drc: merge Ari64's patch: 07_clear_cache
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182 #define INTCALL 30// Call interpreter to handle rare corner cases
183
184   /* stubs */
185 #define CC_STUB 1
186 #define FP_STUB 2
187 #define LOADB_STUB 3
188 #define LOADH_STUB 4
189 #define LOADW_STUB 5
190 #define LOADD_STUB 6
191 #define LOADBU_STUB 7
192 #define LOADHU_STUB 8
193 #define STOREB_STUB 9
194 #define STOREH_STUB 10
195 #define STOREW_STUB 11
196 #define STORED_STUB 12
197 #define STORELR_STUB 13
198 #define INVCODE_STUB 14
199
200   /* branch codes */
201 #define TAKEN 1
202 #define NOTTAKEN 2
203 #define NULLDS 3
204
205 // asm linkage
206 int new_recompile_block(int addr);
207 void *get_addr_ht(u_int vaddr);
208 void invalidate_block(u_int block);
209 void invalidate_addr(u_int addr);
210 void remove_hash(int vaddr);
211 void jump_vaddr();
212 void dyna_linker();
213 void dyna_linker_ds();
214 void verify_code();
215 void verify_code_vm();
216 void verify_code_ds();
217 void cc_interrupt();
218 void fp_exception();
219 void fp_exception_ds();
220 void jump_syscall();
221 void jump_syscall_hle();
222 void jump_eret();
223 void jump_hlecall();
224 void jump_intcall();
225 void new_dyna_leave();
226
227 // TLB
228 void TLBWI_new();
229 void TLBWR_new();
230 void read_nomem_new();
231 void read_nomemb_new();
232 void read_nomemh_new();
233 void read_nomemd_new();
234 void write_nomem_new();
235 void write_nomemb_new();
236 void write_nomemh_new();
237 void write_nomemd_new();
238 void write_rdram_new();
239 void write_rdramb_new();
240 void write_rdramh_new();
241 void write_rdramd_new();
242 extern u_int memory_map[1048576];
243
244 // Needed by assembler
245 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248 void load_all_regs(signed char i_regmap[]);
249 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250 void load_regs_entry(int t);
251 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253 int tracedebug=0;
254
255 //#define DEBUG_CYCLE_COUNT 1
256
257 void nullf() {}
258 //#define assem_debug printf
259 //#define inv_debug printf
260 #define assem_debug nullf
261 #define inv_debug nullf
262
263 static void tlb_hacks()
264 {
265 #ifndef DISABLE_TLB
266   // Goldeneye hack
267   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268   {
269     u_int addr;
270     int n;
271     switch (ROM_HEADER->Country_code&0xFF) 
272     {
273       case 0x45: // U
274         addr=0x34b30;
275         break;                   
276       case 0x4A: // J 
277         addr=0x34b70;    
278         break;    
279       case 0x50: // E 
280         addr=0x329f0;
281         break;                        
282       default: 
283         // Unknown country code
284         addr=0;
285         break;
286     }
287     u_int rom_addr=(u_int)rom;
288     #ifdef ROM_COPY
289     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290     // in the lower 4G of memory to use this hack.  Copy it if necessary.
291     if((void *)rom>(void *)0xffffffff) {
292       munmap(ROM_COPY, 67108864);
293       if(mmap(ROM_COPY, 12582912,
294               PROT_READ | PROT_WRITE,
295               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296               -1, 0) <= 0) {printf("mmap() failed\n");}
297       memcpy(ROM_COPY,rom,12582912);
298       rom_addr=(u_int)ROM_COPY;
299     }
300     #endif
301     if(addr) {
302       for(n=0x7F000;n<0x80000;n++) {
303         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304       }
305     }
306   }
307 #endif
308 }
309
310 static u_int get_page(u_int vaddr)
311 {
312 #ifndef PCSX
313   u_int page=(vaddr^0x80000000)>>12;
314 #else
315   u_int page=vaddr&~0xe0000000;
316   if (page < 0x1000000)
317     page &= ~0x0e00000; // RAM mirrors
318   page>>=12;
319 #endif
320 #ifndef DISABLE_TLB
321   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
322 #endif
323   if(page>2048) page=2048+(page&2047);
324   return page;
325 }
326
327 static u_int get_vpage(u_int vaddr)
328 {
329   u_int vpage=(vaddr^0x80000000)>>12;
330 #ifndef DISABLE_TLB
331   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
332 #endif
333   if(vpage>2048) vpage=2048+(vpage&2047);
334   return vpage;
335 }
336
337 // Get address from virtual address
338 // This is called from the recompiled JR/JALR instructions
339 void *get_addr(u_int vaddr)
340 {
341   u_int page=get_page(vaddr);
342   u_int vpage=get_vpage(vaddr);
343   struct ll_entry *head;
344   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
345   head=jump_in[page];
346   while(head!=NULL) {
347     if(head->vaddr==vaddr&&head->reg32==0) {
348   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
349       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350       ht_bin[3]=ht_bin[1];
351       ht_bin[2]=ht_bin[0];
352       ht_bin[1]=(int)head->addr;
353       ht_bin[0]=vaddr;
354       return head->addr;
355     }
356     head=head->next;
357   }
358   head=jump_dirty[vpage];
359   while(head!=NULL) {
360     if(head->vaddr==vaddr&&head->reg32==0) {
361       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
362       // Don't restore blocks which are about to expire from the cache
363       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
364       if(verify_dirty(head->addr)) {
365         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
366         invalid_code[vaddr>>12]=0;
367         memory_map[vaddr>>12]|=0x40000000;
368         if(vpage<2048) {
369 #ifndef DISABLE_TLB
370           if(tlb_LUT_r[vaddr>>12]) {
371             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
372             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
373           }
374 #endif
375           restore_candidate[vpage>>3]|=1<<(vpage&7);
376         }
377         else restore_candidate[page>>3]|=1<<(page&7);
378         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
379         if(ht_bin[0]==vaddr) {
380           ht_bin[1]=(int)head->addr; // Replace existing entry
381         }
382         else
383         {
384           ht_bin[3]=ht_bin[1];
385           ht_bin[2]=ht_bin[0];
386           ht_bin[1]=(int)head->addr;
387           ht_bin[0]=vaddr;
388         }
389         return head->addr;
390       }
391     }
392     head=head->next;
393   }
394   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
395   int r=new_recompile_block(vaddr);
396   if(r==0) return get_addr(vaddr);
397   // Execute in unmapped page, generate pagefault execption
398   Status|=2;
399   Cause=(vaddr<<31)|0x8;
400   EPC=(vaddr&1)?vaddr-5:vaddr;
401   BadVAddr=(vaddr&~1);
402   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
403   EntryHi=BadVAddr&0xFFFFE000;
404   return get_addr_ht(0x80000000);
405 }
406 // Look up address in hash table first
407 void *get_addr_ht(u_int vaddr)
408 {
409   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
410   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
413   return get_addr(vaddr);
414 }
415
416 void *get_addr_32(u_int vaddr,u_int flags)
417 {
418 #ifdef FORCE32
419   return get_addr(vaddr);
420 #else
421   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
422   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
425   u_int page=get_page(vaddr);
426   u_int vpage=get_vpage(vaddr);
427   struct ll_entry *head;
428   head=jump_in[page];
429   while(head!=NULL) {
430     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
431       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
432       if(head->reg32==0) {
433         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434         if(ht_bin[0]==-1) {
435           ht_bin[1]=(int)head->addr;
436           ht_bin[0]=vaddr;
437         }else if(ht_bin[2]==-1) {
438           ht_bin[3]=(int)head->addr;
439           ht_bin[2]=vaddr;
440         }
441         //ht_bin[3]=ht_bin[1];
442         //ht_bin[2]=ht_bin[0];
443         //ht_bin[1]=(int)head->addr;
444         //ht_bin[0]=vaddr;
445       }
446       return head->addr;
447     }
448     head=head->next;
449   }
450   head=jump_dirty[vpage];
451   while(head!=NULL) {
452     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
454       // Don't restore blocks which are about to expire from the cache
455       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
456       if(verify_dirty(head->addr)) {
457         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
458         invalid_code[vaddr>>12]=0;
459         memory_map[vaddr>>12]|=0x40000000;
460         if(vpage<2048) {
461 #ifndef DISABLE_TLB
462           if(tlb_LUT_r[vaddr>>12]) {
463             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
464             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
465           }
466 #endif
467           restore_candidate[vpage>>3]|=1<<(vpage&7);
468         }
469         else restore_candidate[page>>3]|=1<<(page&7);
470         if(head->reg32==0) {
471           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472           if(ht_bin[0]==-1) {
473             ht_bin[1]=(int)head->addr;
474             ht_bin[0]=vaddr;
475           }else if(ht_bin[2]==-1) {
476             ht_bin[3]=(int)head->addr;
477             ht_bin[2]=vaddr;
478           }
479           //ht_bin[3]=ht_bin[1];
480           //ht_bin[2]=ht_bin[0];
481           //ht_bin[1]=(int)head->addr;
482           //ht_bin[0]=vaddr;
483         }
484         return head->addr;
485       }
486     }
487     head=head->next;
488   }
489   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
490   int r=new_recompile_block(vaddr);
491   if(r==0) return get_addr(vaddr);
492   // Execute in unmapped page, generate pagefault execption
493   Status|=2;
494   Cause=(vaddr<<31)|0x8;
495   EPC=(vaddr&1)?vaddr-5:vaddr;
496   BadVAddr=(vaddr&~1);
497   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
498   EntryHi=BadVAddr&0xFFFFE000;
499   return get_addr_ht(0x80000000);
500 #endif
501 }
502
503 void clear_all_regs(signed char regmap[])
504 {
505   int hr;
506   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
507 }
508
509 signed char get_reg(signed char regmap[],int r)
510 {
511   int hr;
512   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
513   return -1;
514 }
515
516 // Find a register that is available for two consecutive cycles
517 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
518 {
519   int hr;
520   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
521   return -1;
522 }
523
524 int count_free_regs(signed char regmap[])
525 {
526   int count=0;
527   int hr;
528   for(hr=0;hr<HOST_REGS;hr++)
529   {
530     if(hr!=EXCLUDE_REG) {
531       if(regmap[hr]<0) count++;
532     }
533   }
534   return count;
535 }
536
537 void dirty_reg(struct regstat *cur,signed char reg)
538 {
539   int hr;
540   if(!reg) return;
541   for (hr=0;hr<HOST_REGS;hr++) {
542     if((cur->regmap[hr]&63)==reg) {
543       cur->dirty|=1<<hr;
544     }
545   }
546 }
547
548 // If we dirty the lower half of a 64 bit register which is now being
549 // sign-extended, we need to dump the upper half.
550 // Note: Do this only after completion of the instruction, because
551 // some instructions may need to read the full 64-bit value even if
552 // overwriting it (eg SLTI, DSRA32).
553 static void flush_dirty_uppers(struct regstat *cur)
554 {
555   int hr,reg;
556   for (hr=0;hr<HOST_REGS;hr++) {
557     if((cur->dirty>>hr)&1) {
558       reg=cur->regmap[hr];
559       if(reg>=64) 
560         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
561     }
562   }
563 }
564
565 void set_const(struct regstat *cur,signed char reg,uint64_t value)
566 {
567   int hr;
568   if(!reg) return;
569   for (hr=0;hr<HOST_REGS;hr++) {
570     if(cur->regmap[hr]==reg) {
571       cur->isconst|=1<<hr;
572       cur->constmap[hr]=value;
573     }
574     else if((cur->regmap[hr]^64)==reg) {
575       cur->isconst|=1<<hr;
576       cur->constmap[hr]=value>>32;
577     }
578   }
579 }
580
581 void clear_const(struct regstat *cur,signed char reg)
582 {
583   int hr;
584   if(!reg) return;
585   for (hr=0;hr<HOST_REGS;hr++) {
586     if((cur->regmap[hr]&63)==reg) {
587       cur->isconst&=~(1<<hr);
588     }
589   }
590 }
591
592 int is_const(struct regstat *cur,signed char reg)
593 {
594   int hr;
595   if(!reg) return 1;
596   for (hr=0;hr<HOST_REGS;hr++) {
597     if((cur->regmap[hr]&63)==reg) {
598       return (cur->isconst>>hr)&1;
599     }
600   }
601   return 0;
602 }
603 uint64_t get_const(struct regstat *cur,signed char reg)
604 {
605   int hr;
606   if(!reg) return 0;
607   for (hr=0;hr<HOST_REGS;hr++) {
608     if(cur->regmap[hr]==reg) {
609       return cur->constmap[hr];
610     }
611   }
612   printf("Unknown constant in r%d\n",reg);
613   exit(1);
614 }
615
616 // Least soon needed registers
617 // Look at the next ten instructions and see which registers
618 // will be used.  Try not to reallocate these.
619 void lsn(u_char hsn[], int i, int *preferred_reg)
620 {
621   int j;
622   int b=-1;
623   for(j=0;j<9;j++)
624   {
625     if(i+j>=slen) {
626       j=slen-i-1;
627       break;
628     }
629     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
630     {
631       // Don't go past an unconditonal jump
632       j++;
633       break;
634     }
635   }
636   for(;j>=0;j--)
637   {
638     if(rs1[i+j]) hsn[rs1[i+j]]=j;
639     if(rs2[i+j]) hsn[rs2[i+j]]=j;
640     if(rt1[i+j]) hsn[rt1[i+j]]=j;
641     if(rt2[i+j]) hsn[rt2[i+j]]=j;
642     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
643       // Stores can allocate zero
644       hsn[rs1[i+j]]=j;
645       hsn[rs2[i+j]]=j;
646     }
647     // On some architectures stores need invc_ptr
648     #if defined(HOST_IMM8)
649     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
650       hsn[INVCP]=j;
651     }
652     #endif
653     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
654     {
655       hsn[CCREG]=j;
656       b=j;
657     }
658   }
659   if(b>=0)
660   {
661     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
662     {
663       // Follow first branch
664       int t=(ba[i+b]-start)>>2;
665       j=7-b;if(t+j>=slen) j=slen-t-1;
666       for(;j>=0;j--)
667       {
668         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
669         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
670         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
671         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
672       }
673     }
674     // TODO: preferred register based on backward branch
675   }
676   // Delay slot should preferably not overwrite branch conditions or cycle count
677   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
678     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
679     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
680     hsn[CCREG]=1;
681     // ...or hash tables
682     hsn[RHASH]=1;
683     hsn[RHTBL]=1;
684   }
685   // Coprocessor load/store needs FTEMP, even if not declared
686   if(itype[i]==C1LS||itype[i]==C2LS) {
687     hsn[FTEMP]=0;
688   }
689   // Load L/R also uses FTEMP as a temporary register
690   if(itype[i]==LOADLR) {
691     hsn[FTEMP]=0;
692   }
693   // Also SWL/SWR/SDL/SDR
694   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
695     hsn[FTEMP]=0;
696   }
697   // Don't remove the TLB registers either
698   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
699     hsn[TLREG]=0;
700   }
701   // Don't remove the miniht registers
702   if(itype[i]==UJUMP||itype[i]==RJUMP)
703   {
704     hsn[RHASH]=0;
705     hsn[RHTBL]=0;
706   }
707 }
708
709 // We only want to allocate registers if we're going to use them again soon
710 int needed_again(int r, int i)
711 {
712   int j;
713   int b=-1;
714   int rn=10;
715   int hr;
716   u_char hsn[MAXREG+1];
717   int preferred_reg;
718   
719   memset(hsn,10,sizeof(hsn));
720   lsn(hsn,i,&preferred_reg);
721   
722   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
723   {
724     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
725       return 0; // Don't need any registers if exiting the block
726   }
727   for(j=0;j<9;j++)
728   {
729     if(i+j>=slen) {
730       j=slen-i-1;
731       break;
732     }
733     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
734     {
735       // Don't go past an unconditonal jump
736       j++;
737       break;
738     }
739     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
740     {
741       break;
742     }
743   }
744   for(;j>=1;j--)
745   {
746     if(rs1[i+j]==r) rn=j;
747     if(rs2[i+j]==r) rn=j;
748     if((unneeded_reg[i+j]>>r)&1) rn=10;
749     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
750     {
751       b=j;
752     }
753   }
754   /*
755   if(b>=0)
756   {
757     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
758     {
759       // Follow first branch
760       int o=rn;
761       int t=(ba[i+b]-start)>>2;
762       j=7-b;if(t+j>=slen) j=slen-t-1;
763       for(;j>=0;j--)
764       {
765         if(!((unneeded_reg[t+j]>>r)&1)) {
766           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
767           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
768         }
769         else rn=o;
770       }
771     }
772   }*/
773   for(hr=0;hr<HOST_REGS;hr++) {
774     if(hr!=EXCLUDE_REG) {
775       if(rn<hsn[hr]) return 1;
776     }
777   }
778   return 0;
779 }
780
781 // Try to match register allocations at the end of a loop with those
782 // at the beginning
783 int loop_reg(int i, int r, int hr)
784 {
785   int j,k;
786   for(j=0;j<9;j++)
787   {
788     if(i+j>=slen) {
789       j=slen-i-1;
790       break;
791     }
792     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
793     {
794       // Don't go past an unconditonal jump
795       j++;
796       break;
797     }
798   }
799   k=0;
800   if(i>0){
801     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
802       k--;
803   }
804   for(;k<j;k++)
805   {
806     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
807     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
808     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
809     {
810       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
811       {
812         int t=(ba[i+k]-start)>>2;
813         int reg=get_reg(regs[t].regmap_entry,r);
814         if(reg>=0) return reg;
815         //reg=get_reg(regs[t+1].regmap_entry,r);
816         //if(reg>=0) return reg;
817       }
818     }
819   }
820   return hr;
821 }
822
823
824 // Allocate every register, preserving source/target regs
825 void alloc_all(struct regstat *cur,int i)
826 {
827   int hr;
828   
829   for(hr=0;hr<HOST_REGS;hr++) {
830     if(hr!=EXCLUDE_REG) {
831       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
832          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
833       {
834         cur->regmap[hr]=-1;
835         cur->dirty&=~(1<<hr);
836       }
837       // Don't need zeros
838       if((cur->regmap[hr]&63)==0)
839       {
840         cur->regmap[hr]=-1;
841         cur->dirty&=~(1<<hr);
842       }
843     }
844   }
845 }
846
847
848 void div64(int64_t dividend,int64_t divisor)
849 {
850   lo=dividend/divisor;
851   hi=dividend%divisor;
852   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
853   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854 }
855 void divu64(uint64_t dividend,uint64_t divisor)
856 {
857   lo=dividend/divisor;
858   hi=dividend%divisor;
859   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
860   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
861 }
862
863 void mult64(uint64_t m1,uint64_t m2)
864 {
865    unsigned long long int op1, op2, op3, op4;
866    unsigned long long int result1, result2, result3, result4;
867    unsigned long long int temp1, temp2, temp3, temp4;
868    int sign = 0;
869    
870    if (m1 < 0)
871      {
872     op2 = -m1;
873     sign = 1 - sign;
874      }
875    else op2 = m1;
876    if (m2 < 0)
877      {
878     op4 = -m2;
879     sign = 1 - sign;
880      }
881    else op4 = m2;
882    
883    op1 = op2 & 0xFFFFFFFF;
884    op2 = (op2 >> 32) & 0xFFFFFFFF;
885    op3 = op4 & 0xFFFFFFFF;
886    op4 = (op4 >> 32) & 0xFFFFFFFF;
887    
888    temp1 = op1 * op3;
889    temp2 = (temp1 >> 32) + op1 * op4;
890    temp3 = op2 * op3;
891    temp4 = (temp3 >> 32) + op2 * op4;
892    
893    result1 = temp1 & 0xFFFFFFFF;
894    result2 = temp2 + (temp3 & 0xFFFFFFFF);
895    result3 = (result2 >> 32) + temp4;
896    result4 = (result3 >> 32);
897    
898    lo = result1 | (result2 << 32);
899    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900    if (sign)
901      {
902     hi = ~hi;
903     if (!lo) hi++;
904     else lo = ~lo + 1;
905      }
906 }
907
908 void multu64(uint64_t m1,uint64_t m2)
909 {
910    unsigned long long int op1, op2, op3, op4;
911    unsigned long long int result1, result2, result3, result4;
912    unsigned long long int temp1, temp2, temp3, temp4;
913    
914    op1 = m1 & 0xFFFFFFFF;
915    op2 = (m1 >> 32) & 0xFFFFFFFF;
916    op3 = m2 & 0xFFFFFFFF;
917    op4 = (m2 >> 32) & 0xFFFFFFFF;
918    
919    temp1 = op1 * op3;
920    temp2 = (temp1 >> 32) + op1 * op4;
921    temp3 = op2 * op3;
922    temp4 = (temp3 >> 32) + op2 * op4;
923    
924    result1 = temp1 & 0xFFFFFFFF;
925    result2 = temp2 + (temp3 & 0xFFFFFFFF);
926    result3 = (result2 >> 32) + temp4;
927    result4 = (result3 >> 32);
928    
929    lo = result1 | (result2 << 32);
930    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
931    
932   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
933   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
934 }
935
936 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937 {
938   if(bits) {
939     original<<=64-bits;
940     original>>=64-bits;
941     loaded<<=bits;
942     original|=loaded;
943   }
944   else original=loaded;
945   return original;
946 }
947 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948 {
949   if(bits^56) {
950     original>>=64-(bits^56);
951     original<<=64-(bits^56);
952     loaded>>=bits^56;
953     original|=loaded;
954   }
955   else original=loaded;
956   return original;
957 }
958
959 #ifdef __i386__
960 #include "assem_x86.c"
961 #endif
962 #ifdef __x86_64__
963 #include "assem_x64.c"
964 #endif
965 #ifdef __arm__
966 #include "assem_arm.c"
967 #endif
968
969 // Add virtual address mapping to linked list
970 void ll_add(struct ll_entry **head,int vaddr,void *addr)
971 {
972   struct ll_entry *new_entry;
973   new_entry=malloc(sizeof(struct ll_entry));
974   assert(new_entry!=NULL);
975   new_entry->vaddr=vaddr;
976   new_entry->reg32=0;
977   new_entry->addr=addr;
978   new_entry->next=*head;
979   *head=new_entry;
980 }
981
982 // Add virtual address mapping for 32-bit compiled block
983 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
984 {
985   ll_add(head,vaddr,addr);
986 #ifndef FORCE32
987   (*head)->reg32=reg32;
988 #endif
989 }
990
991 // Check if an address is already compiled
992 // but don't return addresses which are about to expire from the cache
993 void *check_addr(u_int vaddr)
994 {
995   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
996   if(ht_bin[0]==vaddr) {
997     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
998       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
999   }
1000   if(ht_bin[2]==vaddr) {
1001     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1003   }
1004   u_int page=get_page(vaddr);
1005   struct ll_entry *head;
1006   head=jump_in[page];
1007   while(head!=NULL) {
1008     if(head->vaddr==vaddr&&head->reg32==0) {
1009       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1010         // Update existing entry with current address
1011         if(ht_bin[0]==vaddr) {
1012           ht_bin[1]=(int)head->addr;
1013           return head->addr;
1014         }
1015         if(ht_bin[2]==vaddr) {
1016           ht_bin[3]=(int)head->addr;
1017           return head->addr;
1018         }
1019         // Insert into hash table with low priority.
1020         // Don't evict existing entries, as they are probably
1021         // addresses that are being accessed frequently.
1022         if(ht_bin[0]==-1) {
1023           ht_bin[1]=(int)head->addr;
1024           ht_bin[0]=vaddr;
1025         }else if(ht_bin[2]==-1) {
1026           ht_bin[3]=(int)head->addr;
1027           ht_bin[2]=vaddr;
1028         }
1029         return head->addr;
1030       }
1031     }
1032     head=head->next;
1033   }
1034   return 0;
1035 }
1036
1037 void remove_hash(int vaddr)
1038 {
1039   //printf("remove hash: %x\n",vaddr);
1040   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1041   if(ht_bin[2]==vaddr) {
1042     ht_bin[2]=ht_bin[3]=-1;
1043   }
1044   if(ht_bin[0]==vaddr) {
1045     ht_bin[0]=ht_bin[2];
1046     ht_bin[1]=ht_bin[3];
1047     ht_bin[2]=ht_bin[3]=-1;
1048   }
1049 }
1050
1051 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1052 {
1053   struct ll_entry *next;
1054   while(*head) {
1055     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1056        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1057     {
1058       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1059       remove_hash((*head)->vaddr);
1060       next=(*head)->next;
1061       free(*head);
1062       *head=next;
1063     }
1064     else
1065     {
1066       head=&((*head)->next);
1067     }
1068   }
1069 }
1070
1071 // Remove all entries from linked list
1072 void ll_clear(struct ll_entry **head)
1073 {
1074   struct ll_entry *cur;
1075   struct ll_entry *next;
1076   if(cur=*head) {
1077     *head=0;
1078     while(cur) {
1079       next=cur->next;
1080       free(cur);
1081       cur=next;
1082     }
1083   }
1084 }
1085
1086 // Dereference the pointers and remove if it matches
1087 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1088 {
1089   while(head) {
1090     int ptr=get_pointer(head->addr);
1091     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1092     if(((ptr>>shift)==(addr>>shift)) ||
1093        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1094     {
1095       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1096       u_int host_addr=(u_int)kill_pointer(head->addr);
1097       #ifdef __arm__
1098         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1099       #endif
1100     }
1101     head=head->next;
1102   }
1103 }
1104
1105 // This is called when we write to a compiled block (see do_invstub)
1106 void invalidate_page(u_int page)
1107 {
1108   struct ll_entry *head;
1109   struct ll_entry *next;
1110   head=jump_in[page];
1111   jump_in[page]=0;
1112   while(head!=NULL) {
1113     inv_debug("INVALIDATE: %x\n",head->vaddr);
1114     remove_hash(head->vaddr);
1115     next=head->next;
1116     free(head);
1117     head=next;
1118   }
1119   head=jump_out[page];
1120   jump_out[page]=0;
1121   while(head!=NULL) {
1122     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1123     u_int host_addr=(u_int)kill_pointer(head->addr);
1124     #ifdef __arm__
1125       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1126     #endif
1127     next=head->next;
1128     free(head);
1129     head=next;
1130   }
1131 }
1132 void invalidate_block(u_int block)
1133 {
1134   u_int page=get_page(block<<12);
1135   u_int vpage=get_vpage(block<<12);
1136   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1137   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1138   u_int first,last;
1139   first=last=page;
1140   struct ll_entry *head;
1141   head=jump_dirty[vpage];
1142   //printf("page=%d vpage=%d\n",page,vpage);
1143   while(head!=NULL) {
1144     u_int start,end;
1145     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1146       get_bounds((int)head->addr,&start,&end);
1147       //printf("start: %x end: %x\n",start,end);
1148       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1149         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1150           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1151           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1152         }
1153       }
1154 #ifndef DISABLE_TLB
1155       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1156         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1157           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1158           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1159         }
1160       }
1161 #endif
1162     }
1163     head=head->next;
1164   }
1165   //printf("first=%d last=%d\n",first,last);
1166   invalidate_page(page);
1167   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1168   assert(last<page+5);
1169   // Invalidate the adjacent pages if a block crosses a 4K boundary
1170   while(first<page) {
1171     invalidate_page(first);
1172     first++;
1173   }
1174   for(first=page+1;first<last;first++) {
1175     invalidate_page(first);
1176   }
1177   #ifdef __arm__
1178     do_clear_cache();
1179   #endif
1180   
1181   // Don't trap writes
1182   invalid_code[block]=1;
1183 #ifndef DISABLE_TLB
1184   // If there is a valid TLB entry for this page, remove write protect
1185   if(tlb_LUT_w[block]) {
1186     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1187     // CHECK: Is this right?
1188     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1189     u_int real_block=tlb_LUT_w[block]>>12;
1190     invalid_code[real_block]=1;
1191     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1192   }
1193   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1194 #endif
1195
1196   #ifdef USE_MINI_HT
1197   memset(mini_ht,-1,sizeof(mini_ht));
1198   #endif
1199 }
1200 void invalidate_addr(u_int addr)
1201 {
1202   invalidate_block(addr>>12);
1203 }
1204 // This is called when loading a save state.
1205 // Anything could have changed, so invalidate everything.
1206 void invalidate_all_pages()
1207 {
1208   u_int page,n;
1209   for(page=0;page<4096;page++)
1210     invalidate_page(page);
1211   for(page=0;page<1048576;page++)
1212     if(!invalid_code[page]) {
1213       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1214       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1215     }
1216   #ifdef __arm__
1217   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1218   #endif
1219   #ifdef USE_MINI_HT
1220   memset(mini_ht,-1,sizeof(mini_ht));
1221   #endif
1222   #ifndef DISABLE_TLB
1223   // TLB
1224   for(page=0;page<0x100000;page++) {
1225     if(tlb_LUT_r[page]) {
1226       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1227       if(!tlb_LUT_w[page]||!invalid_code[page])
1228         memory_map[page]|=0x40000000; // Write protect
1229     }
1230     else memory_map[page]=-1;
1231     if(page==0x80000) page=0xC0000;
1232   }
1233   tlb_hacks();
1234   #endif
1235 }
1236
1237 // Add an entry to jump_out after making a link
1238 void add_link(u_int vaddr,void *src)
1239 {
1240   u_int page=get_page(vaddr);
1241   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1242   ll_add(jump_out+page,vaddr,src);
1243   //int ptr=get_pointer(src);
1244   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1245 }
1246
1247 // If a code block was found to be unmodified (bit was set in
1248 // restore_candidate) and it remains unmodified (bit is clear
1249 // in invalid_code) then move the entries for that 4K page from
1250 // the dirty list to the clean list.
1251 void clean_blocks(u_int page)
1252 {
1253   struct ll_entry *head;
1254   inv_debug("INV: clean_blocks page=%d\n",page);
1255   head=jump_dirty[page];
1256   while(head!=NULL) {
1257     if(!invalid_code[head->vaddr>>12]) {
1258       // Don't restore blocks which are about to expire from the cache
1259       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1260         u_int start,end;
1261         if(verify_dirty((int)head->addr)) {
1262           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1263           u_int i;
1264           u_int inv=0;
1265           get_bounds((int)head->addr,&start,&end);
1266           if(start-(u_int)rdram<RAM_SIZE) {
1267             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1268               inv|=invalid_code[i];
1269             }
1270           }
1271           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1272             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1273             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1274             if(addr<start||addr>=end) inv=1;
1275           }
1276           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1277             inv=1;
1278           }
1279           if(!inv) {
1280             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1281             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1282               u_int ppage=page;
1283 #ifndef DISABLE_TLB
1284               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1285 #endif
1286               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1287               //printf("page=%x, addr=%x\n",page,head->vaddr);
1288               //assert(head->vaddr>>12==(page|0x80000));
1289               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1290               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1291               if(!head->reg32) {
1292                 if(ht_bin[0]==head->vaddr) {
1293                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1294                 }
1295                 if(ht_bin[2]==head->vaddr) {
1296                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1297                 }
1298               }
1299             }
1300           }
1301         }
1302       }
1303     }
1304     head=head->next;
1305   }
1306 }
1307
1308
1309 void mov_alloc(struct regstat *current,int i)
1310 {
1311   // Note: Don't need to actually alloc the source registers
1312   if((~current->is32>>rs1[i])&1) {
1313     //alloc_reg64(current,i,rs1[i]);
1314     alloc_reg64(current,i,rt1[i]);
1315     current->is32&=~(1LL<<rt1[i]);
1316   } else {
1317     //alloc_reg(current,i,rs1[i]);
1318     alloc_reg(current,i,rt1[i]);
1319     current->is32|=(1LL<<rt1[i]);
1320   }
1321   clear_const(current,rs1[i]);
1322   clear_const(current,rt1[i]);
1323   dirty_reg(current,rt1[i]);
1324 }
1325
1326 void shiftimm_alloc(struct regstat *current,int i)
1327 {
1328   clear_const(current,rs1[i]);
1329   clear_const(current,rt1[i]);
1330   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1331   {
1332     if(rt1[i]) {
1333       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1334       else lt1[i]=rs1[i];
1335       alloc_reg(current,i,rt1[i]);
1336       current->is32|=1LL<<rt1[i];
1337       dirty_reg(current,rt1[i]);
1338     }
1339   }
1340   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1341   {
1342     if(rt1[i]) {
1343       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1344       alloc_reg64(current,i,rt1[i]);
1345       current->is32&=~(1LL<<rt1[i]);
1346       dirty_reg(current,rt1[i]);
1347     }
1348   }
1349   if(opcode2[i]==0x3c) // DSLL32
1350   {
1351     if(rt1[i]) {
1352       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1353       alloc_reg64(current,i,rt1[i]);
1354       current->is32&=~(1LL<<rt1[i]);
1355       dirty_reg(current,rt1[i]);
1356     }
1357   }
1358   if(opcode2[i]==0x3e) // DSRL32
1359   {
1360     if(rt1[i]) {
1361       alloc_reg64(current,i,rs1[i]);
1362       if(imm[i]==32) {
1363         alloc_reg64(current,i,rt1[i]);
1364         current->is32&=~(1LL<<rt1[i]);
1365       } else {
1366         alloc_reg(current,i,rt1[i]);
1367         current->is32|=1LL<<rt1[i];
1368       }
1369       dirty_reg(current,rt1[i]);
1370     }
1371   }
1372   if(opcode2[i]==0x3f) // DSRA32
1373   {
1374     if(rt1[i]) {
1375       alloc_reg64(current,i,rs1[i]);
1376       alloc_reg(current,i,rt1[i]);
1377       current->is32|=1LL<<rt1[i];
1378       dirty_reg(current,rt1[i]);
1379     }
1380   }
1381 }
1382
1383 void shift_alloc(struct regstat *current,int i)
1384 {
1385   if(rt1[i]) {
1386     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1387     {
1388       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1389       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1390       alloc_reg(current,i,rt1[i]);
1391       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1392       current->is32|=1LL<<rt1[i];
1393     } else { // DSLLV/DSRLV/DSRAV
1394       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1395       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1396       alloc_reg64(current,i,rt1[i]);
1397       current->is32&=~(1LL<<rt1[i]);
1398       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1399         alloc_reg_temp(current,i,-1);
1400     }
1401     clear_const(current,rs1[i]);
1402     clear_const(current,rs2[i]);
1403     clear_const(current,rt1[i]);
1404     dirty_reg(current,rt1[i]);
1405   }
1406 }
1407
1408 void alu_alloc(struct regstat *current,int i)
1409 {
1410   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1411     if(rt1[i]) {
1412       if(rs1[i]&&rs2[i]) {
1413         alloc_reg(current,i,rs1[i]);
1414         alloc_reg(current,i,rs2[i]);
1415       }
1416       else {
1417         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1418         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1419       }
1420       alloc_reg(current,i,rt1[i]);
1421     }
1422     current->is32|=1LL<<rt1[i];
1423   }
1424   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1425     if(rt1[i]) {
1426       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1427       {
1428         alloc_reg64(current,i,rs1[i]);
1429         alloc_reg64(current,i,rs2[i]);
1430         alloc_reg(current,i,rt1[i]);
1431       } else {
1432         alloc_reg(current,i,rs1[i]);
1433         alloc_reg(current,i,rs2[i]);
1434         alloc_reg(current,i,rt1[i]);
1435       }
1436     }
1437     current->is32|=1LL<<rt1[i];
1438   }
1439   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1440     if(rt1[i]) {
1441       if(rs1[i]&&rs2[i]) {
1442         alloc_reg(current,i,rs1[i]);
1443         alloc_reg(current,i,rs2[i]);
1444       }
1445       else
1446       {
1447         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1448         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1449       }
1450       alloc_reg(current,i,rt1[i]);
1451       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1452       {
1453         if(!((current->uu>>rt1[i])&1)) {
1454           alloc_reg64(current,i,rt1[i]);
1455         }
1456         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1457           if(rs1[i]&&rs2[i]) {
1458             alloc_reg64(current,i,rs1[i]);
1459             alloc_reg64(current,i,rs2[i]);
1460           }
1461           else
1462           {
1463             // Is is really worth it to keep 64-bit values in registers?
1464             #ifdef NATIVE_64BIT
1465             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1466             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1467             #endif
1468           }
1469         }
1470         current->is32&=~(1LL<<rt1[i]);
1471       } else {
1472         current->is32|=1LL<<rt1[i];
1473       }
1474     }
1475   }
1476   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1477     if(rt1[i]) {
1478       if(rs1[i]&&rs2[i]) {
1479         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1480           alloc_reg64(current,i,rs1[i]);
1481           alloc_reg64(current,i,rs2[i]);
1482           alloc_reg64(current,i,rt1[i]);
1483         } else {
1484           alloc_reg(current,i,rs1[i]);
1485           alloc_reg(current,i,rs2[i]);
1486           alloc_reg(current,i,rt1[i]);
1487         }
1488       }
1489       else {
1490         alloc_reg(current,i,rt1[i]);
1491         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1492           // DADD used as move, or zeroing
1493           // If we have a 64-bit source, then make the target 64 bits too
1494           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1495             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1496             alloc_reg64(current,i,rt1[i]);
1497           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1498             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1499             alloc_reg64(current,i,rt1[i]);
1500           }
1501           if(opcode2[i]>=0x2e&&rs2[i]) {
1502             // DSUB used as negation - 64-bit result
1503             // If we have a 32-bit register, extend it to 64 bits
1504             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1505             alloc_reg64(current,i,rt1[i]);
1506           }
1507         }
1508       }
1509       if(rs1[i]&&rs2[i]) {
1510         current->is32&=~(1LL<<rt1[i]);
1511       } else if(rs1[i]) {
1512         current->is32&=~(1LL<<rt1[i]);
1513         if((current->is32>>rs1[i])&1)
1514           current->is32|=1LL<<rt1[i];
1515       } else if(rs2[i]) {
1516         current->is32&=~(1LL<<rt1[i]);
1517         if((current->is32>>rs2[i])&1)
1518           current->is32|=1LL<<rt1[i];
1519       } else {
1520         current->is32|=1LL<<rt1[i];
1521       }
1522     }
1523   }
1524   clear_const(current,rs1[i]);
1525   clear_const(current,rs2[i]);
1526   clear_const(current,rt1[i]);
1527   dirty_reg(current,rt1[i]);
1528 }
1529
1530 void imm16_alloc(struct regstat *current,int i)
1531 {
1532   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1533   else lt1[i]=rs1[i];
1534   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1535   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1536     current->is32&=~(1LL<<rt1[i]);
1537     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1538       // TODO: Could preserve the 32-bit flag if the immediate is zero
1539       alloc_reg64(current,i,rt1[i]);
1540       alloc_reg64(current,i,rs1[i]);
1541     }
1542     clear_const(current,rs1[i]);
1543     clear_const(current,rt1[i]);
1544   }
1545   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1546     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1547     current->is32|=1LL<<rt1[i];
1548     clear_const(current,rs1[i]);
1549     clear_const(current,rt1[i]);
1550   }
1551   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1552     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1553       if(rs1[i]!=rt1[i]) {
1554         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1555         alloc_reg64(current,i,rt1[i]);
1556         current->is32&=~(1LL<<rt1[i]);
1557       }
1558     }
1559     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1560     if(is_const(current,rs1[i])) {
1561       int v=get_const(current,rs1[i]);
1562       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1563       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1564       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1565     }
1566     else clear_const(current,rt1[i]);
1567   }
1568   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1569     if(is_const(current,rs1[i])) {
1570       int v=get_const(current,rs1[i]);
1571       set_const(current,rt1[i],v+imm[i]);
1572     }
1573     else clear_const(current,rt1[i]);
1574     current->is32|=1LL<<rt1[i];
1575   }
1576   else {
1577     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1578     current->is32|=1LL<<rt1[i];
1579   }
1580   dirty_reg(current,rt1[i]);
1581 }
1582
1583 void load_alloc(struct regstat *current,int i)
1584 {
1585   clear_const(current,rt1[i]);
1586   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1587   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1588   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1589   if(rt1[i]) {
1590     alloc_reg(current,i,rt1[i]);
1591     if(get_reg(current->regmap,rt1[i])<0) {
1592       // dummy load, but we still need a register to calculate the address
1593       alloc_reg_temp(current,i,-1);
1594     }
1595     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1596     {
1597       current->is32&=~(1LL<<rt1[i]);
1598       alloc_reg64(current,i,rt1[i]);
1599     }
1600     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1601     {
1602       current->is32&=~(1LL<<rt1[i]);
1603       alloc_reg64(current,i,rt1[i]);
1604       alloc_all(current,i);
1605       alloc_reg64(current,i,FTEMP);
1606     }
1607     else current->is32|=1LL<<rt1[i];
1608     dirty_reg(current,rt1[i]);
1609     // If using TLB, need a register for pointer to the mapping table
1610     if(using_tlb) alloc_reg(current,i,TLREG);
1611     // LWL/LWR need a temporary register for the old value
1612     if(opcode[i]==0x22||opcode[i]==0x26)
1613     {
1614       alloc_reg(current,i,FTEMP);
1615       alloc_reg_temp(current,i,-1);
1616     }
1617   }
1618   else
1619   {
1620     // Load to r0 (dummy load)
1621     // but we still need a register to calculate the address
1622     if(opcode[i]==0x22||opcode[i]==0x26)
1623     {
1624       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1625     }
1626     alloc_reg_temp(current,i,-1);
1627     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1628     {
1629       alloc_all(current,i);
1630       alloc_reg64(current,i,FTEMP);
1631     }
1632   }
1633 }
1634
1635 void store_alloc(struct regstat *current,int i)
1636 {
1637   clear_const(current,rs2[i]);
1638   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1639   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1640   alloc_reg(current,i,rs2[i]);
1641   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1642     alloc_reg64(current,i,rs2[i]);
1643     if(rs2[i]) alloc_reg(current,i,FTEMP);
1644   }
1645   // If using TLB, need a register for pointer to the mapping table
1646   if(using_tlb) alloc_reg(current,i,TLREG);
1647   #if defined(HOST_IMM8)
1648   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1649   else alloc_reg(current,i,INVCP);
1650   #endif
1651   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1652     alloc_reg(current,i,FTEMP);
1653   }
1654   // We need a temporary register for address generation
1655   alloc_reg_temp(current,i,-1);
1656 }
1657
1658 void c1ls_alloc(struct regstat *current,int i)
1659 {
1660   //clear_const(current,rs1[i]); // FIXME
1661   clear_const(current,rt1[i]);
1662   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1663   alloc_reg(current,i,CSREG); // Status
1664   alloc_reg(current,i,FTEMP);
1665   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1666     alloc_reg64(current,i,FTEMP);
1667   }
1668   // If using TLB, need a register for pointer to the mapping table
1669   if(using_tlb) alloc_reg(current,i,TLREG);
1670   #if defined(HOST_IMM8)
1671   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1672   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1673     alloc_reg(current,i,INVCP);
1674   #endif
1675   // We need a temporary register for address generation
1676   alloc_reg_temp(current,i,-1);
1677 }
1678
1679 void c2ls_alloc(struct regstat *current,int i)
1680 {
1681   clear_const(current,rt1[i]);
1682   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1683   alloc_reg(current,i,FTEMP);
1684   // If using TLB, need a register for pointer to the mapping table
1685   if(using_tlb) alloc_reg(current,i,TLREG);
1686   #if defined(HOST_IMM8)
1687   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1688   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1689     alloc_reg(current,i,INVCP);
1690   #endif
1691   // We need a temporary register for address generation
1692   alloc_reg_temp(current,i,-1);
1693 }
1694
1695 #ifndef multdiv_alloc
1696 void multdiv_alloc(struct regstat *current,int i)
1697 {
1698   //  case 0x18: MULT
1699   //  case 0x19: MULTU
1700   //  case 0x1A: DIV
1701   //  case 0x1B: DIVU
1702   //  case 0x1C: DMULT
1703   //  case 0x1D: DMULTU
1704   //  case 0x1E: DDIV
1705   //  case 0x1F: DDIVU
1706   clear_const(current,rs1[i]);
1707   clear_const(current,rs2[i]);
1708   if(rs1[i]&&rs2[i])
1709   {
1710     if((opcode2[i]&4)==0) // 32-bit
1711     {
1712       current->u&=~(1LL<<HIREG);
1713       current->u&=~(1LL<<LOREG);
1714       alloc_reg(current,i,HIREG);
1715       alloc_reg(current,i,LOREG);
1716       alloc_reg(current,i,rs1[i]);
1717       alloc_reg(current,i,rs2[i]);
1718       current->is32|=1LL<<HIREG;
1719       current->is32|=1LL<<LOREG;
1720       dirty_reg(current,HIREG);
1721       dirty_reg(current,LOREG);
1722     }
1723     else // 64-bit
1724     {
1725       current->u&=~(1LL<<HIREG);
1726       current->u&=~(1LL<<LOREG);
1727       current->uu&=~(1LL<<HIREG);
1728       current->uu&=~(1LL<<LOREG);
1729       alloc_reg64(current,i,HIREG);
1730       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1731       alloc_reg64(current,i,rs1[i]);
1732       alloc_reg64(current,i,rs2[i]);
1733       alloc_all(current,i);
1734       current->is32&=~(1LL<<HIREG);
1735       current->is32&=~(1LL<<LOREG);
1736       dirty_reg(current,HIREG);
1737       dirty_reg(current,LOREG);
1738     }
1739   }
1740   else
1741   {
1742     // Multiply by zero is zero.
1743     // MIPS does not have a divide by zero exception.
1744     // The result is undefined, we return zero.
1745     alloc_reg(current,i,HIREG);
1746     alloc_reg(current,i,LOREG);
1747     current->is32|=1LL<<HIREG;
1748     current->is32|=1LL<<LOREG;
1749     dirty_reg(current,HIREG);
1750     dirty_reg(current,LOREG);
1751   }
1752 }
1753 #endif
1754
1755 void cop0_alloc(struct regstat *current,int i)
1756 {
1757   if(opcode2[i]==0) // MFC0
1758   {
1759     if(rt1[i]) {
1760       clear_const(current,rt1[i]);
1761       alloc_all(current,i);
1762       alloc_reg(current,i,rt1[i]);
1763       current->is32|=1LL<<rt1[i];
1764       dirty_reg(current,rt1[i]);
1765     }
1766   }
1767   else if(opcode2[i]==4) // MTC0
1768   {
1769     if(rs1[i]){
1770       clear_const(current,rs1[i]);
1771       alloc_reg(current,i,rs1[i]);
1772       alloc_all(current,i);
1773     }
1774     else {
1775       alloc_all(current,i); // FIXME: Keep r0
1776       current->u&=~1LL;
1777       alloc_reg(current,i,0);
1778     }
1779   }
1780   else
1781   {
1782     // TLBR/TLBWI/TLBWR/TLBP/ERET
1783     assert(opcode2[i]==0x10);
1784     alloc_all(current,i);
1785   }
1786 }
1787
1788 void cop1_alloc(struct regstat *current,int i)
1789 {
1790   alloc_reg(current,i,CSREG); // Load status
1791   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1792   {
1793     if(rt1[i]){
1794       clear_const(current,rt1[i]);
1795       if(opcode2[i]==1) {
1796         alloc_reg64(current,i,rt1[i]); // DMFC1
1797         current->is32&=~(1LL<<rt1[i]);
1798       }else{
1799         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1800         current->is32|=1LL<<rt1[i];
1801       }
1802       dirty_reg(current,rt1[i]);
1803     }
1804     alloc_reg_temp(current,i,-1);
1805   }
1806   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1807   {
1808     if(rs1[i]){
1809       clear_const(current,rs1[i]);
1810       if(opcode2[i]==5)
1811         alloc_reg64(current,i,rs1[i]); // DMTC1
1812       else
1813         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1814       alloc_reg_temp(current,i,-1);
1815     }
1816     else {
1817       current->u&=~1LL;
1818       alloc_reg(current,i,0);
1819       alloc_reg_temp(current,i,-1);
1820     }
1821   }
1822 }
1823 void fconv_alloc(struct regstat *current,int i)
1824 {
1825   alloc_reg(current,i,CSREG); // Load status
1826   alloc_reg_temp(current,i,-1);
1827 }
1828 void float_alloc(struct regstat *current,int i)
1829 {
1830   alloc_reg(current,i,CSREG); // Load status
1831   alloc_reg_temp(current,i,-1);
1832 }
1833 void c2op_alloc(struct regstat *current,int i)
1834 {
1835   alloc_reg_temp(current,i,-1);
1836 }
1837 void fcomp_alloc(struct regstat *current,int i)
1838 {
1839   alloc_reg(current,i,CSREG); // Load status
1840   alloc_reg(current,i,FSREG); // Load flags
1841   dirty_reg(current,FSREG); // Flag will be modified
1842   alloc_reg_temp(current,i,-1);
1843 }
1844
1845 void syscall_alloc(struct regstat *current,int i)
1846 {
1847   alloc_cc(current,i);
1848   dirty_reg(current,CCREG);
1849   alloc_all(current,i);
1850   current->isconst=0;
1851 }
1852
1853 void delayslot_alloc(struct regstat *current,int i)
1854 {
1855   switch(itype[i]) {
1856     case UJUMP:
1857     case CJUMP:
1858     case SJUMP:
1859     case RJUMP:
1860     case FJUMP:
1861     case SYSCALL:
1862     case HLECALL:
1863     case SPAN:
1864       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1865       printf("Disabled speculative precompilation\n");
1866       stop_after_jal=1;
1867       break;
1868     case IMM16:
1869       imm16_alloc(current,i);
1870       break;
1871     case LOAD:
1872     case LOADLR:
1873       load_alloc(current,i);
1874       break;
1875     case STORE:
1876     case STORELR:
1877       store_alloc(current,i);
1878       break;
1879     case ALU:
1880       alu_alloc(current,i);
1881       break;
1882     case SHIFT:
1883       shift_alloc(current,i);
1884       break;
1885     case MULTDIV:
1886       multdiv_alloc(current,i);
1887       break;
1888     case SHIFTIMM:
1889       shiftimm_alloc(current,i);
1890       break;
1891     case MOV:
1892       mov_alloc(current,i);
1893       break;
1894     case COP0:
1895       cop0_alloc(current,i);
1896       break;
1897     case COP1:
1898     case COP2:
1899       cop1_alloc(current,i);
1900       break;
1901     case C1LS:
1902       c1ls_alloc(current,i);
1903       break;
1904     case C2LS:
1905       c2ls_alloc(current,i);
1906       break;
1907     case FCONV:
1908       fconv_alloc(current,i);
1909       break;
1910     case FLOAT:
1911       float_alloc(current,i);
1912       break;
1913     case FCOMP:
1914       fcomp_alloc(current,i);
1915       break;
1916     case C2OP:
1917       c2op_alloc(current,i);
1918       break;
1919   }
1920 }
1921
1922 // Special case where a branch and delay slot span two pages in virtual memory
1923 static void pagespan_alloc(struct regstat *current,int i)
1924 {
1925   current->isconst=0;
1926   current->wasconst=0;
1927   regs[i].wasconst=0;
1928   alloc_all(current,i);
1929   alloc_cc(current,i);
1930   dirty_reg(current,CCREG);
1931   if(opcode[i]==3) // JAL
1932   {
1933     alloc_reg(current,i,31);
1934     dirty_reg(current,31);
1935   }
1936   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1937   {
1938     alloc_reg(current,i,rs1[i]);
1939     if (rt1[i]!=0) {
1940       alloc_reg(current,i,rt1[i]);
1941       dirty_reg(current,rt1[i]);
1942     }
1943   }
1944   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1945   {
1946     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1947     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1948     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1949     {
1950       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1951       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1952     }
1953   }
1954   else
1955   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1956   {
1957     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1958     if(!((current->is32>>rs1[i])&1))
1959     {
1960       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1961     }
1962   }
1963   else
1964   if(opcode[i]==0x11) // BC1
1965   {
1966     alloc_reg(current,i,FSREG);
1967     alloc_reg(current,i,CSREG);
1968   }
1969   //else ...
1970 }
1971
1972 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1973 {
1974   stubs[stubcount][0]=type;
1975   stubs[stubcount][1]=addr;
1976   stubs[stubcount][2]=retaddr;
1977   stubs[stubcount][3]=a;
1978   stubs[stubcount][4]=b;
1979   stubs[stubcount][5]=c;
1980   stubs[stubcount][6]=d;
1981   stubs[stubcount][7]=e;
1982   stubcount++;
1983 }
1984
1985 // Write out a single register
1986 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1987 {
1988   int hr;
1989   for(hr=0;hr<HOST_REGS;hr++) {
1990     if(hr!=EXCLUDE_REG) {
1991       if((regmap[hr]&63)==r) {
1992         if((dirty>>hr)&1) {
1993           if(regmap[hr]<64) {
1994             emit_storereg(r,hr);
1995 #ifndef FORCE32
1996             if((is32>>regmap[hr])&1) {
1997               emit_sarimm(hr,31,hr);
1998               emit_storereg(r|64,hr);
1999             }
2000 #endif
2001           }else{
2002             emit_storereg(r|64,hr);
2003           }
2004         }
2005       }
2006     }
2007   }
2008 }
2009
2010 int mchecksum()
2011 {
2012   //if(!tracedebug) return 0;
2013   int i;
2014   int sum=0;
2015   for(i=0;i<2097152;i++) {
2016     unsigned int temp=sum;
2017     sum<<=1;
2018     sum|=(~temp)>>31;
2019     sum^=((u_int *)rdram)[i];
2020   }
2021   return sum;
2022 }
2023 int rchecksum()
2024 {
2025   int i;
2026   int sum=0;
2027   for(i=0;i<64;i++)
2028     sum^=((u_int *)reg)[i];
2029   return sum;
2030 }
2031 void rlist()
2032 {
2033   int i;
2034   printf("TRACE: ");
2035   for(i=0;i<32;i++)
2036     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2037   printf("\n");
2038 #ifndef DISABLE_COP1
2039   printf("TRACE: ");
2040   for(i=0;i<32;i++)
2041     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2042   printf("\n");
2043 #endif
2044 }
2045
2046 void enabletrace()
2047 {
2048   tracedebug=1;
2049 }
2050
2051 void memdebug(int i)
2052 {
2053   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2054   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2055   //rlist();
2056   //if(tracedebug) {
2057   //if(Count>=-2084597794) {
2058   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2059   //if(0) {
2060     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2061     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2062     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2063     rlist();
2064     #ifdef __i386__
2065     printf("TRACE: %x\n",(&i)[-1]);
2066     #endif
2067     #ifdef __arm__
2068     int j;
2069     printf("TRACE: %x \n",(&j)[10]);
2070     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2071     #endif
2072     //fflush(stdout);
2073   }
2074   //printf("TRACE: %x\n",(&i)[-1]);
2075 }
2076
2077 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2078 {
2079   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2080 }
2081
2082 void alu_assemble(int i,struct regstat *i_regs)
2083 {
2084   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2085     if(rt1[i]) {
2086       signed char s1,s2,t;
2087       t=get_reg(i_regs->regmap,rt1[i]);
2088       if(t>=0) {
2089         s1=get_reg(i_regs->regmap,rs1[i]);
2090         s2=get_reg(i_regs->regmap,rs2[i]);
2091         if(rs1[i]&&rs2[i]) {
2092           assert(s1>=0);
2093           assert(s2>=0);
2094           if(opcode2[i]&2) emit_sub(s1,s2,t);
2095           else emit_add(s1,s2,t);
2096         }
2097         else if(rs1[i]) {
2098           if(s1>=0) emit_mov(s1,t);
2099           else emit_loadreg(rs1[i],t);
2100         }
2101         else if(rs2[i]) {
2102           if(s2>=0) {
2103             if(opcode2[i]&2) emit_neg(s2,t);
2104             else emit_mov(s2,t);
2105           }
2106           else {
2107             emit_loadreg(rs2[i],t);
2108             if(opcode2[i]&2) emit_neg(t,t);
2109           }
2110         }
2111         else emit_zeroreg(t);
2112       }
2113     }
2114   }
2115   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2116     if(rt1[i]) {
2117       signed char s1l,s2l,s1h,s2h,tl,th;
2118       tl=get_reg(i_regs->regmap,rt1[i]);
2119       th=get_reg(i_regs->regmap,rt1[i]|64);
2120       if(tl>=0) {
2121         s1l=get_reg(i_regs->regmap,rs1[i]);
2122         s2l=get_reg(i_regs->regmap,rs2[i]);
2123         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2124         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2125         if(rs1[i]&&rs2[i]) {
2126           assert(s1l>=0);
2127           assert(s2l>=0);
2128           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2129           else emit_adds(s1l,s2l,tl);
2130           if(th>=0) {
2131             #ifdef INVERTED_CARRY
2132             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2133             #else
2134             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2135             #endif
2136             else emit_add(s1h,s2h,th);
2137           }
2138         }
2139         else if(rs1[i]) {
2140           if(s1l>=0) emit_mov(s1l,tl);
2141           else emit_loadreg(rs1[i],tl);
2142           if(th>=0) {
2143             if(s1h>=0) emit_mov(s1h,th);
2144             else emit_loadreg(rs1[i]|64,th);
2145           }
2146         }
2147         else if(rs2[i]) {
2148           if(s2l>=0) {
2149             if(opcode2[i]&2) emit_negs(s2l,tl);
2150             else emit_mov(s2l,tl);
2151           }
2152           else {
2153             emit_loadreg(rs2[i],tl);
2154             if(opcode2[i]&2) emit_negs(tl,tl);
2155           }
2156           if(th>=0) {
2157             #ifdef INVERTED_CARRY
2158             if(s2h>=0) emit_mov(s2h,th);
2159             else emit_loadreg(rs2[i]|64,th);
2160             if(opcode2[i]&2) {
2161               emit_adcimm(-1,th); // x86 has inverted carry flag
2162               emit_not(th,th);
2163             }
2164             #else
2165             if(opcode2[i]&2) {
2166               if(s2h>=0) emit_rscimm(s2h,0,th);
2167               else {
2168                 emit_loadreg(rs2[i]|64,th);
2169                 emit_rscimm(th,0,th);
2170               }
2171             }else{
2172               if(s2h>=0) emit_mov(s2h,th);
2173               else emit_loadreg(rs2[i]|64,th);
2174             }
2175             #endif
2176           }
2177         }
2178         else {
2179           emit_zeroreg(tl);
2180           if(th>=0) emit_zeroreg(th);
2181         }
2182       }
2183     }
2184   }
2185   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2186     if(rt1[i]) {
2187       signed char s1l,s1h,s2l,s2h,t;
2188       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2189       {
2190         t=get_reg(i_regs->regmap,rt1[i]);
2191         //assert(t>=0);
2192         if(t>=0) {
2193           s1l=get_reg(i_regs->regmap,rs1[i]);
2194           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2195           s2l=get_reg(i_regs->regmap,rs2[i]);
2196           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2197           if(rs2[i]==0) // rx<r0
2198           {
2199             assert(s1h>=0);
2200             if(opcode2[i]==0x2a) // SLT
2201               emit_shrimm(s1h,31,t);
2202             else // SLTU (unsigned can not be less than zero)
2203               emit_zeroreg(t);
2204           }
2205           else if(rs1[i]==0) // r0<rx
2206           {
2207             assert(s2h>=0);
2208             if(opcode2[i]==0x2a) // SLT
2209               emit_set_gz64_32(s2h,s2l,t);
2210             else // SLTU (set if not zero)
2211               emit_set_nz64_32(s2h,s2l,t);
2212           }
2213           else {
2214             assert(s1l>=0);assert(s1h>=0);
2215             assert(s2l>=0);assert(s2h>=0);
2216             if(opcode2[i]==0x2a) // SLT
2217               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2218             else // SLTU
2219               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2220           }
2221         }
2222       } else {
2223         t=get_reg(i_regs->regmap,rt1[i]);
2224         //assert(t>=0);
2225         if(t>=0) {
2226           s1l=get_reg(i_regs->regmap,rs1[i]);
2227           s2l=get_reg(i_regs->regmap,rs2[i]);
2228           if(rs2[i]==0) // rx<r0
2229           {
2230             assert(s1l>=0);
2231             if(opcode2[i]==0x2a) // SLT
2232               emit_shrimm(s1l,31,t);
2233             else // SLTU (unsigned can not be less than zero)
2234               emit_zeroreg(t);
2235           }
2236           else if(rs1[i]==0) // r0<rx
2237           {
2238             assert(s2l>=0);
2239             if(opcode2[i]==0x2a) // SLT
2240               emit_set_gz32(s2l,t);
2241             else // SLTU (set if not zero)
2242               emit_set_nz32(s2l,t);
2243           }
2244           else{
2245             assert(s1l>=0);assert(s2l>=0);
2246             if(opcode2[i]==0x2a) // SLT
2247               emit_set_if_less32(s1l,s2l,t);
2248             else // SLTU
2249               emit_set_if_carry32(s1l,s2l,t);
2250           }
2251         }
2252       }
2253     }
2254   }
2255   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2256     if(rt1[i]) {
2257       signed char s1l,s1h,s2l,s2h,th,tl;
2258       tl=get_reg(i_regs->regmap,rt1[i]);
2259       th=get_reg(i_regs->regmap,rt1[i]|64);
2260       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2261       {
2262         assert(tl>=0);
2263         if(tl>=0) {
2264           s1l=get_reg(i_regs->regmap,rs1[i]);
2265           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2266           s2l=get_reg(i_regs->regmap,rs2[i]);
2267           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2268           if(rs1[i]&&rs2[i]) {
2269             assert(s1l>=0);assert(s1h>=0);
2270             assert(s2l>=0);assert(s2h>=0);
2271             if(opcode2[i]==0x24) { // AND
2272               emit_and(s1l,s2l,tl);
2273               emit_and(s1h,s2h,th);
2274             } else
2275             if(opcode2[i]==0x25) { // OR
2276               emit_or(s1l,s2l,tl);
2277               emit_or(s1h,s2h,th);
2278             } else
2279             if(opcode2[i]==0x26) { // XOR
2280               emit_xor(s1l,s2l,tl);
2281               emit_xor(s1h,s2h,th);
2282             } else
2283             if(opcode2[i]==0x27) { // NOR
2284               emit_or(s1l,s2l,tl);
2285               emit_or(s1h,s2h,th);
2286               emit_not(tl,tl);
2287               emit_not(th,th);
2288             }
2289           }
2290           else
2291           {
2292             if(opcode2[i]==0x24) { // AND
2293               emit_zeroreg(tl);
2294               emit_zeroreg(th);
2295             } else
2296             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2297               if(rs1[i]){
2298                 if(s1l>=0) emit_mov(s1l,tl);
2299                 else emit_loadreg(rs1[i],tl);
2300                 if(s1h>=0) emit_mov(s1h,th);
2301                 else emit_loadreg(rs1[i]|64,th);
2302               }
2303               else
2304               if(rs2[i]){
2305                 if(s2l>=0) emit_mov(s2l,tl);
2306                 else emit_loadreg(rs2[i],tl);
2307                 if(s2h>=0) emit_mov(s2h,th);
2308                 else emit_loadreg(rs2[i]|64,th);
2309               }
2310               else{
2311                 emit_zeroreg(tl);
2312                 emit_zeroreg(th);
2313               }
2314             } else
2315             if(opcode2[i]==0x27) { // NOR
2316               if(rs1[i]){
2317                 if(s1l>=0) emit_not(s1l,tl);
2318                 else{
2319                   emit_loadreg(rs1[i],tl);
2320                   emit_not(tl,tl);
2321                 }
2322                 if(s1h>=0) emit_not(s1h,th);
2323                 else{
2324                   emit_loadreg(rs1[i]|64,th);
2325                   emit_not(th,th);
2326                 }
2327               }
2328               else
2329               if(rs2[i]){
2330                 if(s2l>=0) emit_not(s2l,tl);
2331                 else{
2332                   emit_loadreg(rs2[i],tl);
2333                   emit_not(tl,tl);
2334                 }
2335                 if(s2h>=0) emit_not(s2h,th);
2336                 else{
2337                   emit_loadreg(rs2[i]|64,th);
2338                   emit_not(th,th);
2339                 }
2340               }
2341               else {
2342                 emit_movimm(-1,tl);
2343                 emit_movimm(-1,th);
2344               }
2345             }
2346           }
2347         }
2348       }
2349       else
2350       {
2351         // 32 bit
2352         if(tl>=0) {
2353           s1l=get_reg(i_regs->regmap,rs1[i]);
2354           s2l=get_reg(i_regs->regmap,rs2[i]);
2355           if(rs1[i]&&rs2[i]) {
2356             assert(s1l>=0);
2357             assert(s2l>=0);
2358             if(opcode2[i]==0x24) { // AND
2359               emit_and(s1l,s2l,tl);
2360             } else
2361             if(opcode2[i]==0x25) { // OR
2362               emit_or(s1l,s2l,tl);
2363             } else
2364             if(opcode2[i]==0x26) { // XOR
2365               emit_xor(s1l,s2l,tl);
2366             } else
2367             if(opcode2[i]==0x27) { // NOR
2368               emit_or(s1l,s2l,tl);
2369               emit_not(tl,tl);
2370             }
2371           }
2372           else
2373           {
2374             if(opcode2[i]==0x24) { // AND
2375               emit_zeroreg(tl);
2376             } else
2377             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2378               if(rs1[i]){
2379                 if(s1l>=0) emit_mov(s1l,tl);
2380                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2381               }
2382               else
2383               if(rs2[i]){
2384                 if(s2l>=0) emit_mov(s2l,tl);
2385                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2386               }
2387               else emit_zeroreg(tl);
2388             } else
2389             if(opcode2[i]==0x27) { // NOR
2390               if(rs1[i]){
2391                 if(s1l>=0) emit_not(s1l,tl);
2392                 else {
2393                   emit_loadreg(rs1[i],tl);
2394                   emit_not(tl,tl);
2395                 }
2396               }
2397               else
2398               if(rs2[i]){
2399                 if(s2l>=0) emit_not(s2l,tl);
2400                 else {
2401                   emit_loadreg(rs2[i],tl);
2402                   emit_not(tl,tl);
2403                 }
2404               }
2405               else emit_movimm(-1,tl);
2406             }
2407           }
2408         }
2409       }
2410     }
2411   }
2412 }
2413
2414 void imm16_assemble(int i,struct regstat *i_regs)
2415 {
2416   if (opcode[i]==0x0f) { // LUI
2417     if(rt1[i]) {
2418       signed char t;
2419       t=get_reg(i_regs->regmap,rt1[i]);
2420       //assert(t>=0);
2421       if(t>=0) {
2422         if(!((i_regs->isconst>>t)&1))
2423           emit_movimm(imm[i]<<16,t);
2424       }
2425     }
2426   }
2427   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2428     if(rt1[i]) {
2429       signed char s,t;
2430       t=get_reg(i_regs->regmap,rt1[i]);
2431       s=get_reg(i_regs->regmap,rs1[i]);
2432       if(rs1[i]) {
2433         //assert(t>=0);
2434         //assert(s>=0);
2435         if(t>=0) {
2436           if(!((i_regs->isconst>>t)&1)) {
2437             if(s<0) {
2438               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2439               emit_addimm(t,imm[i],t);
2440             }else{
2441               if(!((i_regs->wasconst>>s)&1))
2442                 emit_addimm(s,imm[i],t);
2443               else
2444                 emit_movimm(constmap[i][s]+imm[i],t);
2445             }
2446           }
2447         }
2448       } else {
2449         if(t>=0) {
2450           if(!((i_regs->isconst>>t)&1))
2451             emit_movimm(imm[i],t);
2452         }
2453       }
2454     }
2455   }
2456   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2457     if(rt1[i]) {
2458       signed char sh,sl,th,tl;
2459       th=get_reg(i_regs->regmap,rt1[i]|64);
2460       tl=get_reg(i_regs->regmap,rt1[i]);
2461       sh=get_reg(i_regs->regmap,rs1[i]|64);
2462       sl=get_reg(i_regs->regmap,rs1[i]);
2463       if(tl>=0) {
2464         if(rs1[i]) {
2465           assert(sh>=0);
2466           assert(sl>=0);
2467           if(th>=0) {
2468             emit_addimm64_32(sh,sl,imm[i],th,tl);
2469           }
2470           else {
2471             emit_addimm(sl,imm[i],tl);
2472           }
2473         } else {
2474           emit_movimm(imm[i],tl);
2475           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2476         }
2477       }
2478     }
2479   }
2480   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2481     if(rt1[i]) {
2482       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2483       signed char sh,sl,t;
2484       t=get_reg(i_regs->regmap,rt1[i]);
2485       sh=get_reg(i_regs->regmap,rs1[i]|64);
2486       sl=get_reg(i_regs->regmap,rs1[i]);
2487       //assert(t>=0);
2488       if(t>=0) {
2489         if(rs1[i]>0) {
2490           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2491           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2492             if(opcode[i]==0x0a) { // SLTI
2493               if(sl<0) {
2494                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2495                 emit_slti32(t,imm[i],t);
2496               }else{
2497                 emit_slti32(sl,imm[i],t);
2498               }
2499             }
2500             else { // SLTIU
2501               if(sl<0) {
2502                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2503                 emit_sltiu32(t,imm[i],t);
2504               }else{
2505                 emit_sltiu32(sl,imm[i],t);
2506               }
2507             }
2508           }else{ // 64-bit
2509             assert(sl>=0);
2510             if(opcode[i]==0x0a) // SLTI
2511               emit_slti64_32(sh,sl,imm[i],t);
2512             else // SLTIU
2513               emit_sltiu64_32(sh,sl,imm[i],t);
2514           }
2515         }else{
2516           // SLTI(U) with r0 is just stupid,
2517           // nonetheless examples can be found
2518           if(opcode[i]==0x0a) // SLTI
2519             if(0<imm[i]) emit_movimm(1,t);
2520             else emit_zeroreg(t);
2521           else // SLTIU
2522           {
2523             if(imm[i]) emit_movimm(1,t);
2524             else emit_zeroreg(t);
2525           }
2526         }
2527       }
2528     }
2529   }
2530   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2531     if(rt1[i]) {
2532       signed char sh,sl,th,tl;
2533       th=get_reg(i_regs->regmap,rt1[i]|64);
2534       tl=get_reg(i_regs->regmap,rt1[i]);
2535       sh=get_reg(i_regs->regmap,rs1[i]|64);
2536       sl=get_reg(i_regs->regmap,rs1[i]);
2537       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2538         if(opcode[i]==0x0c) //ANDI
2539         {
2540           if(rs1[i]) {
2541             if(sl<0) {
2542               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2543               emit_andimm(tl,imm[i],tl);
2544             }else{
2545               if(!((i_regs->wasconst>>sl)&1))
2546                 emit_andimm(sl,imm[i],tl);
2547               else
2548                 emit_movimm(constmap[i][sl]&imm[i],tl);
2549             }
2550           }
2551           else
2552             emit_zeroreg(tl);
2553           if(th>=0) emit_zeroreg(th);
2554         }
2555         else
2556         {
2557           if(rs1[i]) {
2558             if(sl<0) {
2559               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2560             }
2561             if(th>=0) {
2562               if(sh<0) {
2563                 emit_loadreg(rs1[i]|64,th);
2564               }else{
2565                 emit_mov(sh,th);
2566               }
2567             }
2568             if(opcode[i]==0x0d) //ORI
2569             if(sl<0) {
2570               emit_orimm(tl,imm[i],tl);
2571             }else{
2572               if(!((i_regs->wasconst>>sl)&1))
2573                 emit_orimm(sl,imm[i],tl);
2574               else
2575                 emit_movimm(constmap[i][sl]|imm[i],tl);
2576             }
2577             if(opcode[i]==0x0e) //XORI
2578             if(sl<0) {
2579               emit_xorimm(tl,imm[i],tl);
2580             }else{
2581               if(!((i_regs->wasconst>>sl)&1))
2582                 emit_xorimm(sl,imm[i],tl);
2583               else
2584                 emit_movimm(constmap[i][sl]^imm[i],tl);
2585             }
2586           }
2587           else {
2588             emit_movimm(imm[i],tl);
2589             if(th>=0) emit_zeroreg(th);
2590           }
2591         }
2592       }
2593     }
2594   }
2595 }
2596
2597 void shiftimm_assemble(int i,struct regstat *i_regs)
2598 {
2599   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2600   {
2601     if(rt1[i]) {
2602       signed char s,t;
2603       t=get_reg(i_regs->regmap,rt1[i]);
2604       s=get_reg(i_regs->regmap,rs1[i]);
2605       //assert(t>=0);
2606       if(t>=0){
2607         if(rs1[i]==0)
2608         {
2609           emit_zeroreg(t);
2610         }
2611         else
2612         {
2613           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2614           if(imm[i]) {
2615             if(opcode2[i]==0) // SLL
2616             {
2617               emit_shlimm(s<0?t:s,imm[i],t);
2618             }
2619             if(opcode2[i]==2) // SRL
2620             {
2621               emit_shrimm(s<0?t:s,imm[i],t);
2622             }
2623             if(opcode2[i]==3) // SRA
2624             {
2625               emit_sarimm(s<0?t:s,imm[i],t);
2626             }
2627           }else{
2628             // Shift by zero
2629             if(s>=0 && s!=t) emit_mov(s,t);
2630           }
2631         }
2632       }
2633       //emit_storereg(rt1[i],t); //DEBUG
2634     }
2635   }
2636   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2637   {
2638     if(rt1[i]) {
2639       signed char sh,sl,th,tl;
2640       th=get_reg(i_regs->regmap,rt1[i]|64);
2641       tl=get_reg(i_regs->regmap,rt1[i]);
2642       sh=get_reg(i_regs->regmap,rs1[i]|64);
2643       sl=get_reg(i_regs->regmap,rs1[i]);
2644       if(tl>=0) {
2645         if(rs1[i]==0)
2646         {
2647           emit_zeroreg(tl);
2648           if(th>=0) emit_zeroreg(th);
2649         }
2650         else
2651         {
2652           assert(sl>=0);
2653           assert(sh>=0);
2654           if(imm[i]) {
2655             if(opcode2[i]==0x38) // DSLL
2656             {
2657               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2658               emit_shlimm(sl,imm[i],tl);
2659             }
2660             if(opcode2[i]==0x3a) // DSRL
2661             {
2662               emit_shrdimm(sl,sh,imm[i],tl);
2663               if(th>=0) emit_shrimm(sh,imm[i],th);
2664             }
2665             if(opcode2[i]==0x3b) // DSRA
2666             {
2667               emit_shrdimm(sl,sh,imm[i],tl);
2668               if(th>=0) emit_sarimm(sh,imm[i],th);
2669             }
2670           }else{
2671             // Shift by zero
2672             if(sl!=tl) emit_mov(sl,tl);
2673             if(th>=0&&sh!=th) emit_mov(sh,th);
2674           }
2675         }
2676       }
2677     }
2678   }
2679   if(opcode2[i]==0x3c) // DSLL32
2680   {
2681     if(rt1[i]) {
2682       signed char sl,tl,th;
2683       tl=get_reg(i_regs->regmap,rt1[i]);
2684       th=get_reg(i_regs->regmap,rt1[i]|64);
2685       sl=get_reg(i_regs->regmap,rs1[i]);
2686       if(th>=0||tl>=0){
2687         assert(tl>=0);
2688         assert(th>=0);
2689         assert(sl>=0);
2690         emit_mov(sl,th);
2691         emit_zeroreg(tl);
2692         if(imm[i]>32)
2693         {
2694           emit_shlimm(th,imm[i]&31,th);
2695         }
2696       }
2697     }
2698   }
2699   if(opcode2[i]==0x3e) // DSRL32
2700   {
2701     if(rt1[i]) {
2702       signed char sh,tl,th;
2703       tl=get_reg(i_regs->regmap,rt1[i]);
2704       th=get_reg(i_regs->regmap,rt1[i]|64);
2705       sh=get_reg(i_regs->regmap,rs1[i]|64);
2706       if(tl>=0){
2707         assert(sh>=0);
2708         emit_mov(sh,tl);
2709         if(th>=0) emit_zeroreg(th);
2710         if(imm[i]>32)
2711         {
2712           emit_shrimm(tl,imm[i]&31,tl);
2713         }
2714       }
2715     }
2716   }
2717   if(opcode2[i]==0x3f) // DSRA32
2718   {
2719     if(rt1[i]) {
2720       signed char sh,tl;
2721       tl=get_reg(i_regs->regmap,rt1[i]);
2722       sh=get_reg(i_regs->regmap,rs1[i]|64);
2723       if(tl>=0){
2724         assert(sh>=0);
2725         emit_mov(sh,tl);
2726         if(imm[i]>32)
2727         {
2728           emit_sarimm(tl,imm[i]&31,tl);
2729         }
2730       }
2731     }
2732   }
2733 }
2734
2735 #ifndef shift_assemble
2736 void shift_assemble(int i,struct regstat *i_regs)
2737 {
2738   printf("Need shift_assemble for this architecture.\n");
2739   exit(1);
2740 }
2741 #endif
2742
2743 void load_assemble(int i,struct regstat *i_regs)
2744 {
2745   int s,th,tl,addr,map=-1;
2746   int offset;
2747   int jaddr=0;
2748   int memtarget=0,c=0;
2749   u_int hr,reglist=0;
2750   th=get_reg(i_regs->regmap,rt1[i]|64);
2751   tl=get_reg(i_regs->regmap,rt1[i]);
2752   s=get_reg(i_regs->regmap,rs1[i]);
2753   offset=imm[i];
2754   for(hr=0;hr<HOST_REGS;hr++) {
2755     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2756   }
2757   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2758   if(s>=0) {
2759     c=(i_regs->wasconst>>s)&1;
2760     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2761     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2762   }
2763   //printf("load_assemble: c=%d\n",c);
2764   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2765   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2766 #ifdef PCSX
2767   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2768     ||rt1[i]==0) {
2769       // could be FIFO, must perform the read
2770       // ||dummy read
2771       assem_debug("(forced read)\n");
2772       tl=get_reg(i_regs->regmap,-1);
2773       assert(tl>=0);
2774   }
2775 #endif
2776   if(offset||s<0||c) addr=tl;
2777   else addr=s;
2778   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2779  if(tl>=0) {
2780   //printf("load_assemble: c=%d\n",c);
2781   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2782   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2783   reglist&=~(1<<tl);
2784   if(th>=0) reglist&=~(1<<th);
2785   if(!using_tlb) {
2786     if(!c) {
2787       #ifdef RAM_OFFSET
2788       map=get_reg(i_regs->regmap,ROREG);
2789       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2790       #endif
2791 //#define R29_HACK 1
2792       #ifdef R29_HACK
2793       // Strmnnrmn's speed hack
2794       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2795       #endif
2796       {
2797         emit_cmpimm(addr,RAM_SIZE);
2798         jaddr=(int)out;
2799         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2800         // Hint to branch predictor that the branch is unlikely to be taken
2801         if(rs1[i]>=28)
2802           emit_jno_unlikely(0);
2803         else
2804         #endif
2805         emit_jno(0);
2806       }
2807     }
2808   }else{ // using tlb
2809     int x=0;
2810     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2811     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2812     map=get_reg(i_regs->regmap,TLREG);
2813     assert(map>=0);
2814     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2815     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2816   }
2817   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2818   if (opcode[i]==0x20) { // LB
2819     if(!c||memtarget) {
2820       if(!dummy) {
2821         #ifdef HOST_IMM_ADDR32
2822         if(c)
2823           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2824         else
2825         #endif
2826         {
2827           //emit_xorimm(addr,3,tl);
2828           //gen_tlb_addr_r(tl,map);
2829           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2830           int x=0,a=tl;
2831 #ifdef BIG_ENDIAN_MIPS
2832           if(!c) emit_xorimm(addr,3,tl);
2833           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2834 #else
2835           if(!c) a=addr;
2836 #endif
2837           emit_movsbl_indexed_tlb(x,a,map,tl);
2838         }
2839       }
2840       if(jaddr)
2841         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2842     }
2843     else
2844       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2845   }
2846   if (opcode[i]==0x21) { // LH
2847     if(!c||memtarget) {
2848       if(!dummy) {
2849         #ifdef HOST_IMM_ADDR32
2850         if(c)
2851           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2852         else
2853         #endif
2854         {
2855           int x=0,a=tl;
2856 #ifdef BIG_ENDIAN_MIPS
2857           if(!c) emit_xorimm(addr,2,tl);
2858           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2859 #else
2860           if(!c) a=addr;
2861 #endif
2862           //#ifdef
2863           //emit_movswl_indexed_tlb(x,tl,map,tl);
2864           //else
2865           if(map>=0) {
2866             gen_tlb_addr_r(a,map);
2867             emit_movswl_indexed(x,a,tl);
2868           }else{
2869             #ifdef RAM_OFFSET
2870             emit_movswl_indexed(x,a,tl);
2871             #else
2872             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2873             #endif
2874           }
2875         }
2876       }
2877       if(jaddr)
2878         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2879     }
2880     else
2881       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2882   }
2883   if (opcode[i]==0x23) { // LW
2884     if(!c||memtarget) {
2885       if(!dummy) {
2886         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2887         #ifdef HOST_IMM_ADDR32
2888         if(c)
2889           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2890         else
2891         #endif
2892         emit_readword_indexed_tlb(0,addr,map,tl);
2893       }
2894       if(jaddr)
2895         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2896     }
2897     else
2898       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2899   }
2900   if (opcode[i]==0x24) { // LBU
2901     if(!c||memtarget) {
2902       if(!dummy) {
2903         #ifdef HOST_IMM_ADDR32
2904         if(c)
2905           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2906         else
2907         #endif
2908         {
2909           //emit_xorimm(addr,3,tl);
2910           //gen_tlb_addr_r(tl,map);
2911           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2912           int x=0,a=tl;
2913 #ifdef BIG_ENDIAN_MIPS
2914           if(!c) emit_xorimm(addr,3,tl);
2915           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2916 #else
2917           if(!c) a=addr;
2918 #endif
2919           emit_movzbl_indexed_tlb(x,a,map,tl);
2920         }
2921       }
2922       if(jaddr)
2923         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2924     }
2925     else
2926       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2927   }
2928   if (opcode[i]==0x25) { // LHU
2929     if(!c||memtarget) {
2930       if(!dummy) {
2931         #ifdef HOST_IMM_ADDR32
2932         if(c)
2933           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2934         else
2935         #endif
2936         {
2937           int x=0,a=tl;
2938 #ifdef BIG_ENDIAN_MIPS
2939           if(!c) emit_xorimm(addr,2,tl);
2940           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2941 #else
2942           if(!c) a=addr;
2943 #endif
2944           //#ifdef
2945           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2946           //#else
2947           if(map>=0) {
2948             gen_tlb_addr_r(a,map);
2949             emit_movzwl_indexed(x,a,tl);
2950           }else{
2951             #ifdef RAM_OFFSET
2952             emit_movzwl_indexed(x,a,tl);
2953             #else
2954             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2955             #endif
2956           }
2957         }
2958       }
2959       if(jaddr)
2960         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2961     }
2962     else
2963       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2964   }
2965   if (opcode[i]==0x27) { // LWU
2966     assert(th>=0);
2967     if(!c||memtarget) {
2968       if(!dummy) {
2969         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2970         #ifdef HOST_IMM_ADDR32
2971         if(c)
2972           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2973         else
2974         #endif
2975         emit_readword_indexed_tlb(0,addr,map,tl);
2976       }
2977       if(jaddr)
2978         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2979     }
2980     else {
2981       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2982     }
2983     emit_zeroreg(th);
2984   }
2985   if (opcode[i]==0x37) { // LD
2986     if(!c||memtarget) {
2987       if(!dummy) {
2988         //gen_tlb_addr_r(tl,map);
2989         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2990         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2991         #ifdef HOST_IMM_ADDR32
2992         if(c)
2993           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2994         else
2995         #endif
2996         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2997       }
2998       if(jaddr)
2999         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3000     }
3001     else
3002       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3003   }
3004  }
3005   //emit_storereg(rt1[i],tl); // DEBUG
3006   //if(opcode[i]==0x23)
3007   //if(opcode[i]==0x24)
3008   //if(opcode[i]==0x23||opcode[i]==0x24)
3009   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3010   {
3011     //emit_pusha();
3012     save_regs(0x100f);
3013         emit_readword((int)&last_count,ECX);
3014         #ifdef __i386__
3015         if(get_reg(i_regs->regmap,CCREG)<0)
3016           emit_loadreg(CCREG,HOST_CCREG);
3017         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3018         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3019         emit_writeword(HOST_CCREG,(int)&Count);
3020         #endif
3021         #ifdef __arm__
3022         if(get_reg(i_regs->regmap,CCREG)<0)
3023           emit_loadreg(CCREG,0);
3024         else
3025           emit_mov(HOST_CCREG,0);
3026         emit_add(0,ECX,0);
3027         emit_addimm(0,2*ccadj[i],0);
3028         emit_writeword(0,(int)&Count);
3029         #endif
3030     emit_call((int)memdebug);
3031     //emit_popa();
3032     restore_regs(0x100f);
3033   }/**/
3034 }
3035
3036 #ifndef loadlr_assemble
3037 void loadlr_assemble(int i,struct regstat *i_regs)
3038 {
3039   printf("Need loadlr_assemble for this architecture.\n");
3040   exit(1);
3041 }
3042 #endif
3043
3044 void store_assemble(int i,struct regstat *i_regs)
3045 {
3046   int s,th,tl,map=-1;
3047   int addr,temp;
3048   int offset;
3049   int jaddr=0,jaddr2,type;
3050   int memtarget=0,c=0;
3051   int agr=AGEN1+(i&1);
3052   u_int hr,reglist=0;
3053   th=get_reg(i_regs->regmap,rs2[i]|64);
3054   tl=get_reg(i_regs->regmap,rs2[i]);
3055   s=get_reg(i_regs->regmap,rs1[i]);
3056   temp=get_reg(i_regs->regmap,agr);
3057   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3058   offset=imm[i];
3059   if(s>=0) {
3060     c=(i_regs->wasconst>>s)&1;
3061     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3062     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3063   }
3064   assert(tl>=0);
3065   assert(temp>=0);
3066   for(hr=0;hr<HOST_REGS;hr++) {
3067     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3068   }
3069   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3070   if(offset||s<0||c) addr=temp;
3071   else addr=s;
3072   if(!using_tlb) {
3073     if(!c) {
3074       #ifdef R29_HACK
3075       // Strmnnrmn's speed hack
3076       memtarget=1;
3077       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3078       #endif
3079       emit_cmpimm(addr,RAM_SIZE);
3080       #ifdef DESTRUCTIVE_SHIFT
3081       if(s==addr) emit_mov(s,temp);
3082       #endif
3083       #ifdef R29_HACK
3084       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3085       #endif
3086       {
3087         jaddr=(int)out;
3088         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3089         // Hint to branch predictor that the branch is unlikely to be taken
3090         if(rs1[i]>=28)
3091           emit_jno_unlikely(0);
3092         else
3093         #endif
3094         emit_jno(0);
3095       }
3096     }
3097   }else{ // using tlb
3098     int x=0;
3099     if (opcode[i]==0x28) x=3; // SB
3100     if (opcode[i]==0x29) x=2; // SH
3101     map=get_reg(i_regs->regmap,TLREG);
3102     assert(map>=0);
3103     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3104     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3105   }
3106
3107   if (opcode[i]==0x28) { // SB
3108     if(!c||memtarget) {
3109       int x=0;
3110 #ifdef BIG_ENDIAN_MIPS
3111       if(!c) emit_xorimm(addr,3,temp);
3112       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3113 #else
3114       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3115       else if (addr!=temp) emit_mov(addr,temp);
3116 #endif
3117       //gen_tlb_addr_w(temp,map);
3118       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3119       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3120     }
3121     type=STOREB_STUB;
3122   }
3123   if (opcode[i]==0x29) { // SH
3124     if(!c||memtarget) {
3125       int x=0;
3126 #ifdef BIG_ENDIAN_MIPS
3127       if(!c) emit_xorimm(addr,2,temp);
3128       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3129 #else
3130       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3131       else if (addr!=temp) emit_mov(addr,temp);
3132 #endif
3133       //#ifdef
3134       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3135       //#else
3136       if(map>=0) {
3137         gen_tlb_addr_w(temp,map);
3138         emit_writehword_indexed(tl,x,temp);
3139       }else
3140         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3141     }
3142     type=STOREH_STUB;
3143   }
3144   if (opcode[i]==0x2B) { // SW
3145     if(!c||memtarget)
3146       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3147       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3148     type=STOREW_STUB;
3149   }
3150   if (opcode[i]==0x3F) { // SD
3151     if(!c||memtarget) {
3152       if(rs2[i]) {
3153         assert(th>=0);
3154         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3155         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3156         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3157       }else{
3158         // Store zero
3159         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3160         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3161         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3162       }
3163     }
3164     type=STORED_STUB;
3165   }
3166   if(!using_tlb&&(!c||memtarget))
3167     // addr could be a temp, make sure it survives STORE*_STUB
3168     reglist|=1<<addr;
3169   if(jaddr) {
3170     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3171   } else if(!memtarget) {
3172     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3173   }
3174   if(!using_tlb) {
3175     if(!c||memtarget) {
3176       #ifdef DESTRUCTIVE_SHIFT
3177       // The x86 shift operation is 'destructive'; it overwrites the
3178       // source register, so we need to make a copy first and use that.
3179       addr=temp;
3180       #endif
3181       #if defined(HOST_IMM8)
3182       int ir=get_reg(i_regs->regmap,INVCP);
3183       assert(ir>=0);
3184       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3185       #else
3186       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3187       #endif
3188       jaddr2=(int)out;
3189       emit_jne(0);
3190       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3191     }
3192   }
3193   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3194   //if(opcode[i]==0x2B || opcode[i]==0x28)
3195   //if(opcode[i]==0x2B || opcode[i]==0x29)
3196   //if(opcode[i]==0x2B)
3197   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3198   {
3199     //emit_pusha();
3200     save_regs(0x100f);
3201         emit_readword((int)&last_count,ECX);
3202         #ifdef __i386__
3203         if(get_reg(i_regs->regmap,CCREG)<0)
3204           emit_loadreg(CCREG,HOST_CCREG);
3205         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3206         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3207         emit_writeword(HOST_CCREG,(int)&Count);
3208         #endif
3209         #ifdef __arm__
3210         if(get_reg(i_regs->regmap,CCREG)<0)
3211           emit_loadreg(CCREG,0);
3212         else
3213           emit_mov(HOST_CCREG,0);
3214         emit_add(0,ECX,0);
3215         emit_addimm(0,2*ccadj[i],0);
3216         emit_writeword(0,(int)&Count);
3217         #endif
3218     emit_call((int)memdebug);
3219     //emit_popa();
3220     restore_regs(0x100f);
3221   }/**/
3222 }
3223
3224 void storelr_assemble(int i,struct regstat *i_regs)
3225 {
3226   int s,th,tl;
3227   int temp;
3228   int temp2;
3229   int offset;
3230   int jaddr=0,jaddr2;
3231   int case1,case2,case3;
3232   int done0,done1,done2;
3233   int memtarget,c=0;
3234   int agr=AGEN1+(i&1);
3235   u_int hr,reglist=0;
3236   th=get_reg(i_regs->regmap,rs2[i]|64);
3237   tl=get_reg(i_regs->regmap,rs2[i]);
3238   s=get_reg(i_regs->regmap,rs1[i]);
3239   temp=get_reg(i_regs->regmap,agr);
3240   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3241   offset=imm[i];
3242   if(s>=0) {
3243     c=(i_regs->isconst>>s)&1;
3244     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3245     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3246   }
3247   assert(tl>=0);
3248   for(hr=0;hr<HOST_REGS;hr++) {
3249     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3250   }
3251   assert(temp>=0);
3252   if(!using_tlb) {
3253     if(!c) {
3254       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3255       if(!offset&&s!=temp) emit_mov(s,temp);
3256       jaddr=(int)out;
3257       emit_jno(0);
3258     }
3259     else
3260     {
3261       if(!memtarget||!rs1[i]) {
3262         jaddr=(int)out;
3263         emit_jmp(0);
3264       }
3265     }
3266     #ifdef RAM_OFFSET
3267     int map=get_reg(i_regs->regmap,ROREG);
3268     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3269     gen_tlb_addr_w(temp,map);
3270     #else
3271     if((u_int)rdram!=0x80000000) 
3272       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3273     #endif
3274   }else{ // using tlb
3275     int map=get_reg(i_regs->regmap,TLREG);
3276     assert(map>=0);
3277     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3278     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3279     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3280     if(!jaddr&&!memtarget) {
3281       jaddr=(int)out;
3282       emit_jmp(0);
3283     }
3284     gen_tlb_addr_w(temp,map);
3285   }
3286
3287   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3288     temp2=get_reg(i_regs->regmap,FTEMP);
3289     if(!rs2[i]) temp2=th=tl;
3290   }
3291
3292 #ifndef BIG_ENDIAN_MIPS
3293     emit_xorimm(temp,3,temp);
3294 #endif
3295   emit_testimm(temp,2);
3296   case2=(int)out;
3297   emit_jne(0);
3298   emit_testimm(temp,1);
3299   case1=(int)out;
3300   emit_jne(0);
3301   // 0
3302   if (opcode[i]==0x2A) { // SWL
3303     emit_writeword_indexed(tl,0,temp);
3304   }
3305   if (opcode[i]==0x2E) { // SWR
3306     emit_writebyte_indexed(tl,3,temp);
3307   }
3308   if (opcode[i]==0x2C) { // SDL
3309     emit_writeword_indexed(th,0,temp);
3310     if(rs2[i]) emit_mov(tl,temp2);
3311   }
3312   if (opcode[i]==0x2D) { // SDR
3313     emit_writebyte_indexed(tl,3,temp);
3314     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3315   }
3316   done0=(int)out;
3317   emit_jmp(0);
3318   // 1
3319   set_jump_target(case1,(int)out);
3320   if (opcode[i]==0x2A) { // SWL
3321     // Write 3 msb into three least significant bytes
3322     if(rs2[i]) emit_rorimm(tl,8,tl);
3323     emit_writehword_indexed(tl,-1,temp);
3324     if(rs2[i]) emit_rorimm(tl,16,tl);
3325     emit_writebyte_indexed(tl,1,temp);
3326     if(rs2[i]) emit_rorimm(tl,8,tl);
3327   }
3328   if (opcode[i]==0x2E) { // SWR
3329     // Write two lsb into two most significant bytes
3330     emit_writehword_indexed(tl,1,temp);
3331   }
3332   if (opcode[i]==0x2C) { // SDL
3333     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3334     // Write 3 msb into three least significant bytes
3335     if(rs2[i]) emit_rorimm(th,8,th);
3336     emit_writehword_indexed(th,-1,temp);
3337     if(rs2[i]) emit_rorimm(th,16,th);
3338     emit_writebyte_indexed(th,1,temp);
3339     if(rs2[i]) emit_rorimm(th,8,th);
3340   }
3341   if (opcode[i]==0x2D) { // SDR
3342     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3343     // Write two lsb into two most significant bytes
3344     emit_writehword_indexed(tl,1,temp);
3345   }
3346   done1=(int)out;
3347   emit_jmp(0);
3348   // 2
3349   set_jump_target(case2,(int)out);
3350   emit_testimm(temp,1);
3351   case3=(int)out;
3352   emit_jne(0);
3353   if (opcode[i]==0x2A) { // SWL
3354     // Write two msb into two least significant bytes
3355     if(rs2[i]) emit_rorimm(tl,16,tl);
3356     emit_writehword_indexed(tl,-2,temp);
3357     if(rs2[i]) emit_rorimm(tl,16,tl);
3358   }
3359   if (opcode[i]==0x2E) { // SWR
3360     // Write 3 lsb into three most significant bytes
3361     emit_writebyte_indexed(tl,-1,temp);
3362     if(rs2[i]) emit_rorimm(tl,8,tl);
3363     emit_writehword_indexed(tl,0,temp);
3364     if(rs2[i]) emit_rorimm(tl,24,tl);
3365   }
3366   if (opcode[i]==0x2C) { // SDL
3367     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3368     // Write two msb into two least significant bytes
3369     if(rs2[i]) emit_rorimm(th,16,th);
3370     emit_writehword_indexed(th,-2,temp);
3371     if(rs2[i]) emit_rorimm(th,16,th);
3372   }
3373   if (opcode[i]==0x2D) { // SDR
3374     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3375     // Write 3 lsb into three most significant bytes
3376     emit_writebyte_indexed(tl,-1,temp);
3377     if(rs2[i]) emit_rorimm(tl,8,tl);
3378     emit_writehword_indexed(tl,0,temp);
3379     if(rs2[i]) emit_rorimm(tl,24,tl);
3380   }
3381   done2=(int)out;
3382   emit_jmp(0);
3383   // 3
3384   set_jump_target(case3,(int)out);
3385   if (opcode[i]==0x2A) { // SWL
3386     // Write msb into least significant byte
3387     if(rs2[i]) emit_rorimm(tl,24,tl);
3388     emit_writebyte_indexed(tl,-3,temp);
3389     if(rs2[i]) emit_rorimm(tl,8,tl);
3390   }
3391   if (opcode[i]==0x2E) { // SWR
3392     // Write entire word
3393     emit_writeword_indexed(tl,-3,temp);
3394   }
3395   if (opcode[i]==0x2C) { // SDL
3396     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3397     // Write msb into least significant byte
3398     if(rs2[i]) emit_rorimm(th,24,th);
3399     emit_writebyte_indexed(th,-3,temp);
3400     if(rs2[i]) emit_rorimm(th,8,th);
3401   }
3402   if (opcode[i]==0x2D) { // SDR
3403     if(rs2[i]) emit_mov(th,temp2);
3404     // Write entire word
3405     emit_writeword_indexed(tl,-3,temp);
3406   }
3407   set_jump_target(done0,(int)out);
3408   set_jump_target(done1,(int)out);
3409   set_jump_target(done2,(int)out);
3410   if (opcode[i]==0x2C) { // SDL
3411     emit_testimm(temp,4);
3412     done0=(int)out;
3413     emit_jne(0);
3414     emit_andimm(temp,~3,temp);
3415     emit_writeword_indexed(temp2,4,temp);
3416     set_jump_target(done0,(int)out);
3417   }
3418   if (opcode[i]==0x2D) { // SDR
3419     emit_testimm(temp,4);
3420     done0=(int)out;
3421     emit_jeq(0);
3422     emit_andimm(temp,~3,temp);
3423     emit_writeword_indexed(temp2,-4,temp);
3424     set_jump_target(done0,(int)out);
3425   }
3426   if(!c||!memtarget)
3427     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3428   if(!using_tlb) {
3429     #ifdef RAM_OFFSET
3430     int map=get_reg(i_regs->regmap,ROREG);
3431     if(map<0) map=HOST_TEMPREG;
3432     gen_orig_addr_w(temp,map);
3433     #else
3434     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3435     #endif
3436     #if defined(HOST_IMM8)
3437     int ir=get_reg(i_regs->regmap,INVCP);
3438     assert(ir>=0);
3439     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3440     #else
3441     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3442     #endif
3443     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3444     emit_callne(invalidate_addr_reg[temp]);
3445     #else
3446     jaddr2=(int)out;
3447     emit_jne(0);
3448     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3449     #endif
3450   }
3451   /*
3452     emit_pusha();
3453     //save_regs(0x100f);
3454         emit_readword((int)&last_count,ECX);
3455         if(get_reg(i_regs->regmap,CCREG)<0)
3456           emit_loadreg(CCREG,HOST_CCREG);
3457         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3458         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3459         emit_writeword(HOST_CCREG,(int)&Count);
3460     emit_call((int)memdebug);
3461     emit_popa();
3462     //restore_regs(0x100f);
3463   /**/
3464 }
3465
3466 void c1ls_assemble(int i,struct regstat *i_regs)
3467 {
3468 #ifndef DISABLE_COP1
3469   int s,th,tl;
3470   int temp,ar;
3471   int map=-1;
3472   int offset;
3473   int c=0;
3474   int jaddr,jaddr2=0,jaddr3,type;
3475   int agr=AGEN1+(i&1);
3476   u_int hr,reglist=0;
3477   th=get_reg(i_regs->regmap,FTEMP|64);
3478   tl=get_reg(i_regs->regmap,FTEMP);
3479   s=get_reg(i_regs->regmap,rs1[i]);
3480   temp=get_reg(i_regs->regmap,agr);
3481   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3482   offset=imm[i];
3483   assert(tl>=0);
3484   assert(rs1[i]>0);
3485   assert(temp>=0);
3486   for(hr=0;hr<HOST_REGS;hr++) {
3487     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3488   }
3489   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3490   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3491   {
3492     // Loads use a temporary register which we need to save
3493     reglist|=1<<temp;
3494   }
3495   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3496     ar=temp;
3497   else // LWC1/LDC1
3498     ar=tl;
3499   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3500   //else c=(i_regs->wasconst>>s)&1;
3501   if(s>=0) c=(i_regs->wasconst>>s)&1;
3502   // Check cop1 unusable
3503   if(!cop1_usable) {
3504     signed char rs=get_reg(i_regs->regmap,CSREG);
3505     assert(rs>=0);
3506     emit_testimm(rs,0x20000000);
3507     jaddr=(int)out;
3508     emit_jeq(0);
3509     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3510     cop1_usable=1;
3511   }
3512   if (opcode[i]==0x39) { // SWC1 (get float address)
3513     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3514   }
3515   if (opcode[i]==0x3D) { // SDC1 (get double address)
3516     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3517   }
3518   // Generate address + offset
3519   if(!using_tlb) {
3520     if(!c)
3521       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3522   }
3523   else
3524   {
3525     map=get_reg(i_regs->regmap,TLREG);
3526     assert(map>=0);
3527     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3528       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3529     }
3530     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3531       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3532     }
3533   }
3534   if (opcode[i]==0x39) { // SWC1 (read float)
3535     emit_readword_indexed(0,tl,tl);
3536   }
3537   if (opcode[i]==0x3D) { // SDC1 (read double)
3538     emit_readword_indexed(4,tl,th);
3539     emit_readword_indexed(0,tl,tl);
3540   }
3541   if (opcode[i]==0x31) { // LWC1 (get target address)
3542     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3543   }
3544   if (opcode[i]==0x35) { // LDC1 (get target address)
3545     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3546   }
3547   if(!using_tlb) {
3548     if(!c) {
3549       jaddr2=(int)out;
3550       emit_jno(0);
3551     }
3552     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3553       jaddr2=(int)out;
3554       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3555     }
3556     #ifdef DESTRUCTIVE_SHIFT
3557     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3558       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3559     }
3560     #endif
3561   }else{
3562     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3563       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3564     }
3565     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3566       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3567     }
3568   }
3569   if (opcode[i]==0x31) { // LWC1
3570     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3571     //gen_tlb_addr_r(ar,map);
3572     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3573     #ifdef HOST_IMM_ADDR32
3574     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3575     else
3576     #endif
3577     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3578     type=LOADW_STUB;
3579   }
3580   if (opcode[i]==0x35) { // LDC1
3581     assert(th>=0);
3582     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3583     //gen_tlb_addr_r(ar,map);
3584     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3585     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3586     #ifdef HOST_IMM_ADDR32
3587     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3588     else
3589     #endif
3590     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3591     type=LOADD_STUB;
3592   }
3593   if (opcode[i]==0x39) { // SWC1
3594     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3595     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3596     type=STOREW_STUB;
3597   }
3598   if (opcode[i]==0x3D) { // SDC1
3599     assert(th>=0);
3600     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3601     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3602     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3603     type=STORED_STUB;
3604   }
3605   if(!using_tlb) {
3606     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3607       #ifndef DESTRUCTIVE_SHIFT
3608       temp=offset||c||s<0?ar:s;
3609       #endif
3610       #if defined(HOST_IMM8)
3611       int ir=get_reg(i_regs->regmap,INVCP);
3612       assert(ir>=0);
3613       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3614       #else
3615       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3616       #endif
3617       jaddr3=(int)out;
3618       emit_jne(0);
3619       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3620     }
3621   }
3622   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3623   if (opcode[i]==0x31) { // LWC1 (write float)
3624     emit_writeword_indexed(tl,0,temp);
3625   }
3626   if (opcode[i]==0x35) { // LDC1 (write double)
3627     emit_writeword_indexed(th,4,temp);
3628     emit_writeword_indexed(tl,0,temp);
3629   }
3630   //if(opcode[i]==0x39)
3631   /*if(opcode[i]==0x39||opcode[i]==0x31)
3632   {
3633     emit_pusha();
3634         emit_readword((int)&last_count,ECX);
3635         if(get_reg(i_regs->regmap,CCREG)<0)
3636           emit_loadreg(CCREG,HOST_CCREG);
3637         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3638         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3639         emit_writeword(HOST_CCREG,(int)&Count);
3640     emit_call((int)memdebug);
3641     emit_popa();
3642   }/**/
3643 #else
3644   cop1_unusable(i, i_regs);
3645 #endif
3646 }
3647
3648 void c2ls_assemble(int i,struct regstat *i_regs)
3649 {
3650   int s,tl;
3651   int ar;
3652   int offset;
3653   int memtarget=0,c=0;
3654   int jaddr,jaddr2=0,jaddr3,type;
3655   int agr=AGEN1+(i&1);
3656   u_int hr,reglist=0;
3657   u_int copr=(source[i]>>16)&0x1f;
3658   s=get_reg(i_regs->regmap,rs1[i]);
3659   tl=get_reg(i_regs->regmap,FTEMP);
3660   offset=imm[i];
3661   assert(rs1[i]>0);
3662   assert(tl>=0);
3663   assert(!using_tlb);
3664
3665   for(hr=0;hr<HOST_REGS;hr++) {
3666     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3667   }
3668   if(i_regs->regmap[HOST_CCREG]==CCREG)
3669     reglist&=~(1<<HOST_CCREG);
3670
3671   // get the address
3672   if (opcode[i]==0x3a) { // SWC2
3673     ar=get_reg(i_regs->regmap,agr);
3674     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3675     reglist|=1<<ar;
3676   } else { // LWC2
3677     ar=tl;
3678   }
3679   if(s>=0) c=(i_regs->wasconst>>s)&1;
3680   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3681   if (!offset&&!c&&s>=0) ar=s;
3682   assert(ar>=0);
3683
3684   if (opcode[i]==0x3a) { // SWC2
3685     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3686     type=STOREW_STUB;
3687   }
3688   else
3689     type=LOADW_STUB;
3690
3691   if(c&&!memtarget) {
3692     jaddr2=(int)out;
3693     emit_jmp(0); // inline_readstub/inline_writestub?
3694   }
3695   else {
3696     if(!c) {
3697       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3698       jaddr2=(int)out;
3699       emit_jno(0);
3700     }
3701     if (opcode[i]==0x32) { // LWC2
3702       #ifdef HOST_IMM_ADDR32
3703       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3704       else
3705       #endif
3706       emit_readword_indexed(0,ar,tl);
3707     }
3708     if (opcode[i]==0x3a) { // SWC2
3709       #ifdef DESTRUCTIVE_SHIFT
3710       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3711       #endif
3712       emit_writeword_indexed(tl,0,ar);
3713     }
3714   }
3715   if(jaddr2)
3716     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3717   if (opcode[i]==0x3a) { // SWC2
3718 #if defined(HOST_IMM8)
3719     int ir=get_reg(i_regs->regmap,INVCP);
3720     assert(ir>=0);
3721     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3722 #else
3723     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3724 #endif
3725     jaddr3=(int)out;
3726     emit_jne(0);
3727     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3728   }
3729   if (opcode[i]==0x32) { // LWC2
3730     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3731   }
3732 }
3733
3734 #ifndef multdiv_assemble
3735 void multdiv_assemble(int i,struct regstat *i_regs)
3736 {
3737   printf("Need multdiv_assemble for this architecture.\n");
3738   exit(1);
3739 }
3740 #endif
3741
3742 void mov_assemble(int i,struct regstat *i_regs)
3743 {
3744   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3745   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3746   if(rt1[i]) {
3747     signed char sh,sl,th,tl;
3748     th=get_reg(i_regs->regmap,rt1[i]|64);
3749     tl=get_reg(i_regs->regmap,rt1[i]);
3750     //assert(tl>=0);
3751     if(tl>=0) {
3752       sh=get_reg(i_regs->regmap,rs1[i]|64);
3753       sl=get_reg(i_regs->regmap,rs1[i]);
3754       if(sl>=0) emit_mov(sl,tl);
3755       else emit_loadreg(rs1[i],tl);
3756       if(th>=0) {
3757         if(sh>=0) emit_mov(sh,th);
3758         else emit_loadreg(rs1[i]|64,th);
3759       }
3760     }
3761   }
3762 }
3763
3764 #ifndef fconv_assemble
3765 void fconv_assemble(int i,struct regstat *i_regs)
3766 {
3767   printf("Need fconv_assemble for this architecture.\n");
3768   exit(1);
3769 }
3770 #endif
3771
3772 #if 0
3773 void float_assemble(int i,struct regstat *i_regs)
3774 {
3775   printf("Need float_assemble for this architecture.\n");
3776   exit(1);
3777 }
3778 #endif
3779
3780 void syscall_assemble(int i,struct regstat *i_regs)
3781 {
3782   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3783   assert(ccreg==HOST_CCREG);
3784   assert(!is_delayslot);
3785   emit_movimm(start+i*4,EAX); // Get PC
3786   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3787   emit_jmp((int)jump_syscall_hle); // XXX
3788 }
3789
3790 void hlecall_assemble(int i,struct regstat *i_regs)
3791 {
3792   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3793   assert(ccreg==HOST_CCREG);
3794   assert(!is_delayslot);
3795   emit_movimm(start+i*4+4,0); // Get PC
3796   emit_movimm((int)psxHLEt[source[i]&7],1);
3797   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3798   emit_jmp((int)jump_hlecall);
3799 }
3800
3801 void intcall_assemble(int i,struct regstat *i_regs)
3802 {
3803   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3804   assert(ccreg==HOST_CCREG);
3805   assert(!is_delayslot);
3806   emit_movimm(start+i*4,0); // Get PC
3807   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3808   emit_jmp((int)jump_intcall);
3809 }
3810
3811 void ds_assemble(int i,struct regstat *i_regs)
3812 {
3813   is_delayslot=1;
3814   switch(itype[i]) {
3815     case ALU:
3816       alu_assemble(i,i_regs);break;
3817     case IMM16:
3818       imm16_assemble(i,i_regs);break;
3819     case SHIFT:
3820       shift_assemble(i,i_regs);break;
3821     case SHIFTIMM:
3822       shiftimm_assemble(i,i_regs);break;
3823     case LOAD:
3824       load_assemble(i,i_regs);break;
3825     case LOADLR:
3826       loadlr_assemble(i,i_regs);break;
3827     case STORE:
3828       store_assemble(i,i_regs);break;
3829     case STORELR:
3830       storelr_assemble(i,i_regs);break;
3831     case COP0:
3832       cop0_assemble(i,i_regs);break;
3833     case COP1:
3834       cop1_assemble(i,i_regs);break;
3835     case C1LS:
3836       c1ls_assemble(i,i_regs);break;
3837     case COP2:
3838       cop2_assemble(i,i_regs);break;
3839     case C2LS:
3840       c2ls_assemble(i,i_regs);break;
3841     case C2OP:
3842       c2op_assemble(i,i_regs);break;
3843     case FCONV:
3844       fconv_assemble(i,i_regs);break;
3845     case FLOAT:
3846       float_assemble(i,i_regs);break;
3847     case FCOMP:
3848       fcomp_assemble(i,i_regs);break;
3849     case MULTDIV:
3850       multdiv_assemble(i,i_regs);break;
3851     case MOV:
3852       mov_assemble(i,i_regs);break;
3853     case SYSCALL:
3854     case HLECALL:
3855     case INTCALL:
3856     case SPAN:
3857     case UJUMP:
3858     case RJUMP:
3859     case CJUMP:
3860     case SJUMP:
3861     case FJUMP:
3862       printf("Jump in the delay slot.  This is probably a bug.\n");
3863   }
3864   is_delayslot=0;
3865 }
3866
3867 // Is the branch target a valid internal jump?
3868 int internal_branch(uint64_t i_is32,int addr)
3869 {
3870   if(addr&1) return 0; // Indirect (register) jump
3871   if(addr>=start && addr<start+slen*4-4)
3872   {
3873     int t=(addr-start)>>2;
3874     // Delay slots are not valid branch targets
3875     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3876     // 64 -> 32 bit transition requires a recompile
3877     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3878     {
3879       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3880       else printf("optimizable: yes\n");
3881     }*/
3882     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3883 #ifndef FORCE32
3884     if(requires_32bit[t]&~i_is32) return 0;
3885     else
3886 #endif
3887       return 1;
3888   }
3889   return 0;
3890 }
3891
3892 #ifndef wb_invalidate
3893 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3894   uint64_t u,uint64_t uu)
3895 {
3896   int hr;
3897   for(hr=0;hr<HOST_REGS;hr++) {
3898     if(hr!=EXCLUDE_REG) {
3899       if(pre[hr]!=entry[hr]) {
3900         if(pre[hr]>=0) {
3901           if((dirty>>hr)&1) {
3902             if(get_reg(entry,pre[hr])<0) {
3903               if(pre[hr]<64) {
3904                 if(!((u>>pre[hr])&1)) {
3905                   emit_storereg(pre[hr],hr);
3906                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3907                     emit_sarimm(hr,31,hr);
3908                     emit_storereg(pre[hr]|64,hr);
3909                   }
3910                 }
3911               }else{
3912                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3913                   emit_storereg(pre[hr],hr);
3914                 }
3915               }
3916             }
3917           }
3918         }
3919       }
3920     }
3921   }
3922   // Move from one register to another (no writeback)
3923   for(hr=0;hr<HOST_REGS;hr++) {
3924     if(hr!=EXCLUDE_REG) {
3925       if(pre[hr]!=entry[hr]) {
3926         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3927           int nr;
3928           if((nr=get_reg(entry,pre[hr]))>=0) {
3929             emit_mov(hr,nr);
3930           }
3931         }
3932       }
3933     }
3934   }
3935 }
3936 #endif
3937
3938 // Load the specified registers
3939 // This only loads the registers given as arguments because
3940 // we don't want to load things that will be overwritten
3941 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3942 {
3943   int hr;
3944   // Load 32-bit regs
3945   for(hr=0;hr<HOST_REGS;hr++) {
3946     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3947       if(entry[hr]!=regmap[hr]) {
3948         if(regmap[hr]==rs1||regmap[hr]==rs2)
3949         {
3950           if(regmap[hr]==0) {
3951             emit_zeroreg(hr);
3952           }
3953           else
3954           {
3955             emit_loadreg(regmap[hr],hr);
3956           }
3957         }
3958       }
3959     }
3960   }
3961   //Load 64-bit regs
3962   for(hr=0;hr<HOST_REGS;hr++) {
3963     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3964       if(entry[hr]!=regmap[hr]) {
3965         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3966         {
3967           assert(regmap[hr]!=64);
3968           if((is32>>(regmap[hr]&63))&1) {
3969             int lr=get_reg(regmap,regmap[hr]-64);
3970             if(lr>=0)
3971               emit_sarimm(lr,31,hr);
3972             else
3973               emit_loadreg(regmap[hr],hr);
3974           }
3975           else
3976           {
3977             emit_loadreg(regmap[hr],hr);
3978           }
3979         }
3980       }
3981     }
3982   }
3983 }
3984
3985 // Load registers prior to the start of a loop
3986 // so that they are not loaded within the loop
3987 static void loop_preload(signed char pre[],signed char entry[])
3988 {
3989   int hr;
3990   for(hr=0;hr<HOST_REGS;hr++) {
3991     if(hr!=EXCLUDE_REG) {
3992       if(pre[hr]!=entry[hr]) {
3993         if(entry[hr]>=0) {
3994           if(get_reg(pre,entry[hr])<0) {
3995             assem_debug("loop preload:\n");
3996             //printf("loop preload: %d\n",hr);
3997             if(entry[hr]==0) {
3998               emit_zeroreg(hr);
3999             }
4000             else if(entry[hr]<TEMPREG)
4001             {
4002               emit_loadreg(entry[hr],hr);
4003             }
4004             else if(entry[hr]-64<TEMPREG)
4005             {
4006               emit_loadreg(entry[hr],hr);
4007             }
4008           }
4009         }
4010       }
4011     }
4012   }
4013 }
4014
4015 // Generate address for load/store instruction
4016 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4017 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4018 {
4019   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4020     int ra;
4021     int agr=AGEN1+(i&1);
4022     int mgr=MGEN1+(i&1);
4023     if(itype[i]==LOAD) {
4024       ra=get_reg(i_regs->regmap,rt1[i]);
4025       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4026       assert(ra>=0);
4027     }
4028     if(itype[i]==LOADLR) {
4029       ra=get_reg(i_regs->regmap,FTEMP);
4030     }
4031     if(itype[i]==STORE||itype[i]==STORELR) {
4032       ra=get_reg(i_regs->regmap,agr);
4033       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4034     }
4035     if(itype[i]==C1LS||itype[i]==C2LS) {
4036       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4037         ra=get_reg(i_regs->regmap,FTEMP);
4038       else { // SWC1/SDC1/SWC2/SDC2
4039         ra=get_reg(i_regs->regmap,agr);
4040         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4041       }
4042     }
4043     int rs=get_reg(i_regs->regmap,rs1[i]);
4044     int rm=get_reg(i_regs->regmap,TLREG);
4045     if(ra>=0) {
4046       int offset=imm[i];
4047       int c=(i_regs->wasconst>>rs)&1;
4048       if(rs1[i]==0) {
4049         // Using r0 as a base address
4050         /*if(rm>=0) {
4051           if(!entry||entry[rm]!=mgr) {
4052             generate_map_const(offset,rm);
4053           } // else did it in the previous cycle
4054         }*/
4055         if(!entry||entry[ra]!=agr) {
4056           if (opcode[i]==0x22||opcode[i]==0x26) {
4057             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4058           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4059             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4060           }else{
4061             emit_movimm(offset,ra);
4062           }
4063         } // else did it in the previous cycle
4064       }
4065       else if(rs<0) {
4066         if(!entry||entry[ra]!=rs1[i])
4067           emit_loadreg(rs1[i],ra);
4068         //if(!entry||entry[ra]!=rs1[i])
4069         //  printf("poor load scheduling!\n");
4070       }
4071       else if(c) {
4072         if(rm>=0) {
4073           if(!entry||entry[rm]!=mgr) {
4074             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4075               // Stores to memory go thru the mapper to detect self-modifying
4076               // code, loads don't.
4077               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4078                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4079                 generate_map_const(constmap[i][rs]+offset,rm);
4080             }else{
4081               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4082                 generate_map_const(constmap[i][rs]+offset,rm);
4083             }
4084           }
4085         }
4086         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4087           if(!entry||entry[ra]!=agr) {
4088             if (opcode[i]==0x22||opcode[i]==0x26) {
4089               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4090             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4091               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4092             }else{
4093               #ifdef HOST_IMM_ADDR32
4094               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4095                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4096               #endif
4097               emit_movimm(constmap[i][rs]+offset,ra);
4098             }
4099           } // else did it in the previous cycle
4100         } // else load_consts already did it
4101       }
4102       if(offset&&!c&&rs1[i]) {
4103         if(rs>=0) {
4104           emit_addimm(rs,offset,ra);
4105         }else{
4106           emit_addimm(ra,offset,ra);
4107         }
4108       }
4109     }
4110   }
4111   // Preload constants for next instruction
4112   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4113     int agr,ra;
4114     #ifndef HOST_IMM_ADDR32
4115     // Mapper entry
4116     agr=MGEN1+((i+1)&1);
4117     ra=get_reg(i_regs->regmap,agr);
4118     if(ra>=0) {
4119       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4120       int offset=imm[i+1];
4121       int c=(regs[i+1].wasconst>>rs)&1;
4122       if(c) {
4123         if(itype[i+1]==STORE||itype[i+1]==STORELR
4124            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4125           // Stores to memory go thru the mapper to detect self-modifying
4126           // code, loads don't.
4127           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4128              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4129             generate_map_const(constmap[i+1][rs]+offset,ra);
4130         }else{
4131           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4132             generate_map_const(constmap[i+1][rs]+offset,ra);
4133         }
4134       }
4135       /*else if(rs1[i]==0) {
4136         generate_map_const(offset,ra);
4137       }*/
4138     }
4139     #endif
4140     // Actual address
4141     agr=AGEN1+((i+1)&1);
4142     ra=get_reg(i_regs->regmap,agr);
4143     if(ra>=0) {
4144       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4145       int offset=imm[i+1];
4146       int c=(regs[i+1].wasconst>>rs)&1;
4147       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4148         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4149           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4150         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4151           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4152         }else{
4153           #ifdef HOST_IMM_ADDR32
4154           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4155              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4156           #endif
4157           emit_movimm(constmap[i+1][rs]+offset,ra);
4158         }
4159       }
4160       else if(rs1[i+1]==0) {
4161         // Using r0 as a base address
4162         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4163           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4164         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4165           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4166         }else{
4167           emit_movimm(offset,ra);
4168         }
4169       }
4170     }
4171   }
4172 }
4173
4174 int get_final_value(int hr, int i, int *value)
4175 {
4176   int reg=regs[i].regmap[hr];
4177   while(i<slen-1) {
4178     if(regs[i+1].regmap[hr]!=reg) break;
4179     if(!((regs[i+1].isconst>>hr)&1)) break;
4180     if(bt[i+1]) break;
4181     i++;
4182   }
4183   if(i<slen-1) {
4184     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4185       *value=constmap[i][hr];
4186       return 1;
4187     }
4188     if(!bt[i+1]) {
4189       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4190         // Load in delay slot, out-of-order execution
4191         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4192         {
4193           #ifdef HOST_IMM_ADDR32
4194           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4195           #endif
4196           // Precompute load address
4197           *value=constmap[i][hr]+imm[i+2];
4198           return 1;
4199         }
4200       }
4201       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4202       {
4203         #ifdef HOST_IMM_ADDR32
4204         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4205         #endif
4206         // Precompute load address
4207         *value=constmap[i][hr]+imm[i+1];
4208         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4209         return 1;
4210       }
4211     }
4212   }
4213   *value=constmap[i][hr];
4214   //printf("c=%x\n",(int)constmap[i][hr]);
4215   if(i==slen-1) return 1;
4216   if(reg<64) {
4217     return !((unneeded_reg[i+1]>>reg)&1);
4218   }else{
4219     return !((unneeded_reg_upper[i+1]>>reg)&1);
4220   }
4221 }
4222
4223 // Load registers with known constants
4224 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4225 {
4226   int hr;
4227   // Load 32-bit regs
4228   for(hr=0;hr<HOST_REGS;hr++) {
4229     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4230       //if(entry[hr]!=regmap[hr]) {
4231       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4232         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4233           int value;
4234           if(get_final_value(hr,i,&value)) {
4235             if(value==0) {
4236               emit_zeroreg(hr);
4237             }
4238             else {
4239               emit_movimm(value,hr);
4240             }
4241           }
4242         }
4243       }
4244     }
4245   }
4246   // Load 64-bit regs
4247   for(hr=0;hr<HOST_REGS;hr++) {
4248     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4249       //if(entry[hr]!=regmap[hr]) {
4250       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4251         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4252           if((is32>>(regmap[hr]&63))&1) {
4253             int lr=get_reg(regmap,regmap[hr]-64);
4254             assert(lr>=0);
4255             emit_sarimm(lr,31,hr);
4256           }
4257           else
4258           {
4259             int value;
4260             if(get_final_value(hr,i,&value)) {
4261               if(value==0) {
4262                 emit_zeroreg(hr);
4263               }
4264               else {
4265                 emit_movimm(value,hr);
4266               }
4267             }
4268           }
4269         }
4270       }
4271     }
4272   }
4273 }
4274 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4275 {
4276   int hr;
4277   // Load 32-bit regs
4278   for(hr=0;hr<HOST_REGS;hr++) {
4279     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4280       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4281         int value=constmap[i][hr];
4282         if(value==0) {
4283           emit_zeroreg(hr);
4284         }
4285         else {
4286           emit_movimm(value,hr);
4287         }
4288       }
4289     }
4290   }
4291   // Load 64-bit regs
4292   for(hr=0;hr<HOST_REGS;hr++) {
4293     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4294       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4295         if((is32>>(regmap[hr]&63))&1) {
4296           int lr=get_reg(regmap,regmap[hr]-64);
4297           assert(lr>=0);
4298           emit_sarimm(lr,31,hr);
4299         }
4300         else
4301         {
4302           int value=constmap[i][hr];
4303           if(value==0) {
4304             emit_zeroreg(hr);
4305           }
4306           else {
4307             emit_movimm(value,hr);
4308           }
4309         }
4310       }
4311     }
4312   }
4313 }
4314
4315 // Write out all dirty registers (except cycle count)
4316 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4317 {
4318   int hr;
4319   for(hr=0;hr<HOST_REGS;hr++) {
4320     if(hr!=EXCLUDE_REG) {
4321       if(i_regmap[hr]>0) {
4322         if(i_regmap[hr]!=CCREG) {
4323           if((i_dirty>>hr)&1) {
4324             if(i_regmap[hr]<64) {
4325               emit_storereg(i_regmap[hr],hr);
4326 #ifndef FORCE32
4327               if( ((i_is32>>i_regmap[hr])&1) ) {
4328                 #ifdef DESTRUCTIVE_WRITEBACK
4329                 emit_sarimm(hr,31,hr);
4330                 emit_storereg(i_regmap[hr]|64,hr);
4331                 #else
4332                 emit_sarimm(hr,31,HOST_TEMPREG);
4333                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4334                 #endif
4335               }
4336 #endif
4337             }else{
4338               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4339                 emit_storereg(i_regmap[hr],hr);
4340               }
4341             }
4342           }
4343         }
4344       }
4345     }
4346   }
4347 }
4348 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4349 // This writes the registers not written by store_regs_bt
4350 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4351 {
4352   int hr;
4353   int t=(addr-start)>>2;
4354   for(hr=0;hr<HOST_REGS;hr++) {
4355     if(hr!=EXCLUDE_REG) {
4356       if(i_regmap[hr]>0) {
4357         if(i_regmap[hr]!=CCREG) {
4358           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4359             if((i_dirty>>hr)&1) {
4360               if(i_regmap[hr]<64) {
4361                 emit_storereg(i_regmap[hr],hr);
4362 #ifndef FORCE32
4363                 if( ((i_is32>>i_regmap[hr])&1) ) {
4364                   #ifdef DESTRUCTIVE_WRITEBACK
4365                   emit_sarimm(hr,31,hr);
4366                   emit_storereg(i_regmap[hr]|64,hr);
4367                   #else
4368                   emit_sarimm(hr,31,HOST_TEMPREG);
4369                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4370                   #endif
4371                 }
4372 #endif
4373               }else{
4374                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4375                   emit_storereg(i_regmap[hr],hr);
4376                 }
4377               }
4378             }
4379           }
4380         }
4381       }
4382     }
4383   }
4384 }
4385
4386 // Load all registers (except cycle count)
4387 void load_all_regs(signed char i_regmap[])
4388 {
4389   int hr;
4390   for(hr=0;hr<HOST_REGS;hr++) {
4391     if(hr!=EXCLUDE_REG) {
4392       if(i_regmap[hr]==0) {
4393         emit_zeroreg(hr);
4394       }
4395       else
4396       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4397       {
4398         emit_loadreg(i_regmap[hr],hr);
4399       }
4400     }
4401   }
4402 }
4403
4404 // Load all current registers also needed by next instruction
4405 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4406 {
4407   int hr;
4408   for(hr=0;hr<HOST_REGS;hr++) {
4409     if(hr!=EXCLUDE_REG) {
4410       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4411         if(i_regmap[hr]==0) {
4412           emit_zeroreg(hr);
4413         }
4414         else
4415         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4416         {
4417           emit_loadreg(i_regmap[hr],hr);
4418         }
4419       }
4420     }
4421   }
4422 }
4423
4424 // Load all regs, storing cycle count if necessary
4425 void load_regs_entry(int t)
4426 {
4427   int hr;
4428   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4429   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4430   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4431     emit_storereg(CCREG,HOST_CCREG);
4432   }
4433   // Load 32-bit regs
4434   for(hr=0;hr<HOST_REGS;hr++) {
4435     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4436       if(regs[t].regmap_entry[hr]==0) {
4437         emit_zeroreg(hr);
4438       }
4439       else if(regs[t].regmap_entry[hr]!=CCREG)
4440       {
4441         emit_loadreg(regs[t].regmap_entry[hr],hr);
4442       }
4443     }
4444   }
4445   // Load 64-bit regs
4446   for(hr=0;hr<HOST_REGS;hr++) {
4447     if(regs[t].regmap_entry[hr]>=64) {
4448       assert(regs[t].regmap_entry[hr]!=64);
4449       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4450         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4451         if(lr<0) {
4452           emit_loadreg(regs[t].regmap_entry[hr],hr);
4453         }
4454         else
4455         {
4456           emit_sarimm(lr,31,hr);
4457         }
4458       }
4459       else
4460       {
4461         emit_loadreg(regs[t].regmap_entry[hr],hr);
4462       }
4463     }
4464   }
4465 }
4466
4467 // Store dirty registers prior to branch
4468 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4469 {
4470   if(internal_branch(i_is32,addr))
4471   {
4472     int t=(addr-start)>>2;
4473     int hr;
4474     for(hr=0;hr<HOST_REGS;hr++) {
4475       if(hr!=EXCLUDE_REG) {
4476         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4477           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4478             if((i_dirty>>hr)&1) {
4479               if(i_regmap[hr]<64) {
4480                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4481                   emit_storereg(i_regmap[hr],hr);
4482                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4483                     #ifdef DESTRUCTIVE_WRITEBACK
4484                     emit_sarimm(hr,31,hr);
4485                     emit_storereg(i_regmap[hr]|64,hr);
4486                     #else
4487                     emit_sarimm(hr,31,HOST_TEMPREG);
4488                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4489                     #endif
4490                   }
4491                 }
4492               }else{
4493                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4494                   emit_storereg(i_regmap[hr],hr);
4495                 }
4496               }
4497             }
4498           }
4499         }
4500       }
4501     }
4502   }
4503   else
4504   {
4505     // Branch out of this block, write out all dirty regs
4506     wb_dirtys(i_regmap,i_is32,i_dirty);
4507   }
4508 }
4509
4510 // Load all needed registers for branch target
4511 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4512 {
4513   //if(addr>=start && addr<(start+slen*4))
4514   if(internal_branch(i_is32,addr))
4515   {
4516     int t=(addr-start)>>2;
4517     int hr;
4518     // Store the cycle count before loading something else
4519     if(i_regmap[HOST_CCREG]!=CCREG) {
4520       assert(i_regmap[HOST_CCREG]==-1);
4521     }
4522     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4523       emit_storereg(CCREG,HOST_CCREG);
4524     }
4525     // Load 32-bit regs
4526     for(hr=0;hr<HOST_REGS;hr++) {
4527       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4528         #ifdef DESTRUCTIVE_WRITEBACK
4529         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4530         #else
4531         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4532         #endif
4533           if(regs[t].regmap_entry[hr]==0) {
4534             emit_zeroreg(hr);
4535           }
4536           else if(regs[t].regmap_entry[hr]!=CCREG)
4537           {
4538             emit_loadreg(regs[t].regmap_entry[hr],hr);
4539           }
4540         }
4541       }
4542     }
4543     //Load 64-bit regs
4544     for(hr=0;hr<HOST_REGS;hr++) {
4545       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4546         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4547           assert(regs[t].regmap_entry[hr]!=64);
4548           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4549             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4550             if(lr<0) {
4551               emit_loadreg(regs[t].regmap_entry[hr],hr);
4552             }
4553             else
4554             {
4555               emit_sarimm(lr,31,hr);
4556             }
4557           }
4558           else
4559           {
4560             emit_loadreg(regs[t].regmap_entry[hr],hr);
4561           }
4562         }
4563         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4564           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4565           assert(lr>=0);
4566           emit_sarimm(lr,31,hr);
4567         }
4568       }
4569     }
4570   }
4571 }
4572
4573 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4574 {
4575   if(addr>=start && addr<start+slen*4-4)
4576   {
4577     int t=(addr-start)>>2;
4578     int hr;
4579     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4580     for(hr=0;hr<HOST_REGS;hr++)
4581     {
4582       if(hr!=EXCLUDE_REG)
4583       {
4584         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4585         {
4586           if(regs[t].regmap_entry[hr]!=-1)
4587           {
4588             return 0;
4589           }
4590           else 
4591           if((i_dirty>>hr)&1)
4592           {
4593             if(i_regmap[hr]<64)
4594             {
4595               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4596                 return 0;
4597             }
4598             else
4599             {
4600               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4601                 return 0;
4602             }
4603           }
4604         }
4605         else // Same register but is it 32-bit or dirty?
4606         if(i_regmap[hr]>=0)
4607         {
4608           if(!((regs[t].dirty>>hr)&1))
4609           {
4610             if((i_dirty>>hr)&1)
4611             {
4612               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4613               {
4614                 //printf("%x: dirty no match\n",addr);
4615                 return 0;
4616               }
4617             }
4618           }
4619           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4620           {
4621             //printf("%x: is32 no match\n",addr);
4622             return 0;
4623           }
4624         }
4625       }
4626     }
4627     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4628 #ifndef FORCE32
4629     if(requires_32bit[t]&~i_is32) return 0;
4630 #endif
4631     // Delay slots are not valid branch targets
4632     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4633     // Delay slots require additional processing, so do not match
4634     if(is_ds[t]) return 0;
4635   }
4636   else
4637   {
4638     int hr;
4639     for(hr=0;hr<HOST_REGS;hr++)
4640     {
4641       if(hr!=EXCLUDE_REG)
4642       {
4643         if(i_regmap[hr]>=0)
4644         {
4645           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4646           {
4647             if((i_dirty>>hr)&1)
4648             {
4649               return 0;
4650             }
4651           }
4652         }
4653       }
4654     }
4655   }
4656   return 1;
4657 }
4658
4659 // Used when a branch jumps into the delay slot of another branch
4660 void ds_assemble_entry(int i)
4661 {
4662   int t=(ba[i]-start)>>2;
4663   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4664   assem_debug("Assemble delay slot at %x\n",ba[i]);
4665   assem_debug("<->\n");
4666   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4667     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4668   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4669   address_generation(t,&regs[t],regs[t].regmap_entry);
4670   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4671     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4672   cop1_usable=0;
4673   is_delayslot=0;
4674   switch(itype[t]) {
4675     case ALU:
4676       alu_assemble(t,&regs[t]);break;
4677     case IMM16:
4678       imm16_assemble(t,&regs[t]);break;
4679     case SHIFT:
4680       shift_assemble(t,&regs[t]);break;
4681     case SHIFTIMM:
4682       shiftimm_assemble(t,&regs[t]);break;
4683     case LOAD:
4684       load_assemble(t,&regs[t]);break;
4685     case LOADLR:
4686       loadlr_assemble(t,&regs[t]);break;
4687     case STORE:
4688       store_assemble(t,&regs[t]);break;
4689     case STORELR:
4690       storelr_assemble(t,&regs[t]);break;
4691     case COP0:
4692       cop0_assemble(t,&regs[t]);break;
4693     case COP1:
4694       cop1_assemble(t,&regs[t]);break;
4695     case C1LS:
4696       c1ls_assemble(t,&regs[t]);break;
4697     case COP2:
4698       cop2_assemble(t,&regs[t]);break;
4699     case C2LS:
4700       c2ls_assemble(t,&regs[t]);break;
4701     case C2OP:
4702       c2op_assemble(t,&regs[t]);break;
4703     case FCONV:
4704       fconv_assemble(t,&regs[t]);break;
4705     case FLOAT:
4706       float_assemble(t,&regs[t]);break;
4707     case FCOMP:
4708       fcomp_assemble(t,&regs[t]);break;
4709     case MULTDIV:
4710       multdiv_assemble(t,&regs[t]);break;
4711     case MOV:
4712       mov_assemble(t,&regs[t]);break;
4713     case SYSCALL:
4714     case HLECALL:
4715     case INTCALL:
4716     case SPAN:
4717     case UJUMP:
4718     case RJUMP:
4719     case CJUMP:
4720     case SJUMP:
4721     case FJUMP:
4722       printf("Jump in the delay slot.  This is probably a bug.\n");
4723   }
4724   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4725   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4726   if(internal_branch(regs[t].is32,ba[i]+4))
4727     assem_debug("branch: internal\n");
4728   else
4729     assem_debug("branch: external\n");
4730   assert(internal_branch(regs[t].is32,ba[i]+4));
4731   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4732   emit_jmp(0);
4733 }
4734
4735 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4736 {
4737   int count;
4738   int jaddr;
4739   int idle=0;
4740   if(itype[i]==RJUMP)
4741   {
4742     *adj=0;
4743   }
4744   //if(ba[i]>=start && ba[i]<(start+slen*4))
4745   if(internal_branch(branch_regs[i].is32,ba[i]))
4746   {
4747     int t=(ba[i]-start)>>2;
4748     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4749     else *adj=ccadj[t];
4750   }
4751   else
4752   {
4753     *adj=0;
4754   }
4755   count=ccadj[i];
4756   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4757     // Idle loop
4758     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4759     idle=(int)out;
4760     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4761     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4762     jaddr=(int)out;
4763     emit_jmp(0);
4764   }
4765   else if(*adj==0||invert) {
4766     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4767     jaddr=(int)out;
4768     emit_jns(0);
4769   }
4770   else
4771   {
4772     emit_cmpimm(HOST_CCREG,-2*(count+2));
4773     jaddr=(int)out;
4774     emit_jns(0);
4775   }
4776   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4777 }
4778
4779 void do_ccstub(int n)
4780 {
4781   literal_pool(256);
4782   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4783   set_jump_target(stubs[n][1],(int)out);
4784   int i=stubs[n][4];
4785   if(stubs[n][6]==NULLDS) {
4786     // Delay slot instruction is nullified ("likely" branch)
4787     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4788   }
4789   else if(stubs[n][6]!=TAKEN) {
4790     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4791   }
4792   else {
4793     if(internal_branch(branch_regs[i].is32,ba[i]))
4794       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4795   }
4796   if(stubs[n][5]!=-1)
4797   {
4798     // Save PC as return address
4799     emit_movimm(stubs[n][5],EAX);
4800     emit_writeword(EAX,(int)&pcaddr);
4801   }
4802   else
4803   {
4804     // Return address depends on which way the branch goes
4805     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4806     {
4807       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4808       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4809       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4810       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4811       if(rs1[i]==0)
4812       {
4813         s1l=s2l;s1h=s2h;
4814         s2l=s2h=-1;
4815       }
4816       else if(rs2[i]==0)
4817       {
4818         s2l=s2h=-1;
4819       }
4820       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4821         s1h=s2h=-1;
4822       }
4823       assert(s1l>=0);
4824       #ifdef DESTRUCTIVE_WRITEBACK
4825       if(rs1[i]) {
4826         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4827           emit_loadreg(rs1[i],s1l);
4828       } 
4829       else {
4830         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4831           emit_loadreg(rs2[i],s1l);
4832       }
4833       if(s2l>=0)
4834         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4835           emit_loadreg(rs2[i],s2l);
4836       #endif
4837       int hr=0;
4838       int addr,alt,ntaddr;
4839       while(hr<HOST_REGS)
4840       {
4841         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4842            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4843            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4844         {
4845           addr=hr++;break;
4846         }
4847         hr++;
4848       }
4849       while(hr<HOST_REGS)
4850       {
4851         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4852            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4853            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4854         {
4855           alt=hr++;break;
4856         }
4857         hr++;
4858       }
4859       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4860       {
4861         while(hr<HOST_REGS)
4862         {
4863           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4864              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4865              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4866           {
4867             ntaddr=hr;break;
4868           }
4869           hr++;
4870         }
4871         assert(hr<HOST_REGS);
4872       }
4873       if((opcode[i]&0x2f)==4) // BEQ
4874       {
4875         #ifdef HAVE_CMOV_IMM
4876         if(s1h<0) {
4877           if(s2l>=0) emit_cmp(s1l,s2l);
4878           else emit_test(s1l,s1l);
4879           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4880         }
4881         else
4882         #endif
4883         {
4884           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4885           if(s1h>=0) {
4886             if(s2h>=0) emit_cmp(s1h,s2h);
4887             else emit_test(s1h,s1h);
4888             emit_cmovne_reg(alt,addr);
4889           }
4890           if(s2l>=0) emit_cmp(s1l,s2l);
4891           else emit_test(s1l,s1l);
4892           emit_cmovne_reg(alt,addr);
4893         }
4894       }
4895       if((opcode[i]&0x2f)==5) // BNE
4896       {
4897         #ifdef HAVE_CMOV_IMM
4898         if(s1h<0) {
4899           if(s2l>=0) emit_cmp(s1l,s2l);
4900           else emit_test(s1l,s1l);
4901           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4902         }
4903         else
4904         #endif
4905         {
4906           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4907           if(s1h>=0) {
4908             if(s2h>=0) emit_cmp(s1h,s2h);
4909             else emit_test(s1h,s1h);
4910             emit_cmovne_reg(alt,addr);
4911           }
4912           if(s2l>=0) emit_cmp(s1l,s2l);
4913           else emit_test(s1l,s1l);
4914           emit_cmovne_reg(alt,addr);
4915         }
4916       }
4917       if((opcode[i]&0x2f)==6) // BLEZ
4918       {
4919         //emit_movimm(ba[i],alt);
4920         //emit_movimm(start+i*4+8,addr);
4921         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4922         emit_cmpimm(s1l,1);
4923         if(s1h>=0) emit_mov(addr,ntaddr);
4924         emit_cmovl_reg(alt,addr);
4925         if(s1h>=0) {
4926           emit_test(s1h,s1h);
4927           emit_cmovne_reg(ntaddr,addr);
4928           emit_cmovs_reg(alt,addr);
4929         }
4930       }
4931       if((opcode[i]&0x2f)==7) // BGTZ
4932       {
4933         //emit_movimm(ba[i],addr);
4934         //emit_movimm(start+i*4+8,ntaddr);
4935         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4936         emit_cmpimm(s1l,1);
4937         if(s1h>=0) emit_mov(addr,alt);
4938         emit_cmovl_reg(ntaddr,addr);
4939         if(s1h>=0) {
4940           emit_test(s1h,s1h);
4941           emit_cmovne_reg(alt,addr);
4942           emit_cmovs_reg(ntaddr,addr);
4943         }
4944       }
4945       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4946       {
4947         //emit_movimm(ba[i],alt);
4948         //emit_movimm(start+i*4+8,addr);
4949         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4950         if(s1h>=0) emit_test(s1h,s1h);
4951         else emit_test(s1l,s1l);
4952         emit_cmovs_reg(alt,addr);
4953       }
4954       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4955       {
4956         //emit_movimm(ba[i],addr);
4957         //emit_movimm(start+i*4+8,alt);
4958         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4959         if(s1h>=0) emit_test(s1h,s1h);
4960         else emit_test(s1l,s1l);
4961         emit_cmovs_reg(alt,addr);
4962       }
4963       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4964         if(source[i]&0x10000) // BC1T
4965         {
4966           //emit_movimm(ba[i],alt);
4967           //emit_movimm(start+i*4+8,addr);
4968           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4969           emit_testimm(s1l,0x800000);
4970           emit_cmovne_reg(alt,addr);
4971         }
4972         else // BC1F
4973         {
4974           //emit_movimm(ba[i],addr);
4975           //emit_movimm(start+i*4+8,alt);
4976           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4977           emit_testimm(s1l,0x800000);
4978           emit_cmovne_reg(alt,addr);
4979         }
4980       }
4981       emit_writeword(addr,(int)&pcaddr);
4982     }
4983     else
4984     if(itype[i]==RJUMP)
4985     {
4986       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4987       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4988         r=get_reg(branch_regs[i].regmap,RTEMP);
4989       }
4990       emit_writeword(r,(int)&pcaddr);
4991     }
4992     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4993   }
4994   // Update cycle count
4995   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4996   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4997   emit_call((int)cc_interrupt);
4998   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4999   if(stubs[n][6]==TAKEN) {
5000     if(internal_branch(branch_regs[i].is32,ba[i]))
5001       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5002     else if(itype[i]==RJUMP) {
5003       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5004         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5005       else
5006         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5007     }
5008   }else if(stubs[n][6]==NOTTAKEN) {
5009     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5010     else load_all_regs(branch_regs[i].regmap);
5011   }else if(stubs[n][6]==NULLDS) {
5012     // Delay slot instruction is nullified ("likely" branch)
5013     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5014     else load_all_regs(regs[i].regmap);
5015   }else{
5016     load_all_regs(branch_regs[i].regmap);
5017   }
5018   emit_jmp(stubs[n][2]); // return address
5019   
5020   /* This works but uses a lot of memory...
5021   emit_readword((int)&last_count,ECX);
5022   emit_add(HOST_CCREG,ECX,EAX);
5023   emit_writeword(EAX,(int)&Count);
5024   emit_call((int)gen_interupt);
5025   emit_readword((int)&Count,HOST_CCREG);
5026   emit_readword((int)&next_interupt,EAX);
5027   emit_readword((int)&pending_exception,EBX);
5028   emit_writeword(EAX,(int)&last_count);
5029   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5030   emit_test(EBX,EBX);
5031   int jne_instr=(int)out;
5032   emit_jne(0);
5033   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5034   load_all_regs(branch_regs[i].regmap);
5035   emit_jmp(stubs[n][2]); // return address
5036   set_jump_target(jne_instr,(int)out);
5037   emit_readword((int)&pcaddr,EAX);
5038   // Call get_addr_ht instead of doing the hash table here.
5039   // This code is executed infrequently and takes up a lot of space
5040   // so smaller is better.
5041   emit_storereg(CCREG,HOST_CCREG);
5042   emit_pushreg(EAX);
5043   emit_call((int)get_addr_ht);
5044   emit_loadreg(CCREG,HOST_CCREG);
5045   emit_addimm(ESP,4,ESP);
5046   emit_jmpreg(EAX);*/
5047 }
5048
5049 add_to_linker(int addr,int target,int ext)
5050 {
5051   link_addr[linkcount][0]=addr;
5052   link_addr[linkcount][1]=target;
5053   link_addr[linkcount][2]=ext;  
5054   linkcount++;
5055 }
5056
5057 void ujump_assemble(int i,struct regstat *i_regs)
5058 {
5059   signed char *i_regmap=i_regs->regmap;
5060   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5061   address_generation(i+1,i_regs,regs[i].regmap_entry);
5062   #ifdef REG_PREFETCH
5063   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5064   if(rt1[i]==31&&temp>=0) 
5065   {
5066     int return_address=start+i*4+8;
5067     if(get_reg(branch_regs[i].regmap,31)>0) 
5068     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5069   }
5070   #endif
5071   ds_assemble(i+1,i_regs);
5072   uint64_t bc_unneeded=branch_regs[i].u;
5073   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5074   bc_unneeded|=1|(1LL<<rt1[i]);
5075   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5076   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5077                 bc_unneeded,bc_unneeded_upper);
5078   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5079   if(rt1[i]==31) {
5080     int rt;
5081     unsigned int return_address;
5082     assert(rt1[i+1]!=31);
5083     assert(rt2[i+1]!=31);
5084     rt=get_reg(branch_regs[i].regmap,31);
5085     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5086     //assert(rt>=0);
5087     return_address=start+i*4+8;
5088     if(rt>=0) {
5089       #ifdef USE_MINI_HT
5090       if(internal_branch(branch_regs[i].is32,return_address)) {
5091         int temp=rt+1;
5092         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5093            branch_regs[i].regmap[temp]>=0)
5094         {
5095           temp=get_reg(branch_regs[i].regmap,-1);
5096         }
5097         #ifdef HOST_TEMPREG
5098         if(temp<0) temp=HOST_TEMPREG;
5099         #endif
5100         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5101         else emit_movimm(return_address,rt);
5102       }
5103       else
5104       #endif
5105       {
5106         #ifdef REG_PREFETCH
5107         if(temp>=0) 
5108         {
5109           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5110         }
5111         #endif
5112         emit_movimm(return_address,rt); // PC into link register
5113         #ifdef IMM_PREFETCH
5114         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5115         #endif
5116       }
5117     }
5118   }
5119   int cc,adj;
5120   cc=get_reg(branch_regs[i].regmap,CCREG);
5121   assert(cc==HOST_CCREG);
5122   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5123   #ifdef REG_PREFETCH
5124   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5125   #endif
5126   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5127   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5128   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5129   if(internal_branch(branch_regs[i].is32,ba[i]))
5130     assem_debug("branch: internal\n");
5131   else
5132     assem_debug("branch: external\n");
5133   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5134     ds_assemble_entry(i);
5135   }
5136   else {
5137     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5138     emit_jmp(0);
5139   }
5140 }
5141
5142 void rjump_assemble(int i,struct regstat *i_regs)
5143 {
5144   signed char *i_regmap=i_regs->regmap;
5145   int temp;
5146   int rs,cc,adj;
5147   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5148   assert(rs>=0);
5149   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5150     // Delay slot abuse, make a copy of the branch address register
5151     temp=get_reg(branch_regs[i].regmap,RTEMP);
5152     assert(temp>=0);
5153     assert(regs[i].regmap[temp]==RTEMP);
5154     emit_mov(rs,temp);
5155     rs=temp;
5156   }
5157   address_generation(i+1,i_regs,regs[i].regmap_entry);
5158   #ifdef REG_PREFETCH
5159   if(rt1[i]==31) 
5160   {
5161     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5162       int return_address=start+i*4+8;
5163       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5164     }
5165   }
5166   #endif
5167   #ifdef USE_MINI_HT
5168   if(rs1[i]==31) {
5169     int rh=get_reg(regs[i].regmap,RHASH);
5170     if(rh>=0) do_preload_rhash(rh);
5171   }
5172   #endif
5173   ds_assemble(i+1,i_regs);
5174   uint64_t bc_unneeded=branch_regs[i].u;
5175   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5176   bc_unneeded|=1|(1LL<<rt1[i]);
5177   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5178   bc_unneeded&=~(1LL<<rs1[i]);
5179   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5180                 bc_unneeded,bc_unneeded_upper);
5181   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5182   if(rt1[i]!=0) {
5183     int rt,return_address;
5184     assert(rt1[i+1]!=rt1[i]);
5185     assert(rt2[i+1]!=rt1[i]);
5186     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5187     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5188     assert(rt>=0);
5189     return_address=start+i*4+8;
5190     #ifdef REG_PREFETCH
5191     if(temp>=0) 
5192     {
5193       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5194     }
5195     #endif
5196     emit_movimm(return_address,rt); // PC into link register
5197     #ifdef IMM_PREFETCH
5198     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5199     #endif
5200   }
5201   cc=get_reg(branch_regs[i].regmap,CCREG);
5202   assert(cc==HOST_CCREG);
5203   #ifdef USE_MINI_HT
5204   int rh=get_reg(branch_regs[i].regmap,RHASH);
5205   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5206   if(rs1[i]==31) {
5207     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5208     do_preload_rhtbl(ht);
5209     do_rhash(rs,rh);
5210   }
5211   #endif
5212   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5213   #ifdef DESTRUCTIVE_WRITEBACK
5214   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5215     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5216       emit_loadreg(rs1[i],rs);
5217     }
5218   }
5219   #endif
5220   #ifdef REG_PREFETCH
5221   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5222   #endif
5223   #ifdef USE_MINI_HT
5224   if(rs1[i]==31) {
5225     do_miniht_load(ht,rh);
5226   }
5227   #endif
5228   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5229   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5230   //assert(adj==0);
5231   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5232   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5233   emit_jns(0);
5234   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5235   #ifdef USE_MINI_HT
5236   if(rs1[i]==31) {
5237     do_miniht_jump(rs,rh,ht);
5238   }
5239   else
5240   #endif
5241   {
5242     //if(rs!=EAX) emit_mov(rs,EAX);
5243     //emit_jmp((int)jump_vaddr_eax);
5244     emit_jmp(jump_vaddr_reg[rs]);
5245   }
5246   /* Check hash table
5247   temp=!rs;
5248   emit_mov(rs,temp);
5249   emit_shrimm(rs,16,rs);
5250   emit_xor(temp,rs,rs);
5251   emit_movzwl_reg(rs,rs);
5252   emit_shlimm(rs,4,rs);
5253   emit_cmpmem_indexed((int)hash_table,rs,temp);
5254   emit_jne((int)out+14);
5255   emit_readword_indexed((int)hash_table+4,rs,rs);
5256   emit_jmpreg(rs);
5257   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5258   emit_addimm_no_flags(8,rs);
5259   emit_jeq((int)out-17);
5260   // No hit on hash table, call compiler
5261   emit_pushreg(temp);
5262 //DEBUG >
5263 #ifdef DEBUG_CYCLE_COUNT
5264   emit_readword((int)&last_count,ECX);
5265   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5266   emit_readword((int)&next_interupt,ECX);
5267   emit_writeword(HOST_CCREG,(int)&Count);
5268   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5269   emit_writeword(ECX,(int)&last_count);
5270 #endif
5271 //DEBUG <
5272   emit_storereg(CCREG,HOST_CCREG);
5273   emit_call((int)get_addr);
5274   emit_loadreg(CCREG,HOST_CCREG);
5275   emit_addimm(ESP,4,ESP);
5276   emit_jmpreg(EAX);*/
5277   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5278   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5279   #endif
5280 }
5281
5282 void cjump_assemble(int i,struct regstat *i_regs)
5283 {
5284   signed char *i_regmap=i_regs->regmap;
5285   int cc;
5286   int match;
5287   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5288   assem_debug("match=%d\n",match);
5289   int s1h,s1l,s2h,s2l;
5290   int prev_cop1_usable=cop1_usable;
5291   int unconditional=0,nop=0;
5292   int only32=0;
5293   int ooo=1;
5294   int invert=0;
5295   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5296   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5297   if(likely[i]) ooo=0;
5298   if(!match) invert=1;
5299   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5300   if(i>(ba[i]-start)>>2) invert=1;
5301   #endif
5302     
5303   if(ooo)
5304     if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5305        (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5306   {
5307     // Write-after-read dependency prevents out of order execution
5308     // First test branch condition, then execute delay slot, then branch
5309     ooo=0;
5310   }
5311
5312   if(ooo) {
5313     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5314     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5315     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5316     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5317   }
5318   else {
5319     s1l=get_reg(i_regmap,rs1[i]);
5320     s1h=get_reg(i_regmap,rs1[i]|64);
5321     s2l=get_reg(i_regmap,rs2[i]);
5322     s2h=get_reg(i_regmap,rs2[i]|64);
5323   }
5324   if(rs1[i]==0&&rs2[i]==0)
5325   {
5326     if(opcode[i]&1) nop=1;
5327     else unconditional=1;
5328     //assert(opcode[i]!=5);
5329     //assert(opcode[i]!=7);
5330     //assert(opcode[i]!=0x15);
5331     //assert(opcode[i]!=0x17);
5332   }
5333   else if(rs1[i]==0)
5334   {
5335     s1l=s2l;s1h=s2h;
5336     s2l=s2h=-1;
5337     only32=(regs[i].was32>>rs2[i])&1;
5338   }
5339   else if(rs2[i]==0)
5340   {
5341     s2l=s2h=-1;
5342     only32=(regs[i].was32>>rs1[i])&1;
5343   }
5344   else {
5345     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5346   }
5347
5348   if(ooo) {
5349     // Out of order execution (delay slot first)
5350     //printf("OOOE\n");
5351     address_generation(i+1,i_regs,regs[i].regmap_entry);
5352     ds_assemble(i+1,i_regs);
5353     int adj;
5354     uint64_t bc_unneeded=branch_regs[i].u;
5355     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5356     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5357     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5358     bc_unneeded|=1;
5359     bc_unneeded_upper|=1;
5360     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5361                   bc_unneeded,bc_unneeded_upper);
5362     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5363     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5364     cc=get_reg(branch_regs[i].regmap,CCREG);
5365     assert(cc==HOST_CCREG);
5366     if(unconditional) 
5367       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5368     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5369     //assem_debug("cycle count (adj)\n");
5370     if(unconditional) {
5371       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5372       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5373         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5374         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5375         if(internal)
5376           assem_debug("branch: internal\n");
5377         else
5378           assem_debug("branch: external\n");
5379         if(internal&&is_ds[(ba[i]-start)>>2]) {
5380           ds_assemble_entry(i);
5381         }
5382         else {
5383           add_to_linker((int)out,ba[i],internal);
5384           emit_jmp(0);
5385         }
5386         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5387         if(((u_int)out)&7) emit_addnop(0);
5388         #endif
5389       }
5390     }
5391     else if(nop) {
5392       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5393       int jaddr=(int)out;
5394       emit_jns(0);
5395       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5396     }
5397     else {
5398       int taken=0,nottaken=0,nottaken1=0;
5399       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5400       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5401       if(!only32)
5402       {
5403         assert(s1h>=0);
5404         if(opcode[i]==4) // BEQ
5405         {
5406           if(s2h>=0) emit_cmp(s1h,s2h);
5407           else emit_test(s1h,s1h);
5408           nottaken1=(int)out;
5409           emit_jne(1);
5410         }
5411         if(opcode[i]==5) // BNE
5412         {
5413           if(s2h>=0) emit_cmp(s1h,s2h);
5414           else emit_test(s1h,s1h);
5415           if(invert) taken=(int)out;
5416           else add_to_linker((int)out,ba[i],internal);
5417           emit_jne(0);
5418         }
5419         if(opcode[i]==6) // BLEZ
5420         {
5421           emit_test(s1h,s1h);
5422           if(invert) taken=(int)out;
5423           else add_to_linker((int)out,ba[i],internal);
5424           emit_js(0);
5425           nottaken1=(int)out;
5426           emit_jne(1);
5427         }
5428         if(opcode[i]==7) // BGTZ
5429         {
5430           emit_test(s1h,s1h);
5431           nottaken1=(int)out;
5432           emit_js(1);
5433           if(invert) taken=(int)out;
5434           else add_to_linker((int)out,ba[i],internal);
5435           emit_jne(0);
5436         }
5437       } // if(!only32)
5438           
5439       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5440       assert(s1l>=0);
5441       if(opcode[i]==4) // BEQ
5442       {
5443         if(s2l>=0) emit_cmp(s1l,s2l);
5444         else emit_test(s1l,s1l);
5445         if(invert){
5446           nottaken=(int)out;
5447           emit_jne(1);
5448         }else{
5449           add_to_linker((int)out,ba[i],internal);
5450           emit_jeq(0);
5451         }
5452       }
5453       if(opcode[i]==5) // BNE
5454       {
5455         if(s2l>=0) emit_cmp(s1l,s2l);
5456         else emit_test(s1l,s1l);
5457         if(invert){
5458           nottaken=(int)out;
5459           emit_jeq(1);
5460         }else{
5461           add_to_linker((int)out,ba[i],internal);
5462           emit_jne(0);
5463         }
5464       }
5465       if(opcode[i]==6) // BLEZ
5466       {
5467         emit_cmpimm(s1l,1);
5468         if(invert){
5469           nottaken=(int)out;
5470           emit_jge(1);
5471         }else{
5472           add_to_linker((int)out,ba[i],internal);
5473           emit_jl(0);
5474         }
5475       }
5476       if(opcode[i]==7) // BGTZ
5477       {
5478         emit_cmpimm(s1l,1);
5479         if(invert){
5480           nottaken=(int)out;
5481           emit_jl(1);
5482         }else{
5483           add_to_linker((int)out,ba[i],internal);
5484           emit_jge(0);
5485         }
5486       }
5487       if(invert) {
5488         if(taken) set_jump_target(taken,(int)out);
5489         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5490         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5491           if(adj) {
5492             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5493             add_to_linker((int)out,ba[i],internal);
5494           }else{
5495             emit_addnop(13);
5496             add_to_linker((int)out,ba[i],internal*2);
5497           }
5498           emit_jmp(0);
5499         }else
5500         #endif
5501         {
5502           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5503           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5504           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5505           if(internal)
5506             assem_debug("branch: internal\n");
5507           else
5508             assem_debug("branch: external\n");
5509           if(internal&&is_ds[(ba[i]-start)>>2]) {
5510             ds_assemble_entry(i);
5511           }
5512           else {
5513             add_to_linker((int)out,ba[i],internal);
5514             emit_jmp(0);
5515           }
5516         }
5517         set_jump_target(nottaken,(int)out);
5518       }
5519
5520       if(nottaken1) set_jump_target(nottaken1,(int)out);
5521       if(adj) {
5522         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5523       }
5524     } // (!unconditional)
5525   } // if(ooo)
5526   else
5527   {
5528     // In-order execution (branch first)
5529     //if(likely[i]) printf("IOL\n");
5530     //else
5531     //printf("IOE\n");
5532     int taken=0,nottaken=0,nottaken1=0;
5533     if(!unconditional&&!nop) {
5534       if(!only32)
5535       {
5536         assert(s1h>=0);
5537         if((opcode[i]&0x2f)==4) // BEQ
5538         {
5539           if(s2h>=0) emit_cmp(s1h,s2h);
5540           else emit_test(s1h,s1h);
5541           nottaken1=(int)out;
5542           emit_jne(2);
5543         }
5544         if((opcode[i]&0x2f)==5) // BNE
5545         {
5546           if(s2h>=0) emit_cmp(s1h,s2h);
5547           else emit_test(s1h,s1h);
5548           taken=(int)out;
5549           emit_jne(1);
5550         }
5551         if((opcode[i]&0x2f)==6) // BLEZ
5552         {
5553           emit_test(s1h,s1h);
5554           taken=(int)out;
5555           emit_js(1);
5556           nottaken1=(int)out;
5557           emit_jne(2);
5558         }
5559         if((opcode[i]&0x2f)==7) // BGTZ
5560         {
5561           emit_test(s1h,s1h);
5562           nottaken1=(int)out;
5563           emit_js(2);
5564           taken=(int)out;
5565           emit_jne(1);
5566         }
5567       } // if(!only32)
5568           
5569       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5570       assert(s1l>=0);
5571       if((opcode[i]&0x2f)==4) // BEQ
5572       {
5573         if(s2l>=0) emit_cmp(s1l,s2l);
5574         else emit_test(s1l,s1l);
5575         nottaken=(int)out;
5576         emit_jne(2);
5577       }
5578       if((opcode[i]&0x2f)==5) // BNE
5579       {
5580         if(s2l>=0) emit_cmp(s1l,s2l);
5581         else emit_test(s1l,s1l);
5582         nottaken=(int)out;
5583         emit_jeq(2);
5584       }
5585       if((opcode[i]&0x2f)==6) // BLEZ
5586       {
5587         emit_cmpimm(s1l,1);
5588         nottaken=(int)out;
5589         emit_jge(2);
5590       }
5591       if((opcode[i]&0x2f)==7) // BGTZ
5592       {
5593         emit_cmpimm(s1l,1);
5594         nottaken=(int)out;
5595         emit_jl(2);
5596       }
5597     } // if(!unconditional)
5598     int adj;
5599     uint64_t ds_unneeded=branch_regs[i].u;
5600     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5601     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5602     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5603     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5604     ds_unneeded|=1;
5605     ds_unneeded_upper|=1;
5606     // branch taken
5607     if(!nop) {
5608       if(taken) set_jump_target(taken,(int)out);
5609       assem_debug("1:\n");
5610       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5611                     ds_unneeded,ds_unneeded_upper);
5612       // load regs
5613       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5614       address_generation(i+1,&branch_regs[i],0);
5615       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5616       ds_assemble(i+1,&branch_regs[i]);
5617       cc=get_reg(branch_regs[i].regmap,CCREG);
5618       if(cc==-1) {
5619         emit_loadreg(CCREG,cc=HOST_CCREG);
5620         // CHECK: Is the following instruction (fall thru) allocated ok?
5621       }
5622       assert(cc==HOST_CCREG);
5623       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5624       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5625       assem_debug("cycle count (adj)\n");
5626       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5627       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5628       if(internal)
5629         assem_debug("branch: internal\n");
5630       else
5631         assem_debug("branch: external\n");
5632       if(internal&&is_ds[(ba[i]-start)>>2]) {
5633         ds_assemble_entry(i);
5634       }
5635       else {
5636         add_to_linker((int)out,ba[i],internal);
5637         emit_jmp(0);
5638       }
5639     }
5640     // branch not taken
5641     cop1_usable=prev_cop1_usable;
5642     if(!unconditional) {
5643       if(nottaken1) set_jump_target(nottaken1,(int)out);
5644       set_jump_target(nottaken,(int)out);
5645       assem_debug("2:\n");
5646       if(!likely[i]) {
5647         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5648                       ds_unneeded,ds_unneeded_upper);
5649         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5650         address_generation(i+1,&branch_regs[i],0);
5651         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5652         ds_assemble(i+1,&branch_regs[i]);
5653       }
5654       cc=get_reg(branch_regs[i].regmap,CCREG);
5655       if(cc==-1&&!likely[i]) {
5656         // Cycle count isn't in a register, temporarily load it then write it out
5657         emit_loadreg(CCREG,HOST_CCREG);
5658         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5659         int jaddr=(int)out;
5660         emit_jns(0);
5661         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5662         emit_storereg(CCREG,HOST_CCREG);
5663       }
5664       else{
5665         cc=get_reg(i_regmap,CCREG);
5666         assert(cc==HOST_CCREG);
5667         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5668         int jaddr=(int)out;
5669         emit_jns(0);
5670         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5671       }
5672     }
5673   }
5674 }
5675
5676 void sjump_assemble(int i,struct regstat *i_regs)
5677 {
5678   signed char *i_regmap=i_regs->regmap;
5679   int cc;
5680   int match;
5681   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5682   assem_debug("smatch=%d\n",match);
5683   int s1h,s1l;
5684   int prev_cop1_usable=cop1_usable;
5685   int unconditional=0,nevertaken=0;
5686   int only32=0;
5687   int ooo=1;
5688   int invert=0;
5689   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5690   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5691   if(likely[i]) ooo=0;
5692   if(!match) invert=1;
5693   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5694   if(i>(ba[i]-start)>>2) invert=1;
5695   #endif
5696
5697   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5698   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5699
5700   if(ooo) {
5701     if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5702     {
5703       // Write-after-read dependency prevents out of order execution
5704       // First test branch condition, then execute delay slot, then branch
5705       ooo=0;
5706     }
5707     if(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))
5708       // BxxZAL $ra is available to delay insn, so do it in order
5709       ooo=0;
5710   }
5711
5712   if(ooo) {
5713     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5714     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5715   }
5716   else {
5717     s1l=get_reg(i_regmap,rs1[i]);
5718     s1h=get_reg(i_regmap,rs1[i]|64);
5719   }
5720   if(rs1[i]==0)
5721   {
5722     if(opcode2[i]&1) unconditional=1;
5723     else nevertaken=1;
5724     // These are never taken (r0 is never less than zero)
5725     //assert(opcode2[i]!=0);
5726     //assert(opcode2[i]!=2);
5727     //assert(opcode2[i]!=0x10);
5728     //assert(opcode2[i]!=0x12);
5729   }
5730   else {
5731     only32=(regs[i].was32>>rs1[i])&1;
5732   }
5733
5734   if(ooo) {
5735     // Out of order execution (delay slot first)
5736     //printf("OOOE\n");
5737     address_generation(i+1,i_regs,regs[i].regmap_entry);
5738     ds_assemble(i+1,i_regs);
5739     int adj;
5740     uint64_t bc_unneeded=branch_regs[i].u;
5741     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5742     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5743     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5744     bc_unneeded|=1;
5745     bc_unneeded_upper|=1;
5746     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5747                   bc_unneeded,bc_unneeded_upper);
5748     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5749     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5750     if(rt1[i]==31) {
5751       int rt,return_address;
5752       rt=get_reg(branch_regs[i].regmap,31);
5753       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5754       if(rt>=0) {
5755         // Save the PC even if the branch is not taken
5756         return_address=start+i*4+8;
5757         emit_movimm(return_address,rt); // PC into link register
5758         #ifdef IMM_PREFETCH
5759         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5760         #endif
5761       }
5762     }
5763     cc=get_reg(branch_regs[i].regmap,CCREG);
5764     assert(cc==HOST_CCREG);
5765     if(unconditional) 
5766       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5767     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5768     assem_debug("cycle count (adj)\n");
5769     if(unconditional) {
5770       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5771       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5772         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5773         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5774         if(internal)
5775           assem_debug("branch: internal\n");
5776         else
5777           assem_debug("branch: external\n");
5778         if(internal&&is_ds[(ba[i]-start)>>2]) {
5779           ds_assemble_entry(i);
5780         }
5781         else {
5782           add_to_linker((int)out,ba[i],internal);
5783           emit_jmp(0);
5784         }
5785         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5786         if(((u_int)out)&7) emit_addnop(0);
5787         #endif
5788       }
5789     }
5790     else if(nevertaken) {
5791       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5792       int jaddr=(int)out;
5793       emit_jns(0);
5794       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5795     }
5796     else {
5797       int nottaken=0;
5798       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5799       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5800       if(!only32)
5801       {
5802         assert(s1h>=0);
5803         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5804         {
5805           emit_test(s1h,s1h);
5806           if(invert){
5807             nottaken=(int)out;
5808             emit_jns(1);
5809           }else{
5810             add_to_linker((int)out,ba[i],internal);
5811             emit_js(0);
5812           }
5813         }
5814         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5815         {
5816           emit_test(s1h,s1h);
5817           if(invert){
5818             nottaken=(int)out;
5819             emit_js(1);
5820           }else{
5821             add_to_linker((int)out,ba[i],internal);
5822             emit_jns(0);
5823           }
5824         }
5825       } // if(!only32)
5826       else
5827       {
5828         assert(s1l>=0);
5829         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5830         {
5831           emit_test(s1l,s1l);
5832           if(invert){
5833             nottaken=(int)out;
5834             emit_jns(1);
5835           }else{
5836             add_to_linker((int)out,ba[i],internal);
5837             emit_js(0);
5838           }
5839         }
5840         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5841         {
5842           emit_test(s1l,s1l);
5843           if(invert){
5844             nottaken=(int)out;
5845             emit_js(1);
5846           }else{
5847             add_to_linker((int)out,ba[i],internal);
5848             emit_jns(0);
5849           }
5850         }
5851       } // if(!only32)
5852           
5853       if(invert) {
5854         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5855         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5856           if(adj) {
5857             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5858             add_to_linker((int)out,ba[i],internal);
5859           }else{
5860             emit_addnop(13);
5861             add_to_linker((int)out,ba[i],internal*2);
5862           }
5863           emit_jmp(0);
5864         }else
5865         #endif
5866         {
5867           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5868           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5869           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5870           if(internal)
5871             assem_debug("branch: internal\n");
5872           else
5873             assem_debug("branch: external\n");
5874           if(internal&&is_ds[(ba[i]-start)>>2]) {
5875             ds_assemble_entry(i);
5876           }
5877           else {
5878             add_to_linker((int)out,ba[i],internal);
5879             emit_jmp(0);
5880           }
5881         }
5882         set_jump_target(nottaken,(int)out);
5883       }
5884
5885       if(adj) {
5886         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5887       }
5888     } // (!unconditional)
5889   } // if(ooo)
5890   else
5891   {
5892     // In-order execution (branch first)
5893     //printf("IOE\n");
5894     int nottaken=0;
5895     if(rt1[i]==31) {
5896       int rt,return_address;
5897       rt=get_reg(branch_regs[i].regmap,31);
5898       if(rt>=0) {
5899         // Save the PC even if the branch is not taken
5900         return_address=start+i*4+8;
5901         emit_movimm(return_address,rt); // PC into link register
5902         #ifdef IMM_PREFETCH
5903         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5904         #endif
5905       }
5906     }
5907     if(!unconditional) {
5908       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5909       if(!only32)
5910       {
5911         assert(s1h>=0);
5912         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5913         {
5914           emit_test(s1h,s1h);
5915           nottaken=(int)out;
5916           emit_jns(1);
5917         }
5918         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5919         {
5920           emit_test(s1h,s1h);
5921           nottaken=(int)out;
5922           emit_js(1);
5923         }
5924       } // if(!only32)
5925       else
5926       {
5927         assert(s1l>=0);
5928         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5929         {
5930           emit_test(s1l,s1l);
5931           nottaken=(int)out;
5932           emit_jns(1);
5933         }
5934         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5935         {
5936           emit_test(s1l,s1l);
5937           nottaken=(int)out;
5938           emit_js(1);
5939         }
5940       }
5941     } // if(!unconditional)
5942     int adj;
5943     uint64_t ds_unneeded=branch_regs[i].u;
5944     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5945     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5946     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5947     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5948     ds_unneeded|=1;
5949     ds_unneeded_upper|=1;
5950     // branch taken
5951     if(!nevertaken) {
5952       //assem_debug("1:\n");
5953       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5954                     ds_unneeded,ds_unneeded_upper);
5955       // load regs
5956       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5957       address_generation(i+1,&branch_regs[i],0);
5958       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5959       ds_assemble(i+1,&branch_regs[i]);
5960       cc=get_reg(branch_regs[i].regmap,CCREG);
5961       if(cc==-1) {
5962         emit_loadreg(CCREG,cc=HOST_CCREG);
5963         // CHECK: Is the following instruction (fall thru) allocated ok?
5964       }
5965       assert(cc==HOST_CCREG);
5966       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5967       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5968       assem_debug("cycle count (adj)\n");
5969       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5970       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5971       if(internal)
5972         assem_debug("branch: internal\n");
5973       else
5974         assem_debug("branch: external\n");
5975       if(internal&&is_ds[(ba[i]-start)>>2]) {
5976         ds_assemble_entry(i);
5977       }
5978       else {
5979         add_to_linker((int)out,ba[i],internal);
5980         emit_jmp(0);
5981       }
5982     }
5983     // branch not taken
5984     cop1_usable=prev_cop1_usable;
5985     if(!unconditional) {
5986       set_jump_target(nottaken,(int)out);
5987       assem_debug("1:\n");
5988       if(!likely[i]) {
5989         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5990                       ds_unneeded,ds_unneeded_upper);
5991         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5992         address_generation(i+1,&branch_regs[i],0);
5993         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5994         ds_assemble(i+1,&branch_regs[i]);
5995       }
5996       cc=get_reg(branch_regs[i].regmap,CCREG);
5997       if(cc==-1&&!likely[i]) {
5998         // Cycle count isn't in a register, temporarily load it then write it out
5999         emit_loadreg(CCREG,HOST_CCREG);
6000         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6001         int jaddr=(int)out;
6002         emit_jns(0);
6003         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6004         emit_storereg(CCREG,HOST_CCREG);
6005       }
6006       else{
6007         cc=get_reg(i_regmap,CCREG);
6008         assert(cc==HOST_CCREG);
6009         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6010         int jaddr=(int)out;
6011         emit_jns(0);
6012         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6013       }
6014     }
6015   }
6016 }
6017
6018 void fjump_assemble(int i,struct regstat *i_regs)
6019 {
6020   signed char *i_regmap=i_regs->regmap;
6021   int cc;
6022   int match;
6023   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6024   assem_debug("fmatch=%d\n",match);
6025   int fs,cs;
6026   int eaddr;
6027   int ooo=1;
6028   int invert=0;
6029   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6030   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6031   if(likely[i]) ooo=0;
6032   if(!match) invert=1;
6033   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6034   if(i>(ba[i]-start)>>2) invert=1;
6035   #endif
6036
6037   if(ooo)
6038     if(itype[i+1]==FCOMP)
6039   {
6040     // Write-after-read dependency prevents out of order execution
6041     // First test branch condition, then execute delay slot, then branch
6042     ooo=0;
6043   }
6044
6045   if(ooo) {
6046     fs=get_reg(branch_regs[i].regmap,FSREG);
6047     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6048   }
6049   else {
6050     fs=get_reg(i_regmap,FSREG);
6051   }
6052
6053   // Check cop1 unusable
6054   if(!cop1_usable) {
6055     cs=get_reg(i_regmap,CSREG);
6056     assert(cs>=0);
6057     emit_testimm(cs,0x20000000);
6058     eaddr=(int)out;
6059     emit_jeq(0);
6060     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6061     cop1_usable=1;
6062   }
6063
6064   if(ooo) {
6065     // Out of order execution (delay slot first)
6066     //printf("OOOE\n");
6067     ds_assemble(i+1,i_regs);
6068     int adj;
6069     uint64_t bc_unneeded=branch_regs[i].u;
6070     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6071     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6072     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6073     bc_unneeded|=1;
6074     bc_unneeded_upper|=1;
6075     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6076                   bc_unneeded,bc_unneeded_upper);
6077     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6078     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6079     cc=get_reg(branch_regs[i].regmap,CCREG);
6080     assert(cc==HOST_CCREG);
6081     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6082     assem_debug("cycle count (adj)\n");
6083     if(1) {
6084       int nottaken=0;
6085       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6086       if(1) {
6087         assert(fs>=0);
6088         emit_testimm(fs,0x800000);
6089         if(source[i]&0x10000) // BC1T
6090         {
6091           if(invert){
6092             nottaken=(int)out;
6093             emit_jeq(1);
6094           }else{
6095             add_to_linker((int)out,ba[i],internal);
6096             emit_jne(0);
6097           }
6098         }
6099         else // BC1F
6100           if(invert){
6101             nottaken=(int)out;
6102             emit_jne(1);
6103           }else{
6104             add_to_linker((int)out,ba[i],internal);
6105             emit_jeq(0);
6106           }
6107         {
6108         }
6109       } // if(!only32)
6110           
6111       if(invert) {
6112         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6113         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6114         else if(match) emit_addnop(13);
6115         #endif
6116         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6117         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6118         if(internal)
6119           assem_debug("branch: internal\n");
6120         else
6121           assem_debug("branch: external\n");
6122         if(internal&&is_ds[(ba[i]-start)>>2]) {
6123           ds_assemble_entry(i);
6124         }
6125         else {
6126           add_to_linker((int)out,ba[i],internal);
6127           emit_jmp(0);
6128         }
6129         set_jump_target(nottaken,(int)out);
6130       }
6131
6132       if(adj) {
6133         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6134       }
6135     } // (!unconditional)
6136   } // if(ooo)
6137   else
6138   {
6139     // In-order execution (branch first)
6140     //printf("IOE\n");
6141     int nottaken=0;
6142     if(1) {
6143       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6144       if(1) {
6145         assert(fs>=0);
6146         emit_testimm(fs,0x800000);
6147         if(source[i]&0x10000) // BC1T
6148         {
6149           nottaken=(int)out;
6150           emit_jeq(1);
6151         }
6152         else // BC1F
6153         {
6154           nottaken=(int)out;
6155           emit_jne(1);
6156         }
6157       }
6158     } // if(!unconditional)
6159     int adj;
6160     uint64_t ds_unneeded=branch_regs[i].u;
6161     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6162     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6163     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6164     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6165     ds_unneeded|=1;
6166     ds_unneeded_upper|=1;
6167     // branch taken
6168     //assem_debug("1:\n");
6169     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6170                   ds_unneeded,ds_unneeded_upper);
6171     // load regs
6172     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6173     address_generation(i+1,&branch_regs[i],0);
6174     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6175     ds_assemble(i+1,&branch_regs[i]);
6176     cc=get_reg(branch_regs[i].regmap,CCREG);
6177     if(cc==-1) {
6178       emit_loadreg(CCREG,cc=HOST_CCREG);
6179       // CHECK: Is the following instruction (fall thru) allocated ok?
6180     }
6181     assert(cc==HOST_CCREG);
6182     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6183     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6184     assem_debug("cycle count (adj)\n");
6185     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6186     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6187     if(internal)
6188       assem_debug("branch: internal\n");
6189     else
6190       assem_debug("branch: external\n");
6191     if(internal&&is_ds[(ba[i]-start)>>2]) {
6192       ds_assemble_entry(i);
6193     }
6194     else {
6195       add_to_linker((int)out,ba[i],internal);
6196       emit_jmp(0);
6197     }
6198
6199     // branch not taken
6200     if(1) { // <- FIXME (don't need this)
6201       set_jump_target(nottaken,(int)out);
6202       assem_debug("1:\n");
6203       if(!likely[i]) {
6204         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6205                       ds_unneeded,ds_unneeded_upper);
6206         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6207         address_generation(i+1,&branch_regs[i],0);
6208         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6209         ds_assemble(i+1,&branch_regs[i]);
6210       }
6211       cc=get_reg(branch_regs[i].regmap,CCREG);
6212       if(cc==-1&&!likely[i]) {
6213         // Cycle count isn't in a register, temporarily load it then write it out
6214         emit_loadreg(CCREG,HOST_CCREG);
6215         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6216         int jaddr=(int)out;
6217         emit_jns(0);
6218         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6219         emit_storereg(CCREG,HOST_CCREG);
6220       }
6221       else{
6222         cc=get_reg(i_regmap,CCREG);
6223         assert(cc==HOST_CCREG);
6224         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6225         int jaddr=(int)out;
6226         emit_jns(0);
6227         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6228       }
6229     }
6230   }
6231 }
6232
6233 static void pagespan_assemble(int i,struct regstat *i_regs)
6234 {
6235   int s1l=get_reg(i_regs->regmap,rs1[i]);
6236   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6237   int s2l=get_reg(i_regs->regmap,rs2[i]);
6238   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6239   void *nt_branch=NULL;
6240   int taken=0;
6241   int nottaken=0;
6242   int unconditional=0;
6243   if(rs1[i]==0)
6244   {
6245     s1l=s2l;s1h=s2h;
6246     s2l=s2h=-1;
6247   }
6248   else if(rs2[i]==0)
6249   {
6250     s2l=s2h=-1;
6251   }
6252   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6253     s1h=s2h=-1;
6254   }
6255   int hr=0;
6256   int addr,alt,ntaddr;
6257   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6258   else {
6259     while(hr<HOST_REGS)
6260     {
6261       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6262          (i_regs->regmap[hr]&63)!=rs1[i] &&
6263          (i_regs->regmap[hr]&63)!=rs2[i] )
6264       {
6265         addr=hr++;break;
6266       }
6267       hr++;
6268     }
6269   }
6270   while(hr<HOST_REGS)
6271   {
6272     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6273        (i_regs->regmap[hr]&63)!=rs1[i] &&
6274        (i_regs->regmap[hr]&63)!=rs2[i] )
6275     {
6276       alt=hr++;break;
6277     }
6278     hr++;
6279   }
6280   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6281   {
6282     while(hr<HOST_REGS)
6283     {
6284       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6285          (i_regs->regmap[hr]&63)!=rs1[i] &&
6286          (i_regs->regmap[hr]&63)!=rs2[i] )
6287       {
6288         ntaddr=hr;break;
6289       }
6290       hr++;
6291     }
6292   }
6293   assert(hr<HOST_REGS);
6294   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6295     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6296   }
6297   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6298   if(opcode[i]==2) // J
6299   {
6300     unconditional=1;
6301   }
6302   if(opcode[i]==3) // JAL
6303   {
6304     // TODO: mini_ht
6305     int rt=get_reg(i_regs->regmap,31);
6306     emit_movimm(start+i*4+8,rt);
6307     unconditional=1;
6308   }
6309   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6310   {
6311     emit_mov(s1l,addr);
6312     if(opcode2[i]==9) // JALR
6313     {
6314       int rt=get_reg(i_regs->regmap,rt1[i]);
6315       emit_movimm(start+i*4+8,rt);
6316     }
6317   }
6318   if((opcode[i]&0x3f)==4) // BEQ
6319   {
6320     if(rs1[i]==rs2[i])
6321     {
6322       unconditional=1;
6323     }
6324     else
6325     #ifdef HAVE_CMOV_IMM
6326     if(s1h<0) {
6327       if(s2l>=0) emit_cmp(s1l,s2l);
6328       else emit_test(s1l,s1l);
6329       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6330     }
6331     else
6332     #endif
6333     {
6334       assert(s1l>=0);
6335       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6336       if(s1h>=0) {
6337         if(s2h>=0) emit_cmp(s1h,s2h);
6338         else emit_test(s1h,s1h);
6339         emit_cmovne_reg(alt,addr);
6340       }
6341       if(s2l>=0) emit_cmp(s1l,s2l);
6342       else emit_test(s1l,s1l);
6343       emit_cmovne_reg(alt,addr);
6344     }
6345   }
6346   if((opcode[i]&0x3f)==5) // BNE
6347   {
6348     #ifdef HAVE_CMOV_IMM
6349     if(s1h<0) {
6350       if(s2l>=0) emit_cmp(s1l,s2l);
6351       else emit_test(s1l,s1l);
6352       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6353     }
6354     else
6355     #endif
6356     {
6357       assert(s1l>=0);
6358       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6359       if(s1h>=0) {
6360         if(s2h>=0) emit_cmp(s1h,s2h);
6361         else emit_test(s1h,s1h);
6362         emit_cmovne_reg(alt,addr);
6363       }
6364       if(s2l>=0) emit_cmp(s1l,s2l);
6365       else emit_test(s1l,s1l);
6366       emit_cmovne_reg(alt,addr);
6367     }
6368   }
6369   if((opcode[i]&0x3f)==0x14) // BEQL
6370   {
6371     if(s1h>=0) {
6372       if(s2h>=0) emit_cmp(s1h,s2h);
6373       else emit_test(s1h,s1h);
6374       nottaken=(int)out;
6375       emit_jne(0);
6376     }
6377     if(s2l>=0) emit_cmp(s1l,s2l);
6378     else emit_test(s1l,s1l);
6379     if(nottaken) set_jump_target(nottaken,(int)out);
6380     nottaken=(int)out;
6381     emit_jne(0);
6382   }
6383   if((opcode[i]&0x3f)==0x15) // BNEL
6384   {
6385     if(s1h>=0) {
6386       if(s2h>=0) emit_cmp(s1h,s2h);
6387       else emit_test(s1h,s1h);
6388       taken=(int)out;
6389       emit_jne(0);
6390     }
6391     if(s2l>=0) emit_cmp(s1l,s2l);
6392     else emit_test(s1l,s1l);
6393     nottaken=(int)out;
6394     emit_jeq(0);
6395     if(taken) set_jump_target(taken,(int)out);
6396   }
6397   if((opcode[i]&0x3f)==6) // BLEZ
6398   {
6399     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6400     emit_cmpimm(s1l,1);
6401     if(s1h>=0) emit_mov(addr,ntaddr);
6402     emit_cmovl_reg(alt,addr);
6403     if(s1h>=0) {
6404       emit_test(s1h,s1h);
6405       emit_cmovne_reg(ntaddr,addr);
6406       emit_cmovs_reg(alt,addr);
6407     }
6408   }
6409   if((opcode[i]&0x3f)==7) // BGTZ
6410   {
6411     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6412     emit_cmpimm(s1l,1);
6413     if(s1h>=0) emit_mov(addr,alt);
6414     emit_cmovl_reg(ntaddr,addr);
6415     if(s1h>=0) {
6416       emit_test(s1h,s1h);
6417       emit_cmovne_reg(alt,addr);
6418       emit_cmovs_reg(ntaddr,addr);
6419     }
6420   }
6421   if((opcode[i]&0x3f)==0x16) // BLEZL
6422   {
6423     assert((opcode[i]&0x3f)!=0x16);
6424   }
6425   if((opcode[i]&0x3f)==0x17) // BGTZL
6426   {
6427     assert((opcode[i]&0x3f)!=0x17);
6428   }
6429   assert(opcode[i]!=1); // BLTZ/BGEZ
6430
6431   //FIXME: Check CSREG
6432   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6433     if((source[i]&0x30000)==0) // BC1F
6434     {
6435       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6436       emit_testimm(s1l,0x800000);
6437       emit_cmovne_reg(alt,addr);
6438     }
6439     if((source[i]&0x30000)==0x10000) // BC1T
6440     {
6441       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6442       emit_testimm(s1l,0x800000);
6443       emit_cmovne_reg(alt,addr);
6444     }
6445     if((source[i]&0x30000)==0x20000) // BC1FL
6446     {
6447       emit_testimm(s1l,0x800000);
6448       nottaken=(int)out;
6449       emit_jne(0);
6450     }
6451     if((source[i]&0x30000)==0x30000) // BC1TL
6452     {
6453       emit_testimm(s1l,0x800000);
6454       nottaken=(int)out;
6455       emit_jeq(0);
6456     }
6457   }
6458
6459   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6460   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6461   if(likely[i]||unconditional)
6462   {
6463     emit_movimm(ba[i],HOST_BTREG);
6464   }
6465   else if(addr!=HOST_BTREG)
6466   {
6467     emit_mov(addr,HOST_BTREG);
6468   }
6469   void *branch_addr=out;
6470   emit_jmp(0);
6471   int target_addr=start+i*4+5;
6472   void *stub=out;
6473   void *compiled_target_addr=check_addr(target_addr);
6474   emit_extjump_ds((int)branch_addr,target_addr);
6475   if(compiled_target_addr) {
6476     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6477     add_link(target_addr,stub);
6478   }
6479   else set_jump_target((int)branch_addr,(int)stub);
6480   if(likely[i]) {
6481     // Not-taken path
6482     set_jump_target((int)nottaken,(int)out);
6483     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6484     void *branch_addr=out;
6485     emit_jmp(0);
6486     int target_addr=start+i*4+8;
6487     void *stub=out;
6488     void *compiled_target_addr=check_addr(target_addr);
6489     emit_extjump_ds((int)branch_addr,target_addr);
6490     if(compiled_target_addr) {
6491       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6492       add_link(target_addr,stub);
6493     }
6494     else set_jump_target((int)branch_addr,(int)stub);
6495   }
6496 }
6497
6498 // Assemble the delay slot for the above
6499 static void pagespan_ds()
6500 {
6501   assem_debug("initial delay slot:\n");
6502   u_int vaddr=start+1;
6503   u_int page=get_page(vaddr);
6504   u_int vpage=get_vpage(vaddr);
6505   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6506   do_dirty_stub_ds();
6507   ll_add(jump_in+page,vaddr,(void *)out);
6508   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6509   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6510     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6511   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6512     emit_writeword(HOST_BTREG,(int)&branch_target);
6513   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6514   address_generation(0,&regs[0],regs[0].regmap_entry);
6515   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6516     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6517   cop1_usable=0;
6518   is_delayslot=0;
6519   switch(itype[0]) {
6520     case ALU:
6521       alu_assemble(0,&regs[0]);break;
6522     case IMM16:
6523       imm16_assemble(0,&regs[0]);break;
6524     case SHIFT:
6525       shift_assemble(0,&regs[0]);break;
6526     case SHIFTIMM:
6527       shiftimm_assemble(0,&regs[0]);break;
6528     case LOAD:
6529       load_assemble(0,&regs[0]);break;
6530     case LOADLR:
6531       loadlr_assemble(0,&regs[0]);break;
6532     case STORE:
6533       store_assemble(0,&regs[0]);break;
6534     case STORELR:
6535       storelr_assemble(0,&regs[0]);break;
6536     case COP0:
6537       cop0_assemble(0,&regs[0]);break;
6538     case COP1:
6539       cop1_assemble(0,&regs[0]);break;
6540     case C1LS:
6541       c1ls_assemble(0,&regs[0]);break;
6542     case COP2:
6543       cop2_assemble(0,&regs[0]);break;
6544     case C2LS:
6545       c2ls_assemble(0,&regs[0]);break;
6546     case C2OP:
6547       c2op_assemble(0,&regs[0]);break;
6548     case FCONV:
6549       fconv_assemble(0,&regs[0]);break;
6550     case FLOAT:
6551       float_assemble(0,&regs[0]);break;
6552     case FCOMP:
6553       fcomp_assemble(0,&regs[0]);break;
6554     case MULTDIV:
6555       multdiv_assemble(0,&regs[0]);break;
6556     case MOV:
6557       mov_assemble(0,&regs[0]);break;
6558     case SYSCALL:
6559     case HLECALL:
6560     case INTCALL:
6561     case SPAN:
6562     case UJUMP:
6563     case RJUMP:
6564     case CJUMP:
6565     case SJUMP:
6566     case FJUMP:
6567       printf("Jump in the delay slot.  This is probably a bug.\n");
6568   }
6569   int btaddr=get_reg(regs[0].regmap,BTREG);
6570   if(btaddr<0) {
6571     btaddr=get_reg(regs[0].regmap,-1);
6572     emit_readword((int)&branch_target,btaddr);
6573   }
6574   assert(btaddr!=HOST_CCREG);
6575   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6576 #ifdef HOST_IMM8
6577   emit_movimm(start+4,HOST_TEMPREG);
6578   emit_cmp(btaddr,HOST_TEMPREG);
6579 #else
6580   emit_cmpimm(btaddr,start+4);
6581 #endif
6582   int branch=(int)out;
6583   emit_jeq(0);
6584   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6585   emit_jmp(jump_vaddr_reg[btaddr]);
6586   set_jump_target(branch,(int)out);
6587   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6588   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6589 }
6590
6591 // Basic liveness analysis for MIPS registers
6592 void unneeded_registers(int istart,int iend,int r)
6593 {
6594   int i;
6595   uint64_t u,uu,b,bu;
6596   uint64_t temp_u,temp_uu;
6597   uint64_t tdep;
6598   if(iend==slen-1) {
6599     u=1;uu=1;
6600   }else{
6601     u=unneeded_reg[iend+1];
6602     uu=unneeded_reg_upper[iend+1];
6603     u=1;uu=1;
6604   }
6605   for (i=iend;i>=istart;i--)
6606   {
6607     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6608     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6609     {
6610       // If subroutine call, flag return address as a possible branch target
6611       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6612       
6613       if(ba[i]<start || ba[i]>=(start+slen*4))
6614       {
6615         // Branch out of this block, flush all regs
6616         u=1;
6617         uu=1;
6618         /* Hexagon hack 
6619         if(itype[i]==UJUMP&&rt1[i]==31)
6620         {
6621           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6622         }
6623         if(itype[i]==RJUMP&&rs1[i]==31)
6624         {
6625           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6626         }
6627         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6628           if(itype[i]==UJUMP&&rt1[i]==31)
6629           {
6630             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6631             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6632           }
6633           if(itype[i]==RJUMP&&rs1[i]==31)
6634           {
6635             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6636             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6637           }
6638         }*/
6639         branch_unneeded_reg[i]=u;
6640         branch_unneeded_reg_upper[i]=uu;
6641         // Merge in delay slot
6642         tdep=(~uu>>rt1[i+1])&1;
6643         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6644         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6645         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6646         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6647         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6648         u|=1;uu|=1;
6649         // If branch is "likely" (and conditional)
6650         // then we skip the delay slot on the fall-thru path
6651         if(likely[i]) {
6652           if(i<slen-1) {
6653             u&=unneeded_reg[i+2];
6654             uu&=unneeded_reg_upper[i+2];
6655           }
6656           else
6657           {
6658             u=1;
6659             uu=1;
6660           }
6661         }
6662       }
6663       else
6664       {
6665         // Internal branch, flag target
6666         bt[(ba[i]-start)>>2]=1;
6667         if(ba[i]<=start+i*4) {
6668           // Backward branch
6669           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6670           {
6671             // Unconditional branch
6672             temp_u=1;temp_uu=1;
6673           } else {
6674             // Conditional branch (not taken case)
6675             temp_u=unneeded_reg[i+2];
6676             temp_uu=unneeded_reg_upper[i+2];
6677           }
6678           // Merge in delay slot
6679           tdep=(~temp_uu>>rt1[i+1])&1;
6680           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6681           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6682           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6683           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6684           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6685           temp_u|=1;temp_uu|=1;
6686           // If branch is "likely" (and conditional)
6687           // then we skip the delay slot on the fall-thru path
6688           if(likely[i]) {
6689             if(i<slen-1) {
6690               temp_u&=unneeded_reg[i+2];
6691               temp_uu&=unneeded_reg_upper[i+2];
6692             }
6693             else
6694             {
6695               temp_u=1;
6696               temp_uu=1;
6697             }
6698           }
6699           tdep=(~temp_uu>>rt1[i])&1;
6700           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6701           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6702           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6703           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6704           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6705           temp_u|=1;temp_uu|=1;
6706           unneeded_reg[i]=temp_u;
6707           unneeded_reg_upper[i]=temp_uu;
6708           // Only go three levels deep.  This recursion can take an
6709           // excessive amount of time if there are a lot of nested loops.
6710           if(r<2) {
6711             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6712           }else{
6713             unneeded_reg[(ba[i]-start)>>2]=1;
6714             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6715           }
6716         } /*else*/ if(1) {
6717           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6718           {
6719             // Unconditional branch
6720             u=unneeded_reg[(ba[i]-start)>>2];
6721             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6722             branch_unneeded_reg[i]=u;
6723             branch_unneeded_reg_upper[i]=uu;
6724         //u=1;
6725         //uu=1;
6726         //branch_unneeded_reg[i]=u;
6727         //branch_unneeded_reg_upper[i]=uu;
6728             // Merge in delay slot
6729             tdep=(~uu>>rt1[i+1])&1;
6730             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6731             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6732             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6733             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6734             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6735             u|=1;uu|=1;
6736           } else {
6737             // Conditional branch
6738             b=unneeded_reg[(ba[i]-start)>>2];
6739             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6740             branch_unneeded_reg[i]=b;
6741             branch_unneeded_reg_upper[i]=bu;
6742         //b=1;
6743         //bu=1;
6744         //branch_unneeded_reg[i]=b;
6745         //branch_unneeded_reg_upper[i]=bu;
6746             // Branch delay slot
6747             tdep=(~uu>>rt1[i+1])&1;
6748             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6749             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6750             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6751             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6752             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6753             b|=1;bu|=1;
6754             // If branch is "likely" then we skip the
6755             // delay slot on the fall-thru path
6756             if(likely[i]) {
6757               u=b;
6758               uu=bu;
6759               if(i<slen-1) {
6760                 u&=unneeded_reg[i+2];
6761                 uu&=unneeded_reg_upper[i+2];
6762         //u=1;
6763         //uu=1;
6764               }
6765             } else {
6766               u&=b;
6767               uu&=bu;
6768         //u=1;
6769         //uu=1;
6770             }
6771             if(i<slen-1) {
6772               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6773               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6774         //branch_unneeded_reg[i]=1;
6775         //branch_unneeded_reg_upper[i]=1;
6776             } else {
6777               branch_unneeded_reg[i]=1;
6778               branch_unneeded_reg_upper[i]=1;
6779             }
6780           }
6781         }
6782       }
6783     }
6784     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6785     {
6786       // SYSCALL instruction (software interrupt)
6787       u=1;
6788       uu=1;
6789     }
6790     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6791     {
6792       // ERET instruction (return from interrupt)
6793       u=1;
6794       uu=1;
6795     }
6796     //u=uu=1; // DEBUG
6797     tdep=(~uu>>rt1[i])&1;
6798     // Written registers are unneeded
6799     u|=1LL<<rt1[i];
6800     u|=1LL<<rt2[i];
6801     uu|=1LL<<rt1[i];
6802     uu|=1LL<<rt2[i];
6803     // Accessed registers are needed
6804     u&=~(1LL<<rs1[i]);
6805     u&=~(1LL<<rs2[i]);
6806     uu&=~(1LL<<us1[i]);
6807     uu&=~(1LL<<us2[i]);
6808     // Source-target dependencies
6809     uu&=~(tdep<<dep1[i]);
6810     uu&=~(tdep<<dep2[i]);
6811     // R0 is always unneeded
6812     u|=1;uu|=1;
6813     // Save it
6814     unneeded_reg[i]=u;
6815     unneeded_reg_upper[i]=uu;
6816     /*
6817     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6818     printf("U:");
6819     int r;
6820     for(r=1;r<=CCREG;r++) {
6821       if((unneeded_reg[i]>>r)&1) {
6822         if(r==HIREG) printf(" HI");
6823         else if(r==LOREG) printf(" LO");
6824         else printf(" r%d",r);
6825       }
6826     }
6827     printf(" UU:");
6828     for(r=1;r<=CCREG;r++) {
6829       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6830         if(r==HIREG) printf(" HI");
6831         else if(r==LOREG) printf(" LO");
6832         else printf(" r%d",r);
6833       }
6834     }
6835     printf("\n");*/
6836   }
6837 #ifdef FORCE32
6838   for (i=iend;i>=istart;i--)
6839   {
6840     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6841   }
6842 #endif
6843 }
6844
6845 // Identify registers which are likely to contain 32-bit values
6846 // This is used to predict whether any branches will jump to a
6847 // location with 64-bit values in registers.
6848 static void provisional_32bit()
6849 {
6850   int i,j;
6851   uint64_t is32=1;
6852   uint64_t lastbranch=1;
6853   
6854   for(i=0;i<slen;i++)
6855   {
6856     if(i>0) {
6857       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6858         if(i>1) is32=lastbranch;
6859         else is32=1;
6860       }
6861     }
6862     if(i>1)
6863     {
6864       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6865         if(likely[i-2]) {
6866           if(i>2) is32=lastbranch;
6867           else is32=1;
6868         }
6869       }
6870       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6871       {
6872         if(rs1[i-2]==0||rs2[i-2]==0)
6873         {
6874           if(rs1[i-2]) {
6875             is32|=1LL<<rs1[i-2];
6876           }
6877           if(rs2[i-2]) {
6878             is32|=1LL<<rs2[i-2];
6879           }
6880         }
6881       }
6882     }
6883     // If something jumps here with 64-bit values
6884     // then promote those registers to 64 bits
6885     if(bt[i])
6886     {
6887       uint64_t temp_is32=is32;
6888       for(j=i-1;j>=0;j--)
6889       {
6890         if(ba[j]==start+i*4) 
6891           //temp_is32&=branch_regs[j].is32;
6892           temp_is32&=p32[j];
6893       }
6894       for(j=i;j<slen;j++)
6895       {
6896         if(ba[j]==start+i*4) 
6897           temp_is32=1;
6898       }
6899       is32=temp_is32;
6900     }
6901     int type=itype[i];
6902     int op=opcode[i];
6903     int op2=opcode2[i];
6904     int rt=rt1[i];
6905     int s1=rs1[i];
6906     int s2=rs2[i];
6907     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6908       // Branches don't write registers, consider the delay slot instead.
6909       type=itype[i+1];
6910       op=opcode[i+1];
6911       op2=opcode2[i+1];
6912       rt=rt1[i+1];
6913       s1=rs1[i+1];
6914       s2=rs2[i+1];
6915       lastbranch=is32;
6916     }
6917     switch(type) {
6918       case LOAD:
6919         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6920            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6921           is32&=~(1LL<<rt);
6922         else
6923           is32|=1LL<<rt;
6924         break;
6925       case STORE:
6926       case STORELR:
6927         break;
6928       case LOADLR:
6929         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6930         if(op==0x22) is32|=1LL<<rt; // LWL
6931         break;
6932       case IMM16:
6933         if (op==0x08||op==0x09|| // ADDI/ADDIU
6934             op==0x0a||op==0x0b|| // SLTI/SLTIU
6935             op==0x0c|| // ANDI
6936             op==0x0f)  // LUI
6937         {
6938           is32|=1LL<<rt;
6939         }
6940         if(op==0x18||op==0x19) { // DADDI/DADDIU
6941           is32&=~(1LL<<rt);
6942           //if(imm[i]==0)
6943           //  is32|=((is32>>s1)&1LL)<<rt;
6944         }
6945         if(op==0x0d||op==0x0e) { // ORI/XORI
6946           uint64_t sr=((is32>>s1)&1LL);
6947           is32&=~(1LL<<rt);
6948           is32|=sr<<rt;
6949         }
6950         break;
6951       case UJUMP:
6952         break;
6953       case RJUMP:
6954         break;
6955       case CJUMP:
6956         break;
6957       case SJUMP:
6958         break;
6959       case FJUMP:
6960         break;
6961       case ALU:
6962         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6963           is32|=1LL<<rt;
6964         }
6965         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6966           is32|=1LL<<rt;
6967         }
6968         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6969           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6970           is32&=~(1LL<<rt);
6971           is32|=sr<<rt;
6972         }
6973         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6974           if(s1==0&&s2==0) {
6975             is32|=1LL<<rt;
6976           }
6977           else if(s2==0) {
6978             uint64_t sr=((is32>>s1)&1LL);
6979             is32&=~(1LL<<rt);
6980             is32|=sr<<rt;
6981           }
6982           else if(s1==0) {
6983             uint64_t sr=((is32>>s2)&1LL);
6984             is32&=~(1LL<<rt);
6985             is32|=sr<<rt;
6986           }
6987           else {
6988             is32&=~(1LL<<rt);
6989           }
6990         }
6991         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6992           if(s1==0&&s2==0) {
6993             is32|=1LL<<rt;
6994           }
6995           else if(s2==0) {
6996             uint64_t sr=((is32>>s1)&1LL);
6997             is32&=~(1LL<<rt);
6998             is32|=sr<<rt;
6999           }
7000           else {
7001             is32&=~(1LL<<rt);
7002           }
7003         }
7004         break;
7005       case MULTDIV:
7006         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7007           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7008         }
7009         else {
7010           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7011         }
7012         break;
7013       case MOV:
7014         {
7015           uint64_t sr=((is32>>s1)&1LL);
7016           is32&=~(1LL<<rt);
7017           is32|=sr<<rt;
7018         }
7019         break;
7020       case SHIFT:
7021         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7022         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7023         break;
7024       case SHIFTIMM:
7025         is32|=1LL<<rt;
7026         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7027         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7028         break;
7029       case COP0:
7030         if(op2==0) is32|=1LL<<rt; // MFC0
7031         break;
7032       case COP1:
7033       case COP2:
7034         if(op2==0) is32|=1LL<<rt; // MFC1
7035         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7036         if(op2==2) is32|=1LL<<rt; // CFC1
7037         break;
7038       case C1LS:
7039       case C2LS:
7040         break;
7041       case FLOAT:
7042       case FCONV:
7043         break;
7044       case FCOMP:
7045         break;
7046       case C2OP:
7047       case SYSCALL:
7048       case HLECALL:
7049         break;
7050       default:
7051         break;
7052     }
7053     is32|=1;
7054     p32[i]=is32;
7055
7056     if(i>0)
7057     {
7058       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7059       {
7060         if(rt1[i-1]==31) // JAL/JALR
7061         {
7062           // Subroutine call will return here, don't alloc any registers
7063           is32=1;
7064         }
7065         else if(i+1<slen)
7066         {
7067           // Internal branch will jump here, match registers to caller
7068           is32=0x3FFFFFFFFLL;
7069         }
7070       }
7071     }
7072   }
7073 }
7074
7075 // Identify registers which may be assumed to contain 32-bit values
7076 // and where optimizations will rely on this.
7077 // This is used to determine whether backward branches can safely
7078 // jump to a location with 64-bit values in registers.
7079 static void provisional_r32()
7080 {
7081   u_int r32=0;
7082   int i;
7083   
7084   for (i=slen-1;i>=0;i--)
7085   {
7086     int hr;
7087     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7088     {
7089       if(ba[i]<start || ba[i]>=(start+slen*4))
7090       {
7091         // Branch out of this block, don't need anything
7092         r32=0;
7093       }
7094       else
7095       {
7096         // Internal branch
7097         // Need whatever matches the target
7098         // (and doesn't get overwritten by the delay slot instruction)
7099         r32=0;
7100         int t=(ba[i]-start)>>2;
7101         if(ba[i]>start+i*4) {
7102           // Forward branch
7103           //if(!(requires_32bit[t]&~regs[i].was32))
7104           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7105           if(!(pr32[t]&~regs[i].was32))
7106             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7107         }else{
7108           // Backward branch
7109           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7110             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7111         }
7112       }
7113       // Conditional branch may need registers for following instructions
7114       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7115       {
7116         if(i<slen-2) {
7117           //r32|=requires_32bit[i+2];
7118           r32|=pr32[i+2];
7119           r32&=regs[i].was32;
7120           // Mark this address as a branch target since it may be called
7121           // upon return from interrupt
7122           //bt[i+2]=1;
7123         }
7124       }
7125       // Merge in delay slot
7126       if(!likely[i]) {
7127         // These are overwritten unless the branch is "likely"
7128         // and the delay slot is nullified if not taken
7129         r32&=~(1LL<<rt1[i+1]);
7130         r32&=~(1LL<<rt2[i+1]);
7131       }
7132       // Assume these are needed (delay slot)
7133       if(us1[i+1]>0)
7134       {
7135         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7136       }
7137       if(us2[i+1]>0)
7138       {
7139         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7140       }
7141       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7142       {
7143         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7144       }
7145       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7146       {
7147         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7148       }
7149     }
7150     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7151     {
7152       // SYSCALL instruction (software interrupt)
7153       r32=0;
7154     }
7155     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7156     {
7157       // ERET instruction (return from interrupt)
7158       r32=0;
7159     }
7160     // Check 32 bits
7161     r32&=~(1LL<<rt1[i]);
7162     r32&=~(1LL<<rt2[i]);
7163     if(us1[i]>0)
7164     {
7165       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7166     }
7167     if(us2[i]>0)
7168     {
7169       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7170     }
7171     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7172     {
7173       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7174     }
7175     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7176     {
7177       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7178     }
7179     //requires_32bit[i]=r32;
7180     pr32[i]=r32;
7181     
7182     // Dirty registers which are 32-bit, require 32-bit input
7183     // as they will be written as 32-bit values
7184     for(hr=0;hr<HOST_REGS;hr++)
7185     {
7186       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7187         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7188           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7189           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7190           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7191         }
7192       }
7193     }
7194   }
7195 }
7196
7197 // Write back dirty registers as soon as we will no longer modify them,
7198 // so that we don't end up with lots of writes at the branches.
7199 void clean_registers(int istart,int iend,int wr)
7200 {
7201   int i;
7202   int r;
7203   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7204   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7205   if(iend==slen-1) {
7206     will_dirty_i=will_dirty_next=0;
7207     wont_dirty_i=wont_dirty_next=0;
7208   }else{
7209     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7210     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7211   }
7212   for (i=iend;i>=istart;i--)
7213   {
7214     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7215     {
7216       if(ba[i]<start || ba[i]>=(start+slen*4))
7217       {
7218         // Branch out of this block, flush all regs
7219         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7220         {
7221           // Unconditional branch
7222           will_dirty_i=0;
7223           wont_dirty_i=0;
7224           // Merge in delay slot (will dirty)
7225           for(r=0;r<HOST_REGS;r++) {
7226             if(r!=EXCLUDE_REG) {
7227               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7228               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7229               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7230               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7231               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7232               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7233               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7234               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7235               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7236               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7237               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7238               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7239               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7240               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7241             }
7242           }
7243         }
7244         else
7245         {
7246           // Conditional branch
7247           will_dirty_i=0;
7248           wont_dirty_i=wont_dirty_next;
7249           // Merge in delay slot (will dirty)
7250           for(r=0;r<HOST_REGS;r++) {
7251             if(r!=EXCLUDE_REG) {
7252               if(!likely[i]) {
7253                 // Might not dirty if likely branch is not taken
7254                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7255                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7256                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7257                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7258                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7259                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7260                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7261                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7262                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7263                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7264                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7265                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7266                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7267                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7268               }
7269             }
7270           }
7271         }
7272         // Merge in delay slot (wont dirty)
7273         for(r=0;r<HOST_REGS;r++) {
7274           if(r!=EXCLUDE_REG) {
7275             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7276             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7277             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7278             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7279             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7280             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7281             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7282             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7283             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7284             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7285           }
7286         }
7287         if(wr) {
7288           #ifndef DESTRUCTIVE_WRITEBACK
7289           branch_regs[i].dirty&=wont_dirty_i;
7290           #endif
7291           branch_regs[i].dirty|=will_dirty_i;
7292         }
7293       }
7294       else
7295       {
7296         // Internal branch
7297         if(ba[i]<=start+i*4) {
7298           // Backward branch
7299           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7300           {
7301             // Unconditional branch
7302             temp_will_dirty=0;
7303             temp_wont_dirty=0;
7304             // Merge in delay slot (will dirty)
7305             for(r=0;r<HOST_REGS;r++) {
7306               if(r!=EXCLUDE_REG) {
7307                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7308                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7309                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7310                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7311                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7312                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7313                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7314                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7315                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7316                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7317                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7318                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7319                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7320                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7321               }
7322             }
7323           } else {
7324             // Conditional branch (not taken case)
7325             temp_will_dirty=will_dirty_next;
7326             temp_wont_dirty=wont_dirty_next;
7327             // Merge in delay slot (will dirty)
7328             for(r=0;r<HOST_REGS;r++) {
7329               if(r!=EXCLUDE_REG) {
7330                 if(!likely[i]) {
7331                   // Will not dirty if likely branch is not taken
7332                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7333                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7334                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7335                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7336                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7337                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7338                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7339                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7340                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7341                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7342                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7343                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7344                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7345                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7346                 }
7347               }
7348             }
7349           }
7350           // Merge in delay slot (wont dirty)
7351           for(r=0;r<HOST_REGS;r++) {
7352             if(r!=EXCLUDE_REG) {
7353               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7354               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7355               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7356               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7357               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7358               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7359               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7360               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7361               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7362               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7363             }
7364           }
7365           // Deal with changed mappings
7366           if(i<iend) {
7367             for(r=0;r<HOST_REGS;r++) {
7368               if(r!=EXCLUDE_REG) {
7369                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7370                   temp_will_dirty&=~(1<<r);
7371                   temp_wont_dirty&=~(1<<r);
7372                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7373                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7374                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7375                   } else {
7376                     temp_will_dirty|=1<<r;
7377                     temp_wont_dirty|=1<<r;
7378                   }
7379                 }
7380               }
7381             }
7382           }
7383           if(wr) {
7384             will_dirty[i]=temp_will_dirty;
7385             wont_dirty[i]=temp_wont_dirty;
7386             clean_registers((ba[i]-start)>>2,i-1,0);
7387           }else{
7388             // Limit recursion.  It can take an excessive amount
7389             // of time if there are a lot of nested loops.
7390             will_dirty[(ba[i]-start)>>2]=0;
7391             wont_dirty[(ba[i]-start)>>2]=-1;
7392           }
7393         }
7394         /*else*/ if(1)
7395         {
7396           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7397           {
7398             // Unconditional branch
7399             will_dirty_i=0;
7400             wont_dirty_i=0;
7401           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7402             for(r=0;r<HOST_REGS;r++) {
7403               if(r!=EXCLUDE_REG) {
7404                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7405                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7406                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7407                 }
7408               }
7409             }
7410           //}
7411             // Merge in delay slot
7412             for(r=0;r<HOST_REGS;r++) {
7413               if(r!=EXCLUDE_REG) {
7414                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7415                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7416                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7417                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7418                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7419                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7420                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7421                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7422                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7423                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7424                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7425                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7426                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7427                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7428               }
7429             }
7430           } else {
7431             // Conditional branch
7432             will_dirty_i=will_dirty_next;
7433             wont_dirty_i=wont_dirty_next;
7434           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7435             for(r=0;r<HOST_REGS;r++) {
7436               if(r!=EXCLUDE_REG) {
7437                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7438                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7439                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7440                 }
7441                 else
7442                 {
7443                   will_dirty_i&=~(1<<r);
7444                 }
7445                 // Treat delay slot as part of branch too
7446                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7447                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7448                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7449                 }
7450                 else
7451                 {
7452                   will_dirty[i+1]&=~(1<<r);
7453                 }*/
7454               }
7455             }
7456           //}
7457             // Merge in delay slot
7458             for(r=0;r<HOST_REGS;r++) {
7459               if(r!=EXCLUDE_REG) {
7460                 if(!likely[i]) {
7461                   // Might not dirty if likely branch is not taken
7462                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7463                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7464                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7465                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7466                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7467                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7468                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7469                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7470                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7471                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7472                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7473                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7474                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7475                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7476                 }
7477               }
7478             }
7479           }
7480           // Merge in delay slot
7481           for(r=0;r<HOST_REGS;r++) {
7482             if(r!=EXCLUDE_REG) {
7483               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7484               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7485               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7486               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7487               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7488               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7489               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7490               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7491               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7492               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7493             }
7494           }
7495           if(wr) {
7496             #ifndef DESTRUCTIVE_WRITEBACK
7497             branch_regs[i].dirty&=wont_dirty_i;
7498             #endif
7499             branch_regs[i].dirty|=will_dirty_i;
7500           }
7501         }
7502       }
7503     }
7504     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7505     {
7506       // SYSCALL instruction (software interrupt)
7507       will_dirty_i=0;
7508       wont_dirty_i=0;
7509     }
7510     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7511     {
7512       // ERET instruction (return from interrupt)
7513       will_dirty_i=0;
7514       wont_dirty_i=0;
7515     }
7516     will_dirty_next=will_dirty_i;
7517     wont_dirty_next=wont_dirty_i;
7518     for(r=0;r<HOST_REGS;r++) {
7519       if(r!=EXCLUDE_REG) {
7520         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7521         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7522         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7523         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7524         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7525         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7526         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7527         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7528         if(i>istart) {
7529           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7530           {
7531             // Don't store a register immediately after writing it,
7532             // may prevent dual-issue.
7533             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7534             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7535           }
7536         }
7537       }
7538     }
7539     // Save it
7540     will_dirty[i]=will_dirty_i;
7541     wont_dirty[i]=wont_dirty_i;
7542     // Mark registers that won't be dirtied as not dirty
7543     if(wr) {
7544       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7545       for(r=0;r<HOST_REGS;r++) {
7546         if((will_dirty_i>>r)&1) {
7547           printf(" r%d",r);
7548         }
7549       }
7550       printf("\n");*/
7551
7552       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7553         regs[i].dirty|=will_dirty_i;
7554         #ifndef DESTRUCTIVE_WRITEBACK
7555         regs[i].dirty&=wont_dirty_i;
7556         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7557         {
7558           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7559             for(r=0;r<HOST_REGS;r++) {
7560               if(r!=EXCLUDE_REG) {
7561                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7562                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7563                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7564               }
7565             }
7566           }
7567         }
7568         else
7569         {
7570           if(i<iend) {
7571             for(r=0;r<HOST_REGS;r++) {
7572               if(r!=EXCLUDE_REG) {
7573                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7574                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7575                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7576               }
7577             }
7578           }
7579         }
7580         #endif
7581       //}
7582     }
7583     // Deal with changed mappings
7584     temp_will_dirty=will_dirty_i;
7585     temp_wont_dirty=wont_dirty_i;
7586     for(r=0;r<HOST_REGS;r++) {
7587       if(r!=EXCLUDE_REG) {
7588         int nr;
7589         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7590           if(wr) {
7591             #ifndef DESTRUCTIVE_WRITEBACK
7592             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7593             #endif
7594             regs[i].wasdirty|=will_dirty_i&(1<<r);
7595           }
7596         }
7597         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7598           // Register moved to a different register
7599           will_dirty_i&=~(1<<r);
7600           wont_dirty_i&=~(1<<r);
7601           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7602           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7603           if(wr) {
7604             #ifndef DESTRUCTIVE_WRITEBACK
7605             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7606             #endif
7607             regs[i].wasdirty|=will_dirty_i&(1<<r);
7608           }
7609         }
7610         else {
7611           will_dirty_i&=~(1<<r);
7612           wont_dirty_i&=~(1<<r);
7613           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7614             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7615             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7616           } else {
7617             wont_dirty_i|=1<<r;
7618             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7619           }
7620         }
7621       }
7622     }
7623   }
7624 }
7625
7626   /* disassembly */
7627 void disassemble_inst(int i)
7628 {
7629     if (bt[i]) printf("*"); else printf(" ");
7630     switch(itype[i]) {
7631       case UJUMP:
7632         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7633       case CJUMP:
7634         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7635       case SJUMP:
7636         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7637       case FJUMP:
7638         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7639       case RJUMP:
7640         if (opcode[i]==0x9&&rt1[i]!=31)
7641           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7642         else
7643           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7644         break;
7645       case SPAN:
7646         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7647       case IMM16:
7648         if(opcode[i]==0xf) //LUI
7649           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7650         else
7651           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7652         break;
7653       case LOAD:
7654       case LOADLR:
7655         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7656         break;
7657       case STORE:
7658       case STORELR:
7659         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7660         break;
7661       case ALU:
7662       case SHIFT:
7663         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7664         break;
7665       case MULTDIV:
7666         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7667         break;
7668       case SHIFTIMM:
7669         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7670         break;
7671       case MOV:
7672         if((opcode2[i]&0x1d)==0x10)
7673           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7674         else if((opcode2[i]&0x1d)==0x11)
7675           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7676         else
7677           printf (" %x: %s\n",start+i*4,insn[i]);
7678         break;
7679       case COP0:
7680         if(opcode2[i]==0)
7681           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7682         else if(opcode2[i]==4)
7683           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7684         else printf (" %x: %s\n",start+i*4,insn[i]);
7685         break;
7686       case COP1:
7687         if(opcode2[i]<3)
7688           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7689         else if(opcode2[i]>3)
7690           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7691         else printf (" %x: %s\n",start+i*4,insn[i]);
7692         break;
7693       case COP2:
7694         if(opcode2[i]<3)
7695           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7696         else if(opcode2[i]>3)
7697           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7698         else printf (" %x: %s\n",start+i*4,insn[i]);
7699         break;
7700       case C1LS:
7701         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7702         break;
7703       case C2LS:
7704         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7705         break;
7706       case INTCALL:
7707         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7708         break;
7709       default:
7710         //printf (" %s %8x\n",insn[i],source[i]);
7711         printf (" %x: %s\n",start+i*4,insn[i]);
7712     }
7713 }
7714
7715 void new_dynarec_init()
7716 {
7717   printf("Init new dynarec\n");
7718   out=(u_char *)BASE_ADDR;
7719   if (mmap (out, 1<<TARGET_SIZE_2,
7720             PROT_READ | PROT_WRITE | PROT_EXEC,
7721             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7722             -1, 0) <= 0) {printf("mmap() failed\n");}
7723 #ifdef MUPEN64
7724   rdword=&readmem_dword;
7725   fake_pc.f.r.rs=&readmem_dword;
7726   fake_pc.f.r.rt=&readmem_dword;
7727   fake_pc.f.r.rd=&readmem_dword;
7728 #endif
7729   int n;
7730   for(n=0x80000;n<0x80800;n++)
7731     invalid_code[n]=1;
7732   for(n=0;n<65536;n++)
7733     hash_table[n][0]=hash_table[n][2]=-1;
7734   memset(mini_ht,-1,sizeof(mini_ht));
7735   memset(restore_candidate,0,sizeof(restore_candidate));
7736   copy=shadow;
7737   expirep=16384; // Expiry pointer, +2 blocks
7738   pending_exception=0;
7739   literalcount=0;
7740 #ifdef HOST_IMM8
7741   // Copy this into local area so we don't have to put it in every literal pool
7742   invc_ptr=invalid_code;
7743 #endif
7744   stop_after_jal=0;
7745   // TLB
7746   using_tlb=0;
7747   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7748     memory_map[n]=-1;
7749   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7750     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7751   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7752     memory_map[n]=-1;
7753 #ifdef MUPEN64
7754   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7755     writemem[n] = write_nomem_new;
7756     writememb[n] = write_nomemb_new;
7757     writememh[n] = write_nomemh_new;
7758 #ifndef FORCE32
7759     writememd[n] = write_nomemd_new;
7760 #endif
7761     readmem[n] = read_nomem_new;
7762     readmemb[n] = read_nomemb_new;
7763     readmemh[n] = read_nomemh_new;
7764 #ifndef FORCE32
7765     readmemd[n] = read_nomemd_new;
7766 #endif
7767   }
7768   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7769     writemem[n] = write_rdram_new;
7770     writememb[n] = write_rdramb_new;
7771     writememh[n] = write_rdramh_new;
7772 #ifndef FORCE32
7773     writememd[n] = write_rdramd_new;
7774 #endif
7775   }
7776   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7777     writemem[n] = write_nomem_new;
7778     writememb[n] = write_nomemb_new;
7779     writememh[n] = write_nomemh_new;
7780 #ifndef FORCE32
7781     writememd[n] = write_nomemd_new;
7782 #endif
7783     readmem[n] = read_nomem_new;
7784     readmemb[n] = read_nomemb_new;
7785     readmemh[n] = read_nomemh_new;
7786 #ifndef FORCE32
7787     readmemd[n] = read_nomemd_new;
7788 #endif
7789   }
7790 #endif
7791   tlb_hacks();
7792   arch_init();
7793 }
7794
7795 void new_dynarec_cleanup()
7796 {
7797   int n;
7798   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7799   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7800   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7801   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7802   #ifdef ROM_COPY
7803   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7804   #endif
7805 }
7806
7807 int new_recompile_block(int addr)
7808 {
7809 /*
7810   if(addr==0x800cd050) {
7811     int block;
7812     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7813     int n;
7814     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7815   }
7816 */
7817   //if(Count==365117028) tracedebug=1;
7818   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7819   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7820   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7821   //if(debug) 
7822   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7823   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7824   /*if(Count>=312978186) {
7825     rlist();
7826   }*/
7827   //rlist();
7828   start = (u_int)addr&~3;
7829   //assert(((u_int)addr&1)==0);
7830 #ifdef PCSX
7831   if (Config.HLE && start == 0x80001000) // hlecall
7832   {
7833     // XXX: is this enough? Maybe check hleSoftCall?
7834     u_int beginning=(u_int)out;
7835     u_int page=get_page(start);
7836     invalid_code[start>>12]=0;
7837     emit_movimm(start,0);
7838     emit_writeword(0,(int)&pcaddr);
7839     emit_jmp((int)new_dyna_leave);
7840 #ifdef __arm__
7841     __clear_cache((void *)beginning,out);
7842 #endif
7843     ll_add(jump_in+page,start,(void *)beginning);
7844     return 0;
7845   }
7846   else if ((u_int)addr < 0x00200000 ||
7847     (0xa0000000 <= addr && addr < 0xa0200000)) {
7848     // used for BIOS calls mostly?
7849     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7850     pagelimit = (addr&0xa0000000)|0x00200000;
7851   }
7852   else if (!Config.HLE && (
7853 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7854     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7855     // BIOS
7856     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7857     pagelimit = (addr&0xfff00000)|0x80000;
7858   }
7859   else
7860 #endif
7861 #ifdef MUPEN64
7862   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7863     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7864     pagelimit = 0xa4001000;
7865   }
7866   else
7867 #endif
7868   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7869     source = (u_int *)((u_int)rdram+start-0x80000000);
7870     pagelimit = 0x80000000+RAM_SIZE;
7871   }
7872 #ifndef DISABLE_TLB
7873   else if ((signed int)addr >= (signed int)0xC0000000) {
7874     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7875     //if(tlb_LUT_r[start>>12])
7876       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7877     if((signed int)memory_map[start>>12]>=0) {
7878       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7879       pagelimit=(start+4096)&0xFFFFF000;
7880       int map=memory_map[start>>12];
7881       int i;
7882       for(i=0;i<5;i++) {
7883         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7884         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7885       }
7886       assem_debug("pagelimit=%x\n",pagelimit);
7887       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7888     }
7889     else {
7890       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7891       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7892       return -1; // Caller will invoke exception handler
7893     }
7894     //printf("source= %x\n",(int)source);
7895   }
7896 #endif
7897   else {
7898     printf("Compile at bogus memory address: %x \n", (int)addr);
7899     exit(1);
7900   }
7901
7902   /* Pass 1: disassemble */
7903   /* Pass 2: register dependencies, branch targets */
7904   /* Pass 3: register allocation */
7905   /* Pass 4: branch dependencies */
7906   /* Pass 5: pre-alloc */
7907   /* Pass 6: optimize clean/dirty state */
7908   /* Pass 7: flag 32-bit registers */
7909   /* Pass 8: assembly */
7910   /* Pass 9: linker */
7911   /* Pass 10: garbage collection / free memory */
7912
7913   int i,j;
7914   int done=0;
7915   unsigned int type,op,op2;
7916
7917   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7918   
7919   /* Pass 1 disassembly */
7920
7921   for(i=0;!done;i++) {
7922     bt[i]=0;likely[i]=0;op2=0;
7923     opcode[i]=op=source[i]>>26;
7924     switch(op)
7925     {
7926       case 0x00: strcpy(insn[i],"special"); type=NI;
7927         op2=source[i]&0x3f;
7928         switch(op2)
7929         {
7930           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7931           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7932           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7933           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7934           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7935           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7936           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7937           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7938           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7939           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7940           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7941           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7942           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7943           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7944           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7945           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7946           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7947           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7948           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7949           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7950           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7951           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7952           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7953           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7954           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7955           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7956           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7957           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7958           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7959           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7960           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7961           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7962           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7963           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7964           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7965           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7966           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7967           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7968           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7969           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7970           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7971           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7972           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7973           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7974           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7975           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7976           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7977           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7978           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7979           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7980           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7981           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7982         }
7983         break;
7984       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7985         op2=(source[i]>>16)&0x1f;
7986         switch(op2)
7987         {
7988           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7989           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7990           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7991           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7992           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7993           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7994           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7995           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7996           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7997           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7998           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7999           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8000           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8001           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8002         }
8003         break;
8004       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8005       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8006       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8007       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8008       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8009       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8010       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8011       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8012       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8013       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8014       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8015       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8016       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8017       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8018       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8019         op2=(source[i]>>21)&0x1f;
8020         switch(op2)
8021         {
8022           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8023           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8024           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8025           switch(source[i]&0x3f)
8026           {
8027             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8028             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8029             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8030             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8031 #ifdef PCSX
8032             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8033 #else
8034             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8035 #endif
8036           }
8037         }
8038         break;
8039       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8040         op2=(source[i]>>21)&0x1f;
8041         switch(op2)
8042         {
8043           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8044           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8045           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8046           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8047           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8048           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8049           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8050           switch((source[i]>>16)&0x3)
8051           {
8052             case 0x00: strcpy(insn[i],"BC1F"); break;
8053             case 0x01: strcpy(insn[i],"BC1T"); break;
8054             case 0x02: strcpy(insn[i],"BC1FL"); break;
8055             case 0x03: strcpy(insn[i],"BC1TL"); break;
8056           }
8057           break;
8058           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8059           switch(source[i]&0x3f)
8060           {
8061             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8062             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8063             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8064             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8065             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8066             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8067             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8068             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8069             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8070             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8071             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8072             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8073             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8074             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8075             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8076             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8077             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8078             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8079             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8080             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8081             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8082             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8083             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8084             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8085             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8086             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8087             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8088             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8089             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8090             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8091             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8092             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8093             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8094             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8095             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8096           }
8097           break;
8098           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8099           switch(source[i]&0x3f)
8100           {
8101             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8102             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8103             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8104             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8105             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8106             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8107             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8108             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8109             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8110             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8111             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8112             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8113             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8114             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8115             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8116             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8117             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8118             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8119             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8120             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8121             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8122             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8123             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8124             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8125             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8126             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8127             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8128             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8129             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8130             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8131             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8132             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8133             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8134             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8135             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8136           }
8137           break;
8138           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8139           switch(source[i]&0x3f)
8140           {
8141             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8142             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8143           }
8144           break;
8145           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8146           switch(source[i]&0x3f)
8147           {
8148             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8149             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8150           }
8151           break;
8152         }
8153         break;
8154 #ifndef FORCE32
8155       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8156       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8157       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8158       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8159       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8160       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8161       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8162       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8163 #endif
8164       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8165       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8166       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8167       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8168       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8169       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8170       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8171       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8172       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8173       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8174       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8175       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8176 #ifndef FORCE32
8177       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8178       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8179 #endif
8180       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8181       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8182       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8183       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8184 #ifndef FORCE32
8185       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8186       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8187       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8188 #endif
8189       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8190       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8191 #ifndef FORCE32
8192       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8193       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8194       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8195 #endif
8196 #ifdef PCSX
8197       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8198         // note: COP MIPS-1 encoding differs from MIPS32
8199         op2=(source[i]>>21)&0x1f;
8200         if (source[i]&0x3f) {
8201           if (gte_handlers[source[i]&0x3f]!=NULL) {
8202             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8203             type=C2OP;
8204           }
8205         }
8206         else switch(op2)
8207         {
8208           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8209           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8210           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8211           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8212         }
8213         break;
8214       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8215       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8216       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8217 #endif
8218       default: strcpy(insn[i],"???"); type=NI;
8219         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8220         break;
8221     }
8222 #ifdef PCSX
8223     /* detect branch in delay slot early */
8224     if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8225       opcode[i+1]=source[i+1]>>26;
8226       opcode2[i+1]=source[i+1]&0x3f;
8227       if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8228         printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8229         // don't handle first branch and call interpreter if it's hit
8230         type=INTCALL;
8231       }
8232     }
8233 #endif
8234     itype[i]=type;
8235     opcode2[i]=op2;
8236     /* Get registers/immediates */
8237     lt1[i]=0;
8238     us1[i]=0;
8239     us2[i]=0;
8240     dep1[i]=0;
8241     dep2[i]=0;
8242     switch(type) {
8243       case LOAD:
8244         rs1[i]=(source[i]>>21)&0x1f;
8245         rs2[i]=0;
8246         rt1[i]=(source[i]>>16)&0x1f;
8247         rt2[i]=0;
8248         imm[i]=(short)source[i];
8249         break;
8250       case STORE:
8251       case STORELR:
8252         rs1[i]=(source[i]>>21)&0x1f;
8253         rs2[i]=(source[i]>>16)&0x1f;
8254         rt1[i]=0;
8255         rt2[i]=0;
8256         imm[i]=(short)source[i];
8257         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8258         break;
8259       case LOADLR:
8260         // LWL/LWR only load part of the register,
8261         // therefore the target register must be treated as a source too
8262         rs1[i]=(source[i]>>21)&0x1f;
8263         rs2[i]=(source[i]>>16)&0x1f;
8264         rt1[i]=(source[i]>>16)&0x1f;
8265         rt2[i]=0;
8266         imm[i]=(short)source[i];
8267         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8268         if(op==0x26) dep1[i]=rt1[i]; // LWR
8269         break;
8270       case IMM16:
8271         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8272         else rs1[i]=(source[i]>>21)&0x1f;
8273         rs2[i]=0;
8274         rt1[i]=(source[i]>>16)&0x1f;
8275         rt2[i]=0;
8276         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8277           imm[i]=(unsigned short)source[i];
8278         }else{
8279           imm[i]=(short)source[i];
8280         }
8281         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8282         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8283         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8284         break;
8285       case UJUMP:
8286         rs1[i]=0;
8287         rs2[i]=0;
8288         rt1[i]=0;
8289         rt2[i]=0;
8290         // The JAL instruction writes to r31.
8291         if (op&1) {
8292           rt1[i]=31;
8293         }
8294         rs2[i]=CCREG;
8295         break;
8296       case RJUMP:
8297         rs1[i]=(source[i]>>21)&0x1f;
8298         rs2[i]=0;
8299         rt1[i]=0;
8300         rt2[i]=0;
8301         // The JALR instruction writes to rd.
8302         if (op2&1) {
8303           rt1[i]=(source[i]>>11)&0x1f;
8304         }
8305         rs2[i]=CCREG;
8306         break;
8307       case CJUMP:
8308         rs1[i]=(source[i]>>21)&0x1f;
8309         rs2[i]=(source[i]>>16)&0x1f;
8310         rt1[i]=0;
8311         rt2[i]=0;
8312         if(op&2) { // BGTZ/BLEZ
8313           rs2[i]=0;
8314         }
8315         us1[i]=rs1[i];
8316         us2[i]=rs2[i];
8317         likely[i]=op>>4;
8318         break;
8319       case SJUMP:
8320         rs1[i]=(source[i]>>21)&0x1f;
8321         rs2[i]=CCREG;
8322         rt1[i]=0;
8323         rt2[i]=0;
8324         us1[i]=rs1[i];
8325         if(op2&0x10) { // BxxAL
8326           rt1[i]=31;
8327           // NOTE: If the branch is not taken, r31 is still overwritten
8328         }
8329         likely[i]=(op2&2)>>1;
8330         break;
8331       case FJUMP:
8332         rs1[i]=FSREG;
8333         rs2[i]=CSREG;
8334         rt1[i]=0;
8335         rt2[i]=0;
8336         likely[i]=((source[i])>>17)&1;
8337         break;
8338       case ALU:
8339         rs1[i]=(source[i]>>21)&0x1f; // source
8340         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8341         rt1[i]=(source[i]>>11)&0x1f; // destination
8342         rt2[i]=0;
8343         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8344           us1[i]=rs1[i];us2[i]=rs2[i];
8345         }
8346         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8347           dep1[i]=rs1[i];dep2[i]=rs2[i];
8348         }
8349         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8350           dep1[i]=rs1[i];dep2[i]=rs2[i];
8351         }
8352         break;
8353       case MULTDIV:
8354         rs1[i]=(source[i]>>21)&0x1f; // source
8355         rs2[i]=(source[i]>>16)&0x1f; // divisor
8356         rt1[i]=HIREG;
8357         rt2[i]=LOREG;
8358         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8359           us1[i]=rs1[i];us2[i]=rs2[i];
8360         }
8361         break;
8362       case MOV:
8363         rs1[i]=0;
8364         rs2[i]=0;
8365         rt1[i]=0;
8366         rt2[i]=0;
8367         if(op2==0x10) rs1[i]=HIREG; // MFHI
8368         if(op2==0x11) rt1[i]=HIREG; // MTHI
8369         if(op2==0x12) rs1[i]=LOREG; // MFLO
8370         if(op2==0x13) rt1[i]=LOREG; // MTLO
8371         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8372         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8373         dep1[i]=rs1[i];
8374         break;
8375       case SHIFT:
8376         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8377         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8378         rt1[i]=(source[i]>>11)&0x1f; // destination
8379         rt2[i]=0;
8380         // DSLLV/DSRLV/DSRAV are 64-bit
8381         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8382         break;
8383       case SHIFTIMM:
8384         rs1[i]=(source[i]>>16)&0x1f;
8385         rs2[i]=0;
8386         rt1[i]=(source[i]>>11)&0x1f;
8387         rt2[i]=0;
8388         imm[i]=(source[i]>>6)&0x1f;
8389         // DSxx32 instructions
8390         if(op2>=0x3c) imm[i]|=0x20;
8391         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8392         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8393         break;
8394       case COP0:
8395         rs1[i]=0;
8396         rs2[i]=0;
8397         rt1[i]=0;
8398         rt2[i]=0;
8399         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8400         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8401         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8402         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8403         break;
8404       case COP1:
8405       case COP2:
8406         rs1[i]=0;
8407         rs2[i]=0;
8408         rt1[i]=0;
8409         rt2[i]=0;
8410         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8411         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8412         if(op2==5) us1[i]=rs1[i]; // DMTC1
8413         rs2[i]=CSREG;
8414         break;
8415       case C1LS:
8416         rs1[i]=(source[i]>>21)&0x1F;
8417         rs2[i]=CSREG;
8418         rt1[i]=0;
8419         rt2[i]=0;
8420         imm[i]=(short)source[i];
8421         break;
8422       case C2LS:
8423         rs1[i]=(source[i]>>21)&0x1F;
8424         rs2[i]=0;
8425         rt1[i]=0;
8426         rt2[i]=0;
8427         imm[i]=(short)source[i];
8428         break;
8429       case FLOAT:
8430       case FCONV:
8431         rs1[i]=0;
8432         rs2[i]=CSREG;
8433         rt1[i]=0;
8434         rt2[i]=0;
8435         break;
8436       case FCOMP:
8437         rs1[i]=FSREG;
8438         rs2[i]=CSREG;
8439         rt1[i]=FSREG;
8440         rt2[i]=0;
8441         break;
8442       case SYSCALL:
8443       case HLECALL:
8444       case INTCALL:
8445         rs1[i]=CCREG;
8446         rs2[i]=0;
8447         rt1[i]=0;
8448         rt2[i]=0;
8449         break;
8450       default:
8451         rs1[i]=0;
8452         rs2[i]=0;
8453         rt1[i]=0;
8454         rt2[i]=0;
8455     }
8456     /* Calculate branch target addresses */
8457     if(type==UJUMP)
8458       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8459     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8460       ba[i]=start+i*4+8; // Ignore never taken branch
8461     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8462       ba[i]=start+i*4+8; // Ignore never taken branch
8463     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8464       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8465     else ba[i]=-1;
8466     /* Is this the end of the block? */
8467     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8468 #ifdef PCSX
8469       // check for link register access in delay slot
8470       int rt1_=rt1[i-1];
8471       if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8472         printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8473         ba[i-1]=-1;
8474         itype[i-1]=INTCALL;
8475         done=2;
8476       }
8477       else
8478 #endif
8479       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8480         done=2;
8481       }
8482       else {
8483         if(stop_after_jal) done=1;
8484         // Stop on BREAK
8485         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8486       }
8487       // Don't recompile stuff that's already compiled
8488       if(check_addr(start+i*4+4)) done=1;
8489       // Don't get too close to the limit
8490       if(i>MAXBLOCK/2) done=1;
8491     }
8492     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8493     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8494     if(done==2) {
8495       // Does the block continue due to a branch?
8496       for(j=i-1;j>=0;j--)
8497       {
8498         if(ba[j]==start+i*4+4) done=j=0;
8499         if(ba[j]==start+i*4+8) done=j=0;
8500       }
8501     }
8502     //assert(i<MAXBLOCK-1);
8503     if(start+i*4==pagelimit-4) done=1;
8504     assert(start+i*4<pagelimit);
8505     if (i==MAXBLOCK-1) done=1;
8506     // Stop if we're compiling junk
8507     if(itype[i]==NI&&opcode[i]==0x11) {
8508       done=stop_after_jal=1;
8509       printf("Disabled speculative precompilation\n");
8510     }
8511   }
8512   slen=i;
8513   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8514     if(start+i*4==pagelimit) {
8515       itype[i-1]=SPAN;
8516     }
8517   }
8518   assert(slen>0);
8519
8520   /* Pass 2 - Register dependencies and branch targets */
8521
8522   unneeded_registers(0,slen-1,0);
8523   
8524   /* Pass 3 - Register allocation */
8525
8526   struct regstat current; // Current register allocations/status
8527   current.is32=1;
8528   current.dirty=0;
8529   current.u=unneeded_reg[0];
8530   current.uu=unneeded_reg_upper[0];
8531   clear_all_regs(current.regmap);
8532   alloc_reg(&current,0,CCREG);
8533   dirty_reg(&current,CCREG);
8534   current.isconst=0;
8535   current.wasconst=0;
8536   int ds=0;
8537   int cc=0;
8538   int hr;
8539
8540 #ifndef FORCE32
8541   provisional_32bit();
8542 #endif
8543   if((u_int)addr&1) {
8544     // First instruction is delay slot
8545     cc=-1;
8546     bt[1]=1;
8547     ds=1;
8548     unneeded_reg[0]=1;
8549     unneeded_reg_upper[0]=1;
8550     current.regmap[HOST_BTREG]=BTREG;
8551   }
8552   
8553   for(i=0;i<slen;i++)
8554   {
8555     if(bt[i])
8556     {
8557       int hr;
8558       for(hr=0;hr<HOST_REGS;hr++)
8559       {
8560         // Is this really necessary?
8561         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8562       }
8563       current.isconst=0;
8564     }
8565     if(i>1)
8566     {
8567       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8568       {
8569         if(rs1[i-2]==0||rs2[i-2]==0)
8570         {
8571           if(rs1[i-2]) {
8572             current.is32|=1LL<<rs1[i-2];
8573             int hr=get_reg(current.regmap,rs1[i-2]|64);
8574             if(hr>=0) current.regmap[hr]=-1;
8575           }
8576           if(rs2[i-2]) {
8577             current.is32|=1LL<<rs2[i-2];
8578             int hr=get_reg(current.regmap,rs2[i-2]|64);
8579             if(hr>=0) current.regmap[hr]=-1;
8580           }
8581         }
8582       }
8583     }
8584 #ifndef FORCE32
8585     // If something jumps here with 64-bit values
8586     // then promote those registers to 64 bits
8587     if(bt[i])
8588     {
8589       uint64_t temp_is32=current.is32;
8590       for(j=i-1;j>=0;j--)
8591       {
8592         if(ba[j]==start+i*4) 
8593           temp_is32&=branch_regs[j].is32;
8594       }
8595       for(j=i;j<slen;j++)
8596       {
8597         if(ba[j]==start+i*4) 
8598           //temp_is32=1;
8599           temp_is32&=p32[j];
8600       }
8601       if(temp_is32!=current.is32) {
8602         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8603         #ifdef DESTRUCTIVE_WRITEBACK
8604         for(hr=0;hr<HOST_REGS;hr++)
8605         {
8606           int r=current.regmap[hr];
8607           if(r>0&&r<64)
8608           {
8609             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8610               temp_is32|=1LL<<r;
8611               //printf("restore %d\n",r);
8612             }
8613           }
8614         }
8615         #endif
8616         current.is32=temp_is32;
8617       }
8618     }
8619 #else
8620     current.is32=-1LL;
8621 #endif
8622
8623     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8624     regs[i].wasconst=current.isconst;
8625     regs[i].was32=current.is32;
8626     regs[i].wasdirty=current.dirty;
8627     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8628     // To change a dirty register from 32 to 64 bits, we must write
8629     // it out during the previous cycle (for branches, 2 cycles)
8630     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8631     {
8632       uint64_t temp_is32=current.is32;
8633       for(j=i-1;j>=0;j--)
8634       {
8635         if(ba[j]==start+i*4+4) 
8636           temp_is32&=branch_regs[j].is32;
8637       }
8638       for(j=i;j<slen;j++)
8639       {
8640         if(ba[j]==start+i*4+4) 
8641           //temp_is32=1;
8642           temp_is32&=p32[j];
8643       }
8644       if(temp_is32!=current.is32) {
8645         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8646         for(hr=0;hr<HOST_REGS;hr++)
8647         {
8648           int r=current.regmap[hr];
8649           if(r>0)
8650           {
8651             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8652               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8653               {
8654                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8655                 {
8656                   //printf("dump %d/r%d\n",hr,r);
8657                   current.regmap[hr]=-1;
8658                   if(get_reg(current.regmap,r|64)>=0) 
8659                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8660                 }
8661               }
8662             }
8663           }
8664         }
8665       }
8666     }
8667     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8668     {
8669       uint64_t temp_is32=current.is32;
8670       for(j=i-1;j>=0;j--)
8671       {
8672         if(ba[j]==start+i*4+8) 
8673           temp_is32&=branch_regs[j].is32;
8674       }
8675       for(j=i;j<slen;j++)
8676       {
8677         if(ba[j]==start+i*4+8) 
8678           //temp_is32=1;
8679           temp_is32&=p32[j];
8680       }
8681       if(temp_is32!=current.is32) {
8682         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8683         for(hr=0;hr<HOST_REGS;hr++)
8684         {
8685           int r=current.regmap[hr];
8686           if(r>0)
8687           {
8688             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8689               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8690               {
8691                 //printf("dump %d/r%d\n",hr,r);
8692                 current.regmap[hr]=-1;
8693                 if(get_reg(current.regmap,r|64)>=0) 
8694                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8695               }
8696             }
8697           }
8698         }
8699       }
8700     }
8701     #endif
8702     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8703       if(i+1<slen) {
8704         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8705         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8706         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8707         current.u|=1;
8708         current.uu|=1;
8709       } else {
8710         current.u=1;
8711         current.uu=1;
8712       }
8713     } else {
8714       if(i+1<slen) {
8715         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8716         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8717         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8718         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8719         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8720         current.u|=1;
8721         current.uu|=1;
8722       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8723     }
8724     is_ds[i]=ds;
8725     if(ds) {
8726       ds=0; // Skip delay slot, already allocated as part of branch
8727       // ...but we need to alloc it in case something jumps here
8728       if(i+1<slen) {
8729         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8730         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8731       }else{
8732         current.u=branch_unneeded_reg[i-1];
8733         current.uu=branch_unneeded_reg_upper[i-1];
8734       }
8735       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8736       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8737       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8738       current.u|=1;
8739       current.uu|=1;
8740       struct regstat temp;
8741       memcpy(&temp,&current,sizeof(current));
8742       temp.wasdirty=temp.dirty;
8743       temp.was32=temp.is32;
8744       // TODO: Take into account unconditional branches, as below
8745       delayslot_alloc(&temp,i);
8746       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8747       regs[i].wasdirty=temp.wasdirty;
8748       regs[i].was32=temp.was32;
8749       regs[i].dirty=temp.dirty;
8750       regs[i].is32=temp.is32;
8751       regs[i].isconst=0;
8752       regs[i].wasconst=0;
8753       current.isconst=0;
8754       // Create entry (branch target) regmap
8755       for(hr=0;hr<HOST_REGS;hr++)
8756       {
8757         int r=temp.regmap[hr];
8758         if(r>=0) {
8759           if(r!=regmap_pre[i][hr]) {
8760             regs[i].regmap_entry[hr]=-1;
8761           }
8762           else
8763           {
8764             if(r<64){
8765               if((current.u>>r)&1) {
8766                 regs[i].regmap_entry[hr]=-1;
8767                 regs[i].regmap[hr]=-1;
8768                 //Don't clear regs in the delay slot as the branch might need them
8769                 //current.regmap[hr]=-1;
8770               }else
8771                 regs[i].regmap_entry[hr]=r;
8772             }
8773             else {
8774               if((current.uu>>(r&63))&1) {
8775                 regs[i].regmap_entry[hr]=-1;
8776                 regs[i].regmap[hr]=-1;
8777                 //Don't clear regs in the delay slot as the branch might need them
8778                 //current.regmap[hr]=-1;
8779               }else
8780                 regs[i].regmap_entry[hr]=r;
8781             }
8782           }
8783         } else {
8784           // First instruction expects CCREG to be allocated
8785           if(i==0&&hr==HOST_CCREG) 
8786             regs[i].regmap_entry[hr]=CCREG;
8787           else
8788             regs[i].regmap_entry[hr]=-1;
8789         }
8790       }
8791     }
8792     else { // Not delay slot
8793       switch(itype[i]) {
8794         case UJUMP:
8795           //current.isconst=0; // DEBUG
8796           //current.wasconst=0; // DEBUG
8797           //regs[i].wasconst=0; // DEBUG
8798           clear_const(&current,rt1[i]);
8799           alloc_cc(&current,i);
8800           dirty_reg(&current,CCREG);
8801           if (rt1[i]==31) {
8802             alloc_reg(&current,i,31);
8803             dirty_reg(&current,31);
8804             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8805             assert(rt1[i+1]!=rt1[i]);
8806             #ifdef REG_PREFETCH
8807             alloc_reg(&current,i,PTEMP);
8808             #endif
8809             //current.is32|=1LL<<rt1[i];
8810           }
8811           delayslot_alloc(&current,i+1);
8812           //current.isconst=0; // DEBUG
8813           ds=1;
8814           //printf("i=%d, isconst=%x\n",i,current.isconst);
8815           break;
8816         case RJUMP:
8817           //current.isconst=0;
8818           //current.wasconst=0;
8819           //regs[i].wasconst=0;
8820           clear_const(&current,rs1[i]);
8821           clear_const(&current,rt1[i]);
8822           alloc_cc(&current,i);
8823           dirty_reg(&current,CCREG);
8824           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8825             alloc_reg(&current,i,rs1[i]);
8826             if (rt1[i]!=0) {
8827               alloc_reg(&current,i,rt1[i]);
8828               dirty_reg(&current,rt1[i]);
8829               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8830               assert(rt1[i+1]!=rt1[i]);
8831               #ifdef REG_PREFETCH
8832               alloc_reg(&current,i,PTEMP);
8833               #endif
8834             }
8835             #ifdef USE_MINI_HT
8836             if(rs1[i]==31) { // JALR
8837               alloc_reg(&current,i,RHASH);
8838               #ifndef HOST_IMM_ADDR32
8839               alloc_reg(&current,i,RHTBL);
8840               #endif
8841             }
8842             #endif
8843             delayslot_alloc(&current,i+1);
8844           } else {
8845             // The delay slot overwrites our source register,
8846             // allocate a temporary register to hold the old value.
8847             current.isconst=0;
8848             current.wasconst=0;
8849             regs[i].wasconst=0;
8850             delayslot_alloc(&current,i+1);
8851             current.isconst=0;
8852             alloc_reg(&current,i,RTEMP);
8853           }
8854           //current.isconst=0; // DEBUG
8855           ds=1;
8856           break;
8857         case CJUMP:
8858           //current.isconst=0;
8859           //current.wasconst=0;
8860           //regs[i].wasconst=0;
8861           clear_const(&current,rs1[i]);
8862           clear_const(&current,rs2[i]);
8863           if((opcode[i]&0x3E)==4) // BEQ/BNE
8864           {
8865             alloc_cc(&current,i);
8866             dirty_reg(&current,CCREG);
8867             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8868             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8869             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8870             {
8871               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8872               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8873             }
8874             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8875                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8876               // The delay slot overwrites one of our conditions.
8877               // Allocate the branch condition registers instead.
8878               // Note that such a sequence of instructions could
8879               // be considered a bug since the branch can not be
8880               // re-executed if an exception occurs.
8881               current.isconst=0;
8882               current.wasconst=0;
8883               regs[i].wasconst=0;
8884               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8885               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8886               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8887               {
8888                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8889                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8890               }
8891             }
8892             else delayslot_alloc(&current,i+1);
8893           }
8894           else
8895           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8896           {
8897             alloc_cc(&current,i);
8898             dirty_reg(&current,CCREG);
8899             alloc_reg(&current,i,rs1[i]);
8900             if(!(current.is32>>rs1[i]&1))
8901             {
8902               alloc_reg64(&current,i,rs1[i]);
8903             }
8904             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8905               // The delay slot overwrites one of our conditions.
8906               // Allocate the branch condition registers instead.
8907               // Note that such a sequence of instructions could
8908               // be considered a bug since the branch can not be
8909               // re-executed if an exception occurs.
8910               current.isconst=0;
8911               current.wasconst=0;
8912               regs[i].wasconst=0;
8913               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8914               if(!((current.is32>>rs1[i])&1))
8915               {
8916                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8917               }
8918             }
8919             else delayslot_alloc(&current,i+1);
8920           }
8921           else
8922           // Don't alloc the delay slot yet because we might not execute it
8923           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8924           {
8925             current.isconst=0;
8926             current.wasconst=0;
8927             regs[i].wasconst=0;
8928             alloc_cc(&current,i);
8929             dirty_reg(&current,CCREG);
8930             alloc_reg(&current,i,rs1[i]);
8931             alloc_reg(&current,i,rs2[i]);
8932             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8933             {
8934               alloc_reg64(&current,i,rs1[i]);
8935               alloc_reg64(&current,i,rs2[i]);
8936             }
8937           }
8938           else
8939           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8940           {
8941             current.isconst=0;
8942             current.wasconst=0;
8943             regs[i].wasconst=0;
8944             alloc_cc(&current,i);
8945             dirty_reg(&current,CCREG);
8946             alloc_reg(&current,i,rs1[i]);
8947             if(!(current.is32>>rs1[i]&1))
8948             {
8949               alloc_reg64(&current,i,rs1[i]);
8950             }
8951           }
8952           ds=1;
8953           //current.isconst=0;
8954           break;
8955         case SJUMP:
8956           //current.isconst=0;
8957           //current.wasconst=0;
8958           //regs[i].wasconst=0;
8959           clear_const(&current,rs1[i]);
8960           clear_const(&current,rt1[i]);
8961           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8962           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8963           {
8964             alloc_cc(&current,i);
8965             dirty_reg(&current,CCREG);
8966             alloc_reg(&current,i,rs1[i]);
8967             if(!(current.is32>>rs1[i]&1))
8968             {
8969               alloc_reg64(&current,i,rs1[i]);
8970             }
8971             if (rt1[i]==31) { // BLTZAL/BGEZAL
8972               alloc_reg(&current,i,31);
8973               dirty_reg(&current,31);
8974               //#ifdef REG_PREFETCH
8975               //alloc_reg(&current,i,PTEMP);
8976               //#endif
8977               //current.is32|=1LL<<rt1[i];
8978             }
8979             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8980               // The delay slot overwrites the branch condition.
8981               // Allocate the branch condition registers instead.
8982               // Note that such a sequence of instructions could
8983               // be considered a bug since the branch can not be
8984               // re-executed if an exception occurs.
8985               current.isconst=0;
8986               current.wasconst=0;
8987               regs[i].wasconst=0;
8988               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8989               if(!((current.is32>>rs1[i])&1))
8990               {
8991                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8992               }
8993             }
8994             else delayslot_alloc(&current,i+1);
8995           }
8996           else
8997           // Don't alloc the delay slot yet because we might not execute it
8998           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8999           {
9000             current.isconst=0;
9001             current.wasconst=0;
9002             regs[i].wasconst=0;
9003             alloc_cc(&current,i);
9004             dirty_reg(&current,CCREG);
9005             alloc_reg(&current,i,rs1[i]);
9006             if(!(current.is32>>rs1[i]&1))
9007             {
9008               alloc_reg64(&current,i,rs1[i]);
9009             }
9010           }
9011           ds=1;
9012           //current.isconst=0;
9013           break;
9014         case FJUMP:
9015           current.isconst=0;
9016           current.wasconst=0;
9017           regs[i].wasconst=0;
9018           if(likely[i]==0) // BC1F/BC1T
9019           {
9020             // TODO: Theoretically we can run out of registers here on x86.
9021             // The delay slot can allocate up to six, and we need to check
9022             // CSREG before executing the delay slot.  Possibly we can drop
9023             // the cycle count and then reload it after checking that the
9024             // FPU is in a usable state, or don't do out-of-order execution.
9025             alloc_cc(&current,i);
9026             dirty_reg(&current,CCREG);
9027             alloc_reg(&current,i,FSREG);
9028             alloc_reg(&current,i,CSREG);
9029             if(itype[i+1]==FCOMP) {
9030               // The delay slot overwrites the branch condition.
9031               // Allocate the branch condition registers instead.
9032               // Note that such a sequence of instructions could
9033               // be considered a bug since the branch can not be
9034               // re-executed if an exception occurs.
9035               alloc_cc(&current,i);
9036               dirty_reg(&current,CCREG);
9037               alloc_reg(&current,i,CSREG);
9038               alloc_reg(&current,i,FSREG);
9039             }
9040             else {
9041               delayslot_alloc(&current,i+1);
9042               alloc_reg(&current,i+1,CSREG);
9043             }
9044           }
9045           else
9046           // Don't alloc the delay slot yet because we might not execute it
9047           if(likely[i]) // BC1FL/BC1TL
9048           {
9049             alloc_cc(&current,i);
9050             dirty_reg(&current,CCREG);
9051             alloc_reg(&current,i,CSREG);
9052             alloc_reg(&current,i,FSREG);
9053           }
9054           ds=1;
9055           current.isconst=0;
9056           break;
9057         case IMM16:
9058           imm16_alloc(&current,i);
9059           break;
9060         case LOAD:
9061         case LOADLR:
9062           load_alloc(&current,i);
9063           break;
9064         case STORE:
9065         case STORELR:
9066           store_alloc(&current,i);
9067           break;
9068         case ALU:
9069           alu_alloc(&current,i);
9070           break;
9071         case SHIFT:
9072           shift_alloc(&current,i);
9073           break;
9074         case MULTDIV:
9075           multdiv_alloc(&current,i);
9076           break;
9077         case SHIFTIMM:
9078           shiftimm_alloc(&current,i);
9079           break;
9080         case MOV:
9081           mov_alloc(&current,i);
9082           break;
9083         case COP0:
9084           cop0_alloc(&current,i);
9085           break;
9086         case COP1:
9087         case COP2:
9088           cop1_alloc(&current,i);
9089           break;
9090         case C1LS:
9091           c1ls_alloc(&current,i);
9092           break;
9093         case C2LS:
9094           c2ls_alloc(&current,i);
9095           break;
9096         case C2OP:
9097           c2op_alloc(&current,i);
9098           break;
9099         case FCONV:
9100           fconv_alloc(&current,i);
9101           break;
9102         case FLOAT:
9103           float_alloc(&current,i);
9104           break;
9105         case FCOMP:
9106           fcomp_alloc(&current,i);
9107           break;
9108         case SYSCALL:
9109         case HLECALL:
9110         case INTCALL:
9111           syscall_alloc(&current,i);
9112           break;
9113         case SPAN:
9114           pagespan_alloc(&current,i);
9115           break;
9116       }
9117       
9118       // Drop the upper half of registers that have become 32-bit
9119       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9120       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9121         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9122         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9123         current.uu|=1;
9124       } else {
9125         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9126         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9127         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9128         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9129         current.uu|=1;
9130       }
9131
9132       // Create entry (branch target) regmap
9133       for(hr=0;hr<HOST_REGS;hr++)
9134       {
9135         int r,or,er;
9136         r=current.regmap[hr];
9137         if(r>=0) {
9138           if(r!=regmap_pre[i][hr]) {
9139             // TODO: delay slot (?)
9140             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9141             if(or<0||(r&63)>=TEMPREG){
9142               regs[i].regmap_entry[hr]=-1;
9143             }
9144             else
9145             {
9146               // Just move it to a different register
9147               regs[i].regmap_entry[hr]=r;
9148               // If it was dirty before, it's still dirty
9149               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9150             }
9151           }
9152           else
9153           {
9154             // Unneeded
9155             if(r==0){
9156               regs[i].regmap_entry[hr]=0;
9157             }
9158             else
9159             if(r<64){
9160               if((current.u>>r)&1) {
9161                 regs[i].regmap_entry[hr]=-1;
9162                 //regs[i].regmap[hr]=-1;
9163                 current.regmap[hr]=-1;
9164               }else
9165                 regs[i].regmap_entry[hr]=r;
9166             }
9167             else {
9168               if((current.uu>>(r&63))&1) {
9169                 regs[i].regmap_entry[hr]=-1;
9170                 //regs[i].regmap[hr]=-1;
9171                 current.regmap[hr]=-1;
9172               }else
9173                 regs[i].regmap_entry[hr]=r;
9174             }
9175           }
9176         } else {
9177           // Branches expect CCREG to be allocated at the target
9178           if(regmap_pre[i][hr]==CCREG) 
9179             regs[i].regmap_entry[hr]=CCREG;
9180           else
9181             regs[i].regmap_entry[hr]=-1;
9182         }
9183       }
9184       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9185     }
9186     /* Branch post-alloc */
9187     if(i>0)
9188     {
9189       current.was32=current.is32;
9190       current.wasdirty=current.dirty;
9191       switch(itype[i-1]) {
9192         case UJUMP:
9193           memcpy(&branch_regs[i-1],&current,sizeof(current));
9194           branch_regs[i-1].isconst=0;
9195           branch_regs[i-1].wasconst=0;
9196           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9197           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9198           alloc_cc(&branch_regs[i-1],i-1);
9199           dirty_reg(&branch_regs[i-1],CCREG);
9200           if(rt1[i-1]==31) { // JAL
9201             alloc_reg(&branch_regs[i-1],i-1,31);
9202             dirty_reg(&branch_regs[i-1],31);
9203             branch_regs[i-1].is32|=1LL<<31;
9204           }
9205           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9206           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9207           break;
9208         case RJUMP:
9209           memcpy(&branch_regs[i-1],&current,sizeof(current));
9210           branch_regs[i-1].isconst=0;
9211           branch_regs[i-1].wasconst=0;
9212           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9213           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9214           alloc_cc(&branch_regs[i-1],i-1);
9215           dirty_reg(&branch_regs[i-1],CCREG);
9216           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9217           if(rt1[i-1]!=0) { // JALR
9218             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9219             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9220             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9221           }
9222           #ifdef USE_MINI_HT
9223           if(rs1[i-1]==31) { // JALR
9224             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9225             #ifndef HOST_IMM_ADDR32
9226             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9227             #endif
9228           }
9229           #endif
9230           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9231           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9232           break;
9233         case CJUMP:
9234           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9235           {
9236             alloc_cc(&current,i-1);
9237             dirty_reg(&current,CCREG);
9238             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9239                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9240               // The delay slot overwrote one of our conditions
9241               // Delay slot goes after the test (in order)
9242               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9243               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9244               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9245               current.u|=1;
9246               current.uu|=1;
9247               delayslot_alloc(&current,i);
9248               current.isconst=0;
9249             }
9250             else
9251             {
9252               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9253               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9254               // Alloc the branch condition registers
9255               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9256               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9257               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9258               {
9259                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9260                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9261               }
9262             }
9263             memcpy(&branch_regs[i-1],&current,sizeof(current));
9264             branch_regs[i-1].isconst=0;
9265             branch_regs[i-1].wasconst=0;
9266             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9267             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9268           }
9269           else
9270           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9271           {
9272             alloc_cc(&current,i-1);
9273             dirty_reg(&current,CCREG);
9274             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9275               // The delay slot overwrote the branch condition
9276               // Delay slot goes after the test (in order)
9277               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9278               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9279               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9280               current.u|=1;
9281               current.uu|=1;
9282               delayslot_alloc(&current,i);
9283               current.isconst=0;
9284             }
9285             else
9286             {
9287               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9288               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9289               // Alloc the branch condition register
9290               alloc_reg(&current,i-1,rs1[i-1]);
9291               if(!(current.is32>>rs1[i-1]&1))
9292               {
9293                 alloc_reg64(&current,i-1,rs1[i-1]);
9294               }
9295             }
9296             memcpy(&branch_regs[i-1],&current,sizeof(current));
9297             branch_regs[i-1].isconst=0;
9298             branch_regs[i-1].wasconst=0;
9299             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9300             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9301           }
9302           else
9303           // Alloc the delay slot in case the branch is taken
9304           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9305           {
9306             memcpy(&branch_regs[i-1],&current,sizeof(current));
9307             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9308             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9309             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9310             alloc_cc(&branch_regs[i-1],i);
9311             dirty_reg(&branch_regs[i-1],CCREG);
9312             delayslot_alloc(&branch_regs[i-1],i);
9313             branch_regs[i-1].isconst=0;
9314             alloc_reg(&current,i,CCREG); // Not taken path
9315             dirty_reg(&current,CCREG);
9316             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9317           }
9318           else
9319           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9320           {
9321             memcpy(&branch_regs[i-1],&current,sizeof(current));
9322             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9323             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9324             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9325             alloc_cc(&branch_regs[i-1],i);
9326             dirty_reg(&branch_regs[i-1],CCREG);
9327             delayslot_alloc(&branch_regs[i-1],i);
9328             branch_regs[i-1].isconst=0;
9329             alloc_reg(&current,i,CCREG); // Not taken path
9330             dirty_reg(&current,CCREG);
9331             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9332           }
9333           break;
9334         case SJUMP:
9335           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9336           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9337           {
9338             alloc_cc(&current,i-1);
9339             dirty_reg(&current,CCREG);
9340             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9341               // The delay slot overwrote the branch condition
9342               // Delay slot goes after the test (in order)
9343               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9344               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9345               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9346               current.u|=1;
9347               current.uu|=1;
9348               delayslot_alloc(&current,i);
9349               current.isconst=0;
9350             }
9351             else
9352             {
9353               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9354               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9355               // Alloc the branch condition register
9356               alloc_reg(&current,i-1,rs1[i-1]);
9357               if(!(current.is32>>rs1[i-1]&1))
9358               {
9359                 alloc_reg64(&current,i-1,rs1[i-1]);
9360               }
9361             }
9362             memcpy(&branch_regs[i-1],&current,sizeof(current));
9363             branch_regs[i-1].isconst=0;
9364             branch_regs[i-1].wasconst=0;
9365             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9366             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9367           }
9368           else
9369           // Alloc the delay slot in case the branch is taken
9370           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9371           {
9372             memcpy(&branch_regs[i-1],&current,sizeof(current));
9373             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9374             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9375             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9376             alloc_cc(&branch_regs[i-1],i);
9377             dirty_reg(&branch_regs[i-1],CCREG);
9378             delayslot_alloc(&branch_regs[i-1],i);
9379             branch_regs[i-1].isconst=0;
9380             alloc_reg(&current,i,CCREG); // Not taken path
9381             dirty_reg(&current,CCREG);
9382             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9383           }
9384           // FIXME: BLTZAL/BGEZAL
9385           if(opcode2[i-1]&0x10) { // BxxZAL
9386             alloc_reg(&branch_regs[i-1],i-1,31);
9387             dirty_reg(&branch_regs[i-1],31);
9388             branch_regs[i-1].is32|=1LL<<31;
9389           }
9390           break;
9391         case FJUMP:
9392           if(likely[i-1]==0) // BC1F/BC1T
9393           {
9394             alloc_cc(&current,i-1);
9395             dirty_reg(&current,CCREG);
9396             if(itype[i]==FCOMP) {
9397               // The delay slot overwrote the branch condition
9398               // Delay slot goes after the test (in order)
9399               delayslot_alloc(&current,i);
9400               current.isconst=0;
9401             }
9402             else
9403             {
9404               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9405               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9406               // Alloc the branch condition register
9407               alloc_reg(&current,i-1,FSREG);
9408             }
9409             memcpy(&branch_regs[i-1],&current,sizeof(current));
9410             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9411           }
9412           else // BC1FL/BC1TL
9413           {
9414             // Alloc the delay slot in case the branch is taken
9415             memcpy(&branch_regs[i-1],&current,sizeof(current));
9416             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9417             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9418             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9419             alloc_cc(&branch_regs[i-1],i);
9420             dirty_reg(&branch_regs[i-1],CCREG);
9421             delayslot_alloc(&branch_regs[i-1],i);
9422             branch_regs[i-1].isconst=0;
9423             alloc_reg(&current,i,CCREG); // Not taken path
9424             dirty_reg(&current,CCREG);
9425             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9426           }
9427           break;
9428       }
9429
9430       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9431       {
9432         if(rt1[i-1]==31) // JAL/JALR
9433         {
9434           // Subroutine call will return here, don't alloc any registers
9435           current.is32=1;
9436           current.dirty=0;
9437           clear_all_regs(current.regmap);
9438           alloc_reg(&current,i,CCREG);
9439           dirty_reg(&current,CCREG);
9440         }
9441         else if(i+1<slen)
9442         {
9443           // Internal branch will jump here, match registers to caller
9444           current.is32=0x3FFFFFFFFLL;
9445           current.dirty=0;
9446           clear_all_regs(current.regmap);
9447           alloc_reg(&current,i,CCREG);
9448           dirty_reg(&current,CCREG);
9449           for(j=i-1;j>=0;j--)
9450           {
9451             if(ba[j]==start+i*4+4) {
9452               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9453               current.is32=branch_regs[j].is32;
9454               current.dirty=branch_regs[j].dirty;
9455               break;
9456             }
9457           }
9458           while(j>=0) {
9459             if(ba[j]==start+i*4+4) {
9460               for(hr=0;hr<HOST_REGS;hr++) {
9461                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9462                   current.regmap[hr]=-1;
9463                 }
9464                 current.is32&=branch_regs[j].is32;
9465                 current.dirty&=branch_regs[j].dirty;
9466               }
9467             }
9468             j--;
9469           }
9470         }
9471       }
9472     }
9473
9474     // Count cycles in between branches
9475     ccadj[i]=cc;
9476     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9477     {
9478       cc=0;
9479     }
9480     else
9481     {
9482       cc++;
9483     }
9484
9485     flush_dirty_uppers(&current);
9486     if(!is_ds[i]) {
9487       regs[i].is32=current.is32;
9488       regs[i].dirty=current.dirty;
9489       regs[i].isconst=current.isconst;
9490       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9491     }
9492     for(hr=0;hr<HOST_REGS;hr++) {
9493       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9494         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9495           regs[i].wasconst&=~(1<<hr);
9496         }
9497       }
9498     }
9499     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9500   }
9501   
9502   /* Pass 4 - Cull unused host registers */
9503   
9504   uint64_t nr=0;
9505   
9506   for (i=slen-1;i>=0;i--)
9507   {
9508     int hr;
9509     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9510     {
9511       if(ba[i]<start || ba[i]>=(start+slen*4))
9512       {
9513         // Branch out of this block, don't need anything
9514         nr=0;
9515       }
9516       else
9517       {
9518         // Internal branch
9519         // Need whatever matches the target
9520         nr=0;
9521         int t=(ba[i]-start)>>2;
9522         for(hr=0;hr<HOST_REGS;hr++)
9523         {
9524           if(regs[i].regmap_entry[hr]>=0) {
9525             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9526           }
9527         }
9528       }
9529       // Conditional branch may need registers for following instructions
9530       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9531       {
9532         if(i<slen-2) {
9533           nr|=needed_reg[i+2];
9534           for(hr=0;hr<HOST_REGS;hr++)
9535           {
9536             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9537             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9538           }
9539         }
9540       }
9541       // Don't need stuff which is overwritten
9542       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9543       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9544       // Merge in delay slot
9545       for(hr=0;hr<HOST_REGS;hr++)
9546       {
9547         if(!likely[i]) {
9548           // These are overwritten unless the branch is "likely"
9549           // and the delay slot is nullified if not taken
9550           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9551           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9552         }
9553         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9554         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9555         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9556         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9557         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9558         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9559         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9560         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9561         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9562           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9563           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9564         }
9565         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9566           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9567           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9568         }
9569         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9570           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9571           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9572         }
9573       }
9574     }
9575     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9576     {
9577       // SYSCALL instruction (software interrupt)
9578       nr=0;
9579     }
9580     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9581     {
9582       // ERET instruction (return from interrupt)
9583       nr=0;
9584     }
9585     else // Non-branch
9586     {
9587       if(i<slen-1) {
9588         for(hr=0;hr<HOST_REGS;hr++) {
9589           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9590           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9591           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9592           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9593         }
9594       }
9595     }
9596     for(hr=0;hr<HOST_REGS;hr++)
9597     {
9598       // Overwritten registers are not needed
9599       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9600       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9601       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9602       // Source registers are needed
9603       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9604       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9605       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9606       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9607       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9608       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9609       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9610       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9611       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9612         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9613         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9614       }
9615       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9616         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9617         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9618       }
9619       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9620         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9621         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9622       }
9623       // Don't store a register immediately after writing it,
9624       // may prevent dual-issue.
9625       // But do so if this is a branch target, otherwise we
9626       // might have to load the register before the branch.
9627       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9628         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9629            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9630           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9631           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9632         }
9633         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9634            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9635           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9636           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9637         }
9638       }
9639     }
9640     // Cycle count is needed at branches.  Assume it is needed at the target too.
9641     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9642       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9643       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9644     }
9645     // Save it
9646     needed_reg[i]=nr;
9647     
9648     // Deallocate unneeded registers
9649     for(hr=0;hr<HOST_REGS;hr++)
9650     {
9651       if(!((nr>>hr)&1)) {
9652         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9653         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9654            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9655            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9656         {
9657           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9658           {
9659             if(likely[i]) {
9660               regs[i].regmap[hr]=-1;
9661               regs[i].isconst&=~(1<<hr);
9662               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9663             }
9664           }
9665         }
9666         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9667         {
9668           int d1=0,d2=0,map=0,temp=0;
9669           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9670           {
9671             d1=dep1[i+1];
9672             d2=dep2[i+1];
9673           }
9674           if(using_tlb) {
9675             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9676                itype[i+1]==STORE || itype[i+1]==STORELR ||
9677                itype[i+1]==C1LS || itype[i+1]==C2LS)
9678             map=TLREG;
9679           } else
9680           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9681              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9682             map=INVCP;
9683           }
9684           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9685              itype[i+1]==C1LS || itype[i+1]==C2LS)
9686             temp=FTEMP;
9687           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9688              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9689              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9690              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9691              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9692              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9693              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9694              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9695              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9696              regs[i].regmap[hr]!=map )
9697           {
9698             regs[i].regmap[hr]=-1;
9699             regs[i].isconst&=~(1<<hr);
9700             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9701                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9702                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9703                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9704                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9705                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9706                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9707                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9708                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9709                branch_regs[i].regmap[hr]!=map)
9710             {
9711               branch_regs[i].regmap[hr]=-1;
9712               branch_regs[i].regmap_entry[hr]=-1;
9713               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9714               {
9715                 if(!likely[i]&&i<slen-2) {
9716                   regmap_pre[i+2][hr]=-1;
9717                 }
9718               }
9719             }
9720           }
9721         }
9722         else
9723         {
9724           // Non-branch
9725           if(i>0)
9726           {
9727             int d1=0,d2=0,map=-1,temp=-1;
9728             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9729             {
9730               d1=dep1[i];
9731               d2=dep2[i];
9732             }
9733             if(using_tlb) {
9734               if(itype[i]==LOAD || itype[i]==LOADLR ||
9735                  itype[i]==STORE || itype[i]==STORELR ||
9736                  itype[i]==C1LS || itype[i]==C2LS)
9737               map=TLREG;
9738             } else if(itype[i]==STORE || itype[i]==STORELR ||
9739                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9740               map=INVCP;
9741             }
9742             if(itype[i]==LOADLR || itype[i]==STORELR ||
9743                itype[i]==C1LS || itype[i]==C2LS)
9744               temp=FTEMP;
9745             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9746                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9747                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9748                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9749                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9750                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9751             {
9752               if(i<slen-1&&!is_ds[i]) {
9753                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9754                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9755                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9756                 {
9757                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9758                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9759                 }
9760                 regmap_pre[i+1][hr]=-1;
9761                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9762               }
9763               regs[i].regmap[hr]=-1;
9764               regs[i].isconst&=~(1<<hr);
9765             }
9766           }
9767         }
9768       }
9769     }
9770   }
9771   
9772   /* Pass 5 - Pre-allocate registers */
9773   
9774   // If a register is allocated during a loop, try to allocate it for the
9775   // entire loop, if possible.  This avoids loading/storing registers
9776   // inside of the loop.
9777
9778   signed char f_regmap[HOST_REGS];
9779   clear_all_regs(f_regmap);
9780   for(i=0;i<slen-1;i++)
9781   {
9782     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9783     {
9784       if(ba[i]>=start && ba[i]<(start+i*4)) 
9785       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9786       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9787       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9788       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9789       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9790       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9791       {
9792         int t=(ba[i]-start)>>2;
9793         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9794         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9795         for(hr=0;hr<HOST_REGS;hr++)
9796         {
9797           if(regs[i].regmap[hr]>64) {
9798             if(!((regs[i].dirty>>hr)&1))
9799               f_regmap[hr]=regs[i].regmap[hr];
9800             else f_regmap[hr]=-1;
9801           }
9802           else if(regs[i].regmap[hr]>=0) {
9803             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9804               // dealloc old register
9805               int n;
9806               for(n=0;n<HOST_REGS;n++)
9807               {
9808                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9809               }
9810               // and alloc new one
9811               f_regmap[hr]=regs[i].regmap[hr];
9812             }
9813           }
9814           if(branch_regs[i].regmap[hr]>64) {
9815             if(!((branch_regs[i].dirty>>hr)&1))
9816               f_regmap[hr]=branch_regs[i].regmap[hr];
9817             else f_regmap[hr]=-1;
9818           }
9819           else if(branch_regs[i].regmap[hr]>=0) {
9820             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9821               // dealloc old register
9822               int n;
9823               for(n=0;n<HOST_REGS;n++)
9824               {
9825                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9826               }
9827               // and alloc new one
9828               f_regmap[hr]=branch_regs[i].regmap[hr];
9829             }
9830           }
9831           if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9832           ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9833           ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9834           ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9835           {
9836             // Test both in case the delay slot is ooo,
9837             // could be done better...
9838             if(count_free_regs(branch_regs[i].regmap)<2
9839              ||count_free_regs(regs[i].regmap)<2) 
9840               f_regmap[hr]=branch_regs[i].regmap[hr];
9841           }
9842           // Avoid dirty->clean transition
9843           // #ifdef DESTRUCTIVE_WRITEBACK here?
9844           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9845           if(f_regmap[hr]>0) {
9846             if(regs[t].regmap_entry[hr]<0) {
9847               int r=f_regmap[hr];
9848               for(j=t;j<=i;j++)
9849               {
9850                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9851                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9852                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9853                 if(r>63) {
9854                   // NB This can exclude the case where the upper-half
9855                   // register is lower numbered than the lower-half
9856                   // register.  Not sure if it's worth fixing...
9857                   if(get_reg(regs[j].regmap,r&63)<0) break;
9858                   if(regs[j].is32&(1LL<<(r&63))) break;
9859                 }
9860                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9861                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9862                   int k;
9863                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9864                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9865                     if(r>63) {
9866                       if(get_reg(regs[i].regmap,r&63)<0) break;
9867                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9868                     }
9869                     k=i;
9870                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9871                       if(itype[k-1]==STORE||itype[k-1]==STORELR
9872                       ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9873                       ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9874                       ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9875                         if(count_free_regs(regs[k-1].regmap)<2) {
9876                           //printf("no free regs for store %x\n",start+(k-1)*4);
9877                           break;
9878                         }
9879                       }
9880                       else
9881                       if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9882                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9883                         //printf("no-match due to different register\n");
9884                         break;
9885                       }
9886                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9887                         //printf("no-match due to branch\n");
9888                         break;
9889                       }
9890                       // call/ret fast path assumes no registers allocated
9891                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9892                         break;
9893                       }
9894                       if(r>63) {
9895                         // NB This can exclude the case where the upper-half
9896                         // register is lower numbered than the lower-half
9897                         // register.  Not sure if it's worth fixing...
9898                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9899                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9900                       }
9901                       k--;
9902                     }
9903                     if(i<slen-1) {
9904                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9905                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9906                         //printf("bad match after branch\n");
9907                         break;
9908                       }
9909                     }
9910                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9911                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9912                       while(k<i) {
9913                         regs[k].regmap_entry[hr]=f_regmap[hr];
9914                         regs[k].regmap[hr]=f_regmap[hr];
9915                         regmap_pre[k+1][hr]=f_regmap[hr];
9916                         regs[k].wasdirty&=~(1<<hr);
9917                         regs[k].dirty&=~(1<<hr);
9918                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9919                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9920                         regs[k].wasconst&=~(1<<hr);
9921                         regs[k].isconst&=~(1<<hr);
9922                         k++;
9923                       }
9924                     }
9925                     else {
9926                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9927                       break;
9928                     }
9929                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9930                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9931                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9932                       regs[i].regmap_entry[hr]=f_regmap[hr];
9933                       regs[i].regmap[hr]=f_regmap[hr];
9934                       regs[i].wasdirty&=~(1<<hr);
9935                       regs[i].dirty&=~(1<<hr);
9936                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9937                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9938                       regs[i].wasconst&=~(1<<hr);
9939                       regs[i].isconst&=~(1<<hr);
9940                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9941                       branch_regs[i].wasdirty&=~(1<<hr);
9942                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9943                       branch_regs[i].regmap[hr]=f_regmap[hr];
9944                       branch_regs[i].dirty&=~(1<<hr);
9945                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9946                       branch_regs[i].wasconst&=~(1<<hr);
9947                       branch_regs[i].isconst&=~(1<<hr);
9948                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9949                         regmap_pre[i+2][hr]=f_regmap[hr];
9950                         regs[i+2].wasdirty&=~(1<<hr);
9951                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9952                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9953                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9954                       }
9955                     }
9956                   }
9957                   for(k=t;k<j;k++) {
9958                     regs[k].regmap_entry[hr]=f_regmap[hr];
9959                     regs[k].regmap[hr]=f_regmap[hr];
9960                     regmap_pre[k+1][hr]=f_regmap[hr];
9961                     regs[k+1].wasdirty&=~(1<<hr);
9962                     regs[k].dirty&=~(1<<hr);
9963                     regs[k].wasconst&=~(1<<hr);
9964                     regs[k].isconst&=~(1<<hr);
9965                   }
9966                   if(regs[j].regmap[hr]==f_regmap[hr])
9967                     regs[j].regmap_entry[hr]=f_regmap[hr];
9968                   break;
9969                 }
9970                 if(j==i) break;
9971                 if(regs[j].regmap[hr]>=0)
9972                   break;
9973                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9974                   //printf("no-match due to different register\n");
9975                   break;
9976                 }
9977                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9978                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9979                   break;
9980                 }
9981                 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9982                 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9983                 ||itype[j]==FCOMP||itype[j]==FCONV
9984                 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9985                   if(count_free_regs(regs[j].regmap)<2) {
9986                     //printf("No free regs for store %x\n",start+j*4);
9987                     break;
9988                   }
9989                 }
9990                 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9991                 if(f_regmap[hr]>=64) {
9992                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9993                     break;
9994                   }
9995                   else
9996                   {
9997                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9998                       break;
9999                     }
10000                   }
10001                 }
10002               }
10003             }
10004           }
10005         }
10006       }
10007     }else{
10008       int count=0;
10009       for(hr=0;hr<HOST_REGS;hr++)
10010       {
10011         if(hr!=EXCLUDE_REG) {
10012           if(regs[i].regmap[hr]>64) {
10013             if(!((regs[i].dirty>>hr)&1))
10014               f_regmap[hr]=regs[i].regmap[hr];
10015           }
10016           else if(regs[i].regmap[hr]>=0) {
10017             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10018               // dealloc old register
10019               int n;
10020               for(n=0;n<HOST_REGS;n++)
10021               {
10022                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10023               }
10024               // and alloc new one
10025               f_regmap[hr]=regs[i].regmap[hr];
10026             }
10027           }
10028           else if(regs[i].regmap[hr]<0) count++;
10029         }
10030       }
10031       // Try to restore cycle count at branch targets
10032       if(bt[i]) {
10033         for(j=i;j<slen-1;j++) {
10034           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10035           if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
10036           ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
10037           ||itype[j]==FCOMP||itype[j]==FCONV
10038           ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
10039             if(count_free_regs(regs[j].regmap)<2) {
10040               //printf("no free regs for store %x\n",start+j*4);
10041               break;
10042             }
10043           }
10044           else
10045           if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
10046         }
10047         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10048           int k=i;
10049           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10050           while(k<j) {
10051             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10052             regs[k].regmap[HOST_CCREG]=CCREG;
10053             regmap_pre[k+1][HOST_CCREG]=CCREG;
10054             regs[k+1].wasdirty|=1<<HOST_CCREG;
10055             regs[k].dirty|=1<<HOST_CCREG;
10056             regs[k].wasconst&=~(1<<HOST_CCREG);
10057             regs[k].isconst&=~(1<<HOST_CCREG);
10058             k++;
10059           }
10060           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10061         }
10062         // Work backwards from the branch target
10063         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10064         {
10065           //printf("Extend backwards\n");
10066           int k;
10067           k=i;
10068           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10069             if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
10070             ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
10071             ||itype[k-1]==FCONV||itype[k-1]==FCOMP
10072             ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
10073               if(count_free_regs(regs[k-1].regmap)<2) {
10074                 //printf("no free regs for store %x\n",start+(k-1)*4);
10075                 break;
10076               }
10077             }
10078             else
10079             if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
10080             k--;
10081           }
10082           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10083             //printf("Extend CC, %x ->\n",start+k*4);
10084             while(k<=i) {
10085               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10086               regs[k].regmap[HOST_CCREG]=CCREG;
10087               regmap_pre[k+1][HOST_CCREG]=CCREG;
10088               regs[k+1].wasdirty|=1<<HOST_CCREG;
10089               regs[k].dirty|=1<<HOST_CCREG;
10090               regs[k].wasconst&=~(1<<HOST_CCREG);
10091               regs[k].isconst&=~(1<<HOST_CCREG);
10092               k++;
10093             }
10094           }
10095           else {
10096             //printf("Fail Extend CC, %x ->\n",start+k*4);
10097           }
10098         }
10099       }
10100       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10101          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10102          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10103          itype[i]!=FCONV&&itype[i]!=FCOMP&&
10104          itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
10105       {
10106         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10107       }
10108     }
10109   }
10110   
10111   // This allocates registers (if possible) one instruction prior
10112   // to use, which can avoid a load-use penalty on certain CPUs.
10113   for(i=0;i<slen-1;i++)
10114   {
10115     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10116     {
10117       if(!bt[i+1])
10118       {
10119         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10120            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10121         {
10122           if(rs1[i+1]) {
10123             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10124             {
10125               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10126               {
10127                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10128                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10129                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10130                 regs[i].isconst&=~(1<<hr);
10131                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10132                 constmap[i][hr]=constmap[i+1][hr];
10133                 regs[i+1].wasdirty&=~(1<<hr);
10134                 regs[i].dirty&=~(1<<hr);
10135               }
10136             }
10137           }
10138           if(rs2[i+1]) {
10139             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10140             {
10141               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10142               {
10143                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10144                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10145                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10146                 regs[i].isconst&=~(1<<hr);
10147                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10148                 constmap[i][hr]=constmap[i+1][hr];
10149                 regs[i+1].wasdirty&=~(1<<hr);
10150                 regs[i].dirty&=~(1<<hr);
10151               }
10152             }
10153           }
10154           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10155             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10156             {
10157               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10158               {
10159                 regs[i].regmap[hr]=rs1[i+1];
10160                 regmap_pre[i+1][hr]=rs1[i+1];
10161                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10162                 regs[i].isconst&=~(1<<hr);
10163                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10164                 constmap[i][hr]=constmap[i+1][hr];
10165                 regs[i+1].wasdirty&=~(1<<hr);
10166                 regs[i].dirty&=~(1<<hr);
10167               }
10168             }
10169           }
10170           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10171             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10172             {
10173               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10174               {
10175                 regs[i].regmap[hr]=rs1[i+1];
10176                 regmap_pre[i+1][hr]=rs1[i+1];
10177                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10178                 regs[i].isconst&=~(1<<hr);
10179                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10180                 constmap[i][hr]=constmap[i+1][hr];
10181                 regs[i+1].wasdirty&=~(1<<hr);
10182                 regs[i].dirty&=~(1<<hr);
10183               }
10184             }
10185           }
10186           #ifndef HOST_IMM_ADDR32
10187           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10188             hr=get_reg(regs[i+1].regmap,TLREG);
10189             if(hr>=0) {
10190               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10191               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10192                 int nr;
10193                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10194                 {
10195                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10196                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10197                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10198                   regs[i].isconst&=~(1<<hr);
10199                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10200                   constmap[i][hr]=constmap[i+1][hr];
10201                   regs[i+1].wasdirty&=~(1<<hr);
10202                   regs[i].dirty&=~(1<<hr);
10203                 }
10204                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10205                 {
10206                   // move it to another register
10207                   regs[i+1].regmap[hr]=-1;
10208                   regmap_pre[i+2][hr]=-1;
10209                   regs[i+1].regmap[nr]=TLREG;
10210                   regmap_pre[i+2][nr]=TLREG;
10211                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10212                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10213                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10214                   regs[i].isconst&=~(1<<nr);
10215                   regs[i+1].isconst&=~(1<<nr);
10216                   regs[i].dirty&=~(1<<nr);
10217                   regs[i+1].wasdirty&=~(1<<nr);
10218                   regs[i+1].dirty&=~(1<<nr);
10219                   regs[i+2].wasdirty&=~(1<<nr);
10220                 }
10221               }
10222             }
10223           }
10224           #endif
10225           if(itype[i+1]==STORE||itype[i+1]==STORELR
10226              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10227             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10228               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10229               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10230               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10231               assert(hr>=0);
10232               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10233               {
10234                 regs[i].regmap[hr]=rs1[i+1];
10235                 regmap_pre[i+1][hr]=rs1[i+1];
10236                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10237                 regs[i].isconst&=~(1<<hr);
10238                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10239                 constmap[i][hr]=constmap[i+1][hr];
10240                 regs[i+1].wasdirty&=~(1<<hr);
10241                 regs[i].dirty&=~(1<<hr);
10242               }
10243             }
10244           }
10245           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10246             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10247               int nr;
10248               hr=get_reg(regs[i+1].regmap,FTEMP);
10249               assert(hr>=0);
10250               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10251               {
10252                 regs[i].regmap[hr]=rs1[i+1];
10253                 regmap_pre[i+1][hr]=rs1[i+1];
10254                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10255                 regs[i].isconst&=~(1<<hr);
10256                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10257                 constmap[i][hr]=constmap[i+1][hr];
10258                 regs[i+1].wasdirty&=~(1<<hr);
10259                 regs[i].dirty&=~(1<<hr);
10260               }
10261               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10262               {
10263                 // move it to another register
10264                 regs[i+1].regmap[hr]=-1;
10265                 regmap_pre[i+2][hr]=-1;
10266                 regs[i+1].regmap[nr]=FTEMP;
10267                 regmap_pre[i+2][nr]=FTEMP;
10268                 regs[i].regmap[nr]=rs1[i+1];
10269                 regmap_pre[i+1][nr]=rs1[i+1];
10270                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10271                 regs[i].isconst&=~(1<<nr);
10272                 regs[i+1].isconst&=~(1<<nr);
10273                 regs[i].dirty&=~(1<<nr);
10274                 regs[i+1].wasdirty&=~(1<<nr);
10275                 regs[i+1].dirty&=~(1<<nr);
10276                 regs[i+2].wasdirty&=~(1<<nr);
10277               }
10278             }
10279           }
10280           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10281             if(itype[i+1]==LOAD) 
10282               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10283             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10284               hr=get_reg(regs[i+1].regmap,FTEMP);
10285             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10286               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10287               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10288             }
10289             if(hr>=0&&regs[i].regmap[hr]<0) {
10290               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10291               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10292                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10293                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10294                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10295                 regs[i].isconst&=~(1<<hr);
10296                 regs[i+1].wasdirty&=~(1<<hr);
10297                 regs[i].dirty&=~(1<<hr);
10298               }
10299             }
10300           }
10301         }
10302       }
10303     }
10304   }
10305   
10306   /* Pass 6 - Optimize clean/dirty state */
10307   clean_registers(0,slen-1,1);
10308   
10309   /* Pass 7 - Identify 32-bit registers */
10310 #ifndef FORCE32
10311   provisional_r32();
10312
10313   u_int r32=0;
10314   
10315   for (i=slen-1;i>=0;i--)
10316   {
10317     int hr;
10318     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10319     {
10320       if(ba[i]<start || ba[i]>=(start+slen*4))
10321       {
10322         // Branch out of this block, don't need anything
10323         r32=0;
10324       }
10325       else
10326       {
10327         // Internal branch
10328         // Need whatever matches the target
10329         // (and doesn't get overwritten by the delay slot instruction)
10330         r32=0;
10331         int t=(ba[i]-start)>>2;
10332         if(ba[i]>start+i*4) {
10333           // Forward branch
10334           if(!(requires_32bit[t]&~regs[i].was32))
10335             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10336         }else{
10337           // Backward branch
10338           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10339           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10340           if(!(pr32[t]&~regs[i].was32))
10341             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10342         }
10343       }
10344       // Conditional branch may need registers for following instructions
10345       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10346       {
10347         if(i<slen-2) {
10348           r32|=requires_32bit[i+2];
10349           r32&=regs[i].was32;
10350           // Mark this address as a branch target since it may be called
10351           // upon return from interrupt
10352           bt[i+2]=1;
10353         }
10354       }
10355       // Merge in delay slot
10356       if(!likely[i]) {
10357         // These are overwritten unless the branch is "likely"
10358         // and the delay slot is nullified if not taken
10359         r32&=~(1LL<<rt1[i+1]);
10360         r32&=~(1LL<<rt2[i+1]);
10361       }
10362       // Assume these are needed (delay slot)
10363       if(us1[i+1]>0)
10364       {
10365         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10366       }
10367       if(us2[i+1]>0)
10368       {
10369         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10370       }
10371       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10372       {
10373         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10374       }
10375       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10376       {
10377         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10378       }
10379     }
10380     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10381     {
10382       // SYSCALL instruction (software interrupt)
10383       r32=0;
10384     }
10385     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10386     {
10387       // ERET instruction (return from interrupt)
10388       r32=0;
10389     }
10390     // Check 32 bits
10391     r32&=~(1LL<<rt1[i]);
10392     r32&=~(1LL<<rt2[i]);
10393     if(us1[i]>0)
10394     {
10395       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10396     }
10397     if(us2[i]>0)
10398     {
10399       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10400     }
10401     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10402     {
10403       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10404     }
10405     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10406     {
10407       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10408     }
10409     requires_32bit[i]=r32;
10410     
10411     // Dirty registers which are 32-bit, require 32-bit input
10412     // as they will be written as 32-bit values
10413     for(hr=0;hr<HOST_REGS;hr++)
10414     {
10415       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10416         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10417           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10418           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10419         }
10420       }
10421     }
10422     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10423   }
10424 #endif
10425
10426   if(itype[slen-1]==SPAN) {
10427     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10428   }
10429   
10430   /* Debug/disassembly */
10431   if((void*)assem_debug==(void*)printf) 
10432   for(i=0;i<slen;i++)
10433   {
10434     printf("U:");
10435     int r;
10436     for(r=1;r<=CCREG;r++) {
10437       if((unneeded_reg[i]>>r)&1) {
10438         if(r==HIREG) printf(" HI");
10439         else if(r==LOREG) printf(" LO");
10440         else printf(" r%d",r);
10441       }
10442     }
10443 #ifndef FORCE32
10444     printf(" UU:");
10445     for(r=1;r<=CCREG;r++) {
10446       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10447         if(r==HIREG) printf(" HI");
10448         else if(r==LOREG) printf(" LO");
10449         else printf(" r%d",r);
10450       }
10451     }
10452     printf(" 32:");
10453     for(r=0;r<=CCREG;r++) {
10454       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10455       if((regs[i].was32>>r)&1) {
10456         if(r==CCREG) printf(" CC");
10457         else if(r==HIREG) printf(" HI");
10458         else if(r==LOREG) printf(" LO");
10459         else printf(" r%d",r);
10460       }
10461     }
10462 #endif
10463     printf("\n");
10464     #if defined(__i386__) || defined(__x86_64__)
10465     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10466     #endif
10467     #ifdef __arm__
10468     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10469     #endif
10470     printf("needs: ");
10471     if(needed_reg[i]&1) printf("eax ");
10472     if((needed_reg[i]>>1)&1) printf("ecx ");
10473     if((needed_reg[i]>>2)&1) printf("edx ");
10474     if((needed_reg[i]>>3)&1) printf("ebx ");
10475     if((needed_reg[i]>>5)&1) printf("ebp ");
10476     if((needed_reg[i]>>6)&1) printf("esi ");
10477     if((needed_reg[i]>>7)&1) printf("edi ");
10478     printf("r:");
10479     for(r=0;r<=CCREG;r++) {
10480       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10481       if((requires_32bit[i]>>r)&1) {
10482         if(r==CCREG) printf(" CC");
10483         else if(r==HIREG) printf(" HI");
10484         else if(r==LOREG) printf(" LO");
10485         else printf(" r%d",r);
10486       }
10487     }
10488     printf("\n");
10489     /*printf("pr:");
10490     for(r=0;r<=CCREG;r++) {
10491       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10492       if((pr32[i]>>r)&1) {
10493         if(r==CCREG) printf(" CC");
10494         else if(r==HIREG) printf(" HI");
10495         else if(r==LOREG) printf(" LO");
10496         else printf(" r%d",r);
10497       }
10498     }
10499     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10500     printf("\n");*/
10501     #if defined(__i386__) || defined(__x86_64__)
10502     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10503     printf("dirty: ");
10504     if(regs[i].wasdirty&1) printf("eax ");
10505     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10506     if((regs[i].wasdirty>>2)&1) printf("edx ");
10507     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10508     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10509     if((regs[i].wasdirty>>6)&1) printf("esi ");
10510     if((regs[i].wasdirty>>7)&1) printf("edi ");
10511     #endif
10512     #ifdef __arm__
10513     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10514     printf("dirty: ");
10515     if(regs[i].wasdirty&1) printf("r0 ");
10516     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10517     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10518     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10519     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10520     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10521     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10522     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10523     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10524     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10525     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10526     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10527     #endif
10528     printf("\n");
10529     disassemble_inst(i);
10530     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10531     #if defined(__i386__) || defined(__x86_64__)
10532     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10533     if(regs[i].dirty&1) printf("eax ");
10534     if((regs[i].dirty>>1)&1) printf("ecx ");
10535     if((regs[i].dirty>>2)&1) printf("edx ");
10536     if((regs[i].dirty>>3)&1) printf("ebx ");
10537     if((regs[i].dirty>>5)&1) printf("ebp ");
10538     if((regs[i].dirty>>6)&1) printf("esi ");
10539     if((regs[i].dirty>>7)&1) printf("edi ");
10540     #endif
10541     #ifdef __arm__
10542     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10543     if(regs[i].dirty&1) printf("r0 ");
10544     if((regs[i].dirty>>1)&1) printf("r1 ");
10545     if((regs[i].dirty>>2)&1) printf("r2 ");
10546     if((regs[i].dirty>>3)&1) printf("r3 ");
10547     if((regs[i].dirty>>4)&1) printf("r4 ");
10548     if((regs[i].dirty>>5)&1) printf("r5 ");
10549     if((regs[i].dirty>>6)&1) printf("r6 ");
10550     if((regs[i].dirty>>7)&1) printf("r7 ");
10551     if((regs[i].dirty>>8)&1) printf("r8 ");
10552     if((regs[i].dirty>>9)&1) printf("r9 ");
10553     if((regs[i].dirty>>10)&1) printf("r10 ");
10554     if((regs[i].dirty>>12)&1) printf("r12 ");
10555     #endif
10556     printf("\n");
10557     if(regs[i].isconst) {
10558       printf("constants: ");
10559       #if defined(__i386__) || defined(__x86_64__)
10560       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10561       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10562       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10563       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10564       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10565       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10566       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10567       #endif
10568       #ifdef __arm__
10569       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10570       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10571       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10572       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10573       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10574       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10575       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10576       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10577       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10578       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10579       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10580       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10581       #endif
10582       printf("\n");
10583     }
10584 #ifndef FORCE32
10585     printf(" 32:");
10586     for(r=0;r<=CCREG;r++) {
10587       if((regs[i].is32>>r)&1) {
10588         if(r==CCREG) printf(" CC");
10589         else if(r==HIREG) printf(" HI");
10590         else if(r==LOREG) printf(" LO");
10591         else printf(" r%d",r);
10592       }
10593     }
10594     printf("\n");
10595 #endif
10596     /*printf(" p32:");
10597     for(r=0;r<=CCREG;r++) {
10598       if((p32[i]>>r)&1) {
10599         if(r==CCREG) printf(" CC");
10600         else if(r==HIREG) printf(" HI");
10601         else if(r==LOREG) printf(" LO");
10602         else printf(" r%d",r);
10603       }
10604     }
10605     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10606     else printf("\n");*/
10607     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10608       #if defined(__i386__) || defined(__x86_64__)
10609       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10610       if(branch_regs[i].dirty&1) printf("eax ");
10611       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10612       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10613       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10614       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10615       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10616       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10617       #endif
10618       #ifdef __arm__
10619       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10620       if(branch_regs[i].dirty&1) printf("r0 ");
10621       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10622       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10623       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10624       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10625       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10626       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10627       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10628       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10629       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10630       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10631       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10632       #endif
10633 #ifndef FORCE32
10634       printf(" 32:");
10635       for(r=0;r<=CCREG;r++) {
10636         if((branch_regs[i].is32>>r)&1) {
10637           if(r==CCREG) printf(" CC");
10638           else if(r==HIREG) printf(" HI");
10639           else if(r==LOREG) printf(" LO");
10640           else printf(" r%d",r);
10641         }
10642       }
10643       printf("\n");
10644 #endif
10645     }
10646   }
10647
10648   /* Pass 8 - Assembly */
10649   linkcount=0;stubcount=0;
10650   ds=0;is_delayslot=0;
10651   cop1_usable=0;
10652   uint64_t is32_pre=0;
10653   u_int dirty_pre=0;
10654   u_int beginning=(u_int)out;
10655   if((u_int)addr&1) {
10656     ds=1;
10657     pagespan_ds();
10658   }
10659   u_int instr_addr0_override=0;
10660
10661 #ifdef PCSX
10662   if (start == 0x80030000) {
10663     // nasty hack for fastbios thing
10664     instr_addr0_override=(u_int)out;
10665     emit_movimm(start,0);
10666     emit_readword((int)&pcaddr,1);
10667     emit_writeword(0,(int)&pcaddr);
10668     emit_cmp(0,1);
10669     emit_jne((int)new_dyna_leave);
10670   }
10671 #endif
10672   for(i=0;i<slen;i++)
10673   {
10674     //if(ds) printf("ds: ");
10675     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10676     if(ds) {
10677       ds=0; // Skip delay slot
10678       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10679       instr_addr[i]=0;
10680     } else {
10681       #ifndef DESTRUCTIVE_WRITEBACK
10682       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10683       {
10684         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10685               unneeded_reg[i],unneeded_reg_upper[i]);
10686         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10687               unneeded_reg[i],unneeded_reg_upper[i]);
10688       }
10689       is32_pre=regs[i].is32;
10690       dirty_pre=regs[i].dirty;
10691       #endif
10692       // write back
10693       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10694       {
10695         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10696                       unneeded_reg[i],unneeded_reg_upper[i]);
10697         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10698       }
10699       // branch target entry point
10700       instr_addr[i]=(u_int)out;
10701       assem_debug("<->\n");
10702       // load regs
10703       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10704         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10705       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10706       address_generation(i,&regs[i],regs[i].regmap_entry);
10707       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10708       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10709       {
10710         // Load the delay slot registers if necessary
10711         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10712           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10713         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10714           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10715         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10716           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10717       }
10718       else if(i+1<slen)
10719       {
10720         // Preload registers for following instruction
10721         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10722           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10723             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10724         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10725           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10726             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10727       }
10728       // TODO: if(is_ooo(i)) address_generation(i+1);
10729       if(itype[i]==CJUMP||itype[i]==FJUMP)
10730         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10731       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10732         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10733       if(bt[i]) cop1_usable=0;
10734       // assemble
10735       switch(itype[i]) {
10736         case ALU:
10737           alu_assemble(i,&regs[i]);break;
10738         case IMM16:
10739           imm16_assemble(i,&regs[i]);break;
10740         case SHIFT:
10741           shift_assemble(i,&regs[i]);break;
10742         case SHIFTIMM:
10743           shiftimm_assemble(i,&regs[i]);break;
10744         case LOAD:
10745           load_assemble(i,&regs[i]);break;
10746         case LOADLR:
10747           loadlr_assemble(i,&regs[i]);break;
10748         case STORE:
10749           store_assemble(i,&regs[i]);break;
10750         case STORELR:
10751           storelr_assemble(i,&regs[i]);break;
10752         case COP0:
10753           cop0_assemble(i,&regs[i]);break;
10754         case COP1:
10755           cop1_assemble(i,&regs[i]);break;
10756         case C1LS:
10757           c1ls_assemble(i,&regs[i]);break;
10758         case COP2:
10759           cop2_assemble(i,&regs[i]);break;
10760         case C2LS:
10761           c2ls_assemble(i,&regs[i]);break;
10762         case C2OP:
10763           c2op_assemble(i,&regs[i]);break;
10764         case FCONV:
10765           fconv_assemble(i,&regs[i]);break;
10766         case FLOAT:
10767           float_assemble(i,&regs[i]);break;
10768         case FCOMP:
10769           fcomp_assemble(i,&regs[i]);break;
10770         case MULTDIV:
10771           multdiv_assemble(i,&regs[i]);break;
10772         case MOV:
10773           mov_assemble(i,&regs[i]);break;
10774         case SYSCALL:
10775           syscall_assemble(i,&regs[i]);break;
10776         case HLECALL:
10777           hlecall_assemble(i,&regs[i]);break;
10778         case INTCALL:
10779           intcall_assemble(i,&regs[i]);break;
10780         case UJUMP:
10781           ujump_assemble(i,&regs[i]);ds=1;break;
10782         case RJUMP:
10783           rjump_assemble(i,&regs[i]);ds=1;break;
10784         case CJUMP:
10785           cjump_assemble(i,&regs[i]);ds=1;break;
10786         case SJUMP:
10787           sjump_assemble(i,&regs[i]);ds=1;break;
10788         case FJUMP:
10789           fjump_assemble(i,&regs[i]);ds=1;break;
10790         case SPAN:
10791           pagespan_assemble(i,&regs[i]);break;
10792       }
10793       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10794         literal_pool(1024);
10795       else
10796         literal_pool_jumpover(256);
10797     }
10798   }
10799   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10800   // If the block did not end with an unconditional branch,
10801   // add a jump to the next instruction.
10802   if(i>1) {
10803     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10804       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10805       assert(i==slen);
10806       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10807         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10808         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10809           emit_loadreg(CCREG,HOST_CCREG);
10810         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10811       }
10812       else if(!likely[i-2])
10813       {
10814         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10815         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10816       }
10817       else
10818       {
10819         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10820         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10821       }
10822       add_to_linker((int)out,start+i*4,0);
10823       emit_jmp(0);
10824     }
10825   }
10826   else
10827   {
10828     assert(i>0);
10829     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10830     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10831     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10832       emit_loadreg(CCREG,HOST_CCREG);
10833     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10834     add_to_linker((int)out,start+i*4,0);
10835     emit_jmp(0);
10836   }
10837
10838   // TODO: delay slot stubs?
10839   // Stubs
10840   for(i=0;i<stubcount;i++)
10841   {
10842     switch(stubs[i][0])
10843     {
10844       case LOADB_STUB:
10845       case LOADH_STUB:
10846       case LOADW_STUB:
10847       case LOADD_STUB:
10848       case LOADBU_STUB:
10849       case LOADHU_STUB:
10850         do_readstub(i);break;
10851       case STOREB_STUB:
10852       case STOREH_STUB:
10853       case STOREW_STUB:
10854       case STORED_STUB:
10855         do_writestub(i);break;
10856       case CC_STUB:
10857         do_ccstub(i);break;
10858       case INVCODE_STUB:
10859         do_invstub(i);break;
10860       case FP_STUB:
10861         do_cop1stub(i);break;
10862       case STORELR_STUB:
10863         do_unalignedwritestub(i);break;
10864     }
10865   }
10866
10867   if (instr_addr0_override)
10868     instr_addr[0] = instr_addr0_override;
10869
10870   /* Pass 9 - Linker */
10871   for(i=0;i<linkcount;i++)
10872   {
10873     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10874     literal_pool(64);
10875     if(!link_addr[i][2])
10876     {
10877       void *stub=out;
10878       void *addr=check_addr(link_addr[i][1]);
10879       emit_extjump(link_addr[i][0],link_addr[i][1]);
10880       if(addr) {
10881         set_jump_target(link_addr[i][0],(int)addr);
10882         add_link(link_addr[i][1],stub);
10883       }
10884       else set_jump_target(link_addr[i][0],(int)stub);
10885     }
10886     else
10887     {
10888       // Internal branch
10889       int target=(link_addr[i][1]-start)>>2;
10890       assert(target>=0&&target<slen);
10891       assert(instr_addr[target]);
10892       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10893       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10894       //#else
10895       set_jump_target(link_addr[i][0],instr_addr[target]);
10896       //#endif
10897     }
10898   }
10899   // External Branch Targets (jump_in)
10900   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10901   for(i=0;i<slen;i++)
10902   {
10903     if(bt[i]||i==0)
10904     {
10905       if(instr_addr[i]) // TODO - delay slots (=null)
10906       {
10907         u_int vaddr=start+i*4;
10908         u_int page=get_page(vaddr);
10909         u_int vpage=get_vpage(vaddr);
10910         literal_pool(256);
10911         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10912 #ifndef FORCE32
10913         if(!requires_32bit[i])
10914 #else
10915         if(1)
10916 #endif
10917         {
10918           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10919           assem_debug("jump_in: %x\n",start+i*4);
10920           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10921           int entry_point=do_dirty_stub(i);
10922           ll_add(jump_in+page,vaddr,(void *)entry_point);
10923           // If there was an existing entry in the hash table,
10924           // replace it with the new address.
10925           // Don't add new entries.  We'll insert the
10926           // ones that actually get used in check_addr().
10927           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10928           if(ht_bin[0]==vaddr) {
10929             ht_bin[1]=entry_point;
10930           }
10931           if(ht_bin[2]==vaddr) {
10932             ht_bin[3]=entry_point;
10933           }
10934         }
10935         else
10936         {
10937           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10938           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10939           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10940           //int entry_point=(int)out;
10941           ////assem_debug("entry_point: %x\n",entry_point);
10942           //load_regs_entry(i);
10943           //if(entry_point==(int)out)
10944           //  entry_point=instr_addr[i];
10945           //else
10946           //  emit_jmp(instr_addr[i]);
10947           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10948           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10949           int entry_point=do_dirty_stub(i);
10950           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10951         }
10952       }
10953     }
10954   }
10955   // Write out the literal pool if necessary
10956   literal_pool(0);
10957   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10958   // Align code
10959   if(((u_int)out)&7) emit_addnop(13);
10960   #endif
10961   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10962   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10963   memcpy(copy,source,slen*4);
10964   copy+=slen*4;
10965   
10966   #ifdef __arm__
10967   __clear_cache((void *)beginning,out);
10968   #endif
10969   
10970   // If we're within 256K of the end of the buffer,
10971   // start over from the beginning. (Is 256K enough?)
10972   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10973   
10974   // Trap writes to any of the pages we compiled
10975   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10976     invalid_code[i]=0;
10977 #ifndef DISABLE_TLB
10978     memory_map[i]|=0x40000000;
10979     if((signed int)start>=(signed int)0xC0000000) {
10980       assert(using_tlb);
10981       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10982       invalid_code[j]=0;
10983       memory_map[j]|=0x40000000;
10984       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10985     }
10986 #endif
10987   }
10988   
10989   /* Pass 10 - Free memory by expiring oldest blocks */
10990   
10991   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10992   while(expirep!=end)
10993   {
10994     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10995     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10996     inv_debug("EXP: Phase %d\n",expirep);
10997     switch((expirep>>11)&3)
10998     {
10999       case 0:
11000         // Clear jump_in and jump_dirty
11001         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11002         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11003         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11004         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11005         break;
11006       case 1:
11007         // Clear pointers
11008         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11009         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11010         break;
11011       case 2:
11012         // Clear hash table
11013         for(i=0;i<32;i++) {
11014           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11015           if((ht_bin[3]>>shift)==(base>>shift) ||
11016              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11017             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11018             ht_bin[2]=ht_bin[3]=-1;
11019           }
11020           if((ht_bin[1]>>shift)==(base>>shift) ||
11021              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11022             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11023             ht_bin[0]=ht_bin[2];
11024             ht_bin[1]=ht_bin[3];
11025             ht_bin[2]=ht_bin[3]=-1;
11026           }
11027         }
11028         break;
11029       case 3:
11030         // Clear jump_out
11031         #ifdef __arm__
11032         if((expirep&2047)==0) 
11033           do_clear_cache();
11034         #endif
11035         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11036         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11037         break;
11038     }
11039     expirep=(expirep+1)&65535;
11040   }
11041   return 0;
11042 }
11043
11044 // vim:shiftwidth=2:expandtab