP_STUB:
10687 do_cop1stub(i);break;
10688 case STORELR_STUB:
10689 do_unalignedwritestub(i);break;
10690 }
10691 }
10692
10693 /* Pass 9 - Linker */
10694 for(i=0;i<linkcount;i++)
10695 {
10696 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10697 literal_pool(64);
10698 if(!link_addr[i][2])
10699 {
10700 void *stub=out;
10701 void *addr=check_addr(link_addr[i][1]);
10702 emit_extjump(link_addr[i][0],link_addr[i][1]);
10703 if(addr) {
10704 set_jump_target(link_addr[i][0],(int)addr);
10705 add_link(link_addr[i][1],stub);
10706 }
10707 else set_jump_target(link_addr[i][0],(int)stub);
10708 }
10709 else
10710 {
10711 // Internal branch
10712 int target=(link_addr[i][1]-start)>>2;
10713 assert(target>=0&&target<slen);
10714 assert(instr_addr[target]);
10715 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10716 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10717 //#else
10718 set_jump_target(link_addr[i][0],instr_addr[target]);
10719 //#endif
10720 }
10721 }
10722 // External Branch Targets (jump_in)
10723 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10724 for(i=0;i<slen;i++)
10725 {
10726 if(bt[i]||i==0)
10727 {
10728 if(instr_addr[i]) // TODO - delay slots (=null)
10729 {
10730 u_int vaddr=start+i*4;
10731 u_int page=get_page(vaddr);
10732 u_int vpage=get_vpage(vaddr);
10733 literal_pool(256);
10734 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10735 if(!requires_32bit[i])
10736 {
10737 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10738 assem_debug("jump_in: %x\n",start+i*4);
10739 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10740 int entry_point=do_dirty_stub(i);
10741 ll_add(jump_in+page,vaddr,(void *)entry_point);
10742 // If there was an existing entry in the hash table,
10743 // replace it with the new address.
10744 // Don't add new entries. We'll insert the
10745 // ones that actually get used in check_addr().
10746 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10747 if(ht_bin[0]==vaddr) {
10748 ht_bin[1]=entry_point;
10749 }
10750 if(ht_bin[2]==vaddr) {
10751 ht_bin[3]=entry_point;
10752 }
10753 }
10754 else
10755 {
10756 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10757 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10758 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10759 //int entry_point=(int)out;
10760 ////assem_debug("entry_point: %x\n",entry_point);
10761 //load_regs_entry(i);
10762 //if(entry_point==(int)out)
10763 // entry_point=instr_addr[i];
10764 //else
10765 // emit_jmp(instr_addr[i]);
10766 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10767 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10768 int entry_point=do_dirty_stub(i);
10769 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10770 }
10771 }
10772 }
10773 }
10774 // Write out the literal pool if necessary
10775 literal_pool(0);
10776 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10777 // Align code
10778 if(((u_int)out)&7) emit_addnop(13);
10779 #endif
10780 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10781 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10782 memcpy(copy,source,slen*4);
10783 copy+=slen*4;
10784
10785 #ifdef __arm__
10786 __clear_cache((void *)beginning,out);
10787 #endif
10788
10789 // If we're within 256K of the end of the buffer,
10790 // start over from the beginning. (Is 256K enough?)
10791 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10792
10793 // Trap writes to any of the pages we compiled
10794 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10795 invalid_code[i]=0;
10796#ifndef DISABLE_TLB
10797 memory_map[i]|=0x40000000;
10798 if((signed int)start>=(signed int)0xC0000000) {
10799 assert(using_tlb);
10800 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10801 invalid_code[j]=0;
10802 memory_map[j]|=0x40000000;
10803 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10804 }
10805#endif
10806 }
10807
10808 /* Pass 10 - Free memory by expiring oldest blocks */
10809
10810 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10811 while(expirep!=end)
10812 {
10813 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10814 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10815 inv_debug("EXP: Phase %d\n",expirep);
10816 switch((expirep>>11)&3)
10817 {
10818 case 0:
10819 // Clear jump_in and jump_dirty
10820 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10821 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10822 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10823 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10824 break;
10825 case 1:
10826 // Clear pointers
10827 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10828 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10829 break;
10830 case 2:
10831 // Clear hash table
10832 for(i=0;i<32;i++) {
10833 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10834 if((ht_bin[3]>>shift)==(base>>shift) ||
10835 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10836 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10837 ht_bin[2]=ht_bin[3]=-1;
10838 }
10839 if((ht_bin[1]>>shift)==(base>>shift) ||
10840 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10841 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10842 ht_bin[0]=ht_bin[2];
10843 ht_bin[1]=ht_bin[3];
10844 ht_bin[2]=ht_bin[3]=-1;
10845 }
10846 }
10847 break;
10848 case 3:
10849 // Clear jump_out
10850 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10851 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10852 break;
10853 }
10854 expirep=(expirep+1)&65535;
10855 }
10856 return 0;
10857}
10858
10859// vim:shiftwidth=2:expandtab