700fab4ac712c54f91269b3c0e77549f9df8c937
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182
183   /* stubs */
184 #define CC_STUB 1
185 #define FP_STUB 2
186 #define LOADB_STUB 3
187 #define LOADH_STUB 4
188 #define LOADW_STUB 5
189 #define LOADD_STUB 6
190 #define LOADBU_STUB 7
191 #define LOADHU_STUB 8
192 #define STOREB_STUB 9
193 #define STOREH_STUB 10
194 #define STOREW_STUB 11
195 #define STORED_STUB 12
196 #define STORELR_STUB 13
197 #define INVCODE_STUB 14
198
199   /* branch codes */
200 #define TAKEN 1
201 #define NOTTAKEN 2
202 #define NULLDS 3
203
204 // asm linkage
205 int new_recompile_block(int addr);
206 void *get_addr_ht(u_int vaddr);
207 void invalidate_block(u_int block);
208 void invalidate_addr(u_int addr);
209 void remove_hash(int vaddr);
210 void jump_vaddr();
211 void dyna_linker();
212 void dyna_linker_ds();
213 void verify_code();
214 void verify_code_vm();
215 void verify_code_ds();
216 void cc_interrupt();
217 void fp_exception();
218 void fp_exception_ds();
219 void jump_syscall();
220 void jump_syscall_hle();
221 void jump_eret();
222 void jump_hlecall();
223 void new_dyna_leave();
224
225 // TLB
226 void TLBWI_new();
227 void TLBWR_new();
228 void read_nomem_new();
229 void read_nomemb_new();
230 void read_nomemh_new();
231 void read_nomemd_new();
232 void write_nomem_new();
233 void write_nomemb_new();
234 void write_nomemh_new();
235 void write_nomemd_new();
236 void write_rdram_new();
237 void write_rdramb_new();
238 void write_rdramh_new();
239 void write_rdramd_new();
240 extern u_int memory_map[1048576];
241
242 // Needed by assembler
243 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246 void load_all_regs(signed char i_regmap[]);
247 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248 void load_regs_entry(int t);
249 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251 int tracedebug=0;
252
253 //#define DEBUG_CYCLE_COUNT 1
254
255 void nullf() {}
256 //#define assem_debug printf
257 //#define inv_debug printf
258 #define assem_debug nullf
259 #define inv_debug nullf
260
261 static void tlb_hacks()
262 {
263 #ifndef DISABLE_TLB
264   // Goldeneye hack
265   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
266   {
267     u_int addr;
268     int n;
269     switch (ROM_HEADER->Country_code&0xFF) 
270     {
271       case 0x45: // U
272         addr=0x34b30;
273         break;                   
274       case 0x4A: // J 
275         addr=0x34b70;    
276         break;    
277       case 0x50: // E 
278         addr=0x329f0;
279         break;                        
280       default: 
281         // Unknown country code
282         addr=0;
283         break;
284     }
285     u_int rom_addr=(u_int)rom;
286     #ifdef ROM_COPY
287     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
288     // in the lower 4G of memory to use this hack.  Copy it if necessary.
289     if((void *)rom>(void *)0xffffffff) {
290       munmap(ROM_COPY, 67108864);
291       if(mmap(ROM_COPY, 12582912,
292               PROT_READ | PROT_WRITE,
293               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
294               -1, 0) <= 0) {printf("mmap() failed\n");}
295       memcpy(ROM_COPY,rom,12582912);
296       rom_addr=(u_int)ROM_COPY;
297     }
298     #endif
299     if(addr) {
300       for(n=0x7F000;n<0x80000;n++) {
301         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
302       }
303     }
304   }
305 #endif
306 }
307
308 static u_int get_page(u_int vaddr)
309 {
310   u_int page=(vaddr^0x80000000)>>12;
311 #ifndef DISABLE_TLB
312   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
313 #endif
314   if(page>2048) page=2048+(page&2047);
315   return page;
316 }
317
318 static u_int get_vpage(u_int vaddr)
319 {
320   u_int vpage=(vaddr^0x80000000)>>12;
321 #ifndef DISABLE_TLB
322   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
323 #endif
324   if(vpage>2048) vpage=2048+(vpage&2047);
325   return vpage;
326 }
327
328 // Get address from virtual address
329 // This is called from the recompiled JR/JALR instructions
330 void *get_addr(u_int vaddr)
331 {
332   u_int page=get_page(vaddr);
333   u_int vpage=get_vpage(vaddr);
334   struct ll_entry *head;
335   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
336   head=jump_in[page];
337   while(head!=NULL) {
338     if(head->vaddr==vaddr&&head->reg32==0) {
339   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
340       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
341       ht_bin[3]=ht_bin[1];
342       ht_bin[2]=ht_bin[0];
343       ht_bin[1]=(int)head->addr;
344       ht_bin[0]=vaddr;
345       return head->addr;
346     }
347     head=head->next;
348   }
349   head=jump_dirty[vpage];
350   while(head!=NULL) {
351     if(head->vaddr==vaddr&&head->reg32==0) {
352       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
353       // Don't restore blocks which are about to expire from the cache
354       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
355       if(verify_dirty(head->addr)) {
356         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
357         invalid_code[vaddr>>12]=0;
358         memory_map[vaddr>>12]|=0x40000000;
359         if(vpage<2048) {
360 #ifndef DISABLE_TLB
361           if(tlb_LUT_r[vaddr>>12]) {
362             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
363             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
364           }
365 #endif
366           restore_candidate[vpage>>3]|=1<<(vpage&7);
367         }
368         else restore_candidate[page>>3]|=1<<(page&7);
369         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370         if(ht_bin[0]==vaddr) {
371           ht_bin[1]=(int)head->addr; // Replace existing entry
372         }
373         else
374         {
375           ht_bin[3]=ht_bin[1];
376           ht_bin[2]=ht_bin[0];
377           ht_bin[1]=(int)head->addr;
378           ht_bin[0]=vaddr;
379         }
380         return head->addr;
381       }
382     }
383     head=head->next;
384   }
385   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
386   int r=new_recompile_block(vaddr);
387   if(r==0) return get_addr(vaddr);
388   // Execute in unmapped page, generate pagefault execption
389   Status|=2;
390   Cause=(vaddr<<31)|0x8;
391   EPC=(vaddr&1)?vaddr-5:vaddr;
392   BadVAddr=(vaddr&~1);
393   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
394   EntryHi=BadVAddr&0xFFFFE000;
395   return get_addr_ht(0x80000000);
396 }
397 // Look up address in hash table first
398 void *get_addr_ht(u_int vaddr)
399 {
400   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
401   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
403   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
404   return get_addr(vaddr);
405 }
406
407 void *get_addr_32(u_int vaddr,u_int flags)
408 {
409 #ifdef FORCE32
410   return get_addr(vaddr);
411 #endif
412   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
413   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
414   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
415   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
416   u_int page=get_page(vaddr);
417   u_int vpage=get_vpage(vaddr);
418   struct ll_entry *head;
419   head=jump_in[page];
420   while(head!=NULL) {
421     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
422       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
423       if(head->reg32==0) {
424         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425         if(ht_bin[0]==-1) {
426           ht_bin[1]=(int)head->addr;
427           ht_bin[0]=vaddr;
428         }else if(ht_bin[2]==-1) {
429           ht_bin[3]=(int)head->addr;
430           ht_bin[2]=vaddr;
431         }
432         //ht_bin[3]=ht_bin[1];
433         //ht_bin[2]=ht_bin[0];
434         //ht_bin[1]=(int)head->addr;
435         //ht_bin[0]=vaddr;
436       }
437       return head->addr;
438     }
439     head=head->next;
440   }
441   head=jump_dirty[vpage];
442   while(head!=NULL) {
443     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
444       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
445       // Don't restore blocks which are about to expire from the cache
446       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
447       if(verify_dirty(head->addr)) {
448         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
449         invalid_code[vaddr>>12]=0;
450         memory_map[vaddr>>12]|=0x40000000;
451         if(vpage<2048) {
452 #ifndef DISABLE_TLB
453           if(tlb_LUT_r[vaddr>>12]) {
454             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
455             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
456           }
457 #endif
458           restore_candidate[vpage>>3]|=1<<(vpage&7);
459         }
460         else restore_candidate[page>>3]|=1<<(page&7);
461         if(head->reg32==0) {
462           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
463           if(ht_bin[0]==-1) {
464             ht_bin[1]=(int)head->addr;
465             ht_bin[0]=vaddr;
466           }else if(ht_bin[2]==-1) {
467             ht_bin[3]=(int)head->addr;
468             ht_bin[2]=vaddr;
469           }
470           //ht_bin[3]=ht_bin[1];
471           //ht_bin[2]=ht_bin[0];
472           //ht_bin[1]=(int)head->addr;
473           //ht_bin[0]=vaddr;
474         }
475         return head->addr;
476       }
477     }
478     head=head->next;
479   }
480   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
481   int r=new_recompile_block(vaddr);
482   if(r==0) return get_addr(vaddr);
483   // Execute in unmapped page, generate pagefault execption
484   Status|=2;
485   Cause=(vaddr<<31)|0x8;
486   EPC=(vaddr&1)?vaddr-5:vaddr;
487   BadVAddr=(vaddr&~1);
488   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
489   EntryHi=BadVAddr&0xFFFFE000;
490   return get_addr_ht(0x80000000);
491 }
492
493 void clear_all_regs(signed char regmap[])
494 {
495   int hr;
496   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
497 }
498
499 signed char get_reg(signed char regmap[],int r)
500 {
501   int hr;
502   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
503   return -1;
504 }
505
506 // Find a register that is available for two consecutive cycles
507 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
508 {
509   int hr;
510   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
511   return -1;
512 }
513
514 int count_free_regs(signed char regmap[])
515 {
516   int count=0;
517   int hr;
518   for(hr=0;hr<HOST_REGS;hr++)
519   {
520     if(hr!=EXCLUDE_REG) {
521       if(regmap[hr]<0) count++;
522     }
523   }
524   return count;
525 }
526
527 void dirty_reg(struct regstat *cur,signed char reg)
528 {
529   int hr;
530   if(!reg) return;
531   for (hr=0;hr<HOST_REGS;hr++) {
532     if((cur->regmap[hr]&63)==reg) {
533       cur->dirty|=1<<hr;
534     }
535   }
536 }
537
538 // If we dirty the lower half of a 64 bit register which is now being
539 // sign-extended, we need to dump the upper half.
540 // Note: Do this only after completion of the instruction, because
541 // some instructions may need to read the full 64-bit value even if
542 // overwriting it (eg SLTI, DSRA32).
543 static void flush_dirty_uppers(struct regstat *cur)
544 {
545   int hr,reg;
546   for (hr=0;hr<HOST_REGS;hr++) {
547     if((cur->dirty>>hr)&1) {
548       reg=cur->regmap[hr];
549       if(reg>=64) 
550         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
551     }
552   }
553 }
554
555 void set_const(struct regstat *cur,signed char reg,uint64_t value)
556 {
557   int hr;
558   if(!reg) return;
559   for (hr=0;hr<HOST_REGS;hr++) {
560     if(cur->regmap[hr]==reg) {
561       cur->isconst|=1<<hr;
562       cur->constmap[hr]=value;
563     }
564     else if((cur->regmap[hr]^64)==reg) {
565       cur->isconst|=1<<hr;
566       cur->constmap[hr]=value>>32;
567     }
568   }
569 }
570
571 void clear_const(struct regstat *cur,signed char reg)
572 {
573   int hr;
574   if(!reg) return;
575   for (hr=0;hr<HOST_REGS;hr++) {
576     if((cur->regmap[hr]&63)==reg) {
577       cur->isconst&=~(1<<hr);
578     }
579   }
580 }
581
582 int is_const(struct regstat *cur,signed char reg)
583 {
584   int hr;
585   if(!reg) return 1;
586   for (hr=0;hr<HOST_REGS;hr++) {
587     if((cur->regmap[hr]&63)==reg) {
588       return (cur->isconst>>hr)&1;
589     }
590   }
591   return 0;
592 }
593 uint64_t get_const(struct regstat *cur,signed char reg)
594 {
595   int hr;
596   if(!reg) return 0;
597   for (hr=0;hr<HOST_REGS;hr++) {
598     if(cur->regmap[hr]==reg) {
599       return cur->constmap[hr];
600     }
601   }
602   printf("Unknown constant in r%d\n",reg);
603   exit(1);
604 }
605
606 // Least soon needed registers
607 // Look at the next ten instructions and see which registers
608 // will be used.  Try not to reallocate these.
609 void lsn(u_char hsn[], int i, int *preferred_reg)
610 {
611   int j;
612   int b=-1;
613   for(j=0;j<9;j++)
614   {
615     if(i+j>=slen) {
616       j=slen-i-1;
617       break;
618     }
619     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
620     {
621       // Don't go past an unconditonal jump
622       j++;
623       break;
624     }
625   }
626   for(;j>=0;j--)
627   {
628     if(rs1[i+j]) hsn[rs1[i+j]]=j;
629     if(rs2[i+j]) hsn[rs2[i+j]]=j;
630     if(rt1[i+j]) hsn[rt1[i+j]]=j;
631     if(rt2[i+j]) hsn[rt2[i+j]]=j;
632     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
633       // Stores can allocate zero
634       hsn[rs1[i+j]]=j;
635       hsn[rs2[i+j]]=j;
636     }
637     // On some architectures stores need invc_ptr
638     #if defined(HOST_IMM8)
639     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
640       hsn[INVCP]=j;
641     }
642     #endif
643     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
644     {
645       hsn[CCREG]=j;
646       b=j;
647     }
648   }
649   if(b>=0)
650   {
651     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
652     {
653       // Follow first branch
654       int t=(ba[i+b]-start)>>2;
655       j=7-b;if(t+j>=slen) j=slen-t-1;
656       for(;j>=0;j--)
657       {
658         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
659         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
660         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
661         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
662       }
663     }
664     // TODO: preferred register based on backward branch
665   }
666   // Delay slot should preferably not overwrite branch conditions or cycle count
667   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
668     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
669     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
670     hsn[CCREG]=1;
671     // ...or hash tables
672     hsn[RHASH]=1;
673     hsn[RHTBL]=1;
674   }
675   // Coprocessor load/store needs FTEMP, even if not declared
676   if(itype[i]==C1LS||itype[i]==C2LS) {
677     hsn[FTEMP]=0;
678   }
679   // Load L/R also uses FTEMP as a temporary register
680   if(itype[i]==LOADLR) {
681     hsn[FTEMP]=0;
682   }
683   // Also SWL/SWR/SDL/SDR
684   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
685     hsn[FTEMP]=0;
686   }
687   // Don't remove the TLB registers either
688   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
689     hsn[TLREG]=0;
690   }
691   // Don't remove the miniht registers
692   if(itype[i]==UJUMP||itype[i]==RJUMP)
693   {
694     hsn[RHASH]=0;
695     hsn[RHTBL]=0;
696   }
697 }
698
699 // We only want to allocate registers if we're going to use them again soon
700 int needed_again(int r, int i)
701 {
702   int j;
703   int b=-1;
704   int rn=10;
705   int hr;
706   u_char hsn[MAXREG+1];
707   int preferred_reg;
708   
709   memset(hsn,10,sizeof(hsn));
710   lsn(hsn,i,&preferred_reg);
711   
712   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
713   {
714     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
715       return 0; // Don't need any registers if exiting the block
716   }
717   for(j=0;j<9;j++)
718   {
719     if(i+j>=slen) {
720       j=slen-i-1;
721       break;
722     }
723     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
724     {
725       // Don't go past an unconditonal jump
726       j++;
727       break;
728     }
729     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||((source[i+j]&0xfc00003f)==0x0d))
730     {
731       break;
732     }
733   }
734   for(;j>=1;j--)
735   {
736     if(rs1[i+j]==r) rn=j;
737     if(rs2[i+j]==r) rn=j;
738     if((unneeded_reg[i+j]>>r)&1) rn=10;
739     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
740     {
741       b=j;
742     }
743   }
744   /*
745   if(b>=0)
746   {
747     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
748     {
749       // Follow first branch
750       int o=rn;
751       int t=(ba[i+b]-start)>>2;
752       j=7-b;if(t+j>=slen) j=slen-t-1;
753       for(;j>=0;j--)
754       {
755         if(!((unneeded_reg[t+j]>>r)&1)) {
756           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
757           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
758         }
759         else rn=o;
760       }
761     }
762   }*/
763   for(hr=0;hr<HOST_REGS;hr++) {
764     if(hr!=EXCLUDE_REG) {
765       if(rn<hsn[hr]) return 1;
766     }
767   }
768   return 0;
769 }
770
771 // Try to match register allocations at the end of a loop with those
772 // at the beginning
773 int loop_reg(int i, int r, int hr)
774 {
775   int j,k;
776   for(j=0;j<9;j++)
777   {
778     if(i+j>=slen) {
779       j=slen-i-1;
780       break;
781     }
782     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
783     {
784       // Don't go past an unconditonal jump
785       j++;
786       break;
787     }
788   }
789   k=0;
790   if(i>0){
791     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
792       k--;
793   }
794   for(;k<j;k++)
795   {
796     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
797     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
798     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
799     {
800       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
801       {
802         int t=(ba[i+k]-start)>>2;
803         int reg=get_reg(regs[t].regmap_entry,r);
804         if(reg>=0) return reg;
805         //reg=get_reg(regs[t+1].regmap_entry,r);
806         //if(reg>=0) return reg;
807       }
808     }
809   }
810   return hr;
811 }
812
813
814 // Allocate every register, preserving source/target regs
815 void alloc_all(struct regstat *cur,int i)
816 {
817   int hr;
818   
819   for(hr=0;hr<HOST_REGS;hr++) {
820     if(hr!=EXCLUDE_REG) {
821       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
822          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
823       {
824         cur->regmap[hr]=-1;
825         cur->dirty&=~(1<<hr);
826       }
827       // Don't need zeros
828       if((cur->regmap[hr]&63)==0)
829       {
830         cur->regmap[hr]=-1;
831         cur->dirty&=~(1<<hr);
832       }
833     }
834   }
835 }
836
837
838 void div64(int64_t dividend,int64_t divisor)
839 {
840   lo=dividend/divisor;
841   hi=dividend%divisor;
842   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
843   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
844 }
845 void divu64(uint64_t dividend,uint64_t divisor)
846 {
847   lo=dividend/divisor;
848   hi=dividend%divisor;
849   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
850   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
851 }
852
853 void mult64(uint64_t m1,uint64_t m2)
854 {
855    unsigned long long int op1, op2, op3, op4;
856    unsigned long long int result1, result2, result3, result4;
857    unsigned long long int temp1, temp2, temp3, temp4;
858    int sign = 0;
859    
860    if (m1 < 0)
861      {
862     op2 = -m1;
863     sign = 1 - sign;
864      }
865    else op2 = m1;
866    if (m2 < 0)
867      {
868     op4 = -m2;
869     sign = 1 - sign;
870      }
871    else op4 = m2;
872    
873    op1 = op2 & 0xFFFFFFFF;
874    op2 = (op2 >> 32) & 0xFFFFFFFF;
875    op3 = op4 & 0xFFFFFFFF;
876    op4 = (op4 >> 32) & 0xFFFFFFFF;
877    
878    temp1 = op1 * op3;
879    temp2 = (temp1 >> 32) + op1 * op4;
880    temp3 = op2 * op3;
881    temp4 = (temp3 >> 32) + op2 * op4;
882    
883    result1 = temp1 & 0xFFFFFFFF;
884    result2 = temp2 + (temp3 & 0xFFFFFFFF);
885    result3 = (result2 >> 32) + temp4;
886    result4 = (result3 >> 32);
887    
888    lo = result1 | (result2 << 32);
889    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
890    if (sign)
891      {
892     hi = ~hi;
893     if (!lo) hi++;
894     else lo = ~lo + 1;
895      }
896 }
897
898 void multu64(uint64_t m1,uint64_t m2)
899 {
900    unsigned long long int op1, op2, op3, op4;
901    unsigned long long int result1, result2, result3, result4;
902    unsigned long long int temp1, temp2, temp3, temp4;
903    
904    op1 = m1 & 0xFFFFFFFF;
905    op2 = (m1 >> 32) & 0xFFFFFFFF;
906    op3 = m2 & 0xFFFFFFFF;
907    op4 = (m2 >> 32) & 0xFFFFFFFF;
908    
909    temp1 = op1 * op3;
910    temp2 = (temp1 >> 32) + op1 * op4;
911    temp3 = op2 * op3;
912    temp4 = (temp3 >> 32) + op2 * op4;
913    
914    result1 = temp1 & 0xFFFFFFFF;
915    result2 = temp2 + (temp3 & 0xFFFFFFFF);
916    result3 = (result2 >> 32) + temp4;
917    result4 = (result3 >> 32);
918    
919    lo = result1 | (result2 << 32);
920    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
921    
922   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
923   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
924 }
925
926 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
927 {
928   if(bits) {
929     original<<=64-bits;
930     original>>=64-bits;
931     loaded<<=bits;
932     original|=loaded;
933   }
934   else original=loaded;
935   return original;
936 }
937 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
938 {
939   if(bits^56) {
940     original>>=64-(bits^56);
941     original<<=64-(bits^56);
942     loaded>>=bits^56;
943     original|=loaded;
944   }
945   else original=loaded;
946   return original;
947 }
948
949 #ifdef __i386__
950 #include "assem_x86.c"
951 #endif
952 #ifdef __x86_64__
953 #include "assem_x64.c"
954 #endif
955 #ifdef __arm__
956 #include "assem_arm.c"
957 #endif
958
959 // Add virtual address mapping to linked list
960 void ll_add(struct ll_entry **head,int vaddr,void *addr)
961 {
962   struct ll_entry *new_entry;
963   new_entry=malloc(sizeof(struct ll_entry));
964   assert(new_entry!=NULL);
965   new_entry->vaddr=vaddr;
966   new_entry->reg32=0;
967   new_entry->addr=addr;
968   new_entry->next=*head;
969   *head=new_entry;
970 }
971
972 // Add virtual address mapping for 32-bit compiled block
973 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
974 {
975   ll_add(head,vaddr,addr);
976 #ifndef FORCE32
977   (*head)->reg32=reg32;
978 #endif
979 }
980
981 // Check if an address is already compiled
982 // but don't return addresses which are about to expire from the cache
983 void *check_addr(u_int vaddr)
984 {
985   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
986   if(ht_bin[0]==vaddr) {
987     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
988       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
989   }
990   if(ht_bin[2]==vaddr) {
991     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
992       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
993   }
994   u_int page=get_page(vaddr);
995   struct ll_entry *head;
996   head=jump_in[page];
997   while(head!=NULL) {
998     if(head->vaddr==vaddr&&head->reg32==0) {
999       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1000         // Update existing entry with current address
1001         if(ht_bin[0]==vaddr) {
1002           ht_bin[1]=(int)head->addr;
1003           return head->addr;
1004         }
1005         if(ht_bin[2]==vaddr) {
1006           ht_bin[3]=(int)head->addr;
1007           return head->addr;
1008         }
1009         // Insert into hash table with low priority.
1010         // Don't evict existing entries, as they are probably
1011         // addresses that are being accessed frequently.
1012         if(ht_bin[0]==-1) {
1013           ht_bin[1]=(int)head->addr;
1014           ht_bin[0]=vaddr;
1015         }else if(ht_bin[2]==-1) {
1016           ht_bin[3]=(int)head->addr;
1017           ht_bin[2]=vaddr;
1018         }
1019         return head->addr;
1020       }
1021     }
1022     head=head->next;
1023   }
1024   return 0;
1025 }
1026
1027 void remove_hash(int vaddr)
1028 {
1029   //printf("remove hash: %x\n",vaddr);
1030   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1031   if(ht_bin[2]==vaddr) {
1032     ht_bin[2]=ht_bin[3]=-1;
1033   }
1034   if(ht_bin[0]==vaddr) {
1035     ht_bin[0]=ht_bin[2];
1036     ht_bin[1]=ht_bin[3];
1037     ht_bin[2]=ht_bin[3]=-1;
1038   }
1039 }
1040
1041 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1042 {
1043   struct ll_entry *next;
1044   while(*head) {
1045     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1046        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1047     {
1048       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1049       remove_hash((*head)->vaddr);
1050       next=(*head)->next;
1051       free(*head);
1052       *head=next;
1053     }
1054     else
1055     {
1056       head=&((*head)->next);
1057     }
1058   }
1059 }
1060
1061 // Remove all entries from linked list
1062 void ll_clear(struct ll_entry **head)
1063 {
1064   struct ll_entry *cur;
1065   struct ll_entry *next;
1066   if(cur=*head) {
1067     *head=0;
1068     while(cur) {
1069       next=cur->next;
1070       free(cur);
1071       cur=next;
1072     }
1073   }
1074 }
1075
1076 // Dereference the pointers and remove if it matches
1077 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1078 {
1079   u_int old_host_addr=0;
1080   while(head) {
1081     int ptr=get_pointer(head->addr);
1082     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1083     if(((ptr>>shift)==(addr>>shift)) ||
1084        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1085     {
1086       printf("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1087       u_int host_addr=(u_int)kill_pointer(head->addr);
1088
1089       if((host_addr>>12)!=(old_host_addr>>12)) {
1090         #ifdef __arm__
1091         __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1092         #endif
1093         old_host_addr=host_addr;
1094       }
1095     }
1096     head=head->next;
1097   }
1098   #ifdef __arm__
1099   if (old_host_addr)
1100     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1101   #endif
1102 }
1103
1104 // This is called when we write to a compiled block (see do_invstub)
1105 void invalidate_page(u_int page)
1106 {
1107   struct ll_entry *head;
1108   struct ll_entry *next;
1109   u_int old_host_addr=0;
1110   head=jump_in[page];
1111   jump_in[page]=0;
1112   while(head!=NULL) {
1113     inv_debug("INVALIDATE: %x\n",head->vaddr);
1114     remove_hash(head->vaddr);
1115     next=head->next;
1116     free(head);
1117     head=next;
1118   }
1119   head=jump_out[page];
1120   jump_out[page]=0;
1121   while(head!=NULL) {
1122     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1123     u_int host_addr=(u_int)kill_pointer(head->addr);
1124
1125     if((host_addr>>12)!=(old_host_addr>>12)) {
1126       #ifdef __arm__
1127       __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1128       #endif
1129       old_host_addr=host_addr;
1130     }
1131     next=head->next;
1132     free(head);
1133     head=next;
1134   }
1135   #ifdef __arm__
1136   if (old_host_addr)
1137     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1138   #endif
1139 }
1140 void invalidate_block(u_int block)
1141 {
1142   u_int page=get_page(block<<12);
1143   u_int vpage=get_vpage(block<<12);
1144   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1145   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1146   u_int first,last;
1147   first=last=page;
1148   struct ll_entry *head;
1149   head=jump_dirty[vpage];
1150   //printf("page=%d vpage=%d\n",page,vpage);
1151   while(head!=NULL) {
1152     u_int start,end;
1153     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1154       get_bounds((int)head->addr,&start,&end);
1155       //printf("start: %x end: %x\n",start,end);
1156       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1157         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1158           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1159           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1160         }
1161       }
1162 #ifndef DISABLE_TLB
1163       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1164         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1165           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1166           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1167         }
1168       }
1169 #endif
1170     }
1171     head=head->next;
1172   }
1173   //printf("first=%d last=%d\n",first,last);
1174   invalidate_page(page);
1175   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1176   assert(last<page+5);
1177   // Invalidate the adjacent pages if a block crosses a 4K boundary
1178   while(first<page) {
1179     invalidate_page(first);
1180     first++;
1181   }
1182   for(first=page+1;first<last;first++) {
1183     invalidate_page(first);
1184   }
1185   
1186   // Don't trap writes
1187   invalid_code[block]=1;
1188 #ifndef DISABLE_TLB
1189   // If there is a valid TLB entry for this page, remove write protect
1190   if(tlb_LUT_w[block]) {
1191     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1192     // CHECK: Is this right?
1193     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1194     u_int real_block=tlb_LUT_w[block]>>12;
1195     invalid_code[real_block]=1;
1196     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1197   }
1198   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1199 #endif
1200
1201   #ifdef USE_MINI_HT
1202   memset(mini_ht,-1,sizeof(mini_ht));
1203   #endif
1204 }
1205 void invalidate_addr(u_int addr)
1206 {
1207   invalidate_block(addr>>12);
1208 }
1209 void invalidate_all_pages()
1210 {
1211   u_int page,n;
1212   for(page=0;page<4096;page++)
1213     invalidate_page(page);
1214   for(page=0;page<1048576;page++)
1215     if(!invalid_code[page]) {
1216       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1217       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1218     }
1219   #ifdef __arm__
1220   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1221   #endif
1222   #ifdef USE_MINI_HT
1223   memset(mini_ht,-1,sizeof(mini_ht));
1224   #endif
1225   #ifndef DISABLE_TLB
1226   // TLB
1227   for(page=0;page<0x100000;page++) {
1228     if(tlb_LUT_r[page]) {
1229       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1230       if(!tlb_LUT_w[page]||!invalid_code[page])
1231         memory_map[page]|=0x40000000; // Write protect
1232     }
1233     else memory_map[page]=-1;
1234     if(page==0x80000) page=0xC0000;
1235   }
1236   tlb_hacks();
1237   #endif
1238 }
1239
1240 // Add an entry to jump_out after making a link
1241 void add_link(u_int vaddr,void *src)
1242 {
1243   u_int page=get_page(vaddr);
1244   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1245   ll_add(jump_out+page,vaddr,src);
1246   //int ptr=get_pointer(src);
1247   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1248 }
1249
1250 // If a code block was found to be unmodified (bit was set in
1251 // restore_candidate) and it remains unmodified (bit is clear
1252 // in invalid_code) then move the entries for that 4K page from
1253 // the dirty list to the clean list.
1254 void clean_blocks(u_int page)
1255 {
1256   struct ll_entry *head;
1257   inv_debug("INV: clean_blocks page=%d\n",page);
1258   head=jump_dirty[page];
1259   while(head!=NULL) {
1260     if(!invalid_code[head->vaddr>>12]) {
1261       // Don't restore blocks which are about to expire from the cache
1262       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1263         u_int start,end;
1264         if(verify_dirty((int)head->addr)) {
1265           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1266           u_int i;
1267           u_int inv=0;
1268           get_bounds((int)head->addr,&start,&end);
1269           if(start-(u_int)rdram<RAM_SIZE) {
1270             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1271               inv|=invalid_code[i];
1272             }
1273           }
1274           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1275             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1276             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1277             if(addr<start||addr>=end) inv=1;
1278           }
1279           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1280             inv=1;
1281           }
1282           if(!inv) {
1283             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1284             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1285               u_int ppage=page;
1286 #ifndef DISABLE_TLB
1287               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1288 #endif
1289               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1290               //printf("page=%x, addr=%x\n",page,head->vaddr);
1291               //assert(head->vaddr>>12==(page|0x80000));
1292               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1293               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1294               if(!head->reg32) {
1295                 if(ht_bin[0]==head->vaddr) {
1296                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1297                 }
1298                 if(ht_bin[2]==head->vaddr) {
1299                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1300                 }
1301               }
1302             }
1303           }
1304         }
1305       }
1306     }
1307     head=head->next;
1308   }
1309 }
1310
1311
1312 void mov_alloc(struct regstat *current,int i)
1313 {
1314   // Note: Don't need to actually alloc the source registers
1315   if((~current->is32>>rs1[i])&1) {
1316     //alloc_reg64(current,i,rs1[i]);
1317     alloc_reg64(current,i,rt1[i]);
1318     current->is32&=~(1LL<<rt1[i]);
1319   } else {
1320     //alloc_reg(current,i,rs1[i]);
1321     alloc_reg(current,i,rt1[i]);
1322     current->is32|=(1LL<<rt1[i]);
1323   }
1324   clear_const(current,rs1[i]);
1325   clear_const(current,rt1[i]);
1326   dirty_reg(current,rt1[i]);
1327 }
1328
1329 void shiftimm_alloc(struct regstat *current,int i)
1330 {
1331   clear_const(current,rs1[i]);
1332   clear_const(current,rt1[i]);
1333   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1334   {
1335     if(rt1[i]) {
1336       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1337       else lt1[i]=rs1[i];
1338       alloc_reg(current,i,rt1[i]);
1339       current->is32|=1LL<<rt1[i];
1340       dirty_reg(current,rt1[i]);
1341     }
1342   }
1343   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1344   {
1345     if(rt1[i]) {
1346       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1347       alloc_reg64(current,i,rt1[i]);
1348       current->is32&=~(1LL<<rt1[i]);
1349       dirty_reg(current,rt1[i]);
1350     }
1351   }
1352   if(opcode2[i]==0x3c) // DSLL32
1353   {
1354     if(rt1[i]) {
1355       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1356       alloc_reg64(current,i,rt1[i]);
1357       current->is32&=~(1LL<<rt1[i]);
1358       dirty_reg(current,rt1[i]);
1359     }
1360   }
1361   if(opcode2[i]==0x3e) // DSRL32
1362   {
1363     if(rt1[i]) {
1364       alloc_reg64(current,i,rs1[i]);
1365       if(imm[i]==32) {
1366         alloc_reg64(current,i,rt1[i]);
1367         current->is32&=~(1LL<<rt1[i]);
1368       } else {
1369         alloc_reg(current,i,rt1[i]);
1370         current->is32|=1LL<<rt1[i];
1371       }
1372       dirty_reg(current,rt1[i]);
1373     }
1374   }
1375   if(opcode2[i]==0x3f) // DSRA32
1376   {
1377     if(rt1[i]) {
1378       alloc_reg64(current,i,rs1[i]);
1379       alloc_reg(current,i,rt1[i]);
1380       current->is32|=1LL<<rt1[i];
1381       dirty_reg(current,rt1[i]);
1382     }
1383   }
1384 }
1385
1386 void shift_alloc(struct regstat *current,int i)
1387 {
1388   if(rt1[i]) {
1389     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1390     {
1391       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1392       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1393       alloc_reg(current,i,rt1[i]);
1394       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1395       current->is32|=1LL<<rt1[i];
1396     } else { // DSLLV/DSRLV/DSRAV
1397       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1398       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1399       alloc_reg64(current,i,rt1[i]);
1400       current->is32&=~(1LL<<rt1[i]);
1401       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1402         alloc_reg_temp(current,i,-1);
1403     }
1404     clear_const(current,rs1[i]);
1405     clear_const(current,rs2[i]);
1406     clear_const(current,rt1[i]);
1407     dirty_reg(current,rt1[i]);
1408   }
1409 }
1410
1411 void alu_alloc(struct regstat *current,int i)
1412 {
1413   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1414     if(rt1[i]) {
1415       if(rs1[i]&&rs2[i]) {
1416         alloc_reg(current,i,rs1[i]);
1417         alloc_reg(current,i,rs2[i]);
1418       }
1419       else {
1420         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1421         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1422       }
1423       alloc_reg(current,i,rt1[i]);
1424     }
1425     current->is32|=1LL<<rt1[i];
1426   }
1427   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1428     if(rt1[i]) {
1429       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1430       {
1431         alloc_reg64(current,i,rs1[i]);
1432         alloc_reg64(current,i,rs2[i]);
1433         alloc_reg(current,i,rt1[i]);
1434       } else {
1435         alloc_reg(current,i,rs1[i]);
1436         alloc_reg(current,i,rs2[i]);
1437         alloc_reg(current,i,rt1[i]);
1438       }
1439     }
1440     current->is32|=1LL<<rt1[i];
1441   }
1442   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1443     if(rt1[i]) {
1444       if(rs1[i]&&rs2[i]) {
1445         alloc_reg(current,i,rs1[i]);
1446         alloc_reg(current,i,rs2[i]);
1447       }
1448       else
1449       {
1450         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1451         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1452       }
1453       alloc_reg(current,i,rt1[i]);
1454       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1455       {
1456         if(!((current->uu>>rt1[i])&1)) {
1457           alloc_reg64(current,i,rt1[i]);
1458         }
1459         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1460           if(rs1[i]&&rs2[i]) {
1461             alloc_reg64(current,i,rs1[i]);
1462             alloc_reg64(current,i,rs2[i]);
1463           }
1464           else
1465           {
1466             // Is is really worth it to keep 64-bit values in registers?
1467             #ifdef NATIVE_64BIT
1468             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1469             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1470             #endif
1471           }
1472         }
1473         current->is32&=~(1LL<<rt1[i]);
1474       } else {
1475         current->is32|=1LL<<rt1[i];
1476       }
1477     }
1478   }
1479   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1480     if(rt1[i]) {
1481       if(rs1[i]&&rs2[i]) {
1482         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1483           alloc_reg64(current,i,rs1[i]);
1484           alloc_reg64(current,i,rs2[i]);
1485           alloc_reg64(current,i,rt1[i]);
1486         } else {
1487           alloc_reg(current,i,rs1[i]);
1488           alloc_reg(current,i,rs2[i]);
1489           alloc_reg(current,i,rt1[i]);
1490         }
1491       }
1492       else {
1493         alloc_reg(current,i,rt1[i]);
1494         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1495           // DADD used as move, or zeroing
1496           // If we have a 64-bit source, then make the target 64 bits too
1497           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1498             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1499             alloc_reg64(current,i,rt1[i]);
1500           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1501             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1502             alloc_reg64(current,i,rt1[i]);
1503           }
1504           if(opcode2[i]>=0x2e&&rs2[i]) {
1505             // DSUB used as negation - 64-bit result
1506             // If we have a 32-bit register, extend it to 64 bits
1507             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1508             alloc_reg64(current,i,rt1[i]);
1509           }
1510         }
1511       }
1512       if(rs1[i]&&rs2[i]) {
1513         current->is32&=~(1LL<<rt1[i]);
1514       } else if(rs1[i]) {
1515         current->is32&=~(1LL<<rt1[i]);
1516         if((current->is32>>rs1[i])&1)
1517           current->is32|=1LL<<rt1[i];
1518       } else if(rs2[i]) {
1519         current->is32&=~(1LL<<rt1[i]);
1520         if((current->is32>>rs2[i])&1)
1521           current->is32|=1LL<<rt1[i];
1522       } else {
1523         current->is32|=1LL<<rt1[i];
1524       }
1525     }
1526   }
1527   clear_const(current,rs1[i]);
1528   clear_const(current,rs2[i]);
1529   clear_const(current,rt1[i]);
1530   dirty_reg(current,rt1[i]);
1531 }
1532
1533 void imm16_alloc(struct regstat *current,int i)
1534 {
1535   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1536   else lt1[i]=rs1[i];
1537   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1538   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1539     current->is32&=~(1LL<<rt1[i]);
1540     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1541       // TODO: Could preserve the 32-bit flag if the immediate is zero
1542       alloc_reg64(current,i,rt1[i]);
1543       alloc_reg64(current,i,rs1[i]);
1544     }
1545     clear_const(current,rs1[i]);
1546     clear_const(current,rt1[i]);
1547   }
1548   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1549     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1550     current->is32|=1LL<<rt1[i];
1551     clear_const(current,rs1[i]);
1552     clear_const(current,rt1[i]);
1553   }
1554   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1555     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1556       if(rs1[i]!=rt1[i]) {
1557         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1558         alloc_reg64(current,i,rt1[i]);
1559         current->is32&=~(1LL<<rt1[i]);
1560       }
1561     }
1562     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1563     if(is_const(current,rs1[i])) {
1564       int v=get_const(current,rs1[i]);
1565       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1566       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1567       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1568     }
1569     else clear_const(current,rt1[i]);
1570   }
1571   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1572     if(is_const(current,rs1[i])) {
1573       int v=get_const(current,rs1[i]);
1574       set_const(current,rt1[i],v+imm[i]);
1575     }
1576     else clear_const(current,rt1[i]);
1577     current->is32|=1LL<<rt1[i];
1578   }
1579   else {
1580     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1581     current->is32|=1LL<<rt1[i];
1582   }
1583   dirty_reg(current,rt1[i]);
1584 }
1585
1586 void load_alloc(struct regstat *current,int i)
1587 {
1588   clear_const(current,rt1[i]);
1589   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1590   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1591   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1592   if(rt1[i]) {
1593     alloc_reg(current,i,rt1[i]);
1594     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1595     {
1596       current->is32&=~(1LL<<rt1[i]);
1597       alloc_reg64(current,i,rt1[i]);
1598     }
1599     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1600     {
1601       current->is32&=~(1LL<<rt1[i]);
1602       alloc_reg64(current,i,rt1[i]);
1603       alloc_all(current,i);
1604       alloc_reg64(current,i,FTEMP);
1605     }
1606     else current->is32|=1LL<<rt1[i];
1607     dirty_reg(current,rt1[i]);
1608     // If using TLB, need a register for pointer to the mapping table
1609     if(using_tlb) alloc_reg(current,i,TLREG);
1610     // LWL/LWR need a temporary register for the old value
1611     if(opcode[i]==0x22||opcode[i]==0x26)
1612     {
1613       alloc_reg(current,i,FTEMP);
1614       alloc_reg_temp(current,i,-1);
1615     }
1616   }
1617   else
1618   {
1619     // Load to r0 (dummy load)
1620     // but we still need a register to calculate the address
1621     alloc_reg_temp(current,i,-1);
1622   }
1623 }
1624
1625 void store_alloc(struct regstat *current,int i)
1626 {
1627   clear_const(current,rs2[i]);
1628   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1629   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1630   alloc_reg(current,i,rs2[i]);
1631   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1632     alloc_reg64(current,i,rs2[i]);
1633     if(rs2[i]) alloc_reg(current,i,FTEMP);
1634   }
1635   // If using TLB, need a register for pointer to the mapping table
1636   if(using_tlb) alloc_reg(current,i,TLREG);
1637   #if defined(HOST_IMM8)
1638   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1639   else alloc_reg(current,i,INVCP);
1640   #endif
1641   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1642     alloc_reg(current,i,FTEMP);
1643   }
1644   // We need a temporary register for address generation
1645   alloc_reg_temp(current,i,-1);
1646 }
1647
1648 void c1ls_alloc(struct regstat *current,int i)
1649 {
1650   //clear_const(current,rs1[i]); // FIXME
1651   clear_const(current,rt1[i]);
1652   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1653   alloc_reg(current,i,CSREG); // Status
1654   alloc_reg(current,i,FTEMP);
1655   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1656     alloc_reg64(current,i,FTEMP);
1657   }
1658   // If using TLB, need a register for pointer to the mapping table
1659   if(using_tlb) alloc_reg(current,i,TLREG);
1660   #if defined(HOST_IMM8)
1661   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1662   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1663     alloc_reg(current,i,INVCP);
1664   #endif
1665   // We need a temporary register for address generation
1666   alloc_reg_temp(current,i,-1);
1667 }
1668
1669 void c2ls_alloc(struct regstat *current,int i)
1670 {
1671   clear_const(current,rt1[i]);
1672   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1673   alloc_reg(current,i,FTEMP);
1674   // If using TLB, need a register for pointer to the mapping table
1675   if(using_tlb) alloc_reg(current,i,TLREG);
1676   #if defined(HOST_IMM8)
1677   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1678   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1679     alloc_reg(current,i,INVCP);
1680   #endif
1681   // We need a temporary register for address generation
1682   alloc_reg_temp(current,i,-1);
1683 }
1684
1685 #ifndef multdiv_alloc
1686 void multdiv_alloc(struct regstat *current,int i)
1687 {
1688   //  case 0x18: MULT
1689   //  case 0x19: MULTU
1690   //  case 0x1A: DIV
1691   //  case 0x1B: DIVU
1692   //  case 0x1C: DMULT
1693   //  case 0x1D: DMULTU
1694   //  case 0x1E: DDIV
1695   //  case 0x1F: DDIVU
1696   clear_const(current,rs1[i]);
1697   clear_const(current,rs2[i]);
1698   if(rs1[i]&&rs2[i])
1699   {
1700     if((opcode2[i]&4)==0) // 32-bit
1701     {
1702       current->u&=~(1LL<<HIREG);
1703       current->u&=~(1LL<<LOREG);
1704       alloc_reg(current,i,HIREG);
1705       alloc_reg(current,i,LOREG);
1706       alloc_reg(current,i,rs1[i]);
1707       alloc_reg(current,i,rs2[i]);
1708       current->is32|=1LL<<HIREG;
1709       current->is32|=1LL<<LOREG;
1710       dirty_reg(current,HIREG);
1711       dirty_reg(current,LOREG);
1712     }
1713     else // 64-bit
1714     {
1715       current->u&=~(1LL<<HIREG);
1716       current->u&=~(1LL<<LOREG);
1717       current->uu&=~(1LL<<HIREG);
1718       current->uu&=~(1LL<<LOREG);
1719       alloc_reg64(current,i,HIREG);
1720       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1721       alloc_reg64(current,i,rs1[i]);
1722       alloc_reg64(current,i,rs2[i]);
1723       alloc_all(current,i);
1724       current->is32&=~(1LL<<HIREG);
1725       current->is32&=~(1LL<<LOREG);
1726       dirty_reg(current,HIREG);
1727       dirty_reg(current,LOREG);
1728     }
1729   }
1730   else
1731   {
1732     // Multiply by zero is zero.
1733     // MIPS does not have a divide by zero exception.
1734     // The result is undefined, we return zero.
1735     alloc_reg(current,i,HIREG);
1736     alloc_reg(current,i,LOREG);
1737     current->is32|=1LL<<HIREG;
1738     current->is32|=1LL<<LOREG;
1739     dirty_reg(current,HIREG);
1740     dirty_reg(current,LOREG);
1741   }
1742 }
1743 #endif
1744
1745 void cop0_alloc(struct regstat *current,int i)
1746 {
1747   if(opcode2[i]==0) // MFC0
1748   {
1749     if(rt1[i]) {
1750       clear_const(current,rt1[i]);
1751       alloc_all(current,i);
1752       alloc_reg(current,i,rt1[i]);
1753       current->is32|=1LL<<rt1[i];
1754       dirty_reg(current,rt1[i]);
1755     }
1756   }
1757   else if(opcode2[i]==4) // MTC0
1758   {
1759     if(rs1[i]){
1760       clear_const(current,rs1[i]);
1761       alloc_reg(current,i,rs1[i]);
1762       alloc_all(current,i);
1763     }
1764     else {
1765       alloc_all(current,i); // FIXME: Keep r0
1766       current->u&=~1LL;
1767       alloc_reg(current,i,0);
1768     }
1769   }
1770   else
1771   {
1772     // TLBR/TLBWI/TLBWR/TLBP/ERET
1773     assert(opcode2[i]==0x10);
1774     alloc_all(current,i);
1775   }
1776 }
1777
1778 void cop1_alloc(struct regstat *current,int i)
1779 {
1780   alloc_reg(current,i,CSREG); // Load status
1781   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1782   {
1783     assert(rt1[i]);
1784     clear_const(current,rt1[i]);
1785     if(opcode2[i]==1) {
1786       alloc_reg64(current,i,rt1[i]); // DMFC1
1787       current->is32&=~(1LL<<rt1[i]);
1788     }else{
1789       alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1790       current->is32|=1LL<<rt1[i];
1791     }
1792     dirty_reg(current,rt1[i]);
1793     alloc_reg_temp(current,i,-1);
1794   }
1795   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1796   {
1797     if(rs1[i]){
1798       clear_const(current,rs1[i]);
1799       if(opcode2[i]==5)
1800         alloc_reg64(current,i,rs1[i]); // DMTC1
1801       else
1802         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1803       alloc_reg_temp(current,i,-1);
1804     }
1805     else {
1806       current->u&=~1LL;
1807       alloc_reg(current,i,0);
1808       alloc_reg_temp(current,i,-1);
1809     }
1810   }
1811 }
1812 void fconv_alloc(struct regstat *current,int i)
1813 {
1814   alloc_reg(current,i,CSREG); // Load status
1815   alloc_reg_temp(current,i,-1);
1816 }
1817 void float_alloc(struct regstat *current,int i)
1818 {
1819   alloc_reg(current,i,CSREG); // Load status
1820   alloc_reg_temp(current,i,-1);
1821 }
1822 void c2op_alloc(struct regstat *current,int i)
1823 {
1824   alloc_reg_temp(current,i,-1);
1825 }
1826 void fcomp_alloc(struct regstat *current,int i)
1827 {
1828   alloc_reg(current,i,CSREG); // Load status
1829   alloc_reg(current,i,FSREG); // Load flags
1830   dirty_reg(current,FSREG); // Flag will be modified
1831   alloc_reg_temp(current,i,-1);
1832 }
1833
1834 void syscall_alloc(struct regstat *current,int i)
1835 {
1836   alloc_cc(current,i);
1837   dirty_reg(current,CCREG);
1838   alloc_all(current,i);
1839   current->isconst=0;
1840 }
1841
1842 void delayslot_alloc(struct regstat *current,int i)
1843 {
1844   switch(itype[i]) {
1845     case UJUMP:
1846     case CJUMP:
1847     case SJUMP:
1848     case RJUMP:
1849     case FJUMP:
1850     case SYSCALL:
1851     case HLECALL:
1852     case SPAN:
1853       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1854       printf("Disabled speculative precompilation\n");
1855       stop_after_jal=1;
1856       break;
1857     case IMM16:
1858       imm16_alloc(current,i);
1859       break;
1860     case LOAD:
1861     case LOADLR:
1862       load_alloc(current,i);
1863       break;
1864     case STORE:
1865     case STORELR:
1866       store_alloc(current,i);
1867       break;
1868     case ALU:
1869       alu_alloc(current,i);
1870       break;
1871     case SHIFT:
1872       shift_alloc(current,i);
1873       break;
1874     case MULTDIV:
1875       multdiv_alloc(current,i);
1876       break;
1877     case SHIFTIMM:
1878       shiftimm_alloc(current,i);
1879       break;
1880     case MOV:
1881       mov_alloc(current,i);
1882       break;
1883     case COP0:
1884       cop0_alloc(current,i);
1885       break;
1886     case COP1:
1887     case COP2:
1888       cop1_alloc(current,i);
1889       break;
1890     case C1LS:
1891       c1ls_alloc(current,i);
1892       break;
1893     case C2LS:
1894       c2ls_alloc(current,i);
1895       break;
1896     case FCONV:
1897       fconv_alloc(current,i);
1898       break;
1899     case FLOAT:
1900       float_alloc(current,i);
1901       break;
1902     case FCOMP:
1903       fcomp_alloc(current,i);
1904       break;
1905     case C2OP:
1906       c2op_alloc(current,i);
1907       break;
1908   }
1909 }
1910
1911 // Special case where a branch and delay slot span two pages in virtual memory
1912 static void pagespan_alloc(struct regstat *current,int i)
1913 {
1914   current->isconst=0;
1915   current->wasconst=0;
1916   regs[i].wasconst=0;
1917   alloc_all(current,i);
1918   alloc_cc(current,i);
1919   dirty_reg(current,CCREG);
1920   if(opcode[i]==3) // JAL
1921   {
1922     alloc_reg(current,i,31);
1923     dirty_reg(current,31);
1924   }
1925   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1926   {
1927     alloc_reg(current,i,rs1[i]);
1928     if (rt1[i]!=0) {
1929       alloc_reg(current,i,rt1[i]);
1930       dirty_reg(current,rt1[i]);
1931     }
1932   }
1933   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1934   {
1935     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1936     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1937     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1938     {
1939       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1940       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1941     }
1942   }
1943   else
1944   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1945   {
1946     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1947     if(!((current->is32>>rs1[i])&1))
1948     {
1949       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1950     }
1951   }
1952   else
1953   if(opcode[i]==0x11) // BC1
1954   {
1955     alloc_reg(current,i,FSREG);
1956     alloc_reg(current,i,CSREG);
1957   }
1958   //else ...
1959 }
1960
1961 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1962 {
1963   stubs[stubcount][0]=type;
1964   stubs[stubcount][1]=addr;
1965   stubs[stubcount][2]=retaddr;
1966   stubs[stubcount][3]=a;
1967   stubs[stubcount][4]=b;
1968   stubs[stubcount][5]=c;
1969   stubs[stubcount][6]=d;
1970   stubs[stubcount][7]=e;
1971   stubcount++;
1972 }
1973
1974 // Write out a single register
1975 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1976 {
1977   int hr;
1978   for(hr=0;hr<HOST_REGS;hr++) {
1979     if(hr!=EXCLUDE_REG) {
1980       if((regmap[hr]&63)==r) {
1981         if((dirty>>hr)&1) {
1982           if(regmap[hr]<64) {
1983             emit_storereg(r,hr);
1984 #ifndef FORCE32
1985             if((is32>>regmap[hr])&1) {
1986               emit_sarimm(hr,31,hr);
1987               emit_storereg(r|64,hr);
1988             }
1989 #endif
1990           }else{
1991             emit_storereg(r|64,hr);
1992           }
1993         }
1994       }
1995     }
1996   }
1997 }
1998
1999 int mchecksum()
2000 {
2001   //if(!tracedebug) return 0;
2002   int i;
2003   int sum=0;
2004   for(i=0;i<2097152;i++) {
2005     unsigned int temp=sum;
2006     sum<<=1;
2007     sum|=(~temp)>>31;
2008     sum^=((u_int *)rdram)[i];
2009   }
2010   return sum;
2011 }
2012 int rchecksum()
2013 {
2014   int i;
2015   int sum=0;
2016   for(i=0;i<64;i++)
2017     sum^=((u_int *)reg)[i];
2018   return sum;
2019 }
2020 void rlist()
2021 {
2022   int i;
2023   printf("TRACE: ");
2024   for(i=0;i<32;i++)
2025     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2026   printf("\n");
2027 #ifndef DISABLE_COP1
2028   printf("TRACE: ");
2029   for(i=0;i<32;i++)
2030     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2031   printf("\n");
2032 #endif
2033 }
2034
2035 void enabletrace()
2036 {
2037   tracedebug=1;
2038 }
2039
2040 void memdebug(int i)
2041 {
2042   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2043   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2044   //rlist();
2045   //if(tracedebug) {
2046   //if(Count>=-2084597794) {
2047   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2048   //if(0) {
2049     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2050     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2051     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2052     rlist();
2053     #ifdef __i386__
2054     printf("TRACE: %x\n",(&i)[-1]);
2055     #endif
2056     #ifdef __arm__
2057     int j;
2058     printf("TRACE: %x \n",(&j)[10]);
2059     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2060     #endif
2061     //fflush(stdout);
2062   }
2063   //printf("TRACE: %x\n",(&i)[-1]);
2064 }
2065
2066 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2067 {
2068   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2069 }
2070
2071 void alu_assemble(int i,struct regstat *i_regs)
2072 {
2073   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2074     if(rt1[i]) {
2075       signed char s1,s2,t;
2076       t=get_reg(i_regs->regmap,rt1[i]);
2077       if(t>=0) {
2078         s1=get_reg(i_regs->regmap,rs1[i]);
2079         s2=get_reg(i_regs->regmap,rs2[i]);
2080         if(rs1[i]&&rs2[i]) {
2081           assert(s1>=0);
2082           assert(s2>=0);
2083           if(opcode2[i]&2) emit_sub(s1,s2,t);
2084           else emit_add(s1,s2,t);
2085         }
2086         else if(rs1[i]) {
2087           if(s1>=0) emit_mov(s1,t);
2088           else emit_loadreg(rs1[i],t);
2089         }
2090         else if(rs2[i]) {
2091           if(s2>=0) {
2092             if(opcode2[i]&2) emit_neg(s2,t);
2093             else emit_mov(s2,t);
2094           }
2095           else {
2096             emit_loadreg(rs2[i],t);
2097             if(opcode2[i]&2) emit_neg(t,t);
2098           }
2099         }
2100         else emit_zeroreg(t);
2101       }
2102     }
2103   }
2104   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2105     if(rt1[i]) {
2106       signed char s1l,s2l,s1h,s2h,tl,th;
2107       tl=get_reg(i_regs->regmap,rt1[i]);
2108       th=get_reg(i_regs->regmap,rt1[i]|64);
2109       if(tl>=0) {
2110         s1l=get_reg(i_regs->regmap,rs1[i]);
2111         s2l=get_reg(i_regs->regmap,rs2[i]);
2112         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2113         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2114         if(rs1[i]&&rs2[i]) {
2115           assert(s1l>=0);
2116           assert(s2l>=0);
2117           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2118           else emit_adds(s1l,s2l,tl);
2119           if(th>=0) {
2120             #ifdef INVERTED_CARRY
2121             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2122             #else
2123             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2124             #endif
2125             else emit_add(s1h,s2h,th);
2126           }
2127         }
2128         else if(rs1[i]) {
2129           if(s1l>=0) emit_mov(s1l,tl);
2130           else emit_loadreg(rs1[i],tl);
2131           if(th>=0) {
2132             if(s1h>=0) emit_mov(s1h,th);
2133             else emit_loadreg(rs1[i]|64,th);
2134           }
2135         }
2136         else if(rs2[i]) {
2137           if(s2l>=0) {
2138             if(opcode2[i]&2) emit_negs(s2l,tl);
2139             else emit_mov(s2l,tl);
2140           }
2141           else {
2142             emit_loadreg(rs2[i],tl);
2143             if(opcode2[i]&2) emit_negs(tl,tl);
2144           }
2145           if(th>=0) {
2146             #ifdef INVERTED_CARRY
2147             if(s2h>=0) emit_mov(s2h,th);
2148             else emit_loadreg(rs2[i]|64,th);
2149             if(opcode2[i]&2) {
2150               emit_adcimm(-1,th); // x86 has inverted carry flag
2151               emit_not(th,th);
2152             }
2153             #else
2154             if(opcode2[i]&2) {
2155               if(s2h>=0) emit_rscimm(s2h,0,th);
2156               else {
2157                 emit_loadreg(rs2[i]|64,th);
2158                 emit_rscimm(th,0,th);
2159               }
2160             }else{
2161               if(s2h>=0) emit_mov(s2h,th);
2162               else emit_loadreg(rs2[i]|64,th);
2163             }
2164             #endif
2165           }
2166         }
2167         else {
2168           emit_zeroreg(tl);
2169           if(th>=0) emit_zeroreg(th);
2170         }
2171       }
2172     }
2173   }
2174   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2175     if(rt1[i]) {
2176       signed char s1l,s1h,s2l,s2h,t;
2177       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2178       {
2179         t=get_reg(i_regs->regmap,rt1[i]);
2180         //assert(t>=0);
2181         if(t>=0) {
2182           s1l=get_reg(i_regs->regmap,rs1[i]);
2183           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2184           s2l=get_reg(i_regs->regmap,rs2[i]);
2185           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2186           if(rs2[i]==0) // rx<r0
2187           {
2188             assert(s1h>=0);
2189             if(opcode2[i]==0x2a) // SLT
2190               emit_shrimm(s1h,31,t);
2191             else // SLTU (unsigned can not be less than zero)
2192               emit_zeroreg(t);
2193           }
2194           else if(rs1[i]==0) // r0<rx
2195           {
2196             assert(s2h>=0);
2197             if(opcode2[i]==0x2a) // SLT
2198               emit_set_gz64_32(s2h,s2l,t);
2199             else // SLTU (set if not zero)
2200               emit_set_nz64_32(s2h,s2l,t);
2201           }
2202           else {
2203             assert(s1l>=0);assert(s1h>=0);
2204             assert(s2l>=0);assert(s2h>=0);
2205             if(opcode2[i]==0x2a) // SLT
2206               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2207             else // SLTU
2208               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2209           }
2210         }
2211       } else {
2212         t=get_reg(i_regs->regmap,rt1[i]);
2213         //assert(t>=0);
2214         if(t>=0) {
2215           s1l=get_reg(i_regs->regmap,rs1[i]);
2216           s2l=get_reg(i_regs->regmap,rs2[i]);
2217           if(rs2[i]==0) // rx<r0
2218           {
2219             assert(s1l>=0);
2220             if(opcode2[i]==0x2a) // SLT
2221               emit_shrimm(s1l,31,t);
2222             else // SLTU (unsigned can not be less than zero)
2223               emit_zeroreg(t);
2224           }
2225           else if(rs1[i]==0) // r0<rx
2226           {
2227             assert(s2l>=0);
2228             if(opcode2[i]==0x2a) // SLT
2229               emit_set_gz32(s2l,t);
2230             else // SLTU (set if not zero)
2231               emit_set_nz32(s2l,t);
2232           }
2233           else{
2234             assert(s1l>=0);assert(s2l>=0);
2235             if(opcode2[i]==0x2a) // SLT
2236               emit_set_if_less32(s1l,s2l,t);
2237             else // SLTU
2238               emit_set_if_carry32(s1l,s2l,t);
2239           }
2240         }
2241       }
2242     }
2243   }
2244   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2245     if(rt1[i]) {
2246       signed char s1l,s1h,s2l,s2h,th,tl;
2247       tl=get_reg(i_regs->regmap,rt1[i]);
2248       th=get_reg(i_regs->regmap,rt1[i]|64);
2249       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2250       {
2251         assert(tl>=0);
2252         if(tl>=0) {
2253           s1l=get_reg(i_regs->regmap,rs1[i]);
2254           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2255           s2l=get_reg(i_regs->regmap,rs2[i]);
2256           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2257           if(rs1[i]&&rs2[i]) {
2258             assert(s1l>=0);assert(s1h>=0);
2259             assert(s2l>=0);assert(s2h>=0);
2260             if(opcode2[i]==0x24) { // AND
2261               emit_and(s1l,s2l,tl);
2262               emit_and(s1h,s2h,th);
2263             } else
2264             if(opcode2[i]==0x25) { // OR
2265               emit_or(s1l,s2l,tl);
2266               emit_or(s1h,s2h,th);
2267             } else
2268             if(opcode2[i]==0x26) { // XOR
2269               emit_xor(s1l,s2l,tl);
2270               emit_xor(s1h,s2h,th);
2271             } else
2272             if(opcode2[i]==0x27) { // NOR
2273               emit_or(s1l,s2l,tl);
2274               emit_or(s1h,s2h,th);
2275               emit_not(tl,tl);
2276               emit_not(th,th);
2277             }
2278           }
2279           else
2280           {
2281             if(opcode2[i]==0x24) { // AND
2282               emit_zeroreg(tl);
2283               emit_zeroreg(th);
2284             } else
2285             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2286               if(rs1[i]){
2287                 if(s1l>=0) emit_mov(s1l,tl);
2288                 else emit_loadreg(rs1[i],tl);
2289                 if(s1h>=0) emit_mov(s1h,th);
2290                 else emit_loadreg(rs1[i]|64,th);
2291               }
2292               else
2293               if(rs2[i]){
2294                 if(s2l>=0) emit_mov(s2l,tl);
2295                 else emit_loadreg(rs2[i],tl);
2296                 if(s2h>=0) emit_mov(s2h,th);
2297                 else emit_loadreg(rs2[i]|64,th);
2298               }
2299               else{
2300                 emit_zeroreg(tl);
2301                 emit_zeroreg(th);
2302               }
2303             } else
2304             if(opcode2[i]==0x27) { // NOR
2305               if(rs1[i]){
2306                 if(s1l>=0) emit_not(s1l,tl);
2307                 else{
2308                   emit_loadreg(rs1[i],tl);
2309                   emit_not(tl,tl);
2310                 }
2311                 if(s1h>=0) emit_not(s1h,th);
2312                 else{
2313                   emit_loadreg(rs1[i]|64,th);
2314                   emit_not(th,th);
2315                 }
2316               }
2317               else
2318               if(rs2[i]){
2319                 if(s2l>=0) emit_not(s2l,tl);
2320                 else{
2321                   emit_loadreg(rs2[i],tl);
2322                   emit_not(tl,tl);
2323                 }
2324                 if(s2h>=0) emit_not(s2h,th);
2325                 else{
2326                   emit_loadreg(rs2[i]|64,th);
2327                   emit_not(th,th);
2328                 }
2329               }
2330               else {
2331                 emit_movimm(-1,tl);
2332                 emit_movimm(-1,th);
2333               }
2334             }
2335           }
2336         }
2337       }
2338       else
2339       {
2340         // 32 bit
2341         if(tl>=0) {
2342           s1l=get_reg(i_regs->regmap,rs1[i]);
2343           s2l=get_reg(i_regs->regmap,rs2[i]);
2344           if(rs1[i]&&rs2[i]) {
2345             assert(s1l>=0);
2346             assert(s2l>=0);
2347             if(opcode2[i]==0x24) { // AND
2348               emit_and(s1l,s2l,tl);
2349             } else
2350             if(opcode2[i]==0x25) { // OR
2351               emit_or(s1l,s2l,tl);
2352             } else
2353             if(opcode2[i]==0x26) { // XOR
2354               emit_xor(s1l,s2l,tl);
2355             } else
2356             if(opcode2[i]==0x27) { // NOR
2357               emit_or(s1l,s2l,tl);
2358               emit_not(tl,tl);
2359             }
2360           }
2361           else
2362           {
2363             if(opcode2[i]==0x24) { // AND
2364               emit_zeroreg(tl);
2365             } else
2366             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2367               if(rs1[i]){
2368                 if(s1l>=0) emit_mov(s1l,tl);
2369                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2370               }
2371               else
2372               if(rs2[i]){
2373                 if(s2l>=0) emit_mov(s2l,tl);
2374                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2375               }
2376               else emit_zeroreg(tl);
2377             } else
2378             if(opcode2[i]==0x27) { // NOR
2379               if(rs1[i]){
2380                 if(s1l>=0) emit_not(s1l,tl);
2381                 else {
2382                   emit_loadreg(rs1[i],tl);
2383                   emit_not(tl,tl);
2384                 }
2385               }
2386               else
2387               if(rs2[i]){
2388                 if(s2l>=0) emit_not(s2l,tl);
2389                 else {
2390                   emit_loadreg(rs2[i],tl);
2391                   emit_not(tl,tl);
2392                 }
2393               }
2394               else emit_movimm(-1,tl);
2395             }
2396           }
2397         }
2398       }
2399     }
2400   }
2401 }
2402
2403 void imm16_assemble(int i,struct regstat *i_regs)
2404 {
2405   if (opcode[i]==0x0f) { // LUI
2406     if(rt1[i]) {
2407       signed char t;
2408       t=get_reg(i_regs->regmap,rt1[i]);
2409       //assert(t>=0);
2410       if(t>=0) {
2411         if(!((i_regs->isconst>>t)&1))
2412           emit_movimm(imm[i]<<16,t);
2413       }
2414     }
2415   }
2416   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2417     if(rt1[i]) {
2418       signed char s,t;
2419       t=get_reg(i_regs->regmap,rt1[i]);
2420       s=get_reg(i_regs->regmap,rs1[i]);
2421       if(rs1[i]) {
2422         //assert(t>=0);
2423         //assert(s>=0);
2424         if(t>=0) {
2425           if(!((i_regs->isconst>>t)&1)) {
2426             if(s<0) {
2427               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2428               emit_addimm(t,imm[i],t);
2429             }else{
2430               if(!((i_regs->wasconst>>s)&1))
2431                 emit_addimm(s,imm[i],t);
2432               else
2433                 emit_movimm(constmap[i][s]+imm[i],t);
2434             }
2435           }
2436         }
2437       } else {
2438         if(t>=0) {
2439           if(!((i_regs->isconst>>t)&1))
2440             emit_movimm(imm[i],t);
2441         }
2442       }
2443     }
2444   }
2445   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2446     if(rt1[i]) {
2447       signed char sh,sl,th,tl;
2448       th=get_reg(i_regs->regmap,rt1[i]|64);
2449       tl=get_reg(i_regs->regmap,rt1[i]);
2450       sh=get_reg(i_regs->regmap,rs1[i]|64);
2451       sl=get_reg(i_regs->regmap,rs1[i]);
2452       if(tl>=0) {
2453         if(rs1[i]) {
2454           assert(sh>=0);
2455           assert(sl>=0);
2456           if(th>=0) {
2457             emit_addimm64_32(sh,sl,imm[i],th,tl);
2458           }
2459           else {
2460             emit_addimm(sl,imm[i],tl);
2461           }
2462         } else {
2463           emit_movimm(imm[i],tl);
2464           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2465         }
2466       }
2467     }
2468   }
2469   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2470     if(rt1[i]) {
2471       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2472       signed char sh,sl,t;
2473       t=get_reg(i_regs->regmap,rt1[i]);
2474       sh=get_reg(i_regs->regmap,rs1[i]|64);
2475       sl=get_reg(i_regs->regmap,rs1[i]);
2476       //assert(t>=0);
2477       if(t>=0) {
2478         if(rs1[i]>0) {
2479           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2480           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2481             if(opcode[i]==0x0a) { // SLTI
2482               if(sl<0) {
2483                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2484                 emit_slti32(t,imm[i],t);
2485               }else{
2486                 emit_slti32(sl,imm[i],t);
2487               }
2488             }
2489             else { // SLTIU
2490               if(sl<0) {
2491                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2492                 emit_sltiu32(t,imm[i],t);
2493               }else{
2494                 emit_sltiu32(sl,imm[i],t);
2495               }
2496             }
2497           }else{ // 64-bit
2498             assert(sl>=0);
2499             if(opcode[i]==0x0a) // SLTI
2500               emit_slti64_32(sh,sl,imm[i],t);
2501             else // SLTIU
2502               emit_sltiu64_32(sh,sl,imm[i],t);
2503           }
2504         }else{
2505           // SLTI(U) with r0 is just stupid,
2506           // nonetheless examples can be found
2507           if(opcode[i]==0x0a) // SLTI
2508             if(0<imm[i]) emit_movimm(1,t);
2509             else emit_zeroreg(t);
2510           else // SLTIU
2511           {
2512             if(imm[i]) emit_movimm(1,t);
2513             else emit_zeroreg(t);
2514           }
2515         }
2516       }
2517     }
2518   }
2519   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2520     if(rt1[i]) {
2521       signed char sh,sl,th,tl;
2522       th=get_reg(i_regs->regmap,rt1[i]|64);
2523       tl=get_reg(i_regs->regmap,rt1[i]);
2524       sh=get_reg(i_regs->regmap,rs1[i]|64);
2525       sl=get_reg(i_regs->regmap,rs1[i]);
2526       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2527         if(opcode[i]==0x0c) //ANDI
2528         {
2529           if(rs1[i]) {
2530             if(sl<0) {
2531               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2532               emit_andimm(tl,imm[i],tl);
2533             }else{
2534               if(!((i_regs->wasconst>>sl)&1))
2535                 emit_andimm(sl,imm[i],tl);
2536               else
2537                 emit_movimm(constmap[i][sl]&imm[i],tl);
2538             }
2539           }
2540           else
2541             emit_zeroreg(tl);
2542           if(th>=0) emit_zeroreg(th);
2543         }
2544         else
2545         {
2546           if(rs1[i]) {
2547             if(sl<0) {
2548               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2549             }
2550             if(th>=0) {
2551               if(sh<0) {
2552                 emit_loadreg(rs1[i]|64,th);
2553               }else{
2554                 emit_mov(sh,th);
2555               }
2556             }
2557             if(opcode[i]==0x0d) //ORI
2558             if(sl<0) {
2559               emit_orimm(tl,imm[i],tl);
2560             }else{
2561               if(!((i_regs->wasconst>>sl)&1))
2562                 emit_orimm(sl,imm[i],tl);
2563               else
2564                 emit_movimm(constmap[i][sl]|imm[i],tl);
2565             }
2566             if(opcode[i]==0x0e) //XORI
2567             if(sl<0) {
2568               emit_xorimm(tl,imm[i],tl);
2569             }else{
2570               if(!((i_regs->wasconst>>sl)&1))
2571                 emit_xorimm(sl,imm[i],tl);
2572               else
2573                 emit_movimm(constmap[i][sl]^imm[i],tl);
2574             }
2575           }
2576           else {
2577             emit_movimm(imm[i],tl);
2578             if(th>=0) emit_zeroreg(th);
2579           }
2580         }
2581       }
2582     }
2583   }
2584 }
2585
2586 void shiftimm_assemble(int i,struct regstat *i_regs)
2587 {
2588   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2589   {
2590     if(rt1[i]) {
2591       signed char s,t;
2592       t=get_reg(i_regs->regmap,rt1[i]);
2593       s=get_reg(i_regs->regmap,rs1[i]);
2594       //assert(t>=0);
2595       if(t>=0){
2596         if(rs1[i]==0)
2597         {
2598           emit_zeroreg(t);
2599         }
2600         else
2601         {
2602           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2603           if(imm[i]) {
2604             if(opcode2[i]==0) // SLL
2605             {
2606               emit_shlimm(s<0?t:s,imm[i],t);
2607             }
2608             if(opcode2[i]==2) // SRL
2609             {
2610               emit_shrimm(s<0?t:s,imm[i],t);
2611             }
2612             if(opcode2[i]==3) // SRA
2613             {
2614               emit_sarimm(s<0?t:s,imm[i],t);
2615             }
2616           }else{
2617             // Shift by zero
2618             if(s>=0 && s!=t) emit_mov(s,t);
2619           }
2620         }
2621       }
2622       //emit_storereg(rt1[i],t); //DEBUG
2623     }
2624   }
2625   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2626   {
2627     if(rt1[i]) {
2628       signed char sh,sl,th,tl;
2629       th=get_reg(i_regs->regmap,rt1[i]|64);
2630       tl=get_reg(i_regs->regmap,rt1[i]);
2631       sh=get_reg(i_regs->regmap,rs1[i]|64);
2632       sl=get_reg(i_regs->regmap,rs1[i]);
2633       if(tl>=0) {
2634         if(rs1[i]==0)
2635         {
2636           emit_zeroreg(tl);
2637           if(th>=0) emit_zeroreg(th);
2638         }
2639         else
2640         {
2641           assert(sl>=0);
2642           assert(sh>=0);
2643           if(imm[i]) {
2644             if(opcode2[i]==0x38) // DSLL
2645             {
2646               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2647               emit_shlimm(sl,imm[i],tl);
2648             }
2649             if(opcode2[i]==0x3a) // DSRL
2650             {
2651               emit_shrdimm(sl,sh,imm[i],tl);
2652               if(th>=0) emit_shrimm(sh,imm[i],th);
2653             }
2654             if(opcode2[i]==0x3b) // DSRA
2655             {
2656               emit_shrdimm(sl,sh,imm[i],tl);
2657               if(th>=0) emit_sarimm(sh,imm[i],th);
2658             }
2659           }else{
2660             // Shift by zero
2661             if(sl!=tl) emit_mov(sl,tl);
2662             if(th>=0&&sh!=th) emit_mov(sh,th);
2663           }
2664         }
2665       }
2666     }
2667   }
2668   if(opcode2[i]==0x3c) // DSLL32
2669   {
2670     if(rt1[i]) {
2671       signed char sl,tl,th;
2672       tl=get_reg(i_regs->regmap,rt1[i]);
2673       th=get_reg(i_regs->regmap,rt1[i]|64);
2674       sl=get_reg(i_regs->regmap,rs1[i]);
2675       if(th>=0||tl>=0){
2676         assert(tl>=0);
2677         assert(th>=0);
2678         assert(sl>=0);
2679         emit_mov(sl,th);
2680         emit_zeroreg(tl);
2681         if(imm[i]>32)
2682         {
2683           emit_shlimm(th,imm[i]&31,th);
2684         }
2685       }
2686     }
2687   }
2688   if(opcode2[i]==0x3e) // DSRL32
2689   {
2690     if(rt1[i]) {
2691       signed char sh,tl,th;
2692       tl=get_reg(i_regs->regmap,rt1[i]);
2693       th=get_reg(i_regs->regmap,rt1[i]|64);
2694       sh=get_reg(i_regs->regmap,rs1[i]|64);
2695       if(tl>=0){
2696         assert(sh>=0);
2697         emit_mov(sh,tl);
2698         if(th>=0) emit_zeroreg(th);
2699         if(imm[i]>32)
2700         {
2701           emit_shrimm(tl,imm[i]&31,tl);
2702         }
2703       }
2704     }
2705   }
2706   if(opcode2[i]==0x3f) // DSRA32
2707   {
2708     if(rt1[i]) {
2709       signed char sh,tl;
2710       tl=get_reg(i_regs->regmap,rt1[i]);
2711       sh=get_reg(i_regs->regmap,rs1[i]|64);
2712       if(tl>=0){
2713         assert(sh>=0);
2714         emit_mov(sh,tl);
2715         if(imm[i]>32)
2716         {
2717           emit_sarimm(tl,imm[i]&31,tl);
2718         }
2719       }
2720     }
2721   }
2722 }
2723
2724 #ifndef shift_assemble
2725 void shift_assemble(int i,struct regstat *i_regs)
2726 {
2727   printf("Need shift_assemble for this architecture.\n");
2728   exit(1);
2729 }
2730 #endif
2731
2732 void load_assemble(int i,struct regstat *i_regs)
2733 {
2734   int s,th,tl,addr,map=-1;
2735   int offset;
2736   int jaddr=0;
2737   int memtarget=0,c=0;
2738   u_int hr,reglist=0;
2739   th=get_reg(i_regs->regmap,rt1[i]|64);
2740   tl=get_reg(i_regs->regmap,rt1[i]);
2741   s=get_reg(i_regs->regmap,rs1[i]);
2742   offset=imm[i];
2743   for(hr=0;hr<HOST_REGS;hr++) {
2744     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2745   }
2746   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2747   if(s>=0) {
2748     c=(i_regs->wasconst>>s)&1;
2749     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2750     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2751   }
2752   //printf("load_assemble: c=%d\n",c);
2753   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2754   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2755 #ifdef PCSX
2756   if(tl<0) {
2757     if(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80) {
2758       // could be FIFO, must perform the read
2759       assem_debug("(forced read)\n");
2760       tl=get_reg(i_regs->regmap,-1);
2761       assert(tl>=0);
2762     }
2763   }
2764   if(offset||s<0||c) addr=tl;
2765   else addr=s;
2766 #endif
2767   if(tl>=0) {
2768     //assert(tl>=0);
2769     //assert(rt1[i]);
2770     reglist&=~(1<<tl);
2771     if(th>=0) reglist&=~(1<<th);
2772     if(!using_tlb) {
2773       if(!c) {
2774 //#define R29_HACK 1
2775         #ifdef R29_HACK
2776         // Strmnnrmn's speed hack
2777         if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2778         #endif
2779         {
2780           emit_cmpimm(addr,RAM_SIZE);
2781           jaddr=(int)out;
2782           #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2783           // Hint to branch predictor that the branch is unlikely to be taken
2784           if(rs1[i]>=28)
2785             emit_jno_unlikely(0);
2786           else
2787           #endif
2788           emit_jno(0);
2789         }
2790       }
2791     }else{ // using tlb
2792       int x=0;
2793       if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2794       if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2795       map=get_reg(i_regs->regmap,TLREG);
2796       assert(map>=0);
2797       map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2798       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2799     }
2800     if (opcode[i]==0x20) { // LB
2801       if(!c||memtarget) {
2802         #ifdef HOST_IMM_ADDR32
2803         if(c)
2804           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2805         else
2806         #endif
2807         {
2808           //emit_xorimm(addr,3,tl);
2809           //gen_tlb_addr_r(tl,map);
2810           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2811           int x=0;
2812 #ifdef BIG_ENDIAN_MIPS
2813           if(!c) emit_xorimm(addr,3,tl);
2814           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2815 #else
2816           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2817           else if (tl!=addr) emit_mov(addr,tl);
2818 #endif
2819           emit_movsbl_indexed_tlb(x,tl,map,tl);
2820         }
2821         if(jaddr)
2822           add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2823       }
2824       else
2825         inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2826     }
2827     if (opcode[i]==0x21) { // LH
2828       if(!c||memtarget) {
2829         #ifdef HOST_IMM_ADDR32
2830         if(c)
2831           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2832         else
2833         #endif
2834         {
2835           int x=0;
2836 #ifdef BIG_ENDIAN_MIPS
2837           if(!c) emit_xorimm(addr,2,tl);
2838           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2839 #else
2840           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2841           else if (tl!=addr) emit_mov(addr,tl);
2842 #endif
2843           //#ifdef
2844           //emit_movswl_indexed_tlb(x,tl,map,tl);
2845           //else
2846           if(map>=0) {
2847             gen_tlb_addr_r(tl,map);
2848             emit_movswl_indexed(x,tl,tl);
2849           }else
2850             emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2851         }
2852         if(jaddr)
2853           add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2854       }
2855       else
2856         inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2857     }
2858     if (opcode[i]==0x23) { // LW
2859       if(!c||memtarget) {
2860         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2861         #ifdef HOST_IMM_ADDR32
2862         if(c)
2863           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2864         else
2865         #endif
2866         emit_readword_indexed_tlb(0,addr,map,tl);
2867         if(jaddr)
2868           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2869       }
2870       else
2871         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2872     }
2873     if (opcode[i]==0x24) { // LBU
2874       if(!c||memtarget) {
2875         #ifdef HOST_IMM_ADDR32
2876         if(c)
2877           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2878         else
2879         #endif
2880         {
2881           //emit_xorimm(addr,3,tl);
2882           //gen_tlb_addr_r(tl,map);
2883           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2884           int x=0;
2885 #ifdef BIG_ENDIAN_MIPS
2886           if(!c) emit_xorimm(addr,3,tl);
2887           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2888 #else
2889           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2890           else if (tl!=addr) emit_mov(addr,tl);
2891 #endif
2892           emit_movzbl_indexed_tlb(x,tl,map,tl);
2893         }
2894         if(jaddr)
2895           add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2896       }
2897       else
2898         inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2899     }
2900     if (opcode[i]==0x25) { // LHU
2901       if(!c||memtarget) {
2902         #ifdef HOST_IMM_ADDR32
2903         if(c)
2904           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2905         else
2906         #endif
2907         {
2908           int x=0;
2909 #ifdef BIG_ENDIAN_MIPS
2910           if(!c) emit_xorimm(addr,2,tl);
2911           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2912 #else
2913           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2914           else if (tl!=addr) emit_mov(addr,tl);
2915 #endif
2916           //#ifdef
2917           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2918           //#else
2919           if(map>=0) {
2920             gen_tlb_addr_r(tl,map);
2921             emit_movzwl_indexed(x,tl,tl);
2922           }else
2923             emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2924           if(jaddr)
2925             add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2926         }
2927       }
2928       else
2929         inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2930     }
2931     if (opcode[i]==0x27) { // LWU
2932       assert(th>=0);
2933       if(!c||memtarget) {
2934         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2935         #ifdef HOST_IMM_ADDR32
2936         if(c)
2937           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2938         else
2939         #endif
2940         emit_readword_indexed_tlb(0,addr,map,tl);
2941         if(jaddr)
2942           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2943       }
2944       else {
2945         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2946       }
2947       emit_zeroreg(th);
2948     }
2949     if (opcode[i]==0x37) { // LD
2950       if(!c||memtarget) {
2951         //gen_tlb_addr_r(tl,map);
2952         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2953         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2954         #ifdef HOST_IMM_ADDR32
2955         if(c)
2956           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2957         else
2958         #endif
2959         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2960         if(jaddr)
2961           add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2962       }
2963       else
2964         inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2965     }
2966     //emit_storereg(rt1[i],tl); // DEBUG
2967   }
2968   //if(opcode[i]==0x23)
2969   //if(opcode[i]==0x24)
2970   //if(opcode[i]==0x23||opcode[i]==0x24)
2971   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2972   {
2973     //emit_pusha();
2974     save_regs(0x100f);
2975         emit_readword((int)&last_count,ECX);
2976         #ifdef __i386__
2977         if(get_reg(i_regs->regmap,CCREG)<0)
2978           emit_loadreg(CCREG,HOST_CCREG);
2979         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2980         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2981         emit_writeword(HOST_CCREG,(int)&Count);
2982         #endif
2983         #ifdef __arm__
2984         if(get_reg(i_regs->regmap,CCREG)<0)
2985           emit_loadreg(CCREG,0);
2986         else
2987           emit_mov(HOST_CCREG,0);
2988         emit_add(0,ECX,0);
2989         emit_addimm(0,2*ccadj[i],0);
2990         emit_writeword(0,(int)&Count);
2991         #endif
2992     emit_call((int)memdebug);
2993     //emit_popa();
2994     restore_regs(0x100f);
2995   }/**/
2996 }
2997
2998 #ifndef loadlr_assemble
2999 void loadlr_assemble(int i,struct regstat *i_regs)
3000 {
3001   printf("Need loadlr_assemble for this architecture.\n");
3002   exit(1);
3003 }
3004 #endif
3005
3006 void store_assemble(int i,struct regstat *i_regs)
3007 {
3008   int s,th,tl,map=-1;
3009   int addr,temp;
3010   int offset;
3011   int jaddr=0,jaddr2,type;
3012   int memtarget=0,c=0;
3013   int agr=AGEN1+(i&1);
3014   u_int hr,reglist=0;
3015   th=get_reg(i_regs->regmap,rs2[i]|64);
3016   tl=get_reg(i_regs->regmap,rs2[i]);
3017   s=get_reg(i_regs->regmap,rs1[i]);
3018   temp=get_reg(i_regs->regmap,agr);
3019   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3020   offset=imm[i];
3021   if(s>=0) {
3022     c=(i_regs->wasconst>>s)&1;
3023     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3024     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3025   }
3026   assert(tl>=0);
3027   assert(temp>=0);
3028   for(hr=0;hr<HOST_REGS;hr++) {
3029     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3030   }
3031   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3032   if(offset||s<0||c) addr=temp;
3033   else addr=s;
3034   if(!using_tlb) {
3035     if(!c) {
3036       #ifdef R29_HACK
3037       // Strmnnrmn's speed hack
3038       memtarget=1;
3039       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3040       #endif
3041       emit_cmpimm(addr,RAM_SIZE);
3042       #ifdef DESTRUCTIVE_SHIFT
3043       if(s==addr) emit_mov(s,temp);
3044       #endif
3045       #ifdef R29_HACK
3046       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3047       #endif
3048       {
3049         jaddr=(int)out;
3050         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3051         // Hint to branch predictor that the branch is unlikely to be taken
3052         if(rs1[i]>=28)
3053           emit_jno_unlikely(0);
3054         else
3055         #endif
3056         emit_jno(0);
3057       }
3058     }
3059   }else{ // using tlb
3060     int x=0;
3061     if (opcode[i]==0x28) x=3; // SB
3062     if (opcode[i]==0x29) x=2; // SH
3063     map=get_reg(i_regs->regmap,TLREG);
3064     assert(map>=0);
3065     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3066     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3067   }
3068
3069   if (opcode[i]==0x28) { // SB
3070     if(!c||memtarget) {
3071       int x=0;
3072 #ifdef BIG_ENDIAN_MIPS
3073       if(!c) emit_xorimm(addr,3,temp);
3074       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3075 #else
3076       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3077       else if (addr!=temp) emit_mov(addr,temp);
3078 #endif
3079       //gen_tlb_addr_w(temp,map);
3080       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3081       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3082     }
3083     type=STOREB_STUB;
3084   }
3085   if (opcode[i]==0x29) { // SH
3086     if(!c||memtarget) {
3087       int x=0;
3088 #ifdef BIG_ENDIAN_MIPS
3089       if(!c) emit_xorimm(addr,2,temp);
3090       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3091 #else
3092       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3093       else if (addr!=temp) emit_mov(addr,temp);
3094 #endif
3095       //#ifdef
3096       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3097       //#else
3098       if(map>=0) {
3099         gen_tlb_addr_w(temp,map);
3100         emit_writehword_indexed(tl,x,temp);
3101       }else
3102         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3103     }
3104     type=STOREH_STUB;
3105   }
3106   if (opcode[i]==0x2B) { // SW
3107     if(!c||memtarget)
3108       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3109       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3110     type=STOREW_STUB;
3111   }
3112   if (opcode[i]==0x3F) { // SD
3113     if(!c||memtarget) {
3114       if(rs2[i]) {
3115         assert(th>=0);
3116         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3117         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3118         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3119       }else{
3120         // Store zero
3121         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3122         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3123         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3124       }
3125     }
3126     type=STORED_STUB;
3127   }
3128   if(!using_tlb&&(!c||memtarget))
3129     // addr could be a temp, make sure it survives STORE*_STUB
3130     reglist|=1<<addr;
3131   if(jaddr) {
3132     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3133   } else if(!memtarget) {
3134     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3135   }
3136   if(!using_tlb) {
3137     if(!c||memtarget) {
3138       #ifdef DESTRUCTIVE_SHIFT
3139       // The x86 shift operation is 'destructive'; it overwrites the
3140       // source register, so we need to make a copy first and use that.
3141       addr=temp;
3142       #endif
3143       #if defined(HOST_IMM8)
3144       int ir=get_reg(i_regs->regmap,INVCP);
3145       assert(ir>=0);
3146       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3147       #else
3148       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3149       #endif
3150       jaddr2=(int)out;
3151       emit_jne(0);
3152       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3153     }
3154   }
3155   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3156   //if(opcode[i]==0x2B || opcode[i]==0x28)
3157   //if(opcode[i]==0x2B || opcode[i]==0x29)
3158   //if(opcode[i]==0x2B)
3159   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3160   {
3161     //emit_pusha();
3162     save_regs(0x100f);
3163         emit_readword((int)&last_count,ECX);
3164         #ifdef __i386__
3165         if(get_reg(i_regs->regmap,CCREG)<0)
3166           emit_loadreg(CCREG,HOST_CCREG);
3167         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3168         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3169         emit_writeword(HOST_CCREG,(int)&Count);
3170         #endif
3171         #ifdef __arm__
3172         if(get_reg(i_regs->regmap,CCREG)<0)
3173           emit_loadreg(CCREG,0);
3174         else
3175           emit_mov(HOST_CCREG,0);
3176         emit_add(0,ECX,0);
3177         emit_addimm(0,2*ccadj[i],0);
3178         emit_writeword(0,(int)&Count);
3179         #endif
3180     emit_call((int)memdebug);
3181     //emit_popa();
3182     restore_regs(0x100f);
3183   }/**/
3184 }
3185
3186 void storelr_assemble(int i,struct regstat *i_regs)
3187 {
3188   int s,th,tl;
3189   int temp;
3190   int temp2;
3191   int offset;
3192   int jaddr=0,jaddr2;
3193   int case1,case2,case3;
3194   int done0,done1,done2;
3195   int memtarget,c=0;
3196   int agr=AGEN1+(i&1);
3197   u_int hr,reglist=0;
3198   th=get_reg(i_regs->regmap,rs2[i]|64);
3199   tl=get_reg(i_regs->regmap,rs2[i]);
3200   s=get_reg(i_regs->regmap,rs1[i]);
3201   temp=get_reg(i_regs->regmap,agr);
3202   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3203   offset=imm[i];
3204   if(s>=0) {
3205     c=(i_regs->isconst>>s)&1;
3206     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3207     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3208   }
3209   assert(tl>=0);
3210   for(hr=0;hr<HOST_REGS;hr++) {
3211     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3212   }
3213   if(tl>=0) {
3214     assert(temp>=0);
3215     if(!using_tlb) {
3216       if(!c) {
3217         emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3218         if(!offset&&s!=temp) emit_mov(s,temp);
3219         jaddr=(int)out;
3220         emit_jno(0);
3221       }
3222       else
3223       {
3224         if(!memtarget||!rs1[i]) {
3225           jaddr=(int)out;
3226           emit_jmp(0);
3227         }
3228       }
3229       if((u_int)rdram!=0x80000000) 
3230         emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3231     }else{ // using tlb
3232       int map=get_reg(i_regs->regmap,TLREG);
3233       assert(map>=0);
3234       map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3235       if(!c&&!offset&&s>=0) emit_mov(s,temp);
3236       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3237       if(!jaddr&&!memtarget) {
3238         jaddr=(int)out;
3239         emit_jmp(0);
3240       }
3241       gen_tlb_addr_w(temp,map);
3242     }
3243
3244     if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3245       temp2=get_reg(i_regs->regmap,FTEMP);
3246       if(!rs2[i]) temp2=th=tl;
3247     }
3248
3249 #ifndef BIG_ENDIAN_MIPS
3250     emit_xorimm(temp,3,temp);
3251 #endif
3252     emit_testimm(temp,2);
3253     case2=(int)out;
3254     emit_jne(0);
3255     emit_testimm(temp,1);
3256     case1=(int)out;
3257     emit_jne(0);
3258     // 0
3259     if (opcode[i]==0x2A) { // SWL
3260       emit_writeword_indexed(tl,0,temp);
3261     }
3262     if (opcode[i]==0x2E) { // SWR
3263       emit_writebyte_indexed(tl,3,temp);
3264     }
3265     if (opcode[i]==0x2C) { // SDL
3266       emit_writeword_indexed(th,0,temp);
3267       if(rs2[i]) emit_mov(tl,temp2);
3268     }
3269     if (opcode[i]==0x2D) { // SDR
3270       emit_writebyte_indexed(tl,3,temp);
3271       if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3272     }
3273     done0=(int)out;
3274     emit_jmp(0);
3275     // 1
3276     set_jump_target(case1,(int)out);
3277     if (opcode[i]==0x2A) { // SWL
3278       // Write 3 msb into three least significant bytes
3279       if(rs2[i]) emit_rorimm(tl,8,tl);
3280       emit_writehword_indexed(tl,-1,temp);
3281       if(rs2[i]) emit_rorimm(tl,16,tl);
3282       emit_writebyte_indexed(tl,1,temp);
3283       if(rs2[i]) emit_rorimm(tl,8,tl);
3284     }
3285     if (opcode[i]==0x2E) { // SWR
3286       // Write two lsb into two most significant bytes
3287       emit_writehword_indexed(tl,1,temp);
3288     }
3289     if (opcode[i]==0x2C) { // SDL
3290       if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3291       // Write 3 msb into three least significant bytes
3292       if(rs2[i]) emit_rorimm(th,8,th);
3293       emit_writehword_indexed(th,-1,temp);
3294       if(rs2[i]) emit_rorimm(th,16,th);
3295       emit_writebyte_indexed(th,1,temp);
3296       if(rs2[i]) emit_rorimm(th,8,th);
3297     }
3298     if (opcode[i]==0x2D) { // SDR
3299       if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3300       // Write two lsb into two most significant bytes
3301       emit_writehword_indexed(tl,1,temp);
3302     }
3303     done1=(int)out;
3304     emit_jmp(0);
3305     // 2
3306     set_jump_target(case2,(int)out);
3307     emit_testimm(temp,1);
3308     case3=(int)out;
3309     emit_jne(0);
3310     if (opcode[i]==0x2A) { // SWL
3311       // Write two msb into two least significant bytes
3312       if(rs2[i]) emit_rorimm(tl,16,tl);
3313       emit_writehword_indexed(tl,-2,temp);
3314       if(rs2[i]) emit_rorimm(tl,16,tl);
3315     }
3316     if (opcode[i]==0x2E) { // SWR
3317       // Write 3 lsb into three most significant bytes
3318       emit_writebyte_indexed(tl,-1,temp);
3319       if(rs2[i]) emit_rorimm(tl,8,tl);
3320       emit_writehword_indexed(tl,0,temp);
3321       if(rs2[i]) emit_rorimm(tl,24,tl);
3322     }
3323     if (opcode[i]==0x2C) { // SDL
3324       if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3325       // Write two msb into two least significant bytes
3326       if(rs2[i]) emit_rorimm(th,16,th);
3327       emit_writehword_indexed(th,-2,temp);
3328       if(rs2[i]) emit_rorimm(th,16,th);
3329     }
3330     if (opcode[i]==0x2D) { // SDR
3331       if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3332       // Write 3 lsb into three most significant bytes
3333       emit_writebyte_indexed(tl,-1,temp);
3334       if(rs2[i]) emit_rorimm(tl,8,tl);
3335       emit_writehword_indexed(tl,0,temp);
3336       if(rs2[i]) emit_rorimm(tl,24,tl);
3337     }
3338     done2=(int)out;
3339     emit_jmp(0);
3340     // 3
3341     set_jump_target(case3,(int)out);
3342     if (opcode[i]==0x2A) { // SWL
3343       // Write msb into least significant byte
3344       if(rs2[i]) emit_rorimm(tl,24,tl);
3345       emit_writebyte_indexed(tl,-3,temp);
3346       if(rs2[i]) emit_rorimm(tl,8,tl);
3347     }
3348     if (opcode[i]==0x2E) { // SWR
3349       // Write entire word
3350       emit_writeword_indexed(tl,-3,temp);
3351     }
3352     if (opcode[i]==0x2C) { // SDL
3353       if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3354       // Write msb into least significant byte
3355       if(rs2[i]) emit_rorimm(th,24,th);
3356       emit_writebyte_indexed(th,-3,temp);
3357       if(rs2[i]) emit_rorimm(th,8,th);
3358     }
3359     if (opcode[i]==0x2D) { // SDR
3360       if(rs2[i]) emit_mov(th,temp2);
3361       // Write entire word
3362       emit_writeword_indexed(tl,-3,temp);
3363     }
3364     set_jump_target(done0,(int)out);
3365     set_jump_target(done1,(int)out);
3366     set_jump_target(done2,(int)out);
3367     if (opcode[i]==0x2C) { // SDL
3368       emit_testimm(temp,4);
3369       done0=(int)out;
3370       emit_jne(0);
3371       emit_andimm(temp,~3,temp);
3372       emit_writeword_indexed(temp2,4,temp);
3373       set_jump_target(done0,(int)out);
3374     }
3375     if (opcode[i]==0x2D) { // SDR
3376       emit_testimm(temp,4);