allow to disable TLB
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
25#include "../recomp.h"
26#include "../recomph.h" //include for function prototypes
27#include "../macros.h"
28#include "../r4300.h"
29#include "../ops.h"
30#include "../interupt.h"
31
32#include "../../memory/memory.h"
33
34#include <sys/mman.h>
35
36#ifdef __i386__
37#include "assem_x86.h"
38#endif
39#ifdef __x86_64__
40#include "assem_x64.h"
41#endif
42#ifdef __arm__
43#include "assem_arm.h"
44#endif
45
46#define MAXBLOCK 4096
47#define MAX_OUTPUT_BLOCK_SIZE 262144
48#define CLOCK_DIVIDER 2
49
50struct regstat
51{
52 signed char regmap_entry[HOST_REGS];
53 signed char regmap[HOST_REGS];
54 uint64_t was32;
55 uint64_t is32;
56 uint64_t wasdirty;
57 uint64_t dirty;
58 uint64_t u;
59 uint64_t uu;
60 u_int wasconst;
61 u_int isconst;
62 uint64_t constmap[HOST_REGS];
63};
64
65struct ll_entry
66{
67 u_int vaddr;
68 u_int reg32;
69 void *addr;
70 struct ll_entry *next;
71};
72
73 u_int start;
74 u_int *source;
75 u_int pagelimit;
76 char insn[MAXBLOCK][10];
77 u_char itype[MAXBLOCK];
78 u_char opcode[MAXBLOCK];
79 u_char opcode2[MAXBLOCK];
80 u_char bt[MAXBLOCK];
81 u_char rs1[MAXBLOCK];
82 u_char rs2[MAXBLOCK];
83 u_char rt1[MAXBLOCK];
84 u_char rt2[MAXBLOCK];
85 u_char us1[MAXBLOCK];
86 u_char us2[MAXBLOCK];
87 u_char dep1[MAXBLOCK];
88 u_char dep2[MAXBLOCK];
89 u_char lt1[MAXBLOCK];
90 int imm[MAXBLOCK];
91 u_int ba[MAXBLOCK];
92 char likely[MAXBLOCK];
93 char is_ds[MAXBLOCK];
94 uint64_t unneeded_reg[MAXBLOCK];
95 uint64_t unneeded_reg_upper[MAXBLOCK];
96 uint64_t branch_unneeded_reg[MAXBLOCK];
97 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
98 uint64_t p32[MAXBLOCK];
99 uint64_t pr32[MAXBLOCK];
100 signed char regmap_pre[MAXBLOCK][HOST_REGS];
101 signed char regmap[MAXBLOCK][HOST_REGS];
102 signed char regmap_entry[MAXBLOCK][HOST_REGS];
103 uint64_t constmap[MAXBLOCK][HOST_REGS];
104 uint64_t known_value[HOST_REGS];
105 u_int known_reg;
106 struct regstat regs[MAXBLOCK];
107 struct regstat branch_regs[MAXBLOCK];
108 u_int needed_reg[MAXBLOCK];
109 uint64_t requires_32bit[MAXBLOCK];
110 u_int wont_dirty[MAXBLOCK];
111 u_int will_dirty[MAXBLOCK];
112 int ccadj[MAXBLOCK];
113 int slen;
114 u_int instr_addr[MAXBLOCK];
115 u_int link_addr[MAXBLOCK][3];
116 int linkcount;
117 u_int stubs[MAXBLOCK*3][8];
118 int stubcount;
119 u_int literals[1024][2];
120 int literalcount;
121 int is_delayslot;
122 int cop1_usable;
123 u_char *out;
124 struct ll_entry *jump_in[4096];
125 struct ll_entry *jump_out[4096];
126 struct ll_entry *jump_dirty[4096];
127 u_int hash_table[65536][4] __attribute__((aligned(16)));
128 char shadow[1048576] __attribute__((aligned(16)));
129 void *copy;
130 int expirep;
131 u_int using_tlb;
132 u_int stop_after_jal;
133 extern u_char restore_candidate[512];
134 extern int cycle_count;
135
136 /* registers that may be allocated */
137 /* 1-31 gpr */
138#define HIREG 32 // hi
139#define LOREG 33 // lo
140#define FSREG 34 // FPU status (FCSR)
141#define CSREG 35 // Coprocessor status
142#define CCREG 36 // Cycle count
143#define INVCP 37 // Pointer to invalid_code
144#define TEMPREG 38
145#define FTEMP 38 // FPU temporary register
146#define PTEMP 39 // Prefetch temporary register
147#define TLREG 40 // TLB mapping offset
148#define RHASH 41 // Return address hash
149#define RHTBL 42 // Return address hash table address
150#define RTEMP 43 // JR/JALR address register
151#define MAXREG 43
152#define AGEN1 44 // Address generation temporary register
153#define AGEN2 45 // Address generation temporary register
154#define MGEN1 46 // Maptable address generation temporary register
155#define MGEN2 47 // Maptable address generation temporary register
156#define BTREG 48 // Branch target temporary register
157
158 /* instruction types */
159#define NOP 0 // No operation
160#define LOAD 1 // Load
161#define STORE 2 // Store
162#define LOADLR 3 // Unaligned load
163#define STORELR 4 // Unaligned store
164#define MOV 5 // Move
165#define ALU 6 // Arithmetic/logic
166#define MULTDIV 7 // Multiply/divide
167#define SHIFT 8 // Shift by register
168#define SHIFTIMM 9// Shift by immediate
169#define IMM16 10 // 16-bit immediate
170#define RJUMP 11 // Unconditional jump to register
171#define UJUMP 12 // Unconditional jump
172#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
173#define SJUMP 14 // Conditional branch (regimm format)
174#define COP0 15 // Coprocessor 0
175#define COP1 16 // Coprocessor 1
176#define C1LS 17 // Coprocessor 1 load/store
177#define FJUMP 18 // Conditional branch (floating point)
178#define FLOAT 19 // Floating point unit
179#define FCONV 20 // Convert integer to float
180#define FCOMP 21 // Floating point compare (sets FSREG)
181#define SYSCALL 22// SYSCALL
182#define OTHER 23 // Other
183#define SPAN 24 // Branch/delay slot spans 2 pages
184#define NI 25 // Not implemented
185
186 /* stubs */
187#define CC_STUB 1
188#define FP_STUB 2
189#define LOADB_STUB 3
190#define LOADH_STUB 4
191#define LOADW_STUB 5
192#define LOADD_STUB 6
193#define LOADBU_STUB 7
194#define LOADHU_STUB 8
195#define STOREB_STUB 9
196#define STOREH_STUB 10
197#define STOREW_STUB 11
198#define STORED_STUB 12
199#define STORELR_STUB 13
200#define INVCODE_STUB 14
201
202 /* branch codes */
203#define TAKEN 1
204#define NOTTAKEN 2
205#define NULLDS 3
206
207// asm linkage
208int new_recompile_block(int addr);
209void *get_addr_ht(u_int vaddr);
210void invalidate_block(u_int block);
211void invalidate_addr(u_int addr);
212void remove_hash(int vaddr);
213void jump_vaddr();
214void dyna_linker();
215void dyna_linker_ds();
216void verify_code();
217void verify_code_vm();
218void verify_code_ds();
219void cc_interrupt();
220void fp_exception();
221void fp_exception_ds();
222void jump_syscall();
223void jump_eret();
224
225// TLB
226void TLBWI_new();
227void TLBWR_new();
228void read_nomem_new();
229void read_nomemb_new();
230void read_nomemh_new();
231void read_nomemd_new();
232void write_nomem_new();
233void write_nomemb_new();
234void write_nomemh_new();
235void write_nomemd_new();
236void write_rdram_new();
237void write_rdramb_new();
238void write_rdramh_new();
239void write_rdramd_new();
240extern u_int memory_map[1048576];
241
242// Needed by assembler
243void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246void load_all_regs(signed char i_regmap[]);
247void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248void load_regs_entry(int t);
249void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251int tracedebug=0;
252
253//#define DEBUG_CYCLE_COUNT 1
254
255void nullf() {}
256//#define assem_debug printf
257//#define inv_debug printf
258#define assem_debug nullf
259#define inv_debug nullf
260
94d23bb9 261static void tlb_hacks()
57871462 262{
94d23bb9 263#ifndef DISABLE_TLB
57871462 264 // Goldeneye hack
265 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
266 {
267 u_int addr;
268 int n;
269 switch (ROM_HEADER->Country_code&0xFF)
270 {
271 case 0x45: // U
272 addr=0x34b30;
273 break;
274 case 0x4A: // J
275 addr=0x34b70;
276 break;
277 case 0x50: // E
278 addr=0x329f0;
279 break;
280 default:
281 // Unknown country code
282 addr=0;
283 break;
284 }
285 u_int rom_addr=(u_int)rom;
286 #ifdef ROM_COPY
287 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
288 // in the lower 4G of memory to use this hack. Copy it if necessary.
289 if((void *)rom>(void *)0xffffffff) {
290 munmap(ROM_COPY, 67108864);
291 if(mmap(ROM_COPY, 12582912,
292 PROT_READ | PROT_WRITE,
293 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
294 -1, 0) <= 0) {printf("mmap() failed\n");}
295 memcpy(ROM_COPY,rom,12582912);
296 rom_addr=(u_int)ROM_COPY;
297 }
298 #endif
299 if(addr) {
300 for(n=0x7F000;n<0x80000;n++) {
301 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
302 }
303 }
304 }
94d23bb9 305#endif
57871462 306}
307
94d23bb9 308static u_int get_page(u_int vaddr)
57871462 309{
310 u_int page=(vaddr^0x80000000)>>12;
94d23bb9 311#ifndef DISABLE_TLB
57871462 312 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 313#endif
57871462 314 if(page>2048) page=2048+(page&2047);
94d23bb9 315 return page;
316}
317
318static u_int get_vpage(u_int vaddr)
319{
320 u_int vpage=(vaddr^0x80000000)>>12;
321#ifndef DISABLE_TLB
57871462 322 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 323#endif
57871462 324 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 325 return vpage;
326}
327
328// Get address from virtual address
329// This is called from the recompiled JR/JALR instructions
330void *get_addr(u_int vaddr)
331{
332 u_int page=get_page(vaddr);
333 u_int vpage=get_vpage(vaddr);
57871462 334 struct ll_entry *head;
335 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
336 head=jump_in[page];
337 while(head!=NULL) {
338 if(head->vaddr==vaddr&&head->reg32==0) {
339 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
340 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
341 ht_bin[3]=ht_bin[1];
342 ht_bin[2]=ht_bin[0];
343 ht_bin[1]=(int)head->addr;
344 ht_bin[0]=vaddr;
345 return head->addr;
346 }
347 head=head->next;
348 }
349 head=jump_dirty[vpage];
350 while(head!=NULL) {
351 if(head->vaddr==vaddr&&head->reg32==0) {
352 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
353 // Don't restore blocks which are about to expire from the cache
354 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
355 if(verify_dirty(head->addr)) {
356 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
357 invalid_code[vaddr>>12]=0;
358 memory_map[vaddr>>12]|=0x40000000;
359 if(vpage<2048) {
94d23bb9 360#ifndef DISABLE_TLB
57871462 361 if(tlb_LUT_r[vaddr>>12]) {
362 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
363 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
364 }
94d23bb9 365#endif
57871462 366 restore_candidate[vpage>>3]|=1<<(vpage&7);
367 }
368 else restore_candidate[page>>3]|=1<<(page&7);
369 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370 if(ht_bin[0]==vaddr) {
371 ht_bin[1]=(int)head->addr; // Replace existing entry
372 }
373 else
374 {
375 ht_bin[3]=ht_bin[1];
376 ht_bin[2]=ht_bin[0];
377 ht_bin[1]=(int)head->addr;
378 ht_bin[0]=vaddr;
379 }
380 return head->addr;
381 }
382 }
383 head=head->next;
384 }
385 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
386 int r=new_recompile_block(vaddr);
387 if(r==0) return get_addr(vaddr);
388 // Execute in unmapped page, generate pagefault execption
389 Status|=2;
390 Cause=(vaddr<<31)|0x8;
391 EPC=(vaddr&1)?vaddr-5:vaddr;
392 BadVAddr=(vaddr&~1);
393 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
394 EntryHi=BadVAddr&0xFFFFE000;
395 return get_addr_ht(0x80000000);
396}
397// Look up address in hash table first
398void *get_addr_ht(u_int vaddr)
399{
400 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
401 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
403 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
404 return get_addr(vaddr);
405}
406
407void *get_addr_32(u_int vaddr,u_int flags)
408{
409 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
410 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 413 u_int page=get_page(vaddr);
414 u_int vpage=get_vpage(vaddr);
57871462 415 struct ll_entry *head;
416 head=jump_in[page];
417 while(head!=NULL) {
418 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
419 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
420 if(head->reg32==0) {
421 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
422 if(ht_bin[0]==-1) {
423 ht_bin[1]=(int)head->addr;
424 ht_bin[0]=vaddr;
425 }else if(ht_bin[2]==-1) {
426 ht_bin[3]=(int)head->addr;
427 ht_bin[2]=vaddr;
428 }
429 //ht_bin[3]=ht_bin[1];
430 //ht_bin[2]=ht_bin[0];
431 //ht_bin[1]=(int)head->addr;
432 //ht_bin[0]=vaddr;
433 }
434 return head->addr;
435 }
436 head=head->next;
437 }
438 head=jump_dirty[vpage];
439 while(head!=NULL) {
440 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
441 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
442 // Don't restore blocks which are about to expire from the cache
443 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
444 if(verify_dirty(head->addr)) {
445 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
446 invalid_code[vaddr>>12]=0;
447 memory_map[vaddr>>12]|=0x40000000;
448 if(vpage<2048) {
94d23bb9 449#ifndef DISABLE_TLB
57871462 450 if(tlb_LUT_r[vaddr>>12]) {
451 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
452 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
453 }
94d23bb9 454#endif
57871462 455 restore_candidate[vpage>>3]|=1<<(vpage&7);
456 }
457 else restore_candidate[page>>3]|=1<<(page&7);
458 if(head->reg32==0) {
459 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
460 if(ht_bin[0]==-1) {
461 ht_bin[1]=(int)head->addr;
462 ht_bin[0]=vaddr;
463 }else if(ht_bin[2]==-1) {
464 ht_bin[3]=(int)head->addr;
465 ht_bin[2]=vaddr;
466 }
467 //ht_bin[3]=ht_bin[1];
468 //ht_bin[2]=ht_bin[0];
469 //ht_bin[1]=(int)head->addr;
470 //ht_bin[0]=vaddr;
471 }
472 return head->addr;
473 }
474 }
475 head=head->next;
476 }
477 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
478 int r=new_recompile_block(vaddr);
479 if(r==0) return get_addr(vaddr);
480 // Execute in unmapped page, generate pagefault execption
481 Status|=2;
482 Cause=(vaddr<<31)|0x8;
483 EPC=(vaddr&1)?vaddr-5:vaddr;
484 BadVAddr=(vaddr&~1);
485 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
486 EntryHi=BadVAddr&0xFFFFE000;
487 return get_addr_ht(0x80000000);
488}
489
490void clear_all_regs(signed char regmap[])
491{
492 int hr;
493 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
494}
495
496signed char get_reg(signed char regmap[],int r)
497{
498 int hr;
499 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
500 return -1;
501}
502
503// Find a register that is available for two consecutive cycles
504signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
505{
506 int hr;
507 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
508 return -1;
509}
510
511int count_free_regs(signed char regmap[])
512{
513 int count=0;
514 int hr;
515 for(hr=0;hr<HOST_REGS;hr++)
516 {
517 if(hr!=EXCLUDE_REG) {
518 if(regmap[hr]<0) count++;
519 }
520 }
521 return count;
522}
523
524void dirty_reg(struct regstat *cur,signed char reg)
525{
526 int hr;
527 if(!reg) return;
528 for (hr=0;hr<HOST_REGS;hr++) {
529 if((cur->regmap[hr]&63)==reg) {
530 cur->dirty|=1<<hr;
531 }
532 }
533}
534
535// If we dirty the lower half of a 64 bit register which is now being
536// sign-extended, we need to dump the upper half.
537// Note: Do this only after completion of the instruction, because
538// some instructions may need to read the full 64-bit value even if
539// overwriting it (eg SLTI, DSRA32).
540static void flush_dirty_uppers(struct regstat *cur)
541{
542 int hr,reg;
543 for (hr=0;hr<HOST_REGS;hr++) {
544 if((cur->dirty>>hr)&1) {
545 reg=cur->regmap[hr];
546 if(reg>=64)
547 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
548 }
549 }
550}
551
552void set_const(struct regstat *cur,signed char reg,uint64_t value)
553{
554 int hr;
555 if(!reg) return;
556 for (hr=0;hr<HOST_REGS;hr++) {
557 if(cur->regmap[hr]==reg) {
558 cur->isconst|=1<<hr;
559 cur->constmap[hr]=value;
560 }
561 else if((cur->regmap[hr]^64)==reg) {
562 cur->isconst|=1<<hr;
563 cur->constmap[hr]=value>>32;
564 }
565 }
566}
567
568void clear_const(struct regstat *cur,signed char reg)
569{
570 int hr;
571 if(!reg) return;
572 for (hr=0;hr<HOST_REGS;hr++) {
573 if((cur->regmap[hr]&63)==reg) {
574 cur->isconst&=~(1<<hr);
575 }
576 }
577}
578
579int is_const(struct regstat *cur,signed char reg)
580{
581 int hr;
582 if(!reg) return 1;
583 for (hr=0;hr<HOST_REGS;hr++) {
584 if((cur->regmap[hr]&63)==reg) {
585 return (cur->isconst>>hr)&1;
586 }
587 }
588 return 0;
589}
590uint64_t get_const(struct regstat *cur,signed char reg)
591{
592 int hr;
593 if(!reg) return 0;
594 for (hr=0;hr<HOST_REGS;hr++) {
595 if(cur->regmap[hr]==reg) {
596 return cur->constmap[hr];
597 }
598 }
599 printf("Unknown constant in r%d\n",reg);
600 exit(1);
601}
602
603// Least soon needed registers
604// Look at the next ten instructions and see which registers
605// will be used. Try not to reallocate these.
606void lsn(u_char hsn[], int i, int *preferred_reg)
607{
608 int j;
609 int b=-1;
610 for(j=0;j<9;j++)
611 {
612 if(i+j>=slen) {
613 j=slen-i-1;
614 break;
615 }
616 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
617 {
618 // Don't go past an unconditonal jump
619 j++;
620 break;
621 }
622 }
623 for(;j>=0;j--)
624 {
625 if(rs1[i+j]) hsn[rs1[i+j]]=j;
626 if(rs2[i+j]) hsn[rs2[i+j]]=j;
627 if(rt1[i+j]) hsn[rt1[i+j]]=j;
628 if(rt2[i+j]) hsn[rt2[i+j]]=j;
629 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
630 // Stores can allocate zero
631 hsn[rs1[i+j]]=j;
632 hsn[rs2[i+j]]=j;
633 }
634 // On some architectures stores need invc_ptr
635 #if defined(HOST_IMM8)
636 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
637 hsn[INVCP]=j;
638 }
639 #endif
640 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
641 {
642 hsn[CCREG]=j;
643 b=j;
644 }
645 }
646 if(b>=0)
647 {
648 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
649 {
650 // Follow first branch
651 int t=(ba[i+b]-start)>>2;
652 j=7-b;if(t+j>=slen) j=slen-t-1;
653 for(;j>=0;j--)
654 {
655 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
656 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
657 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
658 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
659 }
660 }
661 // TODO: preferred register based on backward branch
662 }
663 // Delay slot should preferably not overwrite branch conditions or cycle count
664 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
665 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
666 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
667 hsn[CCREG]=1;
668 // ...or hash tables
669 hsn[RHASH]=1;
670 hsn[RHTBL]=1;
671 }
672 // Coprocessor load/store needs FTEMP, even if not declared
673 if(itype[i]==C1LS) {
674 hsn[FTEMP]=0;
675 }
676 // Load L/R also uses FTEMP as a temporary register
677 if(itype[i]==LOADLR) {
678 hsn[FTEMP]=0;
679 }
680 // Also 64-bit SDL/SDR
681 if(opcode[i]==0x2c||opcode[i]==0x2d) {
682 hsn[FTEMP]=0;
683 }
684 // Don't remove the TLB registers either
685 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
686 hsn[TLREG]=0;
687 }
688 // Don't remove the miniht registers
689 if(itype[i]==UJUMP||itype[i]==RJUMP)
690 {
691 hsn[RHASH]=0;
692 hsn[RHTBL]=0;
693 }
694}
695
696// We only want to allocate registers if we're going to use them again soon
697int needed_again(int r, int i)
698{
699 int j;
700 int b=-1;
701 int rn=10;
702 int hr;
703 u_char hsn[MAXREG+1];
704 int preferred_reg;
705
706 memset(hsn,10,sizeof(hsn));
707 lsn(hsn,i,&preferred_reg);
708
709 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
710 {
711 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
712 return 0; // Don't need any registers if exiting the block
713 }
714 for(j=0;j<9;j++)
715 {
716 if(i+j>=slen) {
717 j=slen-i-1;
718 break;
719 }
720 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
721 {
722 // Don't go past an unconditonal jump
723 j++;
724 break;
725 }
726 if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
727 {
728 break;
729 }
730 }
731 for(;j>=1;j--)
732 {
733 if(rs1[i+j]==r) rn=j;
734 if(rs2[i+j]==r) rn=j;
735 if((unneeded_reg[i+j]>>r)&1) rn=10;
736 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
737 {
738 b=j;
739 }
740 }
741 /*
742 if(b>=0)
743 {
744 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
745 {
746 // Follow first branch
747 int o=rn;
748 int t=(ba[i+b]-start)>>2;
749 j=7-b;if(t+j>=slen) j=slen-t-1;
750 for(;j>=0;j--)
751 {
752 if(!((unneeded_reg[t+j]>>r)&1)) {
753 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
754 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
755 }
756 else rn=o;
757 }
758 }
759 }*/
760 for(hr=0;hr<HOST_REGS;hr++) {
761 if(hr!=EXCLUDE_REG) {
762 if(rn<hsn[hr]) return 1;
763 }
764 }
765 return 0;
766}
767
768// Try to match register allocations at the end of a loop with those
769// at the beginning
770int loop_reg(int i, int r, int hr)
771{
772 int j,k;
773 for(j=0;j<9;j++)
774 {
775 if(i+j>=slen) {
776 j=slen-i-1;
777 break;
778 }
779 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
780 {
781 // Don't go past an unconditonal jump
782 j++;
783 break;
784 }
785 }
786 k=0;
787 if(i>0){
788 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
789 k--;
790 }
791 for(;k<j;k++)
792 {
793 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
794 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
795 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
796 {
797 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
798 {
799 int t=(ba[i+k]-start)>>2;
800 int reg=get_reg(regs[t].regmap_entry,r);
801 if(reg>=0) return reg;
802 //reg=get_reg(regs[t+1].regmap_entry,r);
803 //if(reg>=0) return reg;
804 }
805 }
806 }
807 return hr;
808}
809
810
811// Allocate every register, preserving source/target regs
812void alloc_all(struct regstat *cur,int i)
813{
814 int hr;
815
816 for(hr=0;hr<HOST_REGS;hr++) {
817 if(hr!=EXCLUDE_REG) {
818 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
819 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
820 {
821 cur->regmap[hr]=-1;
822 cur->dirty&=~(1<<hr);
823 }
824 // Don't need zeros
825 if((cur->regmap[hr]&63)==0)
826 {
827 cur->regmap[hr]=-1;
828 cur->dirty&=~(1<<hr);
829 }
830 }
831 }
832}
833
834
835void div64(int64_t dividend,int64_t divisor)
836{
837 lo=dividend/divisor;
838 hi=dividend%divisor;
839 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
840 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
841}
842void divu64(uint64_t dividend,uint64_t divisor)
843{
844 lo=dividend/divisor;
845 hi=dividend%divisor;
846 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
847 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
848}
849
850void mult64(uint64_t m1,uint64_t m2)
851{
852 unsigned long long int op1, op2, op3, op4;
853 unsigned long long int result1, result2, result3, result4;
854 unsigned long long int temp1, temp2, temp3, temp4;
855 int sign = 0;
856
857 if (m1 < 0)
858 {
859 op2 = -m1;
860 sign = 1 - sign;
861 }
862 else op2 = m1;
863 if (m2 < 0)
864 {
865 op4 = -m2;
866 sign = 1 - sign;
867 }
868 else op4 = m2;
869
870 op1 = op2 & 0xFFFFFFFF;
871 op2 = (op2 >> 32) & 0xFFFFFFFF;
872 op3 = op4 & 0xFFFFFFFF;
873 op4 = (op4 >> 32) & 0xFFFFFFFF;
874
875 temp1 = op1 * op3;
876 temp2 = (temp1 >> 32) + op1 * op4;
877 temp3 = op2 * op3;
878 temp4 = (temp3 >> 32) + op2 * op4;
879
880 result1 = temp1 & 0xFFFFFFFF;
881 result2 = temp2 + (temp3 & 0xFFFFFFFF);
882 result3 = (result2 >> 32) + temp4;
883 result4 = (result3 >> 32);
884
885 lo = result1 | (result2 << 32);
886 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
887 if (sign)
888 {
889 hi = ~hi;
890 if (!lo) hi++;
891 else lo = ~lo + 1;
892 }
893}
894
895void multu64(uint64_t m1,uint64_t m2)
896{
897 unsigned long long int op1, op2, op3, op4;
898 unsigned long long int result1, result2, result3, result4;
899 unsigned long long int temp1, temp2, temp3, temp4;
900
901 op1 = m1 & 0xFFFFFFFF;
902 op2 = (m1 >> 32) & 0xFFFFFFFF;
903 op3 = m2 & 0xFFFFFFFF;
904 op4 = (m2 >> 32) & 0xFFFFFFFF;
905
906 temp1 = op1 * op3;
907 temp2 = (temp1 >> 32) + op1 * op4;
908 temp3 = op2 * op3;
909 temp4 = (temp3 >> 32) + op2 * op4;
910
911 result1 = temp1 & 0xFFFFFFFF;
912 result2 = temp2 + (temp3 & 0xFFFFFFFF);
913 result3 = (result2 >> 32) + temp4;
914 result4 = (result3 >> 32);
915
916 lo = result1 | (result2 << 32);
917 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
918
919 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
920 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
921}
922
923uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
924{
925 if(bits) {
926 original<<=64-bits;
927 original>>=64-bits;
928 loaded<<=bits;
929 original|=loaded;
930 }
931 else original=loaded;
932 return original;
933}
934uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
935{
936 if(bits^56) {
937 original>>=64-(bits^56);
938 original<<=64-(bits^56);
939 loaded>>=bits^56;
940 original|=loaded;
941 }
942 else original=loaded;
943 return original;
944}
945
946#ifdef __i386__
947#include "assem_x86.c"
948#endif
949#ifdef __x86_64__
950#include "assem_x64.c"
951#endif
952#ifdef __arm__
953#include "assem_arm.c"
954#endif
955
956// Add virtual address mapping to linked list
957void ll_add(struct ll_entry **head,int vaddr,void *addr)
958{
959 struct ll_entry *new_entry;
960 new_entry=malloc(sizeof(struct ll_entry));
961 assert(new_entry!=NULL);
962 new_entry->vaddr=vaddr;
963 new_entry->reg32=0;
964 new_entry->addr=addr;
965 new_entry->next=*head;
966 *head=new_entry;
967}
968
969// Add virtual address mapping for 32-bit compiled block
970void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
971{
972 struct ll_entry *new_entry;
973 new_entry=malloc(sizeof(struct ll_entry));
974 assert(new_entry!=NULL);
975 new_entry->vaddr=vaddr;
976 new_entry->reg32=reg32;
977 new_entry->addr=addr;
978 new_entry->next=*head;
979 *head=new_entry;
980}
981
982// Check if an address is already compiled
983// but don't return addresses which are about to expire from the cache
984void *check_addr(u_int vaddr)
985{
986 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
987 if(ht_bin[0]==vaddr) {
988 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
989 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
990 }
991 if(ht_bin[2]==vaddr) {
992 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
993 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
994 }
94d23bb9 995 u_int page=get_page(vaddr);
57871462 996 struct ll_entry *head;
997 head=jump_in[page];
998 while(head!=NULL) {
999 if(head->vaddr==vaddr&&head->reg32==0) {
1000 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1001 // Update existing entry with current address
1002 if(ht_bin[0]==vaddr) {
1003 ht_bin[1]=(int)head->addr;
1004 return head->addr;
1005 }
1006 if(ht_bin[2]==vaddr) {
1007 ht_bin[3]=(int)head->addr;
1008 return head->addr;
1009 }
1010 // Insert into hash table with low priority.
1011 // Don't evict existing entries, as they are probably
1012 // addresses that are being accessed frequently.
1013 if(ht_bin[0]==-1) {
1014 ht_bin[1]=(int)head->addr;
1015 ht_bin[0]=vaddr;
1016 }else if(ht_bin[2]==-1) {
1017 ht_bin[3]=(int)head->addr;
1018 ht_bin[2]=vaddr;
1019 }
1020 return head->addr;
1021 }
1022 }
1023 head=head->next;
1024 }
1025 return 0;
1026}
1027
1028void remove_hash(int vaddr)
1029{
1030 //printf("remove hash: %x\n",vaddr);
1031 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1032 if(ht_bin[2]==vaddr) {
1033 ht_bin[2]=ht_bin[3]=-1;
1034 }
1035 if(ht_bin[0]==vaddr) {
1036 ht_bin[0]=ht_bin[2];
1037 ht_bin[1]=ht_bin[3];
1038 ht_bin[2]=ht_bin[3]=-1;
1039 }
1040}
1041
1042void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1043{
1044 struct ll_entry *next;
1045 while(*head) {
1046 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1047 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1048 {
1049 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1050 remove_hash((*head)->vaddr);
1051 next=(*head)->next;
1052 free(*head);
1053 *head=next;
1054 }
1055 else
1056 {
1057 head=&((*head)->next);
1058 }
1059 }
1060}
1061
1062// Remove all entries from linked list
1063void ll_clear(struct ll_entry **head)
1064{
1065 struct ll_entry *cur;
1066 struct ll_entry *next;
1067 if(cur=*head) {
1068 *head=0;
1069 while(cur) {
1070 next=cur->next;
1071 free(cur);
1072 cur=next;
1073 }
1074 }
1075}
1076
1077// Dereference the pointers and remove if it matches
1078void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1079{
1080 while(head) {
1081 int ptr=get_pointer(head->addr);
1082 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1083 if(((ptr>>shift)==(addr>>shift)) ||
1084 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1085 {
1086 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1087 kill_pointer(head->addr);
1088 }
1089 head=head->next;
1090 }
1091}
1092
1093// This is called when we write to a compiled block (see do_invstub)
1094int invalidate_page(u_int page)
1095{
1096 int modified=0;
1097 struct ll_entry *head;
1098 struct ll_entry *next;
1099 head=jump_in[page];
1100 jump_in[page]=0;
1101 while(head!=NULL) {
1102 inv_debug("INVALIDATE: %x\n",head->vaddr);
1103 remove_hash(head->vaddr);
1104 next=head->next;
1105 free(head);
1106 head=next;
1107 }
1108 head=jump_out[page];
1109 jump_out[page]=0;
1110 while(head!=NULL) {
1111 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1112 kill_pointer(head->addr);
1113 modified=1;
1114 next=head->next;
1115 free(head);
1116 head=next;
1117 }
1118 return modified;
1119}
1120void invalidate_block(u_int block)
1121{
1122 int modified;
94d23bb9 1123 u_int page=get_page(block<<12);
1124 u_int vpage=get_vpage(block<<12);
57871462 1125 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1126 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1127 u_int first,last;
1128 first=last=page;
1129 struct ll_entry *head;
1130 head=jump_dirty[vpage];
1131 //printf("page=%d vpage=%d\n",page,vpage);
1132 while(head!=NULL) {
1133 u_int start,end;
1134 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1135 get_bounds((int)head->addr,&start,&end);
1136 //printf("start: %x end: %x\n",start,end);
1137 if(page<2048&&start>=0x80000000&&end<0x80800000) {
1138 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1139 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1140 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1141 }
1142 }
1143 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1144 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1145 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1146 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1147 }
1148 }
1149 }
1150 head=head->next;
1151 }
1152 //printf("first=%d last=%d\n",first,last);
1153 modified=invalidate_page(page);
1154 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1155 assert(last<page+5);
1156 // Invalidate the adjacent pages if a block crosses a 4K boundary
1157 while(first<page) {
1158 invalidate_page(first);
1159 first++;
1160 }
1161 for(first=page+1;first<last;first++) {
1162 invalidate_page(first);
1163 }
1164
1165 // Don't trap writes
1166 invalid_code[block]=1;
94d23bb9 1167#ifndef DISABLE_TLB
57871462 1168 // If there is a valid TLB entry for this page, remove write protect
1169 if(tlb_LUT_w[block]) {
1170 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1171 // CHECK: Is this right?
1172 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1173 u_int real_block=tlb_LUT_w[block]>>12;
1174 invalid_code[real_block]=1;
1175 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1176 }
1177 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1178#endif
57871462 1179 #ifdef __arm__
1180 if(modified)
1181 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1182 #endif
1183 #ifdef USE_MINI_HT
1184 memset(mini_ht,-1,sizeof(mini_ht));
1185 #endif
1186}
1187void invalidate_addr(u_int addr)
1188{
1189 invalidate_block(addr>>12);
1190}
1191void invalidate_all_pages()
1192{
1193 u_int page,n;
1194 for(page=0;page<4096;page++)
1195 invalidate_page(page);
1196 for(page=0;page<1048576;page++)
1197 if(!invalid_code[page]) {
1198 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1199 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1200 }
1201 #ifdef __arm__
1202 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1203 #endif
1204 #ifdef USE_MINI_HT
1205 memset(mini_ht,-1,sizeof(mini_ht));
1206 #endif
94d23bb9 1207 #ifndef DISABLE_TLB
57871462 1208 // TLB
1209 for(page=0;page<0x100000;page++) {
1210 if(tlb_LUT_r[page]) {
1211 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1212 if(!tlb_LUT_w[page]||!invalid_code[page])
1213 memory_map[page]|=0x40000000; // Write protect
1214 }
1215 else memory_map[page]=-1;
1216 if(page==0x80000) page=0xC0000;
1217 }
1218 tlb_hacks();
94d23bb9 1219 #endif
57871462 1220}
1221
1222// Add an entry to jump_out after making a link
1223void add_link(u_int vaddr,void *src)
1224{
94d23bb9 1225 u_int page=get_page(vaddr);
57871462 1226 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1227 ll_add(jump_out+page,vaddr,src);
1228 //int ptr=get_pointer(src);
1229 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1230}
1231
1232// If a code block was found to be unmodified (bit was set in
1233// restore_candidate) and it remains unmodified (bit is clear
1234// in invalid_code) then move the entries for that 4K page from
1235// the dirty list to the clean list.
1236void clean_blocks(u_int page)
1237{
1238 struct ll_entry *head;
1239 inv_debug("INV: clean_blocks page=%d\n",page);
1240 head=jump_dirty[page];
1241 while(head!=NULL) {
1242 if(!invalid_code[head->vaddr>>12]) {
1243 // Don't restore blocks which are about to expire from the cache
1244 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1245 u_int start,end;
1246 if(verify_dirty((int)head->addr)) {
1247 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1248 u_int i;
1249 u_int inv=0;
1250 get_bounds((int)head->addr,&start,&end);
1251 if(start-(u_int)rdram<0x800000) {
1252 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1253 inv|=invalid_code[i];
1254 }
1255 }
1256 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1257 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1258 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1259 if(addr<start||addr>=end) inv=1;
1260 }
1261 else if((signed int)head->vaddr>=(signed int)0x80800000) {
1262 inv=1;
1263 }
1264 if(!inv) {
1265 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1266 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1267 u_int ppage=page;
94d23bb9 1268#ifndef DISABLE_TLB
57871462 1269 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1270#endif
57871462 1271 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1272 //printf("page=%x, addr=%x\n",page,head->vaddr);
1273 //assert(head->vaddr>>12==(page|0x80000));
1274 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1275 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1276 if(!head->reg32) {
1277 if(ht_bin[0]==head->vaddr) {
1278 ht_bin[1]=(int)clean_addr; // Replace existing entry
1279 }
1280 if(ht_bin[2]==head->vaddr) {
1281 ht_bin[3]=(int)clean_addr; // Replace existing entry
1282 }
1283 }
1284 }
1285 }
1286 }
1287 }
1288 }
1289 head=head->next;
1290 }
1291}
1292
1293
1294void mov_alloc(struct regstat *current,int i)
1295{
1296 // Note: Don't need to actually alloc the source registers
1297 if((~current->is32>>rs1[i])&1) {
1298 //alloc_reg64(current,i,rs1[i]);
1299 alloc_reg64(current,i,rt1[i]);
1300 current->is32&=~(1LL<<rt1[i]);
1301 } else {
1302 //alloc_reg(current,i,rs1[i]);
1303 alloc_reg(current,i,rt1[i]);
1304 current->is32|=(1LL<<rt1[i]);
1305 }
1306 clear_const(current,rs1[i]);
1307 clear_const(current,rt1[i]);
1308 dirty_reg(current,rt1[i]);
1309}
1310
1311void shiftimm_alloc(struct regstat *current,int i)
1312{
1313 clear_const(current,rs1[i]);
1314 clear_const(current,rt1[i]);
1315 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1316 {
1317 if(rt1[i]) {
1318 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1319 else lt1[i]=rs1[i];
1320 alloc_reg(current,i,rt1[i]);
1321 current->is32|=1LL<<rt1[i];
1322 dirty_reg(current,rt1[i]);
1323 }
1324 }
1325 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1326 {
1327 if(rt1[i]) {
1328 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1329 alloc_reg64(current,i,rt1[i]);
1330 current->is32&=~(1LL<<rt1[i]);
1331 dirty_reg(current,rt1[i]);
1332 }
1333 }
1334 if(opcode2[i]==0x3c) // DSLL32
1335 {
1336 if(rt1[i]) {
1337 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1338 alloc_reg64(current,i,rt1[i]);
1339 current->is32&=~(1LL<<rt1[i]);
1340 dirty_reg(current,rt1[i]);
1341 }
1342 }
1343 if(opcode2[i]==0x3e) // DSRL32
1344 {
1345 if(rt1[i]) {
1346 alloc_reg64(current,i,rs1[i]);
1347 if(imm[i]==32) {
1348 alloc_reg64(current,i,rt1[i]);
1349 current->is32&=~(1LL<<rt1[i]);
1350 } else {
1351 alloc_reg(current,i,rt1[i]);
1352 current->is32|=1LL<<rt1[i];
1353 }
1354 dirty_reg(current,rt1[i]);
1355 }
1356 }
1357 if(opcode2[i]==0x3f) // DSRA32
1358 {
1359 if(rt1[i]) {
1360 alloc_reg64(current,i,rs1[i]);
1361 alloc_reg(current,i,rt1[i]);
1362 current->is32|=1LL<<rt1[i];
1363 dirty_reg(current,rt1[i]);
1364 }
1365 }
1366}
1367
1368void shift_alloc(struct regstat *current,int i)
1369{
1370 if(rt1[i]) {
1371 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1372 {
1373 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1374 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1375 alloc_reg(current,i,rt1[i]);
1376 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1377 current->is32|=1LL<<rt1[i];
1378 } else { // DSLLV/DSRLV/DSRAV
1379 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1380 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1381 alloc_reg64(current,i,rt1[i]);
1382 current->is32&=~(1LL<<rt1[i]);
1383 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1384 alloc_reg_temp(current,i,-1);
1385 }
1386 clear_const(current,rs1[i]);
1387 clear_const(current,rs2[i]);
1388 clear_const(current,rt1[i]);
1389 dirty_reg(current,rt1[i]);
1390 }
1391}
1392
1393void alu_alloc(struct regstat *current,int i)
1394{
1395 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1396 if(rt1[i]) {
1397 if(rs1[i]&&rs2[i]) {
1398 alloc_reg(current,i,rs1[i]);
1399 alloc_reg(current,i,rs2[i]);
1400 }
1401 else {
1402 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1403 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1404 }
1405 alloc_reg(current,i,rt1[i]);
1406 }
1407 current->is32|=1LL<<rt1[i];
1408 }
1409 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1410 if(rt1[i]) {
1411 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1412 {
1413 alloc_reg64(current,i,rs1[i]);
1414 alloc_reg64(current,i,rs2[i]);
1415 alloc_reg(current,i,rt1[i]);
1416 } else {
1417 alloc_reg(current,i,rs1[i]);
1418 alloc_reg(current,i,rs2[i]);
1419 alloc_reg(current,i,rt1[i]);
1420 }
1421 }
1422 current->is32|=1LL<<rt1[i];
1423 }
1424 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1425 if(rt1[i]) {
1426 if(rs1[i]&&rs2[i]) {
1427 alloc_reg(current,i,rs1[i]);
1428 alloc_reg(current,i,rs2[i]);
1429 }
1430 else
1431 {
1432 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1433 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1434 }
1435 alloc_reg(current,i,rt1[i]);
1436 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1437 {
1438 if(!((current->uu>>rt1[i])&1)) {
1439 alloc_reg64(current,i,rt1[i]);
1440 }
1441 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1442 if(rs1[i]&&rs2[i]) {
1443 alloc_reg64(current,i,rs1[i]);
1444 alloc_reg64(current,i,rs2[i]);
1445 }
1446 else
1447 {
1448 // Is is really worth it to keep 64-bit values in registers?
1449 #ifdef NATIVE_64BIT
1450 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1451 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1452 #endif
1453 }
1454 }
1455 current->is32&=~(1LL<<rt1[i]);
1456 } else {
1457 current->is32|=1LL<<rt1[i];
1458 }
1459 }
1460 }
1461 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1462 if(rt1[i]) {
1463 if(rs1[i]&&rs2[i]) {
1464 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1465 alloc_reg64(current,i,rs1[i]);
1466 alloc_reg64(current,i,rs2[i]);
1467 alloc_reg64(current,i,rt1[i]);
1468 } else {
1469 alloc_reg(current,i,rs1[i]);
1470 alloc_reg(current,i,rs2[i]);
1471 alloc_reg(current,i,rt1[i]);
1472 }
1473 }
1474 else {
1475 alloc_reg(current,i,rt1[i]);
1476 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1477 // DADD used as move, or zeroing
1478 // If we have a 64-bit source, then make the target 64 bits too
1479 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1480 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1481 alloc_reg64(current,i,rt1[i]);
1482 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1483 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1484 alloc_reg64(current,i,rt1[i]);
1485 }
1486 if(opcode2[i]>=0x2e&&rs2[i]) {
1487 // DSUB used as negation - 64-bit result
1488 // If we have a 32-bit register, extend it to 64 bits
1489 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1490 alloc_reg64(current,i,rt1[i]);
1491 }
1492 }
1493 }
1494 if(rs1[i]&&rs2[i]) {
1495 current->is32&=~(1LL<<rt1[i]);
1496 } else if(rs1[i]) {
1497 current->is32&=~(1LL<<rt1[i]);
1498 if((current->is32>>rs1[i])&1)
1499 current->is32|=1LL<<rt1[i];
1500 } else if(rs2[i]) {
1501 current->is32&=~(1LL<<rt1[i]);
1502 if((current->is32>>rs2[i])&1)
1503 current->is32|=1LL<<rt1[i];
1504 } else {
1505 current->is32|=1LL<<rt1[i];
1506 }
1507 }
1508 }
1509 clear_const(current,rs1[i]);
1510 clear_const(current,rs2[i]);
1511 clear_const(current,rt1[i]);
1512 dirty_reg(current,rt1[i]);
1513}
1514
1515void imm16_alloc(struct regstat *current,int i)
1516{
1517 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1518 else lt1[i]=rs1[i];
1519 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1520 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1521 current->is32&=~(1LL<<rt1[i]);
1522 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1523 // TODO: Could preserve the 32-bit flag if the immediate is zero
1524 alloc_reg64(current,i,rt1[i]);
1525 alloc_reg64(current,i,rs1[i]);
1526 }
1527 clear_const(current,rs1[i]);
1528 clear_const(current,rt1[i]);
1529 }
1530 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1531 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1532 current->is32|=1LL<<rt1[i];
1533 clear_const(current,rs1[i]);
1534 clear_const(current,rt1[i]);
1535 }
1536 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1537 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1538 if(rs1[i]!=rt1[i]) {
1539 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1540 alloc_reg64(current,i,rt1[i]);
1541 current->is32&=~(1LL<<rt1[i]);
1542 }
1543 }
1544 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1545 if(is_const(current,rs1[i])) {
1546 int v=get_const(current,rs1[i]);
1547 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1548 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1549 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1550 }
1551 else clear_const(current,rt1[i]);
1552 }
1553 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1554 if(is_const(current,rs1[i])) {
1555 int v=get_const(current,rs1[i]);
1556 set_const(current,rt1[i],v+imm[i]);
1557 }
1558 else clear_const(current,rt1[i]);
1559 current->is32|=1LL<<rt1[i];
1560 }
1561 else {
1562 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1563 current->is32|=1LL<<rt1[i];
1564 }
1565 dirty_reg(current,rt1[i]);
1566}
1567
1568void load_alloc(struct regstat *current,int i)
1569{
1570 clear_const(current,rt1[i]);
1571 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1572 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1573 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1574 if(rt1[i]) {
1575 alloc_reg(current,i,rt1[i]);
1576 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1577 {
1578 current->is32&=~(1LL<<rt1[i]);
1579 alloc_reg64(current,i,rt1[i]);
1580 }
1581 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1582 {
1583 current->is32&=~(1LL<<rt1[i]);
1584 alloc_reg64(current,i,rt1[i]);
1585 alloc_all(current,i);
1586 alloc_reg64(current,i,FTEMP);
1587 }
1588 else current->is32|=1LL<<rt1[i];
1589 dirty_reg(current,rt1[i]);
1590 // If using TLB, need a register for pointer to the mapping table
1591 if(using_tlb) alloc_reg(current,i,TLREG);
1592 // LWL/LWR need a temporary register for the old value
1593 if(opcode[i]==0x22||opcode[i]==0x26)
1594 {
1595 alloc_reg(current,i,FTEMP);
1596 alloc_reg_temp(current,i,-1);
1597 }
1598 }
1599 else
1600 {
1601 // Load to r0 (dummy load)
1602 // but we still need a register to calculate the address
1603 alloc_reg_temp(current,i,-1);
1604 }
1605}
1606
1607void store_alloc(struct regstat *current,int i)
1608{
1609 clear_const(current,rs2[i]);
1610 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1611 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1612 alloc_reg(current,i,rs2[i]);
1613 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1614 alloc_reg64(current,i,rs2[i]);
1615 if(rs2[i]) alloc_reg(current,i,FTEMP);
1616 }
1617 // If using TLB, need a register for pointer to the mapping table
1618 if(using_tlb) alloc_reg(current,i,TLREG);
1619 #if defined(HOST_IMM8)
1620 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1621 else alloc_reg(current,i,INVCP);
1622 #endif
1623 if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1624 alloc_reg(current,i,FTEMP);
1625 }
1626 // We need a temporary register for address generation
1627 alloc_reg_temp(current,i,-1);
1628}
1629
1630void c1ls_alloc(struct regstat *current,int i)
1631{
1632 //clear_const(current,rs1[i]); // FIXME
1633 clear_const(current,rt1[i]);
1634 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1635 alloc_reg(current,i,CSREG); // Status
1636 alloc_reg(current,i,FTEMP);
1637 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1638 alloc_reg64(current,i,FTEMP);
1639 }
1640 // If using TLB, need a register for pointer to the mapping table
1641 if(using_tlb) alloc_reg(current,i,TLREG);
1642 #if defined(HOST_IMM8)
1643 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1644 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1645 alloc_reg(current,i,INVCP);
1646 #endif
1647 // We need a temporary register for address generation
1648 alloc_reg_temp(current,i,-1);
1649}
1650
1651#ifndef multdiv_alloc
1652void multdiv_alloc(struct regstat *current,int i)
1653{
1654 // case 0x18: MULT
1655 // case 0x19: MULTU
1656 // case 0x1A: DIV
1657 // case 0x1B: DIVU
1658 // case 0x1C: DMULT
1659 // case 0x1D: DMULTU
1660 // case 0x1E: DDIV
1661 // case 0x1F: DDIVU
1662 clear_const(current,rs1[i]);
1663 clear_const(current,rs2[i]);
1664 if(rs1[i]&&rs2[i])
1665 {
1666 if((opcode2[i]&4)==0) // 32-bit
1667 {
1668 current->u&=~(1LL<<HIREG);
1669 current->u&=~(1LL<<LOREG);
1670 alloc_reg(current,i,HIREG);
1671 alloc_reg(current,i,LOREG);
1672 alloc_reg(current,i,rs1[i]);
1673 alloc_reg(current,i,rs2[i]);
1674 current->is32|=1LL<<HIREG;
1675 current->is32|=1LL<<LOREG;
1676 dirty_reg(current,HIREG);
1677 dirty_reg(current,LOREG);
1678 }
1679 else // 64-bit
1680 {
1681 current->u&=~(1LL<<HIREG);
1682 current->u&=~(1LL<<LOREG);
1683 current->uu&=~(1LL<<HIREG);
1684 current->uu&=~(1LL<<LOREG);
1685 alloc_reg64(current,i,HIREG);
1686 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1687 alloc_reg64(current,i,rs1[i]);
1688 alloc_reg64(current,i,rs2[i]);
1689 alloc_all(current,i);
1690 current->is32&=~(1LL<<HIREG);
1691 current->is32&=~(1LL<<LOREG);
1692 dirty_reg(current,HIREG);
1693 dirty_reg(current,LOREG);
1694 }
1695 }
1696 else
1697 {
1698 // Multiply by zero is zero.
1699 // MIPS does not have a divide by zero exception.
1700 // The result is undefined, we return zero.
1701 alloc_reg(current,i,HIREG);
1702 alloc_reg(current,i,LOREG);
1703 current->is32|=1LL<<HIREG;
1704 current->is32|=1LL<<LOREG;
1705 dirty_reg(current,HIREG);
1706 dirty_reg(current,LOREG);
1707 }
1708}
1709#endif
1710
1711void cop0_alloc(struct regstat *current,int i)
1712{
1713 if(opcode2[i]==0) // MFC0
1714 {
1715 if(rt1[i]) {
1716 clear_const(current,rt1[i]);
1717 alloc_all(current,i);
1718 alloc_reg(current,i,rt1[i]);
1719 current->is32|=1LL<<rt1[i];
1720 dirty_reg(current,rt1[i]);
1721 }
1722 }
1723 else if(opcode2[i]==4) // MTC0
1724 {
1725 if(rs1[i]){
1726 clear_const(current,rs1[i]);
1727 alloc_reg(current,i,rs1[i]);
1728 alloc_all(current,i);
1729 }
1730 else {
1731 alloc_all(current,i); // FIXME: Keep r0
1732 current->u&=~1LL;
1733 alloc_reg(current,i,0);
1734 }
1735 }
1736 else
1737 {
1738 // TLBR/TLBWI/TLBWR/TLBP/ERET
1739 assert(opcode2[i]==0x10);
1740 alloc_all(current,i);
1741 }
1742}
1743
1744void cop1_alloc(struct regstat *current,int i)
1745{
1746 alloc_reg(current,i,CSREG); // Load status
1747 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1748 {
1749 assert(rt1[i]);
1750 clear_const(current,rt1[i]);
1751 if(opcode2[i]==1) {
1752 alloc_reg64(current,i,rt1[i]); // DMFC1
1753 current->is32&=~(1LL<<rt1[i]);
1754 }else{
1755 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1756 current->is32|=1LL<<rt1[i];
1757 }
1758 dirty_reg(current,rt1[i]);
1759 alloc_reg_temp(current,i,-1);
1760 }
1761 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1762 {
1763 if(rs1[i]){
1764 clear_const(current,rs1[i]);
1765 if(opcode2[i]==5)
1766 alloc_reg64(current,i,rs1[i]); // DMTC1
1767 else
1768 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1769 alloc_reg_temp(current,i,-1);
1770 }
1771 else {
1772 current->u&=~1LL;
1773 alloc_reg(current,i,0);
1774 alloc_reg_temp(current,i,-1);
1775 }
1776 }
1777}
1778void fconv_alloc(struct regstat *current,int i)
1779{
1780 alloc_reg(current,i,CSREG); // Load status
1781 alloc_reg_temp(current,i,-1);
1782}
1783void float_alloc(struct regstat *current,int i)
1784{
1785 alloc_reg(current,i,CSREG); // Load status
1786 alloc_reg_temp(current,i,-1);
1787}
1788void fcomp_alloc(struct regstat *current,int i)
1789{
1790 alloc_reg(current,i,CSREG); // Load status
1791 alloc_reg(current,i,FSREG); // Load flags
1792 dirty_reg(current,FSREG); // Flag will be modified
1793 alloc_reg_temp(current,i,-1);
1794}
1795
1796void syscall_alloc(struct regstat *current,int i)
1797{
1798 alloc_cc(current,i);
1799 dirty_reg(current,CCREG);
1800 alloc_all(current,i);
1801 current->isconst=0;
1802}
1803
1804void delayslot_alloc(struct regstat *current,int i)
1805{
1806 switch(itype[i]) {
1807 case UJUMP:
1808 case CJUMP:
1809 case SJUMP:
1810 case RJUMP:
1811 case FJUMP:
1812 case SYSCALL:
1813 case SPAN:
1814 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1815 printf("Disabled speculative precompilation\n");
1816 stop_after_jal=1;
1817 break;
1818 case IMM16:
1819 imm16_alloc(current,i);
1820 break;
1821 case LOAD:
1822 case LOADLR:
1823 load_alloc(current,i);
1824 break;
1825 case STORE:
1826 case STORELR:
1827 store_alloc(current,i);
1828 break;
1829 case ALU:
1830 alu_alloc(current,i);
1831 break;
1832 case SHIFT:
1833 shift_alloc(current,i);
1834 break;
1835 case MULTDIV:
1836 multdiv_alloc(current,i);
1837 break;
1838 case SHIFTIMM:
1839 shiftimm_alloc(current,i);
1840 break;
1841 case MOV:
1842 mov_alloc(current,i);
1843 break;
1844 case COP0:
1845 cop0_alloc(current,i);
1846 break;
1847 case COP1:
1848 cop1_alloc(current,i);
1849 break;
1850 case C1LS:
1851 c1ls_alloc(current,i);
1852 break;
1853 case FCONV:
1854 fconv_alloc(current,i);
1855 break;
1856 case FLOAT:
1857 float_alloc(current,i);
1858 break;
1859 case FCOMP:
1860 fcomp_alloc(current,i);
1861 break;
1862 }
1863}
1864
1865// Special case where a branch and delay slot span two pages in virtual memory
1866static void pagespan_alloc(struct regstat *current,int i)
1867{
1868 current->isconst=0;
1869 current->wasconst=0;
1870 regs[i].wasconst=0;
1871 alloc_all(current,i);
1872 alloc_cc(current,i);
1873 dirty_reg(current,CCREG);
1874 if(opcode[i]==3) // JAL
1875 {
1876 alloc_reg(current,i,31);
1877 dirty_reg(current,31);
1878 }
1879 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1880 {
1881 alloc_reg(current,i,rs1[i]);
1882 if (rt1[i]==31) {
1883 alloc_reg(current,i,31);
1884 dirty_reg(current,31);
1885 }
1886 }
1887 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1888 {
1889 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1890 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1891 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1892 {
1893 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1894 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1895 }
1896 }
1897 else
1898 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1899 {
1900 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1901 if(!((current->is32>>rs1[i])&1))
1902 {
1903 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1904 }
1905 }
1906 else
1907 if(opcode[i]==0x11) // BC1
1908 {
1909 alloc_reg(current,i,FSREG);
1910 alloc_reg(current,i,CSREG);
1911 }
1912 //else ...
1913}
1914
1915add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1916{
1917 stubs[stubcount][0]=type;
1918 stubs[stubcount][1]=addr;
1919 stubs[stubcount][2]=retaddr;
1920 stubs[stubcount][3]=a;
1921 stubs[stubcount][4]=b;
1922 stubs[stubcount][5]=c;
1923 stubs[stubcount][6]=d;
1924 stubs[stubcount][7]=e;
1925 stubcount++;
1926}
1927
1928// Write out a single register
1929void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1930{
1931 int hr;
1932 for(hr=0;hr<HOST_REGS;hr++) {
1933 if(hr!=EXCLUDE_REG) {
1934 if((regmap[hr]&63)==r) {
1935 if((dirty>>hr)&1) {
1936 if(regmap[hr]<64) {
1937 emit_storereg(r,hr);
1938 if((is32>>regmap[hr])&1) {
1939 emit_sarimm(hr,31,hr);
1940 emit_storereg(r|64,hr);
1941 }
1942 }else{
1943 emit_storereg(r|64,hr);
1944 }
1945 }
1946 }
1947 }
1948 }
1949}
1950
1951int mchecksum()
1952{
1953 //if(!tracedebug) return 0;
1954 int i;
1955 int sum=0;
1956 for(i=0;i<2097152;i++) {
1957 unsigned int temp=sum;
1958 sum<<=1;
1959 sum|=(~temp)>>31;
1960 sum^=((u_int *)rdram)[i];
1961 }
1962 return sum;
1963}
1964int rchecksum()
1965{
1966 int i;
1967 int sum=0;
1968 for(i=0;i<64;i++)
1969 sum^=((u_int *)reg)[i];
1970 return sum;
1971}
1972int fchecksum()
1973{
1974 int i;
1975 int sum=0;
1976 for(i=0;i<64;i++)
1977 sum^=((u_int *)reg_cop1_fgr_64)[i];
1978 return sum;
1979}
1980void rlist()
1981{
1982 int i;
1983 printf("TRACE: ");
1984 for(i=0;i<32;i++)
1985 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1986 printf("\n");
1987 printf("TRACE: ");
1988 for(i=0;i<32;i++)
1989 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
1990 printf("\n");
1991}
1992
1993void enabletrace()
1994{
1995 tracedebug=1;
1996}
1997
1998void memdebug(int i)
1999{
2000 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2001 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2002 //rlist();
2003 //if(tracedebug) {
2004 //if(Count>=-2084597794) {
2005 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2006 //if(0) {
2007 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2008 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2009 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2010 rlist();
2011 #ifdef __i386__
2012 printf("TRACE: %x\n",(&i)[-1]);
2013 #endif
2014 #ifdef __arm__
2015 int j;
2016 printf("TRACE: %x \n",(&j)[10]);
2017 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2018 #endif
2019 //fflush(stdout);
2020 }
2021 //printf("TRACE: %x\n",(&i)[-1]);
2022}
2023
2024void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2025{
2026 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2027}
2028
2029void alu_assemble(int i,struct regstat *i_regs)
2030{
2031 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2032 if(rt1[i]) {
2033 signed char s1,s2,t;
2034 t=get_reg(i_regs->regmap,rt1[i]);
2035 if(t>=0) {
2036 s1=get_reg(i_regs->regmap,rs1[i]);
2037 s2=get_reg(i_regs->regmap,rs2[i]);
2038 if(rs1[i]&&rs2[i]) {
2039 assert(s1>=0);
2040 assert(s2>=0);
2041 if(opcode2[i]&2) emit_sub(s1,s2,t);
2042 else emit_add(s1,s2,t);
2043 }
2044 else if(rs1[i]) {
2045 if(s1>=0) emit_mov(s1,t);
2046 else emit_loadreg(rs1[i],t);
2047 }
2048 else if(rs2[i]) {
2049 if(s2>=0) {
2050 if(opcode2[i]&2) emit_neg(s2,t);
2051 else emit_mov(s2,t);
2052 }
2053 else {
2054 emit_loadreg(rs2[i],t);
2055 if(opcode2[i]&2) emit_neg(t,t);
2056 }
2057 }
2058 else emit_zeroreg(t);
2059 }
2060 }
2061 }
2062 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2063 if(rt1[i]) {
2064 signed char s1l,s2l,s1h,s2h,tl,th;
2065 tl=get_reg(i_regs->regmap,rt1[i]);
2066 th=get_reg(i_regs->regmap,rt1[i]|64);
2067 if(tl>=0) {
2068 s1l=get_reg(i_regs->regmap,rs1[i]);
2069 s2l=get_reg(i_regs->regmap,rs2[i]);
2070 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2071 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2072 if(rs1[i]&&rs2[i]) {
2073 assert(s1l>=0);
2074 assert(s2l>=0);
2075 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2076 else emit_adds(s1l,s2l,tl);
2077 if(th>=0) {
2078 #ifdef INVERTED_CARRY
2079 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2080 #else
2081 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2082 #endif
2083 else emit_add(s1h,s2h,th);
2084 }
2085 }
2086 else if(rs1[i]) {
2087 if(s1l>=0) emit_mov(s1l,tl);
2088 else emit_loadreg(rs1[i],tl);
2089 if(th>=0) {
2090 if(s1h>=0) emit_mov(s1h,th);
2091 else emit_loadreg(rs1[i]|64,th);
2092 }
2093 }
2094 else if(rs2[i]) {
2095 if(s2l>=0) {
2096 if(opcode2[i]&2) emit_negs(s2l,tl);
2097 else emit_mov(s2l,tl);
2098 }
2099 else {
2100 emit_loadreg(rs2[i],tl);
2101 if(opcode2[i]&2) emit_negs(tl,tl);
2102 }
2103 if(th>=0) {
2104 #ifdef INVERTED_CARRY
2105 if(s2h>=0) emit_mov(s2h,th);
2106 else emit_loadreg(rs2[i]|64,th);
2107 if(opcode2[i]&2) {
2108 emit_adcimm(-1,th); // x86 has inverted carry flag
2109 emit_not(th,th);
2110 }
2111 #else
2112 if(opcode2[i]&2) {
2113 if(s2h>=0) emit_rscimm(s2h,0,th);
2114 else {
2115 emit_loadreg(rs2[i]|64,th);
2116 emit_rscimm(th,0,th);
2117 }
2118 }else{
2119 if(s2h>=0) emit_mov(s2h,th);
2120 else emit_loadreg(rs2[i]|64,th);
2121 }
2122 #endif
2123 }
2124 }
2125 else {
2126 emit_zeroreg(tl);
2127 if(th>=0) emit_zeroreg(th);
2128 }
2129 }
2130 }
2131 }
2132 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2133 if(rt1[i]) {
2134 signed char s1l,s1h,s2l,s2h,t;
2135 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2136 {
2137 t=get_reg(i_regs->regmap,rt1[i]);
2138 //assert(t>=0);
2139 if(t>=0) {
2140 s1l=get_reg(i_regs->regmap,rs1[i]);
2141 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2142 s2l=get_reg(i_regs->regmap,rs2[i]);
2143 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2144 if(rs2[i]==0) // rx<r0
2145 {
2146 assert(s1h>=0);
2147 if(opcode2[i]==0x2a) // SLT
2148 emit_shrimm(s1h,31,t);
2149 else // SLTU (unsigned can not be less than zero)
2150 emit_zeroreg(t);
2151 }
2152 else if(rs1[i]==0) // r0<rx
2153 {
2154 assert(s2h>=0);
2155 if(opcode2[i]==0x2a) // SLT
2156 emit_set_gz64_32(s2h,s2l,t);
2157 else // SLTU (set if not zero)
2158 emit_set_nz64_32(s2h,s2l,t);
2159 }
2160 else {
2161 assert(s1l>=0);assert(s1h>=0);
2162 assert(s2l>=0);assert(s2h>=0);
2163 if(opcode2[i]==0x2a) // SLT
2164 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2165 else // SLTU
2166 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2167 }
2168 }
2169 } else {
2170 t=get_reg(i_regs->regmap,rt1[i]);
2171 //assert(t>=0);
2172 if(t>=0) {
2173 s1l=get_reg(i_regs->regmap,rs1[i]);
2174 s2l=get_reg(i_regs->regmap,rs2[i]);
2175 if(rs2[i]==0) // rx<r0
2176 {
2177 assert(s1l>=0);
2178 if(opcode2[i]==0x2a) // SLT
2179 emit_shrimm(s1l,31,t);
2180 else // SLTU (unsigned can not be less than zero)
2181 emit_zeroreg(t);
2182 }
2183 else if(rs1[i]==0) // r0<rx
2184 {
2185 assert(s2l>=0);
2186 if(opcode2[i]==0x2a) // SLT
2187 emit_set_gz32(s2l,t);
2188 else // SLTU (set if not zero)
2189 emit_set_nz32(s2l,t);
2190 }
2191 else{
2192 assert(s1l>=0);assert(s2l>=0);
2193 if(opcode2[i]==0x2a) // SLT
2194 emit_set_if_less32(s1l,s2l,t);
2195 else // SLTU
2196 emit_set_if_carry32(s1l,s2l,t);
2197 }
2198 }
2199 }
2200 }
2201 }
2202 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2203 if(rt1[i]) {
2204 signed char s1l,s1h,s2l,s2h,th,tl;
2205 tl=get_reg(i_regs->regmap,rt1[i]);
2206 th=get_reg(i_regs->regmap,rt1[i]|64);
2207 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2208 {
2209 assert(tl>=0);
2210 if(tl>=0) {
2211 s1l=get_reg(i_regs->regmap,rs1[i]);
2212 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2213 s2l=get_reg(i_regs->regmap,rs2[i]);
2214 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2215 if(rs1[i]&&rs2[i]) {
2216 assert(s1l>=0);assert(s1h>=0);
2217 assert(s2l>=0);assert(s2h>=0);
2218 if(opcode2[i]==0x24) { // AND
2219 emit_and(s1l,s2l,tl);
2220 emit_and(s1h,s2h,th);
2221 } else
2222 if(opcode2[i]==0x25) { // OR
2223 emit_or(s1l,s2l,tl);
2224 emit_or(s1h,s2h,th);
2225 } else
2226 if(opcode2[i]==0x26) { // XOR
2227 emit_xor(s1l,s2l,tl);
2228 emit_xor(s1h,s2h,th);
2229 } else
2230 if(opcode2[i]==0x27) { // NOR
2231 emit_or(s1l,s2l,tl);
2232 emit_or(s1h,s2h,th);
2233 emit_not(tl,tl);
2234 emit_not(th,th);
2235 }
2236 }
2237 else
2238 {
2239 if(opcode2[i]==0x24) { // AND
2240 emit_zeroreg(tl);
2241 emit_zeroreg(th);
2242 } else
2243 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2244 if(rs1[i]){
2245 if(s1l>=0) emit_mov(s1l,tl);
2246 else emit_loadreg(rs1[i],tl);
2247 if(s1h>=0) emit_mov(s1h,th);
2248 else emit_loadreg(rs1[i]|64,th);
2249 }
2250 else
2251 if(rs2[i]){
2252 if(s2l>=0) emit_mov(s2l,tl);
2253 else emit_loadreg(rs2[i],tl);
2254 if(s2h>=0) emit_mov(s2h,th);
2255 else emit_loadreg(rs2[i]|64,th);
2256 }
2257 else{
2258 emit_zeroreg(tl);
2259 emit_zeroreg(th);
2260 }
2261 } else
2262 if(opcode2[i]==0x27) { // NOR
2263 if(rs1[i]){
2264 if(s1l>=0) emit_not(s1l,tl);
2265 else{
2266 emit_loadreg(rs1[i],tl);
2267 emit_not(tl,tl);
2268 }
2269 if(s1h>=0) emit_not(s1h,th);
2270 else{
2271 emit_loadreg(rs1[i]|64,th);
2272 emit_not(th,th);
2273 }
2274 }
2275 else
2276 if(rs2[i]){
2277 if(s2l>=0) emit_not(s2l,tl);
2278 else{
2279 emit_loadreg(rs2[i],tl);
2280 emit_not(tl,tl);
2281 }
2282 if(s2h>=0) emit_not(s2h,th);
2283 else{
2284 emit_loadreg(rs2[i]|64,th);
2285 emit_not(th,th);
2286 }
2287 }
2288 else {
2289 emit_movimm(-1,tl);
2290 emit_movimm(-1,th);
2291 }
2292 }
2293 }
2294 }
2295 }
2296 else
2297 {
2298 // 32 bit
2299 if(tl>=0) {
2300 s1l=get_reg(i_regs->regmap,rs1[i]);
2301 s2l=get_reg(i_regs->regmap,rs2[i]);
2302 if(rs1[i]&&rs2[i]) {
2303 assert(s1l>=0);
2304 assert(s2l>=0);
2305 if(opcode2[i]==0x24) { // AND
2306 emit_and(s1l,s2l,tl);
2307 } else
2308 if(opcode2[i]==0x25) { // OR
2309 emit_or(s1l,s2l,tl);
2310 } else
2311 if(opcode2[i]==0x26) { // XOR
2312 emit_xor(s1l,s2l,tl);
2313 } else
2314 if(opcode2[i]==0x27) { // NOR
2315 emit_or(s1l,s2l,tl);
2316 emit_not(tl,tl);
2317 }
2318 }
2319 else
2320 {
2321 if(opcode2[i]==0x24) { // AND
2322 emit_zeroreg(tl);
2323 } else
2324 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2325 if(rs1[i]){
2326 if(s1l>=0) emit_mov(s1l,tl);
2327 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2328 }
2329 else
2330 if(rs2[i]){
2331 if(s2l>=0) emit_mov(s2l,tl);
2332 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2333 }
2334 else emit_zeroreg(tl);
2335 } else
2336 if(opcode2[i]==0x27) { // NOR
2337 if(rs1[i]){
2338 if(s1l>=0) emit_not(s1l,tl);
2339 else {
2340 emit_loadreg(rs1[i],tl);
2341 emit_not(tl,tl);
2342 }
2343 }
2344 else
2345 if(rs2[i]){
2346 if(s2l>=0) emit_not(s2l,tl);
2347 else {
2348 emit_loadreg(rs2[i],tl);
2349 emit_not(tl,tl);
2350 }
2351 }
2352 else emit_movimm(-1,tl);
2353 }
2354 }
2355 }
2356 }
2357 }
2358 }
2359}
2360
2361void imm16_assemble(int i,struct regstat *i_regs)
2362{
2363 if (opcode[i]==0x0f) { // LUI
2364 if(rt1[i]) {
2365 signed char t;
2366 t=get_reg(i_regs->regmap,rt1[i]);
2367 //assert(t>=0);
2368 if(t>=0) {
2369 if(!((i_regs->isconst>>t)&1))
2370 emit_movimm(imm[i]<<16,t);
2371 }
2372 }
2373 }
2374 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2375 if(rt1[i]) {
2376 signed char s,t;
2377 t=get_reg(i_regs->regmap,rt1[i]);
2378 s=get_reg(i_regs->regmap,rs1[i]);
2379 if(rs1[i]) {
2380 //assert(t>=0);
2381 //assert(s>=0);
2382 if(t>=0) {
2383 if(!((i_regs->isconst>>t)&1)) {
2384 if(s<0) {
2385 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2386 emit_addimm(t,imm[i],t);
2387 }else{
2388 if(!((i_regs->wasconst>>s)&1))
2389 emit_addimm(s,imm[i],t);
2390 else
2391 emit_movimm(constmap[i][s]+imm[i],t);
2392 }
2393 }
2394 }
2395 } else {
2396 if(t>=0) {
2397 if(!((i_regs->isconst>>t)&1))
2398 emit_movimm(imm[i],t);
2399 }
2400 }
2401 }
2402 }
2403 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2404 if(rt1[i]) {
2405 signed char sh,sl,th,tl;
2406 th=get_reg(i_regs->regmap,rt1[i]|64);
2407 tl=get_reg(i_regs->regmap,rt1[i]);
2408 sh=get_reg(i_regs->regmap,rs1[i]|64);
2409 sl=get_reg(i_regs->regmap,rs1[i]);
2410 if(tl>=0) {
2411 if(rs1[i]) {
2412 assert(sh>=0);
2413 assert(sl>=0);
2414 if(th>=0) {
2415 emit_addimm64_32(sh,sl,imm[i],th,tl);
2416 }
2417 else {
2418 emit_addimm(sl,imm[i],tl);
2419 }
2420 } else {
2421 emit_movimm(imm[i],tl);
2422 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2423 }
2424 }
2425 }
2426 }
2427 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2428 if(rt1[i]) {
2429 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2430 signed char sh,sl,t;
2431 t=get_reg(i_regs->regmap,rt1[i]);
2432 sh=get_reg(i_regs->regmap,rs1[i]|64);
2433 sl=get_reg(i_regs->regmap,rs1[i]);
2434 //assert(t>=0);
2435 if(t>=0) {
2436 if(rs1[i]>0) {
2437 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2438 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2439 if(opcode[i]==0x0a) { // SLTI
2440 if(sl<0) {
2441 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2442 emit_slti32(t,imm[i],t);
2443 }else{
2444 emit_slti32(sl,imm[i],t);
2445 }
2446 }
2447 else { // SLTIU
2448 if(sl<0) {
2449 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2450 emit_sltiu32(t,imm[i],t);
2451 }else{
2452 emit_sltiu32(sl,imm[i],t);
2453 }
2454 }
2455 }else{ // 64-bit
2456 assert(sl>=0);
2457 if(opcode[i]==0x0a) // SLTI
2458 emit_slti64_32(sh,sl,imm[i],t);
2459 else // SLTIU
2460 emit_sltiu64_32(sh,sl,imm[i],t);
2461 }
2462 }else{
2463 // SLTI(U) with r0 is just stupid,
2464 // nonetheless examples can be found
2465 if(opcode[i]==0x0a) // SLTI
2466 if(0<imm[i]) emit_movimm(1,t);
2467 else emit_zeroreg(t);
2468 else // SLTIU
2469 {
2470 if(imm[i]) emit_movimm(1,t);
2471 else emit_zeroreg(t);
2472 }
2473 }
2474 }
2475 }
2476 }
2477 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2478 if(rt1[i]) {
2479 signed char sh,sl,th,tl;
2480 th=get_reg(i_regs->regmap,rt1[i]|64);
2481 tl=get_reg(i_regs->regmap,rt1[i]);
2482 sh=get_reg(i_regs->regmap,rs1[i]|64);
2483 sl=get_reg(i_regs->regmap,rs1[i]);
2484 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2485 if(opcode[i]==0x0c) //ANDI
2486 {
2487 if(rs1[i]) {
2488 if(sl<0) {
2489 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2490 emit_andimm(tl,imm[i],tl);
2491 }else{
2492 if(!((i_regs->wasconst>>sl)&1))
2493 emit_andimm(sl,imm[i],tl);
2494 else
2495 emit_movimm(constmap[i][sl]&imm[i],tl);
2496 }
2497 }
2498 else
2499 emit_zeroreg(tl);
2500 if(th>=0) emit_zeroreg(th);
2501 }
2502 else
2503 {
2504 if(rs1[i]) {
2505 if(sl<0) {
2506 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2507 }
2508 if(th>=0) {
2509 if(sh<0) {
2510 emit_loadreg(rs1[i]|64,th);
2511 }else{
2512 emit_mov(sh,th);
2513 }
2514 }
2515 if(opcode[i]==0x0d) //ORI
2516 if(sl<0) {
2517 emit_orimm(tl,imm[i],tl);
2518 }else{
2519 if(!((i_regs->wasconst>>sl)&1))
2520 emit_orimm(sl,imm[i],tl);
2521 else
2522 emit_movimm(constmap[i][sl]|imm[i],tl);
2523 }
2524 if(opcode[i]==0x0e) //XORI
2525 if(sl<0) {
2526 emit_xorimm(tl,imm[i],tl);
2527 }else{
2528 if(!((i_regs->wasconst>>sl)&1))
2529 emit_xorimm(sl,imm[i],tl);
2530 else
2531 emit_movimm(constmap[i][sl]^imm[i],tl);
2532 }
2533 }
2534 else {
2535 emit_movimm(imm[i],tl);
2536 if(th>=0) emit_zeroreg(th);
2537 }
2538 }
2539 }
2540 }
2541 }
2542}
2543
2544void shiftimm_assemble(int i,struct regstat *i_regs)
2545{
2546 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2547 {
2548 if(rt1[i]) {
2549 signed char s,t;
2550 t=get_reg(i_regs->regmap,rt1[i]);
2551 s=get_reg(i_regs->regmap,rs1[i]);
2552 //assert(t>=0);
2553 if(t>=0){
2554 if(rs1[i]==0)
2555 {
2556 emit_zeroreg(t);
2557 }
2558 else
2559 {
2560 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2561 if(imm[i]) {
2562 if(opcode2[i]==0) // SLL
2563 {
2564 emit_shlimm(s<0?t:s,imm[i],t);
2565 }
2566 if(opcode2[i]==2) // SRL
2567 {
2568 emit_shrimm(s<0?t:s,imm[i],t);
2569 }
2570 if(opcode2[i]==3) // SRA
2571 {
2572 emit_sarimm(s<0?t:s,imm[i],t);
2573 }
2574 }else{
2575 // Shift by zero
2576 if(s>=0 && s!=t) emit_mov(s,t);
2577 }
2578 }
2579 }
2580 //emit_storereg(rt1[i],t); //DEBUG
2581 }
2582 }
2583 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2584 {
2585 if(rt1[i]) {
2586 signed char sh,sl,th,tl;
2587 th=get_reg(i_regs->regmap,rt1[i]|64);
2588 tl=get_reg(i_regs->regmap,rt1[i]);
2589 sh=get_reg(i_regs->regmap,rs1[i]|64);
2590 sl=get_reg(i_regs->regmap,rs1[i]);
2591 if(tl>=0) {
2592 if(rs1[i]==0)
2593 {
2594 emit_zeroreg(tl);
2595 if(th>=0) emit_zeroreg(th);
2596 }
2597 else
2598 {
2599 assert(sl>=0);
2600 assert(sh>=0);
2601 if(imm[i]) {
2602 if(opcode2[i]==0x38) // DSLL
2603 {
2604 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2605 emit_shlimm(sl,imm[i],tl);
2606 }
2607 if(opcode2[i]==0x3a) // DSRL
2608 {
2609 emit_shrdimm(sl,sh,imm[i],tl);
2610 if(th>=0) emit_shrimm(sh,imm[i],th);
2611 }
2612 if(opcode2[i]==0x3b) // DSRA
2613 {
2614 emit_shrdimm(sl,sh,imm[i],tl);
2615 if(th>=0) emit_sarimm(sh,imm[i],th);
2616 }
2617 }else{
2618 // Shift by zero
2619 if(sl!=tl) emit_mov(sl,tl);
2620 if(th>=0&&sh!=th) emit_mov(sh,th);
2621 }
2622 }
2623 }
2624 }
2625 }
2626 if(opcode2[i]==0x3c) // DSLL32
2627 {
2628 if(rt1[i]) {
2629 signed char sl,tl,th;
2630 tl=get_reg(i_regs->regmap,rt1[i]);
2631 th=get_reg(i_regs->regmap,rt1[i]|64);
2632 sl=get_reg(i_regs->regmap,rs1[i]);
2633 if(th>=0||tl>=0){
2634 assert(tl>=0);
2635 assert(th>=0);
2636 assert(sl>=0);
2637 emit_mov(sl,th);
2638 emit_zeroreg(tl);
2639 if(imm[i]>32)
2640 {
2641 emit_shlimm(th,imm[i]&31,th);
2642 }
2643 }
2644 }
2645 }
2646 if(opcode2[i]==0x3e) // DSRL32
2647 {
2648 if(rt1[i]) {
2649 signed char sh,tl,th;
2650 tl=get_reg(i_regs->regmap,rt1[i]);
2651 th=get_reg(i_regs->regmap,rt1[i]|64);
2652 sh=get_reg(i_regs->regmap,rs1[i]|64);
2653 if(tl>=0){
2654 assert(sh>=0);
2655 emit_mov(sh,tl);
2656 if(th>=0) emit_zeroreg(th);
2657 if(imm[i]>32)
2658 {
2659 emit_shrimm(tl,imm[i]&31,tl);
2660 }
2661 }
2662 }
2663 }
2664 if(opcode2[i]==0x3f) // DSRA32
2665 {
2666 if(rt1[i]) {
2667 signed char sh,tl;
2668 tl=get_reg(i_regs->regmap,rt1[i]);
2669 sh=get_reg(i_regs->regmap,rs1[i]|64);
2670 if(tl>=0){
2671 assert(sh>=0);
2672 emit_mov(sh,tl);
2673 if(imm[i]>32)
2674 {
2675 emit_sarimm(tl,imm[i]&31,tl);
2676 }
2677 }
2678 }
2679 }
2680}
2681
2682#ifndef shift_assemble
2683void shift_assemble(int i,struct regstat *i_regs)
2684{
2685 printf("Need shift_assemble for this architecture.\n");
2686 exit(1);
2687}
2688#endif
2689
2690void load_assemble(int i,struct regstat *i_regs)
2691{
2692 int s,th,tl,addr,map=-1;
2693 int offset;
2694 int jaddr=0;
2695 int memtarget,c=0;
2696 u_int hr,reglist=0;
2697 th=get_reg(i_regs->regmap,rt1[i]|64);
2698 tl=get_reg(i_regs->regmap,rt1[i]);
2699 s=get_reg(i_regs->regmap,rs1[i]);
2700 offset=imm[i];
2701 for(hr=0;hr<HOST_REGS;hr++) {
2702 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2703 }
2704 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2705 if(s>=0) {
2706 c=(i_regs->wasconst>>s)&1;
2707 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2708 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2709 }
2710 if(offset||s<0||c) addr=tl;
2711 else addr=s;
2712 //printf("load_assemble: c=%d\n",c);
2713 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2714 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2715 if(tl>=0) {
2716 //assert(tl>=0);
2717 //assert(rt1[i]);
2718 reglist&=~(1<<tl);
2719 if(th>=0) reglist&=~(1<<th);
2720 if(!using_tlb) {
2721 if(!c) {
2722//#define R29_HACK 1
2723 #ifdef R29_HACK
2724 // Strmnnrmn's speed hack
2725 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2726 #endif
2727 {
2728 emit_cmpimm(addr,0x800000);
2729 jaddr=(int)out;
2730 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2731 // Hint to branch predictor that the branch is unlikely to be taken
2732 if(rs1[i]>=28)
2733 emit_jno_unlikely(0);
2734 else
2735 #endif
2736 emit_jno(0);
2737 }
2738 }
2739 }else{ // using tlb
2740 int x=0;
2741 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2742 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2743 map=get_reg(i_regs->regmap,TLREG);
2744 assert(map>=0);
2745 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2746 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2747 }
2748 if (opcode[i]==0x20) { // LB
2749 if(!c||memtarget) {
2750 #ifdef HOST_IMM_ADDR32
2751 if(c)
2752 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2753 else
2754 #endif
2755 {
2756 //emit_xorimm(addr,3,tl);
2757 //gen_tlb_addr_r(tl,map);
2758 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2759 int x=0;
2760 if(!c) emit_xorimm(addr,3,tl);
2761 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2762 emit_movsbl_indexed_tlb(x,tl,map,tl);
2763 }
2764 if(jaddr)
2765 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2766 }
2767 else
2768 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2769 }
2770 if (opcode[i]==0x21) { // LH
2771 if(!c||memtarget) {
2772 #ifdef HOST_IMM_ADDR32
2773 if(c)
2774 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2775 else
2776 #endif
2777 {
2778 int x=0;
2779 if(!c) emit_xorimm(addr,2,tl);
2780 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2781 //#ifdef
2782 //emit_movswl_indexed_tlb(x,tl,map,tl);
2783 //else
2784 if(map>=0) {
2785 gen_tlb_addr_r(tl,map);
2786 emit_movswl_indexed(x,tl,tl);
2787 }else
2788 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2789 }
2790 if(jaddr)
2791 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2792 }
2793 else
2794 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2795 }
2796 if (opcode[i]==0x23) { // LW
2797 if(!c||memtarget) {
2798 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2799 #ifdef HOST_IMM_ADDR32
2800 if(c)
2801 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2802 else
2803 #endif
2804 emit_readword_indexed_tlb(0,addr,map,tl);
2805 if(jaddr)
2806 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2807 }
2808 else
2809 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2810 }
2811 if (opcode[i]==0x24) { // LBU
2812 if(!c||memtarget) {
2813 #ifdef HOST_IMM_ADDR32
2814 if(c)
2815 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2816 else
2817 #endif
2818 {
2819 //emit_xorimm(addr,3,tl);
2820 //gen_tlb_addr_r(tl,map);
2821 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2822 int x=0;
2823 if(!c) emit_xorimm(addr,3,tl);
2824 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2825 emit_movzbl_indexed_tlb(x,tl,map,tl);
2826 }
2827 if(jaddr)
2828 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2829 }
2830 else
2831 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2832 }
2833 if (opcode[i]==0x25) { // LHU
2834 if(!c||memtarget) {
2835 #ifdef HOST_IMM_ADDR32
2836 if(c)
2837 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2838 else
2839 #endif
2840 {
2841 int x=0;
2842 if(!c) emit_xorimm(addr,2,tl);
2843 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2844 //#ifdef
2845 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2846 //#else
2847 if(map>=0) {
2848 gen_tlb_addr_r(tl,map);
2849 emit_movzwl_indexed(x,tl,tl);
2850 }else
2851 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2852 if(jaddr)
2853 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2854 }
2855 }
2856 else
2857 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2858 }
2859 if (opcode[i]==0x27) { // LWU
2860 assert(th>=0);
2861 if(!c||memtarget) {
2862 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2863 #ifdef HOST_IMM_ADDR32
2864 if(c)
2865 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2866 else
2867 #endif
2868 emit_readword_indexed_tlb(0,addr,map,tl);
2869 if(jaddr)
2870 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2871 }
2872 else {
2873 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2874 }
2875 emit_zeroreg(th);
2876 }
2877 if (opcode[i]==0x37) { // LD
2878 if(!c||memtarget) {
2879 //gen_tlb_addr_r(tl,map);
2880 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2881 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2882 #ifdef HOST_IMM_ADDR32
2883 if(c)
2884 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2885 else
2886 #endif
2887 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2888 if(jaddr)
2889 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2890 }
2891 else
2892 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2893 }
2894 //emit_storereg(rt1[i],tl); // DEBUG
2895 }
2896 //if(opcode[i]==0x23)
2897 //if(opcode[i]==0x24)
2898 //if(opcode[i]==0x23||opcode[i]==0x24)
2899 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2900 {
2901 //emit_pusha();
2902 save_regs(0x100f);
2903 emit_readword((int)&last_count,ECX);
2904 #ifdef __i386__
2905 if(get_reg(i_regs->regmap,CCREG)<0)
2906 emit_loadreg(CCREG,HOST_CCREG);
2907 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2908 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2909 emit_writeword(HOST_CCREG,(int)&Count);
2910 #endif
2911 #ifdef __arm__
2912 if(get_reg(i_regs->regmap,CCREG)<0)
2913 emit_loadreg(CCREG,0);
2914 else
2915 emit_mov(HOST_CCREG,0);
2916 emit_add(0,ECX,0);
2917 emit_addimm(0,2*ccadj[i],0);
2918 emit_writeword(0,(int)&Count);
2919 #endif
2920 emit_call((int)memdebug);
2921 //emit_popa();
2922 restore_regs(0x100f);
2923 }/**/
2924}
2925
2926#ifndef loadlr_assemble
2927void loadlr_assemble(int i,struct regstat *i_regs)
2928{
2929 printf("Need loadlr_assemble for this architecture.\n");
2930 exit(1);
2931}
2932#endif
2933
2934void store_assemble(int i,struct regstat *i_regs)
2935{
2936 int s,th,tl,map=-1;
2937 int addr,temp;
2938 int offset;
2939 int jaddr=0,jaddr2,type;
2940 int memtarget,c=0;
2941 int agr=AGEN1+(i&1);
2942 u_int hr,reglist=0;
2943 th=get_reg(i_regs->regmap,rs2[i]|64);
2944 tl=get_reg(i_regs->regmap,rs2[i]);
2945 s=get_reg(i_regs->regmap,rs1[i]);
2946 temp=get_reg(i_regs->regmap,agr);
2947 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2948 offset=imm[i];
2949 if(s>=0) {
2950 c=(i_regs->wasconst>>s)&1;
2951 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2952 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2953 }
2954 assert(tl>=0);
2955 assert(temp>=0);
2956 for(hr=0;hr<HOST_REGS;hr++) {
2957 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2958 }
2959 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2960 if(offset||s<0||c) addr=temp;
2961 else addr=s;
2962 if(!using_tlb) {
2963 if(!c) {
2964 #ifdef R29_HACK
2965 // Strmnnrmn's speed hack
2966 memtarget=1;
2967 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2968 #endif
2969 emit_cmpimm(addr,0x800000);
2970 #ifdef DESTRUCTIVE_SHIFT
2971 if(s==addr) emit_mov(s,temp);
2972 #endif
2973 #ifdef R29_HACK
2974 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2975 #endif
2976 {
2977 jaddr=(int)out;
2978 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2979 // Hint to branch predictor that the branch is unlikely to be taken
2980 if(rs1[i]>=28)
2981 emit_jno_unlikely(0);
2982 else
2983 #endif
2984 emit_jno(0);
2985 }
2986 }
2987 }else{ // using tlb
2988 int x=0;
2989 if (opcode[i]==0x28) x=3; // SB
2990 if (opcode[i]==0x29) x=2; // SH
2991 map=get_reg(i_regs->regmap,TLREG);
2992 assert(map>=0);
2993 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
2994 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
2995 }
2996
2997 if (opcode[i]==0x28) { // SB
2998 if(!c||memtarget) {
2999 int x=0;
3000 if(!c) emit_xorimm(addr,3,temp);
3001 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3002 //gen_tlb_addr_w(temp,map);
3003 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3004 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3005 }
3006 type=STOREB_STUB;
3007 }
3008 if (opcode[i]==0x29) { // SH
3009 if(!c||memtarget) {
3010 int x=0;
3011 if(!c) emit_xorimm(addr,2,temp);
3012 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3013 //#ifdef
3014 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3015 //#else
3016 if(map>=0) {
3017 gen_tlb_addr_w(temp,map);
3018 emit_writehword_indexed(tl,x,temp);
3019 }else
3020 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3021 }
3022 type=STOREH_STUB;
3023 }
3024 if (opcode[i]==0x2B) { // SW
3025 if(!c||memtarget)
3026 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3027 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3028 type=STOREW_STUB;
3029 }
3030 if (opcode[i]==0x3F) { // SD
3031 if(!c||memtarget) {
3032 if(rs2[i]) {
3033 assert(th>=0);
3034 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3035 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3036 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3037 }else{
3038 // Store zero
3039 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3040 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3041 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3042 }
3043 }
3044 type=STORED_STUB;
3045 }
3046 if(jaddr) {
3047 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3048 } else if(!memtarget) {
3049 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3050 }
3051 if(!using_tlb) {
3052 if(!c||memtarget) {
3053 #ifdef DESTRUCTIVE_SHIFT
3054 // The x86 shift operation is 'destructive'; it overwrites the
3055 // source register, so we need to make a copy first and use that.
3056 addr=temp;
3057 #endif
3058 #if defined(HOST_IMM8)
3059 int ir=get_reg(i_regs->regmap,INVCP);
3060 assert(ir>=0);
3061 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3062 #else
3063 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3064 #endif
3065 jaddr2=(int)out;
3066 emit_jne(0);
3067 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3068 }
3069 }
3070 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3071 //if(opcode[i]==0x2B || opcode[i]==0x28)
3072 //if(opcode[i]==0x2B || opcode[i]==0x29)
3073 //if(opcode[i]==0x2B)
3074 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3075 {
3076 //emit_pusha();
3077 save_regs(0x100f);
3078 emit_readword((int)&last_count,ECX);
3079 #ifdef __i386__
3080 if(get_reg(i_regs->regmap,CCREG)<0)
3081 emit_loadreg(CCREG,HOST_CCREG);
3082 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3083 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3084 emit_writeword(HOST_CCREG,(int)&Count);
3085 #endif
3086 #ifdef __arm__
3087 if(get_reg(i_regs->regmap,CCREG)<0)
3088 emit_loadreg(CCREG,0);
3089 else
3090 emit_mov(HOST_CCREG,0);
3091 emit_add(0,ECX,0);
3092 emit_addimm(0,2*ccadj[i],0);
3093 emit_writeword(0,(int)&Count);
3094 #endif
3095 emit_call((int)memdebug);
3096 //emit_popa();
3097 restore_regs(0x100f);
3098 }/**/
3099}
3100
3101void storelr_assemble(int i,struct regstat *i_regs)
3102{
3103 int s,th,tl;
3104 int temp;
3105 int temp2;
3106 int offset;
3107 int jaddr=0,jaddr2;
3108 int case1,case2,case3;
3109 int done0,done1,done2;
3110 int memtarget,c=0;
3111 u_int hr,reglist=0;
3112 th=get_reg(i_regs->regmap,rs2[i]|64);
3113 tl=get_reg(i_regs->regmap,rs2[i]);
3114 s=get_reg(i_regs->regmap,rs1[i]);
3115 temp=get_reg(i_regs->regmap,-1);
3116 offset=imm[i];
3117 if(s>=0) {
3118 c=(i_regs->isconst>>s)&1;
3119 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3120 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3121 }
3122 assert(tl>=0);
3123 for(hr=0;hr<HOST_REGS;hr++) {
3124 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3125 }
3126 if(tl>=0) {
3127 assert(temp>=0);
3128 if(!using_tlb) {
3129 if(!c) {
3130 emit_cmpimm(s<0||offset?temp:s,0x800000);
3131 if(!offset&&s!=temp) emit_mov(s,temp);
3132 jaddr=(int)out;
3133 emit_jno(0);
3134 }
3135 else
3136 {
3137 if(!memtarget||!rs1[i]) {
3138 jaddr=(int)out;
3139 emit_jmp(0);
3140 }
3141 }
3142 if((u_int)rdram!=0x80000000)
3143 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3144 }else{ // using tlb
3145 int map=get_reg(i_regs->regmap,TLREG);
3146 assert(map>=0);
3147 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3148 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3149 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3150 if(!jaddr&&!memtarget) {
3151 jaddr=(int)out;
3152 emit_jmp(0);
3153 }
3154 gen_tlb_addr_w(temp,map);
3155 }
3156
3157 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3158 temp2=get_reg(i_regs->regmap,FTEMP);
3159 if(!rs2[i]) temp2=th=tl;
3160 }
3161
3162 emit_testimm(temp,2);
3163 case2=(int)out;
3164 emit_jne(0);
3165 emit_testimm(temp,1);
3166 case1=(int)out;
3167 emit_jne(0);
3168 // 0
3169 if (opcode[i]==0x2A) { // SWL
3170 emit_writeword_indexed(tl,0,temp);
3171 }
3172 if (opcode[i]==0x2E) { // SWR
3173 emit_writebyte_indexed(tl,3,temp);
3174 }
3175 if (opcode[i]==0x2C) { // SDL
3176 emit_writeword_indexed(th,0,temp);
3177 if(rs2[i]) emit_mov(tl,temp2);
3178 }
3179 if (opcode[i]==0x2D) { // SDR
3180 emit_writebyte_indexed(tl,3,temp);
3181 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3182 }
3183 done0=(int)out;
3184 emit_jmp(0);
3185 // 1
3186 set_jump_target(case1,(int)out);
3187 if (opcode[i]==0x2A) { // SWL
3188 // Write 3 msb into three least significant bytes
3189 if(rs2[i]) emit_rorimm(tl,8,tl);
3190 emit_writehword_indexed(tl,-1,temp);
3191 if(rs2[i]) emit_rorimm(tl,16,tl);
3192 emit_writebyte_indexed(tl,1,temp);
3193 if(rs2[i]) emit_rorimm(tl,8,tl);
3194 }
3195 if (opcode[i]==0x2E) { // SWR
3196 // Write two lsb into two most significant bytes
3197 emit_writehword_indexed(tl,1,temp);
3198 }
3199 if (opcode[i]==0x2C) { // SDL
3200 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3201 // Write 3 msb into three least significant bytes
3202 if(rs2[i]) emit_rorimm(th,8,th);
3203 emit_writehword_indexed(th,-1,temp);
3204 if(rs2[i]) emit_rorimm(th,16,th);
3205 emit_writebyte_indexed(th,1,temp);
3206 if(rs2[i]) emit_rorimm(th,8,th);
3207 }
3208 if (opcode[i]==0x2D) { // SDR
3209 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3210 // Write two lsb into two most significant bytes
3211 emit_writehword_indexed(tl,1,temp);
3212 }
3213 done1=(int)out;
3214 emit_jmp(0);
3215 // 2
3216 set_jump_target(case2,(int)out);
3217 emit_testimm(temp,1);
3218 case3=(int)out;
3219 emit_jne(0);
3220 if (opcode[i]==0x2A) { // SWL
3221 // Write two msb into two least significant bytes
3222 if(rs2[i]) emit_rorimm(tl,16,tl);
3223 emit_writehword_indexed(tl,-2,temp);
3224 if(rs2[i]) emit_rorimm(tl,16,tl);
3225 }
3226 if (opcode[i]==0x2E) { // SWR
3227 // Write 3 lsb into three most significant bytes
3228 emit_writebyte_indexed(tl,-1,temp);
3229 if(rs2[i]) emit_rorimm(tl,8,tl);
3230 emit_writehword_indexed(tl,0,temp);
3231 if(rs2[i]) emit_rorimm(tl,24,tl);
3232 }
3233 if (opcode[i]==0x2C) { // SDL
3234 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3235 // Write two msb into two least significant bytes
3236 if(rs2[i]) emit_rorimm(th,16,th);
3237 emit_writehword_indexed(th,-2,temp);
3238 if(rs2[i]) emit_rorimm(th,16,th);
3239 }
3240 if (opcode[i]==0x2D) { // SDR
3241 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3242 // Write 3 lsb into three most significant bytes
3243 emit_writebyte_indexed(tl,-1,temp);
3244 if(rs2[i]) emit_rorimm(tl,8,tl);
3245 emit_writehword_indexed(tl,0,temp);
3246 if(rs2[i]) emit_rorimm(tl,24,tl);
3247 }
3248 done2=(int)out;
3249 emit_jmp(0);
3250 // 3
3251 set_jump_target(case3,(int)out);
3252 if (opcode[i]==0x2A) { // SWL
3253 // Write msb into least significant byte
3254 if(rs2[i]) emit_rorimm(tl,24,tl);
3255 emit_writebyte_indexed(tl,-3,temp);
3256 if(rs2[i]) emit_rorimm(tl,8,tl);
3257 }
3258 if (opcode[i]==0x2E) { // SWR
3259 // Write entire word
3260 emit_writeword_indexed(tl,-3,temp);
3261 }
3262 if (opcode[i]==0x2C) { // SDL
3263 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3264 // Write msb into least significant byte
3265 if(rs2[i]) emit_rorimm(th,24,th);
3266 emit_writebyte_indexed(th,-3,temp);
3267 if(rs2[i]) emit_rorimm(th,8,th);
3268 }
3269 if (opcode[i]==0x2D) { // SDR
3270 if(rs2[i]) emit_mov(th,temp2);
3271 // Write entire word
3272 emit_writeword_indexed(tl,-3,temp);
3273 }
3274 set_jump_target(done0,(int)out);
3275 set_jump_target(done1,(int)out);
3276 set_jump_target(done2,(int)out);
3277 if (opcode[i]==0x2C) { // SDL
3278 emit_testimm(temp,4);
3279 done0=(int)out;
3280 emit_jne(0);
3281 emit_andimm(temp,~3,temp);
3282 emit_writeword_indexed(temp2,4,temp);
3283 set_jump_target(done0,(int)out);
3284 }
3285 if (opcode[i]==0x2D) { // SDR
3286 emit_testimm(temp,4);
3287 done0=(int)out;
3288 emit_jeq(0);
3289 emit_andimm(temp,~3,temp);
3290 emit_writeword_indexed(temp2,-4,temp);
3291 set_jump_target(done0,(int)out);
3292 }
3293 if(!c||!memtarget)
3294 add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3295 }
3296 if(!using_tlb) {
3297 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3298 #if defined(HOST_IMM8)
3299 int ir=get_reg(i_regs->regmap,INVCP);
3300 assert(ir>=0);
3301 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3302 #else
3303 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3304 #endif
3305 jaddr2=(int)out;
3306 emit_jne(0);
3307 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3308 }
3309 /*
3310 emit_pusha();
3311 //save_regs(0x100f);
3312 emit_readword((int)&last_count,ECX);
3313 if(get_reg(i_regs->regmap,CCREG)<0)
3314 emit_loadreg(CCREG,HOST_CCREG);
3315 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3316 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3317 emit_writeword(HOST_CCREG,(int)&Count);
3318 emit_call((int)memdebug);
3319 emit_popa();
3320 //restore_regs(0x100f);
3321 /**/
3322}
3323
3324void c1ls_assemble(int i,struct regstat *i_regs)
3325{
3326 int s,th,tl;
3327 int temp,ar;
3328 int map=-1;
3329 int offset;
3330 int c=0;
3331 int jaddr,jaddr2=0,jaddr3,type;
3332 int agr=AGEN1+(i&1);
3333 u_int hr,reglist=0;
3334 th=get_reg(i_regs->regmap,FTEMP|64);
3335 tl=get_reg(i_regs->regmap,FTEMP);
3336 s=get_reg(i_regs->regmap,rs1[i]);
3337 temp=get_reg(i_regs->regmap,agr);
3338 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3339 offset=imm[i];
3340 assert(tl>=0);
3341 assert(rs1[i]>0);
3342 assert(temp>=0);
3343 for(hr=0;hr<HOST_REGS;hr++) {
3344 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3345 }
3346 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3347 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3348 {
3349 // Loads use a temporary register which we need to save
3350 reglist|=1<<temp;
3351 }
3352 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3353 ar=temp;
3354 else // LWC1/LDC1
3355 ar=tl;
3356 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3357 //else c=(i_regs->wasconst>>s)&1;
3358 if(s>=0) c=(i_regs->wasconst>>s)&1;
3359 // Check cop1 unusable
3360 if(!cop1_usable) {
3361 signed char rs=get_reg(i_regs->regmap,CSREG);
3362 assert(rs>=0);
3363 emit_testimm(rs,0x20000000);
3364 jaddr=(int)out;
3365 emit_jeq(0);
3366 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3367 cop1_usable=1;
3368 }
3369 if (opcode[i]==0x39) { // SWC1 (get float address)
3370 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3371 }
3372 if (opcode[i]==0x3D) { // SDC1 (get double address)
3373 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3374 }
3375 // Generate address + offset
3376 if(!using_tlb) {
3377 if(!c)
3378 emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3379 }
3380 else
3381 {
3382 map=get_reg(i_regs->regmap,TLREG);
3383 assert(map>=0);
3384 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3385 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3386 }
3387 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3388 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3389 }
3390 }
3391 if (opcode[i]==0x39) { // SWC1 (read float)
3392 emit_readword_indexed(0,tl,tl);
3393 }
3394 if (opcode[i]==0x3D) { // SDC1 (read double)
3395 emit_readword_indexed(4,tl,th);
3396 emit_readword_indexed(0,tl,tl);
3397 }
3398 if (opcode[i]==0x31) { // LWC1 (get target address)
3399 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3400 }
3401 if (opcode[i]==0x35) { // LDC1 (get target address)
3402 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3403 }
3404 if(!using_tlb) {
3405 if(!c) {
3406 jaddr2=(int)out;
3407 emit_jno(0);
3408 }
3409 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3410 jaddr2=(int)out;
3411 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3412 }
3413 #ifdef DESTRUCTIVE_SHIFT
3414 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3415 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3416 }
3417 #endif
3418 }else{
3419 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3420 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3421 }
3422 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3423 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3424 }
3425 }
3426 if (opcode[i]==0x31) { // LWC1
3427 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3428 //gen_tlb_addr_r(ar,map);
3429 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3430 #ifdef HOST_IMM_ADDR32
3431 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3432 else
3433 #endif
3434 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3435 type=LOADW_STUB;
3436 }
3437 if (opcode[i]==0x35) { // LDC1
3438 assert(th>=0);
3439 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3440 //gen_tlb_addr_r(ar,map);
3441 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3442 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3443 #ifdef HOST_IMM_ADDR32
3444 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3445 else
3446 #endif
3447 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3448 type=LOADD_STUB;
3449 }
3450 if (opcode[i]==0x39) { // SWC1
3451 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3452 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3453 type=STOREW_STUB;
3454 }
3455 if (opcode[i]==0x3D) { // SDC1
3456 assert(th>=0);
3457 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3458 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3459 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3460 type=STORED_STUB;
3461 }
3462 if(!using_tlb) {
3463 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3464 #ifndef DESTRUCTIVE_SHIFT
3465 temp=offset||c||s<0?ar:s;
3466 #endif
3467 #if defined(HOST_IMM8)
3468 int ir=get_reg(i_regs->regmap,INVCP);
3469 assert(ir>=0);
3470 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3471 #else
3472 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3473 #endif
3474 jaddr3=(int)out;
3475 emit_jne(0);
3476 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3477 }
3478 }
3479 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3480 if (opcode[i]==0x31) { // LWC1 (write float)
3481 emit_writeword_indexed(tl,0,temp);
3482 }
3483 if (opcode[i]==0x35) { // LDC1 (write double)
3484 emit_writeword_indexed(th,4,temp);
3485 emit_writeword_indexed(tl,0,temp);
3486 }
3487 //if(opcode[i]==0x39)
3488 /*if(opcode[i]==0x39||opcode[i]==0x31)
3489 {
3490 emit_pusha();
3491 emit_readword((int)&last_count,ECX);
3492 if(get_reg(i_regs->regmap,CCREG)<0)
3493 emit_loadreg(CCREG,HOST_CCREG);
3494 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3495 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3496 emit_writeword(HOST_CCREG,(int)&Count);
3497 emit_call((int)memdebug);
3498 emit_popa();
3499 }/**/
3500}
3501
3502#ifndef multdiv_assemble
3503void multdiv_assemble(int i,struct regstat *i_regs)
3504{
3505 printf("Need multdiv_assemble for this architecture.\n");
3506 exit(1);
3507}
3508#endif
3509
3510void mov_assemble(int i,struct regstat *i_regs)
3511{
3512 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3513 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3514 assert(rt1[i]>0);
3515 if(rt1[i]) {
3516 signed char sh,sl,th,tl;
3517 th=get_reg(i_regs->regmap,rt1[i]|64);
3518 tl=get_reg(i_regs->regmap,rt1[i]);
3519 //assert(tl>=0);
3520 if(tl>=0) {
3521 sh=get_reg(i_regs->regmap,rs1[i]|64);
3522 sl=get_reg(i_regs->regmap,rs1[i]);
3523 if(sl>=0) emit_mov(sl,tl);
3524 else emit_loadreg(rs1[i],tl);
3525 if(th>=0) {
3526 if(sh>=0) emit_mov(sh,th);
3527 else emit_loadreg(rs1[i]|64,th);
3528 }
3529 }
3530 }
3531}
3532
3533#ifndef fconv_assemble
3534void fconv_assemble(int i,struct regstat *i_regs)
3535{
3536 printf("Need fconv_assemble for this architecture.\n");
3537 exit(1);
3538}
3539#endif
3540
3541#if 0
3542void float_assemble(int i,struct regstat *i_regs)
3543{
3544 printf("Need float_assemble for this architecture.\n");
3545 exit(1);
3546}
3547#endif
3548
3549void syscall_assemble(int i,struct regstat *i_regs)
3550{
3551 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3552 assert(ccreg==HOST_CCREG);
3553 assert(!is_delayslot);
3554 emit_movimm(start+i*4,EAX); // Get PC
3555 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3556 emit_jmp((int)jump_syscall);
3557}
3558
3559void ds_assemble(int i,struct regstat *i_regs)
3560{
3561 is_delayslot=1;
3562 switch(itype[i]) {
3563 case ALU:
3564 alu_assemble(i,i_regs);break;
3565 case IMM16:
3566 imm16_assemble(i,i_regs);break;
3567 case SHIFT:
3568 shift_assemble(i,i_regs);break;
3569 case SHIFTIMM:
3570 shiftimm_assemble(i,i_regs);break;
3571 case LOAD:
3572 load_assemble(i,i_regs);break;
3573 case LOADLR:
3574 loadlr_assemble(i,i_regs);break;
3575 case STORE:
3576 store_assemble(i,i_regs);break;
3577 case STORELR:
3578 storelr_assemble(i,i_regs);break;
3579 case COP0:
3580 cop0_assemble(i,i_regs);break;
3581 case COP1:
3582 cop1_assemble(i,i_regs);break;
3583 case C1LS:
3584 c1ls_assemble(i,i_regs);break;
3585 case FCONV:
3586 fconv_assemble(i,i_regs);break;
3587 case FLOAT:
3588 float_assemble(i,i_regs);break;
3589 case FCOMP:
3590 fcomp_assemble(i,i_regs);break;
3591 case MULTDIV:
3592 multdiv_assemble(i,i_regs);break;
3593 case MOV:
3594 mov_assemble(i,i_regs);break;
3595 case SYSCALL:
3596 case SPAN:
3597 case UJUMP:
3598 case RJUMP:
3599 case CJUMP:
3600 case SJUMP:
3601 case FJUMP:
3602 printf("Jump in the delay slot. This is probably a bug.\n");
3603 }
3604 is_delayslot=0;
3605}
3606
3607// Is the branch target a valid internal jump?
3608int internal_branch(uint64_t i_is32,int addr)
3609{
3610 if(addr&1) return 0; // Indirect (register) jump
3611 if(addr>=start && addr<start+slen*4-4)
3612 {
3613 int t=(addr-start)>>2;
3614 // Delay slots are not valid branch targets
3615 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3616 // 64 -> 32 bit transition requires a recompile
3617 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3618 {
3619 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3620 else printf("optimizable: yes\n");
3621 }*/
3622 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3623 if(requires_32bit[t]&~i_is32) return 0;
3624 else return 1;
3625 }
3626 return 0;
3627}
3628
3629#ifndef wb_invalidate
3630void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3631 uint64_t u,uint64_t uu)
3632{
3633 int hr;
3634 for(hr=0;hr<HOST_REGS;hr++) {
3635 if(hr!=EXCLUDE_REG) {
3636 if(pre[hr]!=entry[hr]) {
3637 if(pre[hr]>=0) {
3638 if((dirty>>hr)&1) {
3639 if(get_reg(entry,pre[hr])<0) {
3640 if(pre[hr]<64) {
3641 if(!((u>>pre[hr])&1)) {
3642 emit_storereg(pre[hr],hr);
3643 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3644 emit_sarimm(hr,31,hr);
3645 emit_storereg(pre[hr]|64,hr);
3646 }
3647 }
3648 }else{
3649 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3650 emit_storereg(pre[hr],hr);
3651 }
3652 }
3653 }
3654 }
3655 }
3656 }
3657 }
3658 }
3659 // Move from one register to another (no writeback)
3660 for(hr=0;hr<HOST_REGS;hr++) {
3661 if(hr!=EXCLUDE_REG) {
3662 if(pre[hr]!=entry[hr]) {
3663 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3664 int nr;
3665 if((nr=get_reg(entry,pre[hr]))>=0) {
3666 emit_mov(hr,nr);
3667 }
3668 }
3669 }
3670 }
3671 }
3672}
3673#endif
3674
3675// Load the specified registers
3676// This only loads the registers given as arguments because
3677// we don't want to load things that will be overwritten
3678void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3679{
3680 int hr;
3681 // Load 32-bit regs
3682 for(hr=0;hr<HOST_REGS;hr++) {
3683 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3684 if(entry[hr]!=regmap[hr]) {
3685 if(regmap[hr]==rs1||regmap[hr]==rs2)
3686 {
3687 if(regmap[hr]==0) {
3688 emit_zeroreg(hr);
3689 }
3690 else
3691 {
3692 emit_loadreg(regmap[hr],hr);
3693 }
3694 }
3695 }
3696 }
3697 }
3698 //Load 64-bit regs
3699 for(hr=0;hr<HOST_REGS;hr++) {
3700 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3701 if(entry[hr]!=regmap[hr]) {
3702 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3703 {
3704 assert(regmap[hr]!=64);
3705 if((is32>>(regmap[hr]&63))&1) {
3706 int lr=get_reg(regmap,regmap[hr]-64);
3707 if(lr>=0)
3708 emit_sarimm(lr,31,hr);
3709 else
3710 emit_loadreg(regmap[hr],hr);
3711 }
3712 else
3713 {
3714 emit_loadreg(regmap[hr],hr);
3715 }
3716 }
3717 }
3718 }
3719 }
3720}
3721
3722// Load registers prior to the start of a loop
3723// so that they are not loaded within the loop
3724static void loop_preload(signed char pre[],signed char entry[])
3725{
3726 int hr;
3727 for(hr=0;hr<HOST_REGS;hr++) {
3728 if(hr!=EXCLUDE_REG) {
3729 if(pre[hr]!=entry[hr]) {
3730 if(entry[hr]>=0) {
3731 if(get_reg(pre,entry[hr])<0) {
3732 assem_debug("loop preload:\n");
3733 //printf("loop preload: %d\n",hr);
3734 if(entry[hr]==0) {
3735 emit_zeroreg(hr);
3736 }
3737 else if(entry[hr]<TEMPREG)
3738 {
3739 emit_loadreg(entry[hr],hr);
3740 }
3741 else if(entry[hr]-64<TEMPREG)
3742 {
3743 emit_loadreg(entry[hr],hr);
3744 }
3745 }
3746 }
3747 }
3748 }
3749 }
3750}
3751
3752// Generate address for load/store instruction
3753void address_generation(int i,struct regstat *i_regs,signed char entry[])
3754{
3755 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
3756 int ra;
3757 int agr=AGEN1+(i&1);
3758 int mgr=MGEN1+(i&1);
3759 if(itype[i]==LOAD) {
3760 ra=get_reg(i_regs->regmap,rt1[i]);
3761 //if(rt1[i]) assert(ra>=0);
3762 }
3763 if(itype[i]==LOADLR) {
3764 ra=get_reg(i_regs->regmap,FTEMP);
3765 }
3766 if(itype[i]==STORE||itype[i]==STORELR) {
3767 ra=get_reg(i_regs->regmap,agr);
3768 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3769 }
3770 if(itype[i]==C1LS) {
3771 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3772 ra=get_reg(i_regs->regmap,FTEMP);
3773 else { // SWC1/SDC1
3774 ra=get_reg(i_regs->regmap,agr);
3775 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3776 }
3777 }
3778 int rs=get_reg(i_regs->regmap,rs1[i]);
3779 int rm=get_reg(i_regs->regmap,TLREG);
3780 if(ra>=0) {
3781 int offset=imm[i];
3782 int c=(i_regs->wasconst>>rs)&1;
3783 if(rs1[i]==0) {
3784 // Using r0 as a base address
3785 /*if(rm>=0) {
3786 if(!entry||entry[rm]!=mgr) {
3787 generate_map_const(offset,rm);
3788 } // else did it in the previous cycle
3789 }*/
3790 if(!entry||entry[ra]!=agr) {
3791 if (opcode[i]==0x22||opcode[i]==0x26) {
3792 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3793 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3794 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3795 }else{
3796 emit_movimm(offset,ra);
3797 }
3798 } // else did it in the previous cycle
3799 }
3800 else if(rs<0) {
3801 if(!entry||entry[ra]!=rs1[i])
3802 emit_loadreg(rs1[i],ra);
3803 //if(!entry||entry[ra]!=rs1[i])
3804 // printf("poor load scheduling!\n");
3805 }
3806 else if(c) {
3807 if(rm>=0) {
3808 if(!entry||entry[rm]!=mgr) {
3809 if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
3810 // Stores to memory go thru the mapper to detect self-modifying
3811 // code, loads don't.
3812 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
3813 (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
3814 generate_map_const(constmap[i][rs]+offset,rm);
3815 }else{
3816 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
3817 generate_map_const(constmap[i][rs]+offset,rm);
3818 }
3819 }
3820 }
3821 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3822 if(!entry||entry[ra]!=agr) {
3823 if (opcode[i]==0x22||opcode[i]==0x26) {
3824 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3825 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3826 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3827 }else{
3828 #ifdef HOST_IMM_ADDR32
3829 if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
3830 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
3831 #endif
3832 emit_movimm(constmap[i][rs]+offset,ra);
3833 }
3834 } // else did it in the previous cycle
3835 } // else load_consts already did it
3836 }
3837 if(offset&&!c&&rs1[i]) {
3838 if(rs>=0) {
3839 emit_addimm(rs,offset,ra);
3840 }else{
3841 emit_addimm(ra,offset,ra);
3842 }
3843 }
3844 }
3845 }
3846 // Preload constants for next instruction
3847 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
3848 int agr,ra;
3849 #ifndef HOST_IMM_ADDR32
3850 // Mapper entry
3851 agr=MGEN1+((i+1)&1);
3852 ra=get_reg(i_regs->regmap,agr);
3853 if(ra>=0) {
3854 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3855 int offset=imm[i+1];
3856 int c=(regs[i+1].wasconst>>rs)&1;
3857 if(c) {
3858 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
3859 // Stores to memory go thru the mapper to detect self-modifying
3860 // code, loads don't.
3861 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
3862 (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
3863 generate_map_const(constmap[i+1][rs]+offset,ra);
3864 }else{
3865 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
3866 generate_map_const(constmap[i+1][rs]+offset,ra);
3867 }
3868 }
3869 /*else if(rs1[i]==0) {
3870 generate_map_const(offset,ra);
3871 }*/
3872 }
3873 #endif
3874 // Actual address
3875 agr=AGEN1+((i+1)&1);
3876 ra=get_reg(i_regs->regmap,agr);
3877 if(ra>=0) {
3878 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3879 int offset=imm[i+1];
3880 int c=(regs[i+1].wasconst>>rs)&1;
3881 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3882 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3883 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3884 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3885 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3886 }else{
3887 #ifdef HOST_IMM_ADDR32
3888 if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
3889 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
3890 #endif
3891 emit_movimm(constmap[i+1][rs]+offset,ra);
3892 }
3893 }
3894 else if(rs1[i+1]==0) {
3895 // Using r0 as a base address
3896 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3897 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3898 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3899 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3900 }else{
3901 emit_movimm(offset,ra);
3902 }
3903 }
3904 }
3905 }
3906}
3907
3908int get_final_value(int hr, int i, int *value)
3909{
3910 int reg=regs[i].regmap[hr];
3911 while(i<slen-1) {
3912 if(regs[i+1].regmap[hr]!=reg) break;
3913 if(!((regs[i+1].isconst>>hr)&1)) break;
3914 if(bt[i+1]) break;
3915 i++;
3916 }
3917 if(i<slen-1) {
3918 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3919 *value=constmap[i][hr];
3920 return 1;
3921 }
3922 if(!bt[i+1]) {
3923 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3924 // Load in delay slot, out-of-order execution
3925 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3926 {
3927 #ifdef HOST_IMM_ADDR32
3928 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
3929 #endif
3930 // Precompute load address
3931 *value=constmap[i][hr]+imm[i+2];
3932 return 1;
3933 }
3934 }
3935 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3936 {
3937 #ifdef HOST_IMM_ADDR32
3938 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
3939 #endif
3940 // Precompute load address
3941 *value=constmap[i][hr]+imm[i+1];
3942 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3943 return 1;
3944 }
3945 }
3946 }
3947 *value=constmap[i][hr];
3948 //printf("c=%x\n",(int)constmap[i][hr]);
3949 if(i==slen-1) return 1;
3950 if(reg<64) {
3951 return !((unneeded_reg[i+1]>>reg)&1);
3952 }else{
3953 return !((unneeded_reg_upper[i+1]>>reg)&1);
3954 }
3955}
3956
3957// Load registers with known constants
3958void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3959{
3960 int hr;
3961 // Load 32-bit regs
3962 for(hr=0;hr<HOST_REGS;hr++) {
3963 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3964 //if(entry[hr]!=regmap[hr]) {
3965 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3966 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3967 int value;
3968 if(get_final_value(hr,i,&value)) {
3969 if(value==0) {
3970 emit_zeroreg(hr);
3971 }
3972 else {
3973 emit_movimm(value,hr);
3974 }
3975 }
3976 }
3977 }
3978 }
3979 }
3980 // Load 64-bit regs
3981 for(hr=0;hr<HOST_REGS;hr++) {
3982 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3983 //if(entry[hr]!=regmap[hr]) {
3984 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3985 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3986 if((is32>>(regmap[hr]&63))&1) {
3987 int lr=get_reg(regmap,regmap[hr]-64);
3988 assert(lr>=0);
3989 emit_sarimm(lr,31,hr);
3990 }
3991 else
3992 {
3993 int value;
3994 if(get_final_value(hr,i,&value)) {
3995 if(value==0) {
3996 emit_zeroreg(hr);
3997 }
3998 else {
3999 emit_movimm(value,hr);
4000 }
4001 }
4002 }
4003 }
4004 }
4005 }
4006 }
4007}
4008void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4009{
4010 int hr;
4011 // Load 32-bit regs
4012 for(hr=0;hr<HOST_REGS;hr++) {
4013 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4014 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4015 int value=constmap[i][hr];
4016 if(value==0) {
4017 emit_zeroreg(hr);
4018 }
4019 else {
4020 emit_movimm(value,hr);
4021 }
4022 }
4023 }
4024 }
4025 // Load 64-bit regs
4026 for(hr=0;hr<HOST_REGS;hr++) {
4027 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4028 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4029 if((is32>>(regmap[hr]&63))&1) {
4030 int lr=get_reg(regmap,regmap[hr]-64);
4031 assert(lr>=0);
4032 emit_sarimm(lr,31,hr);
4033 }
4034 else
4035 {
4036 int value=constmap[i][hr];
4037 if(value==0) {
4038 emit_zeroreg(hr);
4039 }
4040 else {
4041 emit_movimm(value,hr);
4042 }
4043 }
4044 }
4045 }
4046 }
4047}
4048
4049// Write out all dirty registers (except cycle count)
4050void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4051{
4052 int hr;
4053 for(hr=0;hr<HOST_REGS;hr++) {
4054 if(hr!=EXCLUDE_REG) {
4055 if(i_regmap[hr]>0) {
4056 if(i_regmap[hr]!=CCREG) {
4057 if((i_dirty>>hr)&1) {
4058 if(i_regmap[hr]<64) {
4059 emit_storereg(i_regmap[hr],hr);
4060 if( ((i_is32>>i_regmap[hr])&1) ) {
4061 #ifdef DESTRUCTIVE_WRITEBACK
4062 emit_sarimm(hr,31,hr);
4063 emit_storereg(i_regmap[hr]|64,hr);
4064 #else
4065 emit_sarimm(hr,31,HOST_TEMPREG);
4066 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4067 #endif
4068 }
4069 }else{
4070 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4071 emit_storereg(i_regmap[hr],hr);
4072 }
4073 }
4074 }
4075 }
4076 }
4077 }
4078 }
4079}
4080// Write out dirty registers that we need to reload (pair with load_needed_regs)
4081// This writes the registers not written by store_regs_bt
4082void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4083{
4084 int hr;
4085 int t=(addr-start)>>2;
4086 for(hr=0;hr<HOST_REGS;hr++) {
4087 if(hr!=EXCLUDE_REG) {
4088 if(i_regmap[hr]>0) {
4089 if(i_regmap[hr]!=CCREG) {
4090 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4091 if((i_dirty>>hr)&1) {
4092 if(i_regmap[hr]<64) {
4093 emit_storereg(i_regmap[hr],hr);
4094 if( ((i_is32>>i_regmap[hr])&1) ) {
4095 #ifdef DESTRUCTIVE_WRITEBACK
4096 emit_sarimm(hr,31,hr);
4097 emit_storereg(i_regmap[hr]|64,hr);
4098 #else
4099 emit_sarimm(hr,31,HOST_TEMPREG);
4100 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4101 #endif
4102 }
4103 }else{
4104 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4105 emit_storereg(i_regmap[hr],hr);
4106 }
4107 }
4108 }
4109 }
4110 }
4111 }
4112 }
4113 }
4114}
4115
4116// Load all registers (except cycle count)
4117void load_all_regs(signed char i_regmap[])
4118{
4119 int hr;
4120 for(hr=0;hr<HOST_REGS;hr++) {
4121 if(hr!=EXCLUDE_REG) {
4122 if(i_regmap[hr]==0) {
4123 emit_zeroreg(hr);
4124 }
4125 else
4126 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4127 {
4128 emit_loadreg(i_regmap[hr],hr);
4129 }
4130 }
4131 }
4132}
4133
4134// Load all current registers also needed by next instruction
4135void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4136{
4137 int hr;
4138 for(hr=0;hr<HOST_REGS;hr++) {
4139 if(hr!=EXCLUDE_REG) {
4140 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4141 if(i_regmap[hr]==0) {
4142 emit_zeroreg(hr);
4143 }
4144 else
4145 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4146 {
4147 emit_loadreg(i_regmap[hr],hr);
4148 }
4149 }
4150 }
4151 }
4152}
4153
4154// Load all regs, storing cycle count if necessary
4155void load_regs_entry(int t)
4156{
4157 int hr;
4158 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4159 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4160 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4161 emit_storereg(CCREG,HOST_CCREG);
4162 }
4163 // Load 32-bit regs
4164 for(hr=0;hr<HOST_REGS;hr++) {
4165 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4166 if(regs[t].regmap_entry[hr]==0) {
4167 emit_zeroreg(hr);
4168 }
4169 else if(regs[t].regmap_entry[hr]!=CCREG)
4170 {
4171 emit_loadreg(regs[t].regmap_entry[hr],hr);
4172 }
4173 }
4174 }
4175 // Load 64-bit regs
4176 for(hr=0;hr<HOST_REGS;hr++) {
4177 if(regs[t].regmap_entry[hr]>=64) {
4178 assert(regs[t].regmap_entry[hr]!=64);
4179 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4180 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4181 if(lr<0) {
4182 emit_loadreg(regs[t].regmap_entry[hr],hr);
4183 }
4184 else
4185 {
4186 emit_sarimm(lr,31,hr);
4187 }
4188 }
4189 else
4190 {
4191 emit_loadreg(regs[t].regmap_entry[hr],hr);
4192 }
4193 }
4194 }
4195}
4196
4197// Store dirty registers prior to branch
4198void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4199{
4200 if(internal_branch(i_is32,addr))
4201 {
4202 int t=(addr-start)>>2;
4203 int hr;
4204 for(hr=0;hr<HOST_REGS;hr++) {
4205 if(hr!=EXCLUDE_REG) {
4206 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4207 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4208 if((i_dirty>>hr)&1) {
4209 if(i_regmap[hr]<64) {
4210 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4211 emit_storereg(i_regmap[hr],hr);
4212 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4213 #ifdef DESTRUCTIVE_WRITEBACK
4214 emit_sarimm(hr,31,hr);
4215 emit_storereg(i_regmap[hr]|64,hr);
4216 #else
4217 emit_sarimm(hr,31,HOST_TEMPREG);
4218 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4219 #endif
4220 }
4221 }
4222 }else{
4223 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4224 emit_storereg(i_regmap[hr],hr);
4225 }
4226 }
4227 }
4228 }
4229 }
4230 }
4231 }
4232 }
4233 else
4234 {
4235 // Branch out of this block, write out all dirty regs
4236 wb_dirtys(i_regmap,i_is32,i_dirty);
4237 }
4238}
4239
4240// Load all needed registers for branch target
4241void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4242{
4243 //if(addr>=start && addr<(start+slen*4))
4244 if(internal_branch(i_is32,addr))
4245 {
4246 int t=(addr-start)>>2;
4247 int hr;
4248 // Store the cycle count before loading something else
4249 if(i_regmap[HOST_CCREG]!=CCREG) {
4250 assert(i_regmap[HOST_CCREG]==-1);
4251 }
4252 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4253 emit_storereg(CCREG,HOST_CCREG);
4254 }
4255 // Load 32-bit regs
4256 for(hr=0;hr<HOST_REGS;hr++) {
4257 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4258 #ifdef DESTRUCTIVE_WRITEBACK
4259 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4260 #else
4261 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4262 #endif
4263 if(regs[t].regmap_entry[hr]==0) {
4264 emit_zeroreg(hr);
4265 }
4266 else if(regs[t].regmap_entry[hr]!=CCREG)
4267 {
4268 emit_loadreg(regs[t].regmap_entry[hr],hr);
4269 }
4270 }
4271 }
4272 }
4273 //Load 64-bit regs
4274 for(hr=0;hr<HOST_REGS;hr++) {
4275 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4276 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4277 assert(regs[t].regmap_entry[hr]!=64);
4278 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4279 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4280 if(lr<0) {
4281 emit_loadreg(regs[t].regmap_entry[hr],hr);
4282 }
4283 else
4284 {
4285 emit_sarimm(lr,31,hr);
4286 }
4287 }
4288 else
4289 {
4290 emit_loadreg(regs[t].regmap_entry[hr],hr);
4291 }
4292 }
4293 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4294 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4295 assert(lr>=0);
4296 emit_sarimm(lr,31,hr);
4297 }
4298 }
4299 }
4300 }
4301}
4302
4303int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4304{
4305 if(addr>=start && addr<start+slen*4-4)
4306 {
4307 int t=(addr-start)>>2;
4308 int hr;
4309 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4310 for(hr=0;hr<HOST_REGS;hr++)
4311 {
4312 if(hr!=EXCLUDE_REG)
4313 {
4314 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4315 {
4316 if(regs[t].regmap_entry[hr]!=-1)
4317 {
4318 return 0;
4319 }
4320 else
4321 if((i_dirty>>hr)&1)
4322 {
4323 if(i_regmap[hr]<64)
4324 {
4325 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4326 return 0;
4327 }
4328 else
4329 {
4330 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4331 return 0;
4332 }
4333 }
4334 }
4335 else // Same register but is it 32-bit or dirty?
4336 if(i_regmap[hr]>=0)
4337 {
4338 if(!((regs[t].dirty>>hr)&1))
4339 {
4340 if((i_dirty>>hr)&1)
4341 {
4342 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4343 {
4344 //printf("%x: dirty no match\n",addr);
4345 return 0;
4346 }
4347 }
4348 }
4349 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4350 {
4351 //printf("%x: is32 no match\n",addr);
4352 return 0;
4353 }
4354 }
4355 }
4356 }
4357 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4358 if(requires_32bit[t]&~i_is32) return 0;
4359 // Delay slots are not valid branch targets
4360 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4361 // Delay slots require additional processing, so do not match
4362 if(is_ds[t]) return 0;
4363 }
4364 else
4365 {
4366 int hr;
4367 for(hr=0;hr<HOST_REGS;hr++)
4368 {
4369 if(hr!=EXCLUDE_REG)
4370 {
4371 if(i_regmap[hr]>=0)
4372 {
4373 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4374 {
4375 if((i_dirty>>hr)&1)
4376 {
4377 return 0;
4378 }
4379 }
4380 }
4381 }
4382 }
4383 }
4384 return 1;
4385}
4386
4387// Used when a branch jumps into the delay slot of another branch
4388void ds_assemble_entry(int i)
4389{
4390 int t=(ba[i]-start)>>2;
4391 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4392 assem_debug("Assemble delay slot at %x\n",ba[i]);
4393 assem_debug("<->\n");
4394 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4395 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4396 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4397 address_generation(t,&regs[t],regs[t].regmap_entry);
4398 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
4399 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4400 cop1_usable=0;
4401 is_delayslot=0;
4402 switch(itype[t]) {
4403 case ALU:
4404 alu_assemble(t,&regs[t]);break;
4405 case IMM16:
4406 imm16_assemble(t,&regs[t]);break;
4407 case SHIFT:
4408 shift_assemble(t,&regs[t]);break;
4409 case SHIFTIMM:
4410 shiftimm_assemble(t,&regs[t]);break;
4411 case LOAD:
4412 load_assemble(t,&regs[t]);break;
4413 case LOADLR:
4414 loadlr_assemble(t,&regs[t]);break;
4415 case STORE:
4416 store_assemble(t,&regs[t]);break;
4417 case STORELR:
4418 storelr_assemble(t,&regs[t]);break;
4419 case COP0:
4420 cop0_assemble(t,&regs[t]);break;
4421 case COP1:
4422 cop1_assemble(t,&regs[t]);break;
4423 case C1LS:
4424 c1ls_assemble(t,&regs[t]);break;
4425 case FCONV:
4426 fconv_assemble(t,&regs[t]);break;
4427 case FLOAT:
4428 float_assemble(t,&regs[t]);break;
4429 case FCOMP:
4430 fcomp_assemble(t,&regs[t]);break;
4431 case MULTDIV:
4432 multdiv_assemble(t,&regs[t]);break;
4433 case MOV:
4434 mov_assemble(t,&regs[t]);break;
4435 case SYSCALL:
4436 case SPAN:
4437 case UJUMP:
4438 case RJUMP:
4439 case CJUMP:
4440 case SJUMP:
4441 case FJUMP:
4442 printf("Jump in the delay slot. This is probably a bug.\n");
4443 }
4444 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4445 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4446 if(internal_branch(regs[t].is32,ba[i]+4))
4447 assem_debug("branch: internal\n");
4448 else
4449 assem_debug("branch: external\n");
4450 assert(internal_branch(regs[t].is32,ba[i]+4));
4451 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4452 emit_jmp(0);
4453}
4454
4455void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4456{
4457 int count;
4458 int jaddr;
4459 int idle=0;
4460 if(itype[i]==RJUMP)
4461 {
4462 *adj=0;
4463 }
4464 //if(ba[i]>=start && ba[i]<(start+slen*4))
4465 if(internal_branch(branch_regs[i].is32,ba[i]))
4466 {
4467 int t=(ba[i]-start)>>2;
4468 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4469 else *adj=ccadj[t];
4470 }
4471 else
4472 {
4473 *adj=0;
4474 }
4475 count=ccadj[i];
4476 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4477 // Idle loop
4478 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4479 idle=(int)out;
4480 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4481 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4482 jaddr=(int)out;
4483 emit_jmp(0);
4484 }
4485 else if(*adj==0||invert) {
4486 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4487 jaddr=(int)out;
4488 emit_jns(0);
4489 }
4490 else
4491 {
4492 emit_cmpimm(HOST_CCREG,-2*(count+2));
4493 jaddr=(int)out;
4494 emit_jns(0);
4495 }
4496 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4497}
4498
4499void do_ccstub(int n)
4500{
4501 literal_pool(256);
4502 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4503 set_jump_target(stubs[n][1],(int)out);
4504 int i=stubs[n][4];
4505 if(stubs[n][6]==NULLDS) {
4506 // Delay slot instruction is nullified ("likely" branch)
4507 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4508 }
4509 else if(stubs[n][6]!=TAKEN) {
4510 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4511 }
4512 else {
4513 if(internal_branch(branch_regs[i].is32,ba[i]))
4514 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4515 }
4516 if(stubs[n][5]!=-1)
4517 {
4518 // Save PC as return address
4519 emit_movimm(stubs[n][5],EAX);
4520 emit_writeword(EAX,(int)&pcaddr);
4521 }
4522 else
4523 {
4524 // Return address depends on which way the branch goes
4525 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4526 {
4527 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4528 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4529 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4530 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4531 if(rs1[i]==0)
4532 {
4533 s1l=s2l;s1h=s2h;
4534 s2l=s2h=-1;
4535 }
4536 else if(rs2[i]==0)
4537 {
4538 s2l=s2h=-1;
4539 }
4540 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4541 s1h=s2h=-1;
4542 }
4543 assert(s1l>=0);
4544 #ifdef DESTRUCTIVE_WRITEBACK
4545 if(rs1[i]) {
4546 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4547 emit_loadreg(rs1[i],s1l);
4548 }
4549 else {
4550 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4551 emit_loadreg(rs2[i],s1l);
4552 }
4553 if(s2l>=0)
4554 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4555 emit_loadreg(rs2[i],s2l);
4556 #endif
4557 int hr=0;
4558 int addr,alt,ntaddr;
4559 while(hr<HOST_REGS)
4560 {
4561 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4562 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4563 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4564 {
4565 addr=hr++;break;
4566 }
4567 hr++;
4568 }
4569 while(hr<HOST_REGS)
4570 {
4571 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4572 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4573 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4574 {
4575 alt=hr++;break;
4576 }
4577 hr++;
4578 }
4579 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4580 {
4581 while(hr<HOST_REGS)
4582 {
4583 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4584 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4585 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4586 {
4587 ntaddr=hr;break;
4588 }
4589 hr++;
4590 }
4591 assert(hr<HOST_REGS);
4592 }
4593 if((opcode[i]&0x2f)==4) // BEQ
4594 {
4595 #ifdef HAVE_CMOV_IMM
4596 if(s1h<0) {
4597 if(s2l>=0) emit_cmp(s1l,s2l);
4598 else emit_test(s1l,s1l);
4599 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4600 }
4601 else
4602 #endif
4603 {
4604 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4605 if(s1h>=0) {
4606 if(s2h>=0) emit_cmp(s1h,s2h);
4607 else emit_test(s1h,s1h);
4608 emit_cmovne_reg(alt,addr);
4609 }
4610 if(s2l>=0) emit_cmp(s1l,s2l);
4611 else emit_test(s1l,s1l);
4612 emit_cmovne_reg(alt,addr);
4613 }
4614 }
4615 if((opcode[i]&0x2f)==5) // BNE
4616 {
4617 #ifdef HAVE_CMOV_IMM
4618 if(s1h<0) {
4619 if(s2l>=0) emit_cmp(s1l,s2l);
4620 else emit_test(s1l,s1l);
4621 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4622 }
4623 else
4624 #endif
4625 {
4626 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4627 if(s1h>=0) {
4628 if(s2h>=0) emit_cmp(s1h,s2h);
4629 else emit_test(s1h,s1h);
4630 emit_cmovne_reg(alt,addr);
4631 }
4632 if(s2l>=0) emit_cmp(s1l,s2l);
4633 else emit_test(s1l,s1l);
4634 emit_cmovne_reg(alt,addr);
4635 }
4636 }
4637 if((opcode[i]&0x2f)==6) // BLEZ
4638 {
4639 //emit_movimm(ba[i],alt);
4640 //emit_movimm(start+i*4+8,addr);
4641 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4642 emit_cmpimm(s1l,1);
4643 if(s1h>=0) emit_mov(addr,ntaddr);
4644 emit_cmovl_reg(alt,addr);
4645 if(s1h>=0) {
4646 emit_test(s1h,s1h);
4647 emit_cmovne_reg(ntaddr,addr);
4648 emit_cmovs_reg(alt,addr);
4649 }
4650 }
4651 if((opcode[i]&0x2f)==7) // BGTZ
4652 {
4653 //emit_movimm(ba[i],addr);
4654 //emit_movimm(start+i*4+8,ntaddr);
4655 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4656 emit_cmpimm(s1l,1);
4657 if(s1h>=0) emit_mov(addr,alt);
4658 emit_cmovl_reg(ntaddr,addr);
4659 if(s1h>=0) {
4660 emit_test(s1h,s1h);
4661 emit_cmovne_reg(alt,addr);
4662 emit_cmovs_reg(ntaddr,addr);
4663 }
4664 }
4665 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4666 {
4667 //emit_movimm(ba[i],alt);
4668 //emit_movimm(start+i*4+8,addr);
4669 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4670 if(s1h>=0) emit_test(s1h,s1h);
4671 else emit_test(s1l,s1l);
4672 emit_cmovs_reg(alt,addr);
4673 }
4674 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4675 {
4676 //emit_movimm(ba[i],addr);
4677 //emit_movimm(start+i*4+8,alt);
4678 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4679 if(s1h>=0) emit_test(s1h,s1h);
4680 else emit_test(s1l,s1l);
4681 emit_cmovs_reg(alt,addr);
4682 }
4683 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4684 if(source[i]&0x10000) // BC1T
4685 {
4686 //emit_movimm(ba[i],alt);
4687 //emit_movimm(start+i*4+8,addr);
4688 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4689 emit_testimm(s1l,0x800000);
4690 emit_cmovne_reg(alt,addr);
4691 }
4692 else // BC1F
4693 {
4694 //emit_movimm(ba[i],addr);
4695 //emit_movimm(start+i*4+8,alt);
4696 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4697 emit_testimm(s1l,0x800000);
4698 emit_cmovne_reg(alt,addr);
4699 }
4700 }
4701 emit_writeword(addr,(int)&pcaddr);
4702 }
4703 else
4704 if(itype[i]==RJUMP)
4705 {
4706 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4707 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4708 r=get_reg(branch_regs[i].regmap,RTEMP);
4709 }
4710 emit_writeword(r,(int)&pcaddr);
4711 }
4712 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4713 }
4714 // Update cycle count
4715 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4716 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4717 emit_call((int)cc_interrupt);
4718 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4719 if(stubs[n][6]==TAKEN) {
4720 if(internal_branch(branch_regs[i].is32,ba[i]))
4721 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4722 else if(itype[i]==RJUMP) {
4723 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4724 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4725 else
4726 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4727 }
4728 }else if(stubs[n][6]==NOTTAKEN) {
4729 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4730 else load_all_regs(branch_regs[i].regmap);
4731 }else if(stubs[n][6]==NULLDS) {
4732 // Delay slot instruction is nullified ("likely" branch)
4733 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4734 else load_all_regs(regs[i].regmap);
4735 }else{
4736 load_all_regs(branch_regs[i].regmap);
4737 }
4738 emit_jmp(stubs[n][2]); // return address
4739
4740 /* This works but uses a lot of memory...
4741 emit_readword((int)&last_count,ECX);
4742 emit_add(HOST_CCREG,ECX,EAX);
4743 emit_writeword(EAX,(int)&Count);
4744 emit_call((int)gen_interupt);
4745 emit_readword((int)&Count,HOST_CCREG);
4746 emit_readword((int)&next_interupt,EAX);
4747 emit_readword((int)&pending_exception,EBX);
4748 emit_writeword(EAX,(int)&last_count);
4749 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4750 emit_test(EBX,EBX);
4751 int jne_instr=(int)out;
4752 emit_jne(0);
4753 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4754 load_all_regs(branch_regs[i].regmap);
4755 emit_jmp(stubs[n][2]); // return address
4756 set_jump_target(jne_instr,(int)out);
4757 emit_readword((int)&pcaddr,EAX);
4758 // Call get_addr_ht instead of doing the hash table here.
4759 // This code is executed infrequently and takes up a lot of space
4760 // so smaller is better.
4761 emit_storereg(CCREG,HOST_CCREG);
4762 emit_pushreg(EAX);
4763 emit_call((int)get_addr_ht);
4764 emit_loadreg(CCREG,HOST_CCREG);
4765 emit_addimm(ESP,4,ESP);
4766 emit_jmpreg(EAX);*/
4767}
4768
4769add_to_linker(int addr,int target,int ext)
4770{
4771 link_addr[linkcount][0]=addr;
4772 link_addr[linkcount][1]=target;
4773 link_addr[linkcount][2]=ext;
4774 linkcount++;
4775}
4776
4777void ujump_assemble(int i,struct regstat *i_regs)
4778{
4779 signed char *i_regmap=i_regs->regmap;
4780 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4781 address_generation(i+1,i_regs,regs[i].regmap_entry);
4782 #ifdef REG_PREFETCH
4783 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4784 if(rt1[i]==31&&temp>=0)
4785 {
4786 int return_address=start+i*4+8;
4787 if(get_reg(branch_regs[i].regmap,31)>0)
4788 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4789 }
4790 #endif
4791 ds_assemble(i+1,i_regs);
4792 uint64_t bc_unneeded=branch_regs[i].u;
4793 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4794 bc_unneeded|=1|(1LL<<rt1[i]);
4795 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4796 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4797 bc_unneeded,bc_unneeded_upper);
4798 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4799 if(rt1[i]==31) {
4800 int rt;
4801 unsigned int return_address;
4802 assert(rt1[i+1]!=31);
4803 assert(rt2[i+1]!=31);
4804 rt=get_reg(branch_regs[i].regmap,31);
4805 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4806 //assert(rt>=0);
4807 return_address=start+i*4+8;
4808 if(rt>=0) {
4809 #ifdef USE_MINI_HT
4810 if(internal_branch(branch_regs[i].is32,return_address)) {
4811 int temp=rt+1;
4812 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
4813 branch_regs[i].regmap[temp]>=0)
4814 {
4815 temp=get_reg(branch_regs[i].regmap,-1);
4816 }
4817 #ifdef HOST_TEMPREG
4818 if(temp<0) temp=HOST_TEMPREG;
4819 #endif
4820 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4821 else emit_movimm(return_address,rt);
4822 }
4823 else
4824 #endif
4825 {
4826 #ifdef REG_PREFETCH
4827 if(temp>=0)
4828 {
4829 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4830 }
4831 #endif
4832 emit_movimm(return_address,rt); // PC into link register
4833 #ifdef IMM_PREFETCH
4834 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4835 #endif
4836 }
4837 }
4838 }
4839 int cc,adj;
4840 cc=get_reg(branch_regs[i].regmap,CCREG);
4841 assert(cc==HOST_CCREG);
4842 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4843 #ifdef REG_PREFETCH
4844 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4845 #endif
4846 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4847 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
4848 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4849 if(internal_branch(branch_regs[i].is32,ba[i]))
4850 assem_debug("branch: internal\n");
4851 else
4852 assem_debug("branch: external\n");
4853 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4854 ds_assemble_entry(i);
4855 }
4856 else {
4857 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4858 emit_jmp(0);
4859 }
4860}
4861
4862void rjump_assemble(int i,struct regstat *i_regs)
4863{
4864 signed char *i_regmap=i_regs->regmap;
4865 int temp;
4866 int rs,cc,adj;
4867 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4868 assert(rs>=0);
4869 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4870 // Delay slot abuse, make a copy of the branch address register
4871 temp=get_reg(branch_regs[i].regmap,RTEMP);
4872 assert(temp>=0);
4873 assert(regs[i].regmap[temp]==RTEMP);
4874 emit_mov(rs,temp);
4875 rs=temp;
4876 }
4877 address_generation(i+1,i_regs,regs[i].regmap_entry);
4878 #ifdef REG_PREFETCH
4879 if(rt1[i]==31)
4880 {
4881 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4882 int return_address=start+i*4+8;
4883 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4884 }
4885 }
4886 #endif
4887 #ifdef USE_MINI_HT
4888 if(rs1[i]==31) {
4889 int rh=get_reg(regs[i].regmap,RHASH);
4890 if(rh>=0) do_preload_rhash(rh);
4891 }
4892 #endif
4893 ds_assemble(i+1,i_regs);
4894 uint64_t bc_unneeded=branch_regs[i].u;
4895 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4896 bc_unneeded|=1|(1LL<<rt1[i]);
4897 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4898 bc_unneeded&=~(1LL<<rs1[i]);
4899 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4900 bc_unneeded,bc_unneeded_upper);
4901 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4902 if(rt1[i]==31) {
4903 int rt,return_address;
4904 assert(rt1[i+1]!=31);
4905 assert(rt2[i+1]!=31);
4906 rt=get_reg(branch_regs[i].regmap,31);
4907 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4908 assert(rt>=0);
4909 return_address=start+i*4+8;
4910 #ifdef REG_PREFETCH
4911 if(temp>=0)
4912 {
4913 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4914 }
4915 #endif
4916 emit_movimm(return_address,rt); // PC into link register
4917 #ifdef IMM_PREFETCH
4918 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4919 #endif
4920 }
4921 cc=get_reg(branch_regs[i].regmap,CCREG);
4922 assert(cc==HOST_CCREG);
4923 #ifdef USE_MINI_HT
4924 int rh=get_reg(branch_regs[i].regmap,RHASH);
4925 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4926 if(rs1[i]==31) {
4927 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4928 do_preload_rhtbl(ht);
4929 do_rhash(rs,rh);
4930 }
4931 #endif
4932 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4933 #ifdef DESTRUCTIVE_WRITEBACK
4934 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4935 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4936 emit_loadreg(rs1[i],rs);
4937 }
4938 }
4939 #endif
4940 #ifdef REG_PREFETCH
4941 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4942 #endif
4943 #ifdef USE_MINI_HT
4944 if(rs1[i]==31) {
4945 do_miniht_load(ht,rh);
4946 }
4947 #endif
4948 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4949 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4950 //assert(adj==0);
4951 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
4952 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4953 emit_jns(0);
4954 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4955 #ifdef USE_MINI_HT
4956 if(rs1[i]==31) {
4957 do_miniht_jump(rs,rh,ht);
4958 }
4959 else
4960 #endif
4961 {
4962 //if(rs!=EAX) emit_mov(rs,EAX);
4963 //emit_jmp((int)jump_vaddr_eax);
4964 emit_jmp(jump_vaddr_reg[rs]);
4965 }
4966 /* Check hash table
4967 temp=!rs;
4968 emit_mov(rs,temp);
4969 emit_shrimm(rs,16,rs);
4970 emit_xor(temp,rs,rs);
4971 emit_movzwl_reg(rs,rs);
4972 emit_shlimm(rs,4,rs);
4973 emit_cmpmem_indexed((int)hash_table,rs,temp);
4974 emit_jne((int)out+14);
4975 emit_readword_indexed((int)hash_table+4,rs,rs);
4976 emit_jmpreg(rs);
4977 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4978 emit_addimm_no_flags(8,rs);
4979 emit_jeq((int)out-17);
4980 // No hit on hash table, call compiler
4981 emit_pushreg(temp);
4982//DEBUG >
4983#ifdef DEBUG_CYCLE_COUNT
4984 emit_readword((int)&last_count,ECX);
4985 emit_add(HOST_CCREG,ECX,HOST_CCREG);
4986 emit_readword((int)&next_interupt,ECX);
4987 emit_writeword(HOST_CCREG,(int)&Count);
4988 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4989 emit_writeword(ECX,(int)&last_count);
4990#endif
4991//DEBUG <
4992 emit_storereg(CCREG,HOST_CCREG);
4993 emit_call((int)get_addr);
4994 emit_loadreg(CCREG,HOST_CCREG);
4995 emit_addimm(ESP,4,ESP);
4996 emit_jmpreg(EAX);*/
4997 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4998 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4999 #endif
5000}
5001
5002void cjump_assemble(int i,struct regstat *i_regs)
5003{
5004 signed char *i_regmap=i_regs->regmap;
5005 int cc;
5006 int match;
5007 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5008 assem_debug("match=%d\n",match);
5009 int s1h,s1l,s2h,s2l;
5010 int prev_cop1_usable=cop1_usable;
5011 int unconditional=0,nop=0;
5012 int only32=0;
5013 int ooo=1;
5014 int invert=0;
5015 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5016 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5017 if(likely[i]) ooo=0;
5018 if(!match) invert=1;
5019 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5020 if(i>(ba[i]-start)>>2) invert=1;
5021 #endif
5022
5023 if(ooo)
5024 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5025 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5026 {
5027 // Write-after-read dependency prevents out of order execution
5028 // First test branch condition, then execute delay slot, then branch
5029 ooo=0;
5030 }
5031
5032 if(ooo) {
5033 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5034 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5035 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5036 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5037 }
5038 else {
5039 s1l=get_reg(i_regmap,rs1[i]);
5040 s1h=get_reg(i_regmap,rs1[i]|64);
5041 s2l=get_reg(i_regmap,rs2[i]);
5042 s2h=get_reg(i_regmap,rs2[i]|64);
5043 }
5044 if(rs1[i]==0&&rs2[i]==0)
5045 {
5046 if(opcode[i]&1) nop=1;
5047 else unconditional=1;
5048 //assert(opcode[i]!=5);
5049 //assert(opcode[i]!=7);
5050 //assert(opcode[i]!=0x15);
5051 //assert(opcode[i]!=0x17);
5052 }
5053 else if(rs1[i]==0)
5054 {
5055 s1l=s2l;s1h=s2h;
5056 s2l=s2h=-1;
5057 only32=(regs[i].was32>>rs2[i])&1;
5058 }
5059 else if(rs2[i]==0)
5060 {
5061 s2l=s2h=-1;
5062 only32=(regs[i].was32>>rs1[i])&1;
5063 }
5064 else {
5065 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5066 }
5067
5068 if(ooo) {
5069 // Out of order execution (delay slot first)
5070 //printf("OOOE\n");
5071 address_generation(i+1,i_regs,regs[i].regmap_entry);
5072 ds_assemble(i+1,i_regs);
5073 int adj;
5074 uint64_t bc_unneeded=branch_regs[i].u;
5075 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5076 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5077 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5078 bc_unneeded|=1;
5079 bc_unneeded_upper|=1;
5080 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5081 bc_unneeded,bc_unneeded_upper);
5082 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5083 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5084 cc=get_reg(branch_regs[i].regmap,CCREG);
5085 assert(cc==HOST_CCREG);
5086 if(unconditional)
5087 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5088 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5089 //assem_debug("cycle count (adj)\n");
5090 if(unconditional) {
5091 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5092 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5093 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5094 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5095 if(internal)
5096 assem_debug("branch: internal\n");
5097 else
5098 assem_debug("branch: external\n");
5099 if(internal&&is_ds[(ba[i]-start)>>2]) {
5100 ds_assemble_entry(i);
5101 }
5102 else {
5103 add_to_linker((int)out,ba[i],internal);
5104 emit_jmp(0);
5105 }
5106 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5107 if(((u_int)out)&7) emit_addnop(0);
5108 #endif
5109 }
5110 }
5111 else if(nop) {
5112 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5113 int jaddr=(int)out;
5114 emit_jns(0);
5115 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5116 }
5117 else {
5118 int taken=0,nottaken=0,nottaken1=0;
5119 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5120 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5121 if(!only32)
5122 {
5123 assert(s1h>=0);
5124 if(opcode[i]==4) // BEQ
5125 {
5126 if(s2h>=0) emit_cmp(s1h,s2h);
5127 else emit_test(s1h,s1h);
5128 nottaken1=(int)out;
5129 emit_jne(1);
5130 }
5131 if(opcode[i]==5) // BNE
5132 {
5133 if(s2h>=0) emit_cmp(s1h,s2h);
5134 else emit_test(s1h,s1h);
5135 if(invert) taken=(int)out;
5136 else add_to_linker((int)out,ba[i],internal);
5137 emit_jne(0);
5138 }
5139 if(opcode[i]==6) // BLEZ
5140 {
5141 emit_test(s1h,s1h);
5142 if(invert) taken=(int)out;
5143 else add_to_linker((int)out,ba[i],internal);
5144 emit_js(0);
5145 nottaken1=(int)out;
5146 emit_jne(1);
5147 }
5148 if(opcode[i]==7) // BGTZ
5149 {
5150 emit_test(s1h,s1h);
5151 nottaken1=(int)out;
5152 emit_js(1);
5153 if(invert) taken=(int)out;
5154 else add_to_linker((int)out,ba[i],internal);
5155 emit_jne(0);
5156 }
5157 } // if(!only32)
5158
5159 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5160 assert(s1l>=0);
5161 if(opcode[i]==4) // BEQ
5162 {
5163 if(s2l>=0) emit_cmp(s1l,s2l);
5164 else emit_test(s1l,s1l);
5165 if(invert){
5166 nottaken=(int)out;
5167 emit_jne(1);
5168 }else{
5169 add_to_linker((int)out,ba[i],internal);
5170 emit_jeq(0);
5171 }
5172 }
5173 if(opcode[i]==5) // BNE
5174 {
5175 if(s2l>=0) emit_cmp(s1l,s2l);
5176 else emit_test(s1l,s1l);
5177 if(invert){
5178 nottaken=(int)out;
5179 emit_jeq(1);
5180 }else{
5181 add_to_linker((int)out,ba[i],internal);
5182 emit_jne(0);
5183 }
5184 }
5185 if(opcode[i]==6) // BLEZ
5186 {
5187 emit_cmpimm(s1l,1);
5188 if(invert){
5189 nottaken=(int)out;
5190 emit_jge(1);
5191 }else{
5192 add_to_linker((int)out,ba[i],internal);
5193 emit_jl(0);
5194 }
5195 }
5196 if(opcode[i]==7) // BGTZ
5197 {
5198 emit_cmpimm(s1l,1);
5199 if(invert){
5200 nottaken=(int)out;
5201 emit_jl(1);
5202 }else{
5203 add_to_linker((int)out,ba[i],internal);
5204 emit_jge(0);
5205 }
5206 }
5207 if(invert) {
5208 if(taken) set_jump_target(taken,(int)out);
5209 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5210 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5211 if(adj) {
5212 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5213 add_to_linker((int)out,ba[i],internal);
5214 }else{
5215 emit_addnop(13);
5216 add_to_linker((int)out,ba[i],internal*2);
5217 }
5218 emit_jmp(0);
5219 }else
5220 #endif
5221 {
5222 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5223 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5224 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5225 if(internal)
5226 assem_debug("branch: internal\n");
5227 else
5228 assem_debug("branch: external\n");
5229 if(internal&&is_ds[(ba[i]-start)>>2]) {
5230 ds_assemble_entry(i);
5231 }
5232 else {
5233 add_to_linker((int)out,ba[i],internal);
5234 emit_jmp(0);
5235 }
5236 }
5237 set_jump_target(nottaken,(int)out);
5238 }
5239
5240 if(nottaken1) set_jump_target(nottaken1,(int)out);
5241 if(adj) {
5242 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5243 }
5244 } // (!unconditional)
5245 } // if(ooo)
5246 else
5247 {
5248 // In-order execution (branch first)
5249 //if(likely[i]) printf("IOL\n");
5250 //else
5251 //printf("IOE\n");
5252 int taken=0,nottaken=0,nottaken1=0;
5253 if(!unconditional&&!nop) {
5254 if(!only32)
5255 {
5256 assert(s1h>=0);
5257 if((opcode[i]&0x2f)==4) // BEQ
5258 {
5259 if(s2h>=0) emit_cmp(s1h,s2h);
5260 else emit_test(s1h,s1h);
5261 nottaken1=(int)out;
5262 emit_jne(2);
5263 }
5264 if((opcode[i]&0x2f)==5) // BNE
5265 {
5266 if(s2h>=0) emit_cmp(s1h,s2h);
5267 else emit_test(s1h,s1h);
5268 taken=(int)out;
5269 emit_jne(1);
5270 }
5271 if((opcode[i]&0x2f)==6) // BLEZ
5272 {
5273 emit_test(s1h,s1h);
5274 taken=(int)out;
5275 emit_js(1);
5276 nottaken1=(int)out;
5277 emit_jne(2);
5278 }
5279 if((opcode[i]&0x2f)==7) // BGTZ
5280 {
5281 emit_test(s1h,s1h);
5282 nottaken1=(int)out;
5283 emit_js(2);
5284 taken=(int)out;
5285 emit_jne(1);
5286 }
5287 } // if(!only32)
5288
5289 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5290 assert(s1l>=0);
5291 if((opcode[i]&0x2f)==4) // BEQ
5292 {
5293 if(s2l>=0) emit_cmp(s1l,s2l);
5294 else emit_test(s1l,s1l);
5295 nottaken=(int)out;
5296 emit_jne(2);
5297 }
5298 if((opcode[i]&0x2f)==5) // BNE
5299 {
5300 if(s2l>=0) emit_cmp(s1l,s2l);
5301 else emit_test(s1l,s1l);
5302 nottaken=(int)out;
5303 emit_jeq(2);
5304 }
5305 if((opcode[i]&0x2f)==6) // BLEZ
5306 {
5307 emit_cmpimm(s1l,1);
5308 nottaken=(int)out;
5309 emit_jge(2);
5310 }
5311 if((opcode[i]&0x2f)==7) // BGTZ
5312 {
5313 emit_cmpimm(s1l,1);
5314 nottaken=(int)out;
5315 emit_jl(2);
5316 }
5317 } // if(!unconditional)
5318 int adj;
5319 uint64_t ds_unneeded=branch_regs[i].u;
5320 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5321 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5322 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5323 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5324 ds_unneeded|=1;
5325 ds_unneeded_upper|=1;
5326 // branch taken
5327 if(!nop) {
5328 if(taken) set_jump_target(taken,(int)out);
5329 assem_debug("1:\n");
5330 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5331 ds_unneeded,ds_unneeded_upper);
5332 // load regs
5333 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5334 address_generation(i+1,&branch_regs[i],0);
5335 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5336 ds_assemble(i+1,&branch_regs[i]);
5337 cc=get_reg(branch_regs[i].regmap,CCREG);
5338 if(cc==-1) {
5339 emit_loadreg(CCREG,cc=HOST_CCREG);
5340 // CHECK: Is the following instruction (fall thru) allocated ok?
5341 }
5342 assert(cc==HOST_CCREG);
5343 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5344 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5345 assem_debug("cycle count (adj)\n");
5346 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5347 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5348 if(internal)
5349 assem_debug("branch: internal\n");
5350 else
5351 assem_debug("branch: external\n");
5352 if(internal&&is_ds[(ba[i]-start)>>2]) {
5353 ds_assemble_entry(i);
5354 }
5355 else {
5356 add_to_linker((int)out,ba[i],internal);
5357 emit_jmp(0);
5358 }
5359 }
5360 // branch not taken
5361 cop1_usable=prev_cop1_usable;
5362 if(!unconditional) {
5363 if(nottaken1) set_jump_target(nottaken1,(int)out);
5364 set_jump_target(nottaken,(int)out);
5365 assem_debug("2:\n");
5366 if(!likely[i]) {
5367 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5368 ds_unneeded,ds_unneeded_upper);
5369 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5370 address_generation(i+1,&branch_regs[i],0);
5371 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5372 ds_assemble(i+1,&branch_regs[i]);
5373 }
5374 cc=get_reg(branch_regs[i].regmap,CCREG);
5375 if(cc==-1&&!likely[i]) {
5376 // Cycle count isn't in a register, temporarily load it then write it out
5377 emit_loadreg(CCREG,HOST_CCREG);
5378 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5379 int jaddr=(int)out;
5380 emit_jns(0);
5381 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5382 emit_storereg(CCREG,HOST_CCREG);
5383 }
5384 else{
5385 cc=get_reg(i_regmap,CCREG);
5386 assert(cc==HOST_CCREG);
5387 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5388 int jaddr=(int)out;
5389 emit_jns(0);
5390 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5391 }
5392 }
5393 }
5394}
5395
5396void sjump_assemble(int i,struct regstat *i_regs)
5397{
5398 signed char *i_regmap=i_regs->regmap;
5399 int cc;
5400 int match;
5401 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5402 assem_debug("smatch=%d\n",match);
5403 int s1h,s1l;
5404 int prev_cop1_usable=cop1_usable;
5405 int unconditional=0,nevertaken=0;
5406 int only32=0;
5407 int ooo=1;
5408 int invert=0;
5409 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5410 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5411 if(likely[i]) ooo=0;
5412 if(!match) invert=1;
5413 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5414 if(i>(ba[i]-start)>>2) invert=1;
5415 #endif
5416
5417 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5418 assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5419
5420 if(ooo)
5421 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5422 {
5423 // Write-after-read dependency prevents out of order execution
5424 // First test branch condition, then execute delay slot, then branch
5425 ooo=0;
5426 }
5427 // TODO: Conditional branches w/link must execute in-order so that
5428 // condition test and write to r31 occur before cycle count test
5429
5430 if(ooo) {
5431 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5432 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5433 }
5434 else {
5435 s1l=get_reg(i_regmap,rs1[i]);
5436 s1h=get_reg(i_regmap,rs1[i]|64);
5437 }
5438 if(rs1[i]==0)
5439 {
5440 if(opcode2[i]&1) unconditional=1;
5441 else nevertaken=1;
5442 // These are never taken (r0 is never less than zero)
5443 //assert(opcode2[i]!=0);
5444 //assert(opcode2[i]!=2);
5445 //assert(opcode2[i]!=0x10);
5446 //assert(opcode2[i]!=0x12);
5447 }
5448 else {
5449 only32=(regs[i].was32>>rs1[i])&1;
5450 }
5451
5452 if(ooo) {
5453 // Out of order execution (delay slot first)
5454 //printf("OOOE\n");
5455 address_generation(i+1,i_regs,regs[i].regmap_entry);
5456 ds_assemble(i+1,i_regs);
5457 int adj;
5458 uint64_t bc_unneeded=branch_regs[i].u;
5459 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5460 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5461 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5462 bc_unneeded|=1;
5463 bc_unneeded_upper|=1;
5464 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5465 bc_unneeded,bc_unneeded_upper);
5466 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5467 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5468 if(rt1[i]==31) {
5469 int rt,return_address;
5470 assert(rt1[i+1]!=31);
5471 assert(rt2[i+1]!=31);
5472 rt=get_reg(branch_regs[i].regmap,31);
5473 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5474 if(rt>=0) {
5475 // Save the PC even if the branch is not taken
5476 return_address=start+i*4+8;
5477 emit_movimm(return_address,rt); // PC into link register
5478 #ifdef IMM_PREFETCH
5479 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5480 #endif
5481 }
5482 }
5483 cc=get_reg(branch_regs[i].regmap,CCREG);
5484 assert(cc==HOST_CCREG);
5485 if(unconditional)
5486 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5487 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5488 assem_debug("cycle count (adj)\n");
5489 if(unconditional) {
5490 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5491 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5492 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5493 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5494 if(internal)
5495 assem_debug("branch: internal\n");
5496 else
5497 assem_debug("branch: external\n");
5498 if(internal&&is_ds[(ba[i]-start)>>2]) {
5499 ds_assemble_entry(i);
5500 }
5501 else {
5502 add_to_linker((int)out,ba[i],internal);
5503 emit_jmp(0);
5504 }
5505 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5506 if(((u_int)out)&7) emit_addnop(0);
5507 #endif
5508 }
5509 }
5510 else if(nevertaken) {
5511 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5512 int jaddr=(int)out;
5513 emit_jns(0);
5514 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5515 }
5516 else {
5517 int nottaken=0;
5518 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5519 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5520 if(!only32)
5521 {
5522 assert(s1h>=0);
5523 if(opcode2[i]==0) // BLTZ
5524 {
5525 emit_test(s1h,s1h);
5526 if(invert){
5527 nottaken=(int)out;
5528 emit_jns(1);
5529 }else{
5530 add_to_linker((int)out,ba[i],internal);
5531 emit_js(0);
5532 }
5533 }
5534 if(opcode2[i]==1) // BGEZ
5535 {
5536 emit_test(s1h,s1h);
5537 if(invert){
5538 nottaken=(int)out;
5539 emit_js(1);
5540 }else{
5541 add_to_linker((int)out,ba[i],internal);
5542 emit_jns(0);
5543 }
5544 }
5545 } // if(!only32)
5546 else
5547 {
5548 assert(s1l>=0);
5549 if(opcode2[i]==0) // BLTZ
5550 {
5551 emit_test(s1l,s1l);
5552 if(invert){
5553 nottaken=(int)out;
5554 emit_jns(1);
5555 }else{
5556 add_to_linker((int)out,ba[i],internal);
5557 emit_js(0);
5558 }
5559 }
5560 if(opcode2[i]==1) // BGEZ
5561 {
5562 emit_test(s1l,s1l);
5563 if(invert){
5564 nottaken=(int)out;
5565 emit_js(1);
5566 }else{
5567 add_to_linker((int)out,ba[i],internal);
5568 emit_jns(0);
5569 }
5570 }
5571 } // if(!only32)
5572
5573 if(invert) {
5574 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5575 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5576 if(adj) {
5577 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5578 add_to_linker((int)out,ba[i],internal);
5579 }else{
5580 emit_addnop(13);
5581 add_to_linker((int)out,ba[i],internal*2);
5582 }
5583 emit_jmp(0);
5584 }else
5585 #endif
5586 {
5587 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5588 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5589 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5590 if(internal)
5591 assem_debug("branch: internal\n");
5592 else
5593 assem_debug("branch: external\n");
5594 if(internal&&is_ds[(ba[i]-start)>>2]) {
5595 ds_assemble_entry(i);
5596 }
5597 else {
5598 add_to_linker((int)out,ba[i],internal);
5599 emit_jmp(0);
5600 }
5601 }
5602 set_jump_target(nottaken,(int)out);
5603 }
5604
5605 if(adj) {
5606 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5607 }
5608 } // (!unconditional)
5609 } // if(ooo)
5610 else
5611 {
5612 // In-order execution (branch first)
5613 //printf("IOE\n");
5614 int nottaken=0;
5615 if(!unconditional) {
5616 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5617 if(!only32)
5618 {
5619 assert(s1h>=0);
5620 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5621 {
5622 emit_test(s1h,s1h);
5623 nottaken=(int)out;
5624 emit_jns(1);
5625 }
5626 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5627 {
5628 emit_test(s1h,s1h);
5629 nottaken=(int)out;
5630 emit_js(1);
5631 }
5632 } // if(!only32)
5633 else
5634 {
5635 assert(s1l>=0);
5636 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5637 {
5638 emit_test(s1l,s1l);
5639 nottaken=(int)out;
5640 emit_jns(1);
5641 }
5642 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5643 {
5644 emit_test(s1l,s1l);
5645 nottaken=(int)out;
5646 emit_js(1);
5647 }
5648 }
5649 } // if(!unconditional)
5650 int adj;
5651 uint64_t ds_unneeded=branch_regs[i].u;
5652 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5653 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5654 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5655 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5656 ds_unneeded|=1;
5657 ds_unneeded_upper|=1;
5658 // branch taken
5659 if(!nevertaken) {
5660 //assem_debug("1:\n");
5661 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5662 ds_unneeded,ds_unneeded_upper);
5663 // load regs
5664 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5665 address_generation(i+1,&branch_regs[i],0);
5666 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5667 ds_assemble(i+1,&branch_regs[i]);
5668 cc=get_reg(branch_regs[i].regmap,CCREG);
5669 if(cc==-1) {
5670 emit_loadreg(CCREG,cc=HOST_CCREG);
5671 // CHECK: Is the following instruction (fall thru) allocated ok?
5672 }
5673 assert(cc==HOST_CCREG);
5674 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5675 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5676 assem_debug("cycle count (adj)\n");
5677 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5678 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5679 if(internal)
5680 assem_debug("branch: internal\n");
5681 else
5682 assem_debug("branch: external\n");
5683 if(internal&&is_ds[(ba[i]-start)>>2]) {
5684 ds_assemble_entry(i);
5685 }
5686 else {
5687 add_to_linker((int)out,ba[i],internal);
5688 emit_jmp(0);
5689 }
5690 }
5691 // branch not taken
5692 cop1_usable=prev_cop1_usable;
5693 if(!unconditional) {
5694 set_jump_target(nottaken,(int)out);
5695 assem_debug("1:\n");
5696 if(!likely[i]) {
5697 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5698 ds_unneeded,ds_unneeded_upper);
5699 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5700 address_generation(i+1,&branch_regs[i],0);
5701 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5702 ds_assemble(i+1,&branch_regs[i]);
5703 }
5704 cc=get_reg(branch_regs[i].regmap,CCREG);
5705 if(cc==-1&&!likely[i]) {
5706 // Cycle count isn't in a register, temporarily load it then write it out
5707 emit_loadreg(CCREG,HOST_CCREG);
5708 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5709 int jaddr=(int)out;
5710 emit_jns(0);
5711 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5712 emit_storereg(CCREG,HOST_CCREG);
5713 }
5714 else{
5715 cc=get_reg(i_regmap,CCREG);
5716 assert(cc==HOST_CCREG);
5717 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5718 int jaddr=(int)out;
5719 emit_jns(0);
5720 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5721 }
5722 }
5723 }
5724}
5725
5726void fjump_assemble(int i,struct regstat *i_regs)
5727{
5728 signed char *i_regmap=i_regs->regmap;
5729 int cc;
5730 int match;
5731 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5732 assem_debug("fmatch=%d\n",match);
5733 int fs,cs;
5734 int eaddr;
5735 int ooo=1;
5736 int invert=0;
5737 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5738 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5739 if(likely[i]) ooo=0;
5740 if(!match) invert=1;
5741 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5742 if(i>(ba[i]-start)>>2) invert=1;
5743 #endif
5744
5745 if(ooo)
5746 if(itype[i+1]==FCOMP)
5747 {
5748 // Write-after-read dependency prevents out of order execution
5749 // First test branch condition, then execute delay slot, then branch
5750 ooo=0;
5751 }
5752
5753 if(ooo) {
5754 fs=get_reg(branch_regs[i].regmap,FSREG);
5755 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5756 }
5757 else {
5758 fs=get_reg(i_regmap,FSREG);
5759 }
5760
5761 // Check cop1 unusable
5762 if(!cop1_usable) {
5763 cs=get_reg(i_regmap,CSREG);
5764 assert(cs>=0);
5765 emit_testimm(cs,0x20000000);
5766 eaddr=(int)out;
5767 emit_jeq(0);
5768 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5769 cop1_usable=1;
5770 }
5771
5772 if(ooo) {
5773 // Out of order execution (delay slot first)
5774 //printf("OOOE\n");
5775 ds_assemble(i+1,i_regs);
5776 int adj;
5777 uint64_t bc_unneeded=branch_regs[i].u;
5778 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5779 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5780 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5781 bc_unneeded|=1;
5782 bc_unneeded_upper|=1;
5783 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5784 bc_unneeded,bc_unneeded_upper);
5785 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5786 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5787 cc=get_reg(branch_regs[i].regmap,CCREG);
5788 assert(cc==HOST_CCREG);
5789 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5790 assem_debug("cycle count (adj)\n");
5791 if(1) {
5792 int nottaken=0;
5793 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5794 if(1) {
5795 assert(fs>=0);
5796 emit_testimm(fs,0x800000);
5797 if(source[i]&0x10000) // BC1T
5798 {
5799 if(invert){
5800 nottaken=(int)out;
5801 emit_jeq(1);
5802 }else{
5803 add_to_linker((int)out,ba[i],internal);
5804 emit_jne(0);
5805 }
5806 }
5807 else // BC1F
5808 if(invert){
5809 nottaken=(int)out;
5810 emit_jne(1);
5811 }else{
5812 add_to_linker((int)out,ba[i],internal);
5813 emit_jeq(0);
5814 }
5815 {
5816 }
5817 } // if(!only32)
5818
5819 if(invert) {
5820 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5821 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5822 else if(match) emit_addnop(13);
5823 #endif
5824 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5825 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5826 if(internal)
5827 assem_debug("branch: internal\n");
5828 else
5829 assem_debug("branch: external\n");
5830 if(internal&&is_ds[(ba[i]-start)>>2]) {
5831 ds_assemble_entry(i);
5832 }
5833 else {
5834 add_to_linker((int)out,ba[i],internal);
5835 emit_jmp(0);
5836 }
5837 set_jump_target(nottaken,(int)out);
5838 }
5839
5840 if(adj) {
5841 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5842 }
5843 } // (!unconditional)
5844 } // if(ooo)
5845 else
5846 {
5847 // In-order execution (branch first)
5848 //printf("IOE\n");
5849 int nottaken=0;
5850 if(1) {
5851 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5852 if(1) {
5853 assert(fs>=0);
5854 emit_testimm(fs,0x800000);
5855 if(source[i]&0x10000) // BC1T
5856 {
5857 nottaken=(int)out;
5858 emit_jeq(1);
5859 }
5860 else // BC1F
5861 {
5862 nottaken=(int)out;
5863 emit_jne(1);
5864 }
5865 }
5866 } // if(!unconditional)
5867 int adj;
5868 uint64_t ds_unneeded=branch_regs[i].u;
5869 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5870 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5871 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5872 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5873 ds_unneeded|=1;
5874 ds_unneeded_upper|=1;
5875 // branch taken
5876 //assem_debug("1:\n");
5877 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5878 ds_unneeded,ds_unneeded_upper);
5879 // load regs
5880 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5881 address_generation(i+1,&branch_regs[i],0);
5882 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5883 ds_assemble(i+1,&branch_regs[i]);
5884 cc=get_reg(branch_regs[i].regmap,CCREG);
5885 if(cc==-1) {
5886 emit_loadreg(CCREG,cc=HOST_CCREG);
5887 // CHECK: Is the following instruction (fall thru) allocated ok?
5888 }
5889 assert(cc==HOST_CCREG);
5890 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5891 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5892 assem_debug("cycle count (adj)\n");
5893 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5894 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5895 if(internal)
5896 assem_debug("branch: internal\n");
5897 else
5898 assem_debug("branch: external\n");
5899 if(internal&&is_ds[(ba[i]-start)>>2]) {
5900 ds_assemble_entry(i);
5901 }
5902 else {
5903 add_to_linker((int)out,ba[i],internal);
5904 emit_jmp(0);
5905 }
5906
5907 // branch not taken
5908 if(1) { // <- FIXME (don't need this)
5909 set_jump_target(nottaken,(int)out);
5910 assem_debug("1:\n");
5911 if(!likely[i]) {
5912 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5913 ds_unneeded,ds_unneeded_upper);
5914 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5915 address_generation(i+1,&branch_regs[i],0);
5916 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5917 ds_assemble(i+1,&branch_regs[i]);
5918 }
5919 cc=get_reg(branch_regs[i].regmap,CCREG);
5920 if(cc==-1&&!likely[i]) {
5921 // Cycle count isn't in a register, temporarily load it then write it out
5922 emit_loadreg(CCREG,HOST_CCREG);
5923 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5924 int jaddr=(int)out;
5925 emit_jns(0);
5926 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5927 emit_storereg(CCREG,HOST_CCREG);
5928 }
5929 else{
5930 cc=get_reg(i_regmap,CCREG);
5931 assert(cc==HOST_CCREG);
5932 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5933 int jaddr=(int)out;
5934 emit_jns(0);
5935 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5936 }
5937 }
5938 }
5939}
5940
5941static void pagespan_assemble(int i,struct regstat *i_regs)
5942{
5943 int s1l=get_reg(i_regs->regmap,rs1[i]);
5944 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5945 int s2l=get_reg(i_regs->regmap,rs2[i]);
5946 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5947 void *nt_branch=NULL;
5948 int taken=0;
5949 int nottaken=0;
5950 int unconditional=0;
5951 if(rs1[i]==0)
5952 {
5953 s1l=s2l;s1h=s2h;
5954 s2l=s2h=-1;
5955 }
5956 else if(rs2[i]==0)
5957 {
5958 s2l=s2h=-1;
5959 }
5960 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5961 s1h=s2h=-1;
5962 }
5963 int hr=0;
5964 int addr,alt,ntaddr;
5965 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5966 else {
5967 while(hr<HOST_REGS)
5968 {
5969 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5970 (i_regs->regmap[hr]&63)!=rs1[i] &&
5971 (i_regs->regmap[hr]&63)!=rs2[i] )
5972 {
5973 addr=hr++;break;
5974 }
5975 hr++;
5976 }
5977 }
5978 while(hr<HOST_REGS)
5979 {
5980 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5981 (i_regs->regmap[hr]&63)!=rs1[i] &&
5982 (i_regs->regmap[hr]&63)!=rs2[i] )
5983 {
5984 alt=hr++;break;
5985 }
5986 hr++;
5987 }
5988 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5989 {
5990 while(hr<HOST_REGS)
5991 {
5992 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5993 (i_regs->regmap[hr]&63)!=rs1[i] &&
5994 (i_regs->regmap[hr]&63)!=rs2[i] )
5995 {
5996 ntaddr=hr;break;
5997 }
5998 hr++;
5999 }
6000 }
6001 assert(hr<HOST_REGS);
6002 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6003 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6004 }
6005 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6006 if(opcode[i]==2) // J
6007 {
6008 unconditional=1;
6009 }
6010 if(opcode[i]==3) // JAL
6011 {
6012 // TODO: mini_ht
6013 int rt=get_reg(i_regs->regmap,31);
6014 emit_movimm(start+i*4+8,rt);
6015 unconditional=1;
6016 }
6017 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6018 {
6019 emit_mov(s1l,addr);
6020 if(opcode2[i]==9) // JALR
6021 {
6022 int rt=get_reg(i_regs->regmap,31);
6023 emit_movimm(start+i*4+8,rt);
6024 }
6025 }
6026 if((opcode[i]&0x3f)==4) // BEQ
6027 {
6028 if(rs1[i]==rs2[i])
6029 {
6030 unconditional=1;
6031 }
6032 else
6033 #ifdef HAVE_CMOV_IMM
6034 if(s1h<0) {
6035 if(s2l>=0) emit_cmp(s1l,s2l);
6036 else emit_test(s1l,s1l);
6037 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6038 }
6039 else
6040 #endif
6041 {
6042 assert(s1l>=0);
6043 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6044 if(s1h>=0) {
6045 if(s2h>=0) emit_cmp(s1h,s2h);
6046 else emit_test(s1h,s1h);
6047 emit_cmovne_reg(alt,addr);
6048 }
6049 if(s2l>=0) emit_cmp(s1l,s2l);
6050 else emit_test(s1l,s1l);
6051 emit_cmovne_reg(alt,addr);
6052 }
6053 }
6054 if((opcode[i]&0x3f)==5) // BNE
6055 {
6056 #ifdef HAVE_CMOV_IMM
6057 if(s1h<0) {
6058 if(s2l>=0) emit_cmp(s1l,s2l);
6059 else emit_test(s1l,s1l);
6060 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6061 }
6062 else
6063 #endif
6064 {
6065 assert(s1l>=0);
6066 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6067 if(s1h>=0) {
6068 if(s2h>=0) emit_cmp(s1h,s2h);
6069 else emit_test(s1h,s1h);
6070 emit_cmovne_reg(alt,addr);
6071 }
6072 if(s2l>=0) emit_cmp(s1l,s2l);
6073 else emit_test(s1l,s1l);
6074 emit_cmovne_reg(alt,addr);
6075 }
6076 }
6077 if((opcode[i]&0x3f)==0x14) // BEQL
6078 {
6079 if(s1h>=0) {
6080 if(s2h>=0) emit_cmp(s1h,s2h);
6081 else emit_test(s1h,s1h);
6082 nottaken=(int)out;
6083 emit_jne(0);
6084 }
6085 if(s2l>=0) emit_cmp(s1l,s2l);
6086 else emit_test(s1l,s1l);
6087 if(nottaken) set_jump_target(nottaken,(int)out);
6088 nottaken=(int)out;
6089 emit_jne(0);
6090 }
6091 if((opcode[i]&0x3f)==0x15) // BNEL
6092 {
6093 if(s1h>=0) {
6094 if(s2h>=0) emit_cmp(s1h,s2h);
6095 else emit_test(s1h,s1h);
6096 taken=(int)out;
6097 emit_jne(0);
6098 }
6099 if(s2l>=0) emit_cmp(s1l,s2l);
6100 else emit_test(s1l,s1l);
6101 nottaken=(int)out;
6102 emit_jeq(0);
6103 if(taken) set_jump_target(taken,(int)out);
6104 }
6105 if((opcode[i]&0x3f)==6) // BLEZ
6106 {
6107 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6108 emit_cmpimm(s1l,1);
6109 if(s1h>=0) emit_mov(addr,ntaddr);
6110 emit_cmovl_reg(alt,addr);
6111 if(s1h>=0) {
6112 emit_test(s1h,s1h);
6113 emit_cmovne_reg(ntaddr,addr);
6114 emit_cmovs_reg(alt,addr);
6115 }
6116 }
6117 if((opcode[i]&0x3f)==7) // BGTZ
6118 {
6119 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6120 emit_cmpimm(s1l,1);
6121 if(s1h>=0) emit_mov(addr,alt);
6122 emit_cmovl_reg(ntaddr,addr);
6123 if(s1h>=0) {
6124 emit_test(s1h,s1h);
6125 emit_cmovne_reg(alt,addr);
6126 emit_cmovs_reg(ntaddr,addr);
6127 }
6128 }
6129 if((opcode[i]&0x3f)==0x16) // BLEZL
6130 {
6131 assert((opcode[i]&0x3f)!=0x16);
6132 }
6133 if((opcode[i]&0x3f)==0x17) // BGTZL
6134 {
6135 assert((opcode[i]&0x3f)!=0x17);
6136 }
6137 assert(opcode[i]!=1); // BLTZ/BGEZ
6138
6139 //FIXME: Check CSREG
6140 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6141 if((source[i]&0x30000)==0) // BC1F
6142 {
6143 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6144 emit_testimm(s1l,0x800000);
6145 emit_cmovne_reg(alt,addr);
6146 }
6147 if((source[i]&0x30000)==0x10000) // BC1T
6148 {
6149 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6150 emit_testimm(s1l,0x800000);
6151 emit_cmovne_reg(alt,addr);
6152 }
6153 if((source[i]&0x30000)==0x20000) // BC1FL
6154 {
6155 emit_testimm(s1l,0x800000);
6156 nottaken=(int)out;
6157 emit_jne(0);
6158 }
6159 if((source[i]&0x30000)==0x30000) // BC1TL
6160 {
6161 emit_testimm(s1l,0x800000);
6162 nottaken=(int)out;
6163 emit_jeq(0);
6164 }
6165 }
6166
6167 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6168 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6169 if(likely[i]||unconditional)
6170 {
6171 emit_movimm(ba[i],HOST_BTREG);
6172 }
6173 else if(addr!=HOST_BTREG)
6174 {
6175 emit_mov(addr,HOST_BTREG);
6176 }
6177 void *branch_addr=out;
6178 emit_jmp(0);
6179 int target_addr=start+i*4+5;
6180 void *stub=out;
6181 void *compiled_target_addr=check_addr(target_addr);
6182 emit_extjump_ds((int)branch_addr,target_addr);
6183 if(compiled_target_addr) {
6184 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6185 add_link(target_addr,stub);
6186 }
6187 else set_jump_target((int)branch_addr,(int)stub);
6188 if(likely[i]) {
6189 // Not-taken path
6190 set_jump_target((int)nottaken,(int)out);
6191 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6192 void *branch_addr=out;
6193 emit_jmp(0);
6194 int target_addr=start+i*4+8;
6195 void *stub=out;
6196 void *compiled_target_addr=check_addr(target_addr);
6197 emit_extjump_ds((int)branch_addr,target_addr);
6198 if(compiled_target_addr) {
6199 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6200 add_link(target_addr,stub);
6201 }
6202 else set_jump_target((int)branch_addr,(int)stub);
6203 }
6204}
6205
6206// Assemble the delay slot for the above
6207static void pagespan_ds()
6208{
6209 assem_debug("initial delay slot:\n");
6210 u_int vaddr=start+1;
94d23bb9 6211 u_int page=get_page(vaddr);
6212 u_int vpage=get_vpage(vaddr);
57871462 6213 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6214 do_dirty_stub_ds();
6215 ll_add(jump_in+page,vaddr,(void *)out);
6216 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6217 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6218 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6219 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6220 emit_writeword(HOST_BTREG,(int)&branch_target);
6221 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6222 address_generation(0,&regs[0],regs[0].regmap_entry);
6223 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
6224 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6225 cop1_usable=0;
6226 is_delayslot=0;
6227 switch(itype[0]) {
6228 case ALU:
6229 alu_assemble(0,&regs[0]);break;
6230 case IMM16:
6231 imm16_assemble(0,&regs[0]);break;
6232 case SHIFT:
6233 shift_assemble(0,&regs[0]);break;
6234 case SHIFTIMM:
6235 shiftimm_assemble(0,&regs[0]);break;
6236 case LOAD:
6237 load_assemble(0,&regs[0]);break;
6238 case LOADLR:
6239 loadlr_assemble(0,&regs[0]);break;
6240 case STORE:
6241 store_assemble(0,&regs[0]);break;
6242 case STORELR:
6243 storelr_assemble(0,&regs[0]);break;
6244 case COP0:
6245 cop0_assemble(0,&regs[0]);break;
6246 case COP1:
6247 cop1_assemble(0,&regs[0]);break;
6248 case C1LS:
6249 c1ls_assemble(0,&regs[0]);break;
6250 case FCONV:
6251 fconv_assemble(0,&regs[0]);break;
6252 case FLOAT:
6253 float_assemble(0,&regs[0]);break;
6254 case FCOMP:
6255 fcomp_assemble(0,&regs[0]);break;
6256 case MULTDIV:
6257 multdiv_assemble(0,&regs[0]);break;
6258 case MOV:
6259 mov_assemble(0,&regs[0]);break;
6260 case SYSCALL:
6261 case SPAN:
6262 case UJUMP:
6263 case RJUMP:
6264 case CJUMP:
6265 case SJUMP:
6266 case FJUMP:
6267 printf("Jump in the delay slot. This is probably a bug.\n");
6268 }
6269 int btaddr=get_reg(regs[0].regmap,BTREG);
6270 if(btaddr<0) {
6271 btaddr=get_reg(regs[0].regmap,-1);
6272 emit_readword((int)&branch_target,btaddr);
6273 }
6274 assert(btaddr!=HOST_CCREG);
6275 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6276#ifdef HOST_IMM8
6277 emit_movimm(start+4,HOST_TEMPREG);
6278 emit_cmp(btaddr,HOST_TEMPREG);
6279#else
6280 emit_cmpimm(btaddr,start+4);
6281#endif
6282 int branch=(int)out;
6283 emit_jeq(0);
6284 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6285 emit_jmp(jump_vaddr_reg[btaddr]);
6286 set_jump_target(branch,(int)out);
6287 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6288 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6289}
6290
6291// Basic liveness analysis for MIPS registers
6292void unneeded_registers(int istart,int iend,int r)
6293{
6294 int i;
6295 uint64_t u,uu,b,bu;
6296 uint64_t temp_u,temp_uu;
6297 uint64_t tdep;
6298 if(iend==slen-1) {
6299 u=1;uu=1;
6300 }else{
6301 u=unneeded_reg[iend+1];
6302 uu=unneeded_reg_upper[iend+1];
6303 u=1;uu=1;
6304 }
6305 for (i=iend;i>=istart;i--)
6306 {
6307 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6308 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6309 {
6310 // If subroutine call, flag return address as a possible branch target
6311 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6312
6313 if(ba[i]<start || ba[i]>=(start+slen*4))
6314 {
6315 // Branch out of this block, flush all regs
6316 u=1;
6317 uu=1;
6318 /* Hexagon hack
6319 if(itype[i]==UJUMP&&rt1[i]==31)
6320 {
6321 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6322 }
6323 if(itype[i]==RJUMP&&rs1[i]==31)
6324 {
6325 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6326 }
6327 if(start>0x80000400&&start<0x80800000) {
6328 if(itype[i]==UJUMP&&rt1[i]==31)
6329 {
6330 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6331 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6332 }
6333 if(itype[i]==RJUMP&&rs1[i]==31)
6334 {
6335 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6336 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6337 }
6338 }*/
6339 branch_unneeded_reg[i]=u;
6340 branch_unneeded_reg_upper[i]=uu;
6341 // Merge in delay slot
6342 tdep=(~uu>>rt1[i+1])&1;
6343 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6344 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6345 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6346 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6347 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6348 u|=1;uu|=1;
6349 // If branch is "likely" (and conditional)
6350 // then we skip the delay slot on the fall-thru path
6351 if(likely[i]) {
6352 if(i<slen-1) {
6353 u&=unneeded_reg[i+2];
6354 uu&=unneeded_reg_upper[i+2];
6355 }
6356 else
6357 {
6358 u=1;
6359 uu=1;
6360 }
6361 }
6362 }
6363 else
6364 {
6365 // Internal branch, flag target
6366 bt[(ba[i]-start)>>2]=1;
6367 if(ba[i]<=start+i*4) {
6368 // Backward branch
6369 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6370 {
6371 // Unconditional branch
6372 temp_u=1;temp_uu=1;
6373 } else {
6374 // Conditional branch (not taken case)
6375 temp_u=unneeded_reg[i+2];
6376 temp_uu=unneeded_reg_upper[i+2];
6377 }
6378 // Merge in delay slot
6379 tdep=(~temp_uu>>rt1[i+1])&1;
6380 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6381 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6382 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6383 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6384 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6385 temp_u|=1;temp_uu|=1;
6386 // If branch is "likely" (and conditional)
6387 // then we skip the delay slot on the fall-thru path
6388 if(likely[i]) {
6389 if(i<slen-1) {
6390 temp_u&=unneeded_reg[i+2];
6391 temp_uu&=unneeded_reg_upper[i+2];
6392 }
6393 else
6394 {
6395 temp_u=1;
6396 temp_uu=1;
6397 }
6398 }
6399 tdep=(~temp_uu>>rt1[i])&1;
6400 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6401 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6402 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6403 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6404 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6405 temp_u|=1;temp_uu|=1;
6406 unneeded_reg[i]=temp_u;
6407 unneeded_reg_upper[i]=temp_uu;
6408 // Only go three levels deep. This recursion can take an
6409 // excessive amount of time if there are a lot of nested loops.
6410 if(r<2) {
6411 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6412 }else{
6413 unneeded_reg[(ba[i]-start)>>2]=1;
6414 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6415 }
6416 } /*else*/ if(1) {
6417 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6418 {
6419 // Unconditional branch
6420 u=unneeded_reg[(ba[i]-start)>>2];
6421 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6422 branch_unneeded_reg[i]=u;
6423 branch_unneeded_reg_upper[i]=uu;
6424 //u=1;
6425 //uu=1;
6426 //branch_unneeded_reg[i]=u;
6427 //branch_unneeded_reg_upper[i]=uu;
6428 // Merge in delay slot
6429 tdep=(~uu>>rt1[i+1])&1;
6430 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6431 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6432 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6433 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6434 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6435 u|=1;uu|=1;
6436 } else {
6437 // Conditional branch
6438 b=unneeded_reg[(ba[i]-start)>>2];
6439 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6440 branch_unneeded_reg[i]=b;
6441 branch_unneeded_reg_upper[i]=bu;
6442 //b=1;
6443 //bu=1;
6444 //branch_unneeded_reg[i]=b;
6445 //branch_unneeded_reg_upper[i]=bu;
6446 // Branch delay slot
6447 tdep=(~uu>>rt1[i+1])&1;
6448 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6449 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6450 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6451 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6452 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6453 b|=1;bu|=1;
6454 // If branch is "likely" then we skip the
6455 // delay slot on the fall-thru path
6456 if(likely[i]) {
6457 u=b;
6458 uu=bu;
6459 if(i<slen-1) {
6460 u&=unneeded_reg[i+2];
6461 uu&=unneeded_reg_upper[i+2];
6462 //u=1;
6463 //uu=1;
6464 }
6465 } else {
6466 u&=b;
6467 uu&=bu;
6468 //u=1;
6469 //uu=1;
6470 }
6471 if(i<slen-1) {
6472 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6473 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6474 //branch_unneeded_reg[i]=1;
6475 //branch_unneeded_reg_upper[i]=1;
6476 } else {
6477 branch_unneeded_reg[i]=1;
6478 branch_unneeded_reg_upper[i]=1;
6479 }
6480 }
6481 }
6482 }
6483 }
6484 else if(itype[i]==SYSCALL)
6485 {
6486 // SYSCALL instruction (software interrupt)
6487 u=1;
6488 uu=1;
6489 }
6490 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6491 {
6492 // ERET instruction (return from interrupt)
6493 u=1;
6494 uu=1;
6495 }
6496 //u=uu=1; // DEBUG
6497 tdep=(~uu>>rt1[i])&1;
6498 // Written registers are unneeded
6499 u|=1LL<<rt1[i];
6500 u|=1LL<<rt2[i];
6501 uu|=1LL<<rt1[i];
6502 uu|=1LL<<rt2[i];
6503 // Accessed registers are needed
6504 u&=~(1LL<<rs1[i]);
6505 u&=~(1LL<<rs2[i]);
6506 uu&=~(1LL<<us1[i]);
6507 uu&=~(1LL<<us2[i]);
6508 // Source-target dependencies
6509 uu&=~(tdep<<dep1[i]);
6510 uu&=~(tdep<<dep2[i]);
6511 // R0 is always unneeded
6512 u|=1;uu|=1;
6513 // Save it
6514 unneeded_reg[i]=u;
6515 unneeded_reg_upper[i]=uu;
6516 /*
6517 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6518 printf("U:");
6519 int r;
6520 for(r=1;r<=CCREG;r++) {
6521 if((unneeded_reg[i]>>r)&1) {
6522 if(r==HIREG) printf(" HI");
6523 else if(r==LOREG) printf(" LO");
6524 else printf(" r%d",r);
6525 }
6526 }
6527 printf(" UU:");
6528 for(r=1;r<=CCREG;r++) {
6529 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6530 if(r==HIREG) printf(" HI");
6531 else if(r==LOREG) printf(" LO");
6532 else printf(" r%d",r);
6533 }
6534 }
6535 printf("\n");*/
6536 }
6537}
6538
6539// Identify registers which are likely to contain 32-bit values
6540// This is used to predict whether any branches will jump to a
6541// location with 64-bit values in registers.
6542static void provisional_32bit()
6543{
6544 int i,j;
6545 uint64_t is32=1;
6546 uint64_t lastbranch=1;
6547
6548 for(i=0;i<slen;i++)
6549 {
6550 if(i>0) {
6551 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6552 if(i>1) is32=lastbranch;
6553 else is32=1;
6554 }
6555 }
6556 if(i>1)
6557 {
6558 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6559 if(likely[i-2]) {
6560 if(i>2) is32=lastbranch;
6561 else is32=1;
6562 }
6563 }
6564 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6565 {
6566 if(rs1[i-2]==0||rs2[i-2]==0)
6567 {
6568 if(rs1[i-2]) {
6569 is32|=1LL<<rs1[i-2];
6570 }
6571 if(rs2[i-2]) {
6572 is32|=1LL<<rs2[i-2];
6573 }
6574 }
6575 }
6576 }
6577 // If something jumps here with 64-bit values
6578 // then promote those registers to 64 bits
6579 if(bt[i])
6580 {
6581 uint64_t temp_is32=is32;
6582 for(j=i-1;j>=0;j--)
6583 {
6584 if(ba[j]==start+i*4)
6585 //temp_is32&=branch_regs[j].is32;
6586 temp_is32&=p32[j];
6587 }
6588 for(j=i;j<slen;j++)
6589 {
6590 if(ba[j]==start+i*4)
6591 temp_is32=1;
6592 }
6593 is32=temp_is32;
6594 }
6595 int type=itype[i];
6596 int op=opcode[i];
6597 int op2=opcode2[i];
6598 int rt=rt1[i];
6599 int s1=rs1[i];
6600 int s2=rs2[i];
6601 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6602 // Branches don't write registers, consider the delay slot instead.
6603 type=itype[i+1];
6604 op=opcode[i+1];
6605 op2=opcode2[i+1];
6606 rt=rt1[i+1];
6607 s1=rs1[i+1];
6608 s2=rs2[i+1];
6609 lastbranch=is32;
6610 }
6611 switch(type) {
6612 case LOAD:
6613 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6614 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6615 is32&=~(1LL<<rt);
6616 else
6617 is32|=1LL<<rt;
6618 break;
6619 case STORE:
6620 case STORELR:
6621 break;
6622 case LOADLR:
6623 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6624 if(op==0x22) is32|=1LL<<rt; // LWL
6625 break;
6626 case IMM16:
6627 if (op==0x08||op==0x09|| // ADDI/ADDIU
6628 op==0x0a||op==0x0b|| // SLTI/SLTIU
6629 op==0x0c|| // ANDI
6630 op==0x0f) // LUI
6631 {
6632 is32|=1LL<<rt;
6633 }
6634 if(op==0x18||op==0x19) { // DADDI/DADDIU
6635 is32&=~(1LL<<rt);
6636 //if(imm[i]==0)
6637 // is32|=((is32>>s1)&1LL)<<rt;
6638 }
6639 if(op==0x0d||op==0x0e) { // ORI/XORI
6640 uint64_t sr=((is32>>s1)&1LL);
6641 is32&=~(1LL<<rt);
6642 is32|=sr<<rt;
6643 }
6644 break;
6645 case UJUMP:
6646 break;
6647 case RJUMP:
6648 break;
6649 case CJUMP:
6650 break;
6651 case SJUMP:
6652 break;
6653 case FJUMP:
6654 break;
6655 case ALU:
6656 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6657 is32|=1LL<<rt;
6658 }
6659 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6660 is32|=1LL<<rt;
6661 }
6662 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6663 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6664 is32&=~(1LL<<rt);
6665 is32|=sr<<rt;
6666 }
6667 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6668 if(s1==0&&s2==0) {
6669 is32|=1LL<<rt;
6670 }
6671 else if(s2==0) {
6672 uint64_t sr=((is32>>s1)&1LL);
6673 is32&=~(1LL<<rt);
6674 is32|=sr<<rt;
6675 }
6676 else if(s1==0) {
6677 uint64_t sr=((is32>>s2)&1LL);
6678 is32&=~(1LL<<rt);
6679 is32|=sr<<rt;
6680 }
6681 else {
6682 is32&=~(1LL<<rt);
6683 }
6684 }
6685 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6686 if(s1==0&&s2==0) {
6687 is32|=1LL<<rt;
6688 }
6689 else if(s2==0) {
6690 uint64_t sr=((is32>>s1)&1LL);
6691 is32&=~(1LL<<rt);
6692 is32|=sr<<rt;
6693 }
6694 else {
6695 is32&=~(1LL<<rt);
6696 }
6697 }
6698 break;
6699 case MULTDIV:
6700 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6701 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6702 }
6703 else {
6704 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6705 }
6706 break;
6707 case MOV:
6708 {
6709 uint64_t sr=((is32>>s1)&1LL);
6710 is32&=~(1LL<<rt);
6711 is32|=sr<<rt;
6712 }
6713 break;
6714 case SHIFT:
6715 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6716 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6717 break;
6718 case SHIFTIMM:
6719 is32|=1LL<<rt;
6720 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6721 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6722 break;
6723 case COP0:
6724 if(op2==0) is32|=1LL<<rt; // MFC0
6725 break;
6726 case COP1:
6727 if(op2==0) is32|=1LL<<rt; // MFC1
6728 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6729 if(op2==2) is32|=1LL<<rt; // CFC1
6730 break;
6731 case C1LS:
6732 break;
6733 case FLOAT:
6734 case FCONV:
6735 break;
6736 case FCOMP:
6737 break;
6738 case SYSCALL:
6739 break;
6740 default:
6741 break;
6742 }
6743 is32|=1;
6744 p32[i]=is32;
6745
6746 if(i>0)
6747 {
6748 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6749 {
6750 if(rt1[i-1]==31) // JAL/JALR
6751 {
6752 // Subroutine call will return here, don't alloc any registers
6753 is32=1;
6754 }
6755 else if(i+1<slen)
6756 {
6757 // Internal branch will jump here, match registers to caller
6758 is32=0x3FFFFFFFFLL;
6759 }
6760 }
6761 }
6762 }
6763}
6764
6765// Identify registers which may be assumed to contain 32-bit values
6766// and where optimizations will rely on this.
6767// This is used to determine whether backward branches can safely
6768// jump to a location with 64-bit values in registers.
6769static void provisional_r32()
6770{
6771 u_int r32=0;
6772 int i;
6773
6774 for (i=slen-1;i>=0;i--)
6775 {
6776 int hr;
6777 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6778 {
6779 if(ba[i]<start || ba[i]>=(start+slen*4))
6780 {
6781 // Branch out of this block, don't need anything
6782 r32=0;
6783 }
6784 else
6785 {
6786 // Internal branch
6787 // Need whatever matches the target
6788 // (and doesn't get overwritten by the delay slot instruction)
6789 r32=0;
6790 int t=(ba[i]-start)>>2;
6791 if(ba[i]>start+i*4) {
6792 // Forward branch
6793 //if(!(requires_32bit[t]&~regs[i].was32))
6794 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6795 if(!(pr32[t]&~regs[i].was32))
6796 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6797 }else{
6798 // Backward branch
6799 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
6800 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6801 }
6802 }
6803 // Conditional branch may need registers for following instructions
6804 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
6805 {
6806 if(i<slen-2) {
6807 //r32|=requires_32bit[i+2];
6808 r32|=pr32[i+2];
6809 r32&=regs[i].was32;
6810 // Mark this address as a branch target since it may be called
6811 // upon return from interrupt
6812 //bt[i+2]=1;
6813 }
6814 }
6815 // Merge in delay slot
6816 if(!likely[i]) {
6817 // These are overwritten unless the branch is "likely"
6818 // and the delay slot is nullified if not taken
6819 r32&=~(1LL<<rt1[i+1]);
6820 r32&=~(1LL<<rt2[i+1]);
6821 }
6822 // Assume these are needed (delay slot)
6823 if(us1[i+1]>0)
6824 {
6825 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
6826 }
6827 if(us2[i+1]>0)
6828 {
6829 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
6830 }
6831 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
6832 {
6833 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
6834 }
6835 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
6836 {
6837 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
6838 }
6839 }
6840 else if(itype[i]==SYSCALL)
6841 {
6842 // SYSCALL instruction (software interrupt)
6843 r32=0;
6844 }
6845 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6846 {
6847 // ERET instruction (return from interrupt)
6848 r32=0;
6849 }
6850 // Check 32 bits
6851 r32&=~(1LL<<rt1[i]);
6852 r32&=~(1LL<<rt2[i]);
6853 if(us1[i]>0)
6854 {
6855 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
6856 }
6857 if(us2[i]>0)
6858 {
6859 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
6860 }
6861 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
6862 {
6863 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
6864 }
6865 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
6866 {
6867 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
6868 }
6869 //requires_32bit[i]=r32;
6870 pr32[i]=r32;
6871
6872 // Dirty registers which are 32-bit, require 32-bit input
6873 // as they will be written as 32-bit values
6874 for(hr=0;hr<HOST_REGS;hr++)
6875 {
6876 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
6877 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
6878 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
6879 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
6880 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
6881 }
6882 }
6883 }
6884 }
6885}
6886
6887// Write back dirty registers as soon as we will no longer modify them,
6888// so that we don't end up with lots of writes at the branches.
6889void clean_registers(int istart,int iend,int wr)
6890{
6891 int i;
6892 int r;
6893 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6894 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6895 if(iend==slen-1) {
6896 will_dirty_i=will_dirty_next=0;
6897 wont_dirty_i=wont_dirty_next=0;
6898 }else{
6899 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6900 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6901 }
6902 for (i=iend;i>=istart;i--)
6903 {
6904 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6905 {
6906 if(ba[i]<start || ba[i]>=(start+slen*4))
6907 {
6908 // Branch out of this block, flush all regs
6909 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6910 {
6911 // Unconditional branch
6912 will_dirty_i=0;
6913 wont_dirty_i=0;
6914 // Merge in delay slot (will dirty)
6915 for(r=0;r<HOST_REGS;r++) {
6916 if(r!=EXCLUDE_REG) {
6917 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6918 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6919 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6920 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6921 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6922 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6923 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6924 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6925 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6926 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6927 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6928 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6929 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6930 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6931 }
6932 }
6933 }
6934 else
6935 {
6936 // Conditional branch
6937 will_dirty_i=0;
6938 wont_dirty_i=wont_dirty_next;
6939 // Merge in delay slot (will dirty)
6940 for(r=0;r<HOST_REGS;r++) {
6941 if(r!=EXCLUDE_REG) {
6942 if(!likely[i]) {
6943 // Might not dirty if likely branch is not taken
6944 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6945 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6946 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6947 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6948 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6949 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6950 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6951 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6952 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6953 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6954 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6955 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6956 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6957 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6958 }
6959 }
6960 }
6961 }
6962 // Merge in delay slot (wont dirty)
6963 for(r=0;r<HOST_REGS;r++) {
6964 if(r!=EXCLUDE_REG) {
6965 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6966 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6967 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6968 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6969 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6970 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6971 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6972 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6973 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6974 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6975 }
6976 }
6977 if(wr) {
6978 #ifndef DESTRUCTIVE_WRITEBACK
6979 branch_regs[i].dirty&=wont_dirty_i;
6980 #endif
6981 branch_regs[i].dirty|=will_dirty_i;
6982 }
6983 }
6984 else
6985 {
6986 // Internal branch
6987 if(ba[i]<=start+i*4) {
6988 // Backward branch
6989 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6990 {
6991 // Unconditional branch
6992 temp_will_dirty=0;
6993 temp_wont_dirty=0;
6994 // Merge in delay slot (will dirty)
6995 for(r=0;r<HOST_REGS;r++) {
6996 if(r!=EXCLUDE_REG) {
6997 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6998 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6999 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7000 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7001 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7002 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7003 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7004 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7005 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7006 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7007 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7008 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7009 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7010 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7011 }
7012 }
7013 } else {
7014 // Conditional branch (not taken case)
7015 temp_will_dirty=will_dirty_next;
7016 temp_wont_dirty=wont_dirty_next;
7017 // Merge in delay slot (will dirty)
7018 for(r=0;r<HOST_REGS;r++) {
7019 if(r!=EXCLUDE_REG) {
7020 if(!likely[i]) {
7021 // Will not dirty if likely branch is not taken
7022 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7023 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7024 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7025 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7026 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7027 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7028 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7029 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7030 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7031 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7032 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7033 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7034 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7035 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7036 }
7037 }
7038 }
7039 }
7040 // Merge in delay slot (wont dirty)
7041 for(r=0;r<HOST_REGS;r++) {
7042 if(r!=EXCLUDE_REG) {
7043 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7044 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7045 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7046 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7047 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7048 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7049 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7050 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7051 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7052 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7053 }
7054 }
7055 // Deal with changed mappings
7056 if(i<iend) {
7057 for(r=0;r<HOST_REGS;r++) {
7058 if(r!=EXCLUDE_REG) {
7059 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7060 temp_will_dirty&=~(1<<r);
7061 temp_wont_dirty&=~(1<<r);
7062 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7063 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7064 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7065 } else {
7066 temp_will_dirty|=1<<r;
7067 temp_wont_dirty|=1<<r;
7068 }
7069 }
7070 }
7071 }
7072 }
7073 if(wr) {
7074 will_dirty[i]=temp_will_dirty;
7075 wont_dirty[i]=temp_wont_dirty;
7076 clean_registers((ba[i]-start)>>2,i-1,0);
7077 }else{
7078 // Limit recursion. It can take an excessive amount
7079 // of time if there are a lot of nested loops.
7080 will_dirty[(ba[i]-start)>>2]=0;
7081 wont_dirty[(ba[i]-start)>>2]=-1;
7082 }
7083 }
7084 /*else*/ if(1)
7085 {
7086 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7087 {
7088 // Unconditional branch
7089 will_dirty_i=0;
7090 wont_dirty_i=0;
7091 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7092 for(r=0;r<HOST_REGS;r++) {
7093 if(r!=EXCLUDE_REG) {
7094 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7095 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7096 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7097 }
7098 }
7099 }
7100 //}
7101 // Merge in delay slot
7102 for(r=0;r<HOST_REGS;r++) {
7103 if(r!=EXCLUDE_REG) {
7104 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7105 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7106 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7107 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7108 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7109 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7110 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7111 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7112 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7113 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7114 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7115 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7116 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7117 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7118 }
7119 }
7120 } else {
7121 // Conditional branch
7122 will_dirty_i=will_dirty_next;
7123 wont_dirty_i=wont_dirty_next;
7124 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7125 for(r=0;r<HOST_REGS;r++) {
7126 if(r!=EXCLUDE_REG) {
7127 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7128 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7129 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7130 }
7131 else
7132 {
7133 will_dirty_i&=~(1<<r);
7134 }
7135 // Treat delay slot as part of branch too
7136 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7137 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7138 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7139 }
7140 else
7141 {
7142 will_dirty[i+1]&=~(1<<r);
7143 }*/
7144 }
7145 }
7146 //}
7147 // Merge in delay slot
7148 for(r=0;r<HOST_REGS;r++) {
7149 if(r!=EXCLUDE_REG) {
7150 if(!likely[i]) {
7151 // Might not dirty if likely branch is not taken
7152 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7153 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7154 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7155 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7156 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7157 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7158 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7159 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7160 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7161 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7162 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7163 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7164 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7165 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7166 }
7167 }
7168 }
7169 }
7170 // Merge in delay slot
7171 for(r=0;r<HOST_REGS;r++) {
7172 if(r!=EXCLUDE_REG) {
7173 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7174 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7175 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7176 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7177 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7178 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7179 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7180 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7181 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7182 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7183 }
7184 }
7185 if(wr) {
7186 #ifndef DESTRUCTIVE_WRITEBACK
7187 branch_regs[i].dirty&=wont_dirty_i;
7188 #endif
7189 branch_regs[i].dirty|=will_dirty_i;
7190 }
7191 }
7192 }
7193 }
7194 else if(itype[i]==SYSCALL)
7195 {
7196 // SYSCALL instruction (software interrupt)
7197 will_dirty_i=0;
7198 wont_dirty_i=0;
7199 }
7200 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7201 {
7202 // ERET instruction (return from interrupt)
7203 will_dirty_i=0;
7204 wont_dirty_i=0;
7205 }
7206 will_dirty_next=will_dirty_i;
7207 wont_dirty_next=wont_dirty_i;
7208 for(r=0;r<HOST_REGS;r++) {
7209 if(r!=EXCLUDE_REG) {
7210 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7211 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7212 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7213 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7214 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7215 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7216 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7217 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7218 if(i>istart) {
7219 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7220 {
7221 // Don't store a register immediately after writing it,
7222 // may prevent dual-issue.
7223 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7224 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7225 }
7226 }
7227 }
7228 }
7229 // Save it
7230 will_dirty[i]=will_dirty_i;
7231 wont_dirty[i]=wont_dirty_i;
7232 // Mark registers that won't be dirtied as not dirty
7233 if(wr) {
7234 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7235 for(r=0;r<HOST_REGS;r++) {
7236 if((will_dirty_i>>r)&1) {
7237 printf(" r%d",r);
7238 }
7239 }
7240 printf("\n");*/
7241
7242 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7243 regs[i].dirty|=will_dirty_i;
7244 #ifndef DESTRUCTIVE_WRITEBACK
7245 regs[i].dirty&=wont_dirty_i;
7246 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7247 {
7248 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7249 for(r=0;r<HOST_REGS;r++) {
7250 if(r!=EXCLUDE_REG) {
7251 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7252 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7253 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7254 }
7255 }
7256 }
7257 }
7258 else
7259 {
7260 if(i<iend) {
7261 for(r=0;r<HOST_REGS;r++) {
7262 if(r!=EXCLUDE_REG) {
7263 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7264 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7265 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7266 }
7267 }
7268 }
7269 }
7270 #endif
7271 //}
7272 }
7273 // Deal with changed mappings
7274 temp_will_dirty=will_dirty_i;
7275 temp_wont_dirty=wont_dirty_i;
7276 for(r=0;r<HOST_REGS;r++) {
7277 if(r!=EXCLUDE_REG) {
7278 int nr;
7279 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7280 if(wr) {
7281 #ifndef DESTRUCTIVE_WRITEBACK
7282 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7283 #endif
7284 regs[i].wasdirty|=will_dirty_i&(1<<r);
7285 }
7286 }
7287 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7288 // Register moved to a different register
7289 will_dirty_i&=~(1<<r);
7290 wont_dirty_i&=~(1<<r);
7291 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7292 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7293 if(wr) {
7294 #ifndef DESTRUCTIVE_WRITEBACK
7295 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7296 #endif
7297 regs[i].wasdirty|=will_dirty_i&(1<<r);
7298 }
7299 }
7300 else {
7301 will_dirty_i&=~(1<<r);
7302 wont_dirty_i&=~(1<<r);
7303 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7304 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7305 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7306 } else {
7307 wont_dirty_i|=1<<r;
7308 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7309 }
7310 }
7311 }
7312 }
7313 }
7314}
7315
7316 /* disassembly */
7317void disassemble_inst(int i)
7318{
7319 if (bt[i]) printf("*"); else printf(" ");
7320 switch(itype[i]) {
7321 case UJUMP:
7322 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7323 case CJUMP:
7324 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7325 case SJUMP:
7326 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7327 case FJUMP:
7328 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7329 case RJUMP:
7330 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);break;
7331 case SPAN:
7332 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7333 case IMM16:
7334 if(opcode[i]==0xf) //LUI
7335 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7336 else
7337 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7338 break;
7339 case LOAD:
7340 case LOADLR:
7341 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7342 break;
7343 case STORE:
7344 case STORELR:
7345 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7346 break;
7347 case ALU:
7348 case SHIFT:
7349 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7350 break;
7351 case MULTDIV:
7352 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7353 break;
7354 case SHIFTIMM:
7355 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7356 break;
7357 case MOV:
7358 if((opcode2[i]&0x1d)==0x10)
7359 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7360 else if((opcode2[i]&0x1d)==0x11)
7361 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7362 else
7363 printf (" %x: %s\n",start+i*4,insn[i]);
7364 break;
7365 case COP0:
7366 if(opcode2[i]==0)
7367 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7368 else if(opcode2[i]==4)
7369 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7370 else printf (" %x: %s\n",start+i*4,insn[i]);
7371 break;
7372 case COP1:
7373 if(opcode2[i]<3)
7374 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7375 else if(opcode2[i]>3)
7376 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7377 else printf (" %x: %s\n",start+i*4,insn[i]);
7378 break;
7379 case C1LS:
7380 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7381 break;
7382 default:
7383 //printf (" %s %8x\n",insn[i],source[i]);
7384 printf (" %x: %s\n",start+i*4,insn[i]);
7385 }
7386}
7387
7388void new_dynarec_init()
7389{
7390 printf("Init new dynarec\n");
7391 out=(u_char *)BASE_ADDR;
7392 if (mmap (out, 1<<TARGET_SIZE_2,
7393 PROT_READ | PROT_WRITE | PROT_EXEC,
7394 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7395 -1, 0) <= 0) {printf("mmap() failed\n");}
7396 rdword=&readmem_dword;
7397 fake_pc.f.r.rs=&readmem_dword;
7398 fake_pc.f.r.rt=&readmem_dword;
7399 fake_pc.f.r.rd=&readmem_dword;
7400 int n;
7401 for(n=0x80000;n<0x80800;n++)
7402 invalid_code[n]=1;
7403 for(n=0;n<65536;n++)
7404 hash_table[n][0]=hash_table[n][2]=-1;
7405 memset(mini_ht,-1,sizeof(mini_ht));
7406 memset(restore_candidate,0,sizeof(restore_candidate));
7407 copy=shadow;
7408 expirep=16384; // Expiry pointer, +2 blocks
7409 pending_exception=0;
7410 literalcount=0;
7411#ifdef HOST_IMM8
7412 // Copy this into local area so we don't have to put it in every literal pool
7413 invc_ptr=invalid_code;
7414#endif
7415 stop_after_jal=0;
7416 // TLB
7417 using_tlb=0;
7418 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7419 memory_map[n]=-1;
7420 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7421 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7422 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7423 memory_map[n]=-1;
7424 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7425 writemem[n] = write_nomem_new;
7426 writememb[n] = write_nomemb_new;
7427 writememh[n] = write_nomemh_new;
7428 writememd[n] = write_nomemd_new;
7429 readmem[n] = read_nomem_new;
7430 readmemb[n] = read_nomemb_new;
7431 readmemh[n] = read_nomemh_new;
7432 readmemd[n] = read_nomemd_new;
7433 }
7434 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7435 writemem[n] = write_rdram_new;
7436 writememb[n] = write_rdramb_new;
7437 writememh[n] = write_rdramh_new;
7438 writememd[n] = write_rdramd_new;
7439 }
7440 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7441 writemem[n] = write_nomem_new;
7442 writememb[n] = write_nomemb_new;
7443 writememh[n] = write_nomemh_new;
7444 writememd[n] = write_nomemd_new;
7445 readmem[n] = read_nomem_new;
7446 readmemb[n] = read_nomemb_new;
7447 readmemh[n] = read_nomemh_new;
7448 readmemd[n] = read_nomemd_new;
7449 }
7450 tlb_hacks();
7451 arch_init();
7452}
7453
7454void new_dynarec_cleanup()
7455{
7456 int n;
7457 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7458 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7459 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7460 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7461 #ifdef ROM_COPY
7462 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7463 #endif
7464}
7465
7466int new_recompile_block(int addr)
7467{
7468/*
7469 if(addr==0x800cd050) {
7470 int block;
7471 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7472 int n;
7473 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7474 }
7475*/
7476 //if(Count==365117028) tracedebug=1;
7477 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7478 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7479 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7480 //if(debug)
7481 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7482 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7483 /*if(Count>=312978186) {
7484 rlist();
7485 }*/
7486 //rlist();
7487 start = (u_int)addr&~3;
7488 //assert(((u_int)addr&1)==0);
7489 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7490 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7491 pagelimit = 0xa4001000;
7492 }
7493 else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
7494 source = (u_int *)((u_int)rdram+start-0x80000000);
7495 pagelimit = 0x80800000;
7496 }
7497 else if ((signed int)addr >= (signed int)0xC0000000) {
7498 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7499 //if(tlb_LUT_r[start>>12])
7500 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7501 if((signed int)memory_map[start>>12]>=0) {
7502 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7503 pagelimit=(start+4096)&0xFFFFF000;
7504 int map=memory_map[start>>12];
7505 int i;
7506 for(i=0;i<5;i++) {
7507 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7508 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7509 }
7510 assem_debug("pagelimit=%x\n",pagelimit);
7511 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7512 }
7513 else {
7514 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7515 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7516 return 1; // Caller will invoke exception handler
7517 }
7518 //printf("source= %x\n",(int)source);
7519 }
7520 else {
7521 printf("Compile at bogus memory address: %x \n", (int)addr);
7522 exit(1);
7523 }
7524
7525 /* Pass 1: disassemble */
7526 /* Pass 2: register dependencies, branch targets */
7527 /* Pass 3: register allocation */
7528 /* Pass 4: branch dependencies */
7529 /* Pass 5: pre-alloc */
7530 /* Pass 6: optimize clean/dirty state */
7531 /* Pass 7: flag 32-bit registers */
7532 /* Pass 8: assembly */
7533 /* Pass 9: linker */
7534 /* Pass 10: garbage collection / free memory */
7535
7536 int i,j;
7537 int done=0;
7538 unsigned int type,op,op2;
7539
7540 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7541
7542 /* Pass 1 disassembly */
7543
7544 for(i=0;!done;i++) {
7545 bt[i]=0;likely[i]=0;op2=0;
7546 opcode[i]=op=source[i]>>26;
7547 switch(op)
7548 {
7549 case 0x00: strcpy(insn[i],"special"); type=NI;
7550 op2=source[i]&0x3f;
7551 switch(op2)
7552 {
7553 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7554 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7555 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7556 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7557 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7558 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7559 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7560 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7561 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7562 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7563 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7564 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7565 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7566 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7567 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7568 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7569 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7570 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7571 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7572 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7573 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7574 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7575 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7576 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7577 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7578 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7579 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7580 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7581 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7582 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7583 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7584 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7585 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7586 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7587 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7588 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7589 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7590 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7591 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7592 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7593 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7594 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7595 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7596 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7597 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7598 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7599 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7600 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7601 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7602 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7603 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7604 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7605 }
7606 break;
7607 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7608 op2=(source[i]>>16)&0x1f;
7609 switch(op2)
7610 {
7611 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7612 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7613 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7614 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7615 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7616 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7617 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7618 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7619 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7620 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7621 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7622 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7623 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7624 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7625 }
7626 break;
7627 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7628 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7629 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7630 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7631 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7632 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7633 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7634 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7635 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7636 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7637 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7638 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7639 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7640 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7641 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7642 op2=(source[i]>>21)&0x1f;
7643 switch(op2)
7644 {
7645 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7646 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7647 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7648 switch(source[i]&0x3f)
7649 {
7650 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7651 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7652 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7653 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7654 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7655 }
7656 }
7657 break;
7658 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7659 op2=(source[i]>>21)&0x1f;
7660 switch(op2)
7661 {
7662 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7663 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7664 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7665 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7666 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7667 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7668 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7669 switch((source[i]>>16)&0x3)
7670 {
7671 case 0x00: strcpy(insn[i],"BC1F"); break;
7672 case 0x01: strcpy(insn[i],"BC1T"); break;
7673 case 0x02: strcpy(insn[i],"BC1FL"); break;
7674 case 0x03: strcpy(insn[i],"BC1TL"); break;
7675 }
7676 break;
7677 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7678 switch(source[i]&0x3f)
7679 {
7680 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7681 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7682 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7683 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7684 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7685 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7686 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7687 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7688 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7689 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7690 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7691 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7692 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7693 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7694 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7695 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7696 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7697 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7698 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7699 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7700 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7701 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7702 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7703 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7704 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7705 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7706 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7707 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7708 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7709 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7710 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7711 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7712 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7713 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7714 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7715 }
7716 break;
7717 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7718 switch(source[i]&0x3f)
7719 {
7720 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7721 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7722 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7723 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7724 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7725 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7726 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7727 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7728 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7729 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7730 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7731 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7732 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7733 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7734 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7735 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7736 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7737 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7738 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7739 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7740 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7741 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7742 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7743 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7744 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7745 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7746 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7747 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7748 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7749 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7750 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7751 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7752 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7753 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7754 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7755 }
7756 break;
7757 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7758 switch(source[i]&0x3f)
7759 {
7760 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7761 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7762 }
7763 break;
7764 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7765 switch(source[i]&0x3f)
7766 {
7767 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7768 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7769 }
7770 break;
7771 }
7772 break;
7773 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7774 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7775 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7776 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7777 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7778 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7779 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7780 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7781 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7782 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7783 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7784 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7785 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7786 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7787 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7788 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7789 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7790 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7791 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7792 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7793 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7794 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7795 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7796 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7797 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7798 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7799 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7800 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7801 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7802 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7803 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7804 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7805 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7806 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7807 default: strcpy(insn[i],"???"); type=NI; break;
7808 }
7809 itype[i]=type;
7810 opcode2[i]=op2;
7811 /* Get registers/immediates */
7812 lt1[i]=0;
7813 us1[i]=0;
7814 us2[i]=0;
7815 dep1[i]=0;
7816 dep2[i]=0;
7817 switch(type) {
7818 case LOAD:
7819 rs1[i]=(source[i]>>21)&0x1f;
7820 rs2[i]=0;
7821 rt1[i]=(source[i]>>16)&0x1f;
7822 rt2[i]=0;
7823 imm[i]=(short)source[i];
7824 break;
7825 case STORE:
7826 case STORELR:
7827 rs1[i]=(source[i]>>21)&0x1f;
7828 rs2[i]=(source[i]>>16)&0x1f;
7829 rt1[i]=0;
7830 rt2[i]=0;
7831 imm[i]=(short)source[i];
7832 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7833 break;
7834 case LOADLR:
7835 // LWL/LWR only load part of the register,
7836 // therefore the target register must be treated as a source too
7837 rs1[i]=(source[i]>>21)&0x1f;
7838 rs2[i]=(source[i]>>16)&0x1f;
7839 rt1[i]=(source[i]>>16)&0x1f;
7840 rt2[i]=0;
7841 imm[i]=(short)source[i];
7842 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7843 if(op==0x26) dep1[i]=rt1[i]; // LWR
7844 break;
7845 case IMM16:
7846 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7847 else rs1[i]=(source[i]>>21)&0x1f;
7848 rs2[i]=0;
7849 rt1[i]=(source[i]>>16)&0x1f;
7850 rt2[i]=0;
7851 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7852 imm[i]=(unsigned short)source[i];
7853 }else{
7854 imm[i]=(short)source[i];
7855 }
7856 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7857 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7858 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7859 break;
7860 case UJUMP:
7861 rs1[i]=0;
7862 rs2[i]=0;
7863 rt1[i]=0;
7864 rt2[i]=0;
7865 // The JAL instruction writes to r31.
7866 if (op&1) {
7867 rt1[i]=31;
7868 }
7869 rs2[i]=CCREG;
7870 break;
7871 case RJUMP:
7872 rs1[i]=(source[i]>>21)&0x1f;
7873 rs2[i]=0;
7874 rt1[i]=0;
7875 rt2[i]=0;
7876 // The JALR instruction writes to r31.
7877 if (op2&1) {
7878 rt1[i]=31;
7879 }
7880 rs2[i]=CCREG;
7881 break;
7882 case CJUMP:
7883 rs1[i]=(source[i]>>21)&0x1f;
7884 rs2[i]=(source[i]>>16)&0x1f;
7885 rt1[i]=0;
7886 rt2[i]=0;
7887 if(op&2) { // BGTZ/BLEZ
7888 rs2[i]=0;
7889 }
7890 us1[i]=rs1[i];
7891 us2[i]=rs2[i];
7892 likely[i]=op>>4;
7893 break;
7894 case SJUMP:
7895 rs1[i]=(source[i]>>21)&0x1f;
7896 rs2[i]=CCREG;
7897 rt1[i]=0;
7898 rt2[i]=0;
7899 us1[i]=rs1[i];
7900 if(op2&0x10) { // BxxAL
7901 rt1[i]=31;
7902 // NOTE: If the branch is not taken, r31 is still overwritten
7903 }
7904 likely[i]=(op2&2)>>1;
7905 break;
7906 case FJUMP:
7907 rs1[i]=FSREG;
7908 rs2[i]=CSREG;
7909 rt1[i]=0;
7910 rt2[i]=0;
7911 likely[i]=((source[i])>>17)&1;
7912 break;
7913 case ALU:
7914 rs1[i]=(source[i]>>21)&0x1f; // source
7915 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7916 rt1[i]=(source[i]>>11)&0x1f; // destination
7917 rt2[i]=0;
7918 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7919 us1[i]=rs1[i];us2[i]=rs2[i];
7920 }
7921 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7922 dep1[i]=rs1[i];dep2[i]=rs2[i];
7923 }
7924 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7925 dep1[i]=rs1[i];dep2[i]=rs2[i];
7926 }
7927 break;
7928 case MULTDIV:
7929 rs1[i]=(source[i]>>21)&0x1f; // source
7930 rs2[i]=(source[i]>>16)&0x1f; // divisor
7931 rt1[i]=HIREG;
7932 rt2[i]=LOREG;
7933 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7934 us1[i]=rs1[i];us2[i]=rs2[i];
7935 }
7936 break;
7937 case MOV:
7938 rs1[i]=0;
7939 rs2[i]=0;
7940 rt1[i]=0;
7941 rt2[i]=0;
7942 if(op2==0x10) rs1[i]=HIREG; // MFHI
7943 if(op2==0x11) rt1[i]=HIREG; // MTHI
7944 if(op2==0x12) rs1[i]=LOREG; // MFLO
7945 if(op2==0x13) rt1[i]=LOREG; // MTLO
7946 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7947 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7948 dep1[i]=rs1[i];
7949 break;
7950 case SHIFT:
7951 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7952 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7953 rt1[i]=(source[i]>>11)&0x1f; // destination
7954 rt2[i]=0;
7955 // DSLLV/DSRLV/DSRAV are 64-bit
7956 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7957 break;
7958 case SHIFTIMM:
7959 rs1[i]=(source[i]>>16)&0x1f;
7960 rs2[i]=0;
7961 rt1[i]=(source[i]>>11)&0x1f;
7962 rt2[i]=0;
7963 imm[i]=(source[i]>>6)&0x1f;
7964 // DSxx32 instructions
7965 if(op2>=0x3c) imm[i]|=0x20;
7966 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7967 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7968 break;
7969 case COP0:
7970 rs1[i]=0;
7971 rs2[i]=0;
7972 rt1[i]=0;
7973 rt2[i]=0;
7974 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7975 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7976 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7977 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7978 break;
7979 case COP1:
7980 rs1[i]=0;
7981 rs2[i]=0;
7982 rt1[i]=0;
7983 rt2[i]=0;
7984 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7985 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7986 if(op2==5) us1[i]=rs1[i]; // DMTC1
7987 rs2[i]=CSREG;
7988 break;
7989 case C1LS:
7990 rs1[i]=(source[i]>>21)&0x1F;
7991 rs2[i]=CSREG;
7992 rt1[i]=0;
7993 rt2[i]=0;
7994 imm[i]=(short)source[i];
7995 break;
7996 case FLOAT:
7997 case FCONV:
7998 rs1[i]=0;
7999 rs2[i]=CSREG;
8000 rt1[i]=0;
8001 rt2[i]=0;
8002 break;
8003 case FCOMP:
8004 rs1[i]=FSREG;
8005 rs2[i]=CSREG;
8006 rt1[i]=FSREG;
8007 rt2[i]=0;
8008 break;
8009 case SYSCALL:
8010 rs1[i]=CCREG;
8011 rs2[i]=0;
8012 rt1[i]=0;
8013 rt2[i]=0;
8014 break;
8015 default:
8016 rs1[i]=0;
8017 rs2[i]=0;
8018 rt1[i]=0;
8019 rt2[i]=0;
8020 }
8021 /* Calculate branch target addresses */
8022 if(type==UJUMP)
8023 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8024 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8025 ba[i]=start+i*4+8; // Ignore never taken branch
8026 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8027 ba[i]=start+i*4+8; // Ignore never taken branch
8028 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8029 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8030 else ba[i]=-1;
8031 /* Is this the end of the block? */
8032 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8033 if(rt1[i-1]!=31) { // Continue past subroutine call (JAL)
8034 done=1;
8035 // Does the block continue due to a branch?
8036 for(j=i-1;j>=0;j--)
8037 {
8038 if(ba[j]==start+i*4+4) done=j=0;
8039 if(ba[j]==start+i*4+8) done=j=0;
8040 }
8041 }
8042 else {
8043 if(stop_after_jal) done=1;
8044 // Stop on BREAK
8045 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8046 }
8047 // Don't recompile stuff that's already compiled
8048 if(check_addr(start+i*4+4)) done=1;
8049 // Don't get too close to the limit
8050 if(i>MAXBLOCK/2) done=1;
8051 }
8052 if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8053 assert(i<MAXBLOCK-1);
8054 if(start+i*4==pagelimit-4) done=1;
8055 assert(start+i*4<pagelimit);
8056 if (i==MAXBLOCK-1) done=1;
8057 // Stop if we're compiling junk
8058 if(itype[i]==NI&&opcode[i]==0x11) {
8059 done=stop_after_jal=1;
8060 printf("Disabled speculative precompilation\n");
8061 }
8062 }
8063 slen=i;
8064 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8065 if(start+i*4==pagelimit) {
8066 itype[i-1]=SPAN;
8067 }
8068 }
8069 assert(slen>0);
8070
8071 /* Pass 2 - Register dependencies and branch targets */
8072
8073 unneeded_registers(0,slen-1,0);
8074
8075 /* Pass 3 - Register allocation */
8076
8077 struct regstat current; // Current register allocations/status
8078 current.is32=1;
8079 current.dirty=0;
8080 current.u=unneeded_reg[0];
8081 current.uu=unneeded_reg_upper[0];
8082 clear_all_regs(current.regmap);
8083 alloc_reg(&current,0,CCREG);
8084 dirty_reg(&current,CCREG);
8085 current.isconst=0;
8086 current.wasconst=0;
8087 int ds=0;
8088 int cc=0;
8089 int hr;
8090
8091 provisional_32bit();
8092
8093 if((u_int)addr&1) {
8094 // First instruction is delay slot
8095 cc=-1;
8096 bt[1]=1;
8097 ds=1;
8098 unneeded_reg[0]=1;
8099 unneeded_reg_upper[0]=1;
8100 current.regmap[HOST_BTREG]=BTREG;
8101 }
8102
8103 for(i=0;i<slen;i++)
8104 {
8105 if(bt[i])
8106 {
8107 int hr;
8108 for(hr=0;hr<HOST_REGS;hr++)
8109 {
8110 // Is this really necessary?
8111 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8112 }
8113 current.isconst=0;
8114 }
8115 if(i>1)
8116 {
8117 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8118 {
8119 if(rs1[i-2]==0||rs2[i-2]==0)
8120 {
8121 if(rs1[i-2]) {
8122 current.is32|=1LL<<rs1[i-2];
8123 int hr=get_reg(current.regmap,rs1[i-2]|64);
8124 if(hr>=0) current.regmap[hr]=-1;
8125 }
8126 if(rs2[i-2]) {
8127 current.is32|=1LL<<rs2[i-2];
8128 int hr=get_reg(current.regmap,rs2[i-2]|64);
8129 if(hr>=0) current.regmap[hr]=-1;
8130 }
8131 }
8132 }
8133 }
8134 // If something jumps here with 64-bit values
8135 // then promote those registers to 64 bits
8136 if(bt[i])
8137 {
8138 uint64_t temp_is32=current.is32;
8139 for(j=i-1;j>=0;j--)
8140 {
8141 if(ba[j]==start+i*4)
8142 temp_is32&=branch_regs[j].is32;
8143 }
8144 for(j=i;j<slen;j++)
8145 {
8146 if(ba[j]==start+i*4)
8147 //temp_is32=1;
8148 temp_is32&=p32[j];
8149 }
8150 if(temp_is32!=current.is32) {
8151 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8152 #ifdef DESTRUCTIVE_WRITEBACK
8153 for(hr=0;hr<HOST_REGS;hr++)
8154 {
8155 int r=current.regmap[hr];
8156 if(r>0&&r<64)
8157 {
8158 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8159 temp_is32|=1LL<<r;
8160 //printf("restore %d\n",r);
8161 }
8162 }
8163 }
8164 #endif
8165 current.is32=temp_is32;
8166 }
8167 }
8168 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8169 regs[i].wasconst=current.isconst;
8170 regs[i].was32=current.is32;
8171 regs[i].wasdirty=current.dirty;
8172 #ifdef DESTRUCTIVE_WRITEBACK
8173 // To change a dirty register from 32 to 64 bits, we must write
8174 // it out during the previous cycle (for branches, 2 cycles)
8175 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8176 {
8177 uint64_t temp_is32=current.is32;
8178 for(j=i-1;j>=0;j--)
8179 {
8180 if(ba[j]==start+i*4+4)
8181 temp_is32&=branch_regs[j].is32;
8182 }
8183 for(j=i;j<slen;j++)
8184 {
8185 if(ba[j]==start+i*4+4)
8186 //temp_is32=1;
8187 temp_is32&=p32[j];
8188 }
8189 if(temp_is32!=current.is32) {
8190 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8191 for(hr=0;hr<HOST_REGS;hr++)
8192 {
8193 int r=current.regmap[hr];
8194 if(r>0)
8195 {
8196 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8197 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8198 {
8199 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8200 {
8201 //printf("dump %d/r%d\n",hr,r);
8202 current.regmap[hr]=-1;
8203 if(get_reg(current.regmap,r|64)>=0)
8204 current.regmap[get_reg(current.regmap,r|64)]=-1;
8205 }
8206 }
8207 }
8208 }
8209 }
8210 }
8211 }
8212 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8213 {
8214 uint64_t temp_is32=current.is32;
8215 for(j=i-1;j>=0;j--)
8216 {
8217 if(ba[j]==start+i*4+8)
8218 temp_is32&=branch_regs[j].is32;
8219 }
8220 for(j=i;j<slen;j++)
8221 {
8222 if(ba[j]==start+i*4+8)
8223 //temp_is32=1;
8224 temp_is32&=p32[j];
8225 }
8226 if(temp_is32!=current.is32) {
8227 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8228 for(hr=0;hr<HOST_REGS;hr++)
8229 {
8230 int r=current.regmap[hr];
8231 if(r>0)
8232 {
8233 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8234 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8235 {
8236 //printf("dump %d/r%d\n",hr,r);
8237 current.regmap[hr]=-1;
8238 if(get_reg(current.regmap,r|64)>=0)
8239 current.regmap[get_reg(current.regmap,r|64)]=-1;
8240 }
8241 }
8242 }
8243 }
8244 }
8245 }
8246 #endif
8247 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8248 if(i+1<slen) {
8249 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8250 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8251 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8252 current.u|=1;
8253 current.uu|=1;
8254 } else {
8255 current.u=1;
8256 current.uu=1;
8257 }
8258 } else {
8259 if(i+1<slen) {
8260 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8261 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8262 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8263 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8264 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8265 current.u|=1;
8266 current.uu|=1;
8267 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8268 }
8269 is_ds[i]=ds;
8270 if(ds) {
8271 ds=0; // Skip delay slot, already allocated as part of branch
8272 // ...but we need to alloc it in case something jumps here
8273 if(i+1<slen) {
8274 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8275 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8276 }else{
8277 current.u=branch_unneeded_reg[i-1];
8278 current.uu=branch_unneeded_reg_upper[i-1];
8279 }
8280 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8281 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8282 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8283 current.u|=1;
8284 current.uu|=1;
8285 struct regstat temp;
8286 memcpy(&temp,&current,sizeof(current));
8287 temp.wasdirty=temp.dirty;
8288 temp.was32=temp.is32;
8289 // TODO: Take into account unconditional branches, as below
8290 delayslot_alloc(&temp,i);
8291 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8292 regs[i].wasdirty=temp.wasdirty;
8293 regs[i].was32=temp.was32;
8294 regs[i].dirty=temp.dirty;
8295 regs[i].is32=temp.is32;
8296 regs[i].isconst=0;
8297 regs[i].wasconst=0;
8298 current.isconst=0;
8299 // Create entry (branch target) regmap
8300 for(hr=0;hr<HOST_REGS;hr++)
8301 {
8302 int r=temp.regmap[hr];
8303 if(r>=0) {
8304 if(r!=regmap_pre[i][hr]) {
8305 regs[i].regmap_entry[hr]=-1;
8306 }
8307 else
8308 {
8309 if(r<64){
8310 if((current.u>>r)&1) {
8311 regs[i].regmap_entry[hr]=-1;
8312 regs[i].regmap[hr]=-1;
8313 //Don't clear regs in the delay slot as the branch might need them
8314 //current.regmap[hr]=-1;
8315 }else
8316 regs[i].regmap_entry[hr]=r;
8317 }
8318 else {
8319 if((current.uu>>(r&63))&1) {
8320 regs[i].regmap_entry[hr]=-1;
8321 regs[i].regmap[hr]=-1;
8322 //Don't clear regs in the delay slot as the branch might need them
8323 //current.regmap[hr]=-1;
8324 }else
8325 regs[i].regmap_entry[hr]=r;
8326 }
8327 }
8328 } else {
8329 // First instruction expects CCREG to be allocated
8330 if(i==0&&hr==HOST_CCREG)
8331 regs[i].regmap_entry[hr]=CCREG;
8332 else
8333 regs[i].regmap_entry[hr]=-1;
8334 }
8335 }
8336 }
8337 else { // Not delay slot
8338 switch(itype[i]) {
8339 case UJUMP:
8340 //current.isconst=0; // DEBUG
8341 //current.wasconst=0; // DEBUG
8342 //regs[i].wasconst=0; // DEBUG
8343 clear_const(&current,rt1[i]);
8344 alloc_cc(&current,i);
8345 dirty_reg(&current,CCREG);
8346 if (rt1[i]==31) {
8347 alloc_reg(&current,i,31);
8348 dirty_reg(&current,31);
8349 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8350 #ifdef REG_PREFETCH
8351 alloc_reg(&current,i,PTEMP);
8352 #endif
8353 //current.is32|=1LL<<rt1[i];
8354 }
8355 delayslot_alloc(&current,i+1);
8356 //current.isconst=0; // DEBUG
8357 ds=1;
8358 //printf("i=%d, isconst=%x\n",i,current.isconst);
8359 break;
8360 case RJUMP:
8361 //current.isconst=0;
8362 //current.wasconst=0;
8363 //regs[i].wasconst=0;
8364 clear_const(&current,rs1[i]);
8365 clear_const(&current,rt1[i]);
8366 alloc_cc(&current,i);
8367 dirty_reg(&current,CCREG);
8368 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8369 alloc_reg(&current,i,rs1[i]);
8370 if (rt1[i]==31) {
8371 alloc_reg(&current,i,31);
8372 dirty_reg(&current,31);
8373 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8374 #ifdef REG_PREFETCH
8375 alloc_reg(&current,i,PTEMP);
8376 #endif
8377 }
8378 #ifdef USE_MINI_HT
8379 if(rs1[i]==31) { // JALR
8380 alloc_reg(&current,i,RHASH);
8381 #ifndef HOST_IMM_ADDR32
8382 alloc_reg(&current,i,RHTBL);
8383 #endif
8384 }
8385 #endif
8386 delayslot_alloc(&current,i+1);
8387 } else {
8388 // The delay slot overwrites our source register,
8389 // allocate a temporary register to hold the old value.
8390 current.isconst=0;
8391 current.wasconst=0;
8392 regs[i].wasconst=0;
8393 delayslot_alloc(&current,i+1);
8394 current.isconst=0;
8395 alloc_reg(&current,i,RTEMP);
8396 }
8397 //current.isconst=0; // DEBUG
8398 ds=1;
8399 break;
8400 case CJUMP:
8401 //current.isconst=0;
8402 //current.wasconst=0;
8403 //regs[i].wasconst=0;
8404 clear_const(&current,rs1[i]);
8405 clear_const(&current,rs2[i]);
8406 if((opcode[i]&0x3E)==4) // BEQ/BNE
8407 {
8408 alloc_cc(&current,i);
8409 dirty_reg(&current,CCREG);
8410 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8411 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8412 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8413 {
8414 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8415 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8416 }
8417 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8418 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8419 // The delay slot overwrites one of our conditions.
8420 // Allocate the branch condition registers instead.
8421 // Note that such a sequence of instructions could
8422 // be considered a bug since the branch can not be
8423 // re-executed if an exception occurs.
8424 current.isconst=0;
8425 current.wasconst=0;
8426 regs[i].wasconst=0;
8427 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8428 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8429 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8430 {
8431 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8432 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8433 }
8434 }
8435 else delayslot_alloc(&current,i+1);
8436 }
8437 else
8438 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8439 {
8440 alloc_cc(&current,i);
8441 dirty_reg(&current,CCREG);
8442 alloc_reg(&current,i,rs1[i]);
8443 if(!(current.is32>>rs1[i]&1))
8444 {
8445 alloc_reg64(&current,i,rs1[i]);
8446 }
8447 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8448 // The delay slot overwrites one of our conditions.
8449 // Allocate the branch condition registers instead.
8450 // Note that such a sequence of instructions could
8451 // be considered a bug since the branch can not be
8452 // re-executed if an exception occurs.
8453 current.isconst=0;
8454 current.wasconst=0;
8455 regs[i].wasconst=0;
8456 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8457 if(!((current.is32>>rs1[i])&1))
8458 {
8459 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8460 }
8461 }
8462 else delayslot_alloc(&current,i+1);
8463 }
8464 else
8465 // Don't alloc the delay slot yet because we might not execute it
8466 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8467 {
8468 current.isconst=0;
8469 current.wasconst=0;
8470 regs[i].wasconst=0;
8471 alloc_cc(&current,i);
8472 dirty_reg(&current,CCREG);
8473 alloc_reg(&current,i,rs1[i]);
8474 alloc_reg(&current,i,rs2[i]);
8475 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8476 {
8477 alloc_reg64(&current,i,rs1[i]);
8478 alloc_reg64(&current,i,rs2[i]);
8479 }
8480 }
8481 else
8482 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8483 {
8484 current.isconst=0;
8485 current.wasconst=0;
8486 regs[i].wasconst=0;
8487 alloc_cc(&current,i);
8488 dirty_reg(&current,CCREG);
8489 alloc_reg(&current,i,rs1[i]);
8490 if(!(current.is32>>rs1[i]&1))
8491 {
8492 alloc_reg64(&current,i,rs1[i]);
8493 }
8494 }
8495 ds=1;
8496 //current.isconst=0;
8497 break;
8498 case SJUMP:
8499 //current.isconst=0;
8500 //current.wasconst=0;
8501 //regs[i].wasconst=0;
8502 clear_const(&current,rs1[i]);
8503 clear_const(&current,rt1[i]);
8504 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8505 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8506 {
8507 alloc_cc(&current,i);
8508 dirty_reg(&current,CCREG);
8509 alloc_reg(&current,i,rs1[i]);
8510 if(!(current.is32>>rs1[i]&1))
8511 {
8512 alloc_reg64(&current,i,rs1[i]);
8513 }
8514 if (rt1[i]==31) { // BLTZAL/BGEZAL
8515 alloc_reg(&current,i,31);
8516 dirty_reg(&current,31);
8517 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8518 //#ifdef REG_PREFETCH
8519 //alloc_reg(&current,i,PTEMP);
8520 //#endif
8521 //current.is32|=1LL<<rt1[i];
8522 }
8523 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8524 // The delay slot overwrites the branch condition.
8525 // Allocate the branch condition registers instead.
8526 // Note that such a sequence of instructions could
8527 // be considered a bug since the branch can not be
8528 // re-executed if an exception occurs.
8529 current.isconst=0;
8530 current.wasconst=0;
8531 regs[i].wasconst=0;
8532 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8533 if(!((current.is32>>rs1[i])&1))
8534 {
8535 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8536 }
8537 }
8538 else delayslot_alloc(&current,i+1);
8539 }
8540 else
8541 // Don't alloc the delay slot yet because we might not execute it
8542 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8543 {
8544 current.isconst=0;
8545 current.wasconst=0;
8546 regs[i].wasconst=0;
8547 alloc_cc(&current,i);
8548 dirty_reg(&current,CCREG);
8549 alloc_reg(&current,i,rs1[i]);
8550 if(!(current.is32>>rs1[i]&1))
8551 {
8552 alloc_reg64(&current,i,rs1[i]);
8553 }
8554 }
8555 ds=1;
8556 //current.isconst=0;
8557 break;
8558 case FJUMP:
8559 current.isconst=0;
8560 current.wasconst=0;
8561 regs[i].wasconst=0;
8562 if(likely[i]==0) // BC1F/BC1T
8563 {
8564 // TODO: Theoretically we can run out of registers here on x86.
8565 // The delay slot can allocate up to six, and we need to check
8566 // CSREG before executing the delay slot. Possibly we can drop
8567 // the cycle count and then reload it after checking that the
8568 // FPU is in a usable state, or don't do out-of-order execution.
8569 alloc_cc(&current,i);
8570 dirty_reg(&current,CCREG);
8571 alloc_reg(&current,i,FSREG);
8572 alloc_reg(&current,i,CSREG);
8573 if(itype[i+1]==FCOMP) {
8574 // The delay slot overwrites the branch condition.
8575 // Allocate the branch condition registers instead.
8576 // Note that such a sequence of instructions could
8577 // be considered a bug since the branch can not be
8578 // re-executed if an exception occurs.
8579 alloc_cc(&current,i);
8580 dirty_reg(&current,CCREG);
8581 alloc_reg(&current,i,CSREG);
8582 alloc_reg(&current,i,FSREG);
8583 }
8584 else {
8585 delayslot_alloc(&current,i+1);
8586 alloc_reg(&current,i+1,CSREG);
8587 }
8588 }
8589 else
8590 // Don't alloc the delay slot yet because we might not execute it
8591 if(likely[i]) // BC1FL/BC1TL
8592 {
8593 alloc_cc(&current,i);
8594 dirty_reg(&current,CCREG);
8595 alloc_reg(&current,i,CSREG);
8596 alloc_reg(&current,i,FSREG);
8597 }
8598 ds=1;
8599 current.isconst=0;
8600 break;
8601 case IMM16:
8602 imm16_alloc(&current,i);
8603 break;
8604 case LOAD:
8605 case LOADLR:
8606 load_alloc(&current,i);
8607 break;
8608 case STORE:
8609 case STORELR:
8610 store_alloc(&current,i);
8611 break;
8612 case ALU:
8613 alu_alloc(&current,i);
8614 break;
8615 case SHIFT:
8616 shift_alloc(&current,i);
8617 break;
8618 case MULTDIV:
8619 multdiv_alloc(&current,i);
8620 break;
8621 case SHIFTIMM:
8622 shiftimm_alloc(&current,i);
8623 break;
8624 case MOV:
8625 mov_alloc(&current,i);
8626 break;
8627 case COP0:
8628 cop0_alloc(&current,i);
8629 break;
8630 case COP1:
8631 cop1_alloc(&current,i);
8632 break;
8633 case C1LS:
8634 c1ls_alloc(&current,i);
8635 break;
8636 case FCONV:
8637 fconv_alloc(&current,i);
8638 break;
8639 case FLOAT:
8640 float_alloc(&current,i);
8641 break;
8642 case FCOMP:
8643 fcomp_alloc(&current,i);
8644 break;
8645 case SYSCALL:
8646 syscall_alloc(&current,i);
8647 break;
8648 case SPAN:
8649 pagespan_alloc(&current,i);
8650 break;
8651 }
8652
8653 // Drop the upper half of registers that have become 32-bit
8654 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8655 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8656 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8657 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8658 current.uu|=1;
8659 } else {
8660 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8661 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8662 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8663 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8664 current.uu|=1;
8665 }
8666
8667 // Create entry (branch target) regmap
8668 for(hr=0;hr<HOST_REGS;hr++)
8669 {
8670 int r,or,er;
8671 r=current.regmap[hr];
8672 if(r>=0) {
8673 if(r!=regmap_pre[i][hr]) {
8674 // TODO: delay slot (?)
8675 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8676 if(or<0||(r&63)>=TEMPREG){
8677 regs[i].regmap_entry[hr]=-1;
8678 }
8679 else
8680 {
8681 // Just move it to a different register
8682 regs[i].regmap_entry[hr]=r;
8683 // If it was dirty before, it's still dirty
8684 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8685 }
8686 }
8687 else
8688 {
8689 // Unneeded
8690 if(r==0){
8691 regs[i].regmap_entry[hr]=0;
8692 }
8693 else
8694 if(r<64){
8695 if((current.u>>r)&1) {
8696 regs[i].regmap_entry[hr]=-1;
8697 //regs[i].regmap[hr]=-1;
8698 current.regmap[hr]=-1;
8699 }else
8700 regs[i].regmap_entry[hr]=r;
8701 }
8702 else {
8703 if((current.uu>>(r&63))&1) {
8704 regs[i].regmap_entry[hr]=-1;
8705 //regs[i].regmap[hr]=-1;
8706 current.regmap[hr]=-1;
8707 }else
8708 regs[i].regmap_entry[hr]=r;
8709 }
8710 }
8711 } else {
8712 // Branches expect CCREG to be allocated at the target
8713 if(regmap_pre[i][hr]==CCREG)
8714 regs[i].regmap_entry[hr]=CCREG;
8715 else
8716 regs[i].regmap_entry[hr]=-1;
8717 }
8718 }
8719 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8720 }
8721 /* Branch post-alloc */
8722 if(i>0)
8723 {
8724 current.was32=current.is32;
8725 current.wasdirty=current.dirty;
8726 switch(itype[i-1]) {
8727 case UJUMP:
8728 memcpy(&branch_regs[i-1],&current,sizeof(current));
8729 branch_regs[i-1].isconst=0;
8730 branch_regs[i-1].wasconst=0;
8731 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8732 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8733 alloc_cc(&branch_regs[i-1],i-1);
8734 dirty_reg(&branch_regs[i-1],CCREG);
8735 if(rt1[i-1]==31) { // JAL
8736 alloc_reg(&branch_regs[i-1],i-1,31);
8737 dirty_reg(&branch_regs[i-1],31);
8738 branch_regs[i-1].is32|=1LL<<31;
8739 }
8740 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8741 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8742 break;
8743 case RJUMP:
8744 memcpy(&branch_regs[i-1],&current,sizeof(current));
8745 branch_regs[i-1].isconst=0;
8746 branch_regs[i-1].wasconst=0;
8747 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8748 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8749 alloc_cc(&branch_regs[i-1],i-1);
8750 dirty_reg(&branch_regs[i-1],CCREG);
8751 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8752 if(rt1[i-1]==31) { // JALR
8753 alloc_reg(&branch_regs[i-1],i-1,31);
8754 dirty_reg(&branch_regs[i-1],31);
8755 branch_regs[i-1].is32|=1LL<<31;
8756 }
8757 #ifdef USE_MINI_HT
8758 if(rs1[i-1]==31) { // JALR
8759 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8760 #ifndef HOST_IMM_ADDR32
8761 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8762 #endif
8763 }
8764 #endif
8765 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8766 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8767 break;
8768 case CJUMP:
8769 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8770 {
8771 alloc_cc(&current,i-1);
8772 dirty_reg(&current,CCREG);
8773 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8774 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8775 // The delay slot overwrote one of our conditions
8776 // Delay slot goes after the test (in order)
8777 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8778 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8779 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8780 current.u|=1;
8781 current.uu|=1;
8782 delayslot_alloc(&current,i);
8783 current.isconst=0;
8784 }
8785 else
8786 {
8787 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8788 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8789 // Alloc the branch condition registers
8790 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8791 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8792 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8793 {
8794 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8795 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8796 }
8797 }
8798 memcpy(&branch_regs[i-1],&current,sizeof(current));
8799 branch_regs[i-1].isconst=0;
8800 branch_regs[i-1].wasconst=0;
8801 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8802 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8803 }
8804 else
8805 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8806 {
8807 alloc_cc(&current,i-1);
8808 dirty_reg(&current,CCREG);
8809 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8810 // The delay slot overwrote the branch condition
8811 // Delay slot goes after the test (in order)
8812 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8813 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8814 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8815 current.u|=1;
8816 current.uu|=1;
8817 delayslot_alloc(&current,i);
8818 current.isconst=0;
8819 }
8820 else
8821 {
8822 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8823 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8824 // Alloc the branch condition register
8825 alloc_reg(&current,i-1,rs1[i-1]);
8826 if(!(current.is32>>rs1[i-1]&1))
8827 {
8828 alloc_reg64(&current,i-1,rs1[i-1]);
8829 }
8830 }
8831 memcpy(&branch_regs[i-1],&current,sizeof(current));
8832 branch_regs[i-1].isconst=0;
8833 branch_regs[i-1].wasconst=0;
8834 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8835 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8836 }
8837 else
8838 // Alloc the delay slot in case the branch is taken
8839 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8840 {
8841 memcpy(&branch_regs[i-1],&current,sizeof(current));
8842 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8843 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8844 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8845 alloc_cc(&branch_regs[i-1],i);
8846 dirty_reg(&branch_regs[i-1],CCREG);
8847 delayslot_alloc(&branch_regs[i-1],i);
8848 branch_regs[i-1].isconst=0;
8849 alloc_reg(&current,i,CCREG); // Not taken path
8850 dirty_reg(&current,CCREG);
8851 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8852 }
8853 else
8854 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8855 {
8856 memcpy(&branch_regs[i-1],&current,sizeof(current));
8857 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8858 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8859 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8860 alloc_cc(&branch_regs[i-1],i);
8861 dirty_reg(&branch_regs[i-1],CCREG);
8862 delayslot_alloc(&branch_regs[i-1],i);
8863 branch_regs[i-1].isconst=0;
8864 alloc_reg(&current,i,CCREG); // Not taken path
8865 dirty_reg(&current,CCREG);
8866 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8867 }
8868 break;
8869 case SJUMP:
8870 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8871 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8872 {
8873 alloc_cc(&current,i-1);
8874 dirty_reg(&current,CCREG);
8875 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8876 // The delay slot overwrote the branch condition
8877 // Delay slot goes after the test (in order)
8878 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8879 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8880 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8881 current.u|=1;
8882 current.uu|=1;
8883 delayslot_alloc(&current,i);
8884 current.isconst=0;
8885 }
8886 else
8887 {
8888 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8889 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8890 // Alloc the branch condition register
8891 alloc_reg(&current,i-1,rs1[i-1]);
8892 if(!(current.is32>>rs1[i-1]&1))
8893 {
8894 alloc_reg64(&current,i-1,rs1[i-1]);
8895 }
8896 }
8897 memcpy(&branch_regs[i-1],&current,sizeof(current));
8898 branch_regs[i-1].isconst=0;
8899 branch_regs[i-1].wasconst=0;
8900 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8901 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8902 }
8903 else
8904 // Alloc the delay slot in case the branch is taken
8905 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8906 {
8907 memcpy(&branch_regs[i-1],&current,sizeof(current));
8908 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8909 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8910 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8911 alloc_cc(&branch_regs[i-1],i);
8912 dirty_reg(&branch_regs[i-1],CCREG);
8913 delayslot_alloc(&branch_regs[i-1],i);
8914 branch_regs[i-1].isconst=0;
8915 alloc_reg(&current,i,CCREG); // Not taken path
8916 dirty_reg(&current,CCREG);
8917 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8918 }
8919 // FIXME: BLTZAL/BGEZAL
8920 if(opcode2[i-1]&0x10) { // BxxZAL
8921 alloc_reg(&branch_regs[i-1],i-1,31);
8922 dirty_reg(&branch_regs[i-1],31);
8923 branch_regs[i-1].is32|=1LL<<31;
8924 }
8925 break;
8926 case FJUMP:
8927 if(likely[i-1]==0) // BC1F/BC1T
8928 {
8929 alloc_cc(&current,i-1);
8930 dirty_reg(&current,CCREG);
8931 if(itype[i]==FCOMP) {
8932 // The delay slot overwrote the branch condition
8933 // Delay slot goes after the test (in order)
8934 delayslot_alloc(&current,i);
8935 current.isconst=0;
8936 }
8937 else
8938 {
8939 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8940 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8941 // Alloc the branch condition register
8942 alloc_reg(&current,i-1,FSREG);
8943 }
8944 memcpy(&branch_regs[i-1],&current,sizeof(current));
8945 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8946 }
8947 else // BC1FL/BC1TL
8948 {
8949 // Alloc the delay slot in case the branch is taken
8950 memcpy(&branch_regs[i-1],&current,sizeof(current));
8951 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8952 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8953 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8954 alloc_cc(&branch_regs[i-1],i);
8955 dirty_reg(&branch_regs[i-1],CCREG);
8956 delayslot_alloc(&branch_regs[i-1],i);
8957 branch_regs[i-1].isconst=0;
8958 alloc_reg(&current,i,CCREG); // Not taken path
8959 dirty_reg(&current,CCREG);
8960 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8961 }
8962 break;
8963 }
8964
8965 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8966 {
8967 if(rt1[i-1]==31) // JAL/JALR
8968 {
8969 // Subroutine call will return here, don't alloc any registers
8970 current.is32=1;
8971 current.dirty=0;
8972 clear_all_regs(current.regmap);
8973 alloc_reg(&current,i,CCREG);
8974 dirty_reg(&current,CCREG);
8975 }
8976 else if(i+1<slen)
8977 {
8978 // Internal branch will jump here, match registers to caller
8979 current.is32=0x3FFFFFFFFLL;
8980 current.dirty=0;
8981 clear_all_regs(current.regmap);
8982 alloc_reg(&current,i,CCREG);
8983 dirty_reg(&current,CCREG);
8984 for(j=i-1;j>=0;j--)
8985 {
8986 if(ba[j]==start+i*4+4) {
8987 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8988 current.is32=branch_regs[j].is32;
8989 current.dirty=branch_regs[j].dirty;
8990 break;
8991 }
8992 }
8993 while(j>=0) {
8994 if(ba[j]==start+i*4+4) {
8995 for(hr=0;hr<HOST_REGS;hr++) {
8996 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8997 current.regmap[hr]=-1;
8998 }
8999 current.is32&=branch_regs[j].is32;
9000 current.dirty&=branch_regs[j].dirty;
9001 }
9002 }
9003 j--;
9004 }
9005 }
9006 }
9007 }
9008
9009 // Count cycles in between branches
9010 ccadj[i]=cc;
9011 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
9012 {
9013 cc=0;
9014 }
9015 else
9016 {
9017 cc++;
9018 }
9019
9020 flush_dirty_uppers(&current);
9021 if(!is_ds[i]) {
9022 regs[i].is32=current.is32;
9023 regs[i].dirty=current.dirty;
9024 regs[i].isconst=current.isconst;
9025 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9026 }
9027 for(hr=0;hr<HOST_REGS;hr++) {
9028 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9029 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9030 regs[i].wasconst&=~(1<<hr);
9031 }
9032 }
9033 }
9034 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9035 }
9036
9037 /* Pass 4 - Cull unused host registers */
9038
9039 uint64_t nr=0;
9040
9041 for (i=slen-1;i>=0;i--)
9042 {
9043 int hr;
9044 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9045 {
9046 if(ba[i]<start || ba[i]>=(start+slen*4))
9047 {
9048 // Branch out of this block, don't need anything
9049 nr=0;
9050 }
9051 else
9052 {
9053 // Internal branch
9054 // Need whatever matches the target
9055 nr=0;
9056 int t=(ba[i]-start)>>2;
9057 for(hr=0;hr<HOST_REGS;hr++)
9058 {
9059 if(regs[i].regmap_entry[hr]>=0) {
9060 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9061 }
9062 }
9063 }
9064 // Conditional branch may need registers for following instructions
9065 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9066 {
9067 if(i<slen-2) {
9068 nr|=needed_reg[i+2];
9069 for(hr=0;hr<HOST_REGS;hr++)
9070 {
9071 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9072 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9073 }
9074 }
9075 }
9076 // Don't need stuff which is overwritten
9077 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9078 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9079 // Merge in delay slot
9080 for(hr=0;hr<HOST_REGS;hr++)
9081 {
9082 if(!likely[i]) {
9083 // These are overwritten unless the branch is "likely"
9084 // and the delay slot is nullified if not taken
9085 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9086 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9087 }
9088 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9089 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9090 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9091 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9092 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9093 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9094 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9095 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9096 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9097 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9098 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9099 }
9100 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9101 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9102 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9103 }
9104 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9105 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9106 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9107 }
9108 }
9109 }
9110 else if(itype[i]==SYSCALL)
9111 {
9112 // SYSCALL instruction (software interrupt)
9113 nr=0;
9114 }
9115 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9116 {
9117 // ERET instruction (return from interrupt)
9118 nr=0;
9119 }
9120 else // Non-branch
9121 {
9122 if(i<slen-1) {
9123 for(hr=0;hr<HOST_REGS;hr++) {
9124 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9125 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9126 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9127 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9128 }
9129 }
9130 }
9131 for(hr=0;hr<HOST_REGS;hr++)
9132 {
9133 // Overwritten registers are not needed
9134 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9135 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9136 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9137 // Source registers are needed
9138 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9139 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9140 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9141 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9142 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9143 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9144 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9145 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9146 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9147 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9148 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9149 }
9150 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9151 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9152 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9153 }
9154 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9155 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9156 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9157 }
9158 // Don't store a register immediately after writing it,
9159 // may prevent dual-issue.
9160 // But do so if this is a branch target, otherwise we
9161 // might have to load the register before the branch.
9162 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9163 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9164 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9165 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9166 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9167 }
9168 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9169 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9170 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9171 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9172 }
9173 }
9174 }
9175 // Cycle count is needed at branches. Assume it is needed at the target too.
9176 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9177 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9178 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9179 }
9180 // Save it
9181 needed_reg[i]=nr;
9182
9183 // Deallocate unneeded registers
9184 for(hr=0;hr<HOST_REGS;hr++)
9185 {
9186 if(!((nr>>hr)&1)) {
9187 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9188 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9189 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9190 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9191 {
9192 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9193 {
9194 if(likely[i]) {
9195 regs[i].regmap[hr]=-1;
9196 regs[i].isconst&=~(1<<hr);
9197 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9198 }
9199 }
9200 }
9201 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9202 {
9203 int d1=0,d2=0,map=0,temp=0;
9204 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9205 {
9206 d1=dep1[i+1];
9207 d2=dep2[i+1];
9208 }
9209 if(using_tlb) {
9210 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9211 itype[i+1]==STORE || itype[i+1]==STORELR ||
9212 itype[i+1]==C1LS )
9213 map=TLREG;
9214 } else
9215 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9216 map=INVCP;
9217 }
9218 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9219 itype[i+1]==C1LS )
9220 temp=FTEMP;
9221 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9222 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9223 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9224 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9225 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9226 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9227 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9228 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9229 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9230 regs[i].regmap[hr]!=map )
9231 {
9232 regs[i].regmap[hr]=-1;
9233 regs[i].isconst&=~(1<<hr);
9234 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9235 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9236 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9237 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9238 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9239 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9240 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9241 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9242 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9243 branch_regs[i].regmap[hr]!=map)
9244 {
9245 branch_regs[i].regmap[hr]=-1;
9246 branch_regs[i].regmap_entry[hr]=-1;
9247 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9248 {
9249 if(!likely[i]&&i<slen-2) {
9250 regmap_pre[i+2][hr]=-1;
9251 }
9252 }
9253 }
9254 }
9255 }
9256 else
9257 {
9258 // Non-branch
9259 if(i>0)
9260 {
9261 int d1=0,d2=0,map=-1,temp=-1;
9262 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9263 {
9264 d1=dep1[i];
9265 d2=dep2[i];
9266 }
9267 if(using_tlb) {
9268 if(itype[i]==LOAD || itype[i]==LOADLR ||
9269 itype[i]==STORE || itype[i]==STORELR ||
9270 itype[i]==C1LS )
9271 map=TLREG;
9272 } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9273 map=INVCP;
9274 }
9275 if(itype[i]==LOADLR || itype[i]==STORELR ||
9276 itype[i]==C1LS )
9277 temp=FTEMP;
9278 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9279 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9280 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9281 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9282 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9283 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9284 {
9285 if(i<slen-1&&!is_ds[i]) {
9286 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9287 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9288 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9289 {
9290 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9291 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9292 }
9293 regmap_pre[i+1][hr]=-1;
9294 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9295 }
9296 regs[i].regmap[hr]=-1;
9297 regs[i].isconst&=~(1<<hr);
9298 }
9299 }
9300 }
9301 }
9302 }
9303 }
9304
9305 /* Pass 5 - Pre-allocate registers */
9306
9307 // If a register is allocated during a loop, try to allocate it for the
9308 // entire loop, if possible. This avoids loading/storing registers
9309 // inside of the loop.
9310
9311 signed char f_regmap[HOST_REGS];
9312 clear_all_regs(f_regmap);
9313 for(i=0;i<slen-1;i++)
9314 {
9315 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9316 {
9317 if(ba[i]>=start && ba[i]<(start+i*4))
9318 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9319 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9320 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9321 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9322 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9323 {
9324 int t=(ba[i]-start)>>2;
9325 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9326 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9327 for(hr=0;hr<HOST_REGS;hr++)
9328 {
9329 if(regs[i].regmap[hr]>64) {
9330 if(!((regs[i].dirty>>hr)&1))
9331 f_regmap[hr]=regs[i].regmap[hr];
9332 else f_regmap[hr]=-1;
9333 }
9334 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9335 if(branch_regs[i].regmap[hr]>64) {
9336 if(!((branch_regs[i].dirty>>hr)&1))
9337 f_regmap[hr]=branch_regs[i].regmap[hr];
9338 else f_regmap[hr]=-1;
9339 }
9340 else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
9341 if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9342 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9343 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9344 {
9345 // Test both in case the delay slot is ooo,
9346 // could be done better...
9347 if(count_free_regs(branch_regs[i].regmap)<2
9348 ||count_free_regs(regs[i].regmap)<2)
9349 f_regmap[hr]=branch_regs[i].regmap[hr];
9350 }
9351 // Avoid dirty->clean transition
9352 // #ifdef DESTRUCTIVE_WRITEBACK here?
9353 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9354 if(f_regmap[hr]>0) {
9355 if(regs[t].regmap_entry[hr]<0) {
9356 int r=f_regmap[hr];
9357 for(j=t;j<=i;j++)
9358 {
9359 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9360 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9361 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9362 if(r>63) {
9363 // NB This can exclude the case where the upper-half
9364 // register is lower numbered than the lower-half
9365 // register. Not sure if it's worth fixing...
9366 if(get_reg(regs[j].regmap,r&63)<0) break;
9367 if(regs[j].is32&(1LL<<(r&63))) break;
9368 }
9369 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9370 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9371 int k;
9372 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9373 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9374 if(r>63) {
9375 if(get_reg(regs[i].regmap,r&63)<0) break;
9376 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9377 }
9378 k=i;
9379 while(k>1&&regs[k-1].regmap[hr]==-1) {
9380 if(itype[k-1]==STORE||itype[k-1]==STORELR
9381 ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9382 ||itype[k-1]==FLOAT||itype[k-1]==FCONV
9383 ||itype[k-1]==FCOMP) {
9384 if(count_free_regs(regs[k-1].regmap)<2) {
9385 //printf("no free regs for store %x\n",start+(k-1)*4);
9386 break;
9387 }
9388 }
9389 else
9390 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9391 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9392 //printf("no-match due to different register\n");
9393 break;
9394 }
9395 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9396 //printf("no-match due to branch\n");
9397 break;
9398 }
9399 // call/ret fast path assumes no registers allocated
9400 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9401 break;
9402 }
9403 if(r>63) {
9404 // NB This can exclude the case where the upper-half
9405 // register is lower numbered than the lower-half
9406 // register. Not sure if it's worth fixing...
9407 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9408 if(regs[k-1].is32&(1LL<<(r&63))) break;
9409 }
9410 k--;
9411 }
9412 if(i<slen-1) {
9413 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9414 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9415 //printf("bad match after branch\n");
9416 break;
9417 }
9418 }
9419 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9420 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9421 while(k<i) {
9422 regs[k].regmap_entry[hr]=f_regmap[hr];
9423 regs[k].regmap[hr]=f_regmap[hr];
9424 regmap_pre[k+1][hr]=f_regmap[hr];
9425 regs[k].wasdirty&=~(1<<hr);
9426 regs[k].dirty&=~(1<<hr);
9427 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9428 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9429 regs[k].wasconst&=~(1<<hr);
9430 regs[k].isconst&=~(1<<hr);
9431 k++;
9432 }
9433 }
9434 else {
9435 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9436 break;
9437 }
9438 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9439 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9440 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9441 regs[i].regmap_entry[hr]=f_regmap[hr];
9442 regs[i].regmap[hr]=f_regmap[hr];
9443 regs[i].wasdirty&=~(1<<hr);
9444 regs[i].dirty&=~(1<<hr);
9445 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9446 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9447 regs[i].wasconst&=~(1<<hr);
9448 regs[i].isconst&=~(1<<hr);
9449 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9450 branch_regs[i].wasdirty&=~(1<<hr);
9451 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9452 branch_regs[i].regmap[hr]=f_regmap[hr];
9453 branch_regs[i].dirty&=~(1<<hr);
9454 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9455 branch_regs[i].wasconst&=~(1<<hr);
9456 branch_regs[i].isconst&=~(1<<hr);
9457 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9458 regmap_pre[i+2][hr]=f_regmap[hr];
9459 regs[i+2].wasdirty&=~(1<<hr);
9460 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9461 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9462 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9463 }
9464 }
9465 }
9466 for(k=t;k<j;k++) {
9467 regs[k].regmap_entry[hr]=f_regmap[hr];
9468 regs[k].regmap[hr]=f_regmap[hr];
9469 regmap_pre[k+1][hr]=f_regmap[hr];
9470 regs[k+1].wasdirty&=~(1<<hr);
9471 regs[k].dirty&=~(1<<hr);
9472 regs[k].wasconst&=~(1<<hr);
9473 regs[k].isconst&=~(1<<hr);
9474 }
9475 if(regs[j].regmap[hr]==f_regmap[hr])
9476 regs[j].regmap_entry[hr]=f_regmap[hr];
9477 break;
9478 }
9479 if(j==i) break;
9480 if(regs[j].regmap[hr]>=0)
9481 break;
9482 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9483 //printf("no-match due to different register\n");
9484 break;
9485 }
9486 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9487 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9488 break;
9489 }
9490 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9491 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9492 ||itype[j]==FCOMP||itype[j]==FCONV) {
9493 if(count_free_regs(regs[j].regmap)<2) {
9494 //printf("No free regs for store %x\n",start+j*4);
9495 break;
9496 }
9497 }
9498 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9499 if(f_regmap[hr]>=64) {
9500 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9501 break;
9502 }
9503 else
9504 {
9505 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9506 break;
9507 }
9508 }
9509 }
9510 }
9511 }
9512 }
9513 }
9514 }
9515 }else{
9516 int count=0;
9517 for(hr=0;hr<HOST_REGS;hr++)
9518 {
9519 if(hr!=EXCLUDE_REG) {
9520 if(regs[i].regmap[hr]>64) {
9521 if(!((regs[i].dirty>>hr)&1))
9522 f_regmap[hr]=regs[i].regmap[hr];
9523 }
9524 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9525 else if(regs[i].regmap[hr]<0) count++;
9526 }
9527 }
9528 // Try to restore cycle count at branch targets
9529 if(bt[i]) {
9530 for(j=i;j<slen-1;j++) {
9531 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9532 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9533 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9534 ||itype[j]==FCOMP||itype[j]==FCONV) {
9535 if(count_free_regs(regs[j].regmap)<2) {
9536 //printf("no free regs for store %x\n",start+j*4);
9537 break;
9538 }
9539 }
9540 else
9541 if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9542 }
9543 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9544 int k=i;
9545 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9546 while(k<j) {
9547 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9548 regs[k].regmap[HOST_CCREG]=CCREG;
9549 regmap_pre[k+1][HOST_CCREG]=CCREG;
9550 regs[k+1].wasdirty|=1<<HOST_CCREG;
9551 regs[k].dirty|=1<<HOST_CCREG;
9552 regs[k].wasconst&=~(1<<HOST_CCREG);
9553 regs[k].isconst&=~(1<<HOST_CCREG);
9554 k++;
9555 }
9556 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9557 }
9558 // Work backwards from the branch target
9559 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9560 {
9561 //printf("Extend backwards\n");
9562 int k;
9563 k=i;
9564 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9565 if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9566 ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9567 ||itype[k-1]==FCONV||itype[k-1]==FCOMP) {
9568 if(count_free_regs(regs[k-1].regmap)<2) {
9569 //printf("no free regs for store %x\n",start+(k-1)*4);
9570 break;
9571 }
9572 }
9573 else
9574 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9575 k--;
9576 }
9577 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9578 //printf("Extend CC, %x ->\n",start+k*4);
9579 while(k<=i) {
9580 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9581 regs[k].regmap[HOST_CCREG]=CCREG;
9582 regmap_pre[k+1][HOST_CCREG]=CCREG;
9583 regs[k+1].wasdirty|=1<<HOST_CCREG;
9584 regs[k].dirty|=1<<HOST_CCREG;
9585 regs[k].wasconst&=~(1<<HOST_CCREG);
9586 regs[k].isconst&=~(1<<HOST_CCREG);
9587 k++;
9588 }
9589 }
9590 else {
9591 //printf("Fail Extend CC, %x ->\n",start+k*4);
9592 }
9593 }
9594 }
9595 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9596 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9597 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9598 itype[i]!=FCONV&&itype[i]!=FCOMP)
9599 {
9600 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9601 }
9602 }
9603 }
9604
9605 // This allocates registers (if possible) one instruction prior
9606 // to use, which can avoid a load-use penalty on certain CPUs.
9607 for(i=0;i<slen-1;i++)
9608 {
9609 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9610 {
9611 if(!bt[i+1])
9612 {
9613 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
9614 {
9615 if(rs1[i+1]) {
9616 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9617 {
9618 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9619 {
9620 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9621 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9622 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9623 regs[i].isconst&=~(1<<hr);
9624 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9625 constmap[i][hr]=constmap[i+1][hr];
9626 regs[i+1].wasdirty&=~(1<<hr);
9627 regs[i].dirty&=~(1<<hr);
9628 }
9629 }
9630 }
9631 if(rs2[i+1]) {
9632 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9633 {
9634 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9635 {
9636 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9637 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9638 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9639 regs[i].isconst&=~(1<<hr);
9640 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9641 constmap[i][hr]=constmap[i+1][hr];
9642 regs[i+1].wasdirty&=~(1<<hr);
9643 regs[i].dirty&=~(1<<hr);
9644 }
9645 }
9646 }
9647 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9648 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9649 {
9650 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9651 {
9652 regs[i].regmap[hr]=rs1[i+1];
9653 regmap_pre[i+1][hr]=rs1[i+1];
9654 regs[i+1].regmap_entry[hr]=rs1[i+1];
9655 regs[i].isconst&=~(1<<hr);
9656 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9657 constmap[i][hr]=constmap[i+1][hr];
9658 regs[i+1].wasdirty&=~(1<<hr);
9659 regs[i].dirty&=~(1<<hr);
9660 }
9661 }
9662 }
9663 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9664 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9665 {
9666 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9667 {
9668 regs[i].regmap[hr]=rs1[i+1];
9669 regmap_pre[i+1][hr]=rs1[i+1];
9670 regs[i+1].regmap_entry[hr]=rs1[i+1];
9671 regs[i].isconst&=~(1<<hr);
9672 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9673 constmap[i][hr]=constmap[i+1][hr];
9674 regs[i+1].wasdirty&=~(1<<hr);
9675 regs[i].dirty&=~(1<<hr);
9676 }
9677 }
9678 }
9679 #ifndef HOST_IMM_ADDR32
9680 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
9681 hr=get_reg(regs[i+1].regmap,TLREG);
9682 if(hr>=0) {
9683 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
9684 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
9685 int nr;
9686 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9687 {
9688 regs[i].regmap[hr]=MGEN1+((i+1)&1);
9689 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
9690 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
9691 regs[i].isconst&=~(1<<hr);
9692 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9693 constmap[i][hr]=constmap[i+1][hr];
9694 regs[i+1].wasdirty&=~(1<<hr);
9695 regs[i].dirty&=~(1<<hr);
9696 }
9697 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9698 {
9699 // move it to another register
9700 regs[i+1].regmap[hr]=-1;
9701 regmap_pre[i+2][hr]=-1;
9702 regs[i+1].regmap[nr]=TLREG;
9703 regmap_pre[i+2][nr]=TLREG;
9704 regs[i].regmap[nr]=MGEN1+((i+1)&1);
9705 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
9706 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
9707 regs[i].isconst&=~(1<<nr);
9708 regs[i+1].isconst&=~(1<<nr);
9709 regs[i].dirty&=~(1<<nr);
9710 regs[i+1].wasdirty&=~(1<<nr);
9711 regs[i+1].dirty&=~(1<<nr);
9712 regs[i+2].wasdirty&=~(1<<nr);
9713 }
9714 }
9715 }
9716 }
9717 #endif
9718 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
9719 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9720 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9721 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9722 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9723 assert(hr>=0);
9724 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9725 {
9726 regs[i].regmap[hr]=rs1[i+1];
9727 regmap_pre[i+1][hr]=rs1[i+1];
9728 regs[i+1].regmap_entry[hr]=rs1[i+1];
9729 regs[i].isconst&=~(1<<hr);
9730 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9731 constmap[i][hr]=constmap[i+1][hr];
9732 regs[i+1].wasdirty&=~(1<<hr);
9733 regs[i].dirty&=~(1<<hr);
9734 }
9735 }
9736 }
9737 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
9738 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9739 int nr;
9740 hr=get_reg(regs[i+1].regmap,FTEMP);
9741 assert(hr>=0);
9742 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9743 {
9744 regs[i].regmap[hr]=rs1[i+1];
9745 regmap_pre[i+1][hr]=rs1[i+1];
9746 regs[i+1].regmap_entry[hr]=rs1[i+1];
9747 regs[i].isconst&=~(1<<hr);
9748 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9749 constmap[i][hr]=constmap[i+1][hr];
9750 regs[i+1].wasdirty&=~(1<<hr);
9751 regs[i].dirty&=~(1<<hr);
9752 }
9753 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9754 {
9755 // move it to another register
9756 regs[i+1].regmap[hr]=-1;
9757 regmap_pre[i+2][hr]=-1;
9758 regs[i+1].regmap[nr]=FTEMP;
9759 regmap_pre[i+2][nr]=FTEMP;
9760 regs[i].regmap[nr]=rs1[i+1];
9761 regmap_pre[i+1][nr]=rs1[i+1];
9762 regs[i+1].regmap_entry[nr]=rs1[i+1];
9763 regs[i].isconst&=~(1<<nr);
9764 regs[i+1].isconst&=~(1<<nr);
9765 regs[i].dirty&=~(1<<nr);
9766 regs[i+1].wasdirty&=~(1<<nr);
9767 regs[i+1].dirty&=~(1<<nr);
9768 regs[i+2].wasdirty&=~(1<<nr);
9769 }
9770 }
9771 }
9772 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
9773 if(itype[i+1]==LOAD)
9774 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9775 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
9776 hr=get_reg(regs[i+1].regmap,FTEMP);
9777 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
9778 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9779 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9780 }
9781 if(hr>=0&&regs[i].regmap[hr]<0) {
9782 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9783 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9784 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9785 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9786 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9787 regs[i].isconst&=~(1<<hr);
9788 regs[i+1].wasdirty&=~(1<<hr);
9789 regs[i].dirty&=~(1<<hr);
9790 }
9791 }
9792 }
9793 }
9794 }
9795 }
9796 }
9797
9798 /* Pass 6 - Optimize clean/dirty state */
9799 clean_registers(0,slen-1,1);
9800
9801 /* Pass 7 - Identify 32-bit registers */
9802
9803 provisional_r32();
9804
9805 u_int r32=0;
9806
9807 for (i=slen-1;i>=0;i--)
9808 {
9809 int hr;
9810 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9811 {
9812 if(ba[i]<start || ba[i]>=(start+slen*4))
9813 {
9814 // Branch out of this block, don't need anything
9815 r32=0;
9816 }
9817 else
9818 {
9819 // Internal branch
9820 // Need whatever matches the target
9821 // (and doesn't get overwritten by the delay slot instruction)
9822 r32=0;
9823 int t=(ba[i]-start)>>2;
9824 if(ba[i]>start+i*4) {
9825 // Forward branch
9826 if(!(requires_32bit[t]&~regs[i].was32))
9827 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9828 }else{
9829 // Backward branch
9830 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
9831 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9832 if(!(pr32[t]&~regs[i].was32))
9833 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9834 }
9835 }
9836 // Conditional branch may need registers for following instructions
9837 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9838 {
9839 if(i<slen-2) {
9840 r32|=requires_32bit[i+2];
9841 r32&=regs[i].was32;
9842 // Mark this address as a branch target since it may be called
9843 // upon return from interrupt
9844 bt[i+2]=1;
9845 }
9846 }
9847 // Merge in delay slot
9848 if(!likely[i]) {
9849 // These are overwritten unless the branch is "likely"
9850 // and the delay slot is nullified if not taken
9851 r32&=~(1LL<<rt1[i+1]);
9852 r32&=~(1LL<<rt2[i+1]);
9853 }
9854 // Assume these are needed (delay slot)
9855 if(us1[i+1]>0)
9856 {
9857 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
9858 }
9859 if(us2[i+1]>0)
9860 {
9861 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
9862 }
9863 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
9864 {
9865 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
9866 }
9867 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
9868 {
9869 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
9870 }
9871 }
9872 else if(itype[i]==SYSCALL)
9873 {
9874 // SYSCALL instruction (software interrupt)
9875 r32=0;
9876 }
9877 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9878 {
9879 // ERET instruction (return from interrupt)
9880 r32=0;
9881 }
9882 // Check 32 bits
9883 r32&=~(1LL<<rt1[i]);
9884 r32&=~(1LL<<rt2[i]);
9885 if(us1[i]>0)
9886 {
9887 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
9888 }
9889 if(us2[i]>0)
9890 {
9891 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
9892 }
9893 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
9894 {
9895 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
9896 }
9897 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
9898 {
9899 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
9900 }
9901 requires_32bit[i]=r32;
9902
9903 // Dirty registers which are 32-bit, require 32-bit input
9904 // as they will be written as 32-bit values
9905 for(hr=0;hr<HOST_REGS;hr++)
9906 {
9907 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
9908 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
9909 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
9910 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
9911 }
9912 }
9913 }
9914 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
9915 }
9916
9917 if(itype[slen-1]==SPAN) {
9918 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9919 }
9920
9921 /* Debug/disassembly */
9922 if((void*)assem_debug==(void*)printf)
9923 for(i=0;i<slen;i++)
9924 {
9925 printf("U:");
9926 int r;
9927 for(r=1;r<=CCREG;r++) {
9928 if((unneeded_reg[i]>>r)&1) {
9929 if(r==HIREG) printf(" HI");
9930 else if(r==LOREG) printf(" LO");
9931 else printf(" r%d",r);
9932 }
9933 }
9934 printf(" UU:");
9935 for(r=1;r<=CCREG;r++) {
9936 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
9937 if(r==HIREG) printf(" HI");
9938 else if(r==LOREG) printf(" LO");
9939 else printf(" r%d",r);
9940 }
9941 }
9942 printf(" 32:");
9943 for(r=0;r<=CCREG;r++) {
9944 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9945 if((regs[i].was32>>r)&1) {
9946 if(r==CCREG) printf(" CC");
9947 else if(r==HIREG) printf(" HI");
9948 else if(r==LOREG) printf(" LO");
9949 else printf(" r%d",r);
9950 }
9951 }
9952 printf("\n");
9953 #if defined(__i386__) || defined(__x86_64__)
9954 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9955 #endif
9956 #ifdef __arm__
9957 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9958 #endif
9959 printf("needs: ");
9960 if(needed_reg[i]&1) printf("eax ");
9961 if((needed_reg[i]>>1)&1) printf("ecx ");
9962 if((needed_reg[i]>>2)&1) printf("edx ");
9963 if((needed_reg[i]>>3)&1) printf("ebx ");
9964 if((needed_reg[i]>>5)&1) printf("ebp ");
9965 if((needed_reg[i]>>6)&1) printf("esi ");
9966 if((needed_reg[i]>>7)&1) printf("edi ");
9967 printf("r:");
9968 for(r=0;r<=CCREG;r++) {
9969 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9970 if((requires_32bit[i]>>r)&1) {
9971 if(r==CCREG) printf(" CC");
9972 else if(r==HIREG) printf(" HI");
9973 else if(r==LOREG) printf(" LO");
9974 else printf(" r%d",r);
9975 }
9976 }
9977 printf("\n");
9978 /*printf("pr:");
9979 for(r=0;r<=CCREG;r++) {
9980 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9981 if((pr32[i]>>r)&1) {
9982 if(r==CCREG) printf(" CC");
9983 else if(r==HIREG) printf(" HI");
9984 else if(r==LOREG) printf(" LO");
9985 else printf(" r%d",r);
9986 }
9987 }
9988 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
9989 printf("\n");*/
9990 #if defined(__i386__) || defined(__x86_64__)
9991 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9992 printf("dirty: ");
9993 if(regs[i].wasdirty&1) printf("eax ");
9994 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9995 if((regs[i].wasdirty>>2)&1) printf("edx ");
9996 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9997 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9998 if((regs[i].wasdirty>>6)&1) printf("esi ");
9999 if((regs[i].wasdirty>>7)&1) printf("edi ");
10000 #endif
10001 #ifdef __arm__
10002 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10003 printf("dirty: ");
10004 if(regs[i].wasdirty&1) printf("r0 ");
10005 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10006 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10007 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10008 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10009 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10010 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10011 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10012 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10013 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10014 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10015 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10016 #endif
10017 printf("\n");
10018 disassemble_inst(i);
10019 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10020 #if defined(__i386__) || defined(__x86_64__)
10021 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10022 if(regs[i].dirty&1) printf("eax ");
10023 if((regs[i].dirty>>1)&1) printf("ecx ");
10024 if((regs[i].dirty>>2)&1) printf("edx ");
10025 if((regs[i].dirty>>3)&1) printf("ebx ");
10026 if((regs[i].dirty>>5)&1) printf("ebp ");
10027 if((regs[i].dirty>>6)&1) printf("esi ");
10028 if((regs[i].dirty>>7)&1) printf("edi ");
10029 #endif
10030 #ifdef __arm__
10031 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10032 if(regs[i].dirty&1) printf("r0 ");
10033 if((regs[i].dirty>>1)&1) printf("r1 ");
10034 if((regs[i].dirty>>2)&1) printf("r2 ");
10035 if((regs[i].dirty>>3)&1) printf("r3 ");
10036 if((regs[i].dirty>>4)&1) printf("r4 ");
10037 if((regs[i].dirty>>5)&1) printf("r5 ");
10038 if((regs[i].dirty>>6)&1) printf("r6 ");
10039 if((regs[i].dirty>>7)&1) printf("r7 ");
10040 if((regs[i].dirty>>8)&1) printf("r8 ");
10041 if((regs[i].dirty>>9)&1) printf("r9 ");
10042 if((regs[i].dirty>>10)&1) printf("r10 ");
10043 if((regs[i].dirty>>12)&1) printf("r12 ");
10044 #endif
10045 printf("\n");
10046 if(regs[i].isconst) {
10047 printf("constants: ");
10048 #if defined(__i386__) || defined(__x86_64__)
10049 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10050 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10051 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10052 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10053 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10054 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10055 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10056 #endif
10057 #ifdef __arm__
10058 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10059 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10060 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10061 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10062 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10063 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10064 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10065 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10066 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10067 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10068 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10069 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10070 #endif
10071 printf("\n");
10072 }
10073 printf(" 32:");
10074 for(r=0;r<=CCREG;r++) {
10075 if((regs[i].is32>>r)&1) {
10076 if(r==CCREG) printf(" CC");
10077 else if(r==HIREG) printf(" HI");
10078 else if(r==LOREG) printf(" LO");
10079 else printf(" r%d",r);
10080 }
10081 }
10082 printf("\n");
10083 /*printf(" p32:");
10084 for(r=0;r<=CCREG;r++) {
10085 if((p32[i]>>r)&1) {
10086 if(r==CCREG) printf(" CC");
10087 else if(r==HIREG) printf(" HI");
10088 else if(r==LOREG) printf(" LO");
10089 else printf(" r%d",r);
10090 }
10091 }
10092 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10093 else printf("\n");*/
10094 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10095 #if defined(__i386__) || defined(__x86_64__)
10096 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10097 if(branch_regs[i].dirty&1) printf("eax ");
10098 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10099 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10100 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10101 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10102 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10103 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10104 #endif
10105 #ifdef __arm__
10106 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10107 if(branch_regs[i].dirty&1) printf("r0 ");
10108 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10109 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10110 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10111 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10112 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10113 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10114 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10115 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10116 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10117 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10118 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10119 #endif
10120 printf(" 32:");
10121 for(r=0;r<=CCREG;r++) {
10122 if((branch_regs[i].is32>>r)&1) {
10123 if(r==CCREG) printf(" CC");
10124 else if(r==HIREG) printf(" HI");
10125 else if(r==LOREG) printf(" LO");
10126 else printf(" r%d",r);
10127 }
10128 }
10129 printf("\n");
10130 }
10131 }
10132
10133 /* Pass 8 - Assembly */
10134 linkcount=0;stubcount=0;
10135 ds=0;is_delayslot=0;
10136 cop1_usable=0;
10137 uint64_t is32_pre=0;
10138 u_int dirty_pre=0;
10139 u_int beginning=(u_int)out;
10140 if((u_int)addr&1) {
10141 ds=1;
10142 pagespan_ds();
10143 }
10144 for(i=0;i<slen;i++)
10145 {
10146 //if(ds) printf("ds: ");
10147 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10148 if(ds) {
10149 ds=0; // Skip delay slot
10150 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10151 instr_addr[i]=0;
10152 } else {
10153 #ifndef DESTRUCTIVE_WRITEBACK
10154 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10155 {
10156 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10157 unneeded_reg[i],unneeded_reg_upper[i]);
10158 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10159 unneeded_reg[i],unneeded_reg_upper[i]);
10160 }
10161 is32_pre=regs[i].is32;
10162 dirty_pre=regs[i].dirty;
10163 #endif
10164 // write back
10165 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10166 {
10167 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10168 unneeded_reg[i],unneeded_reg_upper[i]);
10169 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10170 }
10171 // branch target entry point
10172 instr_addr[i]=(u_int)out;
10173 assem_debug("<->\n");
10174 // load regs
10175 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10176 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10177 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10178 address_generation(i,&regs[i],regs[i].regmap_entry);
10179 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10180 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10181 {
10182 // Load the delay slot registers if necessary
10183 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10184 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10185 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10186 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10187 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
10188 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10189 }
10190 else if(i+1<slen)
10191 {
10192 // Preload registers for following instruction
10193 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10194 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10195 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10196 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10197 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10198 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10199 }
10200 // TODO: if(is_ooo(i)) address_generation(i+1);
10201 if(itype[i]==CJUMP||itype[i]==FJUMP)
10202 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10203 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
10204 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10205 if(bt[i]) cop1_usable=0;
10206 // assemble
10207 switch(itype[i]) {
10208 case ALU:
10209 alu_assemble(i,&regs[i]);break;
10210 case IMM16:
10211 imm16_assemble(i,&regs[i]);break;
10212 case SHIFT:
10213 shift_assemble(i,&regs[i]);break;
10214 case SHIFTIMM:
10215 shiftimm_assemble(i,&regs[i]);break;
10216 case LOAD:
10217 load_assemble(i,&regs[i]);break;
10218 case LOADLR:
10219 loadlr_assemble(i,&regs[i]);break;
10220 case STORE:
10221 store_assemble(i,&regs[i]);break;
10222 case STORELR:
10223 storelr_assemble(i,&regs[i]);break;
10224 case COP0:
10225 cop0_assemble(i,&regs[i]);break;
10226 case COP1:
10227 cop1_assemble(i,&regs[i]);break;
10228 case C1LS:
10229 c1ls_assemble(i,&regs[i]);break;
10230 case FCONV:
10231 fconv_assemble(i,&regs[i]);break;
10232 case FLOAT:
10233 float_assemble(i,&regs[i]);break;
10234 case FCOMP:
10235 fcomp_assemble(i,&regs[i]);break;
10236 case MULTDIV:
10237 multdiv_assemble(i,&regs[i]);break;
10238 case MOV:
10239 mov_assemble(i,&regs[i]);break;
10240 case SYSCALL:
10241 syscall_assemble(i,&regs[i]);break;
10242 case UJUMP:
10243 ujump_assemble(i,&regs[i]);ds=1;break;
10244 case RJUMP:
10245 rjump_assemble(i,&regs[i]);ds=1;break;
10246 case CJUMP:
10247 cjump_assemble(i,&regs[i]);ds=1;break;
10248 case SJUMP:
10249 sjump_assemble(i,&regs[i]);ds=1;break;
10250 case FJUMP:
10251 fjump_assemble(i,&regs[i]);ds=1;break;
10252 case SPAN:
10253 pagespan_assemble(i,&regs[i]);break;
10254 }
10255 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10256 literal_pool(1024);
10257 else
10258 literal_pool_jumpover(256);
10259 }
10260 }
10261 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10262 // If the block did not end with an unconditional branch,
10263 // add a jump to the next instruction.
10264 if(i>1) {
10265 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10266 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10267 assert(i==slen);
10268 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10269 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10270 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10271 emit_loadreg(CCREG,HOST_CCREG);
10272 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10273 }
10274 else if(!likely[i-2])
10275 {
10276 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10277 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10278 }
10279 else
10280 {
10281 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10282 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10283 }
10284 add_to_linker((int)out,start+i*4,0);
10285 emit_jmp(0);
10286 }
10287 }
10288 else
10289 {
10290 assert(i>0);
10291 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10292 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10293 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10294 emit_loadreg(CCREG,HOST_CCREG);
10295 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10296 add_to_linker((int)out,start+i*4,0);
10297 emit_jmp(0);
10298 }
10299
10300 // TODO: delay slot stubs?
10301 // Stubs
10302 for(i=0;i<stubcount;i++)
10303 {
10304 switch(stubs[i][0])
10305 {
10306 case LOADB_STUB:
10307 case LOADH_STUB:
10308 case LOADW_STUB:
10309 case LOADD_STUB:
10310 case LOADBU_STUB:
10311 case LOADHU_STUB:
10312 do_readstub(i);break;
10313 case STOREB_STUB:
10314 case STOREH_STUB:
10315 case STOREW_STUB:
10316 case STORED_STUB:
10317 do_writestub(i);break;
10318 case CC_STUB:
10319 do_ccstub(i);break;
10320 case INVCODE_STUB:
10321 do_invstub(i);break;
10322 case FP_STUB:
10323 do_cop1stub(i);break;
10324 case STORELR_STUB:
10325 do_unalignedwritestub(i);break;
10326 }
10327 }
10328
10329 /* Pass 9 - Linker */
10330 for(i=0;i<linkcount;i++)
10331 {
10332 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10333 literal_pool(64);
10334 if(!link_addr[i][2])
10335 {
10336 void *stub=out;
10337 void *addr=check_addr(link_addr[i][1]);
10338 emit_extjump(link_addr[i][0],link_addr[i][1]);
10339 if(addr) {
10340 set_jump_target(link_addr[i][0],(int)addr);
10341 add_link(link_addr[i][1],stub);
10342 }
10343 else set_jump_target(link_addr[i][0],(int)stub);
10344 }
10345 else
10346 {
10347 // Internal branch
10348 int target=(link_addr[i][1]-start)>>2;
10349 assert(target>=0&&target<slen);
10350 assert(instr_addr[target]);
10351 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10352 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10353 //#else
10354 set_jump_target(link_addr[i][0],instr_addr[target]);
10355 //#endif
10356 }
10357 }
10358 // External Branch Targets (jump_in)
10359 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10360 for(i=0;i<slen;i++)
10361 {
10362 if(bt[i]||i==0)
10363 {
10364 if(instr_addr[i]) // TODO - delay slots (=null)
10365 {
10366 u_int vaddr=start+i*4;
94d23bb9 10367 u_int page=get_page(vaddr);
10368 u_int vpage=get_vpage(vaddr);
57871462 10369 literal_pool(256);
10370 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10371 if(!requires_32bit[i])
10372 {
10373 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10374 assem_debug("jump_in: %x\n",start+i*4);
10375 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10376 int entry_point=do_dirty_stub(i);
10377 ll_add(jump_in+page,vaddr,(void *)entry_point);
10378 // If there was an existing entry in the hash table,
10379 // replace it with the new address.
10380 // Don't add new entries. We'll insert the
10381 // ones that actually get used in check_addr().
10382 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10383 if(ht_bin[0]==vaddr) {
10384 ht_bin[1]=entry_point;
10385 }
10386 if(ht_bin[2]==vaddr) {
10387 ht_bin[3]=entry_point;
10388 }
10389 }
10390 else
10391 {
10392 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10393 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10394 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10395 //int entry_point=(int)out;
10396 ////assem_debug("entry_point: %x\n",entry_point);
10397 //load_regs_entry(i);
10398 //if(entry_point==(int)out)
10399 // entry_point=instr_addr[i];
10400 //else
10401 // emit_jmp(instr_addr[i]);
10402 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10403 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10404 int entry_point=do_dirty_stub(i);
10405 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10406 }
10407 }
10408 }
10409 }
10410 // Write out the literal pool if necessary
10411 literal_pool(0);
10412 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10413 // Align code
10414 if(((u_int)out)&7) emit_addnop(13);
10415 #endif
10416 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10417 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10418 memcpy(copy,source,slen*4);
10419 copy+=slen*4;
10420
10421 #ifdef __arm__
10422 __clear_cache((void *)beginning,out);
10423 #endif
10424
10425 // If we're within 256K of the end of the buffer,
10426 // start over from the beginning. (Is 256K enough?)
10427 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10428
10429 // Trap writes to any of the pages we compiled
10430 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10431 invalid_code[i]=0;
10432 memory_map[i]|=0x40000000;
10433 if((signed int)start>=(signed int)0xC0000000) {
10434 assert(using_tlb);
10435 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10436 invalid_code[j]=0;
10437 memory_map[j]|=0x40000000;
10438 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10439 }
10440 }
10441
10442 /* Pass 10 - Free memory by expiring oldest blocks */
10443
10444 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10445 while(expirep!=end)
10446 {
10447 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10448 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10449 inv_debug("EXP: Phase %d\n",expirep);
10450 switch((expirep>>11)&3)
10451 {
10452 case 0:
10453 // Clear jump_in and jump_dirty
10454 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10455 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10456 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10457 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10458 break;
10459 case 1:
10460 // Clear pointers
10461 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10462 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10463 break;
10464 case 2:
10465 // Clear hash table
10466 for(i=0;i<32;i++) {
10467 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10468 if((ht_bin[3]>>shift)==(base>>shift) ||
10469 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10470 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10471 ht_bin[2]=ht_bin[3]=-1;
10472 }
10473 if((ht_bin[1]>>shift)==(base>>shift) ||
10474 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10475 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10476 ht_bin[0]=ht_bin[2];
10477 ht_bin[1]=ht_bin[3];
10478 ht_bin[2]=ht_bin[3]=-1;
10479 }
10480 }
10481 break;
10482 case 3:
10483 // Clear jump_out
10484 #ifdef __arm__
10485 if((expirep&2047)==0)
10486 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
10487 #endif
10488 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10489 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10490 break;
10491 }
10492 expirep=(expirep+1)&65535;
10493 }
10494 return 0;
10495}