spu: try to improve timing
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "out.h"
28#include "spu_config.h"
29
30#ifdef __arm__
31#include "arm_features.h"
32#endif
33
34#ifdef HAVE_ARMV7
35 #define ssat32_to_16(v) \
36 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
37#else
38 #define ssat32_to_16(v) do { \
39 if (v < -32768) v = -32768; \
40 else if (v > 32767) v = 32767; \
41 } while (0)
42#endif
43
44#define PSXCLK 33868800 /* 33.8688 MHz */
45
46// intended to be ~1 frame
47#define IRQ_NEAR_BLOCKS 32
48
49/*
50#if defined (USEMACOSX)
51static char * libraryName = N_("Mac OS X Sound");
52#elif defined (USEALSA)
53static char * libraryName = N_("ALSA Sound");
54#elif defined (USEOSS)
55static char * libraryName = N_("OSS Sound");
56#elif defined (USESDL)
57static char * libraryName = N_("SDL Sound");
58#elif defined (USEPULSEAUDIO)
59static char * libraryName = N_("PulseAudio Sound");
60#else
61static char * libraryName = N_("NULL Sound");
62#endif
63
64static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
65*/
66
67// globals
68
69SPUInfo spu;
70SPUConfig spu_config;
71
72static int iFMod[NSSIZE];
73static int RVB[NSSIZE * 2];
74int ChanBuf[NSSIZE];
75
76#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
77
78////////////////////////////////////////////////////////////////////////
79// CODE AREA
80////////////////////////////////////////////////////////////////////////
81
82// dirty inline func includes
83
84#include "reverb.c"
85#include "adsr.c"
86
87////////////////////////////////////////////////////////////////////////
88// helpers for simple interpolation
89
90//
91// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
92//
93// instead of having n equal sample values in a row like:
94// ____
95// |____
96//
97// we compare the current delta change with the next delta change.
98//
99// if curr_delta is positive,
100//
101// - and next delta is smaller (or changing direction):
102// \.
103// -__
104//
105// - and next delta significant (at least twice) bigger:
106// --_
107// \.
108//
109// - and next delta is nearly same:
110// \.
111// \.
112//
113//
114// if curr_delta is negative,
115//
116// - and next delta is smaller (or changing direction):
117// _--
118// /
119//
120// - and next delta significant (at least twice) bigger:
121// /
122// __-
123//
124// - and next delta is nearly same:
125// /
126// /
127//
128
129static void InterpolateUp(int *SB, int sinc)
130{
131 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
132 {
133 const int id1=SB[30]-SB[29]; // curr delta to next val
134 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
135
136 SB[32]=0;
137
138 if(id1>0) // curr delta positive
139 {
140 if(id2<id1)
141 {SB[28]=id1;SB[32]=2;}
142 else
143 if(id2<(id1<<1))
144 SB[28]=(id1*sinc)>>16;
145 else
146 SB[28]=(id1*sinc)>>17;
147 }
148 else // curr delta negative
149 {
150 if(id2>id1)
151 {SB[28]=id1;SB[32]=2;}
152 else
153 if(id2>(id1<<1))
154 SB[28]=(id1*sinc)>>16;
155 else
156 SB[28]=(id1*sinc)>>17;
157 }
158 }
159 else
160 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
161 {
162 SB[32]=0;
163
164 SB[28]=(SB[28]*sinc)>>17;
165 //if(sinc<=0x8000)
166 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
167 //else
168 SB[29]+=SB[28];
169 }
170 else // no flags? add bigger val (if possible), calc smaller step, set flag1
171 SB[29]+=SB[28];
172}
173
174//
175// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
176//
177
178static void InterpolateDown(int *SB, int sinc)
179{
180 if(sinc>=0x20000L) // we would skip at least one val?
181 {
182 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
183 if(sinc>=0x30000L) // we would skip even more vals?
184 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
185 }
186}
187
188////////////////////////////////////////////////////////////////////////
189// helpers for gauss interpolation
190
191#define gval0 (((short*)(&SB[29]))[gpos&3])
192#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
193
194#include "gauss_i.h"
195
196////////////////////////////////////////////////////////////////////////
197
198#include "xa.c"
199
200static void do_irq(void)
201{
202 //if(!(spu.spuStat & STAT_IRQ))
203 {
204 spu.spuStat |= STAT_IRQ; // asserted status?
205 if(spu.irqCallback) spu.irqCallback();
206 }
207}
208
209static int check_irq(int ch, unsigned char *pos)
210{
211 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && pos == spu.pSpuIrq)
212 {
213 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
214 do_irq();
215 return 1;
216 }
217 return 0;
218}
219
220void check_irq_io(unsigned int addr)
221{
222 unsigned int irq_addr = regAreaGet(H_SPUirqAddr) << 3;
223 //addr &= ~7; // ?
224 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && addr == irq_addr)
225 {
226 //printf("io irq %04x\n", irq_addr);
227 do_irq();
228 }
229}
230
231////////////////////////////////////////////////////////////////////////
232// START SOUND... called by main thread to setup a new sound on a channel
233////////////////////////////////////////////////////////////////////////
234
235static void StartSoundSB(int *SB)
236{
237 SB[26]=0; // init mixing vars
238 SB[27]=0;
239
240 SB[28]=0;
241 SB[29]=0; // init our interpolation helpers
242 SB[30]=0;
243 SB[31]=0;
244}
245
246static void StartSoundMain(int ch)
247{
248 SPUCHAN *s_chan = &spu.s_chan[ch];
249
250 StartADSR(ch);
251 StartREVERB(ch);
252
253 s_chan->prevflags = 2;
254 s_chan->iSBPos = 27;
255 s_chan->spos = 0;
256 s_chan->bStarting = 1;
257
258 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
259
260 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
261 spu.dwChannelDead&=~(1<<ch);
262 spu.dwChannelsAudible|=1<<ch;
263}
264
265static void StartSound(int ch)
266{
267 StartSoundMain(ch);
268 StartSoundSB(spu.SB + ch * SB_SIZE);
269}
270
271////////////////////////////////////////////////////////////////////////
272// ALL KIND OF HELPERS
273////////////////////////////////////////////////////////////////////////
274
275INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
276{
277 unsigned int NP=pitch;
278 int sinc;
279
280 NP=((32768L+iFMod[ns])*NP)>>15;
281
282 if(NP>0x3fff) NP=0x3fff;
283 if(NP<0x1) NP=0x1;
284
285 sinc=NP<<4; // calc frequency
286 iFMod[ns]=0;
287 SB[32]=1; // reset interpolation
288
289 return sinc;
290}
291
292////////////////////////////////////////////////////////////////////////
293
294INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
295{
296 if(fmod_freq) // fmod freq channel
297 SB[29]=fa;
298 else
299 {
300 ssat32_to_16(fa);
301
302 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
303 {
304 int gpos = SB[28];
305 gval0 = fa;
306 gpos = (gpos+1) & 3;
307 SB[28] = gpos;
308 }
309 else
310 if(spu_config.iUseInterpolation==1) // simple interpolation
311 {
312 SB[28] = 0;
313 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
314 SB[30] = SB[31];
315 SB[31] = fa;
316 SB[32] = 1; // -> flag: calc new interolation
317 }
318 else SB[29]=fa; // no interpolation
319 }
320}
321
322////////////////////////////////////////////////////////////////////////
323
324INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
325{
326 int fa;
327
328 if(fmod_freq) return SB[29];
329
330 switch(spu_config.iUseInterpolation)
331 {
332 //--------------------------------------------------//
333 case 3: // cubic interpolation
334 {
335 long xd;int gpos;
336 xd = (spos >> 1)+1;
337 gpos = SB[28];
338
339 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
340 fa *= (xd - (2<<15)) / 6;
341 fa >>= 15;
342 fa += gval(2) - gval(1) - gval(1) + gval0;
343 fa *= (xd - (1<<15)) >> 1;
344 fa >>= 15;
345 fa += gval(1) - gval0;
346 fa *= xd;
347 fa >>= 15;
348 fa = fa + gval0;
349
350 } break;
351 //--------------------------------------------------//
352 case 2: // gauss interpolation
353 {
354 int vl, vr;int gpos;
355 vl = (spos >> 6) & ~3;
356 gpos = SB[28];
357 vr=(gauss[vl]*(int)gval0) >> 15;
358 vr+=(gauss[vl+1]*gval(1)) >> 15;
359 vr+=(gauss[vl+2]*gval(2)) >> 15;
360 vr+=(gauss[vl+3]*gval(3)) >> 15;
361 fa = vr;
362 } break;
363 //--------------------------------------------------//
364 case 1: // simple interpolation
365 {
366 if(sinc<0x10000L) // -> upsampling?
367 InterpolateUp(SB, sinc); // --> interpolate up
368 else InterpolateDown(SB, sinc); // --> else down
369 fa=SB[29];
370 } break;
371 //--------------------------------------------------//
372 default: // no interpolation
373 {
374 fa=SB[29];
375 } break;
376 //--------------------------------------------------//
377 }
378
379 return fa;
380}
381
382static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
383{
384 static const int f[16][2] = {
385 { 0, 0 },
386 { 60, 0 },
387 { 115, -52 },
388 { 98, -55 },
389 { 122, -60 }
390 };
391 int nSample;
392 int fa, s_1, s_2, d, s;
393
394 s_1 = dest[27];
395 s_2 = dest[26];
396
397 for (nSample = 0; nSample < 28; src++)
398 {
399 d = (int)*src;
400 s = (int)(signed short)((d & 0x0f) << 12);
401
402 fa = s >> shift_factor;
403 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
404 s_2=s_1;s_1=fa;
405
406 dest[nSample++] = fa;
407
408 s = (int)(signed short)((d & 0xf0) << 8);
409 fa = s >> shift_factor;
410 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
411 s_2=s_1;s_1=fa;
412
413 dest[nSample++] = fa;
414 }
415}
416
417static int decode_block(void *unused, int ch, int *SB)
418{
419 SPUCHAN *s_chan = &spu.s_chan[ch];
420 unsigned char *start;
421 int predict_nr, shift_factor, flags;
422 int ret = 0;
423
424 start = s_chan->pCurr; // set up the current pos
425 if (start - spu.spuMemC < 0x1000) { // ?
426 //log_unhandled("ch%02d plays decode bufs @%05lx\n",
427 // ch, (long)(start - spu.spuMemC));
428 ret = 1;
429 }
430
431 if (s_chan->prevflags & 1) // 1: stop/loop
432 {
433 if (!(s_chan->prevflags & 2))
434 ret = 1;
435
436 start = s_chan->pLoop;
437 }
438
439 check_irq(ch, start);
440
441 predict_nr = start[0];
442 shift_factor = predict_nr & 0xf;
443 predict_nr >>= 4;
444
445 decode_block_data(SB, start + 2, predict_nr, shift_factor);
446
447 flags = start[1];
448 if (flags & 4 && !s_chan->bIgnoreLoop)
449 s_chan->pLoop = start; // loop adress
450
451 start += 16;
452
453 s_chan->pCurr = start; // store values for next cycle
454 s_chan->prevflags = flags;
455 s_chan->bStarting = 0;
456
457 return ret;
458}
459
460// do block, but ignore sample data
461static int skip_block(int ch)
462{
463 SPUCHAN *s_chan = &spu.s_chan[ch];
464 unsigned char *start = s_chan->pCurr;
465 int flags;
466 int ret = 0;
467
468 if (s_chan->prevflags & 1) {
469 if (!(s_chan->prevflags & 2))
470 ret = 1;
471
472 start = s_chan->pLoop;
473 }
474
475 check_irq(ch, start);
476
477 flags = start[1];
478 if (flags & 4 && !s_chan->bIgnoreLoop)
479 s_chan->pLoop = start;
480
481 start += 16;
482
483 s_chan->pCurr = start;
484 s_chan->prevflags = flags;
485 s_chan->bStarting = 0;
486
487 return ret;
488}
489
490// if irq is going to trigger sooner than in upd_samples, set upd_samples
491static void scan_for_irq(int ch, unsigned int *upd_samples)
492{
493 SPUCHAN *s_chan = &spu.s_chan[ch];
494 int pos, sinc, sinc_inv, end;
495 unsigned char *block;
496 int flags;
497
498 block = s_chan->pCurr;
499 pos = s_chan->spos;
500 sinc = s_chan->sinc;
501 end = pos + *upd_samples * sinc;
502 if (s_chan->prevflags & 1) // 1: stop/loop
503 block = s_chan->pLoop;
504
505 pos += (28 - s_chan->iSBPos) << 16;
506 while (pos < end)
507 {
508 if (block == spu.pSpuIrq)
509 break;
510 flags = block[1];
511 block += 16;
512 if (flags & 1) { // 1: stop/loop
513 block = s_chan->pLoop;
514 }
515 pos += 28 << 16;
516 }
517
518 if (pos < end)
519 {
520 sinc_inv = s_chan->sinc_inv;
521 if (sinc_inv == 0)
522 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
523
524 pos -= s_chan->spos;
525 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
526 //xprintf("ch%02d: irq sched: %3d %03d\n",
527 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
528 }
529}
530
531#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
532static noinline int do_samples_##name( \
533 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
534 int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
535{ \
536 int ns, d, fa; \
537 int ret = ns_to; \
538 interp_start; \
539 \
540 for (ns = 0; ns < ns_to; ns++) \
541 { \
542 fmod_code; \
543 \
544 *spos += sinc; \
545 while (*spos >= 0x10000) \
546 { \
547 fa = SB[(*sbpos)++]; \
548 if (*sbpos >= 28) \
549 { \
550 *sbpos = 0; \
551 d = decode_f(ctx, ch, SB); \
552 if (d && ns < ret) \
553 ret = ns; \
554 } \
555 \
556 interp1_code; \
557 *spos -= 0x10000; \
558 } \
559 \
560 interp2_code; \
561 } \
562 \
563 interp_end; \
564 \
565 return ret; \
566}
567
568#define fmod_recv_check \
569 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
570 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
571
572make_do_samples(default, fmod_recv_check, ,
573 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
574 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
575make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
576
577#define simple_interp_store \
578 SB[28] = 0; \
579 SB[29] = SB[30]; \
580 SB[30] = SB[31]; \
581 SB[31] = fa; \
582 SB[32] = 1
583
584#define simple_interp_get \
585 if(sinc<0x10000) /* -> upsampling? */ \
586 InterpolateUp(SB, sinc); /* --> interpolate up */ \
587 else InterpolateDown(SB, sinc); /* --> else down */ \
588 ChanBuf[ns] = SB[29]
589
590make_do_samples(simple, , ,
591 simple_interp_store, simple_interp_get, )
592
593static int do_samples_skip(int ch, int ns_to)
594{
595 SPUCHAN *s_chan = &spu.s_chan[ch];
596 int spos = s_chan->spos;
597 int sinc = s_chan->sinc;
598 int ret = ns_to, ns, d;
599
600 spos += s_chan->iSBPos << 16;
601
602 for (ns = 0; ns < ns_to; ns++)
603 {
604 spos += sinc;
605 while (spos >= 28*0x10000)
606 {
607 d = skip_block(ch);
608 if (d && ns < ret)
609 ret = ns;
610 spos -= 28*0x10000;
611 }
612 }
613
614 s_chan->iSBPos = spos >> 16;
615 s_chan->spos = spos & 0xffff;
616
617 return ret;
618}
619
620static void do_lsfr_samples(int ns_to, int ctrl,
621 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
622{
623 unsigned int counter = *dwNoiseCount;
624 unsigned int val = *dwNoiseVal;
625 unsigned int level, shift, bit;
626 int ns;
627
628 // modified from DrHell/shalma, no fraction
629 level = (ctrl >> 10) & 0x0f;
630 level = 0x8000 >> level;
631
632 for (ns = 0; ns < ns_to; ns++)
633 {
634 counter += 2;
635 if (counter >= level)
636 {
637 counter -= level;
638 shift = (val >> 10) & 0x1f;
639 bit = (0x69696969 >> shift) & 1;
640 bit ^= (val >> 15) & 1;
641 val = (val << 1) | bit;
642 }
643
644 ChanBuf[ns] = (signed short)val;
645 }
646
647 *dwNoiseCount = counter;
648 *dwNoiseVal = val;
649}
650
651static int do_samples_noise(int ch, int ns_to)
652{
653 int ret;
654
655 ret = do_samples_skip(ch, ns_to);
656
657 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
658
659 return ret;
660}
661
662#ifdef HAVE_ARMV5
663// asm code; lv and rv must be 0-3fff
664extern void mix_chan(int *SSumLR, int count, int lv, int rv);
665extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
666#else
667static void mix_chan(int *SSumLR, int count, int lv, int rv)
668{
669 const int *src = ChanBuf;
670 int l, r;
671
672 while (count--)
673 {
674 int sval = *src++;
675
676 l = (sval * lv) >> 14;
677 r = (sval * rv) >> 14;
678 *SSumLR++ += l;
679 *SSumLR++ += r;
680 }
681}
682
683static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
684{
685 const int *src = ChanBuf;
686 int *dst = SSumLR;
687 int *drvb = rvb;
688 int l, r;
689
690 while (count--)
691 {
692 int sval = *src++;
693
694 l = (sval * lv) >> 14;
695 r = (sval * rv) >> 14;
696 *dst++ += l;
697 *dst++ += r;
698 *drvb++ += l;
699 *drvb++ += r;
700 }
701}
702#endif
703
704// 0x0800-0x0bff Voice 1
705// 0x0c00-0x0fff Voice 3
706static noinline void do_decode_bufs(unsigned short *mem, int which,
707 int count, int decode_pos)
708{
709 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
710 const int *src = ChanBuf;
711 int cursor = decode_pos;
712
713 while (count-- > 0)
714 {
715 cursor &= 0x1ff;
716 dst[cursor] = *src++;
717 cursor++;
718 }
719
720 // decode_pos is updated and irqs are checked later, after voice loop
721}
722
723static void do_silent_chans(int ns_to, int silentch)
724{
725 unsigned int mask;
726 SPUCHAN *s_chan;
727 int ch;
728
729 mask = silentch & 0xffffff;
730 for (ch = 0; mask != 0; ch++, mask >>= 1)
731 {
732 if (!(mask & 1)) continue;
733 if (spu.dwChannelDead & (1<<ch)) continue;
734
735 s_chan = &spu.s_chan[ch];
736 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
737 continue;
738
739 s_chan->spos += s_chan->iSBPos << 16;
740 s_chan->iSBPos = 0;
741
742 s_chan->spos += s_chan->sinc * ns_to;
743 while (s_chan->spos >= 28 * 0x10000)
744 {
745 unsigned char *start = s_chan->pCurr;
746
747 skip_block(ch);
748 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
749 {
750 // looping on self or stopped(?)
751 spu.dwChannelDead |= 1<<ch;
752 s_chan->spos = 0;
753 break;
754 }
755
756 s_chan->spos -= 28 * 0x10000;
757 }
758 }
759}
760
761static void do_channels(int ns_to)
762{
763 unsigned int mask;
764 int do_rvb, ch, d;
765 SPUCHAN *s_chan;
766 int *SB, sinc;
767
768 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
769 if (do_rvb)
770 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
771
772 mask = spu.dwNewChannel & 0xffffff;
773 for (ch = 0; mask != 0; ch++, mask >>= 1) {
774 if (mask & 1)
775 StartSound(ch);
776 }
777
778 mask = spu.dwChannelsAudible & 0xffffff;
779 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
780 {
781 if (!(mask & 1)) continue; // channel not playing? next
782
783 s_chan = &spu.s_chan[ch];
784 SB = spu.SB + ch * SB_SIZE;
785 sinc = s_chan->sinc;
786 if (spu.s_chan[ch].bNewPitch)
787 SB[32] = 1; // reset interpolation
788 spu.s_chan[ch].bNewPitch = 0;
789
790 if (s_chan->bNoise)
791 d = do_samples_noise(ch, ns_to);
792 else if (s_chan->bFMod == 2
793 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
794 d = do_samples_noint(decode_block, NULL, ch, ns_to,
795 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
796 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
797 d = do_samples_simple(decode_block, NULL, ch, ns_to,
798 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
799 else
800 d = do_samples_default(decode_block, NULL, ch, ns_to,
801 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
802
803 if (!s_chan->bStarting) {
804 d = MixADSR(&s_chan->ADSRX, d);
805 if (d < ns_to) {
806 spu.dwChannelsAudible &= ~(1 << ch);
807 s_chan->ADSRX.State = ADSR_RELEASE;
808 s_chan->ADSRX.EnvelopeVol = 0;
809 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
810 }
811 }
812
813 if (ch == 1 || ch == 3)
814 {
815 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
816 spu.decode_dirty_ch |= 1 << ch;
817 }
818
819 if (s_chan->bFMod == 2) // fmod freq channel
820 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
821 if (s_chan->bRVBActive && do_rvb)
822 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
823 else
824 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
825 }
826
827 MixXA(spu.SSumLR, RVB, ns_to, spu.decode_pos);
828
829 if (spu.rvb->StartAddr) {
830 if (do_rvb)
831 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
832
833 spu.rvb->CurrAddr += ns_to / 2;
834 while (spu.rvb->CurrAddr >= 0x40000)
835 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
836 }
837}
838
839static void do_samples_finish(int *SSumLR, int ns_to,
840 int silentch, int decode_pos);
841
842// optional worker thread handling
843
844#if P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
845
846// worker thread state
847static struct spu_worker {
848 union {
849 struct {
850 unsigned int exit_thread;
851 unsigned int i_ready;
852 unsigned int i_reaped;
853 unsigned int last_boot_cnt; // dsp
854 unsigned int ram_dirty;
855 };
856 // aligning for C64X_DSP
857 unsigned int _pad0[128/4];
858 };
859 union {
860 struct {
861 unsigned int i_done;
862 unsigned int active; // dsp
863 unsigned int boot_cnt;
864 };
865 unsigned int _pad1[128/4];
866 };
867 struct work_item {
868 int ns_to;
869 int ctrl;
870 int decode_pos;
871 int rvb_addr;
872 unsigned int channels_new;
873 unsigned int channels_on;
874 unsigned int channels_silent;
875 struct {
876 int spos;
877 int sbpos;
878 int sinc;
879 int start;
880 int loop;
881 short vol_l;
882 short vol_r;
883 unsigned short ns_to;
884 unsigned short bNoise:1;
885 unsigned short bFMod:2;
886 unsigned short bRVBActive:1;
887 unsigned short bNewPitch:1;
888 ADSRInfoEx adsr;
889 } ch[24];
890 int SSumLR[NSSIZE * 2];
891 } i[4];
892} *worker;
893
894#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
895#define WORK_I_MASK (WORK_MAXCNT - 1)
896
897static void thread_work_start(void);
898static void thread_work_wait_sync(struct work_item *work, int force);
899static void thread_sync_caches(void);
900static int thread_get_i_done(void);
901
902static int decode_block_work(void *context, int ch, int *SB)
903{
904 const unsigned char *ram = spu.spuMemC;
905 int predict_nr, shift_factor, flags;
906 struct work_item *work = context;
907 int start = work->ch[ch].start;
908 int loop = work->ch[ch].loop;
909
910 predict_nr = ram[start];
911 shift_factor = predict_nr & 0xf;
912 predict_nr >>= 4;
913
914 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
915
916 flags = ram[start + 1];
917 if (flags & 4)
918 loop = start; // loop adress
919
920 start += 16;
921
922 if (flags & 1) // 1: stop/loop
923 start = loop;
924
925 work->ch[ch].start = start & 0x7ffff;
926 work->ch[ch].loop = loop;
927
928 return 0;
929}
930
931static void queue_channel_work(int ns_to, unsigned int silentch)
932{
933 struct work_item *work;
934 SPUCHAN *s_chan;
935 unsigned int mask;
936 int ch, d;
937
938 work = &worker->i[worker->i_ready & WORK_I_MASK];
939 work->ns_to = ns_to;
940 work->ctrl = spu.spuCtrl;
941 work->decode_pos = spu.decode_pos;
942 work->channels_silent = silentch;
943
944 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
945 for (ch = 0; mask != 0; ch++, mask >>= 1) {
946 if (mask & 1)
947 StartSoundMain(ch);
948 }
949
950 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
951 spu.decode_dirty_ch |= mask & 0x0a;
952
953 for (ch = 0; mask != 0; ch++, mask >>= 1)
954 {
955 if (!(mask & 1)) continue;
956
957 s_chan = &spu.s_chan[ch];
958 work->ch[ch].spos = s_chan->spos;
959 work->ch[ch].sbpos = s_chan->iSBPos;
960 work->ch[ch].sinc = s_chan->sinc;
961 work->ch[ch].adsr = s_chan->ADSRX;
962 work->ch[ch].vol_l = s_chan->iLeftVolume;
963 work->ch[ch].vol_r = s_chan->iRightVolume;
964 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
965 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
966 work->ch[ch].bNoise = s_chan->bNoise;
967 work->ch[ch].bFMod = s_chan->bFMod;
968 work->ch[ch].bRVBActive = s_chan->bRVBActive;
969 work->ch[ch].bNewPitch = s_chan->bNewPitch;
970 if (s_chan->prevflags & 1)
971 work->ch[ch].start = work->ch[ch].loop;
972
973 d = do_samples_skip(ch, ns_to);
974 work->ch[ch].ns_to = d;
975
976 if (!s_chan->bStarting) {
977 // note: d is not accurate on skip
978 d = SkipADSR(&s_chan->ADSRX, d);
979 if (d < ns_to) {
980 spu.dwChannelsAudible &= ~(1 << ch);
981 s_chan->ADSRX.State = ADSR_RELEASE;
982 s_chan->ADSRX.EnvelopeVol = 0;
983 }
984 }
985 s_chan->bNewPitch = 0;
986 }
987
988 work->rvb_addr = 0;
989 if (spu.rvb->StartAddr) {
990 if (spu_config.iUseReverb)
991 work->rvb_addr = spu.rvb->CurrAddr;
992
993 spu.rvb->CurrAddr += ns_to / 2;
994 while (spu.rvb->CurrAddr >= 0x40000)
995 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
996 }
997
998 worker->i_ready++;
999 thread_work_start();
1000}
1001
1002static void do_channel_work(struct work_item *work)
1003{
1004 unsigned int mask;
1005 int *SB, sinc, spos, sbpos;
1006 int d, ch, ns_to;
1007
1008 ns_to = work->ns_to;
1009
1010 if (work->rvb_addr)
1011 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
1012
1013 mask = work->channels_new;
1014 for (ch = 0; mask != 0; ch++, mask >>= 1) {
1015 if (mask & 1)
1016 StartSoundSB(spu.SB + ch * SB_SIZE);
1017 }
1018
1019 mask = work->channels_on;
1020 for (ch = 0; mask != 0; ch++, mask >>= 1)
1021 {
1022 if (!(mask & 1)) continue;
1023
1024 d = work->ch[ch].ns_to;
1025 spos = work->ch[ch].spos;
1026 sbpos = work->ch[ch].sbpos;
1027 sinc = work->ch[ch].sinc;
1028
1029 SB = spu.SB + ch * SB_SIZE;
1030 if (work->ch[ch].bNewPitch)
1031 SB[32] = 1; // reset interpolation
1032
1033 if (work->ch[ch].bNoise)
1034 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1035 else if (work->ch[ch].bFMod == 2
1036 || (work->ch[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
1037 do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1038 else if (work->ch[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
1039 do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1040 else
1041 do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1042
1043 d = MixADSR(&work->ch[ch].adsr, d);
1044 if (d < ns_to) {
1045 work->ch[ch].adsr.EnvelopeVol = 0;
1046 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1047 }
1048
1049 if (ch == 1 || ch == 3)
1050 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1051
1052 if (work->ch[ch].bFMod == 2) // fmod freq channel
1053 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1054 if (work->ch[ch].bRVBActive && work->rvb_addr)
1055 mix_chan_rvb(work->SSumLR, ns_to,
1056 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1057 else
1058 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1059 }
1060
1061 if (work->rvb_addr)
1062 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1063}
1064
1065static void sync_worker_thread(int force)
1066{
1067 struct work_item *work;
1068 int done, used_space;
1069
1070 // rvb offsets will change, thread may be using them
1071 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1072
1073 done = thread_get_i_done() - worker->i_reaped;
1074 used_space = worker->i_ready - worker->i_reaped;
1075
1076 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1077 // worker->boot_cnt, worker->i_done);
1078
1079 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1080 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1081 thread_work_wait_sync(work, force);
1082
1083 MixXA(work->SSumLR, RVB, work->ns_to, work->decode_pos);
1084 do_samples_finish(work->SSumLR, work->ns_to,
1085 work->channels_silent, work->decode_pos);
1086
1087 worker->i_reaped++;
1088 done = thread_get_i_done() - worker->i_reaped;
1089 used_space = worker->i_ready - worker->i_reaped;
1090 }
1091 if (force)
1092 thread_sync_caches();
1093}
1094
1095#else
1096
1097static void queue_channel_work(int ns_to, int silentch) {}
1098static void sync_worker_thread(int force) {}
1099
1100static const void * const worker = NULL;
1101
1102#endif // P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
1103
1104////////////////////////////////////////////////////////////////////////
1105// MAIN SPU FUNCTION
1106// here is the main job handler...
1107////////////////////////////////////////////////////////////////////////
1108
1109void do_samples(unsigned int cycles_to, int do_direct)
1110{
1111 unsigned int silentch;
1112 int cycle_diff;
1113 int ns_to;
1114
1115 cycle_diff = cycles_to - spu.cycles_played;
1116 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1117 {
1118 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1119 spu.cycles_played = cycles_to;
1120 return;
1121 }
1122
1123 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1124
1125 do_direct |= (silentch == 0xffffff);
1126 if (worker != NULL)
1127 sync_worker_thread(do_direct);
1128
1129 if (cycle_diff < 2 * 768)
1130 return;
1131
1132 ns_to = (cycle_diff / 768 + 1) & ~1;
1133 if (ns_to > NSSIZE) {
1134 // should never happen
1135 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1136 ns_to = NSSIZE;
1137 }
1138
1139 //////////////////////////////////////////////////////
1140 // special irq handling in the decode buffers (0x0000-0x1000)
1141 // we know:
1142 // the decode buffers are located in spu memory in the following way:
1143 // 0x0000-0x03ff CD audio left
1144 // 0x0400-0x07ff CD audio right
1145 // 0x0800-0x0bff Voice 1
1146 // 0x0c00-0x0fff Voice 3
1147 // and decoded data is 16 bit for one sample
1148 // we assume:
1149 // even if voices 1/3 are off or no cd audio is playing, the internal
1150 // play positions will move on and wrap after 0x400 bytes.
1151 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1152 // increase this pointer on each sample by 2 bytes. If this pointer
1153 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1154 // an IRQ.
1155
1156 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1157 && spu.pSpuIrq < spu.spuMemC+0x1000))
1158 {
1159 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1160 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1161 if (0 < left && left <= ns_to)
1162 {
1163 //xprintf("decoder irq %x\n", spu.decode_pos);
1164 do_irq();
1165 }
1166 }
1167 if (!spu.cycles_dma_end || (int)(spu.cycles_dma_end - cycles_to) < 0) {
1168 spu.cycles_dma_end = 0;
1169 check_irq_io(spu.spuAddr);
1170 }
1171
1172 if (unlikely(spu.rvb->dirty))
1173 REVERBPrep();
1174
1175 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1176 do_channels(ns_to);
1177 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1178 }
1179 else {
1180 queue_channel_work(ns_to, silentch);
1181 //sync_worker_thread(1); // uncomment for debug
1182 }
1183
1184 // advance "stopped" channels that can cause irqs
1185 // (all chans are always playing on the real thing..)
1186 if (spu.spuCtrl & CTRL_IRQ)
1187 do_silent_chans(ns_to, silentch);
1188
1189 spu.cycles_played += ns_to * 768;
1190 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1191#if 0
1192 static int ccount; static time_t ctime; ccount++;
1193 if (time(NULL) != ctime)
1194 { printf("%d\n", ccount); ccount = 0; ctime = time(NULL); }
1195#endif
1196}
1197
1198static void do_samples_finish(int *SSumLR, int ns_to,
1199 int silentch, int decode_pos)
1200{
1201 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1202 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1203 int ns;
1204 int d;
1205
1206 // must clear silent channel decode buffers
1207 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1208 {
1209 memset(&spu.spuMem[0x800/2], 0, 0x400);
1210 spu.decode_dirty_ch &= ~(1<<1);
1211 }
1212 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1213 {
1214 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1215 spu.decode_dirty_ch &= ~(1<<3);
1216 }
1217
1218 vol_l = vol_l * spu_config.iVolume >> 10;
1219 vol_r = vol_r * spu_config.iVolume >> 10;
1220
1221 if (!(spu.spuCtrl & CTRL_MUTE) || !(vol_l | vol_r))
1222 {
1223 // muted? (rare)
1224 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1225 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1226 spu.pS += ns_to * 2;
1227 }
1228 else
1229 for (ns = 0; ns < ns_to * 2; )
1230 {
1231 d = SSumLR[ns]; SSumLR[ns] = 0;
1232 d = d * vol_l >> 14;
1233 ssat32_to_16(d);
1234 *spu.pS++ = d;
1235 ns++;
1236
1237 d = SSumLR[ns]; SSumLR[ns] = 0;
1238 d = d * vol_r >> 14;
1239 ssat32_to_16(d);
1240 *spu.pS++ = d;
1241 ns++;
1242 }
1243}
1244
1245void schedule_next_irq(void)
1246{
1247 unsigned int upd_samples;
1248 int ch;
1249
1250 if (spu.scheduleCallback == NULL)
1251 return;
1252
1253 upd_samples = 44100 / 50;
1254
1255 for (ch = 0; ch < MAXCHAN; ch++)
1256 {
1257 if (spu.dwChannelDead & (1 << ch))
1258 continue;
1259 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1260 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1261 continue;
1262 if (spu.s_chan[ch].sinc == 0)
1263 continue;
1264
1265 scan_for_irq(ch, &upd_samples);
1266 }
1267
1268 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1269 {
1270 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1271 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1272 if (0 < left && left < upd_samples) {
1273 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1274 upd_samples = left;
1275 }
1276 }
1277
1278 if (upd_samples < 44100 / 50)
1279 spu.scheduleCallback(upd_samples * 768);
1280}
1281
1282// SPU ASYNC... even newer epsxe func
1283// 1 time every 'cycle' cycles... harhar
1284
1285// rearmed: called dynamically now
1286
1287void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1288{
1289 do_samples(cycle, spu_config.iUseFixedUpdates);
1290
1291 if (spu.spuCtrl & CTRL_IRQ)
1292 schedule_next_irq();
1293
1294 if (flags & 1) {
1295 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1296 spu.pS = (short *)spu.pSpuBuffer;
1297
1298 if (spu_config.iTempo) {
1299 if (!out_current->busy())
1300 // cause more samples to be generated
1301 // (and break some games because of bad sync)
1302 spu.cycles_played -= 44100 / 60 / 2 * 768;
1303 }
1304 }
1305}
1306
1307// SPU UPDATE... new epsxe func
1308// 1 time every 32 hsync lines
1309// (312/32)x50 in pal
1310// (262/32)x60 in ntsc
1311
1312// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1313// leave that func in the linux port, until epsxe linux is using
1314// the async function as well
1315
1316void CALLBACK SPUupdate(void)
1317{
1318}
1319
1320// XA AUDIO
1321
1322void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int is_start)
1323{
1324 if(!xap) return;
1325 if(!xap->freq) return; // no xa freq ? bye
1326
1327 if (is_start)
1328 do_samples(cycle, 1); // catch up to prevent source underflows later
1329
1330 FeedXA(xap); // call main XA feeder
1331}
1332
1333// CDDA AUDIO
1334int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int is_start)
1335{
1336 if (!pcm) return -1;
1337 if (nbytes<=0) return -1;
1338
1339 if (is_start)
1340 do_samples(cycle, 1); // catch up to prevent source underflows later
1341
1342 return FeedCDDA((unsigned char *)pcm, nbytes);
1343}
1344
1345// to be called after state load
1346void ClearWorkingState(void)
1347{
1348 memset(iFMod, 0, sizeof(iFMod));
1349 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1350}
1351
1352// SETUPSTREAMS: init most of the spu buffers
1353static void SetupStreams(void)
1354{
1355 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1356 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1357
1358 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1359 spu.XAEnd = spu.XAStart + 44100;
1360 spu.XAPlay = spu.XAStart;
1361 spu.XAFeed = spu.XAStart;
1362
1363 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1364 spu.CDDAEnd = spu.CDDAStart + 16384;
1365 spu.CDDAPlay = spu.CDDAStart;
1366 spu.CDDAFeed = spu.CDDAStart;
1367
1368 ClearWorkingState();
1369}
1370
1371// REMOVESTREAMS: free most buffer
1372static void RemoveStreams(void)
1373{
1374 free(spu.pSpuBuffer); // free mixing buffer
1375 spu.pSpuBuffer = NULL;
1376 free(spu.SSumLR);
1377 spu.SSumLR = NULL;
1378 free(spu.XAStart); // free XA buffer
1379 spu.XAStart = NULL;
1380 free(spu.CDDAStart); // free CDDA buffer
1381 spu.CDDAStart = NULL;
1382}
1383
1384#if defined(C64X_DSP)
1385
1386/* special code for TI C64x DSP */
1387#include "spu_c64x.c"
1388
1389#elif P_HAVE_PTHREAD
1390
1391#include <pthread.h>
1392#include <semaphore.h>
1393#include <unistd.h>
1394
1395static struct {
1396 pthread_t thread;
1397 sem_t sem_avail;
1398 sem_t sem_done;
1399} t;
1400
1401/* generic pthread implementation */
1402
1403static void thread_work_start(void)
1404{
1405 sem_post(&t.sem_avail);
1406}
1407
1408static void thread_work_wait_sync(struct work_item *work, int force)
1409{
1410 sem_wait(&t.sem_done);
1411}
1412
1413static int thread_get_i_done(void)
1414{
1415 return worker->i_done;
1416}
1417
1418static void thread_sync_caches(void)
1419{
1420}
1421
1422static void *spu_worker_thread(void *unused)
1423{
1424 struct work_item *work;
1425
1426 while (1) {
1427 sem_wait(&t.sem_avail);
1428 if (worker->exit_thread)
1429 break;
1430
1431 work = &worker->i[worker->i_done & WORK_I_MASK];
1432 do_channel_work(work);
1433 worker->i_done++;
1434
1435 sem_post(&t.sem_done);
1436 }
1437
1438 return NULL;
1439}
1440
1441static void init_spu_thread(void)
1442{
1443 int ret;
1444
1445 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1446 return;
1447
1448 worker = calloc(1, sizeof(*worker));
1449 if (worker == NULL)
1450 return;
1451 ret = sem_init(&t.sem_avail, 0, 0);
1452 if (ret != 0)
1453 goto fail_sem_avail;
1454 ret = sem_init(&t.sem_done, 0, 0);
1455 if (ret != 0)
1456 goto fail_sem_done;
1457
1458 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1459 if (ret != 0)
1460 goto fail_thread;
1461
1462 spu_config.iThreadAvail = 1;
1463 return;
1464
1465fail_thread:
1466 sem_destroy(&t.sem_done);
1467fail_sem_done:
1468 sem_destroy(&t.sem_avail);
1469fail_sem_avail:
1470 free(worker);
1471 worker = NULL;
1472 spu_config.iThreadAvail = 0;
1473}
1474
1475static void exit_spu_thread(void)
1476{
1477 if (worker == NULL)
1478 return;
1479 worker->exit_thread = 1;
1480 sem_post(&t.sem_avail);
1481 pthread_join(t.thread, NULL);
1482 sem_destroy(&t.sem_done);
1483 sem_destroy(&t.sem_avail);
1484 free(worker);
1485 worker = NULL;
1486}
1487
1488#else // if !P_HAVE_PTHREAD
1489
1490static void init_spu_thread(void)
1491{
1492}
1493
1494static void exit_spu_thread(void)
1495{
1496}
1497
1498#endif
1499
1500// SPUINIT: this func will be called first by the main emu
1501long CALLBACK SPUinit(void)
1502{
1503 int i;
1504
1505 memset(&spu, 0, sizeof(spu));
1506 spu.spuMemC = calloc(1, 512 * 1024);
1507 InitADSR();
1508
1509 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1510 spu.rvb = calloc(1, sizeof(REVERBInfo));
1511 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1512
1513 spu.spuAddr = 0;
1514 spu.decode_pos = 0;
1515 spu.pSpuIrq = spu.spuMemC;
1516
1517 SetupStreams(); // prepare streaming
1518
1519 if (spu_config.iVolume == 0)
1520 spu_config.iVolume = 768; // 1024 is 1.0
1521
1522 init_spu_thread();
1523
1524 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1525 {
1526 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1527 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1528 spu.s_chan[i].pLoop = spu.spuMemC;
1529 spu.s_chan[i].pCurr = spu.spuMemC;
1530 spu.s_chan[i].bIgnoreLoop = 0;
1531 }
1532
1533 spu.bSpuInit=1; // flag: we are inited
1534
1535 return 0;
1536}
1537
1538// SPUOPEN: called by main emu after init
1539long CALLBACK SPUopen(void)
1540{
1541 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1542
1543 SetupSound(); // setup sound (before init!)
1544
1545 spu.bSPUIsOpen = 1;
1546
1547 return PSE_SPU_ERR_SUCCESS;
1548}
1549
1550// SPUCLOSE: called before shutdown
1551long CALLBACK SPUclose(void)
1552{
1553 if (!spu.bSPUIsOpen) return 0; // some security
1554
1555 spu.bSPUIsOpen = 0; // no more open
1556
1557 out_current->finish(); // no more sound handling
1558
1559 return 0;
1560}
1561
1562// SPUSHUTDOWN: called by main emu on final exit
1563long CALLBACK SPUshutdown(void)
1564{
1565 SPUclose();
1566
1567 exit_spu_thread();
1568
1569 free(spu.spuMemC);
1570 spu.spuMemC = NULL;
1571 free(spu.SB);
1572 spu.SB = NULL;
1573 free(spu.s_chan);
1574 spu.s_chan = NULL;
1575 free(spu.rvb);
1576 spu.rvb = NULL;
1577
1578 RemoveStreams(); // no more streaming
1579 spu.bSpuInit=0;
1580
1581 return 0;
1582}
1583
1584// SETUP CALLBACKS
1585// this functions will be called once,
1586// passes a callback that should be called on SPU-IRQ/cdda volume change
1587void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1588{
1589 spu.irqCallback = callback;
1590}
1591
1592void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1593{
1594 spu.cddavCallback = CDDAVcallback;
1595}
1596
1597void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1598{
1599 spu.scheduleCallback = callback;
1600}
1601
1602// COMMON PLUGIN INFO FUNCS
1603/*
1604char * CALLBACK PSEgetLibName(void)
1605{
1606 return _(libraryName);
1607}
1608
1609unsigned long CALLBACK PSEgetLibType(void)
1610{
1611 return PSE_LT_SPU;
1612}
1613
1614unsigned long CALLBACK PSEgetLibVersion(void)
1615{
1616 return (1 << 16) | (6 << 8);
1617}
1618
1619char * SPUgetLibInfos(void)
1620{
1621 return _(libraryInfo);
1622}
1623*/
1624
1625// debug
1626void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1627{
1628 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1629
1630 if (spu.s_chan == NULL)
1631 return;
1632
1633 for(;ch<MAXCHAN;ch++)
1634 {
1635 if (!(spu.dwChannelsAudible & (1<<ch)))
1636 continue;
1637 if (spu.s_chan[ch].bFMod == 2)
1638 fmod_chans |= 1 << ch;
1639 if (spu.s_chan[ch].bNoise)
1640 noise_chans |= 1 << ch;
1641 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1642 irq_chans |= 1 << ch;
1643 }
1644
1645 *chans_out = spu.dwChannelsAudible;
1646 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1647 *fmod_chans_out = fmod_chans;
1648 *noise_chans_out = noise_chans;
1649}
1650
1651// vim:shiftwidth=1:expandtab