spu: finish offload code to TI C64x DSP
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#if !defined(_WIN32) && !defined(NO_OS)
22#include <sys/time.h> // gettimeofday in xa.c
23#define THREAD_ENABLED 1
24#endif
25#include "stdafx.h"
26
27#define _IN_SPU
28
29#include "externals.h"
30#include "registers.h"
31#include "out.h"
32#include "spu_config.h"
33
34#ifdef __arm__
35#include "arm_features.h"
36#endif
37
38#ifdef __ARM_ARCH_7A__
39 #define ssat32_to_16(v) \
40 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
41#else
42 #define ssat32_to_16(v) do { \
43 if (v < -32768) v = -32768; \
44 else if (v > 32767) v = 32767; \
45 } while (0)
46#endif
47
48#define PSXCLK 33868800 /* 33.8688 MHz */
49
50// intended to be ~1 frame
51#define IRQ_NEAR_BLOCKS 32
52
53/*
54#if defined (USEMACOSX)
55static char * libraryName = N_("Mac OS X Sound");
56#elif defined (USEALSA)
57static char * libraryName = N_("ALSA Sound");
58#elif defined (USEOSS)
59static char * libraryName = N_("OSS Sound");
60#elif defined (USESDL)
61static char * libraryName = N_("SDL Sound");
62#elif defined (USEPULSEAUDIO)
63static char * libraryName = N_("PulseAudio Sound");
64#else
65static char * libraryName = N_("NULL Sound");
66#endif
67
68static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
69*/
70
71// globals
72
73SPUInfo spu;
74SPUConfig spu_config;
75
76// MAIN infos struct for each channel
77
78REVERBInfo rvb;
79
80#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
81
82// worker thread state
83static struct spu_worker {
84 unsigned int pending:1;
85 unsigned int exit_thread:1;
86 unsigned int stale_cache:1;
87 int ns_to;
88 int ctrl;
89 int decode_pos;
90 int silentch;
91 unsigned int chmask;
92 struct {
93 int spos;
94 int sbpos;
95 int sinc;
96 int start;
97 int loop;
98 int ns_to;
99 ADSRInfoEx adsr;
100 // might want to add vol and fmod flags..
101 } ch[24];
102 struct {
103 struct {
104 int adsrState;
105 int adsrEnvelopeVol;
106 } ch[24];
107 unsigned int chan_end;
108 unsigned int decode_dirty;
109 } r;
110} *worker;
111
112#else
113static const void * const worker = NULL;
114#endif
115
116// certain globals (were local before, but with the new timeproc I need em global)
117
118static int iFMod[NSSIZE];
119int ChanBuf[NSSIZE];
120int *SSumLR;
121
122#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
123
124////////////////////////////////////////////////////////////////////////
125// CODE AREA
126////////////////////////////////////////////////////////////////////////
127
128// dirty inline func includes
129
130#include "reverb.c"
131#include "adsr.c"
132
133////////////////////////////////////////////////////////////////////////
134// helpers for simple interpolation
135
136//
137// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
138//
139// instead of having n equal sample values in a row like:
140// ____
141// |____
142//
143// we compare the current delta change with the next delta change.
144//
145// if curr_delta is positive,
146//
147// - and next delta is smaller (or changing direction):
148// \.
149// -__
150//
151// - and next delta significant (at least twice) bigger:
152// --_
153// \.
154//
155// - and next delta is nearly same:
156// \.
157// \.
158//
159//
160// if curr_delta is negative,
161//
162// - and next delta is smaller (or changing direction):
163// _--
164// /
165//
166// - and next delta significant (at least twice) bigger:
167// /
168// __-
169//
170// - and next delta is nearly same:
171// /
172// /
173//
174
175static void InterpolateUp(int *SB, int sinc)
176{
177 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
178 {
179 const int id1=SB[30]-SB[29]; // curr delta to next val
180 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
181
182 SB[32]=0;
183
184 if(id1>0) // curr delta positive
185 {
186 if(id2<id1)
187 {SB[28]=id1;SB[32]=2;}
188 else
189 if(id2<(id1<<1))
190 SB[28]=(id1*sinc)>>16;
191 else
192 SB[28]=(id1*sinc)>>17;
193 }
194 else // curr delta negative
195 {
196 if(id2>id1)
197 {SB[28]=id1;SB[32]=2;}
198 else
199 if(id2>(id1<<1))
200 SB[28]=(id1*sinc)>>16;
201 else
202 SB[28]=(id1*sinc)>>17;
203 }
204 }
205 else
206 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
207 {
208 SB[32]=0;
209
210 SB[28]=(SB[28]*sinc)>>17;
211 //if(sinc<=0x8000)
212 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
213 //else
214 SB[29]+=SB[28];
215 }
216 else // no flags? add bigger val (if possible), calc smaller step, set flag1
217 SB[29]+=SB[28];
218}
219
220//
221// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
222//
223
224static void InterpolateDown(int *SB, int sinc)
225{
226 if(sinc>=0x20000L) // we would skip at least one val?
227 {
228 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
229 if(sinc>=0x30000L) // we would skip even more vals?
230 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
231 }
232}
233
234////////////////////////////////////////////////////////////////////////
235// helpers for gauss interpolation
236
237#define gval0 (((short*)(&SB[29]))[gpos&3])
238#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
239
240#include "gauss_i.h"
241
242////////////////////////////////////////////////////////////////////////
243
244#include "xa.c"
245
246static void do_irq(void)
247{
248 //if(!(spu.spuStat & STAT_IRQ))
249 {
250 spu.spuStat |= STAT_IRQ; // asserted status?
251 if(spu.irqCallback) spu.irqCallback();
252 }
253}
254
255static int check_irq(int ch, unsigned char *pos)
256{
257 if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq)
258 {
259 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
260 do_irq();
261 return 1;
262 }
263 return 0;
264}
265
266////////////////////////////////////////////////////////////////////////
267// START SOUND... called by main thread to setup a new sound on a channel
268////////////////////////////////////////////////////////////////////////
269
270INLINE void StartSound(int ch)
271{
272 SPUCHAN *s_chan = &spu.s_chan[ch];
273 int *SB = spu.SB + ch * SB_SIZE;
274
275 StartADSR(ch);
276 StartREVERB(ch);
277
278 s_chan->prevflags=2;
279
280 s_chan->iSBPos=27;
281 SB[26]=0; // init mixing vars
282 SB[27]=0;
283
284 SB[28]=0;
285 SB[29]=0; // init our interpolation helpers
286 SB[30]=0;
287 SB[31]=0;
288 s_chan->spos=0;
289
290 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
291 spu.dwChannelOn|=1<<ch;
292 spu.dwChannelDead&=~(1<<ch);
293}
294
295////////////////////////////////////////////////////////////////////////
296// ALL KIND OF HELPERS
297////////////////////////////////////////////////////////////////////////
298
299INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
300{
301 unsigned int NP=pitch;
302 int sinc;
303
304 NP=((32768L+iFMod[ns])*NP)>>15;
305
306 if(NP>0x3fff) NP=0x3fff;
307 if(NP<0x1) NP=0x1;
308
309 sinc=NP<<4; // calc frequency
310 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
311 SB[32]=1;
312 iFMod[ns]=0;
313
314 return sinc;
315}
316
317////////////////////////////////////////////////////////////////////////
318
319INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
320{
321 if(fmod_freq) // fmod freq channel
322 SB[29]=fa;
323 else
324 {
325 ssat32_to_16(fa);
326
327 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
328 {
329 int gpos = SB[28];
330 gval0 = fa;
331 gpos = (gpos+1) & 3;
332 SB[28] = gpos;
333 }
334 else
335 if(spu_config.iUseInterpolation==1) // simple interpolation
336 {
337 SB[28] = 0;
338 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
339 SB[30] = SB[31];
340 SB[31] = fa;
341 SB[32] = 1; // -> flag: calc new interolation
342 }
343 else SB[29]=fa; // no interpolation
344 }
345}
346
347////////////////////////////////////////////////////////////////////////
348
349INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
350{
351 int fa;
352
353 if(fmod_freq) return SB[29];
354
355 switch(spu_config.iUseInterpolation)
356 {
357 //--------------------------------------------------//
358 case 3: // cubic interpolation
359 {
360 long xd;int gpos;
361 xd = (spos >> 1)+1;
362 gpos = SB[28];
363
364 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
365 fa *= (xd - (2<<15)) / 6;
366 fa >>= 15;
367 fa += gval(2) - gval(1) - gval(1) + gval0;
368 fa *= (xd - (1<<15)) >> 1;
369 fa >>= 15;
370 fa += gval(1) - gval0;
371 fa *= xd;
372 fa >>= 15;
373 fa = fa + gval0;
374
375 } break;
376 //--------------------------------------------------//
377 case 2: // gauss interpolation
378 {
379 int vl, vr;int gpos;
380 vl = (spos >> 6) & ~3;
381 gpos = SB[28];
382 vr=(gauss[vl]*(int)gval0)&~2047;
383 vr+=(gauss[vl+1]*gval(1))&~2047;
384 vr+=(gauss[vl+2]*gval(2))&~2047;
385 vr+=(gauss[vl+3]*gval(3))&~2047;
386 fa = vr>>11;
387 } break;
388 //--------------------------------------------------//
389 case 1: // simple interpolation
390 {
391 if(sinc<0x10000L) // -> upsampling?
392 InterpolateUp(SB, sinc); // --> interpolate up
393 else InterpolateDown(SB, sinc); // --> else down
394 fa=SB[29];
395 } break;
396 //--------------------------------------------------//
397 default: // no interpolation
398 {
399 fa=SB[29];
400 } break;
401 //--------------------------------------------------//
402 }
403
404 return fa;
405}
406
407static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
408{
409 static const int f[16][2] = {
410 { 0, 0 },
411 { 60, 0 },
412 { 115, -52 },
413 { 98, -55 },
414 { 122, -60 }
415 };
416 int nSample;
417 int fa, s_1, s_2, d, s;
418
419 s_1 = dest[27];
420 s_2 = dest[26];
421
422 for (nSample = 0; nSample < 28; src++)
423 {
424 d = (int)*src;
425 s = (int)(signed short)((d & 0x0f) << 12);
426
427 fa = s >> shift_factor;
428 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
429 s_2=s_1;s_1=fa;
430
431 dest[nSample++] = fa;
432
433 s = (int)(signed short)((d & 0xf0) << 8);
434 fa = s >> shift_factor;
435 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
436 s_2=s_1;s_1=fa;
437
438 dest[nSample++] = fa;
439 }
440}
441
442static int decode_block(int ch, int *SB)
443{
444 SPUCHAN *s_chan = &spu.s_chan[ch];
445 unsigned char *start;
446 int predict_nr, shift_factor, flags;
447 int ret = 0;
448
449 start = s_chan->pCurr; // set up the current pos
450 if (start == spu.spuMemC) // ?
451 ret = 1;
452
453 if (s_chan->prevflags & 1) // 1: stop/loop
454 {
455 if (!(s_chan->prevflags & 2))
456 ret = 1;
457
458 start = s_chan->pLoop;
459 }
460 else
461 check_irq(ch, start); // hack, see check_irq below..
462
463 predict_nr = start[0];
464 shift_factor = predict_nr & 0xf;
465 predict_nr >>= 4;
466
467 decode_block_data(SB, start + 2, predict_nr, shift_factor);
468
469 flags = start[1];
470 if (flags & 4)
471 s_chan->pLoop = start; // loop adress
472
473 start += 16;
474
475 if (flags & 1) { // 1: stop/loop
476 start = s_chan->pLoop;
477 check_irq(ch, start); // hack.. :(
478 }
479
480 if (start - spu.spuMemC >= 0x80000)
481 start = spu.spuMemC;
482
483 s_chan->pCurr = start; // store values for next cycle
484 s_chan->prevflags = flags;
485
486 return ret;
487}
488
489// do block, but ignore sample data
490static int skip_block(int ch)
491{
492 SPUCHAN *s_chan = &spu.s_chan[ch];
493 unsigned char *start = s_chan->pCurr;
494 int flags;
495 int ret = 0;
496
497 if (s_chan->prevflags & 1) {
498 if (!(s_chan->prevflags & 2))
499 ret = 1;
500
501 start = s_chan->pLoop;
502 }
503 else
504 check_irq(ch, start);
505
506 flags = start[1];
507 if (flags & 4)
508 s_chan->pLoop = start;
509
510 start += 16;
511
512 if (flags & 1) {
513 start = s_chan->pLoop;
514 check_irq(ch, start);
515 }
516
517 s_chan->pCurr = start;
518 s_chan->prevflags = flags;
519
520 return ret;
521}
522
523#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
524
525static int decode_block_work(int ch, int *SB)
526{
527 const unsigned char *ram = spu.spuMemC;
528 int predict_nr, shift_factor, flags;
529 int start = worker->ch[ch].start;
530 int loop = worker->ch[ch].loop;
531
532 predict_nr = ram[start];
533 shift_factor = predict_nr & 0xf;
534 predict_nr >>= 4;
535
536 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
537
538 flags = ram[start + 1];
539 if (flags & 4)
540 loop = start; // loop adress
541
542 start += 16;
543
544 if (flags & 1) // 1: stop/loop
545 start = loop;
546
547 worker->ch[ch].start = start & 0x7ffff;
548 worker->ch[ch].loop = loop;
549
550 return 0;
551}
552
553#endif
554
555// if irq is going to trigger sooner than in upd_samples, set upd_samples
556static void scan_for_irq(int ch, unsigned int *upd_samples)
557{
558 SPUCHAN *s_chan = &spu.s_chan[ch];
559 int pos, sinc, sinc_inv, end;
560 unsigned char *block;
561 int flags;
562
563 block = s_chan->pCurr;
564 pos = s_chan->spos;
565 sinc = s_chan->sinc;
566 end = pos + *upd_samples * sinc;
567
568 pos += (28 - s_chan->iSBPos) << 16;
569 while (pos < end)
570 {
571 if (block == spu.pSpuIrq)
572 break;
573 flags = block[1];
574 block += 16;
575 if (flags & 1) { // 1: stop/loop
576 block = s_chan->pLoop;
577 if (block == spu.pSpuIrq) // hack.. (see decode_block)
578 break;
579 }
580 pos += 28 << 16;
581 }
582
583 if (pos < end)
584 {
585 sinc_inv = s_chan->sinc_inv;
586 if (sinc_inv == 0)
587 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
588
589 pos -= s_chan->spos;
590 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
591 //xprintf("ch%02d: irq sched: %3d %03d\n",
592 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
593 }
594}
595
596#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
597static noinline int do_samples_##name(int (*decode_f)(int ch, int *SB), int ch, \
598 int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
599{ \
600 int ns, d, fa; \
601 int ret = ns_to; \
602 interp_start; \
603 \
604 for (ns = 0; ns < ns_to; ns++) \
605 { \
606 fmod_code; \
607 \
608 *spos += sinc; \
609 while (*spos >= 0x10000) \
610 { \
611 fa = SB[(*sbpos)++]; \
612 if (*sbpos >= 28) \
613 { \
614 *sbpos = 0; \
615 d = decode_f(ch, SB); \
616 if (d && ns < ret) \
617 ret = ns; \
618 } \
619 \
620 interp1_code; \
621 *spos -= 0x10000; \
622 } \
623 \
624 interp2_code; \
625 } \
626 \
627 interp_end; \
628 \
629 return ret; \
630}
631
632#define fmod_recv_check \
633 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
634 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
635
636make_do_samples(default, fmod_recv_check, ,
637 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
638 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
639make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
640
641#define simple_interp_store \
642 SB[28] = 0; \
643 SB[29] = SB[30]; \
644 SB[30] = SB[31]; \
645 SB[31] = fa; \
646 SB[32] = 1
647
648#define simple_interp_get \
649 if(sinc<0x10000) /* -> upsampling? */ \
650 InterpolateUp(SB, sinc); /* --> interpolate up */ \
651 else InterpolateDown(SB, sinc); /* --> else down */ \
652 ChanBuf[ns] = SB[29]
653
654make_do_samples(simple, , ,
655 simple_interp_store, simple_interp_get, )
656
657static int do_samples_skip(int ch, int ns_to)
658{
659 SPUCHAN *s_chan = &spu.s_chan[ch];
660 int ret = ns_to, ns, d;
661
662 s_chan->spos += s_chan->iSBPos << 16;
663
664 for (ns = 0; ns < ns_to; ns++)
665 {
666 s_chan->spos += s_chan->sinc;
667 while (s_chan->spos >= 28*0x10000)
668 {
669 d = skip_block(ch);
670 if (d && ns < ret)
671 ret = ns;
672 s_chan->spos -= 28*0x10000;
673 }
674 }
675
676 s_chan->iSBPos = s_chan->spos >> 16;
677 s_chan->spos &= 0xffff;
678
679 return ret;
680}
681
682static void do_lsfr_samples(int ns_to, int ctrl,
683 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
684{
685 unsigned int counter = *dwNoiseCount;
686 unsigned int val = *dwNoiseVal;
687 unsigned int level, shift, bit;
688 int ns;
689
690 // modified from DrHell/shalma, no fraction
691 level = (ctrl >> 10) & 0x0f;
692 level = 0x8000 >> level;
693
694 for (ns = 0; ns < ns_to; ns++)
695 {
696 counter += 2;
697 if (counter >= level)
698 {
699 counter -= level;
700 shift = (val >> 10) & 0x1f;
701 bit = (0x69696969 >> shift) & 1;
702 bit ^= (val >> 15) & 1;
703 val = (val << 1) | bit;
704 }
705
706 ChanBuf[ns] = (signed short)val;
707 }
708
709 *dwNoiseCount = counter;
710 *dwNoiseVal = val;
711}
712
713static int do_samples_noise(int ch, int ns_to)
714{
715 int ret;
716
717 ret = do_samples_skip(ch, ns_to);
718
719 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
720
721 return ret;
722}
723
724#ifdef HAVE_ARMV5
725// asm code; lv and rv must be 0-3fff
726extern void mix_chan(int start, int count, int lv, int rv);
727extern void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb);
728#else
729static void mix_chan(int start, int count, int lv, int rv)
730{
731 int *dst = SSumLR + start * 2;
732 const int *src = ChanBuf + start;
733 int l, r;
734
735 while (count--)
736 {
737 int sval = *src++;
738
739 l = (sval * lv) >> 14;
740 r = (sval * rv) >> 14;
741 *dst++ += l;
742 *dst++ += r;
743 }
744}
745
746static void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb)
747{
748 int *dst = SSumLR + start * 2;
749 int *drvb = rvb + start * 2;
750 const int *src = ChanBuf + start;
751 int l, r;
752
753 while (count--)
754 {
755 int sval = *src++;
756
757 l = (sval * lv) >> 14;
758 r = (sval * rv) >> 14;
759 *dst++ += l;
760 *dst++ += r;
761 *drvb++ += l;
762 *drvb++ += r;
763 }
764}
765#endif
766
767// 0x0800-0x0bff Voice 1
768// 0x0c00-0x0fff Voice 3
769static noinline void do_decode_bufs(unsigned short *mem, int which,
770 int count, int decode_pos)
771{
772 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
773 const int *src = ChanBuf;
774 int cursor = decode_pos;
775
776 while (count-- > 0)
777 {
778 cursor &= 0x1ff;
779 dst[cursor] = *src++;
780 cursor++;
781 }
782
783 // decode_pos is updated and irqs are checked later, after voice loop
784}
785
786static void do_silent_chans(int ns_to, int silentch)
787{
788 unsigned int mask;
789 SPUCHAN *s_chan;
790 int ch;
791
792 mask = silentch & 0xffffff;
793 for (ch = 0; mask != 0; ch++, mask >>= 1)
794 {
795 if (!(mask & 1)) continue;
796 if (spu.dwChannelDead & (1<<ch)) continue;
797
798 s_chan = &spu.s_chan[ch];
799 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
800 continue;
801
802 s_chan->spos += s_chan->iSBPos << 16;
803 s_chan->iSBPos = 0;
804
805 s_chan->spos += s_chan->sinc * ns_to;
806 while (s_chan->spos >= 28 * 0x10000)
807 {
808 unsigned char *start = s_chan->pCurr;
809
810 skip_block(ch);
811 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
812 {
813 // looping on self or stopped(?)
814 spu.dwChannelDead |= 1<<ch;
815 s_chan->spos = 0;
816 break;
817 }
818
819 s_chan->spos -= 28 * 0x10000;
820 }
821 }
822}
823
824static void do_channels(int ns_to)
825{
826 unsigned int mask;
827 SPUCHAN *s_chan;
828 int *SB, sinc;
829 int ch, d;
830
831 InitREVERB(ns_to);
832
833 mask = spu.dwChannelOn & 0xffffff;
834 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
835 {
836 if (!(mask & 1)) continue; // channel not playing? next
837
838 s_chan = &spu.s_chan[ch];
839 SB = spu.SB + ch * SB_SIZE;
840 sinc = s_chan->sinc;
841
842 if (s_chan->bNoise)
843 d = do_samples_noise(ch, ns_to);
844 else if (s_chan->bFMod == 2
845 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
846 d = do_samples_noint(decode_block, ch, ns_to,
847 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
848 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
849 d = do_samples_simple(decode_block, ch, ns_to,
850 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
851 else
852 d = do_samples_default(decode_block, ch, ns_to,
853 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
854
855 d = MixADSR(&s_chan->ADSRX, d);
856 if (d < ns_to) {
857 spu.dwChannelOn &= ~(1 << ch);
858 s_chan->ADSRX.EnvelopeVol = 0;
859 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
860 }
861
862 if (ch == 1 || ch == 3)
863 {
864 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
865 spu.decode_dirty_ch |= 1 << ch;
866 }
867
868 if (s_chan->bFMod == 2) // fmod freq channel
869 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
870 if (s_chan->bRVBActive)
871 mix_chan_rvb(0, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, spu.sRVBStart);
872 else
873 mix_chan(0, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
874 }
875}
876
877static void do_samples_finish(int ns_to, int silentch, int decode_pos);
878
879// optional worker thread handling
880
881#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
882
883static void thread_work_start(void);
884static void thread_work_wait_sync(void);
885static void thread_sync_caches(void);
886
887static void queue_channel_work(int ns_to, int silentch)
888{
889 const SPUCHAN *s_chan;
890 unsigned int mask;
891 int ch;
892
893 worker->ns_to = ns_to;
894 worker->ctrl = spu.spuCtrl;
895 worker->decode_pos = spu.decode_pos;
896 worker->silentch = silentch;
897
898 mask = worker->chmask = spu.dwChannelOn & 0xffffff;
899 for (ch = 0; mask != 0; ch++, mask >>= 1)
900 {
901 if (!(mask & 1)) continue;
902
903 s_chan = &spu.s_chan[ch];
904 worker->ch[ch].spos = s_chan->spos;
905 worker->ch[ch].sbpos = s_chan->iSBPos;
906 worker->ch[ch].sinc = s_chan->sinc;
907 worker->ch[ch].adsr = s_chan->ADSRX;
908 worker->ch[ch].start = s_chan->pCurr - spu.spuMemC;
909 worker->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
910 if (s_chan->prevflags & 1)
911 worker->ch[ch].start = worker->ch[ch].loop;
912
913 worker->ch[ch].ns_to = do_samples_skip(ch, ns_to);
914 }
915
916 worker->pending = 1;
917 thread_work_start();
918}
919
920static void do_channel_work(void)
921{
922 unsigned int mask, endmask = 0;
923 unsigned int decode_dirty_ch = 0;
924 int *SB, sinc, spos, sbpos;
925 int d, ch, ns_to;
926 SPUCHAN *s_chan;
927
928 ns_to = worker->ns_to;
929 memset(spu.sRVBStart, 0, ns_to * sizeof(spu.sRVBStart[0]) * 2);
930
931 mask = worker->chmask;
932 for (ch = 0; mask != 0; ch++, mask >>= 1)
933 {
934 if (!(mask & 1)) continue;
935
936 d = worker->ch[ch].ns_to;
937 spos = worker->ch[ch].spos;
938 sbpos = worker->ch[ch].sbpos;
939 sinc = worker->ch[ch].sinc;
940
941 s_chan = &spu.s_chan[ch];
942 SB = spu.SB + ch * SB_SIZE;
943
944 if (s_chan->bNoise)
945 do_lsfr_samples(d, worker->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
946 else if (s_chan->bFMod == 2
947 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
948 do_samples_noint(decode_block_work, ch, d, SB, sinc, &spos, &sbpos);
949 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
950 do_samples_simple(decode_block_work, ch, d, SB, sinc, &spos, &sbpos);
951 else
952 do_samples_default(decode_block_work, ch, d, SB, sinc, &spos, &sbpos);
953
954 d = MixADSR(&worker->ch[ch].adsr, d);
955 if (d < ns_to) {
956 endmask |= 1 << ch;
957 worker->ch[ch].adsr.EnvelopeVol = 0;
958 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
959 }
960 worker->r.ch[ch].adsrState = worker->ch[ch].adsr.State;
961 worker->r.ch[ch].adsrEnvelopeVol = worker->ch[ch].adsr.EnvelopeVol;
962
963 if (ch == 1 || ch == 3)
964 {
965 do_decode_bufs(spu.spuMem, ch/2, ns_to, worker->decode_pos);
966 decode_dirty_ch |= 1 << ch;
967 }
968
969 if (s_chan->bFMod == 2) // fmod freq channel
970 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
971 if (s_chan->bRVBActive)
972 mix_chan_rvb(0, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, spu.sRVBStart);
973 else
974 mix_chan(0, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
975 }
976
977 worker->r.chan_end = endmask;
978 worker->r.decode_dirty = decode_dirty_ch;
979}
980
981static void sync_worker_thread(int do_direct)
982{
983 unsigned int mask;
984 int ch;
985
986 if (do_direct)
987 thread_sync_caches();
988 if (!worker->pending)
989 return;
990
991 thread_work_wait_sync();
992 worker->pending = 0;
993
994 mask = worker->chmask;
995 for (ch = 0; mask != 0; ch++, mask >>= 1) {
996 if (!(mask & 1)) continue;
997
998 // be sure there was no keyoff while thread was working
999 if (spu.s_chan[ch].ADSRX.State != ADSR_RELEASE)
1000 spu.s_chan[ch].ADSRX.State = worker->r.ch[ch].adsrState;
1001 spu.s_chan[ch].ADSRX.EnvelopeVol = worker->r.ch[ch].adsrEnvelopeVol;
1002 }
1003
1004 spu.dwChannelOn &= ~worker->r.chan_end;
1005 spu.decode_dirty_ch |= worker->r.decode_dirty;
1006
1007 do_samples_finish(worker->ns_to, worker->silentch,
1008 worker->decode_pos);
1009}
1010
1011#else
1012
1013static void queue_channel_work(int ns_to, int silentch) {}
1014static void sync_worker_thread(int do_direct) {}
1015
1016#endif // THREAD_ENABLED
1017
1018////////////////////////////////////////////////////////////////////////
1019// MAIN SPU FUNCTION
1020// here is the main job handler...
1021////////////////////////////////////////////////////////////////////////
1022
1023void do_samples(unsigned int cycles_to, int do_direct)
1024{
1025 unsigned int mask;
1026 int ch, ns_to;
1027 int silentch;
1028 int cycle_diff;
1029
1030 cycle_diff = cycles_to - spu.cycles_played;
1031 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1032 {
1033 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1034 spu.cycles_played = cycles_to;
1035 return;
1036 }
1037
1038 do_direct |= (cycle_diff < 64 * 768);
1039 if (worker != NULL)
1040 sync_worker_thread(do_direct);
1041
1042 if (cycle_diff < 2 * 768)
1043 return;
1044
1045 ns_to = (cycle_diff / 768 + 1) & ~1;
1046 if (ns_to > NSSIZE) {
1047 // should never happen
1048 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1049 ns_to = NSSIZE;
1050 }
1051
1052 //////////////////////////////////////////////////////
1053 // special irq handling in the decode buffers (0x0000-0x1000)
1054 // we know:
1055 // the decode buffers are located in spu memory in the following way:
1056 // 0x0000-0x03ff CD audio left
1057 // 0x0400-0x07ff CD audio right
1058 // 0x0800-0x0bff Voice 1
1059 // 0x0c00-0x0fff Voice 3
1060 // and decoded data is 16 bit for one sample
1061 // we assume:
1062 // even if voices 1/3 are off or no cd audio is playing, the internal
1063 // play positions will move on and wrap after 0x400 bytes.
1064 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1065 // increase this pointer on each sample by 2 bytes. If this pointer
1066 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1067 // an IRQ.
1068
1069 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1070 && spu.pSpuIrq < spu.spuMemC+0x1000))
1071 {
1072 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1073 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1074 if (0 < left && left <= ns_to)
1075 {
1076 //xprintf("decoder irq %x\n", spu.decode_pos);
1077 do_irq();
1078 }
1079 }
1080
1081 mask = spu.dwNewChannel & 0xffffff;
1082 for (ch = 0; mask != 0; ch++, mask >>= 1) {
1083 if (mask & 1)
1084 StartSound(ch);
1085 }
1086
1087 silentch = ~spu.dwChannelOn & 0xffffff;
1088
1089 if (spu.dwChannelOn == 0) {
1090 InitREVERB(ns_to);
1091 do_samples_finish(ns_to, silentch, spu.decode_pos);
1092 }
1093 else {
1094 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1095 do_channels(ns_to);
1096 do_samples_finish(ns_to, silentch, spu.decode_pos);
1097 }
1098 else {
1099 queue_channel_work(ns_to, silentch);
1100 }
1101 }
1102
1103 // advance "stopped" channels that can cause irqs
1104 // (all chans are always playing on the real thing..)
1105 if (spu.spuCtrl & CTRL_IRQ)
1106 do_silent_chans(ns_to, silentch);
1107
1108 spu.cycles_played += ns_to * 768;
1109 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1110}
1111
1112static void do_samples_finish(int ns_to, int silentch, int decode_pos)
1113{
1114 int volmult = spu_config.iVolume;
1115 int ns;
1116 int d;
1117
1118 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1))) // must clear silent channel decode buffers
1119 {
1120 memset(&spu.spuMem[0x800/2], 0, 0x400);
1121 spu.decode_dirty_ch &= ~(1<<1);
1122 }
1123 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1124 {
1125 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1126 spu.decode_dirty_ch &= ~(1<<3);
1127 }
1128
1129 //---------------------------------------------------//
1130 // mix XA infos (if any)
1131
1132 MixXA(ns_to, decode_pos);
1133
1134 ///////////////////////////////////////////////////////
1135 // mix all channels (including reverb) into one buffer
1136
1137 if(spu_config.iUseReverb)
1138 REVERBDo(ns_to);
1139
1140 if((spu.spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
1141 {
1142 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1143 spu.pS += ns_to * 2;
1144 }
1145 else
1146 for (ns = 0; ns < ns_to * 2; )
1147 {
1148 d = SSumLR[ns]; SSumLR[ns] = 0;
1149 d = d * volmult >> 10;
1150 ssat32_to_16(d);
1151 *spu.pS++ = d;
1152 ns++;
1153
1154 d = SSumLR[ns]; SSumLR[ns] = 0;
1155 d = d * volmult >> 10;
1156 ssat32_to_16(d);
1157 *spu.pS++ = d;
1158 ns++;
1159 }
1160}
1161
1162void schedule_next_irq(void)
1163{
1164 unsigned int upd_samples;
1165 int ch;
1166
1167 if (spu.scheduleCallback == NULL)
1168 return;
1169
1170 upd_samples = 44100 / 50;
1171
1172 for (ch = 0; ch < MAXCHAN; ch++)
1173 {
1174 if (spu.dwChannelDead & (1 << ch))
1175 continue;
1176 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1177 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1178 continue;
1179
1180 scan_for_irq(ch, &upd_samples);
1181 }
1182
1183 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1184 {
1185 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1186 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1187 if (0 < left && left < upd_samples) {
1188 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1189 upd_samples = left;
1190 }
1191 }
1192
1193 if (upd_samples < 44100 / 50)
1194 spu.scheduleCallback(upd_samples * 768);
1195}
1196
1197// SPU ASYNC... even newer epsxe func
1198// 1 time every 'cycle' cycles... harhar
1199
1200// rearmed: called dynamically now
1201
1202void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1203{
1204 do_samples(cycle, 0);
1205
1206 if (spu.spuCtrl & CTRL_IRQ)
1207 schedule_next_irq();
1208
1209 if (flags & 1) {
1210 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1211 spu.pS = (short *)spu.pSpuBuffer;
1212
1213 if (spu_config.iTempo) {
1214 if (!out_current->busy())
1215 // cause more samples to be generated
1216 // (and break some games because of bad sync)
1217 spu.cycles_played -= 44100 / 60 / 2 * 768;
1218 }
1219 }
1220}
1221
1222// SPU UPDATE... new epsxe func
1223// 1 time every 32 hsync lines
1224// (312/32)x50 in pal
1225// (262/32)x60 in ntsc
1226
1227// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1228// leave that func in the linux port, until epsxe linux is using
1229// the async function as well
1230
1231void CALLBACK SPUupdate(void)
1232{
1233}
1234
1235// XA AUDIO
1236
1237void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
1238{
1239 if(!xap) return;
1240 if(!xap->freq) return; // no xa freq ? bye
1241
1242 FeedXA(xap); // call main XA feeder
1243}
1244
1245// CDDA AUDIO
1246int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
1247{
1248 if (!pcm) return -1;
1249 if (nbytes<=0) return -1;
1250
1251 return FeedCDDA((unsigned char *)pcm, nbytes);
1252}
1253
1254// to be called after state load
1255void ClearWorkingState(void)
1256{
1257 memset(SSumLR, 0, NSSIZE * 2 * 4); // init some mixing buffers
1258 memset(iFMod, 0, sizeof(iFMod));
1259 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1260}
1261
1262// SETUPSTREAMS: init most of the spu buffers
1263void SetupStreams(void)
1264{
1265 int i;
1266
1267 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1268 spu.sRVBStart = calloc(NSSIZE * 2, sizeof(spu.sRVBStart[0]));
1269 SSumLR = calloc(NSSIZE * 2, sizeof(SSumLR[0]));
1270
1271 spu.XAStart = // alloc xa buffer
1272 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1273 spu.XAEnd = spu.XAStart + 44100;
1274 spu.XAPlay = spu.XAStart;
1275 spu.XAFeed = spu.XAStart;
1276
1277 spu.CDDAStart = // alloc cdda buffer
1278 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
1279 spu.CDDAEnd = spu.CDDAStart + 16384;
1280 spu.CDDAPlay = spu.CDDAStart;
1281 spu.CDDAFeed = spu.CDDAStart;
1282
1283 for(i=0;i<MAXCHAN;i++) // loop sound channels
1284 {
1285 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1286 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1287 spu.s_chan[i].pLoop=spu.spuMemC;
1288 spu.s_chan[i].pCurr=spu.spuMemC;
1289 }
1290
1291 ClearWorkingState();
1292
1293 spu.bSpuInit=1; // flag: we are inited
1294}
1295
1296// REMOVESTREAMS: free most buffer
1297void RemoveStreams(void)
1298{
1299 free(spu.pSpuBuffer); // free mixing buffer
1300 spu.pSpuBuffer = NULL;
1301 free(spu.sRVBStart); // free reverb buffer
1302 spu.sRVBStart = NULL;
1303 free(SSumLR);
1304 SSumLR = NULL;
1305 free(spu.XAStart); // free XA buffer
1306 spu.XAStart = NULL;
1307 free(spu.CDDAStart); // free CDDA buffer
1308 spu.CDDAStart = NULL;
1309}
1310
1311#if defined(C64X_DSP)
1312
1313/* special code for TI C64x DSP */
1314#include "spu_c64x.c"
1315
1316#elif defined(THREAD_ENABLED)
1317
1318#include <pthread.h>
1319#include <semaphore.h>
1320#include <unistd.h>
1321
1322static struct {
1323 pthread_t thread;
1324 sem_t sem_avail;
1325 sem_t sem_done;
1326} t;
1327
1328/* generic pthread implementation */
1329
1330static void thread_work_start(void)
1331{
1332 sem_post(&t.sem_avail);
1333}
1334
1335static void thread_work_wait_sync(void)
1336{
1337 sem_wait(&t.sem_done);
1338}
1339
1340static void thread_sync_caches(void)
1341{
1342}
1343
1344static void *spu_worker_thread(void *unused)
1345{
1346 while (1) {
1347 sem_wait(&t.sem_avail);
1348 if (worker->exit_thread)
1349 break;
1350
1351 do_channel_work();
1352
1353 sem_post(&t.sem_done);
1354 }
1355
1356 return NULL;
1357}
1358
1359static void init_spu_thread(void)
1360{
1361 int ret;
1362
1363 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1364 return;
1365
1366 worker = calloc(1, sizeof(*worker));
1367 if (worker == NULL)
1368 return;
1369 ret = sem_init(&t.sem_avail, 0, 0);
1370 if (ret != 0)
1371 goto fail_sem_avail;
1372 ret = sem_init(&t.sem_done, 0, 0);
1373 if (ret != 0)
1374 goto fail_sem_done;
1375
1376 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1377 if (ret != 0)
1378 goto fail_thread;
1379
1380 return;
1381
1382fail_thread:
1383 sem_destroy(&t.sem_done);
1384fail_sem_done:
1385 sem_destroy(&t.sem_avail);
1386fail_sem_avail:
1387 free(worker);
1388 worker = NULL;
1389}
1390
1391static void exit_spu_thread(void)
1392{
1393 if (worker == NULL)
1394 return;
1395 worker->exit_thread = 1;
1396 sem_post(&t.sem_avail);
1397 pthread_join(t.thread, NULL);
1398 sem_destroy(&t.sem_done);
1399 sem_destroy(&t.sem_avail);
1400 free(worker);
1401 worker = NULL;
1402}
1403
1404#else // if !THREAD_ENABLED
1405
1406static void init_spu_thread(void)
1407{
1408}
1409
1410static void exit_spu_thread(void)
1411{
1412}
1413
1414#endif
1415
1416// SPUINIT: this func will be called first by the main emu
1417long CALLBACK SPUinit(void)
1418{
1419 spu.spuMemC = calloc(1, 512 * 1024);
1420 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1421 InitADSR();
1422
1423 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1424 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1425
1426 spu.spuAddr = 0;
1427 spu.decode_pos = 0;
1428 spu.pSpuIrq = spu.spuMemC;
1429
1430 SetupStreams(); // prepare streaming
1431
1432 if (spu_config.iVolume == 0)
1433 spu_config.iVolume = 768; // 1024 is 1.0
1434
1435 init_spu_thread();
1436
1437 return 0;
1438}
1439
1440// SPUOPEN: called by main emu after init
1441long CALLBACK SPUopen(void)
1442{
1443 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1444
1445 SetupSound(); // setup sound (before init!)
1446
1447 spu.bSPUIsOpen = 1;
1448
1449 return PSE_SPU_ERR_SUCCESS;
1450}
1451
1452// SPUCLOSE: called before shutdown
1453long CALLBACK SPUclose(void)
1454{
1455 if (!spu.bSPUIsOpen) return 0; // some security
1456
1457 spu.bSPUIsOpen = 0; // no more open
1458
1459 out_current->finish(); // no more sound handling
1460
1461 return 0;
1462}
1463
1464// SPUSHUTDOWN: called by main emu on final exit
1465long CALLBACK SPUshutdown(void)
1466{
1467 SPUclose();
1468
1469 exit_spu_thread();
1470
1471 free(spu.spuMemC);
1472 spu.spuMemC = NULL;
1473 free(spu.SB);
1474 spu.SB = NULL;
1475 free(spu.s_chan);
1476 spu.s_chan = NULL;
1477
1478 RemoveStreams(); // no more streaming
1479 spu.bSpuInit=0;
1480
1481 return 0;
1482}
1483
1484// SPUTEST: we don't test, we are always fine ;)
1485long CALLBACK SPUtest(void)
1486{
1487 return 0;
1488}
1489
1490// SPUCONFIGURE: call config dialog
1491long CALLBACK SPUconfigure(void)
1492{
1493#ifdef _MACOSX
1494 DoConfiguration();
1495#else
1496// StartCfgTool("CFG");
1497#endif
1498 return 0;
1499}
1500
1501// SPUABOUT: show about window
1502void CALLBACK SPUabout(void)
1503{
1504#ifdef _MACOSX
1505 DoAbout();
1506#else
1507// StartCfgTool("ABOUT");
1508#endif
1509}
1510
1511// SETUP CALLBACKS
1512// this functions will be called once,
1513// passes a callback that should be called on SPU-IRQ/cdda volume change
1514void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1515{
1516 spu.irqCallback = callback;
1517}
1518
1519void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1520{
1521 spu.cddavCallback = CDDAVcallback;
1522}
1523
1524void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1525{
1526 spu.scheduleCallback = callback;
1527}
1528
1529// COMMON PLUGIN INFO FUNCS
1530/*
1531char * CALLBACK PSEgetLibName(void)
1532{
1533 return _(libraryName);
1534}
1535
1536unsigned long CALLBACK PSEgetLibType(void)
1537{
1538 return PSE_LT_SPU;
1539}
1540
1541unsigned long CALLBACK PSEgetLibVersion(void)
1542{
1543 return (1 << 16) | (6 << 8);
1544}
1545
1546char * SPUgetLibInfos(void)
1547{
1548 return _(libraryInfo);
1549}
1550*/
1551
1552// debug
1553void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1554{
1555 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1556
1557 if (spu.s_chan == NULL)
1558 return;
1559
1560 for(;ch<MAXCHAN;ch++)
1561 {
1562 if (!(spu.dwChannelOn & (1<<ch)))
1563 continue;
1564 if (spu.s_chan[ch].bFMod == 2)
1565 fmod_chans |= 1 << ch;
1566 if (spu.s_chan[ch].bNoise)
1567 noise_chans |= 1 << ch;
1568 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1569 irq_chans |= 1 << ch;
1570 }
1571
1572 *chans_out = spu.dwChannelOn;
1573 *run_chans = ~spu.dwChannelOn & ~spu.dwChannelDead & irq_chans;
1574 *fmod_chans_out = fmod_chans;
1575 *noise_chans_out = noise_chans;
1576}
1577
1578// vim:shiftwidth=1:expandtab