drc: fix JALR with non-r31 return register
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182
183   /* stubs */
184 #define CC_STUB 1
185 #define FP_STUB 2
186 #define LOADB_STUB 3
187 #define LOADH_STUB 4
188 #define LOADW_STUB 5
189 #define LOADD_STUB 6
190 #define LOADBU_STUB 7
191 #define LOADHU_STUB 8
192 #define STOREB_STUB 9
193 #define STOREH_STUB 10
194 #define STOREW_STUB 11
195 #define STORED_STUB 12
196 #define STORELR_STUB 13
197 #define INVCODE_STUB 14
198
199   /* branch codes */
200 #define TAKEN 1
201 #define NOTTAKEN 2
202 #define NULLDS 3
203
204 // asm linkage
205 int new_recompile_block(int addr);
206 void *get_addr_ht(u_int vaddr);
207 void invalidate_block(u_int block);
208 void invalidate_addr(u_int addr);
209 void remove_hash(int vaddr);
210 void jump_vaddr();
211 void dyna_linker();
212 void dyna_linker_ds();
213 void verify_code();
214 void verify_code_vm();
215 void verify_code_ds();
216 void cc_interrupt();
217 void fp_exception();
218 void fp_exception_ds();
219 void jump_syscall();
220 void jump_syscall_hle();
221 void jump_eret();
222 void jump_hlecall();
223 void new_dyna_leave();
224
225 // TLB
226 void TLBWI_new();
227 void TLBWR_new();
228 void read_nomem_new();
229 void read_nomemb_new();
230 void read_nomemh_new();
231 void read_nomemd_new();
232 void write_nomem_new();
233 void write_nomemb_new();
234 void write_nomemh_new();
235 void write_nomemd_new();
236 void write_rdram_new();
237 void write_rdramb_new();
238 void write_rdramh_new();
239 void write_rdramd_new();
240 extern u_int memory_map[1048576];
241
242 // Needed by assembler
243 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246 void load_all_regs(signed char i_regmap[]);
247 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248 void load_regs_entry(int t);
249 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251 int tracedebug=0;
252
253 //#define DEBUG_CYCLE_COUNT 1
254
255 void nullf() {}
256 //#define assem_debug printf
257 //#define inv_debug printf
258 #define assem_debug nullf
259 #define inv_debug nullf
260
261 static void tlb_hacks()
262 {
263 #ifndef DISABLE_TLB
264   // Goldeneye hack
265   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
266   {
267     u_int addr;
268     int n;
269     switch (ROM_HEADER->Country_code&0xFF) 
270     {
271       case 0x45: // U
272         addr=0x34b30;
273         break;                   
274       case 0x4A: // J 
275         addr=0x34b70;    
276         break;    
277       case 0x50: // E 
278         addr=0x329f0;
279         break;                        
280       default: 
281         // Unknown country code
282         addr=0;
283         break;
284     }
285     u_int rom_addr=(u_int)rom;
286     #ifdef ROM_COPY
287     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
288     // in the lower 4G of memory to use this hack.  Copy it if necessary.
289     if((void *)rom>(void *)0xffffffff) {
290       munmap(ROM_COPY, 67108864);
291       if(mmap(ROM_COPY, 12582912,
292               PROT_READ | PROT_WRITE,
293               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
294               -1, 0) <= 0) {printf("mmap() failed\n");}
295       memcpy(ROM_COPY,rom,12582912);
296       rom_addr=(u_int)ROM_COPY;
297     }
298     #endif
299     if(addr) {
300       for(n=0x7F000;n<0x80000;n++) {
301         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
302       }
303     }
304   }
305 #endif
306 }
307
308 static u_int get_page(u_int vaddr)
309 {
310   u_int page=(vaddr^0x80000000)>>12;
311 #ifndef DISABLE_TLB
312   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
313 #endif
314   if(page>2048) page=2048+(page&2047);
315   return page;
316 }
317
318 static u_int get_vpage(u_int vaddr)
319 {
320   u_int vpage=(vaddr^0x80000000)>>12;
321 #ifndef DISABLE_TLB
322   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
323 #endif
324   if(vpage>2048) vpage=2048+(vpage&2047);
325   return vpage;
326 }
327
328 // Get address from virtual address
329 // This is called from the recompiled JR/JALR instructions
330 void *get_addr(u_int vaddr)
331 {
332   u_int page=get_page(vaddr);
333   u_int vpage=get_vpage(vaddr);
334   struct ll_entry *head;
335   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
336   head=jump_in[page];
337   while(head!=NULL) {
338     if(head->vaddr==vaddr&&head->reg32==0) {
339   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
340       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
341       ht_bin[3]=ht_bin[1];
342       ht_bin[2]=ht_bin[0];
343       ht_bin[1]=(int)head->addr;
344       ht_bin[0]=vaddr;
345       return head->addr;
346     }
347     head=head->next;
348   }
349   head=jump_dirty[vpage];
350   while(head!=NULL) {
351     if(head->vaddr==vaddr&&head->reg32==0) {
352       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
353       // Don't restore blocks which are about to expire from the cache
354       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
355       if(verify_dirty(head->addr)) {
356         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
357         invalid_code[vaddr>>12]=0;
358         memory_map[vaddr>>12]|=0x40000000;
359         if(vpage<2048) {
360 #ifndef DISABLE_TLB
361           if(tlb_LUT_r[vaddr>>12]) {
362             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
363             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
364           }
365 #endif
366           restore_candidate[vpage>>3]|=1<<(vpage&7);
367         }
368         else restore_candidate[page>>3]|=1<<(page&7);
369         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370         if(ht_bin[0]==vaddr) {
371           ht_bin[1]=(int)head->addr; // Replace existing entry
372         }
373         else
374         {
375           ht_bin[3]=ht_bin[1];
376           ht_bin[2]=ht_bin[0];
377           ht_bin[1]=(int)head->addr;
378           ht_bin[0]=vaddr;
379         }
380         return head->addr;
381       }
382     }
383     head=head->next;
384   }
385   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
386   int r=new_recompile_block(vaddr);
387   if(r==0) return get_addr(vaddr);
388   // Execute in unmapped page, generate pagefault execption
389   Status|=2;
390   Cause=(vaddr<<31)|0x8;
391   EPC=(vaddr&1)?vaddr-5:vaddr;
392   BadVAddr=(vaddr&~1);
393   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
394   EntryHi=BadVAddr&0xFFFFE000;
395   return get_addr_ht(0x80000000);
396 }
397 // Look up address in hash table first
398 void *get_addr_ht(u_int vaddr)
399 {
400   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
401   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
403   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
404   return get_addr(vaddr);
405 }
406
407 void *get_addr_32(u_int vaddr,u_int flags)
408 {
409 #ifdef FORCE32
410   return get_addr(vaddr);
411 #endif
412   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
413   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
414   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
415   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
416   u_int page=get_page(vaddr);
417   u_int vpage=get_vpage(vaddr);
418   struct ll_entry *head;
419   head=jump_in[page];
420   while(head!=NULL) {
421     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
422       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
423       if(head->reg32==0) {
424         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425         if(ht_bin[0]==-1) {
426           ht_bin[1]=(int)head->addr;
427           ht_bin[0]=vaddr;
428         }else if(ht_bin[2]==-1) {
429           ht_bin[3]=(int)head->addr;
430           ht_bin[2]=vaddr;
431         }
432         //ht_bin[3]=ht_bin[1];
433         //ht_bin[2]=ht_bin[0];
434         //ht_bin[1]=(int)head->addr;
435         //ht_bin[0]=vaddr;
436       }
437       return head->addr;
438     }
439     head=head->next;
440   }
441   head=jump_dirty[vpage];
442   while(head!=NULL) {
443     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
444       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
445       // Don't restore blocks which are about to expire from the cache
446       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
447       if(verify_dirty(head->addr)) {
448         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
449         invalid_code[vaddr>>12]=0;
450         memory_map[vaddr>>12]|=0x40000000;
451         if(vpage<2048) {
452 #ifndef DISABLE_TLB
453           if(tlb_LUT_r[vaddr>>12]) {
454             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
455             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
456           }
457 #endif
458           restore_candidate[vpage>>3]|=1<<(vpage&7);
459         }
460         else restore_candidate[page>>3]|=1<<(page&7);
461         if(head->reg32==0) {
462           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
463           if(ht_bin[0]==-1) {
464             ht_bin[1]=(int)head->addr;
465             ht_bin[0]=vaddr;
466           }else if(ht_bin[2]==-1) {
467             ht_bin[3]=(int)head->addr;
468             ht_bin[2]=vaddr;
469           }
470           //ht_bin[3]=ht_bin[1];
471           //ht_bin[2]=ht_bin[0];
472           //ht_bin[1]=(int)head->addr;
473           //ht_bin[0]=vaddr;
474         }
475         return head->addr;
476       }
477     }
478     head=head->next;
479   }
480   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
481   int r=new_recompile_block(vaddr);
482   if(r==0) return get_addr(vaddr);
483   // Execute in unmapped page, generate pagefault execption
484   Status|=2;
485   Cause=(vaddr<<31)|0x8;
486   EPC=(vaddr&1)?vaddr-5:vaddr;
487   BadVAddr=(vaddr&~1);
488   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
489   EntryHi=BadVAddr&0xFFFFE000;
490   return get_addr_ht(0x80000000);
491 }
492
493 void clear_all_regs(signed char regmap[])
494 {
495   int hr;
496   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
497 }
498
499 signed char get_reg(signed char regmap[],int r)
500 {
501   int hr;
502   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
503   return -1;
504 }
505
506 // Find a register that is available for two consecutive cycles
507 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
508 {
509   int hr;
510   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
511   return -1;
512 }
513
514 int count_free_regs(signed char regmap[])
515 {
516   int count=0;
517   int hr;
518   for(hr=0;hr<HOST_REGS;hr++)
519   {
520     if(hr!=EXCLUDE_REG) {
521       if(regmap[hr]<0) count++;
522     }
523   }
524   return count;
525 }
526
527 void dirty_reg(struct regstat *cur,signed char reg)
528 {
529   int hr;
530   if(!reg) return;
531   for (hr=0;hr<HOST_REGS;hr++) {
532     if((cur->regmap[hr]&63)==reg) {
533       cur->dirty|=1<<hr;
534     }
535   }
536 }
537
538 // If we dirty the lower half of a 64 bit register which is now being
539 // sign-extended, we need to dump the upper half.
540 // Note: Do this only after completion of the instruction, because
541 // some instructions may need to read the full 64-bit value even if
542 // overwriting it (eg SLTI, DSRA32).
543 static void flush_dirty_uppers(struct regstat *cur)
544 {
545   int hr,reg;
546   for (hr=0;hr<HOST_REGS;hr++) {
547     if((cur->dirty>>hr)&1) {
548       reg=cur->regmap[hr];
549       if(reg>=64) 
550         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
551     }
552   }
553 }
554
555 void set_const(struct regstat *cur,signed char reg,uint64_t value)
556 {
557   int hr;
558   if(!reg) return;
559   for (hr=0;hr<HOST_REGS;hr++) {
560     if(cur->regmap[hr]==reg) {
561       cur->isconst|=1<<hr;
562       cur->constmap[hr]=value;
563     }
564     else if((cur->regmap[hr]^64)==reg) {
565       cur->isconst|=1<<hr;
566       cur->constmap[hr]=value>>32;
567     }
568   }
569 }
570
571 void clear_const(struct regstat *cur,signed char reg)
572 {
573   int hr;
574   if(!reg) return;
575   for (hr=0;hr<HOST_REGS;hr++) {
576     if((cur->regmap[hr]&63)==reg) {
577       cur->isconst&=~(1<<hr);
578     }
579   }
580 }
581
582 int is_const(struct regstat *cur,signed char reg)
583 {
584   int hr;
585   if(!reg) return 1;
586   for (hr=0;hr<HOST_REGS;hr++) {
587     if((cur->regmap[hr]&63)==reg) {
588       return (cur->isconst>>hr)&1;
589     }
590   }
591   return 0;
592 }
593 uint64_t get_const(struct regstat *cur,signed char reg)
594 {
595   int hr;
596   if(!reg) return 0;
597   for (hr=0;hr<HOST_REGS;hr++) {
598     if(cur->regmap[hr]==reg) {
599       return cur->constmap[hr];
600     }
601   }
602   printf("Unknown constant in r%d\n",reg);
603   exit(1);
604 }
605
606 // Least soon needed registers
607 // Look at the next ten instructions and see which registers
608 // will be used.  Try not to reallocate these.
609 void lsn(u_char hsn[], int i, int *preferred_reg)
610 {
611   int j;
612   int b=-1;
613   for(j=0;j<9;j++)
614   {
615     if(i+j>=slen) {
616       j=slen-i-1;
617       break;
618     }
619     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
620     {
621       // Don't go past an unconditonal jump
622       j++;
623       break;
624     }
625   }
626   for(;j>=0;j--)
627   {
628     if(rs1[i+j]) hsn[rs1[i+j]]=j;
629     if(rs2[i+j]) hsn[rs2[i+j]]=j;
630     if(rt1[i+j]) hsn[rt1[i+j]]=j;
631     if(rt2[i+j]) hsn[rt2[i+j]]=j;
632     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
633       // Stores can allocate zero
634       hsn[rs1[i+j]]=j;
635       hsn[rs2[i+j]]=j;
636     }
637     // On some architectures stores need invc_ptr
638     #if defined(HOST_IMM8)
639     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
640       hsn[INVCP]=j;
641     }
642     #endif
643     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
644     {
645       hsn[CCREG]=j;
646       b=j;
647     }
648   }
649   if(b>=0)
650   {
651     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
652     {
653       // Follow first branch
654       int t=(ba[i+b]-start)>>2;
655       j=7-b;if(t+j>=slen) j=slen-t-1;
656       for(;j>=0;j--)
657       {
658         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
659         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
660         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
661         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
662       }
663     }
664     // TODO: preferred register based on backward branch
665   }
666   // Delay slot should preferably not overwrite branch conditions or cycle count
667   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
668     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
669     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
670     hsn[CCREG]=1;
671     // ...or hash tables
672     hsn[RHASH]=1;
673     hsn[RHTBL]=1;
674   }
675   // Coprocessor load/store needs FTEMP, even if not declared
676   if(itype[i]==C1LS||itype[i]==C2LS) {
677     hsn[FTEMP]=0;
678   }
679   // Load L/R also uses FTEMP as a temporary register
680   if(itype[i]==LOADLR) {
681     hsn[FTEMP]=0;
682   }
683   // Also 64-bit SDL/SDR
684   if(opcode[i]==0x2c||opcode[i]==0x2d) {
685     hsn[FTEMP]=0;
686   }
687   // Don't remove the TLB registers either
688   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
689     hsn[TLREG]=0;
690   }
691   // Don't remove the miniht registers
692   if(itype[i]==UJUMP||itype[i]==RJUMP)
693   {
694     hsn[RHASH]=0;
695     hsn[RHTBL]=0;
696   }
697 }
698
699 // We only want to allocate registers if we're going to use them again soon
700 int needed_again(int r, int i)
701 {
702   int j;
703   int b=-1;
704   int rn=10;
705   int hr;
706   u_char hsn[MAXREG+1];
707   int preferred_reg;
708   
709   memset(hsn,10,sizeof(hsn));
710   lsn(hsn,i,&preferred_reg);
711   
712   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
713   {
714     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
715       return 0; // Don't need any registers if exiting the block
716   }
717   for(j=0;j<9;j++)
718   {
719     if(i+j>=slen) {
720       j=slen-i-1;
721       break;
722     }
723     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
724     {
725       // Don't go past an unconditonal jump
726       j++;
727       break;
728     }
729     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||((source[i+j]&0xfc00003f)==0x0d))
730     {
731       break;
732     }
733   }
734   for(;j>=1;j--)
735   {
736     if(rs1[i+j]==r) rn=j;
737     if(rs2[i+j]==r) rn=j;
738     if((unneeded_reg[i+j]>>r)&1) rn=10;
739     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
740     {
741       b=j;
742     }
743   }
744   /*
745   if(b>=0)
746   {
747     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
748     {
749       // Follow first branch
750       int o=rn;
751       int t=(ba[i+b]-start)>>2;
752       j=7-b;if(t+j>=slen) j=slen-t-1;
753       for(;j>=0;j--)
754       {
755         if(!((unneeded_reg[t+j]>>r)&1)) {
756           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
757           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
758         }
759         else rn=o;
760       }
761     }
762   }*/
763   for(hr=0;hr<HOST_REGS;hr++) {
764     if(hr!=EXCLUDE_REG) {
765       if(rn<hsn[hr]) return 1;
766     }
767   }
768   return 0;
769 }
770
771 // Try to match register allocations at the end of a loop with those
772 // at the beginning
773 int loop_reg(int i, int r, int hr)
774 {
775   int j,k;
776   for(j=0;j<9;j++)
777   {
778     if(i+j>=slen) {
779       j=slen-i-1;
780       break;
781     }
782     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
783     {
784       // Don't go past an unconditonal jump
785       j++;
786       break;
787     }
788   }
789   k=0;
790   if(i>0){
791     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
792       k--;
793   }
794   for(;k<j;k++)
795   {
796     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
797     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
798     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
799     {
800       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
801       {
802         int t=(ba[i+k]-start)>>2;
803         int reg=get_reg(regs[t].regmap_entry,r);
804         if(reg>=0) return reg;
805         //reg=get_reg(regs[t+1].regmap_entry,r);
806         //if(reg>=0) return reg;
807       }
808     }
809   }
810   return hr;
811 }
812
813
814 // Allocate every register, preserving source/target regs
815 void alloc_all(struct regstat *cur,int i)
816 {
817   int hr;
818   
819   for(hr=0;hr<HOST_REGS;hr++) {
820     if(hr!=EXCLUDE_REG) {
821       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
822          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
823       {
824         cur->regmap[hr]=-1;
825         cur->dirty&=~(1<<hr);
826       }
827       // Don't need zeros
828       if((cur->regmap[hr]&63)==0)
829       {
830         cur->regmap[hr]=-1;
831         cur->dirty&=~(1<<hr);
832       }
833     }
834   }
835 }
836
837
838 void div64(int64_t dividend,int64_t divisor)
839 {
840   lo=dividend/divisor;
841   hi=dividend%divisor;
842   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
843   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
844 }
845 void divu64(uint64_t dividend,uint64_t divisor)
846 {
847   lo=dividend/divisor;
848   hi=dividend%divisor;
849   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
850   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
851 }
852
853 void mult64(uint64_t m1,uint64_t m2)
854 {
855    unsigned long long int op1, op2, op3, op4;
856    unsigned long long int result1, result2, result3, result4;
857    unsigned long long int temp1, temp2, temp3, temp4;
858    int sign = 0;
859    
860    if (m1 < 0)
861      {
862     op2 = -m1;
863     sign = 1 - sign;
864      }
865    else op2 = m1;
866    if (m2 < 0)
867      {
868     op4 = -m2;
869     sign = 1 - sign;
870      }
871    else op4 = m2;
872    
873    op1 = op2 & 0xFFFFFFFF;
874    op2 = (op2 >> 32) & 0xFFFFFFFF;
875    op3 = op4 & 0xFFFFFFFF;
876    op4 = (op4 >> 32) & 0xFFFFFFFF;
877    
878    temp1 = op1 * op3;
879    temp2 = (temp1 >> 32) + op1 * op4;
880    temp3 = op2 * op3;
881    temp4 = (temp3 >> 32) + op2 * op4;
882    
883    result1 = temp1 & 0xFFFFFFFF;
884    result2 = temp2 + (temp3 & 0xFFFFFFFF);
885    result3 = (result2 >> 32) + temp4;
886    result4 = (result3 >> 32);
887    
888    lo = result1 | (result2 << 32);
889    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
890    if (sign)
891      {
892     hi = ~hi;
893     if (!lo) hi++;
894     else lo = ~lo + 1;
895      }
896 }
897
898 void multu64(uint64_t m1,uint64_t m2)
899 {
900    unsigned long long int op1, op2, op3, op4;
901    unsigned long long int result1, result2, result3, result4;
902    unsigned long long int temp1, temp2, temp3, temp4;
903    
904    op1 = m1 & 0xFFFFFFFF;
905    op2 = (m1 >> 32) & 0xFFFFFFFF;
906    op3 = m2 & 0xFFFFFFFF;
907    op4 = (m2 >> 32) & 0xFFFFFFFF;
908    
909    temp1 = op1 * op3;
910    temp2 = (temp1 >> 32) + op1 * op4;
911    temp3 = op2 * op3;
912    temp4 = (temp3 >> 32) + op2 * op4;
913    
914    result1 = temp1 & 0xFFFFFFFF;
915    result2 = temp2 + (temp3 & 0xFFFFFFFF);
916    result3 = (result2 >> 32) + temp4;
917    result4 = (result3 >> 32);
918    
919    lo = result1 | (result2 << 32);
920    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
921    
922   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
923   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
924 }
925
926 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
927 {
928   if(bits) {
929     original<<=64-bits;
930     original>>=64-bits;
931     loaded<<=bits;
932     original|=loaded;
933   }
934   else original=loaded;
935   return original;
936 }
937 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
938 {
939   if(bits^56) {
940     original>>=64-(bits^56);
941     original<<=64-(bits^56);
942     loaded>>=bits^56;
943     original|=loaded;
944   }
945   else original=loaded;
946   return original;
947 }
948
949 #ifdef __i386__
950 #include "assem_x86.c"
951 #endif
952 #ifdef __x86_64__
953 #include "assem_x64.c"
954 #endif
955 #ifdef __arm__
956 #include "assem_arm.c"
957 #endif
958
959 // Add virtual address mapping to linked list
960 void ll_add(struct ll_entry **head,int vaddr,void *addr)
961 {
962   struct ll_entry *new_entry;
963   new_entry=malloc(sizeof(struct ll_entry));
964   assert(new_entry!=NULL);
965   new_entry->vaddr=vaddr;
966   new_entry->reg32=0;
967   new_entry->addr=addr;
968   new_entry->next=*head;
969   *head=new_entry;
970 }
971
972 // Add virtual address mapping for 32-bit compiled block
973 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
974 {
975   ll_add(head,vaddr,addr);
976 #ifndef FORCE32
977   (*head)->reg32=reg32;
978 #endif
979 }
980
981 // Check if an address is already compiled
982 // but don't return addresses which are about to expire from the cache
983 void *check_addr(u_int vaddr)
984 {
985   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
986   if(ht_bin[0]==vaddr) {
987     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
988       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
989   }
990   if(ht_bin[2]==vaddr) {
991     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
992       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
993   }
994   u_int page=get_page(vaddr);
995   struct ll_entry *head;
996   head=jump_in[page];
997   while(head!=NULL) {
998     if(head->vaddr==vaddr&&head->reg32==0) {
999       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1000         // Update existing entry with current address
1001         if(ht_bin[0]==vaddr) {
1002           ht_bin[1]=(int)head->addr;
1003           return head->addr;
1004         }
1005         if(ht_bin[2]==vaddr) {
1006           ht_bin[3]=(int)head->addr;
1007           return head->addr;
1008         }
1009         // Insert into hash table with low priority.
1010         // Don't evict existing entries, as they are probably
1011         // addresses that are being accessed frequently.
1012         if(ht_bin[0]==-1) {
1013           ht_bin[1]=(int)head->addr;
1014           ht_bin[0]=vaddr;
1015         }else if(ht_bin[2]==-1) {
1016           ht_bin[3]=(int)head->addr;
1017           ht_bin[2]=vaddr;
1018         }
1019         return head->addr;
1020       }
1021     }
1022     head=head->next;
1023   }
1024   return 0;
1025 }
1026
1027 void remove_hash(int vaddr)
1028 {
1029   //printf("remove hash: %x\n",vaddr);
1030   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1031   if(ht_bin[2]==vaddr) {
1032     ht_bin[2]=ht_bin[3]=-1;
1033   }
1034   if(ht_bin[0]==vaddr) {
1035     ht_bin[0]=ht_bin[2];
1036     ht_bin[1]=ht_bin[3];
1037     ht_bin[2]=ht_bin[3]=-1;
1038   }
1039 }
1040
1041 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1042 {
1043   struct ll_entry *next;
1044   while(*head) {
1045     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1046        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1047     {
1048       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1049       remove_hash((*head)->vaddr);
1050       next=(*head)->next;
1051       free(*head);
1052       *head=next;
1053     }
1054     else
1055     {
1056       head=&((*head)->next);
1057     }
1058   }
1059 }
1060
1061 // Remove all entries from linked list
1062 void ll_clear(struct ll_entry **head)
1063 {
1064   struct ll_entry *cur;
1065   struct ll_entry *next;
1066   if(cur=*head) {
1067     *head=0;
1068     while(cur) {
1069       next=cur->next;
1070       free(cur);
1071       cur=next;
1072     }
1073   }
1074 }
1075
1076 // Dereference the pointers and remove if it matches
1077 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1078 {
1079   while(head) {
1080     int ptr=get_pointer(head->addr);
1081     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1082     if(((ptr>>shift)==(addr>>shift)) ||
1083        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1084     {
1085       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1086       kill_pointer(head->addr);
1087     }
1088     head=head->next;
1089   }
1090 }
1091
1092 // This is called when we write to a compiled block (see do_invstub)
1093 int invalidate_page(u_int page)
1094 {
1095   int modified=0;
1096   struct ll_entry *head;
1097   struct ll_entry *next;
1098   head=jump_in[page];
1099   jump_in[page]=0;
1100   while(head!=NULL) {
1101     inv_debug("INVALIDATE: %x\n",head->vaddr);
1102     remove_hash(head->vaddr);
1103     next=head->next;
1104     free(head);
1105     head=next;
1106   }
1107   head=jump_out[page];
1108   jump_out[page]=0;
1109   while(head!=NULL) {
1110     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1111     kill_pointer(head->addr);
1112     modified=1;
1113     next=head->next;
1114     free(head);
1115     head=next;
1116   }
1117   return modified;
1118 }
1119 void invalidate_block(u_int block)
1120 {
1121   int modified;
1122   u_int page=get_page(block<<12);
1123   u_int vpage=get_vpage(block<<12);
1124   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1125   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1126   u_int first,last;
1127   first=last=page;
1128   struct ll_entry *head;
1129   head=jump_dirty[vpage];
1130   //printf("page=%d vpage=%d\n",page,vpage);
1131   while(head!=NULL) {
1132     u_int start,end;
1133     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1134       get_bounds((int)head->addr,&start,&end);
1135       //printf("start: %x end: %x\n",start,end);
1136       if(page<2048&&start>=0x80000000&&end<0x80800000) {
1137         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1138           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1139           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1140         }
1141       }
1142 #ifndef DISABLE_TLB
1143       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1144         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1145           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1146           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1147         }
1148       }
1149 #endif
1150     }
1151     head=head->next;
1152   }
1153   //printf("first=%d last=%d\n",first,last);
1154   modified=invalidate_page(page);
1155   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1156   assert(last<page+5);
1157   // Invalidate the adjacent pages if a block crosses a 4K boundary
1158   while(first<page) {
1159     invalidate_page(first);
1160     first++;
1161   }
1162   for(first=page+1;first<last;first++) {
1163     invalidate_page(first);
1164   }
1165   
1166   // Don't trap writes
1167   invalid_code[block]=1;
1168 #ifndef DISABLE_TLB
1169   // If there is a valid TLB entry for this page, remove write protect
1170   if(tlb_LUT_w[block]) {
1171     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1172     // CHECK: Is this right?
1173     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1174     u_int real_block=tlb_LUT_w[block]>>12;
1175     invalid_code[real_block]=1;
1176     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1177   }
1178   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1179 #endif
1180   #ifdef __arm__
1181   if(modified)
1182     __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1183   #endif
1184   #ifdef USE_MINI_HT
1185   memset(mini_ht,-1,sizeof(mini_ht));
1186   #endif
1187 }
1188 void invalidate_addr(u_int addr)
1189 {
1190   invalidate_block(addr>>12);
1191 }
1192 void invalidate_all_pages()
1193 {
1194   u_int page,n;
1195   for(page=0;page<4096;page++)
1196     invalidate_page(page);
1197   for(page=0;page<1048576;page++)
1198     if(!invalid_code[page]) {
1199       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1200       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1201     }
1202   #ifdef __arm__
1203   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1204   #endif
1205   #ifdef USE_MINI_HT
1206   memset(mini_ht,-1,sizeof(mini_ht));
1207   #endif
1208   #ifndef DISABLE_TLB
1209   // TLB
1210   for(page=0;page<0x100000;page++) {
1211     if(tlb_LUT_r[page]) {
1212       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1213       if(!tlb_LUT_w[page]||!invalid_code[page])
1214         memory_map[page]|=0x40000000; // Write protect
1215     }
1216     else memory_map[page]=-1;
1217     if(page==0x80000) page=0xC0000;
1218   }
1219   tlb_hacks();
1220   #endif
1221 }
1222
1223 // Add an entry to jump_out after making a link
1224 void add_link(u_int vaddr,void *src)
1225 {
1226   u_int page=get_page(vaddr);
1227   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1228   ll_add(jump_out+page,vaddr,src);
1229   //int ptr=get_pointer(src);
1230   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1231 }
1232
1233 // If a code block was found to be unmodified (bit was set in
1234 // restore_candidate) and it remains unmodified (bit is clear
1235 // in invalid_code) then move the entries for that 4K page from
1236 // the dirty list to the clean list.
1237 void clean_blocks(u_int page)
1238 {
1239   struct ll_entry *head;
1240   inv_debug("INV: clean_blocks page=%d\n",page);
1241   head=jump_dirty[page];
1242   while(head!=NULL) {
1243     if(!invalid_code[head->vaddr>>12]) {
1244       // Don't restore blocks which are about to expire from the cache
1245       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1246         u_int start,end;
1247         if(verify_dirty((int)head->addr)) {
1248           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1249           u_int i;
1250           u_int inv=0;
1251           get_bounds((int)head->addr,&start,&end);
1252           if(start-(u_int)rdram<0x800000) {
1253             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1254               inv|=invalid_code[i];
1255             }
1256           }
1257           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1258             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1259             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1260             if(addr<start||addr>=end) inv=1;
1261           }
1262           else if((signed int)head->vaddr>=(signed int)0x80800000) {
1263             inv=1;
1264           }
1265           if(!inv) {
1266             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1267             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1268               u_int ppage=page;
1269 #ifndef DISABLE_TLB
1270               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1271 #endif
1272               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1273               //printf("page=%x, addr=%x\n",page,head->vaddr);
1274               //assert(head->vaddr>>12==(page|0x80000));
1275               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1276               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1277               if(!head->reg32) {
1278                 if(ht_bin[0]==head->vaddr) {
1279                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1280                 }
1281                 if(ht_bin[2]==head->vaddr) {
1282                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1283                 }
1284               }
1285             }
1286           }
1287         }
1288       }
1289     }
1290     head=head->next;
1291   }
1292 }
1293
1294
1295 void mov_alloc(struct regstat *current,int i)
1296 {
1297   // Note: Don't need to actually alloc the source registers
1298   if((~current->is32>>rs1[i])&1) {
1299     //alloc_reg64(current,i,rs1[i]);
1300     alloc_reg64(current,i,rt1[i]);
1301     current->is32&=~(1LL<<rt1[i]);
1302   } else {
1303     //alloc_reg(current,i,rs1[i]);
1304     alloc_reg(current,i,rt1[i]);
1305     current->is32|=(1LL<<rt1[i]);
1306   }
1307   clear_const(current,rs1[i]);
1308   clear_const(current,rt1[i]);
1309   dirty_reg(current,rt1[i]);
1310 }
1311
1312 void shiftimm_alloc(struct regstat *current,int i)
1313 {
1314   clear_const(current,rs1[i]);
1315   clear_const(current,rt1[i]);
1316   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1317   {
1318     if(rt1[i]) {
1319       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1320       else lt1[i]=rs1[i];
1321       alloc_reg(current,i,rt1[i]);
1322       current->is32|=1LL<<rt1[i];
1323       dirty_reg(current,rt1[i]);
1324     }
1325   }
1326   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1327   {
1328     if(rt1[i]) {
1329       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1330       alloc_reg64(current,i,rt1[i]);
1331       current->is32&=~(1LL<<rt1[i]);
1332       dirty_reg(current,rt1[i]);
1333     }
1334   }
1335   if(opcode2[i]==0x3c) // DSLL32
1336   {
1337     if(rt1[i]) {
1338       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1339       alloc_reg64(current,i,rt1[i]);
1340       current->is32&=~(1LL<<rt1[i]);
1341       dirty_reg(current,rt1[i]);
1342     }
1343   }
1344   if(opcode2[i]==0x3e) // DSRL32
1345   {
1346     if(rt1[i]) {
1347       alloc_reg64(current,i,rs1[i]);
1348       if(imm[i]==32) {
1349         alloc_reg64(current,i,rt1[i]);
1350         current->is32&=~(1LL<<rt1[i]);
1351       } else {
1352         alloc_reg(current,i,rt1[i]);
1353         current->is32|=1LL<<rt1[i];
1354       }
1355       dirty_reg(current,rt1[i]);
1356     }
1357   }
1358   if(opcode2[i]==0x3f) // DSRA32
1359   {
1360     if(rt1[i]) {
1361       alloc_reg64(current,i,rs1[i]);
1362       alloc_reg(current,i,rt1[i]);
1363       current->is32|=1LL<<rt1[i];
1364       dirty_reg(current,rt1[i]);
1365     }
1366   }
1367 }
1368
1369 void shift_alloc(struct regstat *current,int i)
1370 {
1371   if(rt1[i]) {
1372     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1373     {
1374       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1375       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1376       alloc_reg(current,i,rt1[i]);
1377       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1378       current->is32|=1LL<<rt1[i];
1379     } else { // DSLLV/DSRLV/DSRAV
1380       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1381       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1382       alloc_reg64(current,i,rt1[i]);
1383       current->is32&=~(1LL<<rt1[i]);
1384       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1385         alloc_reg_temp(current,i,-1);
1386     }
1387     clear_const(current,rs1[i]);
1388     clear_const(current,rs2[i]);
1389     clear_const(current,rt1[i]);
1390     dirty_reg(current,rt1[i]);
1391   }
1392 }
1393
1394 void alu_alloc(struct regstat *current,int i)
1395 {
1396   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1397     if(rt1[i]) {
1398       if(rs1[i]&&rs2[i]) {
1399         alloc_reg(current,i,rs1[i]);
1400         alloc_reg(current,i,rs2[i]);
1401       }
1402       else {
1403         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1404         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1405       }
1406       alloc_reg(current,i,rt1[i]);
1407     }
1408     current->is32|=1LL<<rt1[i];
1409   }
1410   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1411     if(rt1[i]) {
1412       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1413       {
1414         alloc_reg64(current,i,rs1[i]);
1415         alloc_reg64(current,i,rs2[i]);
1416         alloc_reg(current,i,rt1[i]);
1417       } else {
1418         alloc_reg(current,i,rs1[i]);
1419         alloc_reg(current,i,rs2[i]);
1420         alloc_reg(current,i,rt1[i]);
1421       }
1422     }
1423     current->is32|=1LL<<rt1[i];
1424   }
1425   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1426     if(rt1[i]) {
1427       if(rs1[i]&&rs2[i]) {
1428         alloc_reg(current,i,rs1[i]);
1429         alloc_reg(current,i,rs2[i]);
1430       }
1431       else
1432       {
1433         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1434         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1435       }
1436       alloc_reg(current,i,rt1[i]);
1437       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1438       {
1439         if(!((current->uu>>rt1[i])&1)) {
1440           alloc_reg64(current,i,rt1[i]);
1441         }
1442         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1443           if(rs1[i]&&rs2[i]) {
1444             alloc_reg64(current,i,rs1[i]);
1445             alloc_reg64(current,i,rs2[i]);
1446           }
1447           else
1448           {
1449             // Is is really worth it to keep 64-bit values in registers?
1450             #ifdef NATIVE_64BIT
1451             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1452             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1453             #endif
1454           }
1455         }
1456         current->is32&=~(1LL<<rt1[i]);
1457       } else {
1458         current->is32|=1LL<<rt1[i];
1459       }
1460     }
1461   }
1462   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1463     if(rt1[i]) {
1464       if(rs1[i]&&rs2[i]) {
1465         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1466           alloc_reg64(current,i,rs1[i]);
1467           alloc_reg64(current,i,rs2[i]);
1468           alloc_reg64(current,i,rt1[i]);
1469         } else {
1470           alloc_reg(current,i,rs1[i]);
1471           alloc_reg(current,i,rs2[i]);
1472           alloc_reg(current,i,rt1[i]);
1473         }
1474       }
1475       else {
1476         alloc_reg(current,i,rt1[i]);
1477         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1478           // DADD used as move, or zeroing
1479           // If we have a 64-bit source, then make the target 64 bits too
1480           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1481             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1482             alloc_reg64(current,i,rt1[i]);
1483           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1484             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1485             alloc_reg64(current,i,rt1[i]);
1486           }
1487           if(opcode2[i]>=0x2e&&rs2[i]) {
1488             // DSUB used as negation - 64-bit result
1489             // If we have a 32-bit register, extend it to 64 bits
1490             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1491             alloc_reg64(current,i,rt1[i]);
1492           }
1493         }
1494       }
1495       if(rs1[i]&&rs2[i]) {
1496         current->is32&=~(1LL<<rt1[i]);
1497       } else if(rs1[i]) {
1498         current->is32&=~(1LL<<rt1[i]);
1499         if((current->is32>>rs1[i])&1)
1500           current->is32|=1LL<<rt1[i];
1501       } else if(rs2[i]) {
1502         current->is32&=~(1LL<<rt1[i]);
1503         if((current->is32>>rs2[i])&1)
1504           current->is32|=1LL<<rt1[i];
1505       } else {
1506         current->is32|=1LL<<rt1[i];
1507       }
1508     }
1509   }
1510   clear_const(current,rs1[i]);
1511   clear_const(current,rs2[i]);
1512   clear_const(current,rt1[i]);
1513   dirty_reg(current,rt1[i]);
1514 }
1515
1516 void imm16_alloc(struct regstat *current,int i)
1517 {
1518   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1519   else lt1[i]=rs1[i];
1520   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1521   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1522     current->is32&=~(1LL<<rt1[i]);
1523     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1524       // TODO: Could preserve the 32-bit flag if the immediate is zero
1525       alloc_reg64(current,i,rt1[i]);
1526       alloc_reg64(current,i,rs1[i]);
1527     }
1528     clear_const(current,rs1[i]);
1529     clear_const(current,rt1[i]);
1530   }
1531   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1532     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1533     current->is32|=1LL<<rt1[i];
1534     clear_const(current,rs1[i]);
1535     clear_const(current,rt1[i]);
1536   }
1537   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1538     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1539       if(rs1[i]!=rt1[i]) {
1540         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1541         alloc_reg64(current,i,rt1[i]);
1542         current->is32&=~(1LL<<rt1[i]);
1543       }
1544     }
1545     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1546     if(is_const(current,rs1[i])) {
1547       int v=get_const(current,rs1[i]);
1548       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1549       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1550       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1551     }
1552     else clear_const(current,rt1[i]);
1553   }
1554   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1555     if(is_const(current,rs1[i])) {
1556       int v=get_const(current,rs1[i]);
1557       set_const(current,rt1[i],v+imm[i]);
1558     }
1559     else clear_const(current,rt1[i]);
1560     current->is32|=1LL<<rt1[i];
1561   }
1562   else {
1563     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1564     current->is32|=1LL<<rt1[i];
1565   }
1566   dirty_reg(current,rt1[i]);
1567 }
1568
1569 void load_alloc(struct regstat *current,int i)
1570 {
1571   clear_const(current,rt1[i]);
1572   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1573   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1574   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1575   if(rt1[i]) {
1576     alloc_reg(current,i,rt1[i]);
1577     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1578     {
1579       current->is32&=~(1LL<<rt1[i]);
1580       alloc_reg64(current,i,rt1[i]);
1581     }
1582     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1583     {
1584       current->is32&=~(1LL<<rt1[i]);
1585       alloc_reg64(current,i,rt1[i]);
1586       alloc_all(current,i);
1587       alloc_reg64(current,i,FTEMP);
1588     }
1589     else current->is32|=1LL<<rt1[i];
1590     dirty_reg(current,rt1[i]);
1591     // If using TLB, need a register for pointer to the mapping table
1592     if(using_tlb) alloc_reg(current,i,TLREG);
1593     // LWL/LWR need a temporary register for the old value
1594     if(opcode[i]==0x22||opcode[i]==0x26)
1595     {
1596       alloc_reg(current,i,FTEMP);
1597       alloc_reg_temp(current,i,-1);
1598     }
1599   }
1600   else
1601   {
1602     // Load to r0 (dummy load)
1603     // but we still need a register to calculate the address
1604     alloc_reg_temp(current,i,-1);
1605   }
1606 }
1607
1608 void store_alloc(struct regstat *current,int i)
1609 {
1610   clear_const(current,rs2[i]);
1611   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1612   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1613   alloc_reg(current,i,rs2[i]);
1614   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1615     alloc_reg64(current,i,rs2[i]);
1616     if(rs2[i]) alloc_reg(current,i,FTEMP);
1617   }
1618   // If using TLB, need a register for pointer to the mapping table
1619   if(using_tlb) alloc_reg(current,i,TLREG);
1620   #if defined(HOST_IMM8)
1621   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1622   else alloc_reg(current,i,INVCP);
1623   #endif
1624   if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1625     alloc_reg(current,i,FTEMP);
1626   }
1627   // We need a temporary register for address generation
1628   alloc_reg_temp(current,i,-1);
1629 }
1630
1631 void c1ls_alloc(struct regstat *current,int i)
1632 {
1633   //clear_const(current,rs1[i]); // FIXME
1634   clear_const(current,rt1[i]);
1635   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1636   alloc_reg(current,i,CSREG); // Status
1637   alloc_reg(current,i,FTEMP);
1638   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1639     alloc_reg64(current,i,FTEMP);
1640   }
1641   // If using TLB, need a register for pointer to the mapping table
1642   if(using_tlb) alloc_reg(current,i,TLREG);
1643   #if defined(HOST_IMM8)
1644   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1645   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1646     alloc_reg(current,i,INVCP);
1647   #endif
1648   // We need a temporary register for address generation
1649   alloc_reg_temp(current,i,-1);
1650 }
1651
1652 void c2ls_alloc(struct regstat *current,int i)
1653 {
1654   clear_const(current,rt1[i]);
1655   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1656   alloc_reg(current,i,FTEMP);
1657   // If using TLB, need a register for pointer to the mapping table
1658   if(using_tlb) alloc_reg(current,i,TLREG);
1659   #if defined(HOST_IMM8)
1660   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1661   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1662     alloc_reg(current,i,INVCP);
1663   #endif
1664   // We need a temporary register for address generation
1665   alloc_reg_temp(current,i,-1);
1666 }
1667
1668 #ifndef multdiv_alloc
1669 void multdiv_alloc(struct regstat *current,int i)
1670 {
1671   //  case 0x18: MULT
1672   //  case 0x19: MULTU
1673   //  case 0x1A: DIV
1674   //  case 0x1B: DIVU
1675   //  case 0x1C: DMULT
1676   //  case 0x1D: DMULTU
1677   //  case 0x1E: DDIV
1678   //  case 0x1F: DDIVU
1679   clear_const(current,rs1[i]);
1680   clear_const(current,rs2[i]);
1681   if(rs1[i]&&rs2[i])
1682   {
1683     if((opcode2[i]&4)==0) // 32-bit
1684     {
1685       current->u&=~(1LL<<HIREG);
1686       current->u&=~(1LL<<LOREG);
1687       alloc_reg(current,i,HIREG);
1688       alloc_reg(current,i,LOREG);
1689       alloc_reg(current,i,rs1[i]);
1690       alloc_reg(current,i,rs2[i]);
1691       current->is32|=1LL<<HIREG;
1692       current->is32|=1LL<<LOREG;
1693       dirty_reg(current,HIREG);
1694       dirty_reg(current,LOREG);
1695     }
1696     else // 64-bit
1697     {
1698       current->u&=~(1LL<<HIREG);
1699       current->u&=~(1LL<<LOREG);
1700       current->uu&=~(1LL<<HIREG);
1701       current->uu&=~(1LL<<LOREG);
1702       alloc_reg64(current,i,HIREG);
1703       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1704       alloc_reg64(current,i,rs1[i]);
1705       alloc_reg64(current,i,rs2[i]);
1706       alloc_all(current,i);
1707       current->is32&=~(1LL<<HIREG);
1708       current->is32&=~(1LL<<LOREG);
1709       dirty_reg(current,HIREG);
1710       dirty_reg(current,LOREG);
1711     }
1712   }
1713   else
1714   {
1715     // Multiply by zero is zero.
1716     // MIPS does not have a divide by zero exception.
1717     // The result is undefined, we return zero.
1718     alloc_reg(current,i,HIREG);
1719     alloc_reg(current,i,LOREG);
1720     current->is32|=1LL<<HIREG;
1721     current->is32|=1LL<<LOREG;
1722     dirty_reg(current,HIREG);
1723     dirty_reg(current,LOREG);
1724   }
1725 }
1726 #endif
1727
1728 void cop0_alloc(struct regstat *current,int i)
1729 {
1730   if(opcode2[i]==0) // MFC0
1731   {
1732     if(rt1[i]) {
1733       clear_const(current,rt1[i]);
1734       alloc_all(current,i);
1735       alloc_reg(current,i,rt1[i]);
1736       current->is32|=1LL<<rt1[i];
1737       dirty_reg(current,rt1[i]);
1738     }
1739   }
1740   else if(opcode2[i]==4) // MTC0
1741   {
1742     if(rs1[i]){
1743       clear_const(current,rs1[i]);
1744       alloc_reg(current,i,rs1[i]);
1745       alloc_all(current,i);
1746     }
1747     else {
1748       alloc_all(current,i); // FIXME: Keep r0
1749       current->u&=~1LL;
1750       alloc_reg(current,i,0);
1751     }
1752   }
1753   else
1754   {
1755     // TLBR/TLBWI/TLBWR/TLBP/ERET
1756     assert(opcode2[i]==0x10);
1757     alloc_all(current,i);
1758   }
1759 }
1760
1761 void cop1_alloc(struct regstat *current,int i)
1762 {
1763   alloc_reg(current,i,CSREG); // Load status
1764   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1765   {
1766     assert(rt1[i]);
1767     clear_const(current,rt1[i]);
1768     if(opcode2[i]==1) {
1769       alloc_reg64(current,i,rt1[i]); // DMFC1
1770       current->is32&=~(1LL<<rt1[i]);
1771     }else{
1772       alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1773       current->is32|=1LL<<rt1[i];
1774     }
1775     dirty_reg(current,rt1[i]);
1776     alloc_reg_temp(current,i,-1);
1777   }
1778   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1779   {
1780     if(rs1[i]){
1781       clear_const(current,rs1[i]);
1782       if(opcode2[i]==5)
1783         alloc_reg64(current,i,rs1[i]); // DMTC1
1784       else
1785         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1786       alloc_reg_temp(current,i,-1);
1787     }
1788     else {
1789       current->u&=~1LL;
1790       alloc_reg(current,i,0);
1791       alloc_reg_temp(current,i,-1);
1792     }
1793   }
1794 }
1795 void fconv_alloc(struct regstat *current,int i)
1796 {
1797   alloc_reg(current,i,CSREG); // Load status
1798   alloc_reg_temp(current,i,-1);
1799 }
1800 void float_alloc(struct regstat *current,int i)
1801 {
1802   alloc_reg(current,i,CSREG); // Load status
1803   alloc_reg_temp(current,i,-1);
1804 }
1805 void c2op_alloc(struct regstat *current,int i)
1806 {
1807   alloc_reg_temp(current,i,-1);
1808 }
1809 void fcomp_alloc(struct regstat *current,int i)
1810 {
1811   alloc_reg(current,i,CSREG); // Load status
1812   alloc_reg(current,i,FSREG); // Load flags
1813   dirty_reg(current,FSREG); // Flag will be modified
1814   alloc_reg_temp(current,i,-1);
1815 }
1816
1817 void syscall_alloc(struct regstat *current,int i)
1818 {
1819   alloc_cc(current,i);
1820   dirty_reg(current,CCREG);
1821   alloc_all(current,i);
1822   current->isconst=0;
1823 }
1824
1825 void delayslot_alloc(struct regstat *current,int i)
1826 {
1827   switch(itype[i]) {
1828     case UJUMP:
1829     case CJUMP:
1830     case SJUMP:
1831     case RJUMP:
1832     case FJUMP:
1833     case SYSCALL:
1834     case HLECALL:
1835     case SPAN:
1836       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1837       printf("Disabled speculative precompilation\n");
1838       stop_after_jal=1;
1839       break;
1840     case IMM16:
1841       imm16_alloc(current,i);
1842       break;
1843     case LOAD:
1844     case LOADLR:
1845       load_alloc(current,i);
1846       break;
1847     case STORE:
1848     case STORELR:
1849       store_alloc(current,i);
1850       break;
1851     case ALU:
1852       alu_alloc(current,i);
1853       break;
1854     case SHIFT:
1855       shift_alloc(current,i);
1856       break;
1857     case MULTDIV:
1858       multdiv_alloc(current,i);
1859       break;
1860     case SHIFTIMM:
1861       shiftimm_alloc(current,i);
1862       break;
1863     case MOV:
1864       mov_alloc(current,i);
1865       break;
1866     case COP0:
1867       cop0_alloc(current,i);
1868       break;
1869     case COP1:
1870     case COP2:
1871       cop1_alloc(current,i);
1872       break;
1873     case C1LS:
1874       c1ls_alloc(current,i);
1875       break;
1876     case C2LS:
1877       c2ls_alloc(current,i);
1878       break;
1879     case FCONV:
1880       fconv_alloc(current,i);
1881       break;
1882     case FLOAT:
1883       float_alloc(current,i);
1884       break;
1885     case FCOMP:
1886       fcomp_alloc(current,i);
1887       break;
1888     case C2OP:
1889       c2op_alloc(current,i);
1890       break;
1891   }
1892 }
1893
1894 // Special case where a branch and delay slot span two pages in virtual memory
1895 static void pagespan_alloc(struct regstat *current,int i)
1896 {
1897   current->isconst=0;
1898   current->wasconst=0;
1899   regs[i].wasconst=0;
1900   alloc_all(current,i);
1901   alloc_cc(current,i);
1902   dirty_reg(current,CCREG);
1903   if(opcode[i]==3) // JAL
1904   {
1905     alloc_reg(current,i,31);
1906     dirty_reg(current,31);
1907   }
1908   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1909   {
1910     alloc_reg(current,i,rs1[i]);
1911     if (rt1[i]!=0) {
1912       alloc_reg(current,i,rt1[i]);
1913       dirty_reg(current,rt1[i]);
1914     }
1915   }
1916   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1917   {
1918     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1919     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1920     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1921     {
1922       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1923       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1924     }
1925   }
1926   else
1927   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1928   {
1929     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1930     if(!((current->is32>>rs1[i])&1))
1931     {
1932       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1933     }
1934   }
1935   else
1936   if(opcode[i]==0x11) // BC1
1937   {
1938     alloc_reg(current,i,FSREG);
1939     alloc_reg(current,i,CSREG);
1940   }
1941   //else ...
1942 }
1943
1944 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1945 {
1946   stubs[stubcount][0]=type;
1947   stubs[stubcount][1]=addr;
1948   stubs[stubcount][2]=retaddr;
1949   stubs[stubcount][3]=a;
1950   stubs[stubcount][4]=b;
1951   stubs[stubcount][5]=c;
1952   stubs[stubcount][6]=d;
1953   stubs[stubcount][7]=e;
1954   stubcount++;
1955 }
1956
1957 // Write out a single register
1958 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1959 {
1960   int hr;
1961   for(hr=0;hr<HOST_REGS;hr++) {
1962     if(hr!=EXCLUDE_REG) {
1963       if((regmap[hr]&63)==r) {
1964         if((dirty>>hr)&1) {
1965           if(regmap[hr]<64) {
1966             emit_storereg(r,hr);
1967 #ifndef FORCE32
1968             if((is32>>regmap[hr])&1) {
1969               emit_sarimm(hr,31,hr);
1970               emit_storereg(r|64,hr);
1971             }
1972 #endif
1973           }else{
1974             emit_storereg(r|64,hr);
1975           }
1976         }
1977       }
1978     }
1979   }
1980 }
1981
1982 int mchecksum()
1983 {
1984   //if(!tracedebug) return 0;
1985   int i;
1986   int sum=0;
1987   for(i=0;i<2097152;i++) {
1988     unsigned int temp=sum;
1989     sum<<=1;
1990     sum|=(~temp)>>31;
1991     sum^=((u_int *)rdram)[i];
1992   }
1993   return sum;
1994 }
1995 int rchecksum()
1996 {
1997   int i;
1998   int sum=0;
1999   for(i=0;i<64;i++)
2000     sum^=((u_int *)reg)[i];
2001   return sum;
2002 }
2003 void rlist()
2004 {
2005   int i;
2006   printf("TRACE: ");
2007   for(i=0;i<32;i++)
2008     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2009   printf("\n");
2010 #ifndef DISABLE_COP1
2011   printf("TRACE: ");
2012   for(i=0;i<32;i++)
2013     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2014   printf("\n");
2015 #endif
2016 }
2017
2018 void enabletrace()
2019 {
2020   tracedebug=1;
2021 }
2022
2023 void memdebug(int i)
2024 {
2025   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2026   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2027   //rlist();
2028   //if(tracedebug) {
2029   //if(Count>=-2084597794) {
2030   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2031   //if(0) {
2032     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2033     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2034     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2035     rlist();
2036     #ifdef __i386__
2037     printf("TRACE: %x\n",(&i)[-1]);
2038     #endif
2039     #ifdef __arm__
2040     int j;
2041     printf("TRACE: %x \n",(&j)[10]);
2042     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2043     #endif
2044     //fflush(stdout);
2045   }
2046   //printf("TRACE: %x\n",(&i)[-1]);
2047 }
2048
2049 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2050 {
2051   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2052 }
2053
2054 void alu_assemble(int i,struct regstat *i_regs)
2055 {
2056   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2057     if(rt1[i]) {
2058       signed char s1,s2,t;
2059       t=get_reg(i_regs->regmap,rt1[i]);
2060       if(t>=0) {
2061         s1=get_reg(i_regs->regmap,rs1[i]);
2062         s2=get_reg(i_regs->regmap,rs2[i]);
2063         if(rs1[i]&&rs2[i]) {
2064           assert(s1>=0);
2065           assert(s2>=0);
2066           if(opcode2[i]&2) emit_sub(s1,s2,t);
2067           else emit_add(s1,s2,t);
2068         }
2069         else if(rs1[i]) {
2070           if(s1>=0) emit_mov(s1,t);
2071           else emit_loadreg(rs1[i],t);
2072         }
2073         else if(rs2[i]) {
2074           if(s2>=0) {
2075             if(opcode2[i]&2) emit_neg(s2,t);
2076             else emit_mov(s2,t);
2077           }
2078           else {
2079             emit_loadreg(rs2[i],t);
2080             if(opcode2[i]&2) emit_neg(t,t);
2081           }
2082         }
2083         else emit_zeroreg(t);
2084       }
2085     }
2086   }
2087   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2088     if(rt1[i]) {
2089       signed char s1l,s2l,s1h,s2h,tl,th;
2090       tl=get_reg(i_regs->regmap,rt1[i]);
2091       th=get_reg(i_regs->regmap,rt1[i]|64);
2092       if(tl>=0) {
2093         s1l=get_reg(i_regs->regmap,rs1[i]);
2094         s2l=get_reg(i_regs->regmap,rs2[i]);
2095         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2096         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2097         if(rs1[i]&&rs2[i]) {
2098           assert(s1l>=0);
2099           assert(s2l>=0);
2100           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2101           else emit_adds(s1l,s2l,tl);
2102           if(th>=0) {
2103             #ifdef INVERTED_CARRY
2104             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2105             #else
2106             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2107             #endif
2108             else emit_add(s1h,s2h,th);
2109           }
2110         }
2111         else if(rs1[i]) {
2112           if(s1l>=0) emit_mov(s1l,tl);
2113           else emit_loadreg(rs1[i],tl);
2114           if(th>=0) {
2115             if(s1h>=0) emit_mov(s1h,th);
2116             else emit_loadreg(rs1[i]|64,th);
2117           }
2118         }
2119         else if(rs2[i]) {
2120           if(s2l>=0) {
2121             if(opcode2[i]&2) emit_negs(s2l,tl);
2122             else emit_mov(s2l,tl);
2123           }
2124           else {
2125             emit_loadreg(rs2[i],tl);
2126             if(opcode2[i]&2) emit_negs(tl,tl);
2127           }
2128           if(th>=0) {
2129             #ifdef INVERTED_CARRY
2130             if(s2h>=0) emit_mov(s2h,th);
2131             else emit_loadreg(rs2[i]|64,th);
2132             if(opcode2[i]&2) {
2133               emit_adcimm(-1,th); // x86 has inverted carry flag
2134               emit_not(th,th);
2135             }
2136             #else
2137             if(opcode2[i]&2) {
2138               if(s2h>=0) emit_rscimm(s2h,0,th);
2139               else {
2140                 emit_loadreg(rs2[i]|64,th);
2141                 emit_rscimm(th,0,th);
2142               }
2143             }else{
2144               if(s2h>=0) emit_mov(s2h,th);
2145               else emit_loadreg(rs2[i]|64,th);
2146             }
2147             #endif
2148           }
2149         }
2150         else {
2151           emit_zeroreg(tl);
2152           if(th>=0) emit_zeroreg(th);
2153         }
2154       }
2155     }
2156   }
2157   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2158     if(rt1[i]) {
2159       signed char s1l,s1h,s2l,s2h,t;
2160       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2161       {
2162         t=get_reg(i_regs->regmap,rt1[i]);
2163         //assert(t>=0);
2164         if(t>=0) {
2165           s1l=get_reg(i_regs->regmap,rs1[i]);
2166           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2167           s2l=get_reg(i_regs->regmap,rs2[i]);
2168           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2169           if(rs2[i]==0) // rx<r0
2170           {
2171             assert(s1h>=0);
2172             if(opcode2[i]==0x2a) // SLT
2173               emit_shrimm(s1h,31,t);
2174             else // SLTU (unsigned can not be less than zero)
2175               emit_zeroreg(t);
2176           }
2177           else if(rs1[i]==0) // r0<rx
2178           {
2179             assert(s2h>=0);
2180             if(opcode2[i]==0x2a) // SLT
2181               emit_set_gz64_32(s2h,s2l,t);
2182             else // SLTU (set if not zero)
2183               emit_set_nz64_32(s2h,s2l,t);
2184           }
2185           else {
2186             assert(s1l>=0);assert(s1h>=0);
2187             assert(s2l>=0);assert(s2h>=0);
2188             if(opcode2[i]==0x2a) // SLT
2189               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2190             else // SLTU
2191               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2192           }
2193         }
2194       } else {
2195         t=get_reg(i_regs->regmap,rt1[i]);
2196         //assert(t>=0);
2197         if(t>=0) {
2198           s1l=get_reg(i_regs->regmap,rs1[i]);
2199           s2l=get_reg(i_regs->regmap,rs2[i]);
2200           if(rs2[i]==0) // rx<r0
2201           {
2202             assert(s1l>=0);
2203             if(opcode2[i]==0x2a) // SLT
2204               emit_shrimm(s1l,31,t);
2205             else // SLTU (unsigned can not be less than zero)
2206               emit_zeroreg(t);
2207           }
2208           else if(rs1[i]==0) // r0<rx
2209           {
2210             assert(s2l>=0);
2211             if(opcode2[i]==0x2a) // SLT
2212               emit_set_gz32(s2l,t);
2213             else // SLTU (set if not zero)
2214               emit_set_nz32(s2l,t);
2215           }
2216           else{
2217             assert(s1l>=0);assert(s2l>=0);
2218             if(opcode2[i]==0x2a) // SLT
2219               emit_set_if_less32(s1l,s2l,t);
2220             else // SLTU
2221               emit_set_if_carry32(s1l,s2l,t);
2222           }
2223         }
2224       }
2225     }
2226   }
2227   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2228     if(rt1[i]) {
2229       signed char s1l,s1h,s2l,s2h,th,tl;
2230       tl=get_reg(i_regs->regmap,rt1[i]);
2231       th=get_reg(i_regs->regmap,rt1[i]|64);
2232       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2233       {
2234         assert(tl>=0);
2235         if(tl>=0) {
2236           s1l=get_reg(i_regs->regmap,rs1[i]);
2237           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2238           s2l=get_reg(i_regs->regmap,rs2[i]);
2239           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2240           if(rs1[i]&&rs2[i]) {
2241             assert(s1l>=0);assert(s1h>=0);
2242             assert(s2l>=0);assert(s2h>=0);
2243             if(opcode2[i]==0x24) { // AND
2244               emit_and(s1l,s2l,tl);
2245               emit_and(s1h,s2h,th);
2246             } else
2247             if(opcode2[i]==0x25) { // OR
2248               emit_or(s1l,s2l,tl);
2249               emit_or(s1h,s2h,th);
2250             } else
2251             if(opcode2[i]==0x26) { // XOR
2252               emit_xor(s1l,s2l,tl);
2253               emit_xor(s1h,s2h,th);
2254             } else
2255             if(opcode2[i]==0x27) { // NOR
2256               emit_or(s1l,s2l,tl);
2257               emit_or(s1h,s2h,th);
2258               emit_not(tl,tl);
2259               emit_not(th,th);
2260             }
2261           }
2262           else
2263           {
2264             if(opcode2[i]==0x24) { // AND
2265               emit_zeroreg(tl);
2266               emit_zeroreg(th);
2267             } else
2268             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2269               if(rs1[i]){
2270                 if(s1l>=0) emit_mov(s1l,tl);
2271                 else emit_loadreg(rs1[i],tl);
2272                 if(s1h>=0) emit_mov(s1h,th);
2273                 else emit_loadreg(rs1[i]|64,th);
2274               }
2275               else
2276               if(rs2[i]){
2277                 if(s2l>=0) emit_mov(s2l,tl);
2278                 else emit_loadreg(rs2[i],tl);
2279                 if(s2h>=0) emit_mov(s2h,th);
2280                 else emit_loadreg(rs2[i]|64,th);
2281               }
2282               else{
2283                 emit_zeroreg(tl);
2284                 emit_zeroreg(th);
2285               }
2286             } else
2287             if(opcode2[i]==0x27) { // NOR
2288               if(rs1[i]){
2289                 if(s1l>=0) emit_not(s1l,tl);
2290                 else{
2291                   emit_loadreg(rs1[i],tl);
2292                   emit_not(tl,tl);
2293                 }
2294                 if(s1h>=0) emit_not(s1h,th);
2295                 else{
2296                   emit_loadreg(rs1[i]|64,th);
2297                   emit_not(th,th);
2298                 }
2299               }
2300               else
2301               if(rs2[i]){
2302                 if(s2l>=0) emit_not(s2l,tl);
2303                 else{
2304                   emit_loadreg(rs2[i],tl);
2305                   emit_not(tl,tl);
2306                 }
2307                 if(s2h>=0) emit_not(s2h,th);
2308                 else{
2309                   emit_loadreg(rs2[i]|64,th);
2310                   emit_not(th,th);
2311                 }
2312               }
2313               else {
2314                 emit_movimm(-1,tl);
2315                 emit_movimm(-1,th);
2316               }
2317             }
2318           }
2319         }
2320       }
2321       else
2322       {
2323         // 32 bit
2324         if(tl>=0) {
2325           s1l=get_reg(i_regs->regmap,rs1[i]);
2326           s2l=get_reg(i_regs->regmap,rs2[i]);
2327           if(rs1[i]&&rs2[i]) {
2328             assert(s1l>=0);
2329             assert(s2l>=0);
2330             if(opcode2[i]==0x24) { // AND
2331               emit_and(s1l,s2l,tl);
2332             } else
2333             if(opcode2[i]==0x25) { // OR
2334               emit_or(s1l,s2l,tl);
2335             } else
2336             if(opcode2[i]==0x26) { // XOR
2337               emit_xor(s1l,s2l,tl);
2338             } else
2339             if(opcode2[i]==0x27) { // NOR
2340               emit_or(s1l,s2l,tl);
2341               emit_not(tl,tl);
2342             }
2343           }
2344           else
2345           {
2346             if(opcode2[i]==0x24) { // AND
2347               emit_zeroreg(tl);
2348             } else
2349             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2350               if(rs1[i]){
2351                 if(s1l>=0) emit_mov(s1l,tl);
2352                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2353               }
2354               else
2355               if(rs2[i]){
2356                 if(s2l>=0) emit_mov(s2l,tl);
2357                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2358               }
2359               else emit_zeroreg(tl);
2360             } else
2361             if(opcode2[i]==0x27) { // NOR
2362               if(rs1[i]){
2363                 if(s1l>=0) emit_not(s1l,tl);
2364                 else {
2365                   emit_loadreg(rs1[i],tl);
2366                   emit_not(tl,tl);
2367                 }
2368               }
2369               else
2370               if(rs2[i]){
2371                 if(s2l>=0) emit_not(s2l,tl);
2372                 else {
2373                   emit_loadreg(rs2[i],tl);
2374                   emit_not(tl,tl);
2375                 }
2376               }
2377               else emit_movimm(-1,tl);
2378             }
2379           }
2380         }
2381       }
2382     }
2383   }
2384 }
2385
2386 void imm16_assemble(int i,struct regstat *i_regs)
2387 {
2388   if (opcode[i]==0x0f) { // LUI
2389     if(rt1[i]) {
2390       signed char t;
2391       t=get_reg(i_regs->regmap,rt1[i]);
2392       //assert(t>=0);
2393       if(t>=0) {
2394         if(!((i_regs->isconst>>t)&1))
2395           emit_movimm(imm[i]<<16,t);
2396       }
2397     }
2398   }
2399   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2400     if(rt1[i]) {
2401       signed char s,t;
2402       t=get_reg(i_regs->regmap,rt1[i]);
2403       s=get_reg(i_regs->regmap,rs1[i]);
2404       if(rs1[i]) {
2405         //assert(t>=0);
2406         //assert(s>=0);
2407         if(t>=0) {
2408           if(!((i_regs->isconst>>t)&1)) {
2409             if(s<0) {
2410               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2411               emit_addimm(t,imm[i],t);
2412             }else{
2413               if(!((i_regs->wasconst>>s)&1))
2414                 emit_addimm(s,imm[i],t);
2415               else
2416                 emit_movimm(constmap[i][s]+imm[i],t);
2417             }
2418           }
2419         }
2420       } else {
2421         if(t>=0) {
2422           if(!((i_regs->isconst>>t)&1))
2423             emit_movimm(imm[i],t);
2424         }
2425       }
2426     }
2427   }
2428   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2429     if(rt1[i]) {
2430       signed char sh,sl,th,tl;
2431       th=get_reg(i_regs->regmap,rt1[i]|64);
2432       tl=get_reg(i_regs->regmap,rt1[i]);
2433       sh=get_reg(i_regs->regmap,rs1[i]|64);
2434       sl=get_reg(i_regs->regmap,rs1[i]);
2435       if(tl>=0) {
2436         if(rs1[i]) {
2437           assert(sh>=0);
2438           assert(sl>=0);
2439           if(th>=0) {
2440             emit_addimm64_32(sh,sl,imm[i],th,tl);
2441           }
2442           else {
2443             emit_addimm(sl,imm[i],tl);
2444           }
2445         } else {
2446           emit_movimm(imm[i],tl);
2447           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2448         }
2449       }
2450     }
2451   }
2452   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2453     if(rt1[i]) {
2454       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2455       signed char sh,sl,t;
2456       t=get_reg(i_regs->regmap,rt1[i]);
2457       sh=get_reg(i_regs->regmap,rs1[i]|64);
2458       sl=get_reg(i_regs->regmap,rs1[i]);
2459       //assert(t>=0);
2460       if(t>=0) {
2461         if(rs1[i]>0) {
2462           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2463           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2464             if(opcode[i]==0x0a) { // SLTI
2465               if(sl<0) {
2466                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2467                 emit_slti32(t,imm[i],t);
2468               }else{
2469                 emit_slti32(sl,imm[i],t);
2470               }
2471             }
2472             else { // SLTIU
2473               if(sl<0) {
2474                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2475                 emit_sltiu32(t,imm[i],t);
2476               }else{
2477                 emit_sltiu32(sl,imm[i],t);
2478               }
2479             }
2480           }else{ // 64-bit
2481             assert(sl>=0);
2482             if(opcode[i]==0x0a) // SLTI
2483               emit_slti64_32(sh,sl,imm[i],t);
2484             else // SLTIU
2485               emit_sltiu64_32(sh,sl,imm[i],t);
2486           }
2487         }else{
2488           // SLTI(U) with r0 is just stupid,
2489           // nonetheless examples can be found
2490           if(opcode[i]==0x0a) // SLTI
2491             if(0<imm[i]) emit_movimm(1,t);
2492             else emit_zeroreg(t);
2493           else // SLTIU
2494           {
2495             if(imm[i]) emit_movimm(1,t);
2496             else emit_zeroreg(t);
2497           }
2498         }
2499       }
2500     }
2501   }
2502   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2503     if(rt1[i]) {
2504       signed char sh,sl,th,tl;
2505       th=get_reg(i_regs->regmap,rt1[i]|64);
2506       tl=get_reg(i_regs->regmap,rt1[i]);
2507       sh=get_reg(i_regs->regmap,rs1[i]|64);
2508       sl=get_reg(i_regs->regmap,rs1[i]);
2509       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2510         if(opcode[i]==0x0c) //ANDI
2511         {
2512           if(rs1[i]) {
2513             if(sl<0) {
2514               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2515               emit_andimm(tl,imm[i],tl);
2516             }else{
2517               if(!((i_regs->wasconst>>sl)&1))
2518                 emit_andimm(sl,imm[i],tl);
2519               else
2520                 emit_movimm(constmap[i][sl]&imm[i],tl);
2521             }
2522           }
2523           else
2524             emit_zeroreg(tl);
2525           if(th>=0) emit_zeroreg(th);
2526         }
2527         else
2528         {
2529           if(rs1[i]) {
2530             if(sl<0) {
2531               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2532             }
2533             if(th>=0) {
2534               if(sh<0) {
2535                 emit_loadreg(rs1[i]|64,th);
2536               }else{
2537                 emit_mov(sh,th);
2538               }
2539             }
2540             if(opcode[i]==0x0d) //ORI
2541             if(sl<0) {
2542               emit_orimm(tl,imm[i],tl);
2543             }else{
2544               if(!((i_regs->wasconst>>sl)&1))
2545                 emit_orimm(sl,imm[i],tl);
2546               else
2547                 emit_movimm(constmap[i][sl]|imm[i],tl);
2548             }
2549             if(opcode[i]==0x0e) //XORI
2550             if(sl<0) {
2551               emit_xorimm(tl,imm[i],tl);
2552             }else{
2553               if(!((i_regs->wasconst>>sl)&1))
2554                 emit_xorimm(sl,imm[i],tl);
2555               else
2556                 emit_movimm(constmap[i][sl]^imm[i],tl);
2557             }
2558           }
2559           else {
2560             emit_movimm(imm[i],tl);
2561             if(th>=0) emit_zeroreg(th);
2562           }
2563         }
2564       }
2565     }
2566   }
2567 }
2568
2569 void shiftimm_assemble(int i,struct regstat *i_regs)
2570 {
2571   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2572   {
2573     if(rt1[i]) {
2574       signed char s,t;
2575       t=get_reg(i_regs->regmap,rt1[i]);
2576       s=get_reg(i_regs->regmap,rs1[i]);
2577       //assert(t>=0);
2578       if(t>=0){
2579         if(rs1[i]==0)
2580         {
2581           emit_zeroreg(t);
2582         }
2583         else
2584         {
2585           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2586           if(imm[i]) {
2587             if(opcode2[i]==0) // SLL
2588             {
2589               emit_shlimm(s<0?t:s,imm[i],t);
2590             }
2591             if(opcode2[i]==2) // SRL
2592             {
2593               emit_shrimm(s<0?t:s,imm[i],t);
2594             }
2595             if(opcode2[i]==3) // SRA
2596             {
2597               emit_sarimm(s<0?t:s,imm[i],t);
2598             }
2599           }else{
2600             // Shift by zero
2601             if(s>=0 && s!=t) emit_mov(s,t);
2602           }
2603         }
2604       }
2605       //emit_storereg(rt1[i],t); //DEBUG
2606     }
2607   }
2608   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2609   {
2610     if(rt1[i]) {
2611       signed char sh,sl,th,tl;
2612       th=get_reg(i_regs->regmap,rt1[i]|64);
2613       tl=get_reg(i_regs->regmap,rt1[i]);
2614       sh=get_reg(i_regs->regmap,rs1[i]|64);
2615       sl=get_reg(i_regs->regmap,rs1[i]);
2616       if(tl>=0) {
2617         if(rs1[i]==0)
2618         {
2619           emit_zeroreg(tl);
2620           if(th>=0) emit_zeroreg(th);
2621         }
2622         else
2623         {
2624           assert(sl>=0);
2625           assert(sh>=0);
2626           if(imm[i]) {
2627             if(opcode2[i]==0x38) // DSLL
2628             {
2629               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2630               emit_shlimm(sl,imm[i],tl);
2631             }
2632             if(opcode2[i]==0x3a) // DSRL
2633             {
2634               emit_shrdimm(sl,sh,imm[i],tl);
2635               if(th>=0) emit_shrimm(sh,imm[i],th);
2636             }
2637             if(opcode2[i]==0x3b) // DSRA
2638             {
2639               emit_shrdimm(sl,sh,imm[i],tl);
2640               if(th>=0) emit_sarimm(sh,imm[i],th);
2641             }
2642           }else{
2643             // Shift by zero
2644             if(sl!=tl) emit_mov(sl,tl);
2645             if(th>=0&&sh!=th) emit_mov(sh,th);
2646           }
2647         }
2648       }
2649     }
2650   }
2651   if(opcode2[i]==0x3c) // DSLL32
2652   {
2653     if(rt1[i]) {
2654       signed char sl,tl,th;
2655       tl=get_reg(i_regs->regmap,rt1[i]);
2656       th=get_reg(i_regs->regmap,rt1[i]|64);
2657       sl=get_reg(i_regs->regmap,rs1[i]);
2658       if(th>=0||tl>=0){
2659         assert(tl>=0);
2660         assert(th>=0);
2661         assert(sl>=0);
2662         emit_mov(sl,th);
2663         emit_zeroreg(tl);
2664         if(imm[i]>32)
2665         {
2666           emit_shlimm(th,imm[i]&31,th);
2667         }
2668       }
2669     }
2670   }
2671   if(opcode2[i]==0x3e) // DSRL32
2672   {
2673     if(rt1[i]) {
2674       signed char sh,tl,th;
2675       tl=get_reg(i_regs->regmap,rt1[i]);
2676       th=get_reg(i_regs->regmap,rt1[i]|64);
2677       sh=get_reg(i_regs->regmap,rs1[i]|64);
2678       if(tl>=0){
2679         assert(sh>=0);
2680         emit_mov(sh,tl);
2681         if(th>=0) emit_zeroreg(th);
2682         if(imm[i]>32)
2683         {
2684           emit_shrimm(tl,imm[i]&31,tl);
2685         }
2686       }
2687     }
2688   }
2689   if(opcode2[i]==0x3f) // DSRA32
2690   {
2691     if(rt1[i]) {
2692       signed char sh,tl;
2693       tl=get_reg(i_regs->regmap,rt1[i]);
2694       sh=get_reg(i_regs->regmap,rs1[i]|64);
2695       if(tl>=0){
2696         assert(sh>=0);
2697         emit_mov(sh,tl);
2698         if(imm[i]>32)
2699         {
2700           emit_sarimm(tl,imm[i]&31,tl);
2701         }
2702       }
2703     }
2704   }
2705 }
2706
2707 #ifndef shift_assemble
2708 void shift_assemble(int i,struct regstat *i_regs)
2709 {
2710   printf("Need shift_assemble for this architecture.\n");
2711   exit(1);
2712 }
2713 #endif
2714
2715 void load_assemble(int i,struct regstat *i_regs)
2716 {
2717   int s,th,tl,addr,map=-1;
2718   int offset;
2719   int jaddr=0;
2720   int memtarget,c=0;
2721   u_int hr,reglist=0;
2722   th=get_reg(i_regs->regmap,rt1[i]|64);
2723   tl=get_reg(i_regs->regmap,rt1[i]);
2724   s=get_reg(i_regs->regmap,rs1[i]);
2725   offset=imm[i];
2726   for(hr=0;hr<HOST_REGS;hr++) {
2727     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2728   }
2729   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2730   if(s>=0) {
2731     c=(i_regs->wasconst>>s)&1;
2732     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2733     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2734   }
2735   if(offset||s<0||c) addr=tl;
2736   else addr=s;
2737   //printf("load_assemble: c=%d\n",c);
2738   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2739   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2740   if(tl>=0) {
2741     //assert(tl>=0);
2742     //assert(rt1[i]);
2743     reglist&=~(1<<tl);
2744     if(th>=0) reglist&=~(1<<th);
2745     if(!using_tlb) {
2746       if(!c) {
2747 //#define R29_HACK 1
2748         #ifdef R29_HACK
2749         // Strmnnrmn's speed hack
2750         if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2751         #endif
2752         {
2753           emit_cmpimm(addr,0x800000);
2754           jaddr=(int)out;
2755           #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2756           // Hint to branch predictor that the branch is unlikely to be taken
2757           if(rs1[i]>=28)
2758             emit_jno_unlikely(0);
2759           else
2760           #endif
2761           emit_jno(0);
2762         }
2763       }
2764     }else{ // using tlb
2765       int x=0;
2766       if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2767       if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2768       map=get_reg(i_regs->regmap,TLREG);
2769       assert(map>=0);
2770       map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2771       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2772     }
2773     if (opcode[i]==0x20) { // LB
2774       if(!c||memtarget) {
2775         #ifdef HOST_IMM_ADDR32
2776         if(c)
2777           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2778         else
2779         #endif
2780         {
2781           //emit_xorimm(addr,3,tl);
2782           //gen_tlb_addr_r(tl,map);
2783           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2784           int x=0;
2785 #ifdef BIG_ENDIAN_MIPS
2786           if(!c) emit_xorimm(addr,3,tl);
2787           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2788 #else
2789           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2790           else if (tl!=addr) emit_mov(addr,tl);
2791 #endif
2792           emit_movsbl_indexed_tlb(x,tl,map,tl);
2793         }
2794         if(jaddr)
2795           add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2796       }
2797       else
2798         inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2799     }
2800     if (opcode[i]==0x21) { // LH
2801       if(!c||memtarget) {
2802         #ifdef HOST_IMM_ADDR32
2803         if(c)
2804           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2805         else
2806         #endif
2807         {
2808           int x=0;
2809 #ifdef BIG_ENDIAN_MIPS
2810           if(!c) emit_xorimm(addr,2,tl);
2811           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2812 #else
2813           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2814           else if (tl!=addr) emit_mov(addr,tl);
2815 #endif
2816           //#ifdef
2817           //emit_movswl_indexed_tlb(x,tl,map,tl);
2818           //else
2819           if(map>=0) {
2820             gen_tlb_addr_r(tl,map);
2821             emit_movswl_indexed(x,tl,tl);
2822           }else
2823             emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2824         }
2825         if(jaddr)
2826           add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2827       }
2828       else
2829         inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2830     }
2831     if (opcode[i]==0x23) { // LW
2832       if(!c||memtarget) {
2833         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2834         #ifdef HOST_IMM_ADDR32
2835         if(c)
2836           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2837         else
2838         #endif
2839         emit_readword_indexed_tlb(0,addr,map,tl);
2840         if(jaddr)
2841           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2842       }
2843       else
2844         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2845     }
2846     if (opcode[i]==0x24) { // LBU
2847       if(!c||memtarget) {
2848         #ifdef HOST_IMM_ADDR32
2849         if(c)
2850           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2851         else
2852         #endif
2853         {
2854           //emit_xorimm(addr,3,tl);
2855           //gen_tlb_addr_r(tl,map);
2856           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2857           int x=0;
2858 #ifdef BIG_ENDIAN_MIPS
2859           if(!c) emit_xorimm(addr,3,tl);
2860           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2861 #else
2862           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2863           else if (tl!=addr) emit_mov(addr,tl);
2864 #endif
2865           emit_movzbl_indexed_tlb(x,tl,map,tl);
2866         }
2867         if(jaddr)
2868           add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2869       }
2870       else
2871         inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2872     }
2873     if (opcode[i]==0x25) { // LHU
2874       if(!c||memtarget) {
2875         #ifdef HOST_IMM_ADDR32
2876         if(c)
2877           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2878         else
2879         #endif
2880         {
2881           int x=0;
2882 #ifdef BIG_ENDIAN_MIPS
2883           if(!c) emit_xorimm(addr,2,tl);
2884           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2885 #else
2886           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2887           else if (tl!=addr) emit_mov(addr,tl);
2888 #endif
2889           //#ifdef
2890           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2891           //#else
2892           if(map>=0) {
2893             gen_tlb_addr_r(tl,map);
2894             emit_movzwl_indexed(x,tl,tl);
2895           }else
2896             emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2897           if(jaddr)
2898             add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2899         }
2900       }
2901       else
2902         inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2903     }
2904     if (opcode[i]==0x27) { // LWU
2905       assert(th>=0);
2906       if(!c||memtarget) {
2907         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2908         #ifdef HOST_IMM_ADDR32
2909         if(c)
2910           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2911         else
2912         #endif
2913         emit_readword_indexed_tlb(0,addr,map,tl);
2914         if(jaddr)
2915           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2916       }
2917       else {
2918         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2919       }
2920       emit_zeroreg(th);
2921     }
2922     if (opcode[i]==0x37) { // LD
2923       if(!c||memtarget) {
2924         //gen_tlb_addr_r(tl,map);
2925         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2926         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2927         #ifdef HOST_IMM_ADDR32
2928         if(c)
2929           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2930         else
2931         #endif
2932         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2933         if(jaddr)
2934           add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2935       }
2936       else
2937         inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2938     }
2939     //emit_storereg(rt1[i],tl); // DEBUG
2940   }
2941   //if(opcode[i]==0x23)
2942   //if(opcode[i]==0x24)
2943   //if(opcode[i]==0x23||opcode[i]==0x24)
2944   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2945   {
2946     //emit_pusha();
2947     save_regs(0x100f);
2948         emit_readword((int)&last_count,ECX);
2949         #ifdef __i386__
2950         if(get_reg(i_regs->regmap,CCREG)<0)
2951           emit_loadreg(CCREG,HOST_CCREG);
2952         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2953         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2954         emit_writeword(HOST_CCREG,(int)&Count);
2955         #endif
2956         #ifdef __arm__
2957         if(get_reg(i_regs->regmap,CCREG)<0)
2958           emit_loadreg(CCREG,0);
2959         else
2960           emit_mov(HOST_CCREG,0);
2961         emit_add(0,ECX,0);
2962         emit_addimm(0,2*ccadj[i],0);
2963         emit_writeword(0,(int)&Count);
2964         #endif
2965     emit_call((int)memdebug);
2966     //emit_popa();
2967     restore_regs(0x100f);
2968   }/**/
2969 }
2970
2971 #ifndef loadlr_assemble
2972 void loadlr_assemble(int i,struct regstat *i_regs)
2973 {
2974   printf("Need loadlr_assemble for this architecture.\n");
2975   exit(1);
2976 }
2977 #endif
2978
2979 void store_assemble(int i,struct regstat *i_regs)
2980 {
2981   int s,th,tl,map=-1;
2982   int addr,temp;
2983   int offset;
2984   int jaddr=0,jaddr2,type;
2985   int memtarget=0,c=0;
2986   int agr=AGEN1+(i&1);
2987   u_int hr,reglist=0;
2988   th=get_reg(i_regs->regmap,rs2[i]|64);
2989   tl=get_reg(i_regs->regmap,rs2[i]);
2990   s=get_reg(i_regs->regmap,rs1[i]);
2991   temp=get_reg(i_regs->regmap,agr);
2992   if(temp<0) temp=get_reg(i_regs->regmap,-1);
2993   offset=imm[i];
2994   if(s>=0) {
2995     c=(i_regs->wasconst>>s)&1;
2996     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2997     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2998   }
2999   assert(tl>=0);
3000   assert(temp>=0);
3001   for(hr=0;hr<HOST_REGS;hr++) {
3002     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3003   }
3004   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3005   if(offset||s<0||c) addr=temp;
3006   else addr=s;
3007   if(!using_tlb) {
3008     if(!c) {
3009       #ifdef R29_HACK
3010       // Strmnnrmn's speed hack
3011       memtarget=1;
3012       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3013       #endif
3014       emit_cmpimm(addr,0x800000);
3015       #ifdef DESTRUCTIVE_SHIFT
3016       if(s==addr) emit_mov(s,temp);
3017       #endif
3018       #ifdef R29_HACK
3019       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3020       #endif
3021       {
3022         jaddr=(int)out;
3023         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3024         // Hint to branch predictor that the branch is unlikely to be taken
3025         if(rs1[i]>=28)
3026           emit_jno_unlikely(0);
3027         else
3028         #endif
3029         emit_jno(0);
3030       }
3031     }
3032   }else{ // using tlb
3033     int x=0;
3034     if (opcode[i]==0x28) x=3; // SB
3035     if (opcode[i]==0x29) x=2; // SH
3036     map=get_reg(i_regs->regmap,TLREG);
3037     assert(map>=0);
3038     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3039     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3040   }
3041
3042   if (opcode[i]==0x28) { // SB
3043     if(!c||memtarget) {
3044       int x=0;
3045 #ifdef BIG_ENDIAN_MIPS
3046       if(!c) emit_xorimm(addr,3,temp);
3047       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3048 #else
3049       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3050       else if (addr!=temp) emit_mov(addr,temp);
3051 #endif
3052       //gen_tlb_addr_w(temp,map);
3053       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3054       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3055     }
3056     type=STOREB_STUB;
3057   }
3058   if (opcode[i]==0x29) { // SH
3059     if(!c||memtarget) {
3060       int x=0;
3061 #ifdef BIG_ENDIAN_MIPS
3062       if(!c) emit_xorimm(addr,2,temp);
3063       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3064 #else
3065       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3066       else if (addr!=temp) emit_mov(addr,temp);
3067 #endif
3068       //#ifdef
3069       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3070       //#else
3071       if(map>=0) {
3072         gen_tlb_addr_w(temp,map);
3073         emit_writehword_indexed(tl,x,temp);
3074       }else
3075         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3076     }
3077     type=STOREH_STUB;
3078   }
3079   if (opcode[i]==0x2B) { // SW
3080     if(!c||memtarget)
3081       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3082       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3083     type=STOREW_STUB;
3084   }
3085   if (opcode[i]==0x3F) { // SD
3086     if(!c||memtarget) {
3087       if(rs2[i]) {
3088         assert(th>=0);
3089         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3090         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3091         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3092       }else{
3093         // Store zero
3094         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3095         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3096         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3097       }
3098     }
3099     type=STORED_STUB;
3100   }
3101   if(!using_tlb&&(!c||memtarget))
3102     // addr could be a temp, make sure it survives STORE*_STUB
3103     reglist|=1<<addr;
3104   if(jaddr) {
3105     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3106   } else if(!memtarget) {
3107     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3108   }
3109   if(!using_tlb) {
3110     if(!c||memtarget) {
3111       #ifdef DESTRUCTIVE_SHIFT
3112       // The x86 shift operation is 'destructive'; it overwrites the
3113       // source register, so we need to make a copy first and use that.
3114       addr=temp;
3115       #endif
3116       #if defined(HOST_IMM8)
3117       int ir=get_reg(i_regs->regmap,INVCP);
3118       assert(ir>=0);
3119       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3120       #else
3121       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3122       #endif
3123       jaddr2=(int)out;
3124       emit_jne(0);
3125       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3126     }
3127   }
3128   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3129   //if(opcode[i]==0x2B || opcode[i]==0x28)
3130   //if(opcode[i]==0x2B || opcode[i]==0x29)
3131   //if(opcode[i]==0x2B)
3132   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3133   {
3134     //emit_pusha();
3135     save_regs(0x100f);
3136         emit_readword((int)&last_count,ECX);
3137         #ifdef __i386__
3138         if(get_reg(i_regs->regmap,CCREG)<0)
3139           emit_loadreg(CCREG,HOST_CCREG);
3140         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3141         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3142         emit_writeword(HOST_CCREG,(int)&Count);
3143         #endif
3144         #ifdef __arm__
3145         if(get_reg(i_regs->regmap,CCREG)<0)
3146           emit_loadreg(CCREG,0);
3147         else
3148           emit_mov(HOST_CCREG,0);
3149         emit_add(0,ECX,0);
3150         emit_addimm(0,2*ccadj[i],0);
3151         emit_writeword(0,(int)&Count);
3152         #endif
3153     emit_call((int)memdebug);
3154     //emit_popa();
3155     restore_regs(0x100f);
3156   }/**/
3157 }
3158
3159 void storelr_assemble(int i,struct regstat *i_regs)
3160 {
3161   int s,th,tl;
3162   int temp;
3163   int temp2;
3164   int offset;
3165   int jaddr=0,jaddr2;
3166   int case1,case2,case3;
3167   int done0,done1,done2;
3168   int memtarget,c=0;
3169   u_int hr,reglist=0;
3170   th=get_reg(i_regs->regmap,rs2[i]|64);
3171   tl=get_reg(i_regs->regmap,rs2[i]);
3172   s=get_reg(i_regs->regmap,rs1[i]);
3173   temp=get_reg(i_regs->regmap,-1);
3174   offset=imm[i];
3175   if(s>=0) {
3176     c=(i_regs->isconst>>s)&1;
3177     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3178     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3179   }
3180   assert(tl>=0);
3181   for(hr=0;hr<HOST_REGS;hr++) {
3182     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3183   }
3184   if(tl>=0) {
3185     assert(temp>=0);
3186     if(!using_tlb) {
3187       if(!c) {
3188         emit_cmpimm(s<0||offset?temp:s,0x800000);
3189         if(!offset&&s!=temp) emit_mov(s,temp);
3190         jaddr=(int)out;
3191         emit_jno(0);
3192       }
3193       else
3194       {
3195         if(!memtarget||!rs1[i]) {
3196           jaddr=(int)out;
3197           emit_jmp(0);
3198         }
3199       }
3200       if((u_int)rdram!=0x80000000) 
3201         emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3202     }else{ // using tlb
3203       int map=get_reg(i_regs->regmap,TLREG);
3204       assert(map>=0);
3205       map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3206       if(!c&&!offset&&s>=0) emit_mov(s,temp);
3207       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3208       if(!jaddr&&!memtarget) {
3209         jaddr=(int)out;
3210         emit_jmp(0);
3211       }
3212       gen_tlb_addr_w(temp,map);
3213     }
3214
3215     if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3216       temp2=get_reg(i_regs->regmap,FTEMP);
3217       if(!rs2[i]) temp2=th=tl;
3218     }
3219
3220 #ifndef BIG_ENDIAN_MIPS
3221     emit_xorimm(temp,3,temp);
3222 #endif
3223     emit_testimm(temp,2);
3224     case2=(int)out;
3225     emit_jne(0);
3226     emit_testimm(temp,1);
3227     case1=(int)out;
3228     emit_jne(0);
3229     // 0
3230     if (opcode[i]==0x2A) { // SWL
3231       emit_writeword_indexed(tl,0,temp);
3232     }
3233     if (opcode[i]==0x2E) { // SWR
3234       emit_writebyte_indexed(tl,3,temp);
3235     }
3236     if (opcode[i]==0x2C) { // SDL
3237       emit_writeword_indexed(th,0,temp);
3238       if(rs2[i]) emit_mov(tl,temp2);
3239     }
3240     if (opcode[i]==0x2D) { // SDR
3241       emit_writebyte_indexed(tl,3,temp);
3242       if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3243     }
3244     done0=(int)out;
3245     emit_jmp(0);
3246     // 1
3247     set_jump_target(case1,(int)out);
3248     if (opcode[i]==0x2A) { // SWL
3249       // Write 3 msb into three least significant bytes
3250       if(rs2[i]) emit_rorimm(tl,8,tl);
3251       emit_writehword_indexed(tl,-1,temp);
3252       if(rs2[i]) emit_rorimm(tl,16,tl);
3253       emit_writebyte_indexed(tl,1,temp);
3254       if(rs2[i]) emit_rorimm(tl,8,tl);
3255     }
3256     if (opcode[i]==0x2E) { // SWR
3257       // Write two lsb into two most significant bytes
3258       emit_writehword_indexed(tl,1,temp);
3259     }
3260     if (opcode[i]==0x2C) { // SDL
3261       if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3262       // Write 3 msb into three least significant bytes
3263       if(rs2[i]) emit_rorimm(th,8,th);
3264       emit_writehword_indexed(th,-1,temp);
3265       if(rs2[i]) emit_rorimm(th,16,th);
3266       emit_writebyte_indexed(th,1,temp);
3267       if(rs2[i]) emit_rorimm(th,8,th);
3268     }
3269     if (opcode[i]==0x2D) { // SDR
3270       if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3271       // Write two lsb into two most significant bytes
3272       emit_writehword_indexed(tl,1,temp);
3273     }
3274     done1=(int)out;
3275     emit_jmp(0);
3276     // 2
3277     set_jump_target(case2,(int)out);
3278     emit_testimm(temp,1);
3279     case3=(int)out;
3280     emit_jne(0);
3281     if (opcode[i]==0x2A) { // SWL
3282       // Write two msb into two least significant bytes
3283       if(rs2[i]) emit_rorimm(tl,16,tl);
3284       emit_writehword_indexed(tl,-2,temp);
3285       if(rs2[i]) emit_rorimm(tl,16,tl);
3286     }
3287     if (opcode[i]==0x2E) { // SWR
3288       // Write 3 lsb into three most significant bytes
3289       emit_writebyte_indexed(tl,-1,temp);
3290       if(rs2[i]) emit_rorimm(tl,8,tl);
3291       emit_writehword_indexed(tl,0,temp);
3292       if(rs2[i]) emit_rorimm(tl,24,tl);
3293     }
3294     if (opcode[i]==0x2C) { // SDL
3295       if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3296       // Write two msb into two least significant bytes
3297       if(rs2[i]) emit_rorimm(th,16,th);
3298       emit_writehword_indexed(th,-2,temp);
3299       if(rs2[i]) emit_rorimm(th,16,th);
3300     }
3301     if (opcode[i]==0x2D) { // SDR
3302       if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3303       // Write 3 lsb into three most significant bytes
3304       emit_writebyte_indexed(tl,-1,temp);
3305       if(rs2[i]) emit_rorimm(tl,8,tl);
3306       emit_writehword_indexed(tl,0,temp);
3307       if(rs2[i]) emit_rorimm(tl,24,tl);
3308     }
3309     done2=(int)out;
3310     emit_jmp(0);
3311     // 3
3312     set_jump_target(case3,(int)out);
3313     if (opcode[i]==0x2A) { // SWL
3314       // Write msb into least significant byte
3315       if(rs2[i]) emit_rorimm(tl,24,tl);
3316       emit_writebyte_indexed(tl,-3,temp);
3317       if(rs2[i]) emit_rorimm(tl,8,tl);
3318     }
3319     if (opcode[i]==0x2E) { // SWR
3320       // Write entire word
3321       emit_writeword_indexed(tl,-3,temp);
3322     }
3323     if (opcode[i]==0x2C) { // SDL
3324       if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3325       // Write msb into least significant byte
3326       if(rs2[i]) emit_rorimm(th,24,th);
3327       emit_writebyte_indexed(th,-3,temp);
3328       if(rs2[i]) emit_rorimm(th,8,th);
3329     }
3330     if (opcode[i]==0x2D) { // SDR
3331       if(rs2[i]) emit_mov(th,temp2);
3332       // Write entire word
3333       emit_writeword_indexed(tl,-3,temp);
3334     }
3335     set_jump_target(done0,(int)out);
3336     set_jump_target(done1,(int)out);
3337     set_jump_target(done2,(int)out);
3338     if (opcode[i]==0x2C) { // SDL
3339       emit_testimm(temp,4);
3340       done0=(int)out;
3341       emit_jne(0);
3342       emit_andimm(temp,~3,temp);
3343       emit_writeword_indexed(temp2,4,temp);
3344       set_jump_target(done0,(int)out);
3345     }
3346     if (opcode[i]==0x2D) { // SDR
3347       emit_testimm(temp,4);
3348       done0=(int)out;
3349       emit_jeq(0);
3350       emit_andimm(temp,~3,temp);
3351       emit_writeword_indexed(temp2,-4,temp);
3352       set_jump_target(done0,(int)out);
3353     }
3354     if(!c||!memtarget)
3355       add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3356   }
3357   if(!using_tlb) {
3358     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3359     #if defined(HOST_IMM8)
3360     int ir=get_reg(i_regs->regmap,INVCP);
3361     assert(ir>=0);
3362     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3363     #else
3364     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3365     #endif
3366     jaddr2=(int)out;
3367     emit_jne(0);
3368     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3369   }
3370   /*
3371     emit_pusha();
3372     //save_regs(0x100f);