spu: handle cd decode buffers too
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "dsoundoss.h"
28
29#ifdef ENABLE_NLS
30#include <libintl.h>
31#include <locale.h>
32#define _(x) gettext(x)
33#define N_(x) (x)
34#else
35#define _(x) (x)
36#define N_(x) (x)
37#endif
38
39#ifdef __ARM_ARCH_7A__
40 #define ssat32_to_16(v) \
41 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
42#else
43 #define ssat32_to_16(v) do { \
44 if (v < -32768) v = -32768; \
45 else if (v > 32767) v = 32767; \
46 } while (0)
47#endif
48
49#define PSXCLK 33868800 /* 33.8688 MHz */
50
51/*
52#if defined (USEMACOSX)
53static char * libraryName = N_("Mac OS X Sound");
54#elif defined (USEALSA)
55static char * libraryName = N_("ALSA Sound");
56#elif defined (USEOSS)
57static char * libraryName = N_("OSS Sound");
58#elif defined (USESDL)
59static char * libraryName = N_("SDL Sound");
60#elif defined (USEPULSEAUDIO)
61static char * libraryName = N_("PulseAudio Sound");
62#else
63static char * libraryName = N_("NULL Sound");
64#endif
65
66static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
67*/
68
69// globals
70
71// psx buffer / addresses
72
73unsigned short regArea[10000];
74unsigned short spuMem[256*1024];
75unsigned char * spuMemC;
76unsigned char * pSpuIrq=0;
77unsigned char * pSpuBuffer;
78
79// user settings
80
81int iVolume=768; // 1024 is 1.0
82int iXAPitch=1;
83int iUseReverb=2;
84int iUseInterpolation=2;
85
86// MAIN infos struct for each channel
87
88SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
89REVERBInfo rvb;
90
91unsigned int dwNoiseVal; // global noise generator
92unsigned int dwNoiseCount;
93
94unsigned short spuCtrl=0; // some vars to store psx reg infos
95unsigned short spuStat=0;
96unsigned short spuIrq=0;
97unsigned long spuAddr=0xffffffff; // address into spu mem
98int bSpuInit=0;
99int bSPUIsOpen=0;
100
101unsigned int dwNewChannel=0; // flags for faster testing, if new channel starts
102unsigned int dwChannelOn=0; // not silent channels
103unsigned int dwPendingChanOff=0;
104unsigned int dwChannelDead=0; // silent+not useful channels
105
106void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq
107void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0;
108
109// certain globals (were local before, but with the new timeproc I need em global)
110
111static const int f[8][2] = { { 0, 0 },
112 { 60, 0 },
113 { 115, -52 },
114 { 98, -55 },
115 { 122, -60 } };
116int ChanBuf[NSSIZE+3];
117int SSumLR[(NSSIZE+3)*2];
118int iFMod[NSSIZE];
119int iCycle = 0;
120short * pS;
121
122static int decode_dirty_ch;
123int decode_pos;
124int had_dma;
125int lastch=-1; // last channel processed on spu irq in timer mode
126static int lastns=0; // last ns pos
127static int cycles_since_update;
128
129#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
130
131////////////////////////////////////////////////////////////////////////
132// CODE AREA
133////////////////////////////////////////////////////////////////////////
134
135// dirty inline func includes
136
137#include "reverb.c"
138#include "adsr.c"
139
140////////////////////////////////////////////////////////////////////////
141// helpers for simple interpolation
142
143//
144// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
145//
146// instead of having n equal sample values in a row like:
147// ____
148// |____
149//
150// we compare the current delta change with the next delta change.
151//
152// if curr_delta is positive,
153//
154// - and next delta is smaller (or changing direction):
155// \.
156// -__
157//
158// - and next delta significant (at least twice) bigger:
159// --_
160// \.
161//
162// - and next delta is nearly same:
163// \.
164// \.
165//
166//
167// if curr_delta is negative,
168//
169// - and next delta is smaller (or changing direction):
170// _--
171// /
172//
173// - and next delta significant (at least twice) bigger:
174// /
175// __-
176//
177// - and next delta is nearly same:
178// /
179// /
180//
181
182
183INLINE void InterpolateUp(int ch)
184{
185 if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
186 {
187 const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val
188 const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :)
189
190 s_chan[ch].SB[32]=0;
191
192 if(id1>0) // curr delta positive
193 {
194 if(id2<id1)
195 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
196 else
197 if(id2<(id1<<1))
198 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
199 else
200 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
201 }
202 else // curr delta negative
203 {
204 if(id2>id1)
205 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
206 else
207 if(id2>(id1<<1))
208 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
209 else
210 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
211 }
212 }
213 else
214 if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
215 {
216 s_chan[ch].SB[32]=0;
217
218 s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L;
219 //if(s_chan[ch].sinc<=0x8000)
220 // s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1));
221 //else
222 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
223 }
224 else // no flags? add bigger val (if possible), calc smaller step, set flag1
225 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
226}
227
228//
229// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
230//
231
232INLINE void InterpolateDown(int ch)
233{
234 if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val?
235 {
236 s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight
237 if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals?
238 s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight
239 }
240}
241
242////////////////////////////////////////////////////////////////////////
243// helpers for gauss interpolation
244
245#define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos])
246#define gval(x) (((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3])
247
248#include "gauss_i.h"
249
250////////////////////////////////////////////////////////////////////////
251
252#include "xa.c"
253
254static void do_irq(void)
255{
256 //if(!(spuStat & STAT_IRQ))
257 {
258 spuStat |= STAT_IRQ; // asserted status?
259 if(irqCallback) irqCallback();
260 }
261}
262
263static int check_irq(int ch, unsigned char *pos)
264{
265 if((spuCtrl & CTRL_IRQ) && pos == pSpuIrq)
266 {
267 //printf("ch%d irq %04x\n", ch, pos - spuMemC);
268 do_irq();
269 return 1;
270 }
271 return 0;
272}
273
274////////////////////////////////////////////////////////////////////////
275// START SOUND... called by main thread to setup a new sound on a channel
276////////////////////////////////////////////////////////////////////////
277
278INLINE void StartSound(int ch)
279{
280 StartADSR(ch);
281 StartREVERB(ch);
282
283 // fussy timing issues - do in VoiceOn
284 //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start
285 //s_chan[ch].bStop=0;
286 //s_chan[ch].bOn=1;
287
288 s_chan[ch].SB[26]=0; // init mixing vars
289 s_chan[ch].SB[27]=0;
290 s_chan[ch].iSBPos=28;
291
292 s_chan[ch].SB[29]=0; // init our interpolation helpers
293 s_chan[ch].SB[30]=0;
294
295 if(iUseInterpolation>=2) // gauss interpolation?
296 {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding
297 else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding
298
299 check_irq(ch, s_chan[ch].pCurr); // just in case
300
301 dwNewChannel&=~(1<<ch); // clear new channel bit
302}
303
304////////////////////////////////////////////////////////////////////////
305// ALL KIND OF HELPERS
306////////////////////////////////////////////////////////////////////////
307
308INLINE int FModChangeFrequency(int ch,int ns)
309{
310 unsigned int NP=s_chan[ch].iRawPitch;
311 int sinc;
312
313 NP=((32768L+iFMod[ns])*NP)/32768L;
314
315 if(NP>0x3fff) NP=0x3fff;
316 if(NP<0x1) NP=0x1;
317
318 sinc=NP<<4; // calc frequency
319 if(iUseInterpolation==1) // freq change in simple interpolation mode
320 s_chan[ch].SB[32]=1;
321 iFMod[ns]=0;
322
323 return sinc;
324}
325
326////////////////////////////////////////////////////////////////////////
327
328INLINE void StoreInterpolationVal(int ch,int fa)
329{
330 if(s_chan[ch].bFMod==2) // fmod freq channel
331 s_chan[ch].SB[29]=fa;
332 else
333 {
334 ssat32_to_16(fa);
335
336 if(iUseInterpolation>=2) // gauss/cubic interpolation
337 {
338 int gpos = s_chan[ch].SB[28];
339 gval0 = fa;
340 gpos = (gpos+1) & 3;
341 s_chan[ch].SB[28] = gpos;
342 }
343 else
344 if(iUseInterpolation==1) // simple interpolation
345 {
346 s_chan[ch].SB[28] = 0;
347 s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
348 s_chan[ch].SB[30] = s_chan[ch].SB[31];
349 s_chan[ch].SB[31] = fa;
350 s_chan[ch].SB[32] = 1; // -> flag: calc new interolation
351 }
352 else s_chan[ch].SB[29]=fa; // no interpolation
353 }
354}
355
356////////////////////////////////////////////////////////////////////////
357
358INLINE int iGetInterpolationVal(int ch, int spos)
359{
360 int fa;
361
362 if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29];
363
364 switch(iUseInterpolation)
365 {
366 //--------------------------------------------------//
367 case 3: // cubic interpolation
368 {
369 long xd;int gpos;
370 xd = (spos >> 1)+1;
371 gpos = s_chan[ch].SB[28];
372
373 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
374 fa *= (xd - (2<<15)) / 6;
375 fa >>= 15;
376 fa += gval(2) - gval(1) - gval(1) + gval0;
377 fa *= (xd - (1<<15)) >> 1;
378 fa >>= 15;
379 fa += gval(1) - gval0;
380 fa *= xd;
381 fa >>= 15;
382 fa = fa + gval0;
383
384 } break;
385 //--------------------------------------------------//
386 case 2: // gauss interpolation
387 {
388 int vl, vr;int gpos;
389 vl = (spos >> 6) & ~3;
390 gpos = s_chan[ch].SB[28];
391 vr=(gauss[vl]*gval0)&~2047;
392 vr+=(gauss[vl+1]*gval(1))&~2047;
393 vr+=(gauss[vl+2]*gval(2))&~2047;
394 vr+=(gauss[vl+3]*gval(3))&~2047;
395 fa = vr>>11;
396 } break;
397 //--------------------------------------------------//
398 case 1: // simple interpolation
399 {
400 if(s_chan[ch].sinc<0x10000L) // -> upsampling?
401 InterpolateUp(ch); // --> interpolate up
402 else InterpolateDown(ch); // --> else down
403 fa=s_chan[ch].SB[29];
404 } break;
405 //--------------------------------------------------//
406 default: // no interpolation
407 {
408 fa=s_chan[ch].SB[29];
409 } break;
410 //--------------------------------------------------//
411 }
412
413 return fa;
414}
415
416static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
417{
418 int nSample;
419 int fa, s_1, s_2, d, s;
420
421 s_1 = dest[27];
422 s_2 = dest[26];
423
424 for (nSample = 0; nSample < 28; src++)
425 {
426 d = (int)*src;
427 s = (int)(signed short)((d & 0x0f) << 12);
428
429 fa = s >> shift_factor;
430 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
431 s_2=s_1;s_1=fa;
432
433 dest[nSample++] = fa;
434
435 s = (int)(signed short)((d & 0xf0) << 8);
436 fa = s >> shift_factor;
437 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
438 s_2=s_1;s_1=fa;
439
440 dest[nSample++] = fa;
441 }
442}
443
444static int decode_block(int ch)
445{
446 unsigned char *start;
447 int predict_nr,shift_factor,flags;
448 int ret = 0;
449
450 start=s_chan[ch].pCurr; // set up the current pos
451
452 if(s_chan[ch].prevflags&1) // 1: stop/loop
453 {
454 if(!(s_chan[ch].prevflags&2))
455 {
456 dwChannelOn&=~(1<<ch); // -> turn everything off
457 s_chan[ch].bStop=1;
458 s_chan[ch].ADSRX.EnvelopeVol=0;
459 }
460
461 start = s_chan[ch].pLoop;
462 }
463
464 predict_nr=(int)start[0];
465 shift_factor=predict_nr&0xf;
466 predict_nr >>= 4;
467
468 decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor);
469
470 flags=(int)start[1];
471 if(flags&4)
472 s_chan[ch].pLoop=start; // loop adress
473
474 start+=16;
475
476 if(flags&1) // 1: stop/loop
477 start = s_chan[ch].pLoop;
478
479 if (start - spuMemC >= 0x80000)
480 start = spuMemC;
481
482 ret = check_irq(ch, start);
483
484 s_chan[ch].pCurr = start; // store values for next cycle
485 s_chan[ch].prevflags = flags;
486
487 return ret;
488}
489
490// do block, but ignore sample data
491static int skip_block(int ch)
492{
493 unsigned char *start = s_chan[ch].pCurr;
494 int flags = start[1];
495
496 if(s_chan[ch].prevflags & 1)
497 start = s_chan[ch].pLoop;
498
499 if(flags & 4)
500 s_chan[ch].pLoop = start;
501
502 start += 16;
503
504 if(flags & 1)
505 start = s_chan[ch].pLoop;
506
507 s_chan[ch].pCurr = start;
508 s_chan[ch].prevflags = flags;
509
510 return check_irq(ch, start);
511}
512
513#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
514static int do_samples_##name(int ch, int ns, int ns_to) \
515{ \
516 int sinc = s_chan[ch].sinc; \
517 int spos = s_chan[ch].spos; \
518 int sbpos = s_chan[ch].iSBPos; \
519 int *SB = s_chan[ch].SB; \
520 int ret = -1; \
521 int d, fa; \
522 interp_start; \
523 \
524 for (; ns < ns_to; ns++) \
525 { \
526 fmod_code; \
527 \
528 while (spos >= 0x10000) \
529 { \
530 if(sbpos == 28) \
531 { \
532 sbpos = 0; \
533 d = decode_block(ch); \
534 if(d) \
535 { \
536 ret = ns; \
537 goto out; \
538 } \
539 } \
540 \
541 fa = SB[sbpos++]; \
542 interp1_code; \
543 spos -= 0x10000; \
544 } \
545 \
546 interp2_code; \
547 spos += sinc; \
548 } \
549 \
550out: \
551 s_chan[ch].sinc = sinc; \
552 s_chan[ch].spos = spos; \
553 s_chan[ch].iSBPos = sbpos; \
554 interp_end; \
555 \
556 return ret; \
557}
558
559#define fmod_recv_check \
560 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
561 sinc = FModChangeFrequency(ch,ns)
562
563make_do_samples(default, fmod_recv_check, ,
564 StoreInterpolationVal(ch, fa),
565 ChanBuf[ns] = iGetInterpolationVal(ch, spos), )
566make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa)
567
568#define simple_interp_store \
569 s_chan[ch].SB[28] = 0; \
570 s_chan[ch].SB[29] = s_chan[ch].SB[30]; \
571 s_chan[ch].SB[30] = s_chan[ch].SB[31]; \
572 s_chan[ch].SB[31] = fa; \
573 s_chan[ch].SB[32] = 1
574
575#define simple_interp_get \
576 if(sinc<0x10000) /* -> upsampling? */ \
577 InterpolateUp(ch); /* --> interpolate up */ \
578 else InterpolateDown(ch); /* --> else down */ \
579 ChanBuf[ns] = s_chan[ch].SB[29]
580
581make_do_samples(simple, , ,
582 simple_interp_store, simple_interp_get, )
583
584static int do_samples_noise(int ch, int ns, int ns_to)
585{
586 int level, shift, bit;
587
588 s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns);
589 while (s_chan[ch].spos >= 28*0x10000)
590 {
591 skip_block(ch);
592 s_chan[ch].spos -= 28*0x10000;
593 }
594
595 // modified from DrHell/shalma, no fraction
596 level = (spuCtrl >> 10) & 0x0f;
597 level = 0x8000 >> level;
598
599 for (; ns < ns_to; ns++)
600 {
601 dwNoiseCount += 2;
602 if (dwNoiseCount >= level)
603 {
604 dwNoiseCount -= level;
605 shift = (dwNoiseVal >> 10) & 0x1f;
606 bit = (0x69696969 >> shift) & 1;
607 if (dwNoiseVal & 0x8000)
608 bit ^= 1;
609 dwNoiseVal = (dwNoiseVal << 1) | bit;
610 }
611
612 ChanBuf[ns] = (signed short)dwNoiseVal;
613 }
614
615 return -1;
616}
617
618#ifdef __arm__
619// asm code; lv and rv must be 0-3fff
620extern void mix_chan(int start, int count, int lv, int rv);
621extern void mix_chan_rvb(int start, int count, int lv, int rv);
622#else
623static void mix_chan(int start, int count, int lv, int rv)
624{
625 int *dst = SSumLR + start * 2;
626 const int *src = ChanBuf + start;
627 int l, r;
628
629 while (count--)
630 {
631 int sval = *src++;
632
633 l = (sval * lv) >> 14;
634 r = (sval * rv) >> 14;
635 *dst++ += l;
636 *dst++ += r;
637 }
638}
639
640static void mix_chan_rvb(int start, int count, int lv, int rv)
641{
642 int *dst = SSumLR + start * 2;
643 int *drvb = sRVBStart + start * 2;
644 const int *src = ChanBuf + start;
645 int l, r;
646
647 while (count--)
648 {
649 int sval = *src++;
650
651 l = (sval * lv) >> 14;
652 r = (sval * rv) >> 14;
653 *dst++ += l;
654 *dst++ += r;
655 *drvb++ += l;
656 *drvb++ += r;
657 }
658}
659#endif
660
661// 0x0800-0x0bff Voice 1
662// 0x0c00-0x0fff Voice 3
663static void noinline do_decode_bufs(int which, int start, int count)
664{
665 const int *src = ChanBuf + start;
666 unsigned short *dst = &spuMem[0x800/2 + which*0x400/2];
667 int cursor = decode_pos;
668
669 while (count-- > 0)
670 {
671 dst[cursor] = *src++;
672 cursor = (cursor + 1) & 0x1ff;
673 }
674
675 // decode_pos is updated and irqs are checked later, after voice loop
676}
677
678////////////////////////////////////////////////////////////////////////
679// MAIN SPU FUNCTION
680// here is the main job handler...
681// basically the whole sound processing is done in this fat func!
682////////////////////////////////////////////////////////////////////////
683
684static int do_samples(int forced_updates)
685{
686 int volmult = iVolume;
687 int ns,ns_from,ns_to;
688 int ch,d,silentch;
689 int bIRQReturn=0;
690
691 while(1)
692 {
693 // ok, at the beginning we are looking if there is
694 // enuff free place in the dsound/oss buffer to
695 // fill in new data, or if there is a new channel to start.
696 // if not, we wait (thread) or return (timer/spuasync)
697 // until enuff free place is available/a new channel gets
698 // started
699
700 if(!forced_updates && SoundGetBytesBuffered()) // still enuff data in sound buffer?
701 {
702 return 0;
703 }
704
705 cycles_since_update = 0;
706 if(forced_updates > 0)
707 forced_updates--;
708
709 //--------------------------------------------------// continue from irq handling in timer mode?
710
711 ns_from=0;
712 ns_to=NSSIZE;
713 ch=0;
714 if(lastch>=0) // will be -1 if no continue is pending
715 {
716 ch=lastch; ns_from=lastns; lastch=-1; // -> setup all kind of vars to continue
717 }
718
719 silentch=~(dwChannelOn|dwNewChannel);
720
721 //--------------------------------------------------//
722 //- main channel loop -//
723 //--------------------------------------------------//
724 {
725 for(;ch<MAXCHAN;ch++) // loop em all... we will collect 1 ms of sound of each playing channel
726 {
727 if(dwNewChannel&(1<<ch)) StartSound(ch); // start new sound
728 if(!(dwChannelOn&(1<<ch))) continue; // channel not playing? next
729
730 if(s_chan[ch].bNoise)
731 d=do_samples_noise(ch, ns_from, ns_to);
732 else if(s_chan[ch].bFMod==2 || (s_chan[ch].bFMod==0 && iUseInterpolation==0))
733 d=do_samples_noint(ch, ns_from, ns_to);
734 else if(s_chan[ch].bFMod==0 && iUseInterpolation==1)
735 d=do_samples_simple(ch, ns_from, ns_to);
736 else
737 d=do_samples_default(ch, ns_from, ns_to);
738 if(d>=0)
739 {
740 bIRQReturn=1;
741 lastch=ch;
742 lastns=ns_to=d;
743 if(d==0)
744 break;
745 }
746
747 MixADSR(ch, ns_from, ns_to);
748
749 if(ch==1 || ch==3)
750 {
751 do_decode_bufs(ch/2, ns_from, ns_to-ns_from);
752 decode_dirty_ch |= 1<<ch;
753 }
754
755 if(s_chan[ch].bFMod==2) // fmod freq channel
756 memcpy(iFMod, ChanBuf, sizeof(iFMod));
757 else if(s_chan[ch].bRVBActive)
758 mix_chan_rvb(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
759 else
760 mix_chan(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
761 }
762 }
763
764 // advance "stopped" channels that can cause irqs
765 // (all chans are always playing on the real thing..)
766 if(spuCtrl&CTRL_IRQ)
767 for(ch=0;ch<MAXCHAN;ch++)
768 {
769 if(!(silentch&(1<<ch))) continue; // already handled
770 if(dwChannelDead&(1<<ch)) continue;
771 if(s_chan[ch].pCurr > pSpuIrq && s_chan[ch].pLoop > pSpuIrq)
772 continue;
773
774 s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns_from);
775 while(s_chan[ch].spos >= 28 * 0x10000)
776 {
777 unsigned char *start = s_chan[ch].pCurr;
778
779 // no need for bIRQReturn since the channel is silent
780 skip_block(ch);
781 if(start == s_chan[ch].pCurr)
782 {
783 // looping on self
784 dwChannelDead |= 1<<ch;
785 s_chan[ch].spos = 0;
786 break;
787 }
788
789 s_chan[ch].spos -= 28 * 0x10000;
790 }
791 }
792
793 if(bIRQReturn) // special return for "spu irq - wait for cpu action"
794 return 0;
795
796 if(unlikely(silentch & decode_dirty_ch & (1<<1))) // must clear silent channel decode buffers
797 {
798 memset(&spuMem[0x800/2], 0, 0x400);
799 decode_dirty_ch &= ~(1<<1);
800 }
801 if(unlikely(silentch & decode_dirty_ch & (1<<3)))
802 {
803 memset(&spuMem[0xc00/2], 0, 0x400);
804 decode_dirty_ch &= ~(1<<3);
805 }
806
807 //---------------------------------------------------//
808 //- here we have another 1 ms of sound data
809 //---------------------------------------------------//
810 // mix XA infos (if any)
811
812 MixXA();
813
814 ///////////////////////////////////////////////////////
815 // mix all channels (including reverb) into one buffer
816
817 if(iUseReverb)
818 REVERBDo();
819
820 if((spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
821 {
822 memset(pS, 0, NSSIZE * 2 * sizeof(pS[0]));
823 pS += NSSIZE*2;
824 }
825 else
826 for (ns = 0; ns < NSSIZE*2; )
827 {
828 d = SSumLR[ns]; SSumLR[ns] = 0;
829 d = d * volmult >> 10;
830 ssat32_to_16(d);
831 *pS++ = d;
832 ns++;
833
834 d = SSumLR[ns]; SSumLR[ns] = 0;
835 d = d * volmult >> 10;
836 ssat32_to_16(d);
837 *pS++ = d;
838 ns++;
839 }
840
841 //////////////////////////////////////////////////////
842 // special irq handling in the decode buffers (0x0000-0x1000)
843 // we know:
844 // the decode buffers are located in spu memory in the following way:
845 // 0x0000-0x03ff CD audio left
846 // 0x0400-0x07ff CD audio right
847 // 0x0800-0x0bff Voice 1
848 // 0x0c00-0x0fff Voice 3
849 // and decoded data is 16 bit for one sample
850 // we assume:
851 // even if voices 1/3 are off or no cd audio is playing, the internal
852 // play positions will move on and wrap after 0x400 bytes.
853 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
854 // increase this pointer on each sample by 2 bytes. If this pointer
855 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
856 // an IRQ. Only problem: the "wait for cpu" option is kinda hard to do here
857 // in some of Peops timer modes. So: we ignore this option here (for now).
858
859 if(unlikely((spuCtrl&CTRL_IRQ) && pSpuIrq && pSpuIrq<spuMemC+0x1000))
860 {
861 int irq_pos=(pSpuIrq-spuMemC)/2 & 0x1ff;
862 if((decode_pos <= irq_pos && irq_pos < decode_pos+NSSIZE)
863 || (decode_pos+NSSIZE > 0x200 && irq_pos < ((decode_pos+NSSIZE) & 0x1ff)))
864 {
865 //printf("decoder irq %x\n", decode_pos);
866 do_irq();
867 }
868 }
869 decode_pos = (decode_pos + NSSIZE) & 0x1ff;
870
871 InitREVERB();
872
873 // feed the sound
874 // wanna have around 1/60 sec (16.666 ms) updates
875 if (iCycle++ > 16/FRAG_MSECS)
876 {
877 SoundFeedStreamData((unsigned char *)pSpuBuffer,
878 ((unsigned char *)pS) - ((unsigned char *)pSpuBuffer));
879 pS = (short *)pSpuBuffer;
880 iCycle = 0;
881 }
882 }
883
884 return 0;
885}
886
887// SPU ASYNC... even newer epsxe func
888// 1 time every 'cycle' cycles... harhar
889
890// rearmed: called every 2ms now
891
892void CALLBACK SPUasync(unsigned long cycle)
893{
894 static int old_ctrl;
895 int forced_updates = 0;
896 int do_update = 0;
897
898 if(!bSpuInit) return; // -> no init, no call
899
900 cycles_since_update += cycle;
901
902 if(dwNewChannel || had_dma)
903 {
904 forced_updates = 1;
905 do_update = 1;
906 had_dma = 0;
907 }
908
909 if((spuCtrl&CTRL_IRQ) && (((spuCtrl^old_ctrl)&CTRL_IRQ) // irq was enabled
910 || cycles_since_update > PSXCLK/60 / 4)) {
911 do_update = 1;
912 forced_updates = cycles_since_update / (PSXCLK/44100) / NSSIZE;
913 }
914 // with no irqs, once per frame should be fine (using a bit more because of BIAS)
915 else if(cycles_since_update > PSXCLK/60 * 5/4)
916 do_update = 1;
917
918 old_ctrl = spuCtrl;
919
920 if(do_update)
921 do_samples(forced_updates);
922}
923
924// SPU UPDATE... new epsxe func
925// 1 time every 32 hsync lines
926// (312/32)x50 in pal
927// (262/32)x60 in ntsc
928
929// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
930// leave that func in the linux port, until epsxe linux is using
931// the async function as well
932
933void CALLBACK SPUupdate(void)
934{
935 SPUasync(0);
936}
937
938// XA AUDIO
939
940void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
941{
942 if(!xap) return;
943 if(!xap->freq) return; // no xa freq ? bye
944
945 FeedXA(xap); // call main XA feeder
946}
947
948// CDDA AUDIO
949int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
950{
951 if (!pcm) return -1;
952 if (nbytes<=0) return -1;
953
954 return FeedCDDA((unsigned char *)pcm, nbytes);
955}
956
957// to be called after state load
958void ClearWorkingState(void)
959{
960 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
961 memset(iFMod,0,sizeof(iFMod));
962 pS=(short *)pSpuBuffer; // setup soundbuffer pointer
963}
964
965// SETUPSTREAMS: init most of the spu buffers
966void SetupStreams(void)
967{
968 int i;
969
970 pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer
971
972 if(iUseReverb==1) i=88200*2;
973 else i=NSSIZE*2;
974
975 sRVBStart = (int *)malloc(i*4); // alloc reverb buffer
976 memset(sRVBStart,0,i*4);
977 sRVBEnd = sRVBStart + i;
978 sRVBPlay = sRVBStart;
979
980 XAStart = // alloc xa buffer
981 (uint32_t *)malloc(44100 * sizeof(uint32_t));
982 XAEnd = XAStart + 44100;
983 XAPlay = XAStart;
984 XAFeed = XAStart;
985
986 CDDAStart = // alloc cdda buffer
987 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
988 CDDAEnd = CDDAStart + 16384;
989 CDDAPlay = CDDAStart;
990 CDDAFeed = CDDAStart;
991
992 for(i=0;i<MAXCHAN;i++) // loop sound channels
993 {
994// we don't use mutex sync... not needed, would only
995// slow us down:
996// s_chan[i].hMutex=CreateMutex(NULL,FALSE,NULL);
997 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
998 s_chan[i].pLoop=spuMemC;
999 s_chan[i].pCurr=spuMemC;
1000 }
1001
1002 ClearWorkingState();
1003
1004 bSpuInit=1; // flag: we are inited
1005}
1006
1007// REMOVESTREAMS: free most buffer
1008void RemoveStreams(void)
1009{
1010 free(pSpuBuffer); // free mixing buffer
1011 pSpuBuffer = NULL;
1012 free(sRVBStart); // free reverb buffer
1013 sRVBStart = NULL;
1014 free(XAStart); // free XA buffer
1015 XAStart = NULL;
1016 free(CDDAStart); // free CDDA buffer
1017 CDDAStart = NULL;
1018}
1019
1020// INIT/EXIT STUFF
1021
1022// SPUINIT: this func will be called first by the main emu
1023long CALLBACK SPUinit(void)
1024{
1025 spuMemC = (unsigned char *)spuMem; // just small setup
1026 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1027 InitADSR();
1028
1029 spuIrq = 0;
1030 spuAddr = 0xffffffff;
1031 spuMemC = (unsigned char *)spuMem;
1032 decode_pos = 0;
1033 memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN));
1034 pSpuIrq = 0;
1035 lastch = -1;
1036
1037 SetupStreams(); // prepare streaming
1038
1039 return 0;
1040}
1041
1042// SPUOPEN: called by main emu after init
1043long CALLBACK SPUopen(void)
1044{
1045 if (bSPUIsOpen) return 0; // security for some stupid main emus
1046
1047 SetupSound(); // setup sound (before init!)
1048
1049 bSPUIsOpen = 1;
1050
1051 return PSE_SPU_ERR_SUCCESS;
1052}
1053
1054// SPUCLOSE: called before shutdown
1055long CALLBACK SPUclose(void)
1056{
1057 if (!bSPUIsOpen) return 0; // some security
1058
1059 bSPUIsOpen = 0; // no more open
1060
1061 RemoveSound(); // no more sound handling
1062
1063 return 0;
1064}
1065
1066// SPUSHUTDOWN: called by main emu on final exit
1067long CALLBACK SPUshutdown(void)
1068{
1069 SPUclose();
1070 RemoveStreams(); // no more streaming
1071 bSpuInit=0;
1072
1073 return 0;
1074}
1075
1076// SPUTEST: we don't test, we are always fine ;)
1077long CALLBACK SPUtest(void)
1078{
1079 return 0;
1080}
1081
1082// SPUCONFIGURE: call config dialog
1083long CALLBACK SPUconfigure(void)
1084{
1085#ifdef _MACOSX
1086 DoConfiguration();
1087#else
1088// StartCfgTool("CFG");
1089#endif
1090 return 0;
1091}
1092
1093// SPUABOUT: show about window
1094void CALLBACK SPUabout(void)
1095{
1096#ifdef _MACOSX
1097 DoAbout();
1098#else
1099// StartCfgTool("ABOUT");
1100#endif
1101}
1102
1103// SETUP CALLBACKS
1104// this functions will be called once,
1105// passes a callback that should be called on SPU-IRQ/cdda volume change
1106void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1107{
1108 irqCallback = callback;
1109}
1110
1111void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1112{
1113 cddavCallback = CDDAVcallback;
1114}
1115
1116// COMMON PLUGIN INFO FUNCS
1117/*
1118char * CALLBACK PSEgetLibName(void)
1119{
1120 return _(libraryName);
1121}
1122
1123unsigned long CALLBACK PSEgetLibType(void)
1124{
1125 return PSE_LT_SPU;
1126}
1127
1128unsigned long CALLBACK PSEgetLibVersion(void)
1129{
1130 return (1 << 16) | (6 << 8);
1131}
1132
1133char * SPUgetLibInfos(void)
1134{
1135 return _(libraryInfo);
1136}
1137*/
1138
1139// debug
1140void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1141{
1142 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1143
1144 for(;ch<MAXCHAN;ch++)
1145 {
1146 if (!(dwChannelOn & (1<<ch)))
1147 continue;
1148 if (s_chan[ch].bFMod == 2)
1149 fmod_chans |= 1 << ch;
1150 if (s_chan[ch].bNoise)
1151 noise_chans |= 1 << ch;
1152 if((spuCtrl&CTRL_IRQ) && s_chan[ch].pCurr <= pSpuIrq && s_chan[ch].pLoop <= pSpuIrq)
1153 irq_chans |= 1 << ch;
1154 }
1155
1156 *chans_out = dwChannelOn;
1157 *run_chans = ~dwChannelOn & ~dwChannelDead & irq_chans;
1158 *fmod_chans_out = fmod_chans;
1159 *noise_chans_out = noise_chans;
1160}
1161
1162// vim:shiftwidth=1:expandtab