spu: fix wrong volume shift
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#if !defined(_WIN32) && !defined(NO_OS)
22#include <sys/time.h> // gettimeofday in xa.c
23#define THREAD_ENABLED 1
24#endif
25#include "stdafx.h"
26
27#define _IN_SPU
28
29#include "externals.h"
30#include "registers.h"
31#include "out.h"
32#include "spu_config.h"
33
34#ifdef __arm__
35#include "arm_features.h"
36#endif
37
38#ifdef HAVE_ARMV7
39 #define ssat32_to_16(v) \
40 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
41#else
42 #define ssat32_to_16(v) do { \
43 if (v < -32768) v = -32768; \
44 else if (v > 32767) v = 32767; \
45 } while (0)
46#endif
47
48#define PSXCLK 33868800 /* 33.8688 MHz */
49
50// intended to be ~1 frame
51#define IRQ_NEAR_BLOCKS 32
52
53/*
54#if defined (USEMACOSX)
55static char * libraryName = N_("Mac OS X Sound");
56#elif defined (USEALSA)
57static char * libraryName = N_("ALSA Sound");
58#elif defined (USEOSS)
59static char * libraryName = N_("OSS Sound");
60#elif defined (USESDL)
61static char * libraryName = N_("SDL Sound");
62#elif defined (USEPULSEAUDIO)
63static char * libraryName = N_("PulseAudio Sound");
64#else
65static char * libraryName = N_("NULL Sound");
66#endif
67
68static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
69*/
70
71// globals
72
73SPUInfo spu;
74SPUConfig spu_config;
75
76static int iFMod[NSSIZE];
77static int RVB[NSSIZE * 2];
78int ChanBuf[NSSIZE];
79
80#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
81
82////////////////////////////////////////////////////////////////////////
83// CODE AREA
84////////////////////////////////////////////////////////////////////////
85
86// dirty inline func includes
87
88#include "reverb.c"
89#include "adsr.c"
90
91////////////////////////////////////////////////////////////////////////
92// helpers for simple interpolation
93
94//
95// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
96//
97// instead of having n equal sample values in a row like:
98// ____
99// |____
100//
101// we compare the current delta change with the next delta change.
102//
103// if curr_delta is positive,
104//
105// - and next delta is smaller (or changing direction):
106// \.
107// -__
108//
109// - and next delta significant (at least twice) bigger:
110// --_
111// \.
112//
113// - and next delta is nearly same:
114// \.
115// \.
116//
117//
118// if curr_delta is negative,
119//
120// - and next delta is smaller (or changing direction):
121// _--
122// /
123//
124// - and next delta significant (at least twice) bigger:
125// /
126// __-
127//
128// - and next delta is nearly same:
129// /
130// /
131//
132
133static void InterpolateUp(int *SB, int sinc)
134{
135 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
136 {
137 const int id1=SB[30]-SB[29]; // curr delta to next val
138 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
139
140 SB[32]=0;
141
142 if(id1>0) // curr delta positive
143 {
144 if(id2<id1)
145 {SB[28]=id1;SB[32]=2;}
146 else
147 if(id2<(id1<<1))
148 SB[28]=(id1*sinc)>>16;
149 else
150 SB[28]=(id1*sinc)>>17;
151 }
152 else // curr delta negative
153 {
154 if(id2>id1)
155 {SB[28]=id1;SB[32]=2;}
156 else
157 if(id2>(id1<<1))
158 SB[28]=(id1*sinc)>>16;
159 else
160 SB[28]=(id1*sinc)>>17;
161 }
162 }
163 else
164 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
165 {
166 SB[32]=0;
167
168 SB[28]=(SB[28]*sinc)>>17;
169 //if(sinc<=0x8000)
170 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
171 //else
172 SB[29]+=SB[28];
173 }
174 else // no flags? add bigger val (if possible), calc smaller step, set flag1
175 SB[29]+=SB[28];
176}
177
178//
179// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
180//
181
182static void InterpolateDown(int *SB, int sinc)
183{
184 if(sinc>=0x20000L) // we would skip at least one val?
185 {
186 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
187 if(sinc>=0x30000L) // we would skip even more vals?
188 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
189 }
190}
191
192////////////////////////////////////////////////////////////////////////
193// helpers for gauss interpolation
194
195#define gval0 (((short*)(&SB[29]))[gpos&3])
196#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
197
198#include "gauss_i.h"
199
200////////////////////////////////////////////////////////////////////////
201
202#include "xa.c"
203
204static void do_irq(void)
205{
206 //if(!(spu.spuStat & STAT_IRQ))
207 {
208 spu.spuStat |= STAT_IRQ; // asserted status?
209 if(spu.irqCallback) spu.irqCallback();
210 }
211}
212
213static int check_irq(int ch, unsigned char *pos)
214{
215 if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq)
216 {
217 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
218 do_irq();
219 return 1;
220 }
221 return 0;
222}
223
224////////////////////////////////////////////////////////////////////////
225// START SOUND... called by main thread to setup a new sound on a channel
226////////////////////////////////////////////////////////////////////////
227
228static void StartSoundSB(int *SB)
229{
230 SB[26]=0; // init mixing vars
231 SB[27]=0;
232
233 SB[28]=0;
234 SB[29]=0; // init our interpolation helpers
235 SB[30]=0;
236 SB[31]=0;
237}
238
239static void StartSoundMain(int ch)
240{
241 SPUCHAN *s_chan = &spu.s_chan[ch];
242
243 StartADSR(ch);
244 StartREVERB(ch);
245
246 s_chan->prevflags=2;
247 s_chan->iSBPos=27;
248 s_chan->spos=0;
249
250 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
251
252 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
253 spu.dwChannelDead&=~(1<<ch);
254 if (s_chan->iRawPitch)
255 spu.dwChannelsAudible|=1<<ch;
256}
257
258static void StartSound(int ch)
259{
260 StartSoundMain(ch);
261 StartSoundSB(spu.SB + ch * SB_SIZE);
262}
263
264////////////////////////////////////////////////////////////////////////
265// ALL KIND OF HELPERS
266////////////////////////////////////////////////////////////////////////
267
268INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
269{
270 unsigned int NP=pitch;
271 int sinc;
272
273 NP=((32768L+iFMod[ns])*NP)>>15;
274
275 if(NP>0x3fff) NP=0x3fff;
276 if(NP<0x1) NP=0x1;
277
278 sinc=NP<<4; // calc frequency
279 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
280 SB[32]=1;
281 iFMod[ns]=0;
282
283 return sinc;
284}
285
286////////////////////////////////////////////////////////////////////////
287
288INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
289{
290 if(fmod_freq) // fmod freq channel
291 SB[29]=fa;
292 else
293 {
294 ssat32_to_16(fa);
295
296 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
297 {
298 int gpos = SB[28];
299 gval0 = fa;
300 gpos = (gpos+1) & 3;
301 SB[28] = gpos;
302 }
303 else
304 if(spu_config.iUseInterpolation==1) // simple interpolation
305 {
306 SB[28] = 0;
307 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
308 SB[30] = SB[31];
309 SB[31] = fa;
310 SB[32] = 1; // -> flag: calc new interolation
311 }
312 else SB[29]=fa; // no interpolation
313 }
314}
315
316////////////////////////////////////////////////////////////////////////
317
318INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
319{
320 int fa;
321
322 if(fmod_freq) return SB[29];
323
324 switch(spu_config.iUseInterpolation)
325 {
326 //--------------------------------------------------//
327 case 3: // cubic interpolation
328 {
329 long xd;int gpos;
330 xd = (spos >> 1)+1;
331 gpos = SB[28];
332
333 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
334 fa *= (xd - (2<<15)) / 6;
335 fa >>= 15;
336 fa += gval(2) - gval(1) - gval(1) + gval0;
337 fa *= (xd - (1<<15)) >> 1;
338 fa >>= 15;
339 fa += gval(1) - gval0;
340 fa *= xd;
341 fa >>= 15;
342 fa = fa + gval0;
343
344 } break;
345 //--------------------------------------------------//
346 case 2: // gauss interpolation
347 {
348 int vl, vr;int gpos;
349 vl = (spos >> 6) & ~3;
350 gpos = SB[28];
351 vr=(gauss[vl]*(int)gval0)&~2047;
352 vr+=(gauss[vl+1]*gval(1))&~2047;
353 vr+=(gauss[vl+2]*gval(2))&~2047;
354 vr+=(gauss[vl+3]*gval(3))&~2047;
355 fa = vr>>11;
356 } break;
357 //--------------------------------------------------//
358 case 1: // simple interpolation
359 {
360 if(sinc<0x10000L) // -> upsampling?
361 InterpolateUp(SB, sinc); // --> interpolate up
362 else InterpolateDown(SB, sinc); // --> else down
363 fa=SB[29];
364 } break;
365 //--------------------------------------------------//
366 default: // no interpolation
367 {
368 fa=SB[29];
369 } break;
370 //--------------------------------------------------//
371 }
372
373 return fa;
374}
375
376static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
377{
378 static const int f[16][2] = {
379 { 0, 0 },
380 { 60, 0 },
381 { 115, -52 },
382 { 98, -55 },
383 { 122, -60 }
384 };
385 int nSample;
386 int fa, s_1, s_2, d, s;
387
388 s_1 = dest[27];
389 s_2 = dest[26];
390
391 for (nSample = 0; nSample < 28; src++)
392 {
393 d = (int)*src;
394 s = (int)(signed short)((d & 0x0f) << 12);
395
396 fa = s >> shift_factor;
397 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
398 s_2=s_1;s_1=fa;
399
400 dest[nSample++] = fa;
401
402 s = (int)(signed short)((d & 0xf0) << 8);
403 fa = s >> shift_factor;
404 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
405 s_2=s_1;s_1=fa;
406
407 dest[nSample++] = fa;
408 }
409}
410
411static int decode_block(void *unused, int ch, int *SB)
412{
413 SPUCHAN *s_chan = &spu.s_chan[ch];
414 unsigned char *start;
415 int predict_nr, shift_factor, flags;
416 int ret = 0;
417
418 start = s_chan->pCurr; // set up the current pos
419 if (start == spu.spuMemC) // ?
420 ret = 1;
421
422 if (s_chan->prevflags & 1) // 1: stop/loop
423 {
424 if (!(s_chan->prevflags & 2))
425 ret = 1;
426
427 start = s_chan->pLoop;
428 }
429
430 check_irq(ch, start);
431
432 predict_nr = start[0];
433 shift_factor = predict_nr & 0xf;
434 predict_nr >>= 4;
435
436 decode_block_data(SB, start + 2, predict_nr, shift_factor);
437
438 flags = start[1];
439 if (flags & 4 && !s_chan->bIgnoreLoop)
440 s_chan->pLoop = start; // loop adress
441
442 start += 16;
443
444 s_chan->pCurr = start; // store values for next cycle
445 s_chan->prevflags = flags;
446
447 return ret;
448}
449
450// do block, but ignore sample data
451static int skip_block(int ch)
452{
453 SPUCHAN *s_chan = &spu.s_chan[ch];
454 unsigned char *start = s_chan->pCurr;
455 int flags;
456 int ret = 0;
457
458 if (s_chan->prevflags & 1) {
459 if (!(s_chan->prevflags & 2))
460 ret = 1;
461
462 start = s_chan->pLoop;
463 }
464
465 check_irq(ch, start);
466
467 flags = start[1];
468 if (flags & 4 && !s_chan->bIgnoreLoop)
469 s_chan->pLoop = start;
470
471 start += 16;
472
473 s_chan->pCurr = start;
474 s_chan->prevflags = flags;
475
476 return ret;
477}
478
479// if irq is going to trigger sooner than in upd_samples, set upd_samples
480static void scan_for_irq(int ch, unsigned int *upd_samples)
481{
482 SPUCHAN *s_chan = &spu.s_chan[ch];
483 int pos, sinc, sinc_inv, end;
484 unsigned char *block;
485 int flags;
486
487 block = s_chan->pCurr;
488 pos = s_chan->spos;
489 sinc = s_chan->sinc;
490 end = pos + *upd_samples * sinc;
491
492 pos += (28 - s_chan->iSBPos) << 16;
493 while (pos < end)
494 {
495 if (block == spu.pSpuIrq)
496 break;
497 flags = block[1];
498 block += 16;
499 if (flags & 1) { // 1: stop/loop
500 block = s_chan->pLoop;
501 }
502 pos += 28 << 16;
503 }
504
505 if (pos < end)
506 {
507 sinc_inv = s_chan->sinc_inv;
508 if (sinc_inv == 0)
509 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
510
511 pos -= s_chan->spos;
512 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
513 //xprintf("ch%02d: irq sched: %3d %03d\n",
514 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
515 }
516}
517
518#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
519static noinline int do_samples_##name( \
520 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
521 int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
522{ \
523 int ns, d, fa; \
524 int ret = ns_to; \
525 interp_start; \
526 \
527 for (ns = 0; ns < ns_to; ns++) \
528 { \
529 fmod_code; \
530 \
531 *spos += sinc; \
532 while (*spos >= 0x10000) \
533 { \
534 fa = SB[(*sbpos)++]; \
535 if (*sbpos >= 28) \
536 { \
537 *sbpos = 0; \
538 d = decode_f(ctx, ch, SB); \
539 if (d && ns < ret) \
540 ret = ns; \
541 } \
542 \
543 interp1_code; \
544 *spos -= 0x10000; \
545 } \
546 \
547 interp2_code; \
548 } \
549 \
550 interp_end; \
551 \
552 return ret; \
553}
554
555#define fmod_recv_check \
556 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
557 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
558
559make_do_samples(default, fmod_recv_check, ,
560 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
561 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
562make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
563
564#define simple_interp_store \
565 SB[28] = 0; \
566 SB[29] = SB[30]; \
567 SB[30] = SB[31]; \
568 SB[31] = fa; \
569 SB[32] = 1
570
571#define simple_interp_get \
572 if(sinc<0x10000) /* -> upsampling? */ \
573 InterpolateUp(SB, sinc); /* --> interpolate up */ \
574 else InterpolateDown(SB, sinc); /* --> else down */ \
575 ChanBuf[ns] = SB[29]
576
577make_do_samples(simple, , ,
578 simple_interp_store, simple_interp_get, )
579
580static int do_samples_skip(int ch, int ns_to)
581{
582 SPUCHAN *s_chan = &spu.s_chan[ch];
583 int spos = s_chan->spos;
584 int sinc = s_chan->sinc;
585 int ret = ns_to, ns, d;
586
587 spos += s_chan->iSBPos << 16;
588
589 for (ns = 0; ns < ns_to; ns++)
590 {
591 spos += sinc;
592 while (spos >= 28*0x10000)
593 {
594 d = skip_block(ch);
595 if (d && ns < ret)
596 ret = ns;
597 spos -= 28*0x10000;
598 }
599 }
600
601 s_chan->iSBPos = spos >> 16;
602 s_chan->spos = spos & 0xffff;
603
604 return ret;
605}
606
607static void do_lsfr_samples(int ns_to, int ctrl,
608 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
609{
610 unsigned int counter = *dwNoiseCount;
611 unsigned int val = *dwNoiseVal;
612 unsigned int level, shift, bit;
613 int ns;
614
615 // modified from DrHell/shalma, no fraction
616 level = (ctrl >> 10) & 0x0f;
617 level = 0x8000 >> level;
618
619 for (ns = 0; ns < ns_to; ns++)
620 {
621 counter += 2;
622 if (counter >= level)
623 {
624 counter -= level;
625 shift = (val >> 10) & 0x1f;
626 bit = (0x69696969 >> shift) & 1;
627 bit ^= (val >> 15) & 1;
628 val = (val << 1) | bit;
629 }
630
631 ChanBuf[ns] = (signed short)val;
632 }
633
634 *dwNoiseCount = counter;
635 *dwNoiseVal = val;
636}
637
638static int do_samples_noise(int ch, int ns_to)
639{
640 int ret;
641
642 ret = do_samples_skip(ch, ns_to);
643
644 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
645
646 return ret;
647}
648
649#ifdef HAVE_ARMV5
650// asm code; lv and rv must be 0-3fff
651extern void mix_chan(int *SSumLR, int count, int lv, int rv);
652extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
653#else
654static void mix_chan(int *SSumLR, int count, int lv, int rv)
655{
656 const int *src = ChanBuf;
657 int l, r;
658
659 while (count--)
660 {
661 int sval = *src++;
662
663 l = (sval * lv) >> 14;
664 r = (sval * rv) >> 14;
665 *SSumLR++ += l;
666 *SSumLR++ += r;
667 }
668}
669
670static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
671{
672 const int *src = ChanBuf;
673 int *dst = SSumLR;
674 int *drvb = rvb;
675 int l, r;
676
677 while (count--)
678 {
679 int sval = *src++;
680
681 l = (sval * lv) >> 14;
682 r = (sval * rv) >> 14;
683 *dst++ += l;
684 *dst++ += r;
685 *drvb++ += l;
686 *drvb++ += r;
687 }
688}
689#endif
690
691// 0x0800-0x0bff Voice 1
692// 0x0c00-0x0fff Voice 3
693static noinline void do_decode_bufs(unsigned short *mem, int which,
694 int count, int decode_pos)
695{
696 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
697 const int *src = ChanBuf;
698 int cursor = decode_pos;
699
700 while (count-- > 0)
701 {
702 cursor &= 0x1ff;
703 dst[cursor] = *src++;
704 cursor++;
705 }
706
707 // decode_pos is updated and irqs are checked later, after voice loop
708}
709
710static void do_silent_chans(int ns_to, int silentch)
711{
712 unsigned int mask;
713 SPUCHAN *s_chan;
714 int ch;
715
716 mask = silentch & 0xffffff;
717 for (ch = 0; mask != 0; ch++, mask >>= 1)
718 {
719 if (!(mask & 1)) continue;
720 if (spu.dwChannelDead & (1<<ch)) continue;
721
722 s_chan = &spu.s_chan[ch];
723 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
724 continue;
725
726 s_chan->spos += s_chan->iSBPos << 16;
727 s_chan->iSBPos = 0;
728
729 s_chan->spos += s_chan->sinc * ns_to;
730 while (s_chan->spos >= 28 * 0x10000)
731 {
732 unsigned char *start = s_chan->pCurr;
733
734 skip_block(ch);
735 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
736 {
737 // looping on self or stopped(?)
738 spu.dwChannelDead |= 1<<ch;
739 s_chan->spos = 0;
740 break;
741 }
742
743 s_chan->spos -= 28 * 0x10000;
744 }
745 }
746}
747
748static void do_channels(int ns_to)
749{
750 unsigned int mask;
751 int do_rvb, ch, d;
752 SPUCHAN *s_chan;
753 int *SB, sinc;
754
755 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
756 if (do_rvb)
757 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
758
759 mask = spu.dwNewChannel & 0xffffff;
760 for (ch = 0; mask != 0; ch++, mask >>= 1) {
761 if (mask & 1)
762 StartSound(ch);
763 }
764
765 mask = spu.dwChannelsAudible & 0xffffff;
766 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
767 {
768 if (!(mask & 1)) continue; // channel not playing? next
769
770 s_chan = &spu.s_chan[ch];
771 SB = spu.SB + ch * SB_SIZE;
772 sinc = s_chan->sinc;
773
774 if (s_chan->bNoise)
775 d = do_samples_noise(ch, ns_to);
776 else if (s_chan->bFMod == 2
777 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
778 d = do_samples_noint(decode_block, NULL, ch, ns_to,
779 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
780 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
781 d = do_samples_simple(decode_block, NULL, ch, ns_to,
782 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
783 else
784 d = do_samples_default(decode_block, NULL, ch, ns_to,
785 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
786
787 d = MixADSR(&s_chan->ADSRX, d);
788 if (d < ns_to) {
789 spu.dwChannelsAudible &= ~(1 << ch);
790 s_chan->ADSRX.State = ADSR_RELEASE;
791 s_chan->ADSRX.EnvelopeVol = 0;
792 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
793 }
794
795 if (ch == 1 || ch == 3)
796 {
797 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
798 spu.decode_dirty_ch |= 1 << ch;
799 }
800
801 if (s_chan->bFMod == 2) // fmod freq channel
802 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
803 if (s_chan->bRVBActive && do_rvb)
804 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
805 else
806 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
807 }
808
809 if (spu.rvb->StartAddr) {
810 if (do_rvb)
811 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
812
813 spu.rvb->CurrAddr += ns_to / 2;
814 while (spu.rvb->CurrAddr >= 0x40000)
815 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
816 }
817}
818
819static void do_samples_finish(int *SSumLR, int ns_to,
820 int silentch, int decode_pos);
821
822// optional worker thread handling
823
824#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
825
826// worker thread state
827static struct spu_worker {
828 union {
829 struct {
830 unsigned int exit_thread;
831 unsigned int i_ready;
832 unsigned int i_reaped;
833 unsigned int last_boot_cnt; // dsp
834 unsigned int ram_dirty;
835 };
836 // aligning for C64X_DSP
837 unsigned int _pad0[128/4];
838 };
839 union {
840 struct {
841 unsigned int i_done;
842 unsigned int active; // dsp
843 unsigned int boot_cnt;
844 };
845 unsigned int _pad1[128/4];
846 };
847 struct work_item {
848 int ns_to;
849 int ctrl;
850 int decode_pos;
851 int rvb_addr;
852 unsigned int channels_new;
853 unsigned int channels_on;
854 unsigned int channels_silent;
855 struct {
856 int spos;
857 int sbpos;
858 int sinc;
859 int start;
860 int loop;
861 int ns_to;
862 short vol_l;
863 short vol_r;
864 ADSRInfoEx adsr;
865 // might also want to add fmod flags..
866 } ch[24];
867 int SSumLR[NSSIZE * 2];
868 } i[4];
869} *worker;
870
871#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
872#define WORK_I_MASK (WORK_MAXCNT - 1)
873
874static void thread_work_start(void);
875static void thread_work_wait_sync(struct work_item *work, int force);
876static void thread_sync_caches(void);
877static int thread_get_i_done(void);
878
879static int decode_block_work(void *context, int ch, int *SB)
880{
881 const unsigned char *ram = spu.spuMemC;
882 int predict_nr, shift_factor, flags;
883 struct work_item *work = context;
884 int start = work->ch[ch].start;
885 int loop = work->ch[ch].loop;
886
887 predict_nr = ram[start];
888 shift_factor = predict_nr & 0xf;
889 predict_nr >>= 4;
890
891 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
892
893 flags = ram[start + 1];
894 if (flags & 4)
895 loop = start; // loop adress
896
897 start += 16;
898
899 if (flags & 1) // 1: stop/loop
900 start = loop;
901
902 work->ch[ch].start = start & 0x7ffff;
903 work->ch[ch].loop = loop;
904
905 return 0;
906}
907
908static void queue_channel_work(int ns_to, unsigned int silentch)
909{
910 struct work_item *work;
911 SPUCHAN *s_chan;
912 unsigned int mask;
913 int ch, d;
914
915 work = &worker->i[worker->i_ready & WORK_I_MASK];
916 work->ns_to = ns_to;
917 work->ctrl = spu.spuCtrl;
918 work->decode_pos = spu.decode_pos;
919 work->channels_silent = silentch;
920
921 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
922 for (ch = 0; mask != 0; ch++, mask >>= 1) {
923 if (mask & 1)
924 StartSoundMain(ch);
925 }
926
927 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
928 spu.decode_dirty_ch |= mask & 0x0a;
929
930 for (ch = 0; mask != 0; ch++, mask >>= 1)
931 {
932 if (!(mask & 1)) continue;
933
934 s_chan = &spu.s_chan[ch];
935 work->ch[ch].spos = s_chan->spos;
936 work->ch[ch].sbpos = s_chan->iSBPos;
937 work->ch[ch].sinc = s_chan->sinc;
938 work->ch[ch].adsr = s_chan->ADSRX;
939 work->ch[ch].vol_l = s_chan->iLeftVolume;
940 work->ch[ch].vol_r = s_chan->iRightVolume;
941 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
942 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
943 if (s_chan->prevflags & 1)
944 work->ch[ch].start = work->ch[ch].loop;
945
946 d = do_samples_skip(ch, ns_to);
947 work->ch[ch].ns_to = d;
948
949 // note: d is not accurate on skip
950 d = SkipADSR(&s_chan->ADSRX, d);
951 if (d < ns_to) {
952 spu.dwChannelsAudible &= ~(1 << ch);
953 s_chan->ADSRX.EnvelopeVol = 0;
954 }
955 }
956
957 work->rvb_addr = 0;
958 if (spu.rvb->StartAddr) {
959 if (spu_config.iUseReverb)
960 work->rvb_addr = spu.rvb->CurrAddr;
961
962 spu.rvb->CurrAddr += ns_to / 2;
963 while (spu.rvb->CurrAddr >= 0x40000)
964 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
965 }
966
967 worker->i_ready++;
968 thread_work_start();
969}
970
971static void do_channel_work(struct work_item *work)
972{
973 unsigned int mask;
974 unsigned int decode_dirty_ch = 0;
975 const SPUCHAN *s_chan;
976 int *SB, sinc, spos, sbpos;
977 int d, ch, ns_to;
978
979 ns_to = work->ns_to;
980
981 if (work->rvb_addr)
982 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
983
984 mask = work->channels_new;
985 for (ch = 0; mask != 0; ch++, mask >>= 1) {
986 if (mask & 1)
987 StartSoundSB(spu.SB + ch * SB_SIZE);
988 }
989
990 mask = work->channels_on;
991 for (ch = 0; mask != 0; ch++, mask >>= 1)
992 {
993 if (!(mask & 1)) continue;
994
995 d = work->ch[ch].ns_to;
996 spos = work->ch[ch].spos;
997 sbpos = work->ch[ch].sbpos;
998 sinc = work->ch[ch].sinc;
999
1000 s_chan = &spu.s_chan[ch];
1001 SB = spu.SB + ch * SB_SIZE;
1002
1003 if (s_chan->bNoise)
1004 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1005 else if (s_chan->bFMod == 2
1006 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
1007 do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1008 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
1009 do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1010 else
1011 do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1012
1013 d = MixADSR(&work->ch[ch].adsr, d);
1014 if (d < ns_to) {
1015 work->ch[ch].adsr.EnvelopeVol = 0;
1016 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1017 }
1018
1019 if (ch == 1 || ch == 3)
1020 {
1021 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1022 decode_dirty_ch |= 1 << ch;
1023 }
1024
1025 if (s_chan->bFMod == 2) // fmod freq channel
1026 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1027 if (s_chan->bRVBActive && work->rvb_addr)
1028 mix_chan_rvb(work->SSumLR, ns_to,
1029 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1030 else
1031 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1032 }
1033
1034 if (work->rvb_addr)
1035 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1036}
1037
1038static void sync_worker_thread(int force)
1039{
1040 struct work_item *work;
1041 int done, used_space;
1042
1043 // rvb offsets will change, thread may be using them
1044 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1045
1046 done = thread_get_i_done() - worker->i_reaped;
1047 used_space = worker->i_ready - worker->i_reaped;
1048
1049 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1050 // worker->boot_cnt, worker->i_done);
1051
1052 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1053 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1054 thread_work_wait_sync(work, force);
1055
1056 do_samples_finish(work->SSumLR, work->ns_to,
1057 work->channels_silent, work->decode_pos);
1058
1059 worker->i_reaped++;
1060 done = thread_get_i_done() - worker->i_reaped;
1061 used_space = worker->i_ready - worker->i_reaped;
1062 }
1063 if (force)
1064 thread_sync_caches();
1065}
1066
1067#else
1068
1069static void queue_channel_work(int ns_to, int silentch) {}
1070static void sync_worker_thread(int force) {}
1071
1072static const void * const worker = NULL;
1073
1074#endif // THREAD_ENABLED
1075
1076////////////////////////////////////////////////////////////////////////
1077// MAIN SPU FUNCTION
1078// here is the main job handler...
1079////////////////////////////////////////////////////////////////////////
1080
1081void do_samples(unsigned int cycles_to, int do_direct)
1082{
1083 unsigned int silentch;
1084 int cycle_diff;
1085 int ns_to;
1086
1087 cycle_diff = cycles_to - spu.cycles_played;
1088 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1089 {
1090 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1091 spu.cycles_played = cycles_to;
1092 return;
1093 }
1094
1095 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1096
1097 do_direct |= (silentch == 0xffffff);
1098 if (worker != NULL)
1099 sync_worker_thread(do_direct);
1100
1101 if (cycle_diff < 2 * 768)
1102 return;
1103
1104 ns_to = (cycle_diff / 768 + 1) & ~1;
1105 if (ns_to > NSSIZE) {
1106 // should never happen
1107 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1108 ns_to = NSSIZE;
1109 }
1110
1111 //////////////////////////////////////////////////////
1112 // special irq handling in the decode buffers (0x0000-0x1000)
1113 // we know:
1114 // the decode buffers are located in spu memory in the following way:
1115 // 0x0000-0x03ff CD audio left
1116 // 0x0400-0x07ff CD audio right
1117 // 0x0800-0x0bff Voice 1
1118 // 0x0c00-0x0fff Voice 3
1119 // and decoded data is 16 bit for one sample
1120 // we assume:
1121 // even if voices 1/3 are off or no cd audio is playing, the internal
1122 // play positions will move on and wrap after 0x400 bytes.
1123 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1124 // increase this pointer on each sample by 2 bytes. If this pointer
1125 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1126 // an IRQ.
1127
1128 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1129 && spu.pSpuIrq < spu.spuMemC+0x1000))
1130 {
1131 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1132 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1133 if (0 < left && left <= ns_to)
1134 {
1135 //xprintf("decoder irq %x\n", spu.decode_pos);
1136 do_irq();
1137 }
1138 }
1139
1140 if (unlikely(spu.rvb->dirty))
1141 REVERBPrep();
1142
1143 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1144 do_channels(ns_to);
1145 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1146 }
1147 else {
1148 queue_channel_work(ns_to, silentch);
1149 }
1150
1151 // advance "stopped" channels that can cause irqs
1152 // (all chans are always playing on the real thing..)
1153 if (spu.spuCtrl & CTRL_IRQ)
1154 do_silent_chans(ns_to, silentch);
1155
1156 spu.cycles_played += ns_to * 768;
1157 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1158}
1159
1160static void do_samples_finish(int *SSumLR, int ns_to,
1161 int silentch, int decode_pos)
1162{
1163 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1164 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1165 int ns;
1166 int d;
1167
1168 // must clear silent channel decode buffers
1169 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1170 {
1171 memset(&spu.spuMem[0x800/2], 0, 0x400);
1172 spu.decode_dirty_ch &= ~(1<<1);
1173 }
1174 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1175 {
1176 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1177 spu.decode_dirty_ch &= ~(1<<3);
1178 }
1179
1180 MixXA(SSumLR, ns_to, decode_pos);
1181
1182 vol_l = vol_l * spu_config.iVolume >> 10;
1183 vol_r = vol_r * spu_config.iVolume >> 10;
1184
1185 if (!(spu.spuCtrl & 0x4000) || !(vol_l | vol_r))
1186 {
1187 // muted? (rare)
1188 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1189 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1190 spu.pS += ns_to * 2;
1191 }
1192 else
1193 for (ns = 0; ns < ns_to * 2; )
1194 {
1195 d = SSumLR[ns]; SSumLR[ns] = 0;
1196 d = d * vol_l >> 14;
1197 ssat32_to_16(d);
1198 *spu.pS++ = d;
1199 ns++;
1200
1201 d = SSumLR[ns]; SSumLR[ns] = 0;
1202 d = d * vol_r >> 14;
1203 ssat32_to_16(d);
1204 *spu.pS++ = d;
1205 ns++;
1206 }
1207}
1208
1209void schedule_next_irq(void)
1210{
1211 unsigned int upd_samples;
1212 int ch;
1213
1214 if (spu.scheduleCallback == NULL)
1215 return;
1216
1217 upd_samples = 44100 / 50;
1218
1219 for (ch = 0; ch < MAXCHAN; ch++)
1220 {
1221 if (spu.dwChannelDead & (1 << ch))
1222 continue;
1223 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1224 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1225 continue;
1226 if (spu.s_chan[ch].sinc == 0)
1227 continue;
1228
1229 scan_for_irq(ch, &upd_samples);
1230 }
1231
1232 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1233 {
1234 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1235 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1236 if (0 < left && left < upd_samples) {
1237 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1238 upd_samples = left;
1239 }
1240 }
1241
1242 if (upd_samples < 44100 / 50)
1243 spu.scheduleCallback(upd_samples * 768);
1244}
1245
1246// SPU ASYNC... even newer epsxe func
1247// 1 time every 'cycle' cycles... harhar
1248
1249// rearmed: called dynamically now
1250
1251void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1252{
1253 do_samples(cycle, spu_config.iUseFixedUpdates);
1254
1255 if (spu.spuCtrl & CTRL_IRQ)
1256 schedule_next_irq();
1257
1258 if (flags & 1) {
1259 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1260 spu.pS = (short *)spu.pSpuBuffer;
1261
1262 if (spu_config.iTempo) {
1263 if (!out_current->busy())
1264 // cause more samples to be generated
1265 // (and break some games because of bad sync)
1266 spu.cycles_played -= 44100 / 60 / 2 * 768;
1267 }
1268 }
1269}
1270
1271// SPU UPDATE... new epsxe func
1272// 1 time every 32 hsync lines
1273// (312/32)x50 in pal
1274// (262/32)x60 in ntsc
1275
1276// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1277// leave that func in the linux port, until epsxe linux is using
1278// the async function as well
1279
1280void CALLBACK SPUupdate(void)
1281{
1282}
1283
1284// XA AUDIO
1285
1286void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int is_start)
1287{
1288 if(!xap) return;
1289 if(!xap->freq) return; // no xa freq ? bye
1290
1291 if (is_start)
1292 do_samples(cycle, 1); // catch up to prevent source underflows later
1293
1294 FeedXA(xap); // call main XA feeder
1295}
1296
1297// CDDA AUDIO
1298int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int is_start)
1299{
1300 if (!pcm) return -1;
1301 if (nbytes<=0) return -1;
1302
1303 if (is_start)
1304 do_samples(cycle, 1); // catch up to prevent source underflows later
1305
1306 return FeedCDDA((unsigned char *)pcm, nbytes);
1307}
1308
1309// to be called after state load
1310void ClearWorkingState(void)
1311{
1312 memset(iFMod, 0, sizeof(iFMod));
1313 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1314}
1315
1316// SETUPSTREAMS: init most of the spu buffers
1317static void SetupStreams(void)
1318{
1319 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1320 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1321
1322 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1323 spu.XAEnd = spu.XAStart + 44100;
1324 spu.XAPlay = spu.XAStart;
1325 spu.XAFeed = spu.XAStart;
1326
1327 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1328 spu.CDDAEnd = spu.CDDAStart + 16384;
1329 spu.CDDAPlay = spu.CDDAStart;
1330 spu.CDDAFeed = spu.CDDAStart;
1331
1332 ClearWorkingState();
1333}
1334
1335// REMOVESTREAMS: free most buffer
1336static void RemoveStreams(void)
1337{
1338 free(spu.pSpuBuffer); // free mixing buffer
1339 spu.pSpuBuffer = NULL;
1340 free(spu.SSumLR);
1341 spu.SSumLR = NULL;
1342 free(spu.XAStart); // free XA buffer
1343 spu.XAStart = NULL;
1344 free(spu.CDDAStart); // free CDDA buffer
1345 spu.CDDAStart = NULL;
1346}
1347
1348#if defined(C64X_DSP)
1349
1350/* special code for TI C64x DSP */
1351#include "spu_c64x.c"
1352
1353#elif defined(THREAD_ENABLED)
1354
1355#include <pthread.h>
1356#include <semaphore.h>
1357#include <unistd.h>
1358
1359static struct {
1360 pthread_t thread;
1361 sem_t sem_avail;
1362 sem_t sem_done;
1363} t;
1364
1365/* generic pthread implementation */
1366
1367static void thread_work_start(void)
1368{
1369 sem_post(&t.sem_avail);
1370}
1371
1372static void thread_work_wait_sync(struct work_item *work, int force)
1373{
1374 sem_wait(&t.sem_done);
1375}
1376
1377static int thread_get_i_done(void)
1378{
1379 return worker->i_done;
1380}
1381
1382static void thread_sync_caches(void)
1383{
1384}
1385
1386static void *spu_worker_thread(void *unused)
1387{
1388 struct work_item *work;
1389
1390 while (1) {
1391 sem_wait(&t.sem_avail);
1392 if (worker->exit_thread)
1393 break;
1394
1395 work = &worker->i[worker->i_done & WORK_I_MASK];
1396 do_channel_work(work);
1397 worker->i_done++;
1398
1399 sem_post(&t.sem_done);
1400 }
1401
1402 return NULL;
1403}
1404
1405static void init_spu_thread(void)
1406{
1407 int ret;
1408
1409 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1410 return;
1411
1412 worker = calloc(1, sizeof(*worker));
1413 if (worker == NULL)
1414 return;
1415 ret = sem_init(&t.sem_avail, 0, 0);
1416 if (ret != 0)
1417 goto fail_sem_avail;
1418 ret = sem_init(&t.sem_done, 0, 0);
1419 if (ret != 0)
1420 goto fail_sem_done;
1421
1422 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1423 if (ret != 0)
1424 goto fail_thread;
1425
1426 spu_config.iThreadAvail = 1;
1427 return;
1428
1429fail_thread:
1430 sem_destroy(&t.sem_done);
1431fail_sem_done:
1432 sem_destroy(&t.sem_avail);
1433fail_sem_avail:
1434 free(worker);
1435 worker = NULL;
1436 spu_config.iThreadAvail = 0;
1437}
1438
1439static void exit_spu_thread(void)
1440{
1441 if (worker == NULL)
1442 return;
1443 worker->exit_thread = 1;
1444 sem_post(&t.sem_avail);
1445 pthread_join(t.thread, NULL);
1446 sem_destroy(&t.sem_done);
1447 sem_destroy(&t.sem_avail);
1448 free(worker);
1449 worker = NULL;
1450}
1451
1452#else // if !THREAD_ENABLED
1453
1454static void init_spu_thread(void)
1455{
1456}
1457
1458static void exit_spu_thread(void)
1459{
1460}
1461
1462#endif
1463
1464// SPUINIT: this func will be called first by the main emu
1465long CALLBACK SPUinit(void)
1466{
1467 int i;
1468
1469 spu.spuMemC = calloc(1, 512 * 1024);
1470 InitADSR();
1471
1472 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1473 spu.rvb = calloc(1, sizeof(REVERBInfo));
1474 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1475
1476 spu.spuAddr = 0;
1477 spu.decode_pos = 0;
1478 spu.pSpuIrq = spu.spuMemC;
1479
1480 SetupStreams(); // prepare streaming
1481
1482 if (spu_config.iVolume == 0)
1483 spu_config.iVolume = 768; // 1024 is 1.0
1484
1485 init_spu_thread();
1486
1487 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1488 {
1489 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1490 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1491 spu.s_chan[i].pLoop = spu.spuMemC;
1492 spu.s_chan[i].pCurr = spu.spuMemC;
1493 spu.s_chan[i].bIgnoreLoop = 0;
1494 }
1495
1496 spu.bSpuInit=1; // flag: we are inited
1497
1498 return 0;
1499}
1500
1501// SPUOPEN: called by main emu after init
1502long CALLBACK SPUopen(void)
1503{
1504 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1505
1506 SetupSound(); // setup sound (before init!)
1507
1508 spu.bSPUIsOpen = 1;
1509
1510 return PSE_SPU_ERR_SUCCESS;
1511}
1512
1513// SPUCLOSE: called before shutdown
1514long CALLBACK SPUclose(void)
1515{
1516 if (!spu.bSPUIsOpen) return 0; // some security
1517
1518 spu.bSPUIsOpen = 0; // no more open
1519
1520 out_current->finish(); // no more sound handling
1521
1522 return 0;
1523}
1524
1525// SPUSHUTDOWN: called by main emu on final exit
1526long CALLBACK SPUshutdown(void)
1527{
1528 SPUclose();
1529
1530 exit_spu_thread();
1531
1532 free(spu.spuMemC);
1533 spu.spuMemC = NULL;
1534 free(spu.SB);
1535 spu.SB = NULL;
1536 free(spu.s_chan);
1537 spu.s_chan = NULL;
1538 free(spu.rvb);
1539 spu.rvb = NULL;
1540
1541 RemoveStreams(); // no more streaming
1542 spu.bSpuInit=0;
1543
1544 return 0;
1545}
1546
1547// SPUTEST: we don't test, we are always fine ;)
1548long CALLBACK SPUtest(void)
1549{
1550 return 0;
1551}
1552
1553// SPUCONFIGURE: call config dialog
1554long CALLBACK SPUconfigure(void)
1555{
1556#ifdef _MACOSX
1557 DoConfiguration();
1558#else
1559// StartCfgTool("CFG");
1560#endif
1561 return 0;
1562}
1563
1564// SPUABOUT: show about window
1565void CALLBACK SPUabout(void)
1566{
1567#ifdef _MACOSX
1568 DoAbout();
1569#else
1570// StartCfgTool("ABOUT");
1571#endif
1572}
1573
1574// SETUP CALLBACKS
1575// this functions will be called once,
1576// passes a callback that should be called on SPU-IRQ/cdda volume change
1577void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1578{
1579 spu.irqCallback = callback;
1580}
1581
1582void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1583{
1584 spu.cddavCallback = CDDAVcallback;
1585}
1586
1587void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1588{
1589 spu.scheduleCallback = callback;
1590}
1591
1592// COMMON PLUGIN INFO FUNCS
1593/*
1594char * CALLBACK PSEgetLibName(void)
1595{
1596 return _(libraryName);
1597}
1598
1599unsigned long CALLBACK PSEgetLibType(void)
1600{
1601 return PSE_LT_SPU;
1602}
1603
1604unsigned long CALLBACK PSEgetLibVersion(void)
1605{
1606 return (1 << 16) | (6 << 8);
1607}
1608
1609char * SPUgetLibInfos(void)
1610{
1611 return _(libraryInfo);
1612}
1613*/
1614
1615// debug
1616void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1617{
1618 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1619
1620 if (spu.s_chan == NULL)
1621 return;
1622
1623 for(;ch<MAXCHAN;ch++)
1624 {
1625 if (!(spu.dwChannelsAudible & (1<<ch)))
1626 continue;
1627 if (spu.s_chan[ch].bFMod == 2)
1628 fmod_chans |= 1 << ch;
1629 if (spu.s_chan[ch].bNoise)
1630 noise_chans |= 1 << ch;
1631 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1632 irq_chans |= 1 << ch;
1633 }
1634
1635 *chans_out = spu.dwChannelsAudible;
1636 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1637 *fmod_chans_out = fmod_chans;
1638 *noise_chans_out = noise_chans;
1639}
1640
1641// vim:shiftwidth=1:expandtab