28a0245f249063e8a0aa85bccad231500db9bd10
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182 #define INTCALL 30// Call interpreter to handle rare corner cases
183
184   /* stubs */
185 #define CC_STUB 1
186 #define FP_STUB 2
187 #define LOADB_STUB 3
188 #define LOADH_STUB 4
189 #define LOADW_STUB 5
190 #define LOADD_STUB 6
191 #define LOADBU_STUB 7
192 #define LOADHU_STUB 8
193 #define STOREB_STUB 9
194 #define STOREH_STUB 10
195 #define STOREW_STUB 11
196 #define STORED_STUB 12
197 #define STORELR_STUB 13
198 #define INVCODE_STUB 14
199
200   /* branch codes */
201 #define TAKEN 1
202 #define NOTTAKEN 2
203 #define NULLDS 3
204
205 // asm linkage
206 int new_recompile_block(int addr);
207 void *get_addr_ht(u_int vaddr);
208 void invalidate_block(u_int block);
209 void invalidate_addr(u_int addr);
210 void remove_hash(int vaddr);
211 void jump_vaddr();
212 void dyna_linker();
213 void dyna_linker_ds();
214 void verify_code();
215 void verify_code_vm();
216 void verify_code_ds();
217 void cc_interrupt();
218 void fp_exception();
219 void fp_exception_ds();
220 void jump_syscall();
221 void jump_syscall_hle();
222 void jump_eret();
223 void jump_hlecall();
224 void jump_intcall();
225 void new_dyna_leave();
226
227 // TLB
228 void TLBWI_new();
229 void TLBWR_new();
230 void read_nomem_new();
231 void read_nomemb_new();
232 void read_nomemh_new();
233 void read_nomemd_new();
234 void write_nomem_new();
235 void write_nomemb_new();
236 void write_nomemh_new();
237 void write_nomemd_new();
238 void write_rdram_new();
239 void write_rdramb_new();
240 void write_rdramh_new();
241 void write_rdramd_new();
242 extern u_int memory_map[1048576];
243
244 // Needed by assembler
245 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248 void load_all_regs(signed char i_regmap[]);
249 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250 void load_regs_entry(int t);
251 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253 int tracedebug=0;
254
255 //#define DEBUG_CYCLE_COUNT 1
256
257 void nullf() {}
258 //#define assem_debug printf
259 //#define inv_debug printf
260 #define assem_debug nullf
261 #define inv_debug nullf
262
263 static void tlb_hacks()
264 {
265 #ifndef DISABLE_TLB
266   // Goldeneye hack
267   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268   {
269     u_int addr;
270     int n;
271     switch (ROM_HEADER->Country_code&0xFF) 
272     {
273       case 0x45: // U
274         addr=0x34b30;
275         break;                   
276       case 0x4A: // J 
277         addr=0x34b70;    
278         break;    
279       case 0x50: // E 
280         addr=0x329f0;
281         break;                        
282       default: 
283         // Unknown country code
284         addr=0;
285         break;
286     }
287     u_int rom_addr=(u_int)rom;
288     #ifdef ROM_COPY
289     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290     // in the lower 4G of memory to use this hack.  Copy it if necessary.
291     if((void *)rom>(void *)0xffffffff) {
292       munmap(ROM_COPY, 67108864);
293       if(mmap(ROM_COPY, 12582912,
294               PROT_READ | PROT_WRITE,
295               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296               -1, 0) <= 0) {printf("mmap() failed\n");}
297       memcpy(ROM_COPY,rom,12582912);
298       rom_addr=(u_int)ROM_COPY;
299     }
300     #endif
301     if(addr) {
302       for(n=0x7F000;n<0x80000;n++) {
303         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304       }
305     }
306   }
307 #endif
308 }
309
310 static u_int get_page(u_int vaddr)
311 {
312 #ifndef PCSX
313   u_int page=(vaddr^0x80000000)>>12;
314 #else
315   u_int page=vaddr&~0xe0000000;
316   if (page < 0x1000000)
317     page &= ~0x0e00000; // RAM mirrors
318   page>>=12;
319 #endif
320 #ifndef DISABLE_TLB
321   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
322 #endif
323   if(page>2048) page=2048+(page&2047);
324   return page;
325 }
326
327 static u_int get_vpage(u_int vaddr)
328 {
329   u_int vpage=(vaddr^0x80000000)>>12;
330 #ifndef DISABLE_TLB
331   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
332 #endif
333   if(vpage>2048) vpage=2048+(vpage&2047);
334   return vpage;
335 }
336
337 // Get address from virtual address
338 // This is called from the recompiled JR/JALR instructions
339 void *get_addr(u_int vaddr)
340 {
341   u_int page=get_page(vaddr);
342   u_int vpage=get_vpage(vaddr);
343   struct ll_entry *head;
344   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
345   head=jump_in[page];
346   while(head!=NULL) {
347     if(head->vaddr==vaddr&&head->reg32==0) {
348   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
349       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350       ht_bin[3]=ht_bin[1];
351       ht_bin[2]=ht_bin[0];
352       ht_bin[1]=(int)head->addr;
353       ht_bin[0]=vaddr;
354       return head->addr;
355     }
356     head=head->next;
357   }
358   head=jump_dirty[vpage];
359   while(head!=NULL) {
360     if(head->vaddr==vaddr&&head->reg32==0) {
361       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
362       // Don't restore blocks which are about to expire from the cache
363       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
364       if(verify_dirty(head->addr)) {
365         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
366         invalid_code[vaddr>>12]=0;
367         memory_map[vaddr>>12]|=0x40000000;
368         if(vpage<2048) {
369 #ifndef DISABLE_TLB
370           if(tlb_LUT_r[vaddr>>12]) {
371             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
372             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
373           }
374 #endif
375           restore_candidate[vpage>>3]|=1<<(vpage&7);
376         }
377         else restore_candidate[page>>3]|=1<<(page&7);
378         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
379         if(ht_bin[0]==vaddr) {
380           ht_bin[1]=(int)head->addr; // Replace existing entry
381         }
382         else
383         {
384           ht_bin[3]=ht_bin[1];
385           ht_bin[2]=ht_bin[0];
386           ht_bin[1]=(int)head->addr;
387           ht_bin[0]=vaddr;
388         }
389         return head->addr;
390       }
391     }
392     head=head->next;
393   }
394   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
395   int r=new_recompile_block(vaddr);
396   if(r==0) return get_addr(vaddr);
397   // Execute in unmapped page, generate pagefault execption
398   Status|=2;
399   Cause=(vaddr<<31)|0x8;
400   EPC=(vaddr&1)?vaddr-5:vaddr;
401   BadVAddr=(vaddr&~1);
402   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
403   EntryHi=BadVAddr&0xFFFFE000;
404   return get_addr_ht(0x80000000);
405 }
406 // Look up address in hash table first
407 void *get_addr_ht(u_int vaddr)
408 {
409   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
410   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
413   return get_addr(vaddr);
414 }
415
416 void *get_addr_32(u_int vaddr,u_int flags)
417 {
418 #ifdef FORCE32
419   return get_addr(vaddr);
420 #else
421   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
422   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
425   u_int page=get_page(vaddr);
426   u_int vpage=get_vpage(vaddr);
427   struct ll_entry *head;
428   head=jump_in[page];
429   while(head!=NULL) {
430     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
431       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
432       if(head->reg32==0) {
433         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434         if(ht_bin[0]==-1) {
435           ht_bin[1]=(int)head->addr;
436           ht_bin[0]=vaddr;
437         }else if(ht_bin[2]==-1) {
438           ht_bin[3]=(int)head->addr;
439           ht_bin[2]=vaddr;
440         }
441         //ht_bin[3]=ht_bin[1];
442         //ht_bin[2]=ht_bin[0];
443         //ht_bin[1]=(int)head->addr;
444         //ht_bin[0]=vaddr;
445       }
446       return head->addr;
447     }
448     head=head->next;
449   }
450   head=jump_dirty[vpage];
451   while(head!=NULL) {
452     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
454       // Don't restore blocks which are about to expire from the cache
455       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
456       if(verify_dirty(head->addr)) {
457         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
458         invalid_code[vaddr>>12]=0;
459         memory_map[vaddr>>12]|=0x40000000;
460         if(vpage<2048) {
461 #ifndef DISABLE_TLB
462           if(tlb_LUT_r[vaddr>>12]) {
463             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
464             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
465           }
466 #endif
467           restore_candidate[vpage>>3]|=1<<(vpage&7);
468         }
469         else restore_candidate[page>>3]|=1<<(page&7);
470         if(head->reg32==0) {
471           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472           if(ht_bin[0]==-1) {
473             ht_bin[1]=(int)head->addr;
474             ht_bin[0]=vaddr;
475           }else if(ht_bin[2]==-1) {
476             ht_bin[3]=(int)head->addr;
477             ht_bin[2]=vaddr;
478           }
479           //ht_bin[3]=ht_bin[1];
480           //ht_bin[2]=ht_bin[0];
481           //ht_bin[1]=(int)head->addr;
482           //ht_bin[0]=vaddr;
483         }
484         return head->addr;
485       }
486     }
487     head=head->next;
488   }
489   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
490   int r=new_recompile_block(vaddr);
491   if(r==0) return get_addr(vaddr);
492   // Execute in unmapped page, generate pagefault execption
493   Status|=2;
494   Cause=(vaddr<<31)|0x8;
495   EPC=(vaddr&1)?vaddr-5:vaddr;
496   BadVAddr=(vaddr&~1);
497   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
498   EntryHi=BadVAddr&0xFFFFE000;
499   return get_addr_ht(0x80000000);
500 #endif
501 }
502
503 void clear_all_regs(signed char regmap[])
504 {
505   int hr;
506   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
507 }
508
509 signed char get_reg(signed char regmap[],int r)
510 {
511   int hr;
512   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
513   return -1;
514 }
515
516 // Find a register that is available for two consecutive cycles
517 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
518 {
519   int hr;
520   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
521   return -1;
522 }
523
524 int count_free_regs(signed char regmap[])
525 {
526   int count=0;
527   int hr;
528   for(hr=0;hr<HOST_REGS;hr++)
529   {
530     if(hr!=EXCLUDE_REG) {
531       if(regmap[hr]<0) count++;
532     }
533   }
534   return count;
535 }
536
537 void dirty_reg(struct regstat *cur,signed char reg)
538 {
539   int hr;
540   if(!reg) return;
541   for (hr=0;hr<HOST_REGS;hr++) {
542     if((cur->regmap[hr]&63)==reg) {
543       cur->dirty|=1<<hr;
544     }
545   }
546 }
547
548 // If we dirty the lower half of a 64 bit register which is now being
549 // sign-extended, we need to dump the upper half.
550 // Note: Do this only after completion of the instruction, because
551 // some instructions may need to read the full 64-bit value even if
552 // overwriting it (eg SLTI, DSRA32).
553 static void flush_dirty_uppers(struct regstat *cur)
554 {
555   int hr,reg;
556   for (hr=0;hr<HOST_REGS;hr++) {
557     if((cur->dirty>>hr)&1) {
558       reg=cur->regmap[hr];
559       if(reg>=64) 
560         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
561     }
562   }
563 }
564
565 void set_const(struct regstat *cur,signed char reg,uint64_t value)
566 {
567   int hr;
568   if(!reg) return;
569   for (hr=0;hr<HOST_REGS;hr++) {
570     if(cur->regmap[hr]==reg) {
571       cur->isconst|=1<<hr;
572       cur->constmap[hr]=value;
573     }
574     else if((cur->regmap[hr]^64)==reg) {
575       cur->isconst|=1<<hr;
576       cur->constmap[hr]=value>>32;
577     }
578   }
579 }
580
581 void clear_const(struct regstat *cur,signed char reg)
582 {
583   int hr;
584   if(!reg) return;
585   for (hr=0;hr<HOST_REGS;hr++) {
586     if((cur->regmap[hr]&63)==reg) {
587       cur->isconst&=~(1<<hr);
588     }
589   }
590 }
591
592 int is_const(struct regstat *cur,signed char reg)
593 {
594   int hr;
595   if(!reg) return 1;
596   for (hr=0;hr<HOST_REGS;hr++) {
597     if((cur->regmap[hr]&63)==reg) {
598       return (cur->isconst>>hr)&1;
599     }
600   }
601   return 0;
602 }
603 uint64_t get_const(struct regstat *cur,signed char reg)
604 {
605   int hr;
606   if(!reg) return 0;
607   for (hr=0;hr<HOST_REGS;hr++) {
608     if(cur->regmap[hr]==reg) {
609       return cur->constmap[hr];
610     }
611   }
612   printf("Unknown constant in r%d\n",reg);
613   exit(1);
614 }
615
616 // Least soon needed registers
617 // Look at the next ten instructions and see which registers
618 // will be used.  Try not to reallocate these.
619 void lsn(u_char hsn[], int i, int *preferred_reg)
620 {
621   int j;
622   int b=-1;
623   for(j=0;j<9;j++)
624   {
625     if(i+j>=slen) {
626       j=slen-i-1;
627       break;
628     }
629     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
630     {
631       // Don't go past an unconditonal jump
632       j++;
633       break;
634     }
635   }
636   for(;j>=0;j--)
637   {
638     if(rs1[i+j]) hsn[rs1[i+j]]=j;
639     if(rs2[i+j]) hsn[rs2[i+j]]=j;
640     if(rt1[i+j]) hsn[rt1[i+j]]=j;
641     if(rt2[i+j]) hsn[rt2[i+j]]=j;
642     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
643       // Stores can allocate zero
644       hsn[rs1[i+j]]=j;
645       hsn[rs2[i+j]]=j;
646     }
647     // On some architectures stores need invc_ptr
648     #if defined(HOST_IMM8)
649     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
650       hsn[INVCP]=j;
651     }
652     #endif
653     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
654     {
655       hsn[CCREG]=j;
656       b=j;
657     }
658   }
659   if(b>=0)
660   {
661     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
662     {
663       // Follow first branch
664       int t=(ba[i+b]-start)>>2;
665       j=7-b;if(t+j>=slen) j=slen-t-1;
666       for(;j>=0;j--)
667       {
668         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
669         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
670         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
671         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
672       }
673     }
674     // TODO: preferred register based on backward branch
675   }
676   // Delay slot should preferably not overwrite branch conditions or cycle count
677   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
678     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
679     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
680     hsn[CCREG]=1;
681     // ...or hash tables
682     hsn[RHASH]=1;
683     hsn[RHTBL]=1;
684   }
685   // Coprocessor load/store needs FTEMP, even if not declared
686   if(itype[i]==C1LS||itype[i]==C2LS) {
687     hsn[FTEMP]=0;
688   }
689   // Load L/R also uses FTEMP as a temporary register
690   if(itype[i]==LOADLR) {
691     hsn[FTEMP]=0;
692   }
693   // Also SWL/SWR/SDL/SDR
694   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
695     hsn[FTEMP]=0;
696   }
697   // Don't remove the TLB registers either
698   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
699     hsn[TLREG]=0;
700   }
701   // Don't remove the miniht registers
702   if(itype[i]==UJUMP||itype[i]==RJUMP)
703   {
704     hsn[RHASH]=0;
705     hsn[RHTBL]=0;
706   }
707 }
708
709 // We only want to allocate registers if we're going to use them again soon
710 int needed_again(int r, int i)
711 {
712   int j;
713   int b=-1;
714   int rn=10;
715   int hr;
716   u_char hsn[MAXREG+1];
717   int preferred_reg;
718   
719   memset(hsn,10,sizeof(hsn));
720   lsn(hsn,i,&preferred_reg);
721   
722   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
723   {
724     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
725       return 0; // Don't need any registers if exiting the block
726   }
727   for(j=0;j<9;j++)
728   {
729     if(i+j>=slen) {
730       j=slen-i-1;
731       break;
732     }
733     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
734     {
735       // Don't go past an unconditonal jump
736       j++;
737       break;
738     }
739     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
740     {
741       break;
742     }
743   }
744   for(;j>=1;j--)
745   {
746     if(rs1[i+j]==r) rn=j;
747     if(rs2[i+j]==r) rn=j;
748     if((unneeded_reg[i+j]>>r)&1) rn=10;
749     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
750     {
751       b=j;
752     }
753   }
754   /*
755   if(b>=0)
756   {
757     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
758     {
759       // Follow first branch
760       int o=rn;
761       int t=(ba[i+b]-start)>>2;
762       j=7-b;if(t+j>=slen) j=slen-t-1;
763       for(;j>=0;j--)
764       {
765         if(!((unneeded_reg[t+j]>>r)&1)) {
766           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
767           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
768         }
769         else rn=o;
770       }
771     }
772   }*/
773   for(hr=0;hr<HOST_REGS;hr++) {
774     if(hr!=EXCLUDE_REG) {
775       if(rn<hsn[hr]) return 1;
776     }
777   }
778   return 0;
779 }
780
781 // Try to match register allocations at the end of a loop with those
782 // at the beginning
783 int loop_reg(int i, int r, int hr)
784 {
785   int j,k;
786   for(j=0;j<9;j++)
787   {
788     if(i+j>=slen) {
789       j=slen-i-1;
790       break;
791     }
792     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
793     {
794       // Don't go past an unconditonal jump
795       j++;
796       break;
797     }
798   }
799   k=0;
800   if(i>0){
801     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
802       k--;
803   }
804   for(;k<j;k++)
805   {
806     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
807     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
808     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
809     {
810       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
811       {
812         int t=(ba[i+k]-start)>>2;
813         int reg=get_reg(regs[t].regmap_entry,r);
814         if(reg>=0) return reg;
815         //reg=get_reg(regs[t+1].regmap_entry,r);
816         //if(reg>=0) return reg;
817       }
818     }
819   }
820   return hr;
821 }
822
823
824 // Allocate every register, preserving source/target regs
825 void alloc_all(struct regstat *cur,int i)
826 {
827   int hr;
828   
829   for(hr=0;hr<HOST_REGS;hr++) {
830     if(hr!=EXCLUDE_REG) {
831       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
832          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
833       {
834         cur->regmap[hr]=-1;
835         cur->dirty&=~(1<<hr);
836       }
837       // Don't need zeros
838       if((cur->regmap[hr]&63)==0)
839       {
840         cur->regmap[hr]=-1;
841         cur->dirty&=~(1<<hr);
842       }
843     }
844   }
845 }
846
847
848 void div64(int64_t dividend,int64_t divisor)
849 {
850   lo=dividend/divisor;
851   hi=dividend%divisor;
852   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
853   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854 }
855 void divu64(uint64_t dividend,uint64_t divisor)
856 {
857   lo=dividend/divisor;
858   hi=dividend%divisor;
859   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
860   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
861 }
862
863 void mult64(uint64_t m1,uint64_t m2)
864 {
865    unsigned long long int op1, op2, op3, op4;
866    unsigned long long int result1, result2, result3, result4;
867    unsigned long long int temp1, temp2, temp3, temp4;
868    int sign = 0;
869    
870    if (m1 < 0)
871      {
872     op2 = -m1;
873     sign = 1 - sign;
874      }
875    else op2 = m1;
876    if (m2 < 0)
877      {
878     op4 = -m2;
879     sign = 1 - sign;
880      }
881    else op4 = m2;
882    
883    op1 = op2 & 0xFFFFFFFF;
884    op2 = (op2 >> 32) & 0xFFFFFFFF;
885    op3 = op4 & 0xFFFFFFFF;
886    op4 = (op4 >> 32) & 0xFFFFFFFF;
887    
888    temp1 = op1 * op3;
889    temp2 = (temp1 >> 32) + op1 * op4;
890    temp3 = op2 * op3;
891    temp4 = (temp3 >> 32) + op2 * op4;
892    
893    result1 = temp1 & 0xFFFFFFFF;
894    result2 = temp2 + (temp3 & 0xFFFFFFFF);
895    result3 = (result2 >> 32) + temp4;
896    result4 = (result3 >> 32);
897    
898    lo = result1 | (result2 << 32);
899    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900    if (sign)
901      {
902     hi = ~hi;
903     if (!lo) hi++;
904     else lo = ~lo + 1;
905      }
906 }
907
908 void multu64(uint64_t m1,uint64_t m2)
909 {
910    unsigned long long int op1, op2, op3, op4;
911    unsigned long long int result1, result2, result3, result4;
912    unsigned long long int temp1, temp2, temp3, temp4;
913    
914    op1 = m1 & 0xFFFFFFFF;
915    op2 = (m1 >> 32) & 0xFFFFFFFF;
916    op3 = m2 & 0xFFFFFFFF;
917    op4 = (m2 >> 32) & 0xFFFFFFFF;
918    
919    temp1 = op1 * op3;
920    temp2 = (temp1 >> 32) + op1 * op4;
921    temp3 = op2 * op3;
922    temp4 = (temp3 >> 32) + op2 * op4;
923    
924    result1 = temp1 & 0xFFFFFFFF;
925    result2 = temp2 + (temp3 & 0xFFFFFFFF);
926    result3 = (result2 >> 32) + temp4;
927    result4 = (result3 >> 32);
928    
929    lo = result1 | (result2 << 32);
930    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
931    
932   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
933   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
934 }
935
936 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937 {
938   if(bits) {
939     original<<=64-bits;
940     original>>=64-bits;
941     loaded<<=bits;
942     original|=loaded;
943   }
944   else original=loaded;
945   return original;
946 }
947 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948 {
949   if(bits^56) {
950     original>>=64-(bits^56);
951     original<<=64-(bits^56);
952     loaded>>=bits^56;
953     original|=loaded;
954   }
955   else original=loaded;
956   return original;
957 }
958
959 #ifdef __i386__
960 #include "assem_x86.c"
961 #endif
962 #ifdef __x86_64__
963 #include "assem_x64.c"
964 #endif
965 #ifdef __arm__
966 #include "assem_arm.c"
967 #endif
968
969 // Add virtual address mapping to linked list
970 void ll_add(struct ll_entry **head,int vaddr,void *addr)
971 {
972   struct ll_entry *new_entry;
973   new_entry=malloc(sizeof(struct ll_entry));
974   assert(new_entry!=NULL);
975   new_entry->vaddr=vaddr;
976   new_entry->reg32=0;
977   new_entry->addr=addr;
978   new_entry->next=*head;
979   *head=new_entry;
980 }
981
982 // Add virtual address mapping for 32-bit compiled block
983 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
984 {
985   ll_add(head,vaddr,addr);
986 #ifndef FORCE32
987   (*head)->reg32=reg32;
988 #endif
989 }
990
991 // Check if an address is already compiled
992 // but don't return addresses which are about to expire from the cache
993 void *check_addr(u_int vaddr)
994 {
995   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
996   if(ht_bin[0]==vaddr) {
997     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
998       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
999   }
1000   if(ht_bin[2]==vaddr) {
1001     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1003   }
1004   u_int page=get_page(vaddr);
1005   struct ll_entry *head;
1006   head=jump_in[page];
1007   while(head!=NULL) {
1008     if(head->vaddr==vaddr&&head->reg32==0) {
1009       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1010         // Update existing entry with current address
1011         if(ht_bin[0]==vaddr) {
1012           ht_bin[1]=(int)head->addr;
1013           return head->addr;
1014         }
1015         if(ht_bin[2]==vaddr) {
1016           ht_bin[3]=(int)head->addr;
1017           return head->addr;
1018         }
1019         // Insert into hash table with low priority.
1020         // Don't evict existing entries, as they are probably
1021         // addresses that are being accessed frequently.
1022         if(ht_bin[0]==-1) {
1023           ht_bin[1]=(int)head->addr;
1024           ht_bin[0]=vaddr;
1025         }else if(ht_bin[2]==-1) {
1026           ht_bin[3]=(int)head->addr;
1027           ht_bin[2]=vaddr;
1028         }
1029         return head->addr;
1030       }
1031     }
1032     head=head->next;
1033   }
1034   return 0;
1035 }
1036
1037 void remove_hash(int vaddr)
1038 {
1039   //printf("remove hash: %x\n",vaddr);
1040   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1041   if(ht_bin[2]==vaddr) {
1042     ht_bin[2]=ht_bin[3]=-1;
1043   }
1044   if(ht_bin[0]==vaddr) {
1045     ht_bin[0]=ht_bin[2];
1046     ht_bin[1]=ht_bin[3];
1047     ht_bin[2]=ht_bin[3]=-1;
1048   }
1049 }
1050
1051 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1052 {
1053   struct ll_entry *next;
1054   while(*head) {
1055     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1056        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1057     {
1058       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1059       remove_hash((*head)->vaddr);
1060       next=(*head)->next;
1061       free(*head);
1062       *head=next;
1063     }
1064     else
1065     {
1066       head=&((*head)->next);
1067     }
1068   }
1069 }
1070
1071 // Remove all entries from linked list
1072 void ll_clear(struct ll_entry **head)
1073 {
1074   struct ll_entry *cur;
1075   struct ll_entry *next;
1076   if(cur=*head) {
1077     *head=0;
1078     while(cur) {
1079       next=cur->next;
1080       free(cur);
1081       cur=next;
1082     }
1083   }
1084 }
1085
1086 // Dereference the pointers and remove if it matches
1087 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1088 {
1089   u_int old_host_addr=0;
1090   while(head) {
1091     int ptr=get_pointer(head->addr);
1092     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1093     if(((ptr>>shift)==(addr>>shift)) ||
1094        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1095     {
1096       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1097       u_int host_addr=(u_int)kill_pointer(head->addr);
1098
1099       if((host_addr>>12)!=(old_host_addr>>12)) {
1100         #ifdef __arm__
1101         __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1102         #endif
1103         old_host_addr=host_addr;
1104       }
1105     }
1106     head=head->next;
1107   }
1108   #ifdef __arm__
1109   if (old_host_addr)
1110     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1111   #endif
1112 }
1113
1114 // This is called when we write to a compiled block (see do_invstub)
1115 void invalidate_page(u_int page)
1116 {
1117   struct ll_entry *head;
1118   struct ll_entry *next;
1119   u_int old_host_addr=0;
1120   head=jump_in[page];
1121   jump_in[page]=0;
1122   while(head!=NULL) {
1123     inv_debug("INVALIDATE: %x\n",head->vaddr);
1124     remove_hash(head->vaddr);
1125     next=head->next;
1126     free(head);
1127     head=next;
1128   }
1129   head=jump_out[page];
1130   jump_out[page]=0;
1131   while(head!=NULL) {
1132     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1133     u_int host_addr=(u_int)kill_pointer(head->addr);
1134
1135     if((host_addr>>12)!=(old_host_addr>>12)) {
1136       #ifdef __arm__
1137       __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1138       #endif
1139       old_host_addr=host_addr;
1140     }
1141     next=head->next;
1142     free(head);
1143     head=next;
1144   }
1145   #ifdef __arm__
1146   if (old_host_addr)
1147     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1148   #endif
1149 }
1150 void invalidate_block(u_int block)
1151 {
1152   u_int page=get_page(block<<12);
1153   u_int vpage=get_vpage(block<<12);
1154   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1155   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1156   u_int first,last;
1157   first=last=page;
1158   struct ll_entry *head;
1159   head=jump_dirty[vpage];
1160   //printf("page=%d vpage=%d\n",page,vpage);
1161   while(head!=NULL) {
1162     u_int start,end;
1163     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1164       get_bounds((int)head->addr,&start,&end);
1165       //printf("start: %x end: %x\n",start,end);
1166       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1167         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1168           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1169           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1170         }
1171       }
1172 #ifndef DISABLE_TLB
1173       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1174         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1175           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1176           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1177         }
1178       }
1179 #endif
1180     }
1181     head=head->next;
1182   }
1183   //printf("first=%d last=%d\n",first,last);
1184   invalidate_page(page);
1185   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1186   assert(last<page+5);
1187   // Invalidate the adjacent pages if a block crosses a 4K boundary
1188   while(first<page) {
1189     invalidate_page(first);
1190     first++;
1191   }
1192   for(first=page+1;first<last;first++) {
1193     invalidate_page(first);
1194   }
1195   
1196   // Don't trap writes
1197   invalid_code[block]=1;
1198 #ifndef DISABLE_TLB
1199   // If there is a valid TLB entry for this page, remove write protect
1200   if(tlb_LUT_w[block]) {
1201     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1202     // CHECK: Is this right?
1203     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1204     u_int real_block=tlb_LUT_w[block]>>12;
1205     invalid_code[real_block]=1;
1206     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1207   }
1208   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1209 #endif
1210
1211   #ifdef USE_MINI_HT
1212   memset(mini_ht,-1,sizeof(mini_ht));
1213   #endif
1214 }
1215 void invalidate_addr(u_int addr)
1216 {
1217   invalidate_block(addr>>12);
1218 }
1219 void invalidate_all_pages()
1220 {
1221   u_int page,n;
1222   for(page=0;page<4096;page++)
1223     invalidate_page(page);
1224   for(page=0;page<1048576;page++)
1225     if(!invalid_code[page]) {
1226       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1227       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1228     }
1229   #ifdef __arm__
1230   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1231   #endif
1232   #ifdef USE_MINI_HT
1233   memset(mini_ht,-1,sizeof(mini_ht));
1234   #endif
1235   #ifndef DISABLE_TLB
1236   // TLB
1237   for(page=0;page<0x100000;page++) {
1238     if(tlb_LUT_r[page]) {
1239       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1240       if(!tlb_LUT_w[page]||!invalid_code[page])
1241         memory_map[page]|=0x40000000; // Write protect
1242     }
1243     else memory_map[page]=-1;
1244     if(page==0x80000) page=0xC0000;
1245   }
1246   tlb_hacks();
1247   #endif
1248 }
1249
1250 // Add an entry to jump_out after making a link
1251 void add_link(u_int vaddr,void *src)
1252 {
1253   u_int page=get_page(vaddr);
1254   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1255   ll_add(jump_out+page,vaddr,src);
1256   //int ptr=get_pointer(src);
1257   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1258 }
1259
1260 // If a code block was found to be unmodified (bit was set in
1261 // restore_candidate) and it remains unmodified (bit is clear
1262 // in invalid_code) then move the entries for that 4K page from
1263 // the dirty list to the clean list.
1264 void clean_blocks(u_int page)
1265 {
1266   struct ll_entry *head;
1267   inv_debug("INV: clean_blocks page=%d\n",page);
1268   head=jump_dirty[page];
1269   while(head!=NULL) {
1270     if(!invalid_code[head->vaddr>>12]) {
1271       // Don't restore blocks which are about to expire from the cache
1272       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1273         u_int start,end;
1274         if(verify_dirty((int)head->addr)) {
1275           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1276           u_int i;
1277           u_int inv=0;
1278           get_bounds((int)head->addr,&start,&end);
1279           if(start-(u_int)rdram<RAM_SIZE) {
1280             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1281               inv|=invalid_code[i];
1282             }
1283           }
1284           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1285             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1286             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1287             if(addr<start||addr>=end) inv=1;
1288           }
1289           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1290             inv=1;
1291           }
1292           if(!inv) {
1293             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1294             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1295               u_int ppage=page;
1296 #ifndef DISABLE_TLB
1297               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1298 #endif
1299               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1300               //printf("page=%x, addr=%x\n",page,head->vaddr);
1301               //assert(head->vaddr>>12==(page|0x80000));
1302               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1303               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1304               if(!head->reg32) {
1305                 if(ht_bin[0]==head->vaddr) {
1306                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1307                 }
1308                 if(ht_bin[2]==head->vaddr) {
1309                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1310                 }
1311               }
1312             }
1313           }
1314         }
1315       }
1316     }
1317     head=head->next;
1318   }
1319 }
1320
1321
1322 void mov_alloc(struct regstat *current,int i)
1323 {
1324   // Note: Don't need to actually alloc the source registers
1325   if((~current->is32>>rs1[i])&1) {
1326     //alloc_reg64(current,i,rs1[i]);
1327     alloc_reg64(current,i,rt1[i]);
1328     current->is32&=~(1LL<<rt1[i]);
1329   } else {
1330     //alloc_reg(current,i,rs1[i]);
1331     alloc_reg(current,i,rt1[i]);
1332     current->is32|=(1LL<<rt1[i]);
1333   }
1334   clear_const(current,rs1[i]);
1335   clear_const(current,rt1[i]);
1336   dirty_reg(current,rt1[i]);
1337 }
1338
1339 void shiftimm_alloc(struct regstat *current,int i)
1340 {
1341   clear_const(current,rs1[i]);
1342   clear_const(current,rt1[i]);
1343   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1344   {
1345     if(rt1[i]) {
1346       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1347       else lt1[i]=rs1[i];
1348       alloc_reg(current,i,rt1[i]);
1349       current->is32|=1LL<<rt1[i];
1350       dirty_reg(current,rt1[i]);
1351     }
1352   }
1353   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1354   {
1355     if(rt1[i]) {
1356       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1357       alloc_reg64(current,i,rt1[i]);
1358       current->is32&=~(1LL<<rt1[i]);
1359       dirty_reg(current,rt1[i]);
1360     }
1361   }
1362   if(opcode2[i]==0x3c) // DSLL32
1363   {
1364     if(rt1[i]) {
1365       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1366       alloc_reg64(current,i,rt1[i]);
1367       current->is32&=~(1LL<<rt1[i]);
1368       dirty_reg(current,rt1[i]);
1369     }
1370   }
1371   if(opcode2[i]==0x3e) // DSRL32
1372   {
1373     if(rt1[i]) {
1374       alloc_reg64(current,i,rs1[i]);
1375       if(imm[i]==32) {
1376         alloc_reg64(current,i,rt1[i]);
1377         current->is32&=~(1LL<<rt1[i]);
1378       } else {
1379         alloc_reg(current,i,rt1[i]);
1380         current->is32|=1LL<<rt1[i];
1381       }
1382       dirty_reg(current,rt1[i]);
1383     }
1384   }
1385   if(opcode2[i]==0x3f) // DSRA32
1386   {
1387     if(rt1[i]) {
1388       alloc_reg64(current,i,rs1[i]);
1389       alloc_reg(current,i,rt1[i]);
1390       current->is32|=1LL<<rt1[i];
1391       dirty_reg(current,rt1[i]);
1392     }
1393   }
1394 }
1395
1396 void shift_alloc(struct regstat *current,int i)
1397 {
1398   if(rt1[i]) {
1399     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1400     {
1401       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1402       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1403       alloc_reg(current,i,rt1[i]);
1404       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1405       current->is32|=1LL<<rt1[i];
1406     } else { // DSLLV/DSRLV/DSRAV
1407       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1408       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1409       alloc_reg64(current,i,rt1[i]);
1410       current->is32&=~(1LL<<rt1[i]);
1411       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1412         alloc_reg_temp(current,i,-1);
1413     }
1414     clear_const(current,rs1[i]);
1415     clear_const(current,rs2[i]);
1416     clear_const(current,rt1[i]);
1417     dirty_reg(current,rt1[i]);
1418   }
1419 }
1420
1421 void alu_alloc(struct regstat *current,int i)
1422 {
1423   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1424     if(rt1[i]) {
1425       if(rs1[i]&&rs2[i]) {
1426         alloc_reg(current,i,rs1[i]);
1427         alloc_reg(current,i,rs2[i]);
1428       }
1429       else {
1430         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1431         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1432       }
1433       alloc_reg(current,i,rt1[i]);
1434     }
1435     current->is32|=1LL<<rt1[i];
1436   }
1437   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1438     if(rt1[i]) {
1439       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1440       {
1441         alloc_reg64(current,i,rs1[i]);
1442         alloc_reg64(current,i,rs2[i]);
1443         alloc_reg(current,i,rt1[i]);
1444       } else {
1445         alloc_reg(current,i,rs1[i]);
1446         alloc_reg(current,i,rs2[i]);
1447         alloc_reg(current,i,rt1[i]);
1448       }
1449     }
1450     current->is32|=1LL<<rt1[i];
1451   }
1452   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1453     if(rt1[i]) {
1454       if(rs1[i]&&rs2[i]) {
1455         alloc_reg(current,i,rs1[i]);
1456         alloc_reg(current,i,rs2[i]);
1457       }
1458       else
1459       {
1460         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1461         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1462       }
1463       alloc_reg(current,i,rt1[i]);
1464       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1465       {
1466         if(!((current->uu>>rt1[i])&1)) {
1467           alloc_reg64(current,i,rt1[i]);
1468         }
1469         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1470           if(rs1[i]&&rs2[i]) {
1471             alloc_reg64(current,i,rs1[i]);
1472             alloc_reg64(current,i,rs2[i]);
1473           }
1474           else
1475           {
1476             // Is is really worth it to keep 64-bit values in registers?
1477             #ifdef NATIVE_64BIT
1478             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1479             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1480             #endif
1481           }
1482         }
1483         current->is32&=~(1LL<<rt1[i]);
1484       } else {
1485         current->is32|=1LL<<rt1[i];
1486       }
1487     }
1488   }
1489   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1490     if(rt1[i]) {
1491       if(rs1[i]&&rs2[i]) {
1492         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1493           alloc_reg64(current,i,rs1[i]);
1494           alloc_reg64(current,i,rs2[i]);
1495           alloc_reg64(current,i,rt1[i]);
1496         } else {
1497           alloc_reg(current,i,rs1[i]);
1498           alloc_reg(current,i,rs2[i]);
1499           alloc_reg(current,i,rt1[i]);
1500         }
1501       }
1502       else {
1503         alloc_reg(current,i,rt1[i]);
1504         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1505           // DADD used as move, or zeroing
1506           // If we have a 64-bit source, then make the target 64 bits too
1507           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1508             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1509             alloc_reg64(current,i,rt1[i]);
1510           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1511             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1512             alloc_reg64(current,i,rt1[i]);
1513           }
1514           if(opcode2[i]>=0x2e&&rs2[i]) {
1515             // DSUB used as negation - 64-bit result
1516             // If we have a 32-bit register, extend it to 64 bits
1517             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1518             alloc_reg64(current,i,rt1[i]);
1519           }
1520         }
1521       }
1522       if(rs1[i]&&rs2[i]) {
1523         current->is32&=~(1LL<<rt1[i]);
1524       } else if(rs1[i]) {
1525         current->is32&=~(1LL<<rt1[i]);
1526         if((current->is32>>rs1[i])&1)
1527           current->is32|=1LL<<rt1[i];
1528       } else if(rs2[i]) {
1529         current->is32&=~(1LL<<rt1[i]);
1530         if((current->is32>>rs2[i])&1)
1531           current->is32|=1LL<<rt1[i];
1532       } else {
1533         current->is32|=1LL<<rt1[i];
1534       }
1535     }
1536   }
1537   clear_const(current,rs1[i]);
1538   clear_const(current,rs2[i]);
1539   clear_const(current,rt1[i]);
1540   dirty_reg(current,rt1[i]);
1541 }
1542
1543 void imm16_alloc(struct regstat *current,int i)
1544 {
1545   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1546   else lt1[i]=rs1[i];
1547   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1548   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1549     current->is32&=~(1LL<<rt1[i]);
1550     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1551       // TODO: Could preserve the 32-bit flag if the immediate is zero
1552       alloc_reg64(current,i,rt1[i]);
1553       alloc_reg64(current,i,rs1[i]);
1554     }
1555     clear_const(current,rs1[i]);
1556     clear_const(current,rt1[i]);
1557   }
1558   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1559     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1560     current->is32|=1LL<<rt1[i];
1561     clear_const(current,rs1[i]);
1562     clear_const(current,rt1[i]);
1563   }
1564   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1565     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1566       if(rs1[i]!=rt1[i]) {
1567         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1568         alloc_reg64(current,i,rt1[i]);
1569         current->is32&=~(1LL<<rt1[i]);
1570       }
1571     }
1572     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1573     if(is_const(current,rs1[i])) {
1574       int v=get_const(current,rs1[i]);
1575       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1576       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1577       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1578     }
1579     else clear_const(current,rt1[i]);
1580   }
1581   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1582     if(is_const(current,rs1[i])) {
1583       int v=get_const(current,rs1[i]);
1584       set_const(current,rt1[i],v+imm[i]);
1585     }
1586     else clear_const(current,rt1[i]);
1587     current->is32|=1LL<<rt1[i];
1588   }
1589   else {
1590     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1591     current->is32|=1LL<<rt1[i];
1592   }
1593   dirty_reg(current,rt1[i]);
1594 }
1595
1596 void load_alloc(struct regstat *current,int i)
1597 {
1598   clear_const(current,rt1[i]);
1599   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1600   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1601   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1602   if(rt1[i]) {
1603     alloc_reg(current,i,rt1[i]);
1604     if(get_reg(current->regmap,rt1[i])<0) {
1605       // dummy load, but we still need a register to calculate the address
1606       alloc_reg_temp(current,i,-1);
1607     }
1608     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1609     {
1610       current->is32&=~(1LL<<rt1[i]);
1611       alloc_reg64(current,i,rt1[i]);
1612     }
1613     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1614     {
1615       current->is32&=~(1LL<<rt1[i]);
1616       alloc_reg64(current,i,rt1[i]);
1617       alloc_all(current,i);
1618       alloc_reg64(current,i,FTEMP);
1619     }
1620     else current->is32|=1LL<<rt1[i];
1621     dirty_reg(current,rt1[i]);
1622     // If using TLB, need a register for pointer to the mapping table
1623     if(using_tlb) alloc_reg(current,i,TLREG);
1624     // LWL/LWR need a temporary register for the old value
1625     if(opcode[i]==0x22||opcode[i]==0x26)
1626     {
1627       alloc_reg(current,i,FTEMP);
1628       alloc_reg_temp(current,i,-1);
1629     }
1630   }
1631   else
1632   {
1633     // Load to r0 (dummy load)
1634     // but we still need a register to calculate the address
1635     if(opcode[i]==0x22||opcode[i]==0x26)
1636     {
1637       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1638     }
1639     alloc_reg_temp(current,i,-1);
1640     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1641     {
1642       alloc_all(current,i);
1643       alloc_reg64(current,i,FTEMP);
1644     }
1645   }
1646 }
1647
1648 void store_alloc(struct regstat *current,int i)
1649 {
1650   clear_const(current,rs2[i]);
1651   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1652   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1653   alloc_reg(current,i,rs2[i]);
1654   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1655     alloc_reg64(current,i,rs2[i]);
1656     if(rs2[i]) alloc_reg(current,i,FTEMP);
1657   }
1658   // If using TLB, need a register for pointer to the mapping table
1659   if(using_tlb) alloc_reg(current,i,TLREG);
1660   #if defined(HOST_IMM8)
1661   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1662   else alloc_reg(current,i,INVCP);
1663   #endif
1664   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1665     alloc_reg(current,i,FTEMP);
1666   }
1667   // We need a temporary register for address generation
1668   alloc_reg_temp(current,i,-1);
1669 }
1670
1671 void c1ls_alloc(struct regstat *current,int i)
1672 {
1673   //clear_const(current,rs1[i]); // FIXME
1674   clear_const(current,rt1[i]);
1675   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1676   alloc_reg(current,i,CSREG); // Status
1677   alloc_reg(current,i,FTEMP);
1678   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1679     alloc_reg64(current,i,FTEMP);
1680   }
1681   // If using TLB, need a register for pointer to the mapping table
1682   if(using_tlb) alloc_reg(current,i,TLREG);
1683   #if defined(HOST_IMM8)
1684   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1685   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1686     alloc_reg(current,i,INVCP);
1687   #endif
1688   // We need a temporary register for address generation
1689   alloc_reg_temp(current,i,-1);
1690 }
1691
1692 void c2ls_alloc(struct regstat *current,int i)
1693 {
1694   clear_const(current,rt1[i]);
1695   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1696   alloc_reg(current,i,FTEMP);
1697   // If using TLB, need a register for pointer to the mapping table
1698   if(using_tlb) alloc_reg(current,i,TLREG);
1699   #if defined(HOST_IMM8)
1700   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1701   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1702     alloc_reg(current,i,INVCP);
1703   #endif
1704   // We need a temporary register for address generation
1705   alloc_reg_temp(current,i,-1);
1706 }
1707
1708 #ifndef multdiv_alloc
1709 void multdiv_alloc(struct regstat *current,int i)
1710 {
1711   //  case 0x18: MULT
1712   //  case 0x19: MULTU
1713   //  case 0x1A: DIV
1714   //  case 0x1B: DIVU
1715   //  case 0x1C: DMULT
1716   //  case 0x1D: DMULTU
1717   //  case 0x1E: DDIV
1718   //  case 0x1F: DDIVU
1719   clear_const(current,rs1[i]);
1720   clear_const(current,rs2[i]);
1721   if(rs1[i]&&rs2[i])
1722   {
1723     if((opcode2[i]&4)==0) // 32-bit
1724     {
1725       current->u&=~(1LL<<HIREG);
1726       current->u&=~(1LL<<LOREG);
1727       alloc_reg(current,i,HIREG);
1728       alloc_reg(current,i,LOREG);
1729       alloc_reg(current,i,rs1[i]);
1730       alloc_reg(current,i,rs2[i]);
1731       current->is32|=1LL<<HIREG;
1732       current->is32|=1LL<<LOREG;
1733       dirty_reg(current,HIREG);
1734       dirty_reg(current,LOREG);
1735     }
1736     else // 64-bit
1737     {
1738       current->u&=~(1LL<<HIREG);
1739       current->u&=~(1LL<<LOREG);
1740       current->uu&=~(1LL<<HIREG);
1741       current->uu&=~(1LL<<LOREG);
1742       alloc_reg64(current,i,HIREG);
1743       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1744       alloc_reg64(current,i,rs1[i]);
1745       alloc_reg64(current,i,rs2[i]);
1746       alloc_all(current,i);
1747       current->is32&=~(1LL<<HIREG);
1748       current->is32&=~(1LL<<LOREG);
1749       dirty_reg(current,HIREG);
1750       dirty_reg(current,LOREG);
1751     }
1752   }
1753   else
1754   {
1755     // Multiply by zero is zero.
1756     // MIPS does not have a divide by zero exception.
1757     // The result is undefined, we return zero.
1758     alloc_reg(current,i,HIREG);
1759     alloc_reg(current,i,LOREG);
1760     current->is32|=1LL<<HIREG;
1761     current->is32|=1LL<<LOREG;
1762     dirty_reg(current,HIREG);
1763     dirty_reg(current,LOREG);
1764   }
1765 }
1766 #endif
1767
1768 void cop0_alloc(struct regstat *current,int i)
1769 {
1770   if(opcode2[i]==0) // MFC0
1771   {
1772     if(rt1[i]) {
1773       clear_const(current,rt1[i]);
1774       alloc_all(current,i);
1775       alloc_reg(current,i,rt1[i]);
1776       current->is32|=1LL<<rt1[i];
1777       dirty_reg(current,rt1[i]);
1778     }
1779   }
1780   else if(opcode2[i]==4) // MTC0
1781   {
1782     if(rs1[i]){
1783       clear_const(current,rs1[i]);
1784       alloc_reg(current,i,rs1[i]);
1785       alloc_all(current,i);
1786     }
1787     else {
1788       alloc_all(current,i); // FIXME: Keep r0
1789       current->u&=~1LL;
1790       alloc_reg(current,i,0);
1791     }
1792   }
1793   else
1794   {
1795     // TLBR/TLBWI/TLBWR/TLBP/ERET
1796     assert(opcode2[i]==0x10);
1797     alloc_all(current,i);
1798   }
1799 }
1800
1801 void cop1_alloc(struct regstat *current,int i)
1802 {
1803   alloc_reg(current,i,CSREG); // Load status
1804   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1805   {
1806     if(rt1[i]){
1807       clear_const(current,rt1[i]);
1808       if(opcode2[i]==1) {
1809         alloc_reg64(current,i,rt1[i]); // DMFC1
1810         current->is32&=~(1LL<<rt1[i]);
1811       }else{
1812         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1813         current->is32|=1LL<<rt1[i];
1814       }
1815       dirty_reg(current,rt1[i]);
1816     }
1817     alloc_reg_temp(current,i,-1);
1818   }
1819   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1820   {
1821     if(rs1[i]){
1822       clear_const(current,rs1[i]);
1823       if(opcode2[i]==5)
1824         alloc_reg64(current,i,rs1[i]); // DMTC1
1825       else
1826         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1827       alloc_reg_temp(current,i,-1);
1828     }
1829     else {
1830       current->u&=~1LL;
1831       alloc_reg(current,i,0);
1832       alloc_reg_temp(current,i,-1);
1833     }
1834   }
1835 }
1836 void fconv_alloc(struct regstat *current,int i)
1837 {
1838   alloc_reg(current,i,CSREG); // Load status
1839   alloc_reg_temp(current,i,-1);
1840 }
1841 void float_alloc(struct regstat *current,int i)
1842 {
1843   alloc_reg(current,i,CSREG); // Load status
1844   alloc_reg_temp(current,i,-1);
1845 }
1846 void c2op_alloc(struct regstat *current,int i)
1847 {
1848   alloc_reg_temp(current,i,-1);
1849 }
1850 void fcomp_alloc(struct regstat *current,int i)
1851 {
1852   alloc_reg(current,i,CSREG); // Load status
1853   alloc_reg(current,i,FSREG); // Load flags
1854   dirty_reg(current,FSREG); // Flag will be modified
1855   alloc_reg_temp(current,i,-1);
1856 }
1857
1858 void syscall_alloc(struct regstat *current,int i)
1859 {
1860   alloc_cc(current,i);
1861   dirty_reg(current,CCREG);
1862   alloc_all(current,i);
1863   current->isconst=0;
1864 }
1865
1866 void delayslot_alloc(struct regstat *current,int i)
1867 {
1868   switch(itype[i]) {
1869     case UJUMP:
1870     case CJUMP:
1871     case SJUMP:
1872     case RJUMP:
1873     case FJUMP:
1874     case SYSCALL:
1875     case HLECALL:
1876     case SPAN:
1877       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1878       printf("Disabled speculative precompilation\n");
1879       stop_after_jal=1;
1880       break;
1881     case IMM16:
1882       imm16_alloc(current,i);
1883       break;
1884     case LOAD:
1885     case LOADLR:
1886       load_alloc(current,i);
1887       break;
1888     case STORE:
1889     case STORELR:
1890       store_alloc(current,i);
1891       break;
1892     case ALU:
1893       alu_alloc(current,i);
1894       break;
1895     case SHIFT:
1896       shift_alloc(current,i);
1897       break;
1898     case MULTDIV:
1899       multdiv_alloc(current,i);
1900       break;
1901     case SHIFTIMM:
1902       shiftimm_alloc(current,i);
1903       break;
1904     case MOV:
1905       mov_alloc(current,i);
1906       break;
1907     case COP0:
1908       cop0_alloc(current,i);
1909       break;
1910     case COP1:
1911     case COP2:
1912       cop1_alloc(current,i);
1913       break;
1914     case C1LS:
1915       c1ls_alloc(current,i);
1916       break;
1917     case C2LS:
1918       c2ls_alloc(current,i);
1919       break;
1920     case FCONV:
1921       fconv_alloc(current,i);
1922       break;
1923     case FLOAT:
1924       float_alloc(current,i);
1925       break;
1926     case FCOMP:
1927       fcomp_alloc(current,i);
1928       break;
1929     case C2OP:
1930       c2op_alloc(current,i);
1931       break;
1932   }
1933 }
1934
1935 // Special case where a branch and delay slot span two pages in virtual memory
1936 static void pagespan_alloc(struct regstat *current,int i)
1937 {
1938   current->isconst=0;
1939   current->wasconst=0;
1940   regs[i].wasconst=0;
1941   alloc_all(current,i);
1942   alloc_cc(current,i);
1943   dirty_reg(current,CCREG);
1944   if(opcode[i]==3) // JAL
1945   {
1946     alloc_reg(current,i,31);
1947     dirty_reg(current,31);
1948   }
1949   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1950   {
1951     alloc_reg(current,i,rs1[i]);
1952     if (rt1[i]!=0) {
1953       alloc_reg(current,i,rt1[i]);
1954       dirty_reg(current,rt1[i]);
1955     }
1956   }
1957   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1958   {
1959     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1960     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1961     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1962     {
1963       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1964       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1965     }
1966   }
1967   else
1968   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1969   {
1970     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1971     if(!((current->is32>>rs1[i])&1))
1972     {
1973       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1974     }
1975   }
1976   else
1977   if(opcode[i]==0x11) // BC1
1978   {
1979     alloc_reg(current,i,FSREG);
1980     alloc_reg(current,i,CSREG);
1981   }
1982   //else ...
1983 }
1984
1985 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1986 {
1987   stubs[stubcount][0]=type;
1988   stubs[stubcount][1]=addr;
1989   stubs[stubcount][2]=retaddr;
1990   stubs[stubcount][3]=a;
1991   stubs[stubcount][4]=b;
1992   stubs[stubcount][5]=c;
1993   stubs[stubcount][6]=d;
1994   stubs[stubcount][7]=e;
1995   stubcount++;
1996 }
1997
1998 // Write out a single register
1999 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2000 {
2001   int hr;
2002   for(hr=0;hr<HOST_REGS;hr++) {
2003     if(hr!=EXCLUDE_REG) {
2004       if((regmap[hr]&63)==r) {
2005         if((dirty>>hr)&1) {
2006           if(regmap[hr]<64) {
2007             emit_storereg(r,hr);
2008 #ifndef FORCE32
2009             if((is32>>regmap[hr])&1) {
2010               emit_sarimm(hr,31,hr);
2011               emit_storereg(r|64,hr);
2012             }
2013 #endif
2014           }else{
2015             emit_storereg(r|64,hr);
2016           }
2017         }
2018       }
2019     }
2020   }
2021 }
2022
2023 int mchecksum()
2024 {
2025   //if(!tracedebug) return 0;
2026   int i;
2027   int sum=0;
2028   for(i=0;i<2097152;i++) {
2029     unsigned int temp=sum;
2030     sum<<=1;
2031     sum|=(~temp)>>31;
2032     sum^=((u_int *)rdram)[i];
2033   }
2034   return sum;
2035 }
2036 int rchecksum()
2037 {
2038   int i;
2039   int sum=0;
2040   for(i=0;i<64;i++)
2041     sum^=((u_int *)reg)[i];
2042   return sum;
2043 }
2044 void rlist()
2045 {
2046   int i;
2047   printf("TRACE: ");
2048   for(i=0;i<32;i++)
2049     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2050   printf("\n");
2051 #ifndef DISABLE_COP1
2052   printf("TRACE: ");
2053   for(i=0;i<32;i++)
2054     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2055   printf("\n");
2056 #endif
2057 }
2058
2059 void enabletrace()
2060 {
2061   tracedebug=1;
2062 }
2063
2064 void memdebug(int i)
2065 {
2066   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2067   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2068   //rlist();
2069   //if(tracedebug) {
2070   //if(Count>=-2084597794) {
2071   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2072   //if(0) {
2073     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2074     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2075     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2076     rlist();
2077     #ifdef __i386__
2078     printf("TRACE: %x\n",(&i)[-1]);
2079     #endif
2080     #ifdef __arm__
2081     int j;
2082     printf("TRACE: %x \n",(&j)[10]);
2083     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2084     #endif
2085     //fflush(stdout);
2086   }
2087   //printf("TRACE: %x\n",(&i)[-1]);
2088 }
2089
2090 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2091 {
2092   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2093 }
2094
2095 void alu_assemble(int i,struct regstat *i_regs)
2096 {
2097   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2098     if(rt1[i]) {
2099       signed char s1,s2,t;
2100       t=get_reg(i_regs->regmap,rt1[i]);
2101       if(t>=0) {
2102         s1=get_reg(i_regs->regmap,rs1[i]);
2103         s2=get_reg(i_regs->regmap,rs2[i]);
2104         if(rs1[i]&&rs2[i]) {
2105           assert(s1>=0);
2106           assert(s2>=0);
2107           if(opcode2[i]&2) emit_sub(s1,s2,t);
2108           else emit_add(s1,s2,t);
2109         }
2110         else if(rs1[i]) {
2111           if(s1>=0) emit_mov(s1,t);
2112           else emit_loadreg(rs1[i],t);
2113         }
2114         else if(rs2[i]) {
2115           if(s2>=0) {
2116             if(opcode2[i]&2) emit_neg(s2,t);
2117             else emit_mov(s2,t);
2118           }
2119           else {
2120             emit_loadreg(rs2[i],t);
2121             if(opcode2[i]&2) emit_neg(t,t);
2122           }
2123         }
2124         else emit_zeroreg(t);
2125       }
2126     }
2127   }
2128   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2129     if(rt1[i]) {
2130       signed char s1l,s2l,s1h,s2h,tl,th;
2131       tl=get_reg(i_regs->regmap,rt1[i]);
2132       th=get_reg(i_regs->regmap,rt1[i]|64);
2133       if(tl>=0) {
2134         s1l=get_reg(i_regs->regmap,rs1[i]);
2135         s2l=get_reg(i_regs->regmap,rs2[i]);
2136         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2137         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2138         if(rs1[i]&&rs2[i]) {
2139           assert(s1l>=0);
2140           assert(s2l>=0);
2141           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2142           else emit_adds(s1l,s2l,tl);
2143           if(th>=0) {
2144             #ifdef INVERTED_CARRY
2145             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2146             #else
2147             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2148             #endif
2149             else emit_add(s1h,s2h,th);
2150           }
2151         }
2152         else if(rs1[i]) {
2153           if(s1l>=0) emit_mov(s1l,tl);
2154           else emit_loadreg(rs1[i],tl);
2155           if(th>=0) {
2156             if(s1h>=0) emit_mov(s1h,th);
2157             else emit_loadreg(rs1[i]|64,th);
2158           }
2159         }
2160         else if(rs2[i]) {
2161           if(s2l>=0) {
2162             if(opcode2[i]&2) emit_negs(s2l,tl);
2163             else emit_mov(s2l,tl);
2164           }
2165           else {
2166             emit_loadreg(rs2[i],tl);
2167             if(opcode2[i]&2) emit_negs(tl,tl);
2168           }
2169           if(th>=0) {
2170             #ifdef INVERTED_CARRY
2171             if(s2h>=0) emit_mov(s2h,th);
2172             else emit_loadreg(rs2[i]|64,th);
2173             if(opcode2[i]&2) {
2174               emit_adcimm(-1,th); // x86 has inverted carry flag
2175               emit_not(th,th);
2176             }
2177             #else
2178             if(opcode2[i]&2) {
2179               if(s2h>=0) emit_rscimm(s2h,0,th);
2180               else {
2181                 emit_loadreg(rs2[i]|64,th);
2182                 emit_rscimm(th,0,th);
2183               }
2184             }else{
2185               if(s2h>=0) emit_mov(s2h,th);
2186               else emit_loadreg(rs2[i]|64,th);
2187             }
2188             #endif
2189           }
2190         }
2191         else {
2192           emit_zeroreg(tl);
2193           if(th>=0) emit_zeroreg(th);
2194         }
2195       }
2196     }
2197   }
2198   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2199     if(rt1[i]) {
2200       signed char s1l,s1h,s2l,s2h,t;
2201       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2202       {
2203         t=get_reg(i_regs->regmap,rt1[i]);
2204         //assert(t>=0);
2205         if(t>=0) {
2206           s1l=get_reg(i_regs->regmap,rs1[i]);
2207           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2208           s2l=get_reg(i_regs->regmap,rs2[i]);
2209           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2210           if(rs2[i]==0) // rx<r0
2211           {
2212             assert(s1h>=0);
2213             if(opcode2[i]==0x2a) // SLT
2214               emit_shrimm(s1h,31,t);
2215             else // SLTU (unsigned can not be less than zero)
2216               emit_zeroreg(t);
2217           }
2218           else if(rs1[i]==0) // r0<rx
2219           {
2220             assert(s2h>=0);
2221             if(opcode2[i]==0x2a) // SLT
2222               emit_set_gz64_32(s2h,s2l,t);
2223             else // SLTU (set if not zero)
2224               emit_set_nz64_32(s2h,s2l,t);
2225           }
2226           else {
2227             assert(s1l>=0);assert(s1h>=0);
2228             assert(s2l>=0);assert(s2h>=0);
2229             if(opcode2[i]==0x2a) // SLT
2230               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2231             else // SLTU
2232               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2233           }
2234         }
2235       } else {
2236         t=get_reg(i_regs->regmap,rt1[i]);
2237         //assert(t>=0);
2238         if(t>=0) {
2239           s1l=get_reg(i_regs->regmap,rs1[i]);
2240           s2l=get_reg(i_regs->regmap,rs2[i]);
2241           if(rs2[i]==0) // rx<r0
2242           {
2243             assert(s1l>=0);
2244             if(opcode2[i]==0x2a) // SLT
2245               emit_shrimm(s1l,31,t);
2246             else // SLTU (unsigned can not be less than zero)
2247               emit_zeroreg(t);
2248           }
2249           else if(rs1[i]==0) // r0<rx
2250           {
2251             assert(s2l>=0);
2252             if(opcode2[i]==0x2a) // SLT
2253               emit_set_gz32(s2l,t);
2254             else // SLTU (set if not zero)
2255               emit_set_nz32(s2l,t);
2256           }
2257           else{
2258             assert(s1l>=0);assert(s2l>=0);
2259             if(opcode2[i]==0x2a) // SLT
2260               emit_set_if_less32(s1l,s2l,t);
2261             else // SLTU
2262               emit_set_if_carry32(s1l,s2l,t);
2263           }
2264         }
2265       }
2266     }
2267   }
2268   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2269     if(rt1[i]) {
2270       signed char s1l,s1h,s2l,s2h,th,tl;
2271       tl=get_reg(i_regs->regmap,rt1[i]);
2272       th=get_reg(i_regs->regmap,rt1[i]|64);
2273       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2274       {
2275         assert(tl>=0);
2276         if(tl>=0) {
2277           s1l=get_reg(i_regs->regmap,rs1[i]);
2278           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2279           s2l=get_reg(i_regs->regmap,rs2[i]);
2280           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2281           if(rs1[i]&&rs2[i]) {
2282             assert(s1l>=0);assert(s1h>=0);
2283             assert(s2l>=0);assert(s2h>=0);
2284             if(opcode2[i]==0x24) { // AND
2285               emit_and(s1l,s2l,tl);
2286               emit_and(s1h,s2h,th);
2287             } else
2288             if(opcode2[i]==0x25) { // OR
2289               emit_or(s1l,s2l,tl);
2290               emit_or(s1h,s2h,th);
2291             } else
2292             if(opcode2[i]==0x26) { // XOR
2293               emit_xor(s1l,s2l,tl);
2294               emit_xor(s1h,s2h,th);
2295             } else
2296             if(opcode2[i]==0x27) { // NOR
2297               emit_or(s1l,s2l,tl);
2298               emit_or(s1h,s2h,th);
2299               emit_not(tl,tl);
2300               emit_not(th,th);
2301             }
2302           }
2303           else
2304           {
2305             if(opcode2[i]==0x24) { // AND
2306               emit_zeroreg(tl);
2307               emit_zeroreg(th);
2308             } else
2309             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2310               if(rs1[i]){
2311                 if(s1l>=0) emit_mov(s1l,tl);
2312                 else emit_loadreg(rs1[i],tl);
2313                 if(s1h>=0) emit_mov(s1h,th);
2314                 else emit_loadreg(rs1[i]|64,th);
2315               }
2316               else
2317               if(rs2[i]){
2318                 if(s2l>=0) emit_mov(s2l,tl);
2319                 else emit_loadreg(rs2[i],tl);
2320                 if(s2h>=0) emit_mov(s2h,th);
2321                 else emit_loadreg(rs2[i]|64,th);
2322               }
2323               else{
2324                 emit_zeroreg(tl);
2325                 emit_zeroreg(th);
2326               }
2327             } else
2328             if(opcode2[i]==0x27) { // NOR
2329               if(rs1[i]){
2330                 if(s1l>=0) emit_not(s1l,tl);
2331                 else{
2332                   emit_loadreg(rs1[i],tl);
2333                   emit_not(tl,tl);
2334                 }
2335                 if(s1h>=0) emit_not(s1h,th);
2336                 else{
2337                   emit_loadreg(rs1[i]|64,th);
2338                   emit_not(th,th);
2339                 }
2340               }
2341               else
2342               if(rs2[i]){
2343                 if(s2l>=0) emit_not(s2l,tl);
2344                 else{
2345                   emit_loadreg(rs2[i],tl);
2346                   emit_not(tl,tl);
2347                 }
2348                 if(s2h>=0) emit_not(s2h,th);
2349                 else{
2350                   emit_loadreg(rs2[i]|64,th);
2351                   emit_not(th,th);
2352                 }
2353               }
2354               else {
2355                 emit_movimm(-1,tl);
2356                 emit_movimm(-1,th);
2357               }
2358             }
2359           }
2360         }
2361       }
2362       else
2363       {
2364         // 32 bit
2365         if(tl>=0) {
2366           s1l=get_reg(i_regs->regmap,rs1[i]);
2367           s2l=get_reg(i_regs->regmap,rs2[i]);
2368           if(rs1[i]&&rs2[i]) {
2369             assert(s1l>=0);
2370             assert(s2l>=0);
2371             if(opcode2[i]==0x24) { // AND
2372               emit_and(s1l,s2l,tl);
2373             } else
2374             if(opcode2[i]==0x25) { // OR
2375               emit_or(s1l,s2l,tl);
2376             } else
2377             if(opcode2[i]==0x26) { // XOR
2378               emit_xor(s1l,s2l,tl);
2379             } else
2380             if(opcode2[i]==0x27) { // NOR
2381               emit_or(s1l,s2l,tl);
2382               emit_not(tl,tl);
2383             }
2384           }
2385           else
2386           {
2387             if(opcode2[i]==0x24) { // AND
2388               emit_zeroreg(tl);
2389             } else
2390             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2391               if(rs1[i]){
2392                 if(s1l>=0) emit_mov(s1l,tl);
2393                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2394               }
2395               else
2396               if(rs2[i]){
2397                 if(s2l>=0) emit_mov(s2l,tl);
2398                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2399               }
2400               else emit_zeroreg(tl);
2401             } else
2402             if(opcode2[i]==0x27) { // NOR
2403               if(rs1[i]){
2404                 if(s1l>=0) emit_not(s1l,tl);
2405                 else {
2406                   emit_loadreg(rs1[i],tl);
2407                   emit_not(tl,tl);
2408                 }
2409               }
2410               else
2411               if(rs2[i]){
2412                 if(s2l>=0) emit_not(s2l,tl);
2413                 else {
2414                   emit_loadreg(rs2[i],tl);
2415                   emit_not(tl,tl);
2416                 }
2417               }
2418               else emit_movimm(-1,tl);
2419             }
2420           }
2421         }
2422       }
2423     }
2424   }
2425 }
2426
2427 void imm16_assemble(int i,struct regstat *i_regs)
2428 {
2429   if (opcode[i]==0x0f) { // LUI
2430     if(rt1[i]) {
2431       signed char t;
2432       t=get_reg(i_regs->regmap,rt1[i]);
2433       //assert(t>=0);
2434       if(t>=0) {
2435         if(!((i_regs->isconst>>t)&1))
2436           emit_movimm(imm[i]<<16,t);
2437       }
2438     }
2439   }
2440   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2441     if(rt1[i]) {
2442       signed char s,t;
2443       t=get_reg(i_regs->regmap,rt1[i]);
2444       s=get_reg(i_regs->regmap,rs1[i]);
2445       if(rs1[i]) {
2446         //assert(t>=0);
2447         //assert(s>=0);
2448         if(t>=0) {
2449           if(!((i_regs->isconst>>t)&1)) {
2450             if(s<0) {
2451               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2452               emit_addimm(t,imm[i],t);
2453             }else{
2454               if(!((i_regs->wasconst>>s)&1))
2455                 emit_addimm(s,imm[i],t);
2456               else
2457                 emit_movimm(constmap[i][s]+imm[i],t);
2458             }
2459           }
2460         }
2461       } else {
2462         if(t>=0) {
2463           if(!((i_regs->isconst>>t)&1))
2464             emit_movimm(imm[i],t);
2465         }
2466       }
2467     }
2468   }
2469   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2470     if(rt1[i]) {
2471       signed char sh,sl,th,tl;
2472       th=get_reg(i_regs->regmap,rt1[i]|64);
2473       tl=get_reg(i_regs->regmap,rt1[i]);
2474       sh=get_reg(i_regs->regmap,rs1[i]|64);
2475       sl=get_reg(i_regs->regmap,rs1[i]);
2476       if(tl>=0) {
2477         if(rs1[i]) {
2478           assert(sh>=0);
2479           assert(sl>=0);
2480           if(th>=0) {
2481             emit_addimm64_32(sh,sl,imm[i],th,tl);
2482           }
2483           else {
2484             emit_addimm(sl,imm[i],tl);
2485           }
2486         } else {
2487           emit_movimm(imm[i],tl);
2488           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2489         }
2490       }
2491     }
2492   }
2493   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2494     if(rt1[i]) {
2495       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2496       signed char sh,sl,t;
2497       t=get_reg(i_regs->regmap,rt1[i]);
2498       sh=get_reg(i_regs->regmap,rs1[i]|64);
2499       sl=get_reg(i_regs->regmap,rs1[i]);
2500       //assert(t>=0);
2501       if(t>=0) {
2502         if(rs1[i]>0) {
2503           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2504           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2505             if(opcode[i]==0x0a) { // SLTI
2506               if(sl<0) {
2507                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2508                 emit_slti32(t,imm[i],t);
2509               }else{
2510                 emit_slti32(sl,imm[i],t);
2511               }
2512             }
2513             else { // SLTIU
2514               if(sl<0) {
2515                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2516                 emit_sltiu32(t,imm[i],t);
2517               }else{
2518                 emit_sltiu32(sl,imm[i],t);
2519               }
2520             }
2521           }else{ // 64-bit
2522             assert(sl>=0);
2523             if(opcode[i]==0x0a) // SLTI
2524               emit_slti64_32(sh,sl,imm[i],t);
2525             else // SLTIU
2526               emit_sltiu64_32(sh,sl,imm[i],t);
2527           }
2528         }else{
2529           // SLTI(U) with r0 is just stupid,
2530           // nonetheless examples can be found
2531           if(opcode[i]==0x0a) // SLTI
2532             if(0<imm[i]) emit_movimm(1,t);
2533             else emit_zeroreg(t);
2534           else // SLTIU
2535           {
2536             if(imm[i]) emit_movimm(1,t);
2537             else emit_zeroreg(t);
2538           }
2539         }
2540       }
2541     }
2542   }
2543   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2544     if(rt1[i]) {
2545       signed char sh,sl,th,tl;
2546       th=get_reg(i_regs->regmap,rt1[i]|64);
2547       tl=get_reg(i_regs->regmap,rt1[i]);
2548       sh=get_reg(i_regs->regmap,rs1[i]|64);
2549       sl=get_reg(i_regs->regmap,rs1[i]);
2550       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2551         if(opcode[i]==0x0c) //ANDI
2552         {
2553           if(rs1[i]) {
2554             if(sl<0) {
2555               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2556               emit_andimm(tl,imm[i],tl);
2557             }else{
2558               if(!((i_regs->wasconst>>sl)&1))
2559                 emit_andimm(sl,imm[i],tl);
2560               else
2561                 emit_movimm(constmap[i][sl]&imm[i],tl);
2562             }
2563           }
2564           else
2565             emit_zeroreg(tl);
2566           if(th>=0) emit_zeroreg(th);
2567         }
2568         else
2569         {
2570           if(rs1[i]) {
2571             if(sl<0) {
2572               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2573             }
2574             if(th>=0) {
2575               if(sh<0) {
2576                 emit_loadreg(rs1[i]|64,th);
2577               }else{
2578                 emit_mov(sh,th);
2579               }
2580             }
2581             if(opcode[i]==0x0d) //ORI
2582             if(sl<0) {
2583               emit_orimm(tl,imm[i],tl);
2584             }else{
2585               if(!((i_regs->wasconst>>sl)&1))
2586                 emit_orimm(sl,imm[i],tl);
2587               else
2588                 emit_movimm(constmap[i][sl]|imm[i],tl);
2589             }
2590             if(opcode[i]==0x0e) //XORI
2591             if(sl<0) {
2592               emit_xorimm(tl,imm[i],tl);
2593             }else{
2594               if(!((i_regs->wasconst>>sl)&1))
2595                 emit_xorimm(sl,imm[i],tl);
2596               else
2597                 emit_movimm(constmap[i][sl]^imm[i],tl);
2598             }
2599           }
2600           else {
2601             emit_movimm(imm[i],tl);
2602             if(th>=0) emit_zeroreg(th);
2603           }
2604         }
2605       }
2606     }
2607   }
2608 }
2609
2610 void shiftimm_assemble(int i,struct regstat *i_regs)
2611 {
2612   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2613   {
2614     if(rt1[i]) {
2615       signed char s,t;
2616       t=get_reg(i_regs->regmap,rt1[i]);
2617       s=get_reg(i_regs->regmap,rs1[i]);
2618       //assert(t>=0);
2619       if(t>=0){
2620         if(rs1[i]==0)
2621         {
2622           emit_zeroreg(t);
2623         }
2624         else
2625         {
2626           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2627           if(imm[i]) {
2628             if(opcode2[i]==0) // SLL
2629             {
2630               emit_shlimm(s<0?t:s,imm[i],t);
2631             }
2632             if(opcode2[i]==2) // SRL
2633             {
2634               emit_shrimm(s<0?t:s,imm[i],t);
2635             }
2636             if(opcode2[i]==3) // SRA
2637             {
2638               emit_sarimm(s<0?t:s,imm[i],t);
2639             }
2640           }else{
2641             // Shift by zero
2642             if(s>=0 && s!=t) emit_mov(s,t);
2643           }
2644         }
2645       }
2646       //emit_storereg(rt1[i],t); //DEBUG
2647     }
2648   }
2649   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2650   {
2651     if(rt1[i]) {
2652       signed char sh,sl,th,tl;
2653       th=get_reg(i_regs->regmap,rt1[i]|64);
2654       tl=get_reg(i_regs->regmap,rt1[i]);
2655       sh=get_reg(i_regs->regmap,rs1[i]|64);
2656       sl=get_reg(i_regs->regmap,rs1[i]);
2657       if(tl>=0) {
2658         if(rs1[i]==0)
2659         {
2660           emit_zeroreg(tl);
2661           if(th>=0) emit_zeroreg(th);
2662         }
2663         else
2664         {
2665           assert(sl>=0);
2666           assert(sh>=0);
2667           if(imm[i]) {
2668             if(opcode2[i]==0x38) // DSLL
2669             {
2670               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2671               emit_shlimm(sl,imm[i],tl);
2672             }
2673             if(opcode2[i]==0x3a) // DSRL
2674             {
2675               emit_shrdimm(sl,sh,imm[i],tl);
2676               if(th>=0) emit_shrimm(sh,imm[i],th);
2677             }
2678             if(opcode2[i]==0x3b) // DSRA
2679             {
2680               emit_shrdimm(sl,sh,imm[i],tl);
2681               if(th>=0) emit_sarimm(sh,imm[i],th);
2682             }
2683           }else{
2684             // Shift by zero
2685             if(sl!=tl) emit_mov(sl,tl);
2686             if(th>=0&&sh!=th) emit_mov(sh,th);
2687           }
2688         }
2689       }
2690     }
2691   }
2692   if(opcode2[i]==0x3c) // DSLL32
2693   {
2694     if(rt1[i]) {
2695       signed char sl,tl,th;
2696       tl=get_reg(i_regs->regmap,rt1[i]);
2697       th=get_reg(i_regs->regmap,rt1[i]|64);
2698       sl=get_reg(i_regs->regmap,rs1[i]);
2699       if(th>=0||tl>=0){
2700         assert(tl>=0);
2701         assert(th>=0);
2702         assert(sl>=0);
2703         emit_mov(sl,th);
2704         emit_zeroreg(tl);
2705         if(imm[i]>32)
2706         {
2707           emit_shlimm(th,imm[i]&31,th);
2708         }
2709       }
2710     }
2711   }
2712   if(opcode2[i]==0x3e) // DSRL32
2713   {
2714     if(rt1[i]) {
2715       signed char sh,tl,th;
2716       tl=get_reg(i_regs->regmap,rt1[i]);
2717       th=get_reg(i_regs->regmap,rt1[i]|64);
2718       sh=get_reg(i_regs->regmap,rs1[i]|64);
2719       if(tl>=0){
2720         assert(sh>=0);
2721         emit_mov(sh,tl);
2722         if(th>=0) emit_zeroreg(th);
2723         if(imm[i]>32)
2724         {
2725           emit_shrimm(tl,imm[i]&31,tl);
2726         }
2727       }
2728     }
2729   }
2730   if(opcode2[i]==0x3f) // DSRA32
2731   {
2732     if(rt1[i]) {
2733       signed char sh,tl;
2734       tl=get_reg(i_regs->regmap,rt1[i]);
2735       sh=get_reg(i_regs->regmap,rs1[i]|64);
2736       if(tl>=0){
2737         assert(sh>=0);
2738         emit_mov(sh,tl);
2739         if(imm[i]>32)
2740         {
2741           emit_sarimm(tl,imm[i]&31,tl);
2742         }
2743       }
2744     }
2745   }
2746 }
2747
2748 #ifndef shift_assemble
2749 void shift_assemble(int i,struct regstat *i_regs)
2750 {
2751   printf("Need shift_assemble for this architecture.\n");
2752   exit(1);
2753 }
2754 #endif
2755
2756 void load_assemble(int i,struct regstat *i_regs)
2757 {
2758   int s,th,tl,addr,map=-1;
2759   int offset;
2760   int jaddr=0;
2761   int memtarget=0,c=0;
2762   u_int hr,reglist=0;
2763   th=get_reg(i_regs->regmap,rt1[i]|64);
2764   tl=get_reg(i_regs->regmap,rt1[i]);
2765   s=get_reg(i_regs->regmap,rs1[i]);
2766   offset=imm[i];
2767   for(hr=0;hr<HOST_REGS;hr++) {
2768     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2769   }
2770   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2771   if(s>=0) {
2772     c=(i_regs->wasconst>>s)&1;
2773     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2774     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2775   }
2776   //printf("load_assemble: c=%d\n",c);
2777   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2778   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2779 #ifdef PCSX
2780   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2781     ||rt1[i]==0) {
2782       // could be FIFO, must perform the read
2783       // ||dummy read
2784       assem_debug("(forced read)\n");
2785       tl=get_reg(i_regs->regmap,-1);
2786       assert(tl>=0);
2787   }
2788 #endif
2789   if(offset||s<0||c) addr=tl;
2790   else addr=s;
2791   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2792  if(tl>=0) {
2793   //printf("load_assemble: c=%d\n",c);
2794   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2795   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2796   reglist&=~(1<<tl);
2797   if(th>=0) reglist&=~(1<<th);
2798   if(!using_tlb) {
2799     if(!c) {
2800       #ifdef RAM_OFFSET
2801       map=get_reg(i_regs->regmap,ROREG);
2802       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2803       #endif
2804 //#define R29_HACK 1
2805       #ifdef R29_HACK
2806       // Strmnnrmn's speed hack
2807       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2808       #endif
2809       {
2810         emit_cmpimm(addr,RAM_SIZE);
2811         jaddr=(int)out;
2812         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2813         // Hint to branch predictor that the branch is unlikely to be taken
2814         if(rs1[i]>=28)
2815           emit_jno_unlikely(0);
2816         else
2817         #endif
2818         emit_jno(0);
2819       }
2820     }
2821   }else{ // using tlb
2822     int x=0;
2823     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2824     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2825     map=get_reg(i_regs->regmap,TLREG);
2826     assert(map>=0);
2827     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2828     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2829   }
2830   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2831   if (opcode[i]==0x20) { // LB
2832     if(!c||memtarget) {
2833       if(!dummy) {
2834         #ifdef HOST_IMM_ADDR32
2835         if(c)
2836           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2837         else
2838         #endif
2839         {
2840           //emit_xorimm(addr,3,tl);
2841           //gen_tlb_addr_r(tl,map);
2842           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2843           int x=0,a=tl;
2844 #ifdef BIG_ENDIAN_MIPS
2845           if(!c) emit_xorimm(addr,3,tl);
2846           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2847 #else
2848           if(!c) a=addr;
2849 #endif
2850           emit_movsbl_indexed_tlb(x,a,map,tl);
2851         }
2852       }
2853       if(jaddr)
2854         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2855     }
2856     else
2857       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2858   }
2859   if (opcode[i]==0x21) { // LH
2860     if(!c||memtarget) {
2861       if(!dummy) {
2862         #ifdef HOST_IMM_ADDR32
2863         if(c)
2864           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2865         else
2866         #endif
2867         {
2868           int x=0,a=tl;
2869 #ifdef BIG_ENDIAN_MIPS
2870           if(!c) emit_xorimm(addr,2,tl);
2871           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2872 #else
2873           if(!c) a=addr;
2874 #endif
2875           //#ifdef
2876           //emit_movswl_indexed_tlb(x,tl,map,tl);
2877           //else
2878           if(map>=0) {
2879             gen_tlb_addr_r(a,map);
2880             emit_movswl_indexed(x,a,tl);
2881           }else{
2882             #ifdef RAM_OFFSET
2883             emit_movswl_indexed(x,a,tl);
2884             #else
2885             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2886             #endif
2887           }
2888         }
2889       }
2890       if(jaddr)
2891         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2892     }
2893     else
2894       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2895   }
2896   if (opcode[i]==0x23) { // LW
2897     if(!c||memtarget) {
2898       if(!dummy) {
2899         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2900         #ifdef HOST_IMM_ADDR32
2901         if(c)
2902           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2903         else
2904         #endif
2905         emit_readword_indexed_tlb(0,addr,map,tl);
2906       }
2907       if(jaddr)
2908         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2909     }
2910     else
2911       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2912   }
2913   if (opcode[i]==0x24) { // LBU
2914     if(!c||memtarget) {
2915       if(!dummy) {
2916         #ifdef HOST_IMM_ADDR32
2917         if(c)
2918           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2919         else
2920         #endif
2921         {
2922           //emit_xorimm(addr,3,tl);
2923           //gen_tlb_addr_r(tl,map);
2924           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2925           int x=0,a=tl;
2926 #ifdef BIG_ENDIAN_MIPS
2927           if(!c) emit_xorimm(addr,3,tl);
2928           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2929 #else
2930           if(!c) a=addr;
2931 #endif
2932           emit_movzbl_indexed_tlb(x,a,map,tl);
2933         }
2934       }
2935       if(jaddr)
2936         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2937     }
2938     else
2939       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2940   }
2941   if (opcode[i]==0x25) { // LHU
2942     if(!c||memtarget) {
2943       if(!dummy) {
2944         #ifdef HOST_IMM_ADDR32
2945         if(c)
2946           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2947         else
2948         #endif
2949         {
2950           int x=0,a=tl;
2951 #ifdef BIG_ENDIAN_MIPS
2952           if(!c) emit_xorimm(addr,2,tl);
2953           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2954 #else
2955           if(!c) a=addr;
2956 #endif
2957           //#ifdef
2958           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2959           //#else
2960           if(map>=0) {
2961             gen_tlb_addr_r(a,map);
2962             emit_movzwl_indexed(x,a,tl);
2963           }else{
2964             #ifdef RAM_OFFSET
2965             emit_movzwl_indexed(x,a,tl);
2966             #else
2967             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2968             #endif
2969           }
2970         }
2971       }
2972       if(jaddr)
2973         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2974     }
2975     else
2976       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2977   }
2978   if (opcode[i]==0x27) { // LWU
2979     assert(th>=0);
2980     if(!c||memtarget) {
2981       if(!dummy) {
2982         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2983         #ifdef HOST_IMM_ADDR32
2984         if(c)
2985           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2986         else
2987         #endif
2988         emit_readword_indexed_tlb(0,addr,map,tl);
2989       }
2990       if(jaddr)
2991         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2992     }
2993     else {
2994       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2995     }
2996     emit_zeroreg(th);
2997   }
2998   if (opcode[i]==0x37) { // LD
2999     if(!c||memtarget) {
3000       if(!dummy) {
3001         //gen_tlb_addr_r(tl,map);
3002         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3003         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3004         #ifdef HOST_IMM_ADDR32
3005         if(c)
3006           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3007         else
3008         #endif
3009         emit_readdword_indexed_tlb(0,addr,map,th,tl);
3010       }
3011       if(jaddr)
3012         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3013     }
3014     else
3015       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3016   }
3017  }
3018   //emit_storereg(rt1[i],tl); // DEBUG
3019   //if(opcode[i]==0x23)
3020   //if(opcode[i]==0x24)
3021   //if(opcode[i]==0x23||opcode[i]==0x24)
3022   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3023   {
3024     //emit_pusha();
3025     save_regs(0x100f);
3026         emit_readword((int)&last_count,ECX);
3027         #ifdef __i386__
3028         if(get_reg(i_regs->regmap,CCREG)<0)
3029           emit_loadreg(CCREG,HOST_CCREG);
3030         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3031         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3032         emit_writeword(HOST_CCREG,(int)&Count);
3033         #endif
3034         #ifdef __arm__
3035         if(get_reg(i_regs->regmap,CCREG)<0)
3036           emit_loadreg(CCREG,0);
3037         else
3038           emit_mov(HOST_CCREG,0);
3039         emit_add(0,ECX,0);
3040         emit_addimm(0,2*ccadj[i],0);
3041         emit_writeword(0,(int)&Count);
3042         #endif
3043     emit_call((int)memdebug);
3044     //emit_popa();
3045     restore_regs(0x100f);
3046   }/**/
3047 }
3048
3049 #ifndef loadlr_assemble
3050 void loadlr_assemble(int i,struct regstat *i_regs)
3051 {
3052   printf("Need loadlr_assemble for this architecture.\n");
3053   exit(1);
3054 }
3055 #endif
3056
3057 void store_assemble(int i,struct regstat *i_regs)
3058 {
3059   int s,th,tl,map=-1;
3060   int addr,temp;
3061   int offset;
3062   int jaddr=0,jaddr2,type;
3063   int memtarget=0,c=0;
3064   int agr=AGEN1+(i&1);
3065   u_int hr,reglist=0;
3066   th=get_reg(i_regs->regmap,rs2[i]|64);
3067   tl=get_reg(i_regs->regmap,rs2[i]);
3068   s=get_reg(i_regs->regmap,rs1[i]);
3069   temp=get_reg(i_regs->regmap,agr);
3070   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3071   offset=imm[i];
3072   if(s>=0) {
3073     c=(i_regs->wasconst>>s)&1;
3074     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3075     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3076   }
3077   assert(tl>=0);
3078   assert(temp>=0);
3079   for(hr=0;hr<HOST_REGS;hr++) {
3080     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3081   }
3082   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3083   if(offset||s<0||c) addr=temp;
3084   else addr=s;
3085   if(!using_tlb) {
3086     if(!c) {
3087       #ifdef R29_HACK
3088       // Strmnnrmn's speed hack
3089       memtarget=1;
3090       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3091       #endif
3092       emit_cmpimm(addr,RAM_SIZE);
3093       #ifdef DESTRUCTIVE_SHIFT
3094       if(s==addr) emit_mov(s,temp);
3095       #endif
3096       #ifdef R29_HACK
3097       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3098       #endif
3099       {
3100         jaddr=(int)out;
3101         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3102         // Hint to branch predictor that the branch is unlikely to be taken
3103         if(rs1[i]>=28)
3104           emit_jno_unlikely(0);
3105         else
3106         #endif
3107         emit_jno(0);
3108       }
3109     }
3110   }else{ // using tlb
3111     int x=0;
3112     if (opcode[i]==0x28) x=3; // SB
3113     if (opcode[i]==0x29) x=2; // SH
3114     map=get_reg(i_regs->regmap,TLREG);
3115     assert(map>=0);
3116     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3117     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3118   }
3119
3120   if (opcode[i]==0x28) { // SB
3121     if(!c||memtarget) {
3122       int x=0;
3123 #ifdef BIG_ENDIAN_MIPS
3124       if(!c) emit_xorimm(addr,3,temp);
3125       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3126 #else
3127       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3128       else if (addr!=temp) emit_mov(addr,temp);
3129 #endif
3130       //gen_tlb_addr_w(temp,map);
3131       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3132       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3133     }
3134     type=STOREB_STUB;
3135   }
3136   if (opcode[i]==0x29) { // SH
3137     if(!c||memtarget) {
3138       int x=0;
3139 #ifdef BIG_ENDIAN_MIPS
3140       if(!c) emit_xorimm(addr,2,temp);
3141       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3142 #else
3143       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3144       else if (addr!=temp) emit_mov(addr,temp);
3145 #endif
3146       //#ifdef
3147       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3148       //#else
3149       if(map>=0) {
3150         gen_tlb_addr_w(temp,map);
3151         emit_writehword_indexed(tl,x,temp);
3152       }else
3153         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3154     }
3155     type=STOREH_STUB;
3156   }
3157   if (opcode[i]==0x2B) { // SW
3158     if(!c||memtarget)
3159       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3160       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3161     type=STOREW_STUB;
3162   }
3163   if (opcode[i]==0x3F) { // SD
3164     if(!c||memtarget) {
3165       if(rs2[i]) {
3166         assert(th>=0);
3167         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3168         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3169         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3170       }else{
3171         // Store zero
3172         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3173         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3174         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3175       }
3176     }
3177     type=STORED_STUB;
3178   }
3179   if(!using_tlb&&(!c||memtarget))
3180     // addr could be a temp, make sure it survives STORE*_STUB
3181     reglist|=1<<addr;
3182   if(jaddr) {
3183     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3184   } else if(!memtarget) {
3185     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3186   }
3187   if(!using_tlb) {
3188     if(!c||memtarget) {
3189       #ifdef DESTRUCTIVE_SHIFT
3190       // The x86 shift operation is 'destructive'; it overwrites the
3191       // source register, so we need to make a copy first and use that.
3192       addr=temp;
3193       #endif
3194       #if defined(HOST_IMM8)
3195       int ir=get_reg(i_regs->regmap,INVCP);
3196       assert(ir>=0);
3197       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3198       #else
3199       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3200       #endif
3201       jaddr2=(int)out;
3202       emit_jne(0);
3203       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3204     }
3205   }
3206   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3207   //if(opcode[i]==0x2B || opcode[i]==0x28)
3208   //if(opcode[i]==0x2B || opcode[i]==0x29)
3209   //if(opcode[i]==0x2B)
3210   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3211   {
3212     //emit_pusha();
3213     save_regs(0x100f);
3214         emit_readword((int)&last_count,ECX);
3215         #ifdef __i386__
3216         if(get_reg(i_regs->regmap,CCREG)<0)
3217           emit_loadreg(CCREG,HOST_CCREG);
3218         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3219         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3220         emit_writeword(HOST_CCREG,(int)&Count);
3221         #endif
3222         #ifdef __arm__
3223         if(get_reg(i_regs->regmap,CCREG)<0)
3224           emit_loadreg(CCREG,0);
3225         else
3226           emit_mov(HOST_CCREG,0);
3227         emit_add(0,ECX,0);
3228         emit_addimm(0,2*ccadj[i],0);
3229         emit_writeword(0,(int)&Count);
3230         #endif
3231     emit_call((int)memdebug);
3232     //emit_popa();
3233     restore_regs(0x100f);
3234   }/**/
3235 }
3236
3237 void storelr_assemble(int i,struct regstat *i_regs)
3238 {
3239   int s,th,tl;
3240   int temp;
3241   int temp2;
3242   int offset;
3243   int jaddr=0,jaddr2;
3244   int case1,case2,case3;
3245   int done0,done1,done2;
3246   int memtarget,c=0;
3247   int agr=AGEN1+(i&1);
3248   u_int hr,reglist=0;
3249   th=get_reg(i_regs->regmap,rs2[i]|64);
3250   tl=get_reg(i_regs->regmap,rs2[i]);
3251   s=get_reg(i_regs->regmap,rs1[i]);
3252   temp=get_reg(i_regs->regmap,agr);
3253   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3254   offset=imm[i];
3255   if(s>=0) {
3256     c=(i_regs->isconst>>s)&1;
3257     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3258     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3259   }
3260   assert(tl>=0);
3261   for(hr=0;hr<HOST_REGS;hr++) {
3262     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3263   }
3264   assert(temp>=0);
3265   if(!using_tlb) {
3266     if(!c) {
3267       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3268       if(!offset&&s!=temp) emit_mov(s,temp);
3269       jaddr=(int)out;
3270       emit_jno(0);
3271     }
3272     else
3273     {
3274       if(!memtarget||!rs1[i]) {
3275         jaddr=(int)out;
3276         emit_jmp(0);
3277       }
3278     }
3279     #ifdef RAM_OFFSET
3280     int map=get_reg(i_regs->regmap,ROREG);
3281     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3282     gen_tlb_addr_w(temp,map);
3283     #else
3284     if((u_int)rdram!=0x80000000) 
3285       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3286     #endif
3287   }else{ // using tlb
3288     int map=get_reg(i_regs->regmap,TLREG);
3289     assert(map>=0);
3290     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3291     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3292     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3293     if(!jaddr&&!memtarget) {
3294       jaddr=(int)out;
3295       emit_jmp(0);
3296     }
3297     gen_tlb_addr_w(temp,map);
3298   }
3299
3300   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3301     temp2=get_reg(i_regs->regmap,FTEMP);
3302     if(!rs2[i]) temp2=th=tl;
3303   }
3304
3305 #ifndef BIG_ENDIAN_MIPS
3306     emit_xorimm(temp,3,temp);
3307 #endif
3308   emit_testimm(temp,2);
3309   case2=(int)out;
3310   emit_jne(0);
3311   emit_testimm(temp,1);
3312   case1=(int)out;
3313   emit_jne(0);
3314   // 0
3315   if (opcode[i]==0x2A) { // SWL
3316     emit_writeword_indexed(tl,0,temp);
3317   }
3318   if (opcode[i]==0x2E) { // SWR
3319     emit_writebyte_indexed(tl,3,temp);
3320   }
3321   if (opcode[i]==0x2C) { // SDL
3322     emit_writeword_indexed(th,0,temp);
3323     if(rs2[i]) emit_mov(tl,temp2);
3324   }
3325   if (opcode[i]==0x2D) { // SDR
3326     emit_writebyte_indexed(tl,3,temp);
3327     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3328   }
3329   done0=(int)out;
3330   emit_jmp(0);
3331   // 1
3332   set_jump_target(case1,(int)out);
3333   if (opcode[i]==0x2A) { // SWL
3334     // Write 3 msb into three least significant bytes
3335     if(rs2[i]) emit_rorimm(tl,8,tl);
3336     emit_writehword_indexed(tl,-1,temp);
3337     if(rs2[i]) emit_rorimm(tl,16,tl);
3338     emit_writebyte_indexed(tl,1,temp);
3339     if(rs2[i]) emit_rorimm(tl,8,tl);
3340   }
3341   if (opcode[i]==0x2E) { // SWR
3342     // Write two lsb into two most significant bytes
3343     emit_writehword_indexed(tl,1,temp);
3344   }
3345   if (opcode[i]==0x2C) { // SDL
3346     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3347     // Write 3 msb into three least significant bytes
3348     if(rs2[i]) emit_rorimm(th,8,th);
3349     emit_writehword_indexed(th,-1,temp);
3350     if(rs2[i]) emit_rorimm(th,16,th);
3351     emit_writebyte_indexed(th,1,temp);
3352     if(rs2[i]) emit_rorimm(th,8,th);
3353   }
3354   if (opcode[i]==0x2D) { // SDR
3355     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3356     // Write two lsb into two most significant bytes
3357     emit_writehword_indexed(tl,1,temp);
3358   }
3359   done1=(int)out;
3360   emit_jmp(0);
3361   // 2
3362   set_jump_target(case2,(int)out);
3363   emit_testimm(temp,1);
3364   case3=(int)out;
3365   emit_jne(0);
3366   if (opcode[i]==0x2A) { // SWL
3367     // Write two msb into two least significant bytes
3368     if(rs2[i]) emit_rorimm(tl,16,tl);
3369     emit_writehword_indexed(tl,-2,temp);
3370     if(rs2[i]) emit_rorimm(tl,16,tl);
3371   }
3372   if (opcode[i]==0x2E) { // SWR
3373     // Write 3 lsb into three most significant bytes
3374     emit_writebyte_indexed(tl,-1,temp);
3375     if(rs2[i]) emit_rorimm(tl,8,tl);
3376     emit_writehword_indexed(tl,0,temp);
3377     if(rs2[i]) emit_rorimm(tl,24,tl);
3378   }
3379   if (opcode[i]==0x2C) { // SDL
3380     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3381     // Write two msb into two least significant bytes
3382     if(rs2[i]) emit_rorimm(th,16,th);
3383     emit_writehword_indexed(th,-2,temp);
3384     if(rs2[i]) emit_rorimm(th,16,th);
3385   }
3386   if (opcode[i]==0x2D) { // SDR
3387     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3388     // Write 3 lsb into three most significant bytes
3389     emit_writebyte_indexed(tl,-1,temp);
3390     if(rs2[i]) emit_rorimm(tl,8,tl);
3391     emit_writehword_indexed(tl,0,temp);
3392     if(rs2[i]) emit_rorimm(tl,24,tl);
3393   }
3394   done2=(int)out;
3395   emit_jmp(0);
3396   // 3
3397   set_jump_target(case3,(int)out);
3398   if (opcode[i]==0x2A) { // SWL
3399     // Write msb into least significant byte
3400     if(rs2[i]) emit_rorimm(tl,24,tl);
3401     emit_writebyte_indexed(tl,-3,temp);
3402     if(rs2[i]) emit_rorimm(tl,8,tl);
3403   }
3404   if (opcode[i]==0x2E) { // SWR
3405     // Write entire word
3406     emit_writeword_indexed(tl,-3,temp);
3407   }
3408   if (opcode[i]==0x2C) { // SDL
3409     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3410     // Write msb into least significant byte
3411     if(rs2[i]) emit_rorimm(th,24,th);
3412     emit_writebyte_indexed(th,-3,temp);
3413     if(rs2[i]) emit_rorimm(th,8,th);
3414   }
3415   if (opcode[i]==0x2D) { // SDR
3416     if(rs2[i]) emit_mov(th,temp2);
3417     // Write entire word
3418     emit_writeword_indexed(tl,-3,temp);
3419   }
3420   set_jump_target(done0,(int)out);
3421   set_jump_target(done1,(int)out);
3422   set_jump_target(done2,(int)out);
3423   if (opcode[i]==0x2C) { // SDL
3424     emit_testimm(temp,4);
3425     done0=(int)out;
3426     emit_jne(0);
3427     emit_andimm(temp,~3,temp);
3428     emit_writeword_indexed(temp2,4,temp);
3429     set_jump_target(done0,(int)out);
3430   }
3431   if (opcode[i]==0x2D) { // SDR
3432     emit_testimm(temp,4);
3433     done0=(int)out;
3434     emit_jeq(0);
3435     emit_andimm(temp,~3,temp);
3436     emit_writeword_indexed(temp2,-4,temp);
3437     set_jump_target(done0,(int)out);
3438   }
3439   if(!c||!memtarget)
3440     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3441   if(!using_tlb) {
3442     #ifdef RAM_OFFSET
3443     int map=get_reg(i_regs->regmap,ROREG);
3444     if(map<0) map=HOST_TEMPREG;
3445     gen_orig_addr_w(temp,map);
3446     #else
3447     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3448     #endif
3449     #if defined(HOST_IMM8)
3450     int ir=get_reg(i_regs->regmap,INVCP);
3451     assert(ir>=0);
3452     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3453     #else
3454     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3455     #endif
3456     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3457     emit_callne(invalidate_addr_reg[temp]);
3458     #else
3459     jaddr2=(int)out;
3460     emit_jne(0);
3461     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3462     #endif
3463   }
3464   /*
3465     emit_pusha();
3466     //save_regs(0x100f);
3467         emit_readword((int)&last_count,ECX);
3468         if(get_reg(i_regs->regmap,CCREG)<0)
3469           emit_loadreg(CCREG,HOST_CCREG);
3470         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3471         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3472         emit_writeword(HOST_CCREG,(int)&Count);
3473     emit_call((int)memdebug);
3474     emit_popa();
3475     //restore_regs(0x100f);
3476   /**/
3477 }
3478
3479 void c1ls_assemble(int i,struct regstat *i_regs)
3480 {
3481 #ifndef DISABLE_COP1
3482   int s,th,tl;
3483   int temp,ar;
3484   int map=-1;
3485   int offset;
3486   int c=0;
3487   int jaddr,jaddr2=0,jaddr3,type;
3488   int agr=AGEN1+(i&1);
3489   u_int hr,reglist=0;
3490   th=get_reg(i_regs->regmap,FTEMP|64);
3491   tl=get_reg(i_regs->regmap,FTEMP);
3492   s=get_reg(i_regs->regmap,rs1[i]);
3493   temp=get_reg(i_regs->regmap,agr);
3494   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3495   offset=imm[i];
3496   assert(tl>=0);
3497   assert(rs1[i]>0);
3498   assert(temp>=0);
3499   for(hr=0;hr<HOST_REGS;hr++) {
3500     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3501   }
3502   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3503   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3504   {
3505     // Loads use a temporary register which we need to save
3506     reglist|=1<<temp;
3507   }
3508   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3509     ar=temp;
3510   else // LWC1/LDC1
3511     ar=tl;
3512   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3513   //else c=(i_regs->wasconst>>s)&1;
3514   if(s>=0) c=(i_regs->wasconst>>s)&1;
3515   // Check cop1 unusable
3516   if(!cop1_usable) {
3517     signed char rs=get_reg(i_regs->regmap,CSREG);
3518     assert(rs>=0);
3519     emit_testimm(rs,0x20000000);
3520     jaddr=(int)out;
3521     emit_jeq(0);
3522     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3523     cop1_usable=1;
3524   }
3525   if (opcode[i]==0x39) { // SWC1 (get float address)
3526     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3527   }
3528   if (opcode[i]==0x3D) { // SDC1 (get double address)
3529     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3530   }
3531   // Generate address + offset
3532   if(!using_tlb) {
3533     if(!c)
3534       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3535   }
3536   else
3537   {
3538     map=get_reg(i_regs->regmap,TLREG);
3539     assert(map>=0);
3540     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3541       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3542     }
3543     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3544       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3545     }
3546   }
3547   if (opcode[i]==0x39) { // SWC1 (read float)
3548     emit_readword_indexed(0,tl,tl);
3549   }
3550   if (opcode[i]==0x3D) { // SDC1 (read double)
3551     emit_readword_indexed(4,tl,th);
3552     emit_readword_indexed(0,tl,tl);
3553   }
3554   if (opcode[i]==0x31) { // LWC1 (get target address)
3555     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3556   }
3557   if (opcode[i]==0x35) { // LDC1 (get target address)
3558     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3559   }
3560   if(!using_tlb) {
3561     if(!c) {
3562       jaddr2=(int)out;
3563       emit_jno(0);
3564     }
3565     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3566       jaddr2=(int)out;
3567       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3568     }
3569     #ifdef DESTRUCTIVE_SHIFT
3570     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3571       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3572     }
3573     #endif
3574   }else{
3575     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3576       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3577     }
3578     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3579       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3580     }
3581   }
3582   if (opcode[i]==0x31) { // LWC1
3583     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3584     //gen_tlb_addr_r(ar,map);
3585     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3586     #ifdef HOST_IMM_ADDR32
3587     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3588     else
3589     #endif
3590     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3591     type=LOADW_STUB;
3592   }
3593   if (opcode[i]==0x35) { // LDC1
3594     assert(th>=0);
3595     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3596     //gen_tlb_addr_r(ar,map);
3597     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3598     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3599     #ifdef HOST_IMM_ADDR32
3600     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3601     else
3602     #endif
3603     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3604     type=LOADD_STUB;
3605   }
3606   if (opcode[i]==0x39) { // SWC1
3607     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3608     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3609     type=STOREW_STUB;
3610   }
3611   if (opcode[i]==0x3D) { // SDC1
3612     assert(th>=0);
3613     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3614     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3615     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3616     type=STORED_STUB;
3617   }
3618   if(!using_tlb) {
3619     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3620       #ifndef DESTRUCTIVE_SHIFT
3621       temp=offset||c||s<0?ar:s;
3622       #endif
3623       #if defined(HOST_IMM8)
3624       int ir=get_reg(i_regs->regmap,INVCP);
3625       assert(ir>=0);
3626       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3627       #else
3628       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3629       #endif
3630       jaddr3=(int)out;
3631       emit_jne(0);
3632       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3633     }
3634   }
3635   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3636   if (opcode[i]==0x31) { // LWC1 (write float)
3637     emit_writeword_indexed(tl,0,temp);
3638   }
3639   if (opcode[i]==0x35) { // LDC1 (write double)
3640     emit_writeword_indexed(th,4,temp);
3641     emit_writeword_indexed(tl,0,temp);
3642   }
3643   //if(opcode[i]==0x39)
3644   /*if(opcode[i]==0x39||opcode[i]==0x31)
3645   {
3646     emit_pusha();
3647         emit_readword((int)&last_count,ECX);
3648         if(get_reg(i_regs->regmap,CCREG)<0)
3649           emit_loadreg(CCREG,HOST_CCREG);
3650         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3651         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3652         emit_writeword(HOST_CCREG,(int)&Count);
3653     emit_call((int)memdebug);
3654     emit_popa();
3655   }/**/
3656 #else
3657   cop1_unusable(i, i_regs);
3658 #endif
3659 }
3660
3661 void c2ls_assemble(int i,struct regstat *i_regs)
3662 {
3663   int s,tl;
3664   int ar;
3665   int offset;
3666   int memtarget=0,c=0;
3667   int jaddr,jaddr2=0,jaddr3,type;
3668   int agr=AGEN1+(i&1);
3669   u_int hr,reglist=0;
3670   u_int copr=(source[i]>>16)&0x1f;
3671   s=get_reg(i_regs->regmap,rs1[i]);
3672   tl=get_reg(i_regs->regmap,FTEMP);
3673   offset=imm[i];
3674   assert(rs1[i]>0);
3675   assert(tl>=0);
3676   assert(!using_tlb);
3677
3678   for(hr=0;hr<HOST_REGS;hr++) {
3679     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3680   }
3681   if(i_regs->regmap[HOST_CCREG]==CCREG)
3682     reglist&=~(1<<HOST_CCREG);
3683
3684   // get the address
3685   if (opcode[i]==0x3a) { // SWC2
3686     ar=get_reg(i_regs->regmap,agr);
3687     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3688     reglist|=1<<ar;
3689   } else { // LWC2
3690     ar=tl;
3691   }
3692   if(s>=0) c=(i_regs->wasconst>>s)&1;
3693   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3694   if (!offset&&!c&&s>=0) ar=s;
3695   assert(ar>=0);
3696
3697   if (opcode[i]==0x3a) { // SWC2
3698     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3699     type=STOREW_STUB;
3700   }
3701   else
3702     type=LOADW_STUB;
3703
3704   if(c&&!memtarget) {
3705     jaddr2=(int)out;
3706     emit_jmp(0); // inline_readstub/inline_writestub?
3707   }
3708   else {
3709     if(!c) {
3710       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3711       jaddr2=(int)out;
3712       emit_jno(0);
3713     }
3714     if (opcode[i]==0x32) { // LWC2
3715       #ifdef HOST_IMM_ADDR32
3716       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3717       else
3718       #endif
3719       emit_readword_indexed(0,ar,tl);
3720     }
3721     if (opcode[i]==0x3a) { // SWC2
3722       #ifdef DESTRUCTIVE_SHIFT
3723       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3724       #endif
3725       emit_writeword_indexed(tl,0,ar);
3726     }
3727   }
3728   if(jaddr2)
3729     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3730   if (opcode[i]==0x3a) { // SWC2
3731 #if defined(HOST_IMM8)
3732     int ir=get_reg(i_regs->regmap,INVCP);
3733     assert(ir>=0);
3734     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3735 #else
3736     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3737 #endif
3738     jaddr3=(int)out;
3739     emit_jne(0);
3740     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3741   }
3742   if (opcode[i]==0x32) { // LWC2
3743     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3744   }
3745 }
3746
3747 #ifndef multdiv_assemble
3748 void multdiv_assemble(int i,struct regstat *i_regs)
3749 {
3750   printf("Need multdiv_assemble for this architecture.\n");
3751   exit(1);
3752 }
3753 #endif
3754
3755 void mov_assemble(int i,struct regstat *i_regs)
3756 {
3757   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3758   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3759   if(rt1[i]) {
3760     signed char sh,sl,th,tl;
3761     th=get_reg(i_regs->regmap,rt1[i]|64);
3762     tl=get_reg(i_regs->regmap,rt1[i]);
3763     //assert(tl>=0);
3764     if(tl>=0) {
3765       sh=get_reg(i_regs->regmap,rs1[i]|64);
3766       sl=get_reg(i_regs->regmap,rs1[i]);
3767       if(sl>=0) emit_mov(sl,tl);
3768       else emit_loadreg(rs1[i],tl);
3769       if(th>=0) {
3770         if(sh>=0) emit_mov(sh,th);
3771         else emit_loadreg(rs1[i]|64,th);
3772       }
3773     }
3774   }
3775 }
3776
3777 #ifndef fconv_assemble
3778 void fconv_assemble(int i,struct regstat *i_regs)
3779 {
3780   printf("Need fconv_assemble for this architecture.\n");
3781   exit(1);
3782 }
3783 #endif
3784
3785 #if 0
3786 void float_assemble(int i,struct regstat *i_regs)
3787 {
3788   printf("Need float_assemble for this architecture.\n");
3789   exit(1);
3790 }
3791 #endif
3792
3793 void syscall_assemble(int i,struct regstat *i_regs)
3794 {
3795   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3796   assert(ccreg==HOST_CCREG);
3797   assert(!is_delayslot);
3798   emit_movimm(start+i*4,EAX); // Get PC
3799   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3800   emit_jmp((int)jump_syscall_hle); // XXX
3801 }
3802
3803 void hlecall_assemble(int i,struct regstat *i_regs)
3804 {
3805   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3806   assert(ccreg==HOST_CCREG);
3807   assert(!is_delayslot);
3808   emit_movimm(start+i*4+4,0); // Get PC
3809   emit_movimm((int)psxHLEt[source[i]&7],1);
3810   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3811   emit_jmp((int)jump_hlecall);
3812 }
3813
3814 void intcall_assemble(int i,struct regstat *i_regs)
3815 {
3816   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3817   assert(ccreg==HOST_CCREG);
3818   assert(!is_delayslot);
3819   emit_movimm(start+i*4,0); // Get PC
3820   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3821   emit_jmp((int)jump_intcall);
3822 }
3823
3824 void ds_assemble(int i,struct regstat *i_regs)
3825 {
3826   is_delayslot=1;
3827   switch(itype[i]) {
3828     case ALU:
3829       alu_assemble(i,i_regs);break;
3830     case IMM16:
3831       imm16_assemble(i,i_regs);break;
3832     case SHIFT:
3833       shift_assemble(i,i_regs);break;
3834     case SHIFTIMM:
3835       shiftimm_assemble(i,i_regs);break;
3836     case LOAD:
3837       load_assemble(i,i_regs);break;
3838     case LOADLR:
3839       loadlr_assemble(i,i_regs);break;
3840     case STORE:
3841       store_assemble(i,i_regs);break;
3842     case STORELR:
3843       storelr_assemble(i,i_regs);break;
3844     case COP0:
3845       cop0_assemble(i,i_regs);break;
3846     case COP1:
3847       cop1_assemble(i,i_regs);break;
3848     case C1LS:
3849       c1ls_assemble(i,i_regs);break;
3850     case COP2:
3851       cop2_assemble(i,i_regs);break;
3852     case C2LS:
3853       c2ls_assemble(i,i_regs);break;
3854     case C2OP:
3855       c2op_assemble(i,i_regs);break;
3856     case FCONV:
3857       fconv_assemble(i,i_regs);break;
3858     case FLOAT:
3859       float_assemble(i,i_regs);break;
3860     case FCOMP:
3861       fcomp_assemble(i,i_regs);break;
3862     case MULTDIV:
3863       multdiv_assemble(i,i_regs);break;
3864     case MOV:
3865       mov_assemble(i,i_regs);break;
3866     case SYSCALL:
3867     case HLECALL:
3868     case INTCALL:
3869     case SPAN:
3870     case UJUMP:
3871     case RJUMP:
3872     case CJUMP:
3873     case SJUMP:
3874     case FJUMP:
3875       printf("Jump in the delay slot.  This is probably a bug.\n");
3876   }
3877   is_delayslot=0;
3878 }
3879
3880 // Is the branch target a valid internal jump?
3881 int internal_branch(uint64_t i_is32,int addr)
3882 {
3883   if(addr&1) return 0; // Indirect (register) jump
3884   if(addr>=start && addr<start+slen*4-4)
3885   {
3886     int t=(addr-start)>>2;
3887     // Delay slots are not valid branch targets
3888     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3889     // 64 -> 32 bit transition requires a recompile
3890     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3891     {
3892       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3893       else printf("optimizable: yes\n");
3894     }*/
3895     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3896 #ifndef FORCE32
3897     if(requires_32bit[t]&~i_is32) return 0;
3898     else
3899 #endif
3900       return 1;
3901   }
3902   return 0;
3903 }
3904
3905 #ifndef wb_invalidate
3906 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3907   uint64_t u,uint64_t uu)
3908 {
3909   int hr;
3910   for(hr=0;hr<HOST_REGS;hr++) {
3911     if(hr!=EXCLUDE_REG) {
3912       if(pre[hr]!=entry[hr]) {
3913         if(pre[hr]>=0) {
3914           if((dirty>>hr)&1) {
3915             if(get_reg(entry,pre[hr])<0) {
3916               if(pre[hr]<64) {
3917                 if(!((u>>pre[hr])&1)) {
3918                   emit_storereg(pre[hr],hr);
3919                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3920                     emit_sarimm(hr,31,hr);
3921                     emit_storereg(pre[hr]|64,hr);
3922                   }
3923                 }
3924               }else{
3925                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3926                   emit_storereg(pre[hr],hr);
3927                 }
3928               }
3929             }
3930           }
3931         }
3932       }
3933     }
3934   }
3935   // Move from one register to another (no writeback)
3936   for(hr=0;hr<HOST_REGS;hr++) {
3937     if(hr!=EXCLUDE_REG) {
3938       if(pre[hr]!=entry[hr]) {
3939         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3940           int nr;
3941           if((nr=get_reg(entry,pre[hr]))>=0) {
3942             emit_mov(hr,nr);
3943           }
3944         }
3945       }
3946     }
3947   }
3948 }
3949 #endif
3950
3951 // Load the specified registers
3952 // This only loads the registers given as arguments because
3953 // we don't want to load things that will be overwritten
3954 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3955 {
3956   int hr;
3957   // Load 32-bit regs
3958   for(hr=0;hr<HOST_REGS;hr++) {
3959     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3960       if(entry[hr]!=regmap[hr]) {
3961         if(regmap[hr]==rs1||regmap[hr]==rs2)
3962         {
3963           if(regmap[hr]==0) {
3964             emit_zeroreg(hr);
3965           }
3966           else
3967           {
3968             emit_loadreg(regmap[hr],hr);
3969           }
3970         }
3971       }
3972     }
3973   }
3974   //Load 64-bit regs
3975   for(hr=0;hr<HOST_REGS;hr++) {
3976     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3977       if(entry[hr]!=regmap[hr]) {
3978         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3979         {
3980           assert(regmap[hr]!=64);
3981           if((is32>>(regmap[hr]&63))&1) {
3982             int lr=get_reg(regmap,regmap[hr]-64);
3983             if(lr>=0)
3984               emit_sarimm(lr,31,hr);
3985             else
3986               emit_loadreg(regmap[hr],hr);
3987           }
3988           else
3989           {
3990             emit_loadreg(regmap[hr],hr);
3991           }
3992         }
3993       }
3994     }
3995   }
3996 }
3997
3998 // Load registers prior to the start of a loop
3999 // so that they are not loaded within the loop
4000 static void loop_preload(signed char pre[],signed char entry[])
4001 {
4002   int hr;
4003   for(hr=0;hr<HOST_REGS;hr++) {
4004     if(hr!=EXCLUDE_REG) {
4005       if(pre[hr]!=entry[hr]) {
4006         if(entry[hr]>=0) {
4007           if(get_reg(pre,entry[hr])<0) {
4008             assem_debug("loop preload:\n");
4009             //printf("loop preload: %d\n",hr);
4010             if(entry[hr]==0) {
4011               emit_zeroreg(hr);
4012             }
4013             else if(entry[hr]<TEMPREG)
4014             {
4015               emit_loadreg(entry[hr],hr);
4016             }
4017             else if(entry[hr]-64<TEMPREG)
4018             {
4019               emit_loadreg(entry[hr],hr);
4020             }
4021           }
4022         }
4023       }
4024     }
4025   }
4026 }
4027
4028 // Generate address for load/store instruction
4029 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4030 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4031 {
4032   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4033     int ra;
4034     int agr=AGEN1+(i&1);
4035     int mgr=MGEN1+(i&1);
4036     if(itype[i]==LOAD) {
4037       ra=get_reg(i_regs->regmap,rt1[i]);
4038       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4039       assert(ra>=0);
4040     }
4041     if(itype[i]==LOADLR) {
4042       ra=get_reg(i_regs->regmap,FTEMP);
4043     }
4044     if(itype[i]==STORE||itype[i]==STORELR) {
4045       ra=get_reg(i_regs->regmap,agr);
4046       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4047     }
4048     if(itype[i]==C1LS||itype[i]==C2LS) {
4049       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4050         ra=get_reg(i_regs->regmap,FTEMP);
4051       else { // SWC1/SDC1/SWC2/SDC2
4052         ra=get_reg(i_regs->regmap,agr);
4053         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4054       }
4055     }
4056     int rs=get_reg(i_regs->regmap,rs1[i]);
4057     int rm=get_reg(i_regs->regmap,TLREG);
4058     if(ra>=0) {
4059       int offset=imm[i];
4060       int c=(i_regs->wasconst>>rs)&1;
4061       if(rs1[i]==0) {
4062         // Using r0 as a base address
4063         /*if(rm>=0) {
4064           if(!entry||entry[rm]!=mgr) {
4065             generate_map_const(offset,rm);
4066           } // else did it in the previous cycle
4067         }*/
4068         if(!entry||entry[ra]!=agr) {
4069           if (opcode[i]==0x22||opcode[i]==0x26) {
4070             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4071           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4072             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4073           }else{
4074             emit_movimm(offset,ra);
4075           }
4076         } // else did it in the previous cycle
4077       }
4078       else if(rs<0) {
4079         if(!entry||entry[ra]!=rs1[i])
4080           emit_loadreg(rs1[i],ra);
4081         //if(!entry||entry[ra]!=rs1[i])
4082         //  printf("poor load scheduling!\n");
4083       }
4084       else if(c) {
4085         if(rm>=0) {
4086           if(!entry||entry[rm]!=mgr) {
4087             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4088               // Stores to memory go thru the mapper to detect self-modifying
4089               // code, loads don't.
4090               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4091                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4092                 generate_map_const(constmap[i][rs]+offset,rm);
4093             }else{
4094               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4095                 generate_map_const(constmap[i][rs]+offset,rm);
4096             }
4097           }
4098         }
4099         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4100           if(!entry||entry[ra]!=agr) {
4101             if (opcode[i]==0x22||opcode[i]==0x26) {
4102               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4103             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4104               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4105             }else{
4106               #ifdef HOST_IMM_ADDR32
4107               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4108                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4109               #endif
4110               emit_movimm(constmap[i][rs]+offset,ra);
4111             }
4112           } // else did it in the previous cycle
4113         } // else load_consts already did it
4114       }
4115       if(offset&&!c&&rs1[i]) {
4116         if(rs>=0) {
4117           emit_addimm(rs,offset,ra);
4118         }else{
4119           emit_addimm(ra,offset,ra);
4120         }
4121       }
4122     }
4123   }
4124   // Preload constants for next instruction
4125   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4126     int agr,ra;
4127     #ifndef HOST_IMM_ADDR32
4128     // Mapper entry
4129     agr=MGEN1+((i+1)&1);
4130     ra=get_reg(i_regs->regmap,agr);
4131     if(ra>=0) {
4132       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4133       int offset=imm[i+1];
4134       int c=(regs[i+1].wasconst>>rs)&1;
4135       if(c) {
4136         if(itype[i+1]==STORE||itype[i+1]==STORELR
4137            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4138           // Stores to memory go thru the mapper to detect self-modifying
4139           // code, loads don't.
4140           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4141              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4142             generate_map_const(constmap[i+1][rs]+offset,ra);
4143         }else{
4144           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4145             generate_map_const(constmap[i+1][rs]+offset,ra);
4146         }
4147       }
4148       /*else if(rs1[i]==0) {
4149         generate_map_const(offset,ra);
4150       }*/
4151     }
4152     #endif
4153     // Actual address
4154     agr=AGEN1+((i+1)&1);
4155     ra=get_reg(i_regs->regmap,agr);
4156     if(ra>=0) {
4157       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4158       int offset=imm[i+1];
4159       int c=(regs[i+1].wasconst>>rs)&1;
4160       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4161         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4162           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4163         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4164           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4165         }else{
4166           #ifdef HOST_IMM_ADDR32
4167           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4168              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4169           #endif
4170           emit_movimm(constmap[i+1][rs]+offset,ra);
4171         }
4172       }
4173       else if(rs1[i+1]==0) {
4174         // Using r0 as a base address
4175         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4176           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4177         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4178           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4179         }else{
4180           emit_movimm(offset,ra);
4181         }
4182       }
4183     }
4184   }
4185 }
4186
4187 int get_final_value(int hr, int i, int *value)
4188 {
4189   int reg=regs[i].regmap[hr];
4190   while(i<slen-1) {
4191     if(regs[i+1].regmap[hr]!=reg) break;
4192     if(!((regs[i+1].isconst>>hr)&1)) break;
4193     if(bt[i+1]) break;
4194     i++;
4195   }
4196   if(i<slen-1) {
4197     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4198       *value=constmap[i][hr];
4199       return 1;
4200     }
4201     if(!bt[i+1]) {
4202       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4203         // Load in delay slot, out-of-order execution
4204         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4205         {
4206           #ifdef HOST_IMM_ADDR32
4207           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4208           #endif
4209           // Precompute load address
4210           *value=constmap[i][hr]+imm[i+2];
4211           return 1;
4212         }
4213       }
4214       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4215       {
4216         #ifdef HOST_IMM_ADDR32
4217         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4218         #endif
4219         // Precompute load address
4220         *value=constmap[i][hr]+imm[i+1];
4221         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4222         return 1;
4223       }
4224     }
4225   }
4226   *value=constmap[i][hr];
4227   //printf("c=%x\n",(int)constmap[i][hr]);
4228   if(i==slen-1) return 1;
4229   if(reg<64) {
4230     return !((unneeded_reg[i+1]>>reg)&1);
4231   }else{
4232     return !((unneeded_reg_upper[i+1]>>reg)&1);
4233   }
4234 }
4235
4236 // Load registers with known constants
4237 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4238 {
4239   int hr;
4240   // Load 32-bit regs
4241   for(hr=0;hr<HOST_REGS;hr++) {
4242     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4243       //if(entry[hr]!=regmap[hr]) {
4244       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4245         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4246           int value;
4247           if(get_final_value(hr,i,&value)) {
4248             if(value==0) {
4249               emit_zeroreg(hr);
4250             }
4251             else {
4252               emit_movimm(value,hr);
4253             }
4254           }
4255         }
4256       }
4257     }
4258   }
4259   // Load 64-bit regs
4260   for(hr=0;hr<HOST_REGS;hr++) {
4261     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4262       //if(entry[hr]!=regmap[hr]) {
4263       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4264         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4265           if((is32>>(regmap[hr]&63))&1) {
4266             int lr=get_reg(regmap,regmap[hr]-64);
4267             assert(lr>=0);
4268             emit_sarimm(lr,31,hr);
4269           }
4270           else
4271           {
4272             int value;
4273             if(get_final_value(hr,i,&value)) {
4274               if(value==0) {
4275                 emit_zeroreg(hr);
4276               }
4277               else {
4278                 emit_movimm(value,hr);
4279               }
4280             }
4281           }
4282         }
4283       }
4284     }
4285   }
4286 }
4287 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4288 {
4289   int hr;
4290   // Load 32-bit regs
4291   for(hr=0;hr<HOST_REGS;hr++) {
4292     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4293       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4294         int value=constmap[i][hr];
4295         if(value==0) {
4296           emit_zeroreg(hr);
4297         }
4298         else {
4299           emit_movimm(value,hr);
4300         }
4301       }
4302     }
4303   }
4304   // Load 64-bit regs
4305   for(hr=0;hr<HOST_REGS;hr++) {
4306     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4307       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4308         if((is32>>(regmap[hr]&63))&1) {
4309           int lr=get_reg(regmap,regmap[hr]-64);
4310           assert(lr>=0);
4311           emit_sarimm(lr,31,hr);
4312         }
4313         else
4314         {
4315           int value=constmap[i][hr];
4316           if(value==0) {
4317             emit_zeroreg(hr);
4318           }
4319           else {
4320             emit_movimm(value,hr);
4321           }
4322         }
4323       }
4324     }
4325   }
4326 }
4327
4328 // Write out all dirty registers (except cycle count)
4329 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4330 {
4331   int hr;
4332   for(hr=0;hr<HOST_REGS;hr++) {
4333     if(hr!=EXCLUDE_REG) {
4334       if(i_regmap[hr]>0) {
4335         if(i_regmap[hr]!=CCREG) {
4336           if((i_dirty>>hr)&1) {
4337             if(i_regmap[hr]<64) {
4338               emit_storereg(i_regmap[hr],hr);
4339 #ifndef FORCE32
4340               if( ((i_is32>>i_regmap[hr])&1) ) {
4341                 #ifdef DESTRUCTIVE_WRITEBACK
4342                 emit_sarimm(hr,31,hr);
4343                 emit_storereg(i_regmap[hr]|64,hr);
4344                 #else
4345                 emit_sarimm(hr,31,HOST_TEMPREG);
4346                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4347                 #endif
4348               }
4349 #endif
4350             }else{
4351               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4352                 emit_storereg(i_regmap[hr],hr);
4353               }
4354             }
4355           }
4356         }
4357       }
4358     }
4359   }
4360 }
4361 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4362 // This writes the registers not written by store_regs_bt
4363 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4364 {
4365   int hr;
4366   int t=(addr-start)>>2;
4367   for(hr=0;hr<HOST_REGS;hr++) {
4368     if(hr!=EXCLUDE_REG) {
4369       if(i_regmap[hr]>0) {
4370         if(i_regmap[hr]!=CCREG) {
4371           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4372             if((i_dirty>>hr)&1) {
4373               if(i_regmap[hr]<64) {
4374                 emit_storereg(i_regmap[hr],hr);
4375 #ifndef FORCE32
4376                 if( ((i_is32>>i_regmap[hr])&1) ) {
4377                   #ifdef DESTRUCTIVE_WRITEBACK
4378                   emit_sarimm(hr,31,hr);
4379                   emit_storereg(i_regmap[hr]|64,hr);
4380                   #else
4381                   emit_sarimm(hr,31,HOST_TEMPREG);
4382                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4383                   #endif
4384                 }
4385 #endif
4386               }else{
4387                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4388                   emit_storereg(i_regmap[hr],hr);
4389                 }
4390               }
4391             }
4392           }
4393         }
4394       }
4395     }
4396   }
4397 }
4398
4399 // Load all registers (except cycle count)
4400 void load_all_regs(signed char i_regmap[])
4401 {
4402   int hr;
4403   for(hr=0;hr<HOST_REGS;hr++) {
4404     if(hr!=EXCLUDE_REG) {
4405       if(i_regmap[hr]==0) {
4406         emit_zeroreg(hr);
4407       }
4408       else
4409       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4410       {
4411         emit_loadreg(i_regmap[hr],hr);
4412       }
4413     }
4414   }
4415 }
4416
4417 // Load all current registers also needed by next instruction
4418 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4419 {
4420   int hr;
4421   for(hr=0;hr<HOST_REGS;hr++) {
4422     if(hr!=EXCLUDE_REG) {
4423       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4424         if(i_regmap[hr]==0) {
4425           emit_zeroreg(hr);
4426         }
4427         else
4428         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4429         {
4430           emit_loadreg(i_regmap[hr],hr);
4431         }
4432       }
4433     }
4434   }
4435 }
4436
4437 // Load all regs, storing cycle count if necessary
4438 void load_regs_entry(int t)
4439 {
4440   int hr;
4441   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4442   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4443   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4444     emit_storereg(CCREG,HOST_CCREG);
4445   }
4446   // Load 32-bit regs
4447   for(hr=0;hr<HOST_REGS;hr++) {
4448     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4449       if(regs[t].regmap_entry[hr]==0) {
4450         emit_zeroreg(hr);
4451       }
4452       else if(regs[t].regmap_entry[hr]!=CCREG)
4453       {
4454         emit_loadreg(regs[t].regmap_entry[hr],hr);
4455       }
4456     }
4457   }
4458   // Load 64-bit regs
4459   for(hr=0;hr<HOST_REGS;hr++) {
4460     if(regs[t].regmap_entry[hr]>=64) {
4461       assert(regs[t].regmap_entry[hr]!=64);
4462       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4463         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4464         if(lr<0) {
4465           emit_loadreg(regs[t].regmap_entry[hr],hr);
4466         }
4467         else
4468         {
4469           emit_sarimm(lr,31,hr);
4470         }
4471       }
4472       else
4473       {
4474         emit_loadreg(regs[t].regmap_entry[hr],hr);
4475       }
4476     }
4477   }
4478 }
4479
4480 // Store dirty registers prior to branch
4481 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4482 {
4483   if(internal_branch(i_is32,addr))
4484   {
4485     int t=(addr-start)>>2;
4486     int hr;
4487     for(hr=0;hr<HOST_REGS;hr++) {
4488       if(hr!=EXCLUDE_REG) {
4489         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4490           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4491             if((i_dirty>>hr)&1) {
4492               if(i_regmap[hr]<64) {
4493                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4494                   emit_storereg(i_regmap[hr],hr);
4495                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4496                     #ifdef DESTRUCTIVE_WRITEBACK
4497                     emit_sarimm(hr,31,hr);
4498                     emit_storereg(i_regmap[hr]|64,hr);
4499                     #else
4500                     emit_sarimm(hr,31,HOST_TEMPREG);
4501                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4502                     #endif
4503                   }
4504                 }
4505               }else{
4506                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4507                   emit_storereg(i_regmap[hr],hr);
4508                 }
4509               }
4510             }
4511           }
4512         }
4513       }
4514     }
4515   }
4516   else
4517   {
4518     // Branch out of this block, write out all dirty regs
4519     wb_dirtys(i_regmap,i_is32,i_dirty);
4520   }
4521 }
4522
4523 // Load all needed registers for branch target
4524 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4525 {
4526   //if(addr>=start && addr<(start+slen*4))
4527   if(internal_branch(i_is32,addr))
4528   {
4529     int t=(addr-start)>>2;
4530     int hr;
4531     // Store the cycle count before loading something else
4532     if(i_regmap[HOST_CCREG]!=CCREG) {
4533       assert(i_regmap[HOST_CCREG]==-1);
4534     }
4535     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4536       emit_storereg(CCREG,HOST_CCREG);
4537     }
4538     // Load 32-bit regs
4539     for(hr=0;hr<HOST_REGS;hr++) {
4540       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4541         #ifdef DESTRUCTIVE_WRITEBACK
4542         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4543         #else
4544         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4545         #endif
4546           if(regs[t].regmap_entry[hr]==0) {
4547             emit_zeroreg(hr);
4548           }
4549           else if(regs[t].regmap_entry[hr]!=CCREG)
4550           {
4551             emit_loadreg(regs[t].regmap_entry[hr],hr);
4552           }
4553         }
4554       }
4555     }
4556     //Load 64-bit regs
4557     for(hr=0;hr<HOST_REGS;hr++) {
4558       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4559         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4560           assert(regs[t].regmap_entry[hr]!=64);
4561           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4562             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4563             if(lr<0) {
4564               emit_loadreg(regs[t].regmap_entry[hr],hr);
4565             }
4566             else
4567             {
4568               emit_sarimm(lr,31,hr);
4569             }
4570           }
4571           else
4572           {
4573             emit_loadreg(regs[t].regmap_entry[hr],hr);
4574           }
4575         }
4576         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4577           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4578           assert(lr>=0);
4579           emit_sarimm(lr,31,hr);
4580         }
4581       }
4582     }
4583   }
4584 }
4585
4586 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4587 {
4588   if(addr>=start && addr<start+slen*4-4)
4589   {
4590     int t=(addr-start)>>2;
4591     int hr;
4592     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4593     for(hr=0;hr<HOST_REGS;hr++)
4594     {
4595       if(hr!=EXCLUDE_REG)
4596       {
4597         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4598         {
4599           if(regs[t].regmap_entry[hr]!=-1)
4600           {
4601             return 0;
4602           }
4603           else 
4604           if((i_dirty>>hr)&1)
4605           {
4606             if(i_regmap[hr]<64)
4607             {
4608               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4609                 return 0;
4610             }
4611             else
4612             {
4613               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4614                 return 0;
4615             }
4616           }
4617         }
4618         else // Same register but is it 32-bit or dirty?
4619         if(i_regmap[hr]>=0)
4620         {
4621           if(!((regs[t].dirty>>hr)&1))
4622           {
4623             if((i_dirty>>hr)&1)
4624             {
4625               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4626               {
4627                 //printf("%x: dirty no match\n",addr);
4628                 return 0;
4629               }
4630             }
4631           }
4632           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4633           {
4634             //printf("%x: is32 no match\n",addr);
4635             return 0;
4636           }
4637         }
4638       }
4639     }
4640     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4641 #ifndef FORCE32
4642     if(requires_32bit[t]&~i_is32) return 0;
4643 #endif
4644     // Delay slots are not valid branch targets
4645     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4646     // Delay slots require additional processing, so do not match
4647     if(is_ds[t]) return 0;
4648   }
4649   else
4650   {
4651     int hr;
4652     for(hr=0;hr<HOST_REGS;hr++)
4653     {
4654       if(hr!=EXCLUDE_REG)
4655       {
4656         if(i_regmap[hr]>=0)
4657         {
4658           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4659           {
4660             if((i_dirty>>hr)&1)
4661             {
4662               return 0;
4663             }
4664           }
4665         }
4666       }
4667     }
4668   }
4669   return 1;
4670 }
4671
4672 // Used when a branch jumps into the delay slot of another branch
4673 void ds_assemble_entry(int i)
4674 {
4675   int t=(ba[i]-start)>>2;
4676   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4677   assem_debug("Assemble delay slot at %x\n",ba[i]);
4678   assem_debug("<->\n");
4679   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4680     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4681   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4682   address_generation(t,&regs[t],regs[t].regmap_entry);
4683   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4684     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4685   cop1_usable=0;
4686   is_delayslot=0;
4687   switch(itype[t]) {
4688     case ALU:
4689       alu_assemble(t,&regs[t]);break;
4690     case IMM16:
4691       imm16_assemble(t,&regs[t]);break;
4692     case SHIFT:
4693       shift_assemble(t,&regs[t]);break;
4694     case SHIFTIMM:
4695       shiftimm_assemble(t,&regs[t]);break;
4696     case LOAD:
4697       load_assemble(t,&regs[t]);break;
4698     case LOADLR:
4699       loadlr_assemble(t,&regs[t]);break;
4700     case STORE:
4701       store_assemble(t,&regs[t]);break;
4702     case STORELR:
4703       storelr_assemble(t,&regs[t]);break;
4704     case COP0:
4705       cop0_assemble(t,&regs[t]);break;
4706     case COP1:
4707       cop1_assemble(t,&regs[t]);break;
4708     case C1LS:
4709       c1ls_assemble(t,&regs[t]);break;
4710     case COP2:
4711       cop2_assemble(t,&regs[t]);break;
4712     case C2LS:
4713       c2ls_assemble(t,&regs[t]);break;
4714     case C2OP:
4715       c2op_assemble(t,&regs[t]);break;
4716     case FCONV:
4717       fconv_assemble(t,&regs[t]);break;
4718     case FLOAT:
4719       float_assemble(t,&regs[t]);break;
4720     case FCOMP:
4721       fcomp_assemble(t,&regs[t]);break;
4722     case MULTDIV:
4723       multdiv_assemble(t,&regs[t]);break;
4724     case MOV:
4725       mov_assemble(t,&regs[t]);break;
4726     case SYSCALL:
4727     case HLECALL:
4728     case INTCALL:
4729     case SPAN:
4730     case UJUMP:
4731     case RJUMP:
4732     case CJUMP:
4733     case SJUMP:
4734     case FJUMP:
4735       printf("Jump in the delay slot.  This is probably a bug.\n");
4736   }
4737   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4738   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4739   if(internal_branch(regs[t].is32,ba[i]+4))
4740     assem_debug("branch: internal\n");
4741   else
4742     assem_debug("branch: external\n");
4743   assert(internal_branch(regs[t].is32,ba[i]+4));
4744   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4745   emit_jmp(0);
4746 }
4747
4748 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4749 {
4750   int count;
4751   int jaddr;
4752   int idle=0;
4753   if(itype[i]==RJUMP)
4754   {
4755     *adj=0;
4756   }
4757   //if(ba[i]>=start && ba[i]<(start+slen*4))
4758   if(internal_branch(branch_regs[i].is32,ba[i]))
4759   {
4760     int t=(ba[i]-start)>>2;
4761     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4762     else *adj=ccadj[t];
4763   }
4764   else
4765   {
4766     *adj=0;
4767   }
4768   count=ccadj[i];
4769   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4770     // Idle loop
4771     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4772     idle=(int)out;
4773     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4774     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4775     jaddr=(int)out;
4776     emit_jmp(0);
4777   }
4778   else if(*adj==0||invert) {
4779     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4780     jaddr=(int)out;
4781     emit_jns(0);
4782   }
4783   else
4784   {
4785     emit_cmpimm(HOST_CCREG,-2*(count+2));
4786     jaddr=(int)out;
4787     emit_jns(0);
4788   }
4789   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4790 }
4791
4792 void do_ccstub(int n)
4793 {
4794   literal_pool(256);
4795   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4796   set_jump_target(stubs[n][1],(int)out);
4797   int i=stubs[n][4];
4798   if(stubs[n][6]==NULLDS) {
4799     // Delay slot instruction is nullified ("likely" branch)
4800     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4801   }
4802   else if(stubs[n][6]!=TAKEN) {
4803     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4804   }
4805   else {
4806     if(internal_branch(branch_regs[i].is32,ba[i]))
4807       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4808   }
4809   if(stubs[n][5]!=-1)
4810   {
4811     // Save PC as return address
4812     emit_movimm(stubs[n][5],EAX);
4813     emit_writeword(EAX,(int)&pcaddr);
4814   }
4815   else
4816   {
4817     // Return address depends on which way the branch goes
4818     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4819     {
4820       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4821       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4822       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4823       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4824       if(rs1[i]==0)
4825       {
4826         s1l=s2l;s1h=s2h;
4827         s2l=s2h=-1;
4828       }
4829       else if(rs2[i]==0)
4830       {
4831         s2l=s2h=-1;
4832       }
4833       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4834         s1h=s2h=-1;
4835       }
4836       assert(s1l>=0);
4837       #ifdef DESTRUCTIVE_WRITEBACK
4838       if(rs1[i]) {
4839         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4840           emit_loadreg(rs1[i],s1l);
4841       } 
4842       else {
4843         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4844           emit_loadreg(rs2[i],s1l);
4845       }
4846       if(s2l>=0)
4847         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4848           emit_loadreg(rs2[i],s2l);
4849       #endif
4850       int hr=0;
4851       int addr,alt,ntaddr;
4852       while(hr<HOST_REGS)
4853       {
4854         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4855            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4856            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4857         {
4858           addr=hr++;break;
4859         }
4860         hr++;
4861       }
4862       while(hr<HOST_REGS)
4863       {
4864         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4865            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4866            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4867         {
4868           alt=hr++;break;
4869         }
4870         hr++;
4871       }
4872       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4873       {
4874         while(hr<HOST_REGS)
4875         {
4876           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4877              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4878              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4879           {
4880             ntaddr=hr;break;
4881           }
4882           hr++;
4883         }
4884         assert(hr<HOST_REGS);
4885       }
4886       if((opcode[i]&0x2f)==4) // BEQ
4887       {
4888         #ifdef HAVE_CMOV_IMM
4889         if(s1h<0) {
4890           if(s2l>=0) emit_cmp(s1l,s2l);
4891           else emit_test(s1l,s1l);
4892           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4893         }
4894         else
4895         #endif
4896         {
4897           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4898           if(s1h>=0) {
4899             if(s2h>=0) emit_cmp(s1h,s2h);
4900             else emit_test(s1h,s1h);
4901             emit_cmovne_reg(alt,addr);
4902           }
4903           if(s2l>=0) emit_cmp(s1l,s2l);
4904           else emit_test(s1l,s1l);
4905           emit_cmovne_reg(alt,addr);
4906         }
4907       }
4908       if((opcode[i]&0x2f)==5) // BNE
4909       {
4910         #ifdef HAVE_CMOV_IMM
4911         if(s1h<0) {
4912           if(s2l>=0) emit_cmp(s1l,s2l);
4913           else emit_test(s1l,s1l);
4914           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4915         }
4916         else
4917         #endif
4918         {
4919           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4920           if(s1h>=0) {
4921             if(s2h>=0) emit_cmp(s1h,s2h);
4922             else emit_test(s1h,s1h);
4923             emit_cmovne_reg(alt,addr);
4924           }
4925           if(s2l>=0) emit_cmp(s1l,s2l);
4926           else emit_test(s1l,s1l);
4927           emit_cmovne_reg(alt,addr);
4928         }
4929       }
4930       if((opcode[i]&0x2f)==6) // BLEZ
4931       {
4932         //emit_movimm(ba[i],alt);
4933         //emit_movimm(start+i*4+8,addr);
4934         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4935         emit_cmpimm(s1l,1);
4936         if(s1h>=0) emit_mov(addr,ntaddr);
4937         emit_cmovl_reg(alt,addr);
4938         if(s1h>=0) {
4939           emit_test(s1h,s1h);
4940           emit_cmovne_reg(ntaddr,addr);
4941           emit_cmovs_reg(alt,addr);
4942         }
4943       }
4944       if((opcode[i]&0x2f)==7) // BGTZ
4945       {
4946         //emit_movimm(ba[i],addr);
4947         //emit_movimm(start+i*4+8,ntaddr);
4948         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4949         emit_cmpimm(s1l,1);
4950         if(s1h>=0) emit_mov(addr,alt);
4951         emit_cmovl_reg(ntaddr,addr);
4952         if(s1h>=0) {
4953           emit_test(s1h,s1h);
4954           emit_cmovne_reg(alt,addr);
4955           emit_cmovs_reg(ntaddr,addr);
4956         }
4957       }
4958       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4959       {
4960         //emit_movimm(ba[i],alt);
4961         //emit_movimm(start+i*4+8,addr);
4962         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4963         if(s1h>=0) emit_test(s1h,s1h);
4964         else emit_test(s1l,s1l);
4965         emit_cmovs_reg(alt,addr);
4966       }
4967       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4968       {
4969         //emit_movimm(ba[i],addr);
4970         //emit_movimm(start+i*4+8,alt);
4971         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4972         if(s1h>=0) emit_test(s1h,s1h);
4973         else emit_test(s1l,s1l);
4974         emit_cmovs_reg(alt,addr);
4975       }
4976       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4977         if(source[i]&0x10000) // BC1T
4978         {
4979           //emit_movimm(ba[i],alt);
4980           //emit_movimm(start+i*4+8,addr);
4981           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4982           emit_testimm(s1l,0x800000);
4983           emit_cmovne_reg(alt,addr);
4984         }
4985         else // BC1F
4986         {
4987           //emit_movimm(ba[i],addr);
4988           //emit_movimm(start+i*4+8,alt);
4989           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4990           emit_testimm(s1l,0x800000);
4991           emit_cmovne_reg(alt,addr);
4992         }
4993       }
4994       emit_writeword(addr,(int)&pcaddr);
4995     }
4996     else
4997     if(itype[i]==RJUMP)
4998     {
4999       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5000       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5001         r=get_reg(branch_regs[i].regmap,RTEMP);
5002       }
5003       emit_writeword(r,(int)&pcaddr);
5004     }
5005     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5006   }
5007   // Update cycle count
5008   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5009   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5010   emit_call((int)cc_interrupt);
5011   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5012   if(stubs[n][6]==TAKEN) {
5013     if(internal_branch(branch_regs[i].is32,ba[i]))
5014       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5015     else if(itype[i]==RJUMP) {
5016       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5017         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5018       else
5019         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5020     }
5021   }else if(stubs[n][6]==NOTTAKEN) {
5022     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5023     else load_all_regs(branch_regs[i].regmap);
5024   }else if(stubs[n][6]==NULLDS) {
5025     // Delay slot instruction is nullified ("likely" branch)
5026     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5027     else load_all_regs(regs[i].regmap);
5028   }else{
5029     load_all_regs(branch_regs[i].regmap);
5030   }
5031   emit_jmp(stubs[n][2]); // return address
5032   
5033   /* This works but uses a lot of memory...
5034   emit_readword((int)&last_count,ECX);
5035   emit_add(HOST_CCREG,ECX,EAX);
5036   emit_writeword(EAX,(int)&Count);
5037   emit_call((int)gen_interupt);
5038   emit_readword((int)&Count,HOST_CCREG);
5039   emit_readword((int)&next_interupt,EAX);
5040   emit_readword((int)&pending_exception,EBX);
5041   emit_writeword(EAX,(int)&last_count);
5042   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5043   emit_test(EBX,EBX);
5044   int jne_instr=(int)out;
5045   emit_jne(0);
5046   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5047   load_all_regs(branch_regs[i].regmap);
5048   emit_jmp(stubs[n][2]); // return address
5049   set_jump_target(jne_instr,(int)out);
5050   emit_readword((int)&pcaddr,EAX);
5051   // Call get_addr_ht instead of doing the hash table here.
5052   // This code is executed infrequently and takes up a lot of space
5053   // so smaller is better.
5054   emit_storereg(CCREG,HOST_CCREG);
5055   emit_pushreg(EAX);
5056   emit_call((int)get_addr_ht);
5057   emit_loadreg(CCREG,HOST_CCREG);
5058   emit_addimm(ESP,4,ESP);
5059   emit_jmpreg(EAX);*/
5060 }
5061
5062 add_to_linker(int addr,int target,int ext)
5063 {
5064   link_addr[linkcount][0]=addr;
5065   link_addr[linkcount][1]=target;
5066   link_addr[linkcount][2]=ext;  
5067   linkcount++;
5068 }
5069
5070 void ujump_assemble(int i,struct regstat *i_regs)
5071 {
5072   signed char *i_regmap=i_regs->regmap;
5073   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5074   address_generation(i+1,i_regs,regs[i].regmap_entry);
5075   #ifdef REG_PREFETCH
5076   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5077   if(rt1[i]==31&&temp>=0) 
5078   {
5079     int return_address=start+i*4+8;
5080     if(get_reg(branch_regs[i].regmap,31)>0) 
5081     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5082   }
5083   #endif
5084   ds_assemble(i+1,i_regs);
5085   uint64_t bc_unneeded=branch_regs[i].u;
5086   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5087   bc_unneeded|=1|(1LL<<rt1[i]);
5088   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5089   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5090                 bc_unneeded,bc_unneeded_upper);
5091   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5092   if(rt1[i]==31) {
5093     int rt;
5094     unsigned int return_address;
5095     assert(rt1[i+1]!=31);
5096     assert(rt2[i+1]!=31);
5097     rt=get_reg(branch_regs[i].regmap,31);
5098     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5099     //assert(rt>=0);
5100     return_address=start+i*4+8;
5101     if(rt>=0) {
5102       #ifdef USE_MINI_HT
5103       if(internal_branch(branch_regs[i].is32,return_address)) {
5104         int temp=rt+1;
5105         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5106            branch_regs[i].regmap[temp]>=0)
5107         {
5108           temp=get_reg(branch_regs[i].regmap,-1);
5109         }
5110         #ifdef HOST_TEMPREG
5111         if(temp<0) temp=HOST_TEMPREG;
5112         #endif
5113         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5114         else emit_movimm(return_address,rt);
5115       }
5116       else
5117       #endif
5118       {
5119         #ifdef REG_PREFETCH
5120         if(temp>=0) 
5121         {
5122           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5123         }
5124         #endif
5125         emit_movimm(return_address,rt); // PC into link register
5126         #ifdef IMM_PREFETCH
5127         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5128         #endif
5129       }
5130     }
5131   }
5132   int cc,adj;
5133   cc=get_reg(branch_regs[i].regmap,CCREG);
5134   assert(cc==HOST_CCREG);
5135   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5136   #ifdef REG_PREFETCH
5137   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5138   #endif
5139   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5140   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5141   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5142   if(internal_branch(branch_regs[i].is32,ba[i]))
5143     assem_debug("branch: internal\n");
5144   else
5145     assem_debug("branch: external\n");
5146   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5147     ds_assemble_entry(i);
5148   }
5149   else {
5150     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5151     emit_jmp(0);
5152   }
5153 }
5154
5155 void rjump_assemble(int i,struct regstat *i_regs)
5156 {
5157   signed char *i_regmap=i_regs->regmap;
5158   int temp;
5159   int rs,cc,adj;
5160   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5161   assert(rs>=0);
5162   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5163     // Delay slot abuse, make a copy of the branch address register
5164     temp=get_reg(branch_regs[i].regmap,RTEMP);
5165     assert(temp>=0);
5166     assert(regs[i].regmap[temp]==RTEMP);
5167     emit_mov(rs,temp);
5168     rs=temp;
5169   }
5170   address_generation(i+1,i_regs,regs[i].regmap_entry);
5171   #ifdef REG_PREFETCH
5172   if(rt1[i]==31) 
5173   {
5174     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5175       int return_address=start+i*4+8;
5176       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5177     }
5178   }
5179   #endif
5180   #ifdef USE_MINI_HT
5181   if(rs1[i]==31) {
5182     int rh=get_reg(regs[i].regmap,RHASH);
5183     if(rh>=0) do_preload_rhash(rh);
5184   }
5185   #endif
5186   ds_assemble(i+1,i_regs);
5187   uint64_t bc_unneeded=branch_regs[i].u;
5188   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5189   bc_unneeded|=1|(1LL<<rt1[i]);
5190   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5191   bc_unneeded&=~(1LL<<rs1[i]);
5192   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5193                 bc_unneeded,bc_unneeded_upper);
5194   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5195   if(rt1[i]!=0) {
5196     int rt,return_address;
5197     assert(rt1[i+1]!=rt1[i]);
5198     assert(rt2[i+1]!=rt1[i]);
5199     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5200     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5201     assert(rt>=0);
5202     return_address=start+i*4+8;
5203     #ifdef REG_PREFETCH
5204     if(temp>=0) 
5205     {
5206       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5207     }
5208     #endif
5209     emit_movimm(return_address,rt); // PC into link register
5210     #ifdef IMM_PREFETCH
5211     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5212     #endif
5213   }
5214   cc=get_reg(branch_regs[i].regmap,CCREG);
5215   assert(cc==HOST_CCREG);
5216   #ifdef USE_MINI_HT
5217   int rh=get_reg(branch_regs[i].regmap,RHASH);
5218   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5219   if(rs1[i]==31) {
5220     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5221     do_preload_rhtbl(ht);
5222     do_rhash(rs,rh);
5223   }
5224   #endif
5225   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5226   #ifdef DESTRUCTIVE_WRITEBACK
5227   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5228     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5229       emit_loadreg(rs1[i],rs);
5230     }
5231   }
5232   #endif
5233   #ifdef REG_PREFETCH
5234   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5235   #endif
5236   #ifdef USE_MINI_HT
5237   if(rs1[i]==31) {
5238     do_miniht_load(ht,rh);
5239   }
5240   #endif
5241   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5242   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5243   //assert(adj==0);
5244   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5245   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5246   emit_jns(0);
5247   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5248   #ifdef USE_MINI_HT
5249   if(rs1[i]==31) {
5250     do_miniht_jump(rs,rh,ht);
5251   }
5252   else
5253   #endif
5254   {
5255     //if(rs!=EAX) emit_mov(rs,EAX);
5256     //emit_jmp((int)jump_vaddr_eax);
5257     emit_jmp(jump_vaddr_reg[rs]);
5258   }
5259   /* Check hash table
5260   temp=!rs;
5261   emit_mov(rs,temp);
5262   emit_shrimm(rs,16,rs);
5263   emit_xor(temp,rs,rs);
5264   emit_movzwl_reg(rs,rs);
5265   emit_shlimm(rs,4,rs);
5266   emit_cmpmem_indexed((int)hash_table,rs,temp);
5267   emit_jne((int)out+14);
5268   emit_readword_indexed((int)hash_table+4,rs,rs);
5269   emit_jmpreg(rs);
5270   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5271   emit_addimm_no_flags(8,rs);
5272   emit_jeq((int)out-17);
5273   // No hit on hash table, call compiler
5274   emit_pushreg(temp);
5275 //DEBUG >
5276 #ifdef DEBUG_CYCLE_COUNT
5277   emit_readword((int)&last_count,ECX);
5278   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5279   emit_readword((int)&next_interupt,ECX);
5280   emit_writeword(HOST_CCREG,(int)&Count);
5281   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5282   emit_writeword(ECX,(int)&last_count);
5283 #endif
5284 //DEBUG <
5285   emit_storereg(CCREG,HOST_CCREG);
5286   emit_call((int)get_addr);
5287   emit_loadreg(CCREG,HOST_CCREG);
5288   emit_addimm(ESP,4,ESP);
5289   emit_jmpreg(EAX);*/
5290   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5291   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5292   #endif
5293 }
5294
5295 void cjump_assemble(int i,struct regstat *i_regs)
5296 {
5297   signed char *i_regmap=i_regs->regmap;
5298   int cc;
5299   int match;
5300   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5301   assem_debug("match=%d\n",match);
5302   int s1h,s1l,s2h,s2l;
5303   int prev_cop1_usable=cop1_usable;
5304   int unconditional=0,nop=0;
5305   int only32=0;
5306   int ooo=1;
5307   int invert=0;
5308   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5309   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5310   if(likely[i]) ooo=0;
5311   if(!match) invert=1;
5312   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5313   if(i>(ba[i]-start)>>2) invert=1;
5314   #endif
5315     
5316   if(ooo)
5317     if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5318        (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5319   {
5320     // Write-after-read dependency prevents out of order execution
5321     // First test branch condition, then execute delay slot, then branch
5322     ooo=0;
5323   }
5324
5325   if(ooo) {
5326     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5327     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5328     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5329     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5330   }
5331   else {
5332     s1l=get_reg(i_regmap,rs1[i]);
5333     s1h=get_reg(i_regmap,rs1[i]|64);
5334     s2l=get_reg(i_regmap,rs2[i]);
5335     s2h=get_reg(i_regmap,rs2[i]|64);
5336   }
5337   if(rs1[i]==0&&rs2[i]==0)
5338   {
5339     if(opcode[i]&1) nop=1;
5340     else unconditional=1;
5341     //assert(opcode[i]!=5);
5342     //assert(opcode[i]!=7);
5343     //assert(opcode[i]!=0x15);
5344     //assert(opcode[i]!=0x17);
5345   }
5346   else if(rs1[i]==0)
5347   {
5348     s1l=s2l;s1h=s2h;
5349     s2l=s2h=-1;
5350     only32=(regs[i].was32>>rs2[i])&1;
5351   }
5352   else if(rs2[i]==0)
5353   {
5354     s2l=s2h=-1;
5355     only32=(regs[i].was32>>rs1[i])&1;
5356   }
5357   else {
5358     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5359   }
5360
5361   if(ooo) {
5362     // Out of order execution (delay slot first)
5363     //printf("OOOE\n");
5364     address_generation(i+1,i_regs,regs[i].regmap_entry);
5365     ds_assemble(i+1,i_regs);
5366     int adj;
5367     uint64_t bc_unneeded=branch_regs[i].u;
5368     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5369     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5370     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5371     bc_unneeded|=1;
5372     bc_unneeded_upper|=1;
5373     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5374                   bc_unneeded,bc_unneeded_upper);
5375     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5376     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5377     cc=get_reg(branch_regs[i].regmap,CCREG);
5378     assert(cc==HOST_CCREG);
5379     if(unconditional) 
5380       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5381     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5382     //assem_debug("cycle count (adj)\n");
5383     if(unconditional) {
5384       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5385       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5386         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5387         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5388         if(internal)
5389           assem_debug("branch: internal\n");
5390         else
5391           assem_debug("branch: external\n");
5392         if(internal&&is_ds[(ba[i]-start)>>2]) {
5393           ds_assemble_entry(i);
5394         }
5395         else {
5396           add_to_linker((int)out,ba[i],internal);
5397           emit_jmp(0);
5398         }
5399         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5400         if(((u_int)out)&7) emit_addnop(0);
5401         #endif
5402       }
5403     }
5404     else if(nop) {
5405       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5406       int jaddr=(int)out;
5407       emit_jns(0);
5408       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5409     }
5410     else {
5411       int taken=0,nottaken=0,nottaken1=0;
5412       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5413       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5414       if(!only32)
5415       {
5416         assert(s1h>=0);
5417         if(opcode[i]==4) // BEQ
5418         {
5419           if(s2h>=0) emit_cmp(s1h,s2h);
5420           else emit_test(s1h,s1h);
5421           nottaken1=(int)out;
5422           emit_jne(1);
5423         }
5424         if(opcode[i]==5) // BNE
5425         {
5426           if(s2h>=0) emit_cmp(s1h,s2h);
5427           else emit_test(s1h,s1h);
5428           if(invert) taken=(int)out;
5429           else add_to_linker((int)out,ba[i],internal);
5430           emit_jne(0);
5431         }
5432         if(opcode[i]==6) // BLEZ
5433         {
5434           emit_test(s1h,s1h);
5435           if(invert) taken=(int)out;
5436           else add_to_linker((int)out,ba[i],internal);
5437           emit_js(0);
5438           nottaken1=(int)out;
5439           emit_jne(1);
5440         }
5441         if(opcode[i]==7) // BGTZ
5442         {
5443           emit_test(s1h,s1h);
5444           nottaken1=(int)out;
5445           emit_js(1);
5446           if(invert) taken=(int)out;
5447           else add_to_linker((int)out,ba[i],internal);
5448           emit_jne(0);
5449         }
5450       } // if(!only32)
5451           
5452       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5453       assert(s1l>=0);
5454       if(opcode[i]==4) // BEQ
5455       {
5456         if(s2l>=0) emit_cmp(s1l,s2l);
5457         else emit_test(s1l,s1l);
5458         if(invert){
5459           nottaken=(int)out;
5460           emit_jne(1);
5461         }else{
5462           add_to_linker((int)out,ba[i],internal);
5463           emit_jeq(0);
5464         }
5465       }
5466       if(opcode[i]==5) // BNE
5467       {
5468         if(s2l>=0) emit_cmp(s1l,s2l);
5469         else emit_test(s1l,s1l);
5470         if(invert){
5471           nottaken=(int)out;
5472           emit_jeq(1);
5473         }else{
5474           add_to_linker((int)out,ba[i],internal);
5475           emit_jne(0);
5476         }
5477       }
5478       if(opcode[i]==6) // BLEZ
5479       {
5480         emit_cmpimm(s1l,1);
5481         if(invert){
5482           nottaken=(int)out;
5483           emit_jge(1);
5484         }else{
5485           add_to_linker((int)out,ba[i],internal);
5486           emit_jl(0);
5487         }
5488       }
5489       if(opcode[i]==7) // BGTZ
5490       {
5491         emit_cmpimm(s1l,1);
5492         if(invert){
5493           nottaken=(int)out;
5494           emit_jl(1);
5495         }else{
5496           add_to_linker((int)out,ba[i],internal);
5497           emit_jge(0);
5498         }
5499       }
5500       if(invert) {
5501         if(taken) set_jump_target(taken,(int)out);
5502         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5503         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5504           if(adj) {
5505             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5506             add_to_linker((int)out,ba[i],internal);
5507           }else{
5508             emit_addnop(13);
5509             add_to_linker((int)out,ba[i],internal*2);
5510           }
5511           emit_jmp(0);
5512         }else
5513         #endif
5514         {
5515           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5516           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5517           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5518           if(internal)
5519             assem_debug("branch: internal\n");
5520           else
5521             assem_debug("branch: external\n");
5522           if(internal&&is_ds[(ba[i]-start)>>2]) {
5523             ds_assemble_entry(i);
5524           }
5525           else {
5526             add_to_linker((int)out,ba[i],internal);
5527             emit_jmp(0);
5528           }
5529         }
5530         set_jump_target(nottaken,(int)out);
5531       }
5532
5533       if(nottaken1) set_jump_target(nottaken1,(int)out);
5534       if(adj) {
5535         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5536       }
5537     } // (!unconditional)
5538   } // if(ooo)
5539   else
5540   {
5541     // In-order execution (branch first)
5542     //if(likely[i]) printf("IOL\n");
5543     //else
5544     //printf("IOE\n");
5545     int taken=0,nottaken=0,nottaken1=0;
5546     if(!unconditional&&!nop) {
5547       if(!only32)
5548       {
5549         assert(s1h>=0);
5550         if((opcode[i]&0x2f)==4) // BEQ
5551         {
5552           if(s2h>=0) emit_cmp(s1h,s2h);
5553           else emit_test(s1h,s1h);
5554           nottaken1=(int)out;
5555           emit_jne(2);
5556         }
5557         if((opcode[i]&0x2f)==5) // BNE
5558         {
5559           if(s2h>=0) emit_cmp(s1h,s2h);
5560           else emit_test(s1h,s1h);
5561           taken=(int)out;
5562           emit_jne(1);
5563         }
5564         if((opcode[i]&0x2f)==6) // BLEZ
5565         {
5566           emit_test(s1h,s1h);
5567           taken=(int)out;
5568           emit_js(1);
5569           nottaken1=(int)out;
5570           emit_jne(2);
5571         }
5572         if((opcode[i]&0x2f)==7) // BGTZ
5573         {
5574           emit_test(s1h,s1h);
5575           nottaken1=(int)out;
5576           emit_js(2);
5577           taken=(int)out;
5578           emit_jne(1);
5579         }
5580       } // if(!only32)
5581           
5582       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5583       assert(s1l>=0);
5584       if((opcode[i]&0x2f)==4) // BEQ
5585       {
5586         if(s2l>=0) emit_cmp(s1l,s2l);
5587         else emit_test(s1l,s1l);
5588         nottaken=(int)out;
5589         emit_jne(2);
5590       }
5591       if((opcode[i]&0x2f)==5) // BNE
5592       {
5593         if(s2l>=0) emit_cmp(s1l,s2l);
5594         else emit_test(s1l,s1l);
5595         nottaken=(int)out;
5596         emit_jeq(2);
5597       }
5598       if((opcode[i]&0x2f)==6) // BLEZ
5599       {
5600         emit_cmpimm(s1l,1);
5601         nottaken=(int)out;
5602         emit_jge(2);
5603       }
5604       if((opcode[i]&0x2f)==7) // BGTZ
5605       {
5606         emit_cmpimm(s1l,1);
5607         nottaken=(int)out;
5608         emit_jl(2);
5609       }
5610     } // if(!unconditional)
5611     int adj;
5612     uint64_t ds_unneeded=branch_regs[i].u;
5613     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5614     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5615     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5616     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5617     ds_unneeded|=1;
5618     ds_unneeded_upper|=1;
5619     // branch taken
5620     if(!nop) {
5621       if(taken) set_jump_target(taken,(int)out);
5622       assem_debug("1:\n");
5623       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5624                     ds_unneeded,ds_unneeded_upper);
5625       // load regs
5626       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5627       address_generation(i+1,&branch_regs[i],0);
5628       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5629       ds_assemble(i+1,&branch_regs[i]);
5630       cc=get_reg(branch_regs[i].regmap,CCREG);
5631       if(cc==-1) {
5632         emit_loadreg(CCREG,cc=HOST_CCREG);
5633         // CHECK: Is the following instruction (fall thru) allocated ok?
5634       }
5635       assert(cc==HOST_CCREG);
5636       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5637       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5638       assem_debug("cycle count (adj)\n");
5639       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5640       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5641       if(internal)
5642         assem_debug("branch: internal\n");
5643       else
5644         assem_debug("branch: external\n");
5645       if(internal&&is_ds[(ba[i]-start)>>2]) {
5646         ds_assemble_entry(i);
5647       }
5648       else {
5649         add_to_linker((int)out,ba[i],internal);
5650         emit_jmp(0);
5651       }
5652     }
5653     // branch not taken
5654     cop1_usable=prev_cop1_usable;
5655     if(!unconditional) {
5656       if(nottaken1) set_jump_target(nottaken1,(int)out);
5657       set_jump_target(nottaken,(int)out);
5658       assem_debug("2:\n");
5659       if(!likely[i]) {
5660         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5661                       ds_unneeded,ds_unneeded_upper);
5662         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5663         address_generation(i+1,&branch_regs[i],0);
5664         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5665         ds_assemble(i+1,&branch_regs[i]);
5666       }
5667       cc=get_reg(branch_regs[i].regmap,CCREG);
5668       if(cc==-1&&!likely[i]) {
5669         // Cycle count isn't in a register, temporarily load it then write it out
5670         emit_loadreg(CCREG,HOST_CCREG);
5671         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5672         int jaddr=(int)out;
5673         emit_jns(0);
5674         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5675         emit_storereg(CCREG,HOST_CCREG);
5676       }
5677       else{
5678         cc=get_reg(i_regmap,CCREG);
5679         assert(cc==HOST_CCREG);
5680         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5681         int jaddr=(int)out;
5682         emit_jns(0);
5683         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5684       }
5685     }
5686   }
5687 }
5688
5689 void sjump_assemble(int i,struct regstat *i_regs)
5690 {
5691   signed char *i_regmap=i_regs->regmap;
5692   int cc;
5693   int match;
5694   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5695   assem_debug("smatch=%d\n",match);
5696   int s1h,s1l;
5697   int prev_cop1_usable=cop1_usable;
5698   int unconditional=0,nevertaken=0;
5699   int only32=0;
5700   int ooo=1;
5701   int invert=0;
5702   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5703   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5704   if(likely[i]) ooo=0;
5705   if(!match) invert=1;
5706   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5707   if(i>(ba[i]-start)>>2) invert=1;
5708   #endif
5709
5710   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5711   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5712
5713   if(ooo) {
5714     if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5715     {
5716       // Write-after-read dependency prevents out of order execution
5717       // First test branch condition, then execute delay slot, then branch
5718       ooo=0;
5719     }
5720     if(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))
5721       // BxxZAL $ra is available to delay insn, so do it in order
5722       ooo=0;
5723   }
5724
5725   if(ooo) {
5726     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5727     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5728   }
5729   else {
5730     s1l=get_reg(i_regmap,rs1[i]);
5731     s1h=get_reg(i_regmap,rs1[i]|64);
5732   }
5733   if(rs1[i]==0)
5734   {
5735     if(opcode2[i]&1) unconditional=1;
5736     else nevertaken=1;
5737     // These are never taken (r0 is never less than zero)
5738     //assert(opcode2[i]!=0);
5739     //assert(opcode2[i]!=2);
5740     //assert(opcode2[i]!=0x10);
5741     //assert(opcode2[i]!=0x12);
5742   }
5743   else {
5744     only32=(regs[i].was32>>rs1[i])&1;
5745   }
5746
5747   if(ooo) {
5748     // Out of order execution (delay slot first)
5749     //printf("OOOE\n");
5750     address_generation(i+1,i_regs,regs[i].regmap_entry);
5751     ds_assemble(i+1,i_regs);
5752     int adj;
5753     uint64_t bc_unneeded=branch_regs[i].u;
5754     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5755     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5756     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5757     bc_unneeded|=1;
5758     bc_unneeded_upper|=1;
5759     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5760                   bc_unneeded,bc_unneeded_upper);
5761     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5762     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5763     if(rt1[i]==31) {
5764       int rt,return_address;
5765       rt=get_reg(branch_regs[i].regmap,31);
5766       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5767       if(rt>=0) {
5768         // Save the PC even if the branch is not taken
5769         return_address=start+i*4+8;
5770         emit_movimm(return_address,rt); // PC into link register
5771         #ifdef IMM_PREFETCH
5772         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5773         #endif
5774       }
5775     }
5776     cc=get_reg(branch_regs[i].regmap,CCREG);
5777     assert(cc==HOST_CCREG);
5778     if(unconditional) 
5779       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5780     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5781     assem_debug("cycle count (adj)\n");
5782     if(unconditional) {
5783       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5784       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5785         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5786         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5787         if(internal)
5788           assem_debug("branch: internal\n");
5789         else
5790           assem_debug("branch: external\n");
5791         if(internal&&is_ds[(ba[i]-start)>>2]) {
5792           ds_assemble_entry(i);
5793         }
5794         else {
5795           add_to_linker((int)out,ba[i],internal);
5796           emit_jmp(0);
5797         }
5798         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5799         if(((u_int)out)&7) emit_addnop(0);
5800         #endif
5801       }
5802     }
5803     else if(nevertaken) {
5804       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5805       int jaddr=(int)out;
5806       emit_jns(0);
5807       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5808     }
5809     else {
5810       int nottaken=0;
5811       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5812       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5813       if(!only32)
5814       {
5815         assert(s1h>=0);
5816         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5817         {
5818           emit_test(s1h,s1h);
5819           if(invert){
5820             nottaken=(int)out;
5821             emit_jns(1);
5822           }else{
5823             add_to_linker((int)out,ba[i],internal);
5824             emit_js(0);
5825           }
5826         }
5827         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5828         {
5829           emit_test(s1h,s1h);
5830           if(invert){
5831             nottaken=(int)out;
5832             emit_js(1);
5833           }else{
5834             add_to_linker((int)out,ba[i],internal);
5835             emit_jns(0);
5836           }
5837         }
5838       } // if(!only32)
5839       else
5840       {
5841         assert(s1l>=0);
5842         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5843         {
5844           emit_test(s1l,s1l);
5845           if(invert){
5846             nottaken=(int)out;
5847             emit_jns(1);
5848           }else{
5849             add_to_linker((int)out,ba[i],internal);
5850             emit_js(0);
5851           }
5852         }
5853         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5854         {
5855           emit_test(s1l,s1l);
5856           if(invert){
5857             nottaken=(int)out;
5858             emit_js(1);
5859           }else{
5860             add_to_linker((int)out,ba[i],internal);
5861             emit_jns(0);
5862           }
5863         }
5864       } // if(!only32)
5865           
5866       if(invert) {
5867         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5868         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5869           if(adj) {
5870             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5871             add_to_linker((int)out,ba[i],internal);
5872           }else{
5873             emit_addnop(13);
5874             add_to_linker((int)out,ba[i],internal*2);
5875           }
5876           emit_jmp(0);
5877         }else
5878         #endif
5879         {
5880           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5881           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5882           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5883           if(internal)
5884             assem_debug("branch: internal\n");
5885           else
5886             assem_debug("branch: external\n");
5887           if(internal&&is_ds[(ba[i]-start)>>2]) {
5888             ds_assemble_entry(i);
5889           }
5890           else {
5891             add_to_linker((int)out,ba[i],internal);
5892             emit_jmp(0);
5893           }
5894         }
5895         set_jump_target(nottaken,(int)out);
5896       }
5897
5898       if(adj) {
5899         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5900       }
5901     } // (!unconditional)
5902   } // if(ooo)
5903   else
5904   {
5905     // In-order execution (branch first)
5906     //printf("IOE\n");
5907     int nottaken=0;
5908     if(rt1[i]==31) {
5909       int rt,return_address;
5910       rt=get_reg(branch_regs[i].regmap,31);
5911       if(rt>=0) {
5912         // Save the PC even if the branch is not taken
5913         return_address=start+i*4+8;
5914         emit_movimm(return_address,rt); // PC into link register
5915         #ifdef IMM_PREFETCH
5916         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5917         #endif
5918       }
5919     }
5920     if(!unconditional) {
5921       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5922       if(!only32)
5923       {
5924         assert(s1h>=0);
5925         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5926         {
5927           emit_test(s1h,s1h);
5928           nottaken=(int)out;
5929           emit_jns(1);
5930         }
5931         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5932         {
5933           emit_test(s1h,s1h);
5934           nottaken=(int)out;
5935           emit_js(1);
5936         }
5937       } // if(!only32)
5938       else
5939       {
5940         assert(s1l>=0);
5941         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5942         {
5943           emit_test(s1l,s1l);
5944           nottaken=(int)out;
5945           emit_jns(1);
5946         }
5947         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5948         {
5949           emit_test(s1l,s1l);
5950           nottaken=(int)out;
5951           emit_js(1);
5952         }
5953       }
5954     } // if(!unconditional)
5955     int adj;
5956     uint64_t ds_unneeded=branch_regs[i].u;
5957     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5958     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5959     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5960     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5961     ds_unneeded|=1;
5962     ds_unneeded_upper|=1;
5963     // branch taken
5964     if(!nevertaken) {
5965       //assem_debug("1:\n");
5966       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5967                     ds_unneeded,ds_unneeded_upper);
5968       // load regs
5969       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5970       address_generation(i+1,&branch_regs[i],0);
5971       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5972       ds_assemble(i+1,&branch_regs[i]);
5973       cc=get_reg(branch_regs[i].regmap,CCREG);
5974       if(cc==-1) {
5975         emit_loadreg(CCREG,cc=HOST_CCREG);
5976         // CHECK: Is the following instruction (fall thru) allocated ok?
5977       }
5978       assert(cc==HOST_CCREG);
5979       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5980       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5981       assem_debug("cycle count (adj)\n");
5982       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5983       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5984       if(internal)
5985         assem_debug("branch: internal\n");
5986       else
5987         assem_debug("branch: external\n");
5988       if(internal&&is_ds[(ba[i]-start)>>2]) {
5989         ds_assemble_entry(i);
5990       }
5991       else {
5992         add_to_linker((int)out,ba[i],internal);
5993         emit_jmp(0);
5994       }
5995     }
5996     // branch not taken
5997     cop1_usable=prev_cop1_usable;
5998     if(!unconditional) {
5999       set_jump_target(nottaken,(int)out);
6000       assem_debug("1:\n");
6001       if(!likely[i]) {
6002         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6003                       ds_unneeded,ds_unneeded_upper);
6004         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6005         address_generation(i+1,&branch_regs[i],0);
6006         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6007         ds_assemble(i+1,&branch_regs[i]);
6008       }
6009       cc=get_reg(branch_regs[i].regmap,CCREG);
6010       if(cc==-1&&!likely[i]) {
6011         // Cycle count isn't in a register, temporarily load it then write it out
6012         emit_loadreg(CCREG,HOST_CCREG);
6013         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6014         int jaddr=(int)out;
6015         emit_jns(0);
6016         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6017         emit_storereg(CCREG,HOST_CCREG);
6018       }
6019       else{
6020         cc=get_reg(i_regmap,CCREG);
6021         assert(cc==HOST_CCREG);
6022         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6023         int jaddr=(int)out;
6024         emit_jns(0);
6025         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6026       }
6027     }
6028   }
6029 }
6030
6031 void fjump_assemble(int i,struct regstat *i_regs)
6032 {
6033   signed char *i_regmap=i_regs->regmap;
6034   int cc;
6035   int match;
6036   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6037   assem_debug("fmatch=%d\n",match);
6038   int fs,cs;
6039   int eaddr;
6040   int ooo=1;
6041   int invert=0;
6042   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6043   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6044   if(likely[i]) ooo=0;
6045   if(!match) invert=1;
6046   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6047   if(i>(ba[i]-start)>>2) invert=1;
6048   #endif
6049
6050   if(ooo)
6051     if(itype[i+1]==FCOMP)
6052   {
6053     // Write-after-read dependency prevents out of order execution
6054     // First test branch condition, then execute delay slot, then branch
6055     ooo=0;
6056   }
6057
6058   if(ooo) {
6059     fs=get_reg(branch_regs[i].regmap,FSREG);
6060     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6061   }
6062   else {
6063     fs=get_reg(i_regmap,FSREG);
6064   }
6065
6066   // Check cop1 unusable
6067   if(!cop1_usable) {
6068     cs=get_reg(i_regmap,CSREG);
6069     assert(cs>=0);
6070     emit_testimm(cs,0x20000000);
6071     eaddr=(int)out;
6072     emit_jeq(0);
6073     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6074     cop1_usable=1;
6075   }
6076
6077   if(ooo) {
6078     // Out of order execution (delay slot first)
6079     //printf("OOOE\n");
6080     ds_assemble(i+1,i_regs);
6081     int adj;
6082     uint64_t bc_unneeded=branch_regs[i].u;
6083     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6084     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6085     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6086     bc_unneeded|=1;
6087     bc_unneeded_upper|=1;
6088     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6089                   bc_unneeded,bc_unneeded_upper);
6090     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6091     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6092     cc=get_reg(branch_regs[i].regmap,CCREG);
6093     assert(cc==HOST_CCREG);
6094     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6095     assem_debug("cycle count (adj)\n");
6096     if(1) {
6097       int nottaken=0;
6098       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6099       if(1) {
6100         assert(fs>=0);
6101         emit_testimm(fs,0x800000);
6102         if(source[i]&0x10000) // BC1T
6103         {
6104           if(invert){
6105             nottaken=(int)out;
6106             emit_jeq(1);
6107           }else{
6108             add_to_linker((int)out,ba[i],internal);
6109             emit_jne(0);
6110           }
6111         }
6112         else // BC1F
6113           if(invert){
6114             nottaken=(int)out;
6115             emit_jne(1);
6116           }else{
6117             add_to_linker((int)out,ba[i],internal);
6118             emit_jeq(0);
6119           }
6120         {
6121         }
6122       } // if(!only32)
6123           
6124       if(invert) {
6125         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6126         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6127         else if(match) emit_addnop(13);
6128         #endif
6129         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6130         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6131         if(internal)
6132           assem_debug("branch: internal\n");
6133         else
6134           assem_debug("branch: external\n");
6135         if(internal&&is_ds[(ba[i]-start)>>2]) {
6136           ds_assemble_entry(i);
6137         }
6138         else {
6139           add_to_linker((int)out,ba[i],internal);
6140           emit_jmp(0);
6141         }
6142         set_jump_target(nottaken,(int)out);
6143       }
6144
6145       if(adj) {
6146         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6147       }
6148     } // (!unconditional)
6149   } // if(ooo)
6150   else
6151   {
6152     // In-order execution (branch first)
6153     //printf("IOE\n");
6154     int nottaken=0;
6155     if(1) {
6156       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6157       if(1) {
6158         assert(fs>=0);
6159         emit_testimm(fs,0x800000);
6160         if(source[i]&0x10000) // BC1T
6161         {
6162           nottaken=(int)out;
6163           emit_jeq(1);
6164         }
6165         else // BC1F
6166         {
6167           nottaken=(int)out;
6168           emit_jne(1);
6169         }
6170       }
6171     } // if(!unconditional)
6172     int adj;
6173     uint64_t ds_unneeded=branch_regs[i].u;
6174     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6175     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6176     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6177     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6178     ds_unneeded|=1;
6179     ds_unneeded_upper|=1;
6180     // branch taken
6181     //assem_debug("1:\n");
6182     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6183                   ds_unneeded,ds_unneeded_upper);
6184     // load regs
6185     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6186     address_generation(i+1,&branch_regs[i],0);
6187     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6188     ds_assemble(i+1,&branch_regs[i]);
6189     cc=get_reg(branch_regs[i].regmap,CCREG);
6190     if(cc==-1) {
6191       emit_loadreg(CCREG,cc=HOST_CCREG);
6192       // CHECK: Is the following instruction (fall thru) allocated ok?
6193     }
6194     assert(cc==HOST_CCREG);
6195     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6196     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6197     assem_debug("cycle count (adj)\n");
6198     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6199     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6200     if(internal)
6201       assem_debug("branch: internal\n");
6202     else
6203       assem_debug("branch: external\n");
6204     if(internal&&is_ds[(ba[i]-start)>>2]) {
6205       ds_assemble_entry(i);
6206     }
6207     else {
6208       add_to_linker((int)out,ba[i],internal);
6209       emit_jmp(0);
6210     }
6211
6212     // branch not taken
6213     if(1) { // <- FIXME (don't need this)
6214       set_jump_target(nottaken,(int)out);
6215       assem_debug("1:\n");
6216       if(!likely[i]) {
6217         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6218                       ds_unneeded,ds_unneeded_upper);
6219         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6220         address_generation(i+1,&branch_regs[i],0);
6221         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6222         ds_assemble(i+1,&branch_regs[i]);
6223       }
6224       cc=get_reg(branch_regs[i].regmap,CCREG);
6225       if(cc==-1&&!likely[i]) {
6226         // Cycle count isn't in a register, temporarily load it then write it out
6227         emit_loadreg(CCREG,HOST_CCREG);
6228         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6229         int jaddr=(int)out;
6230         emit_jns(0);
6231         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6232         emit_storereg(CCREG,HOST_CCREG);
6233       }
6234       else{
6235         cc=get_reg(i_regmap,CCREG);
6236         assert(cc==HOST_CCREG);
6237         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6238         int jaddr=(int)out;
6239         emit_jns(0);
6240         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6241       }
6242     }
6243   }
6244 }
6245
6246 static void pagespan_assemble(int i,struct regstat *i_regs)
6247 {
6248   int s1l=get_reg(i_regs->regmap,rs1[i]);
6249   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6250   int s2l=get_reg(i_regs->regmap,rs2[i]);
6251   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6252   void *nt_branch=NULL;
6253   int taken=0;
6254   int nottaken=0;
6255   int unconditional=0;
6256   if(rs1[i]==0)
6257   {
6258     s1l=s2l;s1h=s2h;
6259     s2l=s2h=-1;
6260   }
6261   else if(rs2[i]==0)
6262   {
6263     s2l=s2h=-1;
6264   }
6265   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6266     s1h=s2h=-1;
6267   }
6268   int hr=0;
6269   int addr,alt,ntaddr;
6270   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6271   else {
6272     while(hr<HOST_REGS)
6273     {
6274       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6275          (i_regs->regmap[hr]&63)!=rs1[i] &&
6276          (i_regs->regmap[hr]&63)!=rs2[i] )
6277       {
6278         addr=hr++;break;
6279       }
6280       hr++;
6281     }
6282   }
6283   while(hr<HOST_REGS)
6284   {
6285     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6286        (i_regs->regmap[hr]&63)!=rs1[i] &&
6287        (i_regs->regmap[hr]&63)!=rs2[i] )
6288     {
6289       alt=hr++;break;
6290     }
6291     hr++;
6292   }
6293   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6294   {
6295     while(hr<HOST_REGS)
6296     {
6297       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6298          (i_regs->regmap[hr]&63)!=rs1[i] &&
6299          (i_regs->regmap[hr]&63)!=rs2[i] )
6300       {
6301         ntaddr=hr;break;
6302       }
6303       hr++;
6304     }
6305   }
6306   assert(hr<HOST_REGS);
6307   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6308     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6309   }
6310   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6311   if(opcode[i]==2) // J
6312   {
6313     unconditional=1;
6314   }
6315   if(opcode[i]==3) // JAL
6316   {
6317     // TODO: mini_ht
6318     int rt=get_reg(i_regs->regmap,31);
6319     emit_movimm(start+i*4+8,rt);
6320     unconditional=1;
6321   }
6322   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6323   {
6324     emit_mov(s1l,addr);
6325     if(opcode2[i]==9) // JALR
6326     {
6327       int rt=get_reg(i_regs->regmap,rt1[i]);
6328       emit_movimm(start+i*4+8,rt);
6329     }
6330   }
6331   if((opcode[i]&0x3f)==4) // BEQ
6332   {
6333     if(rs1[i]==rs2[i])
6334     {
6335       unconditional=1;
6336     }
6337     else
6338     #ifdef HAVE_CMOV_IMM
6339     if(s1h<0) {
6340       if(s2l>=0) emit_cmp(s1l,s2l);
6341       else emit_test(s1l,s1l);
6342       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6343     }
6344     else
6345     #endif
6346     {
6347       assert(s1l>=0);
6348       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6349       if(s1h>=0) {
6350         if(s2h>=0) emit_cmp(s1h,s2h);
6351         else emit_test(s1h,s1h);
6352         emit_cmovne_reg(alt,addr);
6353       }
6354       if(s2l>=0) emit_cmp(s1l,s2l);
6355       else emit_test(s1l,s1l);
6356       emit_cmovne_reg(alt,addr);
6357     }
6358   }
6359   if((opcode[i]&0x3f)==5) // BNE
6360   {
6361     #ifdef HAVE_CMOV_IMM
6362     if(s1h<0) {
6363       if(s2l>=0) emit_cmp(s1l,s2l);
6364       else emit_test(s1l,s1l);
6365       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6366     }
6367     else
6368     #endif
6369     {
6370       assert(s1l>=0);
6371       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6372       if(s1h>=0) {
6373         if(s2h>=0) emit_cmp(s1h,s2h);
6374         else emit_test(s1h,s1h);
6375         emit_cmovne_reg(alt,addr);
6376       }
6377       if(s2l>=0) emit_cmp(s1l,s2l);
6378       else emit_test(s1l,s1l);
6379       emit_cmovne_reg(alt,addr);
6380     }
6381   }
6382   if((opcode[i]&0x3f)==0x14) // BEQL
6383   {
6384     if(s1h>=0) {
6385       if(s2h>=0) emit_cmp(s1h,s2h);
6386       else emit_test(s1h,s1h);
6387       nottaken=(int)out;
6388       emit_jne(0);
6389     }
6390     if(s2l>=0) emit_cmp(s1l,s2l);
6391     else emit_test(s1l,s1l);
6392     if(nottaken) set_jump_target(nottaken,(int)out);
6393     nottaken=(int)out;
6394     emit_jne(0);
6395   }
6396   if((opcode[i]&0x3f)==0x15) // BNEL
6397   {
6398     if(s1h>=0) {
6399       if(s2h>=0) emit_cmp(s1h,s2h);
6400       else emit_test(s1h,s1h);
6401       taken=(int)out;
6402       emit_jne(0);
6403     }
6404     if(s2l>=0) emit_cmp(s1l,s2l);
6405     else emit_test(s1l,s1l);
6406     nottaken=(int)out;
6407     emit_jeq(0);
6408     if(taken) set_jump_target(taken,(int)out);
6409   }
6410   if((opcode[i]&0x3f)==6) // BLEZ
6411   {
6412     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6413     emit_cmpimm(s1l,1);
6414     if(s1h>=0) emit_mov(addr,ntaddr);
6415     emit_cmovl_reg(alt,addr);
6416     if(s1h>=0) {
6417       emit_test(s1h,s1h);
6418       emit_cmovne_reg(ntaddr,addr);
6419       emit_cmovs_reg(alt,addr);
6420     }
6421   }
6422   if((opcode[i]&0x3f)==7) // BGTZ
6423   {
6424     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6425     emit_cmpimm(s1l,1);
6426     if(s1h>=0) emit_mov(addr,alt);
6427     emit_cmovl_reg(ntaddr,addr);
6428     if(s1h>=0) {
6429       emit_test(s1h,s1h);
6430       emit_cmovne_reg(alt,addr);
6431       emit_cmovs_reg(ntaddr,addr);
6432     }
6433   }
6434   if((opcode[i]&0x3f)==0x16) // BLEZL
6435   {
6436     assert((opcode[i]&0x3f)!=0x16);
6437   }
6438   if((opcode[i]&0x3f)==0x17) // BGTZL
6439   {
6440     assert((opcode[i]&0x3f)!=0x17);
6441   }
6442   assert(opcode[i]!=1); // BLTZ/BGEZ
6443
6444   //FIXME: Check CSREG
6445   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6446     if((source[i]&0x30000)==0) // BC1F
6447     {
6448       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6449       emit_testimm(s1l,0x800000);
6450       emit_cmovne_reg(alt,addr);
6451     }
6452     if((source[i]&0x30000)==0x10000) // BC1T
6453     {
6454       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6455       emit_testimm(s1l,0x800000);
6456       emit_cmovne_reg(alt,addr);
6457     }
6458     if((source[i]&0x30000)==0x20000) // BC1FL
6459     {
6460       emit_testimm(s1l,0x800000);
6461       nottaken=(int)out;
6462       emit_jne(0);
6463     }
6464     if((source[i]&0x30000)==0x30000) // BC1TL
6465     {
6466       emit_testimm(s1l,0x800000);
6467       nottaken=(int)out;
6468       emit_jeq(0);
6469     }
6470   }
6471
6472   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6473   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6474   if(likely[i]||unconditional)
6475   {
6476     emit_movimm(ba[i],HOST_BTREG);
6477   }
6478   else if(addr!=HOST_BTREG)
6479   {
6480     emit_mov(addr,HOST_BTREG);
6481   }
6482   void *branch_addr=out;
6483   emit_jmp(0);
6484   int target_addr=start+i*4+5;
6485   void *stub=out;
6486   void *compiled_target_addr=check_addr(target_addr);
6487   emit_extjump_ds((int)branch_addr,target_addr);
6488   if(compiled_target_addr) {
6489     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6490     add_link(target_addr,stub);
6491   }
6492   else set_jump_target((int)branch_addr,(int)stub);
6493   if(likely[i]) {
6494     // Not-taken path
6495     set_jump_target((int)nottaken,(int)out);
6496     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6497     void *branch_addr=out;
6498     emit_jmp(0);
6499     int target_addr=start+i*4+8;
6500     void *stub=out;
6501     void *compiled_target_addr=check_addr(target_addr);
6502     emit_extjump_ds((int)branch_addr,target_addr);
6503     if(compiled_target_addr) {
6504       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6505       add_link(target_addr,stub);
6506     }
6507     else set_jump_target((int)branch_addr,(int)stub);
6508   }
6509 }
6510
6511 // Assemble the delay slot for the above
6512 static void pagespan_ds()
6513 {
6514   assem_debug("initial delay slot:\n");
6515   u_int vaddr=start+1;
6516   u_int page=get_page(vaddr);
6517   u_int vpage=get_vpage(vaddr);
6518   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6519   do_dirty_stub_ds();
6520   ll_add(jump_in+page,vaddr,(void *)out);
6521   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6522   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6523     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6524   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6525     emit_writeword(HOST_BTREG,(int)&branch_target);
6526   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6527   address_generation(0,&regs[0],regs[0].regmap_entry);
6528   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6529     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6530   cop1_usable=0;
6531   is_delayslot=0;
6532   switch(itype[0]) {
6533     case ALU:
6534       alu_assemble(0,&regs[0]);break;
6535     case IMM16:
6536       imm16_assemble(0,&regs[0]);break;
6537     case SHIFT:
6538       shift_assemble(0,&regs[0]);break;
6539     case SHIFTIMM:
6540       shiftimm_assemble(0,&regs[0]);break;
6541     case LOAD:
6542       load_assemble(0,&regs[0]);break;
6543     case LOADLR:
6544       loadlr_assemble(0,&regs[0]);break;
6545     case STORE:
6546       store_assemble(0,&regs[0]);break;
6547     case STORELR:
6548       storelr_assemble(0,&regs[0]);break;
6549     case COP0:
6550       cop0_assemble(0,&regs[0]);break;
6551     case COP1:
6552       cop1_assemble(0,&regs[0]);break;
6553     case C1LS:
6554       c1ls_assemble(0,&regs[0]);break;
6555     case COP2:
6556       cop2_assemble(0,&regs[0]);break;
6557     case C2LS:
6558       c2ls_assemble(0,&regs[0]);break;
6559     case C2OP:
6560       c2op_assemble(0,&regs[0]);break;
6561     case FCONV:
6562       fconv_assemble(0,&regs[0]);break;
6563     case FLOAT:
6564       float_assemble(0,&regs[0]);break;
6565     case FCOMP:
6566       fcomp_assemble(0,&regs[0]);break;
6567     case MULTDIV:
6568       multdiv_assemble(0,&regs[0]);break;
6569     case MOV:
6570       mov_assemble(0,&regs[0]);break;
6571     case SYSCALL:
6572     case HLECALL:
6573     case INTCALL:
6574     case SPAN:
6575     case UJUMP:
6576     case RJUMP:
6577     case CJUMP:
6578     case SJUMP:
6579     case FJUMP:
6580       printf("Jump in the delay slot.  This is probably a bug.\n");
6581   }
6582   int btaddr=get_reg(regs[0].regmap,BTREG);
6583   if(btaddr<0) {
6584     btaddr=get_reg(regs[0].regmap,-1);
6585     emit_readword((int)&branch_target,btaddr);
6586   }
6587   assert(btaddr!=HOST_CCREG);
6588   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6589 #ifdef HOST_IMM8
6590   emit_movimm(start+4,HOST_TEMPREG);
6591   emit_cmp(btaddr,HOST_TEMPREG);
6592 #else
6593   emit_cmpimm(btaddr,start+4);
6594 #endif
6595   int branch=(int)out;
6596   emit_jeq(0);
6597   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6598   emit_jmp(jump_vaddr_reg[btaddr]);
6599   set_jump_target(branch,(int)out);
6600   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6601   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6602 }
6603
6604 // Basic liveness analysis for MIPS registers
6605 void unneeded_registers(int istart,int iend,int r)
6606 {
6607   int i;
6608   uint64_t u,uu,b,bu;
6609   uint64_t temp_u,temp_uu;
6610   uint64_t tdep;
6611   if(iend==slen-1) {
6612     u=1;uu=1;
6613   }else{
6614     u=unneeded_reg[iend+1];
6615     uu=unneeded_reg_upper[iend+1];
6616     u=1;uu=1;
6617   }
6618   for (i=iend;i>=istart;i--)
6619   {
6620     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6621     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6622     {
6623       // If subroutine call, flag return address as a possible branch target
6624       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6625       
6626       if(ba[i]<start || ba[i]>=(start+slen*4))
6627       {
6628         // Branch out of this block, flush all regs
6629         u=1;
6630         uu=1;
6631         /* Hexagon hack 
6632         if(itype[i]==UJUMP&&rt1[i]==31)
6633         {
6634           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6635         }
6636         if(itype[i]==RJUMP&&rs1[i]==31)
6637         {
6638           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6639         }
6640         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6641           if(itype[i]==UJUMP&&rt1[i]==31)
6642           {
6643             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6644             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6645           }
6646           if(itype[i]==RJUMP&&rs1[i]==31)
6647           {
6648             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6649             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6650           }
6651         }*/
6652         branch_unneeded_reg[i]=u;
6653         branch_unneeded_reg_upper[i]=uu;
6654         // Merge in delay slot
6655         tdep=(~uu>>rt1[i+1])&1;
6656         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6657         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6658         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6659         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6660         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6661         u|=1;uu|=1;
6662         // If branch is "likely" (and conditional)
6663         // then we skip the delay slot on the fall-thru path
6664         if(likely[i]) {
6665           if(i<slen-1) {
6666             u&=unneeded_reg[i+2];
6667             uu&=unneeded_reg_upper[i+2];
6668           }
6669           else
6670           {
6671             u=1;
6672             uu=1;
6673           }
6674         }
6675       }
6676       else
6677       {
6678         // Internal branch, flag target
6679         bt[(ba[i]-start)>>2]=1;
6680         if(ba[i]<=start+i*4) {
6681           // Backward branch
6682           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6683           {
6684             // Unconditional branch
6685             temp_u=1;temp_uu=1;
6686           } else {
6687             // Conditional branch (not taken case)
6688             temp_u=unneeded_reg[i+2];
6689             temp_uu=unneeded_reg_upper[i+2];
6690           }
6691           // Merge in delay slot
6692           tdep=(~temp_uu>>rt1[i+1])&1;
6693           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6694           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6695           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6696           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6697           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6698           temp_u|=1;temp_uu|=1;
6699           // If branch is "likely" (and conditional)
6700           // then we skip the delay slot on the fall-thru path
6701           if(likely[i]) {
6702             if(i<slen-1) {
6703               temp_u&=unneeded_reg[i+2];
6704               temp_uu&=unneeded_reg_upper[i+2];
6705             }
6706             else
6707             {
6708               temp_u=1;
6709               temp_uu=1;
6710             }
6711           }
6712           tdep=(~temp_uu>>rt1[i])&1;
6713           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6714           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6715           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6716           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6717           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6718           temp_u|=1;temp_uu|=1;
6719           unneeded_reg[i]=temp_u;
6720           unneeded_reg_upper[i]=temp_uu;
6721           // Only go three levels deep.  This recursion can take an
6722           // excessive amount of time if there are a lot of nested loops.
6723           if(r<2) {
6724             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6725           }else{
6726             unneeded_reg[(ba[i]-start)>>2]=1;
6727             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6728           }
6729         } /*else*/ if(1) {
6730           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6731           {
6732             // Unconditional branch
6733             u=unneeded_reg[(ba[i]-start)>>2];
6734             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6735             branch_unneeded_reg[i]=u;
6736             branch_unneeded_reg_upper[i]=uu;
6737         //u=1;
6738         //uu=1;
6739         //branch_unneeded_reg[i]=u;
6740         //branch_unneeded_reg_upper[i]=uu;
6741             // Merge in delay slot
6742             tdep=(~uu>>rt1[i+1])&1;
6743             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6744             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6745             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6746             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6747             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6748             u|=1;uu|=1;
6749           } else {
6750             // Conditional branch
6751             b=unneeded_reg[(ba[i]-start)>>2];
6752             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6753             branch_unneeded_reg[i]=b;
6754             branch_unneeded_reg_upper[i]=bu;
6755         //b=1;
6756         //bu=1;
6757         //branch_unneeded_reg[i]=b;
6758         //branch_unneeded_reg_upper[i]=bu;
6759             // Branch delay slot
6760             tdep=(~uu>>rt1[i+1])&1;
6761             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6762             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6763             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6764             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6765             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6766             b|=1;bu|=1;
6767             // If branch is "likely" then we skip the
6768             // delay slot on the fall-thru path
6769             if(likely[i]) {
6770               u=b;
6771               uu=bu;
6772               if(i<slen-1) {
6773                 u&=unneeded_reg[i+2];
6774                 uu&=unneeded_reg_upper[i+2];
6775         //u=1;
6776         //uu=1;
6777               }
6778             } else {
6779               u&=b;
6780               uu&=bu;
6781         //u=1;
6782         //uu=1;
6783             }
6784             if(i<slen-1) {
6785               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6786               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6787         //branch_unneeded_reg[i]=1;
6788         //branch_unneeded_reg_upper[i]=1;
6789             } else {
6790               branch_unneeded_reg[i]=1;
6791               branch_unneeded_reg_upper[i]=1;
6792             }
6793           }
6794         }
6795       }
6796     }
6797     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6798     {
6799       // SYSCALL instruction (software interrupt)
6800       u=1;
6801       uu=1;
6802     }
6803     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6804     {
6805       // ERET instruction (return from interrupt)
6806       u=1;
6807       uu=1;
6808     }
6809     //u=uu=1; // DEBUG
6810     tdep=(~uu>>rt1[i])&1;
6811     // Written registers are unneeded
6812     u|=1LL<<rt1[i];
6813     u|=1LL<<rt2[i];
6814     uu|=1LL<<rt1[i];
6815     uu|=1LL<<rt2[i];
6816     // Accessed registers are needed
6817     u&=~(1LL<<rs1[i]);
6818     u&=~(1LL<<rs2[i]);
6819     uu&=~(1LL<<us1[i]);
6820     uu&=~(1LL<<us2[i]);
6821     // Source-target dependencies
6822     uu&=~(tdep<<dep1[i]);
6823     uu&=~(tdep<<dep2[i]);
6824     // R0 is always unneeded
6825     u|=1;uu|=1;
6826     // Save it
6827     unneeded_reg[i]=u;
6828     unneeded_reg_upper[i]=uu;
6829     /*
6830     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6831     printf("U:");
6832     int r;
6833     for(r=1;r<=CCREG;r++) {
6834       if((unneeded_reg[i]>>r)&1) {
6835         if(r==HIREG) printf(" HI");
6836         else if(r==LOREG) printf(" LO");
6837         else printf(" r%d",r);
6838       }
6839     }
6840     printf(" UU:");
6841     for(r=1;r<=CCREG;r++) {
6842       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6843         if(r==HIREG) printf(" HI");
6844         else if(r==LOREG) printf(" LO");
6845         else printf(" r%d",r);
6846       }
6847     }
6848     printf("\n");*/
6849   }
6850 #ifdef FORCE32
6851   for (i=iend;i>=istart;i--)
6852   {
6853     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6854   }
6855 #endif
6856 }
6857
6858 // Identify registers which are likely to contain 32-bit values
6859 // This is used to predict whether any branches will jump to a
6860 // location with 64-bit values in registers.
6861 static void provisional_32bit()
6862 {
6863   int i,j;
6864   uint64_t is32=1;
6865   uint64_t lastbranch=1;
6866   
6867   for(i=0;i<slen;i++)
6868   {
6869     if(i>0) {
6870       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6871         if(i>1) is32=lastbranch;
6872         else is32=1;
6873       }
6874     }
6875     if(i>1)
6876     {
6877       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6878         if(likely[i-2]) {
6879           if(i>2) is32=lastbranch;
6880           else is32=1;
6881         }
6882       }
6883       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6884       {
6885         if(rs1[i-2]==0||rs2[i-2]==0)
6886         {
6887           if(rs1[i-2]) {
6888             is32|=1LL<<rs1[i-2];
6889           }
6890           if(rs2[i-2]) {
6891             is32|=1LL<<rs2[i-2];
6892           }
6893         }
6894       }
6895     }
6896     // If something jumps here with 64-bit values
6897     // then promote those registers to 64 bits
6898     if(bt[i])
6899     {
6900       uint64_t temp_is32=is32;
6901       for(j=i-1;j>=0;j--)
6902       {
6903         if(ba[j]==start+i*4) 
6904           //temp_is32&=branch_regs[j].is32;
6905           temp_is32&=p32[j];
6906       }
6907       for(j=i;j<slen;j++)
6908       {
6909         if(ba[j]==start+i*4) 
6910           temp_is32=1;
6911       }
6912       is32=temp_is32;
6913     }
6914     int type=itype[i];
6915     int op=opcode[i];
6916     int op2=opcode2[i];
6917     int rt=rt1[i];
6918     int s1=rs1[i];
6919     int s2=rs2[i];
6920     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6921       // Branches don't write registers, consider the delay slot instead.
6922       type=itype[i+1];
6923       op=opcode[i+1];
6924       op2=opcode2[i+1];
6925       rt=rt1[i+1];
6926       s1=rs1[i+1];
6927       s2=rs2[i+1];
6928       lastbranch=is32;
6929     }
6930     switch(type) {
6931       case LOAD:
6932         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6933            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6934           is32&=~(1LL<<rt);
6935         else
6936           is32|=1LL<<rt;
6937         break;
6938       case STORE:
6939       case STORELR:
6940         break;
6941       case LOADLR:
6942         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6943         if(op==0x22) is32|=1LL<<rt; // LWL
6944         break;
6945       case IMM16:
6946         if (op==0x08||op==0x09|| // ADDI/ADDIU
6947             op==0x0a||op==0x0b|| // SLTI/SLTIU
6948             op==0x0c|| // ANDI
6949             op==0x0f)  // LUI
6950         {
6951           is32|=1LL<<rt;
6952         }
6953         if(op==0x18||op==0x19) { // DADDI/DADDIU
6954           is32&=~(1LL<<rt);
6955           //if(imm[i]==0)
6956           //  is32|=((is32>>s1)&1LL)<<rt;
6957         }
6958         if(op==0x0d||op==0x0e) { // ORI/XORI
6959           uint64_t sr=((is32>>s1)&1LL);
6960           is32&=~(1LL<<rt);
6961           is32|=sr<<rt;
6962         }
6963         break;
6964       case UJUMP:
6965         break;
6966       case RJUMP:
6967         break;
6968       case CJUMP:
6969         break;
6970       case SJUMP:
6971         break;
6972       case FJUMP:
6973         break;
6974       case ALU:
6975         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6976           is32|=1LL<<rt;
6977         }
6978         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6979           is32|=1LL<<rt;
6980         }
6981         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6982           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6983           is32&=~(1LL<<rt);
6984           is32|=sr<<rt;
6985         }
6986         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6987           if(s1==0&&s2==0) {
6988             is32|=1LL<<rt;
6989           }
6990           else if(s2==0) {
6991             uint64_t sr=((is32>>s1)&1LL);
6992             is32&=~(1LL<<rt);
6993             is32|=sr<<rt;
6994           }
6995           else if(s1==0) {
6996             uint64_t sr=((is32>>s2)&1LL);
6997             is32&=~(1LL<<rt);
6998             is32|=sr<<rt;
6999           }
7000           else {
7001             is32&=~(1LL<<rt);
7002           }
7003         }
7004         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7005           if(s1==0&&s2==0) {
7006             is32|=1LL<<rt;
7007           }
7008           else if(s2==0) {
7009             uint64_t sr=((is32>>s1)&1LL);
7010             is32&=~(1LL<<rt);
7011             is32|=sr<<rt;
7012           }
7013           else {
7014             is32&=~(1LL<<rt);
7015           }
7016         }
7017         break;
7018       case MULTDIV:
7019         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7020           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7021         }
7022         else {
7023           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7024         }
7025         break;
7026       case MOV:
7027         {
7028           uint64_t sr=((is32>>s1)&1LL);
7029           is32&=~(1LL<<rt);
7030           is32|=sr<<rt;
7031         }
7032         break;
7033       case SHIFT:
7034         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7035         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7036         break;
7037       case SHIFTIMM:
7038         is32|=1LL<<rt;
7039         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7040         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7041         break;
7042       case COP0:
7043         if(op2==0) is32|=1LL<<rt; // MFC0
7044         break;
7045       case COP1:
7046       case COP2:
7047         if(op2==0) is32|=1LL<<rt; // MFC1
7048         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7049         if(op2==2) is32|=1LL<<rt; // CFC1
7050         break;
7051       case C1LS:
7052       case C2LS:
7053         break;
7054       case FLOAT:
7055       case FCONV:
7056         break;
7057       case FCOMP:
7058         break;
7059       case C2OP:
7060       case SYSCALL:
7061       case HLECALL:
7062         break;
7063       default:
7064         break;
7065     }
7066     is32|=1;
7067     p32[i]=is32;
7068
7069     if(i>0)
7070     {
7071       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7072       {
7073         if(rt1[i-1]==31) // JAL/JALR
7074         {
7075           // Subroutine call will return here, don't alloc any registers
7076           is32=1;
7077         }
7078         else if(i+1<slen)
7079         {
7080           // Internal branch will jump here, match registers to caller
7081           is32=0x3FFFFFFFFLL;
7082         }
7083       }
7084     }
7085   }
7086 }
7087
7088 // Identify registers which may be assumed to contain 32-bit values
7089 // and where optimizations will rely on this.
7090 // This is used to determine whether backward branches can safely
7091 // jump to a location with 64-bit values in registers.
7092 static void provisional_r32()
7093 {
7094   u_int r32=0;
7095   int i;
7096   
7097   for (i=slen-1;i>=0;i--)
7098   {
7099     int hr;
7100     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7101     {
7102       if(ba[i]<start || ba[i]>=(start+slen*4))
7103       {
7104         // Branch out of this block, don't need anything
7105         r32=0;
7106       }
7107       else
7108       {
7109         // Internal branch
7110         // Need whatever matches the target
7111         // (and doesn't get overwritten by the delay slot instruction)
7112         r32=0;
7113         int t=(ba[i]-start)>>2;
7114         if(ba[i]>start+i*4) {
7115           // Forward branch
7116           //if(!(requires_32bit[t]&~regs[i].was32))
7117           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7118           if(!(pr32[t]&~regs[i].was32))
7119             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7120         }else{
7121           // Backward branch
7122           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7123             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7124         }
7125       }
7126       // Conditional branch may need registers for following instructions
7127       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7128       {
7129         if(i<slen-2) {
7130           //r32|=requires_32bit[i+2];
7131           r32|=pr32[i+2];
7132           r32&=regs[i].was32;
7133           // Mark this address as a branch target since it may be called
7134           // upon return from interrupt
7135           //bt[i+2]=1;
7136         }
7137       }
7138       // Merge in delay slot
7139       if(!likely[i]) {
7140         // These are overwritten unless the branch is "likely"
7141         // and the delay slot is nullified if not taken
7142         r32&=~(1LL<<rt1[i+1]);
7143         r32&=~(1LL<<rt2[i+1]);
7144       }
7145       // Assume these are needed (delay slot)
7146       if(us1[i+1]>0)
7147       {
7148         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7149       }
7150       if(us2[i+1]>0)
7151       {
7152         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7153       }
7154       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7155       {
7156         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7157       }
7158       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7159       {
7160         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7161       }
7162     }
7163     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7164     {
7165       // SYSCALL instruction (software interrupt)
7166       r32=0;
7167     }
7168     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7169     {
7170       // ERET instruction (return from interrupt)
7171       r32=0;
7172     }
7173     // Check 32 bits
7174     r32&=~(1LL<<rt1[i]);
7175     r32&=~(1LL<<rt2[i]);
7176     if(us1[i]>0)
7177     {
7178       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7179     }
7180     if(us2[i]>0)
7181     {
7182       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7183     }
7184     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7185     {
7186       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7187     }
7188     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7189     {
7190       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7191     }
7192     //requires_32bit[i]=r32;
7193     pr32[i]=r32;
7194     
7195     // Dirty registers which are 32-bit, require 32-bit input
7196     // as they will be written as 32-bit values
7197     for(hr=0;hr<HOST_REGS;hr++)
7198     {
7199       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7200         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7201           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7202           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7203           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7204         }
7205       }
7206     }
7207   }
7208 }
7209
7210 // Write back dirty registers as soon as we will no longer modify them,
7211 // so that we don't end up with lots of writes at the branches.
7212 void clean_registers(int istart,int iend,int wr)
7213 {
7214   int i;
7215   int r;
7216   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7217   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7218   if(iend==slen-1) {
7219     will_dirty_i=will_dirty_next=0;
7220     wont_dirty_i=wont_dirty_next=0;
7221   }else{
7222     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7223     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7224   }
7225   for (i=iend;i>=istart;i--)
7226   {
7227     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7228     {
7229       if(ba[i]<start || ba[i]>=(start+slen*4))
7230       {
7231         // Branch out of this block, flush all regs
7232         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7233         {
7234           // Unconditional branch
7235           will_dirty_i=0;
7236           wont_dirty_i=0;
7237           // Merge in delay slot (will dirty)
7238           for(r=0;r<HOST_REGS;r++) {
7239             if(r!=EXCLUDE_REG) {
7240               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7241               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7242               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7243               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7244               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7245               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7246               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7247               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7248               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7249               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7250               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7251               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7252               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7253               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7254             }
7255           }
7256         }
7257         else
7258         {
7259           // Conditional branch
7260           will_dirty_i=0;
7261           wont_dirty_i=wont_dirty_next;
7262           // Merge in delay slot (will dirty)
7263           for(r=0;r<HOST_REGS;r++) {
7264             if(r!=EXCLUDE_REG) {
7265               if(!likely[i]) {
7266                 // Might not dirty if likely branch is not taken
7267                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7268                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7269                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7270                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7271                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7272                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7273                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7274                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7275                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7276                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7277                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7278                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7279                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7280                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7281               }
7282             }
7283           }
7284         }
7285         // Merge in delay slot (wont dirty)
7286         for(r=0;r<HOST_REGS;r++) {
7287           if(r!=EXCLUDE_REG) {
7288             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7289             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7290             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7291             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7292             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7293             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7294             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7295             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7296             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7297             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7298           }
7299         }
7300         if(wr) {
7301           #ifndef DESTRUCTIVE_WRITEBACK
7302           branch_regs[i].dirty&=wont_dirty_i;
7303           #endif
7304           branch_regs[i].dirty|=will_dirty_i;
7305         }
7306       }
7307       else
7308       {
7309         // Internal branch
7310         if(ba[i]<=start+i*4) {
7311           // Backward branch
7312           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7313           {
7314             // Unconditional branch
7315             temp_will_dirty=0;
7316             temp_wont_dirty=0;
7317             // Merge in delay slot (will dirty)
7318             for(r=0;r<HOST_REGS;r++) {
7319               if(r!=EXCLUDE_REG) {
7320                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7321                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7322                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7323                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7324                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7325                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7326                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7327                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7328                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7329                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7330                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7331                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7332                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7333                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7334               }
7335             }
7336           } else {
7337             // Conditional branch (not taken case)
7338             temp_will_dirty=will_dirty_next;
7339             temp_wont_dirty=wont_dirty_next;
7340             // Merge in delay slot (will dirty)
7341             for(r=0;r<HOST_REGS;r++) {
7342               if(r!=EXCLUDE_REG) {
7343                 if(!likely[i]) {
7344                   // Will not dirty if likely branch is not taken
7345                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7346                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7347                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7348                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7349                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7350                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7351                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7352                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7353                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7354                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7355                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7356                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7357                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7358                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7359                 }
7360               }
7361             }
7362           }
7363           // Merge in delay slot (wont dirty)
7364           for(r=0;r<HOST_REGS;r++) {
7365             if(r!=EXCLUDE_REG) {
7366               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7367               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7368               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7369               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7370               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7371               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7372               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7373               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7374               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7375               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7376             }
7377           }
7378           // Deal with changed mappings
7379           if(i<iend) {
7380             for(r=0;r<HOST_REGS;r++) {
7381               if(r!=EXCLUDE_REG) {
7382                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7383                   temp_will_dirty&=~(1<<r);
7384                   temp_wont_dirty&=~(1<<r);
7385                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7386                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7387                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7388                   } else {
7389                     temp_will_dirty|=1<<r;
7390                     temp_wont_dirty|=1<<r;
7391                   }
7392                 }
7393               }
7394             }
7395           }
7396           if(wr) {
7397             will_dirty[i]=temp_will_dirty;
7398             wont_dirty[i]=temp_wont_dirty;
7399             clean_registers((ba[i]-start)>>2,i-1,0);
7400           }else{
7401             // Limit recursion.  It can take an excessive amount
7402             // of time if there are a lot of nested loops.
7403             will_dirty[(ba[i]-start)>>2]=0;
7404             wont_dirty[(ba[i]-start)>>2]=-1;
7405           }
7406         }
7407         /*else*/ if(1)
7408         {
7409           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7410           {
7411             // Unconditional branch
7412             will_dirty_i=0;
7413             wont_dirty_i=0;
7414           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7415             for(r=0;r<HOST_REGS;r++) {
7416               if(r!=EXCLUDE_REG) {
7417                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7418                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7419                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7420                 }
7421               }
7422             }
7423           //}
7424             // Merge in delay slot
7425             for(r=0;r<HOST_REGS;r++) {
7426               if(r!=EXCLUDE_REG) {
7427                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7428                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7429                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7430                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7431                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7432                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7433                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7434                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7435                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7436                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7437                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7438                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7439                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7440                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7441               }
7442             }
7443           } else {
7444             // Conditional branch
7445             will_dirty_i=will_dirty_next;
7446             wont_dirty_i=wont_dirty_next;
7447           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7448             for(r=0;r<HOST_REGS;r++) {
7449               if(r!=EXCLUDE_REG) {
7450                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7451                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7452                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7453                 }
7454                 else
7455                 {
7456                   will_dirty_i&=~(1<<r);
7457                 }
7458                 // Treat delay slot as part of branch too
7459                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7460                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7461                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7462                 }
7463                 else
7464                 {
7465                   will_dirty[i+1]&=~(1<<r);
7466                 }*/
7467               }
7468             }
7469           //}
7470             // Merge in delay slot
7471             for(r=0;r<HOST_REGS;r++) {
7472               if(r!=EXCLUDE_REG) {
7473                 if(!likely[i]) {
7474                   // Might not dirty if likely branch is not taken
7475                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7476                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7477                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7478                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7479                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7480                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7481                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7482                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7483                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7484                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7485                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7486                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7487                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7488                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7489                 }
7490               }
7491             }
7492           }
7493           // Merge in delay slot
7494           for(r=0;r<HOST_REGS;r++) {
7495             if(r!=EXCLUDE_REG) {
7496               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7497               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7498               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7499               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7500               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7501               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7502               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7503               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7504               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7505               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7506             }
7507           }
7508           if(wr) {
7509             #ifndef DESTRUCTIVE_WRITEBACK
7510             branch_regs[i].dirty&=wont_dirty_i;
7511             #endif
7512             branch_regs[i].dirty|=will_dirty_i;
7513           }
7514         }
7515       }
7516     }
7517     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7518     {
7519       // SYSCALL instruction (software interrupt)
7520       will_dirty_i=0;
7521       wont_dirty_i=0;
7522     }
7523     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7524     {
7525       // ERET instruction (return from interrupt)
7526       will_dirty_i=0;
7527       wont_dirty_i=0;
7528     }
7529     will_dirty_next=will_dirty_i;
7530     wont_dirty_next=wont_dirty_i;
7531     for(r=0;r<HOST_REGS;r++) {
7532       if(r!=EXCLUDE_REG) {
7533         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7534         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7535         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7536         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7537         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7538         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7539         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7540         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7541         if(i>istart) {
7542           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7543           {
7544             // Don't store a register immediately after writing it,
7545             // may prevent dual-issue.
7546             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7547             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7548           }
7549         }
7550       }
7551     }
7552     // Save it
7553     will_dirty[i]=will_dirty_i;
7554     wont_dirty[i]=wont_dirty_i;
7555     // Mark registers that won't be dirtied as not dirty
7556     if(wr) {
7557       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7558       for(r=0;r<HOST_REGS;r++) {
7559         if((will_dirty_i>>r)&1) {
7560           printf(" r%d",r);
7561         }
7562       }
7563       printf("\n");*/
7564
7565       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7566         regs[i].dirty|=will_dirty_i;
7567         #ifndef DESTRUCTIVE_WRITEBACK
7568         regs[i].dirty&=wont_dirty_i;
7569         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7570         {
7571           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7572             for(r=0;r<HOST_REGS;r++) {
7573               if(r!=EXCLUDE_REG) {
7574                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7575                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7576                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7577               }
7578             }
7579           }
7580         }
7581         else
7582         {
7583           if(i<iend) {
7584             for(r=0;r<HOST_REGS;r++) {
7585               if(r!=EXCLUDE_REG) {
7586                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7587                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7588                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7589               }
7590             }
7591           }
7592         }
7593         #endif
7594       //}
7595     }
7596     // Deal with changed mappings
7597     temp_will_dirty=will_dirty_i;
7598     temp_wont_dirty=wont_dirty_i;
7599     for(r=0;r<HOST_REGS;r++) {
7600       if(r!=EXCLUDE_REG) {
7601         int nr;
7602         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7603           if(wr) {
7604             #ifndef DESTRUCTIVE_WRITEBACK
7605             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7606             #endif
7607             regs[i].wasdirty|=will_dirty_i&(1<<r);
7608           }
7609         }
7610         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7611           // Register moved to a different register
7612           will_dirty_i&=~(1<<r);
7613           wont_dirty_i&=~(1<<r);
7614           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7615           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7616           if(wr) {
7617             #ifndef DESTRUCTIVE_WRITEBACK
7618             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7619             #endif
7620             regs[i].wasdirty|=will_dirty_i&(1<<r);
7621           }
7622         }
7623         else {
7624           will_dirty_i&=~(1<<r);
7625           wont_dirty_i&=~(1<<r);
7626           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7627             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7628             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7629           } else {
7630             wont_dirty_i|=1<<r;
7631             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7632           }
7633         }
7634       }
7635     }
7636   }
7637 }
7638
7639   /* disassembly */
7640 void disassemble_inst(int i)
7641 {
7642     if (bt[i]) printf("*"); else printf(" ");
7643     switch(itype[i]) {
7644       case UJUMP:
7645         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7646       case CJUMP:
7647         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7648       case SJUMP:
7649         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7650       case FJUMP:
7651         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7652       case RJUMP:
7653         if (opcode[i]==0x9&&rt1[i]!=31)
7654           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7655         else
7656           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7657         break;
7658       case SPAN:
7659         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7660       case IMM16:
7661         if(opcode[i]==0xf) //LUI
7662           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7663         else
7664           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7665         break;
7666       case LOAD:
7667       case LOADLR:
7668         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7669         break;
7670       case STORE:
7671       case STORELR:
7672         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7673         break;
7674       case ALU:
7675       case SHIFT:
7676         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7677         break;
7678       case MULTDIV:
7679         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7680         break;
7681       case SHIFTIMM:
7682         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7683         break;
7684       case MOV:
7685         if((opcode2[i]&0x1d)==0x10)
7686           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7687         else if((opcode2[i]&0x1d)==0x11)
7688           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7689         else
7690           printf (" %x: %s\n",start+i*4,insn[i]);
7691         break;
7692       case COP0:
7693         if(opcode2[i]==0)
7694           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7695         else if(opcode2[i]==4)
7696           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7697         else printf (" %x: %s\n",start+i*4,insn[i]);
7698         break;
7699       case COP1:
7700         if(opcode2[i]<3)
7701           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7702         else if(opcode2[i]>3)
7703           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7704         else printf (" %x: %s\n",start+i*4,insn[i]);
7705         break;
7706       case COP2:
7707         if(opcode2[i]<3)
7708           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7709         else if(opcode2[i]>3)
7710           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7711         else printf (" %x: %s\n",start+i*4,insn[i]);
7712         break;
7713       case C1LS:
7714         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7715         break;
7716       case C2LS:
7717         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7718         break;
7719       case INTCALL:
7720         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7721         break;
7722       default:
7723         //printf (" %s %8x\n",insn[i],source[i]);
7724         printf (" %x: %s\n",start+i*4,insn[i]);
7725     }
7726 }
7727
7728 void new_dynarec_init()
7729 {
7730   printf("Init new dynarec\n");
7731   out=(u_char *)BASE_ADDR;
7732   if (mmap (out, 1<<TARGET_SIZE_2,
7733             PROT_READ | PROT_WRITE | PROT_EXEC,
7734             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7735             -1, 0) <= 0) {printf("mmap() failed\n");}
7736 #ifdef MUPEN64
7737   rdword=&readmem_dword;
7738   fake_pc.f.r.rs=&readmem_dword;
7739   fake_pc.f.r.rt=&readmem_dword;
7740   fake_pc.f.r.rd=&readmem_dword;
7741 #endif
7742   int n;
7743   for(n=0x80000;n<0x80800;n++)
7744     invalid_code[n]=1;
7745   for(n=0;n<65536;n++)
7746     hash_table[n][0]=hash_table[n][2]=-1;
7747   memset(mini_ht,-1,sizeof(mini_ht));
7748   memset(restore_candidate,0,sizeof(restore_candidate));
7749   copy=shadow;
7750   expirep=16384; // Expiry pointer, +2 blocks
7751   pending_exception=0;
7752   literalcount=0;
7753 #ifdef HOST_IMM8
7754   // Copy this into local area so we don't have to put it in every literal pool
7755   invc_ptr=invalid_code;
7756 #endif
7757   stop_after_jal=0;
7758   // TLB
7759   using_tlb=0;
7760   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7761     memory_map[n]=-1;
7762   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7763     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7764   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7765     memory_map[n]=-1;
7766 #ifdef MUPEN64
7767   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7768     writemem[n] = write_nomem_new;
7769     writememb[n] = write_nomemb_new;
7770     writememh[n] = write_nomemh_new;
7771 #ifndef FORCE32
7772     writememd[n] = write_nomemd_new;
7773 #endif
7774     readmem[n] = read_nomem_new;
7775     readmemb[n] = read_nomemb_new;
7776     readmemh[n] = read_nomemh_new;
7777 #ifndef FORCE32
7778     readmemd[n] = read_nomemd_new;
7779 #endif
7780   }
7781   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7782     writemem[n] = write_rdram_new;
7783     writememb[n] = write_rdramb_new;
7784     writememh[n] = write_rdramh_new;
7785 #ifndef FORCE32
7786     writememd[n] = write_rdramd_new;
7787 #endif
7788   }
7789   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7790     writemem[n] = write_nomem_new;
7791     writememb[n] = write_nomemb_new;
7792     writememh[n] = write_nomemh_new;
7793 #ifndef FORCE32
7794     writememd[n] = write_nomemd_new;
7795 #endif
7796     readmem[n] = read_nomem_new;
7797     readmemb[n] = read_nomemb_new;
7798     readmemh[n] = read_nomemh_new;
7799 #ifndef FORCE32
7800     readmemd[n] = read_nomemd_new;
7801 #endif
7802   }
7803 #endif
7804   tlb_hacks();
7805   arch_init();
7806 }
7807
7808 void new_dynarec_cleanup()
7809 {
7810   int n;
7811   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7812   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7813   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7814   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7815   #ifdef ROM_COPY
7816   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7817   #endif
7818 }
7819
7820 int new_recompile_block(int addr)
7821 {
7822 /*
7823   if(addr==0x800cd050) {
7824     int block;
7825     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7826     int n;
7827     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7828   }
7829 */
7830   //if(Count==365117028) tracedebug=1;
7831   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7832   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7833   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7834   //if(debug) 
7835   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7836   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7837   /*if(Count>=312978186) {
7838     rlist();
7839   }*/
7840   //rlist();
7841   start = (u_int)addr&~3;
7842   //assert(((u_int)addr&1)==0);
7843 #ifdef PCSX
7844   if (Config.HLE && start == 0x80001000) // hlecall
7845   {
7846     // XXX: is this enough? Maybe check hleSoftCall?
7847     u_int beginning=(u_int)out;
7848     u_int page=get_page(start);
7849     invalid_code[start>>12]=0;
7850     emit_movimm(start,0);
7851     emit_writeword(0,(int)&pcaddr);
7852     emit_jmp((int)new_dyna_leave);
7853 #ifdef __arm__
7854     __clear_cache((void *)beginning,out);
7855 #endif
7856     ll_add(jump_in+page,start,(void *)beginning);
7857     return 0;
7858   }
7859   else if ((u_int)addr < 0x00200000 ||
7860     (0xa0000000 <= addr && addr < 0xa0200000)) {
7861     // used for BIOS calls mostly?
7862     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7863     pagelimit = (addr&0xa0000000)|0x00200000;
7864   }
7865   else if (!Config.HLE && (
7866 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7867     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7868     // BIOS
7869     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7870     pagelimit = (addr&0xfff00000)|0x80000;
7871   }
7872   else
7873 #endif
7874 #ifdef MUPEN64
7875   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7876     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7877     pagelimit = 0xa4001000;
7878   }
7879   else
7880 #endif
7881   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7882     source = (u_int *)((u_int)rdram+start-0x80000000);
7883     pagelimit = 0x80000000+RAM_SIZE;
7884   }
7885 #ifndef DISABLE_TLB
7886   else if ((signed int)addr >= (signed int)0xC0000000) {
7887     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7888     //if(tlb_LUT_r[start>>12])
7889       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7890     if((signed int)memory_map[start>>12]>=0) {
7891       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7892       pagelimit=(start+4096)&0xFFFFF000;
7893       int map=memory_map[start>>12];
7894       int i;
7895       for(i=0;i<5;i++) {
7896         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7897         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7898       }
7899       assem_debug("pagelimit=%x\n",pagelimit);
7900       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7901     }
7902     else {
7903       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7904       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7905       return -1; // Caller will invoke exception handler
7906     }
7907     //printf("source= %x\n",(int)source);
7908   }
7909 #endif
7910   else {
7911     printf("Compile at bogus memory address: %x \n", (int)addr);
7912     exit(1);
7913   }
7914
7915   /* Pass 1: disassemble */
7916   /* Pass 2: register dependencies, branch targets */
7917   /* Pass 3: register allocation */
7918   /* Pass 4: branch dependencies */
7919   /* Pass 5: pre-alloc */
7920   /* Pass 6: optimize clean/dirty state */
7921   /* Pass 7: flag 32-bit registers */
7922   /* Pass 8: assembly */
7923   /* Pass 9: linker */
7924   /* Pass 10: garbage collection / free memory */
7925
7926   int i,j;
7927   int done=0;
7928   unsigned int type,op,op2;
7929
7930   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7931   
7932   /* Pass 1 disassembly */
7933
7934   for(i=0;!done;i++) {
7935     bt[i]=0;likely[i]=0;op2=0;
7936     opcode[i]=op=source[i]>>26;
7937     switch(op)
7938     {
7939       case 0x00: strcpy(insn[i],"special"); type=NI;
7940         op2=source[i]&0x3f;
7941         switch(op2)
7942         {
7943           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7944           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7945           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7946           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7947           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7948           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7949           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7950           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7951           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7952           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7953           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7954           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7955           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7956           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7957           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7958           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7959           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7960           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7961           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7962           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7963           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7964           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7965           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7966           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7967           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7968           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7969           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7970           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7971           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7972           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7973           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7974           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7975           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7976           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7977           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7978           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7979           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7980           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7981           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7982           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7983           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7984           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7985           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7986           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7987           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7988           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7989           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7990           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7991           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7992           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7993           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7994           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7995         }
7996         break;
7997       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7998         op2=(source[i]>>16)&0x1f;
7999         switch(op2)
8000         {
8001           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8002           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8003           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8004           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8005           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8006           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8007           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8008           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8009           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8010           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8011           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8012           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8013           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8014           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8015         }
8016         break;
8017       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8018       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8019       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8020       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8021       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8022       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8023       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8024       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8025       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8026       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8027       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8028       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8029       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8030       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8031       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8032         op2=(source[i]>>21)&0x1f;
8033         switch(op2)
8034         {
8035           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8036           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8037           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8038           switch(source[i]&0x3f)
8039           {
8040             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8041             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8042             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8043             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8044 #ifdef PCSX
8045             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8046 #else
8047             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8048 #endif
8049           }
8050         }
8051         break;
8052       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8053         op2=(source[i]>>21)&0x1f;
8054         switch(op2)
8055         {
8056           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8057           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8058           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8059           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8060           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8061           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8062           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8063           switch((source[i]>>16)&0x3)
8064           {
8065             case 0x00: strcpy(insn[i],"BC1F"); break;
8066             case 0x01: strcpy(insn[i],"BC1T"); break;
8067             case 0x02: strcpy(insn[i],"BC1FL"); break;
8068             case 0x03: strcpy(insn[i],"BC1TL"); break;
8069           }
8070           break;
8071           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8072           switch(source[i]&0x3f)
8073           {
8074             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8075             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8076             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8077             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8078             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8079             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8080             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8081             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8082             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8083             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8084             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8085             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8086             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8087             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8088             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8089             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8090             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8091             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8092             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8093             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8094             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8095             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8096             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8097             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8098             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8099             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8100             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8101             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8102             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8103             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8104             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8105             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8106             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8107             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8108             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8109           }
8110           break;
8111           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8112           switch(source[i]&0x3f)
8113           {
8114             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8115             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8116             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8117             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8118             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8119             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8120             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8121             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8122             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8123             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8124             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8125             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8126             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8127             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8128             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8129             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8130             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8131             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8132             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8133             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8134             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8135             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8136             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8137             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8138             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8139             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8140             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8141             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8142             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8143             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8144             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8145             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8146             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8147             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8148             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8149           }
8150           break;
8151           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8152           switch(source[i]&0x3f)
8153           {
8154             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8155             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8156           }
8157           break;
8158           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8159           switch(source[i]&0x3f)
8160           {
8161             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8162             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8163           }
8164           break;
8165         }
8166         break;
8167 #ifndef FORCE32
8168       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8169       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8170       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8171       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8172       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8173       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8174       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8175       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8176 #endif
8177       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8178       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8179       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8180       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8181       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8182       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8183       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8184       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8185       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8186       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8187       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8188       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8189 #ifndef FORCE32
8190       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8191       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8192 #endif
8193       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8194       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8195       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8196       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8197 #ifndef FORCE32
8198       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8199       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8200       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8201 #endif
8202       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8203       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8204 #ifndef FORCE32
8205       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8206       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8207       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8208 #endif
8209 #ifdef PCSX
8210       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8211         // note: COP MIPS-1 encoding differs from MIPS32
8212         op2=(source[i]>>21)&0x1f;
8213         if (source[i]&0x3f) {
8214           if (gte_handlers[source[i]&0x3f]!=NULL) {
8215             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8216             type=C2OP;
8217           }
8218         }
8219         else switch(op2)
8220         {
8221           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8222           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8223           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8224           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8225         }
8226         break;
8227       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8228       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8229       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8230 #endif
8231       default: strcpy(insn[i],"???"); type=NI;
8232         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8233         break;
8234     }
8235 #ifdef PCSX
8236     /* detect branch in delay slot early */
8237     if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8238       opcode[i+1]=source[i+1]>>26;
8239       opcode2[i+1]=source[i+1]&0x3f;
8240       if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8241         printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8242         // don't handle first branch and call interpreter if it's hit
8243         type=INTCALL;
8244       }
8245     }
8246 #endif
8247     itype[i]=type;
8248     opcode2[i]=op2;
8249     /* Get registers/immediates */
8250     lt1[i]=0;
8251     us1[i]=0;
8252     us2[i]=0;
8253     dep1[i]=0;
8254     dep2[i]=0;
8255     switch(type) {
8256       case LOAD:
8257         rs1[i]=(source[i]>>21)&0x1f;
8258         rs2[i]=0;
8259         rt1[i]=(source[i]>>16)&0x1f;
8260         rt2[i]=0;
8261         imm[i]=(short)source[i];
8262         break;
8263       case STORE:
8264       case STORELR:
8265         rs1[i]=(source[i]>>21)&0x1f;
8266         rs2[i]=(source[i]>>16)&0x1f;
8267         rt1[i]=0;
8268         rt2[i]=0;
8269         imm[i]=(short)source[i];
8270         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8271         break;
8272       case LOADLR:
8273         // LWL/LWR only load part of the register,
8274         // therefore the target register must be treated as a source too
8275         rs1[i]=(source[i]>>21)&0x1f;
8276         rs2[i]=(source[i]>>16)&0x1f;
8277         rt1[i]=(source[i]>>16)&0x1f;
8278         rt2[i]=0;
8279         imm[i]=(short)source[i];
8280         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8281         if(op==0x26) dep1[i]=rt1[i]; // LWR
8282         break;
8283       case IMM16:
8284         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8285         else rs1[i]=(source[i]>>21)&0x1f;
8286         rs2[i]=0;
8287         rt1[i]=(source[i]>>16)&0x1f;
8288         rt2[i]=0;
8289         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8290           imm[i]=(unsigned short)source[i];
8291         }else{
8292           imm[i]=(short)source[i];
8293         }
8294         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8295         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8296         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8297         break;
8298       case UJUMP:
8299         rs1[i]=0;
8300         rs2[i]=0;
8301         rt1[i]=0;
8302         rt2[i]=0;
8303         // The JAL instruction writes to r31.
8304         if (op&1) {
8305           rt1[i]=31;
8306         }
8307         rs2[i]=CCREG;
8308         break;
8309       case RJUMP:
8310         rs1[i]=(source[i]>>21)&0x1f;
8311         rs2[i]=0;
8312         rt1[i]=0;
8313         rt2[i]=0;
8314         // The JALR instruction writes to rd.
8315         if (op2&1) {
8316           rt1[i]=(source[i]>>11)&0x1f;
8317         }
8318         rs2[i]=CCREG;
8319         break;
8320       case CJUMP:
8321         rs1[i]=(source[i]>>21)&0x1f;
8322         rs2[i]=(source[i]>>16)&0x1f;
8323         rt1[i]=0;
8324         rt2[i]=0;
8325         if(op&2) { // BGTZ/BLEZ
8326           rs2[i]=0;
8327         }
8328         us1[i]=rs1[i];
8329         us2[i]=rs2[i];
8330         likely[i]=op>>4;
8331         break;
8332       case SJUMP:
8333         rs1[i]=(source[i]>>21)&0x1f;
8334         rs2[i]=CCREG;
8335         rt1[i]=0;
8336         rt2[i]=0;
8337         us1[i]=rs1[i];
8338         if(op2&0x10) { // BxxAL
8339           rt1[i]=31;
8340           // NOTE: If the branch is not taken, r31 is still overwritten
8341         }
8342         likely[i]=(op2&2)>>1;
8343         break;
8344       case FJUMP:
8345         rs1[i]=FSREG;
8346         rs2[i]=CSREG;
8347         rt1[i]=0;
8348         rt2[i]=0;
8349         likely[i]=((source[i])>>17)&1;
8350         break;
8351       case ALU:
8352         rs1[i]=(source[i]>>21)&0x1f; // source
8353         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8354         rt1[i]=(source[i]>>11)&0x1f; // destination
8355         rt2[i]=0;
8356         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8357           us1[i]=rs1[i];us2[i]=rs2[i];
8358         }
8359         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8360           dep1[i]=rs1[i];dep2[i]=rs2[i];
8361         }
8362         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8363           dep1[i]=rs1[i];dep2[i]=rs2[i];
8364         }
8365         break;
8366       case MULTDIV:
8367         rs1[i]=(source[i]>>21)&0x1f; // source
8368         rs2[i]=(source[i]>>16)&0x1f; // divisor
8369         rt1[i]=HIREG;
8370         rt2[i]=LOREG;
8371         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8372           us1[i]=rs1[i];us2[i]=rs2[i];
8373         }
8374         break;
8375       case MOV:
8376         rs1[i]=0;
8377         rs2[i]=0;
8378         rt1[i]=0;
8379         rt2[i]=0;
8380         if(op2==0x10) rs1[i]=HIREG; // MFHI
8381         if(op2==0x11) rt1[i]=HIREG; // MTHI
8382         if(op2==0x12) rs1[i]=LOREG; // MFLO
8383         if(op2==0x13) rt1[i]=LOREG; // MTLO
8384         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8385         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8386         dep1[i]=rs1[i];
8387         break;
8388       case SHIFT:
8389         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8390         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8391         rt1[i]=(source[i]>>11)&0x1f; // destination
8392         rt2[i]=0;
8393         // DSLLV/DSRLV/DSRAV are 64-bit
8394         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8395         break;
8396       case SHIFTIMM:
8397         rs1[i]=(source[i]>>16)&0x1f;
8398         rs2[i]=0;
8399         rt1[i]=(source[i]>>11)&0x1f;
8400         rt2[i]=0;
8401         imm[i]=(source[i]>>6)&0x1f;
8402         // DSxx32 instructions
8403         if(op2>=0x3c) imm[i]|=0x20;
8404         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8405         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8406         break;
8407       case COP0:
8408         rs1[i]=0;
8409         rs2[i]=0;
8410         rt1[i]=0;
8411         rt2[i]=0;
8412         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8413         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8414         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8415         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8416         break;
8417       case COP1:
8418       case COP2:
8419         rs1[i]=0;
8420         rs2[i]=0;
8421         rt1[i]=0;
8422         rt2[i]=0;
8423         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8424         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8425         if(op2==5) us1[i]=rs1[i]; // DMTC1
8426         rs2[i]=CSREG;
8427         break;
8428       case C1LS:
8429         rs1[i]=(source[i]>>21)&0x1F;
8430         rs2[i]=CSREG;
8431         rt1[i]=0;
8432         rt2[i]=0;
8433         imm[i]=(short)source[i];
8434         break;
8435       case C2LS:
8436         rs1[i]=(source[i]>>21)&0x1F;
8437         rs2[i]=0;
8438         rt1[i]=0;
8439         rt2[i]=0;
8440         imm[i]=(short)source[i];
8441         break;
8442       case FLOAT:
8443       case FCONV:
8444         rs1[i]=0;
8445         rs2[i]=CSREG;
8446         rt1[i]=0;
8447         rt2[i]=0;
8448         break;
8449       case FCOMP:
8450         rs1[i]=FSREG;
8451         rs2[i]=CSREG;
8452         rt1[i]=FSREG;
8453         rt2[i]=0;
8454         break;
8455       case SYSCALL:
8456       case HLECALL:
8457       case INTCALL:
8458         rs1[i]=CCREG;
8459         rs2[i]=0;
8460         rt1[i]=0;
8461         rt2[i]=0;
8462         break;
8463       default:
8464         rs1[i]=0;
8465         rs2[i]=0;
8466         rt1[i]=0;
8467         rt2[i]=0;
8468     }
8469     /* Calculate branch target addresses */
8470     if(type==UJUMP)
8471       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8472     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8473       ba[i]=start+i*4+8; // Ignore never taken branch
8474     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8475       ba[i]=start+i*4+8; // Ignore never taken branch
8476     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8477       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8478     else ba[i]=-1;
8479     /* Is this the end of the block? */
8480     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8481 #ifdef PCSX
8482       // check for link register access in delay slot
8483       int rt1_=rt1[i-1];
8484       if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8485         printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8486         ba[i-1]=-1;
8487         itype[i-1]=INTCALL;
8488         done=2;
8489       }
8490       else
8491 #endif
8492       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8493         done=2;
8494       }
8495       else {
8496         if(stop_after_jal) done=1;
8497         // Stop on BREAK
8498         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8499       }
8500       // Don't recompile stuff that's already compiled
8501       if(check_addr(start+i*4+4)) done=1;
8502       // Don't get too close to the limit
8503       if(i>MAXBLOCK/2) done=1;
8504     }
8505     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8506     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8507     if(done==2) {
8508       // Does the block continue due to a branch?
8509       for(j=i-1;j>=0;j--)
8510       {
8511         if(ba[j]==start+i*4+4) done=j=0;
8512         if(ba[j]==start+i*4+8) done=j=0;
8513       }
8514     }
8515     //assert(i<MAXBLOCK-1);
8516     if(start+i*4==pagelimit-4) done=1;
8517     assert(start+i*4<pagelimit);
8518     if (i==MAXBLOCK-1) done=1;
8519     // Stop if we're compiling junk
8520     if(itype[i]==NI&&opcode[i]==0x11) {
8521       done=stop_after_jal=1;
8522       printf("Disabled speculative precompilation\n");
8523     }
8524   }
8525   slen=i;
8526   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8527     if(start+i*4==pagelimit) {
8528       itype[i-1]=SPAN;
8529     }
8530   }
8531   assert(slen>0);
8532
8533   /* Pass 2 - Register dependencies and branch targets */
8534
8535   unneeded_registers(0,slen-1,0);
8536   
8537   /* Pass 3 - Register allocation */
8538
8539   struct regstat current; // Current register allocations/status
8540   current.is32=1;
8541   current.dirty=0;
8542   current.u=unneeded_reg[0];
8543   current.uu=unneeded_reg_upper[0];
8544   clear_all_regs(current.regmap);
8545   alloc_reg(&current,0,CCREG);
8546   dirty_reg(&current,CCREG);
8547   current.isconst=0;
8548   current.wasconst=0;
8549   int ds=0;
8550   int cc=0;
8551   int hr;
8552
8553 #ifndef FORCE32
8554   provisional_32bit();
8555 #endif
8556   if((u_int)addr&1) {
8557     // First instruction is delay slot
8558     cc=-1;
8559     bt[1]=1;
8560     ds=1;
8561     unneeded_reg[0]=1;
8562     unneeded_reg_upper[0]=1;
8563     current.regmap[HOST_BTREG]=BTREG;
8564   }
8565   
8566   for(i=0;i<slen;i++)
8567   {
8568     if(bt[i])
8569     {
8570       int hr;
8571       for(hr=0;hr<HOST_REGS;hr++)
8572       {
8573         // Is this really necessary?
8574         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8575       }
8576       current.isconst=0;
8577     }
8578     if(i>1)
8579     {
8580       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8581       {
8582         if(rs1[i-2]==0||rs2[i-2]==0)
8583         {
8584           if(rs1[i-2]) {
8585             current.is32|=1LL<<rs1[i-2];
8586             int hr=get_reg(current.regmap,rs1[i-2]|64);
8587             if(hr>=0) current.regmap[hr]=-1;
8588           }
8589           if(rs2[i-2]) {
8590             current.is32|=1LL<<rs2[i-2];
8591             int hr=get_reg(current.regmap,rs2[i-2]|64);
8592             if(hr>=0) current.regmap[hr]=-1;
8593           }
8594         }
8595       }
8596     }
8597 #ifndef FORCE32
8598     // If something jumps here with 64-bit values
8599     // then promote those registers to 64 bits
8600     if(bt[i])
8601     {
8602       uint64_t temp_is32=current.is32;
8603       for(j=i-1;j>=0;j--)
8604       {
8605         if(ba[j]==start+i*4) 
8606           temp_is32&=branch_regs[j].is32;
8607       }
8608       for(j=i;j<slen;j++)
8609       {
8610         if(ba[j]==start+i*4) 
8611           //temp_is32=1;
8612           temp_is32&=p32[j];
8613       }
8614       if(temp_is32!=current.is32) {
8615         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8616         #ifdef DESTRUCTIVE_WRITEBACK
8617         for(hr=0;hr<HOST_REGS;hr++)
8618         {
8619           int r=current.regmap[hr];
8620           if(r>0&&r<64)
8621           {
8622             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8623               temp_is32|=1LL<<r;
8624               //printf("restore %d\n",r);
8625             }
8626           }
8627         }
8628         #endif
8629         current.is32=temp_is32;
8630       }
8631     }
8632 #else
8633     current.is32=-1LL;
8634 #endif
8635
8636     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8637     regs[i].wasconst=current.isconst;
8638     regs[i].was32=current.is32;
8639     regs[i].wasdirty=current.dirty;
8640     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8641     // To change a dirty register from 32 to 64 bits, we must write
8642     // it out during the previous cycle (for branches, 2 cycles)
8643     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8644     {
8645       uint64_t temp_is32=current.is32;
8646       for(j=i-1;j>=0;j--)
8647       {
8648         if(ba[j]==start+i*4+4) 
8649           temp_is32&=branch_regs[j].is32;
8650       }
8651       for(j=i;j<slen;j++)
8652       {
8653         if(ba[j]==start+i*4+4) 
8654           //temp_is32=1;
8655           temp_is32&=p32[j];
8656       }
8657       if(temp_is32!=current.is32) {
8658         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8659         for(hr=0;hr<HOST_REGS;hr++)
8660         {
8661           int r=current.regmap[hr];
8662           if(r>0)
8663           {
8664             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8665               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8666               {
8667                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8668                 {
8669                   //printf("dump %d/r%d\n",hr,r);
8670                   current.regmap[hr]=-1;
8671                   if(get_reg(current.regmap,r|64)>=0) 
8672                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8673                 }
8674               }
8675             }
8676           }
8677         }
8678       }
8679     }
8680     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8681     {
8682       uint64_t temp_is32=current.is32;
8683       for(j=i-1;j>=0;j--)
8684       {
8685         if(ba[j]==start+i*4+8) 
8686           temp_is32&=branch_regs[j].is32;
8687       }
8688       for(j=i;j<slen;j++)
8689       {
8690         if(ba[j]==start+i*4+8) 
8691           //temp_is32=1;
8692           temp_is32&=p32[j];
8693       }
8694       if(temp_is32!=current.is32) {
8695         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8696         for(hr=0;hr<HOST_REGS;hr++)
8697         {
8698           int r=current.regmap[hr];
8699           if(r>0)
8700           {
8701             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8702               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8703               {
8704                 //printf("dump %d/r%d\n",hr,r);
8705                 current.regmap[hr]=-1;
8706                 if(get_reg(current.regmap,r|64)>=0) 
8707                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8708               }
8709             }
8710           }
8711         }
8712       }
8713     }
8714     #endif
8715     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8716       if(i+1<slen) {
8717         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8718         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8719         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8720         current.u|=1;
8721         current.uu|=1;
8722       } else {
8723         current.u=1;
8724         current.uu=1;
8725       }
8726     } else {
8727       if(i+1<slen) {
8728         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8729         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8730         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8731         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8732         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8733         current.u|=1;
8734         current.uu|=1;
8735       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8736     }
8737     is_ds[i]=ds;
8738     if(ds) {
8739       ds=0; // Skip delay slot, already allocated as part of branch
8740       // ...but we need to alloc it in case something jumps here
8741       if(i+1<slen) {
8742         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8743         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8744       }else{
8745         current.u=branch_unneeded_reg[i-1];
8746         current.uu=branch_unneeded_reg_upper[i-1];
8747       }
8748       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8749       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8750       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8751       current.u|=1;
8752       current.uu|=1;
8753       struct regstat temp;
8754       memcpy(&temp,&current,sizeof(current));
8755       temp.wasdirty=temp.dirty;
8756       temp.was32=temp.is32;
8757       // TODO: Take into account unconditional branches, as below
8758       delayslot_alloc(&temp,i);
8759       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8760       regs[i].wasdirty=temp.wasdirty;
8761       regs[i].was32=temp.was32;
8762       regs[i].dirty=temp.dirty;
8763       regs[i].is32=temp.is32;
8764       regs[i].isconst=0;
8765       regs[i].wasconst=0;
8766       current.isconst=0;
8767       // Create entry (branch target) regmap
8768       for(hr=0;hr<HOST_REGS;hr++)
8769       {
8770         int r=temp.regmap[hr];
8771         if(r>=0) {
8772           if(r!=regmap_pre[i][hr]) {
8773             regs[i].regmap_entry[hr]=-1;
8774           }
8775           else
8776           {
8777             if(r<64){
8778               if((current.u>>r)&1) {
8779                 regs[i].regmap_entry[hr]=-1;
8780                 regs[i].regmap[hr]=-1;
8781                 //Don't clear regs in the delay slot as the branch might need them
8782                 //current.regmap[hr]=-1;
8783               }else
8784                 regs[i].regmap_entry[hr]=r;
8785             }
8786             else {
8787               if((current.uu>>(r&63))&1) {
8788                 regs[i].regmap_entry[hr]=-1;
8789                 regs[i].regmap[hr]=-1;
8790                 //Don't clear regs in the delay slot as the branch might need them
8791                 //current.regmap[hr]=-1;
8792               }else
8793                 regs[i].regmap_entry[hr]=r;
8794             }
8795           }
8796         } else {
8797           // First instruction expects CCREG to be allocated
8798           if(i==0&&hr==HOST_CCREG) 
8799             regs[i].regmap_entry[hr]=CCREG;
8800           else
8801             regs[i].regmap_entry[hr]=-1;
8802         }
8803       }
8804     }
8805     else { // Not delay slot
8806       switch(itype[i]) {
8807         case UJUMP:
8808           //current.isconst=0; // DEBUG
8809           //current.wasconst=0; // DEBUG
8810           //regs[i].wasconst=0; // DEBUG
8811           clear_const(&current,rt1[i]);
8812           alloc_cc(&current,i);
8813           dirty_reg(&current,CCREG);
8814           if (rt1[i]==31) {
8815             alloc_reg(&current,i,31);
8816             dirty_reg(&current,31);
8817             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8818             assert(rt1[i+1]!=rt1[i]);
8819             #ifdef REG_PREFETCH
8820             alloc_reg(&current,i,PTEMP);
8821             #endif
8822             //current.is32|=1LL<<rt1[i];
8823           }
8824           delayslot_alloc(&current,i+1);
8825           //current.isconst=0; // DEBUG
8826           ds=1;
8827           //printf("i=%d, isconst=%x\n",i,current.isconst);
8828           break;
8829         case RJUMP:
8830           //current.isconst=0;
8831           //current.wasconst=0;
8832           //regs[i].wasconst=0;
8833           clear_const(&current,rs1[i]);
8834           clear_const(&current,rt1[i]);
8835           alloc_cc(&current,i);
8836           dirty_reg(&current,CCREG);
8837           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8838             alloc_reg(&current,i,rs1[i]);
8839             if (rt1[i]!=0) {
8840               alloc_reg(&current,i,rt1[i]);
8841               dirty_reg(&current,rt1[i]);
8842               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8843               assert(rt1[i+1]!=rt1[i]);
8844               #ifdef REG_PREFETCH
8845               alloc_reg(&current,i,PTEMP);
8846               #endif
8847             }
8848             #ifdef USE_MINI_HT
8849             if(rs1[i]==31) { // JALR
8850               alloc_reg(&current,i,RHASH);
8851               #ifndef HOST_IMM_ADDR32
8852               alloc_reg(&current,i,RHTBL);
8853               #endif
8854             }
8855             #endif
8856             delayslot_alloc(&current,i+1);
8857           } else {
8858             // The delay slot overwrites our source register,
8859             // allocate a temporary register to hold the old value.
8860             current.isconst=0;
8861             current.wasconst=0;
8862             regs[i].wasconst=0;
8863             delayslot_alloc(&current,i+1);
8864             current.isconst=0;
8865             alloc_reg(&current,i,RTEMP);
8866           }
8867           //current.isconst=0; // DEBUG
8868           ds=1;
8869           break;
8870         case CJUMP:
8871           //current.isconst=0;
8872           //current.wasconst=0;
8873           //regs[i].wasconst=0;
8874           clear_const(&current,rs1[i]);
8875           clear_const(&current,rs2[i]);
8876           if((opcode[i]&0x3E)==4) // BEQ/BNE
8877           {
8878             alloc_cc(&current,i);
8879             dirty_reg(&current,CCREG);
8880             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8881             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8882             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8883             {
8884               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8885               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8886             }
8887             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8888                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8889               // The delay slot overwrites one of our conditions.
8890               // Allocate the branch condition registers instead.
8891               // Note that such a sequence of instructions could
8892               // be considered a bug since the branch can not be
8893               // re-executed if an exception occurs.
8894               current.isconst=0;
8895               current.wasconst=0;
8896               regs[i].wasconst=0;
8897               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8898               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8899               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8900               {
8901                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8902                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8903               }
8904             }
8905             else delayslot_alloc(&current,i+1);
8906           }
8907           else
8908           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8909           {
8910             alloc_cc(&current,i);
8911             dirty_reg(&current,CCREG);
8912             alloc_reg(&current,i,rs1[i]);
8913             if(!(current.is32>>rs1[i]&1))
8914             {
8915               alloc_reg64(&current,i,rs1[i]);
8916             }
8917             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8918               // The delay slot overwrites one of our conditions.
8919               // Allocate the branch condition registers instead.
8920               // Note that such a sequence of instructions could
8921               // be considered a bug since the branch can not be
8922               // re-executed if an exception occurs.
8923               current.isconst=0;
8924               current.wasconst=0;
8925               regs[i].wasconst=0;
8926               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8927               if(!((current.is32>>rs1[i])&1))
8928               {
8929                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8930               }
8931             }
8932             else delayslot_alloc(&current,i+1);
8933           }
8934           else
8935           // Don't alloc the delay slot yet because we might not execute it
8936           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8937           {
8938             current.isconst=0;
8939             current.wasconst=0;
8940             regs[i].wasconst=0;
8941             alloc_cc(&current,i);
8942             dirty_reg(&current,CCREG);
8943             alloc_reg(&current,i,rs1[i]);
8944             alloc_reg(&current,i,rs2[i]);
8945             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8946             {
8947               alloc_reg64(&current,i,rs1[i]);
8948               alloc_reg64(&current,i,rs2[i]);
8949             }
8950           }
8951           else
8952           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8953           {
8954             current.isconst=0;
8955             current.wasconst=0;
8956             regs[i].wasconst=0;
8957             alloc_cc(&current,i);
8958             dirty_reg(&current,CCREG);
8959             alloc_reg(&current,i,rs1[i]);
8960             if(!(current.is32>>rs1[i]&1))
8961             {
8962               alloc_reg64(&current,i,rs1[i]);
8963             }
8964           }
8965           ds=1;
8966           //current.isconst=0;
8967           break;
8968         case SJUMP:
8969           //current.isconst=0;
8970           //current.wasconst=0;
8971           //regs[i].wasconst=0;
8972           clear_const(&current,rs1[i]);
8973           clear_const(&current,rt1[i]);
8974           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8975           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8976           {
8977             alloc_cc(&current,i);
8978             dirty_reg(&current,CCREG);
8979             alloc_reg(&current,i,rs1[i]);
8980             if(!(current.is32>>rs1[i]&1))
8981             {
8982               alloc_reg64(&current,i,rs1[i]);
8983             }
8984             if (rt1[i]==31) { // BLTZAL/BGEZAL
8985               alloc_reg(&current,i,31);
8986               dirty_reg(&current,31);
8987               //#ifdef REG_PREFETCH
8988               //alloc_reg(&current,i,PTEMP);
8989               //#endif
8990               //current.is32|=1LL<<rt1[i];
8991             }
8992             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8993               // The delay slot overwrites the branch condition.
8994               // Allocate the branch condition registers instead.
8995               // Note that such a sequence of instructions could
8996               // be considered a bug since the branch can not be
8997               // re-executed if an exception occurs.
8998               current.isconst=0;
8999               current.wasconst=0;
9000               regs[i].wasconst=0;
9001               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9002               if(!((current.is32>>rs1[i])&1))
9003               {
9004                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9005               }
9006             }
9007             else delayslot_alloc(&current,i+1);
9008           }
9009           else
9010           // Don't alloc the delay slot yet because we might not execute it
9011           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9012           {
9013             current.isconst=0;
9014             current.wasconst=0;
9015             regs[i].wasconst=0;
9016             alloc_cc(&current,i);
9017             dirty_reg(&current,CCREG);
9018             alloc_reg(&current,i,rs1[i]);
9019             if(!(current.is32>>rs1[i]&1))
9020             {
9021               alloc_reg64(&current,i,rs1[i]);
9022             }
9023           }
9024           ds=1;
9025           //current.isconst=0;
9026           break;
9027         case FJUMP:
9028           current.isconst=0;
9029           current.wasconst=0;
9030           regs[i].wasconst=0;
9031           if(likely[i]==0) // BC1F/BC1T
9032           {
9033             // TODO: Theoretically we can run out of registers here on x86.
9034             // The delay slot can allocate up to six, and we need to check
9035             // CSREG before executing the delay slot.  Possibly we can drop
9036             // the cycle count and then reload it after checking that the
9037             // FPU is in a usable state, or don't do out-of-order execution.
9038             alloc_cc(&current,i);
9039             dirty_reg(&current,CCREG);
9040             alloc_reg(&current,i,FSREG);
9041             alloc_reg(&current,i,CSREG);
9042             if(itype[i+1]==FCOMP) {
9043               // The delay slot overwrites the branch condition.
9044               // Allocate the branch condition registers instead.
9045               // Note that such a sequence of instructions could
9046               // be considered a bug since the branch can not be
9047               // re-executed if an exception occurs.
9048               alloc_cc(&current,i);
9049               dirty_reg(&current,CCREG);
9050               alloc_reg(&current,i,CSREG);
9051               alloc_reg(&current,i,FSREG);
9052             }
9053             else {
9054               delayslot_alloc(&current,i+1);
9055               alloc_reg(&current,i+1,CSREG);
9056             }
9057           }
9058           else
9059           // Don't alloc the delay slot yet because we might not execute it
9060           if(likely[i]) // BC1FL/BC1TL
9061           {
9062             alloc_cc(&current,i);
9063             dirty_reg(&current,CCREG);
9064             alloc_reg(&current,i,CSREG);
9065             alloc_reg(&current,i,FSREG);
9066           }
9067           ds=1;
9068           current.isconst=0;
9069           break;
9070         case IMM16:
9071           imm16_alloc(&current,i);
9072           break;
9073         case LOAD:
9074         case LOADLR:
9075           load_alloc(&current,i);
9076           break;
9077         case STORE:
9078         case STORELR:
9079           store_alloc(&current,i);
9080           break;
9081         case ALU:
9082           alu_alloc(&current,i);
9083           break;
9084         case SHIFT:
9085           shift_alloc(&current,i);
9086           break;
9087         case MULTDIV:
9088           multdiv_alloc(&current,i);
9089           break;
9090         case SHIFTIMM:
9091           shiftimm_alloc(&current,i);
9092           break;
9093         case MOV:
9094           mov_alloc(&current,i);
9095           break;
9096         case COP0:
9097           cop0_alloc(&current,i);
9098           break;
9099         case COP1:
9100         case COP2:
9101           cop1_alloc(&current,i);
9102           break;
9103         case C1LS:
9104           c1ls_alloc(&current,i);
9105           break;
9106         case C2LS:
9107           c2ls_alloc(&current,i);
9108           break;
9109         case C2OP:
9110           c2op_alloc(&current,i);
9111           break;
9112         case FCONV:
9113           fconv_alloc(&current,i);
9114           break;
9115         case FLOAT:
9116           float_alloc(&current,i);
9117           break;
9118         case FCOMP:
9119           fcomp_alloc(&current,i);
9120           break;
9121         case SYSCALL:
9122         case HLECALL:
9123         case INTCALL:
9124           syscall_alloc(&current,i);
9125           break;
9126         case SPAN:
9127           pagespan_alloc(&current,i);
9128           break;
9129       }
9130       
9131       // Drop the upper half of registers that have become 32-bit
9132       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9133       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9134         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9135         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9136         current.uu|=1;
9137       } else {
9138         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9139         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9140         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9141         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9142         current.uu|=1;
9143       }
9144
9145       // Create entry (branch target) regmap
9146       for(hr=0;hr<HOST_REGS;hr++)
9147       {
9148         int r,or,er;
9149         r=current.regmap[hr];
9150         if(r>=0) {
9151           if(r!=regmap_pre[i][hr]) {
9152             // TODO: delay slot (?)
9153             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9154             if(or<0||(r&63)>=TEMPREG){
9155               regs[i].regmap_entry[hr]=-1;
9156             }
9157             else
9158             {
9159               // Just move it to a different register
9160               regs[i].regmap_entry[hr]=r;
9161               // If it was dirty before, it's still dirty
9162               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9163             }
9164           }
9165           else
9166           {
9167             // Unneeded
9168             if(r==0){
9169               regs[i].regmap_entry[hr]=0;
9170             }
9171             else
9172             if(r<64){
9173               if((current.u>>r)&1) {
9174                 regs[i].regmap_entry[hr]=-1;
9175                 //regs[i].regmap[hr]=-1;
9176                 current.regmap[hr]=-1;
9177               }else
9178                 regs[i].regmap_entry[hr]=r;
9179             }
9180             else {
9181               if((current.uu>>(r&63))&1) {
9182                 regs[i].regmap_entry[hr]=-1;
9183                 //regs[i].regmap[hr]=-1;
9184                 current.regmap[hr]=-1;
9185               }else
9186                 regs[i].regmap_entry[hr]=r;
9187             }
9188           }
9189         } else {
9190           // Branches expect CCREG to be allocated at the target
9191           if(regmap_pre[i][hr]==CCREG) 
9192             regs[i].regmap_entry[hr]=CCREG;
9193           else
9194             regs[i].regmap_entry[hr]=-1;
9195         }
9196       }
9197       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9198     }
9199     /* Branch post-alloc */
9200     if(i>0)
9201     {
9202       current.was32=current.is32;
9203       current.wasdirty=current.dirty;
9204       switch(itype[i-1]) {
9205         case UJUMP:
9206           memcpy(&branch_regs[i-1],&current,sizeof(current));
9207           branch_regs[i-1].isconst=0;
9208           branch_regs[i-1].wasconst=0;
9209           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9210           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9211           alloc_cc(&branch_regs[i-1],i-1);
9212           dirty_reg(&branch_regs[i-1],CCREG);
9213           if(rt1[i-1]==31) { // JAL
9214             alloc_reg(&branch_regs[i-1],i-1,31);
9215             dirty_reg(&branch_regs[i-1],31);
9216             branch_regs[i-1].is32|=1LL<<31;
9217           }
9218           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9219           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9220           break;
9221         case RJUMP:
9222           memcpy(&branch_regs[i-1],&current,sizeof(current));
9223           branch_regs[i-1].isconst=0;
9224           branch_regs[i-1].wasconst=0;
9225           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9226           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9227           alloc_cc(&branch_regs[i-1],i-1);
9228           dirty_reg(&branch_regs[i-1],CCREG);
9229           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9230           if(rt1[i-1]!=0) { // JALR
9231             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9232             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9233             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9234           }
9235           #ifdef USE_MINI_HT
9236           if(rs1[i-1]==31) { // JALR
9237             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9238             #ifndef HOST_IMM_ADDR32
9239             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9240             #endif
9241           }
9242           #endif
9243           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9244           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9245           break;
9246         case CJUMP:
9247           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9248           {
9249             alloc_cc(&current,i-1);
9250             dirty_reg(&current,CCREG);
9251             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9252                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9253               // The delay slot overwrote one of our conditions
9254               // Delay slot goes after the test (in order)
9255               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9256               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9257               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9258               current.u|=1;
9259               current.uu|=1;
9260               delayslot_alloc(&current,i);
9261               current.isconst=0;
9262             }
9263             else
9264             {
9265               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9266               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9267               // Alloc the branch condition registers
9268               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9269               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9270               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9271               {
9272                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9273                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9274               }
9275             }
9276             memcpy(&branch_regs[i-1],&current,sizeof(current));
9277             branch_regs[i-1].isconst=0;
9278             branch_regs[i-1].wasconst=0;
9279             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9280             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9281           }
9282           else
9283           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9284           {
9285             alloc_cc(&current,i-1);
9286             dirty_reg(&current,CCREG);
9287             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9288               // The delay slot overwrote the branch condition
9289               // Delay slot goes after the test (in order)
9290               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9291               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9292               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9293               current.u|=1;
9294               current.uu|=1;
9295               delayslot_alloc(&current,i);
9296               current.isconst=0;
9297             }
9298             else
9299             {
9300               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9301               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9302               // Alloc the branch condition register
9303               alloc_reg(&current,i-1,rs1[i-1]);
9304               if(!(current.is32>>rs1[i-1]&1))
9305               {
9306                 alloc_reg64(&current,i-1,rs1[i-1]);
9307               }
9308             }
9309             memcpy(&branch_regs[i-1],&current,sizeof(current));
9310             branch_regs[i-1].isconst=0;
9311             branch_regs[i-1].wasconst=0;
9312             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9313             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9314           }
9315           else
9316           // Alloc the delay slot in case the branch is taken
9317           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9318           {
9319             memcpy(&branch_regs[i-1],&current,sizeof(current));
9320             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9321             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9322             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9323             alloc_cc(&branch_regs[i-1],i);
9324             dirty_reg(&branch_regs[i-1],CCREG);
9325             delayslot_alloc(&branch_regs[i-1],i);
9326             branch_regs[i-1].isconst=0;
9327             alloc_reg(&current,i,CCREG); // Not taken path
9328             dirty_reg(&current,CCREG);
9329             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9330           }
9331           else
9332           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9333           {
9334             memcpy(&branch_regs[i-1],&current,sizeof(current));
9335             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9336             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9337             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9338             alloc_cc(&branch_regs[i-1],i);
9339             dirty_reg(&branch_regs[i-1],CCREG);
9340             delayslot_alloc(&branch_regs[i-1],i);
9341             branch_regs[i-1].isconst=0;
9342             alloc_reg(&current,i,CCREG); // Not taken path
9343             dirty_reg(&current,CCREG);
9344             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9345           }
9346           break;
9347         case SJUMP:
9348           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9349           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9350           {
9351             alloc_cc(&current,i-1);
9352             dirty_reg(&current,CCREG);
9353             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9354               // The delay slot overwrote the branch condition
9355               // Delay slot goes after the test (in order)
9356               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9357               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9358               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9359               current.u|=1;
9360               current.uu|=1;
9361               delayslot_alloc(&current,i);
9362               current.isconst=0;
9363             }
9364             else
9365             {
9366               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9367               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9368               // Alloc the branch condition register
9369               alloc_reg(&current,i-1,rs1[i-1]);
9370               if(!(current.is32>>rs1[i-1]&1))
9371               {
9372                 alloc_reg64(&current,i-1,rs1[i-1]);
9373               }
9374             }
9375             memcpy(&branch_regs[i-1],&current,sizeof(current));
9376             branch_regs[i-1].isconst=0;
9377             branch_regs[i-1].wasconst=0;
9378             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9379             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9380           }
9381           else
9382           // Alloc the delay slot in case the branch is taken
9383           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9384           {
9385             memcpy(&branch_regs[i-1],&current,sizeof(current));
9386             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9387             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9388             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9389             alloc_cc(&branch_regs[i-1],i);
9390             dirty_reg(&branch_regs[i-1],CCREG);
9391             delayslot_alloc(&branch_regs[i-1],i);
9392             branch_regs[i-1].isconst=0;
9393             alloc_reg(&current,i,CCREG); // Not taken path
9394             dirty_reg(&current,CCREG);
9395             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9396           }
9397           // FIXME: BLTZAL/BGEZAL
9398           if(opcode2[i-1]&0x10) { // BxxZAL
9399             alloc_reg(&branch_regs[i-1],i-1,31);
9400             dirty_reg(&branch_regs[i-1],31);
9401             branch_regs[i-1].is32|=1LL<<31;
9402           }
9403           break;
9404         case FJUMP:
9405           if(likely[i-1]==0) // BC1F/BC1T
9406           {
9407             alloc_cc(&current,i-1);
9408             dirty_reg(&current,CCREG);
9409             if(itype[i]==FCOMP) {
9410               // The delay slot overwrote the branch condition
9411               // Delay slot goes after the test (in order)
9412               delayslot_alloc(&current,i);
9413               current.isconst=0;
9414             }
9415             else
9416             {
9417               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9418               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9419               // Alloc the branch condition register
9420               alloc_reg(&current,i-1,FSREG);
9421             }
9422             memcpy(&branch_regs[i-1],&current,sizeof(current));
9423             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9424           }
9425           else // BC1FL/BC1TL
9426           {
9427             // Alloc the delay slot in case the branch is taken
9428             memcpy(&branch_regs[i-1],&current,sizeof(current));
9429             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9430             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9431             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9432             alloc_cc(&branch_regs[i-1],i);
9433             dirty_reg(&branch_regs[i-1],CCREG);
9434             delayslot_alloc(&branch_regs[i-1],i);
9435             branch_regs[i-1].isconst=0;
9436             alloc_reg(&current,i,CCREG); // Not taken path
9437             dirty_reg(&current,CCREG);
9438             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9439           }
9440           break;
9441       }
9442
9443       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9444       {
9445         if(rt1[i-1]==31) // JAL/JALR
9446         {
9447           // Subroutine call will return here, don't alloc any registers
9448           current.is32=1;
9449           current.dirty=0;
9450           clear_all_regs(current.regmap);
9451           alloc_reg(&current,i,CCREG);
9452           dirty_reg(&current,CCREG);
9453         }
9454         else if(i+1<slen)
9455         {
9456           // Internal branch will jump here, match registers to caller
9457           current.is32=0x3FFFFFFFFLL;
9458           current.dirty=0;
9459           clear_all_regs(current.regmap);
9460           alloc_reg(&current,i,CCREG);
9461           dirty_reg(&current,CCREG);
9462           for(j=i-1;j>=0;j--)
9463           {
9464             if(ba[j]==start+i*4+4) {
9465               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9466               current.is32=branch_regs[j].is32;
9467               current.dirty=branch_regs[j].dirty;
9468               break;
9469             }
9470           }
9471           while(j>=0) {
9472             if(ba[j]==start+i*4+4) {
9473               for(hr=0;hr<HOST_REGS;hr++) {
9474                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9475                   current.regmap[hr]=-1;
9476                 }
9477                 current.is32&=branch_regs[j].is32;
9478                 current.dirty&=branch_regs[j].dirty;
9479               }
9480             }
9481             j--;
9482           }
9483         }
9484       }
9485     }
9486
9487     // Count cycles in between branches
9488     ccadj[i]=cc;
9489     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9490     {
9491       cc=0;
9492     }
9493     else
9494     {
9495       cc++;
9496     }
9497
9498     flush_dirty_uppers(&current);
9499     if(!is_ds[i]) {
9500       regs[i].is32=current.is32;
9501       regs[i].dirty=current.dirty;
9502       regs[i].isconst=current.isconst;
9503       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9504     }
9505     for(hr=0;hr<HOST_REGS;hr++) {
9506       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9507         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9508           regs[i].wasconst&=~(1<<hr);
9509         }
9510       }
9511     }
9512     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9513   }
9514   
9515   /* Pass 4 - Cull unused host registers */
9516   
9517   uint64_t nr=0;
9518   
9519   for (i=slen-1;i>=0;i--)
9520   {
9521     int hr;
9522     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9523     {
9524       if(ba[i]<start || ba[i]>=(start+slen*4))
9525       {
9526         // Branch out of this block, don't need anything
9527         nr=0;
9528       }
9529       else
9530       {
9531         // Internal branch
9532         // Need whatever matches the target
9533         nr=0;
9534         int t=(ba[i]-start)>>2;
9535         for(hr=0;hr<HOST_REGS;hr++)
9536         {
9537           if(regs[i].regmap_entry[hr]>=0) {
9538             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9539           }
9540         }
9541       }
9542       // Conditional branch may need registers for following instructions
9543       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9544       {
9545         if(i<slen-2) {
9546           nr|=needed_reg[i+2];
9547           for(hr=0;hr<HOST_REGS;hr++)
9548           {
9549             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9550             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9551           }
9552         }
9553       }
9554       // Don't need stuff which is overwritten
9555       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9556       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9557       // Merge in delay slot
9558       for(hr=0;hr<HOST_REGS;hr++)
9559       {
9560         if(!likely[i]) {
9561           // These are overwritten unless the branch is "likely"
9562           // and the delay slot is nullified if not taken
9563           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9564           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9565         }
9566         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9567         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9568         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9569         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9570         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9571         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9572         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9573         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9574         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9575           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9576           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9577         }
9578         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9579           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9580           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9581         }
9582         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9583           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9584           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9585         }
9586       }
9587     }
9588     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9589     {
9590       // SYSCALL instruction (software interrupt)
9591       nr=0;
9592     }
9593     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9594     {
9595       // ERET instruction (return from interrupt)
9596       nr=0;
9597     }
9598     else // Non-branch
9599     {
9600       if(i<slen-1) {
9601         for(hr=0;hr<HOST_REGS;hr++) {
9602           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9603           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9604           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9605           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9606         }
9607       }
9608     }
9609     for(hr=0;hr<HOST_REGS;hr++)
9610     {
9611       // Overwritten registers are not needed
9612       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9613       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9614       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9615       // Source registers are needed
9616       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9617       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9618       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9619       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9620       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9621       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9622       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9623       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9624       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9625         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9626         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9627       }
9628       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9629         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9630         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9631       }
9632       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9633         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9634         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9635       }
9636       // Don't store a register immediately after writing it,
9637       // may prevent dual-issue.
9638       // But do so if this is a branch target, otherwise we
9639       // might have to load the register before the branch.
9640       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9641         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9642            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9643           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9644           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9645         }
9646         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9647            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9648           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9649           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9650         }
9651       }
9652     }
9653     // Cycle count is needed at branches.  Assume it is needed at the target too.
9654     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9655       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9656       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9657     }
9658     // Save it
9659     needed_reg[i]=nr;
9660     
9661     // Deallocate unneeded registers
9662     for(hr=0;hr<HOST_REGS;hr++)
9663     {
9664       if(!((nr>>hr)&1)) {
9665         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9666         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9667            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9668            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9669         {
9670           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9671           {
9672             if(likely[i]) {
9673               regs[i].regmap[hr]=-1;
9674               regs[i].isconst&=~(1<<hr);
9675               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9676             }
9677           }
9678         }
9679         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9680         {
9681           int d1=0,d2=0,map=0,temp=0;
9682           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9683           {
9684             d1=dep1[i+1];
9685             d2=dep2[i+1];
9686           }
9687           if(using_tlb) {
9688             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9689                itype[i+1]==STORE || itype[i+1]==STORELR ||
9690                itype[i+1]==C1LS || itype[i+1]==C2LS)
9691             map=TLREG;
9692           } else
9693           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9694              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9695             map=INVCP;
9696           }
9697           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9698              itype[i+1]==C1LS || itype[i+1]==C2LS)
9699             temp=FTEMP;
9700           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9701              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9702              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9703              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9704              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9705              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9706              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9707              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9708              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9709              regs[i].regmap[hr]!=map )
9710           {
9711             regs[i].regmap[hr]=-1;
9712             regs[i].isconst&=~(1<<hr);
9713             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9714                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9715                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9716                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9717                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9718                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9719                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9720                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9721                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9722                branch_regs[i].regmap[hr]!=map)
9723             {
9724               branch_regs[i].regmap[hr]=-1;
9725               branch_regs[i].regmap_entry[hr]=-1;
9726               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9727               {
9728                 if(!likely[i]&&i<slen-2) {
9729                   regmap_pre[i+2][hr]=-1;
9730                 }
9731               }
9732             }
9733           }
9734         }
9735         else
9736         {
9737           // Non-branch
9738           if(i>0)
9739           {
9740             int d1=0,d2=0,map=-1,temp=-1;
9741             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9742             {
9743               d1=dep1[i];
9744               d2=dep2[i];
9745             }
9746             if(using_tlb) {
9747               if(itype[i]==LOAD || itype[i]==LOADLR ||
9748                  itype[i]==STORE || itype[i]==STORELR ||
9749                  itype[i]==C1LS || itype[i]==C2LS)
9750               map=TLREG;
9751             } else if(itype[i]==STORE || itype[i]==STORELR ||
9752                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9753               map=INVCP;
9754             }
9755             if(itype[i]==LOADLR || itype[i]==STORELR ||
9756                itype[i]==C1LS || itype[i]==C2LS)
9757               temp=FTEMP;
9758             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9759                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9760                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9761                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9762                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9763                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9764             {
9765               if(i<slen-1&&!is_ds[i]) {
9766                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9767                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9768                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9769                 {
9770                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9771                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9772                 }
9773                 regmap_pre[i+1][hr]=-1;
9774                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9775               }
9776               regs[i].regmap[hr]=-1;
9777               regs[i].isconst&=~(1<<hr);
9778             }
9779           }
9780         }
9781       }
9782     }
9783   }
9784   
9785   /* Pass 5 - Pre-allocate registers */
9786   
9787   // If a register is allocated during a loop, try to allocate it for the
9788   // entire loop, if possible.  This avoids loading/storing registers
9789   // inside of the loop.
9790
9791   signed char f_regmap[HOST_REGS];
9792   clear_all_regs(f_regmap);
9793   for(i=0;i<slen-1;i++)
9794   {
9795     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9796     {
9797       if(ba[i]>=start && ba[i]<(start+i*4)) 
9798       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9799       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9800       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9801       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9802       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9803       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9804       {
9805         int t=(ba[i]-start)>>2;
9806         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9807         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9808         for(hr=0;hr<HOST_REGS;hr++)
9809         {
9810           if(regs[i].regmap[hr]>64) {
9811             if(!((regs[i].dirty>>hr)&1))
9812               f_regmap[hr]=regs[i].regmap[hr];
9813             else f_regmap[hr]=-1;
9814           }
9815           else if(regs[i].regmap[hr]>=0) {
9816             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9817               // dealloc old register
9818               int n;
9819               for(n=0;n<HOST_REGS;n++)
9820               {
9821                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9822               }
9823               // and alloc new one
9824               f_regmap[hr]=regs[i].regmap[hr];
9825             }
9826           }
9827           if(branch_regs[i].regmap[hr]>64) {
9828             if(!((branch_regs[i].dirty>>hr)&1))
9829               f_regmap[hr]=branch_regs[i].regmap[hr];
9830             else f_regmap[hr]=-1;
9831           }
9832           else if(branch_regs[i].regmap[hr]>=0) {
9833             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9834               // dealloc old register
9835               int n;
9836               for(n=0;n<HOST_REGS;n++)
9837               {
9838                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9839               }
9840               // and alloc new one
9841               f_regmap[hr]=branch_regs[i].regmap[hr];
9842             }
9843           }
9844           if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9845           ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9846           ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9847           ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9848           {
9849             // Test both in case the delay slot is ooo,
9850             // could be done better...
9851             if(count_free_regs(branch_regs[i].regmap)<2
9852              ||count_free_regs(regs[i].regmap)<2) 
9853               f_regmap[hr]=branch_regs[i].regmap[hr];
9854           }
9855           // Avoid dirty->clean transition
9856           // #ifdef DESTRUCTIVE_WRITEBACK here?
9857           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9858           if(f_regmap[hr]>0) {
9859             if(regs[t].regmap_entry[hr]<0) {
9860               int r=f_regmap[hr];
9861               for(j=t;j<=i;j++)
9862               {
9863                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9864                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9865                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9866                 if(r>63) {
9867                   // NB This can exclude the case where the upper-half
9868                   // register is lower numbered than the lower-half
9869                   // register.  Not sure if it's worth fixing...
9870                   if(get_reg(regs[j].regmap,r&63)<0) break;
9871                   if(regs[j].is32&(1LL<<(r&63))) break;
9872                 }
9873                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9874                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9875                   int k;
9876                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9877                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9878                     if(r>63) {
9879                       if(get_reg(regs[i].regmap,r&63)<0) break;
9880                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9881                     }
9882                     k=i;
9883                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9884                       if(itype[k-1]==STORE||itype[k-1]==STORELR
9885                       ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9886                       ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9887                       ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9888                         if(count_free_regs(regs[k-1].regmap)<2) {
9889                           //printf("no free regs for store %x\n",start+(k-1)*4);
9890                           break;
9891                         }
9892                       }
9893                       else
9894                       if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9895                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9896                         //printf("no-match due to different register\n");
9897                         break;
9898                       }
9899                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9900                         //printf("no-match due to branch\n");
9901                         break;
9902                       }
9903                       // call/ret fast path assumes no registers allocated
9904                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9905                         break;
9906                       }
9907                       if(r>63) {
9908                         // NB This can exclude the case where the upper-half
9909                         // register is lower numbered than the lower-half
9910                         // register.  Not sure if it's worth fixing...
9911                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9912                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9913                       }
9914                       k--;
9915                     }
9916                     if(i<slen-1) {
9917                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9918                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9919                         //printf("bad match after branch\n");
9920                         break;
9921                       }
9922                     }
9923                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9924                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9925                       while(k<i) {
9926                         regs[k].regmap_entry[hr]=f_regmap[hr];
9927                         regs[k].regmap[hr]=f_regmap[hr];
9928                         regmap_pre[k+1][hr]=f_regmap[hr];
9929                         regs[k].wasdirty&=~(1<<hr);
9930                         regs[k].dirty&=~(1<<hr);
9931                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9932                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9933                         regs[k].wasconst&=~(1<<hr);
9934                         regs[k].isconst&=~(1<<hr);
9935                         k++;
9936                       }
9937                     }
9938                     else {
9939                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9940                       break;
9941                     }
9942                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9943                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9944                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9945                       regs[i].regmap_entry[hr]=f_regmap[hr];
9946                       regs[i].regmap[hr]=f_regmap[hr];
9947                       regs[i].wasdirty&=~(1<<hr);
9948                       regs[i].dirty&=~(1<<hr);
9949                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9950                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9951                       regs[i].wasconst&=~(1<<hr);
9952                       regs[i].isconst&=~(1<<hr);
9953                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9954                       branch_regs[i].wasdirty&=~(1<<hr);
9955                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9956                       branch_regs[i].regmap[hr]=f_regmap[hr];
9957                       branch_regs[i].dirty&=~(1<<hr);
9958                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9959                       branch_regs[i].wasconst&=~(1<<hr);
9960                       branch_regs[i].isconst&=~(1<<hr);
9961                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9962                         regmap_pre[i+2][hr]=f_regmap[hr];
9963                         regs[i+2].wasdirty&=~(1<<hr);
9964                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9965                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9966                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9967                       }
9968                     }
9969                   }
9970                   for(k=t;k<j;k++) {
9971                     regs[k].regmap_entry[hr]=f_regmap[hr];
9972                     regs[k].regmap[hr]=f_regmap[hr];
9973                     regmap_pre[k+1][hr]=f_regmap[hr];
9974                     regs[k+1].wasdirty&=~(1<<hr);
9975                     regs[k].dirty&=~(1<<hr);
9976                     regs[k].wasconst&=~(1<<hr);
9977                     regs[k].isconst&=~(1<<hr);
9978                   }
9979                   if(regs[j].regmap[hr]==f_regmap[hr])
9980                     regs[j].regmap_entry[hr]=f_regmap[hr];
9981                   break;
9982                 }
9983                 if(j==i) break;
9984                 if(regs[j].regmap[hr]>=0)
9985                   break;
9986                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9987                   //printf("no-match due to different register\n");
9988                   break;
9989                 }
9990                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9991                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9992                   break;
9993                 }
9994                 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9995                 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9996                 ||itype[j]==FCOMP||itype[j]==FCONV
9997                 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9998                   if(count_free_regs(regs[j].regmap)<2) {
9999                     //printf("No free regs for store %x\n",start+j*4);
10000                     break;
10001                   }
10002                 }
10003                 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
10004                 if(f_regmap[hr]>=64) {
10005                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10006                     break;
10007                   }
10008                   else
10009                   {
10010                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10011                       break;
10012                     }
10013                   }
10014                 }
10015               }
10016             }
10017           }
10018         }
10019       }
10020     }else{
10021       int count=0;
10022       for(hr=0;hr<HOST_REGS;hr++)
10023       {
10024         if(hr!=EXCLUDE_REG) {
10025           if(regs[i].regmap[hr]>64) {
10026             if(!((regs[i].dirty>>hr)&1))
10027               f_regmap[hr]=regs[i].regmap[hr];
10028           }
10029           else if(regs[i].regmap[hr]>=0) {
10030             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10031               // dealloc old register
10032               int n;
10033               for(n=0;n<HOST_REGS;n++)
10034               {
10035                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10036               }
10037               // and alloc new one
10038               f_regmap[hr]=regs[i].regmap[hr];
10039             }
10040           }
10041           else if(regs[i].regmap[hr]<0) count++;
10042         }
10043       }
10044       // Try to restore cycle count at branch targets
10045       if(bt[i]) {
10046         for(j=i;j<slen-1;j++) {
10047           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10048           if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
10049           ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
10050           ||itype[j]==FCOMP||itype[j]==FCONV
10051           ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
10052             if(count_free_regs(regs[j].regmap)<2) {
10053               //printf("no free regs for store %x\n",start+j*4);
10054               break;
10055             }
10056           }
10057           else
10058           if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
10059         }
10060         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10061           int k=i;
10062           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10063           while(k<j) {
10064             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10065             regs[k].regmap[HOST_CCREG]=CCREG;
10066             regmap_pre[k+1][HOST_CCREG]=CCREG;
10067             regs[k+1].wasdirty|=1<<HOST_CCREG;
10068             regs[k].dirty|=1<<HOST_CCREG;
10069             regs[k].wasconst&=~(1<<HOST_CCREG);
10070             regs[k].isconst&=~(1<<HOST_CCREG);
10071             k++;
10072           }
10073           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10074         }
10075         // Work backwards from the branch target
10076         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10077         {
10078           //printf("Extend backwards\n");
10079           int k;
10080           k=i;
10081           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10082             if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
10083             ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
10084             ||itype[k-1]==FCONV||itype[k-1]==FCOMP
10085             ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
10086               if(count_free_regs(regs[k-1].regmap)<2) {
10087                 //printf("no free regs for store %x\n",start+(k-1)*4);
10088                 break;
10089               }
10090             }
10091             else
10092             if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
10093             k--;
10094           }
10095           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10096             //printf("Extend CC, %x ->\n",start+k*4);
10097             while(k<=i) {
10098               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10099               regs[k].regmap[HOST_CCREG]=CCREG;
10100               regmap_pre[k+1][HOST_CCREG]=CCREG;
10101               regs[k+1].wasdirty|=1<<HOST_CCREG;
10102               regs[k].dirty|=1<<HOST_CCREG;
10103               regs[k].wasconst&=~(1<<HOST_CCREG);
10104               regs[k].isconst&=~(1<<HOST_CCREG);
10105               k++;
10106             }
10107           }
10108           else {
10109             //printf("Fail Extend CC, %x ->\n",start+k*4);
10110           }
10111         }
10112       }
10113       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10114          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10115          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10116          itype[i]!=FCONV&&itype[i]!=FCOMP&&
10117          itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
10118       {
10119         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10120       }
10121     }
10122   }
10123   
10124   // This allocates registers (if possible) one instruction prior
10125   // to use, which can avoid a load-use penalty on certain CPUs.
10126   for(i=0;i<slen-1;i++)
10127   {
10128     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10129     {
10130       if(!bt[i+1])
10131       {
10132         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10133            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10134         {
10135           if(rs1[i+1]) {
10136             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10137             {
10138               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10139               {
10140                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10141                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10142                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10143                 regs[i].isconst&=~(1<<hr);
10144                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10145                 constmap[i][hr]=constmap[i+1][hr];
10146                 regs[i+1].wasdirty&=~(1<<hr);
10147                 regs[i].dirty&=~(1<<hr);
10148               }
10149             }
10150           }
10151           if(rs2[i+1]) {
10152             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10153             {
10154               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10155               {
10156                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10157                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10158                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10159                 regs[i].isconst&=~(1<<hr);
10160                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10161                 constmap[i][hr]=constmap[i+1][hr];
10162                 regs[i+1].wasdirty&=~(1<<hr);
10163                 regs[i].dirty&=~(1<<hr);
10164               }
10165             }
10166           }
10167           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10168             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10169             {
10170               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10171               {
10172                 regs[i].regmap[hr]=rs1[i+1];
10173                 regmap_pre[i+1][hr]=rs1[i+1];
10174                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10175                 regs[i].isconst&=~(1<<hr);
10176                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10177                 constmap[i][hr]=constmap[i+1][hr];
10178                 regs[i+1].wasdirty&=~(1<<hr);
10179                 regs[i].dirty&=~(1<<hr);
10180               }
10181             }
10182           }
10183           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10184             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10185             {
10186               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10187               {
10188                 regs[i].regmap[hr]=rs1[i+1];
10189                 regmap_pre[i+1][hr]=rs1[i+1];
10190                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10191                 regs[i].isconst&=~(1<<hr);
10192                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10193                 constmap[i][hr]=constmap[i+1][hr];
10194                 regs[i+1].wasdirty&=~(1<<hr);
10195                 regs[i].dirty&=~(1<<hr);
10196               }
10197             }
10198           }
10199           #ifndef HOST_IMM_ADDR32
10200           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10201             hr=get_reg(regs[i+1].regmap,TLREG);
10202             if(hr>=0) {
10203               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10204               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10205                 int nr;
10206                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10207                 {
10208                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10209                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10210                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10211                   regs[i].isconst&=~(1<<hr);
10212                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10213                   constmap[i][hr]=constmap[i+1][hr];
10214                   regs[i+1].wasdirty&=~(1<<hr);
10215                   regs[i].dirty&=~(1<<hr);
10216                 }
10217                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10218                 {
10219                   // move it to another register
10220                   regs[i+1].regmap[hr]=-1;
10221                   regmap_pre[i+2][hr]=-1;
10222                   regs[i+1].regmap[nr]=TLREG;
10223                   regmap_pre[i+2][nr]=TLREG;
10224                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10225                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10226                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10227                   regs[i].isconst&=~(1<<nr);
10228                   regs[i+1].isconst&=~(1<<nr);
10229                   regs[i].dirty&=~(1<<nr);
10230                   regs[i+1].wasdirty&=~(1<<nr);
10231                   regs[i+1].dirty&=~(1<<nr);
10232                   regs[i+2].wasdirty&=~(1<<nr);
10233                 }
10234               }
10235             }
10236           }
10237           #endif
10238           if(itype[i+1]==STORE||itype[i+1]==STORELR
10239              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10240             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10241               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10242               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10243               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10244               assert(hr>=0);
10245               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10246               {
10247                 regs[i].regmap[hr]=rs1[i+1];
10248                 regmap_pre[i+1][hr]=rs1[i+1];
10249                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10250                 regs[i].isconst&=~(1<<hr);
10251                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10252                 constmap[i][hr]=constmap[i+1][hr];
10253                 regs[i+1].wasdirty&=~(1<<hr);
10254                 regs[i].dirty&=~(1<<hr);
10255               }
10256             }
10257           }
10258           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10259             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10260               int nr;
10261               hr=get_reg(regs[i+1].regmap,FTEMP);
10262               assert(hr>=0);
10263               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10264               {
10265                 regs[i].regmap[hr]=rs1[i+1];
10266                 regmap_pre[i+1][hr]=rs1[i+1];
10267                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10268                 regs[i].isconst&=~(1<<hr);
10269                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10270                 constmap[i][hr]=constmap[i+1][hr];
10271                 regs[i+1].wasdirty&=~(1<<hr);
10272                 regs[i].dirty&=~(1<<hr);
10273               }
10274               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10275               {
10276                 // move it to another register
10277                 regs[i+1].regmap[hr]=-1;
10278                 regmap_pre[i+2][hr]=-1;
10279                 regs[i+1].regmap[nr]=FTEMP;
10280                 regmap_pre[i+2][nr]=FTEMP;
10281                 regs[i].regmap[nr]=rs1[i+1];
10282                 regmap_pre[i+1][nr]=rs1[i+1];
10283                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10284                 regs[i].isconst&=~(1<<nr);
10285                 regs[i+1].isconst&=~(1<<nr);
10286                 regs[i].dirty&=~(1<<nr);
10287                 regs[i+1].wasdirty&=~(1<<nr);
10288                 regs[i+1].dirty&=~(1<<nr);
10289                 regs[i+2].wasdirty&=~(1<<nr);
10290               }
10291             }
10292           }
10293           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10294             if(itype[i+1]==LOAD) 
10295               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10296             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10297               hr=get_reg(regs[i+1].regmap,FTEMP);
10298             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10299               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10300               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10301             }
10302             if(hr>=0&&regs[i].regmap[hr]<0) {
10303               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10304               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10305                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10306                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10307                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10308                 regs[i].isconst&=~(1<<hr);
10309                 regs[i+1].wasdirty&=~(1<<hr);
10310                 regs[i].dirty&=~(1<<hr);
10311               }
10312             }
10313           }
10314         }
10315       }
10316     }
10317   }
10318   
10319   /* Pass 6 - Optimize clean/dirty state */
10320   clean_registers(0,slen-1,1);
10321   
10322   /* Pass 7 - Identify 32-bit registers */
10323 #ifndef FORCE32
10324   provisional_r32();
10325
10326   u_int r32=0;
10327   
10328   for (i=slen-1;i>=0;i--)
10329   {
10330     int hr;
10331     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10332     {
10333       if(ba[i]<start || ba[i]>=(start+slen*4))
10334       {
10335         // Branch out of this block, don't need anything
10336         r32=0;
10337       }
10338       else
10339       {
10340         // Internal branch
10341         // Need whatever matches the target
10342         // (and doesn't get overwritten by the delay slot instruction)
10343         r32=0;
10344         int t=(ba[i]-start)>>2;
10345         if(ba[i]>start+i*4) {
10346           // Forward branch
10347           if(!(requires_32bit[t]&~regs[i].was32))
10348             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10349         }else{
10350           // Backward branch
10351           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10352           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10353           if(!(pr32[t]&~regs[i].was32))
10354             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10355         }
10356       }
10357       // Conditional branch may need registers for following instructions
10358       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10359       {
10360         if(i<slen-2) {
10361           r32|=requires_32bit[i+2];
10362           r32&=regs[i].was32;
10363           // Mark this address as a branch target since it may be called
10364           // upon return from interrupt
10365           bt[i+2]=1;
10366         }
10367       }
10368       // Merge in delay slot
10369       if(!likely[i]) {
10370         // These are overwritten unless the branch is "likely"
10371         // and the delay slot is nullified if not taken
10372         r32&=~(1LL<<rt1[i+1]);
10373         r32&=~(1LL<<rt2[i+1]);
10374       }
10375       // Assume these are needed (delay slot)
10376       if(us1[i+1]>0)
10377       {
10378         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10379       }
10380       if(us2[i+1]>0)
10381       {
10382         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10383       }
10384       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10385       {
10386         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10387       }
10388       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10389       {
10390         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10391       }
10392     }
10393     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10394     {
10395       // SYSCALL instruction (software interrupt)
10396       r32=0;
10397     }
10398     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10399     {
10400       // ERET instruction (return from interrupt)
10401       r32=0;
10402     }
10403     // Check 32 bits
10404     r32&=~(1LL<<rt1[i]);
10405     r32&=~(1LL<<rt2[i]);
10406     if(us1[i]>0)
10407     {
10408       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10409     }
10410     if(us2[i]>0)
10411     {
10412       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10413     }
10414     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10415     {
10416       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10417     }
10418     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10419     {
10420       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10421     }
10422     requires_32bit[i]=r32;
10423     
10424     // Dirty registers which are 32-bit, require 32-bit input
10425     // as they will be written as 32-bit values
10426     for(hr=0;hr<HOST_REGS;hr++)
10427     {
10428       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10429         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10430           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10431           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10432         }
10433       }
10434     }
10435     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10436   }
10437 #endif
10438
10439   if(itype[slen-1]==SPAN) {
10440     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10441   }
10442   
10443   /* Debug/disassembly */
10444   if((void*)assem_debug==(void*)printf) 
10445   for(i=0;i<slen;i++)
10446   {
10447     printf("U:");
10448     int r;
10449     for(r=1;r<=CCREG;r++) {
10450       if((unneeded_reg[i]>>r)&1) {
10451         if(r==HIREG) printf(" HI");
10452         else if(r==LOREG) printf(" LO");
10453         else printf(" r%d",r);
10454       }
10455     }
10456 #ifndef FORCE32
10457     printf(" UU:");
10458     for(r=1;r<=CCREG;r++) {
10459       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10460         if(r==HIREG) printf(" HI");
10461         else if(r==LOREG) printf(" LO");
10462         else printf(" r%d",r);
10463       }
10464     }
10465     printf(" 32:");
10466     for(r=0;r<=CCREG;r++) {
10467       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10468       if((regs[i].was32>>r)&1) {
10469         if(r==CCREG) printf(" CC");
10470         else if(r==HIREG) printf(" HI");
10471         else if(r==LOREG) printf(" LO");
10472         else printf(" r%d",r);
10473       }
10474     }
10475 #endif
10476     printf("\n");
10477     #if defined(__i386__) || defined(__x86_64__)
10478     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10479     #endif
10480     #ifdef __arm__
10481     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10482     #endif
10483     printf("needs: ");
10484     if(needed_reg[i]&1) printf("eax ");
10485     if((needed_reg[i]>>1)&1) printf("ecx ");
10486     if((needed_reg[i]>>2)&1) printf("edx ");
10487     if((needed_reg[i]>>3)&1) printf("ebx ");
10488     if((needed_reg[i]>>5)&1) printf("ebp ");
10489     if((needed_reg[i]>>6)&1) printf("esi ");
10490     if((needed_reg[i]>>7)&1) printf("edi ");
10491     printf("r:");
10492     for(r=0;r<=CCREG;r++) {
10493       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10494       if((requires_32bit[i]>>r)&1) {
10495         if(r==CCREG) printf(" CC");
10496         else if(r==HIREG) printf(" HI");
10497         else if(r==LOREG) printf(" LO");
10498         else printf(" r%d",r);
10499       }
10500     }
10501     printf("\n");
10502     /*printf("pr:");
10503     for(r=0;r<=CCREG;r++) {
10504       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10505       if((pr32[i]>>r)&1) {
10506         if(r==CCREG) printf(" CC");
10507         else if(r==HIREG) printf(" HI");
10508         else if(r==LOREG) printf(" LO");
10509         else printf(" r%d",r);
10510       }
10511     }
10512     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10513     printf("\n");*/
10514     #if defined(__i386__) || defined(__x86_64__)
10515     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10516     printf("dirty: ");
10517     if(regs[i].wasdirty&1) printf("eax ");
10518     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10519     if((regs[i].wasdirty>>2)&1) printf("edx ");
10520     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10521     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10522     if((regs[i].wasdirty>>6)&1) printf("esi ");
10523     if((regs[i].wasdirty>>7)&1) printf("edi ");
10524     #endif
10525     #ifdef __arm__
10526     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10527     printf("dirty: ");
10528     if(regs[i].wasdirty&1) printf("r0 ");
10529     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10530     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10531     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10532     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10533     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10534     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10535     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10536     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10537     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10538     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10539     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10540     #endif
10541     printf("\n");
10542     disassemble_inst(i);
10543     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10544     #if defined(__i386__) || defined(__x86_64__)
10545     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10546     if(regs[i].dirty&1) printf("eax ");
10547     if((regs[i].dirty>>1)&1) printf("ecx ");
10548     if((regs[i].dirty>>2)&1) printf("edx ");
10549     if((regs[i].dirty>>3)&1) printf("ebx ");
10550     if((regs[i].dirty>>5)&1) printf("ebp ");
10551     if((regs[i].dirty>>6)&1) printf("esi ");
10552     if((regs[i].dirty>>7)&1) printf("edi ");
10553     #endif
10554     #ifdef __arm__
10555     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10556     if(regs[i].dirty&1) printf("r0 ");
10557     if((regs[i].dirty>>1)&1) printf("r1 ");
10558     if((regs[i].dirty>>2)&1) printf("r2 ");
10559     if((regs[i].dirty>>3)&1) printf("r3 ");
10560     if((regs[i].dirty>>4)&1) printf("r4 ");
10561     if((regs[i].dirty>>5)&1) printf("r5 ");
10562     if((regs[i].dirty>>6)&1) printf("r6 ");
10563     if((regs[i].dirty>>7)&1) printf("r7 ");
10564     if((regs[i].dirty>>8)&1) printf("r8 ");
10565     if((regs[i].dirty>>9)&1) printf("r9 ");
10566     if((regs[i].dirty>>10)&1) printf("r10 ");
10567     if((regs[i].dirty>>12)&1) printf("r12 ");
10568     #endif
10569     printf("\n");
10570     if(regs[i].isconst) {
10571       printf("constants: ");
10572       #if defined(__i386__) || defined(__x86_64__)
10573       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10574       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10575       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10576       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10577       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10578       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10579       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10580       #endif
10581       #ifdef __arm__
10582       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10583       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10584       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10585       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10586       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10587       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10588       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10589       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10590       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10591       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10592       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10593       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10594       #endif
10595       printf("\n");
10596     }
10597 #ifndef FORCE32
10598     printf(" 32:");
10599     for(r=0;r<=CCREG;r++) {
10600       if((regs[i].is32>>r)&1) {
10601         if(r==CCREG) printf(" CC");
10602         else if(r==HIREG) printf(" HI");
10603         else if(r==LOREG) printf(" LO");
10604         else printf(" r%d",r);
10605       }
10606     }
10607     printf("\n");
10608 #endif
10609     /*printf(" p32:");
10610     for(r=0;r<=CCREG;r++) {
10611       if((p32[i]>>r)&1) {
10612         if(r==CCREG) printf(" CC");
10613         else if(r==HIREG) printf(" HI");
10614         else if(r==LOREG) printf(" LO");
10615         else printf(" r%d",r);
10616       }
10617     }
10618     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10619     else printf("\n");*/
10620     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10621       #if defined(__i386__) || defined(__x86_64__)
10622       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10623       if(branch_regs[i].dirty&1) printf("eax ");
10624       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10625       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10626       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10627       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10628       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10629       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10630       #endif
10631       #ifdef __arm__
10632       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10633       if(branch_regs[i].dirty&1) printf("r0 ");
10634       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10635       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10636       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10637       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10638       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10639       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10640       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10641       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10642       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10643       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10644       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10645       #endif
10646 #ifndef FORCE32
10647       printf(" 32:");
10648       for(r=0;r<=CCREG;r++) {
10649         if((branch_regs[i].is32>>r)&1) {
10650           if(r==CCREG) printf(" CC");
10651           else if(r==HIREG) printf(" HI");
10652           else if(r==LOREG) printf(" LO");
10653           else printf(" r%d",r);
10654         }
10655       }
10656       printf("\n");
10657 #endif
10658     }
10659   }
10660
10661   /* Pass 8 - Assembly */
10662   linkcount=0;stubcount=0;
10663   ds=0;is_delayslot=0;
10664   cop1_usable=0;
10665   uint64_t is32_pre=0;
10666   u_int dirty_pre=0;
10667   u_int beginning=(u_int)out;
10668   if((u_int)addr&1) {
10669     ds=1;
10670     pagespan_ds();
10671   }
10672   u_int instr_addr0_override=0;
10673
10674 #ifdef PCSX
10675   if (start == 0x80030000) {
10676     // nasty hack for fastbios thing
10677     instr_addr0_override=(u_int)out;
10678     emit_movimm(start,0);
10679     emit_readword((int)&pcaddr,1);
10680     emit_writeword(0,(int)&pcaddr);
10681     emit_cmp(0,1);
10682     emit_jne((int)new_dyna_leave);
10683   }
10684 #endif
10685   for(i=0;i<slen;i++)
10686   {
10687     //if(ds) printf("ds: ");
10688     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10689     if(ds) {
10690       ds=0; // Skip delay slot
10691       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10692       instr_addr[i]=0;
10693     } else {
10694       #ifndef DESTRUCTIVE_WRITEBACK
10695       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10696       {
10697         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10698               unneeded_reg[i],unneeded_reg_upper[i]);
10699         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10700               unneeded_reg[i],unneeded_reg_upper[i]);
10701       }
10702       is32_pre=regs[i].is32;
10703       dirty_pre=regs[i].dirty;
10704       #endif
10705       // write back
10706       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10707       {
10708         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10709                       unneeded_reg[i],unneeded_reg_upper[i]);
10710         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10711       }
10712       // branch target entry point
10713       instr_addr[i]=(u_int)out;
10714       assem_debug("<->\n");
10715       // load regs
10716       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10717         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10718       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10719       address_generation(i,&regs[i],regs[i].regmap_entry);
10720       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10721       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10722       {
10723         // Load the delay slot registers if necessary
10724         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10725           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10726         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10727           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10728         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10729           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10730       }
10731       else if(i+1<slen)
10732       {
10733         // Preload registers for following instruction
10734         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10735           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10736             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10737         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10738           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10739             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10740       }
10741       // TODO: if(is_ooo(i)) address_generation(i+1);
10742       if(itype[i]==CJUMP||itype[i]==FJUMP)
10743         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10744       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10745         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10746       if(bt[i]) cop1_usable=0;
10747       // assemble
10748       switch(itype[i]) {
10749         case ALU:
10750           alu_assemble(i,&regs[i]);break;
10751         case IMM16:
10752           imm16_assemble(i,&regs[i]);break;
10753         case SHIFT:
10754           shift_assemble(i,&regs[i]);break;
10755         case SHIFTIMM:
10756           shiftimm_assemble(i,&regs[i]);break;
10757         case LOAD:
10758           load_assemble(i,&regs[i]);break;
10759         case LOADLR:
10760           loadlr_assemble(i,&regs[i]);break;
10761         case STORE:
10762           store_assemble(i,&regs[i]);break;
10763         case STORELR:
10764           storelr_assemble(i,&regs[i]);break;
10765         case COP0:
10766           cop0_assemble(i,&regs[i]);break;
10767         case COP1:
10768           cop1_assemble(i,&regs[i]);break;
10769         case C1LS:
10770           c1ls_assemble(i,&regs[i]);break;
10771         case COP2:
10772           cop2_assemble(i,&regs[i]);break;
10773         case C2LS:
10774           c2ls_assemble(i,&regs[i]);break;
10775         case C2OP:
10776           c2op_assemble(i,&regs[i]);break;
10777         case FCONV:
10778           fconv_assemble(i,&regs[i]);break;
10779         case FLOAT:
10780           float_assemble(i,&regs[i]);break;
10781         case FCOMP:
10782           fcomp_assemble(i,&regs[i]);break;
10783         case MULTDIV:
10784           multdiv_assemble(i,&regs[i]);break;
10785         case MOV:
10786           mov_assemble(i,&regs[i]);break;
10787         case SYSCALL:
10788           syscall_assemble(i,&regs[i]);break;
10789         case HLECALL:
10790           hlecall_assemble(i,&regs[i]);break;
10791         case INTCALL:
10792           intcall_assemble(i,&regs[i]);break;
10793         case UJUMP:
10794           ujump_assemble(i,&regs[i]);ds=1;break;
10795         case RJUMP:
10796           rjump_assemble(i,&regs[i]);ds=1;break;
10797         case CJUMP:
10798           cjump_assemble(i,&regs[i]);ds=1;break;
10799         case SJUMP:
10800           sjump_assemble(i,&regs[i]);ds=1;break;
10801         case FJUMP:
10802           fjump_assemble(i,&regs[i]);ds=1;break;
10803         case SPAN:
10804           pagespan_assemble(i,&regs[i]);break;
10805       }
10806       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10807         literal_pool(1024);
10808       else
10809         literal_pool_jumpover(256);
10810     }
10811   }
10812   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10813   // If the block did not end with an unconditional branch,
10814   // add a jump to the next instruction.
10815   if(i>1) {
10816     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10817       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10818       assert(i==slen);
10819       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10820         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10821         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10822           emit_loadreg(CCREG,HOST_CCREG);
10823         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10824       }
10825       else if(!likely[i-2])
10826       {
10827         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10828         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10829       }
10830       else
10831       {
10832         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10833         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10834       }
10835       add_to_linker((int)out,start+i*4,0);
10836       emit_jmp(0);
10837     }
10838   }
10839   else
10840   {
10841     assert(i>0);
10842     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10843     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10844     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10845       emit_loadreg(CCREG,HOST_CCREG);
10846     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10847     add_to_linker((int)out,start+i*4,0);
10848     emit_jmp(0);
10849   }
10850
10851   // TODO: delay slot stubs?
10852   // Stubs
10853   for(i=0;i<stubcount;i++)
10854   {
10855     switch(stubs[i][0])
10856     {
10857       case LOADB_STUB:
10858       case LOADH_STUB:
10859       case LOADW_STUB:
10860       case LOADD_STUB:
10861       case LOADBU_STUB:
10862       case LOADHU_STUB:
10863         do_readstub(i);break;
10864       case STOREB_STUB:
10865       case STOREH_STUB:
10866       case STOREW_STUB:
10867       case STORED_STUB:
10868         do_writestub(i);break;
10869       case CC_STUB:
10870         do_ccstub(i);break;
10871       case INVCODE_STUB:
10872         do_invstub(i);break;
10873       case FP_STUB:
10874         do_cop1stub(i);break;
10875       case STORELR_STUB:
10876         do_unalignedwritestub(i);break;
10877     }
10878   }
10879
10880   if (instr_addr0_override)
10881     instr_addr[0] = instr_addr0_override;
10882
10883   /* Pass 9 - Linker */
10884   for(i=0;i<linkcount;i++)
10885   {
10886     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10887     literal_pool(64);
10888     if(!link_addr[i][2])
10889     {
10890       void *stub=out;
10891       void *addr=check_addr(link_addr[i][1]);
10892       emit_extjump(link_addr[i][0],link_addr[i][1]);
10893       if(addr) {
10894         set_jump_target(link_addr[i][0],(int)addr);
10895         add_link(link_addr[i][1],stub);
10896       }
10897       else set_jump_target(link_addr[i][0],(int)stub);
10898     }
10899     else
10900     {
10901       // Internal branch
10902       int target=(link_addr[i][1]-start)>>2;
10903       assert(target>=0&&target<slen);
10904       assert(instr_addr[target]);
10905       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10906       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10907       //#else
10908       set_jump_target(link_addr[i][0],instr_addr[target]);
10909       //#endif
10910     }
10911   }
10912   // External Branch Targets (jump_in)
10913   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10914   for(i=0;i<slen;i++)
10915   {
10916     if(bt[i]||i==0)
10917     {
10918       if(instr_addr[i]) // TODO - delay slots (=null)
10919       {
10920         u_int vaddr=start+i*4;
10921         u_int page=get_page(vaddr);
10922         u_int vpage=get_vpage(vaddr);
10923         literal_pool(256);
10924         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10925 #ifndef FORCE32
10926         if(!requires_32bit[i])
10927 #else
10928         if(1)
10929 #endif
10930         {
10931           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10932           assem_debug("jump_in: %x\n",start+i*4);
10933           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10934           int entry_point=do_dirty_stub(i);
10935           ll_add(jump_in+page,vaddr,(void *)entry_point);
10936           // If there was an existing entry in the hash table,
10937           // replace it with the new address.
10938           // Don't add new entries.  We'll insert the
10939           // ones that actually get used in check_addr().
10940           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10941           if(ht_bin[0]==vaddr) {
10942             ht_bin[1]=entry_point;
10943           }
10944           if(ht_bin[2]==vaddr) {
10945             ht_bin[3]=entry_point;
10946           }
10947         }
10948         else
10949         {
10950           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10951           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10952           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10953           //int entry_point=(int)out;
10954           ////assem_debug("entry_point: %x\n",entry_point);
10955           //load_regs_entry(i);
10956           //if(entry_point==(int)out)
10957           //  entry_point=instr_addr[i];
10958           //else
10959           //  emit_jmp(instr_addr[i]);
10960           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10961           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10962           int entry_point=do_dirty_stub(i);
10963           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10964         }
10965       }
10966     }
10967   }
10968   // Write out the literal pool if necessary
10969   literal_pool(0);
10970   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10971   // Align code
10972   if(((u_int)out)&7) emit_addnop(13);
10973   #endif
10974   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10975   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10976   memcpy(copy,source,slen*4);
10977   copy+=slen*4;
10978   
10979   #ifdef __arm__
10980   __clear_cache((void *)beginning,out);
10981   #endif
10982   
10983   // If we're within 256K of the end of the buffer,
10984   // start over from the beginning. (Is 256K enough?)
10985   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10986   
10987   // Trap writes to any of the pages we compiled
10988   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10989     invalid_code[i]=0;
10990 #ifndef DISABLE_TLB
10991     memory_map[i]|=0x40000000;
10992     if((signed int)start>=(signed int)0xC0000000) {
10993       assert(using_tlb);
10994       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10995       invalid_code[j]=0;
10996       memory_map[j]|=0x40000000;
10997       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10998     }
10999 #endif
11000   }
11001   
11002   /* Pass 10 - Free memory by expiring oldest blocks */
11003   
11004   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11005   while(expirep!=end)
11006   {
11007     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11008     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11009     inv_debug("EXP: Phase %d\n",expirep);
11010     switch((expirep>>11)&3)
11011     {
11012       case 0:
11013         // Clear jump_in and jump_dirty
11014         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11015         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11016         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11017         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11018         break;
11019       case 1:
11020         // Clear pointers
11021         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11022         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11023         break;
11024       case 2:
11025         // Clear hash table
11026         for(i=0;i<32;i++) {
11027           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11028           if((ht_bin[3]>>shift)==(base>>shift) ||
11029              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11030             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11031             ht_bin[2]=ht_bin[3]=-1;
11032           }
11033           if((ht_bin[1]>>shift)==(base>>shift) ||
11034              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11035             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11036             ht_bin[0]=ht_bin[2];
11037             ht_bin[1]=ht_bin[3];
11038             ht_bin[2]=ht_bin[3]=-1;
11039           }
11040         }
11041         break;
11042       case 3:
11043         // Clear jump_out
11044         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11045         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11046         break;
11047     }
11048     expirep=(expirep+1)&65535;
11049   }
11050   return 0;
11051 }
11052
11053 // vim:shiftwidth=2:expandtab