84370089f7625e2d699a912c6fd0f9962843f0ce
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24 #include <sys/mman.h>
25
26 #include "emu_if.h" //emulator interface
27
28 //#define DISASM
29 //#define assem_debug printf
30 //#define inv_debug printf
31 #define assem_debug(...)
32 #define inv_debug(...)
33
34 #ifdef __i386__
35 #include "assem_x86.h"
36 #endif
37 #ifdef __x86_64__
38 #include "assem_x64.h"
39 #endif
40 #ifdef __arm__
41 #include "assem_arm.h"
42 #endif
43
44 #ifdef __BLACKBERRY_QNX__
45 #undef __clear_cache
46 #define __clear_cache(start,end) msync(start, (size_t)((void*)end - (void*)start), MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
47 #elif defined(__MACH__)
48 #include <libkern/OSCacheControl.h>
49 #define __clear_cache mach_clear_cache
50 static void __clear_cache(void *start, void *end) {
51   size_t len = (char *)end - (char *)start;
52   sys_dcache_flush(start, len);
53   sys_icache_invalidate(start, len);
54 }
55 #endif
56
57 #define MAXBLOCK 4096
58 #define MAX_OUTPUT_BLOCK_SIZE 262144
59
60 struct regstat
61 {
62   signed char regmap_entry[HOST_REGS];
63   signed char regmap[HOST_REGS];
64   uint64_t was32;
65   uint64_t is32;
66   uint64_t wasdirty;
67   uint64_t dirty;
68   uint64_t u;
69   uint64_t uu;
70   u_int wasconst;
71   u_int isconst;
72   u_int loadedconst;             // host regs that have constants loaded
73   u_int waswritten;              // MIPS regs that were used as store base before
74 };
75
76 struct ll_entry
77 {
78   u_int vaddr;
79   u_int reg32;
80   void *addr;
81   struct ll_entry *next;
82 };
83
84   u_int start;
85   u_int *source;
86   u_int pagelimit;
87   char insn[MAXBLOCK][10];
88   u_char itype[MAXBLOCK];
89   u_char opcode[MAXBLOCK];
90   u_char opcode2[MAXBLOCK];
91   u_char bt[MAXBLOCK];
92   u_char rs1[MAXBLOCK];
93   u_char rs2[MAXBLOCK];
94   u_char rt1[MAXBLOCK];
95   u_char rt2[MAXBLOCK];
96   u_char us1[MAXBLOCK];
97   u_char us2[MAXBLOCK];
98   u_char dep1[MAXBLOCK];
99   u_char dep2[MAXBLOCK];
100   u_char lt1[MAXBLOCK];
101   static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
102   static uint64_t gte_rt[MAXBLOCK];
103   static uint64_t gte_unneeded[MAXBLOCK];
104   static u_int smrv[32]; // speculated MIPS register values
105   static u_int smrv_strong; // mask or regs that are likely to have correct values
106   static u_int smrv_weak; // same, but somewhat less likely
107   static u_int smrv_strong_next; // same, but after current insn executes
108   static u_int smrv_weak_next;
109   int imm[MAXBLOCK];
110   u_int ba[MAXBLOCK];
111   char likely[MAXBLOCK];
112   char is_ds[MAXBLOCK];
113   char ooo[MAXBLOCK];
114   uint64_t unneeded_reg[MAXBLOCK];
115   uint64_t unneeded_reg_upper[MAXBLOCK];
116   uint64_t branch_unneeded_reg[MAXBLOCK];
117   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
118   uint64_t p32[MAXBLOCK];
119   uint64_t pr32[MAXBLOCK];
120   signed char regmap_pre[MAXBLOCK][HOST_REGS];
121   static uint64_t current_constmap[HOST_REGS];
122   static uint64_t constmap[MAXBLOCK][HOST_REGS];
123   static struct regstat regs[MAXBLOCK];
124   static struct regstat branch_regs[MAXBLOCK];
125   signed char minimum_free_regs[MAXBLOCK];
126   u_int needed_reg[MAXBLOCK];
127   uint64_t requires_32bit[MAXBLOCK];
128   u_int wont_dirty[MAXBLOCK];
129   u_int will_dirty[MAXBLOCK];
130   int ccadj[MAXBLOCK];
131   int slen;
132   u_int instr_addr[MAXBLOCK];
133   u_int link_addr[MAXBLOCK][3];
134   int linkcount;
135   u_int stubs[MAXBLOCK*3][8];
136   int stubcount;
137   u_int literals[1024][2];
138   int literalcount;
139   int is_delayslot;
140   int cop1_usable;
141   u_char *out;
142   struct ll_entry *jump_in[4096];
143   struct ll_entry *jump_out[4096];
144   struct ll_entry *jump_dirty[4096];
145   u_int hash_table[65536][4]  __attribute__((aligned(16)));
146   char shadow[1048576]  __attribute__((aligned(16)));
147   void *copy;
148   int expirep;
149 #ifndef PCSX
150   u_int using_tlb;
151 #else
152   static const u_int using_tlb=0;
153 #endif
154   int new_dynarec_did_compile;
155   int new_dynarec_hacks;
156   u_int stop_after_jal;
157 #ifndef RAM_FIXED
158   static u_int ram_offset;
159 #else
160   static const u_int ram_offset=0;
161 #endif
162   extern u_char restore_candidate[512];
163   extern int cycle_count;
164
165   /* registers that may be allocated */
166   /* 1-31 gpr */
167 #define HIREG 32 // hi
168 #define LOREG 33 // lo
169 #define FSREG 34 // FPU status (FCSR)
170 #define CSREG 35 // Coprocessor status
171 #define CCREG 36 // Cycle count
172 #define INVCP 37 // Pointer to invalid_code
173 #define MMREG 38 // Pointer to memory_map
174 #define ROREG 39 // ram offset (if rdram!=0x80000000)
175 #define TEMPREG 40
176 #define FTEMP 40 // FPU temporary register
177 #define PTEMP 41 // Prefetch temporary register
178 #define TLREG 42 // TLB mapping offset
179 #define RHASH 43 // Return address hash
180 #define RHTBL 44 // Return address hash table address
181 #define RTEMP 45 // JR/JALR address register
182 #define MAXREG 45
183 #define AGEN1 46 // Address generation temporary register
184 #define AGEN2 47 // Address generation temporary register
185 #define MGEN1 48 // Maptable address generation temporary register
186 #define MGEN2 49 // Maptable address generation temporary register
187 #define BTREG 50 // Branch target temporary register
188
189   /* instruction types */
190 #define NOP 0     // No operation
191 #define LOAD 1    // Load
192 #define STORE 2   // Store
193 #define LOADLR 3  // Unaligned load
194 #define STORELR 4 // Unaligned store
195 #define MOV 5     // Move 
196 #define ALU 6     // Arithmetic/logic
197 #define MULTDIV 7 // Multiply/divide
198 #define SHIFT 8   // Shift by register
199 #define SHIFTIMM 9// Shift by immediate
200 #define IMM16 10  // 16-bit immediate
201 #define RJUMP 11  // Unconditional jump to register
202 #define UJUMP 12  // Unconditional jump
203 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
204 #define SJUMP 14  // Conditional branch (regimm format)
205 #define COP0 15   // Coprocessor 0
206 #define COP1 16   // Coprocessor 1
207 #define C1LS 17   // Coprocessor 1 load/store
208 #define FJUMP 18  // Conditional branch (floating point)
209 #define FLOAT 19  // Floating point unit
210 #define FCONV 20  // Convert integer to float
211 #define FCOMP 21  // Floating point compare (sets FSREG)
212 #define SYSCALL 22// SYSCALL
213 #define OTHER 23  // Other
214 #define SPAN 24   // Branch/delay slot spans 2 pages
215 #define NI 25     // Not implemented
216 #define HLECALL 26// PCSX fake opcodes for HLE
217 #define COP2 27   // Coprocessor 2 move
218 #define C2LS 28   // Coprocessor 2 load/store
219 #define C2OP 29   // Coprocessor 2 operation
220 #define INTCALL 30// Call interpreter to handle rare corner cases
221
222   /* stubs */
223 #define CC_STUB 1
224 #define FP_STUB 2
225 #define LOADB_STUB 3
226 #define LOADH_STUB 4
227 #define LOADW_STUB 5
228 #define LOADD_STUB 6
229 #define LOADBU_STUB 7
230 #define LOADHU_STUB 8
231 #define STOREB_STUB 9
232 #define STOREH_STUB 10
233 #define STOREW_STUB 11
234 #define STORED_STUB 12
235 #define STORELR_STUB 13
236 #define INVCODE_STUB 14
237
238   /* branch codes */
239 #define TAKEN 1
240 #define NOTTAKEN 2
241 #define NULLDS 3
242
243 // asm linkage
244 int new_recompile_block(int addr);
245 void *get_addr_ht(u_int vaddr);
246 void invalidate_block(u_int block);
247 void invalidate_addr(u_int addr);
248 void remove_hash(int vaddr);
249 void jump_vaddr();
250 void dyna_linker();
251 void dyna_linker_ds();
252 void verify_code();
253 void verify_code_vm();
254 void verify_code_ds();
255 void cc_interrupt();
256 void fp_exception();
257 void fp_exception_ds();
258 void jump_syscall();
259 void jump_syscall_hle();
260 void jump_eret();
261 void jump_hlecall();
262 void jump_intcall();
263 void new_dyna_leave();
264
265 // TLB
266 void TLBWI_new();
267 void TLBWR_new();
268 void read_nomem_new();
269 void read_nomemb_new();
270 void read_nomemh_new();
271 void read_nomemd_new();
272 void write_nomem_new();
273 void write_nomemb_new();
274 void write_nomemh_new();
275 void write_nomemd_new();
276 void write_rdram_new();
277 void write_rdramb_new();
278 void write_rdramh_new();
279 void write_rdramd_new();
280 extern u_int memory_map[1048576];
281
282 // Needed by assembler
283 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
284 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
285 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
286 void load_all_regs(signed char i_regmap[]);
287 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
288 void load_regs_entry(int t);
289 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
290
291 int tracedebug=0;
292
293 //#define DEBUG_CYCLE_COUNT 1
294
295 #define NO_CYCLE_PENALTY_THR 12
296
297 int cycle_multiplier; // 100 for 1.0
298
299 static int CLOCK_ADJUST(int x)
300 {
301   int s=(x>>31)|1;
302   return (x * cycle_multiplier + s * 50) / 100;
303 }
304
305 static void tlb_hacks()
306 {
307 #ifndef DISABLE_TLB
308   // Goldeneye hack
309   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
310   {
311     u_int addr;
312     int n;
313     switch (ROM_HEADER->Country_code&0xFF) 
314     {
315       case 0x45: // U
316         addr=0x34b30;
317         break;                   
318       case 0x4A: // J 
319         addr=0x34b70;    
320         break;    
321       case 0x50: // E 
322         addr=0x329f0;
323         break;                        
324       default: 
325         // Unknown country code
326         addr=0;
327         break;
328     }
329     u_int rom_addr=(u_int)rom;
330     #ifdef ROM_COPY
331     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
332     // in the lower 4G of memory to use this hack.  Copy it if necessary.
333     if((void *)rom>(void *)0xffffffff) {
334       munmap(ROM_COPY, 67108864);
335       if(mmap(ROM_COPY, 12582912,
336               PROT_READ | PROT_WRITE,
337               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
338               -1, 0) <= 0) {printf("mmap() failed\n");}
339       memcpy(ROM_COPY,rom,12582912);
340       rom_addr=(u_int)ROM_COPY;
341     }
342     #endif
343     if(addr) {
344       for(n=0x7F000;n<0x80000;n++) {
345         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
346       }
347     }
348   }
349 #endif
350 }
351
352 static u_int get_page(u_int vaddr)
353 {
354 #ifndef PCSX
355   u_int page=(vaddr^0x80000000)>>12;
356 #else
357   u_int page=vaddr&~0xe0000000;
358   if (page < 0x1000000)
359     page &= ~0x0e00000; // RAM mirrors
360   page>>=12;
361 #endif
362 #ifndef DISABLE_TLB
363   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
364 #endif
365   if(page>2048) page=2048+(page&2047);
366   return page;
367 }
368
369 #ifndef PCSX
370 static u_int get_vpage(u_int vaddr)
371 {
372   u_int vpage=(vaddr^0x80000000)>>12;
373 #ifndef DISABLE_TLB
374   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
375 #endif
376   if(vpage>2048) vpage=2048+(vpage&2047);
377   return vpage;
378 }
379 #else
380 // no virtual mem in PCSX
381 static u_int get_vpage(u_int vaddr)
382 {
383   return get_page(vaddr);
384 }
385 #endif
386
387 // Get address from virtual address
388 // This is called from the recompiled JR/JALR instructions
389 void *get_addr(u_int vaddr)
390 {
391   u_int page=get_page(vaddr);
392   u_int vpage=get_vpage(vaddr);
393   struct ll_entry *head;
394   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
395   head=jump_in[page];
396   while(head!=NULL) {
397     if(head->vaddr==vaddr&&head->reg32==0) {
398   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
399       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
400       ht_bin[3]=ht_bin[1];
401       ht_bin[2]=ht_bin[0];
402       ht_bin[1]=(int)head->addr;
403       ht_bin[0]=vaddr;
404       return head->addr;
405     }
406     head=head->next;
407   }
408   head=jump_dirty[vpage];
409   while(head!=NULL) {
410     if(head->vaddr==vaddr&&head->reg32==0) {
411       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
412       // Don't restore blocks which are about to expire from the cache
413       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
414       if(verify_dirty(head->addr)) {
415         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
416         invalid_code[vaddr>>12]=0;
417         inv_code_start=inv_code_end=~0;
418 #ifndef DISABLE_TLB
419         memory_map[vaddr>>12]|=0x40000000;
420 #endif
421         if(vpage<2048) {
422 #ifndef DISABLE_TLB
423           if(tlb_LUT_r[vaddr>>12]) {
424             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
425             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
426           }
427 #endif
428           restore_candidate[vpage>>3]|=1<<(vpage&7);
429         }
430         else restore_candidate[page>>3]|=1<<(page&7);
431         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
432         if(ht_bin[0]==vaddr) {
433           ht_bin[1]=(int)head->addr; // Replace existing entry
434         }
435         else
436         {
437           ht_bin[3]=ht_bin[1];
438           ht_bin[2]=ht_bin[0];
439           ht_bin[1]=(int)head->addr;
440           ht_bin[0]=vaddr;
441         }
442         return head->addr;
443       }
444     }
445     head=head->next;
446   }
447   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
448   int r=new_recompile_block(vaddr);
449   if(r==0) return get_addr(vaddr);
450   // Execute in unmapped page, generate pagefault execption
451   Status|=2;
452   Cause=(vaddr<<31)|0x8;
453   EPC=(vaddr&1)?vaddr-5:vaddr;
454   BadVAddr=(vaddr&~1);
455   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
456   EntryHi=BadVAddr&0xFFFFE000;
457   return get_addr_ht(0x80000000);
458 }
459 // Look up address in hash table first
460 void *get_addr_ht(u_int vaddr)
461 {
462   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
463   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
464   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
465   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
466   return get_addr(vaddr);
467 }
468
469 void *get_addr_32(u_int vaddr,u_int flags)
470 {
471 #ifdef FORCE32
472   return get_addr(vaddr);
473 #else
474   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
475   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
476   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
477   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
478   u_int page=get_page(vaddr);
479   u_int vpage=get_vpage(vaddr);
480   struct ll_entry *head;
481   head=jump_in[page];
482   while(head!=NULL) {
483     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
484       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
485       if(head->reg32==0) {
486         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
487         if(ht_bin[0]==-1) {
488           ht_bin[1]=(int)head->addr;
489           ht_bin[0]=vaddr;
490         }else if(ht_bin[2]==-1) {
491           ht_bin[3]=(int)head->addr;
492           ht_bin[2]=vaddr;
493         }
494         //ht_bin[3]=ht_bin[1];
495         //ht_bin[2]=ht_bin[0];
496         //ht_bin[1]=(int)head->addr;
497         //ht_bin[0]=vaddr;
498       }
499       return head->addr;
500     }
501     head=head->next;
502   }
503   head=jump_dirty[vpage];
504   while(head!=NULL) {
505     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
506       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
507       // Don't restore blocks which are about to expire from the cache
508       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
509       if(verify_dirty(head->addr)) {
510         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
511         invalid_code[vaddr>>12]=0;
512         inv_code_start=inv_code_end=~0;
513         memory_map[vaddr>>12]|=0x40000000;
514         if(vpage<2048) {
515 #ifndef DISABLE_TLB
516           if(tlb_LUT_r[vaddr>>12]) {
517             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
518             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
519           }
520 #endif
521           restore_candidate[vpage>>3]|=1<<(vpage&7);
522         }
523         else restore_candidate[page>>3]|=1<<(page&7);
524         if(head->reg32==0) {
525           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
526           if(ht_bin[0]==-1) {
527             ht_bin[1]=(int)head->addr;
528             ht_bin[0]=vaddr;
529           }else if(ht_bin[2]==-1) {
530             ht_bin[3]=(int)head->addr;
531             ht_bin[2]=vaddr;
532           }
533           //ht_bin[3]=ht_bin[1];
534           //ht_bin[2]=ht_bin[0];
535           //ht_bin[1]=(int)head->addr;
536           //ht_bin[0]=vaddr;
537         }
538         return head->addr;
539       }
540     }
541     head=head->next;
542   }
543   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
544   int r=new_recompile_block(vaddr);
545   if(r==0) return get_addr(vaddr);
546   // Execute in unmapped page, generate pagefault execption
547   Status|=2;
548   Cause=(vaddr<<31)|0x8;
549   EPC=(vaddr&1)?vaddr-5:vaddr;
550   BadVAddr=(vaddr&~1);
551   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
552   EntryHi=BadVAddr&0xFFFFE000;
553   return get_addr_ht(0x80000000);
554 #endif
555 }
556
557 void clear_all_regs(signed char regmap[])
558 {
559   int hr;
560   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
561 }
562
563 signed char get_reg(signed char regmap[],int r)
564 {
565   int hr;
566   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
567   return -1;
568 }
569
570 // Find a register that is available for two consecutive cycles
571 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
572 {
573   int hr;
574   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
575   return -1;
576 }
577
578 int count_free_regs(signed char regmap[])
579 {
580   int count=0;
581   int hr;
582   for(hr=0;hr<HOST_REGS;hr++)
583   {
584     if(hr!=EXCLUDE_REG) {
585       if(regmap[hr]<0) count++;
586     }
587   }
588   return count;
589 }
590
591 void dirty_reg(struct regstat *cur,signed char reg)
592 {
593   int hr;
594   if(!reg) return;
595   for (hr=0;hr<HOST_REGS;hr++) {
596     if((cur->regmap[hr]&63)==reg) {
597       cur->dirty|=1<<hr;
598     }
599   }
600 }
601
602 // If we dirty the lower half of a 64 bit register which is now being
603 // sign-extended, we need to dump the upper half.
604 // Note: Do this only after completion of the instruction, because
605 // some instructions may need to read the full 64-bit value even if
606 // overwriting it (eg SLTI, DSRA32).
607 static void flush_dirty_uppers(struct regstat *cur)
608 {
609   int hr,reg;
610   for (hr=0;hr<HOST_REGS;hr++) {
611     if((cur->dirty>>hr)&1) {
612       reg=cur->regmap[hr];
613       if(reg>=64) 
614         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
615     }
616   }
617 }
618
619 void set_const(struct regstat *cur,signed char reg,uint64_t value)
620 {
621   int hr;
622   if(!reg) return;
623   for (hr=0;hr<HOST_REGS;hr++) {
624     if(cur->regmap[hr]==reg) {
625       cur->isconst|=1<<hr;
626       current_constmap[hr]=value;
627     }
628     else if((cur->regmap[hr]^64)==reg) {
629       cur->isconst|=1<<hr;
630       current_constmap[hr]=value>>32;
631     }
632   }
633 }
634
635 void clear_const(struct regstat *cur,signed char reg)
636 {
637   int hr;
638   if(!reg) return;
639   for (hr=0;hr<HOST_REGS;hr++) {
640     if((cur->regmap[hr]&63)==reg) {
641       cur->isconst&=~(1<<hr);
642     }
643   }
644 }
645
646 int is_const(struct regstat *cur,signed char reg)
647 {
648   int hr;
649   if(reg<0) return 0;
650   if(!reg) return 1;
651   for (hr=0;hr<HOST_REGS;hr++) {
652     if((cur->regmap[hr]&63)==reg) {
653       return (cur->isconst>>hr)&1;
654     }
655   }
656   return 0;
657 }
658 uint64_t get_const(struct regstat *cur,signed char reg)
659 {
660   int hr;
661   if(!reg) return 0;
662   for (hr=0;hr<HOST_REGS;hr++) {
663     if(cur->regmap[hr]==reg) {
664       return current_constmap[hr];
665     }
666   }
667   SysPrintf("Unknown constant in r%d\n",reg);
668   exit(1);
669 }
670
671 // Least soon needed registers
672 // Look at the next ten instructions and see which registers
673 // will be used.  Try not to reallocate these.
674 void lsn(u_char hsn[], int i, int *preferred_reg)
675 {
676   int j;
677   int b=-1;
678   for(j=0;j<9;j++)
679   {
680     if(i+j>=slen) {
681       j=slen-i-1;
682       break;
683     }
684     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
685     {
686       // Don't go past an unconditonal jump
687       j++;
688       break;
689     }
690   }
691   for(;j>=0;j--)
692   {
693     if(rs1[i+j]) hsn[rs1[i+j]]=j;
694     if(rs2[i+j]) hsn[rs2[i+j]]=j;
695     if(rt1[i+j]) hsn[rt1[i+j]]=j;
696     if(rt2[i+j]) hsn[rt2[i+j]]=j;
697     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
698       // Stores can allocate zero
699       hsn[rs1[i+j]]=j;
700       hsn[rs2[i+j]]=j;
701     }
702     // On some architectures stores need invc_ptr
703     #if defined(HOST_IMM8)
704     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
705       hsn[INVCP]=j;
706     }
707     #endif
708     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
709     {
710       hsn[CCREG]=j;
711       b=j;
712     }
713   }
714   if(b>=0)
715   {
716     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
717     {
718       // Follow first branch
719       int t=(ba[i+b]-start)>>2;
720       j=7-b;if(t+j>=slen) j=slen-t-1;
721       for(;j>=0;j--)
722       {
723         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
724         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
725         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
726         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
727       }
728     }
729     // TODO: preferred register based on backward branch
730   }
731   // Delay slot should preferably not overwrite branch conditions or cycle count
732   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
733     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
734     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
735     hsn[CCREG]=1;
736     // ...or hash tables
737     hsn[RHASH]=1;
738     hsn[RHTBL]=1;
739   }
740   // Coprocessor load/store needs FTEMP, even if not declared
741   if(itype[i]==C1LS||itype[i]==C2LS) {
742     hsn[FTEMP]=0;
743   }
744   // Load L/R also uses FTEMP as a temporary register
745   if(itype[i]==LOADLR) {
746     hsn[FTEMP]=0;
747   }
748   // Also SWL/SWR/SDL/SDR
749   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
750     hsn[FTEMP]=0;
751   }
752   // Don't remove the TLB registers either
753   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
754     hsn[TLREG]=0;
755   }
756   // Don't remove the miniht registers
757   if(itype[i]==UJUMP||itype[i]==RJUMP)
758   {
759     hsn[RHASH]=0;
760     hsn[RHTBL]=0;
761   }
762 }
763
764 // We only want to allocate registers if we're going to use them again soon
765 int needed_again(int r, int i)
766 {
767   int j;
768   int b=-1;
769   int rn=10;
770   
771   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
772   {
773     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
774       return 0; // Don't need any registers if exiting the block
775   }
776   for(j=0;j<9;j++)
777   {
778     if(i+j>=slen) {
779       j=slen-i-1;
780       break;
781     }
782     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
783     {
784       // Don't go past an unconditonal jump
785       j++;
786       break;
787     }
788     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
789     {
790       break;
791     }
792   }
793   for(;j>=1;j--)
794   {
795     if(rs1[i+j]==r) rn=j;
796     if(rs2[i+j]==r) rn=j;
797     if((unneeded_reg[i+j]>>r)&1) rn=10;
798     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
799     {
800       b=j;
801     }
802   }
803   /*
804   if(b>=0)
805   {
806     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
807     {
808       // Follow first branch
809       int o=rn;
810       int t=(ba[i+b]-start)>>2;
811       j=7-b;if(t+j>=slen) j=slen-t-1;
812       for(;j>=0;j--)
813       {
814         if(!((unneeded_reg[t+j]>>r)&1)) {
815           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
816           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
817         }
818         else rn=o;
819       }
820     }
821   }*/
822   if(rn<10) return 1;
823   return 0;
824 }
825
826 // Try to match register allocations at the end of a loop with those
827 // at the beginning
828 int loop_reg(int i, int r, int hr)
829 {
830   int j,k;
831   for(j=0;j<9;j++)
832   {
833     if(i+j>=slen) {
834       j=slen-i-1;
835       break;
836     }
837     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
838     {
839       // Don't go past an unconditonal jump
840       j++;
841       break;
842     }
843   }
844   k=0;
845   if(i>0){
846     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
847       k--;
848   }
849   for(;k<j;k++)
850   {
851     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
852     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
853     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
854     {
855       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
856       {
857         int t=(ba[i+k]-start)>>2;
858         int reg=get_reg(regs[t].regmap_entry,r);
859         if(reg>=0) return reg;
860         //reg=get_reg(regs[t+1].regmap_entry,r);
861         //if(reg>=0) return reg;
862       }
863     }
864   }
865   return hr;
866 }
867
868
869 // Allocate every register, preserving source/target regs
870 void alloc_all(struct regstat *cur,int i)
871 {
872   int hr;
873   
874   for(hr=0;hr<HOST_REGS;hr++) {
875     if(hr!=EXCLUDE_REG) {
876       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
877          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
878       {
879         cur->regmap[hr]=-1;
880         cur->dirty&=~(1<<hr);
881       }
882       // Don't need zeros
883       if((cur->regmap[hr]&63)==0)
884       {
885         cur->regmap[hr]=-1;
886         cur->dirty&=~(1<<hr);
887       }
888     }
889   }
890 }
891
892 #ifndef FORCE32
893 void div64(int64_t dividend,int64_t divisor)
894 {
895   lo=dividend/divisor;
896   hi=dividend%divisor;
897   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
898   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
899 }
900 void divu64(uint64_t dividend,uint64_t divisor)
901 {
902   lo=dividend/divisor;
903   hi=dividend%divisor;
904   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
905   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
906 }
907
908 void mult64(uint64_t m1,uint64_t m2)
909 {
910    unsigned long long int op1, op2, op3, op4;
911    unsigned long long int result1, result2, result3, result4;
912    unsigned long long int temp1, temp2, temp3, temp4;
913    int sign = 0;
914    
915    if (m1 < 0)
916      {
917     op2 = -m1;
918     sign = 1 - sign;
919      }
920    else op2 = m1;
921    if (m2 < 0)
922      {
923     op4 = -m2;
924     sign = 1 - sign;
925      }
926    else op4 = m2;
927    
928    op1 = op2 & 0xFFFFFFFF;
929    op2 = (op2 >> 32) & 0xFFFFFFFF;
930    op3 = op4 & 0xFFFFFFFF;
931    op4 = (op4 >> 32) & 0xFFFFFFFF;
932    
933    temp1 = op1 * op3;
934    temp2 = (temp1 >> 32) + op1 * op4;
935    temp3 = op2 * op3;
936    temp4 = (temp3 >> 32) + op2 * op4;
937    
938    result1 = temp1 & 0xFFFFFFFF;
939    result2 = temp2 + (temp3 & 0xFFFFFFFF);
940    result3 = (result2 >> 32) + temp4;
941    result4 = (result3 >> 32);
942    
943    lo = result1 | (result2 << 32);
944    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
945    if (sign)
946      {
947     hi = ~hi;
948     if (!lo) hi++;
949     else lo = ~lo + 1;
950      }
951 }
952
953 void multu64(uint64_t m1,uint64_t m2)
954 {
955    unsigned long long int op1, op2, op3, op4;
956    unsigned long long int result1, result2, result3, result4;
957    unsigned long long int temp1, temp2, temp3, temp4;
958    
959    op1 = m1 & 0xFFFFFFFF;
960    op2 = (m1 >> 32) & 0xFFFFFFFF;
961    op3 = m2 & 0xFFFFFFFF;
962    op4 = (m2 >> 32) & 0xFFFFFFFF;
963    
964    temp1 = op1 * op3;
965    temp2 = (temp1 >> 32) + op1 * op4;
966    temp3 = op2 * op3;
967    temp4 = (temp3 >> 32) + op2 * op4;
968    
969    result1 = temp1 & 0xFFFFFFFF;
970    result2 = temp2 + (temp3 & 0xFFFFFFFF);
971    result3 = (result2 >> 32) + temp4;
972    result4 = (result3 >> 32);
973    
974    lo = result1 | (result2 << 32);
975    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
976    
977   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
978   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
979 }
980
981 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
982 {
983   if(bits) {
984     original<<=64-bits;
985     original>>=64-bits;
986     loaded<<=bits;
987     original|=loaded;
988   }
989   else original=loaded;
990   return original;
991 }
992 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
993 {
994   if(bits^56) {
995     original>>=64-(bits^56);
996     original<<=64-(bits^56);
997     loaded>>=bits^56;
998     original|=loaded;
999   }
1000   else original=loaded;
1001   return original;
1002 }
1003 #endif
1004
1005 #ifdef __i386__
1006 #include "assem_x86.c"
1007 #endif
1008 #ifdef __x86_64__
1009 #include "assem_x64.c"
1010 #endif
1011 #ifdef __arm__
1012 #include "assem_arm.c"
1013 #endif
1014
1015 // Add virtual address mapping to linked list
1016 void ll_add(struct ll_entry **head,int vaddr,void *addr)
1017 {
1018   struct ll_entry *new_entry;
1019   new_entry=malloc(sizeof(struct ll_entry));
1020   assert(new_entry!=NULL);
1021   new_entry->vaddr=vaddr;
1022   new_entry->reg32=0;
1023   new_entry->addr=addr;
1024   new_entry->next=*head;
1025   *head=new_entry;
1026 }
1027
1028 // Add virtual address mapping for 32-bit compiled block
1029 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1030 {
1031   ll_add(head,vaddr,addr);
1032 #ifndef FORCE32
1033   (*head)->reg32=reg32;
1034 #endif
1035 }
1036
1037 // Check if an address is already compiled
1038 // but don't return addresses which are about to expire from the cache
1039 void *check_addr(u_int vaddr)
1040 {
1041   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1042   if(ht_bin[0]==vaddr) {
1043     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1044       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1045   }
1046   if(ht_bin[2]==vaddr) {
1047     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1048       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1049   }
1050   u_int page=get_page(vaddr);
1051   struct ll_entry *head;
1052   head=jump_in[page];
1053   while(head!=NULL) {
1054     if(head->vaddr==vaddr&&head->reg32==0) {
1055       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1056         // Update existing entry with current address
1057         if(ht_bin[0]==vaddr) {
1058           ht_bin[1]=(int)head->addr;
1059           return head->addr;
1060         }
1061         if(ht_bin[2]==vaddr) {
1062           ht_bin[3]=(int)head->addr;
1063           return head->addr;
1064         }
1065         // Insert into hash table with low priority.
1066         // Don't evict existing entries, as they are probably
1067         // addresses that are being accessed frequently.
1068         if(ht_bin[0]==-1) {
1069           ht_bin[1]=(int)head->addr;
1070           ht_bin[0]=vaddr;
1071         }else if(ht_bin[2]==-1) {
1072           ht_bin[3]=(int)head->addr;
1073           ht_bin[2]=vaddr;
1074         }
1075         return head->addr;
1076       }
1077     }
1078     head=head->next;
1079   }
1080   return 0;
1081 }
1082
1083 void remove_hash(int vaddr)
1084 {
1085   //printf("remove hash: %x\n",vaddr);
1086   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1087   if(ht_bin[2]==vaddr) {
1088     ht_bin[2]=ht_bin[3]=-1;
1089   }
1090   if(ht_bin[0]==vaddr) {
1091     ht_bin[0]=ht_bin[2];
1092     ht_bin[1]=ht_bin[3];
1093     ht_bin[2]=ht_bin[3]=-1;
1094   }
1095 }
1096
1097 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1098 {
1099   struct ll_entry *next;
1100   while(*head) {
1101     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1102        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1103     {
1104       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1105       remove_hash((*head)->vaddr);
1106       next=(*head)->next;
1107       free(*head);
1108       *head=next;
1109     }
1110     else
1111     {
1112       head=&((*head)->next);
1113     }
1114   }
1115 }
1116
1117 // Remove all entries from linked list
1118 void ll_clear(struct ll_entry **head)
1119 {
1120   struct ll_entry *cur;
1121   struct ll_entry *next;
1122   if(cur=*head) {
1123     *head=0;
1124     while(cur) {
1125       next=cur->next;
1126       free(cur);
1127       cur=next;
1128     }
1129   }
1130 }
1131
1132 // Dereference the pointers and remove if it matches
1133 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1134 {
1135   while(head) {
1136     int ptr=get_pointer(head->addr);
1137     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1138     if(((ptr>>shift)==(addr>>shift)) ||
1139        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1140     {
1141       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1142       u_int host_addr=(u_int)kill_pointer(head->addr);
1143       #ifdef __arm__
1144         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1145       #endif
1146     }
1147     head=head->next;
1148   }
1149 }
1150
1151 // This is called when we write to a compiled block (see do_invstub)
1152 void invalidate_page(u_int page)
1153 {
1154   struct ll_entry *head;
1155   struct ll_entry *next;
1156   head=jump_in[page];
1157   jump_in[page]=0;
1158   while(head!=NULL) {
1159     inv_debug("INVALIDATE: %x\n",head->vaddr);
1160     remove_hash(head->vaddr);
1161     next=head->next;
1162     free(head);
1163     head=next;
1164   }
1165   head=jump_out[page];
1166   jump_out[page]=0;
1167   while(head!=NULL) {
1168     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1169     u_int host_addr=(u_int)kill_pointer(head->addr);
1170     #ifdef __arm__
1171       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1172     #endif
1173     next=head->next;
1174     free(head);
1175     head=next;
1176   }
1177 }
1178
1179 static void invalidate_block_range(u_int block, u_int first, u_int last)
1180 {
1181   u_int page=get_page(block<<12);
1182   //printf("first=%d last=%d\n",first,last);
1183   invalidate_page(page);
1184   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1185   assert(last<page+5);
1186   // Invalidate the adjacent pages if a block crosses a 4K boundary
1187   while(first<page) {
1188     invalidate_page(first);
1189     first++;
1190   }
1191   for(first=page+1;first<last;first++) {
1192     invalidate_page(first);
1193   }
1194   #ifdef __arm__
1195     do_clear_cache();
1196   #endif
1197   
1198   // Don't trap writes
1199   invalid_code[block]=1;
1200 #ifndef DISABLE_TLB
1201   // If there is a valid TLB entry for this page, remove write protect
1202   if(tlb_LUT_w[block]) {
1203     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1204     // CHECK: Is this right?
1205     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1206     u_int real_block=tlb_LUT_w[block]>>12;
1207     invalid_code[real_block]=1;
1208     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1209   }
1210   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1211 #endif
1212
1213   #ifdef USE_MINI_HT
1214   memset(mini_ht,-1,sizeof(mini_ht));
1215   #endif
1216 }
1217
1218 void invalidate_block(u_int block)
1219 {
1220   u_int page=get_page(block<<12);
1221   u_int vpage=get_vpage(block<<12);
1222   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1223   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1224   u_int first,last;
1225   first=last=page;
1226   struct ll_entry *head;
1227   head=jump_dirty[vpage];
1228   //printf("page=%d vpage=%d\n",page,vpage);
1229   while(head!=NULL) {
1230     u_int start,end;
1231     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1232       get_bounds((int)head->addr,&start,&end);
1233       //printf("start: %x end: %x\n",start,end);
1234       if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
1235         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1236           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1237           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1238         }
1239       }
1240 #ifndef DISABLE_TLB
1241       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1242         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1243           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1244           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1245         }
1246       }
1247 #endif
1248     }
1249     head=head->next;
1250   }
1251   invalidate_block_range(block,first,last);
1252 }
1253
1254 void invalidate_addr(u_int addr)
1255 {
1256 #ifdef PCSX
1257   //static int rhits;
1258   // this check is done by the caller
1259   //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1260   u_int page=get_vpage(addr);
1261   if(page<2048) { // RAM
1262     struct ll_entry *head;
1263     u_int addr_min=~0, addr_max=0;
1264     u_int mask=RAM_SIZE-1;
1265     u_int addr_main=0x80000000|(addr&mask);
1266     int pg1;
1267     inv_code_start=addr_main&~0xfff;
1268     inv_code_end=addr_main|0xfff;
1269     pg1=page;
1270     if (pg1>0) {
1271       // must check previous page too because of spans..
1272       pg1--;
1273       inv_code_start-=0x1000;
1274     }
1275     for(;pg1<=page;pg1++) {
1276       for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1277         u_int start,end;
1278         get_bounds((int)head->addr,&start,&end);
1279         if(ram_offset) {
1280           start-=ram_offset;
1281           end-=ram_offset;
1282         }
1283         if(start<=addr_main&&addr_main<end) {
1284           if(start<addr_min) addr_min=start;
1285           if(end>addr_max) addr_max=end;
1286         }
1287         else if(addr_main<start) {
1288           if(start<inv_code_end)
1289             inv_code_end=start-1;
1290         }
1291         else {
1292           if(end>inv_code_start)
1293             inv_code_start=end;
1294         }
1295       }
1296     }
1297     if (addr_min!=~0) {
1298       inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1299       inv_code_start=inv_code_end=~0;
1300       invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1301       return;
1302     }
1303     else {
1304       inv_code_start=(addr&~mask)|(inv_code_start&mask);
1305       inv_code_end=(addr&~mask)|(inv_code_end&mask);
1306       inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1307       return;
1308     }
1309   }
1310 #endif
1311   invalidate_block(addr>>12);
1312 }
1313
1314 // This is called when loading a save state.
1315 // Anything could have changed, so invalidate everything.
1316 void invalidate_all_pages()
1317 {
1318   u_int page,n;
1319   for(page=0;page<4096;page++)
1320     invalidate_page(page);
1321   for(page=0;page<1048576;page++)
1322     if(!invalid_code[page]) {
1323       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1324       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1325     }
1326   #ifdef __arm__
1327   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1328   #endif
1329   #ifdef USE_MINI_HT
1330   memset(mini_ht,-1,sizeof(mini_ht));
1331   #endif
1332   #ifndef DISABLE_TLB
1333   // TLB
1334   for(page=0;page<0x100000;page++) {
1335     if(tlb_LUT_r[page]) {
1336       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1337       if(!tlb_LUT_w[page]||!invalid_code[page])
1338         memory_map[page]|=0x40000000; // Write protect
1339     }
1340     else memory_map[page]=-1;
1341     if(page==0x80000) page=0xC0000;
1342   }
1343   tlb_hacks();
1344   #endif
1345 }
1346
1347 // Add an entry to jump_out after making a link
1348 void add_link(u_int vaddr,void *src)
1349 {
1350   u_int page=get_page(vaddr);
1351   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1352   int *ptr=(int *)(src+4);
1353   assert((*ptr&0x0fff0000)==0x059f0000);
1354   ll_add(jump_out+page,vaddr,src);
1355   //int ptr=get_pointer(src);
1356   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1357 }
1358
1359 // If a code block was found to be unmodified (bit was set in
1360 // restore_candidate) and it remains unmodified (bit is clear
1361 // in invalid_code) then move the entries for that 4K page from
1362 // the dirty list to the clean list.
1363 void clean_blocks(u_int page)
1364 {
1365   struct ll_entry *head;
1366   inv_debug("INV: clean_blocks page=%d\n",page);
1367   head=jump_dirty[page];
1368   while(head!=NULL) {
1369     if(!invalid_code[head->vaddr>>12]) {
1370       // Don't restore blocks which are about to expire from the cache
1371       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1372         u_int start,end;
1373         if(verify_dirty((int)head->addr)) {
1374           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1375           u_int i;
1376           u_int inv=0;
1377           get_bounds((int)head->addr,&start,&end);
1378           if(start-(u_int)rdram<RAM_SIZE) {
1379             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1380               inv|=invalid_code[i];
1381             }
1382           }
1383 #ifndef DISABLE_TLB
1384           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1385             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1386             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1387             if(addr<start||addr>=end) inv=1;
1388           }
1389 #endif
1390           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1391             inv=1;
1392           }
1393           if(!inv) {
1394             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1395             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1396               u_int ppage=page;
1397 #ifndef DISABLE_TLB
1398               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1399 #endif
1400               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1401               //printf("page=%x, addr=%x\n",page,head->vaddr);
1402               //assert(head->vaddr>>12==(page|0x80000));
1403               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1404               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1405               if(!head->reg32) {
1406                 if(ht_bin[0]==head->vaddr) {
1407                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1408                 }
1409                 if(ht_bin[2]==head->vaddr) {
1410                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1411                 }
1412               }
1413             }
1414           }
1415         }
1416       }
1417     }
1418     head=head->next;
1419   }
1420 }
1421
1422
1423 void mov_alloc(struct regstat *current,int i)
1424 {
1425   // Note: Don't need to actually alloc the source registers
1426   if((~current->is32>>rs1[i])&1) {
1427     //alloc_reg64(current,i,rs1[i]);
1428     alloc_reg64(current,i,rt1[i]);
1429     current->is32&=~(1LL<<rt1[i]);
1430   } else {
1431     //alloc_reg(current,i,rs1[i]);
1432     alloc_reg(current,i,rt1[i]);
1433     current->is32|=(1LL<<rt1[i]);
1434   }
1435   clear_const(current,rs1[i]);
1436   clear_const(current,rt1[i]);
1437   dirty_reg(current,rt1[i]);
1438 }
1439
1440 void shiftimm_alloc(struct regstat *current,int i)
1441 {
1442   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1443   {
1444     if(rt1[i]) {
1445       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1446       else lt1[i]=rs1[i];
1447       alloc_reg(current,i,rt1[i]);
1448       current->is32|=1LL<<rt1[i];
1449       dirty_reg(current,rt1[i]);
1450       if(is_const(current,rs1[i])) {
1451         int v=get_const(current,rs1[i]);
1452         if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1453         if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1454         if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1455       }
1456       else clear_const(current,rt1[i]);
1457     }
1458   }
1459   else
1460   {
1461     clear_const(current,rs1[i]);
1462     clear_const(current,rt1[i]);
1463   }
1464
1465   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1466   {
1467     if(rt1[i]) {
1468       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1469       alloc_reg64(current,i,rt1[i]);
1470       current->is32&=~(1LL<<rt1[i]);
1471       dirty_reg(current,rt1[i]);
1472     }
1473   }
1474   if(opcode2[i]==0x3c) // DSLL32
1475   {
1476     if(rt1[i]) {
1477       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1478       alloc_reg64(current,i,rt1[i]);
1479       current->is32&=~(1LL<<rt1[i]);
1480       dirty_reg(current,rt1[i]);
1481     }
1482   }
1483   if(opcode2[i]==0x3e) // DSRL32
1484   {
1485     if(rt1[i]) {
1486       alloc_reg64(current,i,rs1[i]);
1487       if(imm[i]==32) {
1488         alloc_reg64(current,i,rt1[i]);
1489         current->is32&=~(1LL<<rt1[i]);
1490       } else {
1491         alloc_reg(current,i,rt1[i]);
1492         current->is32|=1LL<<rt1[i];
1493       }
1494       dirty_reg(current,rt1[i]);
1495     }
1496   }
1497   if(opcode2[i]==0x3f) // DSRA32
1498   {
1499     if(rt1[i]) {
1500       alloc_reg64(current,i,rs1[i]);
1501       alloc_reg(current,i,rt1[i]);
1502       current->is32|=1LL<<rt1[i];
1503       dirty_reg(current,rt1[i]);
1504     }
1505   }
1506 }
1507
1508 void shift_alloc(struct regstat *current,int i)
1509 {
1510   if(rt1[i]) {
1511     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1512     {
1513       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1514       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1515       alloc_reg(current,i,rt1[i]);
1516       if(rt1[i]==rs2[i]) {
1517         alloc_reg_temp(current,i,-1);
1518         minimum_free_regs[i]=1;
1519       }
1520       current->is32|=1LL<<rt1[i];
1521     } else { // DSLLV/DSRLV/DSRAV
1522       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1523       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1524       alloc_reg64(current,i,rt1[i]);
1525       current->is32&=~(1LL<<rt1[i]);
1526       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1527       {
1528         alloc_reg_temp(current,i,-1);
1529         minimum_free_regs[i]=1;
1530       }
1531     }
1532     clear_const(current,rs1[i]);
1533     clear_const(current,rs2[i]);
1534     clear_const(current,rt1[i]);
1535     dirty_reg(current,rt1[i]);
1536   }
1537 }
1538
1539 void alu_alloc(struct regstat *current,int i)
1540 {
1541   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1542     if(rt1[i]) {
1543       if(rs1[i]&&rs2[i]) {
1544         alloc_reg(current,i,rs1[i]);
1545         alloc_reg(current,i,rs2[i]);
1546       }
1547       else {
1548         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1549         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1550       }
1551       alloc_reg(current,i,rt1[i]);
1552     }
1553     current->is32|=1LL<<rt1[i];
1554   }
1555   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1556     if(rt1[i]) {
1557       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1558       {
1559         alloc_reg64(current,i,rs1[i]);
1560         alloc_reg64(current,i,rs2[i]);
1561         alloc_reg(current,i,rt1[i]);
1562       } else {
1563         alloc_reg(current,i,rs1[i]);
1564         alloc_reg(current,i,rs2[i]);
1565         alloc_reg(current,i,rt1[i]);
1566       }
1567     }
1568     current->is32|=1LL<<rt1[i];
1569   }
1570   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1571     if(rt1[i]) {
1572       if(rs1[i]&&rs2[i]) {
1573         alloc_reg(current,i,rs1[i]);
1574         alloc_reg(current,i,rs2[i]);
1575       }
1576       else
1577       {
1578         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1579         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1580       }
1581       alloc_reg(current,i,rt1[i]);
1582       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1583       {
1584         if(!((current->uu>>rt1[i])&1)) {
1585           alloc_reg64(current,i,rt1[i]);
1586         }
1587         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1588           if(rs1[i]&&rs2[i]) {
1589             alloc_reg64(current,i,rs1[i]);
1590             alloc_reg64(current,i,rs2[i]);
1591           }
1592           else
1593           {
1594             // Is is really worth it to keep 64-bit values in registers?
1595             #ifdef NATIVE_64BIT
1596             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1597             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1598             #endif
1599           }
1600         }
1601         current->is32&=~(1LL<<rt1[i]);
1602       } else {
1603         current->is32|=1LL<<rt1[i];
1604       }
1605     }
1606   }
1607   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1608     if(rt1[i]) {
1609       if(rs1[i]&&rs2[i]) {
1610         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1611           alloc_reg64(current,i,rs1[i]);
1612           alloc_reg64(current,i,rs2[i]);
1613           alloc_reg64(current,i,rt1[i]);
1614         } else {
1615           alloc_reg(current,i,rs1[i]);
1616           alloc_reg(current,i,rs2[i]);
1617           alloc_reg(current,i,rt1[i]);
1618         }
1619       }
1620       else {
1621         alloc_reg(current,i,rt1[i]);
1622         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1623           // DADD used as move, or zeroing
1624           // If we have a 64-bit source, then make the target 64 bits too
1625           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1626             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1627             alloc_reg64(current,i,rt1[i]);
1628           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1629             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1630             alloc_reg64(current,i,rt1[i]);
1631           }
1632           if(opcode2[i]>=0x2e&&rs2[i]) {
1633             // DSUB used as negation - 64-bit result
1634             // If we have a 32-bit register, extend it to 64 bits
1635             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1636             alloc_reg64(current,i,rt1[i]);
1637           }
1638         }
1639       }
1640       if(rs1[i]&&rs2[i]) {
1641         current->is32&=~(1LL<<rt1[i]);
1642       } else if(rs1[i]) {
1643         current->is32&=~(1LL<<rt1[i]);
1644         if((current->is32>>rs1[i])&1)
1645           current->is32|=1LL<<rt1[i];
1646       } else if(rs2[i]) {
1647         current->is32&=~(1LL<<rt1[i]);
1648         if((current->is32>>rs2[i])&1)
1649           current->is32|=1LL<<rt1[i];
1650       } else {
1651         current->is32|=1LL<<rt1[i];
1652       }
1653     }
1654   }
1655   clear_const(current,rs1[i]);
1656   clear_const(current,rs2[i]);
1657   clear_const(current,rt1[i]);
1658   dirty_reg(current,rt1[i]);
1659 }
1660
1661 void imm16_alloc(struct regstat *current,int i)
1662 {
1663   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1664   else lt1[i]=rs1[i];
1665   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1666   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1667     current->is32&=~(1LL<<rt1[i]);
1668     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1669       // TODO: Could preserve the 32-bit flag if the immediate is zero
1670       alloc_reg64(current,i,rt1[i]);
1671       alloc_reg64(current,i,rs1[i]);
1672     }
1673     clear_const(current,rs1[i]);
1674     clear_const(current,rt1[i]);
1675   }
1676   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1677     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1678     current->is32|=1LL<<rt1[i];
1679     clear_const(current,rs1[i]);
1680     clear_const(current,rt1[i]);
1681   }
1682   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1683     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1684       if(rs1[i]!=rt1[i]) {
1685         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1686         alloc_reg64(current,i,rt1[i]);
1687         current->is32&=~(1LL<<rt1[i]);
1688       }
1689     }
1690     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1691     if(is_const(current,rs1[i])) {
1692       int v=get_const(current,rs1[i]);
1693       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1694       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1695       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1696     }
1697     else clear_const(current,rt1[i]);
1698   }
1699   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1700     if(is_const(current,rs1[i])) {
1701       int v=get_const(current,rs1[i]);
1702       set_const(current,rt1[i],v+imm[i]);
1703     }
1704     else clear_const(current,rt1[i]);
1705     current->is32|=1LL<<rt1[i];
1706   }
1707   else {
1708     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1709     current->is32|=1LL<<rt1[i];
1710   }
1711   dirty_reg(current,rt1[i]);
1712 }
1713
1714 void load_alloc(struct regstat *current,int i)
1715 {
1716   clear_const(current,rt1[i]);
1717   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1718   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1719   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1720   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1721     alloc_reg(current,i,rt1[i]);
1722     assert(get_reg(current->regmap,rt1[i])>=0);
1723     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1724     {
1725       current->is32&=~(1LL<<rt1[i]);
1726       alloc_reg64(current,i,rt1[i]);
1727     }
1728     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1729     {
1730       current->is32&=~(1LL<<rt1[i]);
1731       alloc_reg64(current,i,rt1[i]);
1732       alloc_all(current,i);
1733       alloc_reg64(current,i,FTEMP);
1734       minimum_free_regs[i]=HOST_REGS;
1735     }
1736     else current->is32|=1LL<<rt1[i];
1737     dirty_reg(current,rt1[i]);
1738     // If using TLB, need a register for pointer to the mapping table
1739     if(using_tlb) alloc_reg(current,i,TLREG);
1740     // LWL/LWR need a temporary register for the old value
1741     if(opcode[i]==0x22||opcode[i]==0x26)
1742     {
1743       alloc_reg(current,i,FTEMP);
1744       alloc_reg_temp(current,i,-1);
1745       minimum_free_regs[i]=1;
1746     }
1747   }
1748   else
1749   {
1750     // Load to r0 or unneeded register (dummy load)
1751     // but we still need a register to calculate the address
1752     if(opcode[i]==0x22||opcode[i]==0x26)
1753     {
1754       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1755     }
1756     // If using TLB, need a register for pointer to the mapping table
1757     if(using_tlb) alloc_reg(current,i,TLREG);
1758     alloc_reg_temp(current,i,-1);
1759     minimum_free_regs[i]=1;
1760     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1761     {
1762       alloc_all(current,i);
1763       alloc_reg64(current,i,FTEMP);
1764       minimum_free_regs[i]=HOST_REGS;
1765     }
1766   }
1767 }
1768
1769 void store_alloc(struct regstat *current,int i)
1770 {
1771   clear_const(current,rs2[i]);
1772   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1773   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1774   alloc_reg(current,i,rs2[i]);
1775   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1776     alloc_reg64(current,i,rs2[i]);
1777     if(rs2[i]) alloc_reg(current,i,FTEMP);
1778   }
1779   // If using TLB, need a register for pointer to the mapping table
1780   if(using_tlb) alloc_reg(current,i,TLREG);
1781   #if defined(HOST_IMM8)
1782   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1783   else alloc_reg(current,i,INVCP);
1784   #endif
1785   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1786     alloc_reg(current,i,FTEMP);
1787   }
1788   // We need a temporary register for address generation
1789   alloc_reg_temp(current,i,-1);
1790   minimum_free_regs[i]=1;
1791 }
1792
1793 void c1ls_alloc(struct regstat *current,int i)
1794 {
1795   //clear_const(current,rs1[i]); // FIXME
1796   clear_const(current,rt1[i]);
1797   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1798   alloc_reg(current,i,CSREG); // Status
1799   alloc_reg(current,i,FTEMP);
1800   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1801     alloc_reg64(current,i,FTEMP);
1802   }
1803   // If using TLB, need a register for pointer to the mapping table
1804   if(using_tlb) alloc_reg(current,i,TLREG);
1805   #if defined(HOST_IMM8)
1806   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1807   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1808     alloc_reg(current,i,INVCP);
1809   #endif
1810   // We need a temporary register for address generation
1811   alloc_reg_temp(current,i,-1);
1812 }
1813
1814 void c2ls_alloc(struct regstat *current,int i)
1815 {
1816   clear_const(current,rt1[i]);
1817   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1818   alloc_reg(current,i,FTEMP);
1819   // If using TLB, need a register for pointer to the mapping table
1820   if(using_tlb) alloc_reg(current,i,TLREG);
1821   #if defined(HOST_IMM8)
1822   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1823   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1824     alloc_reg(current,i,INVCP);
1825   #endif
1826   // We need a temporary register for address generation
1827   alloc_reg_temp(current,i,-1);
1828   minimum_free_regs[i]=1;
1829 }
1830
1831 #ifndef multdiv_alloc
1832 void multdiv_alloc(struct regstat *current,int i)
1833 {
1834   //  case 0x18: MULT
1835   //  case 0x19: MULTU
1836   //  case 0x1A: DIV
1837   //  case 0x1B: DIVU
1838   //  case 0x1C: DMULT
1839   //  case 0x1D: DMULTU
1840   //  case 0x1E: DDIV
1841   //  case 0x1F: DDIVU
1842   clear_const(current,rs1[i]);
1843   clear_const(current,rs2[i]);
1844   if(rs1[i]&&rs2[i])
1845   {
1846     if((opcode2[i]&4)==0) // 32-bit
1847     {
1848       current->u&=~(1LL<<HIREG);
1849       current->u&=~(1LL<<LOREG);
1850       alloc_reg(current,i,HIREG);
1851       alloc_reg(current,i,LOREG);
1852       alloc_reg(current,i,rs1[i]);
1853       alloc_reg(current,i,rs2[i]);
1854       current->is32|=1LL<<HIREG;
1855       current->is32|=1LL<<LOREG;
1856       dirty_reg(current,HIREG);
1857       dirty_reg(current,LOREG);
1858     }
1859     else // 64-bit
1860     {
1861       current->u&=~(1LL<<HIREG);
1862       current->u&=~(1LL<<LOREG);
1863       current->uu&=~(1LL<<HIREG);
1864       current->uu&=~(1LL<<LOREG);
1865       alloc_reg64(current,i,HIREG);
1866       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1867       alloc_reg64(current,i,rs1[i]);
1868       alloc_reg64(current,i,rs2[i]);
1869       alloc_all(current,i);
1870       current->is32&=~(1LL<<HIREG);
1871       current->is32&=~(1LL<<LOREG);
1872       dirty_reg(current,HIREG);
1873       dirty_reg(current,LOREG);
1874       minimum_free_regs[i]=HOST_REGS;
1875     }
1876   }
1877   else
1878   {
1879     // Multiply by zero is zero.
1880     // MIPS does not have a divide by zero exception.
1881     // The result is undefined, we return zero.
1882     alloc_reg(current,i,HIREG);
1883     alloc_reg(current,i,LOREG);
1884     current->is32|=1LL<<HIREG;
1885     current->is32|=1LL<<LOREG;
1886     dirty_reg(current,HIREG);
1887     dirty_reg(current,LOREG);
1888   }
1889 }
1890 #endif
1891
1892 void cop0_alloc(struct regstat *current,int i)
1893 {
1894   if(opcode2[i]==0) // MFC0
1895   {
1896     if(rt1[i]) {
1897       clear_const(current,rt1[i]);
1898       alloc_all(current,i);
1899       alloc_reg(current,i,rt1[i]);
1900       current->is32|=1LL<<rt1[i];
1901       dirty_reg(current,rt1[i]);
1902     }
1903   }
1904   else if(opcode2[i]==4) // MTC0
1905   {
1906     if(rs1[i]){
1907       clear_const(current,rs1[i]);
1908       alloc_reg(current,i,rs1[i]);
1909       alloc_all(current,i);
1910     }
1911     else {
1912       alloc_all(current,i); // FIXME: Keep r0
1913       current->u&=~1LL;
1914       alloc_reg(current,i,0);
1915     }
1916   }
1917   else
1918   {
1919     // TLBR/TLBWI/TLBWR/TLBP/ERET
1920     assert(opcode2[i]==0x10);
1921     alloc_all(current,i);
1922   }
1923   minimum_free_regs[i]=HOST_REGS;
1924 }
1925
1926 void cop1_alloc(struct regstat *current,int i)
1927 {
1928   alloc_reg(current,i,CSREG); // Load status
1929   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1930   {
1931     if(rt1[i]){
1932       clear_const(current,rt1[i]);
1933       if(opcode2[i]==1) {
1934         alloc_reg64(current,i,rt1[i]); // DMFC1
1935         current->is32&=~(1LL<<rt1[i]);
1936       }else{
1937         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1938         current->is32|=1LL<<rt1[i];
1939       }
1940       dirty_reg(current,rt1[i]);
1941     }
1942     alloc_reg_temp(current,i,-1);
1943   }
1944   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1945   {
1946     if(rs1[i]){
1947       clear_const(current,rs1[i]);
1948       if(opcode2[i]==5)
1949         alloc_reg64(current,i,rs1[i]); // DMTC1
1950       else
1951         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1952       alloc_reg_temp(current,i,-1);
1953     }
1954     else {
1955       current->u&=~1LL;
1956       alloc_reg(current,i,0);
1957       alloc_reg_temp(current,i,-1);
1958     }
1959   }
1960   minimum_free_regs[i]=1;
1961 }
1962 void fconv_alloc(struct regstat *current,int i)
1963 {
1964   alloc_reg(current,i,CSREG); // Load status
1965   alloc_reg_temp(current,i,-1);
1966   minimum_free_regs[i]=1;
1967 }
1968 void float_alloc(struct regstat *current,int i)
1969 {
1970   alloc_reg(current,i,CSREG); // Load status
1971   alloc_reg_temp(current,i,-1);
1972   minimum_free_regs[i]=1;
1973 }
1974 void c2op_alloc(struct regstat *current,int i)
1975 {
1976   alloc_reg_temp(current,i,-1);
1977 }
1978 void fcomp_alloc(struct regstat *current,int i)
1979 {
1980   alloc_reg(current,i,CSREG); // Load status
1981   alloc_reg(current,i,FSREG); // Load flags
1982   dirty_reg(current,FSREG); // Flag will be modified
1983   alloc_reg_temp(current,i,-1);
1984   minimum_free_regs[i]=1;
1985 }
1986
1987 void syscall_alloc(struct regstat *current,int i)
1988 {
1989   alloc_cc(current,i);
1990   dirty_reg(current,CCREG);
1991   alloc_all(current,i);
1992   minimum_free_regs[i]=HOST_REGS;
1993   current->isconst=0;
1994 }
1995
1996 void delayslot_alloc(struct regstat *current,int i)
1997 {
1998   switch(itype[i]) {
1999     case UJUMP:
2000     case CJUMP:
2001     case SJUMP:
2002     case RJUMP:
2003     case FJUMP:
2004     case SYSCALL:
2005     case HLECALL:
2006     case SPAN:
2007       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
2008       SysPrintf("Disabled speculative precompilation\n");
2009       stop_after_jal=1;
2010       break;
2011     case IMM16:
2012       imm16_alloc(current,i);
2013       break;
2014     case LOAD:
2015     case LOADLR:
2016       load_alloc(current,i);
2017       break;
2018     case STORE:
2019     case STORELR:
2020       store_alloc(current,i);
2021       break;
2022     case ALU:
2023       alu_alloc(current,i);
2024       break;
2025     case SHIFT:
2026       shift_alloc(current,i);
2027       break;
2028     case MULTDIV:
2029       multdiv_alloc(current,i);
2030       break;
2031     case SHIFTIMM:
2032       shiftimm_alloc(current,i);
2033       break;
2034     case MOV:
2035       mov_alloc(current,i);
2036       break;
2037     case COP0:
2038       cop0_alloc(current,i);
2039       break;
2040     case COP1:
2041     case COP2:
2042       cop1_alloc(current,i);
2043       break;
2044     case C1LS:
2045       c1ls_alloc(current,i);
2046       break;
2047     case C2LS:
2048       c2ls_alloc(current,i);
2049       break;
2050     case FCONV:
2051       fconv_alloc(current,i);
2052       break;
2053     case FLOAT:
2054       float_alloc(current,i);
2055       break;
2056     case FCOMP:
2057       fcomp_alloc(current,i);
2058       break;
2059     case C2OP:
2060       c2op_alloc(current,i);
2061       break;
2062   }
2063 }
2064
2065 // Special case where a branch and delay slot span two pages in virtual memory
2066 static void pagespan_alloc(struct regstat *current,int i)
2067 {
2068   current->isconst=0;
2069   current->wasconst=0;
2070   regs[i].wasconst=0;
2071   minimum_free_regs[i]=HOST_REGS;
2072   alloc_all(current,i);
2073   alloc_cc(current,i);
2074   dirty_reg(current,CCREG);
2075   if(opcode[i]==3) // JAL
2076   {
2077     alloc_reg(current,i,31);
2078     dirty_reg(current,31);
2079   }
2080   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2081   {
2082     alloc_reg(current,i,rs1[i]);
2083     if (rt1[i]!=0) {
2084       alloc_reg(current,i,rt1[i]);
2085       dirty_reg(current,rt1[i]);
2086     }
2087   }
2088   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2089   {
2090     if(rs1[i]) alloc_reg(current,i,rs1[i]);
2091     if(rs2[i]) alloc_reg(current,i,rs2[i]);
2092     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2093     {
2094       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2095       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2096     }
2097   }
2098   else
2099   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2100   {
2101     if(rs1[i]) alloc_reg(current,i,rs1[i]);
2102     if(!((current->is32>>rs1[i])&1))
2103     {
2104       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2105     }
2106   }
2107   else
2108   if(opcode[i]==0x11) // BC1
2109   {
2110     alloc_reg(current,i,FSREG);
2111     alloc_reg(current,i,CSREG);
2112   }
2113   //else ...
2114 }
2115
2116 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2117 {
2118   stubs[stubcount][0]=type;
2119   stubs[stubcount][1]=addr;
2120   stubs[stubcount][2]=retaddr;
2121   stubs[stubcount][3]=a;
2122   stubs[stubcount][4]=b;
2123   stubs[stubcount][5]=c;
2124   stubs[stubcount][6]=d;
2125   stubs[stubcount][7]=e;
2126   stubcount++;
2127 }
2128
2129 // Write out a single register
2130 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2131 {
2132   int hr;
2133   for(hr=0;hr<HOST_REGS;hr++) {
2134     if(hr!=EXCLUDE_REG) {
2135       if((regmap[hr]&63)==r) {
2136         if((dirty>>hr)&1) {
2137           if(regmap[hr]<64) {
2138             emit_storereg(r,hr);
2139 #ifndef FORCE32
2140             if((is32>>regmap[hr])&1) {
2141               emit_sarimm(hr,31,hr);
2142               emit_storereg(r|64,hr);
2143             }
2144 #endif
2145           }else{
2146             emit_storereg(r|64,hr);
2147           }
2148         }
2149       }
2150     }
2151   }
2152 }
2153
2154 int mchecksum()
2155 {
2156   //if(!tracedebug) return 0;
2157   int i;
2158   int sum=0;
2159   for(i=0;i<2097152;i++) {
2160     unsigned int temp=sum;
2161     sum<<=1;
2162     sum|=(~temp)>>31;
2163     sum^=((u_int *)rdram)[i];
2164   }
2165   return sum;
2166 }
2167 int rchecksum()
2168 {
2169   int i;
2170   int sum=0;
2171   for(i=0;i<64;i++)
2172     sum^=((u_int *)reg)[i];
2173   return sum;
2174 }
2175 void rlist()
2176 {
2177   int i;
2178   printf("TRACE: ");
2179   for(i=0;i<32;i++)
2180     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2181   printf("\n");
2182 #ifndef DISABLE_COP1
2183   printf("TRACE: ");
2184   for(i=0;i<32;i++)
2185     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2186   printf("\n");
2187 #endif
2188 }
2189
2190 void enabletrace()
2191 {
2192   tracedebug=1;
2193 }
2194
2195 void memdebug(int i)
2196 {
2197   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2198   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2199   //rlist();
2200   //if(tracedebug) {
2201   //if(Count>=-2084597794) {
2202   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2203   //if(0) {
2204     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2205     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2206     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2207     rlist();
2208     #ifdef __i386__
2209     printf("TRACE: %x\n",(&i)[-1]);
2210     #endif
2211     #ifdef __arm__
2212     int j;
2213     printf("TRACE: %x \n",(&j)[10]);
2214     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2215     #endif
2216     //fflush(stdout);
2217   }
2218   //printf("TRACE: %x\n",(&i)[-1]);
2219 }
2220
2221 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2222 {
2223   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2224 }
2225
2226 void alu_assemble(int i,struct regstat *i_regs)
2227 {
2228   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2229     if(rt1[i]) {
2230       signed char s1,s2,t;
2231       t=get_reg(i_regs->regmap,rt1[i]);
2232       if(t>=0) {
2233         s1=get_reg(i_regs->regmap,rs1[i]);
2234         s2=get_reg(i_regs->regmap,rs2[i]);
2235         if(rs1[i]&&rs2[i]) {
2236           assert(s1>=0);
2237           assert(s2>=0);
2238           if(opcode2[i]&2) emit_sub(s1,s2,t);
2239           else emit_add(s1,s2,t);
2240         }
2241         else if(rs1[i]) {
2242           if(s1>=0) emit_mov(s1,t);
2243           else emit_loadreg(rs1[i],t);
2244         }
2245         else if(rs2[i]) {
2246           if(s2>=0) {
2247             if(opcode2[i]&2) emit_neg(s2,t);
2248             else emit_mov(s2,t);
2249           }
2250           else {
2251             emit_loadreg(rs2[i],t);
2252             if(opcode2[i]&2) emit_neg(t,t);
2253           }
2254         }
2255         else emit_zeroreg(t);
2256       }
2257     }
2258   }
2259   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2260     if(rt1[i]) {
2261       signed char s1l,s2l,s1h,s2h,tl,th;
2262       tl=get_reg(i_regs->regmap,rt1[i]);
2263       th=get_reg(i_regs->regmap,rt1[i]|64);
2264       if(tl>=0) {
2265         s1l=get_reg(i_regs->regmap,rs1[i]);
2266         s2l=get_reg(i_regs->regmap,rs2[i]);
2267         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2268         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2269         if(rs1[i]&&rs2[i]) {
2270           assert(s1l>=0);
2271           assert(s2l>=0);
2272           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2273           else emit_adds(s1l,s2l,tl);
2274           if(th>=0) {
2275             #ifdef INVERTED_CARRY
2276             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2277             #else
2278             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2279             #endif
2280             else emit_add(s1h,s2h,th);
2281           }
2282         }
2283         else if(rs1[i]) {
2284           if(s1l>=0) emit_mov(s1l,tl);
2285           else emit_loadreg(rs1[i],tl);
2286           if(th>=0) {
2287             if(s1h>=0) emit_mov(s1h,th);
2288             else emit_loadreg(rs1[i]|64,th);
2289           }
2290         }
2291         else if(rs2[i]) {
2292           if(s2l>=0) {
2293             if(opcode2[i]&2) emit_negs(s2l,tl);
2294             else emit_mov(s2l,tl);
2295           }
2296           else {
2297             emit_loadreg(rs2[i],tl);
2298             if(opcode2[i]&2) emit_negs(tl,tl);
2299           }
2300           if(th>=0) {
2301             #ifdef INVERTED_CARRY
2302             if(s2h>=0) emit_mov(s2h,th);
2303             else emit_loadreg(rs2[i]|64,th);
2304             if(opcode2[i]&2) {
2305               emit_adcimm(-1,th); // x86 has inverted carry flag
2306               emit_not(th,th);
2307             }
2308             #else
2309             if(opcode2[i]&2) {
2310               if(s2h>=0) emit_rscimm(s2h,0,th);
2311               else {
2312                 emit_loadreg(rs2[i]|64,th);
2313                 emit_rscimm(th,0,th);
2314               }
2315             }else{
2316               if(s2h>=0) emit_mov(s2h,th);
2317               else emit_loadreg(rs2[i]|64,th);
2318             }
2319             #endif
2320           }
2321         }
2322         else {
2323           emit_zeroreg(tl);
2324           if(th>=0) emit_zeroreg(th);
2325         }
2326       }
2327     }
2328   }
2329   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2330     if(rt1[i]) {
2331       signed char s1l,s1h,s2l,s2h,t;
2332       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2333       {
2334         t=get_reg(i_regs->regmap,rt1[i]);
2335         //assert(t>=0);
2336         if(t>=0) {
2337           s1l=get_reg(i_regs->regmap,rs1[i]);
2338           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2339           s2l=get_reg(i_regs->regmap,rs2[i]);
2340           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2341           if(rs2[i]==0) // rx<r0
2342           {
2343             assert(s1h>=0);
2344             if(opcode2[i]==0x2a) // SLT
2345               emit_shrimm(s1h,31,t);
2346             else // SLTU (unsigned can not be less than zero)
2347               emit_zeroreg(t);
2348           }
2349           else if(rs1[i]==0) // r0<rx
2350           {
2351             assert(s2h>=0);
2352             if(opcode2[i]==0x2a) // SLT
2353               emit_set_gz64_32(s2h,s2l,t);
2354             else // SLTU (set if not zero)
2355               emit_set_nz64_32(s2h,s2l,t);
2356           }
2357           else {
2358             assert(s1l>=0);assert(s1h>=0);
2359             assert(s2l>=0);assert(s2h>=0);
2360             if(opcode2[i]==0x2a) // SLT
2361               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2362             else // SLTU
2363               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2364           }
2365         }
2366       } else {
2367         t=get_reg(i_regs->regmap,rt1[i]);
2368         //assert(t>=0);
2369         if(t>=0) {
2370           s1l=get_reg(i_regs->regmap,rs1[i]);
2371           s2l=get_reg(i_regs->regmap,rs2[i]);
2372           if(rs2[i]==0) // rx<r0
2373           {
2374             assert(s1l>=0);
2375             if(opcode2[i]==0x2a) // SLT
2376               emit_shrimm(s1l,31,t);
2377             else // SLTU (unsigned can not be less than zero)
2378               emit_zeroreg(t);
2379           }
2380           else if(rs1[i]==0) // r0<rx
2381           {
2382             assert(s2l>=0);
2383             if(opcode2[i]==0x2a) // SLT
2384               emit_set_gz32(s2l,t);
2385             else // SLTU (set if not zero)
2386               emit_set_nz32(s2l,t);
2387           }
2388           else{
2389             assert(s1l>=0);assert(s2l>=0);
2390             if(opcode2[i]==0x2a) // SLT
2391               emit_set_if_less32(s1l,s2l,t);
2392             else // SLTU
2393               emit_set_if_carry32(s1l,s2l,t);
2394           }
2395         }
2396       }
2397     }
2398   }
2399   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2400     if(rt1[i]) {
2401       signed char s1l,s1h,s2l,s2h,th,tl;
2402       tl=get_reg(i_regs->regmap,rt1[i]);
2403       th=get_reg(i_regs->regmap,rt1[i]|64);
2404       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2405       {
2406         assert(tl>=0);
2407         if(tl>=0) {
2408           s1l=get_reg(i_regs->regmap,rs1[i]);
2409           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2410           s2l=get_reg(i_regs->regmap,rs2[i]);
2411           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2412           if(rs1[i]&&rs2[i]) {
2413             assert(s1l>=0);assert(s1h>=0);
2414             assert(s2l>=0);assert(s2h>=0);
2415             if(opcode2[i]==0x24) { // AND
2416               emit_and(s1l,s2l,tl);
2417               emit_and(s1h,s2h,th);
2418             } else
2419             if(opcode2[i]==0x25) { // OR
2420               emit_or(s1l,s2l,tl);
2421               emit_or(s1h,s2h,th);
2422             } else
2423             if(opcode2[i]==0x26) { // XOR
2424               emit_xor(s1l,s2l,tl);
2425               emit_xor(s1h,s2h,th);
2426             } else
2427             if(opcode2[i]==0x27) { // NOR
2428               emit_or(s1l,s2l,tl);
2429               emit_or(s1h,s2h,th);
2430               emit_not(tl,tl);
2431               emit_not(th,th);
2432             }
2433           }
2434           else
2435           {
2436             if(opcode2[i]==0x24) { // AND
2437               emit_zeroreg(tl);
2438               emit_zeroreg(th);
2439             } else
2440             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2441               if(rs1[i]){
2442                 if(s1l>=0) emit_mov(s1l,tl);
2443                 else emit_loadreg(rs1[i],tl);
2444                 if(s1h>=0) emit_mov(s1h,th);
2445                 else emit_loadreg(rs1[i]|64,th);
2446               }
2447               else
2448               if(rs2[i]){
2449                 if(s2l>=0) emit_mov(s2l,tl);
2450                 else emit_loadreg(rs2[i],tl);
2451                 if(s2h>=0) emit_mov(s2h,th);
2452                 else emit_loadreg(rs2[i]|64,th);
2453               }
2454               else{
2455                 emit_zeroreg(tl);
2456                 emit_zeroreg(th);
2457               }
2458             } else
2459             if(opcode2[i]==0x27) { // NOR
2460               if(rs1[i]){
2461                 if(s1l>=0) emit_not(s1l,tl);
2462                 else{
2463                   emit_loadreg(rs1[i],tl);
2464                   emit_not(tl,tl);
2465                 }
2466                 if(s1h>=0) emit_not(s1h,th);
2467                 else{
2468                   emit_loadreg(rs1[i]|64,th);
2469                   emit_not(th,th);
2470                 }
2471               }
2472               else
2473               if(rs2[i]){
2474                 if(s2l>=0) emit_not(s2l,tl);
2475                 else{
2476                   emit_loadreg(rs2[i],tl);
2477                   emit_not(tl,tl);
2478                 }
2479                 if(s2h>=0) emit_not(s2h,th);
2480                 else{
2481                   emit_loadreg(rs2[i]|64,th);
2482                   emit_not(th,th);
2483                 }
2484               }
2485               else {
2486                 emit_movimm(-1,tl);
2487                 emit_movimm(-1,th);
2488               }
2489             }
2490           }
2491         }
2492       }
2493       else
2494       {
2495         // 32 bit
2496         if(tl>=0) {
2497           s1l=get_reg(i_regs->regmap,rs1[i]);
2498           s2l=get_reg(i_regs->regmap,rs2[i]);
2499           if(rs1[i]&&rs2[i]) {
2500             assert(s1l>=0);
2501             assert(s2l>=0);
2502             if(opcode2[i]==0x24) { // AND
2503               emit_and(s1l,s2l,tl);
2504             } else
2505             if(opcode2[i]==0x25) { // OR
2506               emit_or(s1l,s2l,tl);
2507             } else
2508             if(opcode2[i]==0x26) { // XOR
2509               emit_xor(s1l,s2l,tl);
2510             } else
2511             if(opcode2[i]==0x27) { // NOR
2512               emit_or(s1l,s2l,tl);
2513               emit_not(tl,tl);
2514             }
2515           }
2516           else
2517           {
2518             if(opcode2[i]==0x24) { // AND
2519               emit_zeroreg(tl);
2520             } else
2521             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2522               if(rs1[i]){
2523                 if(s1l>=0) emit_mov(s1l,tl);
2524                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2525               }
2526               else
2527               if(rs2[i]){
2528                 if(s2l>=0) emit_mov(s2l,tl);
2529                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2530               }
2531               else emit_zeroreg(tl);
2532             } else
2533             if(opcode2[i]==0x27) { // NOR
2534               if(rs1[i]){
2535                 if(s1l>=0) emit_not(s1l,tl);
2536                 else {
2537                   emit_loadreg(rs1[i],tl);
2538                   emit_not(tl,tl);
2539                 }
2540               }
2541               else
2542               if(rs2[i]){
2543                 if(s2l>=0) emit_not(s2l,tl);
2544                 else {
2545                   emit_loadreg(rs2[i],tl);
2546                   emit_not(tl,tl);
2547                 }
2548               }
2549               else emit_movimm(-1,tl);
2550             }
2551           }
2552         }
2553       }
2554     }
2555   }
2556 }
2557
2558 void imm16_assemble(int i,struct regstat *i_regs)
2559 {
2560   if (opcode[i]==0x0f) { // LUI
2561     if(rt1[i]) {
2562       signed char t;
2563       t=get_reg(i_regs->regmap,rt1[i]);
2564       //assert(t>=0);
2565       if(t>=0) {
2566         if(!((i_regs->isconst>>t)&1))
2567           emit_movimm(imm[i]<<16,t);
2568       }
2569     }
2570   }
2571   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2572     if(rt1[i]) {
2573       signed char s,t;
2574       t=get_reg(i_regs->regmap,rt1[i]);
2575       s=get_reg(i_regs->regmap,rs1[i]);
2576       if(rs1[i]) {
2577         //assert(t>=0);
2578         //assert(s>=0);
2579         if(t>=0) {
2580           if(!((i_regs->isconst>>t)&1)) {
2581             if(s<0) {
2582               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2583               emit_addimm(t,imm[i],t);
2584             }else{
2585               if(!((i_regs->wasconst>>s)&1))
2586                 emit_addimm(s,imm[i],t);
2587               else
2588                 emit_movimm(constmap[i][s]+imm[i],t);
2589             }
2590           }
2591         }
2592       } else {
2593         if(t>=0) {
2594           if(!((i_regs->isconst>>t)&1))
2595             emit_movimm(imm[i],t);
2596         }
2597       }
2598     }
2599   }
2600   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2601     if(rt1[i]) {
2602       signed char sh,sl,th,tl;
2603       th=get_reg(i_regs->regmap,rt1[i]|64);
2604       tl=get_reg(i_regs->regmap,rt1[i]);
2605       sh=get_reg(i_regs->regmap,rs1[i]|64);
2606       sl=get_reg(i_regs->regmap,rs1[i]);
2607       if(tl>=0) {
2608         if(rs1[i]) {
2609           assert(sh>=0);
2610           assert(sl>=0);
2611           if(th>=0) {
2612             emit_addimm64_32(sh,sl,imm[i],th,tl);
2613           }
2614           else {
2615             emit_addimm(sl,imm[i],tl);
2616           }
2617         } else {
2618           emit_movimm(imm[i],tl);
2619           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2620         }
2621       }
2622     }
2623   }
2624   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2625     if(rt1[i]) {
2626       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2627       signed char sh,sl,t;
2628       t=get_reg(i_regs->regmap,rt1[i]);
2629       sh=get_reg(i_regs->regmap,rs1[i]|64);
2630       sl=get_reg(i_regs->regmap,rs1[i]);
2631       //assert(t>=0);
2632       if(t>=0) {
2633         if(rs1[i]>0) {
2634           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2635           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2636             if(opcode[i]==0x0a) { // SLTI
2637               if(sl<0) {
2638                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2639                 emit_slti32(t,imm[i],t);
2640               }else{
2641                 emit_slti32(sl,imm[i],t);
2642               }
2643             }
2644             else { // SLTIU
2645               if(sl<0) {
2646                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2647                 emit_sltiu32(t,imm[i],t);
2648               }else{
2649                 emit_sltiu32(sl,imm[i],t);
2650               }
2651             }
2652           }else{ // 64-bit
2653             assert(sl>=0);
2654             if(opcode[i]==0x0a) // SLTI
2655               emit_slti64_32(sh,sl,imm[i],t);
2656             else // SLTIU
2657               emit_sltiu64_32(sh,sl,imm[i],t);
2658           }
2659         }else{
2660           // SLTI(U) with r0 is just stupid,
2661           // nonetheless examples can be found
2662           if(opcode[i]==0x0a) // SLTI
2663             if(0<imm[i]) emit_movimm(1,t);
2664             else emit_zeroreg(t);
2665           else // SLTIU
2666           {
2667             if(imm[i]) emit_movimm(1,t);
2668             else emit_zeroreg(t);
2669           }
2670         }
2671       }
2672     }
2673   }
2674   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2675     if(rt1[i]) {
2676       signed char sh,sl,th,tl;
2677       th=get_reg(i_regs->regmap,rt1[i]|64);
2678       tl=get_reg(i_regs->regmap,rt1[i]);
2679       sh=get_reg(i_regs->regmap,rs1[i]|64);
2680       sl=get_reg(i_regs->regmap,rs1[i]);
2681       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2682         if(opcode[i]==0x0c) //ANDI
2683         {
2684           if(rs1[i]) {
2685             if(sl<0) {
2686               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2687               emit_andimm(tl,imm[i],tl);
2688             }else{
2689               if(!((i_regs->wasconst>>sl)&1))
2690                 emit_andimm(sl,imm[i],tl);
2691               else
2692                 emit_movimm(constmap[i][sl]&imm[i],tl);
2693             }
2694           }
2695           else
2696             emit_zeroreg(tl);
2697           if(th>=0) emit_zeroreg(th);
2698         }
2699         else
2700         {
2701           if(rs1[i]) {
2702             if(sl<0) {
2703               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2704             }
2705             if(th>=0) {
2706               if(sh<0) {
2707                 emit_loadreg(rs1[i]|64,th);
2708               }else{
2709                 emit_mov(sh,th);
2710               }
2711             }
2712             if(opcode[i]==0x0d) //ORI
2713             if(sl<0) {
2714               emit_orimm(tl,imm[i],tl);
2715             }else{
2716               if(!((i_regs->wasconst>>sl)&1))
2717                 emit_orimm(sl,imm[i],tl);
2718               else
2719                 emit_movimm(constmap[i][sl]|imm[i],tl);
2720             }
2721             if(opcode[i]==0x0e) //XORI
2722             if(sl<0) {
2723               emit_xorimm(tl,imm[i],tl);
2724             }else{
2725               if(!((i_regs->wasconst>>sl)&1))
2726                 emit_xorimm(sl,imm[i],tl);
2727               else
2728                 emit_movimm(constmap[i][sl]^imm[i],tl);
2729             }
2730           }
2731           else {
2732             emit_movimm(imm[i],tl);
2733             if(th>=0) emit_zeroreg(th);
2734           }
2735         }
2736       }
2737     }
2738   }
2739 }
2740
2741 void shiftimm_assemble(int i,struct regstat *i_regs)
2742 {
2743   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2744   {
2745     if(rt1[i]) {
2746       signed char s,t;
2747       t=get_reg(i_regs->regmap,rt1[i]);
2748       s=get_reg(i_regs->regmap,rs1[i]);
2749       //assert(t>=0);
2750       if(t>=0&&!((i_regs->isconst>>t)&1)){
2751         if(rs1[i]==0)
2752         {
2753           emit_zeroreg(t);
2754         }
2755         else
2756         {
2757           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2758           if(imm[i]) {
2759             if(opcode2[i]==0) // SLL
2760             {
2761               emit_shlimm(s<0?t:s,imm[i],t);
2762             }
2763             if(opcode2[i]==2) // SRL
2764             {
2765               emit_shrimm(s<0?t:s,imm[i],t);
2766             }
2767             if(opcode2[i]==3) // SRA
2768             {
2769               emit_sarimm(s<0?t:s,imm[i],t);
2770             }
2771           }else{
2772             // Shift by zero
2773             if(s>=0 && s!=t) emit_mov(s,t);
2774           }
2775         }
2776       }
2777       //emit_storereg(rt1[i],t); //DEBUG
2778     }
2779   }
2780   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2781   {
2782     if(rt1[i]) {
2783       signed char sh,sl,th,tl;
2784       th=get_reg(i_regs->regmap,rt1[i]|64);
2785       tl=get_reg(i_regs->regmap,rt1[i]);
2786       sh=get_reg(i_regs->regmap,rs1[i]|64);
2787       sl=get_reg(i_regs->regmap,rs1[i]);
2788       if(tl>=0) {
2789         if(rs1[i]==0)
2790         {
2791           emit_zeroreg(tl);
2792           if(th>=0) emit_zeroreg(th);
2793         }
2794         else
2795         {
2796           assert(sl>=0);
2797           assert(sh>=0);
2798           if(imm[i]) {
2799             if(opcode2[i]==0x38) // DSLL
2800             {
2801               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2802               emit_shlimm(sl,imm[i],tl);
2803             }
2804             if(opcode2[i]==0x3a) // DSRL
2805             {
2806               emit_shrdimm(sl,sh,imm[i],tl);
2807               if(th>=0) emit_shrimm(sh,imm[i],th);
2808             }
2809             if(opcode2[i]==0x3b) // DSRA
2810             {
2811               emit_shrdimm(sl,sh,imm[i],tl);
2812               if(th>=0) emit_sarimm(sh,imm[i],th);
2813             }
2814           }else{
2815             // Shift by zero
2816             if(sl!=tl) emit_mov(sl,tl);
2817             if(th>=0&&sh!=th) emit_mov(sh,th);
2818           }
2819         }
2820       }
2821     }
2822   }
2823   if(opcode2[i]==0x3c) // DSLL32
2824   {
2825     if(rt1[i]) {
2826       signed char sl,tl,th;
2827       tl=get_reg(i_regs->regmap,rt1[i]);
2828       th=get_reg(i_regs->regmap,rt1[i]|64);
2829       sl=get_reg(i_regs->regmap,rs1[i]);
2830       if(th>=0||tl>=0){
2831         assert(tl>=0);
2832         assert(th>=0);
2833         assert(sl>=0);
2834         emit_mov(sl,th);
2835         emit_zeroreg(tl);
2836         if(imm[i]>32)
2837         {
2838           emit_shlimm(th,imm[i]&31,th);
2839         }
2840       }
2841     }
2842   }
2843   if(opcode2[i]==0x3e) // DSRL32
2844   {
2845     if(rt1[i]) {
2846       signed char sh,tl,th;
2847       tl=get_reg(i_regs->regmap,rt1[i]);
2848       th=get_reg(i_regs->regmap,rt1[i]|64);
2849       sh=get_reg(i_regs->regmap,rs1[i]|64);
2850       if(tl>=0){
2851         assert(sh>=0);
2852         emit_mov(sh,tl);
2853         if(th>=0) emit_zeroreg(th);
2854         if(imm[i]>32)
2855         {
2856           emit_shrimm(tl,imm[i]&31,tl);
2857         }
2858       }
2859     }
2860   }
2861   if(opcode2[i]==0x3f) // DSRA32
2862   {
2863     if(rt1[i]) {
2864       signed char sh,tl;
2865       tl=get_reg(i_regs->regmap,rt1[i]);
2866       sh=get_reg(i_regs->regmap,rs1[i]|64);
2867       if(tl>=0){
2868         assert(sh>=0);
2869         emit_mov(sh,tl);
2870         if(imm[i]>32)
2871         {
2872           emit_sarimm(tl,imm[i]&31,tl);
2873         }
2874       }
2875     }
2876   }
2877 }
2878
2879 #ifndef shift_assemble
2880 void shift_assemble(int i,struct regstat *i_regs)
2881 {
2882   printf("Need shift_assemble for this architecture.\n");
2883   exit(1);
2884 }
2885 #endif
2886
2887 void load_assemble(int i,struct regstat *i_regs)
2888 {
2889   int s,th,tl,addr,map=-1;
2890   int offset;
2891   int jaddr=0;
2892   int memtarget=0,c=0;
2893   int fastload_reg_override=0;
2894   u_int hr,reglist=0;
2895   th=get_reg(i_regs->regmap,rt1[i]|64);
2896   tl=get_reg(i_regs->regmap,rt1[i]);
2897   s=get_reg(i_regs->regmap,rs1[i]);
2898   offset=imm[i];
2899   for(hr=0;hr<HOST_REGS;hr++) {
2900     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2901   }
2902   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2903   if(s>=0) {
2904     c=(i_regs->wasconst>>s)&1;
2905     if (c) {
2906       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2907       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2908     }
2909   }
2910   //printf("load_assemble: c=%d\n",c);
2911   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2912   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2913 #ifdef PCSX
2914   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2915     ||rt1[i]==0) {
2916       // could be FIFO, must perform the read
2917       // ||dummy read
2918       assem_debug("(forced read)\n");
2919       tl=get_reg(i_regs->regmap,-1);
2920       assert(tl>=0);
2921   }
2922 #endif
2923   if(offset||s<0||c) addr=tl;
2924   else addr=s;
2925   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2926  if(tl>=0) {
2927   //printf("load_assemble: c=%d\n",c);
2928   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2929   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2930   reglist&=~(1<<tl);
2931   if(th>=0) reglist&=~(1<<th);
2932   if(!using_tlb) {
2933     if(!c) {
2934       #ifdef RAM_OFFSET
2935       map=get_reg(i_regs->regmap,ROREG);
2936       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2937       #endif
2938 //#define R29_HACK 1
2939       #ifdef R29_HACK
2940       // Strmnnrmn's speed hack
2941       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2942       #endif
2943       {
2944         jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2945       }
2946     }
2947     else if(ram_offset&&memtarget) {
2948       emit_addimm(addr,ram_offset,HOST_TEMPREG);
2949       fastload_reg_override=HOST_TEMPREG;
2950     }
2951   }else{ // using tlb
2952     int x=0;
2953     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2954     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2955     map=get_reg(i_regs->regmap,TLREG);
2956     assert(map>=0);
2957     reglist&=~(1<<map);
2958     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2959     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2960   }
2961   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2962   if (opcode[i]==0x20) { // LB
2963     if(!c||memtarget) {
2964       if(!dummy) {
2965         #ifdef HOST_IMM_ADDR32
2966         if(c)
2967           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2968         else
2969         #endif
2970         {
2971           //emit_xorimm(addr,3,tl);
2972           //gen_tlb_addr_r(tl,map);
2973           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2974           int x=0,a=tl;
2975 #ifdef BIG_ENDIAN_MIPS
2976           if(!c) emit_xorimm(addr,3,tl);
2977           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2978 #else
2979           if(!c) a=addr;
2980 #endif
2981           if(fastload_reg_override) a=fastload_reg_override;
2982
2983           emit_movsbl_indexed_tlb(x,a,map,tl);
2984         }
2985       }
2986       if(jaddr)
2987         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2988     }
2989     else
2990       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2991   }
2992   if (opcode[i]==0x21) { // LH
2993     if(!c||memtarget) {
2994       if(!dummy) {
2995         #ifdef HOST_IMM_ADDR32
2996         if(c)
2997           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2998         else
2999         #endif
3000         {
3001           int x=0,a=tl;
3002 #ifdef BIG_ENDIAN_MIPS
3003           if(!c) emit_xorimm(addr,2,tl);
3004           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3005 #else
3006           if(!c) a=addr;
3007 #endif
3008           if(fastload_reg_override) a=fastload_reg_override;
3009           //#ifdef
3010           //emit_movswl_indexed_tlb(x,tl,map,tl);
3011           //else
3012           if(map>=0) {
3013             gen_tlb_addr_r(a,map);
3014             emit_movswl_indexed(x,a,tl);
3015           }else{
3016             #if 1 //def RAM_OFFSET
3017             emit_movswl_indexed(x,a,tl);
3018             #else
3019             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
3020             #endif
3021           }
3022         }
3023       }
3024       if(jaddr)
3025         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3026     }
3027     else
3028       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3029   }
3030   if (opcode[i]==0x23) { // LW
3031     if(!c||memtarget) {
3032       if(!dummy) {
3033         int a=addr;
3034         if(fastload_reg_override) a=fastload_reg_override;
3035         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3036         #ifdef HOST_IMM_ADDR32
3037         if(c)
3038           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3039         else
3040         #endif
3041         emit_readword_indexed_tlb(0,a,map,tl);
3042       }
3043       if(jaddr)
3044         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3045     }
3046     else
3047       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3048   }
3049   if (opcode[i]==0x24) { // LBU
3050     if(!c||memtarget) {
3051       if(!dummy) {
3052         #ifdef HOST_IMM_ADDR32
3053         if(c)
3054           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3055         else
3056         #endif
3057         {
3058           //emit_xorimm(addr,3,tl);
3059           //gen_tlb_addr_r(tl,map);
3060           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
3061           int x=0,a=tl;
3062 #ifdef BIG_ENDIAN_MIPS
3063           if(!c) emit_xorimm(addr,3,tl);
3064           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3065 #else
3066           if(!c) a=addr;
3067 #endif
3068           if(fastload_reg_override) a=fastload_reg_override;
3069
3070           emit_movzbl_indexed_tlb(x,a,map,tl);
3071         }
3072       }
3073       if(jaddr)
3074         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3075     }
3076     else
3077       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3078   }
3079   if (opcode[i]==0x25) { // LHU
3080     if(!c||memtarget) {
3081       if(!dummy) {
3082         #ifdef HOST_IMM_ADDR32
3083         if(c)
3084           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3085         else
3086         #endif
3087         {
3088           int x=0,a=tl;
3089 #ifdef BIG_ENDIAN_MIPS
3090           if(!c) emit_xorimm(addr,2,tl);
3091           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3092 #else
3093           if(!c) a=addr;
3094 #endif
3095           if(fastload_reg_override) a=fastload_reg_override;
3096           //#ifdef
3097           //emit_movzwl_indexed_tlb(x,tl,map,tl);
3098           //#else
3099           if(map>=0) {
3100             gen_tlb_addr_r(a,map);
3101             emit_movzwl_indexed(x,a,tl);
3102           }else{
3103             #if 1 //def RAM_OFFSET
3104             emit_movzwl_indexed(x,a,tl);
3105             #else
3106             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3107             #endif
3108           }
3109         }
3110       }
3111       if(jaddr)
3112         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3113     }
3114     else
3115       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3116   }
3117   if (opcode[i]==0x27) { // LWU
3118     assert(th>=0);
3119     if(!c||memtarget) {
3120       if(!dummy) {
3121         int a=addr;
3122         if(fastload_reg_override) a=fastload_reg_override;
3123         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3124         #ifdef HOST_IMM_ADDR32
3125         if(c)
3126           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3127         else
3128         #endif
3129         emit_readword_indexed_tlb(0,a,map,tl);
3130       }
3131       if(jaddr)
3132         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3133     }
3134     else {
3135       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3136     }
3137     emit_zeroreg(th);
3138   }
3139   if (opcode[i]==0x37) { // LD
3140     if(!c||memtarget) {
3141       if(!dummy) {
3142         int a=addr;
3143         if(fastload_reg_override) a=fastload_reg_override;
3144         //gen_tlb_addr_r(tl,map);
3145         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3146         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3147         #ifdef HOST_IMM_ADDR32
3148         if(c)
3149           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3150         else
3151         #endif
3152         emit_readdword_indexed_tlb(0,a,map,th,tl);
3153       }
3154       if(jaddr)
3155         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3156     }
3157     else
3158       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3159   }
3160  }
3161   //emit_storereg(rt1[i],tl); // DEBUG
3162   //if(opcode[i]==0x23)
3163   //if(opcode[i]==0x24)
3164   //if(opcode[i]==0x23||opcode[i]==0x24)
3165   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3166   {
3167     //emit_pusha();
3168     save_regs(0x100f);
3169         emit_readword((int)&last_count,ECX);
3170         #ifdef __i386__
3171         if(get_reg(i_regs->regmap,CCREG)<0)
3172           emit_loadreg(CCREG,HOST_CCREG);
3173         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3174         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3175         emit_writeword(HOST_CCREG,(int)&Count);
3176         #endif
3177         #ifdef __arm__
3178         if(get_reg(i_regs->regmap,CCREG)<0)
3179           emit_loadreg(CCREG,0);
3180         else
3181           emit_mov(HOST_CCREG,0);
3182         emit_add(0,ECX,0);
3183         emit_addimm(0,2*ccadj[i],0);
3184         emit_writeword(0,(int)&Count);
3185         #endif
3186     emit_call((int)memdebug);
3187     //emit_popa();
3188     restore_regs(0x100f);
3189   }/**/
3190 }
3191
3192 #ifndef loadlr_assemble
3193 void loadlr_assemble(int i,struct regstat *i_regs)
3194 {
3195   printf("Need loadlr_assemble for this architecture.\n");
3196   exit(1);
3197 }
3198 #endif
3199
3200 void store_assemble(int i,struct regstat *i_regs)
3201 {
3202   int s,th,tl,map=-1;
3203   int addr,temp;
3204   int offset;
3205   int jaddr=0,jaddr2,type;
3206   int memtarget=0,c=0;
3207   int agr=AGEN1+(i&1);
3208   int faststore_reg_override=0;
3209   u_int hr,reglist=0;
3210   th=get_reg(i_regs->regmap,rs2[i]|64);
3211   tl=get_reg(i_regs->regmap,rs2[i]);
3212   s=get_reg(i_regs->regmap,rs1[i]);
3213   temp=get_reg(i_regs->regmap,agr);
3214   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3215   offset=imm[i];
3216   if(s>=0) {
3217     c=(i_regs->wasconst>>s)&1;
3218     if(c) {
3219       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3220       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3221     }
3222   }
3223   assert(tl>=0);
3224   assert(temp>=0);
3225   for(hr=0;hr<HOST_REGS;hr++) {
3226     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3227   }
3228   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3229   if(offset||s<0||c) addr=temp;
3230   else addr=s;
3231   if(!using_tlb) {
3232     if(!c) {
3233       #ifndef PCSX
3234       #ifdef R29_HACK
3235       // Strmnnrmn's speed hack
3236       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3237       #endif
3238       emit_cmpimm(addr,RAM_SIZE);
3239       #ifdef DESTRUCTIVE_SHIFT
3240       if(s==addr) emit_mov(s,temp);
3241       #endif
3242       #ifdef R29_HACK
3243       memtarget=1;
3244       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3245       #endif
3246       {
3247         jaddr=(int)out;
3248         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3249         // Hint to branch predictor that the branch is unlikely to be taken
3250         if(rs1[i]>=28)
3251           emit_jno_unlikely(0);
3252         else
3253         #endif
3254         emit_jno(0);
3255       }
3256       #else
3257         jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3258       #endif
3259     }
3260     else if(ram_offset&&memtarget) {
3261       emit_addimm(addr,ram_offset,HOST_TEMPREG);
3262       faststore_reg_override=HOST_TEMPREG;
3263     }
3264   }else{ // using tlb
3265     int x=0;
3266     if (opcode[i]==0x28) x=3; // SB
3267     if (opcode[i]==0x29) x=2; // SH
3268     map=get_reg(i_regs->regmap,TLREG);
3269     assert(map>=0);
3270     reglist&=~(1<<map);
3271     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3272     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3273   }
3274
3275   if (opcode[i]==0x28) { // SB
3276     if(!c||memtarget) {
3277       int x=0,a=temp;
3278 #ifdef BIG_ENDIAN_MIPS
3279       if(!c) emit_xorimm(addr,3,temp);
3280       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3281 #else
3282       if(!c) a=addr;
3283 #endif
3284       if(faststore_reg_override) a=faststore_reg_override;
3285       //gen_tlb_addr_w(temp,map);
3286       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3287       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3288     }
3289     type=STOREB_STUB;
3290   }
3291   if (opcode[i]==0x29) { // SH
3292     if(!c||memtarget) {
3293       int x=0,a=temp;
3294 #ifdef BIG_ENDIAN_MIPS
3295       if(!c) emit_xorimm(addr,2,temp);
3296       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3297 #else
3298       if(!c) a=addr;
3299 #endif
3300       if(faststore_reg_override) a=faststore_reg_override;
3301       //#ifdef
3302       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3303       //#else
3304       if(map>=0) {
3305         gen_tlb_addr_w(a,map);
3306         emit_writehword_indexed(tl,x,a);
3307       }else
3308         //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3309         emit_writehword_indexed(tl,x,a);
3310     }
3311     type=STOREH_STUB;
3312   }
3313   if (opcode[i]==0x2B) { // SW
3314     if(!c||memtarget) {
3315       int a=addr;
3316       if(faststore_reg_override) a=faststore_reg_override;
3317       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3318       emit_writeword_indexed_tlb(tl,0,a,map,temp);
3319     }
3320     type=STOREW_STUB;
3321   }
3322   if (opcode[i]==0x3F) { // SD
3323     if(!c||memtarget) {
3324       int a=addr;
3325       if(faststore_reg_override) a=faststore_reg_override;
3326       if(rs2[i]) {
3327         assert(th>=0);
3328         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3329         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3330         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3331       }else{
3332         // Store zero
3333         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3334         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3335         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3336       }
3337     }
3338     type=STORED_STUB;
3339   }
3340 #ifdef PCSX
3341   if(jaddr) {
3342     // PCSX store handlers don't check invcode again
3343     reglist|=1<<addr;
3344     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3345     jaddr=0;
3346   }
3347 #endif
3348   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3349     if(!c||memtarget) {
3350       #ifdef DESTRUCTIVE_SHIFT
3351       // The x86 shift operation is 'destructive'; it overwrites the
3352       // source register, so we need to make a copy first and use that.
3353       addr=temp;
3354       #endif
3355       #if defined(HOST_IMM8)
3356       int ir=get_reg(i_regs->regmap,INVCP);
3357       assert(ir>=0);
3358       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3359       #else
3360       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3361       #endif
3362       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3363       emit_callne(invalidate_addr_reg[addr]);
3364       #else
3365       jaddr2=(int)out;
3366       emit_jne(0);
3367       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3368       #endif
3369     }
3370   }
3371   u_int addr_val=constmap[i][s]+offset;
3372   if(jaddr) {
3373     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3374   } else if(c&&!memtarget) {
3375     inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3376   }
3377   // basic current block modification detection..
3378   // not looking back as that should be in mips cache already
3379   if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3380     SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3381     assert(i_regs->regmap==regs[i].regmap); // not delay slot
3382     if(i_regs->regmap==regs[i].regmap) {
3383       load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3384       wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3385       emit_movimm(start+i*4+4,0);
3386       emit_writeword(0,(int)&pcaddr);
3387       emit_jmp((int)do_interrupt);
3388     }
3389   }
3390   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3391   //if(opcode[i]==0x2B || opcode[i]==0x28)
3392   //if(opcode[i]==0x2B || opcode[i]==0x29)
3393   //if(opcode[i]==0x2B)
3394   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3395   {
3396     #ifdef __i386__
3397     emit_pusha();
3398     #endif
3399     #ifdef __arm__
3400     save_regs(0x100f);
3401     #endif
3402         emit_readword((int)&last_count,ECX);
3403         #ifdef __i386__
3404         if(get_reg(i_regs->regmap,CCREG)<0)
3405           emit_loadreg(CCREG,HOST_CCREG);
3406         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3407         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3408         emit_writeword(HOST_CCREG,(int)&Count);
3409         #endif
3410         #ifdef __arm__
3411         if(get_reg(i_regs->regmap,CCREG)<0)
3412           emit_loadreg(CCREG,0);
3413         else
3414           emit_mov(HOST_CCREG,0);
3415         emit_add(0,ECX,0);
3416         emit_addimm(0,2*ccadj[i],0);
3417         emit_writeword(0,(int)&Count);
3418         #endif
3419     emit_call((int)memdebug);
3420     #ifdef __i386__
3421     emit_popa();
3422     #endif
3423     #ifdef __arm__
3424     restore_regs(0x100f);
3425     #endif
3426   }/**/
3427 }
3428
3429 void storelr_assemble(int i,struct regstat *i_regs)
3430 {
3431   int s,th,tl;
3432   int temp;
3433   int temp2;
3434   int offset;
3435   int jaddr=0,jaddr2;
3436   int case1,case2,case3;
3437   int done0,done1,done2;
3438   int memtarget=0,c=0;
3439   int agr=AGEN1+(i&1);
3440   u_int hr,reglist=0;
3441   th=get_reg(i_regs->regmap,rs2[i]|64);
3442   tl=get_reg(i_regs->regmap,rs2[i]);
3443   s=get_reg(i_regs->regmap,rs1[i]);
3444   temp=get_reg(i_regs->regmap,agr);
3445   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3446   offset=imm[i];
3447   if(s>=0) {
3448     c=(i_regs->isconst>>s)&1;
3449     if(c) {
3450       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3451       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3452     }
3453   }
3454   assert(tl>=0);
3455   for(hr=0;hr<HOST_REGS;hr++) {
3456     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3457   }
3458   assert(temp>=0);
3459   if(!using_tlb) {
3460     if(!c) {
3461       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3462       if(!offset&&s!=temp) emit_mov(s,temp);
3463       jaddr=(int)out;
3464       emit_jno(0);
3465     }
3466     else
3467     {
3468       if(!memtarget||!rs1[i]) {
3469         jaddr=(int)out;
3470         emit_jmp(0);
3471       }
3472     }
3473     #ifdef RAM_OFFSET
3474     int map=get_reg(i_regs->regmap,ROREG);
3475     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3476     gen_tlb_addr_w(temp,map);
3477     #else
3478     if((u_int)rdram!=0x80000000) 
3479       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3480     #endif
3481   }else{ // using tlb
3482     int map=get_reg(i_regs->regmap,TLREG);
3483     assert(map>=0);
3484     reglist&=~(1<<map);
3485     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3486     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3487     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3488     if(!jaddr&&!memtarget) {
3489       jaddr=(int)out;
3490       emit_jmp(0);
3491     }
3492     gen_tlb_addr_w(temp,map);
3493   }
3494
3495   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3496     temp2=get_reg(i_regs->regmap,FTEMP);
3497     if(!rs2[i]) temp2=th=tl;
3498   }
3499
3500 #ifndef BIG_ENDIAN_MIPS
3501     emit_xorimm(temp,3,temp);
3502 #endif
3503   emit_testimm(temp,2);
3504   case2=(int)out;
3505   emit_jne(0);
3506   emit_testimm(temp,1);
3507   case1=(int)out;
3508   emit_jne(0);
3509   // 0
3510   if (opcode[i]==0x2A) { // SWL
3511     emit_writeword_indexed(tl,0,temp);
3512   }
3513   if (opcode[i]==0x2E) { // SWR
3514     emit_writebyte_indexed(tl,3,temp);
3515   }
3516   if (opcode[i]==0x2C) { // SDL
3517     emit_writeword_indexed(th,0,temp);
3518     if(rs2[i]) emit_mov(tl,temp2);
3519   }
3520   if (opcode[i]==0x2D) { // SDR
3521     emit_writebyte_indexed(tl,3,temp);
3522     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3523   }
3524   done0=(int)out;
3525   emit_jmp(0);
3526   // 1
3527   set_jump_target(case1,(int)out);
3528   if (opcode[i]==0x2A) { // SWL
3529     // Write 3 msb into three least significant bytes
3530     if(rs2[i]) emit_rorimm(tl,8,tl);
3531     emit_writehword_indexed(tl,-1,temp);
3532     if(rs2[i]) emit_rorimm(tl,16,tl);
3533     emit_writebyte_indexed(tl,1,temp);
3534     if(rs2[i]) emit_rorimm(tl,8,tl);
3535   }
3536   if (opcode[i]==0x2E) { // SWR
3537     // Write two lsb into two most significant bytes
3538     emit_writehword_indexed(tl,1,temp);
3539   }
3540   if (opcode[i]==0x2C) { // SDL
3541     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3542     // Write 3 msb into three least significant bytes
3543     if(rs2[i]) emit_rorimm(th,8,th);
3544     emit_writehword_indexed(th,-1,temp);
3545     if(rs2[i]) emit_rorimm(th,16,th);
3546     emit_writebyte_indexed(th,1,temp);
3547     if(rs2[i]) emit_rorimm(th,8,th);
3548   }
3549   if (opcode[i]==0x2D) { // SDR
3550     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3551     // Write two lsb into two most significant bytes
3552     emit_writehword_indexed(tl,1,temp);
3553   }
3554   done1=(int)out;
3555   emit_jmp(0);
3556   // 2
3557   set_jump_target(case2,(int)out);
3558   emit_testimm(temp,1);
3559   case3=(int)out;
3560   emit_jne(0);
3561   if (opcode[i]==0x2A) { // SWL
3562     // Write two msb into two least significant bytes
3563     if(rs2[i]) emit_rorimm(tl,16,tl);
3564     emit_writehword_indexed(tl,-2,temp);
3565     if(rs2[i]) emit_rorimm(tl,16,tl);
3566   }
3567   if (opcode[i]==0x2E) { // SWR
3568     // Write 3 lsb into three most significant bytes
3569     emit_writebyte_indexed(tl,-1,temp);
3570     if(rs2[i]) emit_rorimm(tl,8,tl);
3571     emit_writehword_indexed(tl,0,temp);
3572     if(rs2[i]) emit_rorimm(tl,24,tl);
3573   }
3574   if (opcode[i]==0x2C) { // SDL
3575     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3576     // Write two msb into two least significant bytes
3577     if(rs2[i]) emit_rorimm(th,16,th);
3578     emit_writehword_indexed(th,-2,temp);
3579     if(rs2[i]) emit_rorimm(th,16,th);
3580   }
3581   if (opcode[i]==0x2D) { // SDR
3582     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3583     // Write 3 lsb into three most significant bytes
3584     emit_writebyte_indexed(tl,-1,temp);
3585     if(rs2[i]) emit_rorimm(tl,8,tl);
3586     emit_writehword_indexed(tl,0,temp);
3587     if(rs2[i]) emit_rorimm(tl,24,tl);
3588   }
3589   done2=(int)out;
3590   emit_jmp(0);
3591   // 3
3592   set_jump_target(case3,(int)out);
3593   if (opcode[i]==0x2A) { // SWL
3594     // Write msb into least significant byte
3595     if(rs2[i]) emit_rorimm(tl,24,tl);
3596     emit_writebyte_indexed(tl,-3,temp);
3597     if(rs2[i]) emit_rorimm(tl,8,tl);
3598   }
3599   if (opcode[i]==0x2E) { // SWR
3600     // Write entire word
3601     emit_writeword_indexed(tl,-3,temp);
3602   }
3603   if (opcode[i]==0x2C) { // SDL
3604     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3605     // Write msb into least significant byte
3606     if(rs2[i]) emit_rorimm(th,24,th);
3607     emit_writebyte_indexed(th,-3,temp);
3608     if(rs2[i]) emit_rorimm(th,8,th);
3609   }
3610   if (opcode[i]==0x2D) { // SDR
3611     if(rs2[i]) emit_mov(th,temp2);
3612     // Write entire word
3613     emit_writeword_indexed(tl,-3,temp);
3614   }
3615   set_jump_target(done0,(int)out);
3616   set_jump_target(done1,(int)out);
3617   set_jump_target(done2,(int)out);
3618   if (opcode[i]==0x2C) { // SDL
3619     emit_testimm(temp,4);
3620     done0=(int)out;
3621     emit_jne(0);
3622     emit_andimm(temp,~3,temp);
3623     emit_writeword_indexed(temp2,4,temp);
3624     set_jump_target(done0,(int)out);
3625   }
3626   if (opcode[i]==0x2D) { // SDR
3627     emit_testimm(temp,4);
3628     done0=(int)out;
3629     emit_jeq(0);
3630     emit_andimm(temp,~3,temp);
3631     emit_writeword_indexed(temp2,-4,temp);
3632     set_jump_target(done0,(int)out);
3633   }
3634   if(!c||!memtarget)
3635     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3636   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3637     #ifdef RAM_OFFSET
3638     int map=get_reg(i_regs->regmap,ROREG);
3639     if(map<0) map=HOST_TEMPREG;
3640     gen_orig_addr_w(temp,map);
3641     #else
3642     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3643     #endif
3644     #if defined(HOST_IMM8)
3645     int ir=get_reg(i_regs->regmap,INVCP);
3646     assert(ir>=0);
3647     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3648     #else
3649     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3650     #endif
3651     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3652     emit_callne(invalidate_addr_reg[temp]);
3653     #else
3654     jaddr2=(int)out;
3655     emit_jne(0);
3656     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3657     #endif
3658   }
3659   /*
3660     emit_pusha();
3661     //save_regs(0x100f);
3662         emit_readword((int)&last_count,ECX);
3663         if(get_reg(i_regs->regmap,CCREG)<0)
3664           emit_loadreg(CCREG,HOST_CCREG);
3665         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3666         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3667         emit_writeword(HOST_CCREG,(int)&Count);
3668     emit_call((int)memdebug);
3669     emit_popa();
3670     //restore_regs(0x100f);
3671   /**/
3672 }
3673
3674 void c1ls_assemble(int i,struct regstat *i_regs)
3675 {
3676 #ifndef DISABLE_COP1
3677   int s,th,tl;
3678   int temp,ar;
3679   int map=-1;
3680   int offset;
3681   int c=0;
3682   int jaddr,jaddr2=0,jaddr3,type;
3683   int agr=AGEN1+(i&1);
3684   u_int hr,reglist=0;
3685   th=get_reg(i_regs->regmap,FTEMP|64);
3686   tl=get_reg(i_regs->regmap,FTEMP);
3687   s=get_reg(i_regs->regmap,rs1[i]);
3688   temp=get_reg(i_regs->regmap,agr);
3689   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3690   offset=imm[i];
3691   assert(tl>=0);
3692   assert(rs1[i]>0);
3693   assert(temp>=0);
3694   for(hr=0;hr<HOST_REGS;hr++) {
3695     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3696   }
3697   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3698   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3699   {
3700     // Loads use a temporary register which we need to save
3701     reglist|=1<<temp;
3702   }
3703   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3704     ar=temp;
3705   else // LWC1/LDC1
3706     ar=tl;
3707   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3708   //else c=(i_regs->wasconst>>s)&1;
3709   if(s>=0) c=(i_regs->wasconst>>s)&1;
3710   // Check cop1 unusable
3711   if(!cop1_usable) {
3712     signed char rs=get_reg(i_regs->regmap,CSREG);
3713     assert(rs>=0);
3714     emit_testimm(rs,0x20000000);
3715     jaddr=(int)out;
3716     emit_jeq(0);
3717     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3718     cop1_usable=1;
3719   }
3720   if (opcode[i]==0x39) { // SWC1 (get float address)
3721     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3722   }
3723   if (opcode[i]==0x3D) { // SDC1 (get double address)
3724     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3725   }
3726   // Generate address + offset
3727   if(!using_tlb) {
3728     if(!c)
3729       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3730   }
3731   else
3732   {
3733     map=get_reg(i_regs->regmap,TLREG);
3734     assert(map>=0);
3735     reglist&=~(1<<map);
3736     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3737       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3738     }
3739     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3740       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3741     }
3742   }
3743   if (opcode[i]==0x39) { // SWC1 (read float)
3744     emit_readword_indexed(0,tl,tl);
3745   }
3746   if (opcode[i]==0x3D) { // SDC1 (read double)
3747     emit_readword_indexed(4,tl,th);
3748     emit_readword_indexed(0,tl,tl);
3749   }
3750   if (opcode[i]==0x31) { // LWC1 (get target address)
3751     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3752   }
3753   if (opcode[i]==0x35) { // LDC1 (get target address)
3754     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3755   }
3756   if(!using_tlb) {
3757     if(!c) {
3758       jaddr2=(int)out;
3759       emit_jno(0);
3760     }
3761     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3762       jaddr2=(int)out;
3763       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3764     }
3765     #ifdef DESTRUCTIVE_SHIFT
3766     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3767       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3768     }
3769     #endif
3770   }else{
3771     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3772       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3773     }
3774     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3775       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3776     }
3777   }
3778   if (opcode[i]==0x31) { // LWC1
3779     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3780     //gen_tlb_addr_r(ar,map);
3781     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3782     #ifdef HOST_IMM_ADDR32
3783     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3784     else
3785     #endif
3786     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3787     type=LOADW_STUB;
3788   }
3789   if (opcode[i]==0x35) { // LDC1
3790     assert(th>=0);
3791     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3792     //gen_tlb_addr_r(ar,map);
3793     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3794     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3795     #ifdef HOST_IMM_ADDR32
3796     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3797     else
3798     #endif
3799     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3800     type=LOADD_STUB;
3801   }
3802   if (opcode[i]==0x39) { // SWC1
3803     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3804     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3805     type=STOREW_STUB;
3806   }
3807   if (opcode[i]==0x3D) { // SDC1
3808     assert(th>=0);
3809     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3810     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3811     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3812     type=STORED_STUB;
3813   }
3814   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3815     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3816       #ifndef DESTRUCTIVE_SHIFT
3817       temp=offset||c||s<0?ar:s;
3818       #endif
3819       #if defined(HOST_IMM8)
3820       int ir=get_reg(i_regs->regmap,INVCP);
3821       assert(ir>=0);
3822       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3823       #else
3824       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3825       #endif
3826       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3827       emit_callne(invalidate_addr_reg[temp]);
3828       #else
3829       jaddr3=(int)out;
3830       emit_jne(0);
3831       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3832       #endif
3833     }
3834   }
3835   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3836   if (opcode[i]==0x31) { // LWC1 (write float)
3837     emit_writeword_indexed(tl,0,temp);
3838   }
3839   if (opcode[i]==0x35) { // LDC1 (write double)
3840     emit_writeword_indexed(th,4,temp);
3841     emit_writeword_indexed(tl,0,temp);
3842   }
3843   //if(opcode[i]==0x39)
3844   /*if(opcode[i]==0x39||opcode[i]==0x31)
3845   {
3846     emit_pusha();
3847         emit_readword((int)&last_count,ECX);
3848         if(get_reg(i_regs->regmap,CCREG)<0)
3849           emit_loadreg(CCREG,HOST_CCREG);
3850         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3851         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3852         emit_writeword(HOST_CCREG,(int)&Count);
3853     emit_call((int)memdebug);
3854     emit_popa();
3855   }/**/
3856 #else
3857   cop1_unusable(i, i_regs);
3858 #endif
3859 }
3860
3861 void c2ls_assemble(int i,struct regstat *i_regs)
3862 {
3863   int s,tl;
3864   int ar;
3865   int offset;
3866   int memtarget=0,c=0;
3867   int jaddr2=0,jaddr3,type;
3868   int agr=AGEN1+(i&1);
3869   int fastio_reg_override=0;
3870   u_int hr,reglist=0;
3871   u_int copr=(source[i]>>16)&0x1f;
3872   s=get_reg(i_regs->regmap,rs1[i]);
3873   tl=get_reg(i_regs->regmap,FTEMP);
3874   offset=imm[i];
3875   assert(rs1[i]>0);
3876   assert(tl>=0);
3877   assert(!using_tlb);
3878
3879   for(hr=0;hr<HOST_REGS;hr++) {
3880     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3881   }
3882   if(i_regs->regmap[HOST_CCREG]==CCREG)
3883     reglist&=~(1<<HOST_CCREG);
3884
3885   // get the address
3886   if (opcode[i]==0x3a) { // SWC2
3887     ar=get_reg(i_regs->regmap,agr);
3888     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3889     reglist|=1<<ar;
3890   } else { // LWC2
3891     ar=tl;
3892   }
3893   if(s>=0) c=(i_regs->wasconst>>s)&1;
3894   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3895   if (!offset&&!c&&s>=0) ar=s;
3896   assert(ar>=0);
3897
3898   if (opcode[i]==0x3a) { // SWC2
3899     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3900     type=STOREW_STUB;
3901   }
3902   else
3903     type=LOADW_STUB;
3904
3905   if(c&&!memtarget) {
3906     jaddr2=(int)out;
3907     emit_jmp(0); // inline_readstub/inline_writestub?
3908   }
3909   else {
3910     if(!c) {
3911       jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3912     }
3913     else if(ram_offset&&memtarget) {
3914       emit_addimm(ar,ram_offset,HOST_TEMPREG);
3915       fastio_reg_override=HOST_TEMPREG;
3916     }
3917     if (opcode[i]==0x32) { // LWC2
3918       #ifdef HOST_IMM_ADDR32
3919       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3920       else
3921       #endif
3922       int a=ar;
3923       if(fastio_reg_override) a=fastio_reg_override;
3924       emit_readword_indexed(0,a,tl);
3925     }
3926     if (opcode[i]==0x3a) { // SWC2
3927       #ifdef DESTRUCTIVE_SHIFT
3928       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3929       #endif
3930       int a=ar;
3931       if(fastio_reg_override) a=fastio_reg_override;
3932       emit_writeword_indexed(tl,0,a);
3933     }
3934   }
3935   if(jaddr2)
3936     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3937   if(opcode[i]==0x3a) // SWC2
3938   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3939 #if defined(HOST_IMM8)
3940     int ir=get_reg(i_regs->regmap,INVCP);
3941     assert(ir>=0);
3942     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3943 #else
3944     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3945 #endif
3946     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3947     emit_callne(invalidate_addr_reg[ar]);
3948     #else
3949     jaddr3=(int)out;
3950     emit_jne(0);
3951     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3952     #endif
3953   }
3954   if (opcode[i]==0x32) { // LWC2
3955     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3956   }
3957 }
3958
3959 #ifndef multdiv_assemble
3960 void multdiv_assemble(int i,struct regstat *i_regs)
3961 {
3962   printf("Need multdiv_assemble for this architecture.\n");
3963   exit(1);
3964 }
3965 #endif
3966
3967 void mov_assemble(int i,struct regstat *i_regs)
3968 {
3969   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3970   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3971   if(rt1[i]) {
3972     signed char sh,sl,th,tl;
3973     th=get_reg(i_regs->regmap,rt1[i]|64);
3974     tl=get_reg(i_regs->regmap,rt1[i]);
3975     //assert(tl>=0);
3976     if(tl>=0) {
3977       sh=get_reg(i_regs->regmap,rs1[i]|64);
3978       sl=get_reg(i_regs->regmap,rs1[i]);
3979       if(sl>=0) emit_mov(sl,tl);
3980       else emit_loadreg(rs1[i],tl);
3981       if(th>=0) {
3982         if(sh>=0) emit_mov(sh,th);
3983         else emit_loadreg(rs1[i]|64,th);
3984       }
3985     }
3986   }
3987 }
3988
3989 #ifndef fconv_assemble
3990 void fconv_assemble(int i,struct regstat *i_regs)
3991 {
3992   printf("Need fconv_assemble for this architecture.\n");
3993   exit(1);
3994 }
3995 #endif
3996
3997 #if 0
3998 void float_assemble(int i,struct regstat *i_regs)
3999 {
4000   printf("Need float_assemble for this architecture.\n");
4001   exit(1);
4002 }
4003 #endif
4004
4005 void syscall_assemble(int i,struct regstat *i_regs)
4006 {
4007   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4008   assert(ccreg==HOST_CCREG);
4009   assert(!is_delayslot);
4010   emit_movimm(start+i*4,EAX); // Get PC
4011   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
4012   emit_jmp((int)jump_syscall_hle); // XXX
4013 }
4014
4015 void hlecall_assemble(int i,struct regstat *i_regs)
4016 {
4017   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4018   assert(ccreg==HOST_CCREG);
4019   assert(!is_delayslot);
4020   emit_movimm(start+i*4+4,0); // Get PC
4021   emit_movimm((int)psxHLEt[source[i]&7],1);
4022   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
4023   emit_jmp((int)jump_hlecall);
4024 }
4025
4026 void intcall_assemble(int i,struct regstat *i_regs)
4027 {
4028   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4029   assert(ccreg==HOST_CCREG);
4030   assert(!is_delayslot);
4031   emit_movimm(start+i*4,0); // Get PC
4032   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
4033   emit_jmp((int)jump_intcall);
4034 }
4035
4036 void ds_assemble(int i,struct regstat *i_regs)
4037 {
4038   speculate_register_values(i);
4039   is_delayslot=1;
4040   switch(itype[i]) {
4041     case ALU:
4042       alu_assemble(i,i_regs);break;
4043     case IMM16:
4044       imm16_assemble(i,i_regs);break;
4045     case SHIFT:
4046       shift_assemble(i,i_regs);break;
4047     case SHIFTIMM:
4048       shiftimm_assemble(i,i_regs);break;
4049     case LOAD:
4050       load_assemble(i,i_regs);break;
4051     case LOADLR:
4052       loadlr_assemble(i,i_regs);break;
4053     case STORE:
4054       store_assemble(i,i_regs);break;
4055     case STORELR:
4056       storelr_assemble(i,i_regs);break;
4057     case COP0:
4058       cop0_assemble(i,i_regs);break;
4059     case COP1:
4060       cop1_assemble(i,i_regs);break;
4061     case C1LS:
4062       c1ls_assemble(i,i_regs);break;
4063     case COP2:
4064       cop2_assemble(i,i_regs);break;
4065     case C2LS:
4066       c2ls_assemble(i,i_regs);break;
4067     case C2OP:
4068       c2op_assemble(i,i_regs);break;
4069     case FCONV:
4070       fconv_assemble(i,i_regs);break;
4071     case FLOAT:
4072       float_assemble(i,i_regs);break;
4073     case FCOMP:
4074       fcomp_assemble(i,i_regs);break;
4075     case MULTDIV:
4076       multdiv_assemble(i,i_regs);break;
4077     case MOV:
4078       mov_assemble(i,i_regs);break;
4079     case SYSCALL:
4080     case HLECALL:
4081     case INTCALL:
4082     case SPAN:
4083     case UJUMP:
4084     case RJUMP:
4085     case CJUMP:
4086     case SJUMP:
4087     case FJUMP:
4088       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
4089   }
4090   is_delayslot=0;
4091 }
4092
4093 // Is the branch target a valid internal jump?
4094 int internal_branch(uint64_t i_is32,int addr)
4095 {
4096   if(addr&1) return 0; // Indirect (register) jump
4097   if(addr>=start && addr<start+slen*4-4)
4098   {
4099     int t=(addr-start)>>2;
4100     // Delay slots are not valid branch targets
4101     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4102     // 64 -> 32 bit transition requires a recompile
4103     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4104     {
4105       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4106       else printf("optimizable: yes\n");
4107     }*/
4108     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4109 #ifndef FORCE32
4110     if(requires_32bit[t]&~i_is32) return 0;
4111     else
4112 #endif
4113       return 1;
4114   }
4115   return 0;
4116 }
4117
4118 #ifndef wb_invalidate
4119 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4120   uint64_t u,uint64_t uu)
4121 {
4122   int hr;
4123   for(hr=0;hr<HOST_REGS;hr++) {
4124     if(hr!=EXCLUDE_REG) {
4125       if(pre[hr]!=entry[hr]) {
4126         if(pre[hr]>=0) {
4127           if((dirty>>hr)&1) {
4128             if(get_reg(entry,pre[hr])<0) {
4129               if(pre[hr]<64) {
4130                 if(!((u>>pre[hr])&1)) {
4131                   emit_storereg(pre[hr],hr);
4132                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4133                     emit_sarimm(hr,31,hr);
4134                     emit_storereg(pre[hr]|64,hr);
4135                   }
4136                 }
4137               }else{
4138                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4139                   emit_storereg(pre[hr],hr);
4140                 }
4141               }
4142             }
4143           }
4144         }
4145       }
4146     }
4147   }
4148   // Move from one register to another (no writeback)
4149   for(hr=0;hr<HOST_REGS;hr++) {
4150     if(hr!=EXCLUDE_REG) {
4151       if(pre[hr]!=entry[hr]) {
4152         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4153           int nr;
4154           if((nr=get_reg(entry,pre[hr]))>=0) {
4155             emit_mov(hr,nr);
4156           }
4157         }
4158       }
4159     }
4160   }
4161 }
4162 #endif
4163
4164 // Load the specified registers
4165 // This only loads the registers given as arguments because
4166 // we don't want to load things that will be overwritten
4167 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4168 {
4169   int hr;
4170   // Load 32-bit regs
4171   for(hr=0;hr<HOST_REGS;hr++) {
4172     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4173       if(entry[hr]!=regmap[hr]) {
4174         if(regmap[hr]==rs1||regmap[hr]==rs2)
4175         {
4176           if(regmap[hr]==0) {
4177             emit_zeroreg(hr);
4178           }
4179           else
4180           {
4181             emit_loadreg(regmap[hr],hr);
4182           }
4183         }
4184       }
4185     }
4186   }
4187   //Load 64-bit regs
4188   for(hr=0;hr<HOST_REGS;hr++) {
4189     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4190       if(entry[hr]!=regmap[hr]) {
4191         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4192         {
4193           assert(regmap[hr]!=64);
4194           if((is32>>(regmap[hr]&63))&1) {
4195             int lr=get_reg(regmap,regmap[hr]-64);
4196             if(lr>=0)
4197               emit_sarimm(lr,31,hr);
4198             else
4199               emit_loadreg(regmap[hr],hr);
4200           }
4201           else
4202           {
4203             emit_loadreg(regmap[hr],hr);
4204           }
4205         }
4206       }
4207     }
4208   }
4209 }
4210
4211 // Load registers prior to the start of a loop
4212 // so that they are not loaded within the loop
4213 static void loop_preload(signed char pre[],signed char entry[])
4214 {
4215   int hr;
4216   for(hr=0;hr<HOST_REGS;hr++) {
4217     if(hr!=EXCLUDE_REG) {
4218       if(pre[hr]!=entry[hr]) {
4219         if(entry[hr]>=0) {
4220           if(get_reg(pre,entry[hr])<0) {
4221             assem_debug("loop preload:\n");
4222             //printf("loop preload: %d\n",hr);
4223             if(entry[hr]==0) {
4224               emit_zeroreg(hr);
4225             }
4226             else if(entry[hr]<TEMPREG)
4227             {
4228               emit_loadreg(entry[hr],hr);
4229             }
4230             else if(entry[hr]-64<TEMPREG)
4231             {
4232               emit_loadreg(entry[hr],hr);
4233             }
4234           }
4235         }
4236       }
4237     }
4238   }
4239 }
4240
4241 // Generate address for load/store instruction
4242 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4243 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4244 {
4245   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4246     int ra=-1;
4247     int agr=AGEN1+(i&1);
4248     int mgr=MGEN1+(i&1);
4249     if(itype[i]==LOAD) {
4250       ra=get_reg(i_regs->regmap,rt1[i]);
4251       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4252       assert(ra>=0);
4253     }
4254     if(itype[i]==LOADLR) {
4255       ra=get_reg(i_regs->regmap,FTEMP);
4256     }
4257     if(itype[i]==STORE||itype[i]==STORELR) {
4258       ra=get_reg(i_regs->regmap,agr);
4259       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4260     }
4261     if(itype[i]==C1LS||itype[i]==C2LS) {
4262       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4263         ra=get_reg(i_regs->regmap,FTEMP);
4264       else { // SWC1/SDC1/SWC2/SDC2
4265         ra=get_reg(i_regs->regmap,agr);
4266         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4267       }
4268     }
4269     int rs=get_reg(i_regs->regmap,rs1[i]);
4270     int rm=get_reg(i_regs->regmap,TLREG);
4271     if(ra>=0) {
4272       int offset=imm[i];
4273       int c=(i_regs->wasconst>>rs)&1;
4274       if(rs1[i]==0) {
4275         // Using r0 as a base address
4276         /*if(rm>=0) {
4277           if(!entry||entry[rm]!=mgr) {
4278             generate_map_const(offset,rm);
4279           } // else did it in the previous cycle
4280         }*/
4281         if(!entry||entry[ra]!=agr) {
4282           if (opcode[i]==0x22||opcode[i]==0x26) {
4283             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4284           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4285             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4286           }else{
4287             emit_movimm(offset,ra);
4288           }
4289         } // else did it in the previous cycle
4290       }
4291       else if(rs<0) {
4292         if(!entry||entry[ra]!=rs1[i])
4293           emit_loadreg(rs1[i],ra);
4294         //if(!entry||entry[ra]!=rs1[i])
4295         //  printf("poor load scheduling!\n");
4296       }
4297       else if(c) {
4298 #ifndef DISABLE_TLB
4299         if(rm>=0) {
4300           if(!entry||entry[rm]!=mgr) {
4301             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4302               // Stores to memory go thru the mapper to detect self-modifying
4303               // code, loads don't.
4304               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4305                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4306                 generate_map_const(constmap[i][rs]+offset,rm);
4307             }else{
4308               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4309                 generate_map_const(constmap[i][rs]+offset,rm);
4310             }
4311           }
4312         }
4313 #endif
4314         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4315           if(!entry||entry[ra]!=agr) {
4316             if (opcode[i]==0x22||opcode[i]==0x26) {
4317               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4318             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4319               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4320             }else{
4321               #ifdef HOST_IMM_ADDR32
4322               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4323                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4324               #endif
4325               emit_movimm(constmap[i][rs]+offset,ra);
4326               regs[i].loadedconst|=1<<ra;
4327             }
4328           } // else did it in the previous cycle
4329         } // else load_consts already did it
4330       }
4331       if(offset&&!c&&rs1[i]) {
4332         if(rs>=0) {
4333           emit_addimm(rs,offset,ra);
4334         }else{
4335           emit_addimm(ra,offset,ra);
4336         }
4337       }
4338     }
4339   }
4340   // Preload constants for next instruction
4341   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4342     int agr,ra;
4343     #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
4344     // Mapper entry
4345     agr=MGEN1+((i+1)&1);
4346     ra=get_reg(i_regs->regmap,agr);
4347     if(ra>=0) {
4348       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4349       int offset=imm[i+1];
4350       int c=(regs[i+1].wasconst>>rs)&1;
4351       if(c) {
4352         if(itype[i+1]==STORE||itype[i+1]==STORELR
4353            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4354           // Stores to memory go thru the mapper to detect self-modifying
4355           // code, loads don't.
4356           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4357              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4358             generate_map_const(constmap[i+1][rs]+offset,ra);
4359         }else{
4360           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4361             generate_map_const(constmap[i+1][rs]+offset,ra);
4362         }
4363       }
4364       /*else if(rs1[i]==0) {
4365         generate_map_const(offset,ra);
4366       }*/
4367     }
4368     #endif
4369     // Actual address
4370     agr=AGEN1+((i+1)&1);
4371     ra=get_reg(i_regs->regmap,agr);
4372     if(ra>=0) {
4373       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4374       int offset=imm[i+1];
4375       int c=(regs[i+1].wasconst>>rs)&1;
4376       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4377         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4378           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4379         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4380           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4381         }else{
4382           #ifdef HOST_IMM_ADDR32
4383           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4384              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4385           #endif
4386           emit_movimm(constmap[i+1][rs]+offset,ra);
4387           regs[i+1].loadedconst|=1<<ra;
4388         }
4389       }
4390       else if(rs1[i+1]==0) {
4391         // Using r0 as a base address
4392         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4393           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4394         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4395           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4396         }else{
4397           emit_movimm(offset,ra);
4398         }
4399       }
4400     }
4401   }
4402 }
4403
4404 int get_final_value(int hr, int i, int *value)
4405 {
4406   int reg=regs[i].regmap[hr];
4407   while(i<slen-1) {
4408     if(regs[i+1].regmap[hr]!=reg) break;
4409     if(!((regs[i+1].isconst>>hr)&1)) break;
4410     if(bt[i+1]) break;
4411     i++;
4412   }
4413   if(i<slen-1) {
4414     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4415       *value=constmap[i][hr];
4416       return 1;
4417     }
4418     if(!bt[i+1]) {
4419       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4420         // Load in delay slot, out-of-order execution
4421         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4422         {
4423           #ifdef HOST_IMM_ADDR32
4424           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4425           #endif
4426           // Precompute load address
4427           *value=constmap[i][hr]+imm[i+2];
4428           return 1;
4429         }
4430       }
4431       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4432       {
4433         #ifdef HOST_IMM_ADDR32
4434         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4435         #endif
4436         // Precompute load address
4437         *value=constmap[i][hr]+imm[i+1];
4438         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4439         return 1;
4440       }
4441     }
4442   }
4443   *value=constmap[i][hr];
4444   //printf("c=%x\n",(int)constmap[i][hr]);
4445   if(i==slen-1) return 1;
4446   if(reg<64) {
4447     return !((unneeded_reg[i+1]>>reg)&1);
4448   }else{
4449     return !((unneeded_reg_upper[i+1]>>reg)&1);
4450   }
4451 }
4452
4453 // Load registers with known constants
4454 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4455 {
4456   int hr,hr2;
4457   // propagate loaded constant flags
4458   if(i==0||bt[i])
4459     regs[i].loadedconst=0;
4460   else {
4461     for(hr=0;hr<HOST_REGS;hr++) {
4462       if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4463          &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4464       {
4465         regs[i].loadedconst|=1<<hr;
4466       }
4467     }
4468   }
4469   // Load 32-bit regs
4470   for(hr=0;hr<HOST_REGS;hr++) {
4471     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4472       //if(entry[hr]!=regmap[hr]) {
4473       if(!((regs[i].loadedconst>>hr)&1)) {
4474         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4475           int value,similar=0;
4476           if(get_final_value(hr,i,&value)) {
4477             // see if some other register has similar value
4478             for(hr2=0;hr2<HOST_REGS;hr2++) {
4479               if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4480                 if(is_similar_value(value,constmap[i][hr2])) {
4481                   similar=1;
4482                   break;
4483                 }
4484               }
4485             }
4486             if(similar) {
4487               int value2;
4488               if(get_final_value(hr2,i,&value2)) // is this needed?
4489                 emit_movimm_from(value2,hr2,value,hr);
4490               else
4491                 emit_movimm(value,hr);
4492             }
4493             else if(value==0) {
4494               emit_zeroreg(hr);
4495             }
4496             else {
4497               emit_movimm(value,hr);
4498             }
4499           }
4500           regs[i].loadedconst|=1<<hr;
4501         }
4502       }
4503     }
4504   }
4505   // Load 64-bit regs
4506   for(hr=0;hr<HOST_REGS;hr++) {
4507     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4508       //if(entry[hr]!=regmap[hr]) {
4509       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4510         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4511           if((is32>>(regmap[hr]&63))&1) {
4512             int lr=get_reg(regmap,regmap[hr]-64);
4513             assert(lr>=0);
4514             emit_sarimm(lr,31,hr);
4515           }
4516           else
4517           {
4518             int value;
4519             if(get_final_value(hr,i,&value)) {
4520               if(value==0) {
4521                 emit_zeroreg(hr);
4522               }
4523               else {
4524                 emit_movimm(value,hr);
4525               }
4526             }
4527           }
4528         }
4529       }
4530     }
4531   }
4532 }
4533 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4534 {
4535   int hr;
4536   // Load 32-bit regs
4537   for(hr=0;hr<HOST_REGS;hr++) {
4538     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4539       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4540         int value=constmap[i][hr];
4541         if(value==0) {
4542           emit_zeroreg(hr);
4543         }
4544         else {
4545           emit_movimm(value,hr);
4546         }
4547       }
4548     }
4549   }
4550   // Load 64-bit regs
4551   for(hr=0;hr<HOST_REGS;hr++) {
4552     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4553       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4554         if((is32>>(regmap[hr]&63))&1) {
4555           int lr=get_reg(regmap,regmap[hr]-64);
4556           assert(lr>=0);
4557           emit_sarimm(lr,31,hr);
4558         }
4559         else
4560         {
4561           int value=constmap[i][hr];
4562           if(value==0) {
4563             emit_zeroreg(hr);
4564           }
4565           else {
4566             emit_movimm(value,hr);
4567           }
4568         }
4569       }
4570     }
4571   }
4572 }
4573
4574 // Write out all dirty registers (except cycle count)
4575 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4576 {
4577   int hr;
4578   for(hr=0;hr<HOST_REGS;hr++) {
4579     if(hr!=EXCLUDE_REG) {
4580       if(i_regmap[hr]>0) {
4581         if(i_regmap[hr]!=CCREG) {
4582           if((i_dirty>>hr)&1) {
4583             if(i_regmap[hr]<64) {
4584               emit_storereg(i_regmap[hr],hr);
4585 #ifndef FORCE32
4586               if( ((i_is32>>i_regmap[hr])&1) ) {
4587                 #ifdef DESTRUCTIVE_WRITEBACK
4588                 emit_sarimm(hr,31,hr);
4589                 emit_storereg(i_regmap[hr]|64,hr);
4590                 #else
4591                 emit_sarimm(hr,31,HOST_TEMPREG);
4592                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4593                 #endif
4594               }
4595 #endif
4596             }else{
4597               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4598                 emit_storereg(i_regmap[hr],hr);
4599               }
4600             }
4601           }
4602         }
4603       }
4604     }
4605   }
4606 }
4607 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4608 // This writes the registers not written by store_regs_bt
4609 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4610 {
4611   int hr;
4612   int t=(addr-start)>>2;
4613   for(hr=0;hr<HOST_REGS;hr++) {
4614     if(hr!=EXCLUDE_REG) {
4615       if(i_regmap[hr]>0) {
4616         if(i_regmap[hr]!=CCREG) {
4617           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4618             if((i_dirty>>hr)&1) {
4619               if(i_regmap[hr]<64) {
4620                 emit_storereg(i_regmap[hr],hr);
4621 #ifndef FORCE32
4622                 if( ((i_is32>>i_regmap[hr])&1) ) {
4623                   #ifdef DESTRUCTIVE_WRITEBACK
4624                   emit_sarimm(hr,31,hr);
4625                   emit_storereg(i_regmap[hr]|64,hr);
4626                   #else
4627                   emit_sarimm(hr,31,HOST_TEMPREG);
4628                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4629                   #endif
4630                 }
4631 #endif
4632               }else{
4633                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4634                   emit_storereg(i_regmap[hr],hr);
4635                 }
4636               }
4637             }
4638           }
4639         }
4640       }
4641     }
4642   }
4643 }
4644
4645 // Load all registers (except cycle count)
4646 void load_all_regs(signed char i_regmap[])
4647 {
4648   int hr;
4649   for(hr=0;hr<HOST_REGS;hr++) {
4650     if(hr!=EXCLUDE_REG) {
4651       if(i_regmap[hr]==0) {
4652         emit_zeroreg(hr);
4653       }
4654       else
4655       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4656       {
4657         emit_loadreg(i_regmap[hr],hr);
4658       }
4659     }
4660   }
4661 }
4662
4663 // Load all current registers also needed by next instruction
4664 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4665 {
4666   int hr;
4667   for(hr=0;hr<HOST_REGS;hr++) {
4668     if(hr!=EXCLUDE_REG) {
4669       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4670         if(i_regmap[hr]==0) {
4671           emit_zeroreg(hr);
4672         }
4673         else
4674         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4675         {
4676           emit_loadreg(i_regmap[hr],hr);
4677         }
4678       }
4679     }
4680   }
4681 }
4682
4683 // Load all regs, storing cycle count if necessary
4684 void load_regs_entry(int t)
4685 {
4686   int hr;
4687   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4688   else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4689   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4690     emit_storereg(CCREG,HOST_CCREG);
4691   }
4692   // Load 32-bit regs
4693   for(hr=0;hr<HOST_REGS;hr++) {
4694     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4695       if(regs[t].regmap_entry[hr]==0) {
4696         emit_zeroreg(hr);
4697       }
4698       else if(regs[t].regmap_entry[hr]!=CCREG)
4699       {
4700         emit_loadreg(regs[t].regmap_entry[hr],hr);
4701       }
4702     }
4703   }
4704   // Load 64-bit regs
4705   for(hr=0;hr<HOST_REGS;hr++) {
4706     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4707       assert(regs[t].regmap_entry[hr]!=64);
4708       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4709         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4710         if(lr<0) {
4711           emit_loadreg(regs[t].regmap_entry[hr],hr);
4712         }
4713         else
4714         {
4715           emit_sarimm(lr,31,hr);
4716         }
4717       }
4718       else
4719       {
4720         emit_loadreg(regs[t].regmap_entry[hr],hr);
4721       }
4722     }
4723   }
4724 }
4725
4726 // Store dirty registers prior to branch
4727 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4728 {
4729   if(internal_branch(i_is32,addr))
4730   {
4731     int t=(addr-start)>>2;
4732     int hr;
4733     for(hr=0;hr<HOST_REGS;hr++) {
4734       if(hr!=EXCLUDE_REG) {
4735         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4736           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4737             if((i_dirty>>hr)&1) {
4738               if(i_regmap[hr]<64) {
4739                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4740                   emit_storereg(i_regmap[hr],hr);
4741                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4742                     #ifdef DESTRUCTIVE_WRITEBACK
4743                     emit_sarimm(hr,31,hr);
4744                     emit_storereg(i_regmap[hr]|64,hr);
4745                     #else
4746                     emit_sarimm(hr,31,HOST_TEMPREG);
4747                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4748                     #endif
4749                   }
4750                 }
4751               }else{
4752                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4753                   emit_storereg(i_regmap[hr],hr);
4754                 }
4755               }
4756             }
4757           }
4758         }
4759       }
4760     }
4761   }
4762   else
4763   {
4764     // Branch out of this block, write out all dirty regs
4765     wb_dirtys(i_regmap,i_is32,i_dirty);
4766   }
4767 }
4768
4769 // Load all needed registers for branch target
4770 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4771 {
4772   //if(addr>=start && addr<(start+slen*4))
4773   if(internal_branch(i_is32,addr))
4774   {
4775     int t=(addr-start)>>2;
4776     int hr;
4777     // Store the cycle count before loading something else
4778     if(i_regmap[HOST_CCREG]!=CCREG) {
4779       assert(i_regmap[HOST_CCREG]==-1);
4780     }
4781     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4782       emit_storereg(CCREG,HOST_CCREG);
4783     }
4784     // Load 32-bit regs
4785     for(hr=0;hr<HOST_REGS;hr++) {
4786       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4787         #ifdef DESTRUCTIVE_WRITEBACK
4788         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4789         #else
4790         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4791         #endif
4792           if(regs[t].regmap_entry[hr]==0) {
4793             emit_zeroreg(hr);
4794           }
4795           else if(regs[t].regmap_entry[hr]!=CCREG)
4796           {
4797             emit_loadreg(regs[t].regmap_entry[hr],hr);
4798           }
4799         }
4800       }
4801     }
4802     //Load 64-bit regs
4803     for(hr=0;hr<HOST_REGS;hr++) {
4804       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4805         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4806           assert(regs[t].regmap_entry[hr]!=64);
4807           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4808             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4809             if(lr<0) {
4810               emit_loadreg(regs[t].regmap_entry[hr],hr);
4811             }
4812             else
4813             {
4814               emit_sarimm(lr,31,hr);
4815             }
4816           }
4817           else
4818           {
4819             emit_loadreg(regs[t].regmap_entry[hr],hr);
4820           }
4821         }
4822         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4823           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4824           assert(lr>=0);
4825           emit_sarimm(lr,31,hr);
4826         }
4827       }
4828     }
4829   }
4830 }
4831
4832 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4833 {
4834   if(addr>=start && addr<start+slen*4-4)
4835   {
4836     int t=(addr-start)>>2;
4837     int hr;
4838     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4839     for(hr=0;hr<HOST_REGS;hr++)
4840     {
4841       if(hr!=EXCLUDE_REG)
4842       {
4843         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4844         {
4845           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4846           {
4847             return 0;
4848           }
4849           else 
4850           if((i_dirty>>hr)&1)
4851           {
4852             if(i_regmap[hr]<TEMPREG)
4853             {
4854               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4855                 return 0;
4856             }
4857             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4858             {
4859               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4860                 return 0;
4861             }
4862           }
4863         }
4864         else // Same register but is it 32-bit or dirty?
4865         if(i_regmap[hr]>=0)
4866         {
4867           if(!((regs[t].dirty>>hr)&1))
4868           {
4869             if((i_dirty>>hr)&1)
4870             {
4871               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4872               {
4873                 //printf("%x: dirty no match\n",addr);
4874                 return 0;
4875               }
4876             }
4877           }
4878           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4879           {
4880             //printf("%x: is32 no match\n",addr);
4881             return 0;
4882           }
4883         }
4884       }
4885     }
4886     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4887 #ifndef FORCE32
4888     if(requires_32bit[t]&~i_is32) return 0;
4889 #endif
4890     // Delay slots are not valid branch targets
4891     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4892     // Delay slots require additional processing, so do not match
4893     if(is_ds[t]) return 0;
4894   }
4895   else
4896   {
4897     int hr;
4898     for(hr=0;hr<HOST_REGS;hr++)
4899     {
4900       if(hr!=EXCLUDE_REG)
4901       {
4902         if(i_regmap[hr]>=0)
4903         {
4904           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4905           {
4906             if((i_dirty>>hr)&1)
4907             {
4908               return 0;
4909             }
4910           }
4911         }
4912       }
4913     }
4914   }
4915   return 1;
4916 }
4917
4918 // Used when a branch jumps into the delay slot of another branch
4919 void ds_assemble_entry(int i)
4920 {
4921   int t=(ba[i]-start)>>2;
4922   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4923   assem_debug("Assemble delay slot at %x\n",ba[i]);
4924   assem_debug("<->\n");
4925   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4926     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4927   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4928   address_generation(t,&regs[t],regs[t].regmap_entry);
4929   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4930     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4931   cop1_usable=0;
4932   is_delayslot=0;
4933   switch(itype[t]) {
4934     case ALU:
4935       alu_assemble(t,&regs[t]);break;
4936     case IMM16:
4937       imm16_assemble(t,&regs[t]);break;
4938     case SHIFT:
4939       shift_assemble(t,&regs[t]);break;
4940     case SHIFTIMM:
4941       shiftimm_assemble(t,&regs[t]);break;
4942     case LOAD:
4943       load_assemble(t,&regs[t]);break;
4944     case LOADLR:
4945       loadlr_assemble(t,&regs[t]);break;
4946     case STORE:
4947       store_assemble(t,&regs[t]);break;
4948     case STORELR:
4949       storelr_assemble(t,&regs[t]);break;
4950     case COP0:
4951       cop0_assemble(t,&regs[t]);break;
4952     case COP1:
4953       cop1_assemble(t,&regs[t]);break;
4954     case C1LS:
4955       c1ls_assemble(t,&regs[t]);break;
4956     case COP2:
4957       cop2_assemble(t,&regs[t]);break;
4958     case C2LS:
4959       c2ls_assemble(t,&regs[t]);break;
4960     case C2OP:
4961       c2op_assemble(t,&regs[t]);break;
4962     case FCONV:
4963       fconv_assemble(t,&regs[t]);break;
4964     case FLOAT:
4965       float_assemble(t,&regs[t]);break;
4966     case FCOMP:
4967       fcomp_assemble(t,&regs[t]);break;
4968     case MULTDIV:
4969       multdiv_assemble(t,&regs[t]);break;
4970     case MOV:
4971       mov_assemble(t,&regs[t]);break;
4972     case SYSCALL:
4973     case HLECALL:
4974     case INTCALL:
4975     case SPAN:
4976     case UJUMP:
4977     case RJUMP:
4978     case CJUMP:
4979     case SJUMP:
4980     case FJUMP:
4981       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
4982   }
4983   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4984   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4985   if(internal_branch(regs[t].is32,ba[i]+4))
4986     assem_debug("branch: internal\n");
4987   else
4988     assem_debug("branch: external\n");
4989   assert(internal_branch(regs[t].is32,ba[i]+4));
4990   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4991   emit_jmp(0);
4992 }
4993
4994 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4995 {
4996   int count;
4997   int jaddr;
4998   int idle=0;
4999   int t=0;
5000   if(itype[i]==RJUMP)
5001   {
5002     *adj=0;
5003   }
5004   //if(ba[i]>=start && ba[i]<(start+slen*4))
5005   if(internal_branch(branch_regs[i].is32,ba[i]))
5006   {
5007     t=(ba[i]-start)>>2;
5008     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
5009     else *adj=ccadj[t];
5010   }
5011   else
5012   {
5013     *adj=0;
5014   }
5015   count=ccadj[i];
5016   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
5017     // Idle loop
5018     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
5019     idle=(int)out;
5020     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
5021     emit_andimm(HOST_CCREG,3,HOST_CCREG);
5022     jaddr=(int)out;
5023     emit_jmp(0);
5024   }
5025   else if(*adj==0||invert) {
5026     int cycles=CLOCK_ADJUST(count+2);
5027     // faster loop HACK
5028     if (t&&*adj) {
5029       int rel=t-i;
5030       if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
5031         cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
5032     }
5033     emit_addimm_and_set_flags(cycles,HOST_CCREG);
5034     jaddr=(int)out;
5035     emit_jns(0);
5036   }
5037   else
5038   {
5039     emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
5040     jaddr=(int)out;
5041     emit_jns(0);
5042   }
5043   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
5044 }
5045
5046 void do_ccstub(int n)
5047 {
5048   literal_pool(256);
5049   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
5050   set_jump_target(stubs[n][1],(int)out);
5051   int i=stubs[n][4];
5052   if(stubs[n][6]==NULLDS) {
5053     // Delay slot instruction is nullified ("likely" branch)
5054     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5055   }
5056   else if(stubs[n][6]!=TAKEN) {
5057     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
5058   }
5059   else {
5060     if(internal_branch(branch_regs[i].is32,ba[i]))
5061       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5062   }
5063   if(stubs[n][5]!=-1)
5064   {
5065     // Save PC as return address
5066     emit_movimm(stubs[n][5],EAX);
5067     emit_writeword(EAX,(int)&pcaddr);
5068   }
5069   else
5070   {
5071     // Return address depends on which way the branch goes
5072     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5073     {
5074       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5075       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5076       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5077       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5078       if(rs1[i]==0)
5079       {
5080         s1l=s2l;s1h=s2h;
5081         s2l=s2h=-1;
5082       }
5083       else if(rs2[i]==0)
5084       {
5085         s2l=s2h=-1;
5086       }
5087       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5088         s1h=s2h=-1;
5089       }
5090       assert(s1l>=0);
5091       #ifdef DESTRUCTIVE_WRITEBACK
5092       if(rs1[i]) {
5093         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5094           emit_loadreg(rs1[i],s1l);
5095       } 
5096       else {
5097         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5098           emit_loadreg(rs2[i],s1l);
5099       }
5100       if(s2l>=0)
5101         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5102           emit_loadreg(rs2[i],s2l);
5103       #endif
5104       int hr=0;
5105       int addr=-1,alt=-1,ntaddr=-1;
5106       while(hr<HOST_REGS)
5107       {
5108         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5109            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5110            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5111         {
5112           addr=hr++;break;
5113         }
5114         hr++;
5115       }
5116       while(hr<HOST_REGS)
5117       {
5118         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5119            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5120            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5121         {
5122           alt=hr++;break;
5123         }
5124         hr++;
5125       }
5126       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5127       {
5128         while(hr<HOST_REGS)
5129         {
5130           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5131              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5132              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5133           {
5134             ntaddr=hr;break;
5135           }
5136           hr++;
5137         }
5138         assert(hr<HOST_REGS);
5139       }
5140       if((opcode[i]&0x2f)==4) // BEQ
5141       {
5142         #ifdef HAVE_CMOV_IMM
5143         if(s1h<0) {
5144           if(s2l>=0) emit_cmp(s1l,s2l);
5145           else emit_test(s1l,s1l);
5146           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5147         }
5148         else
5149         #endif
5150         {
5151           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5152           if(s1h>=0) {
5153             if(s2h>=0) emit_cmp(s1h,s2h);
5154             else emit_test(s1h,s1h);
5155             emit_cmovne_reg(alt,addr);
5156           }
5157           if(s2l>=0) emit_cmp(s1l,s2l);
5158           else emit_test(s1l,s1l);
5159           emit_cmovne_reg(alt,addr);
5160         }
5161       }
5162       if((opcode[i]&0x2f)==5) // BNE
5163       {
5164         #ifdef HAVE_CMOV_IMM
5165         if(s1h<0) {
5166           if(s2l>=0) emit_cmp(s1l,s2l);
5167           else emit_test(s1l,s1l);
5168           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5169         }
5170         else
5171         #endif
5172         {
5173           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5174           if(s1h>=0) {
5175             if(s2h>=0) emit_cmp(s1h,s2h);
5176             else emit_test(s1h,s1h);
5177             emit_cmovne_reg(alt,addr);
5178           }
5179           if(s2l>=0) emit_cmp(s1l,s2l);
5180           else emit_test(s1l,s1l);
5181           emit_cmovne_reg(alt,addr);
5182         }
5183       }
5184       if((opcode[i]&0x2f)==6) // BLEZ
5185       {
5186         //emit_movimm(ba[i],alt);
5187         //emit_movimm(start+i*4+8,addr);
5188         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5189         emit_cmpimm(s1l,1);
5190         if(s1h>=0) emit_mov(addr,ntaddr);
5191         emit_cmovl_reg(alt,addr);
5192         if(s1h>=0) {
5193           emit_test(s1h,s1h);
5194           emit_cmovne_reg(ntaddr,addr);
5195           emit_cmovs_reg(alt,addr);
5196         }
5197       }
5198       if((opcode[i]&0x2f)==7) // BGTZ
5199       {
5200         //emit_movimm(ba[i],addr);
5201         //emit_movimm(start+i*4+8,ntaddr);
5202         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5203         emit_cmpimm(s1l,1);
5204         if(s1h>=0) emit_mov(addr,alt);
5205         emit_cmovl_reg(ntaddr,addr);
5206         if(s1h>=0) {
5207           emit_test(s1h,s1h);
5208           emit_cmovne_reg(alt,addr);
5209           emit_cmovs_reg(ntaddr,addr);
5210         }
5211       }
5212       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5213       {
5214         //emit_movimm(ba[i],alt);
5215         //emit_movimm(start+i*4+8,addr);
5216         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5217         if(s1h>=0) emit_test(s1h,s1h);
5218         else emit_test(s1l,s1l);
5219         emit_cmovs_reg(alt,addr);
5220       }
5221       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5222       {
5223         //emit_movimm(ba[i],addr);
5224         //emit_movimm(start+i*4+8,alt);
5225         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5226         if(s1h>=0) emit_test(s1h,s1h);
5227         else emit_test(s1l,s1l);
5228         emit_cmovs_reg(alt,addr);
5229       }
5230       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5231         if(source[i]&0x10000) // BC1T
5232         {
5233           //emit_movimm(ba[i],alt);
5234           //emit_movimm(start+i*4+8,addr);
5235           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5236           emit_testimm(s1l,0x800000);
5237           emit_cmovne_reg(alt,addr);
5238         }
5239         else // BC1F
5240         {
5241           //emit_movimm(ba[i],addr);
5242           //emit_movimm(start+i*4+8,alt);
5243           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5244           emit_testimm(s1l,0x800000);
5245           emit_cmovne_reg(alt,addr);
5246         }
5247       }
5248       emit_writeword(addr,(int)&pcaddr);
5249     }
5250     else
5251     if(itype[i]==RJUMP)
5252     {
5253       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5254       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5255         r=get_reg(branch_regs[i].regmap,RTEMP);
5256       }
5257       emit_writeword(r,(int)&pcaddr);
5258     }
5259     else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
5260   }
5261   // Update cycle count
5262   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5263   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
5264   emit_call((int)cc_interrupt);
5265   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
5266   if(stubs[n][6]==TAKEN) {
5267     if(internal_branch(branch_regs[i].is32,ba[i]))
5268       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5269     else if(itype[i]==RJUMP) {
5270       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5271         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5272       else
5273         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5274     }
5275   }else if(stubs[n][6]==NOTTAKEN) {
5276     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5277     else load_all_regs(branch_regs[i].regmap);
5278   }else if(stubs[n][6]==NULLDS) {
5279     // Delay slot instruction is nullified ("likely" branch)
5280     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5281     else load_all_regs(regs[i].regmap);
5282   }else{
5283     load_all_regs(branch_regs[i].regmap);
5284   }
5285   emit_jmp(stubs[n][2]); // return address
5286   
5287   /* This works but uses a lot of memory...
5288   emit_readword((int)&last_count,ECX);
5289   emit_add(HOST_CCREG,ECX,EAX);
5290   emit_writeword(EAX,(int)&Count);
5291   emit_call((int)gen_interupt);
5292   emit_readword((int)&Count,HOST_CCREG);
5293   emit_readword((int)&next_interupt,EAX);
5294   emit_readword((int)&pending_exception,EBX);
5295   emit_writeword(EAX,(int)&last_count);
5296   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5297   emit_test(EBX,EBX);
5298   int jne_instr=(int)out;
5299   emit_jne(0);
5300   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5301   load_all_regs(branch_regs[i].regmap);
5302   emit_jmp(stubs[n][2]); // return address
5303   set_jump_target(jne_instr,(int)out);
5304   emit_readword((int)&pcaddr,EAX);
5305   // Call get_addr_ht instead of doing the hash table here.
5306   // This code is executed infrequently and takes up a lot of space
5307   // so smaller is better.
5308   emit_storereg(CCREG,HOST_CCREG);
5309   emit_pushreg(EAX);
5310   emit_call((int)get_addr_ht);
5311   emit_loadreg(CCREG,HOST_CCREG);
5312   emit_addimm(ESP,4,ESP);
5313   emit_jmpreg(EAX);*/
5314 }
5315
5316 add_to_linker(int addr,int target,int ext)
5317 {
5318   link_addr[linkcount][0]=addr;
5319   link_addr[linkcount][1]=target;
5320   link_addr[linkcount][2]=ext;  
5321   linkcount++;
5322 }
5323
5324 static void ujump_assemble_write_ra(int i)
5325 {
5326   int rt;
5327   unsigned int return_address;
5328   rt=get_reg(branch_regs[i].regmap,31);
5329   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5330   //assert(rt>=0);
5331   return_address=start+i*4+8;
5332   if(rt>=0) {
5333     #ifdef USE_MINI_HT
5334     if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5335       int temp=-1; // note: must be ds-safe
5336       #ifdef HOST_TEMPREG
5337       temp=HOST_TEMPREG;
5338       #endif
5339       if(temp>=0) do_miniht_insert(return_address,rt,temp);
5340       else emit_movimm(return_address,rt);
5341     }
5342     else
5343     #endif
5344     {
5345       #ifdef REG_PREFETCH
5346       if(temp>=0) 
5347       {
5348         if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5349       }
5350       #endif
5351       emit_movimm(return_address,rt); // PC into link register
5352       #ifdef IMM_PREFETCH
5353       emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5354       #endif
5355     }
5356   }
5357 }
5358
5359 void ujump_assemble(int i,struct regstat *i_regs)
5360 {
5361   signed char *i_regmap=i_regs->regmap;
5362   int ra_done=0;
5363   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5364   address_generation(i+1,i_regs,regs[i].regmap_entry);
5365   #ifdef REG_PREFETCH
5366   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5367   if(rt1[i]==31&&temp>=0) 
5368   {
5369     int return_address=start+i*4+8;
5370     if(get_reg(branch_regs[i].regmap,31)>0) 
5371     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5372   }
5373   #endif
5374   if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5375     ujump_assemble_write_ra(i); // writeback ra for DS
5376     ra_done=1;
5377   }
5378   ds_assemble(i+1,i_regs);
5379   uint64_t bc_unneeded=branch_regs[i].u;
5380   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5381   bc_unneeded|=1|(1LL<<rt1[i]);
5382   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5383   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5384                 bc_unneeded,bc_unneeded_upper);
5385   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5386   if(!ra_done&&rt1[i]==31)
5387     ujump_assemble_write_ra(i);
5388   int cc,adj;
5389   cc=get_reg(branch_regs[i].regmap,CCREG);
5390   assert(cc==HOST_CCREG);
5391   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5392   #ifdef REG_PREFETCH
5393   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5394   #endif
5395   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5396   if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5397   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5398   if(internal_branch(branch_regs[i].is32,ba[i]))
5399     assem_debug("branch: internal\n");
5400   else
5401     assem_debug("branch: external\n");
5402   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5403     ds_assemble_entry(i);
5404   }
5405   else {
5406     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5407     emit_jmp(0);
5408   }
5409 }
5410
5411 static void rjump_assemble_write_ra(int i)
5412 {
5413   int rt,return_address;
5414   assert(rt1[i+1]!=rt1[i]);
5415   assert(rt2[i+1]!=rt1[i]);
5416   rt=get_reg(branch_regs[i].regmap,rt1[i]);
5417   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5418   assert(rt>=0);
5419   return_address=start+i*4+8;
5420   #ifdef REG_PREFETCH
5421   if(temp>=0) 
5422   {
5423     if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5424   }
5425   #endif
5426   emit_movimm(return_address,rt); // PC into link register
5427   #ifdef IMM_PREFETCH
5428   emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5429   #endif
5430 }
5431
5432 void rjump_assemble(int i,struct regstat *i_regs)
5433 {
5434   signed char *i_regmap=i_regs->regmap;
5435   int temp;
5436   int rs,cc,adj;
5437   int ra_done=0;
5438   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5439   assert(rs>=0);
5440   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5441     // Delay slot abuse, make a copy of the branch address register
5442     temp=get_reg(branch_regs[i].regmap,RTEMP);
5443     assert(temp>=0);
5444     assert(regs[i].regmap[temp]==RTEMP);
5445     emit_mov(rs,temp);
5446     rs=temp;
5447   }
5448   address_generation(i+1,i_regs,regs[i].regmap_entry);
5449   #ifdef REG_PREFETCH
5450   if(rt1[i]==31) 
5451   {
5452     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5453       int return_address=start+i*4+8;
5454       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5455     }
5456   }
5457   #endif
5458   #ifdef USE_MINI_HT
5459   if(rs1[i]==31) {
5460     int rh=get_reg(regs[i].regmap,RHASH);
5461     if(rh>=0) do_preload_rhash(rh);
5462   }
5463   #endif
5464   if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5465     rjump_assemble_write_ra(i);
5466     ra_done=1;
5467   }
5468   ds_assemble(i+1,i_regs);
5469   uint64_t bc_unneeded=branch_regs[i].u;
5470   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5471   bc_unneeded|=1|(1LL<<rt1[i]);
5472   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5473   bc_unneeded&=~(1LL<<rs1[i]);
5474   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5475                 bc_unneeded,bc_unneeded_upper);
5476   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5477   if(!ra_done&&rt1[i]!=0)
5478     rjump_assemble_write_ra(i);
5479   cc=get_reg(branch_regs[i].regmap,CCREG);
5480   assert(cc==HOST_CCREG);
5481   #ifdef USE_MINI_HT
5482   int rh=get_reg(branch_regs[i].regmap,RHASH);
5483   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5484   if(rs1[i]==31) {
5485     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5486     do_preload_rhtbl(ht);
5487     do_rhash(rs,rh);
5488   }
5489   #endif
5490   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5491   #ifdef DESTRUCTIVE_WRITEBACK
5492   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5493     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5494       emit_loadreg(rs1[i],rs);
5495     }
5496   }
5497   #endif
5498   #ifdef REG_PREFETCH
5499   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5500   #endif
5501   #ifdef USE_MINI_HT
5502   if(rs1[i]==31) {
5503     do_miniht_load(ht,rh);
5504   }
5505   #endif
5506   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5507   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5508   //assert(adj==0);
5509   emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5510   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5511 #ifdef PCSX
5512   if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5513     // special case for RFE
5514     emit_jmp(0);
5515   else
5516 #endif
5517   emit_jns(0);
5518   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5519   #ifdef USE_MINI_HT
5520   if(rs1[i]==31) {
5521     do_miniht_jump(rs,rh,ht);
5522   }
5523   else
5524   #endif
5525   {
5526     //if(rs!=EAX) emit_mov(rs,EAX);
5527     //emit_jmp((int)jump_vaddr_eax);
5528     emit_jmp(jump_vaddr_reg[rs]);
5529   }
5530   /* Check hash table
5531   temp=!rs;
5532   emit_mov(rs,temp);
5533   emit_shrimm(rs,16,rs);
5534   emit_xor(temp,rs,rs);
5535   emit_movzwl_reg(rs,rs);
5536   emit_shlimm(rs,4,rs);
5537   emit_cmpmem_indexed((int)hash_table,rs,temp);
5538   emit_jne((int)out+14);
5539   emit_readword_indexed((int)hash_table+4,rs,rs);
5540   emit_jmpreg(rs);
5541   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5542   emit_addimm_no_flags(8,rs);
5543   emit_jeq((int)out-17);
5544   // No hit on hash table, call compiler
5545   emit_pushreg(temp);
5546 //DEBUG >
5547 #ifdef DEBUG_CYCLE_COUNT
5548   emit_readword((int)&last_count,ECX);
5549   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5550   emit_readword((int)&next_interupt,ECX);
5551   emit_writeword(HOST_CCREG,(int)&Count);
5552   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5553   emit_writeword(ECX,(int)&last_count);
5554 #endif
5555 //DEBUG <
5556   emit_storereg(CCREG,HOST_CCREG);
5557   emit_call((int)get_addr);
5558   emit_loadreg(CCREG,HOST_CCREG);
5559   emit_addimm(ESP,4,ESP);
5560   emit_jmpreg(EAX);*/
5561   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5562   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5563   #endif
5564 }
5565
5566 void cjump_assemble(int i,struct regstat *i_regs)
5567 {
5568   signed char *i_regmap=i_regs->regmap;
5569   int cc;
5570   int match;
5571   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5572   assem_debug("match=%d\n",match);
5573   int s1h,s1l,s2h,s2l;
5574   int prev_cop1_usable=cop1_usable;
5575   int unconditional=0,nop=0;
5576   int only32=0;
5577   int invert=0;
5578   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5579   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5580   if(!match) invert=1;
5581   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5582   if(i>(ba[i]-start)>>2) invert=1;
5583   #endif
5584   
5585   if(ooo[i]) {
5586     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5587     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5588     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5589     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5590   }
5591   else {
5592     s1l=get_reg(i_regmap,rs1[i]);
5593     s1h=get_reg(i_regmap,rs1[i]|64);
5594     s2l=get_reg(i_regmap,rs2[i]);
5595     s2h=get_reg(i_regmap,rs2[i]|64);
5596   }
5597   if(rs1[i]==0&&rs2[i]==0)
5598   {
5599     if(opcode[i]&1) nop=1;
5600     else unconditional=1;
5601     //assert(opcode[i]!=5);
5602     //assert(opcode[i]!=7);
5603     //assert(opcode[i]!=0x15);
5604     //assert(opcode[i]!=0x17);
5605   }
5606   else if(rs1[i]==0)
5607   {
5608     s1l=s2l;s1h=s2h;
5609     s2l=s2h=-1;
5610     only32=(regs[i].was32>>rs2[i])&1;
5611   }
5612   else if(rs2[i]==0)
5613   {
5614     s2l=s2h=-1;
5615     only32=(regs[i].was32>>rs1[i])&1;
5616   }
5617   else {
5618     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5619   }
5620
5621   if(ooo[i]) {
5622     // Out of order execution (delay slot first)
5623     //printf("OOOE\n");
5624     address_generation(i+1,i_regs,regs[i].regmap_entry);
5625     ds_assemble(i+1,i_regs);
5626     int adj;
5627     uint64_t bc_unneeded=branch_regs[i].u;
5628     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5629     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5630     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5631     bc_unneeded|=1;
5632     bc_unneeded_upper|=1;
5633     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5634                   bc_unneeded,bc_unneeded_upper);
5635     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5636     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5637     cc=get_reg(branch_regs[i].regmap,CCREG);
5638     assert(cc==HOST_CCREG);
5639     if(unconditional) 
5640       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5641     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5642     //assem_debug("cycle count (adj)\n");
5643     if(unconditional) {
5644       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5645       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5646         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5647         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5648         if(internal)
5649           assem_debug("branch: internal\n");
5650         else
5651           assem_debug("branch: external\n");
5652         if(internal&&is_ds[(ba[i]-start)>>2]) {
5653           ds_assemble_entry(i);
5654         }
5655         else {
5656           add_to_linker((int)out,ba[i],internal);
5657           emit_jmp(0);
5658         }
5659         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5660         if(((u_int)out)&7) emit_addnop(0);
5661         #endif
5662       }
5663     }
5664     else if(nop) {
5665       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5666       int jaddr=(int)out;
5667       emit_jns(0);
5668       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5669     }
5670     else {
5671       int taken=0,nottaken=0,nottaken1=0;
5672       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5673       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5674       if(!only32)
5675       {
5676         assert(s1h>=0);
5677         if(opcode[i]==4) // BEQ
5678         {
5679           if(s2h>=0) emit_cmp(s1h,s2h);
5680           else emit_test(s1h,s1h);
5681           nottaken1=(int)out;
5682           emit_jne(1);
5683         }
5684         if(opcode[i]==5) // BNE
5685         {
5686           if(s2h>=0) emit_cmp(s1h,s2h);
5687           else emit_test(s1h,s1h);
5688           if(invert) taken=(int)out;
5689           else add_to_linker((int)out,ba[i],internal);
5690           emit_jne(0);
5691         }
5692         if(opcode[i]==6) // BLEZ
5693         {
5694           emit_test(s1h,s1h);
5695           if(invert) taken=(int)out;
5696           else add_to_linker((int)out,ba[i],internal);
5697           emit_js(0);
5698           nottaken1=(int)out;
5699           emit_jne(1);
5700         }
5701         if(opcode[i]==7) // BGTZ
5702         {
5703           emit_test(s1h,s1h);
5704           nottaken1=(int)out;
5705           emit_js(1);
5706           if(invert) taken=(int)out;
5707           else add_to_linker((int)out,ba[i],internal);
5708           emit_jne(0);
5709         }
5710       } // if(!only32)
5711           
5712       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5713       assert(s1l>=0);
5714       if(opcode[i]==4) // BEQ
5715       {
5716         if(s2l>=0) emit_cmp(s1l,s2l);
5717         else emit_test(s1l,s1l);
5718         if(invert){
5719           nottaken=(int)out;
5720           emit_jne(1);
5721         }else{
5722           add_to_linker((int)out,ba[i],internal);
5723           emit_jeq(0);
5724         }
5725       }
5726       if(opcode[i]==5) // BNE
5727       {
5728         if(s2l>=0) emit_cmp(s1l,s2l);
5729         else emit_test(s1l,s1l);
5730         if(invert){
5731           nottaken=(int)out;
5732           emit_jeq(1);
5733         }else{
5734           add_to_linker((int)out,ba[i],internal);
5735           emit_jne(0);
5736         }
5737       }
5738       if(opcode[i]==6) // BLEZ
5739       {
5740         emit_cmpimm(s1l,1);
5741         if(invert){
5742           nottaken=(int)out;
5743           emit_jge(1);
5744         }else{
5745           add_to_linker((int)out,ba[i],internal);
5746           emit_jl(0);
5747         }
5748       }
5749       if(opcode[i]==7) // BGTZ
5750       {
5751         emit_cmpimm(s1l,1);
5752         if(invert){
5753           nottaken=(int)out;
5754           emit_jl(1);
5755         }else{
5756           add_to_linker((int)out,ba[i],internal);
5757           emit_jge(0);
5758         }
5759       }
5760       if(invert) {
5761         if(taken) set_jump_target(taken,(int)out);
5762         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5763         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5764           if(adj) {
5765             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5766             add_to_linker((int)out,ba[i],internal);
5767           }else{
5768             emit_addnop(13);
5769             add_to_linker((int)out,ba[i],internal*2);
5770           }
5771           emit_jmp(0);
5772         }else
5773         #endif
5774         {
5775           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5776           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5777           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5778           if(internal)
5779             assem_debug("branch: internal\n");
5780           else
5781             assem_debug("branch: external\n");
5782           if(internal&&is_ds[(ba[i]-start)>>2]) {
5783             ds_assemble_entry(i);
5784           }
5785           else {
5786             add_to_linker((int)out,ba[i],internal);
5787             emit_jmp(0);
5788           }
5789         }
5790         set_jump_target(nottaken,(int)out);
5791       }
5792
5793       if(nottaken1) set_jump_target(nottaken1,(int)out);
5794       if(adj) {
5795         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5796       }
5797     } // (!unconditional)
5798   } // if(ooo)
5799   else
5800   {
5801     // In-order execution (branch first)
5802     //if(likely[i]) printf("IOL\n");
5803     //else
5804     //printf("IOE\n");
5805     int taken=0,nottaken=0,nottaken1=0;
5806     if(!unconditional&&!nop) {
5807       if(!only32)
5808       {
5809         assert(s1h>=0);
5810         if((opcode[i]&0x2f)==4) // BEQ
5811         {
5812           if(s2h>=0) emit_cmp(s1h,s2h);
5813           else emit_test(s1h,s1h);
5814           nottaken1=(int)out;
5815           emit_jne(2);
5816         }
5817         if((opcode[i]&0x2f)==5) // BNE
5818         {
5819           if(s2h>=0) emit_cmp(s1h,s2h);
5820           else emit_test(s1h,s1h);
5821           taken=(int)out;
5822           emit_jne(1);
5823         }
5824         if((opcode[i]&0x2f)==6) // BLEZ
5825         {
5826           emit_test(s1h,s1h);
5827           taken=(int)out;
5828           emit_js(1);
5829           nottaken1=(int)out;
5830           emit_jne(2);
5831         }
5832         if((opcode[i]&0x2f)==7) // BGTZ
5833         {
5834           emit_test(s1h,s1h);
5835           nottaken1=(int)out;
5836           emit_js(2);
5837           taken=(int)out;
5838           emit_jne(1);
5839         }
5840       } // if(!only32)
5841           
5842       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5843       assert(s1l>=0);
5844       if((opcode[i]&0x2f)==4) // BEQ
5845       {
5846         if(s2l>=0) emit_cmp(s1l,s2l);
5847         else emit_test(s1l,s1l);
5848         nottaken=(int)out;
5849         emit_jne(2);
5850       }
5851       if((opcode[i]&0x2f)==5) // BNE
5852       {
5853         if(s2l>=0) emit_cmp(s1l,s2l);
5854         else emit_test(s1l,s1l);
5855         nottaken=(int)out;
5856         emit_jeq(2);
5857       }
5858       if((opcode[i]&0x2f)==6) // BLEZ
5859       {
5860         emit_cmpimm(s1l,1);
5861         nottaken=(int)out;
5862         emit_jge(2);
5863       }
5864       if((opcode[i]&0x2f)==7) // BGTZ
5865       {
5866         emit_cmpimm(s1l,1);
5867         nottaken=(int)out;
5868         emit_jl(2);
5869       }
5870     } // if(!unconditional)
5871     int adj;
5872     uint64_t ds_unneeded=branch_regs[i].u;
5873     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5874     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5875     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5876     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5877     ds_unneeded|=1;
5878     ds_unneeded_upper|=1;
5879     // branch taken
5880     if(!nop) {
5881       if(taken) set_jump_target(taken,(int)out);
5882       assem_debug("1:\n");
5883       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5884                     ds_unneeded,ds_unneeded_upper);
5885       // load regs
5886       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5887       address_generation(i+1,&branch_regs[i],0);
5888       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5889       ds_assemble(i+1,&branch_regs[i]);
5890       cc=get_reg(branch_regs[i].regmap,CCREG);
5891       if(cc==-1) {
5892         emit_loadreg(CCREG,cc=HOST_CCREG);
5893         // CHECK: Is the following instruction (fall thru) allocated ok?
5894       }
5895       assert(cc==HOST_CCREG);
5896       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5897       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5898       assem_debug("cycle count (adj)\n");
5899       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5900       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5901       if(internal)
5902         assem_debug("branch: internal\n");
5903       else
5904         assem_debug("branch: external\n");
5905       if(internal&&is_ds[(ba[i]-start)>>2]) {
5906         ds_assemble_entry(i);
5907       }
5908       else {
5909         add_to_linker((int)out,ba[i],internal);
5910         emit_jmp(0);
5911       }
5912     }
5913     // branch not taken
5914     cop1_usable=prev_cop1_usable;
5915     if(!unconditional) {
5916       if(nottaken1) set_jump_target(nottaken1,(int)out);
5917       set_jump_target(nottaken,(int)out);
5918       assem_debug("2:\n");
5919       if(!likely[i]) {
5920         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5921                       ds_unneeded,ds_unneeded_upper);
5922         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5923         address_generation(i+1,&branch_regs[i],0);
5924         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5925         ds_assemble(i+1,&branch_regs[i]);
5926       }
5927       cc=get_reg(branch_regs[i].regmap,CCREG);
5928       if(cc==-1&&!likely[i]) {
5929         // Cycle count isn't in a register, temporarily load it then write it out
5930         emit_loadreg(CCREG,HOST_CCREG);
5931         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5932         int jaddr=(int)out;
5933         emit_jns(0);
5934         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5935         emit_storereg(CCREG,HOST_CCREG);
5936       }
5937       else{
5938         cc=get_reg(i_regmap,CCREG);
5939         assert(cc==HOST_CCREG);
5940         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5941         int jaddr=(int)out;
5942         emit_jns(0);
5943         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5944       }
5945     }
5946   }
5947 }
5948
5949 void sjump_assemble(int i,struct regstat *i_regs)
5950 {
5951   signed char *i_regmap=i_regs->regmap;
5952   int cc;
5953   int match;
5954   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5955   assem_debug("smatch=%d\n",match);
5956   int s1h,s1l;
5957   int prev_cop1_usable=cop1_usable;
5958   int unconditional=0,nevertaken=0;
5959   int only32=0;
5960   int invert=0;
5961   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5962   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5963   if(!match) invert=1;
5964   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5965   if(i>(ba[i]-start)>>2) invert=1;
5966   #endif
5967
5968   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5969   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5970
5971   if(ooo[i]) {
5972     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5973     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5974   }
5975   else {
5976     s1l=get_reg(i_regmap,rs1[i]);
5977     s1h=get_reg(i_regmap,rs1[i]|64);
5978   }
5979   if(rs1[i]==0)
5980   {
5981     if(opcode2[i]&1) unconditional=1;
5982     else nevertaken=1;
5983     // These are never taken (r0 is never less than zero)
5984     //assert(opcode2[i]!=0);
5985     //assert(opcode2[i]!=2);
5986     //assert(opcode2[i]!=0x10);
5987     //assert(opcode2[i]!=0x12);
5988   }
5989   else {
5990     only32=(regs[i].was32>>rs1[i])&1;
5991   }
5992
5993   if(ooo[i]) {
5994     // Out of order execution (delay slot first)
5995     //printf("OOOE\n");
5996     address_generation(i+1,i_regs,regs[i].regmap_entry);
5997     ds_assemble(i+1,i_regs);
5998     int adj;
5999     uint64_t bc_unneeded=branch_regs[i].u;
6000     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6001     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6002     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6003     bc_unneeded|=1;
6004     bc_unneeded_upper|=1;
6005     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6006                   bc_unneeded,bc_unneeded_upper);
6007     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6008     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6009     if(rt1[i]==31) {
6010       int rt,return_address;
6011       rt=get_reg(branch_regs[i].regmap,31);
6012       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6013       if(rt>=0) {
6014         // Save the PC even if the branch is not taken
6015         return_address=start+i*4+8;
6016         emit_movimm(return_address,rt); // PC into link register
6017         #ifdef IMM_PREFETCH
6018         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6019         #endif
6020       }
6021     }
6022     cc=get_reg(branch_regs[i].regmap,CCREG);
6023     assert(cc==HOST_CCREG);
6024     if(unconditional) 
6025       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6026     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
6027     assem_debug("cycle count (adj)\n");
6028     if(unconditional) {
6029       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
6030       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
6031         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6032         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6033         if(internal)
6034           assem_debug("branch: internal\n");
6035         else
6036           assem_debug("branch: external\n");
6037         if(internal&&is_ds[(ba[i]-start)>>2]) {
6038           ds_assemble_entry(i);
6039         }
6040         else {
6041           add_to_linker((int)out,ba[i],internal);
6042           emit_jmp(0);
6043         }
6044         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6045         if(((u_int)out)&7) emit_addnop(0);
6046         #endif
6047       }
6048     }
6049     else if(nevertaken) {
6050       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6051       int jaddr=(int)out;
6052       emit_jns(0);
6053       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6054     }
6055     else {
6056       int nottaken=0;
6057       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6058       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6059       if(!only32)
6060       {
6061         assert(s1h>=0);
6062         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
6063         {
6064           emit_test(s1h,s1h);
6065           if(invert){
6066             nottaken=(int)out;
6067             emit_jns(1);
6068           }else{
6069             add_to_linker((int)out,ba[i],internal);
6070             emit_js(0);
6071           }
6072         }
6073         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
6074         {
6075           emit_test(s1h,s1h);
6076           if(invert){
6077             nottaken=(int)out;
6078             emit_js(1);
6079           }else{
6080             add_to_linker((int)out,ba[i],internal);
6081             emit_jns(0);
6082           }
6083         }
6084       } // if(!only32)
6085       else
6086       {
6087         assert(s1l>=0);
6088         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
6089         {
6090           emit_test(s1l,s1l);
6091           if(invert){
6092             nottaken=(int)out;
6093             emit_jns(1);
6094           }else{
6095             add_to_linker((int)out,ba[i],internal);
6096             emit_js(0);
6097           }
6098         }
6099         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
6100         {
6101           emit_test(s1l,s1l);
6102           if(invert){
6103             nottaken=(int)out;
6104             emit_js(1);
6105           }else{
6106             add_to_linker((int)out,ba[i],internal);
6107             emit_jns(0);
6108           }
6109         }
6110       } // if(!only32)
6111           
6112       if(invert) {
6113         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6114         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6115           if(adj) {
6116             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6117             add_to_linker((int)out,ba[i],internal);
6118           }else{
6119             emit_addnop(13);
6120             add_to_linker((int)out,ba[i],internal*2);
6121           }
6122           emit_jmp(0);
6123         }else
6124         #endif
6125         {
6126           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6127           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6128           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6129           if(internal)
6130             assem_debug("branch: internal\n");
6131           else
6132             assem_debug("branch: external\n");
6133           if(internal&&is_ds[(ba[i]-start)>>2]) {
6134             ds_assemble_entry(i);
6135           }
6136           else {
6137             add_to_linker((int)out,ba[i],internal);
6138             emit_jmp(0);
6139           }
6140         }
6141         set_jump_target(nottaken,(int)out);
6142       }
6143
6144       if(adj) {
6145         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
6146       }
6147     } // (!unconditional)
6148   } // if(ooo)
6149   else
6150   {
6151     // In-order execution (branch first)
6152     //printf("IOE\n");
6153     int nottaken=0;
6154     if(rt1[i]==31) {
6155       int rt,return_address;
6156       rt=get_reg(branch_regs[i].regmap,31);
6157       if(rt>=0) {
6158         // Save the PC even if the branch is not taken
6159         return_address=start+i*4+8;
6160         emit_movimm(return_address,rt); // PC into link register
6161         #ifdef IMM_PREFETCH
6162         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6163         #endif
6164       }
6165     }
6166     if(!unconditional) {
6167       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6168       if(!only32)
6169       {
6170         assert(s1h>=0);
6171         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
6172         {
6173           emit_test(s1h,s1h);
6174           nottaken=(int)out;
6175           emit_jns(1);
6176         }
6177         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
6178         {
6179           emit_test(s1h,s1h);
6180           nottaken=(int)out;
6181           emit_js(1);
6182         }
6183       } // if(!only32)
6184       else
6185       {
6186         assert(s1l>=0);
6187         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
6188         {
6189           emit_test(s1l,s1l);
6190           nottaken=(int)out;
6191           emit_jns(1);
6192         }
6193         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
6194         {
6195           emit_test(s1l,s1l);
6196           nottaken=(int)out;
6197           emit_js(1);
6198         }
6199       }
6200     } // if(!unconditional)
6201     int adj;
6202     uint64_t ds_unneeded=branch_regs[i].u;
6203     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6204     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6205     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6206     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6207     ds_unneeded|=1;
6208     ds_unneeded_upper|=1;
6209     // branch taken
6210     if(!nevertaken) {
6211       //assem_debug("1:\n");
6212       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6213                     ds_unneeded,ds_unneeded_upper);
6214       // load regs
6215       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6216       address_generation(i+1,&branch_regs[i],0);
6217       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6218       ds_assemble(i+1,&branch_regs[i]);
6219       cc=get_reg(branch_regs[i].regmap,CCREG);
6220       if(cc==-1) {
6221         emit_loadreg(CCREG,cc=HOST_CCREG);
6222         // CHECK: Is the following instruction (fall thru) allocated ok?
6223       }
6224       assert(cc==HOST_CCREG);
6225       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6226       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6227       assem_debug("cycle count (adj)\n");
6228       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6229       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6230       if(internal)
6231         assem_debug("branch: internal\n");
6232       else
6233         assem_debug("branch: external\n");
6234       if(internal&&is_ds[(ba[i]-start)>>2]) {
6235         ds_assemble_entry(i);
6236       }
6237       else {
6238         add_to_linker((int)out,ba[i],internal);
6239         emit_jmp(0);
6240       }
6241     }
6242     // branch not taken
6243     cop1_usable=prev_cop1_usable;
6244     if(!unconditional) {
6245       set_jump_target(nottaken,(int)out);
6246       assem_debug("1:\n");
6247       if(!likely[i]) {
6248         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6249                       ds_unneeded,ds_unneeded_upper);
6250         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6251         address_generation(i+1,&branch_regs[i],0);
6252         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6253         ds_assemble(i+1,&branch_regs[i]);
6254       }
6255       cc=get_reg(branch_regs[i].regmap,CCREG);
6256       if(cc==-1&&!likely[i]) {
6257         // Cycle count isn't in a register, temporarily load it then write it out
6258         emit_loadreg(CCREG,HOST_CCREG);
6259         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6260         int jaddr=(int)out;
6261         emit_jns(0);
6262         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6263         emit_storereg(CCREG,HOST_CCREG);
6264       }
6265       else{
6266         cc=get_reg(i_regmap,CCREG);
6267         assert(cc==HOST_CCREG);
6268         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6269         int jaddr=(int)out;
6270         emit_jns(0);
6271         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6272       }
6273     }
6274   }
6275 }
6276
6277 void fjump_assemble(int i,struct regstat *i_regs)
6278 {
6279   signed char *i_regmap=i_regs->regmap;
6280   int cc;
6281   int match;
6282   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6283   assem_debug("fmatch=%d\n",match);
6284   int fs,cs;
6285   int eaddr;
6286   int invert=0;
6287   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6288   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6289   if(!match) invert=1;
6290   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6291   if(i>(ba[i]-start)>>2) invert=1;
6292   #endif
6293
6294   if(ooo[i]) {
6295     fs=get_reg(branch_regs[i].regmap,FSREG);
6296     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6297   }
6298   else {
6299     fs=get_reg(i_regmap,FSREG);
6300   }
6301
6302   // Check cop1 unusable
6303   if(!cop1_usable) {
6304     cs=get_reg(i_regmap,CSREG);
6305     assert(cs>=0);
6306     emit_testimm(cs,0x20000000);
6307     eaddr=(int)out;
6308     emit_jeq(0);
6309     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6310     cop1_usable=1;
6311   }
6312
6313   if(ooo[i]) {
6314     // Out of order execution (delay slot first)
6315     //printf("OOOE\n");
6316     ds_assemble(i+1,i_regs);
6317     int adj;
6318     uint64_t bc_unneeded=branch_regs[i].u;
6319     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6320     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6321     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6322     bc_unneeded|=1;
6323     bc_unneeded_upper|=1;
6324     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6325                   bc_unneeded,bc_unneeded_upper);
6326     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6327     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6328     cc=get_reg(branch_regs[i].regmap,CCREG);
6329     assert(cc==HOST_CCREG);
6330     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6331     assem_debug("cycle count (adj)\n");
6332     if(1) {
6333       int nottaken=0;
6334       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6335       if(1) {
6336         assert(fs>=0);
6337         emit_testimm(fs,0x800000);
6338         if(source[i]&0x10000) // BC1T
6339         {
6340           if(invert){
6341             nottaken=(int)out;
6342             emit_jeq(1);
6343           }else{
6344             add_to_linker((int)out,ba[i],internal);
6345             emit_jne(0);
6346           }
6347         }
6348         else // BC1F
6349           if(invert){
6350             nottaken=(int)out;
6351             emit_jne(1);
6352           }else{
6353             add_to_linker((int)out,ba[i],internal);
6354             emit_jeq(0);
6355           }
6356         {
6357         }
6358       } // if(!only32)
6359           
6360       if(invert) {
6361         if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6362         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6363         else if(match) emit_addnop(13);
6364         #endif
6365         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6366         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6367         if(internal)
6368           assem_debug("branch: internal\n");
6369         else
6370           assem_debug("branch: external\n");
6371         if(internal&&is_ds[(ba[i]-start)>>2]) {
6372           ds_assemble_entry(i);
6373         }
6374         else {
6375           add_to_linker((int)out,ba[i],internal);
6376           emit_jmp(0);
6377         }
6378         set_jump_target(nottaken,(int)out);
6379       }
6380
6381       if(adj) {
6382         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
6383       }
6384     } // (!unconditional)
6385   } // if(ooo)
6386   else
6387   {
6388     // In-order execution (branch first)
6389     //printf("IOE\n");
6390     int nottaken=0;
6391     if(1) {
6392       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6393       if(1) {
6394         assert(fs>=0);
6395         emit_testimm(fs,0x800000);
6396         if(source[i]&0x10000) // BC1T
6397         {
6398           nottaken=(int)out;
6399           emit_jeq(1);
6400         }
6401         else // BC1F
6402         {
6403           nottaken=(int)out;
6404           emit_jne(1);
6405         }
6406       }
6407     } // if(!unconditional)
6408     int adj;
6409     uint64_t ds_unneeded=branch_regs[i].u;
6410     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6411     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6412     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6413     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6414     ds_unneeded|=1;
6415     ds_unneeded_upper|=1;
6416     // branch taken
6417     //assem_debug("1:\n");
6418     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6419                   ds_unneeded,ds_unneeded_upper);
6420     // load regs
6421     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6422     address_generation(i+1,&branch_regs[i],0);
6423     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6424     ds_assemble(i+1,&branch_regs[i]);
6425     cc=get_reg(branch_regs[i].regmap,CCREG);
6426     if(cc==-1) {
6427       emit_loadreg(CCREG,cc=HOST_CCREG);
6428       // CHECK: Is the following instruction (fall thru) allocated ok?
6429     }
6430     assert(cc==HOST_CCREG);
6431     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6432     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6433     assem_debug("cycle count (adj)\n");
6434     if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6435     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6436     if(internal)
6437       assem_debug("branch: internal\n");
6438     else
6439       assem_debug("branch: external\n");
6440     if(internal&&is_ds[(ba[i]-start)>>2]) {
6441       ds_assemble_entry(i);
6442     }
6443     else {
6444       add_to_linker((int)out,ba[i],internal);
6445       emit_jmp(0);
6446     }
6447
6448     // branch not taken
6449     if(1) { // <- FIXME (don't need this)
6450       set_jump_target(nottaken,(int)out);
6451       assem_debug("1:\n");
6452       if(!likely[i]) {
6453         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6454                       ds_unneeded,ds_unneeded_upper);
6455         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6456         address_generation(i+1,&branch_regs[i],0);
6457         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6458         ds_assemble(i+1,&branch_regs[i]);
6459       }
6460       cc=get_reg(branch_regs[i].regmap,CCREG);
6461       if(cc==-1&&!likely[i]) {
6462         // Cycle count isn't in a register, temporarily load it then write it out
6463         emit_loadreg(CCREG,HOST_CCREG);
6464         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6465         int jaddr=(int)out;
6466         emit_jns(0);
6467         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6468         emit_storereg(CCREG,HOST_CCREG);
6469       }
6470       else{
6471         cc=get_reg(i_regmap,CCREG);
6472         assert(cc==HOST_CCREG);
6473         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6474         int jaddr=(int)out;
6475         emit_jns(0);
6476         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6477       }
6478     }
6479   }
6480 }
6481
6482 static void pagespan_assemble(int i,struct regstat *i_regs)
6483 {
6484   int s1l=get_reg(i_regs->regmap,rs1[i]);
6485   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6486   int s2l=get_reg(i_regs->regmap,rs2[i]);
6487   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6488   void *nt_branch=NULL;
6489   int taken=0;
6490   int nottaken=0;
6491   int unconditional=0;
6492   if(rs1[i]==0)
6493   {
6494     s1l=s2l;s1h=s2h;
6495     s2l=s2h=-1;
6496   }
6497   else if(rs2[i]==0)
6498   {
6499     s2l=s2h=-1;
6500   }
6501   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6502     s1h=s2h=-1;
6503   }
6504   int hr=0;
6505   int addr,alt,ntaddr;
6506   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6507   else {
6508     while(hr<HOST_REGS)
6509     {
6510       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6511          (i_regs->regmap[hr]&63)!=rs1[i] &&
6512          (i_regs->regmap[hr]&63)!=rs2[i] )
6513       {
6514         addr=hr++;break;
6515       }
6516       hr++;
6517     }
6518   }
6519   while(hr<HOST_REGS)
6520   {
6521     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6522        (i_regs->regmap[hr]&63)!=rs1[i] &&
6523        (i_regs->regmap[hr]&63)!=rs2[i] )
6524     {
6525       alt=hr++;break;
6526     }
6527     hr++;
6528   }
6529   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6530   {
6531     while(hr<HOST_REGS)
6532     {
6533       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6534          (i_regs->regmap[hr]&63)!=rs1[i] &&
6535          (i_regs->regmap[hr]&63)!=rs2[i] )
6536       {
6537         ntaddr=hr;break;
6538       }
6539       hr++;
6540     }
6541   }
6542   assert(hr<HOST_REGS);
6543   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6544     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6545   }
6546   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6547   if(opcode[i]==2) // J
6548   {
6549     unconditional=1;
6550   }
6551   if(opcode[i]==3) // JAL
6552   {
6553     // TODO: mini_ht
6554     int rt=get_reg(i_regs->regmap,31);
6555     emit_movimm(start+i*4+8,rt);
6556     unconditional=1;
6557   }
6558   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6559   {
6560     emit_mov(s1l,addr);
6561     if(opcode2[i]==9) // JALR
6562     {
6563       int rt=get_reg(i_regs->regmap,rt1[i]);
6564       emit_movimm(start+i*4+8,rt);
6565     }
6566   }
6567   if((opcode[i]&0x3f)==4) // BEQ
6568   {
6569     if(rs1[i]==rs2[i])
6570     {
6571       unconditional=1;
6572     }
6573     else
6574     #ifdef HAVE_CMOV_IMM
6575     if(s1h<0) {
6576       if(s2l>=0) emit_cmp(s1l,s2l);
6577       else emit_test(s1l,s1l);
6578       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6579     }
6580     else
6581     #endif
6582     {
6583       assert(s1l>=0);
6584       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6585       if(s1h>=0) {
6586         if(s2h>=0) emit_cmp(s1h,s2h);
6587         else emit_test(s1h,s1h);
6588         emit_cmovne_reg(alt,addr);
6589       }
6590       if(s2l>=0) emit_cmp(s1l,s2l);
6591       else emit_test(s1l,s1l);
6592       emit_cmovne_reg(alt,addr);
6593     }
6594   }
6595   if((opcode[i]&0x3f)==5) // BNE
6596   {
6597     #ifdef HAVE_CMOV_IMM
6598     if(s1h<0) {
6599       if(s2l>=0) emit_cmp(s1l,s2l);
6600       else emit_test(s1l,s1l);
6601       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6602     }
6603     else
6604     #endif
6605     {
6606       assert(s1l>=0);
6607       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6608       if(s1h>=0) {
6609         if(s2h>=0) emit_cmp(s1h,s2h);
6610         else emit_test(s1h,s1h);
6611         emit_cmovne_reg(alt,addr);
6612       }
6613       if(s2l>=0) emit_cmp(s1l,s2l);
6614       else emit_test(s1l,s1l);
6615       emit_cmovne_reg(alt,addr);
6616     }
6617   }
6618   if((opcode[i]&0x3f)==0x14) // BEQL
6619   {
6620     if(s1h>=0) {
6621       if(s2h>=0) emit_cmp(s1h,s2h);
6622       else emit_test(s1h,s1h);
6623       nottaken=(int)out;
6624       emit_jne(0);
6625     }
6626     if(s2l>=0) emit_cmp(s1l,s2l);
6627     else emit_test(s1l,s1l);
6628     if(nottaken) set_jump_target(nottaken,(int)out);
6629     nottaken=(int)out;
6630     emit_jne(0);
6631   }
6632   if((opcode[i]&0x3f)==0x15) // BNEL
6633   {
6634     if(s1h>=0) {
6635       if(s2h>=0) emit_cmp(s1h,s2h);
6636       else emit_test(s1h,s1h);
6637       taken=(int)out;
6638       emit_jne(0);
6639     }
6640     if(s2l>=0) emit_cmp(s1l,s2l);
6641     else emit_test(s1l,s1l);
6642     nottaken=(int)out;
6643     emit_jeq(0);
6644     if(taken) set_jump_target(taken,(int)out);
6645   }
6646   if((opcode[i]&0x3f)==6) // BLEZ
6647   {
6648     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6649     emit_cmpimm(s1l,1);
6650     if(s1h>=0) emit_mov(addr,ntaddr);
6651     emit_cmovl_reg(alt,addr);
6652     if(s1h>=0) {
6653       emit_test(s1h,s1h);
6654       emit_cmovne_reg(ntaddr,addr);
6655       emit_cmovs_reg(alt,addr);
6656     }
6657   }
6658   if((opcode[i]&0x3f)==7) // BGTZ
6659   {
6660     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6661     emit_cmpimm(s1l,1);
6662     if(s1h>=0) emit_mov(addr,alt);
6663     emit_cmovl_reg(ntaddr,addr);
6664     if(s1h>=0) {
6665       emit_test(s1h,s1h);
6666       emit_cmovne_reg(alt,addr);
6667       emit_cmovs_reg(ntaddr,addr);
6668     }
6669   }
6670   if((opcode[i]&0x3f)==0x16) // BLEZL
6671   {
6672     assert((opcode[i]&0x3f)!=0x16);
6673   }
6674   if((opcode[i]&0x3f)==0x17) // BGTZL
6675   {
6676     assert((opcode[i]&0x3f)!=0x17);
6677   }
6678   assert(opcode[i]!=1); // BLTZ/BGEZ
6679
6680   //FIXME: Check CSREG
6681   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6682     if((source[i]&0x30000)==0) // BC1F
6683     {
6684       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6685       emit_testimm(s1l,0x800000);
6686       emit_cmovne_reg(alt,addr);
6687     }
6688     if((source[i]&0x30000)==0x10000) // BC1T
6689     {
6690       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6691       emit_testimm(s1l,0x800000);
6692       emit_cmovne_reg(alt,addr);
6693     }
6694     if((source[i]&0x30000)==0x20000) // BC1FL
6695     {
6696       emit_testimm(s1l,0x800000);
6697       nottaken=(int)out;
6698       emit_jne(0);
6699     }
6700     if((source[i]&0x30000)==0x30000) // BC1TL
6701     {
6702       emit_testimm(s1l,0x800000);
6703       nottaken=(int)out;
6704       emit_jeq(0);
6705     }
6706   }
6707
6708   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6709   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6710   if(likely[i]||unconditional)
6711   {
6712     emit_movimm(ba[i],HOST_BTREG);
6713   }
6714   else if(addr!=HOST_BTREG)
6715   {
6716     emit_mov(addr,HOST_BTREG);
6717   }
6718   void *branch_addr=out;
6719   emit_jmp(0);
6720   int target_addr=start+i*4+5;
6721   void *stub=out;
6722   void *compiled_target_addr=check_addr(target_addr);
6723   emit_extjump_ds((int)branch_addr,target_addr);
6724   if(compiled_target_addr) {
6725     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6726     add_link(target_addr,stub);
6727   }
6728   else set_jump_target((int)branch_addr,(int)stub);
6729   if(likely[i]) {
6730     // Not-taken path
6731     set_jump_target((int)nottaken,(int)out);
6732     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6733     void *branch_addr=out;
6734     emit_jmp(0);
6735     int target_addr=start+i*4+8;
6736     void *stub=out;
6737     void *compiled_target_addr=check_addr(target_addr);
6738     emit_extjump_ds((int)branch_addr,target_addr);
6739     if(compiled_target_addr) {
6740       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6741       add_link(target_addr,stub);
6742     }
6743     else set_jump_target((int)branch_addr,(int)stub);
6744   }
6745 }
6746
6747 // Assemble the delay slot for the above
6748 static void pagespan_ds()
6749 {
6750   assem_debug("initial delay slot:\n");
6751   u_int vaddr=start+1;
6752   u_int page=get_page(vaddr);
6753   u_int vpage=get_vpage(vaddr);
6754   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6755   do_dirty_stub_ds();
6756   ll_add(jump_in+page,vaddr,(void *)out);
6757   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6758   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6759     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6760   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6761     emit_writeword(HOST_BTREG,(int)&branch_target);
6762   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6763   address_generation(0,&regs[0],regs[0].regmap_entry);
6764   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6765     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6766   cop1_usable=0;
6767   is_delayslot=0;
6768   switch(itype[0]) {
6769     case ALU:
6770       alu_assemble(0,&regs[0]);break;
6771     case IMM16:
6772       imm16_assemble(0,&regs[0]);break;
6773     case SHIFT:
6774       shift_assemble(0,&regs[0]);break;
6775     case SHIFTIMM:
6776       shiftimm_assemble(0,&regs[0]);break;
6777     case LOAD:
6778       load_assemble(0,&regs[0]);break;
6779     case LOADLR:
6780       loadlr_assemble(0,&regs[0]);break;
6781     case STORE:
6782       store_assemble(0,&regs[0]);break;
6783     case STORELR:
6784       storelr_assemble(0,&regs[0]);break;
6785     case COP0:
6786       cop0_assemble(0,&regs[0]);break;
6787     case COP1:
6788       cop1_assemble(0,&regs[0]);break;
6789     case C1LS:
6790       c1ls_assemble(0,&regs[0]);break;
6791     case COP2:
6792       cop2_assemble(0,&regs[0]);break;
6793     case C2LS:
6794       c2ls_assemble(0,&regs[0]);break;
6795     case C2OP:
6796       c2op_assemble(0,&regs[0]);break;
6797     case FCONV:
6798       fconv_assemble(0,&regs[0]);break;
6799     case FLOAT:
6800       float_assemble(0,&regs[0]);break;
6801     case FCOMP:
6802       fcomp_assemble(0,&regs[0]);break;
6803     case MULTDIV:
6804       multdiv_assemble(0,&regs[0]);break;
6805     case MOV:
6806       mov_assemble(0,&regs[0]);break;
6807     case SYSCALL:
6808     case HLECALL:
6809     case INTCALL:
6810     case SPAN:
6811     case UJUMP:
6812     case RJUMP:
6813     case CJUMP:
6814     case SJUMP:
6815     case FJUMP:
6816       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
6817   }
6818   int btaddr=get_reg(regs[0].regmap,BTREG);
6819   if(btaddr<0) {
6820     btaddr=get_reg(regs[0].regmap,-1);
6821     emit_readword((int)&branch_target,btaddr);
6822   }
6823   assert(btaddr!=HOST_CCREG);
6824   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6825 #ifdef HOST_IMM8
6826   emit_movimm(start+4,HOST_TEMPREG);
6827   emit_cmp(btaddr,HOST_TEMPREG);
6828 #else
6829   emit_cmpimm(btaddr,start+4);
6830 #endif
6831   int branch=(int)out;
6832   emit_jeq(0);
6833   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6834   emit_jmp(jump_vaddr_reg[btaddr]);
6835   set_jump_target(branch,(int)out);
6836   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6837   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6838 }
6839
6840 // Basic liveness analysis for MIPS registers
6841 void unneeded_registers(int istart,int iend,int r)
6842 {
6843   int i;
6844   uint64_t u,uu,gte_u,b,bu,gte_bu;
6845   uint64_t temp_u,temp_uu,temp_gte_u=0;
6846   uint64_t tdep;
6847   uint64_t gte_u_unknown=0;
6848   if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6849     gte_u_unknown=~0ll;
6850   if(iend==slen-1) {
6851     u=1;uu=1;
6852     gte_u=gte_u_unknown;
6853   }else{
6854     u=unneeded_reg[iend+1];
6855     uu=unneeded_reg_upper[iend+1];
6856     u=1;uu=1;
6857     gte_u=gte_unneeded[iend+1];
6858   }
6859
6860   for (i=iend;i>=istart;i--)
6861   {
6862     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6863     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6864     {
6865       // If subroutine call, flag return address as a possible branch target
6866       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6867       
6868       if(ba[i]<start || ba[i]>=(start+slen*4))
6869       {
6870         // Branch out of this block, flush all regs
6871         u=1;
6872         uu=1;
6873         gte_u=gte_u_unknown;
6874         /* Hexagon hack 
6875         if(itype[i]==UJUMP&&rt1[i]==31)
6876         {
6877           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6878         }
6879         if(itype[i]==RJUMP&&rs1[i]==31)
6880         {
6881           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6882         }
6883         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6884           if(itype[i]==UJUMP&&rt1[i]==31)
6885           {
6886             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6887             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6888           }
6889           if(itype[i]==RJUMP&&rs1[i]==31)
6890           {
6891             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6892             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6893           }
6894         }*/
6895         branch_unneeded_reg[i]=u;
6896         branch_unneeded_reg_upper[i]=uu;
6897         // Merge in delay slot
6898         tdep=(~uu>>rt1[i+1])&1;
6899         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6900         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6901         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6902         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6903         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6904         u|=1;uu|=1;
6905         gte_u|=gte_rt[i+1];
6906         gte_u&=~gte_rs[i+1];
6907         // If branch is "likely" (and conditional)
6908         // then we skip the delay slot on the fall-thru path
6909         if(likely[i]) {
6910           if(i<slen-1) {
6911             u&=unneeded_reg[i+2];
6912             uu&=unneeded_reg_upper[i+2];
6913             gte_u&=gte_unneeded[i+2];
6914           }
6915           else
6916           {
6917             u=1;
6918             uu=1;
6919             gte_u=gte_u_unknown;
6920           }
6921         }
6922       }
6923       else
6924       {
6925         // Internal branch, flag target
6926         bt[(ba[i]-start)>>2]=1;
6927         if(ba[i]<=start+i*4) {
6928           // Backward branch
6929           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6930           {
6931             // Unconditional branch
6932             temp_u=1;temp_uu=1;
6933             temp_gte_u=0;
6934           } else {
6935             // Conditional branch (not taken case)
6936             temp_u=unneeded_reg[i+2];
6937             temp_uu=unneeded_reg_upper[i+2];
6938             temp_gte_u&=gte_unneeded[i+2];
6939           }
6940           // Merge in delay slot
6941           tdep=(~temp_uu>>rt1[i+1])&1;
6942           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6943           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6944           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6945           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6946           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6947           temp_u|=1;temp_uu|=1;
6948           temp_gte_u|=gte_rt[i+1];
6949           temp_gte_u&=~gte_rs[i+1];
6950           // If branch is "likely" (and conditional)
6951           // then we skip the delay slot on the fall-thru path
6952           if(likely[i]) {
6953             if(i<slen-1) {
6954               temp_u&=unneeded_reg[i+2];
6955               temp_uu&=unneeded_reg_upper[i+2];
6956               temp_gte_u&=gte_unneeded[i+2];
6957             }
6958             else
6959             {
6960               temp_u=1;
6961               temp_uu=1;
6962               temp_gte_u=gte_u_unknown;
6963             }
6964           }
6965           tdep=(~temp_uu>>rt1[i])&1;
6966           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6967           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6968           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6969           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6970           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6971           temp_u|=1;temp_uu|=1;
6972           temp_gte_u|=gte_rt[i];
6973           temp_gte_u&=~gte_rs[i];
6974           unneeded_reg[i]=temp_u;
6975           unneeded_reg_upper[i]=temp_uu;
6976           gte_unneeded[i]=temp_gte_u;
6977           // Only go three levels deep.  This recursion can take an
6978           // excessive amount of time if there are a lot of nested loops.
6979           if(r<2) {
6980             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6981           }else{
6982             unneeded_reg[(ba[i]-start)>>2]=1;
6983             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6984             gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6985           }
6986         } /*else*/ if(1) {
6987           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6988           {
6989             // Unconditional branch
6990             u=unneeded_reg[(ba[i]-start)>>2];
6991             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6992             gte_u=gte_unneeded[(ba[i]-start)>>2];
6993             branch_unneeded_reg[i]=u;
6994             branch_unneeded_reg_upper[i]=uu;
6995         //u=1;
6996         //uu=1;
6997         //branch_unneeded_reg[i]=u;
6998         //branch_unneeded_reg_upper[i]=uu;
6999             // Merge in delay slot
7000             tdep=(~uu>>rt1[i+1])&1;
7001             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7002             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7003             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7004             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7005             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
7006             u|=1;uu|=1;
7007             gte_u|=gte_rt[i+1];
7008             gte_u&=~gte_rs[i+1];
7009           } else {
7010             // Conditional branch
7011             b=unneeded_reg[(ba[i]-start)>>2];
7012             bu=unneeded_reg_upper[(ba[i]-start)>>2];
7013             gte_bu=gte_unneeded[(ba[i]-start)>>2];
7014             branch_unneeded_reg[i]=b;
7015             branch_unneeded_reg_upper[i]=bu;
7016         //b=1;
7017         //bu=1;
7018         //branch_unneeded_reg[i]=b;
7019         //branch_unneeded_reg_upper[i]=bu;
7020             // Branch delay slot
7021             tdep=(~uu>>rt1[i+1])&1;
7022             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7023             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7024             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7025             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7026             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
7027             b|=1;bu|=1;
7028             gte_bu|=gte_rt[i+1];
7029             gte_bu&=~gte_rs[i+1];
7030             // If branch is "likely" then we skip the
7031             // delay slot on the fall-thru path
7032             if(likely[i]) {
7033               u=b;
7034               uu=bu;
7035               gte_u=gte_bu;
7036               if(i<slen-1) {
7037                 u&=unneeded_reg[i+2];
7038                 uu&=unneeded_reg_upper[i+2];
7039                 gte_u&=gte_unneeded[i+2];
7040         //u=1;
7041         //uu=1;
7042               }
7043             } else {
7044               u&=b;
7045               uu&=bu;
7046               gte_u&=gte_bu;
7047         //u=1;
7048         //uu=1;
7049             }
7050             if(i<slen-1) {
7051               branch_unneeded_reg[i]&=unneeded_reg[i+2];
7052               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
7053         //branch_unneeded_reg[i]=1;
7054         //branch_unneeded_reg_upper[i]=1;
7055             } else {
7056               branch_unneeded_reg[i]=1;
7057               branch_unneeded_reg_upper[i]=1;
7058             }
7059           }
7060         }
7061       }
7062     }
7063     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7064     {
7065       // SYSCALL instruction (software interrupt)
7066       u=1;
7067       uu=1;
7068     }
7069     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7070     {
7071       // ERET instruction (return from interrupt)
7072       u=1;
7073       uu=1;
7074     }
7075     //u=uu=1; // DEBUG
7076     tdep=(~uu>>rt1[i])&1;
7077     // Written registers are unneeded
7078     u|=1LL<<rt1[i];
7079     u|=1LL<<rt2[i];
7080     uu|=1LL<<rt1[i];
7081     uu|=1LL<<rt2[i];
7082     gte_u|=gte_rt[i];
7083     // Accessed registers are needed
7084     u&=~(1LL<<rs1[i]);
7085     u&=~(1LL<<rs2[i]);
7086     uu&=~(1LL<<us1[i]);
7087     uu&=~(1LL<<us2[i]);
7088     gte_u&=~gte_rs[i];
7089     if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
7090       gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
7091     // Source-target dependencies
7092     uu&=~(tdep<<dep1[i]);
7093     uu&=~(tdep<<dep2[i]);
7094     // R0 is always unneeded
7095     u|=1;uu|=1;
7096     // Save it
7097     unneeded_reg[i]=u;
7098     unneeded_reg_upper[i]=uu;
7099     gte_unneeded[i]=gte_u;
7100     /*
7101     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7102     printf("U:");
7103     int r;
7104     for(r=1;r<=CCREG;r++) {
7105       if((unneeded_reg[i]>>r)&1) {
7106         if(r==HIREG) printf(" HI");
7107         else if(r==LOREG) printf(" LO");
7108         else printf(" r%d",r);
7109       }
7110     }
7111     printf(" UU:");
7112     for(r=1;r<=CCREG;r++) {
7113       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7114         if(r==HIREG) printf(" HI");
7115         else if(r==LOREG) printf(" LO");
7116         else printf(" r%d",r);
7117       }
7118     }
7119     printf("\n");*/
7120   }
7121 #ifdef FORCE32
7122   for (i=iend;i>=istart;i--)
7123   {
7124     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7125   }
7126 #endif
7127 }
7128
7129 // Identify registers which are likely to contain 32-bit values
7130 // This is used to predict whether any branches will jump to a
7131 // location with 64-bit values in registers.
7132 static void provisional_32bit()
7133 {
7134   int i,j;
7135   uint64_t is32=1;
7136   uint64_t lastbranch=1;
7137   
7138   for(i=0;i<slen;i++)
7139   {
7140     if(i>0) {
7141       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7142         if(i>1) is32=lastbranch;
7143         else is32=1;
7144       }
7145     }
7146     if(i>1)
7147     {
7148       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7149         if(likely[i-2]) {
7150           if(i>2) is32=lastbranch;
7151           else is32=1;
7152         }
7153       }
7154       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7155       {
7156         if(rs1[i-2]==0||rs2[i-2]==0)
7157         {
7158           if(rs1[i-2]) {
7159             is32|=1LL<<rs1[i-2];
7160           }
7161           if(rs2[i-2]) {
7162             is32|=1LL<<rs2[i-2];
7163           }
7164         }
7165       }
7166     }
7167     // If something jumps here with 64-bit values
7168     // then promote those registers to 64 bits
7169     if(bt[i])
7170     {
7171       uint64_t temp_is32=is32;
7172       for(j=i-1;j>=0;j--)
7173       {
7174         if(ba[j]==start+i*4) 
7175           //temp_is32&=branch_regs[j].is32;
7176           temp_is32&=p32[j];
7177       }
7178       for(j=i;j<slen;j++)
7179       {
7180         if(ba[j]==start+i*4) 
7181           temp_is32=1;
7182       }
7183       is32=temp_is32;
7184     }
7185     int type=itype[i];
7186     int op=opcode[i];
7187     int op2=opcode2[i];
7188     int rt=rt1[i];
7189     int s1=rs1[i];
7190     int s2=rs2[i];
7191     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7192       // Branches don't write registers, consider the delay slot instead.
7193       type=itype[i+1];
7194       op=opcode[i+1];
7195       op2=opcode2[i+1];
7196       rt=rt1[i+1];
7197       s1=rs1[i+1];
7198       s2=rs2[i+1];
7199       lastbranch=is32;
7200     }
7201     switch(type) {
7202       case LOAD:
7203         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7204            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7205           is32&=~(1LL<<rt);
7206         else
7207           is32|=1LL<<rt;
7208         break;
7209       case STORE:
7210       case STORELR:
7211         break;
7212       case LOADLR:
7213         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7214         if(op==0x22) is32|=1LL<<rt; // LWL
7215         break;
7216       case IMM16:
7217         if (op==0x08||op==0x09|| // ADDI/ADDIU
7218             op==0x0a||op==0x0b|| // SLTI/SLTIU
7219             op==0x0c|| // ANDI
7220             op==0x0f)  // LUI
7221         {
7222           is32|=1LL<<rt;
7223         }
7224         if(op==0x18||op==0x19) { // DADDI/DADDIU
7225           is32&=~(1LL<<rt);
7226           //if(imm[i]==0)
7227           //  is32|=((is32>>s1)&1LL)<<rt;
7228         }
7229         if(op==0x0d||op==0x0e) { // ORI/XORI
7230           uint64_t sr=((is32>>s1)&1LL);
7231           is32&=~(1LL<<rt);
7232           is32|=sr<<rt;
7233         }
7234         break;
7235       case UJUMP:
7236         break;
7237       case RJUMP:
7238         break;
7239       case CJUMP:
7240         break;
7241       case SJUMP:
7242         break;
7243       case FJUMP:
7244         break;
7245       case ALU:
7246         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7247           is32|=1LL<<rt;
7248         }
7249         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7250           is32|=1LL<<rt;
7251         }
7252         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7253           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7254           is32&=~(1LL<<rt);
7255           is32|=sr<<rt;
7256         }
7257         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7258           if(s1==0&&s2==0) {
7259             is32|=1LL<<rt;
7260           }
7261           else if(s2==0) {
7262             uint64_t sr=((is32>>s1)&1LL);
7263             is32&=~(1LL<<rt);
7264             is32|=sr<<rt;
7265           }
7266           else if(s1==0) {
7267             uint64_t sr=((is32>>s2)&1LL);
7268             is32&=~(1LL<<rt);
7269             is32|=sr<<rt;
7270           }
7271           else {
7272             is32&=~(1LL<<rt);
7273           }
7274         }
7275         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7276           if(s1==0&&s2==0) {
7277             is32|=1LL<<rt;
7278           }
7279           else if(s2==0) {
7280             uint64_t sr=((is32>>s1)&1LL);
7281             is32&=~(1LL<<rt);
7282             is32|=sr<<rt;
7283           }
7284           else {
7285             is32&=~(1LL<<rt);
7286           }
7287         }
7288         break;
7289       case MULTDIV:
7290         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7291           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7292         }
7293         else {
7294           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7295         }
7296         break;
7297       case MOV:
7298         {
7299           uint64_t sr=((is32>>s1)&1LL);
7300           is32&=~(1LL<<rt);
7301           is32|=sr<<rt;
7302         }
7303         break;
7304       case SHIFT:
7305         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7306         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7307         break;
7308       case SHIFTIMM:
7309         is32|=1LL<<rt;
7310         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7311         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7312         break;
7313       case COP0:
7314         if(op2==0) is32|=1LL<<rt; // MFC0
7315         break;
7316       case COP1:
7317       case COP2:
7318         if(op2==0) is32|=1LL<<rt; // MFC1
7319         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7320         if(op2==2) is32|=1LL<<rt; // CFC1
7321         break;
7322       case C1LS:
7323       case C2LS:
7324         break;
7325       case FLOAT:
7326       case FCONV:
7327         break;
7328       case FCOMP:
7329         break;
7330       case C2OP:
7331       case SYSCALL:
7332       case HLECALL:
7333         break;
7334       default:
7335         break;
7336     }
7337     is32|=1;
7338     p32[i]=is32;
7339
7340     if(i>0)
7341     {
7342       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7343       {
7344         if(rt1[i-1]==31) // JAL/JALR
7345         {
7346           // Subroutine call will return here, don't alloc any registers
7347           is32=1;
7348         }
7349         else if(i+1<slen)
7350         {
7351           // Internal branch will jump here, match registers to caller
7352           is32=0x3FFFFFFFFLL;
7353         }
7354       }
7355     }
7356   }
7357 }
7358
7359 // Identify registers which may be assumed to contain 32-bit values
7360 // and where optimizations will rely on this.
7361 // This is used to determine whether backward branches can safely
7362 // jump to a location with 64-bit values in registers.
7363 static void provisional_r32()
7364 {
7365   u_int r32=0;
7366   int i;
7367   
7368   for (i=slen-1;i>=0;i--)
7369   {
7370     int hr;
7371     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7372     {
7373       if(ba[i]<start || ba[i]>=(start+slen*4))
7374       {
7375         // Branch out of this block, don't need anything
7376         r32=0;
7377       }
7378       else
7379       {
7380         // Internal branch
7381         // Need whatever matches the target
7382         // (and doesn't get overwritten by the delay slot instruction)
7383         r32=0;
7384         int t=(ba[i]-start)>>2;
7385         if(ba[i]>start+i*4) {
7386           // Forward branch
7387           //if(!(requires_32bit[t]&~regs[i].was32))
7388           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7389           if(!(pr32[t]&~regs[i].was32))
7390             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7391         }else{
7392           // Backward branch
7393           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7394             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7395         }
7396       }
7397       // Conditional branch may need registers for following instructions
7398       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7399       {
7400         if(i<slen-2) {
7401           //r32|=requires_32bit[i+2];
7402           r32|=pr32[i+2];
7403           r32&=regs[i].was32;
7404           // Mark this address as a branch target since it may be called
7405           // upon return from interrupt
7406           //bt[i+2]=1;
7407         }
7408       }
7409       // Merge in delay slot
7410       if(!likely[i]) {
7411         // These are overwritten unless the branch is "likely"
7412         // and the delay slot is nullified if not taken
7413         r32&=~(1LL<<rt1[i+1]);
7414         r32&=~(1LL<<rt2[i+1]);
7415       }
7416       // Assume these are needed (delay slot)
7417       if(us1[i+1]>0)
7418       {
7419         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7420       }
7421       if(us2[i+1]>0)
7422       {
7423         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7424       }
7425       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7426       {
7427         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7428       }
7429       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7430       {
7431         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7432       }
7433     }
7434     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7435     {
7436       // SYSCALL instruction (software interrupt)
7437       r32=0;
7438     }
7439     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7440     {
7441       // ERET instruction (return from interrupt)
7442       r32=0;
7443     }
7444     // Check 32 bits
7445     r32&=~(1LL<<rt1[i]);
7446     r32&=~(1LL<<rt2[i]);
7447     if(us1[i]>0)
7448     {
7449       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7450     }
7451     if(us2[i]>0)
7452     {
7453       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7454     }
7455     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7456     {
7457       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7458     }
7459     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7460     {
7461       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7462     }
7463     //requires_32bit[i]=r32;
7464     pr32[i]=r32;
7465     
7466     // Dirty registers which are 32-bit, require 32-bit input
7467     // as they will be written as 32-bit values
7468     for(hr=0;hr<HOST_REGS;hr++)
7469     {
7470       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7471         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7472           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7473           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7474           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7475         }
7476       }
7477     }
7478   }
7479 }
7480
7481 // Write back dirty registers as soon as we will no longer modify them,
7482 // so that we don't end up with lots of writes at the branches.
7483 void clean_registers(int istart,int iend,int wr)
7484 {
7485   int i;
7486   int r;
7487   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7488   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7489   if(iend==slen-1) {
7490     will_dirty_i=will_dirty_next=0;
7491     wont_dirty_i=wont_dirty_next=0;
7492   }else{
7493     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7494     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7495   }
7496   for (i=iend;i>=istart;i--)
7497   {
7498     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7499     {
7500       if(ba[i]<start || ba[i]>=(start+slen*4))
7501       {
7502         // Branch out of this block, flush all regs
7503         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7504         {
7505           // Unconditional branch
7506           will_dirty_i=0;
7507           wont_dirty_i=0;
7508           // Merge in delay slot (will dirty)
7509           for(r=0;r<HOST_REGS;r++) {
7510             if(r!=EXCLUDE_REG) {
7511               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7512               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7513               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7514               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7515               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7516               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7517               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7518               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7519               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7520               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7521               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7522               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7523               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7524               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7525             }
7526           }
7527         }
7528         else
7529         {
7530           // Conditional branch
7531           will_dirty_i=0;
7532           wont_dirty_i=wont_dirty_next;
7533           // Merge in delay slot (will dirty)
7534           for(r=0;r<HOST_REGS;r++) {
7535             if(r!=EXCLUDE_REG) {
7536               if(!likely[i]) {
7537                 // Might not dirty if likely branch is not taken
7538                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7539                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7540                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7541                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7542                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7543                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7544                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7545                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7546                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7547                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7548                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7549                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7550                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7551                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7552               }
7553             }
7554           }
7555         }
7556         // Merge in delay slot (wont dirty)
7557         for(r=0;r<HOST_REGS;r++) {
7558           if(r!=EXCLUDE_REG) {
7559             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7560             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7561             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7562             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7563             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7564             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7565             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7566             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7567             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7568             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7569           }
7570         }
7571         if(wr) {
7572           #ifndef DESTRUCTIVE_WRITEBACK
7573           branch_regs[i].dirty&=wont_dirty_i;
7574           #endif
7575           branch_regs[i].dirty|=will_dirty_i;
7576         }
7577       }
7578       else
7579       {
7580         // Internal branch
7581         if(ba[i]<=start+i*4) {
7582           // Backward branch
7583           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7584           {
7585             // Unconditional branch
7586             temp_will_dirty=0;
7587             temp_wont_dirty=0;
7588             // Merge in delay slot (will dirty)
7589             for(r=0;r<HOST_REGS;r++) {
7590               if(r!=EXCLUDE_REG) {
7591                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7592                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7593                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7594                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7595                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7596                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7597                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7598                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7599                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7600                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7601                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7602                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7603                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7604                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7605               }
7606             }
7607           } else {
7608             // Conditional branch (not taken case)
7609             temp_will_dirty=will_dirty_next;
7610             temp_wont_dirty=wont_dirty_next;
7611             // Merge in delay slot (will dirty)
7612             for(r=0;r<HOST_REGS;r++) {
7613               if(r!=EXCLUDE_REG) {
7614                 if(!likely[i]) {
7615                   // Will not dirty if likely branch is not taken
7616                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7617                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7618                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7619                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7620                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7621                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7622                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7623                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7624                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7625                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7626                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7627                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7628                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7629                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7630                 }
7631               }
7632             }
7633           }
7634           // Merge in delay slot (wont dirty)
7635           for(r=0;r<HOST_REGS;r++) {
7636             if(r!=EXCLUDE_REG) {
7637               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7638               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7639               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7640               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7641               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7642               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7643               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7644               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7645               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7646               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7647             }
7648           }
7649           // Deal with changed mappings
7650           if(i<iend) {
7651             for(r=0;r<HOST_REGS;r++) {
7652               if(r!=EXCLUDE_REG) {
7653                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7654                   temp_will_dirty&=~(1<<r);
7655                   temp_wont_dirty&=~(1<<r);
7656                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7657                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7658                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7659                   } else {
7660                     temp_will_dirty|=1<<r;
7661                     temp_wont_dirty|=1<<r;
7662                   }
7663                 }
7664               }
7665             }
7666           }
7667           if(wr) {
7668             will_dirty[i]=temp_will_dirty;
7669             wont_dirty[i]=temp_wont_dirty;
7670             clean_registers((ba[i]-start)>>2,i-1,0);
7671           }else{
7672             // Limit recursion.  It can take an excessive amount
7673             // of time if there are a lot of nested loops.
7674             will_dirty[(ba[i]-start)>>2]=0;
7675             wont_dirty[(ba[i]-start)>>2]=-1;
7676           }
7677         }
7678         /*else*/ if(1)
7679         {
7680           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7681           {
7682             // Unconditional branch
7683             will_dirty_i=0;
7684             wont_dirty_i=0;
7685           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7686             for(r=0;r<HOST_REGS;r++) {
7687               if(r!=EXCLUDE_REG) {
7688                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7689                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7690                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7691                 }
7692                 if(branch_regs[i].regmap[r]>=0) {
7693                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7694                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7695                 }
7696               }
7697             }
7698           //}
7699             // Merge in delay slot
7700             for(r=0;r<HOST_REGS;r++) {
7701               if(r!=EXCLUDE_REG) {
7702                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7703                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7704                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7705                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7706                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7707                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7708                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7709                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7710                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7711                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7712                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7713                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7714                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7715                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7716               }
7717             }
7718           } else {
7719             // Conditional branch
7720             will_dirty_i=will_dirty_next;
7721             wont_dirty_i=wont_dirty_next;
7722           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7723             for(r=0;r<HOST_REGS;r++) {
7724               if(r!=EXCLUDE_REG) {
7725                 signed char target_reg=branch_regs[i].regmap[r];
7726                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7727                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7728                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7729                 }
7730                 else if(target_reg>=0) {
7731                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7732                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7733                 }
7734                 // Treat delay slot as part of branch too
7735                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7736                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7737                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7738                 }
7739                 else
7740                 {
7741                   will_dirty[i+1]&=~(1<<r);
7742                 }*/
7743               }
7744             }
7745           //}
7746             // Merge in delay slot
7747             for(r=0;r<HOST_REGS;r++) {
7748               if(r!=EXCLUDE_REG) {
7749                 if(!likely[i]) {
7750                   // Might not dirty if likely branch is not taken
7751                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7752                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7753                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7754                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7755                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7756                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7757                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7758                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7759                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7760                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7761                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7762                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7763                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7764                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7765                 }
7766               }
7767             }
7768           }
7769           // Merge in delay slot (won't dirty)
7770           for(r=0;r<HOST_REGS;r++) {
7771             if(r!=EXCLUDE_REG) {
7772               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7773               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7774               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7775               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7776               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7777               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7778               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7779               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7780               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7781               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7782             }
7783           }
7784           if(wr) {
7785             #ifndef DESTRUCTIVE_WRITEBACK
7786             branch_regs[i].dirty&=wont_dirty_i;
7787             #endif
7788             branch_regs[i].dirty|=will_dirty_i;
7789           }
7790         }
7791       }
7792     }
7793     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7794     {
7795       // SYSCALL instruction (software interrupt)
7796       will_dirty_i=0;
7797       wont_dirty_i=0;
7798     }
7799     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7800     {
7801       // ERET instruction (return from interrupt)
7802       will_dirty_i=0;
7803       wont_dirty_i=0;
7804     }
7805     will_dirty_next=will_dirty_i;
7806     wont_dirty_next=wont_dirty_i;
7807     for(r=0;r<HOST_REGS;r++) {
7808       if(r!=EXCLUDE_REG) {
7809         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7810         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7811         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7812         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7813         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7814         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7815         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7816         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7817         if(i>istart) {
7818           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7819           {
7820             // Don't store a register immediately after writing it,
7821             // may prevent dual-issue.
7822             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7823             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7824           }
7825         }
7826       }
7827     }
7828     // Save it
7829     will_dirty[i]=will_dirty_i;
7830     wont_dirty[i]=wont_dirty_i;
7831     // Mark registers that won't be dirtied as not dirty
7832     if(wr) {
7833       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7834       for(r=0;r<HOST_REGS;r++) {
7835         if((will_dirty_i>>r)&1) {
7836           printf(" r%d",r);
7837         }
7838       }
7839       printf("\n");*/
7840
7841       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7842         regs[i].dirty|=will_dirty_i;
7843         #ifndef DESTRUCTIVE_WRITEBACK
7844         regs[i].dirty&=wont_dirty_i;
7845         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7846         {
7847           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7848             for(r=0;r<HOST_REGS;r++) {
7849               if(r!=EXCLUDE_REG) {
7850                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7851                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7852                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7853               }
7854             }
7855           }
7856         }
7857         else
7858         {
7859           if(i<iend) {
7860             for(r=0;r<HOST_REGS;r++) {
7861               if(r!=EXCLUDE_REG) {
7862                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7863                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7864                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7865               }
7866             }
7867           }
7868         }
7869         #endif
7870       //}
7871     }
7872     // Deal with changed mappings
7873     temp_will_dirty=will_dirty_i;
7874     temp_wont_dirty=wont_dirty_i;
7875     for(r=0;r<HOST_REGS;r++) {
7876       if(r!=EXCLUDE_REG) {
7877         int nr;
7878         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7879           if(wr) {
7880             #ifndef DESTRUCTIVE_WRITEBACK
7881             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7882             #endif
7883             regs[i].wasdirty|=will_dirty_i&(1<<r);
7884           }
7885         }
7886         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7887           // Register moved to a different register
7888           will_dirty_i&=~(1<<r);
7889           wont_dirty_i&=~(1<<r);
7890           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7891           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7892           if(wr) {
7893             #ifndef DESTRUCTIVE_WRITEBACK
7894             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7895             #endif
7896             regs[i].wasdirty|=will_dirty_i&(1<<r);
7897           }
7898         }
7899         else {
7900           will_dirty_i&=~(1<<r);
7901           wont_dirty_i&=~(1<<r);
7902           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7903             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7904             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7905           } else {
7906             wont_dirty_i|=1<<r;
7907             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7908           }
7909         }
7910       }
7911     }
7912   }
7913 }
7914
7915 #ifdef DISASM
7916   /* disassembly */
7917 void disassemble_inst(int i)
7918 {
7919     if (bt[i]) printf("*"); else printf(" ");
7920     switch(itype[i]) {
7921       case UJUMP:
7922         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7923       case CJUMP:
7924         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7925       case SJUMP:
7926         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7927       case FJUMP:
7928         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7929       case RJUMP:
7930         if (opcode[i]==0x9&&rt1[i]!=31)
7931           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7932         else
7933           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7934         break;
7935       case SPAN:
7936         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7937       case IMM16:
7938         if(opcode[i]==0xf) //LUI
7939           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7940         else
7941           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7942         break;
7943       case LOAD:
7944       case LOADLR:
7945         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7946         break;
7947       case STORE:
7948       case STORELR:
7949         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7950         break;
7951       case ALU:
7952       case SHIFT:
7953         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7954         break;
7955       case MULTDIV:
7956         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7957         break;
7958       case SHIFTIMM:
7959         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7960         break;
7961       case MOV:
7962         if((opcode2[i]&0x1d)==0x10)
7963           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7964         else if((opcode2[i]&0x1d)==0x11)
7965           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7966         else
7967           printf (" %x: %s\n",start+i*4,insn[i]);
7968         break;
7969       case COP0:
7970         if(opcode2[i]==0)
7971           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7972         else if(opcode2[i]==4)
7973           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7974         else printf (" %x: %s\n",start+i*4,insn[i]);
7975         break;
7976       case COP1:
7977         if(opcode2[i]<3)
7978           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7979         else if(opcode2[i]>3)
7980           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7981         else printf (" %x: %s\n",start+i*4,insn[i]);
7982         break;
7983       case COP2:
7984         if(opcode2[i]<3)
7985           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7986         else if(opcode2[i]>3)
7987           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7988         else printf (" %x: %s\n",start+i*4,insn[i]);
7989         break;
7990       case C1LS:
7991         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7992         break;
7993       case C2LS:
7994         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7995         break;
7996       case INTCALL:
7997         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7998         break;
7999       default:
8000         //printf (" %s %8x\n",insn[i],source[i]);
8001         printf (" %x: %s\n",start+i*4,insn[i]);
8002     }
8003 }
8004 #else
8005 static void disassemble_inst(int i) {}
8006 #endif // DISASM
8007
8008 // clear the state completely, instead of just marking
8009 // things invalid like invalidate_all_pages() does
8010 void new_dynarec_clear_full()
8011 {
8012   int n;
8013   out=(u_char *)BASE_ADDR;
8014   memset(invalid_code,1,sizeof(invalid_code));
8015   memset(hash_table,0xff,sizeof(hash_table));
8016   memset(mini_ht,-1,sizeof(mini_ht));
8017   memset(restore_candidate,0,sizeof(restore_candidate));
8018   memset(shadow,0,sizeof(shadow));
8019   copy=shadow;
8020   expirep=16384; // Expiry pointer, +2 blocks
8021   pending_exception=0;
8022   literalcount=0;
8023   stop_after_jal=0;
8024   inv_code_start=inv_code_end=~0;
8025   // TLB
8026 #ifndef DISABLE_TLB
8027   using_tlb=0;
8028   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
8029     memory_map[n]=-1;
8030   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
8031     memory_map[n]=((u_int)rdram-0x80000000)>>2;
8032   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
8033     memory_map[n]=-1;
8034 #endif
8035   for(n=0;n<4096;n++) ll_clear(jump_in+n);
8036   for(n=0;n<4096;n++) ll_clear(jump_out+n);
8037   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8038 }
8039
8040 void new_dynarec_init()
8041 {
8042   printf("Init new dynarec\n");
8043   out=(u_char *)BASE_ADDR;
8044 #if BASE_ADDR_FIXED
8045   if (mmap (out, 1<<TARGET_SIZE_2,
8046             PROT_READ | PROT_WRITE | PROT_EXEC,
8047             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
8048             -1, 0) <= 0) {SysPrintf("mmap() failed\n");}
8049 #else
8050   // not all systems allow execute in data segment by default
8051   if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
8052     SysPrintf("mprotect() failed\n");
8053 #endif
8054 #ifdef MUPEN64
8055   rdword=&readmem_dword;
8056   fake_pc.f.r.rs=&readmem_dword;
8057   fake_pc.f.r.rt=&readmem_dword;
8058   fake_pc.f.r.rd=&readmem_dword;
8059 #endif
8060   int n;
8061   cycle_multiplier=200;
8062   new_dynarec_clear_full();
8063 #ifdef HOST_IMM8
8064   // Copy this into local area so we don't have to put it in every literal pool
8065   invc_ptr=invalid_code;
8066 #endif
8067 #ifdef MUPEN64
8068   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8069     writemem[n] = write_nomem_new;
8070     writememb[n] = write_nomemb_new;
8071     writememh[n] = write_nomemh_new;
8072 #ifndef FORCE32
8073     writememd[n] = write_nomemd_new;
8074 #endif
8075     readmem[n] = read_nomem_new;
8076     readmemb[n] = read_nomemb_new;
8077     readmemh[n] = read_nomemh_new;
8078 #ifndef FORCE32
8079     readmemd[n] = read_nomemd_new;
8080 #endif
8081   }
8082   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8083     writemem[n] = write_rdram_new;
8084     writememb[n] = write_rdramb_new;
8085     writememh[n] = write_rdramh_new;
8086 #ifndef FORCE32
8087     writememd[n] = write_rdramd_new;
8088 #endif
8089   }
8090   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8091     writemem[n] = write_nomem_new;
8092     writememb[n] = write_nomemb_new;
8093     writememh[n] = write_nomemh_new;
8094 #ifndef FORCE32
8095     writememd[n] = write_nomemd_new;
8096 #endif
8097     readmem[n] = read_nomem_new;
8098     readmemb[n] = read_nomemb_new;
8099     readmemh[n] = read_nomemh_new;
8100 #ifndef FORCE32
8101     readmemd[n] = read_nomemd_new;
8102 #endif
8103   }
8104 #endif
8105   tlb_hacks();
8106   arch_init();
8107 #ifndef RAM_FIXED
8108   ram_offset=(u_int)rdram-0x80000000;
8109 #endif
8110   if (ram_offset!=0)
8111     SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
8112 }
8113
8114 void new_dynarec_cleanup()
8115 {
8116   int n;
8117   #if BASE_ADDR_FIXED
8118   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {SysPrintf("munmap() failed\n");}
8119   #endif
8120   for(n=0;n<4096;n++) ll_clear(jump_in+n);
8121   for(n=0;n<4096;n++) ll_clear(jump_out+n);
8122   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8123   #ifdef ROM_COPY
8124   if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
8125   #endif
8126 }
8127
8128 int new_recompile_block(int addr)
8129 {
8130 /*
8131   if(addr==0x800cd050) {
8132     int block;
8133     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8134     int n;
8135     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8136   }
8137 */
8138   //if(Count==365117028) tracedebug=1;
8139   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8140   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8141   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8142   //if(debug) 
8143   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8144   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8145   /*if(Count>=312978186) {
8146     rlist();
8147   }*/
8148   //rlist();
8149   start = (u_int)addr&~3;
8150   //assert(((u_int)addr&1)==0);
8151   new_dynarec_did_compile=1;
8152 #ifdef PCSX
8153   if (Config.HLE && start == 0x80001000) // hlecall
8154   {
8155     // XXX: is this enough? Maybe check hleSoftCall?
8156     u_int beginning=(u_int)out;
8157     u_int page=get_page(start);
8158     invalid_code[start>>12]=0;
8159     emit_movimm(start,0);
8160     emit_writeword(0,(int)&pcaddr);
8161     emit_jmp((int)new_dyna_leave);
8162     literal_pool(0);
8163 #ifdef __arm__
8164     __clear_cache((void *)beginning,out);
8165 #endif
8166     ll_add(jump_in+page,start,(void *)beginning);
8167     return 0;
8168   }
8169   else if ((u_int)addr < 0x00200000 ||
8170     (0xa0000000 <= addr && addr < 0xa0200000)) {
8171     // used for BIOS calls mostly?
8172     source = (u_int *)((u_int)rdram+(start&0x1fffff));
8173     pagelimit = (addr&0xa0000000)|0x00200000;
8174   }
8175   else if (!Config.HLE && (
8176 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8177     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8178     // BIOS
8179     source = (u_int *)((u_int)psxR+(start&0x7ffff));
8180     pagelimit = (addr&0xfff00000)|0x80000;
8181   }
8182   else
8183 #endif
8184 #ifdef MUPEN64
8185   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8186     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8187     pagelimit = 0xa4001000;
8188   }
8189   else
8190 #endif
8191   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
8192     source = (u_int *)((u_int)rdram+start-0x80000000);
8193     pagelimit = 0x80000000+RAM_SIZE;
8194   }
8195 #ifndef DISABLE_TLB
8196   else if ((signed int)addr >= (signed int)0xC0000000) {
8197     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8198     //if(tlb_LUT_r[start>>12])
8199       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8200     if((signed int)memory_map[start>>12]>=0) {
8201       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8202       pagelimit=(start+4096)&0xFFFFF000;
8203       int map=memory_map[start>>12];
8204       int i;
8205       for(i=0;i<5;i++) {
8206         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8207         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8208       }
8209       assem_debug("pagelimit=%x\n",pagelimit);
8210       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8211     }
8212     else {
8213       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8214       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
8215       return -1; // Caller will invoke exception handler
8216     }
8217     //printf("source= %x\n",(int)source);
8218   }
8219 #endif
8220   else {
8221     SysPrintf("Compile at bogus memory address: %x \n", (int)addr);
8222     exit(1);
8223   }
8224
8225   /* Pass 1: disassemble */
8226   /* Pass 2: register dependencies, branch targets */
8227   /* Pass 3: register allocation */
8228   /* Pass 4: branch dependencies */
8229   /* Pass 5: pre-alloc */
8230   /* Pass 6: optimize clean/dirty state */
8231   /* Pass 7: flag 32-bit registers */
8232   /* Pass 8: assembly */
8233   /* Pass 9: linker */
8234   /* Pass 10: garbage collection / free memory */
8235
8236   int i,j;
8237   int done=0;
8238   unsigned int type,op,op2;
8239
8240   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8241   
8242   /* Pass 1 disassembly */
8243
8244   for(i=0;!done;i++) {
8245     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8246     minimum_free_regs[i]=0;
8247     opcode[i]=op=source[i]>>26;
8248     switch(op)
8249     {
8250       case 0x00: strcpy(insn[i],"special"); type=NI;
8251         op2=source[i]&0x3f;
8252         switch(op2)
8253         {
8254           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8255           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8256           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8257           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8258           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8259           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8260           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8261           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8262           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8263           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8264           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8265           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8266           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8267           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8268           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
8269           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8270           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8271           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8272           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
8273           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8274           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8275           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8276           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8277           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8278           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8279           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8280           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8281           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8282           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
8283           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8284           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8285           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8286           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8287           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8288           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
8289 #ifndef FORCE32
8290           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8291           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8292           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8293           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8294           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8295           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8296           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8297           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8298           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8299           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8300           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
8301           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8302           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8303           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8304           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8305           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8306           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
8307 #endif
8308         }
8309         break;
8310       case 0x01: strcpy(insn[i],"regimm"); type=NI;
8311         op2=(source[i]>>16)&0x1f;
8312         switch(op2)
8313         {
8314           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8315           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8316           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8317           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8318           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8319           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8320           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8321           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8322           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8323           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8324           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8325           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8326           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8327           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8328         }
8329         break;
8330       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8331       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8332       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8333       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8334       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8335       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8336       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8337       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8338       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8339       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8340       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8341       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8342       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8343       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8344       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8345         op2=(source[i]>>21)&0x1f;
8346         switch(op2)
8347         {
8348           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8349           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8350           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8351           switch(source[i]&0x3f)
8352           {
8353             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8354             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8355             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8356             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8357 #ifdef PCSX
8358             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8359 #else
8360             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8361 #endif
8362           }
8363         }
8364         break;
8365       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8366         op2=(source[i]>>21)&0x1f;
8367         switch(op2)
8368         {
8369           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8370           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8371           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8372           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8373           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8374           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8375           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8376           switch((source[i]>>16)&0x3)
8377           {
8378             case 0x00: strcpy(insn[i],"BC1F"); break;
8379             case 0x01: strcpy(insn[i],"BC1T"); break;
8380             case 0x02: strcpy(insn[i],"BC1FL"); break;
8381             case 0x03: strcpy(insn[i],"BC1TL"); break;
8382           }
8383           break;
8384           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8385           switch(source[i]&0x3f)
8386           {
8387             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8388             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8389             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8390             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8391             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8392             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8393             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8394             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8395             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8396             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8397             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8398             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8399             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8400             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8401             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8402             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8403             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8404             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8405             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8406             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8407             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8408             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8409             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8410             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8411             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8412             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8413             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8414             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8415             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8416             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8417             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8418             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8419             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8420             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8421             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8422           }
8423           break;
8424           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8425           switch(source[i]&0x3f)
8426           {
8427             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8428             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8429             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8430             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8431             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8432             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8433             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8434             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8435             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8436             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8437             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8438             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8439             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8440             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8441             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8442             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8443             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8444             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8445             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8446             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8447             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8448             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8449             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8450             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8451             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8452             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8453             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8454             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8455             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8456             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8457             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8458             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8459             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8460             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8461             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8462           }
8463           break;
8464           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8465           switch(source[i]&0x3f)
8466           {
8467             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8468             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8469           }
8470           break;
8471           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8472           switch(source[i]&0x3f)
8473           {
8474             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8475             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8476           }
8477           break;
8478         }
8479         break;
8480 #ifndef FORCE32
8481       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8482       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8483       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8484       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8485       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8486       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8487       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8488       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8489 #endif
8490       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8491       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8492       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8493       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8494       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8495       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8496       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8497 #ifndef FORCE32
8498       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8499 #endif
8500       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8501       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8502       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8503       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8504 #ifndef FORCE32
8505       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8506       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8507 #endif
8508       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8509       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8510       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8511       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8512 #ifndef FORCE32
8513       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8514       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8515       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8516 #endif
8517       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8518       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8519 #ifndef FORCE32
8520       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8521       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8522       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8523 #endif
8524 #ifdef PCSX
8525       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8526         op2=(source[i]>>21)&0x1f;
8527         //if (op2 & 0x10) {
8528         if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
8529           if (gte_handlers[source[i]&0x3f]!=NULL) {
8530             if (gte_regnames[source[i]&0x3f]!=NULL)
8531               strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8532             else
8533               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8534             type=C2OP;
8535           }
8536         }
8537         else switch(op2)
8538         {
8539           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8540           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8541           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8542           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8543         }
8544         break;
8545       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8546       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8547       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8548 #endif
8549       default: strcpy(insn[i],"???"); type=NI;
8550         SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8551         break;
8552     }
8553     itype[i]=type;
8554     opcode2[i]=op2;
8555     /* Get registers/immediates */
8556     lt1[i]=0;
8557     us1[i]=0;
8558     us2[i]=0;
8559     dep1[i]=0;
8560     dep2[i]=0;
8561     gte_rs[i]=gte_rt[i]=0;
8562     switch(type) {
8563       case LOAD:
8564         rs1[i]=(source[i]>>21)&0x1f;
8565         rs2[i]=0;
8566         rt1[i]=(source[i]>>16)&0x1f;
8567         rt2[i]=0;
8568         imm[i]=(short)source[i];
8569         break;
8570       case STORE:
8571       case STORELR:
8572         rs1[i]=(source[i]>>21)&0x1f;
8573         rs2[i]=(source[i]>>16)&0x1f;
8574         rt1[i]=0;
8575         rt2[i]=0;
8576         imm[i]=(short)source[i];
8577         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8578         break;
8579       case LOADLR:
8580         // LWL/LWR only load part of the register,
8581         // therefore the target register must be treated as a source too
8582         rs1[i]=(source[i]>>21)&0x1f;
8583         rs2[i]=(source[i]>>16)&0x1f;
8584         rt1[i]=(source[i]>>16)&0x1f;
8585         rt2[i]=0;
8586         imm[i]=(short)source[i];
8587         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8588         if(op==0x26) dep1[i]=rt1[i]; // LWR
8589         break;
8590       case IMM16:
8591         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8592         else rs1[i]=(source[i]>>21)&0x1f;
8593         rs2[i]=0;
8594         rt1[i]=(source[i]>>16)&0x1f;
8595         rt2[i]=0;
8596         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8597           imm[i]=(unsigned short)source[i];
8598         }else{
8599           imm[i]=(short)source[i];
8600         }
8601         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8602         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8603         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8604         break;
8605       case UJUMP:
8606         rs1[i]=0;
8607         rs2[i]=0;
8608         rt1[i]=0;
8609         rt2[i]=0;
8610         // The JAL instruction writes to r31.
8611         if (op&1) {
8612           rt1[i]=31;
8613         }
8614         rs2[i]=CCREG;
8615         break;
8616       case RJUMP:
8617         rs1[i]=(source[i]>>21)&0x1f;
8618         rs2[i]=0;
8619         rt1[i]=0;
8620         rt2[i]=0;
8621         // The JALR instruction writes to rd.
8622         if (op2&1) {
8623           rt1[i]=(source[i]>>11)&0x1f;
8624         }
8625         rs2[i]=CCREG;
8626         break;
8627       case CJUMP:
8628         rs1[i]=(source[i]>>21)&0x1f;
8629         rs2[i]=(source[i]>>16)&0x1f;
8630         rt1[i]=0;
8631         rt2[i]=0;
8632         if(op&2) { // BGTZ/BLEZ
8633           rs2[i]=0;
8634         }
8635         us1[i]=rs1[i];
8636         us2[i]=rs2[i];
8637         likely[i]=op>>4;
8638         break;
8639       case SJUMP:
8640         rs1[i]=(source[i]>>21)&0x1f;
8641         rs2[i]=CCREG;
8642         rt1[i]=0;
8643         rt2[i]=0;
8644         us1[i]=rs1[i];
8645         if(op2&0x10) { // BxxAL
8646           rt1[i]=31;
8647           // NOTE: If the branch is not taken, r31 is still overwritten
8648         }
8649         likely[i]=(op2&2)>>1;
8650         break;
8651       case FJUMP:
8652         rs1[i]=FSREG;
8653         rs2[i]=CSREG;
8654         rt1[i]=0;
8655         rt2[i]=0;
8656         likely[i]=((source[i])>>17)&1;
8657         break;
8658       case ALU:
8659         rs1[i]=(source[i]>>21)&0x1f; // source
8660         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8661         rt1[i]=(source[i]>>11)&0x1f; // destination
8662         rt2[i]=0;
8663         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8664           us1[i]=rs1[i];us2[i]=rs2[i];
8665         }
8666         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8667           dep1[i]=rs1[i];dep2[i]=rs2[i];
8668         }
8669         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8670           dep1[i]=rs1[i];dep2[i]=rs2[i];
8671         }
8672         break;
8673       case MULTDIV:
8674         rs1[i]=(source[i]>>21)&0x1f; // source
8675         rs2[i]=(source[i]>>16)&0x1f; // divisor
8676         rt1[i]=HIREG;
8677         rt2[i]=LOREG;
8678         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8679           us1[i]=rs1[i];us2[i]=rs2[i];
8680         }
8681         break;
8682       case MOV:
8683         rs1[i]=0;
8684         rs2[i]=0;
8685         rt1[i]=0;
8686         rt2[i]=0;
8687         if(op2==0x10) rs1[i]=HIREG; // MFHI
8688         if(op2==0x11) rt1[i]=HIREG; // MTHI
8689         if(op2==0x12) rs1[i]=LOREG; // MFLO
8690         if(op2==0x13) rt1[i]=LOREG; // MTLO
8691         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8692         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8693         dep1[i]=rs1[i];
8694         break;
8695       case SHIFT:
8696         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8697         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8698         rt1[i]=(source[i]>>11)&0x1f; // destination
8699         rt2[i]=0;
8700         // DSLLV/DSRLV/DSRAV are 64-bit
8701         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8702         break;
8703       case SHIFTIMM:
8704         rs1[i]=(source[i]>>16)&0x1f;
8705         rs2[i]=0;
8706         rt1[i]=(source[i]>>11)&0x1f;
8707         rt2[i]=0;
8708         imm[i]=(source[i]>>6)&0x1f;
8709         // DSxx32 instructions
8710         if(op2>=0x3c) imm[i]|=0x20;
8711         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8712         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8713         break;
8714       case COP0:
8715         rs1[i]=0;
8716         rs2[i]=0;
8717         rt1[i]=0;
8718         rt2[i]=0;
8719         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8720         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8721         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8722         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8723         break;
8724       case COP1:
8725         rs1[i]=0;
8726         rs2[i]=0;
8727         rt1[i]=0;
8728         rt2[i]=0;
8729         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8730         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8731         if(op2==5) us1[i]=rs1[i]; // DMTC1
8732         rs2[i]=CSREG;
8733         break;
8734       case COP2:
8735         rs1[i]=0;
8736         rs2[i]=0;
8737         rt1[i]=0;
8738         rt2[i]=0;
8739         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8740         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8741         rs2[i]=CSREG;
8742         int gr=(source[i]>>11)&0x1F;
8743         switch(op2)
8744         {
8745           case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8746           case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8747           case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
8748           case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8749         }
8750         break;
8751       case C1LS:
8752         rs1[i]=(source[i]>>21)&0x1F;
8753         rs2[i]=CSREG;
8754         rt1[i]=0;
8755         rt2[i]=0;
8756         imm[i]=(short)source[i];
8757         break;
8758       case C2LS:
8759         rs1[i]=(source[i]>>21)&0x1F;
8760         rs2[i]=0;
8761         rt1[i]=0;
8762         rt2[i]=0;
8763         imm[i]=(short)source[i];
8764         if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8765         else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8766         break;
8767       case C2OP:
8768         rs1[i]=0;
8769         rs2[i]=0;
8770         rt1[i]=0;
8771         rt2[i]=0;
8772         gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8773         gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8774         gte_rt[i]|=1ll<<63; // every op changes flags
8775         if((source[i]&0x3f)==GTE_MVMVA) {
8776           int v = (source[i] >> 15) & 3;
8777           gte_rs[i]&=~0xe3fll;
8778           if(v==3) gte_rs[i]|=0xe00ll;
8779           else gte_rs[i]|=3ll<<(v*2);
8780         }
8781         break;
8782       case FLOAT:
8783       case FCONV:
8784         rs1[i]=0;
8785         rs2[i]=CSREG;
8786         rt1[i]=0;
8787         rt2[i]=0;
8788         break;
8789       case FCOMP:
8790         rs1[i]=FSREG;
8791         rs2[i]=CSREG;
8792         rt1[i]=FSREG;
8793         rt2[i]=0;
8794         break;
8795       case SYSCALL:
8796       case HLECALL:
8797       case INTCALL:
8798         rs1[i]=CCREG;
8799         rs2[i]=0;
8800         rt1[i]=0;
8801         rt2[i]=0;
8802         break;
8803       default:
8804         rs1[i]=0;
8805         rs2[i]=0;
8806         rt1[i]=0;
8807         rt2[i]=0;
8808     }
8809     /* Calculate branch target addresses */
8810     if(type==UJUMP)
8811       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8812     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8813       ba[i]=start+i*4+8; // Ignore never taken branch
8814     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8815       ba[i]=start+i*4+8; // Ignore never taken branch
8816     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8817       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8818     else ba[i]=-1;
8819 #ifdef PCSX
8820     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8821       int do_in_intrp=0;
8822       // branch in delay slot?
8823       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8824         // don't handle first branch and call interpreter if it's hit
8825         SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8826         do_in_intrp=1;
8827       }
8828       // basic load delay detection
8829       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8830         int t=(ba[i-1]-start)/4;
8831         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8832           // jump target wants DS result - potential load delay effect
8833           SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
8834           do_in_intrp=1;
8835           bt[t+1]=1; // expected return from interpreter
8836         }
8837         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8838               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8839           // v0 overwrite like this is a sign of trouble, bail out
8840           SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8841           do_in_intrp=1;
8842         }
8843       }
8844       if(do_in_intrp) {
8845         rs1[i-1]=CCREG;
8846         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8847         ba[i-1]=-1;
8848         itype[i-1]=INTCALL;
8849         done=2;
8850         i--; // don't compile the DS
8851       }
8852     }
8853 #endif
8854     /* Is this the end of the block? */
8855     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8856       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8857         done=2;
8858       }
8859       else {
8860         if(stop_after_jal) done=1;
8861         // Stop on BREAK
8862         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8863       }
8864       // Don't recompile stuff that's already compiled
8865       if(check_addr(start+i*4+4)) done=1;
8866       // Don't get too close to the limit
8867       if(i>MAXBLOCK/2) done=1;
8868     }
8869     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8870     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8871     if(done==2) {
8872       // Does the block continue due to a branch?
8873       for(j=i-1;j>=0;j--)
8874       {
8875         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8876         if(ba[j]==start+i*4+4) done=j=0;
8877         if(ba[j]==start+i*4+8) done=j=0;
8878       }
8879     }
8880     //assert(i<MAXBLOCK-1);
8881     if(start+i*4==pagelimit-4) done=1;
8882     assert(start+i*4<pagelimit);
8883     if (i==MAXBLOCK-1) done=1;
8884     // Stop if we're compiling junk
8885     if(itype[i]==NI&&opcode[i]==0x11) {
8886       done=stop_after_jal=1;
8887       SysPrintf("Disabled speculative precompilation\n");
8888     }
8889   }
8890   slen=i;
8891   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8892     if(start+i*4==pagelimit) {
8893       itype[i-1]=SPAN;
8894     }
8895   }
8896   assert(slen>0);
8897
8898   /* Pass 2 - Register dependencies and branch targets */
8899
8900   unneeded_registers(0,slen-1,0);
8901   
8902   /* Pass 3 - Register allocation */
8903
8904   struct regstat current; // Current register allocations/status
8905   current.is32=1;
8906   current.dirty=0;
8907   current.u=unneeded_reg[0];
8908   current.uu=unneeded_reg_upper[0];
8909   clear_all_regs(current.regmap);
8910   alloc_reg(&current,0,CCREG);
8911   dirty_reg(&current,CCREG);
8912   current.isconst=0;
8913   current.wasconst=0;
8914   current.waswritten=0;
8915   int ds=0;
8916   int cc=0;
8917   int hr=-1;
8918
8919 #ifndef FORCE32
8920   provisional_32bit();
8921 #endif
8922   if((u_int)addr&1) {
8923     // First instruction is delay slot
8924     cc=-1;
8925     bt[1]=1;
8926     ds=1;
8927     unneeded_reg[0]=1;
8928     unneeded_reg_upper[0]=1;
8929     current.regmap[HOST_BTREG]=BTREG;
8930   }
8931   
8932   for(i=0;i<slen;i++)
8933   {
8934     if(bt[i])
8935     {
8936       int hr;
8937       for(hr=0;hr<HOST_REGS;hr++)
8938       {
8939         // Is this really necessary?
8940         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8941       }
8942       current.isconst=0;
8943       current.waswritten=0;
8944     }
8945     if(i>1)
8946     {
8947       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8948       {
8949         if(rs1[i-2]==0||rs2[i-2]==0)
8950         {
8951           if(rs1[i-2]) {
8952             current.is32|=1LL<<rs1[i-2];
8953             int hr=get_reg(current.regmap,rs1[i-2]|64);
8954             if(hr>=0) current.regmap[hr]=-1;
8955           }
8956           if(rs2[i-2]) {
8957             current.is32|=1LL<<rs2[i-2];
8958             int hr=get_reg(current.regmap,rs2[i-2]|64);
8959             if(hr>=0) current.regmap[hr]=-1;
8960           }
8961         }
8962       }
8963     }
8964 #ifndef FORCE32
8965     // If something jumps here with 64-bit values
8966     // then promote those registers to 64 bits
8967     if(bt[i])
8968     {
8969       uint64_t temp_is32=current.is32;
8970       for(j=i-1;j>=0;j--)
8971       {
8972         if(ba[j]==start+i*4) 
8973           temp_is32&=branch_regs[j].is32;
8974       }
8975       for(j=i;j<slen;j++)
8976       {
8977         if(ba[j]==start+i*4) 
8978           //temp_is32=1;
8979           temp_is32&=p32[j];
8980       }
8981       if(temp_is32!=current.is32) {
8982         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8983         #ifndef DESTRUCTIVE_WRITEBACK
8984         if(ds)
8985         #endif
8986         for(hr=0;hr<HOST_REGS;hr++)
8987         {
8988           int r=current.regmap[hr];
8989           if(r>0&&r<64)
8990           {
8991             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8992               temp_is32|=1LL<<r;
8993               //printf("restore %d\n",r);
8994             }
8995           }
8996         }
8997         current.is32=temp_is32;
8998       }
8999     }
9000 #else
9001     current.is32=-1LL;
9002 #endif
9003
9004     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
9005     regs[i].wasconst=current.isconst;
9006     regs[i].was32=current.is32;
9007     regs[i].wasdirty=current.dirty;
9008     regs[i].loadedconst=0;
9009     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
9010     // To change a dirty register from 32 to 64 bits, we must write
9011     // it out during the previous cycle (for branches, 2 cycles)
9012     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
9013     {
9014       uint64_t temp_is32=current.is32;
9015       for(j=i-1;j>=0;j--)
9016       {
9017         if(ba[j]==start+i*4+4) 
9018           temp_is32&=branch_regs[j].is32;
9019       }
9020       for(j=i;j<slen;j++)
9021       {
9022         if(ba[j]==start+i*4+4) 
9023           //temp_is32=1;
9024           temp_is32&=p32[j];
9025       }
9026       if(temp_is32!=current.is32) {
9027         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9028         for(hr=0;hr<HOST_REGS;hr++)
9029         {
9030           int r=current.regmap[hr];
9031           if(r>0)
9032           {
9033             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9034               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
9035               {
9036                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
9037                 {
9038                   //printf("dump %d/r%d\n",hr,r);
9039                   current.regmap[hr]=-1;
9040                   if(get_reg(current.regmap,r|64)>=0) 
9041                     current.regmap[get_reg(current.regmap,r|64)]=-1;
9042                 }
9043               }
9044             }
9045           }
9046         }
9047       }
9048     }
9049     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
9050     {
9051       uint64_t temp_is32=current.is32;
9052       for(j=i-1;j>=0;j--)
9053       {
9054         if(ba[j]==start+i*4+8) 
9055           temp_is32&=branch_regs[j].is32;
9056       }
9057       for(j=i;j<slen;j++)
9058       {
9059         if(ba[j]==start+i*4+8) 
9060           //temp_is32=1;
9061           temp_is32&=p32[j];
9062       }
9063       if(temp_is32!=current.is32) {
9064         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9065         for(hr=0;hr<HOST_REGS;hr++)
9066         {
9067           int r=current.regmap[hr];
9068           if(r>0)
9069           {
9070             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9071               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
9072               {
9073                 //printf("dump %d/r%d\n",hr,r);
9074                 current.regmap[hr]=-1;
9075                 if(get_reg(current.regmap,r|64)>=0) 
9076                   current.regmap[get_reg(current.regmap,r|64)]=-1;
9077               }
9078             }
9079           }
9080         }
9081       }
9082     }
9083     #endif
9084     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9085       if(i+1<slen) {
9086         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9087         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9088         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9089         current.u|=1;
9090         current.uu|=1;
9091       } else {
9092         current.u=1;
9093         current.uu=1;
9094       }
9095     } else {
9096       if(i+1<slen) {
9097         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9098         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9099         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9100         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9101         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9102         current.u|=1;
9103         current.uu|=1;
9104       } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
9105     }
9106     is_ds[i]=ds;
9107     if(ds) {
9108       ds=0; // Skip delay slot, already allocated as part of branch
9109       // ...but we need to alloc it in case something jumps here
9110       if(i+1<slen) {
9111         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9112         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9113       }else{
9114         current.u=branch_unneeded_reg[i-1];
9115         current.uu=branch_unneeded_reg_upper[i-1];
9116       }
9117       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9118       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9119       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9120       current.u|=1;
9121       current.uu|=1;
9122       struct regstat temp;
9123       memcpy(&temp,&current,sizeof(current));
9124       temp.wasdirty=temp.dirty;
9125       temp.was32=temp.is32;
9126       // TODO: Take into account unconditional branches, as below
9127       delayslot_alloc(&temp,i);
9128       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9129       regs[i].wasdirty=temp.wasdirty;
9130       regs[i].was32=temp.was32;
9131       regs[i].dirty=temp.dirty;
9132       regs[i].is32=temp.is32;
9133       regs[i].isconst=0;
9134       regs[i].wasconst=0;
9135       current.isconst=0;
9136       // Create entry (branch target) regmap
9137       for(hr=0;hr<HOST_REGS;hr++)
9138       {
9139         int r=temp.regmap[hr];
9140         if(r>=0) {
9141           if(r!=regmap_pre[i][hr]) {
9142             regs[i].regmap_entry[hr]=-1;
9143           }
9144           else
9145           {
9146             if(r<64){
9147               if((current.u>>r)&1) {
9148                 regs[i].regmap_entry[hr]=-1;
9149                 regs[i].regmap[hr]=-1;
9150                 //Don't clear regs in the delay slot as the branch might need them
9151                 //current.regmap[hr]=-1;
9152               }else
9153                 regs[i].regmap_entry[hr]=r;
9154             }
9155             else {
9156               if((current.uu>>(r&63))&1) {
9157                 regs[i].regmap_entry[hr]=-1;
9158                 regs[i].regmap[hr]=-1;
9159                 //Don't clear regs in the delay slot as the branch might need them
9160                 //current.regmap[hr]=-1;
9161               }else
9162                 regs[i].regmap_entry[hr]=r;
9163             }
9164           }
9165         } else {
9166           // First instruction expects CCREG to be allocated
9167           if(i==0&&hr==HOST_CCREG) 
9168             regs[i].regmap_entry[hr]=CCREG;
9169           else
9170             regs[i].regmap_entry[hr]=-1;
9171         }
9172       }
9173     }
9174     else { // Not delay slot
9175       switch(itype[i]) {
9176         case UJUMP:
9177           //current.isconst=0; // DEBUG
9178           //current.wasconst=0; // DEBUG
9179           //regs[i].wasconst=0; // DEBUG
9180           clear_const(&current,rt1[i]);
9181           alloc_cc(&current,i);
9182           dirty_reg(&current,CCREG);
9183           if (rt1[i]==31) {
9184             alloc_reg(&current,i,31);
9185             dirty_reg(&current,31);
9186             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9187             //assert(rt1[i+1]!=rt1[i]);
9188             #ifdef REG_PREFETCH
9189             alloc_reg(&current,i,PTEMP);
9190             #endif
9191             //current.is32|=1LL<<rt1[i];
9192           }
9193           ooo[i]=1;
9194           delayslot_alloc(&current,i+1);
9195           //current.isconst=0; // DEBUG
9196           ds=1;
9197           //printf("i=%d, isconst=%x\n",i,current.isconst);
9198           break;
9199         case RJUMP:
9200           //current.isconst=0;
9201           //current.wasconst=0;
9202           //regs[i].wasconst=0;
9203           clear_const(&current,rs1[i]);
9204           clear_const(&current,rt1[i]);
9205           alloc_cc(&current,i);
9206           dirty_reg(&current,CCREG);
9207           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9208             alloc_reg(&current,i,rs1[i]);
9209             if (rt1[i]!=0) {
9210               alloc_reg(&current,i,rt1[i]);
9211               dirty_reg(&current,rt1[i]);
9212               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
9213               assert(rt1[i+1]!=rt1[i]);
9214               #ifdef REG_PREFETCH
9215               alloc_reg(&current,i,PTEMP);
9216               #endif
9217             }
9218             #ifdef USE_MINI_HT
9219             if(rs1[i]==31) { // JALR
9220               alloc_reg(&current,i,RHASH);
9221               #ifndef HOST_IMM_ADDR32
9222               alloc_reg(&current,i,RHTBL);
9223               #endif
9224             }
9225             #endif
9226             delayslot_alloc(&current,i+1);
9227           } else {
9228             // The delay slot overwrites our source register,
9229             // allocate a temporary register to hold the old value.
9230             current.isconst=0;
9231             current.wasconst=0;
9232             regs[i].wasconst=0;
9233             delayslot_alloc(&current,i+1);
9234             current.isconst=0;
9235             alloc_reg(&current,i,RTEMP);
9236           }
9237           //current.isconst=0; // DEBUG
9238           ooo[i]=1;
9239           ds=1;
9240           break;
9241         case CJUMP:
9242           //current.isconst=0;
9243           //current.wasconst=0;
9244           //regs[i].wasconst=0;
9245           clear_const(&current,rs1[i]);
9246           clear_const(&current,rs2[i]);
9247           if((opcode[i]&0x3E)==4) // BEQ/BNE
9248           {
9249             alloc_cc(&current,i);
9250             dirty_reg(&current,CCREG);
9251             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9252             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9253             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9254             {
9255               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9256               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9257             }
9258             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9259                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9260               // The delay slot overwrites one of our conditions.
9261               // Allocate the branch condition registers instead.
9262               current.isconst=0;
9263               current.wasconst=0;
9264               regs[i].wasconst=0;
9265               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9266               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9267               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9268               {
9269                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9270                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9271               }
9272             }
9273             else
9274             {
9275               ooo[i]=1;
9276               delayslot_alloc(&current,i+1);
9277             }
9278           }
9279           else
9280           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9281           {
9282             alloc_cc(&current,i);
9283             dirty_reg(&current,CCREG);
9284             alloc_reg(&current,i,rs1[i]);
9285             if(!(current.is32>>rs1[i]&1))
9286             {
9287               alloc_reg64(&current,i,rs1[i]);
9288             }
9289             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9290               // The delay slot overwrites one of our conditions.
9291               // Allocate the branch condition registers instead.
9292               current.isconst=0;
9293               current.wasconst=0;
9294               regs[i].wasconst=0;
9295               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9296               if(!((current.is32>>rs1[i])&1))
9297               {
9298                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9299               }
9300             }
9301             else
9302             {
9303               ooo[i]=1;
9304               delayslot_alloc(&current,i+1);
9305             }
9306           }
9307           else
9308           // Don't alloc the delay slot yet because we might not execute it
9309           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9310           {
9311             current.isconst=0;
9312             current.wasconst=0;
9313             regs[i].wasconst=0;
9314             alloc_cc(&current,i);
9315             dirty_reg(&current,CCREG);
9316             alloc_reg(&current,i,rs1[i]);
9317             alloc_reg(&current,i,rs2[i]);
9318             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9319             {
9320               alloc_reg64(&current,i,rs1[i]);
9321               alloc_reg64(&current,i,rs2[i]);
9322             }
9323           }
9324           else
9325           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9326           {
9327             current.isconst=0;
9328             current.wasconst=0;
9329             regs[i].wasconst=0;
9330             alloc_cc(&current,i);
9331             dirty_reg(&current,CCREG);
9332             alloc_reg(&current,i,rs1[i]);
9333             if(!(current.is32>>rs1[i]&1))
9334             {
9335               alloc_reg64(&current,i,rs1[i]);
9336             }
9337           }
9338           ds=1;
9339           //current.isconst=0;
9340           break;
9341         case SJUMP:
9342           //current.isconst=0;
9343           //current.wasconst=0;
9344           //regs[i].wasconst=0;
9345           clear_const(&current,rs1[i]);
9346           clear_const(&current,rt1[i]);
9347           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9348           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9349           {
9350             alloc_cc(&current,i);
9351             dirty_reg(&current,CCREG);
9352             alloc_reg(&current,i,rs1[i]);
9353             if(!(current.is32>>rs1[i]&1))
9354             {
9355               alloc_reg64(&current,i,rs1[i]);
9356             }
9357             if (rt1[i]==31) { // BLTZAL/BGEZAL
9358               alloc_reg(&current,i,31);
9359               dirty_reg(&current,31);
9360               //#ifdef REG_PREFETCH
9361               //alloc_reg(&current,i,PTEMP);
9362               //#endif
9363               //current.is32|=1LL<<rt1[i];
9364             }
9365             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9366                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9367               // Allocate the branch condition registers instead.
9368               current.isconst=0;
9369               current.wasconst=0;
9370               regs[i].wasconst=0;
9371               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9372               if(!((current.is32>>rs1[i])&1))
9373               {
9374                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9375               }
9376             }
9377             else
9378             {
9379               ooo[i]=1;
9380               delayslot_alloc(&current,i+1);
9381             }
9382           }
9383           else
9384           // Don't alloc the delay slot yet because we might not execute it
9385           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9386           {
9387             current.isconst=0;
9388             current.wasconst=0;
9389             regs[i].wasconst=0;
9390             alloc_cc(&current,i);
9391             dirty_reg(&current,CCREG);
9392             alloc_reg(&current,i,rs1[i]);
9393             if(!(current.is32>>rs1[i]&1))
9394             {
9395               alloc_reg64(&current,i,rs1[i]);
9396             }
9397           }
9398           ds=1;
9399           //current.isconst=0;
9400           break;
9401         case FJUMP:
9402           current.isconst=0;
9403           current.wasconst=0;
9404           regs[i].wasconst=0;
9405           if(likely[i]==0) // BC1F/BC1T
9406           {
9407             // TODO: Theoretically we can run out of registers here on x86.
9408             // The delay slot can allocate up to six, and we need to check
9409             // CSREG before executing the delay slot.  Possibly we can drop
9410             // the cycle count and then reload it after checking that the
9411             // FPU is in a usable state, or don't do out-of-order execution.
9412             alloc_cc(&current,i);
9413             dirty_reg(&current,CCREG);
9414             alloc_reg(&current,i,FSREG);
9415             alloc_reg(&current,i,CSREG);
9416             if(itype[i+1]==FCOMP) {
9417               // The delay slot overwrites the branch condition.
9418               // Allocate the branch condition registers instead.
9419               alloc_cc(&current,i);
9420               dirty_reg(&current,CCREG);
9421               alloc_reg(&current,i,CSREG);
9422               alloc_reg(&current,i,FSREG);
9423             }
9424             else {
9425               ooo[i]=1;
9426               delayslot_alloc(&current,i+1);
9427               alloc_reg(&current,i+1,CSREG);
9428             }
9429           }
9430           else
9431           // Don't alloc the delay slot yet because we might not execute it
9432           if(likely[i]) // BC1FL/BC1TL
9433           {
9434             alloc_cc(&current,i);
9435             dirty_reg(&current,CCREG);
9436             alloc_reg(&current,i,CSREG);
9437             alloc_reg(&current,i,FSREG);
9438           }
9439           ds=1;
9440           current.isconst=0;
9441           break;
9442         case IMM16:
9443           imm16_alloc(&current,i);
9444           break;
9445         case LOAD:
9446         case LOADLR:
9447           load_alloc(&current,i);
9448           break;
9449         case STORE:
9450         case STORELR:
9451           store_alloc(&current,i);
9452           break;
9453         case ALU:
9454           alu_alloc(&current,i);
9455           break;
9456         case SHIFT:
9457           shift_alloc(&current,i);
9458           break;
9459         case MULTDIV:
9460           multdiv_alloc(&current,i);
9461           break;
9462         case SHIFTIMM:
9463           shiftimm_alloc(&current,i);
9464           break;
9465         case MOV:
9466           mov_alloc(&current,i);
9467           break;
9468         case COP0:
9469           cop0_alloc(&current,i);
9470           break;
9471         case COP1:
9472         case COP2:
9473           cop1_alloc(&current,i);
9474           break;
9475         case C1LS:
9476           c1ls_alloc(&current,i);
9477           break;
9478         case C2LS:
9479           c2ls_alloc(&current,i);
9480           break;
9481         case C2OP:
9482           c2op_alloc(&current,i);
9483           break;
9484         case FCONV:
9485           fconv_alloc(&current,i);
9486           break;
9487         case FLOAT:
9488           float_alloc(&current,i);
9489           break;
9490         case FCOMP:
9491           fcomp_alloc(&current,i);
9492           break;
9493         case SYSCALL:
9494         case HLECALL:
9495         case INTCALL:
9496           syscall_alloc(&current,i);
9497           break;
9498         case SPAN:
9499           pagespan_alloc(&current,i);
9500           break;
9501       }
9502       
9503       // Drop the upper half of registers that have become 32-bit
9504       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9505       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9506         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9507         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9508         current.uu|=1;
9509       } else {
9510         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9511         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9512         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9513         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9514         current.uu|=1;
9515       }
9516
9517       // Create entry (branch target) regmap
9518       for(hr=0;hr<HOST_REGS;hr++)
9519       {
9520         int r,or,er;
9521         r=current.regmap[hr];
9522         if(r>=0) {
9523           if(r!=regmap_pre[i][hr]) {
9524             // TODO: delay slot (?)
9525             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9526             if(or<0||(r&63)>=TEMPREG){
9527               regs[i].regmap_entry[hr]=-1;
9528             }
9529             else
9530             {
9531               // Just move it to a different register
9532               regs[i].regmap_entry[hr]=r;
9533               // If it was dirty before, it's still dirty
9534               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9535             }
9536           }
9537           else
9538           {
9539             // Unneeded
9540             if(r==0){
9541               regs[i].regmap_entry[hr]=0;
9542             }
9543             else
9544             if(r<64){
9545               if((current.u>>r)&1) {
9546                 regs[i].regmap_entry[hr]=-1;
9547                 //regs[i].regmap[hr]=-1;
9548                 current.regmap[hr]=-1;
9549               }else
9550                 regs[i].regmap_entry[hr]=r;
9551             }
9552             else {
9553               if((current.uu>>(r&63))&1) {
9554                 regs[i].regmap_entry[hr]=-1;
9555                 //regs[i].regmap[hr]=-1;
9556                 current.regmap[hr]=-1;
9557               }else
9558                 regs[i].regmap_entry[hr]=r;
9559             }
9560           }
9561         } else {
9562           // Branches expect CCREG to be allocated at the target
9563           if(regmap_pre[i][hr]==CCREG) 
9564             regs[i].regmap_entry[hr]=CCREG;
9565           else
9566             regs[i].regmap_entry[hr]=-1;
9567         }
9568       }
9569       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9570     }
9571
9572     if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9573       current.waswritten|=1<<rs1[i-1];
9574     current.waswritten&=~(1<<rt1[i]);
9575     current.waswritten&=~(1<<rt2[i]);
9576     if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9577       current.waswritten&=~(1<<rs1[i]);
9578
9579     /* Branch post-alloc */
9580     if(i>0)
9581     {
9582       current.was32=current.is32;
9583       current.wasdirty=current.dirty;
9584       switch(itype[i-1]) {
9585         case UJUMP:
9586           memcpy(&branch_regs[i-1],&current,sizeof(current));
9587           branch_regs[i-1].isconst=0;
9588           branch_regs[i-1].wasconst=0;
9589           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9590           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9591           alloc_cc(&branch_regs[i-1],i-1);
9592           dirty_reg(&branch_regs[i-1],CCREG);
9593           if(rt1[i-1]==31) { // JAL
9594             alloc_reg(&branch_regs[i-1],i-1,31);
9595             dirty_reg(&branch_regs[i-1],31);
9596             branch_regs[i-1].is32|=1LL<<31;
9597           }
9598           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9599           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9600           break;
9601         case RJUMP:
9602           memcpy(&branch_regs[i-1],&current,sizeof(current));
9603           branch_regs[i-1].isconst=0;
9604           branch_regs[i-1].wasconst=0;
9605           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9606           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9607           alloc_cc(&branch_regs[i-1],i-1);
9608           dirty_reg(&branch_regs[i-1],CCREG);
9609           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9610           if(rt1[i-1]!=0) { // JALR
9611             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9612             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9613             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9614           }
9615           #ifdef USE_MINI_HT
9616           if(rs1[i-1]==31) { // JALR
9617             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9618             #ifndef HOST_IMM_ADDR32
9619             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9620             #endif
9621           }
9622           #endif
9623           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9624           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9625           break;
9626         case CJUMP:
9627           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9628           {
9629             alloc_cc(&current,i-1);
9630             dirty_reg(&current,CCREG);
9631             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9632                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9633               // The delay slot overwrote one of our conditions
9634               // Delay slot goes after the test (in order)
9635               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9636               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9637               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9638               current.u|=1;
9639               current.uu|=1;
9640               delayslot_alloc(&current,i);
9641               current.isconst=0;
9642             }
9643             else
9644             {
9645               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9646               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9647               // Alloc the branch condition registers
9648               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9649               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9650               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9651               {
9652                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9653                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9654               }
9655             }
9656             memcpy(&branch_regs[i-1],&current,sizeof(current));
9657             branch_regs[i-1].isconst=0;
9658             branch_regs[i-1].wasconst=0;
9659             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9660             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9661           }
9662           else
9663           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9664           {
9665             alloc_cc(&current,i-1);
9666             dirty_reg(&current,CCREG);
9667             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9668               // The delay slot overwrote the branch condition
9669               // Delay slot goes after the test (in order)
9670               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9671               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9672               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9673               current.u|=1;
9674               current.uu|=1;
9675               delayslot_alloc(&current,i);
9676               current.isconst=0;
9677             }
9678             else
9679             {
9680               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9681               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9682               // Alloc the branch condition register
9683               alloc_reg(&current,i-1,rs1[i-1]);
9684               if(!(current.is32>>rs1[i-1]&1))
9685               {
9686                 alloc_reg64(&current,i-1,rs1[i-1]);
9687               }
9688             }
9689             memcpy(&branch_regs[i-1],&current,sizeof(current));
9690             branch_regs[i-1].isconst=0;
9691             branch_regs[i-1].wasconst=0;
9692             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9693             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9694           }
9695           else
9696           // Alloc the delay slot in case the branch is taken
9697           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9698           {
9699             memcpy(&branch_regs[i-1],&current,sizeof(current));
9700             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9701             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9702             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9703             alloc_cc(&branch_regs[i-1],i);
9704             dirty_reg(&branch_regs[i-1],CCREG);
9705             delayslot_alloc(&branch_regs[i-1],i);
9706             branch_regs[i-1].isconst=0;
9707             alloc_reg(&current,i,CCREG); // Not taken path
9708             dirty_reg(&current,CCREG);
9709             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9710           }
9711           else
9712           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9713           {
9714             memcpy(&branch_regs[i-1],&current,sizeof(current));
9715             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9716             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9717             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9718             alloc_cc(&branch_regs[i-1],i);
9719             dirty_reg(&branch_regs[i-1],CCREG);
9720             delayslot_alloc(&branch_regs[i-1],i);
9721             branch_regs[i-1].isconst=0;
9722             alloc_reg(&current,i,CCREG); // Not taken path
9723             dirty_reg(&current,CCREG);
9724             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9725           }
9726           break;
9727         case SJUMP:
9728           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9729           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9730           {
9731             alloc_cc(&current,i-1);
9732             dirty_reg(&current,CCREG);
9733             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9734               // The delay slot overwrote the branch condition
9735               // Delay slot goes after the test (in order)
9736               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9737               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9738               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9739               current.u|=1;
9740               current.uu|=1;
9741               delayslot_alloc(&current,i);
9742               current.isconst=0;
9743             }
9744             else
9745             {
9746               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9747               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9748               // Alloc the branch condition register
9749               alloc_reg(&current,i-1,rs1[i-1]);
9750               if(!(current.is32>>rs1[i-1]&1))
9751               {
9752                 alloc_reg64(&current,i-1,rs1[i-1]);
9753               }
9754             }
9755             memcpy(&branch_regs[i-1],&current,sizeof(current));
9756             branch_regs[i-1].isconst=0;
9757             branch_regs[i-1].wasconst=0;
9758             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9759             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9760           }
9761           else
9762           // Alloc the delay slot in case the branch is taken
9763           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9764           {
9765             memcpy(&branch_regs[i-1],&current,sizeof(current));
9766             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9767             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9768             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9769             alloc_cc(&branch_regs[i-1],i);
9770             dirty_reg(&branch_regs[i-1],CCREG);
9771             delayslot_alloc(&branch_regs[i-1],i);
9772             branch_regs[i-1].isconst=0;
9773             alloc_reg(&current,i,CCREG); // Not taken path
9774             dirty_reg(&current,CCREG);
9775             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9776           }
9777           // FIXME: BLTZAL/BGEZAL
9778           if(opcode2[i-1]&0x10) { // BxxZAL
9779             alloc_reg(&branch_regs[i-1],i-1,31);
9780             dirty_reg(&branch_regs[i-1],31);
9781             branch_regs[i-1].is32|=1LL<<31;
9782           }
9783           break;
9784         case FJUMP:
9785           if(likely[i-1]==0) // BC1F/BC1T
9786           {
9787             alloc_cc(&current,i-1);
9788             dirty_reg(&current,CCREG);
9789             if(itype[i]==FCOMP) {
9790               // The delay slot overwrote the branch condition
9791               // Delay slot goes after the test (in order)
9792               delayslot_alloc(&current,i);
9793               current.isconst=0;
9794             }
9795             else
9796             {
9797               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9798               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9799               // Alloc the branch condition register
9800               alloc_reg(&current,i-1,FSREG);
9801             }
9802             memcpy(&branch_regs[i-1],&current,sizeof(current));
9803             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9804           }
9805           else // BC1FL/BC1TL
9806           {
9807             // Alloc the delay slot in case the branch is taken
9808             memcpy(&branch_regs[i-1],&current,sizeof(current));
9809             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9810             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9811             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9812             alloc_cc(&branch_regs[i-1],i);
9813             dirty_reg(&branch_regs[i-1],CCREG);
9814             delayslot_alloc(&branch_regs[i-1],i);
9815             branch_regs[i-1].isconst=0;
9816             alloc_reg(&current,i,CCREG); // Not taken path
9817             dirty_reg(&current,CCREG);
9818             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9819           }
9820           break;
9821       }
9822
9823       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9824       {
9825         if(rt1[i-1]==31) // JAL/JALR
9826         {
9827           // Subroutine call will return here, don't alloc any registers
9828           current.is32=1;
9829           current.dirty=0;
9830           clear_all_regs(current.regmap);
9831           alloc_reg(&current,i,CCREG);
9832           dirty_reg(&current,CCREG);
9833         }
9834         else if(i+1<slen)
9835         {
9836           // Internal branch will jump here, match registers to caller
9837           current.is32=0x3FFFFFFFFLL;
9838           current.dirty=0;
9839           clear_all_regs(current.regmap);
9840           alloc_reg(&current,i,CCREG);
9841           dirty_reg(&current,CCREG);
9842           for(j=i-1;j>=0;j--)
9843           {
9844             if(ba[j]==start+i*4+4) {
9845               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9846               current.is32=branch_regs[j].is32;
9847               current.dirty=branch_regs[j].dirty;
9848               break;
9849             }
9850           }
9851           while(j>=0) {
9852             if(ba[j]==start+i*4+4) {
9853               for(hr=0;hr<HOST_REGS;hr++) {
9854                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9855                   current.regmap[hr]=-1;
9856                 }
9857                 current.is32&=branch_regs[j].is32;
9858                 current.dirty&=branch_regs[j].dirty;
9859               }
9860             }
9861             j--;
9862           }
9863         }
9864       }
9865     }
9866
9867     // Count cycles in between branches
9868     ccadj[i]=cc;
9869     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9870     {
9871       cc=0;
9872     }
9873 #if defined(PCSX) && !defined(DRC_DBG)
9874     else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9875     {
9876       // GTE runs in parallel until accessed, divide by 2 for a rough guess
9877       cc+=gte_cycletab[source[i]&0x3f]/2;
9878     }
9879     else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
9880     {
9881       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9882     }
9883     else if(itype[i]==C2LS)
9884     {
9885       cc+=4;
9886     }
9887 #endif
9888     else
9889     {
9890       cc++;
9891     }
9892
9893     flush_dirty_uppers(&current);
9894     if(!is_ds[i]) {
9895       regs[i].is32=current.is32;
9896       regs[i].dirty=current.dirty;
9897       regs[i].isconst=current.isconst;
9898       memcpy(constmap[i],current_constmap,sizeof(current_constmap));
9899     }
9900     for(hr=0;hr<HOST_REGS;hr++) {
9901       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9902         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9903           regs[i].wasconst&=~(1<<hr);
9904         }
9905       }
9906     }
9907     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9908     regs[i].waswritten=current.waswritten;
9909   }
9910   
9911   /* Pass 4 - Cull unused host registers */
9912   
9913   uint64_t nr=0;
9914   
9915   for (i=slen-1;i>=0;i--)
9916   {
9917     int hr;
9918     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9919     {
9920       if(ba[i]<start || ba[i]>=(start+slen*4))
9921       {
9922         // Branch out of this block, don't need anything
9923         nr=0;
9924       }
9925       else
9926       {
9927         // Internal branch
9928         // Need whatever matches the target
9929         nr=0;
9930         int t=(ba[i]-start)>>2;
9931         for(hr=0;hr<HOST_REGS;hr++)
9932         {
9933           if(regs[i].regmap_entry[hr]>=0) {
9934             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9935           }
9936         }
9937       }
9938       // Conditional branch may need registers for following instructions
9939       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9940       {
9941         if(i<slen-2) {
9942           nr|=needed_reg[i+2];
9943           for(hr=0;hr<HOST_REGS;hr++)
9944           {
9945             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9946             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9947           }
9948         }
9949       }
9950       // Don't need stuff which is overwritten
9951       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9952       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9953       // Merge in delay slot
9954       for(hr=0;hr<HOST_REGS;hr++)
9955       {
9956         if(!likely[i]) {
9957           // These are overwritten unless the branch is "likely"
9958           // and the delay slot is nullified if not taken
9959           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9960           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9961         }
9962         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9963         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9964         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9965         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9966         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9967         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9968         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9969         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9970         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9971           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9972           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9973         }
9974         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9975           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9976           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9977         }
9978         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9979           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9980           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9981         }
9982       }
9983     }
9984     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9985     {
9986       // SYSCALL instruction (software interrupt)
9987       nr=0;
9988     }
9989     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9990     {
9991       // ERET instruction (return from interrupt)
9992       nr=0;
9993     }
9994     else // Non-branch
9995     {
9996       if(i<slen-1) {
9997         for(hr=0;hr<HOST_REGS;hr++) {
9998           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9999           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
10000           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
10001           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
10002         }
10003       }
10004     }
10005     for(hr=0;hr<HOST_REGS;hr++)
10006     {
10007       // Overwritten registers are not needed
10008       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
10009       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
10010       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
10011       // Source registers are needed
10012       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10013       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10014       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
10015       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
10016       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10017       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10018       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
10019       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
10020       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
10021         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10022         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10023       }
10024       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
10025         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10026         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10027       }
10028       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
10029         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
10030         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
10031       }
10032       // Don't store a register immediately after writing it,
10033       // may prevent dual-issue.
10034       // But do so if this is a branch target, otherwise we
10035       // might have to load the register before the branch.
10036       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
10037         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
10038            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
10039           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10040           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10041         }
10042         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
10043            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
10044           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10045           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10046         }
10047       }
10048     }
10049     // Cycle count is needed at branches.  Assume it is needed at the target too.
10050     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
10051       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10052       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10053     }
10054     // Save it
10055     needed_reg[i]=nr;
10056     
10057     // Deallocate unneeded registers
10058     for(hr=0;hr<HOST_REGS;hr++)
10059     {
10060       if(!((nr>>hr)&1)) {
10061         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
10062         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10063            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10064            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
10065         {
10066           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10067           {
10068             if(likely[i]) {
10069               regs[i].regmap[hr]=-1;
10070               regs[i].isconst&=~(1<<hr);
10071               if(i<slen-2) {
10072                 regmap_pre[i+2][hr]=-1;
10073                 regs[i+2].wasconst&=~(1<<hr);
10074               }
10075             }
10076           }
10077         }
10078         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10079         {
10080           int d1=0,d2=0,map=0,temp=0;
10081           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10082           {
10083             d1=dep1[i+1];
10084             d2=dep2[i+1];
10085           }
10086           if(using_tlb) {
10087             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10088                itype[i+1]==STORE || itype[i+1]==STORELR ||
10089                itype[i+1]==C1LS || itype[i+1]==C2LS)
10090             map=TLREG;
10091           } else
10092           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10093              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
10094             map=INVCP;
10095           }
10096           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
10097              itype[i+1]==C1LS || itype[i+1]==C2LS)
10098             temp=FTEMP;
10099           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10100              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10101              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10102              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10103              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10104              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10105              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10106              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10107              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10108              regs[i].regmap[hr]!=map )
10109           {
10110             regs[i].regmap[hr]=-1;
10111             regs[i].isconst&=~(1<<hr);
10112             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10113                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10114                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10115                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10116                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10117                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10118                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10119                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10120                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10121                branch_regs[i].regmap[hr]!=map)
10122             {
10123               branch_regs[i].regmap[hr]=-1;
10124               branch_regs[i].regmap_entry[hr]=-1;
10125               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10126               {
10127                 if(!likely[i]&&i<slen-2) {
10128                   regmap_pre[i+2][hr]=-1;
10129                   regs[i+2].wasconst&=~(1<<hr);
10130                 }
10131               }
10132             }
10133           }
10134         }
10135         else
10136         {
10137           // Non-branch
10138           if(i>0)
10139           {
10140             int d1=0,d2=0,map=-1,temp=-1;
10141             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10142             {
10143               d1=dep1[i];
10144               d2=dep2[i];
10145             }
10146             if(using_tlb) {
10147               if(itype[i]==LOAD || itype[i]==LOADLR ||
10148                  itype[i]==STORE || itype[i]==STORELR ||
10149                  itype[i]==C1LS || itype[i]==C2LS)
10150               map=TLREG;
10151             } else if(itype[i]==STORE || itype[i]==STORELR ||
10152                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
10153               map=INVCP;
10154             }
10155             if(itype[i]==LOADLR || itype[i]==STORELR ||
10156                itype[i]==C1LS || itype[i]==C2LS)
10157               temp=FTEMP;
10158             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10159                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10160                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10161                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10162                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10163                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10164             {
10165               if(i<slen-1&&!is_ds[i]) {
10166                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10167                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10168                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10169                 {
10170                   SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10171                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10172                 }
10173                 regmap_pre[i+1][hr]=-1;
10174                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
10175                 regs[i+1].wasconst&=~(1<<hr);
10176               }
10177               regs[i].regmap[hr]=-1;
10178               regs[i].isconst&=~(1<<hr);
10179             }
10180           }
10181         }
10182       }
10183     }
10184   }
10185   
10186   /* Pass 5 - Pre-allocate registers */
10187   
10188   // If a register is allocated during a loop, try to allocate it for the
10189   // entire loop, if possible.  This avoids loading/storing registers
10190   // inside of the loop.
10191   
10192   signed char f_regmap[HOST_REGS];
10193   clear_all_regs(f_regmap);
10194   for(i=0;i<slen-1;i++)
10195   {
10196     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10197     {
10198       if(ba[i]>=start && ba[i]<(start+i*4)) 
10199       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10200       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10201       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10202       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
10203       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10204       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
10205       {
10206         int t=(ba[i]-start)>>2;
10207         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
10208         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
10209         for(hr=0;hr<HOST_REGS;hr++)
10210         {
10211           if(regs[i].regmap[hr]>64) {
10212             if(!((regs[i].dirty>>hr)&1))
10213               f_regmap[hr]=regs[i].regmap[hr];
10214             else f_regmap[hr]=-1;
10215           }
10216           else if(regs[i].regmap[hr]>=0) {
10217             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10218               // dealloc old register
10219               int n;
10220               for(n=0;n<HOST_REGS;n++)
10221               {
10222                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10223               }
10224               // and alloc new one
10225               f_regmap[hr]=regs[i].regmap[hr];
10226             }
10227           }
10228           if(branch_regs[i].regmap[hr]>64) {
10229             if(!((branch_regs[i].dirty>>hr)&1))
10230               f_regmap[hr]=branch_regs[i].regmap[hr];
10231             else f_regmap[hr]=-1;
10232           }
10233           else if(branch_regs[i].regmap[hr]>=0) {
10234             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10235               // dealloc old register
10236               int n;
10237               for(n=0;n<HOST_REGS;n++)
10238               {
10239                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10240               }
10241               // and alloc new one
10242               f_regmap[hr]=branch_regs[i].regmap[hr];
10243             }
10244           }
10245           if(ooo[i]) {
10246             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
10247               f_regmap[hr]=branch_regs[i].regmap[hr];
10248           }else{
10249             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
10250               f_regmap[hr]=branch_regs[i].regmap[hr];
10251           }
10252           // Avoid dirty->clean transition
10253           #ifdef DESTRUCTIVE_WRITEBACK
10254           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
10255           #endif
10256           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10257           // case above, however it's always a good idea.  We can't hoist the
10258           // load if the register was already allocated, so there's no point
10259           // wasting time analyzing most of these cases.  It only "succeeds"
10260           // when the mapping was different and the load can be replaced with
10261           // a mov, which is of negligible benefit.  So such cases are
10262           // skipped below.
10263           if(f_regmap[hr]>0) {
10264             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
10265               int r=f_regmap[hr];
10266               for(j=t;j<=i;j++)
10267               {
10268                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10269                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10270                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10271                 if(r>63) {
10272                   // NB This can exclude the case where the upper-half
10273                   // register is lower numbered than the lower-half
10274                   // register.  Not sure if it's worth fixing...
10275                   if(get_reg(regs[j].regmap,r&63)<0) break;
10276                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
10277                   if(regs[j].is32&(1LL<<(r&63))) break;
10278                 }
10279                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10280                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10281                   int k;
10282                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10283                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10284                     if(r>63) {
10285                       if(get_reg(regs[i].regmap,r&63)<0) break;
10286                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10287                     }
10288                     k=i;
10289                     while(k>1&&regs[k-1].regmap[hr]==-1) {
10290                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10291                         //printf("no free regs for store %x\n",start+(k-1)*4);
10292                         break;
10293                       }
10294                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10295                         //printf("no-match due to different register\n");
10296                         break;
10297                       }
10298                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10299                         //printf("no-match due to branch\n");
10300                         break;
10301                       }
10302                       // call/ret fast path assumes no registers allocated
10303                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
10304                         break;
10305                       }
10306                       if(r>63) {
10307                         // NB This can exclude the case where the upper-half
10308                         // register is lower numbered than the lower-half
10309                         // register.  Not sure if it's worth fixing...
10310                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
10311                         if(regs[k-1].is32&(1LL<<(r&63))) break;
10312                       }
10313                       k--;
10314                     }
10315                     if(i<slen-1) {
10316                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10317                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10318                         //printf("bad match after branch\n");
10319                         break;
10320                       }
10321                     }
10322                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10323                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
10324                       while(k<i) {
10325                         regs[k].regmap_entry[hr]=f_regmap[hr];
10326                         regs[k].regmap[hr]=f_regmap[hr];
10327                         regmap_pre[k+1][hr]=f_regmap[hr];
10328                         regs[k].wasdirty&=~(1<<hr);
10329                         regs[k].dirty&=~(1<<hr);
10330                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10331                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10332                         regs[k].wasconst&=~(1<<hr);
10333                         regs[k].isconst&=~(1<<hr);
10334                         k++;
10335                       }
10336                     }
10337                     else {
10338                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10339                       break;
10340                     }
10341                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10342                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10343                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
10344                       regs[i].regmap_entry[hr]=f_regmap[hr];
10345                       regs[i].regmap[hr]=f_regmap[hr];
10346                       regs[i].wasdirty&=~(1<<hr);
10347                       regs[i].dirty&=~(1<<hr);
10348                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10349                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10350                       regs[i].wasconst&=~(1<<hr);
10351                       regs[i].isconst&=~(1<<hr);
10352                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10353                       branch_regs[i].wasdirty&=~(1<<hr);
10354                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10355                       branch_regs[i].regmap[hr]=f_regmap[hr];
10356                       branch_regs[i].dirty&=~(1<<hr);
10357                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10358                       branch_regs[i].wasconst&=~(1<<hr);
10359                       branch_regs[i].isconst&=~(1<<hr);
10360                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10361                         regmap_pre[i+2][hr]=f_regmap[hr];
10362                         regs[i+2].wasdirty&=~(1<<hr);
10363                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10364                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10365                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
10366                       }
10367                     }
10368                   }
10369                   for(k=t;k<j;k++) {
10370                     // Alloc register clean at beginning of loop,
10371                     // but may dirty it in pass 6
10372                     regs[k].regmap_entry[hr]=f_regmap[hr];
10373                     regs[k].regmap[hr]=f_regmap[hr];
10374                     regs[k].dirty&=~(1<<hr);
10375                     regs[k].wasconst&=~(1<<hr);
10376                     regs[k].isconst&=~(1<<hr);
10377                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10378                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10379                       branch_regs[k].regmap[hr]=f_regmap[hr];
10380                       branch_regs[k].dirty&=~(1<<hr);
10381                       branch_regs[k].wasconst&=~(1<<hr);
10382                       branch_regs[k].isconst&=~(1<<hr);
10383                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10384                         regmap_pre[k+2][hr]=f_regmap[hr];
10385                         regs[k+2].wasdirty&=~(1<<hr);
10386                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10387                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
10388                       }
10389                     }
10390                     else
10391                     {
10392                       regmap_pre[k+1][hr]=f_regmap[hr];
10393                       regs[k+1].wasdirty&=~(1<<hr);
10394                     }
10395                   }
10396                   if(regs[j].regmap[hr]==f_regmap[hr])
10397                     regs[j].regmap_entry[hr]=f_regmap[hr];
10398                   break;
10399                 }
10400                 if(j==i) break;
10401                 if(regs[j].regmap[hr]>=0)
10402                   break;
10403                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10404                   //printf("no-match due to different register\n");
10405                   break;
10406                 }
10407                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10408                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10409                   break;
10410                 }
10411                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10412                 {
10413                   // Stop on unconditional branch
10414                   break;
10415                 }
10416                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10417                 {
10418                   if(ooo[j]) {
10419                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10420                       break;
10421                   }else{
10422                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10423                       break;
10424                   }
10425                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10426                     //printf("no-match due to different register (branch)\n");
10427                     break;
10428                   }
10429                 }
10430                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10431                   //printf("No free regs for store %x\n",start+j*4);
10432                   break;
10433                 }
10434                 if(f_regmap[hr]>=64) {
10435                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10436                     break;
10437                   }
10438                   else
10439                   {
10440                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10441                       break;
10442                     }
10443                   }
10444                 }
10445               }
10446             }
10447           }
10448         }
10449       }
10450     }else{
10451       // Non branch or undetermined branch target
10452       for(hr=0;hr<HOST_REGS;hr++)
10453       {
10454         if(hr!=EXCLUDE_REG) {
10455           if(regs[i].regmap[hr]>64) {
10456             if(!((regs[i].dirty>>hr)&1))
10457               f_regmap[hr]=regs[i].regmap[hr];
10458           }
10459           else if(regs[i].regmap[hr]>=0) {
10460             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10461               // dealloc old register
10462               int n;
10463               for(n=0;n<HOST_REGS;n++)
10464               {
10465                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10466               }
10467               // and alloc new one
10468               f_regmap[hr]=regs[i].regmap[hr];
10469             }
10470           }
10471         }
10472       }
10473       // Try to restore cycle count at branch targets
10474       if(bt[i]) {
10475         for(j=i;j<slen-1;j++) {
10476           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10477           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10478             //printf("no free regs for store %x\n",start+j*4);
10479             break;
10480           }
10481         }
10482         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10483           int k=i;
10484           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10485           while(k<j) {
10486             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10487             regs[k].regmap[HOST_CCREG]=CCREG;
10488             regmap_pre[k+1][HOST_CCREG]=CCREG;
10489             regs[k+1].wasdirty|=1<<HOST_CCREG;
10490             regs[k].dirty|=1<<HOST_CCREG;
10491             regs[k].wasconst&=~(1<<HOST_CCREG);
10492             regs[k].isconst&=~(1<<HOST_CCREG);
10493             k++;
10494           }
10495           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10496         }
10497         // Work backwards from the branch target
10498         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10499         {
10500           //printf("Extend backwards\n");
10501           int k;
10502           k=i;
10503           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10504             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10505               //printf("no free regs for store %x\n",start+(k-1)*4);
10506               break;
10507             }
10508             k--;
10509           }
10510           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10511             //printf("Extend CC, %x ->\n",start+k*4);
10512             while(k<=i) {
10513               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10514               regs[k].regmap[HOST_CCREG]=CCREG;
10515               regmap_pre[k+1][HOST_CCREG]=CCREG;
10516               regs[k+1].wasdirty|=1<<HOST_CCREG;
10517               regs[k].dirty|=1<<HOST_CCREG;
10518               regs[k].wasconst&=~(1<<HOST_CCREG);
10519               regs[k].isconst&=~(1<<HOST_CCREG);
10520               k++;
10521             }
10522           }
10523           else {
10524             //printf("Fail Extend CC, %x ->\n",start+k*4);
10525           }
10526         }
10527       }
10528       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10529          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10530          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10531          itype[i]!=FCONV&&itype[i]!=FCOMP)
10532       {
10533         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10534       }
10535     }
10536   }
10537   
10538   // Cache memory offset or tlb map pointer if a register is available
10539   #ifndef HOST_IMM_ADDR32
10540   #ifndef RAM_OFFSET
10541   if(using_tlb)
10542   #endif
10543   {
10544     int earliest_available[HOST_REGS];
10545     int loop_start[HOST_REGS];
10546     int score[HOST_REGS];
10547     int end[HOST_REGS];
10548     int reg=using_tlb?MMREG:ROREG;
10549
10550     // Init
10551     for(hr=0;hr<HOST_REGS;hr++) {
10552       score[hr]=0;earliest_available[hr]=0;
10553       loop_start[hr]=MAXBLOCK;
10554     }
10555     for(i=0;i<slen-1;i++)
10556     {
10557       // Can't do anything if no registers are available
10558       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10559         for(hr=0;hr<HOST_REGS;hr++) {
10560           score[hr]=0;earliest_available[hr]=i+1;
10561           loop_start[hr]=MAXBLOCK;
10562         }
10563       }
10564       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10565         if(!ooo[i]) {
10566           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10567             for(hr=0;hr<HOST_REGS;hr++) {
10568               score[hr]=0;earliest_available[hr]=i+1;
10569               loop_start[hr]=MAXBLOCK;
10570             }
10571           }
10572         }else{
10573           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10574             for(hr=0;hr<HOST_REGS;hr++) {
10575               score[hr]=0;earliest_available[hr]=i+1;
10576               loop_start[hr]=MAXBLOCK;
10577             }
10578           }
10579         }
10580       }
10581       // Mark unavailable registers
10582       for(hr=0;hr<HOST_REGS;hr++) {
10583         if(regs[i].regmap[hr]>=0) {
10584           score[hr]=0;earliest_available[hr]=i+1;
10585           loop_start[hr]=MAXBLOCK;
10586         }
10587         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10588           if(branch_regs[i].regmap[hr]>=0) {
10589             score[hr]=0;earliest_available[hr]=i+2;
10590             loop_start[hr]=MAXBLOCK;
10591           }
10592         }
10593       }
10594       // No register allocations after unconditional jumps
10595       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10596       {
10597         for(hr=0;hr<HOST_REGS;hr++) {
10598           score[hr]=0;earliest_available[hr]=i+2;
10599           loop_start[hr]=MAXBLOCK;
10600         }
10601         i++; // Skip delay slot too
10602         //printf("skip delay slot: %x\n",start+i*4);
10603       }
10604       else
10605       // Possible match
10606       if(itype[i]==LOAD||itype[i]==LOADLR||
10607          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10608         for(hr=0;hr<HOST_REGS;hr++) {
10609           if(hr!=EXCLUDE_REG) {
10610             end[hr]=i-1;
10611             for(j=i;j<slen-1;j++) {
10612               if(regs[j].regmap[hr]>=0) break;
10613               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10614                 if(branch_regs[j].regmap[hr]>=0) break;
10615                 if(ooo[j]) {
10616                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10617                 }else{
10618                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10619                 }
10620               }
10621               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10622               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10623                 int t=(ba[j]-start)>>2;
10624                 if(t<j&&t>=earliest_available[hr]) {
10625                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10626                     // Score a point for hoisting loop invariant
10627                     if(t<loop_start[hr]) loop_start[hr]=t;
10628                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10629                     score[hr]++;
10630                     end[hr]=j;
10631                   }
10632                 }
10633                 else if(t<j) {
10634                   if(regs[t].regmap[hr]==reg) {
10635                     // Score a point if the branch target matches this register
10636                     score[hr]++;
10637                     end[hr]=j;
10638                   }
10639                 }
10640                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10641                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10642                   score[hr]++;
10643                   end[hr]=j;
10644                 }
10645               }
10646               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10647               {
10648                 // Stop on unconditional branch
10649                 break;
10650               }
10651               else
10652               if(itype[j]==LOAD||itype[j]==LOADLR||
10653                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10654                 score[hr]++;
10655                 end[hr]=j;
10656               }
10657             }
10658           }
10659         }
10660         // Find highest score and allocate that register
10661         int maxscore=0;
10662         for(hr=0;hr<HOST_REGS;hr++) {
10663           if(hr!=EXCLUDE_REG) {
10664             if(score[hr]>score[maxscore]) {
10665               maxscore=hr;
10666               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10667             }
10668           }
10669         }
10670         if(score[maxscore]>1)
10671         {
10672           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10673           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10674             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10675             assert(regs[j].regmap[maxscore]<0);
10676             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10677             regs[j].regmap[maxscore]=reg;
10678             regs[j].dirty&=~(1<<maxscore);
10679             regs[j].wasconst&=~(1<<maxscore);
10680             regs[j].isconst&=~(1<<maxscore);
10681             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10682               branch_regs[j].regmap[maxscore]=reg;
10683               branch_regs[j].wasdirty&=~(1<<maxscore);
10684               branch_regs[j].dirty&=~(1<<maxscore);
10685               branch_regs[j].wasconst&=~(1<<maxscore);
10686               branch_regs[j].isconst&=~(1<<maxscore);
10687               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10688                 regmap_pre[j+2][maxscore]=reg;
10689                 regs[j+2].wasdirty&=~(1<<maxscore);
10690               }
10691               // loop optimization (loop_preload)
10692               int t=(ba[j]-start)>>2;
10693               if(t==loop_start[maxscore]) {
10694                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10695                   regs[t].regmap_entry[maxscore]=reg;
10696               }
10697             }
10698             else
10699             {
10700               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10701                 regmap_pre[j+1][maxscore]=reg;
10702                 regs[j+1].wasdirty&=~(1<<maxscore);
10703               }
10704             }
10705           }
10706           i=j-1;
10707           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10708           for(hr=0;hr<HOST_REGS;hr++) {
10709             score[hr]=0;earliest_available[hr]=i+i;
10710             loop_start[hr]=MAXBLOCK;
10711           }
10712         }
10713       }
10714     }
10715   }
10716   #endif
10717   
10718   // This allocates registers (if possible) one instruction prior
10719   // to use, which can avoid a load-use penalty on certain CPUs.
10720   for(i=0;i<slen-1;i++)
10721   {
10722     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10723     {
10724       if(!bt[i+1])
10725       {
10726         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10727            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10728         {
10729           if(rs1[i+1]) {
10730             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10731             {
10732               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10733               {
10734                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10735                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10736                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10737                 regs[i].isconst&=~(1<<hr);
10738                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10739                 constmap[i][hr]=constmap[i+1][hr];
10740                 regs[i+1].wasdirty&=~(1<<hr);
10741                 regs[i].dirty&=~(1<<hr);
10742               }
10743             }
10744           }
10745           if(rs2[i+1]) {
10746             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10747             {
10748               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10749               {
10750                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10751                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10752                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10753                 regs[i].isconst&=~(1<<hr);
10754                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10755                 constmap[i][hr]=constmap[i+1][hr];
10756                 regs[i+1].wasdirty&=~(1<<hr);
10757                 regs[i].dirty&=~(1<<hr);
10758               }
10759             }
10760           }
10761           // Preload target address for load instruction (non-constant)
10762           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10763             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10764             {
10765               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10766               {
10767                 regs[i].regmap[hr]=rs1[i+1];
10768                 regmap_pre[i+1][hr]=rs1[i+1];
10769                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10770                 regs[i].isconst&=~(1<<hr);
10771                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10772                 constmap[i][hr]=constmap[i+1][hr];
10773                 regs[i+1].wasdirty&=~(1<<hr);
10774                 regs[i].dirty&=~(1<<hr);
10775               }
10776             }
10777           }
10778           // Load source into target register 
10779           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10780             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10781             {
10782               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10783               {
10784                 regs[i].regmap[hr]=rs1[i+1];
10785                 regmap_pre[i+1][hr]=rs1[i+1];
10786                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10787                 regs[i].isconst&=~(1<<hr);
10788                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10789                 constmap[i][hr]=constmap[i+1][hr];
10790                 regs[i+1].wasdirty&=~(1<<hr);
10791                 regs[i].dirty&=~(1<<hr);
10792               }
10793             }
10794           }
10795           // Preload map address
10796           #ifndef HOST_IMM_ADDR32
10797           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10798             hr=get_reg(regs[i+1].regmap,TLREG);
10799             if(hr>=0) {
10800               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10801               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10802                 int nr;
10803                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10804                 {
10805                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10806                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10807                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10808                   regs[i].isconst&=~(1<<hr);
10809                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10810                   constmap[i][hr]=constmap[i+1][hr];
10811                   regs[i+1].wasdirty&=~(1<<hr);
10812                   regs[i].dirty&=~(1<<hr);
10813                 }
10814                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10815                 {
10816                   // move it to another register
10817                   regs[i+1].regmap[hr]=-1;
10818                   regmap_pre[i+2][hr]=-1;
10819                   regs[i+1].regmap[nr]=TLREG;
10820                   regmap_pre[i+2][nr]=TLREG;
10821                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10822                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10823                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10824                   regs[i].isconst&=~(1<<nr);
10825                   regs[i+1].isconst&=~(1<<nr);
10826                   regs[i].dirty&=~(1<<nr);
10827                   regs[i+1].wasdirty&=~(1<<nr);
10828                   regs[i+1].dirty&=~(1<<nr);
10829                   regs[i+2].wasdirty&=~(1<<nr);
10830                 }
10831               }
10832             }
10833           }
10834           #endif
10835           // Address for store instruction (non-constant)
10836           if(itype[i+1]==STORE||itype[i+1]==STORELR
10837              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10838             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10839               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10840               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10841               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10842               assert(hr>=0);
10843               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10844               {
10845                 regs[i].regmap[hr]=rs1[i+1];
10846                 regmap_pre[i+1][hr]=rs1[i+1];
10847                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10848                 regs[i].isconst&=~(1<<hr);
10849                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10850                 constmap[i][hr]=constmap[i+1][hr];
10851                 regs[i+1].wasdirty&=~(1<<hr);
10852                 regs[i].dirty&=~(1<<hr);
10853               }
10854             }
10855           }
10856           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10857             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10858               int nr;
10859               hr=get_reg(regs[i+1].regmap,FTEMP);
10860               assert(hr>=0);
10861               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10862               {
10863                 regs[i].regmap[hr]=rs1[i+1];
10864                 regmap_pre[i+1][hr]=rs1[i+1];
10865                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10866                 regs[i].isconst&=~(1<<hr);
10867                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10868                 constmap[i][hr]=constmap[i+1][hr];
10869                 regs[i+1].wasdirty&=~(1<<hr);
10870                 regs[i].dirty&=~(1<<hr);
10871               }
10872               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10873               {
10874                 // move it to another register
10875                 regs[i+1].regmap[hr]=-1;
10876                 regmap_pre[i+2][hr]=-1;
10877                 regs[i+1].regmap[nr]=FTEMP;
10878                 regmap_pre[i+2][nr]=FTEMP;
10879                 regs[i].regmap[nr]=rs1[i+1];
10880                 regmap_pre[i+1][nr]=rs1[i+1];
10881                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10882                 regs[i].isconst&=~(1<<nr);
10883                 regs[i+1].isconst&=~(1<<nr);
10884                 regs[i].dirty&=~(1<<nr);
10885                 regs[i+1].wasdirty&=~(1<<nr);
10886                 regs[i+1].dirty&=~(1<<nr);
10887                 regs[i+2].wasdirty&=~(1<<nr);
10888               }
10889             }
10890           }
10891           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10892             if(itype[i+1]==LOAD) 
10893               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10894             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10895               hr=get_reg(regs[i+1].regmap,FTEMP);
10896             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10897               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10898               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10899             }
10900             if(hr>=0&&regs[i].regmap[hr]<0) {
10901               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10902               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10903                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10904                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10905                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10906                 regs[i].isconst&=~(1<<hr);
10907                 regs[i+1].wasdirty&=~(1<<hr);
10908                 regs[i].dirty&=~(1<<hr);
10909               }
10910             }
10911           }
10912         }
10913       }
10914     }
10915   }
10916   
10917   /* Pass 6 - Optimize clean/dirty state */
10918   clean_registers(0,slen-1,1);
10919   
10920   /* Pass 7 - Identify 32-bit registers */
10921 #ifndef FORCE32
10922   provisional_r32();
10923
10924   u_int r32=0;
10925   
10926   for (i=slen-1;i>=0;i--)
10927   {
10928     int hr;
10929     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10930     {
10931       if(ba[i]<start || ba[i]>=(start+slen*4))
10932       {
10933         // Branch out of this block, don't need anything
10934         r32=0;
10935       }
10936       else
10937       {
10938         // Internal branch
10939         // Need whatever matches the target
10940         // (and doesn't get overwritten by the delay slot instruction)
10941         r32=0;
10942         int t=(ba[i]-start)>>2;
10943         if(ba[i]>start+i*4) {
10944           // Forward branch
10945           if(!(requires_32bit[t]&~regs[i].was32))
10946             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10947         }else{
10948           // Backward branch
10949           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10950           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10951           if(!(pr32[t]&~regs[i].was32))
10952             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10953         }
10954       }
10955       // Conditional branch may need registers for following instructions
10956       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10957       {
10958         if(i<slen-2) {
10959           r32|=requires_32bit[i+2];
10960           r32&=regs[i].was32;
10961           // Mark this address as a branch target since it may be called
10962           // upon return from interrupt
10963           bt[i+2]=1;
10964         }
10965       }
10966       // Merge in delay slot
10967       if(!likely[i]) {
10968         // These are overwritten unless the branch is "likely"
10969         // and the delay slot is nullified if not taken
10970         r32&=~(1LL<<rt1[i+1]);
10971         r32&=~(1LL<<rt2[i+1]);
10972       }
10973       // Assume these are needed (delay slot)
10974       if(us1[i+1]>0)
10975       {
10976         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10977       }
10978       if(us2[i+1]>0)
10979       {
10980         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10981       }
10982       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10983       {
10984         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10985       }
10986       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10987       {
10988         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10989       }
10990     }
10991     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10992     {
10993       // SYSCALL instruction (software interrupt)
10994       r32=0;
10995     }
10996     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10997     {
10998       // ERET instruction (return from interrupt)
10999       r32=0;
11000     }
11001     // Check 32 bits
11002     r32&=~(1LL<<rt1[i]);
11003     r32&=~(1LL<<rt2[i]);
11004     if(us1[i]>0)
11005     {
11006       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
11007     }
11008     if(us2[i]>0)
11009     {
11010       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
11011     }
11012     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
11013     {
11014       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
11015     }
11016     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
11017     {
11018       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
11019     }
11020     requires_32bit[i]=r32;
11021     
11022     // Dirty registers which are 32-bit, require 32-bit input
11023     // as they will be written as 32-bit values
11024     for(hr=0;hr<HOST_REGS;hr++)
11025     {
11026       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
11027         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
11028           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
11029           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
11030         }
11031       }
11032     }
11033     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
11034   }
11035 #else
11036   for (i=slen-1;i>=0;i--)
11037   {
11038     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11039     {
11040       // Conditional branch
11041       if((source[i]>>16)!=0x1000&&i<slen-2) {
11042         // Mark this address as a branch target since it may be called
11043         // upon return from interrupt
11044         bt[i+2]=1;
11045       }
11046     }
11047   }
11048 #endif
11049
11050   if(itype[slen-1]==SPAN) {
11051     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
11052   }
11053
11054 #ifdef DISASM
11055   /* Debug/disassembly */
11056   for(i=0;i<slen;i++)
11057   {
11058     printf("U:");
11059     int r;
11060     for(r=1;r<=CCREG;r++) {
11061       if((unneeded_reg[i]>>r)&1) {
11062         if(r==HIREG) printf(" HI");
11063         else if(r==LOREG) printf(" LO");
11064         else printf(" r%d",r);
11065       }
11066     }
11067 #ifndef FORCE32
11068     printf(" UU:");
11069     for(r=1;r<=CCREG;r++) {
11070       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
11071         if(r==HIREG) printf(" HI");
11072         else if(r==LOREG) printf(" LO");
11073         else printf(" r%d",r);
11074       }
11075     }
11076     printf(" 32:");
11077     for(r=0;r<=CCREG;r++) {
11078       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11079       if((regs[i].was32>>r)&1) {
11080         if(r==CCREG) printf(" CC");
11081         else if(r==HIREG) printf(" HI");
11082         else if(r==LOREG) printf(" LO");
11083         else printf(" r%d",r);
11084       }
11085     }
11086 #endif
11087     printf("\n");
11088     #if defined(__i386__) || defined(__x86_64__)
11089     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11090     #endif
11091     #ifdef __arm__
11092     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11093     #endif
11094     printf("needs: ");
11095     if(needed_reg[i]&1) printf("eax ");
11096     if((needed_reg[i]>>1)&1) printf("ecx ");
11097     if((needed_reg[i]>>2)&1) printf("edx ");
11098     if((needed_reg[i]>>3)&1) printf("ebx ");
11099     if((needed_reg[i]>>5)&1) printf("ebp ");
11100     if((needed_reg[i]>>6)&1) printf("esi ");
11101     if((needed_reg[i]>>7)&1) printf("edi ");
11102     printf("r:");
11103     for(r=0;r<=CCREG;r++) {
11104       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11105       if((requires_32bit[i]>>r)&1) {
11106         if(r==CCREG) printf(" CC");
11107         else if(r==HIREG) printf(" HI");
11108         else if(r==LOREG) printf(" LO");
11109         else printf(" r%d",r);
11110       }
11111     }
11112     printf("\n");
11113     /*printf("pr:");
11114     for(r=0;r<=CCREG;r++) {
11115       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11116       if((pr32[i]>>r)&1) {
11117         if(r==CCREG) printf(" CC");
11118         else if(r==HIREG) printf(" HI");
11119         else if(r==LOREG) printf(" LO");
11120         else printf(" r%d",r);
11121       }
11122     }
11123     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11124     printf("\n");*/
11125     #if defined(__i386__) || defined(__x86_64__)
11126     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11127     printf("dirty: ");
11128     if(regs[i].wasdirty&1) printf("eax ");
11129     if((regs[i].wasdirty>>1)&1) printf("ecx ");
11130     if((regs[i].wasdirty>>2)&1) printf("edx ");
11131     if((regs[i].wasdirty>>3)&1) printf("ebx ");
11132     if((regs[i].wasdirty>>5)&1) printf("ebp ");
11133     if((regs[i].wasdirty>>6)&1) printf("esi ");
11134     if((regs[i].wasdirty>>7)&1) printf("edi ");
11135     #endif
11136     #ifdef __arm__
11137     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11138     printf("dirty: ");
11139     if(regs[i].wasdirty&1) printf("r0 ");
11140     if((regs[i].wasdirty>>1)&1) printf("r1 ");
11141     if((regs[i].wasdirty>>2)&1) printf("r2 ");
11142     if((regs[i].wasdirty>>3)&1) printf("r3 ");
11143     if((regs[i].wasdirty>>4)&1) printf("r4 ");
11144     if((regs[i].wasdirty>>5)&1) printf("r5 ");
11145     if((regs[i].wasdirty>>6)&1) printf("r6 ");
11146     if((regs[i].wasdirty>>7)&1) printf("r7 ");
11147     if((regs[i].wasdirty>>8)&1) printf("r8 ");
11148     if((regs[i].wasdirty>>9)&1) printf("r9 ");
11149     if((regs[i].wasdirty>>10)&1) printf("r10 ");
11150     if((regs[i].wasdirty>>12)&1) printf("r12 ");
11151     #endif
11152     printf("\n");
11153     disassemble_inst(i);
11154     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11155     #if defined(__i386__) || defined(__x86_64__)
11156     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11157     if(regs[i].dirty&1) printf("eax ");
11158     if((regs[i].dirty>>1)&1) printf("ecx ");
11159     if((regs[i].dirty>>2)&1) printf("edx ");
11160     if((regs[i].dirty>>3)&1) printf("ebx ");
11161     if((regs[i].dirty>>5)&1) printf("ebp ");
11162     if((regs[i].dirty>>6)&1) printf("esi ");
11163     if((regs[i].dirty>>7)&1) printf("edi ");
11164     #endif
11165     #ifdef __arm__
11166     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11167     if(regs[i].dirty&1) printf("r0 ");
11168     if((regs[i].dirty>>1)&1) printf("r1 ");
11169     if((regs[i].dirty>>2)&1) printf("r2 ");
11170     if((regs[i].dirty>>3)&1) printf("r3 ");
11171     if((regs[i].dirty>>4)&1) printf("r4 ");
11172     if((regs[i].dirty>>5)&1) printf("r5 ");
11173     if((regs[i].dirty>>6)&1) printf("r6 ");
11174     if((regs[i].dirty>>7)&1) printf("r7 ");
11175     if((regs[i].dirty>>8)&1) printf("r8 ");
11176     if((regs[i].dirty>>9)&1) printf("r9 ");
11177     if((regs[i].dirty>>10)&1) printf("r10 ");
11178     if((regs[i].dirty>>12)&1) printf("r12 ");
11179     #endif
11180     printf("\n");
11181     if(regs[i].isconst) {
11182       printf("constants: ");
11183       #if defined(__i386__) || defined(__x86_64__)
11184       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11185       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11186       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11187       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11188       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11189       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11190       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11191       #endif
11192       #ifdef __arm__
11193       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11194       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11195       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11196       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11197       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11198       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11199       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11200       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11201       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11202       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11203       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11204       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11205       #endif
11206       printf("\n");
11207     }
11208 #ifndef FORCE32
11209     printf(" 32:");
11210     for(r=0;r<=CCREG;r++) {
11211       if((regs[i].is32>>r)&1) {
11212         if(r==CCREG) printf(" CC");
11213         else if(r==HIREG) printf(" HI");
11214         else if(r==LOREG) printf(" LO");
11215         else printf(" r%d",r);
11216       }
11217     }
11218     printf("\n");
11219 #endif
11220     /*printf(" p32:");
11221     for(r=0;r<=CCREG;r++) {
11222       if((p32[i]>>r)&1) {
11223         if(r==CCREG) printf(" CC");
11224         else if(r==HIREG) printf(" HI");
11225         else if(r==LOREG) printf(" LO");
11226         else printf(" r%d",r);
11227       }
11228     }
11229     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11230     else printf("\n");*/
11231     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11232       #if defined(__i386__) || defined(__x86_64__)
11233       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11234       if(branch_regs[i].dirty&1) printf("eax ");
11235       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11236       if((branch_regs[i].dirty>>2)&1) printf("edx ");
11237       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11238       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11239       if((branch_regs[i].dirty>>6)&1) printf("esi ");
11240       if((branch_regs[i].dirty>>7)&1) printf("edi ");
11241       #endif
11242       #ifdef __arm__
11243       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11244       if(branch_regs[i].dirty&1) printf("r0 ");
11245       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11246       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11247       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11248       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11249       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11250       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11251       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11252       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11253       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11254       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11255       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11256       #endif
11257 #ifndef FORCE32
11258       printf(" 32:");
11259       for(r=0;r<=CCREG;r++) {
11260         if((branch_regs[i].is32>>r)&1) {
11261           if(r==CCREG) printf(" CC");
11262           else if(r==HIREG) printf(" HI");
11263           else if(r==LOREG) printf(" LO");
11264           else printf(" r%d",r);
11265         }
11266       }
11267       printf("\n");
11268 #endif
11269     }
11270   }
11271 #endif // DISASM
11272
11273   /* Pass 8 - Assembly */
11274   linkcount=0;stubcount=0;
11275   ds=0;is_delayslot=0;
11276   cop1_usable=0;
11277   uint64_t is32_pre=0;
11278   u_int dirty_pre=0;
11279   u_int beginning=(u_int)out;
11280   if((u_int)addr&1) {
11281     ds=1;
11282     pagespan_ds();
11283   }
11284   u_int instr_addr0_override=0;
11285
11286 #ifdef PCSX
11287   if (start == 0x80030000) {
11288     // nasty hack for fastbios thing
11289     // override block entry to this code
11290     instr_addr0_override=(u_int)out;
11291     emit_movimm(start,0);
11292     // abuse io address var as a flag that we
11293     // have already returned here once
11294     emit_readword((int)&address,1);
11295     emit_writeword(0,(int)&pcaddr);
11296     emit_writeword(0,(int)&address);
11297     emit_cmp(0,1);
11298     emit_jne((int)new_dyna_leave);
11299   }
11300 #endif
11301   for(i=0;i<slen;i++)
11302   {
11303     //if(ds) printf("ds: ");
11304     disassemble_inst(i);
11305     if(ds) {
11306       ds=0; // Skip delay slot
11307       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11308       instr_addr[i]=0;
11309     } else {
11310       speculate_register_values(i);
11311       #ifndef DESTRUCTIVE_WRITEBACK
11312       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11313       {
11314         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11315               unneeded_reg[i],unneeded_reg_upper[i]);
11316         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11317               unneeded_reg[i],unneeded_reg_upper[i]);
11318       }
11319       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11320         is32_pre=branch_regs[i].is32;
11321         dirty_pre=branch_regs[i].dirty;
11322       }else{
11323         is32_pre=regs[i].is32;
11324         dirty_pre=regs[i].dirty;
11325       }
11326       #endif
11327       // write back
11328       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11329       {
11330         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11331                       unneeded_reg[i],unneeded_reg_upper[i]);
11332         loop_preload(regmap_pre[i],regs[i].regmap_entry);
11333       }
11334       // branch target entry point
11335       instr_addr[i]=(u_int)out;
11336       assem_debug("<->\n");
11337       // load regs
11338       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11339         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11340       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11341       address_generation(i,&regs[i],regs[i].regmap_entry);
11342       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11343       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11344       {
11345         // Load the delay slot registers if necessary
11346         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
11347           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11348         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
11349           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11350         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
11351           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11352       }
11353       else if(i+1<slen)
11354       {
11355         // Preload registers for following instruction
11356         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11357           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11358             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11359         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11360           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11361             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11362       }
11363       // TODO: if(is_ooo(i)) address_generation(i+1);
11364       if(itype[i]==CJUMP||itype[i]==FJUMP)
11365         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
11366       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
11367         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11368       if(bt[i]) cop1_usable=0;
11369       // assemble
11370       switch(itype[i]) {
11371         case ALU:
11372           alu_assemble(i,&regs[i]);break;
11373         case IMM16:
11374           imm16_assemble(i,&regs[i]);break;
11375         case SHIFT:
11376           shift_assemble(i,&regs[i]);break;
11377         case SHIFTIMM:
11378           shiftimm_assemble(i,&regs[i]);break;
11379         case LOAD:
11380           load_assemble(i,&regs[i]);break;
11381         case LOADLR:
11382           loadlr_assemble(i,&regs[i]);break;
11383         case STORE:
11384           store_assemble(i,&regs[i]);break;
11385         case STORELR:
11386           storelr_assemble(i,&regs[i]);break;
11387         case COP0:
11388           cop0_assemble(i,&regs[i]);break;
11389         case COP1:
11390           cop1_assemble(i,&regs[i]);break;
11391         case C1LS:
11392           c1ls_assemble(i,&regs[i]);break;
11393         case COP2:
11394           cop2_assemble(i,&regs[i]);break;
11395         case C2LS:
11396           c2ls_assemble(i,&regs[i]);break;
11397         case C2OP:
11398           c2op_assemble(i,&regs[i]);break;
11399         case FCONV:
11400           fconv_assemble(i,&regs[i]);break;
11401         case FLOAT:
11402           float_assemble(i,&regs[i]);break;
11403         case FCOMP:
11404           fcomp_assemble(i,&regs[i]);break;
11405         case MULTDIV:
11406           multdiv_assemble(i,&regs[i]);break;
11407         case MOV:
11408           mov_assemble(i,&regs[i]);break;
11409         case SYSCALL:
11410           syscall_assemble(i,&regs[i]);break;
11411         case HLECALL:
11412           hlecall_assemble(i,&regs[i]);break;
11413         case INTCALL:
11414           intcall_assemble(i,&regs[i]);break;
11415         case UJUMP:
11416           ujump_assemble(i,&regs[i]);ds=1;break;
11417         case RJUMP:
11418           rjump_assemble(i,&regs[i]);ds=1;break;
11419         case CJUMP:
11420           cjump_assemble(i,&regs[i]);ds=1;break;
11421         case SJUMP:
11422           sjump_assemble(i,&regs[i]);ds=1;break;
11423         case FJUMP:
11424           fjump_assemble(i,&regs[i]);ds=1;break;
11425         case SPAN:
11426           pagespan_assemble(i,&regs[i]);break;
11427       }
11428       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11429         literal_pool(1024);
11430       else
11431         literal_pool_jumpover(256);
11432     }
11433   }
11434   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11435   // If the block did not end with an unconditional branch,
11436   // add a jump to the next instruction.
11437   if(i>1) {
11438     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11439       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11440       assert(i==slen);
11441       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11442         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11443         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11444           emit_loadreg(CCREG,HOST_CCREG);
11445         emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
11446       }
11447       else if(!likely[i-2])
11448       {
11449         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11450         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11451       }
11452       else
11453       {
11454         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11455         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11456       }
11457       add_to_linker((int)out,start+i*4,0);
11458       emit_jmp(0);
11459     }
11460   }
11461   else
11462   {
11463     assert(i>0);
11464     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11465     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11466     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11467       emit_loadreg(CCREG,HOST_CCREG);
11468     emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
11469     add_to_linker((int)out,start+i*4,0);
11470     emit_jmp(0);
11471   }
11472
11473   // TODO: delay slot stubs?
11474   // Stubs
11475   for(i=0;i<stubcount;i++)
11476   {
11477     switch(stubs[i][0])
11478     {
11479       case LOADB_STUB:
11480       case LOADH_STUB:
11481       case LOADW_STUB:
11482       case LOADD_STUB:
11483       case LOADBU_STUB:
11484       case LOADHU_STUB:
11485         do_readstub(i);break;
11486       case STOREB_STUB:
11487       case STOREH_STUB:
11488       case STOREW_STUB:
11489       case STORED_STUB:
11490         do_writestub(i);break;
11491       case CC_STUB:
11492         do_ccstub(i);break;
11493       case INVCODE_STUB:
11494         do_invstub(i);break;
11495       case FP_STUB:
11496         do_cop1stub(i);break;
11497       case STORELR_STUB:
11498         do_unalignedwritestub(i);break;
11499     }
11500   }
11501
11502   if (instr_addr0_override)
11503     instr_addr[0] = instr_addr0_override;
11504
11505   /* Pass 9 - Linker */
11506   for(i=0;i<linkcount;i++)
11507   {
11508     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11509     literal_pool(64);
11510     if(!link_addr[i][2])
11511     {
11512       void *stub=out;
11513       void *addr=check_addr(link_addr[i][1]);
11514       emit_extjump(link_addr[i][0],link_addr[i][1]);
11515       if(addr) {
11516         set_jump_target(link_addr[i][0],(int)addr);
11517         add_link(link_addr[i][1],stub);
11518       }
11519       else set_jump_target(link_addr[i][0],(int)stub);
11520     }
11521     else
11522     {
11523       // Internal branch
11524       int target=(link_addr[i][1]-start)>>2;
11525       assert(target>=0&&target<slen);
11526       assert(instr_addr[target]);
11527       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11528       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11529       //#else
11530       set_jump_target(link_addr[i][0],instr_addr[target]);
11531       //#endif
11532     }
11533   }
11534   // External Branch Targets (jump_in)
11535   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11536   for(i=0;i<slen;i++)
11537   {
11538     if(bt[i]||i==0)
11539     {
11540       if(instr_addr[i]) // TODO - delay slots (=null)
11541       {
11542         u_int vaddr=start+i*4;
11543         u_int page=get_page(vaddr);
11544         u_int vpage=get_vpage(vaddr);
11545         literal_pool(256);
11546         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
11547 #ifndef FORCE32
11548         if(!requires_32bit[i])
11549 #else
11550         if(1)
11551 #endif
11552         {
11553           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11554           assem_debug("jump_in: %x\n",start+i*4);
11555           ll_add(jump_dirty+vpage,vaddr,(void *)out);
11556           int entry_point=do_dirty_stub(i);
11557           ll_add(jump_in+page,vaddr,(void *)entry_point);
11558           // If there was an existing entry in the hash table,
11559           // replace it with the new address.
11560           // Don't add new entries.  We'll insert the
11561           // ones that actually get used in check_addr().
11562           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11563           if(ht_bin[0]==vaddr) {
11564             ht_bin[1]=entry_point;
11565           }
11566           if(ht_bin[2]==vaddr) {
11567             ht_bin[3]=entry_point;
11568           }
11569         }
11570         else
11571         {
11572           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11573           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11574           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11575           //int entry_point=(int)out;
11576           ////assem_debug("entry_point: %x\n",entry_point);
11577           //load_regs_entry(i);
11578           //if(entry_point==(int)out)
11579           //  entry_point=instr_addr[i];
11580           //else
11581           //  emit_jmp(instr_addr[i]);
11582           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11583           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11584           int entry_point=do_dirty_stub(i);
11585           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11586         }
11587       }
11588     }
11589   }
11590   // Write out the literal pool if necessary
11591   literal_pool(0);
11592   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11593   // Align code
11594   if(((u_int)out)&7) emit_addnop(13);
11595   #endif
11596   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11597   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11598   memcpy(copy,source,slen*4);
11599   copy+=slen*4;
11600   
11601   #ifdef __arm__
11602   __clear_cache((void *)beginning,out);
11603   #endif
11604   
11605   // If we're within 256K of the end of the buffer,
11606   // start over from the beginning. (Is 256K enough?)
11607   if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11608   
11609   // Trap writes to any of the pages we compiled
11610   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11611     invalid_code[i]=0;
11612 #ifndef DISABLE_TLB
11613     memory_map[i]|=0x40000000;
11614     if((signed int)start>=(signed int)0xC0000000) {
11615       assert(using_tlb);
11616       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11617       invalid_code[j]=0;
11618       memory_map[j]|=0x40000000;
11619       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11620     }
11621 #endif
11622   }
11623   inv_code_start=inv_code_end=~0;
11624 #ifdef PCSX
11625   // for PCSX we need to mark all mirrors too
11626   if(get_page(start)<(RAM_SIZE>>12))
11627     for(i=start>>12;i<=(start+slen*4)>>12;i++)
11628       invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11629       invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11630       invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
11631 #endif
11632   
11633   /* Pass 10 - Free memory by expiring oldest blocks */
11634   
11635   int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11636   while(expirep!=end)
11637   {
11638     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11639     int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11640     inv_debug("EXP: Phase %d\n",expirep);
11641     switch((expirep>>11)&3)
11642     {
11643       case 0:
11644         // Clear jump_in and jump_dirty
11645         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11646         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11647         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11648         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11649         break;
11650       case 1:
11651         // Clear pointers
11652         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11653         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11654         break;
11655       case 2:
11656         // Clear hash table
11657         for(i=0;i<32;i++) {
11658           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11659           if((ht_bin[3]>>shift)==(base>>shift) ||
11660              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11661             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11662             ht_bin[2]=ht_bin[3]=-1;
11663           }
11664           if((ht_bin[1]>>shift)==(base>>shift) ||
11665              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11666             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11667             ht_bin[0]=ht_bin[2];
11668             ht_bin[1]=ht_bin[3];
11669             ht_bin[2]=ht_bin[3]=-1;
11670           }
11671         }
11672         break;
11673       case 3:
11674         // Clear jump_out
11675         #ifdef __arm__
11676         if((expirep&2047)==0) 
11677           do_clear_cache();
11678         #endif
11679         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11680         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11681         break;
11682     }
11683     expirep=(expirep+1)&65535;
11684   }
11685   return 0;
11686 }
11687
11688 // vim:shiftwidth=2:expandtab