update teensy3 lib to latest, use new vector change mechanism
[teensytas.git] / teensy3 / pins_teensy.c
CommitLineData
35f00b6c 1/* Teensyduino Core Library
2 * http://www.pjrc.com/teensy/
3 * Copyright (c) 2013 PJRC.COM, LLC.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * 1. The above copyright notice and this permission notice shall be
14 * included in all copies or substantial portions of the Software.
15 *
16 * 2. If the Software is incorporated into a build system that allows
17 * selection among a list of target devices, then similar target
18 * devices manufactured by PJRC.COM must be included in the list of
19 * target devices and selectable in the same manner.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
25 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
26 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
28 * SOFTWARE.
29 */
30
31#include "core_pins.h"
32#include "pins_arduino.h"
5b1ee79c 33//#include "HardwareSerial.h"
35f00b6c 34
35#if 0
36// moved to pins_arduino.h
37struct digital_pin_bitband_and_config_table_struct {
38 volatile uint32_t *reg;
39 volatile uint32_t *config;
40};
41const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[];
42
43// compatibility macros
44#define digitalPinToPort(pin) (pin)
45#define digitalPinToBitMask(pin) (1)
46#define portOutputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 0))
47#define portSetRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 32))
48#define portClearRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 64))
49#define portToggleRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 96))
50#define portInputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 128))
51#define portModeRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 160))
52#define portConfigRegister(pin) ((volatile uint32_t *)(digital_pin_to_info_PGM[(pin)].config))
53#endif
54
55//#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
56//#define analogInPinToBit(P) (P)
57
58#define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
59#define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
60//#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
61//#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
62
63const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
64 {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
65 {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
66 {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
67 {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
68 {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
69 {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
70 {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
71 {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
72 {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
73 {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
74 {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
75 {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
76 {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
77 {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
78 {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
79 {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
80 {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
81 {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
82 {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
83 {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
84 {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
85 {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
86 {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
87 {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
88 {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
89 {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
90 {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
91 {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
92 {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
93 {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
94 {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
95 {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
96 {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
97 {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
98};
99
100
101
102
103typedef void (*voidFuncPtr)(void);
104volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
105
106void init_pin_interrupts(void)
107{
108 //SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
109 NVIC_ENABLE_IRQ(IRQ_PORTA);
110 NVIC_ENABLE_IRQ(IRQ_PORTB);
111 NVIC_ENABLE_IRQ(IRQ_PORTC);
112 NVIC_ENABLE_IRQ(IRQ_PORTD);
113 NVIC_ENABLE_IRQ(IRQ_PORTE);
114 // TODO: maybe these should be set to a lower priority
115 // so if the user puts lots of slow code on attachInterrupt
116 // fast interrupts will still be serviced quickly?
117}
118
a773ac06 119void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
120{
121 _VectorsRam[irq + 16] = function;
122}
123
35f00b6c 124void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
125{
126 volatile uint32_t *config;
127 uint32_t cfg, mask;
128
129 if (pin >= CORE_NUM_DIGITAL) return;
130 switch (mode) {
131 case CHANGE: mask = 0x0B; break;
132 case RISING: mask = 0x09; break;
133 case FALLING: mask = 0x0A; break;
134 case LOW: mask = 0x08; break;
135 case HIGH: mask = 0x0C; break;
136 default: return;
137 }
138 mask = (mask << 16) | 0x01000000;
139 config = portConfigRegister(pin);
140
141 __disable_irq();
142 cfg = *config;
143 cfg &= ~0x000F0000; // disable any previous interrupt
144 *config = cfg;
145 intFunc[pin] = function; // set the function pointer
146 cfg |= mask;
147 *config = cfg; // enable the new interrupt
148 __enable_irq();
149}
150
151void detachInterrupt(uint8_t pin)
152{
153 volatile uint32_t *config;
154
155 config = portConfigRegister(pin);
156 __disable_irq();
157 *config = ((*config & ~0x000F0000) | 0x01000000);
158 intFunc[pin] = NULL;
159 __enable_irq();
160}
161
162
163void porta_isr(void)
164{
165 uint32_t isfr = PORTA_ISFR;
166 PORTA_ISFR = isfr;
167 if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
168 if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
169 if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
170 if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
171}
172
a773ac06 173void portb_isr(void)
35f00b6c 174{
175 uint32_t isfr = PORTB_ISFR;
176 PORTB_ISFR = isfr;
177 if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
178 if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
179 if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
180 if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
181 if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
182 if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
183 if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
184 if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
185}
186
187void portc_isr(void)
188{
189 // TODO: these are inefficent. Use CLZ somehow....
190 uint32_t isfr = PORTC_ISFR;
191 PORTC_ISFR = isfr;
192 if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
193 if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
194 if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
195 if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
196 if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
197 if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
198 if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
199 if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
200 if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
201 if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
202 if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
203 if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
204}
205
206void portd_isr(void)
207{
208 uint32_t isfr = PORTD_ISFR;
209 PORTD_ISFR = isfr;
210 if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
211 if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
212 if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
213 if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
214 if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
215 if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
216 if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
217 if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
218}
219
220void porte_isr(void)
221{
222 uint32_t isfr = PORTE_ISFR;
223 PORTE_ISFR = isfr;
224 if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
225 if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
226}
227
228
229
230
231unsigned long rtc_get(void)
232{
233 return RTC_TSR;
234}
235
236void rtc_set(unsigned long t)
237{
238 RTC_SR = 0;
239 RTC_TPR = 0;
240 RTC_TSR = t;
241 RTC_SR = RTC_SR_TCE;
242}
243
244
245// adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
246// For example, adjust = -100 is slows the clock by 11.92 ppm
247//
248void rtc_compensate(int adjust)
249{
250 uint32_t comp, interval, tcr;
251
252 // This simple approach tries to maximize the interval.
253 // Perhaps minimizing TCR would be better, so the
254 // compensation is distributed more evenly across
255 // many seconds, rather than saving it all up and then
256 // altering one second up to +/- 0.38%
257 if (adjust >= 0) {
258 comp = adjust;
259 interval = 256;
260 while (1) {
261 tcr = comp * interval;
262 if (tcr < 128*256) break;
263 if (--interval == 1) break;
264 }
265 tcr = tcr >> 8;
266 } else {
267 comp = -adjust;
268 interval = 256;
269 while (1) {
270 tcr = comp * interval;
271 if (tcr < 129*256) break;
272 if (--interval == 1) break;
273 }
274 tcr = tcr >> 8;
275 tcr = 256 - tcr;
276 }
277 RTC_TCR = ((interval - 1) << 8) | tcr;
278}
279
280#if 0
281// TODO: build system should define this
282// so RTC is automatically initialized to approx correct time
283// at least when the program begins running right after upload
284#ifndef TIME_T
285#define TIME_T 1350160272
286#endif
287
288void init_rtc(void)
289{
290 serial_print("init_rtc\n");
291 //SIM_SCGC6 |= SIM_SCGC6_RTC;
292
293 // enable the RTC crystal oscillator, for approx 12pf crystal
294 if (!(RTC_CR & RTC_CR_OSCE)) {
295 serial_print("start RTC oscillator\n");
296 RTC_SR = 0;
297 RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
298 }
299 // should wait for crystal to stabilize.....
300
301 serial_print("SR=");
302 serial_phex32(RTC_SR);
303 serial_print("\n");
304 serial_print("CR=");
305 serial_phex32(RTC_CR);
306 serial_print("\n");
307 serial_print("TSR=");
308 serial_phex32(RTC_TSR);
309 serial_print("\n");
310 serial_print("TCR=");
311 serial_phex32(RTC_TCR);
312 serial_print("\n");
313
314 if (RTC_SR & RTC_SR_TIF) {
315 // enable the RTC
316 RTC_SR = 0;
317 RTC_TPR = 0;
318 RTC_TSR = TIME_T;
319 RTC_SR = RTC_SR_TCE;
320 }
321}
322#endif
323
324extern void usb_init(void);
325
326
327// create a default PWM at the same 488.28 Hz as Arduino Uno
a773ac06 328
329#if F_BUS == 60000000
330#define DEFAULT_FTM_MOD (61440 - 1)
331#define DEFAULT_FTM_PRESCALE 1
332#elif F_BUS == 56000000
333#define DEFAULT_FTM_MOD (57344 - 1)
334#define DEFAULT_FTM_PRESCALE 1
335#elif F_BUS == 48000000
35f00b6c 336#define DEFAULT_FTM_MOD (49152 - 1)
337#define DEFAULT_FTM_PRESCALE 1
a773ac06 338#elif F_BUS == 40000000
339#define DEFAULT_FTM_MOD (40960 - 1)
340#define DEFAULT_FTM_PRESCALE 1
341#elif F_BUS == 36000000
342#define DEFAULT_FTM_MOD (36864 - 1)
343#define DEFAULT_FTM_PRESCALE 1
344#elif F_BUS == 24000000
35f00b6c 345#define DEFAULT_FTM_MOD (49152 - 1)
346#define DEFAULT_FTM_PRESCALE 0
a773ac06 347#elif F_BUS == 16000000
348#define DEFAULT_FTM_MOD (32768 - 1)
349#define DEFAULT_FTM_PRESCALE 0
350#elif F_BUS == 8000000
351#define DEFAULT_FTM_MOD (16384 - 1)
352#define DEFAULT_FTM_PRESCALE 0
353#elif F_BUS == 4000000
354#define DEFAULT_FTM_MOD (8192 - 1)
355#define DEFAULT_FTM_PRESCALE 0
356#elif F_BUS == 2000000
357#define DEFAULT_FTM_MOD (4096 - 1)
358#define DEFAULT_FTM_PRESCALE 0
35f00b6c 359#endif
360
361//void init_pins(void)
362void _init_Teensyduino_internal_(void)
363{
364 init_pin_interrupts();
365
366 //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
367 //SIM_SCGC6 |= SIM_SCGC6_FTM1;
368 FTM0_CNT = 0;
369 FTM0_MOD = DEFAULT_FTM_MOD;
370 FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
371 FTM0_C1SC = 0x28;
372 FTM0_C2SC = 0x28;
373 FTM0_C3SC = 0x28;
374 FTM0_C4SC = 0x28;
375 FTM0_C5SC = 0x28;
376 FTM0_C6SC = 0x28;
377 FTM0_C7SC = 0x28;
378 FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
379 FTM1_CNT = 0;
380 FTM1_MOD = DEFAULT_FTM_MOD;
381 FTM1_C0SC = 0x28;
382 FTM1_C1SC = 0x28;
383 FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
384#if defined(__MK20DX256__)
385 FTM2_CNT = 0;
386 FTM2_MOD = DEFAULT_FTM_MOD;
387 FTM2_C0SC = 0x28;
388 FTM2_C1SC = 0x28;
389 FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
390#endif
391
5b1ee79c 392 //analog_init();
35f00b6c 393 //delay(100); // TODO: this is not necessary, right?
394 delay(4);
395 usb_init();
396}
397
5b1ee79c 398#if 0
35f00b6c 399
400static uint8_t analog_write_res = 8;
401
402// SOPT4 is SIM select clocks?
403// FTM is clocked by the bus clock, either 24 or 48 MHz
404// input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
405// 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
406
407void analogWrite(uint8_t pin, int val)
408{
409 uint32_t cval, max;
410
411#if defined(__MK20DX256__)
412 if (pin == A14) {
413 uint8_t res = analog_write_res;
414 if (res < 12) {
415 val <<= 12 - res;
416 } else if (res > 12) {
417 val >>= res - 12;
418 }
419 analogWriteDAC0(val);
420 return;
421 }
422#endif
423
424 max = 1 << analog_write_res;
425 if (val <= 0) {
426 digitalWrite(pin, LOW);
427 pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
428 return;
429 } else if (val >= max) {
430 digitalWrite(pin, HIGH);
431 pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
432 return;
433 }
434
435 //serial_print("analogWrite\n");
436 //serial_print("val = ");
437 //serial_phex32(val);
438 //serial_print("\n");
439 //serial_print("analog_write_res = ");
440 //serial_phex(analog_write_res);
441 //serial_print("\n");
442 if (pin == 3 || pin == 4) {
443 cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
444#if defined(__MK20DX256__)
445 } else if (pin == 25 || pin == 32) {
446 cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
447#endif
448 } else {
449 cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
450 }
451 //serial_print("cval = ");
452 //serial_phex32(cval);
453 //serial_print("\n");
454 switch (pin) {
455 case 3: // PTA12, FTM1_CH0
456 FTM1_C0V = cval;
457 CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
458 break;
459 case 4: // PTA13, FTM1_CH1
460 FTM1_C1V = cval;
461 CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
462 break;
463 case 5: // PTD7, FTM0_CH7
464 FTM0_C7V = cval;
465 CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
466 break;
467 case 6: // PTD4, FTM0_CH4
468 FTM0_C4V = cval;
469 CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
470 break;
471 case 9: // PTC3, FTM0_CH2
472 FTM0_C2V = cval;
473 CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
474 break;
475 case 10: // PTC4, FTM0_CH3
476 FTM0_C3V = cval;
477 CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
478 break;
479 case 20: // PTD5, FTM0_CH5
480 FTM0_C5V = cval;
481 CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
482 break;
483 case 21: // PTD6, FTM0_CH6
484 FTM0_C6V = cval;
485 CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
486 break;
487 case 22: // PTC1, FTM0_CH0
488 FTM0_C0V = cval;
489 CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
490 break;
491 case 23: // PTC2, FTM0_CH1
492 FTM0_C1V = cval;
493 CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
494 break;
495#if defined(__MK20DX256__)
496 case 32: // PTB18, FTM2_CH0
497 FTM2_C0V = cval;
498 CORE_PIN32_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
499 break;
500 case 25: // PTB19, FTM1_CH1
501 FTM2_C1V = cval;
502 CORE_PIN25_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
503 break;
504#endif
505 default:
506 digitalWrite(pin, (val > 127) ? HIGH : LOW);
507 pinMode(pin, OUTPUT);
508 }
509}
510
511void analogWriteRes(uint32_t bits)
512{
513 if (bits < 1) {
514 bits = 1;
515 } else if (bits > 16) {
516 bits = 16;
517 }
518 analog_write_res = bits;
519}
520
521void analogWriteFrequency(uint8_t pin, uint32_t frequency)
522{
523 uint32_t minfreq, prescale, mod;
524
525 //serial_print("analogWriteFrequency: pin = ");
526 //serial_phex(pin);
527 //serial_print(", freq = ");
528 //serial_phex32(frequency);
529 //serial_print("\n");
530 for (prescale = 0; prescale < 7; prescale++) {
531 minfreq = (F_BUS >> 16) >> prescale;
532 if (frequency > minfreq) break;
533 }
534 //serial_print("F_BUS = ");
535 //serial_phex32(F_BUS >> prescale);
536 //serial_print("\n");
537 //serial_print("prescale = ");
538 //serial_phex(prescale);
539 //serial_print("\n");
540 //mod = ((F_BUS >> prescale) / frequency) - 1;
541 mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
542 if (mod > 65535) mod = 65535;
543 //serial_print("mod = ");
544 //serial_phex32(mod);
545 //serial_print("\n");
546 if (pin == 3 || pin == 4) {
547 FTM1_SC = 0;
548 FTM1_CNT = 0;
549 FTM1_MOD = mod;
550 FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
551 } else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
552 (pin >= 20 && pin <= 23)) {
553 FTM0_SC = 0;
554 FTM0_CNT = 0;
555 FTM0_MOD = mod;
556 FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
557 }
a773ac06 558#if defined(__MK20DX256__)
559 else if (pin == 25 || pin == 32) {
560 FTM2_SC = 0;
561 FTM2_CNT = 0;
562 FTM2_MOD = mod;
563 FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
564 }
565#endif
35f00b6c 566}
567
5b1ee79c 568#endif
35f00b6c 569
570
571// TODO: startup code needs to initialize all pins to GPIO mode, input by default
572
573void digitalWrite(uint8_t pin, uint8_t val)
574{
575 if (pin >= CORE_NUM_DIGITAL) return;
576 if (*portModeRegister(pin)) {
577 if (val) {
578 *portSetRegister(pin) = 1;
579 } else {
580 *portClearRegister(pin) = 1;
581 }
582 } else {
583 volatile uint32_t *config = portConfigRegister(pin);
584 if (val) {
585 // TODO use bitband for atomic read-mod-write
586 *config |= (PORT_PCR_PE | PORT_PCR_PS);
587 //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
588 } else {
589 // TODO use bitband for atomic read-mod-write
590 *config &= ~(PORT_PCR_PE);
591 //*config = PORT_PCR_MUX(1);
592 }
593 }
594
595}
596
597uint8_t digitalRead(uint8_t pin)
598{
599 if (pin >= CORE_NUM_DIGITAL) return 0;
600 return *portInputRegister(pin);
601}
602
603
604
605void pinMode(uint8_t pin, uint8_t mode)
606{
607 volatile uint32_t *config;
608
609 if (pin >= CORE_NUM_DIGITAL) return;
610 config = portConfigRegister(pin);
611
612 if (mode == OUTPUT) {
613 *portModeRegister(pin) = 1;
614 *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
615 } else {
616 *portModeRegister(pin) = 0;
617 if (mode == INPUT) {
618 *config = PORT_PCR_MUX(1);
619 } else {
620 *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
621 }
622 }
623}
624
625
626void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
627{
628 if (bitOrder == LSBFIRST) {
629 shiftOut_lsbFirst(dataPin, clockPin, value);
630 } else {
631 shiftOut_msbFirst(dataPin, clockPin, value);
632 }
633}
634
635void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
636{
637 uint8_t mask;
638 for (mask=0x01; mask; mask <<= 1) {
639 digitalWrite(dataPin, value & mask);
640 digitalWrite(clockPin, HIGH);
641 digitalWrite(clockPin, LOW);
642 }
643}
644
645void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
646{
647 uint8_t mask;
648 for (mask=0x80; mask; mask >>= 1) {
649 digitalWrite(dataPin, value & mask);
650 digitalWrite(clockPin, HIGH);
651 digitalWrite(clockPin, LOW);
652 }
653}
654
655uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
656{
657 if (bitOrder == LSBFIRST) {
658 return shiftIn_lsbFirst(dataPin, clockPin);
659 } else {
660 return shiftIn_msbFirst(dataPin, clockPin);
661 }
662}
663
664uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
665{
666 uint8_t mask, value=0;
667 for (mask=0x01; mask; mask <<= 1) {
668 digitalWrite(clockPin, HIGH);
669 if (digitalRead(dataPin)) value |= mask;
670 digitalWrite(clockPin, LOW);
671 }
672 return value;
673}
674
675uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
676{
677 uint8_t mask, value=0;
678 for (mask=0x80; mask; mask >>= 1) {
679 digitalWrite(clockPin, HIGH);
680 if (digitalRead(dataPin)) value |= mask;
681 digitalWrite(clockPin, LOW);
682 }
683 return value;
684}
685
686
687
688// the systick interrupt is supposed to increment this at 1 kHz rate
689volatile uint32_t systick_millis_count = 0;
690
691//uint32_t systick_current, systick_count, systick_istatus; // testing only
692
693uint32_t micros(void)
694{
695 uint32_t count, current, istatus;
696
697 __disable_irq();
698 current = SYST_CVR;
699 count = systick_millis_count;
700 istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
701 __enable_irq();
702 //systick_current = current;
703 //systick_count = count;
704 //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
705 if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
706 current = ((F_CPU / 1000) - 1) - current;
707 return count * 1000 + current / (F_CPU / 1000000);
708}
709
710void delay(uint32_t ms)
711{
712 uint32_t start = micros();
713
714 if (ms > 0) {
715 while (1) {
716 if ((micros() - start) >= 1000) {
717 ms--;
718 if (ms == 0) return;
719 start += 1000;
720 }
721 yield();
722 }
723 }
724}
725
a773ac06 726// TODO: verify these result in correct timeouts...
727#if F_CPU == 168000000
728#define PULSEIN_LOOPS_PER_USEC 25
729#elif F_CPU == 144000000
730#define PULSEIN_LOOPS_PER_USEC 21
731#elif F_CPU == 120000000
732#define PULSEIN_LOOPS_PER_USEC 18
733#elif F_CPU == 96000000
35f00b6c 734#define PULSEIN_LOOPS_PER_USEC 14
a773ac06 735#elif F_CPU == 72000000
736#define PULSEIN_LOOPS_PER_USEC 10
35f00b6c 737#elif F_CPU == 48000000
738#define PULSEIN_LOOPS_PER_USEC 7
739#elif F_CPU == 24000000
740#define PULSEIN_LOOPS_PER_USEC 4
a773ac06 741#elif F_CPU == 16000000
742#define PULSEIN_LOOPS_PER_USEC 1
743#elif F_CPU == 8000000
744#define PULSEIN_LOOPS_PER_USEC 1
745#elif F_CPU == 4000000
746#define PULSEIN_LOOPS_PER_USEC 1
747#elif F_CPU == 2000000
748#define PULSEIN_LOOPS_PER_USEC 1
35f00b6c 749#endif
750
751
752uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
753{
754 uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
755 uint32_t usec_start, usec_stop;
756
757 // wait for any previous pulse to end
758 while (*reg) {
759 if (--timeout_count == 0) return 0;
760 }
761 // wait for the pulse to start
762 while (!*reg) {
763 if (--timeout_count == 0) return 0;
764 }
765 usec_start = micros();
766 // wait for the pulse to stop
767 while (*reg) {
768 if (--timeout_count == 0) return 0;
769 }
770 usec_stop = micros();
771 return usec_stop - usec_start;
772}
773
774uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
775{
776 uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
777 uint32_t usec_start, usec_stop;
778
779 // wait for any previous pulse to end
780 while (!*reg) {
781 if (--timeout_count == 0) return 0;
782 }
783 // wait for the pulse to start
784 while (*reg) {
785 if (--timeout_count == 0) return 0;
786 }
787 usec_start = micros();
788 // wait for the pulse to stop
789 while (!*reg) {
790 if (--timeout_count == 0) return 0;
791 }
792 usec_stop = micros();
793 return usec_stop - usec_start;
794}
795
796// TODO: an inline version should handle the common case where state is const
797uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
798{
799 if (pin >= CORE_NUM_DIGITAL) return 0;
800 if (state) return pulseIn_high(portInputRegister(pin), timeout);
801 return pulseIn_low(portInputRegister(pin), timeout);;
802}
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830