drc: clear dynarec completely on CD image change
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   char ooo[MAXBLOCK];
88   uint64_t unneeded_reg[MAXBLOCK];
89   uint64_t unneeded_reg_upper[MAXBLOCK];
90   uint64_t branch_unneeded_reg[MAXBLOCK];
91   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92   uint64_t p32[MAXBLOCK];
93   uint64_t pr32[MAXBLOCK];
94   signed char regmap_pre[MAXBLOCK][HOST_REGS];
95   signed char regmap[MAXBLOCK][HOST_REGS];
96   signed char regmap_entry[MAXBLOCK][HOST_REGS];
97   uint64_t constmap[MAXBLOCK][HOST_REGS];
98   struct regstat regs[MAXBLOCK];
99   struct regstat branch_regs[MAXBLOCK];
100   signed char minimum_free_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define MMREG 38 // Pointer to memory_map
138 #define ROREG 39 // ram offset (if rdram!=0x80000000)
139 #define TEMPREG 40
140 #define FTEMP 40 // FPU temporary register
141 #define PTEMP 41 // Prefetch temporary register
142 #define TLREG 42 // TLB mapping offset
143 #define RHASH 43 // Return address hash
144 #define RHTBL 44 // Return address hash table address
145 #define RTEMP 45 // JR/JALR address register
146 #define MAXREG 45
147 #define AGEN1 46 // Address generation temporary register
148 #define AGEN2 47 // Address generation temporary register
149 #define MGEN1 48 // Maptable address generation temporary register
150 #define MGEN2 49 // Maptable address generation temporary register
151 #define BTREG 50 // Branch target temporary register
152
153   /* instruction types */
154 #define NOP 0     // No operation
155 #define LOAD 1    // Load
156 #define STORE 2   // Store
157 #define LOADLR 3  // Unaligned load
158 #define STORELR 4 // Unaligned store
159 #define MOV 5     // Move 
160 #define ALU 6     // Arithmetic/logic
161 #define MULTDIV 7 // Multiply/divide
162 #define SHIFT 8   // Shift by register
163 #define SHIFTIMM 9// Shift by immediate
164 #define IMM16 10  // 16-bit immediate
165 #define RJUMP 11  // Unconditional jump to register
166 #define UJUMP 12  // Unconditional jump
167 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
168 #define SJUMP 14  // Conditional branch (regimm format)
169 #define COP0 15   // Coprocessor 0
170 #define COP1 16   // Coprocessor 1
171 #define C1LS 17   // Coprocessor 1 load/store
172 #define FJUMP 18  // Conditional branch (floating point)
173 #define FLOAT 19  // Floating point unit
174 #define FCONV 20  // Convert integer to float
175 #define FCOMP 21  // Floating point compare (sets FSREG)
176 #define SYSCALL 22// SYSCALL
177 #define OTHER 23  // Other
178 #define SPAN 24   // Branch/delay slot spans 2 pages
179 #define NI 25     // Not implemented
180 #define HLECALL 26// PCSX fake opcodes for HLE
181 #define COP2 27   // Coprocessor 2 move
182 #define C2LS 28   // Coprocessor 2 load/store
183 #define C2OP 29   // Coprocessor 2 operation
184 #define INTCALL 30// Call interpreter to handle rare corner cases
185
186   /* stubs */
187 #define CC_STUB 1
188 #define FP_STUB 2
189 #define LOADB_STUB 3
190 #define LOADH_STUB 4
191 #define LOADW_STUB 5
192 #define LOADD_STUB 6
193 #define LOADBU_STUB 7
194 #define LOADHU_STUB 8
195 #define STOREB_STUB 9
196 #define STOREH_STUB 10
197 #define STOREW_STUB 11
198 #define STORED_STUB 12
199 #define STORELR_STUB 13
200 #define INVCODE_STUB 14
201
202   /* branch codes */
203 #define TAKEN 1
204 #define NOTTAKEN 2
205 #define NULLDS 3
206
207 // asm linkage
208 int new_recompile_block(int addr);
209 void *get_addr_ht(u_int vaddr);
210 void invalidate_block(u_int block);
211 void invalidate_addr(u_int addr);
212 void remove_hash(int vaddr);
213 void jump_vaddr();
214 void dyna_linker();
215 void dyna_linker_ds();
216 void verify_code();
217 void verify_code_vm();
218 void verify_code_ds();
219 void cc_interrupt();
220 void fp_exception();
221 void fp_exception_ds();
222 void jump_syscall();
223 void jump_syscall_hle();
224 void jump_eret();
225 void jump_hlecall();
226 void jump_intcall();
227 void new_dyna_leave();
228
229 // TLB
230 void TLBWI_new();
231 void TLBWR_new();
232 void read_nomem_new();
233 void read_nomemb_new();
234 void read_nomemh_new();
235 void read_nomemd_new();
236 void write_nomem_new();
237 void write_nomemb_new();
238 void write_nomemh_new();
239 void write_nomemd_new();
240 void write_rdram_new();
241 void write_rdramb_new();
242 void write_rdramh_new();
243 void write_rdramd_new();
244 extern u_int memory_map[1048576];
245
246 // Needed by assembler
247 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
248 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
249 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
250 void load_all_regs(signed char i_regmap[]);
251 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
252 void load_regs_entry(int t);
253 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
254
255 int tracedebug=0;
256
257 //#define DEBUG_CYCLE_COUNT 1
258
259 void nullf() {}
260 //#define assem_debug printf
261 //#define inv_debug printf
262 #define assem_debug nullf
263 #define inv_debug nullf
264
265 static void tlb_hacks()
266 {
267 #ifndef DISABLE_TLB
268   // Goldeneye hack
269   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
270   {
271     u_int addr;
272     int n;
273     switch (ROM_HEADER->Country_code&0xFF) 
274     {
275       case 0x45: // U
276         addr=0x34b30;
277         break;                   
278       case 0x4A: // J 
279         addr=0x34b70;    
280         break;    
281       case 0x50: // E 
282         addr=0x329f0;
283         break;                        
284       default: 
285         // Unknown country code
286         addr=0;
287         break;
288     }
289     u_int rom_addr=(u_int)rom;
290     #ifdef ROM_COPY
291     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
292     // in the lower 4G of memory to use this hack.  Copy it if necessary.
293     if((void *)rom>(void *)0xffffffff) {
294       munmap(ROM_COPY, 67108864);
295       if(mmap(ROM_COPY, 12582912,
296               PROT_READ | PROT_WRITE,
297               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
298               -1, 0) <= 0) {printf("mmap() failed\n");}
299       memcpy(ROM_COPY,rom,12582912);
300       rom_addr=(u_int)ROM_COPY;
301     }
302     #endif
303     if(addr) {
304       for(n=0x7F000;n<0x80000;n++) {
305         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
306       }
307     }
308   }
309 #endif
310 }
311
312 static u_int get_page(u_int vaddr)
313 {
314 #ifndef PCSX
315   u_int page=(vaddr^0x80000000)>>12;
316 #else
317   u_int page=vaddr&~0xe0000000;
318   if (page < 0x1000000)
319     page &= ~0x0e00000; // RAM mirrors
320   page>>=12;
321 #endif
322 #ifndef DISABLE_TLB
323   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
324 #endif
325   if(page>2048) page=2048+(page&2047);
326   return page;
327 }
328
329 static u_int get_vpage(u_int vaddr)
330 {
331   u_int vpage=(vaddr^0x80000000)>>12;
332 #ifndef DISABLE_TLB
333   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
334 #endif
335   if(vpage>2048) vpage=2048+(vpage&2047);
336   return vpage;
337 }
338
339 // Get address from virtual address
340 // This is called from the recompiled JR/JALR instructions
341 void *get_addr(u_int vaddr)
342 {
343   u_int page=get_page(vaddr);
344   u_int vpage=get_vpage(vaddr);
345   struct ll_entry *head;
346   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
347   head=jump_in[page];
348   while(head!=NULL) {
349     if(head->vaddr==vaddr&&head->reg32==0) {
350   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
351       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
352       ht_bin[3]=ht_bin[1];
353       ht_bin[2]=ht_bin[0];
354       ht_bin[1]=(int)head->addr;
355       ht_bin[0]=vaddr;
356       return head->addr;
357     }
358     head=head->next;
359   }
360   head=jump_dirty[vpage];
361   while(head!=NULL) {
362     if(head->vaddr==vaddr&&head->reg32==0) {
363       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
364       // Don't restore blocks which are about to expire from the cache
365       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
366       if(verify_dirty(head->addr)) {
367         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
368         invalid_code[vaddr>>12]=0;
369         memory_map[vaddr>>12]|=0x40000000;
370         if(vpage<2048) {
371 #ifndef DISABLE_TLB
372           if(tlb_LUT_r[vaddr>>12]) {
373             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
374             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
375           }
376 #endif
377           restore_candidate[vpage>>3]|=1<<(vpage&7);
378         }
379         else restore_candidate[page>>3]|=1<<(page&7);
380         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
381         if(ht_bin[0]==vaddr) {
382           ht_bin[1]=(int)head->addr; // Replace existing entry
383         }
384         else
385         {
386           ht_bin[3]=ht_bin[1];
387           ht_bin[2]=ht_bin[0];
388           ht_bin[1]=(int)head->addr;
389           ht_bin[0]=vaddr;
390         }
391         return head->addr;
392       }
393     }
394     head=head->next;
395   }
396   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
397   int r=new_recompile_block(vaddr);
398   if(r==0) return get_addr(vaddr);
399   // Execute in unmapped page, generate pagefault execption
400   Status|=2;
401   Cause=(vaddr<<31)|0x8;
402   EPC=(vaddr&1)?vaddr-5:vaddr;
403   BadVAddr=(vaddr&~1);
404   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
405   EntryHi=BadVAddr&0xFFFFE000;
406   return get_addr_ht(0x80000000);
407 }
408 // Look up address in hash table first
409 void *get_addr_ht(u_int vaddr)
410 {
411   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
412   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
413   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
414   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
415   return get_addr(vaddr);
416 }
417
418 void *get_addr_32(u_int vaddr,u_int flags)
419 {
420 #ifdef FORCE32
421   return get_addr(vaddr);
422 #else
423   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
424   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
426   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
427   u_int page=get_page(vaddr);
428   u_int vpage=get_vpage(vaddr);
429   struct ll_entry *head;
430   head=jump_in[page];
431   while(head!=NULL) {
432     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
433       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
434       if(head->reg32==0) {
435         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
436         if(ht_bin[0]==-1) {
437           ht_bin[1]=(int)head->addr;
438           ht_bin[0]=vaddr;
439         }else if(ht_bin[2]==-1) {
440           ht_bin[3]=(int)head->addr;
441           ht_bin[2]=vaddr;
442         }
443         //ht_bin[3]=ht_bin[1];
444         //ht_bin[2]=ht_bin[0];
445         //ht_bin[1]=(int)head->addr;
446         //ht_bin[0]=vaddr;
447       }
448       return head->addr;
449     }
450     head=head->next;
451   }
452   head=jump_dirty[vpage];
453   while(head!=NULL) {
454     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
455       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
456       // Don't restore blocks which are about to expire from the cache
457       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
458       if(verify_dirty(head->addr)) {
459         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
460         invalid_code[vaddr>>12]=0;
461         memory_map[vaddr>>12]|=0x40000000;
462         if(vpage<2048) {
463 #ifndef DISABLE_TLB
464           if(tlb_LUT_r[vaddr>>12]) {
465             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
466             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
467           }
468 #endif
469           restore_candidate[vpage>>3]|=1<<(vpage&7);
470         }
471         else restore_candidate[page>>3]|=1<<(page&7);
472         if(head->reg32==0) {
473           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
474           if(ht_bin[0]==-1) {
475             ht_bin[1]=(int)head->addr;
476             ht_bin[0]=vaddr;
477           }else if(ht_bin[2]==-1) {
478             ht_bin[3]=(int)head->addr;
479             ht_bin[2]=vaddr;
480           }
481           //ht_bin[3]=ht_bin[1];
482           //ht_bin[2]=ht_bin[0];
483           //ht_bin[1]=(int)head->addr;
484           //ht_bin[0]=vaddr;
485         }
486         return head->addr;
487       }
488     }
489     head=head->next;
490   }
491   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
492   int r=new_recompile_block(vaddr);
493   if(r==0) return get_addr(vaddr);
494   // Execute in unmapped page, generate pagefault execption
495   Status|=2;
496   Cause=(vaddr<<31)|0x8;
497   EPC=(vaddr&1)?vaddr-5:vaddr;
498   BadVAddr=(vaddr&~1);
499   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
500   EntryHi=BadVAddr&0xFFFFE000;
501   return get_addr_ht(0x80000000);
502 #endif
503 }
504
505 void clear_all_regs(signed char regmap[])
506 {
507   int hr;
508   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
509 }
510
511 signed char get_reg(signed char regmap[],int r)
512 {
513   int hr;
514   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
515   return -1;
516 }
517
518 // Find a register that is available for two consecutive cycles
519 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
520 {
521   int hr;
522   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
523   return -1;
524 }
525
526 int count_free_regs(signed char regmap[])
527 {
528   int count=0;
529   int hr;
530   for(hr=0;hr<HOST_REGS;hr++)
531   {
532     if(hr!=EXCLUDE_REG) {
533       if(regmap[hr]<0) count++;
534     }
535   }
536   return count;
537 }
538
539 void dirty_reg(struct regstat *cur,signed char reg)
540 {
541   int hr;
542   if(!reg) return;
543   for (hr=0;hr<HOST_REGS;hr++) {
544     if((cur->regmap[hr]&63)==reg) {
545       cur->dirty|=1<<hr;
546     }
547   }
548 }
549
550 // If we dirty the lower half of a 64 bit register which is now being
551 // sign-extended, we need to dump the upper half.
552 // Note: Do this only after completion of the instruction, because
553 // some instructions may need to read the full 64-bit value even if
554 // overwriting it (eg SLTI, DSRA32).
555 static void flush_dirty_uppers(struct regstat *cur)
556 {
557   int hr,reg;
558   for (hr=0;hr<HOST_REGS;hr++) {
559     if((cur->dirty>>hr)&1) {
560       reg=cur->regmap[hr];
561       if(reg>=64) 
562         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
563     }
564   }
565 }
566
567 void set_const(struct regstat *cur,signed char reg,uint64_t value)
568 {
569   int hr;
570   if(!reg) return;
571   for (hr=0;hr<HOST_REGS;hr++) {
572     if(cur->regmap[hr]==reg) {
573       cur->isconst|=1<<hr;
574       cur->constmap[hr]=value;
575     }
576     else if((cur->regmap[hr]^64)==reg) {
577       cur->isconst|=1<<hr;
578       cur->constmap[hr]=value>>32;
579     }
580   }
581 }
582
583 void clear_const(struct regstat *cur,signed char reg)
584 {
585   int hr;
586   if(!reg) return;
587   for (hr=0;hr<HOST_REGS;hr++) {
588     if((cur->regmap[hr]&63)==reg) {
589       cur->isconst&=~(1<<hr);
590     }
591   }
592 }
593
594 int is_const(struct regstat *cur,signed char reg)
595 {
596   int hr;
597   if(!reg) return 1;
598   for (hr=0;hr<HOST_REGS;hr++) {
599     if((cur->regmap[hr]&63)==reg) {
600       return (cur->isconst>>hr)&1;
601     }
602   }
603   return 0;
604 }
605 uint64_t get_const(struct regstat *cur,signed char reg)
606 {
607   int hr;
608   if(!reg) return 0;
609   for (hr=0;hr<HOST_REGS;hr++) {
610     if(cur->regmap[hr]==reg) {
611       return cur->constmap[hr];
612     }
613   }
614   printf("Unknown constant in r%d\n",reg);
615   exit(1);
616 }
617
618 // Least soon needed registers
619 // Look at the next ten instructions and see which registers
620 // will be used.  Try not to reallocate these.
621 void lsn(u_char hsn[], int i, int *preferred_reg)
622 {
623   int j;
624   int b=-1;
625   for(j=0;j<9;j++)
626   {
627     if(i+j>=slen) {
628       j=slen-i-1;
629       break;
630     }
631     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
632     {
633       // Don't go past an unconditonal jump
634       j++;
635       break;
636     }
637   }
638   for(;j>=0;j--)
639   {
640     if(rs1[i+j]) hsn[rs1[i+j]]=j;
641     if(rs2[i+j]) hsn[rs2[i+j]]=j;
642     if(rt1[i+j]) hsn[rt1[i+j]]=j;
643     if(rt2[i+j]) hsn[rt2[i+j]]=j;
644     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
645       // Stores can allocate zero
646       hsn[rs1[i+j]]=j;
647       hsn[rs2[i+j]]=j;
648     }
649     // On some architectures stores need invc_ptr
650     #if defined(HOST_IMM8)
651     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
652       hsn[INVCP]=j;
653     }
654     #endif
655     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
656     {
657       hsn[CCREG]=j;
658       b=j;
659     }
660   }
661   if(b>=0)
662   {
663     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
664     {
665       // Follow first branch
666       int t=(ba[i+b]-start)>>2;
667       j=7-b;if(t+j>=slen) j=slen-t-1;
668       for(;j>=0;j--)
669       {
670         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
671         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
672         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
673         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
674       }
675     }
676     // TODO: preferred register based on backward branch
677   }
678   // Delay slot should preferably not overwrite branch conditions or cycle count
679   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
680     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
681     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
682     hsn[CCREG]=1;
683     // ...or hash tables
684     hsn[RHASH]=1;
685     hsn[RHTBL]=1;
686   }
687   // Coprocessor load/store needs FTEMP, even if not declared
688   if(itype[i]==C1LS||itype[i]==C2LS) {
689     hsn[FTEMP]=0;
690   }
691   // Load L/R also uses FTEMP as a temporary register
692   if(itype[i]==LOADLR) {
693     hsn[FTEMP]=0;
694   }
695   // Also SWL/SWR/SDL/SDR
696   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
697     hsn[FTEMP]=0;
698   }
699   // Don't remove the TLB registers either
700   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
701     hsn[TLREG]=0;
702   }
703   // Don't remove the miniht registers
704   if(itype[i]==UJUMP||itype[i]==RJUMP)
705   {
706     hsn[RHASH]=0;
707     hsn[RHTBL]=0;
708   }
709 }
710
711 // We only want to allocate registers if we're going to use them again soon
712 int needed_again(int r, int i)
713 {
714   int j;
715   int b=-1;
716   int rn=10;
717   int hr;
718   u_char hsn[MAXREG+1];
719   int preferred_reg;
720   
721   memset(hsn,10,sizeof(hsn));
722   lsn(hsn,i,&preferred_reg);
723   
724   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725   {
726     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727       return 0; // Don't need any registers if exiting the block
728   }
729   for(j=0;j<9;j++)
730   {
731     if(i+j>=slen) {
732       j=slen-i-1;
733       break;
734     }
735     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736     {
737       // Don't go past an unconditonal jump
738       j++;
739       break;
740     }
741     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
742     {
743       break;
744     }
745   }
746   for(;j>=1;j--)
747   {
748     if(rs1[i+j]==r) rn=j;
749     if(rs2[i+j]==r) rn=j;
750     if((unneeded_reg[i+j]>>r)&1) rn=10;
751     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752     {
753       b=j;
754     }
755   }
756   /*
757   if(b>=0)
758   {
759     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760     {
761       // Follow first branch
762       int o=rn;
763       int t=(ba[i+b]-start)>>2;
764       j=7-b;if(t+j>=slen) j=slen-t-1;
765       for(;j>=0;j--)
766       {
767         if(!((unneeded_reg[t+j]>>r)&1)) {
768           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770         }
771         else rn=o;
772       }
773     }
774   }*/
775   for(hr=0;hr<HOST_REGS;hr++) {
776     if(hr!=EXCLUDE_REG) {
777       if(rn<hsn[hr]) return 1;
778     }
779   }
780   return 0;
781 }
782
783 // Try to match register allocations at the end of a loop with those
784 // at the beginning
785 int loop_reg(int i, int r, int hr)
786 {
787   int j,k;
788   for(j=0;j<9;j++)
789   {
790     if(i+j>=slen) {
791       j=slen-i-1;
792       break;
793     }
794     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
795     {
796       // Don't go past an unconditonal jump
797       j++;
798       break;
799     }
800   }
801   k=0;
802   if(i>0){
803     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
804       k--;
805   }
806   for(;k<j;k++)
807   {
808     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
809     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
810     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
811     {
812       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
813       {
814         int t=(ba[i+k]-start)>>2;
815         int reg=get_reg(regs[t].regmap_entry,r);
816         if(reg>=0) return reg;
817         //reg=get_reg(regs[t+1].regmap_entry,r);
818         //if(reg>=0) return reg;
819       }
820     }
821   }
822   return hr;
823 }
824
825
826 // Allocate every register, preserving source/target regs
827 void alloc_all(struct regstat *cur,int i)
828 {
829   int hr;
830   
831   for(hr=0;hr<HOST_REGS;hr++) {
832     if(hr!=EXCLUDE_REG) {
833       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
834          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
835       {
836         cur->regmap[hr]=-1;
837         cur->dirty&=~(1<<hr);
838       }
839       // Don't need zeros
840       if((cur->regmap[hr]&63)==0)
841       {
842         cur->regmap[hr]=-1;
843         cur->dirty&=~(1<<hr);
844       }
845     }
846   }
847 }
848
849
850 void div64(int64_t dividend,int64_t divisor)
851 {
852   lo=dividend/divisor;
853   hi=dividend%divisor;
854   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
855   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
856 }
857 void divu64(uint64_t dividend,uint64_t divisor)
858 {
859   lo=dividend/divisor;
860   hi=dividend%divisor;
861   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
862   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
863 }
864
865 void mult64(uint64_t m1,uint64_t m2)
866 {
867    unsigned long long int op1, op2, op3, op4;
868    unsigned long long int result1, result2, result3, result4;
869    unsigned long long int temp1, temp2, temp3, temp4;
870    int sign = 0;
871    
872    if (m1 < 0)
873      {
874     op2 = -m1;
875     sign = 1 - sign;
876      }
877    else op2 = m1;
878    if (m2 < 0)
879      {
880     op4 = -m2;
881     sign = 1 - sign;
882      }
883    else op4 = m2;
884    
885    op1 = op2 & 0xFFFFFFFF;
886    op2 = (op2 >> 32) & 0xFFFFFFFF;
887    op3 = op4 & 0xFFFFFFFF;
888    op4 = (op4 >> 32) & 0xFFFFFFFF;
889    
890    temp1 = op1 * op3;
891    temp2 = (temp1 >> 32) + op1 * op4;
892    temp3 = op2 * op3;
893    temp4 = (temp3 >> 32) + op2 * op4;
894    
895    result1 = temp1 & 0xFFFFFFFF;
896    result2 = temp2 + (temp3 & 0xFFFFFFFF);
897    result3 = (result2 >> 32) + temp4;
898    result4 = (result3 >> 32);
899    
900    lo = result1 | (result2 << 32);
901    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
902    if (sign)
903      {
904     hi = ~hi;
905     if (!lo) hi++;
906     else lo = ~lo + 1;
907      }
908 }
909
910 void multu64(uint64_t m1,uint64_t m2)
911 {
912    unsigned long long int op1, op2, op3, op4;
913    unsigned long long int result1, result2, result3, result4;
914    unsigned long long int temp1, temp2, temp3, temp4;
915    
916    op1 = m1 & 0xFFFFFFFF;
917    op2 = (m1 >> 32) & 0xFFFFFFFF;
918    op3 = m2 & 0xFFFFFFFF;
919    op4 = (m2 >> 32) & 0xFFFFFFFF;
920    
921    temp1 = op1 * op3;
922    temp2 = (temp1 >> 32) + op1 * op4;
923    temp3 = op2 * op3;
924    temp4 = (temp3 >> 32) + op2 * op4;
925    
926    result1 = temp1 & 0xFFFFFFFF;
927    result2 = temp2 + (temp3 & 0xFFFFFFFF);
928    result3 = (result2 >> 32) + temp4;
929    result4 = (result3 >> 32);
930    
931    lo = result1 | (result2 << 32);
932    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
933    
934   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
935   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
936 }
937
938 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
939 {
940   if(bits) {
941     original<<=64-bits;
942     original>>=64-bits;
943     loaded<<=bits;
944     original|=loaded;
945   }
946   else original=loaded;
947   return original;
948 }
949 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
950 {
951   if(bits^56) {
952     original>>=64-(bits^56);
953     original<<=64-(bits^56);
954     loaded>>=bits^56;
955     original|=loaded;
956   }
957   else original=loaded;
958   return original;
959 }
960
961 #ifdef __i386__
962 #include "assem_x86.c"
963 #endif
964 #ifdef __x86_64__
965 #include "assem_x64.c"
966 #endif
967 #ifdef __arm__
968 #include "assem_arm.c"
969 #endif
970
971 // Add virtual address mapping to linked list
972 void ll_add(struct ll_entry **head,int vaddr,void *addr)
973 {
974   struct ll_entry *new_entry;
975   new_entry=malloc(sizeof(struct ll_entry));
976   assert(new_entry!=NULL);
977   new_entry->vaddr=vaddr;
978   new_entry->reg32=0;
979   new_entry->addr=addr;
980   new_entry->next=*head;
981   *head=new_entry;
982 }
983
984 // Add virtual address mapping for 32-bit compiled block
985 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
986 {
987   ll_add(head,vaddr,addr);
988 #ifndef FORCE32
989   (*head)->reg32=reg32;
990 #endif
991 }
992
993 // Check if an address is already compiled
994 // but don't return addresses which are about to expire from the cache
995 void *check_addr(u_int vaddr)
996 {
997   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
998   if(ht_bin[0]==vaddr) {
999     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1001   }
1002   if(ht_bin[2]==vaddr) {
1003     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1004       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1005   }
1006   u_int page=get_page(vaddr);
1007   struct ll_entry *head;
1008   head=jump_in[page];
1009   while(head!=NULL) {
1010     if(head->vaddr==vaddr&&head->reg32==0) {
1011       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1012         // Update existing entry with current address
1013         if(ht_bin[0]==vaddr) {
1014           ht_bin[1]=(int)head->addr;
1015           return head->addr;
1016         }
1017         if(ht_bin[2]==vaddr) {
1018           ht_bin[3]=(int)head->addr;
1019           return head->addr;
1020         }
1021         // Insert into hash table with low priority.
1022         // Don't evict existing entries, as they are probably
1023         // addresses that are being accessed frequently.
1024         if(ht_bin[0]==-1) {
1025           ht_bin[1]=(int)head->addr;
1026           ht_bin[0]=vaddr;
1027         }else if(ht_bin[2]==-1) {
1028           ht_bin[3]=(int)head->addr;
1029           ht_bin[2]=vaddr;
1030         }
1031         return head->addr;
1032       }
1033     }
1034     head=head->next;
1035   }
1036   return 0;
1037 }
1038
1039 void remove_hash(int vaddr)
1040 {
1041   //printf("remove hash: %x\n",vaddr);
1042   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1043   if(ht_bin[2]==vaddr) {
1044     ht_bin[2]=ht_bin[3]=-1;
1045   }
1046   if(ht_bin[0]==vaddr) {
1047     ht_bin[0]=ht_bin[2];
1048     ht_bin[1]=ht_bin[3];
1049     ht_bin[2]=ht_bin[3]=-1;
1050   }
1051 }
1052
1053 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1054 {
1055   struct ll_entry *next;
1056   while(*head) {
1057     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1058        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1059     {
1060       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1061       remove_hash((*head)->vaddr);
1062       next=(*head)->next;
1063       free(*head);
1064       *head=next;
1065     }
1066     else
1067     {
1068       head=&((*head)->next);
1069     }
1070   }
1071 }
1072
1073 // Remove all entries from linked list
1074 void ll_clear(struct ll_entry **head)
1075 {
1076   struct ll_entry *cur;
1077   struct ll_entry *next;
1078   if(cur=*head) {
1079     *head=0;
1080     while(cur) {
1081       next=cur->next;
1082       free(cur);
1083       cur=next;
1084     }
1085   }
1086 }
1087
1088 // Dereference the pointers and remove if it matches
1089 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1090 {
1091   while(head) {
1092     int ptr=get_pointer(head->addr);
1093     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1094     if(((ptr>>shift)==(addr>>shift)) ||
1095        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1096     {
1097       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1098       u_int host_addr=(u_int)kill_pointer(head->addr);
1099       #ifdef __arm__
1100         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1101       #endif
1102     }
1103     head=head->next;
1104   }
1105 }
1106
1107 // This is called when we write to a compiled block (see do_invstub)
1108 void invalidate_page(u_int page)
1109 {
1110   struct ll_entry *head;
1111   struct ll_entry *next;
1112   head=jump_in[page];
1113   jump_in[page]=0;
1114   while(head!=NULL) {
1115     inv_debug("INVALIDATE: %x\n",head->vaddr);
1116     remove_hash(head->vaddr);
1117     next=head->next;
1118     free(head);
1119     head=next;
1120   }
1121   head=jump_out[page];
1122   jump_out[page]=0;
1123   while(head!=NULL) {
1124     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1125     u_int host_addr=(u_int)kill_pointer(head->addr);
1126     #ifdef __arm__
1127       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1128     #endif
1129     next=head->next;
1130     free(head);
1131     head=next;
1132   }
1133 }
1134 void invalidate_block(u_int block)
1135 {
1136   u_int page=get_page(block<<12);
1137   u_int vpage=get_vpage(block<<12);
1138   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1139   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1140   u_int first,last;
1141   first=last=page;
1142   struct ll_entry *head;
1143   head=jump_dirty[vpage];
1144   //printf("page=%d vpage=%d\n",page,vpage);
1145   while(head!=NULL) {
1146     u_int start,end;
1147     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1148       get_bounds((int)head->addr,&start,&end);
1149       //printf("start: %x end: %x\n",start,end);
1150       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1151         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1152           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1153           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1154         }
1155       }
1156 #ifndef DISABLE_TLB
1157       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1158         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1159           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1160           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1161         }
1162       }
1163 #endif
1164     }
1165     head=head->next;
1166   }
1167   //printf("first=%d last=%d\n",first,last);
1168   invalidate_page(page);
1169   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1170   assert(last<page+5);
1171   // Invalidate the adjacent pages if a block crosses a 4K boundary
1172   while(first<page) {
1173     invalidate_page(first);
1174     first++;
1175   }
1176   for(first=page+1;first<last;first++) {
1177     invalidate_page(first);
1178   }
1179   #ifdef __arm__
1180     do_clear_cache();
1181   #endif
1182   
1183   // Don't trap writes
1184   invalid_code[block]=1;
1185 #ifndef DISABLE_TLB
1186   // If there is a valid TLB entry for this page, remove write protect
1187   if(tlb_LUT_w[block]) {
1188     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1189     // CHECK: Is this right?
1190     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1191     u_int real_block=tlb_LUT_w[block]>>12;
1192     invalid_code[real_block]=1;
1193     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1194   }
1195   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1196 #endif
1197
1198   #ifdef USE_MINI_HT
1199   memset(mini_ht,-1,sizeof(mini_ht));
1200   #endif
1201 }
1202 void invalidate_addr(u_int addr)
1203 {
1204   invalidate_block(addr>>12);
1205 }
1206 // This is called when loading a save state.
1207 // Anything could have changed, so invalidate everything.
1208 void invalidate_all_pages()
1209 {
1210   u_int page,n;
1211   for(page=0;page<4096;page++)
1212     invalidate_page(page);
1213   for(page=0;page<1048576;page++)
1214     if(!invalid_code[page]) {
1215       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1216       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1217     }
1218   #ifdef __arm__
1219   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1220   #endif
1221   #ifdef USE_MINI_HT
1222   memset(mini_ht,-1,sizeof(mini_ht));
1223   #endif
1224   #ifndef DISABLE_TLB
1225   // TLB
1226   for(page=0;page<0x100000;page++) {
1227     if(tlb_LUT_r[page]) {
1228       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1229       if(!tlb_LUT_w[page]||!invalid_code[page])
1230         memory_map[page]|=0x40000000; // Write protect
1231     }
1232     else memory_map[page]=-1;
1233     if(page==0x80000) page=0xC0000;
1234   }
1235   tlb_hacks();
1236   #endif
1237 }
1238
1239 // Add an entry to jump_out after making a link
1240 void add_link(u_int vaddr,void *src)
1241 {
1242   u_int page=get_page(vaddr);
1243   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1244   ll_add(jump_out+page,vaddr,src);
1245   //int ptr=get_pointer(src);
1246   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1247 }
1248
1249 // If a code block was found to be unmodified (bit was set in
1250 // restore_candidate) and it remains unmodified (bit is clear
1251 // in invalid_code) then move the entries for that 4K page from
1252 // the dirty list to the clean list.
1253 void clean_blocks(u_int page)
1254 {
1255   struct ll_entry *head;
1256   inv_debug("INV: clean_blocks page=%d\n",page);
1257   head=jump_dirty[page];
1258   while(head!=NULL) {
1259     if(!invalid_code[head->vaddr>>12]) {
1260       // Don't restore blocks which are about to expire from the cache
1261       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1262         u_int start,end;
1263         if(verify_dirty((int)head->addr)) {
1264           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1265           u_int i;
1266           u_int inv=0;
1267           get_bounds((int)head->addr,&start,&end);
1268           if(start-(u_int)rdram<RAM_SIZE) {
1269             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1270               inv|=invalid_code[i];
1271             }
1272           }
1273           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1274             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1275             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1276             if(addr<start||addr>=end) inv=1;
1277           }
1278           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1279             inv=1;
1280           }
1281           if(!inv) {
1282             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1283             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1284               u_int ppage=page;
1285 #ifndef DISABLE_TLB
1286               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1287 #endif
1288               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1289               //printf("page=%x, addr=%x\n",page,head->vaddr);
1290               //assert(head->vaddr>>12==(page|0x80000));
1291               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1292               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1293               if(!head->reg32) {
1294                 if(ht_bin[0]==head->vaddr) {
1295                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1296                 }
1297                 if(ht_bin[2]==head->vaddr) {
1298                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1299                 }
1300               }
1301             }
1302           }
1303         }
1304       }
1305     }
1306     head=head->next;
1307   }
1308 }
1309
1310
1311 void mov_alloc(struct regstat *current,int i)
1312 {
1313   // Note: Don't need to actually alloc the source registers
1314   if((~current->is32>>rs1[i])&1) {
1315     //alloc_reg64(current,i,rs1[i]);
1316     alloc_reg64(current,i,rt1[i]);
1317     current->is32&=~(1LL<<rt1[i]);
1318   } else {
1319     //alloc_reg(current,i,rs1[i]);
1320     alloc_reg(current,i,rt1[i]);
1321     current->is32|=(1LL<<rt1[i]);
1322   }
1323   clear_const(current,rs1[i]);
1324   clear_const(current,rt1[i]);
1325   dirty_reg(current,rt1[i]);
1326 }
1327
1328 void shiftimm_alloc(struct regstat *current,int i)
1329 {
1330   clear_const(current,rs1[i]);
1331   clear_const(current,rt1[i]);
1332   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1333   {
1334     if(rt1[i]) {
1335       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1336       else lt1[i]=rs1[i];
1337       alloc_reg(current,i,rt1[i]);
1338       current->is32|=1LL<<rt1[i];
1339       dirty_reg(current,rt1[i]);
1340     }
1341   }
1342   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1343   {
1344     if(rt1[i]) {
1345       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1346       alloc_reg64(current,i,rt1[i]);
1347       current->is32&=~(1LL<<rt1[i]);
1348       dirty_reg(current,rt1[i]);
1349     }
1350   }
1351   if(opcode2[i]==0x3c) // DSLL32
1352   {
1353     if(rt1[i]) {
1354       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1355       alloc_reg64(current,i,rt1[i]);
1356       current->is32&=~(1LL<<rt1[i]);
1357       dirty_reg(current,rt1[i]);
1358     }
1359   }
1360   if(opcode2[i]==0x3e) // DSRL32
1361   {
1362     if(rt1[i]) {
1363       alloc_reg64(current,i,rs1[i]);
1364       if(imm[i]==32) {
1365         alloc_reg64(current,i,rt1[i]);
1366         current->is32&=~(1LL<<rt1[i]);
1367       } else {
1368         alloc_reg(current,i,rt1[i]);
1369         current->is32|=1LL<<rt1[i];
1370       }
1371       dirty_reg(current,rt1[i]);
1372     }
1373   }
1374   if(opcode2[i]==0x3f) // DSRA32
1375   {
1376     if(rt1[i]) {
1377       alloc_reg64(current,i,rs1[i]);
1378       alloc_reg(current,i,rt1[i]);
1379       current->is32|=1LL<<rt1[i];
1380       dirty_reg(current,rt1[i]);
1381     }
1382   }
1383 }
1384
1385 void shift_alloc(struct regstat *current,int i)
1386 {
1387   if(rt1[i]) {
1388     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1389     {
1390       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1391       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1392       alloc_reg(current,i,rt1[i]);
1393       if(rt1[i]==rs2[i]) {
1394         alloc_reg_temp(current,i,-1);
1395         minimum_free_regs[i]=1;
1396       }
1397       current->is32|=1LL<<rt1[i];
1398     } else { // DSLLV/DSRLV/DSRAV
1399       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1400       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1401       alloc_reg64(current,i,rt1[i]);
1402       current->is32&=~(1LL<<rt1[i]);
1403       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1404       {
1405         alloc_reg_temp(current,i,-1);
1406         minimum_free_regs[i]=1;
1407       }
1408     }
1409     clear_const(current,rs1[i]);
1410     clear_const(current,rs2[i]);
1411     clear_const(current,rt1[i]);
1412     dirty_reg(current,rt1[i]);
1413   }
1414 }
1415
1416 void alu_alloc(struct regstat *current,int i)
1417 {
1418   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1419     if(rt1[i]) {
1420       if(rs1[i]&&rs2[i]) {
1421         alloc_reg(current,i,rs1[i]);
1422         alloc_reg(current,i,rs2[i]);
1423       }
1424       else {
1425         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1426         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1427       }
1428       alloc_reg(current,i,rt1[i]);
1429     }
1430     current->is32|=1LL<<rt1[i];
1431   }
1432   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1433     if(rt1[i]) {
1434       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1435       {
1436         alloc_reg64(current,i,rs1[i]);
1437         alloc_reg64(current,i,rs2[i]);
1438         alloc_reg(current,i,rt1[i]);
1439       } else {
1440         alloc_reg(current,i,rs1[i]);
1441         alloc_reg(current,i,rs2[i]);
1442         alloc_reg(current,i,rt1[i]);
1443       }
1444     }
1445     current->is32|=1LL<<rt1[i];
1446   }
1447   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1448     if(rt1[i]) {
1449       if(rs1[i]&&rs2[i]) {
1450         alloc_reg(current,i,rs1[i]);
1451         alloc_reg(current,i,rs2[i]);
1452       }
1453       else
1454       {
1455         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1456         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1457       }
1458       alloc_reg(current,i,rt1[i]);
1459       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1460       {
1461         if(!((current->uu>>rt1[i])&1)) {
1462           alloc_reg64(current,i,rt1[i]);
1463         }
1464         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1465           if(rs1[i]&&rs2[i]) {
1466             alloc_reg64(current,i,rs1[i]);
1467             alloc_reg64(current,i,rs2[i]);
1468           }
1469           else
1470           {
1471             // Is is really worth it to keep 64-bit values in registers?
1472             #ifdef NATIVE_64BIT
1473             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1474             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1475             #endif
1476           }
1477         }
1478         current->is32&=~(1LL<<rt1[i]);
1479       } else {
1480         current->is32|=1LL<<rt1[i];
1481       }
1482     }
1483   }
1484   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1485     if(rt1[i]) {
1486       if(rs1[i]&&rs2[i]) {
1487         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1488           alloc_reg64(current,i,rs1[i]);
1489           alloc_reg64(current,i,rs2[i]);
1490           alloc_reg64(current,i,rt1[i]);
1491         } else {
1492           alloc_reg(current,i,rs1[i]);
1493           alloc_reg(current,i,rs2[i]);
1494           alloc_reg(current,i,rt1[i]);
1495         }
1496       }
1497       else {
1498         alloc_reg(current,i,rt1[i]);
1499         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1500           // DADD used as move, or zeroing
1501           // If we have a 64-bit source, then make the target 64 bits too
1502           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1503             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1504             alloc_reg64(current,i,rt1[i]);
1505           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1506             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1507             alloc_reg64(current,i,rt1[i]);
1508           }
1509           if(opcode2[i]>=0x2e&&rs2[i]) {
1510             // DSUB used as negation - 64-bit result
1511             // If we have a 32-bit register, extend it to 64 bits
1512             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1513             alloc_reg64(current,i,rt1[i]);
1514           }
1515         }
1516       }
1517       if(rs1[i]&&rs2[i]) {
1518         current->is32&=~(1LL<<rt1[i]);
1519       } else if(rs1[i]) {
1520         current->is32&=~(1LL<<rt1[i]);
1521         if((current->is32>>rs1[i])&1)
1522           current->is32|=1LL<<rt1[i];
1523       } else if(rs2[i]) {
1524         current->is32&=~(1LL<<rt1[i]);
1525         if((current->is32>>rs2[i])&1)
1526           current->is32|=1LL<<rt1[i];
1527       } else {
1528         current->is32|=1LL<<rt1[i];
1529       }
1530     }
1531   }
1532   clear_const(current,rs1[i]);
1533   clear_const(current,rs2[i]);
1534   clear_const(current,rt1[i]);
1535   dirty_reg(current,rt1[i]);
1536 }
1537
1538 void imm16_alloc(struct regstat *current,int i)
1539 {
1540   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1541   else lt1[i]=rs1[i];
1542   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1543   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1544     current->is32&=~(1LL<<rt1[i]);
1545     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1546       // TODO: Could preserve the 32-bit flag if the immediate is zero
1547       alloc_reg64(current,i,rt1[i]);
1548       alloc_reg64(current,i,rs1[i]);
1549     }
1550     clear_const(current,rs1[i]);
1551     clear_const(current,rt1[i]);
1552   }
1553   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1554     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1555     current->is32|=1LL<<rt1[i];
1556     clear_const(current,rs1[i]);
1557     clear_const(current,rt1[i]);
1558   }
1559   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1560     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1561       if(rs1[i]!=rt1[i]) {
1562         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1563         alloc_reg64(current,i,rt1[i]);
1564         current->is32&=~(1LL<<rt1[i]);
1565       }
1566     }
1567     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1568     if(is_const(current,rs1[i])) {
1569       int v=get_const(current,rs1[i]);
1570       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1571       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1572       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1573     }
1574     else clear_const(current,rt1[i]);
1575   }
1576   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1577     if(is_const(current,rs1[i])) {
1578       int v=get_const(current,rs1[i]);
1579       set_const(current,rt1[i],v+imm[i]);
1580     }
1581     else clear_const(current,rt1[i]);
1582     current->is32|=1LL<<rt1[i];
1583   }
1584   else {
1585     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1586     current->is32|=1LL<<rt1[i];
1587   }
1588   dirty_reg(current,rt1[i]);
1589 }
1590
1591 void load_alloc(struct regstat *current,int i)
1592 {
1593   clear_const(current,rt1[i]);
1594   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1595   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1596   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1597   if(rt1[i]) {
1598     alloc_reg(current,i,rt1[i]);
1599     if(get_reg(current->regmap,rt1[i])<0) {
1600       // dummy load, but we still need a register to calculate the address
1601       alloc_reg_temp(current,i,-1);
1602       minimum_free_regs[i]=1;
1603     }
1604     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1605     {
1606       current->is32&=~(1LL<<rt1[i]);
1607       alloc_reg64(current,i,rt1[i]);
1608     }
1609     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1610     {
1611       current->is32&=~(1LL<<rt1[i]);
1612       alloc_reg64(current,i,rt1[i]);
1613       alloc_all(current,i);
1614       alloc_reg64(current,i,FTEMP);
1615       minimum_free_regs[i]=HOST_REGS;
1616     }
1617     else current->is32|=1LL<<rt1[i];
1618     dirty_reg(current,rt1[i]);
1619     // If using TLB, need a register for pointer to the mapping table
1620     if(using_tlb) alloc_reg(current,i,TLREG);
1621     // LWL/LWR need a temporary register for the old value
1622     if(opcode[i]==0x22||opcode[i]==0x26)
1623     {
1624       alloc_reg(current,i,FTEMP);
1625       alloc_reg_temp(current,i,-1);
1626       minimum_free_regs[i]=1;
1627     }
1628   }
1629   else
1630   {
1631     // Load to r0 (dummy load)
1632     // but we still need a register to calculate the address
1633     if(opcode[i]==0x22||opcode[i]==0x26)
1634     {
1635       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1636     }
1637     alloc_reg_temp(current,i,-1);
1638     minimum_free_regs[i]=1;
1639     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1640     {
1641       alloc_all(current,i);
1642       alloc_reg64(current,i,FTEMP);
1643       minimum_free_regs[i]=HOST_REGS;
1644     }
1645   }
1646 }
1647
1648 void store_alloc(struct regstat *current,int i)
1649 {
1650   clear_const(current,rs2[i]);
1651   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1652   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1653   alloc_reg(current,i,rs2[i]);
1654   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1655     alloc_reg64(current,i,rs2[i]);
1656     if(rs2[i]) alloc_reg(current,i,FTEMP);
1657   }
1658   // If using TLB, need a register for pointer to the mapping table
1659   if(using_tlb) alloc_reg(current,i,TLREG);
1660   #if defined(HOST_IMM8)
1661   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1662   else alloc_reg(current,i,INVCP);
1663   #endif
1664   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1665     alloc_reg(current,i,FTEMP);
1666   }
1667   // We need a temporary register for address generation
1668   alloc_reg_temp(current,i,-1);
1669   minimum_free_regs[i]=1;
1670 }
1671
1672 void c1ls_alloc(struct regstat *current,int i)
1673 {
1674   //clear_const(current,rs1[i]); // FIXME
1675   clear_const(current,rt1[i]);
1676   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1677   alloc_reg(current,i,CSREG); // Status
1678   alloc_reg(current,i,FTEMP);
1679   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1680     alloc_reg64(current,i,FTEMP);
1681   }
1682   // If using TLB, need a register for pointer to the mapping table
1683   if(using_tlb) alloc_reg(current,i,TLREG);
1684   #if defined(HOST_IMM8)
1685   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1686   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1687     alloc_reg(current,i,INVCP);
1688   #endif
1689   // We need a temporary register for address generation
1690   alloc_reg_temp(current,i,-1);
1691 }
1692
1693 void c2ls_alloc(struct regstat *current,int i)
1694 {
1695   clear_const(current,rt1[i]);
1696   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1697   alloc_reg(current,i,FTEMP);
1698   // If using TLB, need a register for pointer to the mapping table
1699   if(using_tlb) alloc_reg(current,i,TLREG);
1700   #if defined(HOST_IMM8)
1701   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1702   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1703     alloc_reg(current,i,INVCP);
1704   #endif
1705   // We need a temporary register for address generation
1706   alloc_reg_temp(current,i,-1);
1707   minimum_free_regs[i]=1;
1708 }
1709
1710 #ifndef multdiv_alloc
1711 void multdiv_alloc(struct regstat *current,int i)
1712 {
1713   //  case 0x18: MULT
1714   //  case 0x19: MULTU
1715   //  case 0x1A: DIV
1716   //  case 0x1B: DIVU
1717   //  case 0x1C: DMULT
1718   //  case 0x1D: DMULTU
1719   //  case 0x1E: DDIV
1720   //  case 0x1F: DDIVU
1721   clear_const(current,rs1[i]);
1722   clear_const(current,rs2[i]);
1723   if(rs1[i]&&rs2[i])
1724   {
1725     if((opcode2[i]&4)==0) // 32-bit
1726     {
1727       current->u&=~(1LL<<HIREG);
1728       current->u&=~(1LL<<LOREG);
1729       alloc_reg(current,i,HIREG);
1730       alloc_reg(current,i,LOREG);
1731       alloc_reg(current,i,rs1[i]);
1732       alloc_reg(current,i,rs2[i]);
1733       current->is32|=1LL<<HIREG;
1734       current->is32|=1LL<<LOREG;
1735       dirty_reg(current,HIREG);
1736       dirty_reg(current,LOREG);
1737     }
1738     else // 64-bit
1739     {
1740       current->u&=~(1LL<<HIREG);
1741       current->u&=~(1LL<<LOREG);
1742       current->uu&=~(1LL<<HIREG);
1743       current->uu&=~(1LL<<LOREG);
1744       alloc_reg64(current,i,HIREG);
1745       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1746       alloc_reg64(current,i,rs1[i]);
1747       alloc_reg64(current,i,rs2[i]);
1748       alloc_all(current,i);
1749       current->is32&=~(1LL<<HIREG);
1750       current->is32&=~(1LL<<LOREG);
1751       dirty_reg(current,HIREG);
1752       dirty_reg(current,LOREG);
1753       minimum_free_regs[i]=HOST_REGS;
1754     }
1755   }
1756   else
1757   {
1758     // Multiply by zero is zero.
1759     // MIPS does not have a divide by zero exception.
1760     // The result is undefined, we return zero.
1761     alloc_reg(current,i,HIREG);
1762     alloc_reg(current,i,LOREG);
1763     current->is32|=1LL<<HIREG;
1764     current->is32|=1LL<<LOREG;
1765     dirty_reg(current,HIREG);
1766     dirty_reg(current,LOREG);
1767   }
1768 }
1769 #endif
1770
1771 void cop0_alloc(struct regstat *current,int i)
1772 {
1773   if(opcode2[i]==0) // MFC0
1774   {
1775     if(rt1[i]) {
1776       clear_const(current,rt1[i]);
1777       alloc_all(current,i);
1778       alloc_reg(current,i,rt1[i]);
1779       current->is32|=1LL<<rt1[i];
1780       dirty_reg(current,rt1[i]);
1781     }
1782   }
1783   else if(opcode2[i]==4) // MTC0
1784   {
1785     if(rs1[i]){
1786       clear_const(current,rs1[i]);
1787       alloc_reg(current,i,rs1[i]);
1788       alloc_all(current,i);
1789     }
1790     else {
1791       alloc_all(current,i); // FIXME: Keep r0
1792       current->u&=~1LL;
1793       alloc_reg(current,i,0);
1794     }
1795   }
1796   else
1797   {
1798     // TLBR/TLBWI/TLBWR/TLBP/ERET
1799     assert(opcode2[i]==0x10);
1800     alloc_all(current,i);
1801   }
1802   minimum_free_regs[i]=HOST_REGS;
1803 }
1804
1805 void cop1_alloc(struct regstat *current,int i)
1806 {
1807   alloc_reg(current,i,CSREG); // Load status
1808   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1809   {
1810     if(rt1[i]){
1811       clear_const(current,rt1[i]);
1812       if(opcode2[i]==1) {
1813         alloc_reg64(current,i,rt1[i]); // DMFC1
1814         current->is32&=~(1LL<<rt1[i]);
1815       }else{
1816         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1817         current->is32|=1LL<<rt1[i];
1818       }
1819       dirty_reg(current,rt1[i]);
1820     }
1821     alloc_reg_temp(current,i,-1);
1822   }
1823   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1824   {
1825     if(rs1[i]){
1826       clear_const(current,rs1[i]);
1827       if(opcode2[i]==5)
1828         alloc_reg64(current,i,rs1[i]); // DMTC1
1829       else
1830         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1831       alloc_reg_temp(current,i,-1);
1832     }
1833     else {
1834       current->u&=~1LL;
1835       alloc_reg(current,i,0);
1836       alloc_reg_temp(current,i,-1);
1837     }
1838   }
1839   minimum_free_regs[i]=1;
1840 }
1841 void fconv_alloc(struct regstat *current,int i)
1842 {
1843   alloc_reg(current,i,CSREG); // Load status
1844   alloc_reg_temp(current,i,-1);
1845   minimum_free_regs[i]=1;
1846 }
1847 void float_alloc(struct regstat *current,int i)
1848 {
1849   alloc_reg(current,i,CSREG); // Load status
1850   alloc_reg_temp(current,i,-1);
1851   minimum_free_regs[i]=1;
1852 }
1853 void c2op_alloc(struct regstat *current,int i)
1854 {
1855   alloc_reg_temp(current,i,-1);
1856 }
1857 void fcomp_alloc(struct regstat *current,int i)
1858 {
1859   alloc_reg(current,i,CSREG); // Load status
1860   alloc_reg(current,i,FSREG); // Load flags
1861   dirty_reg(current,FSREG); // Flag will be modified
1862   alloc_reg_temp(current,i,-1);
1863   minimum_free_regs[i]=1;
1864 }
1865
1866 void syscall_alloc(struct regstat *current,int i)
1867 {
1868   alloc_cc(current,i);
1869   dirty_reg(current,CCREG);
1870   alloc_all(current,i);
1871   minimum_free_regs[i]=HOST_REGS;
1872   current->isconst=0;
1873 }
1874
1875 void delayslot_alloc(struct regstat *current,int i)
1876 {
1877   switch(itype[i]) {
1878     case UJUMP:
1879     case CJUMP:
1880     case SJUMP:
1881     case RJUMP:
1882     case FJUMP:
1883     case SYSCALL:
1884     case HLECALL:
1885     case SPAN:
1886       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1887       printf("Disabled speculative precompilation\n");
1888       stop_after_jal=1;
1889       break;
1890     case IMM16:
1891       imm16_alloc(current,i);
1892       break;
1893     case LOAD:
1894     case LOADLR:
1895       load_alloc(current,i);
1896       break;
1897     case STORE:
1898     case STORELR:
1899       store_alloc(current,i);
1900       break;
1901     case ALU:
1902       alu_alloc(current,i);
1903       break;
1904     case SHIFT:
1905       shift_alloc(current,i);
1906       break;
1907     case MULTDIV:
1908       multdiv_alloc(current,i);
1909       break;
1910     case SHIFTIMM:
1911       shiftimm_alloc(current,i);
1912       break;
1913     case MOV:
1914       mov_alloc(current,i);
1915       break;
1916     case COP0:
1917       cop0_alloc(current,i);
1918       break;
1919     case COP1:
1920     case COP2:
1921       cop1_alloc(current,i);
1922       break;
1923     case C1LS:
1924       c1ls_alloc(current,i);
1925       break;
1926     case C2LS:
1927       c2ls_alloc(current,i);
1928       break;
1929     case FCONV:
1930       fconv_alloc(current,i);
1931       break;
1932     case FLOAT:
1933       float_alloc(current,i);
1934       break;
1935     case FCOMP:
1936       fcomp_alloc(current,i);
1937       break;
1938     case C2OP:
1939       c2op_alloc(current,i);
1940       break;
1941   }
1942 }
1943
1944 // Special case where a branch and delay slot span two pages in virtual memory
1945 static void pagespan_alloc(struct regstat *current,int i)
1946 {
1947   current->isconst=0;
1948   current->wasconst=0;
1949   regs[i].wasconst=0;
1950   minimum_free_regs[i]=HOST_REGS;
1951   alloc_all(current,i);
1952   alloc_cc(current,i);
1953   dirty_reg(current,CCREG);
1954   if(opcode[i]==3) // JAL
1955   {
1956     alloc_reg(current,i,31);
1957     dirty_reg(current,31);
1958   }
1959   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1960   {
1961     alloc_reg(current,i,rs1[i]);
1962     if (rt1[i]!=0) {
1963       alloc_reg(current,i,rt1[i]);
1964       dirty_reg(current,rt1[i]);
1965     }
1966   }
1967   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1968   {
1969     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1970     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1971     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1972     {
1973       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1974       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1975     }
1976   }
1977   else
1978   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1979   {
1980     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1981     if(!((current->is32>>rs1[i])&1))
1982     {
1983       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1984     }
1985   }
1986   else
1987   if(opcode[i]==0x11) // BC1
1988   {
1989     alloc_reg(current,i,FSREG);
1990     alloc_reg(current,i,CSREG);
1991   }
1992   //else ...
1993 }
1994
1995 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1996 {
1997   stubs[stubcount][0]=type;
1998   stubs[stubcount][1]=addr;
1999   stubs[stubcount][2]=retaddr;
2000   stubs[stubcount][3]=a;
2001   stubs[stubcount][4]=b;
2002   stubs[stubcount][5]=c;
2003   stubs[stubcount][6]=d;
2004   stubs[stubcount][7]=e;
2005   stubcount++;
2006 }
2007
2008 // Write out a single register
2009 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2010 {
2011   int hr;
2012   for(hr=0;hr<HOST_REGS;hr++) {
2013     if(hr!=EXCLUDE_REG) {
2014       if((regmap[hr]&63)==r) {
2015         if((dirty>>hr)&1) {
2016           if(regmap[hr]<64) {
2017             emit_storereg(r,hr);
2018 #ifndef FORCE32
2019             if((is32>>regmap[hr])&1) {
2020               emit_sarimm(hr,31,hr);
2021               emit_storereg(r|64,hr);
2022             }
2023 #endif
2024           }else{
2025             emit_storereg(r|64,hr);
2026           }
2027         }
2028       }
2029     }
2030   }
2031 }
2032
2033 int mchecksum()
2034 {
2035   //if(!tracedebug) return 0;
2036   int i;
2037   int sum=0;
2038   for(i=0;i<2097152;i++) {
2039     unsigned int temp=sum;
2040     sum<<=1;
2041     sum|=(~temp)>>31;
2042     sum^=((u_int *)rdram)[i];
2043   }
2044   return sum;
2045 }
2046 int rchecksum()
2047 {
2048   int i;
2049   int sum=0;
2050   for(i=0;i<64;i++)
2051     sum^=((u_int *)reg)[i];
2052   return sum;
2053 }
2054 void rlist()
2055 {
2056   int i;
2057   printf("TRACE: ");
2058   for(i=0;i<32;i++)
2059     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2060   printf("\n");
2061 #ifndef DISABLE_COP1
2062   printf("TRACE: ");
2063   for(i=0;i<32;i++)
2064     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2065   printf("\n");
2066 #endif
2067 }
2068
2069 void enabletrace()
2070 {
2071   tracedebug=1;
2072 }
2073
2074 void memdebug(int i)
2075 {
2076   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2077   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2078   //rlist();
2079   //if(tracedebug) {
2080   //if(Count>=-2084597794) {
2081   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2082   //if(0) {
2083     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2084     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2085     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2086     rlist();
2087     #ifdef __i386__
2088     printf("TRACE: %x\n",(&i)[-1]);
2089     #endif
2090     #ifdef __arm__
2091     int j;
2092     printf("TRACE: %x \n",(&j)[10]);
2093     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2094     #endif
2095     //fflush(stdout);
2096   }
2097   //printf("TRACE: %x\n",(&i)[-1]);
2098 }
2099
2100 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2101 {
2102   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2103 }
2104
2105 void alu_assemble(int i,struct regstat *i_regs)
2106 {
2107   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2108     if(rt1[i]) {
2109       signed char s1,s2,t;
2110       t=get_reg(i_regs->regmap,rt1[i]);
2111       if(t>=0) {
2112         s1=get_reg(i_regs->regmap,rs1[i]);
2113         s2=get_reg(i_regs->regmap,rs2[i]);
2114         if(rs1[i]&&rs2[i]) {
2115           assert(s1>=0);
2116           assert(s2>=0);
2117           if(opcode2[i]&2) emit_sub(s1,s2,t);
2118           else emit_add(s1,s2,t);
2119         }
2120         else if(rs1[i]) {
2121           if(s1>=0) emit_mov(s1,t);
2122           else emit_loadreg(rs1[i],t);
2123         }
2124         else if(rs2[i]) {
2125           if(s2>=0) {
2126             if(opcode2[i]&2) emit_neg(s2,t);
2127             else emit_mov(s2,t);
2128           }
2129           else {
2130             emit_loadreg(rs2[i],t);
2131             if(opcode2[i]&2) emit_neg(t,t);
2132           }
2133         }
2134         else emit_zeroreg(t);
2135       }
2136     }
2137   }
2138   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2139     if(rt1[i]) {
2140       signed char s1l,s2l,s1h,s2h,tl,th;
2141       tl=get_reg(i_regs->regmap,rt1[i]);
2142       th=get_reg(i_regs->regmap,rt1[i]|64);
2143       if(tl>=0) {
2144         s1l=get_reg(i_regs->regmap,rs1[i]);
2145         s2l=get_reg(i_regs->regmap,rs2[i]);
2146         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2147         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2148         if(rs1[i]&&rs2[i]) {
2149           assert(s1l>=0);
2150           assert(s2l>=0);
2151           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2152           else emit_adds(s1l,s2l,tl);
2153           if(th>=0) {
2154             #ifdef INVERTED_CARRY
2155             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2156             #else
2157             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2158             #endif
2159             else emit_add(s1h,s2h,th);
2160           }
2161         }
2162         else if(rs1[i]) {
2163           if(s1l>=0) emit_mov(s1l,tl);
2164           else emit_loadreg(rs1[i],tl);
2165           if(th>=0) {
2166             if(s1h>=0) emit_mov(s1h,th);
2167             else emit_loadreg(rs1[i]|64,th);
2168           }
2169         }
2170         else if(rs2[i]) {
2171           if(s2l>=0) {
2172             if(opcode2[i]&2) emit_negs(s2l,tl);
2173             else emit_mov(s2l,tl);
2174           }
2175           else {
2176             emit_loadreg(rs2[i],tl);
2177             if(opcode2[i]&2) emit_negs(tl,tl);
2178           }
2179           if(th>=0) {
2180             #ifdef INVERTED_CARRY
2181             if(s2h>=0) emit_mov(s2h,th);
2182             else emit_loadreg(rs2[i]|64,th);
2183             if(opcode2[i]&2) {
2184               emit_adcimm(-1,th); // x86 has inverted carry flag
2185               emit_not(th,th);
2186             }
2187             #else
2188             if(opcode2[i]&2) {
2189               if(s2h>=0) emit_rscimm(s2h,0,th);
2190               else {
2191                 emit_loadreg(rs2[i]|64,th);
2192                 emit_rscimm(th,0,th);
2193               }
2194             }else{
2195               if(s2h>=0) emit_mov(s2h,th);
2196               else emit_loadreg(rs2[i]|64,th);
2197             }
2198             #endif
2199           }
2200         }
2201         else {
2202           emit_zeroreg(tl);
2203           if(th>=0) emit_zeroreg(th);
2204         }
2205       }
2206     }
2207   }
2208   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2209     if(rt1[i]) {
2210       signed char s1l,s1h,s2l,s2h,t;
2211       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2212       {
2213         t=get_reg(i_regs->regmap,rt1[i]);
2214         //assert(t>=0);
2215         if(t>=0) {
2216           s1l=get_reg(i_regs->regmap,rs1[i]);
2217           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2218           s2l=get_reg(i_regs->regmap,rs2[i]);
2219           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2220           if(rs2[i]==0) // rx<r0
2221           {
2222             assert(s1h>=0);
2223             if(opcode2[i]==0x2a) // SLT
2224               emit_shrimm(s1h,31,t);
2225             else // SLTU (unsigned can not be less than zero)
2226               emit_zeroreg(t);
2227           }
2228           else if(rs1[i]==0) // r0<rx
2229           {
2230             assert(s2h>=0);
2231             if(opcode2[i]==0x2a) // SLT
2232               emit_set_gz64_32(s2h,s2l,t);
2233             else // SLTU (set if not zero)
2234               emit_set_nz64_32(s2h,s2l,t);
2235           }
2236           else {
2237             assert(s1l>=0);assert(s1h>=0);
2238             assert(s2l>=0);assert(s2h>=0);
2239             if(opcode2[i]==0x2a) // SLT
2240               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2241             else // SLTU
2242               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2243           }
2244         }
2245       } else {
2246         t=get_reg(i_regs->regmap,rt1[i]);
2247         //assert(t>=0);
2248         if(t>=0) {
2249           s1l=get_reg(i_regs->regmap,rs1[i]);
2250           s2l=get_reg(i_regs->regmap,rs2[i]);
2251           if(rs2[i]==0) // rx<r0
2252           {
2253             assert(s1l>=0);
2254             if(opcode2[i]==0x2a) // SLT
2255               emit_shrimm(s1l,31,t);
2256             else // SLTU (unsigned can not be less than zero)
2257               emit_zeroreg(t);
2258           }
2259           else if(rs1[i]==0) // r0<rx
2260           {
2261             assert(s2l>=0);
2262             if(opcode2[i]==0x2a) // SLT
2263               emit_set_gz32(s2l,t);
2264             else // SLTU (set if not zero)
2265               emit_set_nz32(s2l,t);
2266           }
2267           else{
2268             assert(s1l>=0);assert(s2l>=0);
2269             if(opcode2[i]==0x2a) // SLT
2270               emit_set_if_less32(s1l,s2l,t);
2271             else // SLTU
2272               emit_set_if_carry32(s1l,s2l,t);
2273           }
2274         }
2275       }
2276     }
2277   }
2278   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2279     if(rt1[i]) {
2280       signed char s1l,s1h,s2l,s2h,th,tl;
2281       tl=get_reg(i_regs->regmap,rt1[i]);
2282       th=get_reg(i_regs->regmap,rt1[i]|64);
2283       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2284       {
2285         assert(tl>=0);
2286         if(tl>=0) {
2287           s1l=get_reg(i_regs->regmap,rs1[i]);
2288           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2289           s2l=get_reg(i_regs->regmap,rs2[i]);
2290           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2291           if(rs1[i]&&rs2[i]) {
2292             assert(s1l>=0);assert(s1h>=0);
2293             assert(s2l>=0);assert(s2h>=0);
2294             if(opcode2[i]==0x24) { // AND
2295               emit_and(s1l,s2l,tl);
2296               emit_and(s1h,s2h,th);
2297             } else
2298             if(opcode2[i]==0x25) { // OR
2299               emit_or(s1l,s2l,tl);
2300               emit_or(s1h,s2h,th);
2301             } else
2302             if(opcode2[i]==0x26) { // XOR
2303               emit_xor(s1l,s2l,tl);
2304               emit_xor(s1h,s2h,th);
2305             } else
2306             if(opcode2[i]==0x27) { // NOR
2307               emit_or(s1l,s2l,tl);
2308               emit_or(s1h,s2h,th);
2309               emit_not(tl,tl);
2310               emit_not(th,th);
2311             }
2312           }
2313           else
2314           {
2315             if(opcode2[i]==0x24) { // AND
2316               emit_zeroreg(tl);
2317               emit_zeroreg(th);
2318             } else
2319             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2320               if(rs1[i]){
2321                 if(s1l>=0) emit_mov(s1l,tl);
2322                 else emit_loadreg(rs1[i],tl);
2323                 if(s1h>=0) emit_mov(s1h,th);
2324                 else emit_loadreg(rs1[i]|64,th);
2325               }
2326               else
2327               if(rs2[i]){
2328                 if(s2l>=0) emit_mov(s2l,tl);
2329                 else emit_loadreg(rs2[i],tl);
2330                 if(s2h>=0) emit_mov(s2h,th);
2331                 else emit_loadreg(rs2[i]|64,th);
2332               }
2333               else{
2334                 emit_zeroreg(tl);
2335                 emit_zeroreg(th);
2336               }
2337             } else
2338             if(opcode2[i]==0x27) { // NOR
2339               if(rs1[i]){
2340                 if(s1l>=0) emit_not(s1l,tl);
2341                 else{
2342                   emit_loadreg(rs1[i],tl);
2343                   emit_not(tl,tl);
2344                 }
2345                 if(s1h>=0) emit_not(s1h,th);
2346                 else{
2347                   emit_loadreg(rs1[i]|64,th);
2348                   emit_not(th,th);
2349                 }
2350               }
2351               else
2352               if(rs2[i]){
2353                 if(s2l>=0) emit_not(s2l,tl);
2354                 else{
2355                   emit_loadreg(rs2[i],tl);
2356                   emit_not(tl,tl);
2357                 }
2358                 if(s2h>=0) emit_not(s2h,th);
2359                 else{
2360                   emit_loadreg(rs2[i]|64,th);
2361                   emit_not(th,th);
2362                 }
2363               }
2364               else {
2365                 emit_movimm(-1,tl);
2366                 emit_movimm(-1,th);
2367               }
2368             }
2369           }
2370         }
2371       }
2372       else
2373       {
2374         // 32 bit
2375         if(tl>=0) {
2376           s1l=get_reg(i_regs->regmap,rs1[i]);
2377           s2l=get_reg(i_regs->regmap,rs2[i]);
2378           if(rs1[i]&&rs2[i]) {
2379             assert(s1l>=0);
2380             assert(s2l>=0);
2381             if(opcode2[i]==0x24) { // AND
2382               emit_and(s1l,s2l,tl);
2383             } else
2384             if(opcode2[i]==0x25) { // OR
2385               emit_or(s1l,s2l,tl);
2386             } else
2387             if(opcode2[i]==0x26) { // XOR
2388               emit_xor(s1l,s2l,tl);
2389             } else
2390             if(opcode2[i]==0x27) { // NOR
2391               emit_or(s1l,s2l,tl);
2392               emit_not(tl,tl);
2393             }
2394           }
2395           else
2396           {
2397             if(opcode2[i]==0x24) { // AND
2398               emit_zeroreg(tl);
2399             } else
2400             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2401               if(rs1[i]){
2402                 if(s1l>=0) emit_mov(s1l,tl);
2403                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2404               }
2405               else
2406               if(rs2[i]){
2407                 if(s2l>=0) emit_mov(s2l,tl);
2408                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2409               }
2410               else emit_zeroreg(tl);
2411             } else
2412             if(opcode2[i]==0x27) { // NOR
2413               if(rs1[i]){
2414                 if(s1l>=0) emit_not(s1l,tl);
2415                 else {
2416                   emit_loadreg(rs1[i],tl);
2417                   emit_not(tl,tl);
2418                 }
2419               }
2420               else
2421               if(rs2[i]){
2422                 if(s2l>=0) emit_not(s2l,tl);
2423                 else {
2424                   emit_loadreg(rs2[i],tl);
2425                   emit_not(tl,tl);
2426                 }
2427               }
2428               else emit_movimm(-1,tl);
2429             }
2430           }
2431         }
2432       }
2433     }
2434   }
2435 }
2436
2437 void imm16_assemble(int i,struct regstat *i_regs)
2438 {
2439   if (opcode[i]==0x0f) { // LUI
2440     if(rt1[i]) {
2441       signed char t;
2442       t=get_reg(i_regs->regmap,rt1[i]);
2443       //assert(t>=0);
2444       if(t>=0) {
2445         if(!((i_regs->isconst>>t)&1))
2446           emit_movimm(imm[i]<<16,t);
2447       }
2448     }
2449   }
2450   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2451     if(rt1[i]) {
2452       signed char s,t;
2453       t=get_reg(i_regs->regmap,rt1[i]);
2454       s=get_reg(i_regs->regmap,rs1[i]);
2455       if(rs1[i]) {
2456         //assert(t>=0);
2457         //assert(s>=0);
2458         if(t>=0) {
2459           if(!((i_regs->isconst>>t)&1)) {
2460             if(s<0) {
2461               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2462               emit_addimm(t,imm[i],t);
2463             }else{
2464               if(!((i_regs->wasconst>>s)&1))
2465                 emit_addimm(s,imm[i],t);
2466               else
2467                 emit_movimm(constmap[i][s]+imm[i],t);
2468             }
2469           }
2470         }
2471       } else {
2472         if(t>=0) {
2473           if(!((i_regs->isconst>>t)&1))
2474             emit_movimm(imm[i],t);
2475         }
2476       }
2477     }
2478   }
2479   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2480     if(rt1[i]) {
2481       signed char sh,sl,th,tl;
2482       th=get_reg(i_regs->regmap,rt1[i]|64);
2483       tl=get_reg(i_regs->regmap,rt1[i]);
2484       sh=get_reg(i_regs->regmap,rs1[i]|64);
2485       sl=get_reg(i_regs->regmap,rs1[i]);
2486       if(tl>=0) {
2487         if(rs1[i]) {
2488           assert(sh>=0);
2489           assert(sl>=0);
2490           if(th>=0) {
2491             emit_addimm64_32(sh,sl,imm[i],th,tl);
2492           }
2493           else {
2494             emit_addimm(sl,imm[i],tl);
2495           }
2496         } else {
2497           emit_movimm(imm[i],tl);
2498           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2499         }
2500       }
2501     }
2502   }
2503   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2504     if(rt1[i]) {
2505       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2506       signed char sh,sl,t;
2507       t=get_reg(i_regs->regmap,rt1[i]);
2508       sh=get_reg(i_regs->regmap,rs1[i]|64);
2509       sl=get_reg(i_regs->regmap,rs1[i]);
2510       //assert(t>=0);
2511       if(t>=0) {
2512         if(rs1[i]>0) {
2513           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2514           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2515             if(opcode[i]==0x0a) { // SLTI
2516               if(sl<0) {
2517                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2518                 emit_slti32(t,imm[i],t);
2519               }else{
2520                 emit_slti32(sl,imm[i],t);
2521               }
2522             }
2523             else { // SLTIU
2524               if(sl<0) {
2525                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2526                 emit_sltiu32(t,imm[i],t);
2527               }else{
2528                 emit_sltiu32(sl,imm[i],t);
2529               }
2530             }
2531           }else{ // 64-bit
2532             assert(sl>=0);
2533             if(opcode[i]==0x0a) // SLTI
2534               emit_slti64_32(sh,sl,imm[i],t);
2535             else // SLTIU
2536               emit_sltiu64_32(sh,sl,imm[i],t);
2537           }
2538         }else{
2539           // SLTI(U) with r0 is just stupid,
2540           // nonetheless examples can be found
2541           if(opcode[i]==0x0a) // SLTI
2542             if(0<imm[i]) emit_movimm(1,t);
2543             else emit_zeroreg(t);
2544           else // SLTIU
2545           {
2546             if(imm[i]) emit_movimm(1,t);
2547             else emit_zeroreg(t);
2548           }
2549         }
2550       }
2551     }
2552   }
2553   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2554     if(rt1[i]) {
2555       signed char sh,sl,th,tl;
2556       th=get_reg(i_regs->regmap,rt1[i]|64);
2557       tl=get_reg(i_regs->regmap,rt1[i]);
2558       sh=get_reg(i_regs->regmap,rs1[i]|64);
2559       sl=get_reg(i_regs->regmap,rs1[i]);
2560       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2561         if(opcode[i]==0x0c) //ANDI
2562         {
2563           if(rs1[i]) {
2564             if(sl<0) {
2565               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2566               emit_andimm(tl,imm[i],tl);
2567             }else{
2568               if(!((i_regs->wasconst>>sl)&1))
2569                 emit_andimm(sl,imm[i],tl);
2570               else
2571                 emit_movimm(constmap[i][sl]&imm[i],tl);
2572             }
2573           }
2574           else
2575             emit_zeroreg(tl);
2576           if(th>=0) emit_zeroreg(th);
2577         }
2578         else
2579         {
2580           if(rs1[i]) {
2581             if(sl<0) {
2582               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2583             }
2584             if(th>=0) {
2585               if(sh<0) {
2586                 emit_loadreg(rs1[i]|64,th);
2587               }else{
2588                 emit_mov(sh,th);
2589               }
2590             }
2591             if(opcode[i]==0x0d) //ORI
2592             if(sl<0) {
2593               emit_orimm(tl,imm[i],tl);
2594             }else{
2595               if(!((i_regs->wasconst>>sl)&1))
2596                 emit_orimm(sl,imm[i],tl);
2597               else
2598                 emit_movimm(constmap[i][sl]|imm[i],tl);
2599             }
2600             if(opcode[i]==0x0e) //XORI
2601             if(sl<0) {
2602               emit_xorimm(tl,imm[i],tl);
2603             }else{
2604               if(!((i_regs->wasconst>>sl)&1))
2605                 emit_xorimm(sl,imm[i],tl);
2606               else
2607                 emit_movimm(constmap[i][sl]^imm[i],tl);
2608             }
2609           }
2610           else {
2611             emit_movimm(imm[i],tl);
2612             if(th>=0) emit_zeroreg(th);
2613           }
2614         }
2615       }
2616     }
2617   }
2618 }
2619
2620 void shiftimm_assemble(int i,struct regstat *i_regs)
2621 {
2622   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2623   {
2624     if(rt1[i]) {
2625       signed char s,t;
2626       t=get_reg(i_regs->regmap,rt1[i]);
2627       s=get_reg(i_regs->regmap,rs1[i]);
2628       //assert(t>=0);
2629       if(t>=0){
2630         if(rs1[i]==0)
2631         {
2632           emit_zeroreg(t);
2633         }
2634         else
2635         {
2636           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2637           if(imm[i]) {
2638             if(opcode2[i]==0) // SLL
2639             {
2640               emit_shlimm(s<0?t:s,imm[i],t);
2641             }
2642             if(opcode2[i]==2) // SRL
2643             {
2644               emit_shrimm(s<0?t:s,imm[i],t);
2645             }
2646             if(opcode2[i]==3) // SRA
2647             {
2648               emit_sarimm(s<0?t:s,imm[i],t);
2649             }
2650           }else{
2651             // Shift by zero
2652             if(s>=0 && s!=t) emit_mov(s,t);
2653           }
2654         }
2655       }
2656       //emit_storereg(rt1[i],t); //DEBUG
2657     }
2658   }
2659   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2660   {
2661     if(rt1[i]) {
2662       signed char sh,sl,th,tl;
2663       th=get_reg(i_regs->regmap,rt1[i]|64);
2664       tl=get_reg(i_regs->regmap,rt1[i]);
2665       sh=get_reg(i_regs->regmap,rs1[i]|64);
2666       sl=get_reg(i_regs->regmap,rs1[i]);
2667       if(tl>=0) {
2668         if(rs1[i]==0)
2669         {
2670           emit_zeroreg(tl);
2671           if(th>=0) emit_zeroreg(th);
2672         }
2673         else
2674         {
2675           assert(sl>=0);
2676           assert(sh>=0);
2677           if(imm[i]) {
2678             if(opcode2[i]==0x38) // DSLL
2679             {
2680               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2681               emit_shlimm(sl,imm[i],tl);
2682             }
2683             if(opcode2[i]==0x3a) // DSRL
2684             {
2685               emit_shrdimm(sl,sh,imm[i],tl);
2686               if(th>=0) emit_shrimm(sh,imm[i],th);
2687             }
2688             if(opcode2[i]==0x3b) // DSRA
2689             {
2690               emit_shrdimm(sl,sh,imm[i],tl);
2691               if(th>=0) emit_sarimm(sh,imm[i],th);
2692             }
2693           }else{
2694             // Shift by zero
2695             if(sl!=tl) emit_mov(sl,tl);
2696             if(th>=0&&sh!=th) emit_mov(sh,th);
2697           }
2698         }
2699       }
2700     }
2701   }
2702   if(opcode2[i]==0x3c) // DSLL32
2703   {
2704     if(rt1[i]) {
2705       signed char sl,tl,th;
2706       tl=get_reg(i_regs->regmap,rt1[i]);
2707       th=get_reg(i_regs->regmap,rt1[i]|64);
2708       sl=get_reg(i_regs->regmap,rs1[i]);
2709       if(th>=0||tl>=0){
2710         assert(tl>=0);
2711         assert(th>=0);
2712         assert(sl>=0);
2713         emit_mov(sl,th);
2714         emit_zeroreg(tl);
2715         if(imm[i]>32)
2716         {
2717           emit_shlimm(th,imm[i]&31,th);
2718         }
2719       }
2720     }
2721   }
2722   if(opcode2[i]==0x3e) // DSRL32
2723   {
2724     if(rt1[i]) {
2725       signed char sh,tl,th;
2726       tl=get_reg(i_regs->regmap,rt1[i]);
2727       th=get_reg(i_regs->regmap,rt1[i]|64);
2728       sh=get_reg(i_regs->regmap,rs1[i]|64);
2729       if(tl>=0){
2730         assert(sh>=0);
2731         emit_mov(sh,tl);
2732         if(th>=0) emit_zeroreg(th);
2733         if(imm[i]>32)
2734         {
2735           emit_shrimm(tl,imm[i]&31,tl);
2736         }
2737       }
2738     }
2739   }
2740   if(opcode2[i]==0x3f) // DSRA32
2741   {
2742     if(rt1[i]) {
2743       signed char sh,tl;
2744       tl=get_reg(i_regs->regmap,rt1[i]);
2745       sh=get_reg(i_regs->regmap,rs1[i]|64);
2746       if(tl>=0){
2747         assert(sh>=0);
2748         emit_mov(sh,tl);
2749         if(imm[i]>32)
2750         {
2751           emit_sarimm(tl,imm[i]&31,tl);
2752         }
2753       }
2754     }
2755   }
2756 }
2757
2758 #ifndef shift_assemble
2759 void shift_assemble(int i,struct regstat *i_regs)
2760 {
2761   printf("Need shift_assemble for this architecture.\n");
2762   exit(1);
2763 }
2764 #endif
2765
2766 void load_assemble(int i,struct regstat *i_regs)
2767 {
2768   int s,th,tl,addr,map=-1;
2769   int offset;
2770   int jaddr=0;
2771   int memtarget=0,c=0;
2772   u_int hr,reglist=0;
2773   th=get_reg(i_regs->regmap,rt1[i]|64);
2774   tl=get_reg(i_regs->regmap,rt1[i]);
2775   s=get_reg(i_regs->regmap,rs1[i]);
2776   offset=imm[i];
2777   for(hr=0;hr<HOST_REGS;hr++) {
2778     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2779   }
2780   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2781   if(s>=0) {
2782     c=(i_regs->wasconst>>s)&1;
2783     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2784     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2785   }
2786   //printf("load_assemble: c=%d\n",c);
2787   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2788   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2789 #ifdef PCSX
2790   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2791     ||rt1[i]==0) {
2792       // could be FIFO, must perform the read
2793       // ||dummy read
2794       assem_debug("(forced read)\n");
2795       tl=get_reg(i_regs->regmap,-1);
2796       assert(tl>=0);
2797   }
2798 #endif
2799   if(offset||s<0||c) addr=tl;
2800   else addr=s;
2801   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2802  if(tl>=0) {
2803   //printf("load_assemble: c=%d\n",c);
2804   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2805   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2806   reglist&=~(1<<tl);
2807   if(th>=0) reglist&=~(1<<th);
2808   if(!using_tlb) {
2809     if(!c) {
2810       #ifdef RAM_OFFSET
2811       map=get_reg(i_regs->regmap,ROREG);
2812       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2813       #endif
2814 //#define R29_HACK 1
2815       #ifdef R29_HACK
2816       // Strmnnrmn's speed hack
2817       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2818       #endif
2819       {
2820         emit_cmpimm(addr,RAM_SIZE);
2821         jaddr=(int)out;
2822         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2823         // Hint to branch predictor that the branch is unlikely to be taken
2824         if(rs1[i]>=28)
2825           emit_jno_unlikely(0);
2826         else
2827         #endif
2828         emit_jno(0);
2829       }
2830     }
2831   }else{ // using tlb
2832     int x=0;
2833     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2834     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2835     map=get_reg(i_regs->regmap,TLREG);
2836     assert(map>=0);
2837     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2838     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2839   }
2840   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2841   if (opcode[i]==0x20) { // LB
2842     if(!c||memtarget) {
2843       if(!dummy) {
2844         #ifdef HOST_IMM_ADDR32
2845         if(c)
2846           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2847         else
2848         #endif
2849         {
2850           //emit_xorimm(addr,3,tl);
2851           //gen_tlb_addr_r(tl,map);
2852           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2853           int x=0,a=tl;
2854 #ifdef BIG_ENDIAN_MIPS
2855           if(!c) emit_xorimm(addr,3,tl);
2856           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2857 #else
2858           if(!c) a=addr;
2859 #endif
2860           emit_movsbl_indexed_tlb(x,a,map,tl);
2861         }
2862       }
2863       if(jaddr)
2864         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2865     }
2866     else
2867       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2868   }
2869   if (opcode[i]==0x21) { // LH
2870     if(!c||memtarget) {
2871       if(!dummy) {
2872         #ifdef HOST_IMM_ADDR32
2873         if(c)
2874           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2875         else
2876         #endif
2877         {
2878           int x=0,a=tl;
2879 #ifdef BIG_ENDIAN_MIPS
2880           if(!c) emit_xorimm(addr,2,tl);
2881           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2882 #else
2883           if(!c) a=addr;
2884 #endif
2885           //#ifdef
2886           //emit_movswl_indexed_tlb(x,tl,map,tl);
2887           //else
2888           if(map>=0) {
2889             gen_tlb_addr_r(a,map);
2890             emit_movswl_indexed(x,a,tl);
2891           }else{
2892             #ifdef RAM_OFFSET
2893             emit_movswl_indexed(x,a,tl);
2894             #else
2895             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2896             #endif
2897           }
2898         }
2899       }
2900       if(jaddr)
2901         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2902     }
2903     else
2904       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2905   }
2906   if (opcode[i]==0x23) { // LW
2907     if(!c||memtarget) {
2908       if(!dummy) {
2909         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2910         #ifdef HOST_IMM_ADDR32
2911         if(c)
2912           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2913         else
2914         #endif
2915         emit_readword_indexed_tlb(0,addr,map,tl);
2916       }
2917       if(jaddr)
2918         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2919     }
2920     else
2921       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2922   }
2923   if (opcode[i]==0x24) { // LBU
2924     if(!c||memtarget) {
2925       if(!dummy) {
2926         #ifdef HOST_IMM_ADDR32
2927         if(c)
2928           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2929         else
2930         #endif
2931         {
2932           //emit_xorimm(addr,3,tl);
2933           //gen_tlb_addr_r(tl,map);
2934           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2935           int x=0,a=tl;
2936 #ifdef BIG_ENDIAN_MIPS
2937           if(!c) emit_xorimm(addr,3,tl);
2938           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2939 #else
2940           if(!c) a=addr;
2941 #endif
2942           emit_movzbl_indexed_tlb(x,a,map,tl);
2943         }
2944       }
2945       if(jaddr)
2946         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2947     }
2948     else
2949       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2950   }
2951   if (opcode[i]==0x25) { // LHU
2952     if(!c||memtarget) {
2953       if(!dummy) {
2954         #ifdef HOST_IMM_ADDR32
2955         if(c)
2956           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2957         else
2958         #endif
2959         {
2960           int x=0,a=tl;
2961 #ifdef BIG_ENDIAN_MIPS
2962           if(!c) emit_xorimm(addr,2,tl);
2963           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2964 #else
2965           if(!c) a=addr;
2966 #endif
2967           //#ifdef
2968           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2969           //#else
2970           if(map>=0) {
2971             gen_tlb_addr_r(a,map);
2972             emit_movzwl_indexed(x,a,tl);
2973           }else{
2974             #ifdef RAM_OFFSET
2975             emit_movzwl_indexed(x,a,tl);
2976             #else
2977             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2978             #endif
2979           }
2980         }
2981       }
2982       if(jaddr)
2983         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2984     }
2985     else
2986       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2987   }
2988   if (opcode[i]==0x27) { // LWU
2989     assert(th>=0);
2990     if(!c||memtarget) {
2991       if(!dummy) {
2992         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2993         #ifdef HOST_IMM_ADDR32
2994         if(c)
2995           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2996         else
2997         #endif
2998         emit_readword_indexed_tlb(0,addr,map,tl);
2999       }
3000       if(jaddr)
3001         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3002     }
3003     else {
3004       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3005     }
3006     emit_zeroreg(th);
3007   }
3008   if (opcode[i]==0x37) { // LD
3009     if(!c||memtarget) {
3010       if(!dummy) {
3011         //gen_tlb_addr_r(tl,map);
3012         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3013         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3014         #ifdef HOST_IMM_ADDR32
3015         if(c)
3016           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3017         else
3018         #endif
3019         emit_readdword_indexed_tlb(0,addr,map,th,tl);
3020       }
3021       if(jaddr)
3022         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3023     }
3024     else
3025       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3026   }
3027  }
3028   //emit_storereg(rt1[i],tl); // DEBUG
3029   //if(opcode[i]==0x23)
3030   //if(opcode[i]==0x24)
3031   //if(opcode[i]==0x23||opcode[i]==0x24)
3032   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3033   {
3034     //emit_pusha();
3035     save_regs(0x100f);
3036         emit_readword((int)&last_count,ECX);
3037         #ifdef __i386__
3038         if(get_reg(i_regs->regmap,CCREG)<0)
3039           emit_loadreg(CCREG,HOST_CCREG);
3040         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3041         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3042         emit_writeword(HOST_CCREG,(int)&Count);
3043         #endif
3044         #ifdef __arm__
3045         if(get_reg(i_regs->regmap,CCREG)<0)
3046           emit_loadreg(CCREG,0);
3047         else
3048           emit_mov(HOST_CCREG,0);
3049         emit_add(0,ECX,0);
3050         emit_addimm(0,2*ccadj[i],0);
3051         emit_writeword(0,(int)&Count);
3052         #endif
3053     emit_call((int)memdebug);
3054     //emit_popa();
3055     restore_regs(0x100f);
3056   }/**/
3057 }
3058
3059 #ifndef loadlr_assemble
3060 void loadlr_assemble(int i,struct regstat *i_regs)
3061 {
3062   printf("Need loadlr_assemble for this architecture.\n");
3063   exit(1);
3064 }
3065 #endif
3066
3067 void store_assemble(int i,struct regstat *i_regs)
3068 {
3069   int s,th,tl,map=-1;
3070   int addr,temp;
3071   int offset;
3072   int jaddr=0,jaddr2,type;
3073   int memtarget=0,c=0;
3074   int agr=AGEN1+(i&1);
3075   u_int hr,reglist=0;
3076   th=get_reg(i_regs->regmap,rs2[i]|64);
3077   tl=get_reg(i_regs->regmap,rs2[i]);
3078   s=get_reg(i_regs->regmap,rs1[i]);
3079   temp=get_reg(i_regs->regmap,agr);
3080   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3081   offset=imm[i];
3082   if(s>=0) {
3083     c=(i_regs->wasconst>>s)&1;
3084     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3085     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3086   }
3087   assert(tl>=0);
3088   assert(temp>=0);
3089   for(hr=0;hr<HOST_REGS;hr++) {
3090     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3091   }
3092   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3093   if(offset||s<0||c) addr=temp;
3094   else addr=s;
3095   if(!using_tlb) {
3096     if(!c) {
3097       #ifdef R29_HACK
3098       // Strmnnrmn's speed hack
3099       memtarget=1;
3100       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3101       #endif
3102       emit_cmpimm(addr,RAM_SIZE);
3103       #ifdef DESTRUCTIVE_SHIFT
3104       if(s==addr) emit_mov(s,temp);
3105       #endif
3106       #ifdef R29_HACK
3107       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3108       #endif
3109       {
3110         jaddr=(int)out;
3111         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3112         // Hint to branch predictor that the branch is unlikely to be taken
3113         if(rs1[i]>=28)
3114           emit_jno_unlikely(0);
3115         else
3116         #endif
3117         emit_jno(0);
3118       }
3119     }
3120   }else{ // using tlb
3121     int x=0;
3122     if (opcode[i]==0x28) x=3; // SB
3123     if (opcode[i]==0x29) x=2; // SH
3124     map=get_reg(i_regs->regmap,TLREG);
3125     assert(map>=0);
3126     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3127     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3128   }
3129
3130   if (opcode[i]==0x28) { // SB
3131     if(!c||memtarget) {
3132       int x=0;
3133 #ifdef BIG_ENDIAN_MIPS
3134       if(!c) emit_xorimm(addr,3,temp);
3135       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3136 #else
3137       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3138       else if (addr!=temp) emit_mov(addr,temp);
3139 #endif
3140       //gen_tlb_addr_w(temp,map);
3141       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3142       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3143     }
3144     type=STOREB_STUB;
3145   }
3146   if (opcode[i]==0x29) { // SH
3147     if(!c||memtarget) {
3148       int x=0;
3149 #ifdef BIG_ENDIAN_MIPS
3150       if(!c) emit_xorimm(addr,2,temp);
3151       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3152 #else
3153       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3154       else if (addr!=temp) emit_mov(addr,temp);
3155 #endif
3156       //#ifdef
3157       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3158       //#else
3159       if(map>=0) {
3160         gen_tlb_addr_w(temp,map);
3161         emit_writehword_indexed(tl,x,temp);
3162       }else
3163         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3164     }
3165     type=STOREH_STUB;
3166   }
3167   if (opcode[i]==0x2B) { // SW
3168     if(!c||memtarget)
3169       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3170       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3171     type=STOREW_STUB;
3172   }
3173   if (opcode[i]==0x3F) { // SD
3174     if(!c||memtarget) {
3175       if(rs2[i]) {
3176         assert(th>=0);
3177         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3178         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3179         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3180       }else{
3181         // Store zero
3182         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3183         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3184         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3185       }
3186     }
3187     type=STORED_STUB;
3188   }
3189   if(!using_tlb) {
3190     if(!c||memtarget) {
3191       #ifdef DESTRUCTIVE_SHIFT
3192       // The x86 shift operation is 'destructive'; it overwrites the
3193       // source register, so we need to make a copy first and use that.
3194       addr=temp;
3195       #endif
3196       #if defined(HOST_IMM8)
3197       int ir=get_reg(i_regs->regmap,INVCP);
3198       assert(ir>=0);
3199       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3200       #else
3201       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3202       #endif
3203       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3204       emit_callne(invalidate_addr_reg[addr]);
3205       #else
3206       jaddr2=(int)out;
3207       emit_jne(0);
3208       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3209       #endif
3210     }
3211   }
3212   if(jaddr) {
3213     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3214   } else if(c&&!memtarget) {
3215     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3216   }
3217   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3218   //if(opcode[i]==0x2B || opcode[i]==0x28)
3219   //if(opcode[i]==0x2B || opcode[i]==0x29)
3220   //if(opcode[i]==0x2B)
3221   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3222   {
3223     //emit_pusha();
3224     save_regs(0x100f);
3225         emit_readword((int)&last_count,ECX);
3226         #ifdef __i386__
3227         if(get_reg(i_regs->regmap,CCREG)<0)
3228           emit_loadreg(CCREG,HOST_CCREG);
3229         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3230         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3231         emit_writeword(HOST_CCREG,(int)&Count);
3232         #endif
3233         #ifdef __arm__
3234         if(get_reg(i_regs->regmap,CCREG)<0)
3235           emit_loadreg(CCREG,0);
3236         else
3237           emit_mov(HOST_CCREG,0);
3238         emit_add(0,ECX,0);
3239         emit_addimm(0,2*ccadj[i],0);
3240         emit_writeword(0,(int)&Count);
3241         #endif
3242     emit_call((int)memdebug);
3243     //emit_popa();
3244     restore_regs(0x100f);
3245   }/**/
3246 }
3247
3248 void storelr_assemble(int i,struct regstat *i_regs)
3249 {
3250   int s,th,tl;
3251   int temp;
3252   int temp2;
3253   int offset;
3254   int jaddr=0,jaddr2;
3255   int case1,case2,case3;
3256   int done0,done1,done2;
3257   int memtarget,c=0;
3258   int agr=AGEN1+(i&1);
3259   u_int hr,reglist=0;
3260   th=get_reg(i_regs->regmap,rs2[i]|64);
3261   tl=get_reg(i_regs->regmap,rs2[i]);
3262   s=get_reg(i_regs->regmap,rs1[i]);
3263   temp=get_reg(i_regs->regmap,agr);
3264   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3265   offset=imm[i];
3266   if(s>=0) {
3267     c=(i_regs->isconst>>s)&1;
3268     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3269     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3270   }
3271   assert(tl>=0);
3272   for(hr=0;hr<HOST_REGS;hr++) {
3273     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3274   }
3275   assert(temp>=0);
3276   if(!using_tlb) {
3277     if(!c) {
3278       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3279       if(!offset&&s!=temp) emit_mov(s,temp);
3280       jaddr=(int)out;
3281       emit_jno(0);
3282     }
3283     else
3284     {
3285       if(!memtarget||!rs1[i]) {
3286         jaddr=(int)out;
3287         emit_jmp(0);
3288       }
3289     }
3290     #ifdef RAM_OFFSET
3291     int map=get_reg(i_regs->regmap,ROREG);
3292     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3293     gen_tlb_addr_w(temp,map);
3294     #else
3295     if((u_int)rdram!=0x80000000) 
3296       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3297     #endif
3298   }else{ // using tlb
3299     int map=get_reg(i_regs->regmap,TLREG);
3300     assert(map>=0);
3301     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3302     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3303     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3304     if(!jaddr&&!memtarget) {
3305       jaddr=(int)out;
3306       emit_jmp(0);
3307     }
3308     gen_tlb_addr_w(temp,map);
3309   }
3310
3311   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3312     temp2=get_reg(i_regs->regmap,FTEMP);
3313     if(!rs2[i]) temp2=th=tl;
3314   }
3315
3316 #ifndef BIG_ENDIAN_MIPS
3317     emit_xorimm(temp,3,temp);
3318 #endif
3319   emit_testimm(temp,2);
3320   case2=(int)out;
3321   emit_jne(0);
3322   emit_testimm(temp,1);
3323   case1=(int)out;
3324   emit_jne(0);
3325   // 0
3326   if (opcode[i]==0x2A) { // SWL
3327     emit_writeword_indexed(tl,0,temp);
3328   }
3329   if (opcode[i]==0x2E) { // SWR
3330     emit_writebyte_indexed(tl,3,temp);
3331   }
3332   if (opcode[i]==0x2C) { // SDL
3333     emit_writeword_indexed(th,0,temp);
3334     if(rs2[i]) emit_mov(tl,temp2);
3335   }
3336   if (opcode[i]==0x2D) { // SDR
3337     emit_writebyte_indexed(tl,3,temp);
3338     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3339   }
3340   done0=(int)out;
3341   emit_jmp(0);
3342   // 1
3343   set_jump_target(case1,(int)out);
3344   if (opcode[i]==0x2A) { // SWL
3345     // Write 3 msb into three least significant bytes
3346     if(rs2[i]) emit_rorimm(tl,8,tl);
3347     emit_writehword_indexed(tl,-1,temp);
3348     if(rs2[i]) emit_rorimm(tl,16,tl);
3349     emit_writebyte_indexed(tl,1,temp);
3350     if(rs2[i]) emit_rorimm(tl,8,tl);
3351   }
3352   if (opcode[i]==0x2E) { // SWR
3353     // Write two lsb into two most significant bytes
3354     emit_writehword_indexed(tl,1,temp);
3355   }
3356   if (opcode[i]==0x2C) { // SDL
3357     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3358     // Write 3 msb into three least significant bytes
3359     if(rs2[i]) emit_rorimm(th,8,th);
3360     emit_writehword_indexed(th,-1,temp);
3361     if(rs2[i]) emit_rorimm(th,16,th);
3362     emit_writebyte_indexed(th,1,temp);
3363     if(rs2[i]) emit_rorimm(th,8,th);
3364   }
3365   if (opcode[i]==0x2D) { // SDR
3366     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3367     // Write two lsb into two most significant bytes
3368     emit_writehword_indexed(tl,1,temp);
3369   }
3370   done1=(int)out;
3371   emit_jmp(0);
3372   // 2
3373   set_jump_target(case2,(int)out);
3374   emit_testimm(temp,1);
3375   case3=(int)out;
3376   emit_jne(0);
3377   if (opcode[i]==0x2A) { // SWL
3378     // Write two msb into two least significant bytes
3379     if(rs2[i]) emit_rorimm(tl,16,tl);
3380     emit_writehword_indexed(tl,-2,temp);
3381     if(rs2[i]) emit_rorimm(tl,16,tl);
3382   }
3383   if (opcode[i]==0x2E) { // SWR
3384     // Write 3 lsb into three most significant bytes
3385     emit_writebyte_indexed(tl,-1,temp);
3386     if(rs2[i]) emit_rorimm(tl,8,tl);
3387     emit_writehword_indexed(tl,0,temp);
3388     if(rs2[i]) emit_rorimm(tl,24,tl);
3389   }
3390   if (opcode[i]==0x2C) { // SDL
3391     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3392     // Write two msb into two least significant bytes
3393     if(rs2[i]) emit_rorimm(th,16,th);
3394     emit_writehword_indexed(th,-2,temp);
3395     if(rs2[i]) emit_rorimm(th,16,th);
3396   }
3397   if (opcode[i]==0x2D) { // SDR
3398     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3399     // Write 3 lsb into three most significant bytes
3400     emit_writebyte_indexed(tl,-1,temp);
3401     if(rs2[i]) emit_rorimm(tl,8,tl);
3402     emit_writehword_indexed(tl,0,temp);
3403     if(rs2[i]) emit_rorimm(tl,24,tl);
3404   }
3405   done2=(int)out;
3406   emit_jmp(0);
3407   // 3
3408   set_jump_target(case3,(int)out);
3409   if (opcode[i]==0x2A) { // SWL
3410     // Write msb into least significant byte
3411     if(rs2[i]) emit_rorimm(tl,24,tl);
3412     emit_writebyte_indexed(tl,-3,temp);
3413     if(rs2[i]) emit_rorimm(tl,8,tl);
3414   }
3415   if (opcode[i]==0x2E) { // SWR
3416     // Write entire word
3417     emit_writeword_indexed(tl,-3,temp);
3418   }
3419   if (opcode[i]==0x2C) { // SDL
3420     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3421     // Write msb into least significant byte
3422     if(rs2[i]) emit_rorimm(th,24,th);
3423     emit_writebyte_indexed(th,-3,temp);
3424     if(rs2[i]) emit_rorimm(th,8,th);
3425   }
3426   if (opcode[i]==0x2D) { // SDR
3427     if(rs2[i]) emit_mov(th,temp2);
3428     // Write entire word
3429     emit_writeword_indexed(tl,-3,temp);
3430   }
3431   set_jump_target(done0,(int)out);
3432   set_jump_target(done1,(int)out);
3433   set_jump_target(done2,(int)out);
3434   if (opcode[i]==0x2C) { // SDL
3435     emit_testimm(temp,4);
3436     done0=(int)out;
3437     emit_jne(0);
3438     emit_andimm(temp,~3,temp);
3439     emit_writeword_indexed(temp2,4,temp);
3440     set_jump_target(done0,(int)out);
3441   }
3442   if (opcode[i]==0x2D) { // SDR
3443     emit_testimm(temp,4);
3444     done0=(int)out;
3445     emit_jeq(0);
3446     emit_andimm(temp,~3,temp);
3447     emit_writeword_indexed(temp2,-4,temp);
3448     set_jump_target(done0,(int)out);
3449   }
3450   if(!c||!memtarget)
3451     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3452   if(!using_tlb) {
3453     #ifdef RAM_OFFSET
3454     int map=get_reg(i_regs->regmap,ROREG);
3455     if(map<0) map=HOST_TEMPREG;
3456     gen_orig_addr_w(temp,map);
3457     #else
3458     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3459     #endif
3460     #if defined(HOST_IMM8)
3461     int ir=get_reg(i_regs->regmap,INVCP);
3462     assert(ir>=0);
3463     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3464     #else
3465     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3466     #endif
3467     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3468     emit_callne(invalidate_addr_reg[temp]);
3469     #else
3470     jaddr2=(int)out;
3471     emit_jne(0);
3472     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3473     #endif
3474   }
3475   /*
3476     emit_pusha();
3477     //save_regs(0x100f);
3478         emit_readword((int)&last_count,ECX);
3479         if(get_reg(i_regs->regmap,CCREG)<0)
3480           emit_loadreg(CCREG,HOST_CCREG);
3481         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3482         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3483         emit_writeword(HOST_CCREG,(int)&Count);
3484     emit_call((int)memdebug);
3485     emit_popa();
3486     //restore_regs(0x100f);
3487   /**/
3488 }
3489
3490 void c1ls_assemble(int i,struct regstat *i_regs)
3491 {
3492 #ifndef DISABLE_COP1
3493   int s,th,tl;
3494   int temp,ar;
3495   int map=-1;
3496   int offset;
3497   int c=0;
3498   int jaddr,jaddr2=0,jaddr3,type;
3499   int agr=AGEN1+(i&1);
3500   u_int hr,reglist=0;
3501   th=get_reg(i_regs->regmap,FTEMP|64);
3502   tl=get_reg(i_regs->regmap,FTEMP);
3503   s=get_reg(i_regs->regmap,rs1[i]);
3504   temp=get_reg(i_regs->regmap,agr);
3505   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3506   offset=imm[i];
3507   assert(tl>=0);
3508   assert(rs1[i]>0);
3509   assert(temp>=0);
3510   for(hr=0;hr<HOST_REGS;hr++) {
3511     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3512   }
3513   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3514   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3515   {
3516     // Loads use a temporary register which we need to save
3517     reglist|=1<<temp;
3518   }
3519   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3520     ar=temp;
3521   else // LWC1/LDC1
3522     ar=tl;
3523   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3524   //else c=(i_regs->wasconst>>s)&1;
3525   if(s>=0) c=(i_regs->wasconst>>s)&1;
3526   // Check cop1 unusable
3527   if(!cop1_usable) {
3528     signed char rs=get_reg(i_regs->regmap,CSREG);
3529     assert(rs>=0);
3530     emit_testimm(rs,0x20000000);
3531     jaddr=(int)out;
3532     emit_jeq(0);
3533     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3534     cop1_usable=1;
3535   }
3536   if (opcode[i]==0x39) { // SWC1 (get float address)
3537     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3538   }
3539   if (opcode[i]==0x3D) { // SDC1 (get double address)
3540     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3541   }
3542   // Generate address + offset
3543   if(!using_tlb) {
3544     if(!c)
3545       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3546   }
3547   else
3548   {
3549     map=get_reg(i_regs->regmap,TLREG);
3550     assert(map>=0);
3551     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3552       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3553     }
3554     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3555       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3556     }
3557   }
3558   if (opcode[i]==0x39) { // SWC1 (read float)
3559     emit_readword_indexed(0,tl,tl);
3560   }
3561   if (opcode[i]==0x3D) { // SDC1 (read double)
3562     emit_readword_indexed(4,tl,th);
3563     emit_readword_indexed(0,tl,tl);
3564   }
3565   if (opcode[i]==0x31) { // LWC1 (get target address)
3566     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3567   }
3568   if (opcode[i]==0x35) { // LDC1 (get target address)
3569     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3570   }
3571   if(!using_tlb) {
3572     if(!c) {
3573       jaddr2=(int)out;
3574       emit_jno(0);
3575     }
3576     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3577       jaddr2=(int)out;
3578       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3579     }
3580     #ifdef DESTRUCTIVE_SHIFT
3581     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3582       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3583     }
3584     #endif
3585   }else{
3586     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3587       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3588     }
3589     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3590       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3591     }
3592   }
3593   if (opcode[i]==0x31) { // LWC1
3594     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3595     //gen_tlb_addr_r(ar,map);
3596     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3597     #ifdef HOST_IMM_ADDR32
3598     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3599     else
3600     #endif
3601     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3602     type=LOADW_STUB;
3603   }
3604   if (opcode[i]==0x35) { // LDC1
3605     assert(th>=0);
3606     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3607     //gen_tlb_addr_r(ar,map);
3608     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3609     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3610     #ifdef HOST_IMM_ADDR32
3611     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3612     else
3613     #endif
3614     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3615     type=LOADD_STUB;
3616   }
3617   if (opcode[i]==0x39) { // SWC1
3618     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3619     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3620     type=STOREW_STUB;
3621   }
3622   if (opcode[i]==0x3D) { // SDC1
3623     assert(th>=0);
3624     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3625     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3626     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3627     type=STORED_STUB;
3628   }
3629   if(!using_tlb) {
3630     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3631       #ifndef DESTRUCTIVE_SHIFT
3632       temp=offset||c||s<0?ar:s;
3633       #endif
3634       #if defined(HOST_IMM8)
3635       int ir=get_reg(i_regs->regmap,INVCP);
3636       assert(ir>=0);
3637       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3638       #else
3639       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3640       #endif
3641       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3642       emit_callne(invalidate_addr_reg[temp]);
3643       #else
3644       jaddr3=(int)out;
3645       emit_jne(0);
3646       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3647       #endif
3648     }
3649   }
3650   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3651   if (opcode[i]==0x31) { // LWC1 (write float)
3652     emit_writeword_indexed(tl,0,temp);
3653   }
3654   if (opcode[i]==0x35) { // LDC1 (write double)
3655     emit_writeword_indexed(th,4,temp);
3656     emit_writeword_indexed(tl,0,temp);
3657   }
3658   //if(opcode[i]==0x39)
3659   /*if(opcode[i]==0x39||opcode[i]==0x31)
3660   {
3661     emit_pusha();
3662         emit_readword((int)&last_count,ECX);
3663         if(get_reg(i_regs->regmap,CCREG)<0)
3664           emit_loadreg(CCREG,HOST_CCREG);
3665         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3666         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3667         emit_writeword(HOST_CCREG,(int)&Count);
3668     emit_call((int)memdebug);
3669     emit_popa();
3670   }/**/
3671 #else
3672   cop1_unusable(i, i_regs);
3673 #endif
3674 }
3675
3676 void c2ls_assemble(int i,struct regstat *i_regs)
3677 {
3678   int s,tl;
3679   int ar;
3680   int offset;
3681   int memtarget=0,c=0;
3682   int jaddr,jaddr2=0,jaddr3,type;
3683   int agr=AGEN1+(i&1);
3684   u_int hr,reglist=0;
3685   u_int copr=(source[i]>>16)&0x1f;
3686   s=get_reg(i_regs->regmap,rs1[i]);
3687   tl=get_reg(i_regs->regmap,FTEMP);
3688   offset=imm[i];
3689   assert(rs1[i]>0);
3690   assert(tl>=0);
3691   assert(!using_tlb);
3692
3693   for(hr=0;hr<HOST_REGS;hr++) {
3694     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3695   }
3696   if(i_regs->regmap[HOST_CCREG]==CCREG)
3697     reglist&=~(1<<HOST_CCREG);
3698
3699   // get the address
3700   if (opcode[i]==0x3a) { // SWC2
3701     ar=get_reg(i_regs->regmap,agr);
3702     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3703     reglist|=1<<ar;
3704   } else { // LWC2
3705     ar=tl;
3706   }
3707   if(s>=0) c=(i_regs->wasconst>>s)&1;
3708   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3709   if (!offset&&!c&&s>=0) ar=s;
3710   assert(ar>=0);
3711
3712   if (opcode[i]==0x3a) { // SWC2
3713     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3714     type=STOREW_STUB;
3715   }
3716   else
3717     type=LOADW_STUB;
3718
3719   if(c&&!memtarget) {
3720     jaddr2=(int)out;
3721     emit_jmp(0); // inline_readstub/inline_writestub?
3722   }
3723   else {
3724     if(!c) {
3725       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3726       jaddr2=(int)out;
3727       emit_jno(0);
3728     }
3729     if (opcode[i]==0x32) { // LWC2
3730       #ifdef HOST_IMM_ADDR32
3731       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3732       else
3733       #endif
3734       emit_readword_indexed(0,ar,tl);
3735     }
3736     if (opcode[i]==0x3a) { // SWC2
3737       #ifdef DESTRUCTIVE_SHIFT
3738       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3739       #endif
3740       emit_writeword_indexed(tl,0,ar);
3741     }
3742   }
3743   if(jaddr2)
3744     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3745   if (opcode[i]==0x3a) { // SWC2
3746 #if defined(HOST_IMM8)
3747     int ir=get_reg(i_regs->regmap,INVCP);
3748     assert(ir>=0);
3749     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3750 #else
3751     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3752 #endif
3753     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3754     emit_callne(invalidate_addr_reg[ar]);
3755     #else
3756     jaddr3=(int)out;
3757     emit_jne(0);
3758     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3759     #endif
3760   }
3761   if (opcode[i]==0x32) { // LWC2
3762     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3763   }
3764 }
3765
3766 #ifndef multdiv_assemble
3767 void multdiv_assemble(int i,struct regstat *i_regs)
3768 {
3769   printf("Need multdiv_assemble for this architecture.\n");
3770   exit(1);
3771 }
3772 #endif
3773
3774 void mov_assemble(int i,struct regstat *i_regs)
3775 {
3776   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3777   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3778   if(rt1[i]) {
3779     signed char sh,sl,th,tl;
3780     th=get_reg(i_regs->regmap,rt1[i]|64);
3781     tl=get_reg(i_regs->regmap,rt1[i]);
3782     //assert(tl>=0);
3783     if(tl>=0) {
3784       sh=get_reg(i_regs->regmap,rs1[i]|64);
3785       sl=get_reg(i_regs->regmap,rs1[i]);
3786       if(sl>=0) emit_mov(sl,tl);
3787       else emit_loadreg(rs1[i],tl);
3788       if(th>=0) {
3789         if(sh>=0) emit_mov(sh,th);
3790         else emit_loadreg(rs1[i]|64,th);
3791       }
3792     }
3793   }
3794 }
3795
3796 #ifndef fconv_assemble
3797 void fconv_assemble(int i,struct regstat *i_regs)
3798 {
3799   printf("Need fconv_assemble for this architecture.\n");
3800   exit(1);
3801 }
3802 #endif
3803
3804 #if 0
3805 void float_assemble(int i,struct regstat *i_regs)
3806 {
3807   printf("Need float_assemble for this architecture.\n");
3808   exit(1);
3809 }
3810 #endif
3811
3812 void syscall_assemble(int i,struct regstat *i_regs)
3813 {
3814   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3815   assert(ccreg==HOST_CCREG);
3816   assert(!is_delayslot);
3817   emit_movimm(start+i*4,EAX); // Get PC
3818   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3819   emit_jmp((int)jump_syscall_hle); // XXX
3820 }
3821
3822 void hlecall_assemble(int i,struct regstat *i_regs)
3823 {
3824   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3825   assert(ccreg==HOST_CCREG);
3826   assert(!is_delayslot);
3827   emit_movimm(start+i*4+4,0); // Get PC
3828   emit_movimm((int)psxHLEt[source[i]&7],1);
3829   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3830   emit_jmp((int)jump_hlecall);
3831 }
3832
3833 void intcall_assemble(int i,struct regstat *i_regs)
3834 {
3835   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3836   assert(ccreg==HOST_CCREG);
3837   assert(!is_delayslot);
3838   emit_movimm(start+i*4,0); // Get PC
3839   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3840   emit_jmp((int)jump_intcall);
3841 }
3842
3843 void ds_assemble(int i,struct regstat *i_regs)
3844 {
3845   is_delayslot=1;
3846   switch(itype[i]) {
3847     case ALU:
3848       alu_assemble(i,i_regs);break;
3849     case IMM16:
3850       imm16_assemble(i,i_regs);break;
3851     case SHIFT:
3852       shift_assemble(i,i_regs);break;
3853     case SHIFTIMM:
3854       shiftimm_assemble(i,i_regs);break;
3855     case LOAD:
3856       load_assemble(i,i_regs);break;
3857     case LOADLR:
3858       loadlr_assemble(i,i_regs);break;
3859     case STORE:
3860       store_assemble(i,i_regs);break;
3861     case STORELR:
3862       storelr_assemble(i,i_regs);break;
3863     case COP0:
3864       cop0_assemble(i,i_regs);break;
3865     case COP1:
3866       cop1_assemble(i,i_regs);break;
3867     case C1LS:
3868       c1ls_assemble(i,i_regs);break;
3869     case COP2:
3870       cop2_assemble(i,i_regs);break;
3871     case C2LS:
3872       c2ls_assemble(i,i_regs);break;
3873     case C2OP:
3874       c2op_assemble(i,i_regs);break;
3875     case FCONV:
3876       fconv_assemble(i,i_regs);break;
3877     case FLOAT:
3878       float_assemble(i,i_regs);break;
3879     case FCOMP:
3880       fcomp_assemble(i,i_regs);break;
3881     case MULTDIV:
3882       multdiv_assemble(i,i_regs);break;
3883     case MOV:
3884       mov_assemble(i,i_regs);break;
3885     case SYSCALL:
3886     case HLECALL:
3887     case INTCALL:
3888     case SPAN:
3889     case UJUMP:
3890     case RJUMP:
3891     case CJUMP:
3892     case SJUMP:
3893     case FJUMP:
3894       printf("Jump in the delay slot.  This is probably a bug.\n");
3895   }
3896   is_delayslot=0;
3897 }
3898
3899 // Is the branch target a valid internal jump?
3900 int internal_branch(uint64_t i_is32,int addr)
3901 {
3902   if(addr&1) return 0; // Indirect (register) jump
3903   if(addr>=start && addr<start+slen*4-4)
3904   {
3905     int t=(addr-start)>>2;
3906     // Delay slots are not valid branch targets
3907     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3908     // 64 -> 32 bit transition requires a recompile
3909     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3910     {
3911       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3912       else printf("optimizable: yes\n");
3913     }*/
3914     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3915 #ifndef FORCE32
3916     if(requires_32bit[t]&~i_is32) return 0;
3917     else
3918 #endif
3919       return 1;
3920   }
3921   return 0;
3922 }
3923
3924 #ifndef wb_invalidate
3925 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3926   uint64_t u,uint64_t uu)
3927 {
3928   int hr;
3929   for(hr=0;hr<HOST_REGS;hr++) {
3930     if(hr!=EXCLUDE_REG) {
3931       if(pre[hr]!=entry[hr]) {
3932         if(pre[hr]>=0) {
3933           if((dirty>>hr)&1) {
3934             if(get_reg(entry,pre[hr])<0) {
3935               if(pre[hr]<64) {
3936                 if(!((u>>pre[hr])&1)) {
3937                   emit_storereg(pre[hr],hr);
3938                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3939                     emit_sarimm(hr,31,hr);
3940                     emit_storereg(pre[hr]|64,hr);
3941                   }
3942                 }
3943               }else{
3944                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3945                   emit_storereg(pre[hr],hr);
3946                 }
3947               }
3948             }
3949           }
3950         }
3951       }
3952     }
3953   }
3954   // Move from one register to another (no writeback)
3955   for(hr=0;hr<HOST_REGS;hr++) {
3956     if(hr!=EXCLUDE_REG) {
3957       if(pre[hr]!=entry[hr]) {
3958         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3959           int nr;
3960           if((nr=get_reg(entry,pre[hr]))>=0) {
3961             emit_mov(hr,nr);
3962           }
3963         }
3964       }
3965     }
3966   }
3967 }
3968 #endif
3969
3970 // Load the specified registers
3971 // This only loads the registers given as arguments because
3972 // we don't want to load things that will be overwritten
3973 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3974 {
3975   int hr;
3976   // Load 32-bit regs
3977   for(hr=0;hr<HOST_REGS;hr++) {
3978     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3979       if(entry[hr]!=regmap[hr]) {
3980         if(regmap[hr]==rs1||regmap[hr]==rs2)
3981         {
3982           if(regmap[hr]==0) {
3983             emit_zeroreg(hr);
3984           }
3985           else
3986           {
3987             emit_loadreg(regmap[hr],hr);
3988           }
3989         }
3990       }
3991     }
3992   }
3993   //Load 64-bit regs
3994   for(hr=0;hr<HOST_REGS;hr++) {
3995     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3996       if(entry[hr]!=regmap[hr]) {
3997         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3998         {
3999           assert(regmap[hr]!=64);
4000           if((is32>>(regmap[hr]&63))&1) {
4001             int lr=get_reg(regmap,regmap[hr]-64);
4002             if(lr>=0)
4003               emit_sarimm(lr,31,hr);
4004             else
4005               emit_loadreg(regmap[hr],hr);
4006           }
4007           else
4008           {
4009             emit_loadreg(regmap[hr],hr);
4010           }
4011         }
4012       }
4013     }
4014   }
4015 }
4016
4017 // Load registers prior to the start of a loop
4018 // so that they are not loaded within the loop
4019 static void loop_preload(signed char pre[],signed char entry[])
4020 {
4021   int hr;
4022   for(hr=0;hr<HOST_REGS;hr++) {
4023     if(hr!=EXCLUDE_REG) {
4024       if(pre[hr]!=entry[hr]) {
4025         if(entry[hr]>=0) {
4026           if(get_reg(pre,entry[hr])<0) {
4027             assem_debug("loop preload:\n");
4028             //printf("loop preload: %d\n",hr);
4029             if(entry[hr]==0) {
4030               emit_zeroreg(hr);
4031             }
4032             else if(entry[hr]<TEMPREG)
4033             {
4034               emit_loadreg(entry[hr],hr);
4035             }
4036             else if(entry[hr]-64<TEMPREG)
4037             {
4038               emit_loadreg(entry[hr],hr);
4039             }
4040           }
4041         }
4042       }
4043     }
4044   }
4045 }
4046
4047 // Generate address for load/store instruction
4048 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4049 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4050 {
4051   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4052     int ra;
4053     int agr=AGEN1+(i&1);
4054     int mgr=MGEN1+(i&1);
4055     if(itype[i]==LOAD) {
4056       ra=get_reg(i_regs->regmap,rt1[i]);
4057       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4058       assert(ra>=0);
4059     }
4060     if(itype[i]==LOADLR) {
4061       ra=get_reg(i_regs->regmap,FTEMP);
4062     }
4063     if(itype[i]==STORE||itype[i]==STORELR) {
4064       ra=get_reg(i_regs->regmap,agr);
4065       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4066     }
4067     if(itype[i]==C1LS||itype[i]==C2LS) {
4068       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4069         ra=get_reg(i_regs->regmap,FTEMP);
4070       else { // SWC1/SDC1/SWC2/SDC2
4071         ra=get_reg(i_regs->regmap,agr);
4072         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4073       }
4074     }
4075     int rs=get_reg(i_regs->regmap,rs1[i]);
4076     int rm=get_reg(i_regs->regmap,TLREG);
4077     if(ra>=0) {
4078       int offset=imm[i];
4079       int c=(i_regs->wasconst>>rs)&1;
4080       if(rs1[i]==0) {
4081         // Using r0 as a base address
4082         /*if(rm>=0) {
4083           if(!entry||entry[rm]!=mgr) {
4084             generate_map_const(offset,rm);
4085           } // else did it in the previous cycle
4086         }*/
4087         if(!entry||entry[ra]!=agr) {
4088           if (opcode[i]==0x22||opcode[i]==0x26) {
4089             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4090           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4091             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4092           }else{
4093             emit_movimm(offset,ra);
4094           }
4095         } // else did it in the previous cycle
4096       }
4097       else if(rs<0) {
4098         if(!entry||entry[ra]!=rs1[i])
4099           emit_loadreg(rs1[i],ra);
4100         //if(!entry||entry[ra]!=rs1[i])
4101         //  printf("poor load scheduling!\n");
4102       }
4103       else if(c) {
4104         if(rm>=0) {
4105           if(!entry||entry[rm]!=mgr) {
4106             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4107               // Stores to memory go thru the mapper to detect self-modifying
4108               // code, loads don't.
4109               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4110                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4111                 generate_map_const(constmap[i][rs]+offset,rm);
4112             }else{
4113               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4114                 generate_map_const(constmap[i][rs]+offset,rm);
4115             }
4116           }
4117         }
4118         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4119           if(!entry||entry[ra]!=agr) {
4120             if (opcode[i]==0x22||opcode[i]==0x26) {
4121               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4122             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4123               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4124             }else{
4125               #ifdef HOST_IMM_ADDR32
4126               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4127                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4128               #endif
4129               emit_movimm(constmap[i][rs]+offset,ra);
4130             }
4131           } // else did it in the previous cycle
4132         } // else load_consts already did it
4133       }
4134       if(offset&&!c&&rs1[i]) {
4135         if(rs>=0) {
4136           emit_addimm(rs,offset,ra);
4137         }else{
4138           emit_addimm(ra,offset,ra);
4139         }
4140       }
4141     }
4142   }
4143   // Preload constants for next instruction
4144   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4145     int agr,ra;
4146     #ifndef HOST_IMM_ADDR32
4147     // Mapper entry
4148     agr=MGEN1+((i+1)&1);
4149     ra=get_reg(i_regs->regmap,agr);
4150     if(ra>=0) {
4151       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4152       int offset=imm[i+1];
4153       int c=(regs[i+1].wasconst>>rs)&1;
4154       if(c) {
4155         if(itype[i+1]==STORE||itype[i+1]==STORELR
4156            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4157           // Stores to memory go thru the mapper to detect self-modifying
4158           // code, loads don't.
4159           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4160              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4161             generate_map_const(constmap[i+1][rs]+offset,ra);
4162         }else{
4163           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4164             generate_map_const(constmap[i+1][rs]+offset,ra);
4165         }
4166       }
4167       /*else if(rs1[i]==0) {
4168         generate_map_const(offset,ra);
4169       }*/
4170     }
4171     #endif
4172     // Actual address
4173     agr=AGEN1+((i+1)&1);
4174     ra=get_reg(i_regs->regmap,agr);
4175     if(ra>=0) {
4176       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4177       int offset=imm[i+1];
4178       int c=(regs[i+1].wasconst>>rs)&1;
4179       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4180         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4181           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4182         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4183           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4184         }else{
4185           #ifdef HOST_IMM_ADDR32
4186           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4187              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4188           #endif
4189           emit_movimm(constmap[i+1][rs]+offset,ra);
4190         }
4191       }
4192       else if(rs1[i+1]==0) {
4193         // Using r0 as a base address
4194         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4195           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4196         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4197           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4198         }else{
4199           emit_movimm(offset,ra);
4200         }
4201       }
4202     }
4203   }
4204 }
4205
4206 int get_final_value(int hr, int i, int *value)
4207 {
4208   int reg=regs[i].regmap[hr];
4209   while(i<slen-1) {
4210     if(regs[i+1].regmap[hr]!=reg) break;
4211     if(!((regs[i+1].isconst>>hr)&1)) break;
4212     if(bt[i+1]) break;
4213     i++;
4214   }
4215   if(i<slen-1) {
4216     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4217       *value=constmap[i][hr];
4218       return 1;
4219     }
4220     if(!bt[i+1]) {
4221       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4222         // Load in delay slot, out-of-order execution
4223         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4224         {
4225           #ifdef HOST_IMM_ADDR32
4226           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4227           #endif
4228           // Precompute load address
4229           *value=constmap[i][hr]+imm[i+2];
4230           return 1;
4231         }
4232       }
4233       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4234       {
4235         #ifdef HOST_IMM_ADDR32
4236         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4237         #endif
4238         // Precompute load address
4239         *value=constmap[i][hr]+imm[i+1];
4240         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4241         return 1;
4242       }
4243     }
4244   }
4245   *value=constmap[i][hr];
4246   //printf("c=%x\n",(int)constmap[i][hr]);
4247   if(i==slen-1) return 1;
4248   if(reg<64) {
4249     return !((unneeded_reg[i+1]>>reg)&1);
4250   }else{
4251     return !((unneeded_reg_upper[i+1]>>reg)&1);
4252   }
4253 }
4254
4255 // Load registers with known constants
4256 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4257 {
4258   int hr;
4259   // Load 32-bit regs
4260   for(hr=0;hr<HOST_REGS;hr++) {
4261     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4262       //if(entry[hr]!=regmap[hr]) {
4263       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4264         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4265           int value;
4266           if(get_final_value(hr,i,&value)) {
4267             if(value==0) {
4268               emit_zeroreg(hr);
4269             }
4270             else {
4271               emit_movimm(value,hr);
4272             }
4273           }
4274         }
4275       }
4276     }
4277   }
4278   // Load 64-bit regs
4279   for(hr=0;hr<HOST_REGS;hr++) {
4280     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4281       //if(entry[hr]!=regmap[hr]) {
4282       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4283         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4284           if((is32>>(regmap[hr]&63))&1) {
4285             int lr=get_reg(regmap,regmap[hr]-64);
4286             assert(lr>=0);
4287             emit_sarimm(lr,31,hr);
4288           }
4289           else
4290           {
4291             int value;
4292             if(get_final_value(hr,i,&value)) {
4293               if(value==0) {
4294                 emit_zeroreg(hr);
4295               }
4296               else {
4297                 emit_movimm(value,hr);
4298               }
4299             }
4300           }
4301         }
4302       }
4303     }
4304   }
4305 }
4306 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4307 {
4308   int hr;
4309   // Load 32-bit regs
4310   for(hr=0;hr<HOST_REGS;hr++) {
4311     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4312       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4313         int value=constmap[i][hr];
4314         if(value==0) {
4315           emit_zeroreg(hr);
4316         }
4317         else {
4318           emit_movimm(value,hr);
4319         }
4320       }
4321     }
4322   }
4323   // Load 64-bit regs
4324   for(hr=0;hr<HOST_REGS;hr++) {
4325     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4326       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4327         if((is32>>(regmap[hr]&63))&1) {
4328           int lr=get_reg(regmap,regmap[hr]-64);
4329           assert(lr>=0);
4330           emit_sarimm(lr,31,hr);
4331         }
4332         else
4333         {
4334           int value=constmap[i][hr];
4335           if(value==0) {
4336             emit_zeroreg(hr);
4337           }
4338           else {
4339             emit_movimm(value,hr);
4340           }
4341         }
4342       }
4343     }
4344   }
4345 }
4346
4347 // Write out all dirty registers (except cycle count)
4348 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4349 {
4350   int hr;
4351   for(hr=0;hr<HOST_REGS;hr++) {
4352     if(hr!=EXCLUDE_REG) {
4353       if(i_regmap[hr]>0) {
4354         if(i_regmap[hr]!=CCREG) {
4355           if((i_dirty>>hr)&1) {
4356             if(i_regmap[hr]<64) {
4357               emit_storereg(i_regmap[hr],hr);
4358 #ifndef FORCE32
4359               if( ((i_is32>>i_regmap[hr])&1) ) {
4360                 #ifdef DESTRUCTIVE_WRITEBACK
4361                 emit_sarimm(hr,31,hr);
4362                 emit_storereg(i_regmap[hr]|64,hr);
4363                 #else
4364                 emit_sarimm(hr,31,HOST_TEMPREG);
4365                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4366                 #endif
4367               }
4368 #endif
4369             }else{
4370               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4371                 emit_storereg(i_regmap[hr],hr);
4372               }
4373             }
4374           }
4375         }
4376       }
4377     }
4378   }
4379 }
4380 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4381 // This writes the registers not written by store_regs_bt
4382 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4383 {
4384   int hr;
4385   int t=(addr-start)>>2;
4386   for(hr=0;hr<HOST_REGS;hr++) {
4387     if(hr!=EXCLUDE_REG) {
4388       if(i_regmap[hr]>0) {
4389         if(i_regmap[hr]!=CCREG) {
4390           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4391             if((i_dirty>>hr)&1) {
4392               if(i_regmap[hr]<64) {
4393                 emit_storereg(i_regmap[hr],hr);
4394 #ifndef FORCE32
4395                 if( ((i_is32>>i_regmap[hr])&1) ) {
4396                   #ifdef DESTRUCTIVE_WRITEBACK
4397                   emit_sarimm(hr,31,hr);
4398                   emit_storereg(i_regmap[hr]|64,hr);
4399                   #else
4400                   emit_sarimm(hr,31,HOST_TEMPREG);
4401                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4402                   #endif
4403                 }
4404 #endif
4405               }else{
4406                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4407                   emit_storereg(i_regmap[hr],hr);
4408                 }
4409               }
4410             }
4411           }
4412         }
4413       }
4414     }
4415   }
4416 }
4417
4418 // Load all registers (except cycle count)
4419 void load_all_regs(signed char i_regmap[])
4420 {
4421   int hr;
4422   for(hr=0;hr<HOST_REGS;hr++) {
4423     if(hr!=EXCLUDE_REG) {
4424       if(i_regmap[hr]==0) {
4425         emit_zeroreg(hr);
4426       }
4427       else
4428       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4429       {
4430         emit_loadreg(i_regmap[hr],hr);
4431       }
4432     }
4433   }
4434 }
4435
4436 // Load all current registers also needed by next instruction
4437 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4438 {
4439   int hr;
4440   for(hr=0;hr<HOST_REGS;hr++) {
4441     if(hr!=EXCLUDE_REG) {
4442       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4443         if(i_regmap[hr]==0) {
4444           emit_zeroreg(hr);
4445         }
4446         else
4447         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4448         {
4449           emit_loadreg(i_regmap[hr],hr);
4450         }
4451       }
4452     }
4453   }
4454 }
4455
4456 // Load all regs, storing cycle count if necessary
4457 void load_regs_entry(int t)
4458 {
4459   int hr;
4460   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4461   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4462   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4463     emit_storereg(CCREG,HOST_CCREG);
4464   }
4465   // Load 32-bit regs
4466   for(hr=0;hr<HOST_REGS;hr++) {
4467     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4468       if(regs[t].regmap_entry[hr]==0) {
4469         emit_zeroreg(hr);
4470       }
4471       else if(regs[t].regmap_entry[hr]!=CCREG)
4472       {
4473         emit_loadreg(regs[t].regmap_entry[hr],hr);
4474       }
4475     }
4476   }
4477   // Load 64-bit regs
4478   for(hr=0;hr<HOST_REGS;hr++) {
4479     if(regs[t].regmap_entry[hr]>=64) {
4480       assert(regs[t].regmap_entry[hr]!=64);
4481       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4482         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4483         if(lr<0) {
4484           emit_loadreg(regs[t].regmap_entry[hr],hr);
4485         }
4486         else
4487         {
4488           emit_sarimm(lr,31,hr);
4489         }
4490       }
4491       else
4492       {
4493         emit_loadreg(regs[t].regmap_entry[hr],hr);
4494       }
4495     }
4496   }
4497 }
4498
4499 // Store dirty registers prior to branch
4500 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4501 {
4502   if(internal_branch(i_is32,addr))
4503   {
4504     int t=(addr-start)>>2;
4505     int hr;
4506     for(hr=0;hr<HOST_REGS;hr++) {
4507       if(hr!=EXCLUDE_REG) {
4508         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4509           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4510             if((i_dirty>>hr)&1) {
4511               if(i_regmap[hr]<64) {
4512                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4513                   emit_storereg(i_regmap[hr],hr);
4514                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4515                     #ifdef DESTRUCTIVE_WRITEBACK
4516                     emit_sarimm(hr,31,hr);
4517                     emit_storereg(i_regmap[hr]|64,hr);
4518                     #else
4519                     emit_sarimm(hr,31,HOST_TEMPREG);
4520                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4521                     #endif
4522                   }
4523                 }
4524               }else{
4525                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4526                   emit_storereg(i_regmap[hr],hr);
4527                 }
4528               }
4529             }
4530           }
4531         }
4532       }
4533     }
4534   }
4535   else
4536   {
4537     // Branch out of this block, write out all dirty regs
4538     wb_dirtys(i_regmap,i_is32,i_dirty);
4539   }
4540 }
4541
4542 // Load all needed registers for branch target
4543 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4544 {
4545   //if(addr>=start && addr<(start+slen*4))
4546   if(internal_branch(i_is32,addr))
4547   {
4548     int t=(addr-start)>>2;
4549     int hr;
4550     // Store the cycle count before loading something else
4551     if(i_regmap[HOST_CCREG]!=CCREG) {
4552       assert(i_regmap[HOST_CCREG]==-1);
4553     }
4554     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4555       emit_storereg(CCREG,HOST_CCREG);
4556     }
4557     // Load 32-bit regs
4558     for(hr=0;hr<HOST_REGS;hr++) {
4559       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4560         #ifdef DESTRUCTIVE_WRITEBACK
4561         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4562         #else
4563         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4564         #endif
4565           if(regs[t].regmap_entry[hr]==0) {
4566             emit_zeroreg(hr);
4567           }
4568           else if(regs[t].regmap_entry[hr]!=CCREG)
4569           {
4570             emit_loadreg(regs[t].regmap_entry[hr],hr);
4571           }
4572         }
4573       }
4574     }
4575     //Load 64-bit regs
4576     for(hr=0;hr<HOST_REGS;hr++) {
4577       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4578         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4579           assert(regs[t].regmap_entry[hr]!=64);
4580           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4581             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4582             if(lr<0) {
4583               emit_loadreg(regs[t].regmap_entry[hr],hr);
4584             }
4585             else
4586             {
4587               emit_sarimm(lr,31,hr);
4588             }
4589           }
4590           else
4591           {
4592             emit_loadreg(regs[t].regmap_entry[hr],hr);
4593           }
4594         }
4595         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4596           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4597           assert(lr>=0);
4598           emit_sarimm(lr,31,hr);
4599         }
4600       }
4601     }
4602   }
4603 }
4604
4605 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4606 {
4607   if(addr>=start && addr<start+slen*4-4)
4608   {
4609     int t=(addr-start)>>2;
4610     int hr;
4611     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4612     for(hr=0;hr<HOST_REGS;hr++)
4613     {
4614       if(hr!=EXCLUDE_REG)
4615       {
4616         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4617         {
4618           if(regs[t].regmap_entry[hr]!=-1)
4619           {
4620             return 0;
4621           }
4622           else 
4623           if((i_dirty>>hr)&1)
4624           {
4625             if(i_regmap[hr]<64)
4626             {
4627               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4628                 return 0;
4629             }
4630             else
4631             {
4632               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4633                 return 0;
4634             }
4635           }
4636         }
4637         else // Same register but is it 32-bit or dirty?
4638         if(i_regmap[hr]>=0)
4639         {
4640           if(!((regs[t].dirty>>hr)&1))
4641           {
4642             if((i_dirty>>hr)&1)
4643             {
4644               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4645               {
4646                 //printf("%x: dirty no match\n",addr);
4647                 return 0;
4648               }
4649             }
4650           }
4651           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4652           {
4653             //printf("%x: is32 no match\n",addr);
4654             return 0;
4655           }
4656         }
4657       }
4658     }
4659     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4660 #ifndef FORCE32
4661     if(requires_32bit[t]&~i_is32) return 0;
4662 #endif
4663     // Delay slots are not valid branch targets
4664     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4665     // Delay slots require additional processing, so do not match
4666     if(is_ds[t]) return 0;
4667   }
4668   else
4669   {
4670     int hr;
4671     for(hr=0;hr<HOST_REGS;hr++)
4672     {
4673       if(hr!=EXCLUDE_REG)
4674       {
4675         if(i_regmap[hr]>=0)
4676         {
4677           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4678           {
4679             if((i_dirty>>hr)&1)
4680             {
4681               return 0;
4682             }
4683           }
4684         }
4685       }
4686     }
4687   }
4688   return 1;
4689 }
4690
4691 // Used when a branch jumps into the delay slot of another branch
4692 void ds_assemble_entry(int i)
4693 {
4694   int t=(ba[i]-start)>>2;
4695   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4696   assem_debug("Assemble delay slot at %x\n",ba[i]);
4697   assem_debug("<->\n");
4698   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4699     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4700   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4701   address_generation(t,&regs[t],regs[t].regmap_entry);
4702   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4703     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4704   cop1_usable=0;
4705   is_delayslot=0;
4706   switch(itype[t]) {
4707     case ALU:
4708       alu_assemble(t,&regs[t]);break;
4709     case IMM16:
4710       imm16_assemble(t,&regs[t]);break;
4711     case SHIFT:
4712       shift_assemble(t,&regs[t]);break;
4713     case SHIFTIMM:
4714       shiftimm_assemble(t,&regs[t]);break;
4715     case LOAD:
4716       load_assemble(t,&regs[t]);break;
4717     case LOADLR:
4718       loadlr_assemble(t,&regs[t]);break;
4719     case STORE:
4720       store_assemble(t,&regs[t]);break;
4721     case STORELR:
4722       storelr_assemble(t,&regs[t]);break;
4723     case COP0:
4724       cop0_assemble(t,&regs[t]);break;
4725     case COP1:
4726       cop1_assemble(t,&regs[t]);break;
4727     case C1LS:
4728       c1ls_assemble(t,&regs[t]);break;
4729     case COP2:
4730       cop2_assemble(t,&regs[t]);break;
4731     case C2LS:
4732       c2ls_assemble(t,&regs[t]);break;
4733     case C2OP:
4734       c2op_assemble(t,&regs[t]);break;
4735     case FCONV:
4736       fconv_assemble(t,&regs[t]);break;
4737     case FLOAT:
4738       float_assemble(t,&regs[t]);break;
4739     case FCOMP:
4740       fcomp_assemble(t,&regs[t]);break;
4741     case MULTDIV:
4742       multdiv_assemble(t,&regs[t]);break;
4743     case MOV:
4744       mov_assemble(t,&regs[t]);break;
4745     case SYSCALL:
4746     case HLECALL:
4747     case INTCALL:
4748     case SPAN:
4749     case UJUMP:
4750     case RJUMP:
4751     case CJUMP:
4752     case SJUMP:
4753     case FJUMP:
4754       printf("Jump in the delay slot.  This is probably a bug.\n");
4755   }
4756   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4757   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4758   if(internal_branch(regs[t].is32,ba[i]+4))
4759     assem_debug("branch: internal\n");
4760   else
4761     assem_debug("branch: external\n");
4762   assert(internal_branch(regs[t].is32,ba[i]+4));
4763   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4764   emit_jmp(0);
4765 }
4766
4767 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4768 {
4769   int count;
4770   int jaddr;
4771   int idle=0;
4772   if(itype[i]==RJUMP)
4773   {
4774     *adj=0;
4775   }
4776   //if(ba[i]>=start && ba[i]<(start+slen*4))
4777   if(internal_branch(branch_regs[i].is32,ba[i]))
4778   {
4779     int t=(ba[i]-start)>>2;
4780     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4781     else *adj=ccadj[t];
4782   }
4783   else
4784   {
4785     *adj=0;
4786   }
4787   count=ccadj[i];
4788   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4789     // Idle loop
4790     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4791     idle=(int)out;
4792     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4793     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4794     jaddr=(int)out;
4795     emit_jmp(0);
4796   }
4797   else if(*adj==0||invert) {
4798     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4799     jaddr=(int)out;
4800     emit_jns(0);
4801   }
4802   else
4803   {
4804     emit_cmpimm(HOST_CCREG,-2*(count+2));
4805     jaddr=(int)out;
4806     emit_jns(0);
4807   }
4808   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4809 }
4810
4811 void do_ccstub(int n)
4812 {
4813   literal_pool(256);
4814   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4815   set_jump_target(stubs[n][1],(int)out);
4816   int i=stubs[n][4];
4817   if(stubs[n][6]==NULLDS) {
4818     // Delay slot instruction is nullified ("likely" branch)
4819     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4820   }
4821   else if(stubs[n][6]!=TAKEN) {
4822     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4823   }
4824   else {
4825     if(internal_branch(branch_regs[i].is32,ba[i]))
4826       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4827   }
4828   if(stubs[n][5]!=-1)
4829   {
4830     // Save PC as return address
4831     emit_movimm(stubs[n][5],EAX);
4832     emit_writeword(EAX,(int)&pcaddr);
4833   }
4834   else
4835   {
4836     // Return address depends on which way the branch goes
4837     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4838     {
4839       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4840       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4841       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4842       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4843       if(rs1[i]==0)
4844       {
4845         s1l=s2l;s1h=s2h;
4846         s2l=s2h=-1;
4847       }
4848       else if(rs2[i]==0)
4849       {
4850         s2l=s2h=-1;
4851       }
4852       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4853         s1h=s2h=-1;
4854       }
4855       assert(s1l>=0);
4856       #ifdef DESTRUCTIVE_WRITEBACK
4857       if(rs1[i]) {
4858         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4859           emit_loadreg(rs1[i],s1l);
4860       } 
4861       else {
4862         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4863           emit_loadreg(rs2[i],s1l);
4864       }
4865       if(s2l>=0)
4866         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4867           emit_loadreg(rs2[i],s2l);
4868       #endif
4869       int hr=0;
4870       int addr,alt,ntaddr;
4871       while(hr<HOST_REGS)
4872       {
4873         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4874            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4875            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4876         {
4877           addr=hr++;break;
4878         }
4879         hr++;
4880       }
4881       while(hr<HOST_REGS)
4882       {
4883         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4884            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4885            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4886         {
4887           alt=hr++;break;
4888         }
4889         hr++;
4890       }
4891       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4892       {
4893         while(hr<HOST_REGS)
4894         {
4895           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4896              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4897              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4898           {
4899             ntaddr=hr;break;
4900           }
4901           hr++;
4902         }
4903         assert(hr<HOST_REGS);
4904       }
4905       if((opcode[i]&0x2f)==4) // BEQ
4906       {
4907         #ifdef HAVE_CMOV_IMM
4908         if(s1h<0) {
4909           if(s2l>=0) emit_cmp(s1l,s2l);
4910           else emit_test(s1l,s1l);
4911           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4912         }
4913         else
4914         #endif
4915         {
4916           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4917           if(s1h>=0) {
4918             if(s2h>=0) emit_cmp(s1h,s2h);
4919             else emit_test(s1h,s1h);
4920             emit_cmovne_reg(alt,addr);
4921           }
4922           if(s2l>=0) emit_cmp(s1l,s2l);
4923           else emit_test(s1l,s1l);
4924           emit_cmovne_reg(alt,addr);
4925         }
4926       }
4927       if((opcode[i]&0x2f)==5) // BNE
4928       {
4929         #ifdef HAVE_CMOV_IMM
4930         if(s1h<0) {
4931           if(s2l>=0) emit_cmp(s1l,s2l);
4932           else emit_test(s1l,s1l);
4933           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4934         }
4935         else
4936         #endif
4937         {
4938           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4939           if(s1h>=0) {
4940             if(s2h>=0) emit_cmp(s1h,s2h);
4941             else emit_test(s1h,s1h);
4942             emit_cmovne_reg(alt,addr);
4943           }
4944           if(s2l>=0) emit_cmp(s1l,s2l);
4945           else emit_test(s1l,s1l);
4946           emit_cmovne_reg(alt,addr);
4947         }
4948       }
4949       if((opcode[i]&0x2f)==6) // BLEZ
4950       {
4951         //emit_movimm(ba[i],alt);
4952         //emit_movimm(start+i*4+8,addr);
4953         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4954         emit_cmpimm(s1l,1);
4955         if(s1h>=0) emit_mov(addr,ntaddr);
4956         emit_cmovl_reg(alt,addr);
4957         if(s1h>=0) {
4958           emit_test(s1h,s1h);
4959           emit_cmovne_reg(ntaddr,addr);
4960           emit_cmovs_reg(alt,addr);
4961         }
4962       }
4963       if((opcode[i]&0x2f)==7) // BGTZ
4964       {
4965         //emit_movimm(ba[i],addr);
4966         //emit_movimm(start+i*4+8,ntaddr);
4967         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4968         emit_cmpimm(s1l,1);
4969         if(s1h>=0) emit_mov(addr,alt);
4970         emit_cmovl_reg(ntaddr,addr);
4971         if(s1h>=0) {
4972           emit_test(s1h,s1h);
4973           emit_cmovne_reg(alt,addr);
4974           emit_cmovs_reg(ntaddr,addr);
4975         }
4976       }
4977       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4978       {
4979         //emit_movimm(ba[i],alt);
4980         //emit_movimm(start+i*4+8,addr);
4981         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4982         if(s1h>=0) emit_test(s1h,s1h);
4983         else emit_test(s1l,s1l);
4984         emit_cmovs_reg(alt,addr);
4985       }
4986       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4987       {
4988         //emit_movimm(ba[i],addr);
4989         //emit_movimm(start+i*4+8,alt);
4990         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4991         if(s1h>=0) emit_test(s1h,s1h);
4992         else emit_test(s1l,s1l);
4993         emit_cmovs_reg(alt,addr);
4994       }
4995       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4996         if(source[i]&0x10000) // BC1T
4997         {
4998           //emit_movimm(ba[i],alt);
4999           //emit_movimm(start+i*4+8,addr);
5000           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5001           emit_testimm(s1l,0x800000);
5002           emit_cmovne_reg(alt,addr);
5003         }
5004         else // BC1F
5005         {
5006           //emit_movimm(ba[i],addr);
5007           //emit_movimm(start+i*4+8,alt);
5008           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5009           emit_testimm(s1l,0x800000);
5010           emit_cmovne_reg(alt,addr);
5011         }
5012       }
5013       emit_writeword(addr,(int)&pcaddr);
5014     }
5015     else
5016     if(itype[i]==RJUMP)
5017     {
5018       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5019       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5020         r=get_reg(branch_regs[i].regmap,RTEMP);
5021       }
5022       emit_writeword(r,(int)&pcaddr);
5023     }
5024     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5025   }
5026   // Update cycle count
5027   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5028   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5029   emit_call((int)cc_interrupt);
5030   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5031   if(stubs[n][6]==TAKEN) {
5032     if(internal_branch(branch_regs[i].is32,ba[i]))
5033       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5034     else if(itype[i]==RJUMP) {
5035       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5036         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5037       else
5038         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5039     }
5040   }else if(stubs[n][6]==NOTTAKEN) {
5041     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5042     else load_all_regs(branch_regs[i].regmap);
5043   }else if(stubs[n][6]==NULLDS) {
5044     // Delay slot instruction is nullified ("likely" branch)
5045     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5046     else load_all_regs(regs[i].regmap);
5047   }else{
5048     load_all_regs(branch_regs[i].regmap);
5049   }
5050   emit_jmp(stubs[n][2]); // return address
5051   
5052   /* This works but uses a lot of memory...
5053   emit_readword((int)&last_count,ECX);
5054   emit_add(HOST_CCREG,ECX,EAX);
5055   emit_writeword(EAX,(int)&Count);
5056   emit_call((int)gen_interupt);
5057   emit_readword((int)&Count,HOST_CCREG);
5058   emit_readword((int)&next_interupt,EAX);
5059   emit_readword((int)&pending_exception,EBX);
5060   emit_writeword(EAX,(int)&last_count);
5061   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5062   emit_test(EBX,EBX);
5063   int jne_instr=(int)out;
5064   emit_jne(0);
5065   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5066   load_all_regs(branch_regs[i].regmap);
5067   emit_jmp(stubs[n][2]); // return address
5068   set_jump_target(jne_instr,(int)out);
5069   emit_readword((int)&pcaddr,EAX);
5070   // Call get_addr_ht instead of doing the hash table here.
5071   // This code is executed infrequently and takes up a lot of space
5072   // so smaller is better.
5073   emit_storereg(CCREG,HOST_CCREG);
5074   emit_pushreg(EAX);
5075   emit_call((int)get_addr_ht);
5076   emit_loadreg(CCREG,HOST_CCREG);
5077   emit_addimm(ESP,4,ESP);
5078   emit_jmpreg(EAX);*/
5079 }
5080
5081 add_to_linker(int addr,int target,int ext)
5082 {
5083   link_addr[linkcount][0]=addr;
5084   link_addr[linkcount][1]=target;
5085   link_addr[linkcount][2]=ext;  
5086   linkcount++;
5087 }
5088
5089 void ujump_assemble(int i,struct regstat *i_regs)
5090 {
5091   signed char *i_regmap=i_regs->regmap;
5092   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5093   address_generation(i+1,i_regs,regs[i].regmap_entry);
5094   #ifdef REG_PREFETCH
5095   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5096   if(rt1[i]==31&&temp>=0) 
5097   {
5098     int return_address=start+i*4+8;
5099     if(get_reg(branch_regs[i].regmap,31)>0) 
5100     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5101   }
5102   #endif
5103   ds_assemble(i+1,i_regs);
5104   uint64_t bc_unneeded=branch_regs[i].u;
5105   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5106   bc_unneeded|=1|(1LL<<rt1[i]);
5107   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5108   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5109                 bc_unneeded,bc_unneeded_upper);
5110   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5111   if(rt1[i]==31) {
5112     int rt;
5113     unsigned int return_address;
5114     assert(rt1[i+1]!=31);
5115     assert(rt2[i+1]!=31);
5116     rt=get_reg(branch_regs[i].regmap,31);
5117     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5118     //assert(rt>=0);
5119     return_address=start+i*4+8;
5120     if(rt>=0) {
5121       #ifdef USE_MINI_HT
5122       if(internal_branch(branch_regs[i].is32,return_address)) {
5123         int temp=rt+1;
5124         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5125            branch_regs[i].regmap[temp]>=0)
5126         {
5127           temp=get_reg(branch_regs[i].regmap,-1);
5128         }
5129         #ifdef HOST_TEMPREG
5130         if(temp<0) temp=HOST_TEMPREG;
5131         #endif
5132         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5133         else emit_movimm(return_address,rt);
5134       }
5135       else
5136       #endif
5137       {
5138         #ifdef REG_PREFETCH
5139         if(temp>=0) 
5140         {
5141           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5142         }
5143         #endif
5144         emit_movimm(return_address,rt); // PC into link register
5145         #ifdef IMM_PREFETCH
5146         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5147         #endif
5148       }
5149     }
5150   }
5151   int cc,adj;
5152   cc=get_reg(branch_regs[i].regmap,CCREG);
5153   assert(cc==HOST_CCREG);
5154   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5155   #ifdef REG_PREFETCH
5156   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5157   #endif
5158   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5159   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5160   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5161   if(internal_branch(branch_regs[i].is32,ba[i]))
5162     assem_debug("branch: internal\n");
5163   else
5164     assem_debug("branch: external\n");
5165   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5166     ds_assemble_entry(i);
5167   }
5168   else {
5169     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5170     emit_jmp(0);
5171   }
5172 }
5173
5174 void rjump_assemble(int i,struct regstat *i_regs)
5175 {
5176   signed char *i_regmap=i_regs->regmap;
5177   int temp;
5178   int rs,cc,adj;
5179   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5180   assert(rs>=0);
5181   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5182     // Delay slot abuse, make a copy of the branch address register
5183     temp=get_reg(branch_regs[i].regmap,RTEMP);
5184     assert(temp>=0);
5185     assert(regs[i].regmap[temp]==RTEMP);
5186     emit_mov(rs,temp);
5187     rs=temp;
5188   }
5189   address_generation(i+1,i_regs,regs[i].regmap_entry);
5190   #ifdef REG_PREFETCH
5191   if(rt1[i]==31) 
5192   {
5193     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5194       int return_address=start+i*4+8;
5195       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5196     }
5197   }
5198   #endif
5199   #ifdef USE_MINI_HT
5200   if(rs1[i]==31) {
5201     int rh=get_reg(regs[i].regmap,RHASH);
5202     if(rh>=0) do_preload_rhash(rh);
5203   }
5204   #endif
5205   ds_assemble(i+1,i_regs);
5206   uint64_t bc_unneeded=branch_regs[i].u;
5207   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5208   bc_unneeded|=1|(1LL<<rt1[i]);
5209   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5210   bc_unneeded&=~(1LL<<rs1[i]);
5211   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5212                 bc_unneeded,bc_unneeded_upper);
5213   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5214   if(rt1[i]!=0) {
5215     int rt,return_address;
5216     assert(rt1[i+1]!=rt1[i]);
5217     assert(rt2[i+1]!=rt1[i]);
5218     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5219     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5220     assert(rt>=0);
5221     return_address=start+i*4+8;
5222     #ifdef REG_PREFETCH
5223     if(temp>=0) 
5224     {
5225       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5226     }
5227     #endif
5228     emit_movimm(return_address,rt); // PC into link register
5229     #ifdef IMM_PREFETCH
5230     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5231     #endif
5232   }
5233   cc=get_reg(branch_regs[i].regmap,CCREG);
5234   assert(cc==HOST_CCREG);
5235   #ifdef USE_MINI_HT
5236   int rh=get_reg(branch_regs[i].regmap,RHASH);
5237   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5238   if(rs1[i]==31) {
5239     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5240     do_preload_rhtbl(ht);
5241     do_rhash(rs,rh);
5242   }
5243   #endif
5244   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5245   #ifdef DESTRUCTIVE_WRITEBACK
5246   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5247     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5248       emit_loadreg(rs1[i],rs);
5249     }
5250   }
5251   #endif
5252   #ifdef REG_PREFETCH
5253   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5254   #endif
5255   #ifdef USE_MINI_HT
5256   if(rs1[i]==31) {
5257     do_miniht_load(ht,rh);
5258   }
5259   #endif
5260   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5261   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5262   //assert(adj==0);
5263   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5264   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5265   emit_jns(0);
5266   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5267   #ifdef USE_MINI_HT
5268   if(rs1[i]==31) {
5269     do_miniht_jump(rs,rh,ht);
5270   }
5271   else
5272   #endif
5273   {
5274     //if(rs!=EAX) emit_mov(rs,EAX);
5275     //emit_jmp((int)jump_vaddr_eax);
5276     emit_jmp(jump_vaddr_reg[rs]);
5277   }
5278   /* Check hash table
5279   temp=!rs;
5280   emit_mov(rs,temp);
5281   emit_shrimm(rs,16,rs);
5282   emit_xor(temp,rs,rs);
5283   emit_movzwl_reg(rs,rs);
5284   emit_shlimm(rs,4,rs);
5285   emit_cmpmem_indexed((int)hash_table,rs,temp);
5286   emit_jne((int)out+14);
5287   emit_readword_indexed((int)hash_table+4,rs,rs);
5288   emit_jmpreg(rs);
5289   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5290   emit_addimm_no_flags(8,rs);
5291   emit_jeq((int)out-17);
5292   // No hit on hash table, call compiler
5293   emit_pushreg(temp);
5294 //DEBUG >
5295 #ifdef DEBUG_CYCLE_COUNT
5296   emit_readword((int)&last_count,ECX);
5297   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5298   emit_readword((int)&next_interupt,ECX);
5299   emit_writeword(HOST_CCREG,(int)&Count);
5300   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5301   emit_writeword(ECX,(int)&last_count);
5302 #endif
5303 //DEBUG <
5304   emit_storereg(CCREG,HOST_CCREG);
5305   emit_call((int)get_addr);
5306   emit_loadreg(CCREG,HOST_CCREG);
5307   emit_addimm(ESP,4,ESP);
5308   emit_jmpreg(EAX);*/
5309   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5310   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5311   #endif
5312 }
5313
5314 void cjump_assemble(int i,struct regstat *i_regs)
5315 {
5316   signed char *i_regmap=i_regs->regmap;
5317   int cc;
5318   int match;
5319   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5320   assem_debug("match=%d\n",match);
5321   int s1h,s1l,s2h,s2l;
5322   int prev_cop1_usable=cop1_usable;
5323   int unconditional=0,nop=0;
5324   int only32=0;
5325   int invert=0;
5326   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5327   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5328   if(!match) invert=1;
5329   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5330   if(i>(ba[i]-start)>>2) invert=1;
5331   #endif
5332   
5333   if(ooo[i]) {
5334     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5335     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5336     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5337     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5338   }
5339   else {
5340     s1l=get_reg(i_regmap,rs1[i]);
5341     s1h=get_reg(i_regmap,rs1[i]|64);
5342     s2l=get_reg(i_regmap,rs2[i]);
5343     s2h=get_reg(i_regmap,rs2[i]|64);
5344   }
5345   if(rs1[i]==0&&rs2[i]==0)
5346   {
5347     if(opcode[i]&1) nop=1;
5348     else unconditional=1;
5349     //assert(opcode[i]!=5);
5350     //assert(opcode[i]!=7);
5351     //assert(opcode[i]!=0x15);
5352     //assert(opcode[i]!=0x17);
5353   }
5354   else if(rs1[i]==0)
5355   {
5356     s1l=s2l;s1h=s2h;
5357     s2l=s2h=-1;
5358     only32=(regs[i].was32>>rs2[i])&1;
5359   }
5360   else if(rs2[i]==0)
5361   {
5362     s2l=s2h=-1;
5363     only32=(regs[i].was32>>rs1[i])&1;
5364   }
5365   else {
5366     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5367   }
5368
5369   if(ooo[i]) {
5370     // Out of order execution (delay slot first)
5371     //printf("OOOE\n");
5372     address_generation(i+1,i_regs,regs[i].regmap_entry);
5373     ds_assemble(i+1,i_regs);
5374     int adj;
5375     uint64_t bc_unneeded=branch_regs[i].u;
5376     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5377     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5378     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5379     bc_unneeded|=1;
5380     bc_unneeded_upper|=1;
5381     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5382                   bc_unneeded,bc_unneeded_upper);
5383     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5384     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5385     cc=get_reg(branch_regs[i].regmap,CCREG);
5386     assert(cc==HOST_CCREG);
5387     if(unconditional) 
5388       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5389     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5390     //assem_debug("cycle count (adj)\n");
5391     if(unconditional) {
5392       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5393       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5394         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5395         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5396         if(internal)
5397           assem_debug("branch: internal\n");
5398         else
5399           assem_debug("branch: external\n");
5400         if(internal&&is_ds[(ba[i]-start)>>2]) {
5401           ds_assemble_entry(i);
5402         }
5403         else {
5404           add_to_linker((int)out,ba[i],internal);
5405           emit_jmp(0);
5406         }
5407         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5408         if(((u_int)out)&7) emit_addnop(0);
5409         #endif
5410       }
5411     }
5412     else if(nop) {
5413       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5414       int jaddr=(int)out;
5415       emit_jns(0);
5416       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5417     }
5418     else {
5419       int taken=0,nottaken=0,nottaken1=0;
5420       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5421       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5422       if(!only32)
5423       {
5424         assert(s1h>=0);
5425         if(opcode[i]==4) // BEQ
5426         {
5427           if(s2h>=0) emit_cmp(s1h,s2h);
5428           else emit_test(s1h,s1h);
5429           nottaken1=(int)out;
5430           emit_jne(1);
5431         }
5432         if(opcode[i]==5) // BNE
5433         {
5434           if(s2h>=0) emit_cmp(s1h,s2h);
5435           else emit_test(s1h,s1h);
5436           if(invert) taken=(int)out;
5437           else add_to_linker((int)out,ba[i],internal);
5438           emit_jne(0);
5439         }
5440         if(opcode[i]==6) // BLEZ
5441         {
5442           emit_test(s1h,s1h);
5443           if(invert) taken=(int)out;
5444           else add_to_linker((int)out,ba[i],internal);
5445           emit_js(0);
5446           nottaken1=(int)out;
5447           emit_jne(1);
5448         }
5449         if(opcode[i]==7) // BGTZ
5450         {
5451           emit_test(s1h,s1h);
5452           nottaken1=(int)out;
5453           emit_js(1);
5454           if(invert) taken=(int)out;
5455           else add_to_linker((int)out,ba[i],internal);
5456           emit_jne(0);
5457         }
5458       } // if(!only32)
5459           
5460       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5461       assert(s1l>=0);
5462       if(opcode[i]==4) // BEQ
5463       {
5464         if(s2l>=0) emit_cmp(s1l,s2l);
5465         else emit_test(s1l,s1l);
5466         if(invert){
5467           nottaken=(int)out;
5468           emit_jne(1);
5469         }else{
5470           add_to_linker((int)out,ba[i],internal);
5471           emit_jeq(0);
5472         }
5473       }
5474       if(opcode[i]==5) // BNE
5475       {
5476         if(s2l>=0) emit_cmp(s1l,s2l);
5477         else emit_test(s1l,s1l);
5478         if(invert){
5479           nottaken=(int)out;
5480           emit_jeq(1);
5481         }else{
5482           add_to_linker((int)out,ba[i],internal);
5483           emit_jne(0);
5484         }
5485       }
5486       if(opcode[i]==6) // BLEZ
5487       {
5488         emit_cmpimm(s1l,1);
5489         if(invert){
5490           nottaken=(int)out;
5491           emit_jge(1);
5492         }else{
5493           add_to_linker((int)out,ba[i],internal);
5494           emit_jl(0);
5495         }
5496       }
5497       if(opcode[i]==7) // BGTZ
5498       {
5499         emit_cmpimm(s1l,1);
5500         if(invert){
5501           nottaken=(int)out;
5502           emit_jl(1);
5503         }else{
5504           add_to_linker((int)out,ba[i],internal);
5505           emit_jge(0);
5506         }
5507       }
5508       if(invert) {
5509         if(taken) set_jump_target(taken,(int)out);
5510         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5511         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5512           if(adj) {
5513             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5514             add_to_linker((int)out,ba[i],internal);
5515           }else{
5516             emit_addnop(13);
5517             add_to_linker((int)out,ba[i],internal*2);
5518           }
5519           emit_jmp(0);
5520         }else
5521         #endif
5522         {
5523           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5524           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5525           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5526           if(internal)
5527             assem_debug("branch: internal\n");
5528           else
5529             assem_debug("branch: external\n");
5530           if(internal&&is_ds[(ba[i]-start)>>2]) {
5531             ds_assemble_entry(i);
5532           }
5533           else {
5534             add_to_linker((int)out,ba[i],internal);
5535             emit_jmp(0);
5536           }
5537         }
5538         set_jump_target(nottaken,(int)out);
5539       }
5540
5541       if(nottaken1) set_jump_target(nottaken1,(int)out);
5542       if(adj) {
5543         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5544       }
5545     } // (!unconditional)
5546   } // if(ooo)
5547   else
5548   {
5549     // In-order execution (branch first)
5550     //if(likely[i]) printf("IOL\n");
5551     //else
5552     //printf("IOE\n");
5553     int taken=0,nottaken=0,nottaken1=0;
5554     if(!unconditional&&!nop) {
5555       if(!only32)
5556       {
5557         assert(s1h>=0);
5558         if((opcode[i]&0x2f)==4) // BEQ
5559         {
5560           if(s2h>=0) emit_cmp(s1h,s2h);
5561           else emit_test(s1h,s1h);
5562           nottaken1=(int)out;
5563           emit_jne(2);
5564         }
5565         if((opcode[i]&0x2f)==5) // BNE
5566         {
5567           if(s2h>=0) emit_cmp(s1h,s2h);
5568           else emit_test(s1h,s1h);
5569           taken=(int)out;
5570           emit_jne(1);
5571         }
5572         if((opcode[i]&0x2f)==6) // BLEZ
5573         {
5574           emit_test(s1h,s1h);
5575           taken=(int)out;
5576           emit_js(1);
5577           nottaken1=(int)out;
5578           emit_jne(2);
5579         }
5580         if((opcode[i]&0x2f)==7) // BGTZ
5581         {
5582           emit_test(s1h,s1h);
5583           nottaken1=(int)out;
5584           emit_js(2);
5585           taken=(int)out;
5586           emit_jne(1);
5587         }
5588       } // if(!only32)
5589           
5590       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5591       assert(s1l>=0);
5592       if((opcode[i]&0x2f)==4) // BEQ
5593       {
5594         if(s2l>=0) emit_cmp(s1l,s2l);
5595         else emit_test(s1l,s1l);
5596         nottaken=(int)out;
5597         emit_jne(2);
5598       }
5599       if((opcode[i]&0x2f)==5) // BNE
5600       {
5601         if(s2l>=0) emit_cmp(s1l,s2l);
5602         else emit_test(s1l,s1l);
5603         nottaken=(int)out;
5604         emit_jeq(2);
5605       }
5606       if((opcode[i]&0x2f)==6) // BLEZ
5607       {
5608         emit_cmpimm(s1l,1);
5609         nottaken=(int)out;
5610         emit_jge(2);
5611       }
5612       if((opcode[i]&0x2f)==7) // BGTZ
5613       {
5614         emit_cmpimm(s1l,1);
5615         nottaken=(int)out;
5616         emit_jl(2);
5617       }
5618     } // if(!unconditional)
5619     int adj;
5620     uint64_t ds_unneeded=branch_regs[i].u;
5621     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5622     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5623     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5624     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5625     ds_unneeded|=1;
5626     ds_unneeded_upper|=1;
5627     // branch taken
5628     if(!nop) {
5629       if(taken) set_jump_target(taken,(int)out);
5630       assem_debug("1:\n");
5631       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5632                     ds_unneeded,ds_unneeded_upper);
5633       // load regs
5634       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5635       address_generation(i+1,&branch_regs[i],0);
5636       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5637       ds_assemble(i+1,&branch_regs[i]);
5638       cc=get_reg(branch_regs[i].regmap,CCREG);
5639       if(cc==-1) {
5640         emit_loadreg(CCREG,cc=HOST_CCREG);
5641         // CHECK: Is the following instruction (fall thru) allocated ok?
5642       }
5643       assert(cc==HOST_CCREG);
5644       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5645       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5646       assem_debug("cycle count (adj)\n");
5647       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5648       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5649       if(internal)
5650         assem_debug("branch: internal\n");
5651       else
5652         assem_debug("branch: external\n");
5653       if(internal&&is_ds[(ba[i]-start)>>2]) {
5654         ds_assemble_entry(i);
5655       }
5656       else {
5657         add_to_linker((int)out,ba[i],internal);
5658         emit_jmp(0);
5659       }
5660     }
5661     // branch not taken
5662     cop1_usable=prev_cop1_usable;
5663     if(!unconditional) {
5664       if(nottaken1) set_jump_target(nottaken1,(int)out);
5665       set_jump_target(nottaken,(int)out);
5666       assem_debug("2:\n");
5667       if(!likely[i]) {
5668         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5669                       ds_unneeded,ds_unneeded_upper);
5670         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5671         address_generation(i+1,&branch_regs[i],0);
5672         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5673         ds_assemble(i+1,&branch_regs[i]);
5674       }
5675       cc=get_reg(branch_regs[i].regmap,CCREG);
5676       if(cc==-1&&!likely[i]) {
5677         // Cycle count isn't in a register, temporarily load it then write it out
5678         emit_loadreg(CCREG,HOST_CCREG);
5679         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5680         int jaddr=(int)out;
5681         emit_jns(0);
5682         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5683         emit_storereg(CCREG,HOST_CCREG);
5684       }
5685       else{
5686         cc=get_reg(i_regmap,CCREG);
5687         assert(cc==HOST_CCREG);
5688         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5689         int jaddr=(int)out;
5690         emit_jns(0);
5691         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5692       }
5693     }
5694   }
5695 }
5696
5697 void sjump_assemble(int i,struct regstat *i_regs)
5698 {
5699   signed char *i_regmap=i_regs->regmap;
5700   int cc;
5701   int match;
5702   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5703   assem_debug("smatch=%d\n",match);
5704   int s1h,s1l;
5705   int prev_cop1_usable=cop1_usable;
5706   int unconditional=0,nevertaken=0;
5707   int only32=0;
5708   int invert=0;
5709   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5710   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5711   if(!match) invert=1;
5712   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5713   if(i>(ba[i]-start)>>2) invert=1;
5714   #endif
5715
5716   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5717   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5718
5719   if(ooo[i]) {
5720     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5721     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5722   }
5723   else {
5724     s1l=get_reg(i_regmap,rs1[i]);
5725     s1h=get_reg(i_regmap,rs1[i]|64);
5726   }
5727   if(rs1[i]==0)
5728   {
5729     if(opcode2[i]&1) unconditional=1;
5730     else nevertaken=1;
5731     // These are never taken (r0 is never less than zero)
5732     //assert(opcode2[i]!=0);
5733     //assert(opcode2[i]!=2);
5734     //assert(opcode2[i]!=0x10);
5735     //assert(opcode2[i]!=0x12);
5736   }
5737   else {
5738     only32=(regs[i].was32>>rs1[i])&1;
5739   }
5740
5741   if(ooo[i]) {
5742     // Out of order execution (delay slot first)
5743     //printf("OOOE\n");
5744     address_generation(i+1,i_regs,regs[i].regmap_entry);
5745     ds_assemble(i+1,i_regs);
5746     int adj;
5747     uint64_t bc_unneeded=branch_regs[i].u;
5748     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5749     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5750     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5751     bc_unneeded|=1;
5752     bc_unneeded_upper|=1;
5753     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5754                   bc_unneeded,bc_unneeded_upper);
5755     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5756     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5757     if(rt1[i]==31) {
5758       int rt,return_address;
5759       rt=get_reg(branch_regs[i].regmap,31);
5760       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5761       if(rt>=0) {
5762         // Save the PC even if the branch is not taken
5763         return_address=start+i*4+8;
5764         emit_movimm(return_address,rt); // PC into link register
5765         #ifdef IMM_PREFETCH
5766         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5767         #endif
5768       }
5769     }
5770     cc=get_reg(branch_regs[i].regmap,CCREG);
5771     assert(cc==HOST_CCREG);
5772     if(unconditional) 
5773       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5774     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5775     assem_debug("cycle count (adj)\n");
5776     if(unconditional) {
5777       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5778       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5779         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5780         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5781         if(internal)
5782           assem_debug("branch: internal\n");
5783         else
5784           assem_debug("branch: external\n");
5785         if(internal&&is_ds[(ba[i]-start)>>2]) {
5786           ds_assemble_entry(i);
5787         }
5788         else {
5789           add_to_linker((int)out,ba[i],internal);
5790           emit_jmp(0);
5791         }
5792         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5793         if(((u_int)out)&7) emit_addnop(0);
5794         #endif
5795       }
5796     }
5797     else if(nevertaken) {
5798       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5799       int jaddr=(int)out;
5800       emit_jns(0);
5801       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5802     }
5803     else {
5804       int nottaken=0;
5805       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5806       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5807       if(!only32)
5808       {
5809         assert(s1h>=0);
5810         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5811         {
5812           emit_test(s1h,s1h);
5813           if(invert){
5814             nottaken=(int)out;
5815             emit_jns(1);
5816           }else{
5817             add_to_linker((int)out,ba[i],internal);
5818             emit_js(0);
5819           }
5820         }
5821         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5822         {
5823           emit_test(s1h,s1h);
5824           if(invert){
5825             nottaken=(int)out;
5826             emit_js(1);
5827           }else{
5828             add_to_linker((int)out,ba[i],internal);
5829             emit_jns(0);
5830           }
5831         }
5832       } // if(!only32)
5833       else
5834       {
5835         assert(s1l>=0);
5836         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5837         {
5838           emit_test(s1l,s1l);
5839           if(invert){
5840             nottaken=(int)out;
5841             emit_jns(1);
5842           }else{
5843             add_to_linker((int)out,ba[i],internal);
5844             emit_js(0);
5845           }
5846         }
5847         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5848         {
5849           emit_test(s1l,s1l);
5850           if(invert){
5851             nottaken=(int)out;
5852             emit_js(1);
5853           }else{
5854             add_to_linker((int)out,ba[i],internal);
5855             emit_jns(0);
5856           }
5857         }
5858       } // if(!only32)
5859           
5860       if(invert) {
5861         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5862         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5863           if(adj) {
5864             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5865             add_to_linker((int)out,ba[i],internal);
5866           }else{
5867             emit_addnop(13);
5868             add_to_linker((int)out,ba[i],internal*2);
5869           }
5870           emit_jmp(0);
5871         }else
5872         #endif
5873         {
5874           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5875           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5876           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5877           if(internal)
5878             assem_debug("branch: internal\n");
5879           else
5880             assem_debug("branch: external\n");
5881           if(internal&&is_ds[(ba[i]-start)>>2]) {
5882             ds_assemble_entry(i);
5883           }
5884           else {
5885             add_to_linker((int)out,ba[i],internal);
5886             emit_jmp(0);
5887           }
5888         }
5889         set_jump_target(nottaken,(int)out);
5890       }
5891
5892       if(adj) {
5893         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5894       }
5895     } // (!unconditional)
5896   } // if(ooo)
5897   else
5898   {
5899     // In-order execution (branch first)
5900     //printf("IOE\n");
5901     int nottaken=0;
5902     if(rt1[i]==31) {
5903       int rt,return_address;
5904       rt=get_reg(branch_regs[i].regmap,31);
5905       if(rt>=0) {
5906         // Save the PC even if the branch is not taken
5907         return_address=start+i*4+8;
5908         emit_movimm(return_address,rt); // PC into link register
5909         #ifdef IMM_PREFETCH
5910         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5911         #endif
5912       }
5913     }
5914     if(!unconditional) {
5915       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5916       if(!only32)
5917       {
5918         assert(s1h>=0);
5919         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5920         {
5921           emit_test(s1h,s1h);
5922           nottaken=(int)out;
5923           emit_jns(1);
5924         }
5925         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5926         {
5927           emit_test(s1h,s1h);
5928           nottaken=(int)out;
5929           emit_js(1);
5930         }
5931       } // if(!only32)
5932       else
5933       {
5934         assert(s1l>=0);
5935         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5936         {
5937           emit_test(s1l,s1l);
5938           nottaken=(int)out;
5939           emit_jns(1);
5940         }
5941         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5942         {
5943           emit_test(s1l,s1l);
5944           nottaken=(int)out;
5945           emit_js(1);
5946         }
5947       }
5948     } // if(!unconditional)
5949     int adj;
5950     uint64_t ds_unneeded=branch_regs[i].u;
5951     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5952     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5953     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5954     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5955     ds_unneeded|=1;
5956     ds_unneeded_upper|=1;
5957     // branch taken
5958     if(!nevertaken) {
5959       //assem_debug("1:\n");
5960       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5961                     ds_unneeded,ds_unneeded_upper);
5962       // load regs
5963       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5964       address_generation(i+1,&branch_regs[i],0);
5965       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5966       ds_assemble(i+1,&branch_regs[i]);
5967       cc=get_reg(branch_regs[i].regmap,CCREG);
5968       if(cc==-1) {
5969         emit_loadreg(CCREG,cc=HOST_CCREG);
5970         // CHECK: Is the following instruction (fall thru) allocated ok?
5971       }
5972       assert(cc==HOST_CCREG);
5973       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5974       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5975       assem_debug("cycle count (adj)\n");
5976       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5977       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5978       if(internal)
5979         assem_debug("branch: internal\n");
5980       else
5981         assem_debug("branch: external\n");
5982       if(internal&&is_ds[(ba[i]-start)>>2]) {
5983         ds_assemble_entry(i);
5984       }
5985       else {
5986         add_to_linker((int)out,ba[i],internal);
5987         emit_jmp(0);
5988       }
5989     }
5990     // branch not taken
5991     cop1_usable=prev_cop1_usable;
5992     if(!unconditional) {
5993       set_jump_target(nottaken,(int)out);
5994       assem_debug("1:\n");
5995       if(!likely[i]) {
5996         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5997                       ds_unneeded,ds_unneeded_upper);
5998         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5999         address_generation(i+1,&branch_regs[i],0);
6000         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6001         ds_assemble(i+1,&branch_regs[i]);
6002       }
6003       cc=get_reg(branch_regs[i].regmap,CCREG);
6004       if(cc==-1&&!likely[i]) {
6005         // Cycle count isn't in a register, temporarily load it then write it out
6006         emit_loadreg(CCREG,HOST_CCREG);
6007         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6008         int jaddr=(int)out;
6009         emit_jns(0);
6010         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6011         emit_storereg(CCREG,HOST_CCREG);
6012       }
6013       else{
6014         cc=get_reg(i_regmap,CCREG);
6015         assert(cc==HOST_CCREG);
6016         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6017         int jaddr=(int)out;
6018         emit_jns(0);
6019         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6020       }
6021     }
6022   }
6023 }
6024
6025 void fjump_assemble(int i,struct regstat *i_regs)
6026 {
6027   signed char *i_regmap=i_regs->regmap;
6028   int cc;
6029   int match;
6030   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6031   assem_debug("fmatch=%d\n",match);
6032   int fs,cs;
6033   int eaddr;
6034   int invert=0;
6035   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6036   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6037   if(!match) invert=1;
6038   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6039   if(i>(ba[i]-start)>>2) invert=1;
6040   #endif
6041
6042   if(ooo[i]) {
6043     fs=get_reg(branch_regs[i].regmap,FSREG);
6044     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6045   }
6046   else {
6047     fs=get_reg(i_regmap,FSREG);
6048   }
6049
6050   // Check cop1 unusable
6051   if(!cop1_usable) {
6052     cs=get_reg(i_regmap,CSREG);
6053     assert(cs>=0);
6054     emit_testimm(cs,0x20000000);
6055     eaddr=(int)out;
6056     emit_jeq(0);
6057     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6058     cop1_usable=1;
6059   }
6060
6061   if(ooo[i]) {
6062     // Out of order execution (delay slot first)
6063     //printf("OOOE\n");
6064     ds_assemble(i+1,i_regs);
6065     int adj;
6066     uint64_t bc_unneeded=branch_regs[i].u;
6067     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6068     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6069     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6070     bc_unneeded|=1;
6071     bc_unneeded_upper|=1;
6072     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6073                   bc_unneeded,bc_unneeded_upper);
6074     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6075     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6076     cc=get_reg(branch_regs[i].regmap,CCREG);
6077     assert(cc==HOST_CCREG);
6078     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6079     assem_debug("cycle count (adj)\n");
6080     if(1) {
6081       int nottaken=0;
6082       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6083       if(1) {
6084         assert(fs>=0);
6085         emit_testimm(fs,0x800000);
6086         if(source[i]&0x10000) // BC1T
6087         {
6088           if(invert){
6089             nottaken=(int)out;
6090             emit_jeq(1);
6091           }else{
6092             add_to_linker((int)out,ba[i],internal);
6093             emit_jne(0);
6094           }
6095         }
6096         else // BC1F
6097           if(invert){
6098             nottaken=(int)out;
6099             emit_jne(1);
6100           }else{
6101             add_to_linker((int)out,ba[i],internal);
6102             emit_jeq(0);
6103           }
6104         {
6105         }
6106       } // if(!only32)
6107           
6108       if(invert) {
6109         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6110         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6111         else if(match) emit_addnop(13);
6112         #endif
6113         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6114         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6115         if(internal)
6116           assem_debug("branch: internal\n");
6117         else
6118           assem_debug("branch: external\n");
6119         if(internal&&is_ds[(ba[i]-start)>>2]) {
6120           ds_assemble_entry(i);
6121         }
6122         else {
6123           add_to_linker((int)out,ba[i],internal);
6124           emit_jmp(0);
6125         }
6126         set_jump_target(nottaken,(int)out);
6127       }
6128
6129       if(adj) {
6130         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6131       }
6132     } // (!unconditional)
6133   } // if(ooo)
6134   else
6135   {
6136     // In-order execution (branch first)
6137     //printf("IOE\n");
6138     int nottaken=0;
6139     if(1) {
6140       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6141       if(1) {
6142         assert(fs>=0);
6143         emit_testimm(fs,0x800000);
6144         if(source[i]&0x10000) // BC1T
6145         {
6146           nottaken=(int)out;
6147           emit_jeq(1);
6148         }
6149         else // BC1F
6150         {
6151           nottaken=(int)out;
6152           emit_jne(1);
6153         }
6154       }
6155     } // if(!unconditional)
6156     int adj;
6157     uint64_t ds_unneeded=branch_regs[i].u;
6158     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6159     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6160     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6161     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6162     ds_unneeded|=1;
6163     ds_unneeded_upper|=1;
6164     // branch taken
6165     //assem_debug("1:\n");
6166     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6167                   ds_unneeded,ds_unneeded_upper);
6168     // load regs
6169     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6170     address_generation(i+1,&branch_regs[i],0);
6171     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6172     ds_assemble(i+1,&branch_regs[i]);
6173     cc=get_reg(branch_regs[i].regmap,CCREG);
6174     if(cc==-1) {
6175       emit_loadreg(CCREG,cc=HOST_CCREG);
6176       // CHECK: Is the following instruction (fall thru) allocated ok?
6177     }
6178     assert(cc==HOST_CCREG);
6179     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6180     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6181     assem_debug("cycle count (adj)\n");
6182     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6183     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6184     if(internal)
6185       assem_debug("branch: internal\n");
6186     else
6187       assem_debug("branch: external\n");
6188     if(internal&&is_ds[(ba[i]-start)>>2]) {
6189       ds_assemble_entry(i);
6190     }
6191     else {
6192       add_to_linker((int)out,ba[i],internal);
6193       emit_jmp(0);
6194     }
6195
6196     // branch not taken
6197     if(1) { // <- FIXME (don't need this)
6198       set_jump_target(nottaken,(int)out);
6199       assem_debug("1:\n");
6200       if(!likely[i]) {
6201         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6202                       ds_unneeded,ds_unneeded_upper);
6203         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6204         address_generation(i+1,&branch_regs[i],0);
6205         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6206         ds_assemble(i+1,&branch_regs[i]);
6207       }
6208       cc=get_reg(branch_regs[i].regmap,CCREG);
6209       if(cc==-1&&!likely[i]) {
6210         // Cycle count isn't in a register, temporarily load it then write it out
6211         emit_loadreg(CCREG,HOST_CCREG);
6212         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6213         int jaddr=(int)out;
6214         emit_jns(0);
6215         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6216         emit_storereg(CCREG,HOST_CCREG);
6217       }
6218       else{
6219         cc=get_reg(i_regmap,CCREG);
6220         assert(cc==HOST_CCREG);
6221         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6222         int jaddr=(int)out;
6223         emit_jns(0);
6224         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6225       }
6226     }
6227   }
6228 }
6229
6230 static void pagespan_assemble(int i,struct regstat *i_regs)
6231 {
6232   int s1l=get_reg(i_regs->regmap,rs1[i]);
6233   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6234   int s2l=get_reg(i_regs->regmap,rs2[i]);
6235   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6236   void *nt_branch=NULL;
6237   int taken=0;
6238   int nottaken=0;
6239   int unconditional=0;
6240   if(rs1[i]==0)
6241   {
6242     s1l=s2l;s1h=s2h;
6243     s2l=s2h=-1;
6244   }
6245   else if(rs2[i]==0)
6246   {
6247     s2l=s2h=-1;
6248   }
6249   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6250     s1h=s2h=-1;
6251   }
6252   int hr=0;
6253   int addr,alt,ntaddr;
6254   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6255   else {
6256     while(hr<HOST_REGS)
6257     {
6258       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6259          (i_regs->regmap[hr]&63)!=rs1[i] &&
6260          (i_regs->regmap[hr]&63)!=rs2[i] )
6261       {
6262         addr=hr++;break;
6263       }
6264       hr++;
6265     }
6266   }
6267   while(hr<HOST_REGS)
6268   {
6269     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6270        (i_regs->regmap[hr]&63)!=rs1[i] &&
6271        (i_regs->regmap[hr]&63)!=rs2[i] )
6272     {
6273       alt=hr++;break;
6274     }
6275     hr++;
6276   }
6277   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6278   {
6279     while(hr<HOST_REGS)
6280     {
6281       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6282          (i_regs->regmap[hr]&63)!=rs1[i] &&
6283          (i_regs->regmap[hr]&63)!=rs2[i] )
6284       {
6285         ntaddr=hr;break;
6286       }
6287       hr++;
6288     }
6289   }
6290   assert(hr<HOST_REGS);
6291   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6292     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6293   }
6294   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6295   if(opcode[i]==2) // J
6296   {
6297     unconditional=1;
6298   }
6299   if(opcode[i]==3) // JAL
6300   {
6301     // TODO: mini_ht
6302     int rt=get_reg(i_regs->regmap,31);
6303     emit_movimm(start+i*4+8,rt);
6304     unconditional=1;
6305   }
6306   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6307   {
6308     emit_mov(s1l,addr);
6309     if(opcode2[i]==9) // JALR
6310     {
6311       int rt=get_reg(i_regs->regmap,rt1[i]);
6312       emit_movimm(start+i*4+8,rt);
6313     }
6314   }
6315   if((opcode[i]&0x3f)==4) // BEQ
6316   {
6317     if(rs1[i]==rs2[i])
6318     {
6319       unconditional=1;
6320     }
6321     else
6322     #ifdef HAVE_CMOV_IMM
6323     if(s1h<0) {
6324       if(s2l>=0) emit_cmp(s1l,s2l);
6325       else emit_test(s1l,s1l);
6326       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6327     }
6328     else
6329     #endif
6330     {
6331       assert(s1l>=0);
6332       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6333       if(s1h>=0) {
6334         if(s2h>=0) emit_cmp(s1h,s2h);
6335         else emit_test(s1h,s1h);
6336         emit_cmovne_reg(alt,addr);
6337       }
6338       if(s2l>=0) emit_cmp(s1l,s2l);
6339       else emit_test(s1l,s1l);
6340       emit_cmovne_reg(alt,addr);
6341     }
6342   }
6343   if((opcode[i]&0x3f)==5) // BNE
6344   {
6345     #ifdef HAVE_CMOV_IMM
6346     if(s1h<0) {
6347       if(s2l>=0) emit_cmp(s1l,s2l);
6348       else emit_test(s1l,s1l);
6349       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6350     }
6351     else
6352     #endif
6353     {
6354       assert(s1l>=0);
6355       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6356       if(s1h>=0) {
6357         if(s2h>=0) emit_cmp(s1h,s2h);
6358         else emit_test(s1h,s1h);
6359         emit_cmovne_reg(alt,addr);
6360       }
6361       if(s2l>=0) emit_cmp(s1l,s2l);
6362       else emit_test(s1l,s1l);
6363       emit_cmovne_reg(alt,addr);
6364     }
6365   }
6366   if((opcode[i]&0x3f)==0x14) // BEQL
6367   {
6368     if(s1h>=0) {
6369       if(s2h>=0) emit_cmp(s1h,s2h);
6370       else emit_test(s1h,s1h);
6371       nottaken=(int)out;
6372       emit_jne(0);
6373     }
6374     if(s2l>=0) emit_cmp(s1l,s2l);
6375     else emit_test(s1l,s1l);
6376     if(nottaken) set_jump_target(nottaken,(int)out);
6377     nottaken=(int)out;
6378     emit_jne(0);
6379   }
6380   if((opcode[i]&0x3f)==0x15) // BNEL
6381   {
6382     if(s1h>=0) {
6383       if(s2h>=0) emit_cmp(s1h,s2h);
6384       else emit_test(s1h,s1h);
6385       taken=(int)out;
6386       emit_jne(0);
6387     }
6388     if(s2l>=0) emit_cmp(s1l,s2l);
6389     else emit_test(s1l,s1l);
6390     nottaken=(int)out;
6391     emit_jeq(0);
6392     if(taken) set_jump_target(taken,(int)out);
6393   }
6394   if((opcode[i]&0x3f)==6) // BLEZ
6395   {
6396     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6397     emit_cmpimm(s1l,1);
6398     if(s1h>=0) emit_mov(addr,ntaddr);
6399     emit_cmovl_reg(alt,addr);
6400     if(s1h>=0) {
6401       emit_test(s1h,s1h);
6402       emit_cmovne_reg(ntaddr,addr);
6403       emit_cmovs_reg(alt,addr);
6404     }
6405   }
6406   if((opcode[i]&0x3f)==7) // BGTZ
6407   {
6408     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6409     emit_cmpimm(s1l,1);
6410     if(s1h>=0) emit_mov(addr,alt);
6411     emit_cmovl_reg(ntaddr,addr);
6412     if(s1h>=0) {
6413       emit_test(s1h,s1h);
6414       emit_cmovne_reg(alt,addr);
6415       emit_cmovs_reg(ntaddr,addr);
6416     }
6417   }
6418   if((opcode[i]&0x3f)==0x16) // BLEZL
6419   {
6420     assert((opcode[i]&0x3f)!=0x16);
6421   }
6422   if((opcode[i]&0x3f)==0x17) // BGTZL
6423   {
6424     assert((opcode[i]&0x3f)!=0x17);
6425   }
6426   assert(opcode[i]!=1); // BLTZ/BGEZ
6427
6428   //FIXME: Check CSREG
6429   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6430     if((source[i]&0x30000)==0) // BC1F
6431     {
6432       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6433       emit_testimm(s1l,0x800000);
6434       emit_cmovne_reg(alt,addr);
6435     }
6436     if((source[i]&0x30000)==0x10000) // BC1T
6437     {
6438       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6439       emit_testimm(s1l,0x800000);
6440       emit_cmovne_reg(alt,addr);
6441     }
6442     if((source[i]&0x30000)==0x20000) // BC1FL
6443     {
6444       emit_testimm(s1l,0x800000);
6445       nottaken=(int)out;
6446       emit_jne(0);
6447     }
6448     if((source[i]&0x30000)==0x30000) // BC1TL
6449     {
6450       emit_testimm(s1l,0x800000);
6451       nottaken=(int)out;
6452       emit_jeq(0);
6453     }
6454   }
6455
6456   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6457   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6458   if(likely[i]||unconditional)
6459   {
6460     emit_movimm(ba[i],HOST_BTREG);
6461   }
6462   else if(addr!=HOST_BTREG)
6463   {
6464     emit_mov(addr,HOST_BTREG);
6465   }
6466   void *branch_addr=out;
6467   emit_jmp(0);
6468   int target_addr=start+i*4+5;
6469   void *stub=out;
6470   void *compiled_target_addr=check_addr(target_addr);
6471   emit_extjump_ds((int)branch_addr,target_addr);
6472   if(compiled_target_addr) {
6473     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6474     add_link(target_addr,stub);
6475   }
6476   else set_jump_target((int)branch_addr,(int)stub);
6477   if(likely[i]) {
6478     // Not-taken path
6479     set_jump_target((int)nottaken,(int)out);
6480     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6481     void *branch_addr=out;
6482     emit_jmp(0);
6483     int target_addr=start+i*4+8;
6484     void *stub=out;
6485     void *compiled_target_addr=check_addr(target_addr);
6486     emit_extjump_ds((int)branch_addr,target_addr);
6487     if(compiled_target_addr) {
6488       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6489       add_link(target_addr,stub);
6490     }
6491     else set_jump_target((int)branch_addr,(int)stub);
6492   }
6493 }
6494
6495 // Assemble the delay slot for the above
6496 static void pagespan_ds()
6497 {
6498   assem_debug("initial delay slot:\n");
6499   u_int vaddr=start+1;
6500   u_int page=get_page(vaddr);
6501   u_int vpage=get_vpage(vaddr);
6502   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6503   do_dirty_stub_ds();
6504   ll_add(jump_in+page,vaddr,(void *)out);
6505   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6506   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6507     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6508   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6509     emit_writeword(HOST_BTREG,(int)&branch_target);
6510   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6511   address_generation(0,&regs[0],regs[0].regmap_entry);
6512   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6513     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6514   cop1_usable=0;
6515   is_delayslot=0;
6516   switch(itype[0]) {
6517     case ALU:
6518       alu_assemble(0,&regs[0]);break;
6519     case IMM16:
6520       imm16_assemble(0,&regs[0]);break;
6521     case SHIFT:
6522       shift_assemble(0,&regs[0]);break;
6523     case SHIFTIMM:
6524       shiftimm_assemble(0,&regs[0]);break;
6525     case LOAD:
6526       load_assemble(0,&regs[0]);break;
6527     case LOADLR:
6528       loadlr_assemble(0,&regs[0]);break;
6529     case STORE:
6530       store_assemble(0,&regs[0]);break;
6531     case STORELR:
6532       storelr_assemble(0,&regs[0]);break;
6533     case COP0:
6534       cop0_assemble(0,&regs[0]);break;
6535     case COP1:
6536       cop1_assemble(0,&regs[0]);break;
6537     case C1LS:
6538       c1ls_assemble(0,&regs[0]);break;
6539     case COP2:
6540       cop2_assemble(0,&regs[0]);break;
6541     case C2LS:
6542       c2ls_assemble(0,&regs[0]);break;
6543     case C2OP:
6544       c2op_assemble(0,&regs[0]);break;
6545     case FCONV:
6546       fconv_assemble(0,&regs[0]);break;
6547     case FLOAT:
6548       float_assemble(0,&regs[0]);break;
6549     case FCOMP:
6550       fcomp_assemble(0,&regs[0]);break;
6551     case MULTDIV:
6552       multdiv_assemble(0,&regs[0]);break;
6553     case MOV:
6554       mov_assemble(0,&regs[0]);break;
6555     case SYSCALL:
6556     case HLECALL:
6557     case INTCALL:
6558     case SPAN:
6559     case UJUMP:
6560     case RJUMP:
6561     case CJUMP:
6562     case SJUMP:
6563     case FJUMP:
6564       printf("Jump in the delay slot.  This is probably a bug.\n");
6565   }
6566   int btaddr=get_reg(regs[0].regmap,BTREG);
6567   if(btaddr<0) {
6568     btaddr=get_reg(regs[0].regmap,-1);
6569     emit_readword((int)&branch_target,btaddr);
6570   }
6571   assert(btaddr!=HOST_CCREG);
6572   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6573 #ifdef HOST_IMM8
6574   emit_movimm(start+4,HOST_TEMPREG);
6575   emit_cmp(btaddr,HOST_TEMPREG);
6576 #else
6577   emit_cmpimm(btaddr,start+4);
6578 #endif
6579   int branch=(int)out;
6580   emit_jeq(0);
6581   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6582   emit_jmp(jump_vaddr_reg[btaddr]);
6583   set_jump_target(branch,(int)out);
6584   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6585   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6586 }
6587
6588 // Basic liveness analysis for MIPS registers
6589 void unneeded_registers(int istart,int iend,int r)
6590 {
6591   int i;
6592   uint64_t u,uu,b,bu;
6593   uint64_t temp_u,temp_uu;
6594   uint64_t tdep;
6595   if(iend==slen-1) {
6596     u=1;uu=1;
6597   }else{
6598     u=unneeded_reg[iend+1];
6599     uu=unneeded_reg_upper[iend+1];
6600     u=1;uu=1;
6601   }
6602   for (i=iend;i>=istart;i--)
6603   {
6604     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6605     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6606     {
6607       // If subroutine call, flag return address as a possible branch target
6608       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6609       
6610       if(ba[i]<start || ba[i]>=(start+slen*4))
6611       {
6612         // Branch out of this block, flush all regs
6613         u=1;
6614         uu=1;
6615         /* Hexagon hack 
6616         if(itype[i]==UJUMP&&rt1[i]==31)
6617         {
6618           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6619         }
6620         if(itype[i]==RJUMP&&rs1[i]==31)
6621         {
6622           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6623         }
6624         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6625           if(itype[i]==UJUMP&&rt1[i]==31)
6626           {
6627             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6628             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6629           }
6630           if(itype[i]==RJUMP&&rs1[i]==31)
6631           {
6632             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6633             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6634           }
6635         }*/
6636         branch_unneeded_reg[i]=u;
6637         branch_unneeded_reg_upper[i]=uu;
6638         // Merge in delay slot
6639         tdep=(~uu>>rt1[i+1])&1;
6640         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6641         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6642         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6643         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6644         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6645         u|=1;uu|=1;
6646         // If branch is "likely" (and conditional)
6647         // then we skip the delay slot on the fall-thru path
6648         if(likely[i]) {
6649           if(i<slen-1) {
6650             u&=unneeded_reg[i+2];
6651             uu&=unneeded_reg_upper[i+2];
6652           }
6653           else
6654           {
6655             u=1;
6656             uu=1;
6657           }
6658         }
6659       }
6660       else
6661       {
6662         // Internal branch, flag target
6663         bt[(ba[i]-start)>>2]=1;
6664         if(ba[i]<=start+i*4) {
6665           // Backward branch
6666           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6667           {
6668             // Unconditional branch
6669             temp_u=1;temp_uu=1;
6670           } else {
6671             // Conditional branch (not taken case)
6672             temp_u=unneeded_reg[i+2];
6673             temp_uu=unneeded_reg_upper[i+2];
6674           }
6675           // Merge in delay slot
6676           tdep=(~temp_uu>>rt1[i+1])&1;
6677           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6678           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6679           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6680           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6681           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6682           temp_u|=1;temp_uu|=1;
6683           // If branch is "likely" (and conditional)
6684           // then we skip the delay slot on the fall-thru path
6685           if(likely[i]) {
6686             if(i<slen-1) {
6687               temp_u&=unneeded_reg[i+2];
6688               temp_uu&=unneeded_reg_upper[i+2];
6689             }
6690             else
6691             {
6692               temp_u=1;
6693               temp_uu=1;
6694             }
6695           }
6696           tdep=(~temp_uu>>rt1[i])&1;
6697           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6698           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6699           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6700           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6701           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6702           temp_u|=1;temp_uu|=1;
6703           unneeded_reg[i]=temp_u;
6704           unneeded_reg_upper[i]=temp_uu;
6705           // Only go three levels deep.  This recursion can take an
6706           // excessive amount of time if there are a lot of nested loops.
6707           if(r<2) {
6708             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6709           }else{
6710             unneeded_reg[(ba[i]-start)>>2]=1;
6711             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6712           }
6713         } /*else*/ if(1) {
6714           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6715           {
6716             // Unconditional branch
6717             u=unneeded_reg[(ba[i]-start)>>2];
6718             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6719             branch_unneeded_reg[i]=u;
6720             branch_unneeded_reg_upper[i]=uu;
6721         //u=1;
6722         //uu=1;
6723         //branch_unneeded_reg[i]=u;
6724         //branch_unneeded_reg_upper[i]=uu;
6725             // Merge in delay slot
6726             tdep=(~uu>>rt1[i+1])&1;
6727             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6728             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6729             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6730             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6731             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6732             u|=1;uu|=1;
6733           } else {
6734             // Conditional branch
6735             b=unneeded_reg[(ba[i]-start)>>2];
6736             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6737             branch_unneeded_reg[i]=b;
6738             branch_unneeded_reg_upper[i]=bu;
6739         //b=1;
6740         //bu=1;
6741         //branch_unneeded_reg[i]=b;
6742         //branch_unneeded_reg_upper[i]=bu;
6743             // Branch delay slot
6744             tdep=(~uu>>rt1[i+1])&1;
6745             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6746             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6747             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6748             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6749             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6750             b|=1;bu|=1;
6751             // If branch is "likely" then we skip the
6752             // delay slot on the fall-thru path
6753             if(likely[i]) {
6754               u=b;
6755               uu=bu;
6756               if(i<slen-1) {
6757                 u&=unneeded_reg[i+2];
6758                 uu&=unneeded_reg_upper[i+2];
6759         //u=1;
6760         //uu=1;
6761               }
6762             } else {
6763               u&=b;
6764               uu&=bu;
6765         //u=1;
6766         //uu=1;
6767             }
6768             if(i<slen-1) {
6769               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6770               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6771         //branch_unneeded_reg[i]=1;
6772         //branch_unneeded_reg_upper[i]=1;
6773             } else {
6774               branch_unneeded_reg[i]=1;
6775               branch_unneeded_reg_upper[i]=1;
6776             }
6777           }
6778         }
6779       }
6780     }
6781     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6782     {
6783       // SYSCALL instruction (software interrupt)
6784       u=1;
6785       uu=1;
6786     }
6787     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6788     {
6789       // ERET instruction (return from interrupt)
6790       u=1;
6791       uu=1;
6792     }
6793     //u=uu=1; // DEBUG
6794     tdep=(~uu>>rt1[i])&1;
6795     // Written registers are unneeded
6796     u|=1LL<<rt1[i];
6797     u|=1LL<<rt2[i];
6798     uu|=1LL<<rt1[i];
6799     uu|=1LL<<rt2[i];
6800     // Accessed registers are needed
6801     u&=~(1LL<<rs1[i]);
6802     u&=~(1LL<<rs2[i]);
6803     uu&=~(1LL<<us1[i]);
6804     uu&=~(1LL<<us2[i]);
6805     // Source-target dependencies
6806     uu&=~(tdep<<dep1[i]);
6807     uu&=~(tdep<<dep2[i]);
6808     // R0 is always unneeded
6809     u|=1;uu|=1;
6810     // Save it
6811     unneeded_reg[i]=u;
6812     unneeded_reg_upper[i]=uu;
6813     /*
6814     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6815     printf("U:");
6816     int r;
6817     for(r=1;r<=CCREG;r++) {
6818       if((unneeded_reg[i]>>r)&1) {
6819         if(r==HIREG) printf(" HI");
6820         else if(r==LOREG) printf(" LO");
6821         else printf(" r%d",r);
6822       }
6823     }
6824     printf(" UU:");
6825     for(r=1;r<=CCREG;r++) {
6826       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6827         if(r==HIREG) printf(" HI");
6828         else if(r==LOREG) printf(" LO");
6829         else printf(" r%d",r);
6830       }
6831     }
6832     printf("\n");*/
6833   }
6834 #ifdef FORCE32
6835   for (i=iend;i>=istart;i--)
6836   {
6837     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6838   }
6839 #endif
6840 }
6841
6842 // Identify registers which are likely to contain 32-bit values
6843 // This is used to predict whether any branches will jump to a
6844 // location with 64-bit values in registers.
6845 static void provisional_32bit()
6846 {
6847   int i,j;
6848   uint64_t is32=1;
6849   uint64_t lastbranch=1;
6850   
6851   for(i=0;i<slen;i++)
6852   {
6853     if(i>0) {
6854       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6855         if(i>1) is32=lastbranch;
6856         else is32=1;
6857       }
6858     }
6859     if(i>1)
6860     {
6861       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6862         if(likely[i-2]) {
6863           if(i>2) is32=lastbranch;
6864           else is32=1;
6865         }
6866       }
6867       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6868       {
6869         if(rs1[i-2]==0||rs2[i-2]==0)
6870         {
6871           if(rs1[i-2]) {
6872             is32|=1LL<<rs1[i-2];
6873           }
6874           if(rs2[i-2]) {
6875             is32|=1LL<<rs2[i-2];
6876           }
6877         }
6878       }
6879     }
6880     // If something jumps here with 64-bit values
6881     // then promote those registers to 64 bits
6882     if(bt[i])
6883     {
6884       uint64_t temp_is32=is32;
6885       for(j=i-1;j>=0;j--)
6886       {
6887         if(ba[j]==start+i*4) 
6888           //temp_is32&=branch_regs[j].is32;
6889           temp_is32&=p32[j];
6890       }
6891       for(j=i;j<slen;j++)
6892       {
6893         if(ba[j]==start+i*4) 
6894           temp_is32=1;
6895       }
6896       is32=temp_is32;
6897     }
6898     int type=itype[i];
6899     int op=opcode[i];
6900     int op2=opcode2[i];
6901     int rt=rt1[i];
6902     int s1=rs1[i];
6903     int s2=rs2[i];
6904     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6905       // Branches don't write registers, consider the delay slot instead.
6906       type=itype[i+1];
6907       op=opcode[i+1];
6908       op2=opcode2[i+1];
6909       rt=rt1[i+1];
6910       s1=rs1[i+1];
6911       s2=rs2[i+1];
6912       lastbranch=is32;
6913     }
6914     switch(type) {
6915       case LOAD:
6916         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6917            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6918           is32&=~(1LL<<rt);
6919         else
6920           is32|=1LL<<rt;
6921         break;
6922       case STORE:
6923       case STORELR:
6924         break;
6925       case LOADLR:
6926         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6927         if(op==0x22) is32|=1LL<<rt; // LWL
6928         break;
6929       case IMM16:
6930         if (op==0x08||op==0x09|| // ADDI/ADDIU
6931             op==0x0a||op==0x0b|| // SLTI/SLTIU
6932             op==0x0c|| // ANDI
6933             op==0x0f)  // LUI
6934         {
6935           is32|=1LL<<rt;
6936         }
6937         if(op==0x18||op==0x19) { // DADDI/DADDIU
6938           is32&=~(1LL<<rt);
6939           //if(imm[i]==0)
6940           //  is32|=((is32>>s1)&1LL)<<rt;
6941         }
6942         if(op==0x0d||op==0x0e) { // ORI/XORI
6943           uint64_t sr=((is32>>s1)&1LL);
6944           is32&=~(1LL<<rt);
6945           is32|=sr<<rt;
6946         }
6947         break;
6948       case UJUMP:
6949         break;
6950       case RJUMP:
6951         break;
6952       case CJUMP:
6953         break;
6954       case SJUMP:
6955         break;
6956       case FJUMP:
6957         break;
6958       case ALU:
6959         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6960           is32|=1LL<<rt;
6961         }
6962         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6963           is32|=1LL<<rt;
6964         }
6965         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6966           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6967           is32&=~(1LL<<rt);
6968           is32|=sr<<rt;
6969         }
6970         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6971           if(s1==0&&s2==0) {
6972             is32|=1LL<<rt;
6973           }
6974           else if(s2==0) {
6975             uint64_t sr=((is32>>s1)&1LL);
6976             is32&=~(1LL<<rt);
6977             is32|=sr<<rt;
6978           }
6979           else if(s1==0) {
6980             uint64_t sr=((is32>>s2)&1LL);
6981             is32&=~(1LL<<rt);
6982             is32|=sr<<rt;
6983           }
6984           else {
6985             is32&=~(1LL<<rt);
6986           }
6987         }
6988         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6989           if(s1==0&&s2==0) {
6990             is32|=1LL<<rt;
6991           }
6992           else if(s2==0) {
6993             uint64_t sr=((is32>>s1)&1LL);
6994             is32&=~(1LL<<rt);
6995             is32|=sr<<rt;
6996           }
6997           else {
6998             is32&=~(1LL<<rt);
6999           }
7000         }
7001         break;
7002       case MULTDIV:
7003         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7004           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7005         }
7006         else {
7007           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7008         }
7009         break;
7010       case MOV:
7011         {
7012           uint64_t sr=((is32>>s1)&1LL);
7013           is32&=~(1LL<<rt);
7014           is32|=sr<<rt;
7015         }
7016         break;
7017       case SHIFT:
7018         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7019         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7020         break;
7021       case SHIFTIMM:
7022         is32|=1LL<<rt;
7023         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7024         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7025         break;
7026       case COP0:
7027         if(op2==0) is32|=1LL<<rt; // MFC0
7028         break;
7029       case COP1:
7030       case COP2:
7031         if(op2==0) is32|=1LL<<rt; // MFC1
7032         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7033         if(op2==2) is32|=1LL<<rt; // CFC1
7034         break;
7035       case C1LS:
7036       case C2LS:
7037         break;
7038       case FLOAT:
7039       case FCONV:
7040         break;
7041       case FCOMP:
7042         break;
7043       case C2OP:
7044       case SYSCALL:
7045       case HLECALL:
7046         break;
7047       default:
7048         break;
7049     }
7050     is32|=1;
7051     p32[i]=is32;
7052
7053     if(i>0)
7054     {
7055       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7056       {
7057         if(rt1[i-1]==31) // JAL/JALR
7058         {
7059           // Subroutine call will return here, don't alloc any registers
7060           is32=1;
7061         }
7062         else if(i+1<slen)
7063         {
7064           // Internal branch will jump here, match registers to caller
7065           is32=0x3FFFFFFFFLL;
7066         }
7067       }
7068     }
7069   }
7070 }
7071
7072 // Identify registers which may be assumed to contain 32-bit values
7073 // and where optimizations will rely on this.
7074 // This is used to determine whether backward branches can safely
7075 // jump to a location with 64-bit values in registers.
7076 static void provisional_r32()
7077 {
7078   u_int r32=0;
7079   int i;
7080   
7081   for (i=slen-1;i>=0;i--)
7082   {
7083     int hr;
7084     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7085     {
7086       if(ba[i]<start || ba[i]>=(start+slen*4))
7087       {
7088         // Branch out of this block, don't need anything
7089         r32=0;
7090       }
7091       else
7092       {
7093         // Internal branch
7094         // Need whatever matches the target
7095         // (and doesn't get overwritten by the delay slot instruction)
7096         r32=0;
7097         int t=(ba[i]-start)>>2;
7098         if(ba[i]>start+i*4) {
7099           // Forward branch
7100           //if(!(requires_32bit[t]&~regs[i].was32))
7101           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7102           if(!(pr32[t]&~regs[i].was32))
7103             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7104         }else{
7105           // Backward branch
7106           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7107             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7108         }
7109       }
7110       // Conditional branch may need registers for following instructions
7111       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7112       {
7113         if(i<slen-2) {
7114           //r32|=requires_32bit[i+2];
7115           r32|=pr32[i+2];
7116           r32&=regs[i].was32;
7117           // Mark this address as a branch target since it may be called
7118           // upon return from interrupt
7119           //bt[i+2]=1;
7120         }
7121       }
7122       // Merge in delay slot
7123       if(!likely[i]) {
7124         // These are overwritten unless the branch is "likely"
7125         // and the delay slot is nullified if not taken
7126         r32&=~(1LL<<rt1[i+1]);
7127         r32&=~(1LL<<rt2[i+1]);
7128       }
7129       // Assume these are needed (delay slot)
7130       if(us1[i+1]>0)
7131       {
7132         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7133       }
7134       if(us2[i+1]>0)
7135       {
7136         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7137       }
7138       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7139       {
7140         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7141       }
7142       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7143       {
7144         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7145       }
7146     }
7147     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7148     {
7149       // SYSCALL instruction (software interrupt)
7150       r32=0;
7151     }
7152     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7153     {
7154       // ERET instruction (return from interrupt)
7155       r32=0;
7156     }
7157     // Check 32 bits
7158     r32&=~(1LL<<rt1[i]);
7159     r32&=~(1LL<<rt2[i]);
7160     if(us1[i]>0)
7161     {
7162       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7163     }
7164     if(us2[i]>0)
7165     {
7166       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7167     }
7168     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7169     {
7170       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7171     }
7172     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7173     {
7174       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7175     }
7176     //requires_32bit[i]=r32;
7177     pr32[i]=r32;
7178     
7179     // Dirty registers which are 32-bit, require 32-bit input
7180     // as they will be written as 32-bit values
7181     for(hr=0;hr<HOST_REGS;hr++)
7182     {
7183       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7184         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7185           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7186           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7187           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7188         }
7189       }
7190     }
7191   }
7192 }
7193
7194 // Write back dirty registers as soon as we will no longer modify them,
7195 // so that we don't end up with lots of writes at the branches.
7196 void clean_registers(int istart,int iend,int wr)
7197 {
7198   int i;
7199   int r;
7200   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7201   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7202   if(iend==slen-1) {
7203     will_dirty_i=will_dirty_next=0;
7204     wont_dirty_i=wont_dirty_next=0;
7205   }else{
7206     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7207     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7208   }
7209   for (i=iend;i>=istart;i--)
7210   {
7211     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7212     {
7213       if(ba[i]<start || ba[i]>=(start+slen*4))
7214       {
7215         // Branch out of this block, flush all regs
7216         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7217         {
7218           // Unconditional branch
7219           will_dirty_i=0;
7220           wont_dirty_i=0;
7221           // Merge in delay slot (will dirty)
7222           for(r=0;r<HOST_REGS;r++) {
7223             if(r!=EXCLUDE_REG) {
7224               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7225               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7226               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7227               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7228               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7229               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7230               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7231               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7232               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7233               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7234               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7235               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7236               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7237               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7238             }
7239           }
7240         }
7241         else
7242         {
7243           // Conditional branch
7244           will_dirty_i=0;
7245           wont_dirty_i=wont_dirty_next;
7246           // Merge in delay slot (will dirty)
7247           for(r=0;r<HOST_REGS;r++) {
7248             if(r!=EXCLUDE_REG) {
7249               if(!likely[i]) {
7250                 // Might not dirty if likely branch is not taken
7251                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7252                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7253                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7254                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7255                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7256                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7257                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7258                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7259                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7260                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7261                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7262                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7263                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7264                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7265               }
7266             }
7267           }
7268         }
7269         // Merge in delay slot (wont dirty)
7270         for(r=0;r<HOST_REGS;r++) {
7271           if(r!=EXCLUDE_REG) {
7272             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7273             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7274             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7275             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7276             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7277             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7278             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7279             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7280             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7281             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7282           }
7283         }
7284         if(wr) {
7285           #ifndef DESTRUCTIVE_WRITEBACK
7286           branch_regs[i].dirty&=wont_dirty_i;
7287           #endif
7288           branch_regs[i].dirty|=will_dirty_i;
7289         }
7290       }
7291       else
7292       {
7293         // Internal branch
7294         if(ba[i]<=start+i*4) {
7295           // Backward branch
7296           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7297           {
7298             // Unconditional branch
7299             temp_will_dirty=0;
7300             temp_wont_dirty=0;
7301             // Merge in delay slot (will dirty)
7302             for(r=0;r<HOST_REGS;r++) {
7303               if(r!=EXCLUDE_REG) {
7304                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7305                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7306                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7307                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7308                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7309                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7310                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7311                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7312                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7313                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7314                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7315                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7316                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7317                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7318               }
7319             }
7320           } else {
7321             // Conditional branch (not taken case)
7322             temp_will_dirty=will_dirty_next;
7323             temp_wont_dirty=wont_dirty_next;
7324             // Merge in delay slot (will dirty)
7325             for(r=0;r<HOST_REGS;r++) {
7326               if(r!=EXCLUDE_REG) {
7327                 if(!likely[i]) {
7328                   // Will not dirty if likely branch is not taken
7329                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7330                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7331                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7332                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7333                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7334                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7335                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7336                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7337                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7338                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7339                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7340                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7341                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7342                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7343                 }
7344               }
7345             }
7346           }
7347           // Merge in delay slot (wont dirty)
7348           for(r=0;r<HOST_REGS;r++) {
7349             if(r!=EXCLUDE_REG) {
7350               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7351               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7352               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7353               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7354               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7355               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7356               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7357               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7358               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7359               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7360             }
7361           }
7362           // Deal with changed mappings
7363           if(i<iend) {
7364             for(r=0;r<HOST_REGS;r++) {
7365               if(r!=EXCLUDE_REG) {
7366                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7367                   temp_will_dirty&=~(1<<r);
7368                   temp_wont_dirty&=~(1<<r);
7369                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7370                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7371                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7372                   } else {
7373                     temp_will_dirty|=1<<r;
7374                     temp_wont_dirty|=1<<r;
7375                   }
7376                 }
7377               }
7378             }
7379           }
7380           if(wr) {
7381             will_dirty[i]=temp_will_dirty;
7382             wont_dirty[i]=temp_wont_dirty;
7383             clean_registers((ba[i]-start)>>2,i-1,0);
7384           }else{
7385             // Limit recursion.  It can take an excessive amount
7386             // of time if there are a lot of nested loops.
7387             will_dirty[(ba[i]-start)>>2]=0;
7388             wont_dirty[(ba[i]-start)>>2]=-1;
7389           }
7390         }
7391         /*else*/ if(1)
7392         {
7393           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7394           {
7395             // Unconditional branch
7396             will_dirty_i=0;
7397             wont_dirty_i=0;
7398           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7399             for(r=0;r<HOST_REGS;r++) {
7400               if(r!=EXCLUDE_REG) {
7401                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7402                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7403                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7404                 }
7405               }
7406             }
7407           //}
7408             // Merge in delay slot
7409             for(r=0;r<HOST_REGS;r++) {
7410               if(r!=EXCLUDE_REG) {
7411                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7412                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7413                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7414                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7415                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7416                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7417                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7418                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7419                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7420                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7421                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7422                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7423                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7424                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7425               }
7426             }
7427           } else {
7428             // Conditional branch
7429             will_dirty_i=will_dirty_next;
7430             wont_dirty_i=wont_dirty_next;
7431           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7432             for(r=0;r<HOST_REGS;r++) {
7433               if(r!=EXCLUDE_REG) {
7434                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7435                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7436                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7437                 }
7438                 else
7439                 {
7440                   will_dirty_i&=~(1<<r);
7441                 }
7442                 // Treat delay slot as part of branch too
7443                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7444                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7445                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7446                 }
7447                 else
7448                 {
7449                   will_dirty[i+1]&=~(1<<r);
7450                 }*/
7451               }
7452             }
7453           //}
7454             // Merge in delay slot
7455             for(r=0;r<HOST_REGS;r++) {
7456               if(r!=EXCLUDE_REG) {
7457                 if(!likely[i]) {
7458                   // Might not dirty if likely branch is not taken
7459                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7460                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7461                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7462                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7463                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7464                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7465                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7466                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7467                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7468                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7469                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7470                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7471                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7472                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7473                 }
7474               }
7475             }
7476           }
7477           // Merge in delay slot
7478           for(r=0;r<HOST_REGS;r++) {
7479             if(r!=EXCLUDE_REG) {
7480               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7481               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7482               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7483               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7484               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7485               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7486               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7487               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7488               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7489               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7490             }
7491           }
7492           if(wr) {
7493             #ifndef DESTRUCTIVE_WRITEBACK
7494             branch_regs[i].dirty&=wont_dirty_i;
7495             #endif
7496             branch_regs[i].dirty|=will_dirty_i;
7497           }
7498         }
7499       }
7500     }
7501     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7502     {
7503       // SYSCALL instruction (software interrupt)
7504       will_dirty_i=0;
7505       wont_dirty_i=0;
7506     }
7507     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7508     {
7509       // ERET instruction (return from interrupt)
7510       will_dirty_i=0;
7511       wont_dirty_i=0;
7512     }
7513     will_dirty_next=will_dirty_i;
7514     wont_dirty_next=wont_dirty_i;
7515     for(r=0;r<HOST_REGS;r++) {
7516       if(r!=EXCLUDE_REG) {
7517         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7518         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7519         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7520         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7521         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7522         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7523         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7524         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7525         if(i>istart) {
7526           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7527           {
7528             // Don't store a register immediately after writing it,
7529             // may prevent dual-issue.
7530             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7531             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7532           }
7533         }
7534       }
7535     }
7536     // Save it
7537     will_dirty[i]=will_dirty_i;
7538     wont_dirty[i]=wont_dirty_i;
7539     // Mark registers that won't be dirtied as not dirty
7540     if(wr) {
7541       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7542       for(r=0;r<HOST_REGS;r++) {
7543         if((will_dirty_i>>r)&1) {
7544           printf(" r%d",r);
7545         }
7546       }
7547       printf("\n");*/
7548
7549       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7550         regs[i].dirty|=will_dirty_i;
7551         #ifndef DESTRUCTIVE_WRITEBACK
7552         regs[i].dirty&=wont_dirty_i;
7553         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7554         {
7555           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7556             for(r=0;r<HOST_REGS;r++) {
7557               if(r!=EXCLUDE_REG) {
7558                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7559                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7560                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7561               }
7562             }
7563           }
7564         }
7565         else
7566         {
7567           if(i<iend) {
7568             for(r=0;r<HOST_REGS;r++) {
7569               if(r!=EXCLUDE_REG) {
7570                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7571                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7572                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7573               }
7574             }
7575           }
7576         }
7577         #endif
7578       //}
7579     }
7580     // Deal with changed mappings
7581     temp_will_dirty=will_dirty_i;
7582     temp_wont_dirty=wont_dirty_i;
7583     for(r=0;r<HOST_REGS;r++) {
7584       if(r!=EXCLUDE_REG) {
7585         int nr;
7586         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7587           if(wr) {
7588             #ifndef DESTRUCTIVE_WRITEBACK
7589             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7590             #endif
7591             regs[i].wasdirty|=will_dirty_i&(1<<r);
7592           }
7593         }
7594         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7595           // Register moved to a different register
7596           will_dirty_i&=~(1<<r);
7597           wont_dirty_i&=~(1<<r);
7598           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7599           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7600           if(wr) {
7601             #ifndef DESTRUCTIVE_WRITEBACK
7602             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7603             #endif
7604             regs[i].wasdirty|=will_dirty_i&(1<<r);
7605           }
7606         }
7607         else {
7608           will_dirty_i&=~(1<<r);
7609           wont_dirty_i&=~(1<<r);
7610           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7611             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7612             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7613           } else {
7614             wont_dirty_i|=1<<r;
7615             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7616           }
7617         }
7618       }
7619     }
7620   }
7621 }
7622
7623   /* disassembly */
7624 void disassemble_inst(int i)
7625 {
7626     if (bt[i]) printf("*"); else printf(" ");
7627     switch(itype[i]) {
7628       case UJUMP:
7629         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7630       case CJUMP:
7631         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7632       case SJUMP:
7633         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7634       case FJUMP:
7635         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7636       case RJUMP:
7637         if (opcode[i]==0x9&&rt1[i]!=31)
7638           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7639         else
7640           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7641         break;
7642       case SPAN:
7643         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7644       case IMM16:
7645         if(opcode[i]==0xf) //LUI
7646           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7647         else
7648           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7649         break;
7650       case LOAD:
7651       case LOADLR:
7652         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7653         break;
7654       case STORE:
7655       case STORELR:
7656         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7657         break;
7658       case ALU:
7659       case SHIFT:
7660         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7661         break;
7662       case MULTDIV:
7663         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7664         break;
7665       case SHIFTIMM:
7666         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7667         break;
7668       case MOV:
7669         if((opcode2[i]&0x1d)==0x10)
7670           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7671         else if((opcode2[i]&0x1d)==0x11)
7672           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7673         else
7674           printf (" %x: %s\n",start+i*4,insn[i]);
7675         break;
7676       case COP0:
7677         if(opcode2[i]==0)
7678           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7679         else if(opcode2[i]==4)
7680           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7681         else printf (" %x: %s\n",start+i*4,insn[i]);
7682         break;
7683       case COP1:
7684         if(opcode2[i]<3)
7685           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7686         else if(opcode2[i]>3)
7687           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7688         else printf (" %x: %s\n",start+i*4,insn[i]);
7689         break;
7690       case COP2:
7691         if(opcode2[i]<3)
7692           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7693         else if(opcode2[i]>3)
7694           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7695         else printf (" %x: %s\n",start+i*4,insn[i]);
7696         break;
7697       case C1LS:
7698         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7699         break;
7700       case C2LS:
7701         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7702         break;
7703       case INTCALL:
7704         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7705         break;
7706       default:
7707         //printf (" %s %8x\n",insn[i],source[i]);
7708         printf (" %x: %s\n",start+i*4,insn[i]);
7709     }
7710 }
7711
7712 // clear the state completely, instead of just marking
7713 // things invalid like invalidate_all_pages() does
7714 void new_dynarec_clear_full()
7715 {
7716   int n;
7717   for(n=0x80000;n<0x80800;n++)
7718     invalid_code[n]=1;
7719   for(n=0;n<65536;n++)
7720     hash_table[n][0]=hash_table[n][2]=-1;
7721   memset(mini_ht,-1,sizeof(mini_ht));
7722   memset(restore_candidate,0,sizeof(restore_candidate));
7723   memset(shadow,0,sizeof(shadow));
7724   copy=shadow;
7725   expirep=16384; // Expiry pointer, +2 blocks
7726   pending_exception=0;
7727   literalcount=0;
7728   stop_after_jal=0;
7729   // TLB
7730   using_tlb=0;
7731   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7732     memory_map[n]=-1;
7733   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7734     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7735   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7736     memory_map[n]=-1;
7737   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7738   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7739   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7740 }
7741
7742 void new_dynarec_init()
7743 {
7744   printf("Init new dynarec\n");
7745   out=(u_char *)BASE_ADDR;
7746   if (mmap (out, 1<<TARGET_SIZE_2,
7747             PROT_READ | PROT_WRITE | PROT_EXEC,
7748             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7749             -1, 0) <= 0) {printf("mmap() failed\n");}
7750 #ifdef MUPEN64
7751   rdword=&readmem_dword;
7752   fake_pc.f.r.rs=&readmem_dword;
7753   fake_pc.f.r.rt=&readmem_dword;
7754   fake_pc.f.r.rd=&readmem_dword;
7755 #endif
7756   int n;
7757   new_dynarec_clear_full();
7758 #ifdef HOST_IMM8
7759   // Copy this into local area so we don't have to put it in every literal pool
7760   invc_ptr=invalid_code;
7761 #endif
7762 #ifdef MUPEN64
7763   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7764     writemem[n] = write_nomem_new;
7765     writememb[n] = write_nomemb_new;
7766     writememh[n] = write_nomemh_new;
7767 #ifndef FORCE32
7768     writememd[n] = write_nomemd_new;
7769 #endif
7770     readmem[n] = read_nomem_new;
7771     readmemb[n] = read_nomemb_new;
7772     readmemh[n] = read_nomemh_new;
7773 #ifndef FORCE32
7774     readmemd[n] = read_nomemd_new;
7775 #endif
7776   }
7777   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7778     writemem[n] = write_rdram_new;
7779     writememb[n] = write_rdramb_new;
7780     writememh[n] = write_rdramh_new;
7781 #ifndef FORCE32
7782     writememd[n] = write_rdramd_new;
7783 #endif
7784   }
7785   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7786     writemem[n] = write_nomem_new;
7787     writememb[n] = write_nomemb_new;
7788     writememh[n] = write_nomemh_new;
7789 #ifndef FORCE32
7790     writememd[n] = write_nomemd_new;
7791 #endif
7792     readmem[n] = read_nomem_new;
7793     readmemb[n] = read_nomemb_new;
7794     readmemh[n] = read_nomemh_new;
7795 #ifndef FORCE32
7796     readmemd[n] = read_nomemd_new;
7797 #endif
7798   }
7799 #endif
7800   tlb_hacks();
7801   arch_init();
7802 }
7803
7804 void new_dynarec_cleanup()
7805 {
7806   int n;
7807   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7808   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7809   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7810   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7811   #ifdef ROM_COPY
7812   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7813   #endif
7814 }
7815
7816 int new_recompile_block(int addr)
7817 {
7818 /*
7819   if(addr==0x800cd050) {
7820     int block;
7821     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7822     int n;
7823     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7824   }
7825 */
7826   //if(Count==365117028) tracedebug=1;
7827   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7828   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7829   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7830   //if(debug) 
7831   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7832   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7833   /*if(Count>=312978186) {
7834     rlist();
7835   }*/
7836   //rlist();
7837   start = (u_int)addr&~3;
7838   //assert(((u_int)addr&1)==0);
7839 #ifdef PCSX
7840   if (Config.HLE && start == 0x80001000) // hlecall
7841   {
7842     // XXX: is this enough? Maybe check hleSoftCall?
7843     u_int beginning=(u_int)out;
7844     u_int page=get_page(start);
7845     invalid_code[start>>12]=0;
7846     emit_movimm(start,0);
7847     emit_writeword(0,(int)&pcaddr);
7848     emit_jmp((int)new_dyna_leave);
7849 #ifdef __arm__
7850     __clear_cache((void *)beginning,out);
7851 #endif
7852     ll_add(jump_in+page,start,(void *)beginning);
7853     return 0;
7854   }
7855   else if ((u_int)addr < 0x00200000 ||
7856     (0xa0000000 <= addr && addr < 0xa0200000)) {
7857     // used for BIOS calls mostly?
7858     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7859     pagelimit = (addr&0xa0000000)|0x00200000;
7860   }
7861   else if (!Config.HLE && (
7862 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7863     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7864     // BIOS
7865     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7866     pagelimit = (addr&0xfff00000)|0x80000;
7867   }
7868   else
7869 #endif
7870 #ifdef MUPEN64
7871   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7872     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7873     pagelimit = 0xa4001000;
7874   }
7875   else
7876 #endif
7877   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7878     source = (u_int *)((u_int)rdram+start-0x80000000);
7879     pagelimit = 0x80000000+RAM_SIZE;
7880   }
7881 #ifndef DISABLE_TLB
7882   else if ((signed int)addr >= (signed int)0xC0000000) {
7883     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7884     //if(tlb_LUT_r[start>>12])
7885       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7886     if((signed int)memory_map[start>>12]>=0) {
7887       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7888       pagelimit=(start+4096)&0xFFFFF000;
7889       int map=memory_map[start>>12];
7890       int i;
7891       for(i=0;i<5;i++) {
7892         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7893         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7894       }
7895       assem_debug("pagelimit=%x\n",pagelimit);
7896       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7897     }
7898     else {
7899       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7900       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7901       return -1; // Caller will invoke exception handler
7902     }
7903     //printf("source= %x\n",(int)source);
7904   }
7905 #endif
7906   else {
7907     printf("Compile at bogus memory address: %x \n", (int)addr);
7908     exit(1);
7909   }
7910
7911   /* Pass 1: disassemble */
7912   /* Pass 2: register dependencies, branch targets */
7913   /* Pass 3: register allocation */
7914   /* Pass 4: branch dependencies */
7915   /* Pass 5: pre-alloc */
7916   /* Pass 6: optimize clean/dirty state */
7917   /* Pass 7: flag 32-bit registers */
7918   /* Pass 8: assembly */
7919   /* Pass 9: linker */
7920   /* Pass 10: garbage collection / free memory */
7921
7922   int i,j;
7923   int done=0;
7924   unsigned int type,op,op2;
7925
7926   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7927   
7928   /* Pass 1 disassembly */
7929
7930   for(i=0;!done;i++) {
7931     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7932     minimum_free_regs[i]=0;
7933     opcode[i]=op=source[i]>>26;
7934     switch(op)
7935     {
7936       case 0x00: strcpy(insn[i],"special"); type=NI;
7937         op2=source[i]&0x3f;
7938         switch(op2)
7939         {
7940           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7941           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7942           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7943           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7944           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7945           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7946           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7947           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7948           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7949           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7950           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7951           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7952           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7953           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7954           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7955           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7956           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7957           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7958           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7959           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7960           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7961           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7962           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7963           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7964           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7965           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7966           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7967           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7968           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7969           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7970           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7971           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7972           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7973           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7974           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7975           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7976           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7977           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7978           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7979           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7980           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7981           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7982           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7983           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7984           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7985           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7986           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7987           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7988           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7989           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7990           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7991           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7992         }
7993         break;
7994       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7995         op2=(source[i]>>16)&0x1f;
7996         switch(op2)
7997         {
7998           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7999           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8000           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8001           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8002           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8003           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8004           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8005           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8006           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8007           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8008           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8009           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8010           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8011           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8012         }
8013         break;
8014       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8015       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8016       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8017       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8018       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8019       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8020       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8021       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8022       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8023       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8024       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8025       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8026       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8027       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8028       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8029         op2=(source[i]>>21)&0x1f;
8030         switch(op2)
8031         {
8032           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8033           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8034           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8035           switch(source[i]&0x3f)
8036           {
8037             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8038             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8039             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8040             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8041 #ifdef PCSX
8042             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8043 #else
8044             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8045 #endif
8046           }
8047         }
8048         break;
8049       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8050         op2=(source[i]>>21)&0x1f;
8051         switch(op2)
8052         {
8053           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8054           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8055           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8056           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8057           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8058           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8059           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8060           switch((source[i]>>16)&0x3)
8061           {
8062             case 0x00: strcpy(insn[i],"BC1F"); break;
8063             case 0x01: strcpy(insn[i],"BC1T"); break;
8064             case 0x02: strcpy(insn[i],"BC1FL"); break;
8065             case 0x03: strcpy(insn[i],"BC1TL"); break;
8066           }
8067           break;
8068           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8069           switch(source[i]&0x3f)
8070           {
8071             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8072             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8073             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8074             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8075             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8076             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8077             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8078             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8079             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8080             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8081             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8082             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8083             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8084             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8085             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8086             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8087             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8088             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8089             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8090             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8091             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8092             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8093             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8094             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8095             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8096             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8097             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8098             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8099             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8100             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8101             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8102             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8103             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8104             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8105             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8106           }
8107           break;
8108           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8109           switch(source[i]&0x3f)
8110           {
8111             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8112             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8113             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8114             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8115             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8116             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8117             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8118             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8119             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8120             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8121             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8122             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8123             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8124             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8125             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8126             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8127             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8128             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8129             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8130             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8131             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8132             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8133             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8134             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8135             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8136             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8137             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8138             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8139             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8140             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8141             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8142             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8143             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8144             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8145             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8146           }
8147           break;
8148           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8149           switch(source[i]&0x3f)
8150           {
8151             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8152             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8153           }
8154           break;
8155           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8156           switch(source[i]&0x3f)
8157           {
8158             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8159             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8160           }
8161           break;
8162         }
8163         break;
8164 #ifndef FORCE32
8165       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8166       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8167       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8168       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8169       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8170       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8171       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8172       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8173 #endif
8174       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8175       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8176       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8177       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8178       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8179       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8180       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8181       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8182       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8183       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8184       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8185       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8186 #ifndef FORCE32
8187       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8188       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8189 #endif
8190       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8191       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8192       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8193       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8194 #ifndef FORCE32
8195       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8196       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8197       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8198 #endif
8199       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8200       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8201 #ifndef FORCE32
8202       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8203       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8204       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8205 #endif
8206 #ifdef PCSX
8207       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8208         // note: COP MIPS-1 encoding differs from MIPS32
8209         op2=(source[i]>>21)&0x1f;
8210         if (source[i]&0x3f) {
8211           if (gte_handlers[source[i]&0x3f]!=NULL) {
8212             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8213             type=C2OP;
8214           }
8215         }
8216         else switch(op2)
8217         {
8218           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8219           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8220           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8221           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8222         }
8223         break;
8224       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8225       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8226       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8227 #endif
8228       default: strcpy(insn[i],"???"); type=NI;
8229         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8230         break;
8231     }
8232 #ifdef PCSX
8233     /* detect branch in delay slot early */
8234     if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8235       opcode[i+1]=source[i+1]>>26;
8236       opcode2[i+1]=source[i+1]&0x3f;
8237       if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8238         printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8239         // don't handle first branch and call interpreter if it's hit
8240         type=INTCALL;
8241       }
8242     }
8243 #endif
8244     itype[i]=type;
8245     opcode2[i]=op2;
8246     /* Get registers/immediates */
8247     lt1[i]=0;
8248     us1[i]=0;
8249     us2[i]=0;
8250     dep1[i]=0;
8251     dep2[i]=0;
8252     switch(type) {
8253       case LOAD:
8254         rs1[i]=(source[i]>>21)&0x1f;
8255         rs2[i]=0;
8256         rt1[i]=(source[i]>>16)&0x1f;
8257         rt2[i]=0;
8258         imm[i]=(short)source[i];
8259         break;
8260       case STORE:
8261       case STORELR:
8262         rs1[i]=(source[i]>>21)&0x1f;
8263         rs2[i]=(source[i]>>16)&0x1f;
8264         rt1[i]=0;
8265         rt2[i]=0;
8266         imm[i]=(short)source[i];
8267         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8268         break;
8269       case LOADLR:
8270         // LWL/LWR only load part of the register,
8271         // therefore the target register must be treated as a source too
8272         rs1[i]=(source[i]>>21)&0x1f;
8273         rs2[i]=(source[i]>>16)&0x1f;
8274         rt1[i]=(source[i]>>16)&0x1f;
8275         rt2[i]=0;
8276         imm[i]=(short)source[i];
8277         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8278         if(op==0x26) dep1[i]=rt1[i]; // LWR
8279         break;
8280       case IMM16:
8281         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8282         else rs1[i]=(source[i]>>21)&0x1f;
8283         rs2[i]=0;
8284         rt1[i]=(source[i]>>16)&0x1f;
8285         rt2[i]=0;
8286         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8287           imm[i]=(unsigned short)source[i];
8288         }else{
8289           imm[i]=(short)source[i];
8290         }
8291         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8292         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8293         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8294         break;
8295       case UJUMP:
8296         rs1[i]=0;
8297         rs2[i]=0;
8298         rt1[i]=0;
8299         rt2[i]=0;
8300         // The JAL instruction writes to r31.
8301         if (op&1) {
8302           rt1[i]=31;
8303         }
8304         rs2[i]=CCREG;
8305         break;
8306       case RJUMP:
8307         rs1[i]=(source[i]>>21)&0x1f;
8308         rs2[i]=0;
8309         rt1[i]=0;
8310         rt2[i]=0;
8311         // The JALR instruction writes to rd.
8312         if (op2&1) {
8313           rt1[i]=(source[i]>>11)&0x1f;
8314         }
8315         rs2[i]=CCREG;
8316         break;
8317       case CJUMP:
8318         rs1[i]=(source[i]>>21)&0x1f;
8319         rs2[i]=(source[i]>>16)&0x1f;
8320         rt1[i]=0;
8321         rt2[i]=0;
8322         if(op&2) { // BGTZ/BLEZ
8323           rs2[i]=0;
8324         }
8325         us1[i]=rs1[i];
8326         us2[i]=rs2[i];
8327         likely[i]=op>>4;
8328         break;
8329       case SJUMP:
8330         rs1[i]=(source[i]>>21)&0x1f;
8331         rs2[i]=CCREG;
8332         rt1[i]=0;
8333         rt2[i]=0;
8334         us1[i]=rs1[i];
8335         if(op2&0x10) { // BxxAL
8336           rt1[i]=31;
8337           // NOTE: If the branch is not taken, r31 is still overwritten
8338         }
8339         likely[i]=(op2&2)>>1;
8340         break;
8341       case FJUMP:
8342         rs1[i]=FSREG;
8343         rs2[i]=CSREG;
8344         rt1[i]=0;
8345         rt2[i]=0;
8346         likely[i]=((source[i])>>17)&1;
8347         break;
8348       case ALU:
8349         rs1[i]=(source[i]>>21)&0x1f; // source
8350         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8351         rt1[i]=(source[i]>>11)&0x1f; // destination
8352         rt2[i]=0;
8353         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8354           us1[i]=rs1[i];us2[i]=rs2[i];
8355         }
8356         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8357           dep1[i]=rs1[i];dep2[i]=rs2[i];
8358         }
8359         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8360           dep1[i]=rs1[i];dep2[i]=rs2[i];
8361         }
8362         break;
8363       case MULTDIV:
8364         rs1[i]=(source[i]>>21)&0x1f; // source
8365         rs2[i]=(source[i]>>16)&0x1f; // divisor
8366         rt1[i]=HIREG;
8367         rt2[i]=LOREG;
8368         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8369           us1[i]=rs1[i];us2[i]=rs2[i];
8370         }
8371         break;
8372       case MOV:
8373         rs1[i]=0;
8374         rs2[i]=0;
8375         rt1[i]=0;
8376         rt2[i]=0;
8377         if(op2==0x10) rs1[i]=HIREG; // MFHI
8378         if(op2==0x11) rt1[i]=HIREG; // MTHI
8379         if(op2==0x12) rs1[i]=LOREG; // MFLO
8380         if(op2==0x13) rt1[i]=LOREG; // MTLO
8381         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8382         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8383         dep1[i]=rs1[i];
8384         break;
8385       case SHIFT:
8386         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8387         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8388         rt1[i]=(source[i]>>11)&0x1f; // destination
8389         rt2[i]=0;
8390         // DSLLV/DSRLV/DSRAV are 64-bit
8391         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8392         break;
8393       case SHIFTIMM:
8394         rs1[i]=(source[i]>>16)&0x1f;
8395         rs2[i]=0;
8396         rt1[i]=(source[i]>>11)&0x1f;
8397         rt2[i]=0;
8398         imm[i]=(source[i]>>6)&0x1f;
8399         // DSxx32 instructions
8400         if(op2>=0x3c) imm[i]|=0x20;
8401         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8402         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8403         break;
8404       case COP0:
8405         rs1[i]=0;
8406         rs2[i]=0;
8407         rt1[i]=0;
8408         rt2[i]=0;
8409         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8410         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8411         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8412         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8413         break;
8414       case COP1:
8415       case COP2:
8416         rs1[i]=0;
8417         rs2[i]=0;
8418         rt1[i]=0;
8419         rt2[i]=0;
8420         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8421         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8422         if(op2==5) us1[i]=rs1[i]; // DMTC1
8423         rs2[i]=CSREG;
8424         break;
8425       case C1LS:
8426         rs1[i]=(source[i]>>21)&0x1F;
8427         rs2[i]=CSREG;
8428         rt1[i]=0;
8429         rt2[i]=0;
8430         imm[i]=(short)source[i];
8431         break;
8432       case C2LS:
8433         rs1[i]=(source[i]>>21)&0x1F;
8434         rs2[i]=0;
8435         rt1[i]=0;
8436         rt2[i]=0;
8437         imm[i]=(short)source[i];
8438         break;
8439       case FLOAT:
8440       case FCONV:
8441         rs1[i]=0;
8442         rs2[i]=CSREG;
8443         rt1[i]=0;
8444         rt2[i]=0;
8445         break;
8446       case FCOMP:
8447         rs1[i]=FSREG;
8448         rs2[i]=CSREG;
8449         rt1[i]=FSREG;
8450         rt2[i]=0;
8451         break;
8452       case SYSCALL:
8453       case HLECALL:
8454       case INTCALL:
8455         rs1[i]=CCREG;
8456         rs2[i]=0;
8457         rt1[i]=0;
8458         rt2[i]=0;
8459         break;
8460       default:
8461         rs1[i]=0;
8462         rs2[i]=0;
8463         rt1[i]=0;
8464         rt2[i]=0;
8465     }
8466     /* Calculate branch target addresses */
8467     if(type==UJUMP)
8468       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8469     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8470       ba[i]=start+i*4+8; // Ignore never taken branch
8471     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8472       ba[i]=start+i*4+8; // Ignore never taken branch
8473     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8474       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8475     else ba[i]=-1;
8476     /* Is this the end of the block? */
8477     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8478 #ifdef PCSX
8479       // check for link register access in delay slot
8480       int rt1_=rt1[i-1];
8481       if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8482         printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8483         ba[i-1]=-1;
8484         itype[i-1]=INTCALL;
8485         done=2;
8486       }
8487       else
8488 #endif
8489       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8490         done=2;
8491       }
8492       else {
8493         if(stop_after_jal) done=1;
8494         // Stop on BREAK
8495         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8496       }
8497       // Don't recompile stuff that's already compiled
8498       if(check_addr(start+i*4+4)) done=1;
8499       // Don't get too close to the limit
8500       if(i>MAXBLOCK/2) done=1;
8501     }
8502     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8503     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8504     if(done==2) {
8505       // Does the block continue due to a branch?
8506       for(j=i-1;j>=0;j--)
8507       {
8508         if(ba[j]==start+i*4+4) done=j=0;
8509         if(ba[j]==start+i*4+8) done=j=0;
8510       }
8511     }
8512     //assert(i<MAXBLOCK-1);
8513     if(start+i*4==pagelimit-4) done=1;
8514     assert(start+i*4<pagelimit);
8515     if (i==MAXBLOCK-1) done=1;
8516     // Stop if we're compiling junk
8517     if(itype[i]==NI&&opcode[i]==0x11) {
8518       done=stop_after_jal=1;
8519       printf("Disabled speculative precompilation\n");
8520     }
8521   }
8522   slen=i;
8523   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8524     if(start+i*4==pagelimit) {
8525       itype[i-1]=SPAN;
8526     }
8527   }
8528   assert(slen>0);
8529
8530   /* Pass 2 - Register dependencies and branch targets */
8531
8532   unneeded_registers(0,slen-1,0);
8533   
8534   /* Pass 3 - Register allocation */
8535
8536   struct regstat current; // Current register allocations/status
8537   current.is32=1;
8538   current.dirty=0;
8539   current.u=unneeded_reg[0];
8540   current.uu=unneeded_reg_upper[0];
8541   clear_all_regs(current.regmap);
8542   alloc_reg(&current,0,CCREG);
8543   dirty_reg(&current,CCREG);
8544   current.isconst=0;
8545   current.wasconst=0;
8546   int ds=0;
8547   int cc=0;
8548   int hr;
8549
8550 #ifndef FORCE32
8551   provisional_32bit();
8552 #endif
8553   if((u_int)addr&1) {
8554     // First instruction is delay slot
8555     cc=-1;
8556     bt[1]=1;
8557     ds=1;
8558     unneeded_reg[0]=1;
8559     unneeded_reg_upper[0]=1;
8560     current.regmap[HOST_BTREG]=BTREG;
8561   }
8562   
8563   for(i=0;i<slen;i++)
8564   {
8565     if(bt[i])
8566     {
8567       int hr;
8568       for(hr=0;hr<HOST_REGS;hr++)
8569       {
8570         // Is this really necessary?
8571         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8572       }
8573       current.isconst=0;
8574     }
8575     if(i>1)
8576     {
8577       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8578       {
8579         if(rs1[i-2]==0||rs2[i-2]==0)
8580         {
8581           if(rs1[i-2]) {
8582             current.is32|=1LL<<rs1[i-2];
8583             int hr=get_reg(current.regmap,rs1[i-2]|64);
8584             if(hr>=0) current.regmap[hr]=-1;
8585           }
8586           if(rs2[i-2]) {
8587             current.is32|=1LL<<rs2[i-2];
8588             int hr=get_reg(current.regmap,rs2[i-2]|64);
8589             if(hr>=0) current.regmap[hr]=-1;
8590           }
8591         }
8592       }
8593     }
8594 #ifndef FORCE32
8595     // If something jumps here with 64-bit values
8596     // then promote those registers to 64 bits
8597     if(bt[i])
8598     {
8599       uint64_t temp_is32=current.is32;
8600       for(j=i-1;j>=0;j--)
8601       {
8602         if(ba[j]==start+i*4) 
8603           temp_is32&=branch_regs[j].is32;
8604       }
8605       for(j=i;j<slen;j++)
8606       {
8607         if(ba[j]==start+i*4) 
8608           //temp_is32=1;
8609           temp_is32&=p32[j];
8610       }
8611       if(temp_is32!=current.is32) {
8612         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8613         #ifdef DESTRUCTIVE_WRITEBACK
8614         for(hr=0;hr<HOST_REGS;hr++)
8615         {
8616           int r=current.regmap[hr];
8617           if(r>0&&r<64)
8618           {
8619             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8620               temp_is32|=1LL<<r;
8621               //printf("restore %d\n",r);
8622             }
8623           }
8624         }
8625         #endif
8626         current.is32=temp_is32;
8627       }
8628     }
8629 #else
8630     current.is32=-1LL;
8631 #endif
8632
8633     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8634     regs[i].wasconst=current.isconst;
8635     regs[i].was32=current.is32;
8636     regs[i].wasdirty=current.dirty;
8637     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8638     // To change a dirty register from 32 to 64 bits, we must write
8639     // it out during the previous cycle (for branches, 2 cycles)
8640     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8641     {
8642       uint64_t temp_is32=current.is32;
8643       for(j=i-1;j>=0;j--)
8644       {
8645         if(ba[j]==start+i*4+4) 
8646           temp_is32&=branch_regs[j].is32;
8647       }
8648       for(j=i;j<slen;j++)
8649       {
8650         if(ba[j]==start+i*4+4) 
8651           //temp_is32=1;
8652           temp_is32&=p32[j];
8653       }
8654       if(temp_is32!=current.is32) {
8655         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8656         for(hr=0;hr<HOST_REGS;hr++)
8657         {
8658           int r=current.regmap[hr];
8659           if(r>0)
8660           {
8661             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8662               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8663               {
8664                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8665                 {
8666                   //printf("dump %d/r%d\n",hr,r);
8667                   current.regmap[hr]=-1;
8668                   if(get_reg(current.regmap,r|64)>=0) 
8669                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8670                 }
8671               }
8672             }
8673           }
8674         }
8675       }
8676     }
8677     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8678     {
8679       uint64_t temp_is32=current.is32;
8680       for(j=i-1;j>=0;j--)
8681       {
8682         if(ba[j]==start+i*4+8) 
8683           temp_is32&=branch_regs[j].is32;
8684       }
8685       for(j=i;j<slen;j++)
8686       {
8687         if(ba[j]==start+i*4+8) 
8688           //temp_is32=1;
8689           temp_is32&=p32[j];
8690       }
8691       if(temp_is32!=current.is32) {
8692         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8693         for(hr=0;hr<HOST_REGS;hr++)
8694         {
8695           int r=current.regmap[hr];
8696           if(r>0)
8697           {
8698             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8699               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8700               {
8701                 //printf("dump %d/r%d\n",hr,r);
8702                 current.regmap[hr]=-1;
8703                 if(get_reg(current.regmap,r|64)>=0) 
8704                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8705               }
8706             }
8707           }
8708         }
8709       }
8710     }
8711     #endif
8712     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8713       if(i+1<slen) {
8714         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8715         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8716         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8717         current.u|=1;
8718         current.uu|=1;
8719       } else {
8720         current.u=1;
8721         current.uu=1;
8722       }
8723     } else {
8724       if(i+1<slen) {
8725         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8726         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8727         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8728         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8729         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8730         current.u|=1;
8731         current.uu|=1;
8732       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8733     }
8734     is_ds[i]=ds;
8735     if(ds) {
8736       ds=0; // Skip delay slot, already allocated as part of branch
8737       // ...but we need to alloc it in case something jumps here
8738       if(i+1<slen) {
8739         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8740         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8741       }else{
8742         current.u=branch_unneeded_reg[i-1];
8743         current.uu=branch_unneeded_reg_upper[i-1];
8744       }
8745       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8746       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8747       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8748       current.u|=1;
8749       current.uu|=1;
8750       struct regstat temp;
8751       memcpy(&temp,&current,sizeof(current));
8752       temp.wasdirty=temp.dirty;
8753       temp.was32=temp.is32;
8754       // TODO: Take into account unconditional branches, as below
8755       delayslot_alloc(&temp,i);
8756       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8757       regs[i].wasdirty=temp.wasdirty;
8758       regs[i].was32=temp.was32;
8759       regs[i].dirty=temp.dirty;
8760       regs[i].is32=temp.is32;
8761       regs[i].isconst=0;
8762       regs[i].wasconst=0;
8763       current.isconst=0;
8764       // Create entry (branch target) regmap
8765       for(hr=0;hr<HOST_REGS;hr++)
8766       {
8767         int r=temp.regmap[hr];
8768         if(r>=0) {
8769           if(r!=regmap_pre[i][hr]) {
8770             regs[i].regmap_entry[hr]=-1;
8771           }
8772           else
8773           {
8774             if(r<64){
8775               if((current.u>>r)&1) {
8776                 regs[i].regmap_entry[hr]=-1;
8777                 regs[i].regmap[hr]=-1;
8778                 //Don't clear regs in the delay slot as the branch might need them
8779                 //current.regmap[hr]=-1;
8780               }else
8781                 regs[i].regmap_entry[hr]=r;
8782             }
8783             else {
8784               if((current.uu>>(r&63))&1) {
8785                 regs[i].regmap_entry[hr]=-1;
8786                 regs[i].regmap[hr]=-1;
8787                 //Don't clear regs in the delay slot as the branch might need them
8788                 //current.regmap[hr]=-1;
8789               }else
8790                 regs[i].regmap_entry[hr]=r;
8791             }
8792           }
8793         } else {
8794           // First instruction expects CCREG to be allocated
8795           if(i==0&&hr==HOST_CCREG) 
8796             regs[i].regmap_entry[hr]=CCREG;
8797           else
8798             regs[i].regmap_entry[hr]=-1;
8799         }
8800       }
8801     }
8802     else { // Not delay slot
8803       switch(itype[i]) {
8804         case UJUMP:
8805           //current.isconst=0; // DEBUG
8806           //current.wasconst=0; // DEBUG
8807           //regs[i].wasconst=0; // DEBUG
8808           clear_const(&current,rt1[i]);
8809           alloc_cc(&current,i);
8810           dirty_reg(&current,CCREG);
8811           if (rt1[i]==31) {
8812             alloc_reg(&current,i,31);
8813             dirty_reg(&current,31);
8814             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8815             assert(rt1[i+1]!=rt1[i]);
8816             #ifdef REG_PREFETCH
8817             alloc_reg(&current,i,PTEMP);
8818             #endif
8819             //current.is32|=1LL<<rt1[i];
8820           }
8821           ooo[i]=1;
8822           delayslot_alloc(&current,i+1);
8823           //current.isconst=0; // DEBUG
8824           ds=1;
8825           //printf("i=%d, isconst=%x\n",i,current.isconst);
8826           break;
8827         case RJUMP:
8828           //current.isconst=0;
8829           //current.wasconst=0;
8830           //regs[i].wasconst=0;
8831           clear_const(&current,rs1[i]);
8832           clear_const(&current,rt1[i]);
8833           alloc_cc(&current,i);
8834           dirty_reg(&current,CCREG);
8835           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8836             alloc_reg(&current,i,rs1[i]);
8837             if (rt1[i]!=0) {
8838               alloc_reg(&current,i,rt1[i]);
8839               dirty_reg(&current,rt1[i]);
8840               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8841               assert(rt1[i+1]!=rt1[i]);
8842               #ifdef REG_PREFETCH
8843               alloc_reg(&current,i,PTEMP);
8844               #endif
8845             }
8846             #ifdef USE_MINI_HT
8847             if(rs1[i]==31) { // JALR
8848               alloc_reg(&current,i,RHASH);
8849               #ifndef HOST_IMM_ADDR32
8850               alloc_reg(&current,i,RHTBL);
8851               #endif
8852             }
8853             #endif
8854             delayslot_alloc(&current,i+1);
8855           } else {
8856             // The delay slot overwrites our source register,
8857             // allocate a temporary register to hold the old value.
8858             current.isconst=0;
8859             current.wasconst=0;
8860             regs[i].wasconst=0;
8861             delayslot_alloc(&current,i+1);
8862             current.isconst=0;
8863             alloc_reg(&current,i,RTEMP);
8864           }
8865           //current.isconst=0; // DEBUG
8866           ooo[i]=1;
8867           ds=1;
8868           break;
8869         case CJUMP:
8870           //current.isconst=0;
8871           //current.wasconst=0;
8872           //regs[i].wasconst=0;
8873           clear_const(&current,rs1[i]);
8874           clear_const(&current,rs2[i]);
8875           if((opcode[i]&0x3E)==4) // BEQ/BNE
8876           {
8877             alloc_cc(&current,i);
8878             dirty_reg(&current,CCREG);
8879             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8880             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8881             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8882             {
8883               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8884               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8885             }
8886             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8887                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8888               // The delay slot overwrites one of our conditions.
8889               // Allocate the branch condition registers instead.
8890               current.isconst=0;
8891               current.wasconst=0;
8892               regs[i].wasconst=0;
8893               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8894               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8895               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8896               {
8897                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8898                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8899               }
8900             }
8901             else
8902             {
8903               ooo[i]=1;
8904               delayslot_alloc(&current,i+1);
8905             }
8906           }
8907           else
8908           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8909           {
8910             alloc_cc(&current,i);
8911             dirty_reg(&current,CCREG);
8912             alloc_reg(&current,i,rs1[i]);
8913             if(!(current.is32>>rs1[i]&1))
8914             {
8915               alloc_reg64(&current,i,rs1[i]);
8916             }
8917             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8918               // The delay slot overwrites one of our conditions.
8919               // Allocate the branch condition registers instead.
8920               current.isconst=0;
8921               current.wasconst=0;
8922               regs[i].wasconst=0;
8923               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8924               if(!((current.is32>>rs1[i])&1))
8925               {
8926                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8927               }
8928             }
8929             else
8930             {
8931               ooo[i]=1;
8932               delayslot_alloc(&current,i+1);
8933             }
8934           }
8935           else
8936           // Don't alloc the delay slot yet because we might not execute it
8937           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8938           {
8939             current.isconst=0;
8940             current.wasconst=0;
8941             regs[i].wasconst=0;
8942             alloc_cc(&current,i);
8943             dirty_reg(&current,CCREG);
8944             alloc_reg(&current,i,rs1[i]);
8945             alloc_reg(&current,i,rs2[i]);
8946             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8947             {
8948               alloc_reg64(&current,i,rs1[i]);
8949               alloc_reg64(&current,i,rs2[i]);
8950             }
8951           }
8952           else
8953           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8954           {
8955             current.isconst=0;
8956             current.wasconst=0;
8957             regs[i].wasconst=0;
8958             alloc_cc(&current,i);
8959             dirty_reg(&current,CCREG);
8960             alloc_reg(&current,i,rs1[i]);
8961             if(!(current.is32>>rs1[i]&1))
8962             {
8963               alloc_reg64(&current,i,rs1[i]);
8964             }
8965           }
8966           ds=1;
8967           //current.isconst=0;
8968           break;
8969         case SJUMP:
8970           //current.isconst=0;
8971           //current.wasconst=0;
8972           //regs[i].wasconst=0;
8973           clear_const(&current,rs1[i]);
8974           clear_const(&current,rt1[i]);
8975           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8976           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8977           {
8978             alloc_cc(&current,i);
8979             dirty_reg(&current,CCREG);
8980             alloc_reg(&current,i,rs1[i]);
8981             if(!(current.is32>>rs1[i]&1))
8982             {
8983               alloc_reg64(&current,i,rs1[i]);
8984             }
8985             if (rt1[i]==31) { // BLTZAL/BGEZAL
8986               alloc_reg(&current,i,31);
8987               dirty_reg(&current,31);
8988               //#ifdef REG_PREFETCH
8989               //alloc_reg(&current,i,PTEMP);
8990               //#endif
8991               //current.is32|=1LL<<rt1[i];
8992             }
8993             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8994                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8995               // Allocate the branch condition registers instead.
8996               current.isconst=0;
8997               current.wasconst=0;
8998               regs[i].wasconst=0;
8999               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9000               if(!((current.is32>>rs1[i])&1))
9001               {
9002                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9003               }
9004             }
9005             else
9006             {
9007               ooo[i]=1;
9008               delayslot_alloc(&current,i+1);
9009             }
9010           }
9011           else
9012           // Don't alloc the delay slot yet because we might not execute it
9013           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9014           {
9015             current.isconst=0;
9016             current.wasconst=0;
9017             regs[i].wasconst=0;
9018             alloc_cc(&current,i);
9019             dirty_reg(&current,CCREG);
9020             alloc_reg(&current,i,rs1[i]);
9021             if(!(current.is32>>rs1[i]&1))
9022             {
9023               alloc_reg64(&current,i,rs1[i]);
9024             }
9025           }
9026           ds=1;
9027           //current.isconst=0;
9028           break;
9029         case FJUMP:
9030           current.isconst=0;
9031           current.wasconst=0;
9032           regs[i].wasconst=0;
9033           if(likely[i]==0) // BC1F/BC1T
9034           {
9035             // TODO: Theoretically we can run out of registers here on x86.
9036             // The delay slot can allocate up to six, and we need to check
9037             // CSREG before executing the delay slot.  Possibly we can drop
9038             // the cycle count and then reload it after checking that the
9039             // FPU is in a usable state, or don't do out-of-order execution.
9040             alloc_cc(&current,i);
9041             dirty_reg(&current,CCREG);
9042             alloc_reg(&current,i,FSREG);
9043             alloc_reg(&current,i,CSREG);
9044             if(itype[i+1]==FCOMP) {
9045               // The delay slot overwrites the branch condition.
9046               // Allocate the branch condition registers instead.
9047               alloc_cc(&current,i);
9048               dirty_reg(&current,CCREG);
9049               alloc_reg(&current,i,CSREG);
9050               alloc_reg(&current,i,FSREG);
9051             }
9052             else {
9053               ooo[i]=1;
9054               delayslot_alloc(&current,i+1);
9055               alloc_reg(&current,i+1,CSREG);
9056             }
9057           }
9058           else
9059           // Don't alloc the delay slot yet because we might not execute it
9060           if(likely[i]) // BC1FL/BC1TL
9061           {
9062             alloc_cc(&current,i);
9063             dirty_reg(&current,CCREG);
9064             alloc_reg(&current,i,CSREG);
9065             alloc_reg(&current,i,FSREG);
9066           }
9067           ds=1;
9068           current.isconst=0;
9069           break;
9070         case IMM16:
9071           imm16_alloc(&current,i);
9072           break;
9073         case LOAD:
9074         case LOADLR:
9075           load_alloc(&current,i);
9076           break;
9077         case STORE:
9078         case STORELR:
9079           store_alloc(&current,i);
9080           break;
9081         case ALU:
9082           alu_alloc(&current,i);
9083           break;
9084         case SHIFT:
9085           shift_alloc(&current,i);
9086           break;
9087         case MULTDIV:
9088           multdiv_alloc(&current,i);
9089           break;
9090         case SHIFTIMM:
9091           shiftimm_alloc(&current,i);
9092           break;
9093         case MOV:
9094           mov_alloc(&current,i);
9095           break;
9096         case COP0:
9097           cop0_alloc(&current,i);
9098           break;
9099         case COP1:
9100         case COP2:
9101           cop1_alloc(&current,i);
9102           break;
9103         case C1LS:
9104           c1ls_alloc(&current,i);
9105           break;
9106         case C2LS:
9107           c2ls_alloc(&current,i);
9108           break;
9109         case C2OP:
9110           c2op_alloc(&current,i);
9111           break;
9112         case FCONV:
9113           fconv_alloc(&current,i);
9114           break;
9115         case FLOAT:
9116           float_alloc(&current,i);
9117           break;
9118         case FCOMP:
9119           fcomp_alloc(&current,i);
9120           break;
9121         case SYSCALL:
9122         case HLECALL:
9123         case INTCALL:
9124           syscall_alloc(&current,i);
9125           break;
9126         case SPAN:
9127           pagespan_alloc(&current,i);
9128           break;
9129       }
9130       
9131       // Drop the upper half of registers that have become 32-bit
9132       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9133       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9134         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9135         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9136         current.uu|=1;
9137       } else {
9138         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9139         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9140         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9141         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9142         current.uu|=1;
9143       }
9144
9145       // Create entry (branch target) regmap
9146       for(hr=0;hr<HOST_REGS;hr++)
9147       {
9148         int r,or,er;
9149         r=current.regmap[hr];
9150         if(r>=0) {
9151           if(r!=regmap_pre[i][hr]) {
9152             // TODO: delay slot (?)
9153             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9154             if(or<0||(r&63)>=TEMPREG){
9155               regs[i].regmap_entry[hr]=-1;
9156             }
9157             else
9158             {
9159               // Just move it to a different register
9160               regs[i].regmap_entry[hr]=r;
9161               // If it was dirty before, it's still dirty
9162               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9163             }
9164           }
9165           else
9166           {
9167             // Unneeded
9168             if(r==0){
9169               regs[i].regmap_entry[hr]=0;
9170             }
9171             else
9172             if(r<64){
9173               if((current.u>>r)&1) {
9174                 regs[i].regmap_entry[hr]=-1;
9175                 //regs[i].regmap[hr]=-1;
9176                 current.regmap[hr]=-1;
9177               }else
9178                 regs[i].regmap_entry[hr]=r;
9179             }
9180             else {
9181               if((current.uu>>(r&63))&1) {
9182                 regs[i].regmap_entry[hr]=-1;
9183                 //regs[i].regmap[hr]=-1;
9184                 current.regmap[hr]=-1;
9185               }else
9186                 regs[i].regmap_entry[hr]=r;
9187             }
9188           }
9189         } else {
9190           // Branches expect CCREG to be allocated at the target
9191           if(regmap_pre[i][hr]==CCREG) 
9192             regs[i].regmap_entry[hr]=CCREG;
9193           else
9194             regs[i].regmap_entry[hr]=-1;
9195         }
9196       }
9197       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9198     }
9199     /* Branch post-alloc */
9200     if(i>0)
9201     {
9202       current.was32=current.is32;
9203       current.wasdirty=current.dirty;
9204       switch(itype[i-1]) {
9205         case UJUMP:
9206           memcpy(&branch_regs[i-1],&current,sizeof(current));
9207           branch_regs[i-1].isconst=0;
9208           branch_regs[i-1].wasconst=0;
9209           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9210           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9211           alloc_cc(&branch_regs[i-1],i-1);
9212           dirty_reg(&branch_regs[i-1],CCREG);
9213           if(rt1[i-1]==31) { // JAL
9214             alloc_reg(&branch_regs[i-1],i-1,31);
9215             dirty_reg(&branch_regs[i-1],31);
9216             branch_regs[i-1].is32|=1LL<<31;
9217           }
9218           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9219           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9220           break;
9221         case RJUMP:
9222           memcpy(&branch_regs[i-1],&current,sizeof(current));
9223           branch_regs[i-1].isconst=0;
9224           branch_regs[i-1].wasconst=0;
9225           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9226           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9227           alloc_cc(&branch_regs[i-1],i-1);
9228           dirty_reg(&branch_regs[i-1],CCREG);
9229           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9230           if(rt1[i-1]!=0) { // JALR
9231             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9232             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9233             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9234           }
9235           #ifdef USE_MINI_HT
9236           if(rs1[i-1]==31) { // JALR
9237             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9238             #ifndef HOST_IMM_ADDR32
9239             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9240             #endif
9241           }
9242           #endif
9243           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9244           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9245           break;
9246         case CJUMP:
9247           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9248           {
9249             alloc_cc(&current,i-1);
9250             dirty_reg(&current,CCREG);
9251             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9252                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9253               // The delay slot overwrote one of our conditions
9254               // Delay slot goes after the test (in order)
9255               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9256               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9257               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9258               current.u|=1;
9259               current.uu|=1;
9260               delayslot_alloc(&current,i);
9261               current.isconst=0;
9262             }
9263             else
9264             {
9265               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9266               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9267               // Alloc the branch condition registers
9268               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9269               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9270               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9271               {
9272                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9273                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9274               }
9275             }
9276             memcpy(&branch_regs[i-1],&current,sizeof(current));
9277             branch_regs[i-1].isconst=0;
9278             branch_regs[i-1].wasconst=0;
9279             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9280             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9281           }
9282           else
9283           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9284           {
9285             alloc_cc(&current,i-1);
9286             dirty_reg(&current,CCREG);
9287             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9288               // The delay slot overwrote the branch condition
9289               // Delay slot goes after the test (in order)
9290               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9291               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9292               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9293               current.u|=1;
9294               current.uu|=1;
9295               delayslot_alloc(&current,i);
9296               current.isconst=0;
9297             }
9298             else
9299             {
9300               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9301               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9302               // Alloc the branch condition register
9303               alloc_reg(&current,i-1,rs1[i-1]);
9304               if(!(current.is32>>rs1[i-1]&1))
9305               {
9306                 alloc_reg64(&current,i-1,rs1[i-1]);
9307               }
9308             }
9309             memcpy(&branch_regs[i-1],&current,sizeof(current));
9310             branch_regs[i-1].isconst=0;
9311             branch_regs[i-1].wasconst=0;
9312             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9313             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9314           }
9315           else
9316           // Alloc the delay slot in case the branch is taken
9317           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9318           {
9319             memcpy(&branch_regs[i-1],&current,sizeof(current));
9320             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9321             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9322             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9323             alloc_cc(&branch_regs[i-1],i);
9324             dirty_reg(&branch_regs[i-1],CCREG);
9325             delayslot_alloc(&branch_regs[i-1],i);
9326             branch_regs[i-1].isconst=0;
9327             alloc_reg(&current,i,CCREG); // Not taken path
9328             dirty_reg(&current,CCREG);
9329             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9330           }
9331           else
9332           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9333           {
9334             memcpy(&branch_regs[i-1],&current,sizeof(current));
9335             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9336             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9337             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9338             alloc_cc(&branch_regs[i-1],i);
9339             dirty_reg(&branch_regs[i-1],CCREG);
9340             delayslot_alloc(&branch_regs[i-1],i);
9341             branch_regs[i-1].isconst=0;
9342             alloc_reg(&current,i,CCREG); // Not taken path
9343             dirty_reg(&current,CCREG);
9344             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9345           }
9346           break;
9347         case SJUMP:
9348           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9349           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9350           {
9351             alloc_cc(&current,i-1);
9352             dirty_reg(&current,CCREG);
9353             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9354               // The delay slot overwrote the branch condition
9355               // Delay slot goes after the test (in order)
9356               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9357               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9358               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9359               current.u|=1;
9360               current.uu|=1;
9361               delayslot_alloc(&current,i);
9362               current.isconst=0;
9363             }
9364             else
9365             {
9366               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9367               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9368               // Alloc the branch condition register
9369               alloc_reg(&current,i-1,rs1[i-1]);
9370               if(!(current.is32>>rs1[i-1]&1))
9371               {
9372                 alloc_reg64(&current,i-1,rs1[i-1]);
9373               }
9374             }
9375             memcpy(&branch_regs[i-1],&current,sizeof(current));
9376             branch_regs[i-1].isconst=0;
9377             branch_regs[i-1].wasconst=0;
9378             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9379             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9380           }
9381           else
9382           // Alloc the delay slot in case the branch is taken
9383           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9384           {
9385             memcpy(&branch_regs[i-1],&current,sizeof(current));
9386             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9387             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9388             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9389             alloc_cc(&branch_regs[i-1],i);
9390             dirty_reg(&branch_regs[i-1],CCREG);
9391             delayslot_alloc(&branch_regs[i-1],i);
9392             branch_regs[i-1].isconst=0;
9393             alloc_reg(&current,i,CCREG); // Not taken path
9394             dirty_reg(&current,CCREG);
9395             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9396           }
9397           // FIXME: BLTZAL/BGEZAL
9398           if(opcode2[i-1]&0x10) { // BxxZAL
9399             alloc_reg(&branch_regs[i-1],i-1,31);
9400             dirty_reg(&branch_regs[i-1],31);
9401             branch_regs[i-1].is32|=1LL<<31;
9402           }
9403           break;
9404         case FJUMP:
9405           if(likely[i-1]==0) // BC1F/BC1T
9406           {
9407             alloc_cc(&current,i-1);
9408             dirty_reg(&current,CCREG);
9409             if(itype[i]==FCOMP) {
9410               // The delay slot overwrote the branch condition
9411               // Delay slot goes after the test (in order)
9412               delayslot_alloc(&current,i);
9413               current.isconst=0;
9414             }
9415             else
9416             {
9417               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9418               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9419               // Alloc the branch condition register
9420               alloc_reg(&current,i-1,FSREG);
9421             }
9422             memcpy(&branch_regs[i-1],&current,sizeof(current));
9423             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9424           }
9425           else // BC1FL/BC1TL
9426           {
9427             // Alloc the delay slot in case the branch is taken
9428             memcpy(&branch_regs[i-1],&current,sizeof(current));
9429             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9430             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9431             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9432             alloc_cc(&branch_regs[i-1],i);
9433             dirty_reg(&branch_regs[i-1],CCREG);
9434             delayslot_alloc(&branch_regs[i-1],i);
9435             branch_regs[i-1].isconst=0;
9436             alloc_reg(&current,i,CCREG); // Not taken path
9437             dirty_reg(&current,CCREG);
9438             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9439           }
9440           break;
9441       }
9442
9443       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9444       {
9445         if(rt1[i-1]==31) // JAL/JALR
9446         {
9447           // Subroutine call will return here, don't alloc any registers
9448           current.is32=1;
9449           current.dirty=0;
9450           clear_all_regs(current.regmap);
9451           alloc_reg(&current,i,CCREG);
9452           dirty_reg(&current,CCREG);
9453         }
9454         else if(i+1<slen)
9455         {
9456           // Internal branch will jump here, match registers to caller
9457           current.is32=0x3FFFFFFFFLL;
9458           current.dirty=0;
9459           clear_all_regs(current.regmap);
9460           alloc_reg(&current,i,CCREG);
9461           dirty_reg(&current,CCREG);
9462           for(j=i-1;j>=0;j--)
9463           {
9464             if(ba[j]==start+i*4+4) {
9465               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9466               current.is32=branch_regs[j].is32;
9467               current.dirty=branch_regs[j].dirty;
9468               break;
9469             }
9470           }
9471           while(j>=0) {
9472             if(ba[j]==start+i*4+4) {
9473               for(hr=0;hr<HOST_REGS;hr++) {
9474                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9475                   current.regmap[hr]=-1;
9476                 }
9477                 current.is32&=branch_regs[j].is32;
9478                 current.dirty&=branch_regs[j].dirty;
9479               }
9480             }
9481             j--;
9482           }
9483         }
9484       }
9485     }
9486
9487     // Count cycles in between branches
9488     ccadj[i]=cc;
9489     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9490     {
9491       cc=0;
9492     }
9493 #ifdef PCSX
9494     else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9495     {
9496       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9497     }
9498     else if(itype[i]==C2LS)
9499     {
9500       cc+=4;
9501     }
9502 #endif
9503     else
9504     {
9505       cc++;
9506     }
9507
9508     flush_dirty_uppers(&current);
9509     if(!is_ds[i]) {
9510       regs[i].is32=current.is32;
9511       regs[i].dirty=current.dirty;
9512       regs[i].isconst=current.isconst;
9513       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9514     }
9515     for(hr=0;hr<HOST_REGS;hr++) {
9516       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9517         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9518           regs[i].wasconst&=~(1<<hr);
9519         }
9520       }
9521     }
9522     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9523   }
9524   
9525   /* Pass 4 - Cull unused host registers */
9526   
9527   uint64_t nr=0;
9528   
9529   for (i=slen-1;i>=0;i--)
9530   {
9531     int hr;
9532     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9533     {
9534       if(ba[i]<start || ba[i]>=(start+slen*4))
9535       {
9536         // Branch out of this block, don't need anything
9537         nr=0;
9538       }
9539       else
9540       {
9541         // Internal branch
9542         // Need whatever matches the target
9543         nr=0;
9544         int t=(ba[i]-start)>>2;
9545         for(hr=0;hr<HOST_REGS;hr++)
9546         {
9547           if(regs[i].regmap_entry[hr]>=0) {
9548             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9549           }
9550         }
9551       }
9552       // Conditional branch may need registers for following instructions
9553       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9554       {
9555         if(i<slen-2) {
9556           nr|=needed_reg[i+2];
9557           for(hr=0;hr<HOST_REGS;hr++)
9558           {
9559             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9560             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9561           }
9562         }
9563       }
9564       // Don't need stuff which is overwritten
9565       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9566       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9567       // Merge in delay slot
9568       for(hr=0;hr<HOST_REGS;hr++)
9569       {
9570         if(!likely[i]) {
9571           // These are overwritten unless the branch is "likely"
9572           // and the delay slot is nullified if not taken
9573           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9574           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9575         }
9576         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9577         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9578         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9579         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9580         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9581         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9582         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9583         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9584         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9585           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9586           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9587         }
9588         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9589           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9590           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9591         }
9592         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9593           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9594           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9595         }
9596       }
9597     }
9598     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9599     {
9600       // SYSCALL instruction (software interrupt)
9601       nr=0;
9602     }
9603     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9604     {
9605       // ERET instruction (return from interrupt)
9606       nr=0;
9607     }
9608     else // Non-branch
9609     {
9610       if(i<slen-1) {
9611         for(hr=0;hr<HOST_REGS;hr++) {
9612           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9613           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9614           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9615           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9616         }
9617       }
9618     }
9619     for(hr=0;hr<HOST_REGS;hr++)
9620     {
9621       // Overwritten registers are not needed
9622       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9623       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9624       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9625       // Source registers are needed
9626       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9627       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9628       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9629       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9630       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9631       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9632       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9633       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9634       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9635         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9636         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9637       }
9638       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9639         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9640         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9641       }
9642       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9643         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9644         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9645       }
9646       // Don't store a register immediately after writing it,
9647       // may prevent dual-issue.
9648       // But do so if this is a branch target, otherwise we
9649       // might have to load the register before the branch.
9650       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9651         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9652            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9653           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9654           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9655         }
9656         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9657            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9658           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9659           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9660         }
9661       }
9662     }
9663     // Cycle count is needed at branches.  Assume it is needed at the target too.
9664     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9665       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9666       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9667     }
9668     // Save it
9669     needed_reg[i]=nr;
9670     
9671     // Deallocate unneeded registers
9672     for(hr=0;hr<HOST_REGS;hr++)
9673     {
9674       if(!((nr>>hr)&1)) {
9675         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9676         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9677            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9678            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9679         {
9680           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9681           {
9682             if(likely[i]) {
9683               regs[i].regmap[hr]=-1;
9684               regs[i].isconst&=~(1<<hr);
9685               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9686             }
9687           }
9688         }
9689         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9690         {
9691           int d1=0,d2=0,map=0,temp=0;
9692           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9693           {
9694             d1=dep1[i+1];
9695             d2=dep2[i+1];
9696           }
9697           if(using_tlb) {
9698             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9699                itype[i+1]==STORE || itype[i+1]==STORELR ||
9700                itype[i+1]==C1LS || itype[i+1]==C2LS)
9701             map=TLREG;
9702           } else
9703           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9704              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9705             map=INVCP;
9706           }
9707           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9708              itype[i+1]==C1LS || itype[i+1]==C2LS)
9709             temp=FTEMP;
9710           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9711              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9712              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9713              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9714              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9715              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9716              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9717              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9718              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9719              regs[i].regmap[hr]!=map )
9720           {
9721             regs[i].regmap[hr]=-1;
9722             regs[i].isconst&=~(1<<hr);
9723             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9724                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9725                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9726                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9727                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9728                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9729                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9730                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9731                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9732                branch_regs[i].regmap[hr]!=map)
9733             {
9734               branch_regs[i].regmap[hr]=-1;
9735               branch_regs[i].regmap_entry[hr]=-1;
9736               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9737               {
9738                 if(!likely[i]&&i<slen-2) {
9739                   regmap_pre[i+2][hr]=-1;
9740                 }
9741               }
9742             }
9743           }
9744         }
9745         else
9746         {
9747           // Non-branch
9748           if(i>0)
9749           {
9750             int d1=0,d2=0,map=-1,temp=-1;
9751             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9752             {
9753               d1=dep1[i];
9754               d2=dep2[i];
9755             }
9756             if(using_tlb) {
9757               if(itype[i]==LOAD || itype[i]==LOADLR ||
9758                  itype[i]==STORE || itype[i]==STORELR ||
9759                  itype[i]==C1LS || itype[i]==C2LS)
9760               map=TLREG;
9761             } else if(itype[i]==STORE || itype[i]==STORELR ||
9762                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9763               map=INVCP;
9764             }
9765             if(itype[i]==LOADLR || itype[i]==STORELR ||
9766                itype[i]==C1LS || itype[i]==C2LS)
9767               temp=FTEMP;
9768             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9769                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9770                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9771                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9772                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9773                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9774             {
9775               if(i<slen-1&&!is_ds[i]) {
9776                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9777                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9778                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9779                 {
9780                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9781                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9782                 }
9783                 regmap_pre[i+1][hr]=-1;
9784                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9785               }
9786               regs[i].regmap[hr]=-1;
9787               regs[i].isconst&=~(1<<hr);
9788             }
9789           }
9790         }
9791       }
9792     }
9793   }
9794   
9795   /* Pass 5 - Pre-allocate registers */
9796   
9797   // If a register is allocated during a loop, try to allocate it for the
9798   // entire loop, if possible.  This avoids loading/storing registers
9799   // inside of the loop.
9800
9801   signed char f_regmap[HOST_REGS];
9802   clear_all_regs(f_regmap);
9803   for(i=0;i<slen-1;i++)
9804   {
9805     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9806     {
9807       if(ba[i]>=start && ba[i]<(start+i*4)) 
9808       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9809       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9810       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9811       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9812       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9813       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9814       {
9815         int t=(ba[i]-start)>>2;
9816         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9817         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9818         for(hr=0;hr<HOST_REGS;hr++)
9819         {
9820           if(regs[i].regmap[hr]>64) {
9821             if(!((regs[i].dirty>>hr)&1))
9822               f_regmap[hr]=regs[i].regmap[hr];
9823             else f_regmap[hr]=-1;
9824           }
9825           else if(regs[i].regmap[hr]>=0) {
9826             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9827               // dealloc old register
9828               int n;
9829               for(n=0;n<HOST_REGS;n++)
9830               {
9831                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9832               }
9833               // and alloc new one
9834               f_regmap[hr]=regs[i].regmap[hr];
9835             }
9836           }
9837           if(branch_regs[i].regmap[hr]>64) {
9838             if(!((branch_regs[i].dirty>>hr)&1))
9839               f_regmap[hr]=branch_regs[i].regmap[hr];
9840             else f_regmap[hr]=-1;
9841           }
9842           else if(branch_regs[i].regmap[hr]>=0) {
9843             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9844               // dealloc old register
9845               int n;
9846               for(n=0;n<HOST_REGS;n++)
9847               {
9848                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9849               }
9850               // and alloc new one
9851               f_regmap[hr]=branch_regs[i].regmap[hr];
9852             }
9853           }
9854           if(ooo[i]) {
9855             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9856               f_regmap[hr]=branch_regs[i].regmap[hr];
9857           }else{
9858             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9859               f_regmap[hr]=branch_regs[i].regmap[hr];
9860           }
9861           // Avoid dirty->clean transition
9862           #ifdef DESTRUCTIVE_WRITEBACK
9863           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9864           #endif
9865           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9866           // case above, however it's always a good idea.  We can't hoist the
9867           // load if the register was already allocated, so there's no point
9868           // wasting time analyzing most of these cases.  It only "succeeds"
9869           // when the mapping was different and the load can be replaced with
9870           // a mov, which is of negligible benefit.  So such cases are
9871           // skipped below.
9872           if(f_regmap[hr]>0) {
9873             if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
9874               int r=f_regmap[hr];
9875               for(j=t;j<=i;j++)
9876               {
9877                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9878                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9879                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9880                 if(r>63) {
9881                   // NB This can exclude the case where the upper-half
9882                   // register is lower numbered than the lower-half
9883                   // register.  Not sure if it's worth fixing...
9884                   if(get_reg(regs[j].regmap,r&63)<0) break;
9885                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9886                   if(regs[j].is32&(1LL<<(r&63))) break;
9887                 }
9888                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9889                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9890                   int k;
9891                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9892                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9893                     if(r>63) {
9894                       if(get_reg(regs[i].regmap,r&63)<0) break;
9895                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9896                     }
9897                     k=i;
9898                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9899                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9900                         //printf("no free regs for store %x\n",start+(k-1)*4);
9901                         break;
9902                       }
9903                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9904                         //printf("no-match due to different register\n");
9905                         break;
9906                       }
9907                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9908                         //printf("no-match due to branch\n");
9909                         break;
9910                       }
9911                       // call/ret fast path assumes no registers allocated
9912                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9913                         break;
9914                       }
9915                       if(r>63) {
9916                         // NB This can exclude the case where the upper-half
9917                         // register is lower numbered than the lower-half
9918                         // register.  Not sure if it's worth fixing...
9919                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9920                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9921                       }
9922                       k--;
9923                     }
9924                     if(i<slen-1) {
9925                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9926                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9927                         //printf("bad match after branch\n");
9928                         break;
9929                       }
9930                     }
9931                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9932                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9933                       while(k<i) {
9934                         regs[k].regmap_entry[hr]=f_regmap[hr];
9935                         regs[k].regmap[hr]=f_regmap[hr];
9936                         regmap_pre[k+1][hr]=f_regmap[hr];
9937                         regs[k].wasdirty&=~(1<<hr);
9938                         regs[k].dirty&=~(1<<hr);
9939                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9940                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9941                         regs[k].wasconst&=~(1<<hr);
9942                         regs[k].isconst&=~(1<<hr);
9943                         k++;
9944                       }
9945                     }
9946                     else {
9947                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9948                       break;
9949                     }
9950                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9951                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9952                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9953                       regs[i].regmap_entry[hr]=f_regmap[hr];
9954                       regs[i].regmap[hr]=f_regmap[hr];
9955                       regs[i].wasdirty&=~(1<<hr);
9956                       regs[i].dirty&=~(1<<hr);
9957                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9958                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9959                       regs[i].wasconst&=~(1<<hr);
9960                       regs[i].isconst&=~(1<<hr);
9961                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9962                       branch_regs[i].wasdirty&=~(1<<hr);
9963                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9964                       branch_regs[i].regmap[hr]=f_regmap[hr];
9965                       branch_regs[i].dirty&=~(1<<hr);
9966                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9967                       branch_regs[i].wasconst&=~(1<<hr);
9968                       branch_regs[i].isconst&=~(1<<hr);
9969                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9970                         regmap_pre[i+2][hr]=f_regmap[hr];
9971                         regs[i+2].wasdirty&=~(1<<hr);
9972                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9973                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9974                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9975                       }
9976                     }
9977                   }
9978                   for(k=t;k<j;k++) {
9979                     // Alloc register clean at beginning of loop,
9980                     // but may dirty it in pass 6
9981                     regs[k].regmap_entry[hr]=f_regmap[hr];
9982                     regs[k].regmap[hr]=f_regmap[hr];
9983                     regs[k].dirty&=~(1<<hr);
9984                     regs[k].wasconst&=~(1<<hr);
9985                     regs[k].isconst&=~(1<<hr);
9986                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9987                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9988                       branch_regs[k].regmap[hr]=f_regmap[hr];
9989                       branch_regs[k].dirty&=~(1<<hr);
9990                       branch_regs[k].wasconst&=~(1<<hr);
9991                       branch_regs[k].isconst&=~(1<<hr);
9992                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9993                         regmap_pre[k+2][hr]=f_regmap[hr];
9994                         regs[k+2].wasdirty&=~(1<<hr);
9995                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9996                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9997                       }
9998                     }
9999                     else
10000                     {
10001                       regmap_pre[k+1][hr]=f_regmap[hr];
10002                       regs[k+1].wasdirty&=~(1<<hr);
10003                     }
10004                   }
10005                   if(regs[j].regmap[hr]==f_regmap[hr])
10006                     regs[j].regmap_entry[hr]=f_regmap[hr];
10007                   break;
10008                 }
10009                 if(j==i) break;
10010                 if(regs[j].regmap[hr]>=0)
10011                   break;
10012                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10013                   //printf("no-match due to different register\n");
10014                   break;
10015                 }
10016                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10017                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10018                   break;
10019                 }
10020                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10021                 {
10022                   // Stop on unconditional branch
10023                   break;
10024                 }
10025                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10026                 {
10027                   if(ooo[j]) {
10028                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10029                       break;
10030                   }else{
10031                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10032                       break;
10033                   }
10034                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10035                     //printf("no-match due to different register (branch)\n");
10036                     break;
10037                   }
10038                 }
10039                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10040                   //printf("No free regs for store %x\n",start+j*4);
10041                   break;
10042                 }
10043                 if(f_regmap[hr]>=64) {
10044                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10045                     break;
10046                   }
10047                   else
10048                   {
10049                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10050                       break;
10051                     }
10052                   }
10053                 }
10054               }
10055             }
10056           }
10057         }
10058       }
10059     }else{
10060       int count=0;
10061       for(hr=0;hr<HOST_REGS;hr++)
10062       {
10063         if(hr!=EXCLUDE_REG) {
10064           if(regs[i].regmap[hr]>64) {
10065             if(!((regs[i].dirty>>hr)&1))
10066               f_regmap[hr]=regs[i].regmap[hr];
10067           }
10068           else if(regs[i].regmap[hr]>=0) {
10069             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10070               // dealloc old register
10071               int n;
10072               for(n=0;n<HOST_REGS;n++)
10073               {
10074                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10075               }
10076               // and alloc new one
10077               f_regmap[hr]=regs[i].regmap[hr];
10078             }
10079           }
10080           else if(regs[i].regmap[hr]<0) count++;
10081         }
10082       }
10083       // Try to restore cycle count at branch targets
10084       if(bt[i]) {
10085         for(j=i;j<slen-1;j++) {
10086           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10087           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10088             //printf("no free regs for store %x\n",start+j*4);
10089             break;
10090           }
10091         }
10092         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10093           int k=i;
10094           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10095           while(k<j) {
10096             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10097             regs[k].regmap[HOST_CCREG]=CCREG;
10098             regmap_pre[k+1][HOST_CCREG]=CCREG;
10099             regs[k+1].wasdirty|=1<<HOST_CCREG;
10100             regs[k].dirty|=1<<HOST_CCREG;
10101             regs[k].wasconst&=~(1<<HOST_CCREG);
10102             regs[k].isconst&=~(1<<HOST_CCREG);
10103             k++;
10104           }
10105           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10106         }
10107         // Work backwards from the branch target
10108         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10109         {
10110           //printf("Extend backwards\n");
10111           int k;
10112           k=i;
10113           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10114             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10115               //printf("no free regs for store %x\n",start+(k-1)*4);
10116               break;
10117             }
10118             k--;
10119           }
10120           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10121             //printf("Extend CC, %x ->\n",start+k*4);
10122             while(k<=i) {
10123               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10124               regs[k].regmap[HOST_CCREG]=CCREG;
10125               regmap_pre[k+1][HOST_CCREG]=CCREG;
10126               regs[k+1].wasdirty|=1<<HOST_CCREG;
10127               regs[k].dirty|=1<<HOST_CCREG;
10128               regs[k].wasconst&=~(1<<HOST_CCREG);
10129               regs[k].isconst&=~(1<<HOST_CCREG);
10130               k++;
10131             }
10132           }
10133           else {
10134             //printf("Fail Extend CC, %x ->\n",start+k*4);
10135           }
10136         }
10137       }
10138       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10139          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10140          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10141          itype[i]!=FCONV&&itype[i]!=FCOMP)
10142       {
10143         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10144       }
10145     }
10146   }
10147   
10148   // This allocates registers (if possible) one instruction prior
10149   // to use, which can avoid a load-use penalty on certain CPUs.
10150   for(i=0;i<slen-1;i++)
10151   {
10152     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10153     {
10154       if(!bt[i+1])
10155       {
10156         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10157            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10158         {
10159           if(rs1[i+1]) {
10160             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10161             {
10162               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10163               {
10164                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10165                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10166                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10167                 regs[i].isconst&=~(1<<hr);
10168                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10169                 constmap[i][hr]=constmap[i+1][hr];
10170                 regs[i+1].wasdirty&=~(1<<hr);
10171                 regs[i].dirty&=~(1<<hr);
10172               }
10173             }
10174           }
10175           if(rs2[i+1]) {
10176             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10177             {
10178               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10179               {
10180                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10181                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10182                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10183                 regs[i].isconst&=~(1<<hr);
10184                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10185                 constmap[i][hr]=constmap[i+1][hr];
10186                 regs[i+1].wasdirty&=~(1<<hr);
10187                 regs[i].dirty&=~(1<<hr);
10188               }
10189             }
10190           }
10191           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10192             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10193             {
10194               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10195               {
10196                 regs[i].regmap[hr]=rs1[i+1];
10197                 regmap_pre[i+1][hr]=rs1[i+1];
10198                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10199                 regs[i].isconst&=~(1<<hr);
10200                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10201                 constmap[i][hr]=constmap[i+1][hr];
10202                 regs[i+1].wasdirty&=~(1<<hr);
10203                 regs[i].dirty&=~(1<<hr);
10204               }
10205             }
10206           }
10207           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10208             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10209             {
10210               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10211               {
10212                 regs[i].regmap[hr]=rs1[i+1];
10213                 regmap_pre[i+1][hr]=rs1[i+1];
10214                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10215                 regs[i].isconst&=~(1<<hr);
10216                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10217                 constmap[i][hr]=constmap[i+1][hr];
10218                 regs[i+1].wasdirty&=~(1<<hr);
10219                 regs[i].dirty&=~(1<<hr);
10220               }
10221             }
10222           }
10223           #ifndef HOST_IMM_ADDR32
10224           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10225             hr=get_reg(regs[i+1].regmap,TLREG);
10226             if(hr>=0) {
10227               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10228               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10229                 int nr;
10230                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10231                 {
10232                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10233                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10234                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10235                   regs[i].isconst&=~(1<<hr);
10236                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10237                   constmap[i][hr]=constmap[i+1][hr];
10238                   regs[i+1].wasdirty&=~(1<<hr);
10239                   regs[i].dirty&=~(1<<hr);
10240                 }
10241                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10242                 {
10243                   // move it to another register
10244                   regs[i+1].regmap[hr]=-1;
10245                   regmap_pre[i+2][hr]=-1;
10246                   regs[i+1].regmap[nr]=TLREG;
10247                   regmap_pre[i+2][nr]=TLREG;
10248                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10249                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10250                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10251                   regs[i].isconst&=~(1<<nr);
10252                   regs[i+1].isconst&=~(1<<nr);
10253                   regs[i].dirty&=~(1<<nr);
10254                   regs[i+1].wasdirty&=~(1<<nr);
10255                   regs[i+1].dirty&=~(1<<nr);
10256                   regs[i+2].wasdirty&=~(1<<nr);
10257                 }
10258               }
10259             }
10260           }
10261           #endif
10262           if(itype[i+1]==STORE||itype[i+1]==STORELR
10263              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10264             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10265               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10266               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10267               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10268               assert(hr>=0);
10269               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10270               {
10271                 regs[i].regmap[hr]=rs1[i+1];
10272                 regmap_pre[i+1][hr]=rs1[i+1];
10273                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10274                 regs[i].isconst&=~(1<<hr);
10275                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10276                 constmap[i][hr]=constmap[i+1][hr];
10277                 regs[i+1].wasdirty&=~(1<<hr);
10278                 regs[i].dirty&=~(1<<hr);
10279               }
10280             }
10281           }
10282           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10283             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10284               int nr;
10285               hr=get_reg(regs[i+1].regmap,FTEMP);
10286               assert(hr>=0);
10287               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10288               {
10289                 regs[i].regmap[hr]=rs1[i+1];
10290                 regmap_pre[i+1][hr]=rs1[i+1];
10291                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10292                 regs[i].isconst&=~(1<<hr);
10293                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10294                 constmap[i][hr]=constmap[i+1][hr];
10295                 regs[i+1].wasdirty&=~(1<<hr);
10296                 regs[i].dirty&=~(1<<hr);
10297               }
10298               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10299               {
10300                 // move it to another register
10301                 regs[i+1].regmap[hr]=-1;
10302                 regmap_pre[i+2][hr]=-1;
10303                 regs[i+1].regmap[nr]=FTEMP;
10304                 regmap_pre[i+2][nr]=FTEMP;
10305                 regs[i].regmap[nr]=rs1[i+1];
10306                 regmap_pre[i+1][nr]=rs1[i+1];
10307                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10308                 regs[i].isconst&=~(1<<nr);
10309                 regs[i+1].isconst&=~(1<<nr);
10310                 regs[i].dirty&=~(1<<nr);
10311                 regs[i+1].wasdirty&=~(1<<nr);
10312                 regs[i+1].dirty&=~(1<<nr);
10313                 regs[i+2].wasdirty&=~(1<<nr);
10314               }
10315             }
10316           }
10317           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10318             if(itype[i+1]==LOAD) 
10319               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10320             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10321               hr=get_reg(regs[i+1].regmap,FTEMP);
10322             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10323               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10324               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10325             }
10326             if(hr>=0&&regs[i].regmap[hr]<0) {
10327               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10328               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10329                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10330                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10331                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10332                 regs[i].isconst&=~(1<<hr);
10333                 regs[i+1].wasdirty&=~(1<<hr);
10334                 regs[i].dirty&=~(1<<hr);
10335               }
10336             }
10337           }
10338         }
10339       }
10340     }
10341   }
10342   
10343   /* Pass 6 - Optimize clean/dirty state */
10344   clean_registers(0,slen-1,1);
10345   
10346   /* Pass 7 - Identify 32-bit registers */
10347 #ifndef FORCE32
10348   provisional_r32();
10349
10350   u_int r32=0;
10351   
10352   for (i=slen-1;i>=0;i--)
10353   {
10354     int hr;
10355     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10356     {
10357       if(ba[i]<start || ba[i]>=(start+slen*4))
10358       {
10359         // Branch out of this block, don't need anything
10360         r32=0;
10361       }
10362       else
10363       {
10364         // Internal branch
10365         // Need whatever matches the target
10366         // (and doesn't get overwritten by the delay slot instruction)
10367         r32=0;
10368         int t=(ba[i]-start)>>2;
10369         if(ba[i]>start+i*4) {
10370           // Forward branch
10371           if(!(requires_32bit[t]&~regs[i].was32))
10372             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10373         }else{
10374           // Backward branch
10375           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10376           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10377           if(!(pr32[t]&~regs[i].was32))
10378             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10379         }
10380       }
10381       // Conditional branch may need registers for following instructions
10382       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10383       {
10384         if(i<slen-2) {
10385           r32|=requires_32bit[i+2];
10386           r32&=regs[i].was32;
10387           // Mark this address as a branch target since it may be called
10388           // upon return from interrupt
10389           bt[i+2]=1;
10390         }
10391       }
10392       // Merge in delay slot
10393       if(!likely[i]) {
10394         // These are overwritten unless the branch is "likely"
10395         // and the delay slot is nullified if not taken
10396         r32&=~(1LL<<rt1[i+1]);
10397         r32&=~(1LL<<rt2[i+1]);
10398       }
10399       // Assume these are needed (delay slot)
10400       if(us1[i+1]>0)
10401       {
10402         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10403       }
10404       if(us2[i+1]>0)
10405       {
10406         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10407       }
10408       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10409       {
10410         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10411       }
10412       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10413       {
10414         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10415       }
10416     }
10417     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10418     {
10419       // SYSCALL instruction (software interrupt)
10420       r32=0;
10421     }
10422     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10423     {
10424       // ERET instruction (return from interrupt)
10425       r32=0;
10426     }
10427     // Check 32 bits
10428     r32&=~(1LL<<rt1[i]);
10429     r32&=~(1LL<<rt2[i]);
10430     if(us1[i]>0)
10431     {
10432       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10433     }
10434     if(us2[i]>0)
10435     {
10436       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10437     }
10438     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10439     {
10440       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10441     }
10442     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10443     {
10444       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10445     }
10446     requires_32bit[i]=r32;
10447     
10448     // Dirty registers which are 32-bit, require 32-bit input
10449     // as they will be written as 32-bit values
10450     for(hr=0;hr<HOST_REGS;hr++)
10451     {
10452       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10453         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10454           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10455           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10456         }
10457       }
10458     }
10459     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10460   }
10461 #endif
10462
10463   if(itype[slen-1]==SPAN) {
10464     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10465   }
10466   
10467   /* Debug/disassembly */
10468   if((void*)assem_debug==(void*)printf) 
10469   for(i=0;i<slen;i++)
10470   {
10471     printf("U:");
10472     int r;
10473     for(r=1;r<=CCREG;r++) {
10474       if((unneeded_reg[i]>>r)&1) {
10475         if(r==HIREG) printf(" HI");
10476         else if(r==LOREG) printf(" LO");
10477         else printf(" r%d",r);
10478       }
10479     }
10480 #ifndef FORCE32
10481     printf(" UU:");
10482     for(r=1;r<=CCREG;r++) {
10483       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10484         if(r==HIREG) printf(" HI");
10485         else if(r==LOREG) printf(" LO");
10486         else printf(" r%d",r);
10487       }
10488     }
10489     printf(" 32:");
10490     for(r=0;r<=CCREG;r++) {
10491       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10492       if((regs[i].was32>>r)&1) {
10493         if(r==CCREG) printf(" CC");
10494         else if(r==HIREG) printf(" HI");
10495         else if(r==LOREG) printf(" LO");
10496         else printf(" r%d",r);
10497       }
10498     }
10499 #endif
10500     printf("\n");
10501     #if defined(__i386__) || defined(__x86_64__)
10502     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10503     #endif
10504     #ifdef __arm__
10505     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10506     #endif
10507     printf("needs: ");
10508     if(needed_reg[i]&1) printf("eax ");
10509     if((needed_reg[i]>>1)&1) printf("ecx ");
10510     if((needed_reg[i]>>2)&1) printf("edx ");
10511     if((needed_reg[i]>>3)&1) printf("ebx ");
10512     if((needed_reg[i]>>5)&1) printf("ebp ");
10513     if((needed_reg[i]>>6)&1) printf("esi ");
10514     if((needed_reg[i]>>7)&1) printf("edi ");
10515     printf("r:");
10516     for(r=0;r<=CCREG;r++) {
10517       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10518       if((requires_32bit[i]>>r)&1) {
10519         if(r==CCREG) printf(" CC");
10520         else if(r==HIREG) printf(" HI");
10521         else if(r==LOREG) printf(" LO");
10522         else printf(" r%d",r);
10523       }
10524     }
10525     printf("\n");
10526     /*printf("pr:");
10527     for(r=0;r<=CCREG;r++) {
10528       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10529       if((pr32[i]>>r)&1) {
10530         if(r==CCREG) printf(" CC");
10531         else if(r==HIREG) printf(" HI");
10532         else if(r==LOREG) printf(" LO");
10533         else printf(" r%d",r);
10534       }
10535     }
10536     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10537     printf("\n");*/
10538     #if defined(__i386__) || defined(__x86_64__)
10539     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10540     printf("dirty: ");
10541     if(regs[i].wasdirty&1) printf("eax ");
10542     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10543     if((regs[i].wasdirty>>2)&1) printf("edx ");
10544     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10545     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10546     if((regs[i].wasdirty>>6)&1) printf("esi ");
10547     if((regs[i].wasdirty>>7)&1) printf("edi ");
10548     #endif
10549     #ifdef __arm__
10550     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10551     printf("dirty: ");
10552     if(regs[i].wasdirty&1) printf("r0 ");
10553     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10554     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10555     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10556     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10557     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10558     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10559     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10560     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10561     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10562     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10563     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10564     #endif
10565     printf("\n");
10566     disassemble_inst(i);
10567     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10568     #if defined(__i386__) || defined(__x86_64__)
10569     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10570     if(regs[i].dirty&1) printf("eax ");
10571     if((regs[i].dirty>>1)&1) printf("ecx ");
10572     if((regs[i].dirty>>2)&1) printf("edx ");
10573     if((regs[i].dirty>>3)&1) printf("ebx ");
10574     if((regs[i].dirty>>5)&1) printf("ebp ");
10575     if((regs[i].dirty>>6)&1) printf("esi ");
10576     if((regs[i].dirty>>7)&1) printf("edi ");
10577     #endif
10578     #ifdef __arm__
10579     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10580     if(regs[i].dirty&1) printf("r0 ");
10581     if((regs[i].dirty>>1)&1) printf("r1 ");
10582     if((regs[i].dirty>>2)&1) printf("r2 ");
10583     if((regs[i].dirty>>3)&1) printf("r3 ");
10584     if((regs[i].dirty>>4)&1) printf("r4 ");
10585     if((regs[i].dirty>>5)&1) printf("r5 ");
10586     if((regs[i].dirty>>6)&1) printf("r6 ");
10587     if((regs[i].dirty>>7)&1) printf("r7 ");
10588     if((regs[i].dirty>>8)&1) printf("r8 ");
10589     if((regs[i].dirty>>9)&1) printf("r9 ");
10590     if((regs[i].dirty>>10)&1) printf("r10 ");
10591     if((regs[i].dirty>>12)&1) printf("r12 ");
10592     #endif
10593     printf("\n");
10594     if(regs[i].isconst) {
10595       printf("constants: ");
10596       #if defined(__i386__) || defined(__x86_64__)
10597       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10598       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10599       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10600       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10601       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10602       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10603       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10604       #endif
10605       #ifdef __arm__
10606       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10607       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10608       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10609       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10610       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10611       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10612       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10613       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10614       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10615       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10616       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10617       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10618       #endif
10619       printf("\n");
10620     }
10621 #ifndef FORCE32
10622     printf(" 32:");
10623     for(r=0;r<=CCREG;r++) {
10624       if((regs[i].is32>>r)&1) {
10625         if(r==CCREG) printf(" CC");
10626         else if(r==HIREG) printf(" HI");
10627         else if(r==LOREG) printf(" LO");
10628         else printf(" r%d",r);
10629       }
10630     }
10631     printf("\n");
10632 #endif
10633     /*printf(" p32:");
10634     for(r=0;r<=CCREG;r++) {
10635       if((p32[i]>>r)&1) {
10636         if(r==CCREG) printf(" CC");
10637         else if(r==HIREG) printf(" HI");
10638         else if(r==LOREG) printf(" LO");
10639         else printf(" r%d",r);
10640       }
10641     }
10642     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10643     else printf("\n");*/
10644     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10645       #if defined(__i386__) || defined(__x86_64__)
10646       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10647       if(branch_regs[i].dirty&1) printf("eax ");
10648       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10649       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10650       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10651       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10652       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10653       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10654       #endif
10655       #ifdef __arm__
10656       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10657       if(branch_regs[i].dirty&1) printf("r0 ");
10658       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10659       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10660       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10661       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10662       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10663       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10664       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10665       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10666       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10667       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10668       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10669       #endif
10670 #ifndef FORCE32
10671       printf(" 32:");
10672       for(r=0;r<=CCREG;r++) {
10673         if((branch_regs[i].is32>>r)&1) {
10674           if(r==CCREG) printf(" CC");
10675           else if(r==HIREG) printf(" HI");
10676           else if(r==LOREG) printf(" LO");
10677           else printf(" r%d",r);
10678         }
10679       }
10680       printf("\n");
10681 #endif
10682     }
10683   }
10684
10685   /* Pass 8 - Assembly */
10686   linkcount=0;stubcount=0;
10687   ds=0;is_delayslot=0;
10688   cop1_usable=0;
10689   uint64_t is32_pre=0;
10690   u_int dirty_pre=0;
10691   u_int beginning=(u_int)out;
10692   if((u_int)addr&1) {
10693     ds=1;
10694     pagespan_ds();
10695   }
10696   u_int instr_addr0_override=0;
10697
10698 #ifdef PCSX
10699   if (start == 0x80030000) {
10700     // nasty hack for fastbios thing
10701     instr_addr0_override=(u_int)out;
10702     emit_movimm(start,0);
10703     emit_readword((int)&pcaddr,1);
10704     emit_writeword(0,(int)&pcaddr);
10705     emit_cmp(0,1);
10706     emit_jne((int)new_dyna_leave);
10707   }
10708 #endif
10709   for(i=0;i<slen;i++)
10710   {
10711     //if(ds) printf("ds: ");
10712     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10713     if(ds) {
10714       ds=0; // Skip delay slot
10715       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10716       instr_addr[i]=0;
10717     } else {
10718       #ifndef DESTRUCTIVE_WRITEBACK
10719       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10720       {
10721         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10722               unneeded_reg[i],unneeded_reg_upper[i]);
10723         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10724               unneeded_reg[i],unneeded_reg_upper[i]);
10725       }
10726       is32_pre=regs[i].is32;
10727       dirty_pre=regs[i].dirty;
10728       #endif
10729       // write back
10730       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10731       {
10732         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10733                       unneeded_reg[i],unneeded_reg_upper[i]);
10734         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10735       }
10736       // branch target entry point
10737       instr_addr[i]=(u_int)out;
10738       assem_debug("<->\n");
10739       // load regs
10740       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10741         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10742       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10743       address_generation(i,&regs[i],regs[i].regmap_entry);
10744       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10745       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10746       {
10747         // Load the delay slot registers if necessary
10748         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10749           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10750         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10751           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10752         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10753           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10754       }
10755       else if(i+1<slen)
10756       {
10757         // Preload registers for following instruction
10758         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10759           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10760             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10761         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10762           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10763             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10764       }
10765       // TODO: if(is_ooo(i)) address_generation(i+1);
10766       if(itype[i]==CJUMP||itype[i]==FJUMP)
10767         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10768       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10769         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10770       if(bt[i]) cop1_usable=0;
10771       // assemble
10772       switch(itype[i]) {
10773         case ALU:
10774           alu_assemble(i,&regs[i]);break;
10775         case IMM16:
10776           imm16_assemble(i,&regs[i]);break;
10777         case SHIFT:
10778           shift_assemble(i,&regs[i]);break;
10779         case SHIFTIMM:
10780           shiftimm_assemble(i,&regs[i]);break;
10781         case LOAD:
10782           load_assemble(i,&regs[i]);break;
10783         case LOADLR:
10784           loadlr_assemble(i,&regs[i]);break;
10785         case STORE:
10786           store_assemble(i,&regs[i]);break;
10787         case STORELR:
10788           storelr_assemble(i,&regs[i]);break;
10789         case COP0:
10790           cop0_assemble(i,&regs[i]);break;
10791         case COP1:
10792           cop1_assemble(i,&regs[i]);break;
10793         case C1LS:
10794           c1ls_assemble(i,&regs[i]);break;
10795         case COP2:
10796           cop2_assemble(i,&regs[i]);break;
10797         case C2LS:
10798           c2ls_assemble(i,&regs[i]);break;
10799         case C2OP:
10800           c2op_assemble(i,&regs[i]);break;
10801         case FCONV:
10802           fconv_assemble(i,&regs[i]);break;
10803         case FLOAT:
10804           float_assemble(i,&regs[i]);break;
10805         case FCOMP:
10806           fcomp_assemble(i,&regs[i]);break;
10807         case MULTDIV:
10808           multdiv_assemble(i,&regs[i]);break;
10809         case MOV:
10810           mov_assemble(i,&regs[i]);break;
10811         case SYSCALL:
10812           syscall_assemble(i,&regs[i]);break;
10813         case HLECALL:
10814           hlecall_assemble(i,&regs[i]);break;
10815         case INTCALL:
10816           intcall_assemble(i,&regs[i]);break;
10817         case UJUMP:
10818           ujump_assemble(i,&regs[i]);ds=1;break;
10819         case RJUMP:
10820           rjump_assemble(i,&regs[i]);ds=1;break;
10821         case CJUMP:
10822           cjump_assemble(i,&regs[i]);ds=1;break;
10823         case SJUMP:
10824           sjump_assemble(i,&regs[i]);ds=1;break;
10825         case FJUMP:
10826           fjump_assemble(i,&regs[i]);ds=1;break;
10827         case SPAN:
10828           pagespan_assemble(i,&regs[i]);break;
10829       }
10830       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10831         literal_pool(1024);
10832       else
10833         literal_pool_jumpover(256);
10834     }
10835   }
10836   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10837   // If the block did not end with an unconditional branch,
10838   // add a jump to the next instruction.
10839   if(i>1) {
10840     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10841       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10842       assert(i==slen);
10843       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10844         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10845         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10846           emit_loadreg(CCREG,HOST_CCREG);
10847         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10848       }
10849       else if(!likely[i-2])
10850       {
10851         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10852         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10853       }
10854       else
10855       {
10856         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10857         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10858       }
10859       add_to_linker((int)out,start+i*4,0);
10860       emit_jmp(0);
10861     }
10862   }
10863   else
10864   {
10865     assert(i>0);
10866     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10867     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10868     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10869       emit_loadreg(CCREG,HOST_CCREG);
10870     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10871     add_to_linker((int)out,start+i*4,0);
10872     emit_jmp(0);
10873   }
10874
10875   // TODO: delay slot stubs?
10876   // Stubs
10877   for(i=0;i<stubcount;i++)
10878   {
10879     switch(stubs[i][0])
10880     {
10881       case LOADB_STUB:
10882       case LOADH_STUB:
10883       case LOADW_STUB:
10884       case LOADD_STUB:
10885       case LOADBU_STUB:
10886       case LOADHU_STUB:
10887         do_readstub(i);break;
10888       case STOREB_STUB:
10889       case STOREH_STUB:
10890       case STOREW_STUB:
10891       case STORED_STUB:
10892         do_writestub(i);break;
10893       case CC_STUB:
10894         do_ccstub(i);break;
10895       case INVCODE_STUB:
10896         do_invstub(i);break;
10897       case FP_STUB:
10898         do_cop1stub(i);break;
10899       case STORELR_STUB:
10900         do_unalignedwritestub(i);break;
10901     }
10902   }
10903
10904   if (instr_addr0_override)
10905     instr_addr[0] = instr_addr0_override;
10906
10907   /* Pass 9 - Linker */
10908   for(i=0;i<linkcount;i++)
10909   {
10910     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10911     literal_pool(64);
10912     if(!link_addr[i][2])
10913     {
10914       void *stub=out;
10915       void *addr=check_addr(link_addr[i][1]);
10916       emit_extjump(link_addr[i][0],link_addr[i][1]);
10917       if(addr) {
10918         set_jump_target(link_addr[i][0],(int)addr);
10919         add_link(link_addr[i][1],stub);
10920       }
10921       else set_jump_target(link_addr[i][0],(int)stub);
10922     }
10923     else
10924     {
10925       // Internal branch
10926       int target=(link_addr[i][1]-start)>>2;
10927       assert(target>=0&&target<slen);
10928       assert(instr_addr[target]);
10929       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10930       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10931       //#else
10932       set_jump_target(link_addr[i][0],instr_addr[target]);
10933       //#endif
10934     }
10935   }
10936   // External Branch Targets (jump_in)
10937   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10938   for(i=0;i<slen;i++)
10939   {
10940     if(bt[i]||i==0)
10941     {
10942       if(instr_addr[i]) // TODO - delay slots (=null)
10943       {
10944         u_int vaddr=start+i*4;
10945         u_int page=get_page(vaddr);
10946         u_int vpage=get_vpage(vaddr);
10947         literal_pool(256);
10948         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10949 #ifndef FORCE32
10950         if(!requires_32bit[i])
10951 #else
10952         if(1)
10953 #endif
10954         {
10955           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10956           assem_debug("jump_in: %x\n",start+i*4);
10957           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10958           int entry_point=do_dirty_stub(i);
10959           ll_add(jump_in+page,vaddr,(void *)entry_point);
10960           // If there was an existing entry in the hash table,
10961           // replace it with the new address.
10962           // Don't add new entries.  We'll insert the
10963           // ones that actually get used in check_addr().
10964           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10965           if(ht_bin[0]==vaddr) {
10966             ht_bin[1]=entry_point;
10967           }
10968           if(ht_bin[2]==vaddr) {
10969             ht_bin[3]=entry_point;
10970           }
10971         }
10972         else
10973         {
10974           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10975           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10976           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10977           //int entry_point=(int)out;
10978           ////assem_debug("entry_point: %x\n",entry_point);
10979           //load_regs_entry(i);
10980           //if(entry_point==(int)out)
10981           //  entry_point=instr_addr[i];
10982           //else
10983           //  emit_jmp(instr_addr[i]);
10984           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10985           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10986           int entry_point=do_dirty_stub(i);
10987           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10988         }
10989       }
10990     }
10991   }
10992   // Write out the literal pool if necessary
10993   literal_pool(0);
10994   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10995   // Align code
10996   if(((u_int)out)&7) emit_addnop(13);
10997   #endif
10998   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10999   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11000   memcpy(copy,source,slen*4);
11001   copy+=slen*4;
11002   
11003   #ifdef __arm__
11004   __clear_cache((void *)beginning,out);
11005   #endif
11006   
11007   // If we're within 256K of the end of the buffer,
11008   // start over from the beginning. (Is 256K enough?)
11009   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11010   
11011   // Trap writes to any of the pages we compiled
11012   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11013     invalid_code[i]=0;
11014 #ifndef DISABLE_TLB
11015     memory_map[i]|=0x40000000;
11016     if((signed int)start>=(signed int)0xC0000000) {
11017       assert(using_tlb);
11018       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11019       invalid_code[j]=0;
11020       memory_map[j]|=0x40000000;
11021       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11022     }
11023 #endif
11024   }
11025   
11026   /* Pass 10 - Free memory by expiring oldest blocks */
11027   
11028   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11029   while(expirep!=end)
11030   {
11031     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11032     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11033     inv_debug("EXP: Phase %d\n",expirep);
11034     switch((expirep>>11)&3)
11035     {
11036       case 0:
11037         // Clear jump_in and jump_dirty
11038         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11039         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11040         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11041         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11042         break;
11043       case 1:
11044         // Clear pointers
11045         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11046         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11047         break;
11048       case 2:
11049         // Clear hash table
11050         for(i=0;i<32;i++) {
11051           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11052           if((ht_bin[3]>>shift)==(base>>shift) ||
11053              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11054             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11055             ht_bin[2]=ht_bin[3]=-1;
11056           }
11057           if((ht_bin[1]>>shift)==(base>>shift) ||
11058              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11059             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11060             ht_bin[0]=ht_bin[2];
11061             ht_bin[1]=ht_bin[3];
11062             ht_bin[2]=ht_bin[3]=-1;
11063           }
11064         }
11065         break;
11066       case 3:
11067         // Clear jump_out
11068         #ifdef __arm__
11069         if((expirep&2047)==0) 
11070           do_clear_cache();
11071         #endif
11072         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11073         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11074         break;
11075     }
11076     expirep=(expirep+1)&65535;
11077   }
11078   return 0;
11079 }
11080
11081 // vim:shiftwidth=2:expandtab