working C button 'presser'
[teensytas.git] / teensy3 / usb_dev.c
CommitLineData
35f00b6c 1/* Teensyduino Core Library
2 * http://www.pjrc.com/teensy/
3 * Copyright (c) 2013 PJRC.COM, LLC.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * 1. The above copyright notice and this permission notice shall be
14 * included in all copies or substantial portions of the Software.
15 *
16 * 2. If the Software is incorporated into a build system that allows
17 * selection among a list of target devices, then similar target
18 * devices manufactured by PJRC.COM must be included in the list of
19 * target devices and selectable in the same manner.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
25 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
26 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
28 * SOFTWARE.
29 */
30
31#include "mk20dx128.h"
32//#include "HardwareSerial.h"
33#include "usb_dev.h"
34#include "usb_mem.h"
35
36// buffer descriptor table
37
38typedef struct {
39 uint32_t desc;
40 void * addr;
41} bdt_t;
42
43__attribute__ ((section(".usbdescriptortable"), used))
44static bdt_t table[(NUM_ENDPOINTS+1)*4];
45
46static usb_packet_t *rx_first[NUM_ENDPOINTS];
47static usb_packet_t *rx_last[NUM_ENDPOINTS];
48static usb_packet_t *tx_first[NUM_ENDPOINTS];
49static usb_packet_t *tx_last[NUM_ENDPOINTS];
50uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
51
52static uint8_t tx_state[NUM_ENDPOINTS];
53#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
54#define TX_STATE_BOTH_FREE_ODD_FIRST 1
55#define TX_STATE_EVEN_FREE 2
56#define TX_STATE_ODD_FREE 3
57#define TX_STATE_NONE_FREE_EVEN_FIRST 4
58#define TX_STATE_NONE_FREE_ODD_FIRST 5
59
60#define BDT_OWN 0x80
61#define BDT_DATA1 0x40
62#define BDT_DATA0 0x00
63#define BDT_DTS 0x08
64#define BDT_STALL 0x04
65#define BDT_PID(n) (((n) >> 2) & 15)
66
67#define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
68 | ((data) ? BDT_DATA1 : BDT_DATA0) \
69 | ((count) << 16))
70
71#define TX 1
72#define RX 0
73#define ODD 1
74#define EVEN 0
75#define DATA0 0
76#define DATA1 1
77#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
78#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
79
80
81static union {
82 struct {
83 union {
84 struct {
85 uint8_t bmRequestType;
86 uint8_t bRequest;
87 };
88 uint16_t wRequestAndType;
89 };
90 uint16_t wValue;
91 uint16_t wIndex;
92 uint16_t wLength;
93 };
94 struct {
95 uint32_t word1;
96 uint32_t word2;
97 };
98} setup;
99
100
101#define GET_STATUS 0
102#define CLEAR_FEATURE 1
103#define SET_FEATURE 3
104#define SET_ADDRESS 5
105#define GET_DESCRIPTOR 6
106#define SET_DESCRIPTOR 7
107#define GET_CONFIGURATION 8
108#define SET_CONFIGURATION 9
109#define GET_INTERFACE 10
110#define SET_INTERFACE 11
111#define SYNCH_FRAME 12
112
113// SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
114// transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
115// Status stage uses a DATA1 PID.
116
117static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
118static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
119static const uint8_t *ep0_tx_ptr = NULL;
120static uint16_t ep0_tx_len;
121static uint8_t ep0_tx_bdt_bank = 0;
122static uint8_t ep0_tx_data_toggle = 0;
123uint8_t usb_rx_memory_needed = 0;
124
125volatile uint8_t usb_configuration = 0;
126volatile uint8_t usb_reboot_timer = 0;
127
128
129static void endpoint0_stall(void)
130{
131 USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
132}
133
134
135static void endpoint0_transmit(const void *data, uint32_t len)
136{
137#if 0
138 serial_print("tx0:");
139 serial_phex32((uint32_t)data);
140 serial_print(",");
141 serial_phex16(len);
142 serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
143 serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
144#endif
145 table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
146 table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
147 ep0_tx_data_toggle ^= 1;
148 ep0_tx_bdt_bank ^= 1;
149}
150
151static uint8_t reply_buffer[8];
152
153static void usb_setup(void)
154{
155 const uint8_t *data = NULL;
156 uint32_t datalen = 0;
157 const usb_descriptor_list_t *list;
158 uint32_t size;
159 volatile uint8_t *reg;
160 uint8_t epconf;
161 const uint8_t *cfg;
162 int i;
163
164 switch (setup.wRequestAndType) {
165 case 0x0500: // SET_ADDRESS
166 break;
167 case 0x0900: // SET_CONFIGURATION
168 //serial_print("configure\n");
169 usb_configuration = setup.wValue;
170 reg = &USB0_ENDPT1;
171 cfg = usb_endpoint_config_table;
172 // clear all BDT entries, free any allocated memory...
173 for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
174 if (table[i].desc & BDT_OWN) {
175 usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
176 }
177 }
178 // free all queued packets
179 for (i=0; i < NUM_ENDPOINTS; i++) {
180 usb_packet_t *p, *n;
181 p = rx_first[i];
182 while (p) {
183 n = p->next;
184 usb_free(p);
185 p = n;
186 }
187 rx_first[i] = NULL;
188 rx_last[i] = NULL;
189 p = tx_first[i];
190 while (p) {
191 n = p->next;
192 usb_free(p);
193 p = n;
194 }
195 tx_first[i] = NULL;
196 tx_last[i] = NULL;
197 usb_rx_byte_count_data[i] = 0;
198 switch (tx_state[i]) {
199 case TX_STATE_EVEN_FREE:
200 case TX_STATE_NONE_FREE_EVEN_FIRST:
201 tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
202 break;
203 case TX_STATE_ODD_FREE:
204 case TX_STATE_NONE_FREE_ODD_FIRST:
205 tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
206 break;
207 default:
208 break;
209 }
210 }
211 usb_rx_memory_needed = 0;
212 for (i=1; i <= NUM_ENDPOINTS; i++) {
213 epconf = *cfg++;
214 *reg = epconf;
215 reg += 4;
216 if (epconf & USB_ENDPT_EPRXEN) {
217 usb_packet_t *p;
218 p = usb_malloc();
219 if (p) {
220 table[index(i, RX, EVEN)].addr = p->buf;
221 table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
222 } else {
223 table[index(i, RX, EVEN)].desc = 0;
224 usb_rx_memory_needed++;
225 }
226 p = usb_malloc();
227 if (p) {
228 table[index(i, RX, ODD)].addr = p->buf;
229 table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
230 } else {
231 table[index(i, RX, ODD)].desc = 0;
232 usb_rx_memory_needed++;
233 }
234 }
235 table[index(i, TX, EVEN)].desc = 0;
236 table[index(i, TX, ODD)].desc = 0;
237 }
238 break;
239 case 0x0880: // GET_CONFIGURATION
240 reply_buffer[0] = usb_configuration;
241 datalen = 1;
242 data = reply_buffer;
243 break;
244 case 0x0080: // GET_STATUS (device)
245 reply_buffer[0] = 0;
246 reply_buffer[1] = 0;
247 datalen = 2;
248 data = reply_buffer;
249 break;
250 case 0x0082: // GET_STATUS (endpoint)
251 if (setup.wIndex > NUM_ENDPOINTS) {
252 // TODO: do we need to handle IN vs OUT here?
253 endpoint0_stall();
254 return;
255 }
256 reply_buffer[0] = 0;
257 reply_buffer[1] = 0;
258 if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
259 data = reply_buffer;
260 datalen = 2;
261 break;
262 case 0x0102: // CLEAR_FEATURE (endpoint)
263 i = setup.wIndex & 0x7F;
264 if (i > NUM_ENDPOINTS || setup.wValue != 0) {
265 // TODO: do we need to handle IN vs OUT here?
266 endpoint0_stall();
267 return;
268 }
269 (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
270 // TODO: do we need to clear the data toggle here?
271 break;
272 case 0x0302: // SET_FEATURE (endpoint)
273 i = setup.wIndex & 0x7F;
274 if (i > NUM_ENDPOINTS || setup.wValue != 0) {
275 // TODO: do we need to handle IN vs OUT here?
276 endpoint0_stall();
277 return;
278 }
279 (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
280 // TODO: do we need to clear the data toggle here?
281 break;
282 case 0x0680: // GET_DESCRIPTOR
283 case 0x0681:
284 //serial_print("desc:");
285 //serial_phex16(setup.wValue);
286 //serial_print("\n");
287 for (list = usb_descriptor_list; 1; list++) {
288 if (list->addr == NULL) break;
289 //if (setup.wValue == list->wValue &&
290 //(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
291 if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
292 data = list->addr;
293 if ((setup.wValue >> 8) == 3) {
294 // for string descriptors, use the descriptor's
295 // length field, allowing runtime configured
296 // length.
297 datalen = *(list->addr);
298 } else {
299 datalen = list->length;
300 }
301#if 0
302 serial_print("Desc found, ");
303 serial_phex32((uint32_t)data);
304 serial_print(",");
305 serial_phex16(datalen);
306 serial_print(",");
307 serial_phex(data[0]);
308 serial_phex(data[1]);
309 serial_phex(data[2]);
310 serial_phex(data[3]);
311 serial_phex(data[4]);
312 serial_phex(data[5]);
313 serial_print("\n");
314#endif
315 goto send;
316 }
317 }
318 //serial_print("desc: not found\n");
319 endpoint0_stall();
320 return;
321#if defined(CDC_STATUS_INTERFACE)
322 case 0x2221: // CDC_SET_CONTROL_LINE_STATE
323 usb_cdc_line_rtsdtr = setup.wValue;
324 //serial_print("set control line state\n");
325 break;
326 case 0x2321: // CDC_SEND_BREAK
327 break;
328 case 0x2021: // CDC_SET_LINE_CODING
329 //serial_print("set coding, waiting...\n");
330 return;
331#endif
332
333// TODO: this does not work... why?
334#if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
335 case 0x0921: // HID SET_REPORT
336 //serial_print(":)\n");
337 return;
338 case 0x0A21: // HID SET_IDLE
339 break;
340 // case 0xC940:
341#endif
342 default:
343 endpoint0_stall();
344 return;
345 }
346 send:
347 //serial_print("setup send ");
348 //serial_phex32(data);
349 //serial_print(",");
350 //serial_phex16(datalen);
351 //serial_print("\n");
352
353 if (datalen > setup.wLength) datalen = setup.wLength;
354 size = datalen;
355 if (size > EP0_SIZE) size = EP0_SIZE;
356 endpoint0_transmit(data, size);
357 data += size;
358 datalen -= size;
359 if (datalen == 0 && size < EP0_SIZE) return;
360
361 size = datalen;
362 if (size > EP0_SIZE) size = EP0_SIZE;
363 endpoint0_transmit(data, size);
364 data += size;
365 datalen -= size;
366 if (datalen == 0 && size < EP0_SIZE) return;
367
368 ep0_tx_ptr = data;
369 ep0_tx_len = datalen;
370}
371
372
373
374//A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
375//experiences any configuration event (configuration events are explained in
376//Sections 9.1.1.5 and 9.4.5).
377
378//Configuring a device or changing an alternate setting causes all of the status
379//and configuration values associated with endpoints in the affected interfaces
380//to be set to their default values. This includes setting the data toggle of
381//any endpoint using data toggles to the value DATA0.
382
383//For endpoints using data toggle, regardless of whether an endpoint has the
384//Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
385//data toggle being reinitialized to DATA0.
386
387
388
389// #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
390
391static void usb_control(uint32_t stat)
392{
393 bdt_t *b;
394 uint32_t pid, size;
395 uint8_t *buf;
396 const uint8_t *data;
397
398 b = stat2bufferdescriptor(stat);
399 pid = BDT_PID(b->desc);
400 //count = b->desc >> 16;
401 buf = b->addr;
402 //serial_print("pid:");
403 //serial_phex(pid);
404 //serial_print(", count:");
405 //serial_phex(count);
406 //serial_print("\n");
407
408 switch (pid) {
409 case 0x0D: // Setup received from host
410 //serial_print("PID=Setup\n");
411 //if (count != 8) ; // panic?
412 // grab the 8 byte setup info
413 setup.word1 = *(uint32_t *)(buf);
414 setup.word2 = *(uint32_t *)(buf + 4);
415
416 // give the buffer back
417 b->desc = BDT_DESC(EP0_SIZE, DATA1);
418 //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
419 //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
420
421 // clear any leftover pending IN transactions
422 ep0_tx_ptr = NULL;
423 if (ep0_tx_data_toggle) {
424 }
425 //if (table[index(0, TX, EVEN)].desc & 0x80) {
426 //serial_print("leftover tx even\n");
427 //}
428 //if (table[index(0, TX, ODD)].desc & 0x80) {
429 //serial_print("leftover tx odd\n");
430 //}
431 table[index(0, TX, EVEN)].desc = 0;
432 table[index(0, TX, ODD)].desc = 0;
433 // first IN after Setup is always DATA1
434 ep0_tx_data_toggle = 1;
435
436#if 0
437 serial_print("bmRequestType:");
438 serial_phex(setup.bmRequestType);
439 serial_print(", bRequest:");
440 serial_phex(setup.bRequest);
441 serial_print(", wValue:");
442 serial_phex16(setup.wValue);
443 serial_print(", wIndex:");
444 serial_phex16(setup.wIndex);
445 serial_print(", len:");
446 serial_phex16(setup.wLength);
447 serial_print("\n");
448#endif
449 // actually "do" the setup request
450 usb_setup();
451 // unfreeze the USB, now that we're ready
452 USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
453 break;
454 case 0x01: // OUT transaction received from host
455 case 0x02:
456 //serial_print("PID=OUT\n");
457#ifdef CDC_STATUS_INTERFACE
458 if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
459 int i;
460 uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
461 //serial_print("set line coding ");
462 for (i=0; i<7; i++) {
463 //serial_phex(*buf);
464 *dst++ = *buf++;
465 }
466 //serial_phex32(usb_cdc_line_coding[0]);
467 //serial_print("\n");
468 if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
469 endpoint0_transmit(NULL, 0);
470 }
471#endif
472#ifdef KEYBOARD_INTERFACE
473 if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
474 keyboard_leds = buf[0];
475 endpoint0_transmit(NULL, 0);
476 }
477#endif
478#ifdef SEREMU_INTERFACE
479 if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
480 && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
481 usb_reboot_timer = 5;
482 endpoint0_transmit(NULL, 0);
483 }
484#endif
485 // give the buffer back
486 b->desc = BDT_DESC(EP0_SIZE, DATA1);
487 break;
488
489 case 0x09: // IN transaction completed to host
490 //serial_print("PID=IN:");
491 //serial_phex(stat);
492 //serial_print("\n");
493
494 // send remaining data, if any...
495 data = ep0_tx_ptr;
496 if (data) {
497 size = ep0_tx_len;
498 if (size > EP0_SIZE) size = EP0_SIZE;
499 endpoint0_transmit(data, size);
500 data += size;
501 ep0_tx_len -= size;
502 ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
503 }
504
505 if (setup.bRequest == 5 && setup.bmRequestType == 0) {
506 setup.bRequest = 0;
507 //serial_print("set address: ");
508 //serial_phex16(setup.wValue);
509 //serial_print("\n");
510 USB0_ADDR = setup.wValue;
511 }
512
513 break;
514 //default:
515 //serial_print("PID=unknown:");
516 //serial_phex(pid);
517 //serial_print("\n");
518 }
519 USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
520}
521
522
523
524
525
526
527usb_packet_t *usb_rx(uint32_t endpoint)
528{
529 usb_packet_t *ret;
530 endpoint--;
531 if (endpoint >= NUM_ENDPOINTS) return NULL;
532 __disable_irq();
533 ret = rx_first[endpoint];
534 if (ret) {
535 rx_first[endpoint] = ret->next;
536 usb_rx_byte_count_data[endpoint] -= ret->len;
537 }
538 __enable_irq();
539 //serial_print("rx, epidx=");
540 //serial_phex(endpoint);
541 //serial_print(", packet=");
542 //serial_phex32(ret);
543 //serial_print("\n");
544 return ret;
545}
546
547static uint32_t usb_queue_byte_count(const usb_packet_t *p)
548{
549 uint32_t count=0;
550
551 __disable_irq();
552 for ( ; p; p = p->next) {
553 count += p->len;
554 }
555 __enable_irq();
556 return count;
557}
558
559// TODO: make this an inline function...
560/*
561uint32_t usb_rx_byte_count(uint32_t endpoint)
562{
563 endpoint--;
564 if (endpoint >= NUM_ENDPOINTS) return 0;
565 return usb_rx_byte_count_data[endpoint];
566 //return usb_queue_byte_count(rx_first[endpoint]);
567}
568*/
569
570uint32_t usb_tx_byte_count(uint32_t endpoint)
571{
572 endpoint--;
573 if (endpoint >= NUM_ENDPOINTS) return 0;
574 return usb_queue_byte_count(tx_first[endpoint]);
575}
576
577uint32_t usb_tx_packet_count(uint32_t endpoint)
578{
579 const usb_packet_t *p;
580 uint32_t count=0;
581
582 endpoint--;
583 if (endpoint >= NUM_ENDPOINTS) return 0;
584 __disable_irq();
585 for (p = tx_first[endpoint]; p; p = p->next) count++;
586 __enable_irq();
587 return count;
588}
589
590
591// Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
592// receive endpoints are starving for memory. The intention is to give
593// endpoints needing receive memory priority over the user's code, which is
594// likely calling usb_malloc to obtain memory for transmitting. When the
595// user is creating data very quickly, their consumption could starve reception
596// without this prioritization. The packet buffer (input) is assigned to the
597// first endpoint needing memory.
598//
599void usb_rx_memory(usb_packet_t *packet)
600{
601 unsigned int i;
602 const uint8_t *cfg;
603
604 cfg = usb_endpoint_config_table;
605 //serial_print("rx_mem:");
606 __disable_irq();
607 for (i=1; i <= NUM_ENDPOINTS; i++) {
608 if (*cfg++ & USB_ENDPT_EPRXEN) {
609 if (table[index(i, RX, EVEN)].desc == 0) {
610 table[index(i, RX, EVEN)].addr = packet->buf;
611 table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
612 usb_rx_memory_needed--;
613 __enable_irq();
614 //serial_phex(i);
615 //serial_print(",even\n");
616 return;
617 }
618 if (table[index(i, RX, ODD)].desc == 0) {
619 table[index(i, RX, ODD)].addr = packet->buf;
620 table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
621 usb_rx_memory_needed--;
622 __enable_irq();
623 //serial_phex(i);
624 //serial_print(",odd\n");
625 return;
626 }
627 }
628 }
629 __enable_irq();
630 // we should never reach this point. If we get here, it means
631 // usb_rx_memory_needed was set greater than zero, but no memory
632 // was actually needed.
633 usb_rx_memory_needed = 0;
634 usb_free(packet);
635 return;
636}
637
638//#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
639//#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
640
641void usb_tx(uint32_t endpoint, usb_packet_t *packet)
642{
643 bdt_t *b = &table[index(endpoint, TX, EVEN)];
644 uint8_t next;
645
646 endpoint--;
647 if (endpoint >= NUM_ENDPOINTS) return;
648 __disable_irq();
649 //serial_print("txstate=");
650 //serial_phex(tx_state[endpoint]);
651 //serial_print("\n");
652 switch (tx_state[endpoint]) {
653 case TX_STATE_BOTH_FREE_EVEN_FIRST:
654 next = TX_STATE_ODD_FREE;
655 break;
656 case TX_STATE_BOTH_FREE_ODD_FIRST:
657 b++;
658 next = TX_STATE_EVEN_FREE;
659 break;
660 case TX_STATE_EVEN_FREE:
661 next = TX_STATE_NONE_FREE_ODD_FIRST;
662 break;
663 case TX_STATE_ODD_FREE:
664 b++;
665 next = TX_STATE_NONE_FREE_EVEN_FIRST;
666 break;
667 default:
668 if (tx_first[endpoint] == NULL) {
669 tx_first[endpoint] = packet;
670 } else {
671 tx_last[endpoint]->next = packet;
672 }
673 tx_last[endpoint] = packet;
674 __enable_irq();
675 return;
676 }
677 tx_state[endpoint] = next;
678 b->addr = packet->buf;
679 b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
680 __enable_irq();
681}
682
683
684
685
686
687
688void _reboot_Teensyduino_(void)
689{
690 // TODO: initialize R0 with a code....
691 asm volatile("bkpt");
692}
693
694
695
696void usb_isr(void)
697{
698 uint8_t status, stat, t;
699
700 //serial_print("isr");
701 //status = USB0_ISTAT;
702 //serial_phex(status);
703 //serial_print("\n");
704 restart:
705 status = USB0_ISTAT;
706
707 if ((status & USB_INTEN_SOFTOKEN /* 04 */ )) {
708 if (usb_configuration) {
709 t = usb_reboot_timer;
710 if (t) {
711 usb_reboot_timer = --t;
712 if (!t) _reboot_Teensyduino_();
713 }
714#ifdef CDC_DATA_INTERFACE
715 t = usb_cdc_transmit_flush_timer;
716 if (t) {
717 usb_cdc_transmit_flush_timer = --t;
718 if (t == 0) usb_serial_flush_callback();
719 }
720#endif
721#ifdef SEREMU_INTERFACE
722 t = usb_seremu_transmit_flush_timer;
723 if (t) {
724 usb_seremu_transmit_flush_timer = --t;
725 if (t == 0) usb_seremu_flush_callback();
726 }
727#endif
728#ifdef MIDI_INTERFACE
729 usb_midi_flush_output();
730#endif
731#ifdef FLIGHTSIM_INTERFACE
732 usb_flightsim_flush_callback();
733#endif
734 }
735 USB0_ISTAT = USB_INTEN_SOFTOKEN;
736 }
737
738 if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
739 uint8_t endpoint;
740 stat = USB0_STAT;
741 //serial_print("token: ep=");
742 //serial_phex(stat >> 4);
743 //serial_print(stat & 0x08 ? ",tx" : ",rx");
744 //serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
745 endpoint = stat >> 4;
746 if (endpoint == 0) {
747 usb_control(stat);
748 } else {
749 bdt_t *b = stat2bufferdescriptor(stat);
750 usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
751#if 0
752 serial_print("ep:");
753 serial_phex(endpoint);
754 serial_print(", pid:");
755 serial_phex(BDT_PID(b->desc));
756 serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
757 serial_print(", count:");
758 serial_phex(b->desc >> 16);
759 serial_print("\n");
760#endif
761 endpoint--; // endpoint is index to zero-based arrays
762
763 if (stat & 0x08) { // transmit
764 usb_free(packet);
765 packet = tx_first[endpoint];
766 if (packet) {
767 //serial_print("tx packet\n");
768 tx_first[endpoint] = packet->next;
769 b->addr = packet->buf;
770 switch (tx_state[endpoint]) {
771 case TX_STATE_BOTH_FREE_EVEN_FIRST:
772 tx_state[endpoint] = TX_STATE_ODD_FREE;
773 break;
774 case TX_STATE_BOTH_FREE_ODD_FIRST:
775 tx_state[endpoint] = TX_STATE_EVEN_FREE;
776 break;
777 case TX_STATE_EVEN_FREE:
778 tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
779 break;
780 case TX_STATE_ODD_FREE:
781 tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
782 break;
783 default:
784 break;
785 }
786 b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
787 } else {
788 //serial_print("tx no packet\n");
789 switch (tx_state[endpoint]) {
790 case TX_STATE_BOTH_FREE_EVEN_FIRST:
791 case TX_STATE_BOTH_FREE_ODD_FIRST:
792 break;
793 case TX_STATE_EVEN_FREE:
794 tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
795 break;
796 case TX_STATE_ODD_FREE:
797 tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
798 break;
799 default:
800 tx_state[endpoint] = ((uint32_t)b & 8) ?
801 TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
802 break;
803 }
804 }
805 } else { // receive
806 packet->len = b->desc >> 16;
807 if (packet->len > 0) {
808 packet->index = 0;
809 packet->next = NULL;
810 if (rx_first[endpoint] == NULL) {
811 //serial_print("rx 1st, epidx=");
812 //serial_phex(endpoint);
813 //serial_print(", packet=");
814 //serial_phex32((uint32_t)packet);
815 //serial_print("\n");
816 rx_first[endpoint] = packet;
817 } else {
818 //serial_print("rx Nth, epidx=");
819 //serial_phex(endpoint);
820 //serial_print(", packet=");
821 //serial_phex32((uint32_t)packet);
822 //serial_print("\n");
823 rx_last[endpoint]->next = packet;
824 }
825 rx_last[endpoint] = packet;
826 usb_rx_byte_count_data[endpoint] += packet->len;
827 // TODO: implement a per-endpoint maximum # of allocated packets
828 // so a flood of incoming data on 1 endpoint doesn't starve
829 // the others if the user isn't reading it regularly
830 packet = usb_malloc();
831 if (packet) {
832 b->addr = packet->buf;
833 b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
834 } else {
835 //serial_print("starving ");
836 //serial_phex(endpoint + 1);
837 //serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n");
838 b->desc = 0;
839 usb_rx_memory_needed++;
840 }
841 } else {
842 b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
843 }
844 }
845
846
847
848
849 }
850 USB0_ISTAT = USB_ISTAT_TOKDNE;
851 goto restart;
852 }
853
854
855
856 if (status & USB_ISTAT_USBRST /* 01 */ ) {
857 //serial_print("reset\n");
858
859 // initialize BDT toggle bits
860 USB0_CTL = USB_CTL_ODDRST;
861 ep0_tx_bdt_bank = 0;
862
863 // set up buffers to receive Setup and OUT packets
864 table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
865 table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
866 table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
867 table[index(0, RX, ODD)].addr = ep0_rx1_buf;
868 table[index(0, TX, EVEN)].desc = 0;
869 table[index(0, TX, ODD)].desc = 0;
870
871 // activate endpoint 0
872 USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
873
874 // clear all ending interrupts
875 USB0_ERRSTAT = 0xFF;
876 USB0_ISTAT = 0xFF;
877
878 // set the address to zero during enumeration
879 USB0_ADDR = 0;
880
881 // enable other interrupts
882 USB0_ERREN = 0xFF;
883 USB0_INTEN = USB_INTEN_TOKDNEEN |
884 USB_INTEN_SOFTOKEN |
885 USB_INTEN_STALLEN |
886 USB_INTEN_ERROREN |
887 USB_INTEN_USBRSTEN |
888 USB_INTEN_SLEEPEN;
889
890 // is this necessary?
891 USB0_CTL = USB_CTL_USBENSOFEN;
892 return;
893 }
894
895
896 if ((status & USB_ISTAT_STALL /* 80 */ )) {
897 //serial_print("stall:\n");
898 USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
899 USB0_ISTAT = USB_ISTAT_STALL;
900 }
901 if ((status & USB_ISTAT_ERROR /* 02 */ )) {
902 uint8_t err = USB0_ERRSTAT;
903 USB0_ERRSTAT = err;
904 //serial_print("err:");
905 //serial_phex(err);
906 //serial_print("\n");
907 USB0_ISTAT = USB_ISTAT_ERROR;
908 }
909
910 if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
911 //serial_print("sleep\n");
912 USB0_ISTAT = USB_ISTAT_SLEEP;
913 }
914
915}
916
917
918
919void usb_init(void)
920{
921 int i;
922
923 //serial_begin(BAUD2DIV(115200));
924 //serial_print("usb_init\n");
925
926 usb_init_serialnumber();
927
928 for (i=0; i <= NUM_ENDPOINTS*4; i++) {
929 table[i].desc = 0;
930 table[i].addr = 0;
931 }
932
933 // this basically follows the flowchart in the Kinetis
934 // Quick Reference User Guide, Rev. 1, 03/2012, page 141
935
936 // assume 48 MHz clock already running
937 // SIM - enable clock
938 SIM_SCGC4 |= SIM_SCGC4_USBOTG;
939
940 // reset USB module
941 USB0_USBTRC0 = USB_USBTRC_USBRESET;
942 while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
943
944 // set desc table base addr
945 USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
946 USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
947 USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
948
949 // clear all ISR flags
950 USB0_ISTAT = 0xFF;
951 USB0_ERRSTAT = 0xFF;
952 USB0_OTGISTAT = 0xFF;
953
954 USB0_USBTRC0 |= 0x40; // undocumented bit
955
956 // enable USB
957 USB0_CTL = USB_CTL_USBENSOFEN;
958 USB0_USBCTRL = 0;
959
960 // enable reset interrupt
961 USB0_INTEN = USB_INTEN_USBRSTEN;
962
963 // enable interrupt in NVIC...
964 NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
965 NVIC_ENABLE_IRQ(IRQ_USBOTG);
966
967 // enable d+ pullup
968 USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
969}
970
971
972