1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
22 #include <stdint.h> //include for uint64_t
26 #include "emu_if.h" //emulator interface
29 //#define assem_debug printf
30 //#define inv_debug printf
31 #define assem_debug(...)
32 #define inv_debug(...)
35 #include "assem_x86.h"
38 #include "assem_x64.h"
41 #include "assem_arm.h"
45 #define MAX_OUTPUT_BLOCK_SIZE 262144
47 int cycle_multiplier; // 100 for 1.0
48 #define CLOCK_ADJUST(x) (((x) * cycle_multiplier + 50) / 100)
52 signed char regmap_entry[HOST_REGS];
53 signed char regmap[HOST_REGS];
62 u_int loadedconst; // host regs that have constants loaded
63 u_int waswritten; // MIPS regs that were used as store base before
64 uint64_t constmap[HOST_REGS];
72 struct ll_entry *next;
78 char insn[MAXBLOCK][10];
79 u_char itype[MAXBLOCK];
80 u_char opcode[MAXBLOCK];
81 u_char opcode2[MAXBLOCK];
89 u_char dep1[MAXBLOCK];
90 u_char dep2[MAXBLOCK];
92 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
93 static uint64_t gte_rt[MAXBLOCK];
94 static uint64_t gte_unneeded[MAXBLOCK];
95 static int gte_reads_flags; // gte flag read encountered
96 static u_int smrv[32]; // speculated MIPS register values
97 static u_int smrv_strong; // mask or regs that are likely to have correct values
98 static u_int smrv_weak; // same, but somewhat less likely
99 static u_int smrv_strong_next; // same, but after current insn executes
100 static u_int smrv_weak_next;
103 char likely[MAXBLOCK];
104 char is_ds[MAXBLOCK];
106 uint64_t unneeded_reg[MAXBLOCK];
107 uint64_t unneeded_reg_upper[MAXBLOCK];
108 uint64_t branch_unneeded_reg[MAXBLOCK];
109 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
110 uint64_t p32[MAXBLOCK];
111 uint64_t pr32[MAXBLOCK];
112 signed char regmap_pre[MAXBLOCK][HOST_REGS];
113 signed char regmap[MAXBLOCK][HOST_REGS];
114 signed char regmap_entry[MAXBLOCK][HOST_REGS];
115 uint64_t constmap[MAXBLOCK][HOST_REGS];
116 struct regstat regs[MAXBLOCK];
117 struct regstat branch_regs[MAXBLOCK];
118 signed char minimum_free_regs[MAXBLOCK];
119 u_int needed_reg[MAXBLOCK];
120 uint64_t requires_32bit[MAXBLOCK];
121 u_int wont_dirty[MAXBLOCK];
122 u_int will_dirty[MAXBLOCK];
125 u_int instr_addr[MAXBLOCK];
126 u_int link_addr[MAXBLOCK][3];
128 u_int stubs[MAXBLOCK*3][8];
130 u_int literals[1024][2];
135 struct ll_entry *jump_in[4096];
136 struct ll_entry *jump_out[4096];
137 struct ll_entry *jump_dirty[4096];
138 u_int hash_table[65536][4] __attribute__((aligned(16)));
139 char shadow[1048576] __attribute__((aligned(16)));
145 static const u_int using_tlb=0;
147 int new_dynarec_did_compile;
148 u_int stop_after_jal;
149 extern u_char restore_candidate[512];
150 extern int cycle_count;
152 /* registers that may be allocated */
154 #define HIREG 32 // hi
155 #define LOREG 33 // lo
156 #define FSREG 34 // FPU status (FCSR)
157 #define CSREG 35 // Coprocessor status
158 #define CCREG 36 // Cycle count
159 #define INVCP 37 // Pointer to invalid_code
160 #define MMREG 38 // Pointer to memory_map
161 #define ROREG 39 // ram offset (if rdram!=0x80000000)
163 #define FTEMP 40 // FPU temporary register
164 #define PTEMP 41 // Prefetch temporary register
165 #define TLREG 42 // TLB mapping offset
166 #define RHASH 43 // Return address hash
167 #define RHTBL 44 // Return address hash table address
168 #define RTEMP 45 // JR/JALR address register
170 #define AGEN1 46 // Address generation temporary register
171 #define AGEN2 47 // Address generation temporary register
172 #define MGEN1 48 // Maptable address generation temporary register
173 #define MGEN2 49 // Maptable address generation temporary register
174 #define BTREG 50 // Branch target temporary register
176 /* instruction types */
177 #define NOP 0 // No operation
178 #define LOAD 1 // Load
179 #define STORE 2 // Store
180 #define LOADLR 3 // Unaligned load
181 #define STORELR 4 // Unaligned store
182 #define MOV 5 // Move
183 #define ALU 6 // Arithmetic/logic
184 #define MULTDIV 7 // Multiply/divide
185 #define SHIFT 8 // Shift by register
186 #define SHIFTIMM 9// Shift by immediate
187 #define IMM16 10 // 16-bit immediate
188 #define RJUMP 11 // Unconditional jump to register
189 #define UJUMP 12 // Unconditional jump
190 #define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
191 #define SJUMP 14 // Conditional branch (regimm format)
192 #define COP0 15 // Coprocessor 0
193 #define COP1 16 // Coprocessor 1
194 #define C1LS 17 // Coprocessor 1 load/store
195 #define FJUMP 18 // Conditional branch (floating point)
196 #define FLOAT 19 // Floating point unit
197 #define FCONV 20 // Convert integer to float
198 #define FCOMP 21 // Floating point compare (sets FSREG)
199 #define SYSCALL 22// SYSCALL
200 #define OTHER 23 // Other
201 #define SPAN 24 // Branch/delay slot spans 2 pages
202 #define NI 25 // Not implemented
203 #define HLECALL 26// PCSX fake opcodes for HLE
204 #define COP2 27 // Coprocessor 2 move
205 #define C2LS 28 // Coprocessor 2 load/store
206 #define C2OP 29 // Coprocessor 2 operation
207 #define INTCALL 30// Call interpreter to handle rare corner cases
216 #define LOADBU_STUB 7
217 #define LOADHU_STUB 8
218 #define STOREB_STUB 9
219 #define STOREH_STUB 10
220 #define STOREW_STUB 11
221 #define STORED_STUB 12
222 #define STORELR_STUB 13
223 #define INVCODE_STUB 14
231 int new_recompile_block(int addr);
232 void *get_addr_ht(u_int vaddr);
233 void invalidate_block(u_int block);
234 void invalidate_addr(u_int addr);
235 void remove_hash(int vaddr);
238 void dyna_linker_ds();
240 void verify_code_vm();
241 void verify_code_ds();
244 void fp_exception_ds();
246 void jump_syscall_hle();
250 void new_dyna_leave();
255 void read_nomem_new();
256 void read_nomemb_new();
257 void read_nomemh_new();
258 void read_nomemd_new();
259 void write_nomem_new();
260 void write_nomemb_new();
261 void write_nomemh_new();
262 void write_nomemd_new();
263 void write_rdram_new();
264 void write_rdramb_new();
265 void write_rdramh_new();
266 void write_rdramd_new();
267 extern u_int memory_map[1048576];
269 // Needed by assembler
270 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
271 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
272 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
273 void load_all_regs(signed char i_regmap[]);
274 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
275 void load_regs_entry(int t);
276 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
280 //#define DEBUG_CYCLE_COUNT 1
282 static void tlb_hacks()
286 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
290 switch (ROM_HEADER->Country_code&0xFF)
302 // Unknown country code
306 u_int rom_addr=(u_int)rom;
308 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
309 // in the lower 4G of memory to use this hack. Copy it if necessary.
310 if((void *)rom>(void *)0xffffffff) {
311 munmap(ROM_COPY, 67108864);
312 if(mmap(ROM_COPY, 12582912,
313 PROT_READ | PROT_WRITE,
314 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
315 -1, 0) <= 0) {printf("mmap() failed\n");}
316 memcpy(ROM_COPY,rom,12582912);
317 rom_addr=(u_int)ROM_COPY;
321 for(n=0x7F000;n<0x80000;n++) {
322 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
329 static u_int get_page(u_int vaddr)
332 u_int page=(vaddr^0x80000000)>>12;
334 u_int page=vaddr&~0xe0000000;
335 if (page < 0x1000000)
336 page &= ~0x0e00000; // RAM mirrors
340 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
342 if(page>2048) page=2048+(page&2047);
346 static u_int get_vpage(u_int vaddr)
348 u_int vpage=(vaddr^0x80000000)>>12;
350 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
352 if(vpage>2048) vpage=2048+(vpage&2047);
356 // Get address from virtual address
357 // This is called from the recompiled JR/JALR instructions
358 void *get_addr(u_int vaddr)
360 u_int page=get_page(vaddr);
361 u_int vpage=get_vpage(vaddr);
362 struct ll_entry *head;
363 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
366 if(head->vaddr==vaddr&&head->reg32==0) {
367 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
368 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
371 ht_bin[1]=(int)head->addr;
377 head=jump_dirty[vpage];
379 if(head->vaddr==vaddr&&head->reg32==0) {
380 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
381 // Don't restore blocks which are about to expire from the cache
382 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
383 if(verify_dirty(head->addr)) {
384 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
385 invalid_code[vaddr>>12]=0;
386 inv_code_start=inv_code_end=~0;
388 memory_map[vaddr>>12]|=0x40000000;
392 if(tlb_LUT_r[vaddr>>12]) {
393 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
394 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
397 restore_candidate[vpage>>3]|=1<<(vpage&7);
399 else restore_candidate[page>>3]|=1<<(page&7);
400 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
401 if(ht_bin[0]==vaddr) {
402 ht_bin[1]=(int)head->addr; // Replace existing entry
408 ht_bin[1]=(int)head->addr;
416 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
417 int r=new_recompile_block(vaddr);
418 if(r==0) return get_addr(vaddr);
419 // Execute in unmapped page, generate pagefault execption
421 Cause=(vaddr<<31)|0x8;
422 EPC=(vaddr&1)?vaddr-5:vaddr;
424 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
425 EntryHi=BadVAddr&0xFFFFE000;
426 return get_addr_ht(0x80000000);
428 // Look up address in hash table first
429 void *get_addr_ht(u_int vaddr)
431 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
432 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
433 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
434 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
435 return get_addr(vaddr);
438 void *get_addr_32(u_int vaddr,u_int flags)
441 return get_addr(vaddr);
443 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
444 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
445 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
446 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
447 u_int page=get_page(vaddr);
448 u_int vpage=get_vpage(vaddr);
449 struct ll_entry *head;
452 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
455 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
457 ht_bin[1]=(int)head->addr;
459 }else if(ht_bin[2]==-1) {
460 ht_bin[3]=(int)head->addr;
463 //ht_bin[3]=ht_bin[1];
464 //ht_bin[2]=ht_bin[0];
465 //ht_bin[1]=(int)head->addr;
472 head=jump_dirty[vpage];
474 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
475 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
476 // Don't restore blocks which are about to expire from the cache
477 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
478 if(verify_dirty(head->addr)) {
479 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
480 invalid_code[vaddr>>12]=0;
481 inv_code_start=inv_code_end=~0;
482 memory_map[vaddr>>12]|=0x40000000;
485 if(tlb_LUT_r[vaddr>>12]) {
486 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
487 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
490 restore_candidate[vpage>>3]|=1<<(vpage&7);
492 else restore_candidate[page>>3]|=1<<(page&7);
494 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
496 ht_bin[1]=(int)head->addr;
498 }else if(ht_bin[2]==-1) {
499 ht_bin[3]=(int)head->addr;
502 //ht_bin[3]=ht_bin[1];
503 //ht_bin[2]=ht_bin[0];
504 //ht_bin[1]=(int)head->addr;
512 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
513 int r=new_recompile_block(vaddr);
514 if(r==0) return get_addr(vaddr);
515 // Execute in unmapped page, generate pagefault execption
517 Cause=(vaddr<<31)|0x8;
518 EPC=(vaddr&1)?vaddr-5:vaddr;
520 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
521 EntryHi=BadVAddr&0xFFFFE000;
522 return get_addr_ht(0x80000000);
526 void clear_all_regs(signed char regmap[])
529 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
532 signed char get_reg(signed char regmap[],int r)
535 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&®map[hr]==r) return hr;
539 // Find a register that is available for two consecutive cycles
540 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
543 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&®map1[hr]==r&®map2[hr]==r) return hr;
547 int count_free_regs(signed char regmap[])
551 for(hr=0;hr<HOST_REGS;hr++)
553 if(hr!=EXCLUDE_REG) {
554 if(regmap[hr]<0) count++;
560 void dirty_reg(struct regstat *cur,signed char reg)
564 for (hr=0;hr<HOST_REGS;hr++) {
565 if((cur->regmap[hr]&63)==reg) {
571 // If we dirty the lower half of a 64 bit register which is now being
572 // sign-extended, we need to dump the upper half.
573 // Note: Do this only after completion of the instruction, because
574 // some instructions may need to read the full 64-bit value even if
575 // overwriting it (eg SLTI, DSRA32).
576 static void flush_dirty_uppers(struct regstat *cur)
579 for (hr=0;hr<HOST_REGS;hr++) {
580 if((cur->dirty>>hr)&1) {
583 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
588 void set_const(struct regstat *cur,signed char reg,uint64_t value)
592 for (hr=0;hr<HOST_REGS;hr++) {
593 if(cur->regmap[hr]==reg) {
595 cur->constmap[hr]=value;
597 else if((cur->regmap[hr]^64)==reg) {
599 cur->constmap[hr]=value>>32;
604 void clear_const(struct regstat *cur,signed char reg)
608 for (hr=0;hr<HOST_REGS;hr++) {
609 if((cur->regmap[hr]&63)==reg) {
610 cur->isconst&=~(1<<hr);
615 int is_const(struct regstat *cur,signed char reg)
620 for (hr=0;hr<HOST_REGS;hr++) {
621 if((cur->regmap[hr]&63)==reg) {
622 return (cur->isconst>>hr)&1;
627 uint64_t get_const(struct regstat *cur,signed char reg)
631 for (hr=0;hr<HOST_REGS;hr++) {
632 if(cur->regmap[hr]==reg) {
633 return cur->constmap[hr];
636 printf("Unknown constant in r%d\n",reg);
640 // Least soon needed registers
641 // Look at the next ten instructions and see which registers
642 // will be used. Try not to reallocate these.
643 void lsn(u_char hsn[], int i, int *preferred_reg)
653 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
655 // Don't go past an unconditonal jump
662 if(rs1[i+j]) hsn[rs1[i+j]]=j;
663 if(rs2[i+j]) hsn[rs2[i+j]]=j;
664 if(rt1[i+j]) hsn[rt1[i+j]]=j;
665 if(rt2[i+j]) hsn[rt2[i+j]]=j;
666 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
667 // Stores can allocate zero
671 // On some architectures stores need invc_ptr
672 #if defined(HOST_IMM8)
673 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
677 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
685 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
687 // Follow first branch
688 int t=(ba[i+b]-start)>>2;
689 j=7-b;if(t+j>=slen) j=slen-t-1;
692 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
693 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
694 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
695 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
698 // TODO: preferred register based on backward branch
700 // Delay slot should preferably not overwrite branch conditions or cycle count
701 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
702 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
703 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
709 // Coprocessor load/store needs FTEMP, even if not declared
710 if(itype[i]==C1LS||itype[i]==C2LS) {
713 // Load L/R also uses FTEMP as a temporary register
714 if(itype[i]==LOADLR) {
717 // Also SWL/SWR/SDL/SDR
718 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
721 // Don't remove the TLB registers either
722 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
725 // Don't remove the miniht registers
726 if(itype[i]==UJUMP||itype[i]==RJUMP)
733 // We only want to allocate registers if we're going to use them again soon
734 int needed_again(int r, int i)
740 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
742 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
743 return 0; // Don't need any registers if exiting the block
751 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
753 // Don't go past an unconditonal jump
757 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
764 if(rs1[i+j]==r) rn=j;
765 if(rs2[i+j]==r) rn=j;
766 if((unneeded_reg[i+j]>>r)&1) rn=10;
767 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
775 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
777 // Follow first branch
779 int t=(ba[i+b]-start)>>2;
780 j=7-b;if(t+j>=slen) j=slen-t-1;
783 if(!((unneeded_reg[t+j]>>r)&1)) {
784 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
785 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
795 // Try to match register allocations at the end of a loop with those
797 int loop_reg(int i, int r, int hr)
806 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
808 // Don't go past an unconditonal jump
815 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
820 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
821 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
822 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
824 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
826 int t=(ba[i+k]-start)>>2;
827 int reg=get_reg(regs[t].regmap_entry,r);
828 if(reg>=0) return reg;
829 //reg=get_reg(regs[t+1].regmap_entry,r);
830 //if(reg>=0) return reg;
838 // Allocate every register, preserving source/target regs
839 void alloc_all(struct regstat *cur,int i)
843 for(hr=0;hr<HOST_REGS;hr++) {
844 if(hr!=EXCLUDE_REG) {
845 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
846 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
849 cur->dirty&=~(1<<hr);
852 if((cur->regmap[hr]&63)==0)
855 cur->dirty&=~(1<<hr);
862 void div64(int64_t dividend,int64_t divisor)
866 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
867 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
869 void divu64(uint64_t dividend,uint64_t divisor)
873 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
874 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
877 void mult64(uint64_t m1,uint64_t m2)
879 unsigned long long int op1, op2, op3, op4;
880 unsigned long long int result1, result2, result3, result4;
881 unsigned long long int temp1, temp2, temp3, temp4;
897 op1 = op2 & 0xFFFFFFFF;
898 op2 = (op2 >> 32) & 0xFFFFFFFF;
899 op3 = op4 & 0xFFFFFFFF;
900 op4 = (op4 >> 32) & 0xFFFFFFFF;
903 temp2 = (temp1 >> 32) + op1 * op4;
905 temp4 = (temp3 >> 32) + op2 * op4;
907 result1 = temp1 & 0xFFFFFFFF;
908 result2 = temp2 + (temp3 & 0xFFFFFFFF);
909 result3 = (result2 >> 32) + temp4;
910 result4 = (result3 >> 32);
912 lo = result1 | (result2 << 32);
913 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
922 void multu64(uint64_t m1,uint64_t m2)
924 unsigned long long int op1, op2, op3, op4;
925 unsigned long long int result1, result2, result3, result4;
926 unsigned long long int temp1, temp2, temp3, temp4;
928 op1 = m1 & 0xFFFFFFFF;
929 op2 = (m1 >> 32) & 0xFFFFFFFF;
930 op3 = m2 & 0xFFFFFFFF;
931 op4 = (m2 >> 32) & 0xFFFFFFFF;
934 temp2 = (temp1 >> 32) + op1 * op4;
936 temp4 = (temp3 >> 32) + op2 * op4;
938 result1 = temp1 & 0xFFFFFFFF;
939 result2 = temp2 + (temp3 & 0xFFFFFFFF);
940 result3 = (result2 >> 32) + temp4;
941 result4 = (result3 >> 32);
943 lo = result1 | (result2 << 32);
944 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
946 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
947 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
950 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
958 else original=loaded;
961 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
964 original>>=64-(bits^56);
965 original<<=64-(bits^56);
969 else original=loaded;
975 #include "assem_x86.c"
978 #include "assem_x64.c"
981 #include "assem_arm.c"
984 // Add virtual address mapping to linked list
985 void ll_add(struct ll_entry **head,int vaddr,void *addr)
987 struct ll_entry *new_entry;
988 new_entry=malloc(sizeof(struct ll_entry));
989 assert(new_entry!=NULL);
990 new_entry->vaddr=vaddr;
992 new_entry->addr=addr;
993 new_entry->next=*head;
997 // Add virtual address mapping for 32-bit compiled block
998 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1000 ll_add(head,vaddr,addr);
1002 (*head)->reg32=reg32;
1006 // Check if an address is already compiled
1007 // but don't return addresses which are about to expire from the cache
1008 void *check_addr(u_int vaddr)
1010 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1011 if(ht_bin[0]==vaddr) {
1012 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1013 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1015 if(ht_bin[2]==vaddr) {
1016 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1017 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1019 u_int page=get_page(vaddr);
1020 struct ll_entry *head;
1023 if(head->vaddr==vaddr&&head->reg32==0) {
1024 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1025 // Update existing entry with current address
1026 if(ht_bin[0]==vaddr) {
1027 ht_bin[1]=(int)head->addr;
1030 if(ht_bin[2]==vaddr) {
1031 ht_bin[3]=(int)head->addr;
1034 // Insert into hash table with low priority.
1035 // Don't evict existing entries, as they are probably
1036 // addresses that are being accessed frequently.
1038 ht_bin[1]=(int)head->addr;
1040 }else if(ht_bin[2]==-1) {
1041 ht_bin[3]=(int)head->addr;
1052 void remove_hash(int vaddr)
1054 //printf("remove hash: %x\n",vaddr);
1055 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1056 if(ht_bin[2]==vaddr) {
1057 ht_bin[2]=ht_bin[3]=-1;
1059 if(ht_bin[0]==vaddr) {
1060 ht_bin[0]=ht_bin[2];
1061 ht_bin[1]=ht_bin[3];
1062 ht_bin[2]=ht_bin[3]=-1;
1066 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1068 struct ll_entry *next;
1070 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1071 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1073 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1074 remove_hash((*head)->vaddr);
1081 head=&((*head)->next);
1086 // Remove all entries from linked list
1087 void ll_clear(struct ll_entry **head)
1089 struct ll_entry *cur;
1090 struct ll_entry *next;
1101 // Dereference the pointers and remove if it matches
1102 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1105 int ptr=get_pointer(head->addr);
1106 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1107 if(((ptr>>shift)==(addr>>shift)) ||
1108 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1110 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1111 u_int host_addr=(u_int)kill_pointer(head->addr);
1113 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1120 // This is called when we write to a compiled block (see do_invstub)
1121 void invalidate_page(u_int page)
1123 struct ll_entry *head;
1124 struct ll_entry *next;
1128 inv_debug("INVALIDATE: %x\n",head->vaddr);
1129 remove_hash(head->vaddr);
1134 head=jump_out[page];
1137 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1138 u_int host_addr=(u_int)kill_pointer(head->addr);
1140 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1148 static void invalidate_block_range(u_int block, u_int first, u_int last)
1150 u_int page=get_page(block<<12);
1151 //printf("first=%d last=%d\n",first,last);
1152 invalidate_page(page);
1153 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1154 assert(last<page+5);
1155 // Invalidate the adjacent pages if a block crosses a 4K boundary
1157 invalidate_page(first);
1160 for(first=page+1;first<last;first++) {
1161 invalidate_page(first);
1167 // Don't trap writes
1168 invalid_code[block]=1;
1170 // If there is a valid TLB entry for this page, remove write protect
1171 if(tlb_LUT_w[block]) {
1172 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1173 // CHECK: Is this right?
1174 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1175 u_int real_block=tlb_LUT_w[block]>>12;
1176 invalid_code[real_block]=1;
1177 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1179 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1183 memset(mini_ht,-1,sizeof(mini_ht));
1187 void invalidate_block(u_int block)
1189 u_int page=get_page(block<<12);
1190 u_int vpage=get_vpage(block<<12);
1191 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1192 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1195 struct ll_entry *head;
1196 head=jump_dirty[vpage];
1197 //printf("page=%d vpage=%d\n",page,vpage);
1200 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1201 get_bounds((int)head->addr,&start,&end);
1202 //printf("start: %x end: %x\n",start,end);
1203 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1204 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1205 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1206 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1210 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1211 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1212 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1213 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1220 invalidate_block_range(block,first,last);
1223 void invalidate_addr(u_int addr)
1227 // this check is done by the caller
1228 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1229 u_int page=get_page(addr);
1230 if(page<2048) { // RAM
1231 struct ll_entry *head;
1232 u_int addr_min=~0, addr_max=0;
1233 int mask=RAM_SIZE-1;
1235 inv_code_start=addr&~0xfff;
1236 inv_code_end=addr|0xfff;
1239 // must check previous page too because of spans..
1241 inv_code_start-=0x1000;
1243 for(;pg1<=page;pg1++) {
1244 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1246 get_bounds((int)head->addr,&start,&end);
1247 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1248 if(start<addr_min) addr_min=start;
1249 if(end>addr_max) addr_max=end;
1251 else if(addr<start) {
1252 if(start<inv_code_end)
1253 inv_code_end=start-1;
1256 if(end>inv_code_start)
1262 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1263 inv_code_start=inv_code_end=~0;
1264 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1268 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);//rhits);
1271 if(page!=0) // FIXME: don't know what's up with page 0 (Klonoa)
1275 invalidate_block(addr>>12);
1278 // This is called when loading a save state.
1279 // Anything could have changed, so invalidate everything.
1280 void invalidate_all_pages()
1283 for(page=0;page<4096;page++)
1284 invalidate_page(page);
1285 for(page=0;page<1048576;page++)
1286 if(!invalid_code[page]) {
1287 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1288 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1291 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1294 memset(mini_ht,-1,sizeof(mini_ht));
1298 for(page=0;page<0x100000;page++) {
1299 if(tlb_LUT_r[page]) {
1300 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1301 if(!tlb_LUT_w[page]||!invalid_code[page])
1302 memory_map[page]|=0x40000000; // Write protect
1304 else memory_map[page]=-1;
1305 if(page==0x80000) page=0xC0000;
1311 // Add an entry to jump_out after making a link
1312 void add_link(u_int vaddr,void *src)
1314 u_int page=get_page(vaddr);
1315 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1316 int *ptr=(int *)(src+4);
1317 assert((*ptr&0x0fff0000)==0x059f0000);
1318 ll_add(jump_out+page,vaddr,src);
1319 //int ptr=get_pointer(src);
1320 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1323 // If a code block was found to be unmodified (bit was set in
1324 // restore_candidate) and it remains unmodified (bit is clear
1325 // in invalid_code) then move the entries for that 4K page from
1326 // the dirty list to the clean list.
1327 void clean_blocks(u_int page)
1329 struct ll_entry *head;
1330 inv_debug("INV: clean_blocks page=%d\n",page);
1331 head=jump_dirty[page];
1333 if(!invalid_code[head->vaddr>>12]) {
1334 // Don't restore blocks which are about to expire from the cache
1335 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1337 if(verify_dirty((int)head->addr)) {
1338 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1341 get_bounds((int)head->addr,&start,&end);
1342 if(start-(u_int)rdram<RAM_SIZE) {
1343 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1344 inv|=invalid_code[i];
1348 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1349 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1350 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1351 if(addr<start||addr>=end) inv=1;
1354 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1358 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1359 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1362 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1364 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1365 //printf("page=%x, addr=%x\n",page,head->vaddr);
1366 //assert(head->vaddr>>12==(page|0x80000));
1367 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1368 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1370 if(ht_bin[0]==head->vaddr) {
1371 ht_bin[1]=(int)clean_addr; // Replace existing entry
1373 if(ht_bin[2]==head->vaddr) {
1374 ht_bin[3]=(int)clean_addr; // Replace existing entry
1387 void mov_alloc(struct regstat *current,int i)
1389 // Note: Don't need to actually alloc the source registers
1390 if((~current->is32>>rs1[i])&1) {
1391 //alloc_reg64(current,i,rs1[i]);
1392 alloc_reg64(current,i,rt1[i]);
1393 current->is32&=~(1LL<<rt1[i]);
1395 //alloc_reg(current,i,rs1[i]);
1396 alloc_reg(current,i,rt1[i]);
1397 current->is32|=(1LL<<rt1[i]);
1399 clear_const(current,rs1[i]);
1400 clear_const(current,rt1[i]);
1401 dirty_reg(current,rt1[i]);
1404 void shiftimm_alloc(struct regstat *current,int i)
1406 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1409 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1411 alloc_reg(current,i,rt1[i]);
1412 current->is32|=1LL<<rt1[i];
1413 dirty_reg(current,rt1[i]);
1414 if(is_const(current,rs1[i])) {
1415 int v=get_const(current,rs1[i]);
1416 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1417 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1418 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1420 else clear_const(current,rt1[i]);
1425 clear_const(current,rs1[i]);
1426 clear_const(current,rt1[i]);
1429 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1432 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1433 alloc_reg64(current,i,rt1[i]);
1434 current->is32&=~(1LL<<rt1[i]);
1435 dirty_reg(current,rt1[i]);
1438 if(opcode2[i]==0x3c) // DSLL32
1441 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1442 alloc_reg64(current,i,rt1[i]);
1443 current->is32&=~(1LL<<rt1[i]);
1444 dirty_reg(current,rt1[i]);
1447 if(opcode2[i]==0x3e) // DSRL32
1450 alloc_reg64(current,i,rs1[i]);
1452 alloc_reg64(current,i,rt1[i]);
1453 current->is32&=~(1LL<<rt1[i]);
1455 alloc_reg(current,i,rt1[i]);
1456 current->is32|=1LL<<rt1[i];
1458 dirty_reg(current,rt1[i]);
1461 if(opcode2[i]==0x3f) // DSRA32
1464 alloc_reg64(current,i,rs1[i]);
1465 alloc_reg(current,i,rt1[i]);
1466 current->is32|=1LL<<rt1[i];
1467 dirty_reg(current,rt1[i]);
1472 void shift_alloc(struct regstat *current,int i)
1475 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1477 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1478 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1479 alloc_reg(current,i,rt1[i]);
1480 if(rt1[i]==rs2[i]) {
1481 alloc_reg_temp(current,i,-1);
1482 minimum_free_regs[i]=1;
1484 current->is32|=1LL<<rt1[i];
1485 } else { // DSLLV/DSRLV/DSRAV
1486 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1487 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1488 alloc_reg64(current,i,rt1[i]);
1489 current->is32&=~(1LL<<rt1[i]);
1490 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1492 alloc_reg_temp(current,i,-1);
1493 minimum_free_regs[i]=1;
1496 clear_const(current,rs1[i]);
1497 clear_const(current,rs2[i]);
1498 clear_const(current,rt1[i]);
1499 dirty_reg(current,rt1[i]);
1503 void alu_alloc(struct regstat *current,int i)
1505 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1507 if(rs1[i]&&rs2[i]) {
1508 alloc_reg(current,i,rs1[i]);
1509 alloc_reg(current,i,rs2[i]);
1512 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1513 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1515 alloc_reg(current,i,rt1[i]);
1517 current->is32|=1LL<<rt1[i];
1519 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1521 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1523 alloc_reg64(current,i,rs1[i]);
1524 alloc_reg64(current,i,rs2[i]);
1525 alloc_reg(current,i,rt1[i]);
1527 alloc_reg(current,i,rs1[i]);
1528 alloc_reg(current,i,rs2[i]);
1529 alloc_reg(current,i,rt1[i]);
1532 current->is32|=1LL<<rt1[i];
1534 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1536 if(rs1[i]&&rs2[i]) {
1537 alloc_reg(current,i,rs1[i]);
1538 alloc_reg(current,i,rs2[i]);
1542 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1543 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1545 alloc_reg(current,i,rt1[i]);
1546 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1548 if(!((current->uu>>rt1[i])&1)) {
1549 alloc_reg64(current,i,rt1[i]);
1551 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1552 if(rs1[i]&&rs2[i]) {
1553 alloc_reg64(current,i,rs1[i]);
1554 alloc_reg64(current,i,rs2[i]);
1558 // Is is really worth it to keep 64-bit values in registers?
1560 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1561 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1565 current->is32&=~(1LL<<rt1[i]);
1567 current->is32|=1LL<<rt1[i];
1571 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1573 if(rs1[i]&&rs2[i]) {
1574 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1575 alloc_reg64(current,i,rs1[i]);
1576 alloc_reg64(current,i,rs2[i]);
1577 alloc_reg64(current,i,rt1[i]);
1579 alloc_reg(current,i,rs1[i]);
1580 alloc_reg(current,i,rs2[i]);
1581 alloc_reg(current,i,rt1[i]);
1585 alloc_reg(current,i,rt1[i]);
1586 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1587 // DADD used as move, or zeroing
1588 // If we have a 64-bit source, then make the target 64 bits too
1589 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1590 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1591 alloc_reg64(current,i,rt1[i]);
1592 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1593 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1594 alloc_reg64(current,i,rt1[i]);
1596 if(opcode2[i]>=0x2e&&rs2[i]) {
1597 // DSUB used as negation - 64-bit result
1598 // If we have a 32-bit register, extend it to 64 bits
1599 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1600 alloc_reg64(current,i,rt1[i]);
1604 if(rs1[i]&&rs2[i]) {
1605 current->is32&=~(1LL<<rt1[i]);
1607 current->is32&=~(1LL<<rt1[i]);
1608 if((current->is32>>rs1[i])&1)
1609 current->is32|=1LL<<rt1[i];
1611 current->is32&=~(1LL<<rt1[i]);
1612 if((current->is32>>rs2[i])&1)
1613 current->is32|=1LL<<rt1[i];
1615 current->is32|=1LL<<rt1[i];
1619 clear_const(current,rs1[i]);
1620 clear_const(current,rs2[i]);
1621 clear_const(current,rt1[i]);
1622 dirty_reg(current,rt1[i]);
1625 void imm16_alloc(struct regstat *current,int i)
1627 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1629 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1630 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1631 current->is32&=~(1LL<<rt1[i]);
1632 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1633 // TODO: Could preserve the 32-bit flag if the immediate is zero
1634 alloc_reg64(current,i,rt1[i]);
1635 alloc_reg64(current,i,rs1[i]);
1637 clear_const(current,rs1[i]);
1638 clear_const(current,rt1[i]);
1640 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1641 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1642 current->is32|=1LL<<rt1[i];
1643 clear_const(current,rs1[i]);
1644 clear_const(current,rt1[i]);
1646 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1647 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1648 if(rs1[i]!=rt1[i]) {
1649 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1650 alloc_reg64(current,i,rt1[i]);
1651 current->is32&=~(1LL<<rt1[i]);
1654 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1655 if(is_const(current,rs1[i])) {
1656 int v=get_const(current,rs1[i]);
1657 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1658 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1659 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1661 else clear_const(current,rt1[i]);
1663 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1664 if(is_const(current,rs1[i])) {
1665 int v=get_const(current,rs1[i]);
1666 set_const(current,rt1[i],v+imm[i]);
1668 else clear_const(current,rt1[i]);
1669 current->is32|=1LL<<rt1[i];
1672 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1673 current->is32|=1LL<<rt1[i];
1675 dirty_reg(current,rt1[i]);
1678 void load_alloc(struct regstat *current,int i)
1680 clear_const(current,rt1[i]);
1681 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1682 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1683 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1684 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1685 alloc_reg(current,i,rt1[i]);
1686 assert(get_reg(current->regmap,rt1[i])>=0);
1687 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1689 current->is32&=~(1LL<<rt1[i]);
1690 alloc_reg64(current,i,rt1[i]);
1692 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1694 current->is32&=~(1LL<<rt1[i]);
1695 alloc_reg64(current,i,rt1[i]);
1696 alloc_all(current,i);
1697 alloc_reg64(current,i,FTEMP);
1698 minimum_free_regs[i]=HOST_REGS;
1700 else current->is32|=1LL<<rt1[i];
1701 dirty_reg(current,rt1[i]);
1702 // If using TLB, need a register for pointer to the mapping table
1703 if(using_tlb) alloc_reg(current,i,TLREG);
1704 // LWL/LWR need a temporary register for the old value
1705 if(opcode[i]==0x22||opcode[i]==0x26)
1707 alloc_reg(current,i,FTEMP);
1708 alloc_reg_temp(current,i,-1);
1709 minimum_free_regs[i]=1;
1714 // Load to r0 or unneeded register (dummy load)
1715 // but we still need a register to calculate the address
1716 if(opcode[i]==0x22||opcode[i]==0x26)
1718 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1720 // If using TLB, need a register for pointer to the mapping table
1721 if(using_tlb) alloc_reg(current,i,TLREG);
1722 alloc_reg_temp(current,i,-1);
1723 minimum_free_regs[i]=1;
1724 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1726 alloc_all(current,i);
1727 alloc_reg64(current,i,FTEMP);
1728 minimum_free_regs[i]=HOST_REGS;
1733 void store_alloc(struct regstat *current,int i)
1735 clear_const(current,rs2[i]);
1736 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1737 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1738 alloc_reg(current,i,rs2[i]);
1739 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1740 alloc_reg64(current,i,rs2[i]);
1741 if(rs2[i]) alloc_reg(current,i,FTEMP);
1743 // If using TLB, need a register for pointer to the mapping table
1744 if(using_tlb) alloc_reg(current,i,TLREG);
1745 #if defined(HOST_IMM8)
1746 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1747 else alloc_reg(current,i,INVCP);
1749 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1750 alloc_reg(current,i,FTEMP);
1752 // We need a temporary register for address generation
1753 alloc_reg_temp(current,i,-1);
1754 minimum_free_regs[i]=1;
1757 void c1ls_alloc(struct regstat *current,int i)
1759 //clear_const(current,rs1[i]); // FIXME
1760 clear_const(current,rt1[i]);
1761 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1762 alloc_reg(current,i,CSREG); // Status
1763 alloc_reg(current,i,FTEMP);
1764 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1765 alloc_reg64(current,i,FTEMP);
1767 // If using TLB, need a register for pointer to the mapping table
1768 if(using_tlb) alloc_reg(current,i,TLREG);
1769 #if defined(HOST_IMM8)
1770 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1771 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1772 alloc_reg(current,i,INVCP);
1774 // We need a temporary register for address generation
1775 alloc_reg_temp(current,i,-1);
1778 void c2ls_alloc(struct regstat *current,int i)
1780 clear_const(current,rt1[i]);
1781 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1782 alloc_reg(current,i,FTEMP);
1783 // If using TLB, need a register for pointer to the mapping table
1784 if(using_tlb) alloc_reg(current,i,TLREG);
1785 #if defined(HOST_IMM8)
1786 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1787 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1788 alloc_reg(current,i,INVCP);
1790 // We need a temporary register for address generation
1791 alloc_reg_temp(current,i,-1);
1792 minimum_free_regs[i]=1;
1795 #ifndef multdiv_alloc
1796 void multdiv_alloc(struct regstat *current,int i)
1803 // case 0x1D: DMULTU
1806 clear_const(current,rs1[i]);
1807 clear_const(current,rs2[i]);
1810 if((opcode2[i]&4)==0) // 32-bit
1812 current->u&=~(1LL<<HIREG);
1813 current->u&=~(1LL<<LOREG);
1814 alloc_reg(current,i,HIREG);
1815 alloc_reg(current,i,LOREG);
1816 alloc_reg(current,i,rs1[i]);
1817 alloc_reg(current,i,rs2[i]);
1818 current->is32|=1LL<<HIREG;
1819 current->is32|=1LL<<LOREG;
1820 dirty_reg(current,HIREG);
1821 dirty_reg(current,LOREG);
1825 current->u&=~(1LL<<HIREG);
1826 current->u&=~(1LL<<LOREG);
1827 current->uu&=~(1LL<<HIREG);
1828 current->uu&=~(1LL<<LOREG);
1829 alloc_reg64(current,i,HIREG);
1830 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1831 alloc_reg64(current,i,rs1[i]);
1832 alloc_reg64(current,i,rs2[i]);
1833 alloc_all(current,i);
1834 current->is32&=~(1LL<<HIREG);
1835 current->is32&=~(1LL<<LOREG);
1836 dirty_reg(current,HIREG);
1837 dirty_reg(current,LOREG);
1838 minimum_free_regs[i]=HOST_REGS;
1843 // Multiply by zero is zero.
1844 // MIPS does not have a divide by zero exception.
1845 // The result is undefined, we return zero.
1846 alloc_reg(current,i,HIREG);
1847 alloc_reg(current,i,LOREG);
1848 current->is32|=1LL<<HIREG;
1849 current->is32|=1LL<<LOREG;
1850 dirty_reg(current,HIREG);
1851 dirty_reg(current,LOREG);
1856 void cop0_alloc(struct regstat *current,int i)
1858 if(opcode2[i]==0) // MFC0
1861 clear_const(current,rt1[i]);
1862 alloc_all(current,i);
1863 alloc_reg(current,i,rt1[i]);
1864 current->is32|=1LL<<rt1[i];
1865 dirty_reg(current,rt1[i]);
1868 else if(opcode2[i]==4) // MTC0
1871 clear_const(current,rs1[i]);
1872 alloc_reg(current,i,rs1[i]);
1873 alloc_all(current,i);
1876 alloc_all(current,i); // FIXME: Keep r0
1878 alloc_reg(current,i,0);
1883 // TLBR/TLBWI/TLBWR/TLBP/ERET
1884 assert(opcode2[i]==0x10);
1885 alloc_all(current,i);
1887 minimum_free_regs[i]=HOST_REGS;
1890 void cop1_alloc(struct regstat *current,int i)
1892 alloc_reg(current,i,CSREG); // Load status
1893 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1896 clear_const(current,rt1[i]);
1898 alloc_reg64(current,i,rt1[i]); // DMFC1
1899 current->is32&=~(1LL<<rt1[i]);
1901 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1902 current->is32|=1LL<<rt1[i];
1904 dirty_reg(current,rt1[i]);
1906 alloc_reg_temp(current,i,-1);
1908 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1911 clear_const(current,rs1[i]);
1913 alloc_reg64(current,i,rs1[i]); // DMTC1
1915 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1916 alloc_reg_temp(current,i,-1);
1920 alloc_reg(current,i,0);
1921 alloc_reg_temp(current,i,-1);
1924 minimum_free_regs[i]=1;
1926 void fconv_alloc(struct regstat *current,int i)
1928 alloc_reg(current,i,CSREG); // Load status
1929 alloc_reg_temp(current,i,-1);
1930 minimum_free_regs[i]=1;
1932 void float_alloc(struct regstat *current,int i)
1934 alloc_reg(current,i,CSREG); // Load status
1935 alloc_reg_temp(current,i,-1);
1936 minimum_free_regs[i]=1;
1938 void c2op_alloc(struct regstat *current,int i)
1940 alloc_reg_temp(current,i,-1);
1942 void fcomp_alloc(struct regstat *current,int i)
1944 alloc_reg(current,i,CSREG); // Load status
1945 alloc_reg(current,i,FSREG); // Load flags
1946 dirty_reg(current,FSREG); // Flag will be modified
1947 alloc_reg_temp(current,i,-1);
1948 minimum_free_regs[i]=1;
1951 void syscall_alloc(struct regstat *current,int i)
1953 alloc_cc(current,i);
1954 dirty_reg(current,CCREG);
1955 alloc_all(current,i);
1956 minimum_free_regs[i]=HOST_REGS;
1960 void delayslot_alloc(struct regstat *current,int i)
1971 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1972 printf("Disabled speculative precompilation\n");
1976 imm16_alloc(current,i);
1980 load_alloc(current,i);
1984 store_alloc(current,i);
1987 alu_alloc(current,i);
1990 shift_alloc(current,i);
1993 multdiv_alloc(current,i);
1996 shiftimm_alloc(current,i);
1999 mov_alloc(current,i);
2002 cop0_alloc(current,i);
2006 cop1_alloc(current,i);
2009 c1ls_alloc(current,i);
2012 c2ls_alloc(current,i);
2015 fconv_alloc(current,i);
2018 float_alloc(current,i);
2021 fcomp_alloc(current,i);
2024 c2op_alloc(current,i);
2029 // Special case where a branch and delay slot span two pages in virtual memory
2030 static void pagespan_alloc(struct regstat *current,int i)
2033 current->wasconst=0;
2035 minimum_free_regs[i]=HOST_REGS;
2036 alloc_all(current,i);
2037 alloc_cc(current,i);
2038 dirty_reg(current,CCREG);
2039 if(opcode[i]==3) // JAL
2041 alloc_reg(current,i,31);
2042 dirty_reg(current,31);
2044 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2046 alloc_reg(current,i,rs1[i]);
2048 alloc_reg(current,i,rt1[i]);
2049 dirty_reg(current,rt1[i]);
2052 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2054 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2055 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2056 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2058 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2059 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2063 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2065 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2066 if(!((current->is32>>rs1[i])&1))
2068 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2072 if(opcode[i]==0x11) // BC1
2074 alloc_reg(current,i,FSREG);
2075 alloc_reg(current,i,CSREG);
2080 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2082 stubs[stubcount][0]=type;
2083 stubs[stubcount][1]=addr;
2084 stubs[stubcount][2]=retaddr;
2085 stubs[stubcount][3]=a;
2086 stubs[stubcount][4]=b;
2087 stubs[stubcount][5]=c;
2088 stubs[stubcount][6]=d;
2089 stubs[stubcount][7]=e;
2093 // Write out a single register
2094 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2097 for(hr=0;hr<HOST_REGS;hr++) {
2098 if(hr!=EXCLUDE_REG) {
2099 if((regmap[hr]&63)==r) {
2102 emit_storereg(r,hr);
2104 if((is32>>regmap[hr])&1) {
2105 emit_sarimm(hr,31,hr);
2106 emit_storereg(r|64,hr);
2110 emit_storereg(r|64,hr);
2120 //if(!tracedebug) return 0;
2123 for(i=0;i<2097152;i++) {
2124 unsigned int temp=sum;
2127 sum^=((u_int *)rdram)[i];
2136 sum^=((u_int *)reg)[i];
2144 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2146 #ifndef DISABLE_COP1
2149 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2159 void memdebug(int i)
2161 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2162 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2165 //if(Count>=-2084597794) {
2166 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2168 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2169 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2170 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2173 printf("TRACE: %x\n",(&i)[-1]);
2177 printf("TRACE: %x \n",(&j)[10]);
2178 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2182 //printf("TRACE: %x\n",(&i)[-1]);
2185 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2187 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2190 void alu_assemble(int i,struct regstat *i_regs)
2192 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2194 signed char s1,s2,t;
2195 t=get_reg(i_regs->regmap,rt1[i]);
2197 s1=get_reg(i_regs->regmap,rs1[i]);
2198 s2=get_reg(i_regs->regmap,rs2[i]);
2199 if(rs1[i]&&rs2[i]) {
2202 if(opcode2[i]&2) emit_sub(s1,s2,t);
2203 else emit_add(s1,s2,t);
2206 if(s1>=0) emit_mov(s1,t);
2207 else emit_loadreg(rs1[i],t);
2211 if(opcode2[i]&2) emit_neg(s2,t);
2212 else emit_mov(s2,t);
2215 emit_loadreg(rs2[i],t);
2216 if(opcode2[i]&2) emit_neg(t,t);
2219 else emit_zeroreg(t);
2223 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2225 signed char s1l,s2l,s1h,s2h,tl,th;
2226 tl=get_reg(i_regs->regmap,rt1[i]);
2227 th=get_reg(i_regs->regmap,rt1[i]|64);
2229 s1l=get_reg(i_regs->regmap,rs1[i]);
2230 s2l=get_reg(i_regs->regmap,rs2[i]);
2231 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2232 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2233 if(rs1[i]&&rs2[i]) {
2236 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2237 else emit_adds(s1l,s2l,tl);
2239 #ifdef INVERTED_CARRY
2240 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2242 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2244 else emit_add(s1h,s2h,th);
2248 if(s1l>=0) emit_mov(s1l,tl);
2249 else emit_loadreg(rs1[i],tl);
2251 if(s1h>=0) emit_mov(s1h,th);
2252 else emit_loadreg(rs1[i]|64,th);
2257 if(opcode2[i]&2) emit_negs(s2l,tl);
2258 else emit_mov(s2l,tl);
2261 emit_loadreg(rs2[i],tl);
2262 if(opcode2[i]&2) emit_negs(tl,tl);
2265 #ifdef INVERTED_CARRY
2266 if(s2h>=0) emit_mov(s2h,th);
2267 else emit_loadreg(rs2[i]|64,th);
2269 emit_adcimm(-1,th); // x86 has inverted carry flag
2274 if(s2h>=0) emit_rscimm(s2h,0,th);
2276 emit_loadreg(rs2[i]|64,th);
2277 emit_rscimm(th,0,th);
2280 if(s2h>=0) emit_mov(s2h,th);
2281 else emit_loadreg(rs2[i]|64,th);
2288 if(th>=0) emit_zeroreg(th);
2293 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2295 signed char s1l,s1h,s2l,s2h,t;
2296 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2298 t=get_reg(i_regs->regmap,rt1[i]);
2301 s1l=get_reg(i_regs->regmap,rs1[i]);
2302 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2303 s2l=get_reg(i_regs->regmap,rs2[i]);
2304 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2305 if(rs2[i]==0) // rx<r0
2308 if(opcode2[i]==0x2a) // SLT
2309 emit_shrimm(s1h,31,t);
2310 else // SLTU (unsigned can not be less than zero)
2313 else if(rs1[i]==0) // r0<rx
2316 if(opcode2[i]==0x2a) // SLT
2317 emit_set_gz64_32(s2h,s2l,t);
2318 else // SLTU (set if not zero)
2319 emit_set_nz64_32(s2h,s2l,t);
2322 assert(s1l>=0);assert(s1h>=0);
2323 assert(s2l>=0);assert(s2h>=0);
2324 if(opcode2[i]==0x2a) // SLT
2325 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2327 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2331 t=get_reg(i_regs->regmap,rt1[i]);
2334 s1l=get_reg(i_regs->regmap,rs1[i]);
2335 s2l=get_reg(i_regs->regmap,rs2[i]);
2336 if(rs2[i]==0) // rx<r0
2339 if(opcode2[i]==0x2a) // SLT
2340 emit_shrimm(s1l,31,t);
2341 else // SLTU (unsigned can not be less than zero)
2344 else if(rs1[i]==0) // r0<rx
2347 if(opcode2[i]==0x2a) // SLT
2348 emit_set_gz32(s2l,t);
2349 else // SLTU (set if not zero)
2350 emit_set_nz32(s2l,t);
2353 assert(s1l>=0);assert(s2l>=0);
2354 if(opcode2[i]==0x2a) // SLT
2355 emit_set_if_less32(s1l,s2l,t);
2357 emit_set_if_carry32(s1l,s2l,t);
2363 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2365 signed char s1l,s1h,s2l,s2h,th,tl;
2366 tl=get_reg(i_regs->regmap,rt1[i]);
2367 th=get_reg(i_regs->regmap,rt1[i]|64);
2368 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2372 s1l=get_reg(i_regs->regmap,rs1[i]);
2373 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2374 s2l=get_reg(i_regs->regmap,rs2[i]);
2375 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2376 if(rs1[i]&&rs2[i]) {
2377 assert(s1l>=0);assert(s1h>=0);
2378 assert(s2l>=0);assert(s2h>=0);
2379 if(opcode2[i]==0x24) { // AND
2380 emit_and(s1l,s2l,tl);
2381 emit_and(s1h,s2h,th);
2383 if(opcode2[i]==0x25) { // OR
2384 emit_or(s1l,s2l,tl);
2385 emit_or(s1h,s2h,th);
2387 if(opcode2[i]==0x26) { // XOR
2388 emit_xor(s1l,s2l,tl);
2389 emit_xor(s1h,s2h,th);
2391 if(opcode2[i]==0x27) { // NOR
2392 emit_or(s1l,s2l,tl);
2393 emit_or(s1h,s2h,th);
2400 if(opcode2[i]==0x24) { // AND
2404 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2406 if(s1l>=0) emit_mov(s1l,tl);
2407 else emit_loadreg(rs1[i],tl);
2408 if(s1h>=0) emit_mov(s1h,th);
2409 else emit_loadreg(rs1[i]|64,th);
2413 if(s2l>=0) emit_mov(s2l,tl);
2414 else emit_loadreg(rs2[i],tl);
2415 if(s2h>=0) emit_mov(s2h,th);
2416 else emit_loadreg(rs2[i]|64,th);
2423 if(opcode2[i]==0x27) { // NOR
2425 if(s1l>=0) emit_not(s1l,tl);
2427 emit_loadreg(rs1[i],tl);
2430 if(s1h>=0) emit_not(s1h,th);
2432 emit_loadreg(rs1[i]|64,th);
2438 if(s2l>=0) emit_not(s2l,tl);
2440 emit_loadreg(rs2[i],tl);
2443 if(s2h>=0) emit_not(s2h,th);
2445 emit_loadreg(rs2[i]|64,th);
2461 s1l=get_reg(i_regs->regmap,rs1[i]);
2462 s2l=get_reg(i_regs->regmap,rs2[i]);
2463 if(rs1[i]&&rs2[i]) {
2466 if(opcode2[i]==0x24) { // AND
2467 emit_and(s1l,s2l,tl);
2469 if(opcode2[i]==0x25) { // OR
2470 emit_or(s1l,s2l,tl);
2472 if(opcode2[i]==0x26) { // XOR
2473 emit_xor(s1l,s2l,tl);
2475 if(opcode2[i]==0x27) { // NOR
2476 emit_or(s1l,s2l,tl);
2482 if(opcode2[i]==0x24) { // AND
2485 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2487 if(s1l>=0) emit_mov(s1l,tl);
2488 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2492 if(s2l>=0) emit_mov(s2l,tl);
2493 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2495 else emit_zeroreg(tl);
2497 if(opcode2[i]==0x27) { // NOR
2499 if(s1l>=0) emit_not(s1l,tl);
2501 emit_loadreg(rs1[i],tl);
2507 if(s2l>=0) emit_not(s2l,tl);
2509 emit_loadreg(rs2[i],tl);
2513 else emit_movimm(-1,tl);
2522 void imm16_assemble(int i,struct regstat *i_regs)
2524 if (opcode[i]==0x0f) { // LUI
2527 t=get_reg(i_regs->regmap,rt1[i]);
2530 if(!((i_regs->isconst>>t)&1))
2531 emit_movimm(imm[i]<<16,t);
2535 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2538 t=get_reg(i_regs->regmap,rt1[i]);
2539 s=get_reg(i_regs->regmap,rs1[i]);
2544 if(!((i_regs->isconst>>t)&1)) {
2546 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2547 emit_addimm(t,imm[i],t);
2549 if(!((i_regs->wasconst>>s)&1))
2550 emit_addimm(s,imm[i],t);
2552 emit_movimm(constmap[i][s]+imm[i],t);
2558 if(!((i_regs->isconst>>t)&1))
2559 emit_movimm(imm[i],t);
2564 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2566 signed char sh,sl,th,tl;
2567 th=get_reg(i_regs->regmap,rt1[i]|64);
2568 tl=get_reg(i_regs->regmap,rt1[i]);
2569 sh=get_reg(i_regs->regmap,rs1[i]|64);
2570 sl=get_reg(i_regs->regmap,rs1[i]);
2576 emit_addimm64_32(sh,sl,imm[i],th,tl);
2579 emit_addimm(sl,imm[i],tl);
2582 emit_movimm(imm[i],tl);
2583 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2588 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2590 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2591 signed char sh,sl,t;
2592 t=get_reg(i_regs->regmap,rt1[i]);
2593 sh=get_reg(i_regs->regmap,rs1[i]|64);
2594 sl=get_reg(i_regs->regmap,rs1[i]);
2598 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2599 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2600 if(opcode[i]==0x0a) { // SLTI
2602 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2603 emit_slti32(t,imm[i],t);
2605 emit_slti32(sl,imm[i],t);
2610 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2611 emit_sltiu32(t,imm[i],t);
2613 emit_sltiu32(sl,imm[i],t);
2618 if(opcode[i]==0x0a) // SLTI
2619 emit_slti64_32(sh,sl,imm[i],t);
2621 emit_sltiu64_32(sh,sl,imm[i],t);
2624 // SLTI(U) with r0 is just stupid,
2625 // nonetheless examples can be found
2626 if(opcode[i]==0x0a) // SLTI
2627 if(0<imm[i]) emit_movimm(1,t);
2628 else emit_zeroreg(t);
2631 if(imm[i]) emit_movimm(1,t);
2632 else emit_zeroreg(t);
2638 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2640 signed char sh,sl,th,tl;
2641 th=get_reg(i_regs->regmap,rt1[i]|64);
2642 tl=get_reg(i_regs->regmap,rt1[i]);
2643 sh=get_reg(i_regs->regmap,rs1[i]|64);
2644 sl=get_reg(i_regs->regmap,rs1[i]);
2645 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2646 if(opcode[i]==0x0c) //ANDI
2650 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2651 emit_andimm(tl,imm[i],tl);
2653 if(!((i_regs->wasconst>>sl)&1))
2654 emit_andimm(sl,imm[i],tl);
2656 emit_movimm(constmap[i][sl]&imm[i],tl);
2661 if(th>=0) emit_zeroreg(th);
2667 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2671 emit_loadreg(rs1[i]|64,th);
2676 if(opcode[i]==0x0d) //ORI
2678 emit_orimm(tl,imm[i],tl);
2680 if(!((i_regs->wasconst>>sl)&1))
2681 emit_orimm(sl,imm[i],tl);
2683 emit_movimm(constmap[i][sl]|imm[i],tl);
2685 if(opcode[i]==0x0e) //XORI
2687 emit_xorimm(tl,imm[i],tl);
2689 if(!((i_regs->wasconst>>sl)&1))
2690 emit_xorimm(sl,imm[i],tl);
2692 emit_movimm(constmap[i][sl]^imm[i],tl);
2696 emit_movimm(imm[i],tl);
2697 if(th>=0) emit_zeroreg(th);
2705 void shiftimm_assemble(int i,struct regstat *i_regs)
2707 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2711 t=get_reg(i_regs->regmap,rt1[i]);
2712 s=get_reg(i_regs->regmap,rs1[i]);
2714 if(t>=0&&!((i_regs->isconst>>t)&1)){
2721 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2723 if(opcode2[i]==0) // SLL
2725 emit_shlimm(s<0?t:s,imm[i],t);
2727 if(opcode2[i]==2) // SRL
2729 emit_shrimm(s<0?t:s,imm[i],t);
2731 if(opcode2[i]==3) // SRA
2733 emit_sarimm(s<0?t:s,imm[i],t);
2737 if(s>=0 && s!=t) emit_mov(s,t);
2741 //emit_storereg(rt1[i],t); //DEBUG
2744 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2747 signed char sh,sl,th,tl;
2748 th=get_reg(i_regs->regmap,rt1[i]|64);
2749 tl=get_reg(i_regs->regmap,rt1[i]);
2750 sh=get_reg(i_regs->regmap,rs1[i]|64);
2751 sl=get_reg(i_regs->regmap,rs1[i]);
2756 if(th>=0) emit_zeroreg(th);
2763 if(opcode2[i]==0x38) // DSLL
2765 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2766 emit_shlimm(sl,imm[i],tl);
2768 if(opcode2[i]==0x3a) // DSRL
2770 emit_shrdimm(sl,sh,imm[i],tl);
2771 if(th>=0) emit_shrimm(sh,imm[i],th);
2773 if(opcode2[i]==0x3b) // DSRA
2775 emit_shrdimm(sl,sh,imm[i],tl);
2776 if(th>=0) emit_sarimm(sh,imm[i],th);
2780 if(sl!=tl) emit_mov(sl,tl);
2781 if(th>=0&&sh!=th) emit_mov(sh,th);
2787 if(opcode2[i]==0x3c) // DSLL32
2790 signed char sl,tl,th;
2791 tl=get_reg(i_regs->regmap,rt1[i]);
2792 th=get_reg(i_regs->regmap,rt1[i]|64);
2793 sl=get_reg(i_regs->regmap,rs1[i]);
2802 emit_shlimm(th,imm[i]&31,th);
2807 if(opcode2[i]==0x3e) // DSRL32
2810 signed char sh,tl,th;
2811 tl=get_reg(i_regs->regmap,rt1[i]);
2812 th=get_reg(i_regs->regmap,rt1[i]|64);
2813 sh=get_reg(i_regs->regmap,rs1[i]|64);
2817 if(th>=0) emit_zeroreg(th);
2820 emit_shrimm(tl,imm[i]&31,tl);
2825 if(opcode2[i]==0x3f) // DSRA32
2829 tl=get_reg(i_regs->regmap,rt1[i]);
2830 sh=get_reg(i_regs->regmap,rs1[i]|64);
2836 emit_sarimm(tl,imm[i]&31,tl);
2843 #ifndef shift_assemble
2844 void shift_assemble(int i,struct regstat *i_regs)
2846 printf("Need shift_assemble for this architecture.\n");
2851 void load_assemble(int i,struct regstat *i_regs)
2853 int s,th,tl,addr,map=-1;
2856 int memtarget=0,c=0;
2857 int fastload_reg_override=0;
2859 th=get_reg(i_regs->regmap,rt1[i]|64);
2860 tl=get_reg(i_regs->regmap,rt1[i]);
2861 s=get_reg(i_regs->regmap,rs1[i]);
2863 for(hr=0;hr<HOST_REGS;hr++) {
2864 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2866 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2868 c=(i_regs->wasconst>>s)&1;
2870 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2871 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2874 //printf("load_assemble: c=%d\n",c);
2875 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2876 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2878 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2880 // could be FIFO, must perform the read
2882 assem_debug("(forced read)\n");
2883 tl=get_reg(i_regs->regmap,-1);
2887 if(offset||s<0||c) addr=tl;
2889 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2891 //printf("load_assemble: c=%d\n",c);
2892 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2893 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2895 if(th>=0) reglist&=~(1<<th);
2899 map=get_reg(i_regs->regmap,ROREG);
2900 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2902 //#define R29_HACK 1
2904 // Strmnnrmn's speed hack
2905 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2908 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2913 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2914 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2915 map=get_reg(i_regs->regmap,TLREG);
2918 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2919 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2921 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2922 if (opcode[i]==0x20) { // LB
2925 #ifdef HOST_IMM_ADDR32
2927 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2931 //emit_xorimm(addr,3,tl);
2932 //gen_tlb_addr_r(tl,map);
2933 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2935 #ifdef BIG_ENDIAN_MIPS
2936 if(!c) emit_xorimm(addr,3,tl);
2937 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2941 if(fastload_reg_override) a=fastload_reg_override;
2943 emit_movsbl_indexed_tlb(x,a,map,tl);
2947 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2950 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2952 if (opcode[i]==0x21) { // LH
2955 #ifdef HOST_IMM_ADDR32
2957 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2962 #ifdef BIG_ENDIAN_MIPS
2963 if(!c) emit_xorimm(addr,2,tl);
2964 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2968 if(fastload_reg_override) a=fastload_reg_override;
2970 //emit_movswl_indexed_tlb(x,tl,map,tl);
2973 gen_tlb_addr_r(a,map);
2974 emit_movswl_indexed(x,a,tl);
2977 emit_movswl_indexed(x,a,tl);
2979 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2985 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2988 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2990 if (opcode[i]==0x23) { // LW
2994 if(fastload_reg_override) a=fastload_reg_override;
2995 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2996 #ifdef HOST_IMM_ADDR32
2998 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3001 emit_readword_indexed_tlb(0,a,map,tl);
3004 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3007 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3009 if (opcode[i]==0x24) { // LBU
3012 #ifdef HOST_IMM_ADDR32
3014 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3018 //emit_xorimm(addr,3,tl);
3019 //gen_tlb_addr_r(tl,map);
3020 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
3022 #ifdef BIG_ENDIAN_MIPS
3023 if(!c) emit_xorimm(addr,3,tl);
3024 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3028 if(fastload_reg_override) a=fastload_reg_override;
3030 emit_movzbl_indexed_tlb(x,a,map,tl);
3034 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3037 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3039 if (opcode[i]==0x25) { // LHU
3042 #ifdef HOST_IMM_ADDR32
3044 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3049 #ifdef BIG_ENDIAN_MIPS
3050 if(!c) emit_xorimm(addr,2,tl);
3051 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3055 if(fastload_reg_override) a=fastload_reg_override;
3057 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3060 gen_tlb_addr_r(a,map);
3061 emit_movzwl_indexed(x,a,tl);
3064 emit_movzwl_indexed(x,a,tl);
3066 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3072 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3075 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3077 if (opcode[i]==0x27) { // LWU
3082 if(fastload_reg_override) a=fastload_reg_override;
3083 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3084 #ifdef HOST_IMM_ADDR32
3086 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3089 emit_readword_indexed_tlb(0,a,map,tl);
3092 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3095 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3099 if (opcode[i]==0x37) { // LD
3103 if(fastload_reg_override) a=fastload_reg_override;
3104 //gen_tlb_addr_r(tl,map);
3105 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3106 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3107 #ifdef HOST_IMM_ADDR32
3109 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3112 emit_readdword_indexed_tlb(0,a,map,th,tl);
3115 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3118 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3121 //emit_storereg(rt1[i],tl); // DEBUG
3122 //if(opcode[i]==0x23)
3123 //if(opcode[i]==0x24)
3124 //if(opcode[i]==0x23||opcode[i]==0x24)
3125 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3129 emit_readword((int)&last_count,ECX);
3131 if(get_reg(i_regs->regmap,CCREG)<0)
3132 emit_loadreg(CCREG,HOST_CCREG);
3133 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3134 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3135 emit_writeword(HOST_CCREG,(int)&Count);
3138 if(get_reg(i_regs->regmap,CCREG)<0)
3139 emit_loadreg(CCREG,0);
3141 emit_mov(HOST_CCREG,0);
3143 emit_addimm(0,2*ccadj[i],0);
3144 emit_writeword(0,(int)&Count);
3146 emit_call((int)memdebug);
3148 restore_regs(0x100f);
3152 #ifndef loadlr_assemble
3153 void loadlr_assemble(int i,struct regstat *i_regs)
3155 printf("Need loadlr_assemble for this architecture.\n");
3160 void store_assemble(int i,struct regstat *i_regs)
3165 int jaddr=0,jaddr2,type;
3166 int memtarget=0,c=0;
3167 int agr=AGEN1+(i&1);
3168 int faststore_reg_override=0;
3170 th=get_reg(i_regs->regmap,rs2[i]|64);
3171 tl=get_reg(i_regs->regmap,rs2[i]);
3172 s=get_reg(i_regs->regmap,rs1[i]);
3173 temp=get_reg(i_regs->regmap,agr);
3174 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3177 c=(i_regs->wasconst>>s)&1;
3179 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3180 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3185 for(hr=0;hr<HOST_REGS;hr++) {
3186 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3188 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3189 if(offset||s<0||c) addr=temp;
3195 // Strmnnrmn's speed hack
3196 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3198 emit_cmpimm(addr,RAM_SIZE);
3199 #ifdef DESTRUCTIVE_SHIFT
3200 if(s==addr) emit_mov(s,temp);
3204 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3208 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3209 // Hint to branch predictor that the branch is unlikely to be taken
3211 emit_jno_unlikely(0);
3217 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3222 if (opcode[i]==0x28) x=3; // SB
3223 if (opcode[i]==0x29) x=2; // SH
3224 map=get_reg(i_regs->regmap,TLREG);
3227 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3228 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3231 if (opcode[i]==0x28) { // SB
3234 #ifdef BIG_ENDIAN_MIPS
3235 if(!c) emit_xorimm(addr,3,temp);
3236 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3240 if(faststore_reg_override) a=faststore_reg_override;
3241 //gen_tlb_addr_w(temp,map);
3242 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3243 emit_writebyte_indexed_tlb(tl,x,a,map,a);
3247 if (opcode[i]==0x29) { // SH
3250 #ifdef BIG_ENDIAN_MIPS
3251 if(!c) emit_xorimm(addr,2,temp);
3252 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3256 if(faststore_reg_override) a=faststore_reg_override;
3258 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3261 gen_tlb_addr_w(a,map);
3262 emit_writehword_indexed(tl,x,a);
3264 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3268 if (opcode[i]==0x2B) { // SW
3271 if(faststore_reg_override) a=faststore_reg_override;
3272 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3273 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3277 if (opcode[i]==0x3F) { // SD
3280 if(faststore_reg_override) a=faststore_reg_override;
3283 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3284 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3285 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3288 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3289 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3290 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3297 // PCSX store handlers don't check invcode again
3299 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3303 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))) {
3305 #ifdef DESTRUCTIVE_SHIFT
3306 // The x86 shift operation is 'destructive'; it overwrites the
3307 // source register, so we need to make a copy first and use that.
3310 #if defined(HOST_IMM8)
3311 int ir=get_reg(i_regs->regmap,INVCP);
3313 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3315 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3317 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3318 emit_callne(invalidate_addr_reg[addr]);
3322 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3327 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3328 } else if(c&&!memtarget) {
3329 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3331 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3332 //if(opcode[i]==0x2B || opcode[i]==0x28)
3333 //if(opcode[i]==0x2B || opcode[i]==0x29)
3334 //if(opcode[i]==0x2B)
3335 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3343 emit_readword((int)&last_count,ECX);
3345 if(get_reg(i_regs->regmap,CCREG)<0)
3346 emit_loadreg(CCREG,HOST_CCREG);
3347 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3348 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3349 emit_writeword(HOST_CCREG,(int)&Count);
3352 if(get_reg(i_regs->regmap,CCREG)<0)
3353 emit_loadreg(CCREG,0);
3355 emit_mov(HOST_CCREG,0);
3357 emit_addimm(0,2*ccadj[i],0);
3358 emit_writeword(0,(int)&Count);
3360 emit_call((int)memdebug);
3365 restore_regs(0x100f);
3370 void storelr_assemble(int i,struct regstat *i_regs)
3377 int case1,case2,case3;
3378 int done0,done1,done2;
3379 int memtarget=0,c=0;
3380 int agr=AGEN1+(i&1);
3382 th=get_reg(i_regs->regmap,rs2[i]|64);
3383 tl=get_reg(i_regs->regmap,rs2[i]);
3384 s=get_reg(i_regs->regmap,rs1[i]);
3385 temp=get_reg(i_regs->regmap,agr);
3386 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3389 c=(i_regs->isconst>>s)&1;
3391 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3392 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3396 for(hr=0;hr<HOST_REGS;hr++) {
3397 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3402 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3403 if(!offset&&s!=temp) emit_mov(s,temp);
3409 if(!memtarget||!rs1[i]) {
3415 int map=get_reg(i_regs->regmap,ROREG);
3416 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3417 gen_tlb_addr_w(temp,map);
3419 if((u_int)rdram!=0x80000000)
3420 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3423 int map=get_reg(i_regs->regmap,TLREG);
3426 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3427 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3428 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3429 if(!jaddr&&!memtarget) {
3433 gen_tlb_addr_w(temp,map);
3436 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3437 temp2=get_reg(i_regs->regmap,FTEMP);
3438 if(!rs2[i]) temp2=th=tl;
3441 #ifndef BIG_ENDIAN_MIPS
3442 emit_xorimm(temp,3,temp);
3444 emit_testimm(temp,2);
3447 emit_testimm(temp,1);
3451 if (opcode[i]==0x2A) { // SWL
3452 emit_writeword_indexed(tl,0,temp);
3454 if (opcode[i]==0x2E) { // SWR
3455 emit_writebyte_indexed(tl,3,temp);
3457 if (opcode[i]==0x2C) { // SDL
3458 emit_writeword_indexed(th,0,temp);
3459 if(rs2[i]) emit_mov(tl,temp2);
3461 if (opcode[i]==0x2D) { // SDR
3462 emit_writebyte_indexed(tl,3,temp);
3463 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3468 set_jump_target(case1,(int)out);
3469 if (opcode[i]==0x2A) { // SWL
3470 // Write 3 msb into three least significant bytes
3471 if(rs2[i]) emit_rorimm(tl,8,tl);
3472 emit_writehword_indexed(tl,-1,temp);
3473 if(rs2[i]) emit_rorimm(tl,16,tl);
3474 emit_writebyte_indexed(tl,1,temp);
3475 if(rs2[i]) emit_rorimm(tl,8,tl);
3477 if (opcode[i]==0x2E) { // SWR
3478 // Write two lsb into two most significant bytes
3479 emit_writehword_indexed(tl,1,temp);
3481 if (opcode[i]==0x2C) { // SDL
3482 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3483 // Write 3 msb into three least significant bytes
3484 if(rs2[i]) emit_rorimm(th,8,th);
3485 emit_writehword_indexed(th,-1,temp);
3486 if(rs2[i]) emit_rorimm(th,16,th);
3487 emit_writebyte_indexed(th,1,temp);
3488 if(rs2[i]) emit_rorimm(th,8,th);
3490 if (opcode[i]==0x2D) { // SDR
3491 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3492 // Write two lsb into two most significant bytes
3493 emit_writehword_indexed(tl,1,temp);
3498 set_jump_target(case2,(int)out);
3499 emit_testimm(temp,1);
3502 if (opcode[i]==0x2A) { // SWL
3503 // Write two msb into two least significant bytes
3504 if(rs2[i]) emit_rorimm(tl,16,tl);
3505 emit_writehword_indexed(tl,-2,temp);
3506 if(rs2[i]) emit_rorimm(tl,16,tl);
3508 if (opcode[i]==0x2E) { // SWR
3509 // Write 3 lsb into three most significant bytes
3510 emit_writebyte_indexed(tl,-1,temp);
3511 if(rs2[i]) emit_rorimm(tl,8,tl);
3512 emit_writehword_indexed(tl,0,temp);
3513 if(rs2[i]) emit_rorimm(tl,24,tl);
3515 if (opcode[i]==0x2C) { // SDL
3516 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3517 // Write two msb into two least significant bytes
3518 if(rs2[i]) emit_rorimm(th,16,th);
3519 emit_writehword_indexed(th,-2,temp);
3520 if(rs2[i]) emit_rorimm(th,16,th);
3522 if (opcode[i]==0x2D) { // SDR
3523 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3524 // Write 3 lsb into three most significant bytes
3525 emit_writebyte_indexed(tl,-1,temp);
3526 if(rs2[i]) emit_rorimm(tl,8,tl);
3527 emit_writehword_indexed(tl,0,temp);
3528 if(rs2[i]) emit_rorimm(tl,24,tl);
3533 set_jump_target(case3,(int)out);
3534 if (opcode[i]==0x2A) { // SWL
3535 // Write msb into least significant byte
3536 if(rs2[i]) emit_rorimm(tl,24,tl);
3537 emit_writebyte_indexed(tl,-3,temp);
3538 if(rs2[i]) emit_rorimm(tl,8,tl);
3540 if (opcode[i]==0x2E) { // SWR
3541 // Write entire word
3542 emit_writeword_indexed(tl,-3,temp);
3544 if (opcode[i]==0x2C) { // SDL
3545 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3546 // Write msb into least significant byte
3547 if(rs2[i]) emit_rorimm(th,24,th);
3548 emit_writebyte_indexed(th,-3,temp);
3549 if(rs2[i]) emit_rorimm(th,8,th);
3551 if (opcode[i]==0x2D) { // SDR
3552 if(rs2[i]) emit_mov(th,temp2);
3553 // Write entire word
3554 emit_writeword_indexed(tl,-3,temp);
3556 set_jump_target(done0,(int)out);
3557 set_jump_target(done1,(int)out);
3558 set_jump_target(done2,(int)out);
3559 if (opcode[i]==0x2C) { // SDL
3560 emit_testimm(temp,4);
3563 emit_andimm(temp,~3,temp);
3564 emit_writeword_indexed(temp2,4,temp);
3565 set_jump_target(done0,(int)out);
3567 if (opcode[i]==0x2D) { // SDR
3568 emit_testimm(temp,4);
3571 emit_andimm(temp,~3,temp);
3572 emit_writeword_indexed(temp2,-4,temp);
3573 set_jump_target(done0,(int)out);
3576 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3577 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))) {
3579 int map=get_reg(i_regs->regmap,ROREG);
3580 if(map<0) map=HOST_TEMPREG;
3581 gen_orig_addr_w(temp,map);
3583 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3585 #if defined(HOST_IMM8)
3586 int ir=get_reg(i_regs->regmap,INVCP);
3588 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3590 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3592 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3593 emit_callne(invalidate_addr_reg[temp]);
3597 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3602 //save_regs(0x100f);
3603 emit_readword((int)&last_count,ECX);
3604 if(get_reg(i_regs->regmap,CCREG)<0)
3605 emit_loadreg(CCREG,HOST_CCREG);
3606 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3607 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3608 emit_writeword(HOST_CCREG,(int)&Count);
3609 emit_call((int)memdebug);
3611 //restore_regs(0x100f);
3615 void c1ls_assemble(int i,struct regstat *i_regs)
3617 #ifndef DISABLE_COP1
3623 int jaddr,jaddr2=0,jaddr3,type;
3624 int agr=AGEN1+(i&1);
3626 th=get_reg(i_regs->regmap,FTEMP|64);
3627 tl=get_reg(i_regs->regmap,FTEMP);
3628 s=get_reg(i_regs->regmap,rs1[i]);
3629 temp=get_reg(i_regs->regmap,agr);
3630 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3635 for(hr=0;hr<HOST_REGS;hr++) {
3636 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3638 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3639 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3641 // Loads use a temporary register which we need to save
3644 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3648 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3649 //else c=(i_regs->wasconst>>s)&1;
3650 if(s>=0) c=(i_regs->wasconst>>s)&1;
3651 // Check cop1 unusable
3653 signed char rs=get_reg(i_regs->regmap,CSREG);
3655 emit_testimm(rs,0x20000000);
3658 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3661 if (opcode[i]==0x39) { // SWC1 (get float address)
3662 emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],tl);
3664 if (opcode[i]==0x3D) { // SDC1 (get double address)
3665 emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],tl);
3667 // Generate address + offset
3670 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3674 map=get_reg(i_regs->regmap,TLREG);
3677 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3678 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3680 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3681 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3684 if (opcode[i]==0x39) { // SWC1 (read float)
3685 emit_readword_indexed(0,tl,tl);
3687 if (opcode[i]==0x3D) { // SDC1 (read double)
3688 emit_readword_indexed(4,tl,th);
3689 emit_readword_indexed(0,tl,tl);
3691 if (opcode[i]==0x31) { // LWC1 (get target address)
3692 emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],temp);
3694 if (opcode[i]==0x35) { // LDC1 (get target address)
3695 emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],temp);
3702 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3704 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3706 #ifdef DESTRUCTIVE_SHIFT
3707 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3708 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3712 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3713 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3715 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3716 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3719 if (opcode[i]==0x31) { // LWC1
3720 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3721 //gen_tlb_addr_r(ar,map);
3722 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3723 #ifdef HOST_IMM_ADDR32
3724 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3727 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3730 if (opcode[i]==0x35) { // LDC1
3732 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3733 //gen_tlb_addr_r(ar,map);
3734 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3735 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3736 #ifdef HOST_IMM_ADDR32
3737 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3740 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3743 if (opcode[i]==0x39) { // SWC1
3744 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3745 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3748 if (opcode[i]==0x3D) { // SDC1
3750 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3751 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3752 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3755 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))) {
3756 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3757 #ifndef DESTRUCTIVE_SHIFT
3758 temp=offset||c||s<0?ar:s;
3760 #if defined(HOST_IMM8)
3761 int ir=get_reg(i_regs->regmap,INVCP);
3763 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3765 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3767 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3768 emit_callne(invalidate_addr_reg[temp]);
3772 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3776 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3777 if (opcode[i]==0x31) { // LWC1 (write float)
3778 emit_writeword_indexed(tl,0,temp);
3780 if (opcode[i]==0x35) { // LDC1 (write double)
3781 emit_writeword_indexed(th,4,temp);
3782 emit_writeword_indexed(tl,0,temp);
3784 //if(opcode[i]==0x39)
3785 /*if(opcode[i]==0x39||opcode[i]==0x31)
3788 emit_readword((int)&last_count,ECX);
3789 if(get_reg(i_regs->regmap,CCREG)<0)
3790 emit_loadreg(CCREG,HOST_CCREG);
3791 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3792 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3793 emit_writeword(HOST_CCREG,(int)&Count);
3794 emit_call((int)memdebug);
3798 cop1_unusable(i, i_regs);
3802 void c2ls_assemble(int i,struct regstat *i_regs)
3807 int memtarget=0,c=0;
3808 int jaddr2=0,jaddr3,type;
3809 int agr=AGEN1+(i&1);
3810 int fastio_reg_override=0;
3812 u_int copr=(source[i]>>16)&0x1f;
3813 s=get_reg(i_regs->regmap,rs1[i]);
3814 tl=get_reg(i_regs->regmap,FTEMP);
3820 for(hr=0;hr<HOST_REGS;hr++) {
3821 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3823 if(i_regs->regmap[HOST_CCREG]==CCREG)
3824 reglist&=~(1<<HOST_CCREG);
3827 if (opcode[i]==0x3a) { // SWC2
3828 ar=get_reg(i_regs->regmap,agr);
3829 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3834 if(s>=0) c=(i_regs->wasconst>>s)&1;
3835 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3836 if (!offset&&!c&&s>=0) ar=s;
3839 if (opcode[i]==0x3a) { // SWC2
3840 cop2_get_dreg(copr,tl,HOST_TEMPREG);
3848 emit_jmp(0); // inline_readstub/inline_writestub?
3852 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3854 if (opcode[i]==0x32) { // LWC2
3855 #ifdef HOST_IMM_ADDR32
3856 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3860 if(fastio_reg_override) a=fastio_reg_override;
3861 emit_readword_indexed(0,a,tl);
3863 if (opcode[i]==0x3a) { // SWC2
3864 #ifdef DESTRUCTIVE_SHIFT
3865 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3868 if(fastio_reg_override) a=fastio_reg_override;
3869 emit_writeword_indexed(tl,0,a);
3873 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3874 if (!(i_regs->waswritten&(1<<rs1[i]))&&opcode[i]==0x3a) { // SWC2
3875 #if defined(HOST_IMM8)
3876 int ir=get_reg(i_regs->regmap,INVCP);
3878 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3880 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3882 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3883 emit_callne(invalidate_addr_reg[ar]);
3887 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3890 if (opcode[i]==0x32) { // LWC2
3891 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3895 #ifndef multdiv_assemble
3896 void multdiv_assemble(int i,struct regstat *i_regs)
3898 printf("Need multdiv_assemble for this architecture.\n");
3903 void mov_assemble(int i,struct regstat *i_regs)
3905 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3906 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3908 signed char sh,sl,th,tl;
3909 th=get_reg(i_regs->regmap,rt1[i]|64);
3910 tl=get_reg(i_regs->regmap,rt1[i]);
3913 sh=get_reg(i_regs->regmap,rs1[i]|64);
3914 sl=get_reg(i_regs->regmap,rs1[i]);
3915 if(sl>=0) emit_mov(sl,tl);
3916 else emit_loadreg(rs1[i],tl);
3918 if(sh>=0) emit_mov(sh,th);
3919 else emit_loadreg(rs1[i]|64,th);
3925 #ifndef fconv_assemble
3926 void fconv_assemble(int i,struct regstat *i_regs)
3928 printf("Need fconv_assemble for this architecture.\n");
3934 void float_assemble(int i,struct regstat *i_regs)
3936 printf("Need float_assemble for this architecture.\n");
3941 void syscall_assemble(int i,struct regstat *i_regs)
3943 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3944 assert(ccreg==HOST_CCREG);
3945 assert(!is_delayslot);
3946 emit_movimm(start+i*4,EAX); // Get PC
3947 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3948 emit_jmp((int)jump_syscall_hle); // XXX
3951 void hlecall_assemble(int i,struct regstat *i_regs)
3953 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3954 assert(ccreg==HOST_CCREG);
3955 assert(!is_delayslot);
3956 emit_movimm(start+i*4+4,0); // Get PC
3957 emit_movimm((int)psxHLEt[source[i]&7],1);
3958 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3959 emit_jmp((int)jump_hlecall);
3962 void intcall_assemble(int i,struct regstat *i_regs)
3964 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3965 assert(ccreg==HOST_CCREG);