spu: fix some threading issues
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#if !defined(_WIN32) && !defined(NO_OS)
22#include <sys/time.h> // gettimeofday in xa.c
23#define THREAD_ENABLED 1
24#endif
25#include "stdafx.h"
26
27#define _IN_SPU
28
29#include "externals.h"
30#include "registers.h"
31#include "out.h"
32#include "spu_config.h"
33
34#ifdef __arm__
35#include "arm_features.h"
36#endif
37
38#ifdef HAVE_ARMV7
39 #define ssat32_to_16(v) \
40 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
41#else
42 #define ssat32_to_16(v) do { \
43 if (v < -32768) v = -32768; \
44 else if (v > 32767) v = 32767; \
45 } while (0)
46#endif
47
48#define PSXCLK 33868800 /* 33.8688 MHz */
49
50// intended to be ~1 frame
51#define IRQ_NEAR_BLOCKS 32
52
53/*
54#if defined (USEMACOSX)
55static char * libraryName = N_("Mac OS X Sound");
56#elif defined (USEALSA)
57static char * libraryName = N_("ALSA Sound");
58#elif defined (USEOSS)
59static char * libraryName = N_("OSS Sound");
60#elif defined (USESDL)
61static char * libraryName = N_("SDL Sound");
62#elif defined (USEPULSEAUDIO)
63static char * libraryName = N_("PulseAudio Sound");
64#else
65static char * libraryName = N_("NULL Sound");
66#endif
67
68static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
69*/
70
71// globals
72
73SPUInfo spu;
74SPUConfig spu_config;
75
76static int iFMod[NSSIZE];
77static int RVB[NSSIZE * 2];
78int ChanBuf[NSSIZE];
79
80#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
81
82////////////////////////////////////////////////////////////////////////
83// CODE AREA
84////////////////////////////////////////////////////////////////////////
85
86// dirty inline func includes
87
88#include "reverb.c"
89#include "adsr.c"
90
91////////////////////////////////////////////////////////////////////////
92// helpers for simple interpolation
93
94//
95// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
96//
97// instead of having n equal sample values in a row like:
98// ____
99// |____
100//
101// we compare the current delta change with the next delta change.
102//
103// if curr_delta is positive,
104//
105// - and next delta is smaller (or changing direction):
106// \.
107// -__
108//
109// - and next delta significant (at least twice) bigger:
110// --_
111// \.
112//
113// - and next delta is nearly same:
114// \.
115// \.
116//
117//
118// if curr_delta is negative,
119//
120// - and next delta is smaller (or changing direction):
121// _--
122// /
123//
124// - and next delta significant (at least twice) bigger:
125// /
126// __-
127//
128// - and next delta is nearly same:
129// /
130// /
131//
132
133static void InterpolateUp(int *SB, int sinc)
134{
135 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
136 {
137 const int id1=SB[30]-SB[29]; // curr delta to next val
138 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
139
140 SB[32]=0;
141
142 if(id1>0) // curr delta positive
143 {
144 if(id2<id1)
145 {SB[28]=id1;SB[32]=2;}
146 else
147 if(id2<(id1<<1))
148 SB[28]=(id1*sinc)>>16;
149 else
150 SB[28]=(id1*sinc)>>17;
151 }
152 else // curr delta negative
153 {
154 if(id2>id1)
155 {SB[28]=id1;SB[32]=2;}
156 else
157 if(id2>(id1<<1))
158 SB[28]=(id1*sinc)>>16;
159 else
160 SB[28]=(id1*sinc)>>17;
161 }
162 }
163 else
164 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
165 {
166 SB[32]=0;
167
168 SB[28]=(SB[28]*sinc)>>17;
169 //if(sinc<=0x8000)
170 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
171 //else
172 SB[29]+=SB[28];
173 }
174 else // no flags? add bigger val (if possible), calc smaller step, set flag1
175 SB[29]+=SB[28];
176}
177
178//
179// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
180//
181
182static void InterpolateDown(int *SB, int sinc)
183{
184 if(sinc>=0x20000L) // we would skip at least one val?
185 {
186 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
187 if(sinc>=0x30000L) // we would skip even more vals?
188 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
189 }
190}
191
192////////////////////////////////////////////////////////////////////////
193// helpers for gauss interpolation
194
195#define gval0 (((short*)(&SB[29]))[gpos&3])
196#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
197
198#include "gauss_i.h"
199
200////////////////////////////////////////////////////////////////////////
201
202#include "xa.c"
203
204static void do_irq(void)
205{
206 //if(!(spu.spuStat & STAT_IRQ))
207 {
208 spu.spuStat |= STAT_IRQ; // asserted status?
209 if(spu.irqCallback) spu.irqCallback();
210 }
211}
212
213static int check_irq(int ch, unsigned char *pos)
214{
215 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && pos == spu.pSpuIrq)
216 {
217 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
218 do_irq();
219 return 1;
220 }
221 return 0;
222}
223
224void check_irq_io(unsigned int addr)
225{
226 unsigned int irq_addr = regAreaGet(H_SPUirqAddr) << 3;
227 //addr &= ~7; // ?
228 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && addr == irq_addr)
229 {
230 //printf("io irq %04x\n", irq_addr);
231 do_irq();
232 }
233}
234
235////////////////////////////////////////////////////////////////////////
236// START SOUND... called by main thread to setup a new sound on a channel
237////////////////////////////////////////////////////////////////////////
238
239static void StartSoundSB(int *SB)
240{
241 SB[26]=0; // init mixing vars
242 SB[27]=0;
243
244 SB[28]=0;
245 SB[29]=0; // init our interpolation helpers
246 SB[30]=0;
247 SB[31]=0;
248}
249
250static void StartSoundMain(int ch)
251{
252 SPUCHAN *s_chan = &spu.s_chan[ch];
253
254 StartADSR(ch);
255 StartREVERB(ch);
256
257 s_chan->prevflags=2;
258 s_chan->iSBPos=27;
259 s_chan->spos=0;
260
261 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
262
263 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
264 spu.dwChannelDead&=~(1<<ch);
265 spu.dwChannelsAudible|=1<<ch;
266}
267
268static void StartSound(int ch)
269{
270 StartSoundMain(ch);
271 StartSoundSB(spu.SB + ch * SB_SIZE);
272}
273
274////////////////////////////////////////////////////////////////////////
275// ALL KIND OF HELPERS
276////////////////////////////////////////////////////////////////////////
277
278INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
279{
280 unsigned int NP=pitch;
281 int sinc;
282
283 NP=((32768L+iFMod[ns])*NP)>>15;
284
285 if(NP>0x3fff) NP=0x3fff;
286 if(NP<0x1) NP=0x1;
287
288 sinc=NP<<4; // calc frequency
289 iFMod[ns]=0;
290 SB[32]=1; // reset interpolation
291
292 return sinc;
293}
294
295////////////////////////////////////////////////////////////////////////
296
297INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
298{
299 if(fmod_freq) // fmod freq channel
300 SB[29]=fa;
301 else
302 {
303 ssat32_to_16(fa);
304
305 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
306 {
307 int gpos = SB[28];
308 gval0 = fa;
309 gpos = (gpos+1) & 3;
310 SB[28] = gpos;
311 }
312 else
313 if(spu_config.iUseInterpolation==1) // simple interpolation
314 {
315 SB[28] = 0;
316 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
317 SB[30] = SB[31];
318 SB[31] = fa;
319 SB[32] = 1; // -> flag: calc new interolation
320 }
321 else SB[29]=fa; // no interpolation
322 }
323}
324
325////////////////////////////////////////////////////////////////////////
326
327INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
328{
329 int fa;
330
331 if(fmod_freq) return SB[29];
332
333 switch(spu_config.iUseInterpolation)
334 {
335 //--------------------------------------------------//
336 case 3: // cubic interpolation
337 {
338 long xd;int gpos;
339 xd = (spos >> 1)+1;
340 gpos = SB[28];
341
342 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
343 fa *= (xd - (2<<15)) / 6;
344 fa >>= 15;
345 fa += gval(2) - gval(1) - gval(1) + gval0;
346 fa *= (xd - (1<<15)) >> 1;
347 fa >>= 15;
348 fa += gval(1) - gval0;
349 fa *= xd;
350 fa >>= 15;
351 fa = fa + gval0;
352
353 } break;
354 //--------------------------------------------------//
355 case 2: // gauss interpolation
356 {
357 int vl, vr;int gpos;
358 vl = (spos >> 6) & ~3;
359 gpos = SB[28];
360 vr=(gauss[vl]*(int)gval0) >> 15;
361 vr+=(gauss[vl+1]*gval(1)) >> 15;
362 vr+=(gauss[vl+2]*gval(2)) >> 15;
363 vr+=(gauss[vl+3]*gval(3)) >> 15;
364 fa = vr;
365 } break;
366 //--------------------------------------------------//
367 case 1: // simple interpolation
368 {
369 if(sinc<0x10000L) // -> upsampling?
370 InterpolateUp(SB, sinc); // --> interpolate up
371 else InterpolateDown(SB, sinc); // --> else down
372 fa=SB[29];
373 } break;
374 //--------------------------------------------------//
375 default: // no interpolation
376 {
377 fa=SB[29];
378 } break;
379 //--------------------------------------------------//
380 }
381
382 return fa;
383}
384
385static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
386{
387 static const int f[16][2] = {
388 { 0, 0 },
389 { 60, 0 },
390 { 115, -52 },
391 { 98, -55 },
392 { 122, -60 }
393 };
394 int nSample;
395 int fa, s_1, s_2, d, s;
396
397 s_1 = dest[27];
398 s_2 = dest[26];
399
400 for (nSample = 0; nSample < 28; src++)
401 {
402 d = (int)*src;
403 s = (int)(signed short)((d & 0x0f) << 12);
404
405 fa = s >> shift_factor;
406 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
407 s_2=s_1;s_1=fa;
408
409 dest[nSample++] = fa;
410
411 s = (int)(signed short)((d & 0xf0) << 8);
412 fa = s >> shift_factor;
413 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
414 s_2=s_1;s_1=fa;
415
416 dest[nSample++] = fa;
417 }
418}
419
420static int decode_block(void *unused, int ch, int *SB)
421{
422 SPUCHAN *s_chan = &spu.s_chan[ch];
423 unsigned char *start;
424 int predict_nr, shift_factor, flags;
425 int ret = 0;
426
427 start = s_chan->pCurr; // set up the current pos
428 if (start == spu.spuMemC) // ?
429 ret = 1;
430
431 if (s_chan->prevflags & 1) // 1: stop/loop
432 {
433 if (!(s_chan->prevflags & 2))
434 ret = 1;
435
436 start = s_chan->pLoop;
437 }
438
439 check_irq(ch, start);
440
441 predict_nr = start[0];
442 shift_factor = predict_nr & 0xf;
443 predict_nr >>= 4;
444
445 decode_block_data(SB, start + 2, predict_nr, shift_factor);
446
447 flags = start[1];
448 if (flags & 4 && !s_chan->bIgnoreLoop)
449 s_chan->pLoop = start; // loop adress
450
451 start += 16;
452
453 s_chan->pCurr = start; // store values for next cycle
454 s_chan->prevflags = flags;
455
456 return ret;
457}
458
459// do block, but ignore sample data
460static int skip_block(int ch)
461{
462 SPUCHAN *s_chan = &spu.s_chan[ch];
463 unsigned char *start = s_chan->pCurr;
464 int flags;
465 int ret = 0;
466
467 if (s_chan->prevflags & 1) {
468 if (!(s_chan->prevflags & 2))
469 ret = 1;
470
471 start = s_chan->pLoop;
472 }
473
474 check_irq(ch, start);
475
476 flags = start[1];
477 if (flags & 4 && !s_chan->bIgnoreLoop)
478 s_chan->pLoop = start;
479
480 start += 16;
481
482 s_chan->pCurr = start;
483 s_chan->prevflags = flags;
484
485 return ret;
486}
487
488// if irq is going to trigger sooner than in upd_samples, set upd_samples
489static void scan_for_irq(int ch, unsigned int *upd_samples)
490{
491 SPUCHAN *s_chan = &spu.s_chan[ch];
492 int pos, sinc, sinc_inv, end;
493 unsigned char *block;
494 int flags;
495
496 block = s_chan->pCurr;
497 pos = s_chan->spos;
498 sinc = s_chan->sinc;
499 end = pos + *upd_samples * sinc;
500
501 pos += (28 - s_chan->iSBPos) << 16;
502 while (pos < end)
503 {
504 if (block == spu.pSpuIrq)
505 break;
506 flags = block[1];
507 block += 16;
508 if (flags & 1) { // 1: stop/loop
509 block = s_chan->pLoop;
510 }
511 pos += 28 << 16;
512 }
513
514 if (pos < end)
515 {
516 sinc_inv = s_chan->sinc_inv;
517 if (sinc_inv == 0)
518 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
519
520 pos -= s_chan->spos;
521 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
522 //xprintf("ch%02d: irq sched: %3d %03d\n",
523 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
524 }
525}
526
527#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
528static noinline int do_samples_##name( \
529 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
530 int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
531{ \
532 int ns, d, fa; \
533 int ret = ns_to; \
534 interp_start; \
535 \
536 for (ns = 0; ns < ns_to; ns++) \
537 { \
538 fmod_code; \
539 \
540 *spos += sinc; \
541 while (*spos >= 0x10000) \
542 { \
543 fa = SB[(*sbpos)++]; \
544 if (*sbpos >= 28) \
545 { \
546 *sbpos = 0; \
547 d = decode_f(ctx, ch, SB); \
548 if (d && ns < ret) \
549 ret = ns; \
550 } \
551 \
552 interp1_code; \
553 *spos -= 0x10000; \
554 } \
555 \
556 interp2_code; \
557 } \
558 \
559 interp_end; \
560 \
561 return ret; \
562}
563
564#define fmod_recv_check \
565 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
566 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
567
568make_do_samples(default, fmod_recv_check, ,
569 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
570 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
571make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
572
573#define simple_interp_store \
574 SB[28] = 0; \
575 SB[29] = SB[30]; \
576 SB[30] = SB[31]; \
577 SB[31] = fa; \
578 SB[32] = 1
579
580#define simple_interp_get \
581 if(sinc<0x10000) /* -> upsampling? */ \
582 InterpolateUp(SB, sinc); /* --> interpolate up */ \
583 else InterpolateDown(SB, sinc); /* --> else down */ \
584 ChanBuf[ns] = SB[29]
585
586make_do_samples(simple, , ,
587 simple_interp_store, simple_interp_get, )
588
589static int do_samples_skip(int ch, int ns_to)
590{
591 SPUCHAN *s_chan = &spu.s_chan[ch];
592 int spos = s_chan->spos;
593 int sinc = s_chan->sinc;
594 int ret = ns_to, ns, d;
595
596 spos += s_chan->iSBPos << 16;
597
598 for (ns = 0; ns < ns_to; ns++)
599 {
600 spos += sinc;
601 while (spos >= 28*0x10000)
602 {
603 d = skip_block(ch);
604 if (d && ns < ret)
605 ret = ns;
606 spos -= 28*0x10000;
607 }
608 }
609
610 s_chan->iSBPos = spos >> 16;
611 s_chan->spos = spos & 0xffff;
612
613 return ret;
614}
615
616static void do_lsfr_samples(int ns_to, int ctrl,
617 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
618{
619 unsigned int counter = *dwNoiseCount;
620 unsigned int val = *dwNoiseVal;
621 unsigned int level, shift, bit;
622 int ns;
623
624 // modified from DrHell/shalma, no fraction
625 level = (ctrl >> 10) & 0x0f;
626 level = 0x8000 >> level;
627
628 for (ns = 0; ns < ns_to; ns++)
629 {
630 counter += 2;
631 if (counter >= level)
632 {
633 counter -= level;
634 shift = (val >> 10) & 0x1f;
635 bit = (0x69696969 >> shift) & 1;
636 bit ^= (val >> 15) & 1;
637 val = (val << 1) | bit;
638 }
639
640 ChanBuf[ns] = (signed short)val;
641 }
642
643 *dwNoiseCount = counter;
644 *dwNoiseVal = val;
645}
646
647static int do_samples_noise(int ch, int ns_to)
648{
649 int ret;
650
651 ret = do_samples_skip(ch, ns_to);
652
653 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
654
655 return ret;
656}
657
658#ifdef HAVE_ARMV5
659// asm code; lv and rv must be 0-3fff
660extern void mix_chan(int *SSumLR, int count, int lv, int rv);
661extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
662#else
663static void mix_chan(int *SSumLR, int count, int lv, int rv)
664{
665 const int *src = ChanBuf;
666 int l, r;
667
668 while (count--)
669 {
670 int sval = *src++;
671
672 l = (sval * lv) >> 14;
673 r = (sval * rv) >> 14;
674 *SSumLR++ += l;
675 *SSumLR++ += r;
676 }
677}
678
679static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
680{
681 const int *src = ChanBuf;
682 int *dst = SSumLR;
683 int *drvb = rvb;
684 int l, r;
685
686 while (count--)
687 {
688 int sval = *src++;
689
690 l = (sval * lv) >> 14;
691 r = (sval * rv) >> 14;
692 *dst++ += l;
693 *dst++ += r;
694 *drvb++ += l;
695 *drvb++ += r;
696 }
697}
698#endif
699
700// 0x0800-0x0bff Voice 1
701// 0x0c00-0x0fff Voice 3
702static noinline void do_decode_bufs(unsigned short *mem, int which,
703 int count, int decode_pos)
704{
705 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
706 const int *src = ChanBuf;
707 int cursor = decode_pos;
708
709 while (count-- > 0)
710 {
711 cursor &= 0x1ff;
712 dst[cursor] = *src++;
713 cursor++;
714 }
715
716 // decode_pos is updated and irqs are checked later, after voice loop
717}
718
719static void do_silent_chans(int ns_to, int silentch)
720{
721 unsigned int mask;
722 SPUCHAN *s_chan;
723 int ch;
724
725 mask = silentch & 0xffffff;
726 for (ch = 0; mask != 0; ch++, mask >>= 1)
727 {
728 if (!(mask & 1)) continue;
729 if (spu.dwChannelDead & (1<<ch)) continue;
730
731 s_chan = &spu.s_chan[ch];
732 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
733 continue;
734
735 s_chan->spos += s_chan->iSBPos << 16;
736 s_chan->iSBPos = 0;
737
738 s_chan->spos += s_chan->sinc * ns_to;
739 while (s_chan->spos >= 28 * 0x10000)
740 {
741 unsigned char *start = s_chan->pCurr;
742
743 skip_block(ch);
744 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
745 {
746 // looping on self or stopped(?)
747 spu.dwChannelDead |= 1<<ch;
748 s_chan->spos = 0;
749 break;
750 }
751
752 s_chan->spos -= 28 * 0x10000;
753 }
754 }
755}
756
757static void do_channels(int ns_to)
758{
759 unsigned int mask;
760 int do_rvb, ch, d;
761 SPUCHAN *s_chan;
762 int *SB, sinc;
763
764 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
765 if (do_rvb)
766 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
767
768 mask = spu.dwNewChannel & 0xffffff;
769 for (ch = 0; mask != 0; ch++, mask >>= 1) {
770 if (mask & 1)
771 StartSound(ch);
772 }
773
774 mask = spu.dwChannelsAudible & 0xffffff;
775 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
776 {
777 if (!(mask & 1)) continue; // channel not playing? next
778
779 s_chan = &spu.s_chan[ch];
780 SB = spu.SB + ch * SB_SIZE;
781 sinc = s_chan->sinc;
782 if (spu.s_chan[ch].bNewPitch)
783 SB[32] = 1; // reset interpolation
784 spu.s_chan[ch].bNewPitch = 0;
785
786 if (s_chan->bNoise)
787 d = do_samples_noise(ch, ns_to);
788 else if (s_chan->bFMod == 2
789 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
790 d = do_samples_noint(decode_block, NULL, ch, ns_to,
791 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
792 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
793 d = do_samples_simple(decode_block, NULL, ch, ns_to,
794 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
795 else
796 d = do_samples_default(decode_block, NULL, ch, ns_to,
797 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
798
799 d = MixADSR(&s_chan->ADSRX, d);
800 if (d < ns_to) {
801 spu.dwChannelsAudible &= ~(1 << ch);
802 s_chan->ADSRX.State = ADSR_RELEASE;
803 s_chan->ADSRX.EnvelopeVol = 0;
804 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
805 }
806
807 if (ch == 1 || ch == 3)
808 {
809 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
810 spu.decode_dirty_ch |= 1 << ch;
811 }
812
813 if (s_chan->bFMod == 2) // fmod freq channel
814 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
815 if (s_chan->bRVBActive && do_rvb)
816 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
817 else
818 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
819 }
820
821 if (spu.rvb->StartAddr) {
822 if (do_rvb)
823 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
824
825 spu.rvb->CurrAddr += ns_to / 2;
826 while (spu.rvb->CurrAddr >= 0x40000)
827 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
828 }
829}
830
831static void do_samples_finish(int *SSumLR, int ns_to,
832 int silentch, int decode_pos);
833
834// optional worker thread handling
835
836#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
837
838// worker thread state
839static struct spu_worker {
840 union {
841 struct {
842 unsigned int exit_thread;
843 unsigned int i_ready;
844 unsigned int i_reaped;
845 unsigned int last_boot_cnt; // dsp
846 unsigned int ram_dirty;
847 };
848 // aligning for C64X_DSP
849 unsigned int _pad0[128/4];
850 };
851 union {
852 struct {
853 unsigned int i_done;
854 unsigned int active; // dsp
855 unsigned int boot_cnt;
856 };
857 unsigned int _pad1[128/4];
858 };
859 struct work_item {
860 int ns_to;
861 int ctrl;
862 int decode_pos;
863 int rvb_addr;
864 unsigned int channels_new;
865 unsigned int channels_on;
866 unsigned int channels_silent;
867 struct {
868 int spos;
869 int sbpos;
870 int sinc;
871 int start;
872 int loop;
873 short vol_l;
874 short vol_r;
875 unsigned short ns_to;
876 unsigned short bNoise:1;
877 unsigned short bFMod:2;
878 unsigned short bRVBActive:1;
879 unsigned short bNewPitch:1;
880 ADSRInfoEx adsr;
881 } ch[24];
882 int SSumLR[NSSIZE * 2];
883 } i[4];
884} *worker;
885
886#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
887#define WORK_I_MASK (WORK_MAXCNT - 1)
888
889static void thread_work_start(void);
890static void thread_work_wait_sync(struct work_item *work, int force);
891static void thread_sync_caches(void);
892static int thread_get_i_done(void);
893
894static int decode_block_work(void *context, int ch, int *SB)
895{
896 const unsigned char *ram = spu.spuMemC;
897 int predict_nr, shift_factor, flags;
898 struct work_item *work = context;
899 int start = work->ch[ch].start;
900 int loop = work->ch[ch].loop;
901
902 predict_nr = ram[start];
903 shift_factor = predict_nr & 0xf;
904 predict_nr >>= 4;
905
906 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
907
908 flags = ram[start + 1];
909 if (flags & 4)
910 loop = start; // loop adress
911
912 start += 16;
913
914 if (flags & 1) // 1: stop/loop
915 start = loop;
916
917 work->ch[ch].start = start & 0x7ffff;
918 work->ch[ch].loop = loop;
919
920 return 0;
921}
922
923static void queue_channel_work(int ns_to, unsigned int silentch)
924{
925 struct work_item *work;
926 SPUCHAN *s_chan;
927 unsigned int mask;
928 int ch, d;
929
930 work = &worker->i[worker->i_ready & WORK_I_MASK];
931 work->ns_to = ns_to;
932 work->ctrl = spu.spuCtrl;
933 work->decode_pos = spu.decode_pos;
934 work->channels_silent = silentch;
935
936 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
937 for (ch = 0; mask != 0; ch++, mask >>= 1) {
938 if (mask & 1)
939 StartSoundMain(ch);
940 }
941
942 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
943 spu.decode_dirty_ch |= mask & 0x0a;
944
945 for (ch = 0; mask != 0; ch++, mask >>= 1)
946 {
947 if (!(mask & 1)) continue;
948
949 s_chan = &spu.s_chan[ch];
950 work->ch[ch].spos = s_chan->spos;
951 work->ch[ch].sbpos = s_chan->iSBPos;
952 work->ch[ch].sinc = s_chan->sinc;
953 work->ch[ch].adsr = s_chan->ADSRX;
954 work->ch[ch].vol_l = s_chan->iLeftVolume;
955 work->ch[ch].vol_r = s_chan->iRightVolume;
956 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
957 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
958 work->ch[ch].bNoise = s_chan->bNoise;
959 work->ch[ch].bFMod = s_chan->bFMod;
960 work->ch[ch].bRVBActive = s_chan->bRVBActive;
961 work->ch[ch].bNewPitch = s_chan->bNewPitch;
962 if (s_chan->prevflags & 1)
963 work->ch[ch].start = work->ch[ch].loop;
964
965 d = do_samples_skip(ch, ns_to);
966 work->ch[ch].ns_to = d;
967
968 // note: d is not accurate on skip
969 d = SkipADSR(&s_chan->ADSRX, d);
970 if (d < ns_to) {
971 spu.dwChannelsAudible &= ~(1 << ch);
972 s_chan->ADSRX.State = ADSR_RELEASE;
973 s_chan->ADSRX.EnvelopeVol = 0;
974 }
975 s_chan->bNewPitch = 0;
976 }
977
978 work->rvb_addr = 0;
979 if (spu.rvb->StartAddr) {
980 if (spu_config.iUseReverb)
981 work->rvb_addr = spu.rvb->CurrAddr;
982
983 spu.rvb->CurrAddr += ns_to / 2;
984 while (spu.rvb->CurrAddr >= 0x40000)
985 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
986 }
987
988 worker->i_ready++;
989 thread_work_start();
990}
991
992static void do_channel_work(struct work_item *work)
993{
994 unsigned int mask;
995 int *SB, sinc, spos, sbpos;
996 int d, ch, ns_to;
997
998 ns_to = work->ns_to;
999
1000 if (work->rvb_addr)
1001 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
1002
1003 mask = work->channels_new;
1004 for (ch = 0; mask != 0; ch++, mask >>= 1) {
1005 if (mask & 1)
1006 StartSoundSB(spu.SB + ch * SB_SIZE);
1007 }
1008
1009 mask = work->channels_on;
1010 for (ch = 0; mask != 0; ch++, mask >>= 1)
1011 {
1012 if (!(mask & 1)) continue;
1013
1014 d = work->ch[ch].ns_to;
1015 spos = work->ch[ch].spos;
1016 sbpos = work->ch[ch].sbpos;
1017 sinc = work->ch[ch].sinc;
1018
1019 SB = spu.SB + ch * SB_SIZE;
1020 if (work->ch[ch].bNewPitch)
1021 SB[32] = 1; // reset interpolation
1022
1023 if (work->ch[ch].bNoise)
1024 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1025 else if (work->ch[ch].bFMod == 2
1026 || (work->ch[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
1027 do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1028 else if (work->ch[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
1029 do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1030 else
1031 do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1032
1033 d = MixADSR(&work->ch[ch].adsr, d);
1034 if (d < ns_to) {
1035 work->ch[ch].adsr.EnvelopeVol = 0;
1036 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1037 }
1038
1039 if (ch == 1 || ch == 3)
1040 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1041
1042 if (work->ch[ch].bFMod == 2) // fmod freq channel
1043 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1044 if (work->ch[ch].bRVBActive && work->rvb_addr)
1045 mix_chan_rvb(work->SSumLR, ns_to,
1046 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1047 else
1048 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1049 }
1050
1051 if (work->rvb_addr)
1052 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1053}
1054
1055static void sync_worker_thread(int force)
1056{
1057 struct work_item *work;
1058 int done, used_space;
1059
1060 // rvb offsets will change, thread may be using them
1061 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1062
1063 done = thread_get_i_done() - worker->i_reaped;
1064 used_space = worker->i_ready - worker->i_reaped;
1065
1066 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1067 // worker->boot_cnt, worker->i_done);
1068
1069 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1070 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1071 thread_work_wait_sync(work, force);
1072
1073 do_samples_finish(work->SSumLR, work->ns_to,
1074 work->channels_silent, work->decode_pos);
1075
1076 worker->i_reaped++;
1077 done = thread_get_i_done() - worker->i_reaped;
1078 used_space = worker->i_ready - worker->i_reaped;
1079 }
1080 if (force)
1081 thread_sync_caches();
1082}
1083
1084#else
1085
1086static void queue_channel_work(int ns_to, int silentch) {}
1087static void sync_worker_thread(int force) {}
1088
1089static const void * const worker = NULL;
1090
1091#endif // THREAD_ENABLED
1092
1093////////////////////////////////////////////////////////////////////////
1094// MAIN SPU FUNCTION
1095// here is the main job handler...
1096////////////////////////////////////////////////////////////////////////
1097
1098void do_samples(unsigned int cycles_to, int do_direct)
1099{
1100 unsigned int silentch;
1101 int cycle_diff;
1102 int ns_to;
1103
1104 cycle_diff = cycles_to - spu.cycles_played;
1105 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1106 {
1107 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1108 spu.cycles_played = cycles_to;
1109 return;
1110 }
1111
1112 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1113
1114 do_direct |= (silentch == 0xffffff);
1115 if (worker != NULL)
1116 sync_worker_thread(do_direct);
1117
1118 if (cycle_diff < 2 * 768)
1119 return;
1120
1121 ns_to = (cycle_diff / 768 + 1) & ~1;
1122 if (ns_to > NSSIZE) {
1123 // should never happen
1124 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1125 ns_to = NSSIZE;
1126 }
1127
1128 //////////////////////////////////////////////////////
1129 // special irq handling in the decode buffers (0x0000-0x1000)
1130 // we know:
1131 // the decode buffers are located in spu memory in the following way:
1132 // 0x0000-0x03ff CD audio left
1133 // 0x0400-0x07ff CD audio right
1134 // 0x0800-0x0bff Voice 1
1135 // 0x0c00-0x0fff Voice 3
1136 // and decoded data is 16 bit for one sample
1137 // we assume:
1138 // even if voices 1/3 are off or no cd audio is playing, the internal
1139 // play positions will move on and wrap after 0x400 bytes.
1140 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1141 // increase this pointer on each sample by 2 bytes. If this pointer
1142 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1143 // an IRQ.
1144
1145 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1146 && spu.pSpuIrq < spu.spuMemC+0x1000))
1147 {
1148 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1149 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1150 if (0 < left && left <= ns_to)
1151 {
1152 //xprintf("decoder irq %x\n", spu.decode_pos);
1153 do_irq();
1154 }
1155 }
1156 check_irq_io(spu.spuAddr);
1157
1158 if (unlikely(spu.rvb->dirty))
1159 REVERBPrep();
1160
1161 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1162 do_channels(ns_to);
1163 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1164 }
1165 else {
1166 queue_channel_work(ns_to, silentch);
1167 //sync_worker_thread(1); // uncomment for debug
1168 }
1169
1170 // advance "stopped" channels that can cause irqs
1171 // (all chans are always playing on the real thing..)
1172 if (spu.spuCtrl & CTRL_IRQ)
1173 do_silent_chans(ns_to, silentch);
1174
1175 spu.cycles_played += ns_to * 768;
1176 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1177}
1178
1179static void do_samples_finish(int *SSumLR, int ns_to,
1180 int silentch, int decode_pos)
1181{
1182 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1183 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1184 int ns;
1185 int d;
1186
1187 // must clear silent channel decode buffers
1188 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1189 {
1190 memset(&spu.spuMem[0x800/2], 0, 0x400);
1191 spu.decode_dirty_ch &= ~(1<<1);
1192 }
1193 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1194 {
1195 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1196 spu.decode_dirty_ch &= ~(1<<3);
1197 }
1198
1199 MixXA(SSumLR, ns_to, decode_pos);
1200
1201 vol_l = vol_l * spu_config.iVolume >> 10;
1202 vol_r = vol_r * spu_config.iVolume >> 10;
1203
1204 if (!(spu.spuCtrl & 0x4000) || !(vol_l | vol_r))
1205 {
1206 // muted? (rare)
1207 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1208 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1209 spu.pS += ns_to * 2;
1210 }
1211 else
1212 for (ns = 0; ns < ns_to * 2; )
1213 {
1214 d = SSumLR[ns]; SSumLR[ns] = 0;
1215 d = d * vol_l >> 14;
1216 ssat32_to_16(d);
1217 *spu.pS++ = d;
1218 ns++;
1219
1220 d = SSumLR[ns]; SSumLR[ns] = 0;
1221 d = d * vol_r >> 14;
1222 ssat32_to_16(d);
1223 *spu.pS++ = d;
1224 ns++;
1225 }
1226}
1227
1228void schedule_next_irq(void)
1229{
1230 unsigned int upd_samples;
1231 int ch;
1232
1233 if (spu.scheduleCallback == NULL)
1234 return;
1235
1236 upd_samples = 44100 / 50;
1237
1238 for (ch = 0; ch < MAXCHAN; ch++)
1239 {
1240 if (spu.dwChannelDead & (1 << ch))
1241 continue;
1242 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1243 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1244 continue;
1245 if (spu.s_chan[ch].sinc == 0)
1246 continue;
1247
1248 scan_for_irq(ch, &upd_samples);
1249 }
1250
1251 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1252 {
1253 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1254 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1255 if (0 < left && left < upd_samples) {
1256 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1257 upd_samples = left;
1258 }
1259 }
1260
1261 if (upd_samples < 44100 / 50)
1262 spu.scheduleCallback(upd_samples * 768);
1263}
1264
1265// SPU ASYNC... even newer epsxe func
1266// 1 time every 'cycle' cycles... harhar
1267
1268// rearmed: called dynamically now
1269
1270void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1271{
1272 do_samples(cycle, spu_config.iUseFixedUpdates);
1273
1274 if (spu.spuCtrl & CTRL_IRQ)
1275 schedule_next_irq();
1276
1277 if (flags & 1) {
1278 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1279 spu.pS = (short *)spu.pSpuBuffer;
1280
1281 if (spu_config.iTempo) {
1282 if (!out_current->busy())
1283 // cause more samples to be generated
1284 // (and break some games because of bad sync)
1285 spu.cycles_played -= 44100 / 60 / 2 * 768;
1286 }
1287 }
1288}
1289
1290// SPU UPDATE... new epsxe func
1291// 1 time every 32 hsync lines
1292// (312/32)x50 in pal
1293// (262/32)x60 in ntsc
1294
1295// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1296// leave that func in the linux port, until epsxe linux is using
1297// the async function as well
1298
1299void CALLBACK SPUupdate(void)
1300{
1301}
1302
1303// XA AUDIO
1304
1305void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int is_start)
1306{
1307 if(!xap) return;
1308 if(!xap->freq) return; // no xa freq ? bye
1309
1310 if (is_start)
1311 do_samples(cycle, 1); // catch up to prevent source underflows later
1312
1313 FeedXA(xap); // call main XA feeder
1314}
1315
1316// CDDA AUDIO
1317int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int is_start)
1318{
1319 if (!pcm) return -1;
1320 if (nbytes<=0) return -1;
1321
1322 if (is_start)
1323 do_samples(cycle, 1); // catch up to prevent source underflows later
1324
1325 return FeedCDDA((unsigned char *)pcm, nbytes);
1326}
1327
1328// to be called after state load
1329void ClearWorkingState(void)
1330{
1331 memset(iFMod, 0, sizeof(iFMod));
1332 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1333}
1334
1335// SETUPSTREAMS: init most of the spu buffers
1336static void SetupStreams(void)
1337{
1338 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1339 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1340
1341 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1342 spu.XAEnd = spu.XAStart + 44100;
1343 spu.XAPlay = spu.XAStart;
1344 spu.XAFeed = spu.XAStart;
1345
1346 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1347 spu.CDDAEnd = spu.CDDAStart + 16384;
1348 spu.CDDAPlay = spu.CDDAStart;
1349 spu.CDDAFeed = spu.CDDAStart;
1350
1351 ClearWorkingState();
1352}
1353
1354// REMOVESTREAMS: free most buffer
1355static void RemoveStreams(void)
1356{
1357 free(spu.pSpuBuffer); // free mixing buffer
1358 spu.pSpuBuffer = NULL;
1359 free(spu.SSumLR);
1360 spu.SSumLR = NULL;
1361 free(spu.XAStart); // free XA buffer
1362 spu.XAStart = NULL;
1363 free(spu.CDDAStart); // free CDDA buffer
1364 spu.CDDAStart = NULL;
1365}
1366
1367#if defined(C64X_DSP)
1368
1369/* special code for TI C64x DSP */
1370#include "spu_c64x.c"
1371
1372#elif defined(THREAD_ENABLED)
1373
1374#include <pthread.h>
1375#include <semaphore.h>
1376#include <unistd.h>
1377
1378static struct {
1379 pthread_t thread;
1380 sem_t sem_avail;
1381 sem_t sem_done;
1382} t;
1383
1384/* generic pthread implementation */
1385
1386static void thread_work_start(void)
1387{
1388 sem_post(&t.sem_avail);
1389}
1390
1391static void thread_work_wait_sync(struct work_item *work, int force)
1392{
1393 sem_wait(&t.sem_done);
1394}
1395
1396static int thread_get_i_done(void)
1397{
1398 return worker->i_done;
1399}
1400
1401static void thread_sync_caches(void)
1402{
1403}
1404
1405static void *spu_worker_thread(void *unused)
1406{
1407 struct work_item *work;
1408
1409 while (1) {
1410 sem_wait(&t.sem_avail);
1411 if (worker->exit_thread)
1412 break;
1413
1414 work = &worker->i[worker->i_done & WORK_I_MASK];
1415 do_channel_work(work);
1416 worker->i_done++;
1417
1418 sem_post(&t.sem_done);
1419 }
1420
1421 return NULL;
1422}
1423
1424static void init_spu_thread(void)
1425{
1426 int ret;
1427
1428 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1429 return;
1430
1431 worker = calloc(1, sizeof(*worker));
1432 if (worker == NULL)
1433 return;
1434 ret = sem_init(&t.sem_avail, 0, 0);
1435 if (ret != 0)
1436 goto fail_sem_avail;
1437 ret = sem_init(&t.sem_done, 0, 0);
1438 if (ret != 0)
1439 goto fail_sem_done;
1440
1441 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1442 if (ret != 0)
1443 goto fail_thread;
1444
1445 spu_config.iThreadAvail = 1;
1446 return;
1447
1448fail_thread:
1449 sem_destroy(&t.sem_done);
1450fail_sem_done:
1451 sem_destroy(&t.sem_avail);
1452fail_sem_avail:
1453 free(worker);
1454 worker = NULL;
1455 spu_config.iThreadAvail = 0;
1456}
1457
1458static void exit_spu_thread(void)
1459{
1460 if (worker == NULL)
1461 return;
1462 worker->exit_thread = 1;
1463 sem_post(&t.sem_avail);
1464 pthread_join(t.thread, NULL);
1465 sem_destroy(&t.sem_done);
1466 sem_destroy(&t.sem_avail);
1467 free(worker);
1468 worker = NULL;
1469}
1470
1471#else // if !THREAD_ENABLED
1472
1473static void init_spu_thread(void)
1474{
1475}
1476
1477static void exit_spu_thread(void)
1478{
1479}
1480
1481#endif
1482
1483// SPUINIT: this func will be called first by the main emu
1484long CALLBACK SPUinit(void)
1485{
1486 int i;
1487
1488 spu.spuMemC = calloc(1, 512 * 1024);
1489 InitADSR();
1490
1491 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1492 spu.rvb = calloc(1, sizeof(REVERBInfo));
1493 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1494
1495 spu.spuAddr = 0;
1496 spu.decode_pos = 0;
1497 spu.pSpuIrq = spu.spuMemC;
1498
1499 SetupStreams(); // prepare streaming
1500
1501 if (spu_config.iVolume == 0)
1502 spu_config.iVolume = 768; // 1024 is 1.0
1503
1504 init_spu_thread();
1505
1506 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1507 {
1508 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1509 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1510 spu.s_chan[i].pLoop = spu.spuMemC;
1511 spu.s_chan[i].pCurr = spu.spuMemC;
1512 spu.s_chan[i].bIgnoreLoop = 0;
1513 }
1514
1515 spu.bSpuInit=1; // flag: we are inited
1516
1517 return 0;
1518}
1519
1520// SPUOPEN: called by main emu after init
1521long CALLBACK SPUopen(void)
1522{
1523 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1524
1525 SetupSound(); // setup sound (before init!)
1526
1527 spu.bSPUIsOpen = 1;
1528
1529 return PSE_SPU_ERR_SUCCESS;
1530}
1531
1532// SPUCLOSE: called before shutdown
1533long CALLBACK SPUclose(void)
1534{
1535 if (!spu.bSPUIsOpen) return 0; // some security
1536
1537 spu.bSPUIsOpen = 0; // no more open
1538
1539 out_current->finish(); // no more sound handling
1540
1541 return 0;
1542}
1543
1544// SPUSHUTDOWN: called by main emu on final exit
1545long CALLBACK SPUshutdown(void)
1546{
1547 SPUclose();
1548
1549 exit_spu_thread();
1550
1551 free(spu.spuMemC);
1552 spu.spuMemC = NULL;
1553 free(spu.SB);
1554 spu.SB = NULL;
1555 free(spu.s_chan);
1556 spu.s_chan = NULL;
1557 free(spu.rvb);
1558 spu.rvb = NULL;
1559
1560 RemoveStreams(); // no more streaming
1561 spu.bSpuInit=0;
1562
1563 return 0;
1564}
1565
1566// SPUTEST: we don't test, we are always fine ;)
1567long CALLBACK SPUtest(void)
1568{
1569 return 0;
1570}
1571
1572// SPUCONFIGURE: call config dialog
1573long CALLBACK SPUconfigure(void)
1574{
1575#ifdef _MACOSX
1576 DoConfiguration();
1577#else
1578// StartCfgTool("CFG");
1579#endif
1580 return 0;
1581}
1582
1583// SPUABOUT: show about window
1584void CALLBACK SPUabout(void)
1585{
1586#ifdef _MACOSX
1587 DoAbout();
1588#else
1589// StartCfgTool("ABOUT");
1590#endif
1591}
1592
1593// SETUP CALLBACKS
1594// this functions will be called once,
1595// passes a callback that should be called on SPU-IRQ/cdda volume change
1596void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1597{
1598 spu.irqCallback = callback;
1599}
1600
1601void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1602{
1603 spu.cddavCallback = CDDAVcallback;
1604}
1605
1606void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1607{
1608 spu.scheduleCallback = callback;
1609}
1610
1611// COMMON PLUGIN INFO FUNCS
1612/*
1613char * CALLBACK PSEgetLibName(void)
1614{
1615 return _(libraryName);
1616}
1617
1618unsigned long CALLBACK PSEgetLibType(void)
1619{
1620 return PSE_LT_SPU;
1621}
1622
1623unsigned long CALLBACK PSEgetLibVersion(void)
1624{
1625 return (1 << 16) | (6 << 8);
1626}
1627
1628char * SPUgetLibInfos(void)
1629{
1630 return _(libraryInfo);
1631}
1632*/
1633
1634// debug
1635void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1636{
1637 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1638
1639 if (spu.s_chan == NULL)
1640 return;
1641
1642 for(;ch<MAXCHAN;ch++)
1643 {
1644 if (!(spu.dwChannelsAudible & (1<<ch)))
1645 continue;
1646 if (spu.s_chan[ch].bFMod == 2)
1647 fmod_chans |= 1 << ch;
1648 if (spu.s_chan[ch].bNoise)
1649 noise_chans |= 1 << ch;
1650 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1651 irq_chans |= 1 << ch;
1652 }
1653
1654 *chans_out = spu.dwChannelsAudible;
1655 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1656 *fmod_chans_out = fmod_chans;
1657 *noise_chans_out = noise_chans;
1658}
1659
1660// vim:shiftwidth=1:expandtab