drc: allow CFC1/2 to r0
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182 #define INTCALL 30// Call interpreter to handle rare corner cases
183
184   /* stubs */
185 #define CC_STUB 1
186 #define FP_STUB 2
187 #define LOADB_STUB 3
188 #define LOADH_STUB 4
189 #define LOADW_STUB 5
190 #define LOADD_STUB 6
191 #define LOADBU_STUB 7
192 #define LOADHU_STUB 8
193 #define STOREB_STUB 9
194 #define STOREH_STUB 10
195 #define STOREW_STUB 11
196 #define STORED_STUB 12
197 #define STORELR_STUB 13
198 #define INVCODE_STUB 14
199
200   /* branch codes */
201 #define TAKEN 1
202 #define NOTTAKEN 2
203 #define NULLDS 3
204
205 // asm linkage
206 int new_recompile_block(int addr);
207 void *get_addr_ht(u_int vaddr);
208 void invalidate_block(u_int block);
209 void invalidate_addr(u_int addr);
210 void remove_hash(int vaddr);
211 void jump_vaddr();
212 void dyna_linker();
213 void dyna_linker_ds();
214 void verify_code();
215 void verify_code_vm();
216 void verify_code_ds();
217 void cc_interrupt();
218 void fp_exception();
219 void fp_exception_ds();
220 void jump_syscall();
221 void jump_syscall_hle();
222 void jump_eret();
223 void jump_hlecall();
224 void jump_intcall();
225 void new_dyna_leave();
226
227 // TLB
228 void TLBWI_new();
229 void TLBWR_new();
230 void read_nomem_new();
231 void read_nomemb_new();
232 void read_nomemh_new();
233 void read_nomemd_new();
234 void write_nomem_new();
235 void write_nomemb_new();
236 void write_nomemh_new();
237 void write_nomemd_new();
238 void write_rdram_new();
239 void write_rdramb_new();
240 void write_rdramh_new();
241 void write_rdramd_new();
242 extern u_int memory_map[1048576];
243
244 // Needed by assembler
245 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248 void load_all_regs(signed char i_regmap[]);
249 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250 void load_regs_entry(int t);
251 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253 int tracedebug=0;
254
255 //#define DEBUG_CYCLE_COUNT 1
256
257 void nullf() {}
258 //#define assem_debug printf
259 //#define inv_debug printf
260 #define assem_debug nullf
261 #define inv_debug nullf
262
263 static void tlb_hacks()
264 {
265 #ifndef DISABLE_TLB
266   // Goldeneye hack
267   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268   {
269     u_int addr;
270     int n;
271     switch (ROM_HEADER->Country_code&0xFF) 
272     {
273       case 0x45: // U
274         addr=0x34b30;
275         break;                   
276       case 0x4A: // J 
277         addr=0x34b70;    
278         break;    
279       case 0x50: // E 
280         addr=0x329f0;
281         break;                        
282       default: 
283         // Unknown country code
284         addr=0;
285         break;
286     }
287     u_int rom_addr=(u_int)rom;
288     #ifdef ROM_COPY
289     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290     // in the lower 4G of memory to use this hack.  Copy it if necessary.
291     if((void *)rom>(void *)0xffffffff) {
292       munmap(ROM_COPY, 67108864);
293       if(mmap(ROM_COPY, 12582912,
294               PROT_READ | PROT_WRITE,
295               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296               -1, 0) <= 0) {printf("mmap() failed\n");}
297       memcpy(ROM_COPY,rom,12582912);
298       rom_addr=(u_int)ROM_COPY;
299     }
300     #endif
301     if(addr) {
302       for(n=0x7F000;n<0x80000;n++) {
303         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304       }
305     }
306   }
307 #endif
308 }
309
310 static u_int get_page(u_int vaddr)
311 {
312   u_int page=(vaddr^0x80000000)>>12;
313 #ifndef DISABLE_TLB
314   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
315 #endif
316   if(page>2048) page=2048+(page&2047);
317   return page;
318 }
319
320 static u_int get_vpage(u_int vaddr)
321 {
322   u_int vpage=(vaddr^0x80000000)>>12;
323 #ifndef DISABLE_TLB
324   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
325 #endif
326   if(vpage>2048) vpage=2048+(vpage&2047);
327   return vpage;
328 }
329
330 // Get address from virtual address
331 // This is called from the recompiled JR/JALR instructions
332 void *get_addr(u_int vaddr)
333 {
334   u_int page=get_page(vaddr);
335   u_int vpage=get_vpage(vaddr);
336   struct ll_entry *head;
337   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
338   head=jump_in[page];
339   while(head!=NULL) {
340     if(head->vaddr==vaddr&&head->reg32==0) {
341   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
342       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
343       ht_bin[3]=ht_bin[1];
344       ht_bin[2]=ht_bin[0];
345       ht_bin[1]=(int)head->addr;
346       ht_bin[0]=vaddr;
347       return head->addr;
348     }
349     head=head->next;
350   }
351   head=jump_dirty[vpage];
352   while(head!=NULL) {
353     if(head->vaddr==vaddr&&head->reg32==0) {
354       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
355       // Don't restore blocks which are about to expire from the cache
356       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
357       if(verify_dirty(head->addr)) {
358         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
359         invalid_code[vaddr>>12]=0;
360         memory_map[vaddr>>12]|=0x40000000;
361         if(vpage<2048) {
362 #ifndef DISABLE_TLB
363           if(tlb_LUT_r[vaddr>>12]) {
364             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
365             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
366           }
367 #endif
368           restore_candidate[vpage>>3]|=1<<(vpage&7);
369         }
370         else restore_candidate[page>>3]|=1<<(page&7);
371         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
372         if(ht_bin[0]==vaddr) {
373           ht_bin[1]=(int)head->addr; // Replace existing entry
374         }
375         else
376         {
377           ht_bin[3]=ht_bin[1];
378           ht_bin[2]=ht_bin[0];
379           ht_bin[1]=(int)head->addr;
380           ht_bin[0]=vaddr;
381         }
382         return head->addr;
383       }
384     }
385     head=head->next;
386   }
387   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
388   int r=new_recompile_block(vaddr);
389   if(r==0) return get_addr(vaddr);
390   // Execute in unmapped page, generate pagefault execption
391   Status|=2;
392   Cause=(vaddr<<31)|0x8;
393   EPC=(vaddr&1)?vaddr-5:vaddr;
394   BadVAddr=(vaddr&~1);
395   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
396   EntryHi=BadVAddr&0xFFFFE000;
397   return get_addr_ht(0x80000000);
398 }
399 // Look up address in hash table first
400 void *get_addr_ht(u_int vaddr)
401 {
402   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
403   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
404   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
405   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
406   return get_addr(vaddr);
407 }
408
409 void *get_addr_32(u_int vaddr,u_int flags)
410 {
411 #ifdef FORCE32
412   return get_addr(vaddr);
413 #else
414   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
415   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
416   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
417   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
418   u_int page=get_page(vaddr);
419   u_int vpage=get_vpage(vaddr);
420   struct ll_entry *head;
421   head=jump_in[page];
422   while(head!=NULL) {
423     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
424       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
425       if(head->reg32==0) {
426         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
427         if(ht_bin[0]==-1) {
428           ht_bin[1]=(int)head->addr;
429           ht_bin[0]=vaddr;
430         }else if(ht_bin[2]==-1) {
431           ht_bin[3]=(int)head->addr;
432           ht_bin[2]=vaddr;
433         }
434         //ht_bin[3]=ht_bin[1];
435         //ht_bin[2]=ht_bin[0];
436         //ht_bin[1]=(int)head->addr;
437         //ht_bin[0]=vaddr;
438       }
439       return head->addr;
440     }
441     head=head->next;
442   }
443   head=jump_dirty[vpage];
444   while(head!=NULL) {
445     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
446       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
447       // Don't restore blocks which are about to expire from the cache
448       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
449       if(verify_dirty(head->addr)) {
450         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
451         invalid_code[vaddr>>12]=0;
452         memory_map[vaddr>>12]|=0x40000000;
453         if(vpage<2048) {
454 #ifndef DISABLE_TLB
455           if(tlb_LUT_r[vaddr>>12]) {
456             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
457             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
458           }
459 #endif
460           restore_candidate[vpage>>3]|=1<<(vpage&7);
461         }
462         else restore_candidate[page>>3]|=1<<(page&7);
463         if(head->reg32==0) {
464           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
465           if(ht_bin[0]==-1) {
466             ht_bin[1]=(int)head->addr;
467             ht_bin[0]=vaddr;
468           }else if(ht_bin[2]==-1) {
469             ht_bin[3]=(int)head->addr;
470             ht_bin[2]=vaddr;
471           }
472           //ht_bin[3]=ht_bin[1];
473           //ht_bin[2]=ht_bin[0];
474           //ht_bin[1]=(int)head->addr;
475           //ht_bin[0]=vaddr;
476         }
477         return head->addr;
478       }
479     }
480     head=head->next;
481   }
482   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
483   int r=new_recompile_block(vaddr);
484   if(r==0) return get_addr(vaddr);
485   // Execute in unmapped page, generate pagefault execption
486   Status|=2;
487   Cause=(vaddr<<31)|0x8;
488   EPC=(vaddr&1)?vaddr-5:vaddr;
489   BadVAddr=(vaddr&~1);
490   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
491   EntryHi=BadVAddr&0xFFFFE000;
492   return get_addr_ht(0x80000000);
493 #endif
494 }
495
496 void clear_all_regs(signed char regmap[])
497 {
498   int hr;
499   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
500 }
501
502 signed char get_reg(signed char regmap[],int r)
503 {
504   int hr;
505   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
506   return -1;
507 }
508
509 // Find a register that is available for two consecutive cycles
510 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
511 {
512   int hr;
513   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
514   return -1;
515 }
516
517 int count_free_regs(signed char regmap[])
518 {
519   int count=0;
520   int hr;
521   for(hr=0;hr<HOST_REGS;hr++)
522   {
523     if(hr!=EXCLUDE_REG) {
524       if(regmap[hr]<0) count++;
525     }
526   }
527   return count;
528 }
529
530 void dirty_reg(struct regstat *cur,signed char reg)
531 {
532   int hr;
533   if(!reg) return;
534   for (hr=0;hr<HOST_REGS;hr++) {
535     if((cur->regmap[hr]&63)==reg) {
536       cur->dirty|=1<<hr;
537     }
538   }
539 }
540
541 // If we dirty the lower half of a 64 bit register which is now being
542 // sign-extended, we need to dump the upper half.
543 // Note: Do this only after completion of the instruction, because
544 // some instructions may need to read the full 64-bit value even if
545 // overwriting it (eg SLTI, DSRA32).
546 static void flush_dirty_uppers(struct regstat *cur)
547 {
548   int hr,reg;
549   for (hr=0;hr<HOST_REGS;hr++) {
550     if((cur->dirty>>hr)&1) {
551       reg=cur->regmap[hr];
552       if(reg>=64) 
553         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
554     }
555   }
556 }
557
558 void set_const(struct regstat *cur,signed char reg,uint64_t value)
559 {
560   int hr;
561   if(!reg) return;
562   for (hr=0;hr<HOST_REGS;hr++) {
563     if(cur->regmap[hr]==reg) {
564       cur->isconst|=1<<hr;
565       cur->constmap[hr]=value;
566     }
567     else if((cur->regmap[hr]^64)==reg) {
568       cur->isconst|=1<<hr;
569       cur->constmap[hr]=value>>32;
570     }
571   }
572 }
573
574 void clear_const(struct regstat *cur,signed char reg)
575 {
576   int hr;
577   if(!reg) return;
578   for (hr=0;hr<HOST_REGS;hr++) {
579     if((cur->regmap[hr]&63)==reg) {
580       cur->isconst&=~(1<<hr);
581     }
582   }
583 }
584
585 int is_const(struct regstat *cur,signed char reg)
586 {
587   int hr;
588   if(!reg) return 1;
589   for (hr=0;hr<HOST_REGS;hr++) {
590     if((cur->regmap[hr]&63)==reg) {
591       return (cur->isconst>>hr)&1;
592     }
593   }
594   return 0;
595 }
596 uint64_t get_const(struct regstat *cur,signed char reg)
597 {
598   int hr;
599   if(!reg) return 0;
600   for (hr=0;hr<HOST_REGS;hr++) {
601     if(cur->regmap[hr]==reg) {
602       return cur->constmap[hr];
603     }
604   }
605   printf("Unknown constant in r%d\n",reg);
606   exit(1);
607 }
608
609 // Least soon needed registers
610 // Look at the next ten instructions and see which registers
611 // will be used.  Try not to reallocate these.
612 void lsn(u_char hsn[], int i, int *preferred_reg)
613 {
614   int j;
615   int b=-1;
616   for(j=0;j<9;j++)
617   {
618     if(i+j>=slen) {
619       j=slen-i-1;
620       break;
621     }
622     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
623     {
624       // Don't go past an unconditonal jump
625       j++;
626       break;
627     }
628   }
629   for(;j>=0;j--)
630   {
631     if(rs1[i+j]) hsn[rs1[i+j]]=j;
632     if(rs2[i+j]) hsn[rs2[i+j]]=j;
633     if(rt1[i+j]) hsn[rt1[i+j]]=j;
634     if(rt2[i+j]) hsn[rt2[i+j]]=j;
635     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
636       // Stores can allocate zero
637       hsn[rs1[i+j]]=j;
638       hsn[rs2[i+j]]=j;
639     }
640     // On some architectures stores need invc_ptr
641     #if defined(HOST_IMM8)
642     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
643       hsn[INVCP]=j;
644     }
645     #endif
646     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
647     {
648       hsn[CCREG]=j;
649       b=j;
650     }
651   }
652   if(b>=0)
653   {
654     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
655     {
656       // Follow first branch
657       int t=(ba[i+b]-start)>>2;
658       j=7-b;if(t+j>=slen) j=slen-t-1;
659       for(;j>=0;j--)
660       {
661         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
662         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
663         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
664         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
665       }
666     }
667     // TODO: preferred register based on backward branch
668   }
669   // Delay slot should preferably not overwrite branch conditions or cycle count
670   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
671     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
672     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
673     hsn[CCREG]=1;
674     // ...or hash tables
675     hsn[RHASH]=1;
676     hsn[RHTBL]=1;
677   }
678   // Coprocessor load/store needs FTEMP, even if not declared
679   if(itype[i]==C1LS||itype[i]==C2LS) {
680     hsn[FTEMP]=0;
681   }
682   // Load L/R also uses FTEMP as a temporary register
683   if(itype[i]==LOADLR) {
684     hsn[FTEMP]=0;
685   }
686   // Also SWL/SWR/SDL/SDR
687   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
688     hsn[FTEMP]=0;
689   }
690   // Don't remove the TLB registers either
691   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
692     hsn[TLREG]=0;
693   }
694   // Don't remove the miniht registers
695   if(itype[i]==UJUMP||itype[i]==RJUMP)
696   {
697     hsn[RHASH]=0;
698     hsn[RHTBL]=0;
699   }
700 }
701
702 // We only want to allocate registers if we're going to use them again soon
703 int needed_again(int r, int i)
704 {
705   int j;
706   int b=-1;
707   int rn=10;
708   int hr;
709   u_char hsn[MAXREG+1];
710   int preferred_reg;
711   
712   memset(hsn,10,sizeof(hsn));
713   lsn(hsn,i,&preferred_reg);
714   
715   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
716   {
717     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
718       return 0; // Don't need any registers if exiting the block
719   }
720   for(j=0;j<9;j++)
721   {
722     if(i+j>=slen) {
723       j=slen-i-1;
724       break;
725     }
726     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
727     {
728       // Don't go past an unconditonal jump
729       j++;
730       break;
731     }
732     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
733     {
734       break;
735     }
736   }
737   for(;j>=1;j--)
738   {
739     if(rs1[i+j]==r) rn=j;
740     if(rs2[i+j]==r) rn=j;
741     if((unneeded_reg[i+j]>>r)&1) rn=10;
742     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
743     {
744       b=j;
745     }
746   }
747   /*
748   if(b>=0)
749   {
750     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
751     {
752       // Follow first branch
753       int o=rn;
754       int t=(ba[i+b]-start)>>2;
755       j=7-b;if(t+j>=slen) j=slen-t-1;
756       for(;j>=0;j--)
757       {
758         if(!((unneeded_reg[t+j]>>r)&1)) {
759           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
760           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
761         }
762         else rn=o;
763       }
764     }
765   }*/
766   for(hr=0;hr<HOST_REGS;hr++) {
767     if(hr!=EXCLUDE_REG) {
768       if(rn<hsn[hr]) return 1;
769     }
770   }
771   return 0;
772 }
773
774 // Try to match register allocations at the end of a loop with those
775 // at the beginning
776 int loop_reg(int i, int r, int hr)
777 {
778   int j,k;
779   for(j=0;j<9;j++)
780   {
781     if(i+j>=slen) {
782       j=slen-i-1;
783       break;
784     }
785     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
786     {
787       // Don't go past an unconditonal jump
788       j++;
789       break;
790     }
791   }
792   k=0;
793   if(i>0){
794     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
795       k--;
796   }
797   for(;k<j;k++)
798   {
799     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
800     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
801     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
802     {
803       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
804       {
805         int t=(ba[i+k]-start)>>2;
806         int reg=get_reg(regs[t].regmap_entry,r);
807         if(reg>=0) return reg;
808         //reg=get_reg(regs[t+1].regmap_entry,r);
809         //if(reg>=0) return reg;
810       }
811     }
812   }
813   return hr;
814 }
815
816
817 // Allocate every register, preserving source/target regs
818 void alloc_all(struct regstat *cur,int i)
819 {
820   int hr;
821   
822   for(hr=0;hr<HOST_REGS;hr++) {
823     if(hr!=EXCLUDE_REG) {
824       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
825          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
826       {
827         cur->regmap[hr]=-1;
828         cur->dirty&=~(1<<hr);
829       }
830       // Don't need zeros
831       if((cur->regmap[hr]&63)==0)
832       {
833         cur->regmap[hr]=-1;
834         cur->dirty&=~(1<<hr);
835       }
836     }
837   }
838 }
839
840
841 void div64(int64_t dividend,int64_t divisor)
842 {
843   lo=dividend/divisor;
844   hi=dividend%divisor;
845   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
846   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
847 }
848 void divu64(uint64_t dividend,uint64_t divisor)
849 {
850   lo=dividend/divisor;
851   hi=dividend%divisor;
852   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
853   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854 }
855
856 void mult64(uint64_t m1,uint64_t m2)
857 {
858    unsigned long long int op1, op2, op3, op4;
859    unsigned long long int result1, result2, result3, result4;
860    unsigned long long int temp1, temp2, temp3, temp4;
861    int sign = 0;
862    
863    if (m1 < 0)
864      {
865     op2 = -m1;
866     sign = 1 - sign;
867      }
868    else op2 = m1;
869    if (m2 < 0)
870      {
871     op4 = -m2;
872     sign = 1 - sign;
873      }
874    else op4 = m2;
875    
876    op1 = op2 & 0xFFFFFFFF;
877    op2 = (op2 >> 32) & 0xFFFFFFFF;
878    op3 = op4 & 0xFFFFFFFF;
879    op4 = (op4 >> 32) & 0xFFFFFFFF;
880    
881    temp1 = op1 * op3;
882    temp2 = (temp1 >> 32) + op1 * op4;
883    temp3 = op2 * op3;
884    temp4 = (temp3 >> 32) + op2 * op4;
885    
886    result1 = temp1 & 0xFFFFFFFF;
887    result2 = temp2 + (temp3 & 0xFFFFFFFF);
888    result3 = (result2 >> 32) + temp4;
889    result4 = (result3 >> 32);
890    
891    lo = result1 | (result2 << 32);
892    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
893    if (sign)
894      {
895     hi = ~hi;
896     if (!lo) hi++;
897     else lo = ~lo + 1;
898      }
899 }
900
901 void multu64(uint64_t m1,uint64_t m2)
902 {
903    unsigned long long int op1, op2, op3, op4;
904    unsigned long long int result1, result2, result3, result4;
905    unsigned long long int temp1, temp2, temp3, temp4;
906    
907    op1 = m1 & 0xFFFFFFFF;
908    op2 = (m1 >> 32) & 0xFFFFFFFF;
909    op3 = m2 & 0xFFFFFFFF;
910    op4 = (m2 >> 32) & 0xFFFFFFFF;
911    
912    temp1 = op1 * op3;
913    temp2 = (temp1 >> 32) + op1 * op4;
914    temp3 = op2 * op3;
915    temp4 = (temp3 >> 32) + op2 * op4;
916    
917    result1 = temp1 & 0xFFFFFFFF;
918    result2 = temp2 + (temp3 & 0xFFFFFFFF);
919    result3 = (result2 >> 32) + temp4;
920    result4 = (result3 >> 32);
921    
922    lo = result1 | (result2 << 32);
923    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
924    
925   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
926   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
927 }
928
929 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
930 {
931   if(bits) {
932     original<<=64-bits;
933     original>>=64-bits;
934     loaded<<=bits;
935     original|=loaded;
936   }
937   else original=loaded;
938   return original;
939 }
940 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
941 {
942   if(bits^56) {
943     original>>=64-(bits^56);
944     original<<=64-(bits^56);
945     loaded>>=bits^56;
946     original|=loaded;
947   }
948   else original=loaded;
949   return original;
950 }
951
952 #ifdef __i386__
953 #include "assem_x86.c"
954 #endif
955 #ifdef __x86_64__
956 #include "assem_x64.c"
957 #endif
958 #ifdef __arm__
959 #include "assem_arm.c"
960 #endif
961
962 // Add virtual address mapping to linked list
963 void ll_add(struct ll_entry **head,int vaddr,void *addr)
964 {
965   struct ll_entry *new_entry;
966   new_entry=malloc(sizeof(struct ll_entry));
967   assert(new_entry!=NULL);
968   new_entry->vaddr=vaddr;
969   new_entry->reg32=0;
970   new_entry->addr=addr;
971   new_entry->next=*head;
972   *head=new_entry;
973 }
974
975 // Add virtual address mapping for 32-bit compiled block
976 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
977 {
978   ll_add(head,vaddr,addr);
979 #ifndef FORCE32
980   (*head)->reg32=reg32;
981 #endif
982 }
983
984 // Check if an address is already compiled
985 // but don't return addresses which are about to expire from the cache
986 void *check_addr(u_int vaddr)
987 {
988   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
989   if(ht_bin[0]==vaddr) {
990     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
991       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
992   }
993   if(ht_bin[2]==vaddr) {
994     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
995       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
996   }
997   u_int page=get_page(vaddr);
998   struct ll_entry *head;
999   head=jump_in[page];
1000   while(head!=NULL) {
1001     if(head->vaddr==vaddr&&head->reg32==0) {
1002       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1003         // Update existing entry with current address
1004         if(ht_bin[0]==vaddr) {
1005           ht_bin[1]=(int)head->addr;
1006           return head->addr;
1007         }
1008         if(ht_bin[2]==vaddr) {
1009           ht_bin[3]=(int)head->addr;
1010           return head->addr;
1011         }
1012         // Insert into hash table with low priority.
1013         // Don't evict existing entries, as they are probably
1014         // addresses that are being accessed frequently.
1015         if(ht_bin[0]==-1) {
1016           ht_bin[1]=(int)head->addr;
1017           ht_bin[0]=vaddr;
1018         }else if(ht_bin[2]==-1) {
1019           ht_bin[3]=(int)head->addr;
1020           ht_bin[2]=vaddr;
1021         }
1022         return head->addr;
1023       }
1024     }
1025     head=head->next;
1026   }
1027   return 0;
1028 }
1029
1030 void remove_hash(int vaddr)
1031 {
1032   //printf("remove hash: %x\n",vaddr);
1033   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1034   if(ht_bin[2]==vaddr) {
1035     ht_bin[2]=ht_bin[3]=-1;
1036   }
1037   if(ht_bin[0]==vaddr) {
1038     ht_bin[0]=ht_bin[2];
1039     ht_bin[1]=ht_bin[3];
1040     ht_bin[2]=ht_bin[3]=-1;
1041   }
1042 }
1043
1044 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1045 {
1046   struct ll_entry *next;
1047   while(*head) {
1048     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1049        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1050     {
1051       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1052       remove_hash((*head)->vaddr);
1053       next=(*head)->next;
1054       free(*head);
1055       *head=next;
1056     }
1057     else
1058     {
1059       head=&((*head)->next);
1060     }
1061   }
1062 }
1063
1064 // Remove all entries from linked list
1065 void ll_clear(struct ll_entry **head)
1066 {
1067   struct ll_entry *cur;
1068   struct ll_entry *next;
1069   if(cur=*head) {
1070     *head=0;
1071     while(cur) {
1072       next=cur->next;
1073       free(cur);
1074       cur=next;
1075     }
1076   }
1077 }
1078
1079 // Dereference the pointers and remove if it matches
1080 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1081 {
1082   u_int old_host_addr=0;
1083   while(head) {
1084     int ptr=get_pointer(head->addr);
1085     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1086     if(((ptr>>shift)==(addr>>shift)) ||
1087        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1088     {
1089       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1090       u_int host_addr=(u_int)kill_pointer(head->addr);
1091
1092       if((host_addr>>12)!=(old_host_addr>>12)) {
1093         #ifdef __arm__
1094         __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1095         #endif
1096         old_host_addr=host_addr;
1097       }
1098     }
1099     head=head->next;
1100   }
1101   #ifdef __arm__
1102   if (old_host_addr)
1103     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1104   #endif
1105 }
1106
1107 // This is called when we write to a compiled block (see do_invstub)
1108 void invalidate_page(u_int page)
1109 {
1110   struct ll_entry *head;
1111   struct ll_entry *next;
1112   u_int old_host_addr=0;
1113   head=jump_in[page];
1114   jump_in[page]=0;
1115   while(head!=NULL) {
1116     inv_debug("INVALIDATE: %x\n",head->vaddr);
1117     remove_hash(head->vaddr);
1118     next=head->next;
1119     free(head);
1120     head=next;
1121   }
1122   head=jump_out[page];
1123   jump_out[page]=0;
1124   while(head!=NULL) {
1125     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1126     u_int host_addr=(u_int)kill_pointer(head->addr);
1127
1128     if((host_addr>>12)!=(old_host_addr>>12)) {
1129       #ifdef __arm__
1130       __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1131       #endif
1132       old_host_addr=host_addr;
1133     }
1134     next=head->next;
1135     free(head);
1136     head=next;
1137   }
1138   #ifdef __arm__
1139   if (old_host_addr)
1140     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1141   #endif
1142 }
1143 void invalidate_block(u_int block)
1144 {
1145   u_int page=get_page(block<<12);
1146   u_int vpage=get_vpage(block<<12);
1147   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1148   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1149   u_int first,last;
1150   first=last=page;
1151   struct ll_entry *head;
1152   head=jump_dirty[vpage];
1153   //printf("page=%d vpage=%d\n",page,vpage);
1154   while(head!=NULL) {
1155     u_int start,end;
1156     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1157       get_bounds((int)head->addr,&start,&end);
1158       //printf("start: %x end: %x\n",start,end);
1159       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1160         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1161           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1162           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1163         }
1164       }
1165 #ifndef DISABLE_TLB
1166       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1167         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1168           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1169           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1170         }
1171       }
1172 #endif
1173     }
1174     head=head->next;
1175   }
1176   //printf("first=%d last=%d\n",first,last);
1177   invalidate_page(page);
1178   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1179   assert(last<page+5);
1180   // Invalidate the adjacent pages if a block crosses a 4K boundary
1181   while(first<page) {
1182     invalidate_page(first);
1183     first++;
1184   }
1185   for(first=page+1;first<last;first++) {
1186     invalidate_page(first);
1187   }
1188   
1189   // Don't trap writes
1190   invalid_code[block]=1;
1191 #ifndef DISABLE_TLB
1192   // If there is a valid TLB entry for this page, remove write protect
1193   if(tlb_LUT_w[block]) {
1194     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1195     // CHECK: Is this right?
1196     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1197     u_int real_block=tlb_LUT_w[block]>>12;
1198     invalid_code[real_block]=1;
1199     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1200   }
1201   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1202 #endif
1203
1204   #ifdef USE_MINI_HT
1205   memset(mini_ht,-1,sizeof(mini_ht));
1206   #endif
1207 }
1208 void invalidate_addr(u_int addr)
1209 {
1210   invalidate_block(addr>>12);
1211 }
1212 void invalidate_all_pages()
1213 {
1214   u_int page,n;
1215   for(page=0;page<4096;page++)
1216     invalidate_page(page);
1217   for(page=0;page<1048576;page++)
1218     if(!invalid_code[page]) {
1219       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1220       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1221     }
1222   #ifdef __arm__
1223   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1224   #endif
1225   #ifdef USE_MINI_HT
1226   memset(mini_ht,-1,sizeof(mini_ht));
1227   #endif
1228   #ifndef DISABLE_TLB
1229   // TLB
1230   for(page=0;page<0x100000;page++) {
1231     if(tlb_LUT_r[page]) {
1232       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1233       if(!tlb_LUT_w[page]||!invalid_code[page])
1234         memory_map[page]|=0x40000000; // Write protect
1235     }
1236     else memory_map[page]=-1;
1237     if(page==0x80000) page=0xC0000;
1238   }
1239   tlb_hacks();
1240   #endif
1241 }
1242
1243 // Add an entry to jump_out after making a link
1244 void add_link(u_int vaddr,void *src)
1245 {
1246   u_int page=get_page(vaddr);
1247   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1248   ll_add(jump_out+page,vaddr,src);
1249   //int ptr=get_pointer(src);
1250   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1251 }
1252
1253 // If a code block was found to be unmodified (bit was set in
1254 // restore_candidate) and it remains unmodified (bit is clear
1255 // in invalid_code) then move the entries for that 4K page from
1256 // the dirty list to the clean list.
1257 void clean_blocks(u_int page)
1258 {
1259   struct ll_entry *head;
1260   inv_debug("INV: clean_blocks page=%d\n",page);
1261   head=jump_dirty[page];
1262   while(head!=NULL) {
1263     if(!invalid_code[head->vaddr>>12]) {
1264       // Don't restore blocks which are about to expire from the cache
1265       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1266         u_int start,end;
1267         if(verify_dirty((int)head->addr)) {
1268           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1269           u_int i;
1270           u_int inv=0;
1271           get_bounds((int)head->addr,&start,&end);
1272           if(start-(u_int)rdram<RAM_SIZE) {
1273             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1274               inv|=invalid_code[i];
1275             }
1276           }
1277           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1278             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1279             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1280             if(addr<start||addr>=end) inv=1;
1281           }
1282           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1283             inv=1;
1284           }
1285           if(!inv) {
1286             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1287             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1288               u_int ppage=page;
1289 #ifndef DISABLE_TLB
1290               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1291 #endif
1292               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1293               //printf("page=%x, addr=%x\n",page,head->vaddr);
1294               //assert(head->vaddr>>12==(page|0x80000));
1295               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1296               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1297               if(!head->reg32) {
1298                 if(ht_bin[0]==head->vaddr) {
1299                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1300                 }
1301                 if(ht_bin[2]==head->vaddr) {
1302                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1303                 }
1304               }
1305             }
1306           }
1307         }
1308       }
1309     }
1310     head=head->next;
1311   }
1312 }
1313
1314
1315 void mov_alloc(struct regstat *current,int i)
1316 {
1317   // Note: Don't need to actually alloc the source registers
1318   if((~current->is32>>rs1[i])&1) {
1319     //alloc_reg64(current,i,rs1[i]);
1320     alloc_reg64(current,i,rt1[i]);
1321     current->is32&=~(1LL<<rt1[i]);
1322   } else {
1323     //alloc_reg(current,i,rs1[i]);
1324     alloc_reg(current,i,rt1[i]);
1325     current->is32|=(1LL<<rt1[i]);
1326   }
1327   clear_const(current,rs1[i]);
1328   clear_const(current,rt1[i]);
1329   dirty_reg(current,rt1[i]);
1330 }
1331
1332 void shiftimm_alloc(struct regstat *current,int i)
1333 {
1334   clear_const(current,rs1[i]);
1335   clear_const(current,rt1[i]);
1336   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1337   {
1338     if(rt1[i]) {
1339       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1340       else lt1[i]=rs1[i];
1341       alloc_reg(current,i,rt1[i]);
1342       current->is32|=1LL<<rt1[i];
1343       dirty_reg(current,rt1[i]);
1344     }
1345   }
1346   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1347   {
1348     if(rt1[i]) {
1349       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1350       alloc_reg64(current,i,rt1[i]);
1351       current->is32&=~(1LL<<rt1[i]);
1352       dirty_reg(current,rt1[i]);
1353     }
1354   }
1355   if(opcode2[i]==0x3c) // DSLL32
1356   {
1357     if(rt1[i]) {
1358       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1359       alloc_reg64(current,i,rt1[i]);
1360       current->is32&=~(1LL<<rt1[i]);
1361       dirty_reg(current,rt1[i]);
1362     }
1363   }
1364   if(opcode2[i]==0x3e) // DSRL32
1365   {
1366     if(rt1[i]) {
1367       alloc_reg64(current,i,rs1[i]);
1368       if(imm[i]==32) {
1369         alloc_reg64(current,i,rt1[i]);
1370         current->is32&=~(1LL<<rt1[i]);
1371       } else {
1372         alloc_reg(current,i,rt1[i]);
1373         current->is32|=1LL<<rt1[i];
1374       }
1375       dirty_reg(current,rt1[i]);
1376     }
1377   }
1378   if(opcode2[i]==0x3f) // DSRA32
1379   {
1380     if(rt1[i]) {
1381       alloc_reg64(current,i,rs1[i]);
1382       alloc_reg(current,i,rt1[i]);
1383       current->is32|=1LL<<rt1[i];
1384       dirty_reg(current,rt1[i]);
1385     }
1386   }
1387 }
1388
1389 void shift_alloc(struct regstat *current,int i)
1390 {
1391   if(rt1[i]) {
1392     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1393     {
1394       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1395       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1396       alloc_reg(current,i,rt1[i]);
1397       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1398       current->is32|=1LL<<rt1[i];
1399     } else { // DSLLV/DSRLV/DSRAV
1400       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1401       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1402       alloc_reg64(current,i,rt1[i]);
1403       current->is32&=~(1LL<<rt1[i]);
1404       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1405         alloc_reg_temp(current,i,-1);
1406     }
1407     clear_const(current,rs1[i]);
1408     clear_const(current,rs2[i]);
1409     clear_const(current,rt1[i]);
1410     dirty_reg(current,rt1[i]);
1411   }
1412 }
1413
1414 void alu_alloc(struct regstat *current,int i)
1415 {
1416   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1417     if(rt1[i]) {
1418       if(rs1[i]&&rs2[i]) {
1419         alloc_reg(current,i,rs1[i]);
1420         alloc_reg(current,i,rs2[i]);
1421       }
1422       else {
1423         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1424         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1425       }
1426       alloc_reg(current,i,rt1[i]);
1427     }
1428     current->is32|=1LL<<rt1[i];
1429   }
1430   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1431     if(rt1[i]) {
1432       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1433       {
1434         alloc_reg64(current,i,rs1[i]);
1435         alloc_reg64(current,i,rs2[i]);
1436         alloc_reg(current,i,rt1[i]);
1437       } else {
1438         alloc_reg(current,i,rs1[i]);
1439         alloc_reg(current,i,rs2[i]);
1440         alloc_reg(current,i,rt1[i]);
1441       }
1442     }
1443     current->is32|=1LL<<rt1[i];
1444   }
1445   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1446     if(rt1[i]) {
1447       if(rs1[i]&&rs2[i]) {
1448         alloc_reg(current,i,rs1[i]);
1449         alloc_reg(current,i,rs2[i]);
1450       }
1451       else
1452       {
1453         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1454         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1455       }
1456       alloc_reg(current,i,rt1[i]);
1457       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1458       {
1459         if(!((current->uu>>rt1[i])&1)) {
1460           alloc_reg64(current,i,rt1[i]);
1461         }
1462         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1463           if(rs1[i]&&rs2[i]) {
1464             alloc_reg64(current,i,rs1[i]);
1465             alloc_reg64(current,i,rs2[i]);
1466           }
1467           else
1468           {
1469             // Is is really worth it to keep 64-bit values in registers?
1470             #ifdef NATIVE_64BIT
1471             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1472             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1473             #endif
1474           }
1475         }
1476         current->is32&=~(1LL<<rt1[i]);
1477       } else {
1478         current->is32|=1LL<<rt1[i];
1479       }
1480     }
1481   }
1482   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1483     if(rt1[i]) {
1484       if(rs1[i]&&rs2[i]) {
1485         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1486           alloc_reg64(current,i,rs1[i]);
1487           alloc_reg64(current,i,rs2[i]);
1488           alloc_reg64(current,i,rt1[i]);
1489         } else {
1490           alloc_reg(current,i,rs1[i]);
1491           alloc_reg(current,i,rs2[i]);
1492           alloc_reg(current,i,rt1[i]);
1493         }
1494       }
1495       else {
1496         alloc_reg(current,i,rt1[i]);
1497         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1498           // DADD used as move, or zeroing
1499           // If we have a 64-bit source, then make the target 64 bits too
1500           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1501             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1502             alloc_reg64(current,i,rt1[i]);
1503           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1504             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1505             alloc_reg64(current,i,rt1[i]);
1506           }
1507           if(opcode2[i]>=0x2e&&rs2[i]) {
1508             // DSUB used as negation - 64-bit result
1509             // If we have a 32-bit register, extend it to 64 bits
1510             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511             alloc_reg64(current,i,rt1[i]);
1512           }
1513         }
1514       }
1515       if(rs1[i]&&rs2[i]) {
1516         current->is32&=~(1LL<<rt1[i]);
1517       } else if(rs1[i]) {
1518         current->is32&=~(1LL<<rt1[i]);
1519         if((current->is32>>rs1[i])&1)
1520           current->is32|=1LL<<rt1[i];
1521       } else if(rs2[i]) {
1522         current->is32&=~(1LL<<rt1[i]);
1523         if((current->is32>>rs2[i])&1)
1524           current->is32|=1LL<<rt1[i];
1525       } else {
1526         current->is32|=1LL<<rt1[i];
1527       }
1528     }
1529   }
1530   clear_const(current,rs1[i]);
1531   clear_const(current,rs2[i]);
1532   clear_const(current,rt1[i]);
1533   dirty_reg(current,rt1[i]);
1534 }
1535
1536 void imm16_alloc(struct regstat *current,int i)
1537 {
1538   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1539   else lt1[i]=rs1[i];
1540   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1541   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1542     current->is32&=~(1LL<<rt1[i]);
1543     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1544       // TODO: Could preserve the 32-bit flag if the immediate is zero
1545       alloc_reg64(current,i,rt1[i]);
1546       alloc_reg64(current,i,rs1[i]);
1547     }
1548     clear_const(current,rs1[i]);
1549     clear_const(current,rt1[i]);
1550   }
1551   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1552     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1553     current->is32|=1LL<<rt1[i];
1554     clear_const(current,rs1[i]);
1555     clear_const(current,rt1[i]);
1556   }
1557   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1558     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1559       if(rs1[i]!=rt1[i]) {
1560         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1561         alloc_reg64(current,i,rt1[i]);
1562         current->is32&=~(1LL<<rt1[i]);
1563       }
1564     }
1565     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1566     if(is_const(current,rs1[i])) {
1567       int v=get_const(current,rs1[i]);
1568       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1569       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1570       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1571     }
1572     else clear_const(current,rt1[i]);
1573   }
1574   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1575     if(is_const(current,rs1[i])) {
1576       int v=get_const(current,rs1[i]);
1577       set_const(current,rt1[i],v+imm[i]);
1578     }
1579     else clear_const(current,rt1[i]);
1580     current->is32|=1LL<<rt1[i];
1581   }
1582   else {
1583     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1584     current->is32|=1LL<<rt1[i];
1585   }
1586   dirty_reg(current,rt1[i]);
1587 }
1588
1589 void load_alloc(struct regstat *current,int i)
1590 {
1591   clear_const(current,rt1[i]);
1592   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1593   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1594   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1595   if(rt1[i]) {
1596     alloc_reg(current,i,rt1[i]);
1597     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1598     {
1599       current->is32&=~(1LL<<rt1[i]);
1600       alloc_reg64(current,i,rt1[i]);
1601     }
1602     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1603     {
1604       current->is32&=~(1LL<<rt1[i]);
1605       alloc_reg64(current,i,rt1[i]);
1606       alloc_all(current,i);
1607       alloc_reg64(current,i,FTEMP);
1608     }
1609     else current->is32|=1LL<<rt1[i];
1610     dirty_reg(current,rt1[i]);
1611     // If using TLB, need a register for pointer to the mapping table
1612     if(using_tlb) alloc_reg(current,i,TLREG);
1613     // LWL/LWR need a temporary register for the old value
1614     if(opcode[i]==0x22||opcode[i]==0x26)
1615     {
1616       alloc_reg(current,i,FTEMP);
1617       alloc_reg_temp(current,i,-1);
1618     }
1619   }
1620   else
1621   {
1622     // Load to r0 (dummy load)
1623     // but we still need a register to calculate the address
1624     alloc_reg_temp(current,i,-1);
1625   }
1626 }
1627
1628 void store_alloc(struct regstat *current,int i)
1629 {
1630   clear_const(current,rs2[i]);
1631   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1632   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1633   alloc_reg(current,i,rs2[i]);
1634   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1635     alloc_reg64(current,i,rs2[i]);
1636     if(rs2[i]) alloc_reg(current,i,FTEMP);
1637   }
1638   // If using TLB, need a register for pointer to the mapping table
1639   if(using_tlb) alloc_reg(current,i,TLREG);
1640   #if defined(HOST_IMM8)
1641   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1642   else alloc_reg(current,i,INVCP);
1643   #endif
1644   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1645     alloc_reg(current,i,FTEMP);
1646   }
1647   // We need a temporary register for address generation
1648   alloc_reg_temp(current,i,-1);
1649 }
1650
1651 void c1ls_alloc(struct regstat *current,int i)
1652 {
1653   //clear_const(current,rs1[i]); // FIXME
1654   clear_const(current,rt1[i]);
1655   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1656   alloc_reg(current,i,CSREG); // Status
1657   alloc_reg(current,i,FTEMP);
1658   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1659     alloc_reg64(current,i,FTEMP);
1660   }
1661   // If using TLB, need a register for pointer to the mapping table
1662   if(using_tlb) alloc_reg(current,i,TLREG);
1663   #if defined(HOST_IMM8)
1664   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1665   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1666     alloc_reg(current,i,INVCP);
1667   #endif
1668   // We need a temporary register for address generation
1669   alloc_reg_temp(current,i,-1);
1670 }
1671
1672 void c2ls_alloc(struct regstat *current,int i)
1673 {
1674   clear_const(current,rt1[i]);
1675   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1676   alloc_reg(current,i,FTEMP);
1677   // If using TLB, need a register for pointer to the mapping table
1678   if(using_tlb) alloc_reg(current,i,TLREG);
1679   #if defined(HOST_IMM8)
1680   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1681   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1682     alloc_reg(current,i,INVCP);
1683   #endif
1684   // We need a temporary register for address generation
1685   alloc_reg_temp(current,i,-1);
1686 }
1687
1688 #ifndef multdiv_alloc
1689 void multdiv_alloc(struct regstat *current,int i)
1690 {
1691   //  case 0x18: MULT
1692   //  case 0x19: MULTU
1693   //  case 0x1A: DIV
1694   //  case 0x1B: DIVU
1695   //  case 0x1C: DMULT
1696   //  case 0x1D: DMULTU
1697   //  case 0x1E: DDIV
1698   //  case 0x1F: DDIVU
1699   clear_const(current,rs1[i]);
1700   clear_const(current,rs2[i]);
1701   if(rs1[i]&&rs2[i])
1702   {
1703     if((opcode2[i]&4)==0) // 32-bit
1704     {
1705       current->u&=~(1LL<<HIREG);
1706       current->u&=~(1LL<<LOREG);
1707       alloc_reg(current,i,HIREG);
1708       alloc_reg(current,i,LOREG);
1709       alloc_reg(current,i,rs1[i]);
1710       alloc_reg(current,i,rs2[i]);
1711       current->is32|=1LL<<HIREG;
1712       current->is32|=1LL<<LOREG;
1713       dirty_reg(current,HIREG);
1714       dirty_reg(current,LOREG);
1715     }
1716     else // 64-bit
1717     {
1718       current->u&=~(1LL<<HIREG);
1719       current->u&=~(1LL<<LOREG);
1720       current->uu&=~(1LL<<HIREG);
1721       current->uu&=~(1LL<<LOREG);
1722       alloc_reg64(current,i,HIREG);
1723       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1724       alloc_reg64(current,i,rs1[i]);
1725       alloc_reg64(current,i,rs2[i]);
1726       alloc_all(current,i);
1727       current->is32&=~(1LL<<HIREG);
1728       current->is32&=~(1LL<<LOREG);
1729       dirty_reg(current,HIREG);
1730       dirty_reg(current,LOREG);
1731     }
1732   }
1733   else
1734   {
1735     // Multiply by zero is zero.
1736     // MIPS does not have a divide by zero exception.
1737     // The result is undefined, we return zero.
1738     alloc_reg(current,i,HIREG);
1739     alloc_reg(current,i,LOREG);
1740     current->is32|=1LL<<HIREG;
1741     current->is32|=1LL<<LOREG;
1742     dirty_reg(current,HIREG);
1743     dirty_reg(current,LOREG);
1744   }
1745 }
1746 #endif
1747
1748 void cop0_alloc(struct regstat *current,int i)
1749 {
1750   if(opcode2[i]==0) // MFC0
1751   {
1752     if(rt1[i]) {
1753       clear_const(current,rt1[i]);
1754       alloc_all(current,i);
1755       alloc_reg(current,i,rt1[i]);
1756       current->is32|=1LL<<rt1[i];
1757       dirty_reg(current,rt1[i]);
1758     }
1759   }
1760   else if(opcode2[i]==4) // MTC0
1761   {
1762     if(rs1[i]){
1763       clear_const(current,rs1[i]);
1764       alloc_reg(current,i,rs1[i]);
1765       alloc_all(current,i);
1766     }
1767     else {
1768       alloc_all(current,i); // FIXME: Keep r0
1769       current->u&=~1LL;
1770       alloc_reg(current,i,0);
1771     }
1772   }
1773   else
1774   {
1775     // TLBR/TLBWI/TLBWR/TLBP/ERET
1776     assert(opcode2[i]==0x10);
1777     alloc_all(current,i);
1778   }
1779 }
1780
1781 void cop1_alloc(struct regstat *current,int i)
1782 {
1783   alloc_reg(current,i,CSREG); // Load status
1784   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1785   {
1786     if(rt1[i]){
1787       clear_const(current,rt1[i]);
1788       if(opcode2[i]==1) {
1789         alloc_reg64(current,i,rt1[i]); // DMFC1
1790         current->is32&=~(1LL<<rt1[i]);
1791       }else{
1792         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1793         current->is32|=1LL<<rt1[i];
1794       }
1795       dirty_reg(current,rt1[i]);
1796     }
1797     alloc_reg_temp(current,i,-1);
1798   }
1799   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1800   {
1801     if(rs1[i]){
1802       clear_const(current,rs1[i]);
1803       if(opcode2[i]==5)
1804         alloc_reg64(current,i,rs1[i]); // DMTC1
1805       else
1806         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1807       alloc_reg_temp(current,i,-1);
1808     }
1809     else {
1810       current->u&=~1LL;
1811       alloc_reg(current,i,0);
1812       alloc_reg_temp(current,i,-1);
1813     }
1814   }
1815 }
1816 void fconv_alloc(struct regstat *current,int i)
1817 {
1818   alloc_reg(current,i,CSREG); // Load status
1819   alloc_reg_temp(current,i,-1);
1820 }
1821 void float_alloc(struct regstat *current,int i)
1822 {
1823   alloc_reg(current,i,CSREG); // Load status
1824   alloc_reg_temp(current,i,-1);
1825 }
1826 void c2op_alloc(struct regstat *current,int i)
1827 {
1828   alloc_reg_temp(current,i,-1);
1829 }
1830 void fcomp_alloc(struct regstat *current,int i)
1831 {
1832   alloc_reg(current,i,CSREG); // Load status
1833   alloc_reg(current,i,FSREG); // Load flags
1834   dirty_reg(current,FSREG); // Flag will be modified
1835   alloc_reg_temp(current,i,-1);
1836 }
1837
1838 void syscall_alloc(struct regstat *current,int i)
1839 {
1840   alloc_cc(current,i);
1841   dirty_reg(current,CCREG);
1842   alloc_all(current,i);
1843   current->isconst=0;
1844 }
1845
1846 void delayslot_alloc(struct regstat *current,int i)
1847 {
1848   switch(itype[i]) {
1849     case UJUMP:
1850     case CJUMP:
1851     case SJUMP:
1852     case RJUMP:
1853     case FJUMP:
1854     case SYSCALL:
1855     case HLECALL:
1856     case SPAN:
1857       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1858       printf("Disabled speculative precompilation\n");
1859       stop_after_jal=1;
1860       break;
1861     case IMM16:
1862       imm16_alloc(current,i);
1863       break;
1864     case LOAD:
1865     case LOADLR:
1866       load_alloc(current,i);
1867       break;
1868     case STORE:
1869     case STORELR:
1870       store_alloc(current,i);
1871       break;
1872     case ALU:
1873       alu_alloc(current,i);
1874       break;
1875     case SHIFT:
1876       shift_alloc(current,i);
1877       break;
1878     case MULTDIV:
1879       multdiv_alloc(current,i);
1880       break;
1881     case SHIFTIMM:
1882       shiftimm_alloc(current,i);
1883       break;
1884     case MOV:
1885       mov_alloc(current,i);
1886       break;
1887     case COP0:
1888       cop0_alloc(current,i);
1889       break;
1890     case COP1:
1891     case COP2:
1892       cop1_alloc(current,i);
1893       break;
1894     case C1LS:
1895       c1ls_alloc(current,i);
1896       break;
1897     case C2LS:
1898       c2ls_alloc(current,i);
1899       break;
1900     case FCONV:
1901       fconv_alloc(current,i);
1902       break;
1903     case FLOAT:
1904       float_alloc(current,i);
1905       break;
1906     case FCOMP:
1907       fcomp_alloc(current,i);
1908       break;
1909     case C2OP:
1910       c2op_alloc(current,i);
1911       break;
1912   }
1913 }
1914
1915 // Special case where a branch and delay slot span two pages in virtual memory
1916 static void pagespan_alloc(struct regstat *current,int i)
1917 {
1918   current->isconst=0;
1919   current->wasconst=0;
1920   regs[i].wasconst=0;
1921   alloc_all(current,i);
1922   alloc_cc(current,i);
1923   dirty_reg(current,CCREG);
1924   if(opcode[i]==3) // JAL
1925   {
1926     alloc_reg(current,i,31);
1927     dirty_reg(current,31);
1928   }
1929   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1930   {
1931     alloc_reg(current,i,rs1[i]);
1932     if (rt1[i]!=0) {
1933       alloc_reg(current,i,rt1[i]);
1934       dirty_reg(current,rt1[i]);
1935     }
1936   }
1937   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1938   {
1939     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1940     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1941     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1942     {
1943       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1944       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1945     }
1946   }
1947   else
1948   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1949   {
1950     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1951     if(!((current->is32>>rs1[i])&1))
1952     {
1953       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1954     }
1955   }
1956   else
1957   if(opcode[i]==0x11) // BC1
1958   {
1959     alloc_reg(current,i,FSREG);
1960     alloc_reg(current,i,CSREG);
1961   }
1962   //else ...
1963 }
1964
1965 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1966 {
1967   stubs[stubcount][0]=type;
1968   stubs[stubcount][1]=addr;
1969   stubs[stubcount][2]=retaddr;
1970   stubs[stubcount][3]=a;
1971   stubs[stubcount][4]=b;
1972   stubs[stubcount][5]=c;
1973   stubs[stubcount][6]=d;
1974   stubs[stubcount][7]=e;
1975   stubcount++;
1976 }
1977
1978 // Write out a single register
1979 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1980 {
1981   int hr;
1982   for(hr=0;hr<HOST_REGS;hr++) {
1983     if(hr!=EXCLUDE_REG) {
1984       if((regmap[hr]&63)==r) {
1985         if((dirty>>hr)&1) {
1986           if(regmap[hr]<64) {
1987             emit_storereg(r,hr);
1988 #ifndef FORCE32
1989             if((is32>>regmap[hr])&1) {
1990               emit_sarimm(hr,31,hr);
1991               emit_storereg(r|64,hr);
1992             }
1993 #endif
1994           }else{
1995             emit_storereg(r|64,hr);
1996           }
1997         }
1998       }
1999     }
2000   }
2001 }
2002
2003 int mchecksum()
2004 {
2005   //if(!tracedebug) return 0;
2006   int i;
2007   int sum=0;
2008   for(i=0;i<2097152;i++) {
2009     unsigned int temp=sum;
2010     sum<<=1;
2011     sum|=(~temp)>>31;
2012     sum^=((u_int *)rdram)[i];
2013   }
2014   return sum;
2015 }
2016 int rchecksum()
2017 {
2018   int i;
2019   int sum=0;
2020   for(i=0;i<64;i++)
2021     sum^=((u_int *)reg)[i];
2022   return sum;
2023 }
2024 void rlist()
2025 {
2026   int i;
2027   printf("TRACE: ");
2028   for(i=0;i<32;i++)
2029     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2030   printf("\n");
2031 #ifndef DISABLE_COP1
2032   printf("TRACE: ");
2033   for(i=0;i<32;i++)
2034     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2035   printf("\n");
2036 #endif
2037 }
2038
2039 void enabletrace()
2040 {
2041   tracedebug=1;
2042 }
2043
2044 void memdebug(int i)
2045 {
2046   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2047   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2048   //rlist();
2049   //if(tracedebug) {
2050   //if(Count>=-2084597794) {
2051   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2052   //if(0) {
2053     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2054     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2055     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2056     rlist();
2057     #ifdef __i386__
2058     printf("TRACE: %x\n",(&i)[-1]);
2059     #endif
2060     #ifdef __arm__
2061     int j;
2062     printf("TRACE: %x \n",(&j)[10]);
2063     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2064     #endif
2065     //fflush(stdout);
2066   }
2067   //printf("TRACE: %x\n",(&i)[-1]);
2068 }
2069
2070 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2071 {
2072   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2073 }
2074
2075 void alu_assemble(int i,struct regstat *i_regs)
2076 {
2077   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2078     if(rt1[i]) {
2079       signed char s1,s2,t;
2080       t=get_reg(i_regs->regmap,rt1[i]);
2081       if(t>=0) {
2082         s1=get_reg(i_regs->regmap,rs1[i]);
2083         s2=get_reg(i_regs->regmap,rs2[i]);
2084         if(rs1[i]&&rs2[i]) {
2085           assert(s1>=0);
2086           assert(s2>=0);
2087           if(opcode2[i]&2) emit_sub(s1,s2,t);
2088           else emit_add(s1,s2,t);
2089         }
2090         else if(rs1[i]) {
2091           if(s1>=0) emit_mov(s1,t);
2092           else emit_loadreg(rs1[i],t);
2093         }
2094         else if(rs2[i]) {
2095           if(s2>=0) {
2096             if(opcode2[i]&2) emit_neg(s2,t);
2097             else emit_mov(s2,t);
2098           }
2099           else {
2100             emit_loadreg(rs2[i],t);
2101             if(opcode2[i]&2) emit_neg(t,t);
2102           }
2103         }
2104         else emit_zeroreg(t);
2105       }
2106     }
2107   }
2108   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2109     if(rt1[i]) {
2110       signed char s1l,s2l,s1h,s2h,tl,th;
2111       tl=get_reg(i_regs->regmap,rt1[i]);
2112       th=get_reg(i_regs->regmap,rt1[i]|64);
2113       if(tl>=0) {
2114         s1l=get_reg(i_regs->regmap,rs1[i]);
2115         s2l=get_reg(i_regs->regmap,rs2[i]);
2116         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2117         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2118         if(rs1[i]&&rs2[i]) {
2119           assert(s1l>=0);
2120           assert(s2l>=0);
2121           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2122           else emit_adds(s1l,s2l,tl);
2123           if(th>=0) {
2124             #ifdef INVERTED_CARRY
2125             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2126             #else
2127             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2128             #endif
2129             else emit_add(s1h,s2h,th);
2130           }
2131         }
2132         else if(rs1[i]) {
2133           if(s1l>=0) emit_mov(s1l,tl);
2134           else emit_loadreg(rs1[i],tl);
2135           if(th>=0) {
2136             if(s1h>=0) emit_mov(s1h,th);
2137             else emit_loadreg(rs1[i]|64,th);
2138           }
2139         }
2140         else if(rs2[i]) {
2141           if(s2l>=0) {
2142             if(opcode2[i]&2) emit_negs(s2l,tl);
2143             else emit_mov(s2l,tl);
2144           }
2145           else {
2146             emit_loadreg(rs2[i],tl);
2147             if(opcode2[i]&2) emit_negs(tl,tl);
2148           }
2149           if(th>=0) {
2150             #ifdef INVERTED_CARRY
2151             if(s2h>=0) emit_mov(s2h,th);
2152             else emit_loadreg(rs2[i]|64,th);
2153             if(opcode2[i]&2) {
2154               emit_adcimm(-1,th); // x86 has inverted carry flag
2155               emit_not(th,th);
2156             }
2157             #else
2158             if(opcode2[i]&2) {
2159               if(s2h>=0) emit_rscimm(s2h,0,th);
2160               else {
2161                 emit_loadreg(rs2[i]|64,th);
2162                 emit_rscimm(th,0,th);
2163               }
2164             }else{
2165               if(s2h>=0) emit_mov(s2h,th);
2166               else emit_loadreg(rs2[i]|64,th);
2167             }
2168             #endif
2169           }
2170         }
2171         else {
2172           emit_zeroreg(tl);
2173           if(th>=0) emit_zeroreg(th);
2174         }
2175       }
2176     }
2177   }
2178   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2179     if(rt1[i]) {
2180       signed char s1l,s1h,s2l,s2h,t;
2181       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2182       {
2183         t=get_reg(i_regs->regmap,rt1[i]);
2184         //assert(t>=0);
2185         if(t>=0) {
2186           s1l=get_reg(i_regs->regmap,rs1[i]);
2187           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2188           s2l=get_reg(i_regs->regmap,rs2[i]);
2189           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2190           if(rs2[i]==0) // rx<r0
2191           {
2192             assert(s1h>=0);
2193             if(opcode2[i]==0x2a) // SLT
2194               emit_shrimm(s1h,31,t);
2195             else // SLTU (unsigned can not be less than zero)
2196               emit_zeroreg(t);
2197           }
2198           else if(rs1[i]==0) // r0<rx
2199           {
2200             assert(s2h>=0);
2201             if(opcode2[i]==0x2a) // SLT
2202               emit_set_gz64_32(s2h,s2l,t);
2203             else // SLTU (set if not zero)
2204               emit_set_nz64_32(s2h,s2l,t);
2205           }
2206           else {
2207             assert(s1l>=0);assert(s1h>=0);
2208             assert(s2l>=0);assert(s2h>=0);
2209             if(opcode2[i]==0x2a) // SLT
2210               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2211             else // SLTU
2212               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2213           }
2214         }
2215       } else {
2216         t=get_reg(i_regs->regmap,rt1[i]);
2217         //assert(t>=0);
2218         if(t>=0) {
2219           s1l=get_reg(i_regs->regmap,rs1[i]);
2220           s2l=get_reg(i_regs->regmap,rs2[i]);
2221           if(rs2[i]==0) // rx<r0
2222           {
2223             assert(s1l>=0);
2224             if(opcode2[i]==0x2a) // SLT
2225               emit_shrimm(s1l,31,t);
2226             else // SLTU (unsigned can not be less than zero)
2227               emit_zeroreg(t);
2228           }
2229           else if(rs1[i]==0) // r0<rx
2230           {
2231             assert(s2l>=0);
2232             if(opcode2[i]==0x2a) // SLT
2233               emit_set_gz32(s2l,t);
2234             else // SLTU (set if not zero)
2235               emit_set_nz32(s2l,t);
2236           }
2237           else{
2238             assert(s1l>=0);assert(s2l>=0);
2239             if(opcode2[i]==0x2a) // SLT
2240               emit_set_if_less32(s1l,s2l,t);
2241             else // SLTU
2242               emit_set_if_carry32(s1l,s2l,t);
2243           }
2244         }
2245       }
2246     }
2247   }
2248   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2249     if(rt1[i]) {
2250       signed char s1l,s1h,s2l,s2h,th,tl;
2251       tl=get_reg(i_regs->regmap,rt1[i]);
2252       th=get_reg(i_regs->regmap,rt1[i]|64);
2253       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2254       {
2255         assert(tl>=0);
2256         if(tl>=0) {
2257           s1l=get_reg(i_regs->regmap,rs1[i]);
2258           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2259           s2l=get_reg(i_regs->regmap,rs2[i]);
2260           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2261           if(rs1[i]&&rs2[i]) {
2262             assert(s1l>=0);assert(s1h>=0);
2263             assert(s2l>=0);assert(s2h>=0);
2264             if(opcode2[i]==0x24) { // AND
2265               emit_and(s1l,s2l,tl);
2266               emit_and(s1h,s2h,th);
2267             } else
2268             if(opcode2[i]==0x25) { // OR
2269               emit_or(s1l,s2l,tl);
2270               emit_or(s1h,s2h,th);
2271             } else
2272             if(opcode2[i]==0x26) { // XOR
2273               emit_xor(s1l,s2l,tl);
2274               emit_xor(s1h,s2h,th);
2275             } else
2276             if(opcode2[i]==0x27) { // NOR
2277               emit_or(s1l,s2l,tl);
2278               emit_or(s1h,s2h,th);
2279               emit_not(tl,tl);
2280               emit_not(th,th);
2281             }
2282           }
2283           else
2284           {
2285             if(opcode2[i]==0x24) { // AND
2286               emit_zeroreg(tl);
2287               emit_zeroreg(th);
2288             } else
2289             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2290               if(rs1[i]){
2291                 if(s1l>=0) emit_mov(s1l,tl);
2292                 else emit_loadreg(rs1[i],tl);
2293                 if(s1h>=0) emit_mov(s1h,th);
2294                 else emit_loadreg(rs1[i]|64,th);
2295               }
2296               else
2297               if(rs2[i]){
2298                 if(s2l>=0) emit_mov(s2l,tl);
2299                 else emit_loadreg(rs2[i],tl);
2300                 if(s2h>=0) emit_mov(s2h,th);
2301                 else emit_loadreg(rs2[i]|64,th);
2302               }
2303               else{
2304                 emit_zeroreg(tl);
2305                 emit_zeroreg(th);
2306               }
2307             } else
2308             if(opcode2[i]==0x27) { // NOR
2309               if(rs1[i]){
2310                 if(s1l>=0) emit_not(s1l,tl);
2311                 else{
2312                   emit_loadreg(rs1[i],tl);
2313                   emit_not(tl,tl);
2314                 }
2315                 if(s1h>=0) emit_not(s1h,th);
2316                 else{
2317                   emit_loadreg(rs1[i]|64,th);
2318                   emit_not(th,th);
2319                 }
2320               }
2321               else
2322               if(rs2[i]){
2323                 if(s2l>=0) emit_not(s2l,tl);
2324                 else{
2325                   emit_loadreg(rs2[i],tl);
2326                   emit_not(tl,tl);
2327                 }
2328                 if(s2h>=0) emit_not(s2h,th);
2329                 else{
2330                   emit_loadreg(rs2[i]|64,th);
2331                   emit_not(th,th);
2332                 }
2333               }
2334               else {
2335                 emit_movimm(-1,tl);
2336                 emit_movimm(-1,th);
2337               }
2338             }
2339           }
2340         }
2341       }
2342       else
2343       {
2344         // 32 bit
2345         if(tl>=0) {
2346           s1l=get_reg(i_regs->regmap,rs1[i]);
2347           s2l=get_reg(i_regs->regmap,rs2[i]);
2348           if(rs1[i]&&rs2[i]) {
2349             assert(s1l>=0);
2350             assert(s2l>=0);
2351             if(opcode2[i]==0x24) { // AND
2352               emit_and(s1l,s2l,tl);
2353             } else
2354             if(opcode2[i]==0x25) { // OR
2355               emit_or(s1l,s2l,tl);
2356             } else
2357             if(opcode2[i]==0x26) { // XOR
2358               emit_xor(s1l,s2l,tl);
2359             } else
2360             if(opcode2[i]==0x27) { // NOR
2361               emit_or(s1l,s2l,tl);
2362               emit_not(tl,tl);
2363             }
2364           }
2365           else
2366           {
2367             if(opcode2[i]==0x24) { // AND
2368               emit_zeroreg(tl);
2369             } else
2370             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2371               if(rs1[i]){
2372                 if(s1l>=0) emit_mov(s1l,tl);
2373                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2374               }
2375               else
2376               if(rs2[i]){
2377                 if(s2l>=0) emit_mov(s2l,tl);
2378                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2379               }
2380               else emit_zeroreg(tl);
2381             } else
2382             if(opcode2[i]==0x27) { // NOR
2383               if(rs1[i]){
2384                 if(s1l>=0) emit_not(s1l,tl);
2385                 else {
2386                   emit_loadreg(rs1[i],tl);
2387                   emit_not(tl,tl);
2388                 }
2389               }
2390               else
2391               if(rs2[i]){
2392                 if(s2l>=0) emit_not(s2l,tl);
2393                 else {
2394                   emit_loadreg(rs2[i],tl);
2395                   emit_not(tl,tl);
2396                 }
2397               }
2398               else emit_movimm(-1,tl);
2399             }
2400           }
2401         }
2402       }
2403     }
2404   }
2405 }
2406
2407 void imm16_assemble(int i,struct regstat *i_regs)
2408 {
2409   if (opcode[i]==0x0f) { // LUI
2410     if(rt1[i]) {
2411       signed char t;
2412       t=get_reg(i_regs->regmap,rt1[i]);
2413       //assert(t>=0);
2414       if(t>=0) {
2415         if(!((i_regs->isconst>>t)&1))
2416           emit_movimm(imm[i]<<16,t);
2417       }
2418     }
2419   }
2420   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2421     if(rt1[i]) {
2422       signed char s,t;
2423       t=get_reg(i_regs->regmap,rt1[i]);
2424       s=get_reg(i_regs->regmap,rs1[i]);
2425       if(rs1[i]) {
2426         //assert(t>=0);
2427         //assert(s>=0);
2428         if(t>=0) {
2429           if(!((i_regs->isconst>>t)&1)) {
2430             if(s<0) {
2431               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2432               emit_addimm(t,imm[i],t);
2433             }else{
2434               if(!((i_regs->wasconst>>s)&1))
2435                 emit_addimm(s,imm[i],t);
2436               else
2437                 emit_movimm(constmap[i][s]+imm[i],t);
2438             }
2439           }
2440         }
2441       } else {
2442         if(t>=0) {
2443           if(!((i_regs->isconst>>t)&1))
2444             emit_movimm(imm[i],t);
2445         }
2446       }
2447     }
2448   }
2449   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2450     if(rt1[i]) {
2451       signed char sh,sl,th,tl;
2452       th=get_reg(i_regs->regmap,rt1[i]|64);
2453       tl=get_reg(i_regs->regmap,rt1[i]);
2454       sh=get_reg(i_regs->regmap,rs1[i]|64);
2455       sl=get_reg(i_regs->regmap,rs1[i]);
2456       if(tl>=0) {
2457         if(rs1[i]) {
2458           assert(sh>=0);
2459           assert(sl>=0);
2460           if(th>=0) {
2461             emit_addimm64_32(sh,sl,imm[i],th,tl);
2462           }
2463           else {
2464             emit_addimm(sl,imm[i],tl);
2465           }
2466         } else {
2467           emit_movimm(imm[i],tl);
2468           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2469         }
2470       }
2471     }
2472   }
2473   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2474     if(rt1[i]) {
2475       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2476       signed char sh,sl,t;
2477       t=get_reg(i_regs->regmap,rt1[i]);
2478       sh=get_reg(i_regs->regmap,rs1[i]|64);
2479       sl=get_reg(i_regs->regmap,rs1[i]);
2480       //assert(t>=0);
2481       if(t>=0) {
2482         if(rs1[i]>0) {
2483           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2484           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2485             if(opcode[i]==0x0a) { // SLTI
2486               if(sl<0) {
2487                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2488                 emit_slti32(t,imm[i],t);
2489               }else{
2490                 emit_slti32(sl,imm[i],t);
2491               }
2492             }
2493             else { // SLTIU
2494               if(sl<0) {
2495                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2496                 emit_sltiu32(t,imm[i],t);
2497               }else{
2498                 emit_sltiu32(sl,imm[i],t);
2499               }
2500             }
2501           }else{ // 64-bit
2502             assert(sl>=0);
2503             if(opcode[i]==0x0a) // SLTI
2504               emit_slti64_32(sh,sl,imm[i],t);
2505             else // SLTIU
2506               emit_sltiu64_32(sh,sl,imm[i],t);
2507           }
2508         }else{
2509           // SLTI(U) with r0 is just stupid,
2510           // nonetheless examples can be found
2511           if(opcode[i]==0x0a) // SLTI
2512             if(0<imm[i]) emit_movimm(1,t);
2513             else emit_zeroreg(t);
2514           else // SLTIU
2515           {
2516             if(imm[i]) emit_movimm(1,t);
2517             else emit_zeroreg(t);
2518           }
2519         }
2520       }
2521     }
2522   }
2523   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2524     if(rt1[i]) {
2525       signed char sh,sl,th,tl;
2526       th=get_reg(i_regs->regmap,rt1[i]|64);
2527       tl=get_reg(i_regs->regmap,rt1[i]);
2528       sh=get_reg(i_regs->regmap,rs1[i]|64);
2529       sl=get_reg(i_regs->regmap,rs1[i]);
2530       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2531         if(opcode[i]==0x0c) //ANDI
2532         {
2533           if(rs1[i]) {
2534             if(sl<0) {
2535               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2536               emit_andimm(tl,imm[i],tl);
2537             }else{
2538               if(!((i_regs->wasconst>>sl)&1))
2539                 emit_andimm(sl,imm[i],tl);
2540               else
2541                 emit_movimm(constmap[i][sl]&imm[i],tl);
2542             }
2543           }
2544           else
2545             emit_zeroreg(tl);
2546           if(th>=0) emit_zeroreg(th);
2547         }
2548         else
2549         {
2550           if(rs1[i]) {
2551             if(sl<0) {
2552               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2553             }
2554             if(th>=0) {
2555               if(sh<0) {
2556                 emit_loadreg(rs1[i]|64,th);
2557               }else{
2558                 emit_mov(sh,th);
2559               }
2560             }
2561             if(opcode[i]==0x0d) //ORI
2562             if(sl<0) {
2563               emit_orimm(tl,imm[i],tl);
2564             }else{
2565               if(!((i_regs->wasconst>>sl)&1))
2566                 emit_orimm(sl,imm[i],tl);
2567               else
2568                 emit_movimm(constmap[i][sl]|imm[i],tl);
2569             }
2570             if(opcode[i]==0x0e) //XORI
2571             if(sl<0) {
2572               emit_xorimm(tl,imm[i],tl);
2573             }else{
2574               if(!((i_regs->wasconst>>sl)&1))
2575                 emit_xorimm(sl,imm[i],tl);
2576               else
2577                 emit_movimm(constmap[i][sl]^imm[i],tl);
2578             }
2579           }
2580           else {
2581             emit_movimm(imm[i],tl);
2582             if(th>=0) emit_zeroreg(th);
2583           }
2584         }
2585       }
2586     }
2587   }
2588 }
2589
2590 void shiftimm_assemble(int i,struct regstat *i_regs)
2591 {
2592   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2593   {
2594     if(rt1[i]) {
2595       signed char s,t;
2596       t=get_reg(i_regs->regmap,rt1[i]);
2597       s=get_reg(i_regs->regmap,rs1[i]);
2598       //assert(t>=0);
2599       if(t>=0){
2600         if(rs1[i]==0)
2601         {
2602           emit_zeroreg(t);
2603         }
2604         else
2605         {
2606           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2607           if(imm[i]) {
2608             if(opcode2[i]==0) // SLL
2609             {
2610               emit_shlimm(s<0?t:s,imm[i],t);
2611             }
2612             if(opcode2[i]==2) // SRL
2613             {
2614               emit_shrimm(s<0?t:s,imm[i],t);
2615             }
2616             if(opcode2[i]==3) // SRA
2617             {
2618               emit_sarimm(s<0?t:s,imm[i],t);
2619             }
2620           }else{
2621             // Shift by zero
2622             if(s>=0 && s!=t) emit_mov(s,t);
2623           }
2624         }
2625       }
2626       //emit_storereg(rt1[i],t); //DEBUG
2627     }
2628   }
2629   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2630   {
2631     if(rt1[i]) {
2632       signed char sh,sl,th,tl;
2633       th=get_reg(i_regs->regmap,rt1[i]|64);
2634       tl=get_reg(i_regs->regmap,rt1[i]);
2635       sh=get_reg(i_regs->regmap,rs1[i]|64);
2636       sl=get_reg(i_regs->regmap,rs1[i]);
2637       if(tl>=0) {
2638         if(rs1[i]==0)
2639         {
2640           emit_zeroreg(tl);
2641           if(th>=0) emit_zeroreg(th);
2642         }
2643         else
2644         {
2645           assert(sl>=0);
2646           assert(sh>=0);
2647           if(imm[i]) {
2648             if(opcode2[i]==0x38) // DSLL
2649             {
2650               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2651               emit_shlimm(sl,imm[i],tl);
2652             }
2653             if(opcode2[i]==0x3a) // DSRL
2654             {
2655               emit_shrdimm(sl,sh,imm[i],tl);
2656               if(th>=0) emit_shrimm(sh,imm[i],th);
2657             }
2658             if(opcode2[i]==0x3b) // DSRA
2659             {
2660               emit_shrdimm(sl,sh,imm[i],tl);
2661               if(th>=0) emit_sarimm(sh,imm[i],th);
2662             }
2663           }else{
2664             // Shift by zero
2665             if(sl!=tl) emit_mov(sl,tl);
2666             if(th>=0&&sh!=th) emit_mov(sh,th);
2667           }
2668         }
2669       }
2670     }
2671   }
2672   if(opcode2[i]==0x3c) // DSLL32
2673   {
2674     if(rt1[i]) {
2675       signed char sl,tl,th;
2676       tl=get_reg(i_regs->regmap,rt1[i]);
2677       th=get_reg(i_regs->regmap,rt1[i]|64);
2678       sl=get_reg(i_regs->regmap,rs1[i]);
2679       if(th>=0||tl>=0){
2680         assert(tl>=0);
2681         assert(th>=0);
2682         assert(sl>=0);
2683         emit_mov(sl,th);
2684         emit_zeroreg(tl);
2685         if(imm[i]>32)
2686         {
2687           emit_shlimm(th,imm[i]&31,th);
2688         }
2689       }
2690     }
2691   }
2692   if(opcode2[i]==0x3e) // DSRL32
2693   {
2694     if(rt1[i]) {
2695       signed char sh,tl,th;
2696       tl=get_reg(i_regs->regmap,rt1[i]);
2697       th=get_reg(i_regs->regmap,rt1[i]|64);
2698       sh=get_reg(i_regs->regmap,rs1[i]|64);
2699       if(tl>=0){
2700         assert(sh>=0);
2701         emit_mov(sh,tl);
2702         if(th>=0) emit_zeroreg(th);
2703         if(imm[i]>32)
2704         {
2705           emit_shrimm(tl,imm[i]&31,tl);
2706         }
2707       }
2708     }
2709   }
2710   if(opcode2[i]==0x3f) // DSRA32
2711   {
2712     if(rt1[i]) {
2713       signed char sh,tl;
2714       tl=get_reg(i_regs->regmap,rt1[i]);
2715       sh=get_reg(i_regs->regmap,rs1[i]|64);
2716       if(tl>=0){
2717         assert(sh>=0);
2718         emit_mov(sh,tl);
2719         if(imm[i]>32)
2720         {
2721           emit_sarimm(tl,imm[i]&31,tl);
2722         }
2723       }
2724     }
2725   }
2726 }
2727
2728 #ifndef shift_assemble
2729 void shift_assemble(int i,struct regstat *i_regs)
2730 {
2731   printf("Need shift_assemble for this architecture.\n");
2732   exit(1);
2733 }
2734 #endif
2735
2736 void load_assemble(int i,struct regstat *i_regs)
2737 {
2738   int s,th,tl,addr,map=-1;
2739   int offset;
2740   int jaddr=0;
2741   int memtarget=0,c=0;
2742   u_int hr,reglist=0;
2743   th=get_reg(i_regs->regmap,rt1[i]|64);
2744   tl=get_reg(i_regs->regmap,rt1[i]);
2745   s=get_reg(i_regs->regmap,rs1[i]);
2746   offset=imm[i];
2747   for(hr=0;hr<HOST_REGS;hr++) {
2748     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2749   }
2750   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2751   if(s>=0) {
2752     c=(i_regs->wasconst>>s)&1;
2753     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2754     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2755   }
2756   //printf("load_assemble: c=%d\n",c);
2757   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2758   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2759 #ifdef PCSX
2760   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2761     ||rt1[i]==0) {
2762       // could be FIFO, must perform the read
2763       // ||dummy read
2764       assem_debug("(forced read)\n");
2765       tl=get_reg(i_regs->regmap,-1);
2766       assert(tl>=0);
2767   }
2768 #endif
2769   if(offset||s<0||c) addr=tl;
2770   else addr=s;
2771   if(tl>=0) {
2772     //assert(tl>=0);
2773     //assert(rt1[i]);
2774     reglist&=~(1<<tl);
2775     if(th>=0) reglist&=~(1<<th);
2776     if(!using_tlb) {
2777       if(!c) {
2778 //#define R29_HACK 1
2779         #ifdef R29_HACK
2780         // Strmnnrmn's speed hack
2781         if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2782         #endif
2783         {
2784           emit_cmpimm(addr,RAM_SIZE);
2785           jaddr=(int)out;
2786           #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2787           // Hint to branch predictor that the branch is unlikely to be taken
2788           if(rs1[i]>=28)
2789             emit_jno_unlikely(0);
2790           else
2791           #endif
2792           emit_jno(0);
2793         }
2794       }
2795     }else{ // using tlb
2796       int x=0;
2797       if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2798       if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2799       map=get_reg(i_regs->regmap,TLREG);
2800       assert(map>=0);
2801       map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2802       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2803     }
2804     if (opcode[i]==0x20) { // LB
2805       if(!c||memtarget) {
2806         #ifdef HOST_IMM_ADDR32
2807         if(c)
2808           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2809         else
2810         #endif
2811         {
2812           //emit_xorimm(addr,3,tl);
2813           //gen_tlb_addr_r(tl,map);
2814           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2815           int x=0;
2816 #ifdef BIG_ENDIAN_MIPS
2817           if(!c) emit_xorimm(addr,3,tl);
2818           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2819 #else
2820           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2821           else if (tl!=addr) emit_mov(addr,tl);
2822 #endif
2823           emit_movsbl_indexed_tlb(x,tl,map,tl);
2824         }
2825         if(jaddr)
2826           add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2827       }
2828       else
2829         inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2830     }
2831     if (opcode[i]==0x21) { // LH
2832       if(!c||memtarget) {
2833         #ifdef HOST_IMM_ADDR32
2834         if(c)
2835           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2836         else
2837         #endif
2838         {
2839           int x=0;
2840 #ifdef BIG_ENDIAN_MIPS
2841           if(!c) emit_xorimm(addr,2,tl);
2842           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2843 #else
2844           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2845           else if (tl!=addr) emit_mov(addr,tl);
2846 #endif
2847           //#ifdef
2848           //emit_movswl_indexed_tlb(x,tl,map,tl);
2849           //else
2850           if(map>=0) {
2851             gen_tlb_addr_r(tl,map);
2852             emit_movswl_indexed(x,tl,tl);
2853           }else
2854             emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2855         }
2856         if(jaddr)
2857           add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2858       }
2859       else
2860         inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2861     }
2862     if (opcode[i]==0x23) { // LW
2863       if(!c||memtarget) {
2864         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2865         #ifdef HOST_IMM_ADDR32
2866         if(c)
2867           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2868         else
2869         #endif
2870         emit_readword_indexed_tlb(0,addr,map,tl);
2871         if(jaddr)
2872           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2873       }
2874       else
2875         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2876     }
2877     if (opcode[i]==0x24) { // LBU
2878       if(!c||memtarget) {
2879         #ifdef HOST_IMM_ADDR32
2880         if(c)
2881           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2882         else
2883         #endif
2884         {
2885           //emit_xorimm(addr,3,tl);
2886           //gen_tlb_addr_r(tl,map);
2887           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2888           int x=0;
2889 #ifdef BIG_ENDIAN_MIPS
2890           if(!c) emit_xorimm(addr,3,tl);
2891           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2892 #else
2893           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2894           else if (tl!=addr) emit_mov(addr,tl);
2895 #endif
2896           emit_movzbl_indexed_tlb(x,tl,map,tl);
2897         }
2898         if(jaddr)
2899           add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2900       }
2901       else
2902         inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2903     }
2904     if (opcode[i]==0x25) { // LHU
2905       if(!c||memtarget) {
2906         #ifdef HOST_IMM_ADDR32
2907         if(c)
2908           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2909         else
2910         #endif
2911         {
2912           int x=0;
2913 #ifdef BIG_ENDIAN_MIPS
2914           if(!c) emit_xorimm(addr,2,tl);
2915           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2916 #else
2917           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2918           else if (tl!=addr) emit_mov(addr,tl);
2919 #endif
2920           //#ifdef
2921           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2922           //#else
2923           if(map>=0) {
2924             gen_tlb_addr_r(tl,map);
2925             emit_movzwl_indexed(x,tl,tl);
2926           }else
2927             emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2928           if(jaddr)
2929             add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2930         }
2931       }
2932       else
2933         inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2934     }
2935     if (opcode[i]==0x27) { // LWU
2936       assert(th>=0);
2937       if(!c||memtarget) {
2938         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2939         #ifdef HOST_IMM_ADDR32
2940         if(c)
2941           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2942         else
2943         #endif
2944         emit_readword_indexed_tlb(0,addr,map,tl);
2945         if(jaddr)
2946           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2947       }
2948       else {
2949         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2950       }
2951       emit_zeroreg(th);
2952     }
2953     if (opcode[i]==0x37) { // LD
2954       if(!c||memtarget) {
2955         //gen_tlb_addr_r(tl,map);
2956         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2957         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2958         #ifdef HOST_IMM_ADDR32
2959         if(c)
2960           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2961         else
2962         #endif
2963         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2964         if(jaddr)
2965           add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2966       }
2967       else
2968         inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2969     }
2970     //emit_storereg(rt1[i],tl); // DEBUG
2971   }
2972   //if(opcode[i]==0x23)
2973   //if(opcode[i]==0x24)
2974   //if(opcode[i]==0x23||opcode[i]==0x24)
2975   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2976   {
2977     //emit_pusha();
2978     save_regs(0x100f);
2979         emit_readword((int)&last_count,ECX);
2980         #ifdef __i386__
2981         if(get_reg(i_regs->regmap,CCREG)<0)
2982           emit_loadreg(CCREG,HOST_CCREG);
2983         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2984         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2985         emit_writeword(HOST_CCREG,(int)&Count);
2986         #endif
2987         #ifdef __arm__
2988         if(get_reg(i_regs->regmap,CCREG)<0)
2989           emit_loadreg(CCREG,0);
2990         else
2991           emit_mov(HOST_CCREG,0);
2992         emit_add(0,ECX,0);
2993         emit_addimm(0,2*ccadj[i],0);
2994         emit_writeword(0,(int)&Count);
2995         #endif
2996     emit_call((int)memdebug);
2997     //emit_popa();
2998     restore_regs(0x100f);
2999   }/**/
3000 }
3001
3002 #ifndef loadlr_assemble
3003 void loadlr_assemble(int i,struct regstat *i_regs)
3004 {
3005   printf("Need loadlr_assemble for this architecture.\n");
3006   exit(1);
3007 }
3008 #endif
3009
3010 void store_assemble(int i,struct regstat *i_regs)
3011 {
3012   int s,th,tl,map=-1;
3013   int addr,temp;
3014   int offset;
3015   int jaddr=0,jaddr2,type;
3016   int memtarget=0,c=0;
3017   int agr=AGEN1+(i&1);
3018   u_int hr,reglist=0;
3019   th=get_reg(i_regs->regmap,rs2[i]|64);
3020   tl=get_reg(i_regs->regmap,rs2[i]);
3021   s=get_reg(i_regs->regmap,rs1[i]);
3022   temp=get_reg(i_regs->regmap,agr);
3023   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3024   offset=imm[i];
3025   if(s>=0) {
3026     c=(i_regs->wasconst>>s)&1;
3027     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3028     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3029   }
3030   assert(tl>=0);
3031   assert(temp>=0);
3032   for(hr=0;hr<HOST_REGS;hr++) {
3033     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3034   }
3035   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3036   if(offset||s<0||c) addr=temp;
3037   else addr=s;
3038   if(!using_tlb) {
3039     if(!c) {
3040       #ifdef R29_HACK
3041       // Strmnnrmn's speed hack
3042       memtarget=1;
3043       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3044       #endif
3045       emit_cmpimm(addr,RAM_SIZE);
3046       #ifdef DESTRUCTIVE_SHIFT
3047       if(s==addr) emit_mov(s,temp);
3048       #endif
3049       #ifdef R29_HACK
3050       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3051       #endif
3052       {
3053         jaddr=(int)out;
3054         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3055         // Hint to branch predictor that the branch is unlikely to be taken
3056         if(rs1[i]>=28)
3057           emit_jno_unlikely(0);
3058         else
3059         #endif
3060         emit_jno(0);
3061       }
3062     }
3063   }else{ // using tlb
3064     int x=0;
3065     if (opcode[i]==0x28) x=3; // SB
3066     if (opcode[i]==0x29) x=2; // SH
3067     map=get_reg(i_regs->regmap,TLREG);
3068     assert(map>=0);
3069     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3070     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3071   }
3072
3073   if (opcode[i]==0x28) { // SB
3074     if(!c||memtarget) {
3075       int x=0;
3076 #ifdef BIG_ENDIAN_MIPS
3077       if(!c) emit_xorimm(addr,3,temp);
3078       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3079 #else
3080       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3081       else if (addr!=temp) emit_mov(addr,temp);
3082 #endif
3083       //gen_tlb_addr_w(temp,map);
3084       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3085       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3086     }
3087     type=STOREB_STUB;
3088   }
3089   if (opcode[i]==0x29) { // SH
3090     if(!c||memtarget) {
3091       int x=0;
3092 #ifdef BIG_ENDIAN_MIPS
3093       if(!c) emit_xorimm(addr,2,temp);
3094       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3095 #else
3096       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3097       else if (addr!=temp) emit_mov(addr,temp);
3098 #endif
3099       //#ifdef
3100       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3101       //#else
3102       if(map>=0) {
3103         gen_tlb_addr_w(temp,map);
3104         emit_writehword_indexed(tl,x,temp);
3105       }else
3106         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3107     }
3108     type=STOREH_STUB;
3109   }
3110   if (opcode[i]==0x2B) { // SW
3111     if(!c||memtarget)
3112       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3113       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3114     type=STOREW_STUB;
3115   }
3116   if (opcode[i]==0x3F) { // SD
3117     if(!c||memtarget) {
3118       if(rs2[i]) {
3119         assert(th>=0);
3120         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3121         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3122         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3123       }else{
3124         // Store zero
3125         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3126         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3127         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3128       }
3129     }
3130     type=STORED_STUB;
3131   }
3132   if(!using_tlb&&(!c||memtarget))
3133     // addr could be a temp, make sure it survives STORE*_STUB
3134     reglist|=1<<addr;
3135   if(jaddr) {
3136     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3137   } else if(!memtarget) {
3138     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3139   }
3140   if(!using_tlb) {
3141     if(!c||memtarget) {
3142       #ifdef DESTRUCTIVE_SHIFT
3143       // The x86 shift operation is 'destructive'; it overwrites the
3144       // source register, so we need to make a copy first and use that.
3145       addr=temp;
3146       #endif
3147       #if defined(HOST_IMM8)
3148       int ir=get_reg(i_regs->regmap,INVCP);
3149       assert(ir>=0);
3150       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3151       #else
3152       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3153       #endif
3154       jaddr2=(int)out;
3155       emit_jne(0);
3156       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3157     }
3158   }
3159   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3160   //if(opcode[i]==0x2B || opcode[i]==0x28)
3161   //if(opcode[i]==0x2B || opcode[i]==0x29)
3162   //if(opcode[i]==0x2B)
3163   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3164   {
3165     //emit_pusha();
3166     save_regs(0x100f);
3167         emit_readword((int)&last_count,ECX);
3168         #ifdef __i386__
3169         if(get_reg(i_regs->regmap,CCREG)<0)
3170           emit_loadreg(CCREG,HOST_CCREG);
3171         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3172         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3173         emit_writeword(HOST_CCREG,(int)&Count);
3174         #endif
3175         #ifdef __arm__
3176         if(get_reg(i_regs->regmap,CCREG)<0)
3177           emit_loadreg(CCREG,0);
3178         else
3179           emit_mov(HOST_CCREG,0);
3180         emit_add(0,ECX,0);
3181         emit_addimm(0,2*ccadj[i],0);
3182         emit_writeword(0,(int)&Count);
3183         #endif
3184     emit_call((int)memdebug);
3185     //emit_popa();
3186     restore_regs(0x100f);
3187   }/**/
3188 }
3189
3190 void storelr_assemble(int i,struct regstat *i_regs)
3191 {
3192   int s,th,tl;
3193   int temp;
3194   int temp2;
3195   int offset;
3196   int jaddr=0,jaddr2;
3197   int case1,case2,case3;
3198   int done0,done1,done2;
3199   int memtarget,c=0;
3200   int agr=AGEN1+(i&1);
3201   u_int hr,reglist=0;
3202   th=get_reg(i_regs->regmap,rs2[i]|64);
3203   tl=get_reg(i_regs->regmap,rs2[i]);
3204   s=get_reg(i_regs->regmap,rs1[i]);
3205   temp=get_reg(i_regs->regmap,agr);
3206   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3207   offset=imm[i];
3208   if(s>=0) {
3209     c=(i_regs->isconst>>s)&1;
3210     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3211     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3212   }
3213   assert(tl>=0);
3214   for(hr=0;hr<HOST_REGS;hr++) {
3215     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3216   }
3217   if(tl>=0) {
3218     assert(temp>=0);
3219     if(!using_tlb) {
3220       if(!c) {
3221         emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3222         if(!offset&&s!=temp) emit_mov(s,temp);
3223         jaddr=(int)out;
3224         emit_jno(0);
3225       }
3226       else
3227       {
3228         if(!memtarget||!rs1[i]) {
3229           jaddr=(int)out;
3230           emit_jmp(0);
3231         }
3232       }
3233       if((u_int)rdram!=0x80000000) 
3234         emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3235     }else{ // using tlb
3236       int map=get_reg(i_regs->regmap,TLREG);
3237       assert(map>=0);
3238       map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3239       if(!c&&!offset&&s>=0) emit_mov(s,temp);
3240       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3241       if(!jaddr&&!memtarget) {
3242         jaddr=(int)out;
3243         emit_jmp(0);
3244       }
3245       gen_tlb_addr_w(temp,map);
3246     }
3247
3248     if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3249       temp2=get_reg(i_regs->regmap,FTEMP);
3250       if(!rs2[i]) temp2=th=tl;
3251     }
3252
3253 #ifndef BIG_ENDIAN_MIPS
3254     emit_xorimm(temp,3,temp);
3255 #endif
3256     emit_testimm(temp,2);
3257     case2=(int)out;
3258     emit_jne(0);
3259     emit_testimm(temp,1);
3260     case1=(int)out;
3261     emit_jne(0);
3262     // 0
3263     if (opcode[i]==0x2A) { // SWL
3264       emit_writeword_indexed(tl,0,temp);
3265     }
3266     if (opcode[i]==0x2E) { // SWR
3267       emit_writebyte_indexed(tl,3,temp);
3268     }
3269     if (opcode[i]==0x2C) { // SDL
3270       emit_writeword_indexed(th,0,temp);
3271       if(rs2[i]) emit_mov(tl,temp2);
3272     }
3273     if (opcode[i]==0x2D) { // SDR
3274       emit_writebyte_indexed(tl,3,temp);
3275       if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3276     }
3277     done0=(int)out;
3278     emit_jmp(0);
3279     // 1
3280     set_jump_target(case1,(int)out);
3281     if (opcode[i]==0x2A) { // SWL
3282       // Write 3 msb into three least significant bytes
3283       if(rs2[i]) emit_rorimm(tl,8,tl);
3284       emit_writehword_indexed(tl,-1,temp);
3285       if(rs2[i]) emit_rorimm(tl,16,tl);
3286       emit_writebyte_indexed(tl,1,temp);
3287       if(rs2[i]) emit_rorimm(tl,8,tl);
3288     }
3289     if (opcode[i]==0x2E) { // SWR
3290       // Write two lsb into two most significant bytes
3291       emit_writehword_indexed(tl,1,temp);
3292     }
3293     if (opcode[i]==0x2C) { // SDL
3294       if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3295       // Write 3 msb into three least significant bytes
3296       if(rs2[i]) emit_rorimm(th,8,th);
3297       emit_writehword_indexed(th,-1,temp);
3298       if(rs2[i]) emit_rorimm(th,16,th);
3299       emit_writebyte_indexed(th,1,temp);
3300       if(rs2[i]) emit_rorimm(th,8,th);
3301     }
3302     if (opcode[i]==0x2D) { // SDR
3303       if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3304       // Write two lsb into two most significant bytes
3305       emit_writehword_indexed(tl,1,temp);
3306     }
3307     done1=(int)out;
3308     emit_jmp(0);
3309     // 2
3310     set_jump_target(case2,(int)out);
3311     emit_testimm(temp,1);
3312     case3=(int)out;
3313     emit_jne(0);
3314     if (opcode[i]==0x2A) { // SWL
3315       // Write two msb into two least significant bytes
3316       if(rs2[i]) emit_rorimm(tl,16,tl);
3317       emit_writehword_indexed(tl,-2,temp);
3318       if(rs2[i]) emit_rorimm(tl,16,tl);
3319     }
3320     if (opcode[i]==0x2E) { // SWR
3321       // Write 3 lsb into three most significant bytes
3322       emit_writebyte_indexed(tl,-1,temp);
3323       if(rs2[i]) emit_rorimm(tl,8,tl);
3324       emit_writehword_indexed(tl,0,temp);
3325       if(rs2[i]) emit_rorimm(tl,24,tl);
3326     }
3327     if (opcode[i]==0x2C) { // SDL
3328       if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3329       // Write two msb into two least significant bytes
3330       if(rs2[i]) emit_rorimm(th,16,th);
3331       emit_writehword_indexed(th,-2,temp);
3332       if(rs2[i]) emit_rorimm(th,16,th);
3333     }
3334     if (opcode[i]==0x2D) { // SDR
3335       if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3336       // Write 3 lsb into three most significant bytes
3337       emit_writebyte_indexed(tl,-1,temp);
3338       if(rs2[i]) emit_rorimm(tl,8,tl);
3339       emit_writehword_indexed(tl,0,temp);
3340       if(rs2[i]) emit_rorimm(tl,24,tl);
3341     }
3342     done2=(int)out;
3343     emit_jmp(0);
3344     // 3
3345     set_jump_target(case3,(int)out);
3346     if (opcode[i]==0x2A) { // SWL
3347       // Write msb into least significant byte
3348       if(rs2[i]) emit_rorimm(tl,24,tl);
3349       emit_writebyte_indexed(tl,-3,temp);
3350       if(rs2[i]) emit_rorimm(tl,8,tl);
3351     }
3352     if (opcode[i]==0x2E) { // SWR
3353       // Write entire word
3354       emit_writeword_indexed(tl,-3,temp);
3355     }
3356     if (opcode[i]==0x2C) { // SDL
3357       if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3358       // Write msb into least significant byte
3359       if(rs2[i]) emit_rorimm(th,24,th);
3360       emit_writebyte_indexed(th,-3,temp);
3361       if(rs2[i]) emit_rorimm(th,8,th);
3362     }
3363     if (opcode[i]==0x2D) { // SDR
3364       if(rs2[i]) emit_mov(th,temp2);
3365       // Write entire word
3366       emit_writeword_indexed(tl,-3,temp);
3367     }
3368     set_jump_target(done0,(int)out);
3369     set_jump_target(done1,(int)out);
3370     set_jump_target(done2,(int)out);
3371     if (opcode[i]==0x2C) { // SDL
3372       emit_testimm(temp,4);
3373       done0=(int)out;
3374       emit_jne(0);
3375       emit_andimm(temp,~3,temp);
3376       emit_writeword_indexed(temp2,4,temp);
3377       set_jump_target(done0,(int)out);
3378     }
3379     if (opcode[i]==0x2D) { // SDR
3380       emit_testimm(temp,4);
3381       done0=(int)out;
3382       emit_jeq(0);
3383       emit_andimm(temp,~3,temp);
3384       emit_writeword_indexed(temp2,-4,temp);
3385       set_jump_target(done0,(int)out);
3386     }
3387     if(!c||!memtarget)
3388       add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3389   }
3390   if(!using_tlb) {
3391     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3392     #if defined(HOST_IMM8)
3393     int ir=get_reg(i_regs->regmap,INVCP);
3394     assert(ir>=0);
3395     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3396     #else
3397     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3398     #endif
3399     jaddr2=(int)out;
3400     emit_jne(0);
3401     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3402   }
3403   /*
3404     emit_pusha();
3405     //save_regs(0x100f);
3406         emit_readword((int)&last_count,ECX);
3407         if(get_reg(i_regs->regmap,CCREG)<0)
3408           emit_loadreg(CCREG,HOST_CCREG);
3409         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3410         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3411         emit_writeword(HOST_CCREG,(int)&Count);
3412     emit_call((int)memdebug);
3413     emit_popa();
3414     //restore_regs(0x100f);
3415   /**/
3416 }
3417
3418 void c1ls_assemble(int i,struct regstat *i_regs)
3419 {
3420 #ifndef DISABLE_COP1
3421   int s,th,tl;
3422   int temp,ar;
3423   int map=-1;
3424   int offset;
3425   int c=0;
3426   int jaddr,jaddr2=0,jaddr3,type;
3427   int agr=AGEN1+(i&1);
3428   u_int hr,reglist=0;
3429   th=get_reg(i_regs->regmap,FTEMP|64);
3430   tl=get_reg(i_regs->regmap,FTEMP);
3431   s=get_reg(i_regs->regmap,rs1[i]);
3432   temp=get_reg(i_regs->regmap,agr);
3433   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3434   offset=imm[i];
3435   assert(tl>=0);
3436   assert(rs1[i]>0);
3437   assert(temp>=0);
3438   for(hr=0;hr<HOST_REGS;hr++) {
3439     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3440   }
3441   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3442   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3443   {
3444     // Loads use a temporary register which we need to save
3445     reglist|=1<<temp;
3446   }
3447   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3448     ar=temp;
3449   else // LWC1/LDC1
3450     ar=tl;
3451   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3452   //else c=(i_regs->wasconst>>s)&1;
3453   if(s>=0) c=(i_regs->wasconst>>s)&1;
3454   // Check cop1 unusable
3455   if(!cop1_usable) {
3456     signed char rs=get_reg(i_regs->regmap,CSREG);
3457     assert(rs>=0);
3458     emit_testimm(rs,0x20000000);
3459     jaddr=(int)out;
3460     emit_jeq(0);
3461     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3462     cop1_usable=1;
3463   }
3464   if (opcode[i]==0x39) { // SWC1 (get float address)
3465     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3466   }
3467   if (opcode[i]==0x3D) { // SDC1 (get double address)
3468     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3469   }
3470   // Generate address + offset
3471   if(!using_tlb) {
3472     if(!c)
3473       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3474   }
3475   else
3476   {
3477     map=get_reg(i_regs->regmap,TLREG);
3478     assert(map>=0);
3479     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3480       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3481     }
3482     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3483       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3484     }
3485   }
3486   if (opcode[i]==0x39) { // SWC1 (read float)
3487     emit_readword_indexed(0,tl,tl);
3488   }
3489   if (opcode[i]==0x3D) { // SDC1 (read double)
3490     emit_readword_indexed(4,tl,th);
3491     emit_readword_indexed(0,tl,tl);
3492   }
3493   if (opcode[i]==0x31) { // LWC1 (get target address)
3494     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3495   }
3496   if (opcode[i]==0x35) { // LDC1 (get target address)
3497     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3498   }
3499   if(!using_tlb) {
3500     if(!c) {
3501       jaddr2=(int)out;
3502       emit_jno(0);
3503     }
3504     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3505       jaddr2=(int)out;
3506       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3507     }
3508     #ifdef DESTRUCTIVE_SHIFT
3509     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3510       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3511     }
3512     #endif
3513   }else{
3514     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3515       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3516     }
3517     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3518       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3519     }
3520   }
3521   if (opcode[i]==0x31) { // LWC1
3522     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3523     //gen_tlb_addr_r(ar,map);
3524     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3525     #ifdef HOST_IMM_ADDR32
3526     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3527     else
3528     #endif
3529     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3530     type=LOADW_STUB;
3531   }
3532   if (opcode[i]==0x35) { // LDC1
3533     assert(th>=0);
3534     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3535     //gen_tlb_addr_r(ar,map);
3536     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3537     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3538     #ifdef HOST_IMM_ADDR32
3539     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3540     else
3541     #endif
3542     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3543     type=LOADD_STUB;
3544   }
3545   if (opcode[i]==0x39) { // SWC1
3546     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3547     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3548     type=STOREW_STUB;
3549   }
3550   if (opcode[i]==0x3D) { // SDC1
3551     assert(th>=0);
3552     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3553     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3554     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3555     type=STORED_STUB;
3556   }
3557   if(!using_tlb) {
3558     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3559       #ifndef DESTRUCTIVE_SHIFT
3560       temp=offset||c||s<0?ar:s;
3561       #endif
3562       #if defined(HOST_IMM8)
3563       int ir=get_reg(i_regs->regmap,INVCP);
3564       assert(ir>=0);
3565       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3566       #else
3567       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3568       #endif
3569       jaddr3=(int)out;
3570       emit_jne(0);
3571       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3572     }
3573   }
3574   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3575   if (opcode[i]==0x31) { // LWC1 (write float)
3576     emit_writeword_indexed(tl,0,temp);
3577   }
3578   if (opcode[i]==0x35) { // LDC1 (write double)
3579     emit_writeword_indexed(th,4,temp);
3580     emit_writeword_indexed(tl,0,temp);
3581   }
3582   //if(opcode[i]==0x39)
3583   /*if(opcode[i]==0x39||opcode[i]==0x31)
3584   {
3585     emit_pusha();
3586         emit_readword((int)&last_count,ECX);
3587         if(get_reg(i_regs->regmap,CCREG)<0)
3588           emit_loadreg(CCREG,HOST_CCREG);
3589         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3590         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3591         emit_writeword(HOST_CCREG,(int)&Count);
3592     emit_call((int)memdebug);
3593     emit_popa();
3594   }/**/
3595 #else
3596   cop1_unusable(i, i_regs);
3597 #endif
3598 }
3599
3600 void c2ls_assemble(int i,struct regstat *i_regs)
3601 {
3602   int s,tl;
3603   int ar;
3604   int offset;
3605   int memtarget=0,c=0;
3606   int jaddr,jaddr2=0,jaddr3,type;
3607   int agr=AGEN1+(i&1);
3608   u_int hr,reglist=0;
3609   u_int copr=(source[i]>>16)&0x1f;
3610   s=get_reg(i_regs->regmap,rs1[i]);
3611   tl=get_reg(i_regs->regmap,FTEMP);
3612   offset=imm[i];
3613   assert(rs1[i]>0);
3614   assert(tl>=0);
3615   assert(!using_tlb);
3616
3617   for(hr=0;hr<HOST_REGS;hr++) {
3618     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3619   }
3620   if(i_regs->regmap[HOST_CCREG]==CCREG)
3621     reglist&=~(1<<HOST_CCREG);
3622
3623   // get the address
3624   if (opcode[i]==0x3a) { // SWC2
3625     ar=get_reg(i_regs->regmap,agr);
3626     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3627     reglist|=1<<ar;
3628   } else { // LWC2
3629     ar=tl;
3630   }
3631   if(s>=0) c=(i_regs->wasconst>>s)&1;
3632   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3633   if (!offset&&!c&&s>=0) ar=s;
3634   assert(ar>=0);
3635
3636   if (opcode[i]==0x3a) { // SWC2
3637     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3638     type=STOREW_STUB;
3639   }
3640   else
3641     type=LOADW_STUB;
3642
3643   if(c&&!memtarget) {
3644     jaddr2=(int)out;
3645     emit_jmp(0); // inline_readstub/inline_writestub?
3646   }
3647   else {
3648     if(!c) {
3649       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3650       jaddr2=(int)out;
3651       emit_jno(0);
3652     }
3653     if (opcode[i]==0x32) { // LWC2
3654       #ifdef HOST_IMM_ADDR32
3655       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3656       else
3657       #endif
3658       emit_readword_indexed(0,ar,tl);
3659     }
3660     if (opcode[i]==0x3a) { // SWC2
3661       #ifdef DESTRUCTIVE_SHIFT
3662       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3663       #endif
3664       emit_writeword_indexed(tl,0,ar);
3665     }
3666   }
3667   if(jaddr2)
3668     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3669   if (opcode[i]==0x3a) { // SWC2
3670 #if defined(HOST_IMM8)
3671     int ir=get_reg(i_regs->regmap,INVCP);
3672     assert(ir>=0);
3673     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3674 #else
3675     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3676 #endif
3677     jaddr3=(int)out;
3678     emit_jne(0);
3679     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3680   }
3681   if (opcode[i]==0x32) { // LWC2
3682     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3683   }
3684 }
3685
3686 #ifndef multdiv_assemble
3687 void multdiv_assemble(int i,struct regstat *i_regs)
3688 {
3689   printf("Need multdiv_assemble for this architecture.\n");
3690   exit(1);
3691 }
3692 #endif
3693
3694 void mov_assemble(int i,struct regstat *i_regs)
3695 {
3696   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3697   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3698   //assert(rt1[i]>0);
3699   if(rt1[i]) {
3700     signed char sh,sl,th,tl;
3701     th=get_reg(i_regs->regmap,rt1[i]|64);
3702     tl=get_reg(i_regs->regmap,rt1[i]);
3703     //assert(tl>=0);
3704     if(tl>=0) {
3705       sh=get_reg(i_regs->regmap,rs1[i]|64);
3706       sl=get_reg(i_regs->regmap,rs1[i]);
3707       if(sl>=0) emit_mov(sl,tl);
3708       else emit_loadreg(rs1[i],tl);
3709       if(th>=0) {
3710         if(sh>=0) emit_mov(sh,th);
3711         else emit_loadreg(rs1[i]|64,th);
3712       }
3713     }
3714   }
3715 }
3716
3717 #ifndef fconv_assemble
3718 void fconv_assemble(int i,struct regstat *i_regs)
3719 {
3720   printf("Need fconv_assemble for this architecture.\n");
3721   exit(1);
3722 }
3723 #endif
3724
3725 #if 0
3726 void float_assemble(int i,struct regstat *i_regs)
3727 {
3728   printf("Need float_assemble for this architecture.\n");
3729   exit(1);
3730 }
3731 #endif
3732
3733 void syscall_assemble(int i,struct regstat *i_regs)
3734 {
3735   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3736   assert(ccreg==HOST_CCREG);
3737   assert(!is_delayslot);
3738   emit_movimm(start+i*4,EAX); // Get PC
3739   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3740   emit_jmp((int)jump_syscall_hle); // XXX
3741 }
3742
3743 void hlecall_assemble(int i,struct regstat *i_regs)
3744 {
3745   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3746   assert(ccreg==HOST_CCREG);
3747   assert(!is_delayslot);
3748   emit_movimm(start+i*4+4,0); // Get PC
3749   emit_movimm((int)psxHLEt[source[i]&7],1);
3750   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3751   emit_jmp((int)jump_hlecall);
3752 }
3753
3754 void intcall_assemble(int i,struct regstat *i_regs)
3755 {
3756   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3757   assert(ccreg==HOST_CCREG);
3758   assert(!is_delayslot);
3759   emit_movimm(start+i*4,0); // Get PC
3760   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3761   emit_jmp((int)jump_intcall);
3762 }
3763
3764 void ds_assemble(int i,struct regstat *i_regs)
3765 {
3766   is_delayslot=1;
3767   switch(itype[i]) {
3768     case ALU:
3769       alu_assemble(i,i_regs);break;
3770     case IMM16:
3771       imm16_assemble(i,i_regs);break;
3772     case SHIFT:
3773       shift_assemble(i,i_regs);break;
3774     case SHIFTIMM:
3775       shiftimm_assemble(i,i_regs);break;
3776     case LOAD:
3777       load_assemble(i,i_regs);break;
3778     case LOADLR:
3779       loadlr_assemble(i,i_regs);break;
3780     case STORE:
3781       store_assemble(i,i_regs);break;
3782     case STORELR:
3783       storelr_assemble(i,i_regs);break;
3784     case COP0:
3785       cop0_assemble(i,i_regs);break;
3786     case COP1:
3787       cop1_assemble(i,i_regs);break;
3788     case C1LS:
3789       c1ls_assemble(i,i_regs);break;
3790     case COP2:
3791       cop2_assemble(i,i_regs);break;
3792     case C2LS:
3793       c2ls_assemble(i,i_regs);break;
3794     case C2OP:
3795       c2op_assemble(i,i_regs);break;
3796     case FCONV:
3797       fconv_assemble(i,i_regs);break;
3798     case FLOAT:
3799       float_assemble(i,i_regs);break;
3800     case FCOMP:
3801       fcomp_assemble(i,i_regs);break;
3802     case MULTDIV:
3803       multdiv_assemble(i,i_regs);break;
3804     case MOV:
3805       mov_assemble(i,i_regs);break;
3806     case SYSCALL:
3807     case HLECALL:
3808     case INTCALL:
3809     case SPAN:
3810     case UJUMP:
3811     case RJUMP:
3812     case CJUMP:
3813     case SJUMP:
3814     case FJUMP:
3815       printf("Jump in the delay slot.  This is probably a bug.\n");
3816   }
3817   is_delayslot=0;
3818 }
3819
3820 // Is the branch target a valid internal jump?
3821 int internal_branch(uint64_t i_is32,int addr)
3822 {
3823   if(addr&1) return 0; // Indirect (register) jump
3824   if(addr>=start && addr<start+slen*4-4)
3825   {
3826     int t=(addr-start)>>2;
3827     // Delay slots are not valid branch targets
3828     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3829     // 64 -> 32 bit transition requires a recompile
3830     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3831     {
3832       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3833       else printf("optimizable: yes\n");
3834     }*/
3835     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3836     if(requires_32bit[t]&~i_is32) return 0;
3837     else return 1;
3838   }
3839   return 0;
3840 }
3841
3842 #ifndef wb_invalidate
3843 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3844   uint64_t u,uint64_t uu)
3845 {
3846   int hr;
3847   for(hr=0;hr<HOST_REGS;hr++) {
3848     if(hr!=EXCLUDE_REG) {
3849       if(pre[hr]!=entry[hr]) {
3850         if(pre[hr]>=0) {
3851           if((dirty>>hr)&1) {
3852             if(get_reg(entry,pre[hr])<0) {
3853               if(pre[hr]<64) {
3854                 if(!((u>>pre[hr])&1)) {
3855                   emit_storereg(pre[hr],hr);
3856                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3857                     emit_sarimm(hr,31,hr);
3858                     emit_storereg(pre[hr]|64,hr);
3859                   }
3860                 }
3861               }else{
3862                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3863                   emit_storereg(pre[hr],hr);
3864                 }
3865               }
3866             }
3867           }
3868         }
3869       }
3870     }
3871   }
3872   // Move from one register to another (no writeback)
3873   for(hr=0;hr<HOST_REGS;hr++) {
3874     if(hr!=EXCLUDE_REG) {
3875       if(pre[hr]!=entry[hr]) {
3876         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3877           int nr;
3878           if((nr=get_reg(entry,pre[hr]))>=0) {
3879             emit_mov(hr,nr);
3880           }
3881         }
3882       }
3883     }
3884   }
3885 }
3886 #endif
3887
3888 // Load the specified registers
3889 // This only loads the registers given as arguments because
3890 // we don't want to load things that will be overwritten
3891 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3892 {
3893   int hr;
3894   // Load 32-bit regs
3895   for(hr=0;hr<HOST_REGS;hr++) {
3896     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3897       if(entry[hr]!=regmap[hr]) {
3898         if(regmap[hr]==rs1||regmap[hr]==rs2)
3899         {
3900           if(regmap[hr]==0) {
3901             emit_zeroreg(hr);
3902           }
3903           else
3904           {
3905             emit_loadreg(regmap[hr],hr);
3906           }
3907         }
3908       }
3909     }
3910   }
3911   //Load 64-bit regs
3912   for(hr=0;hr<HOST_REGS;hr++) {
3913     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3914       if(entry[hr]!=regmap[hr]) {
3915         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3916         {
3917           assert(regmap[hr]!=64);
3918           if((is32>>(regmap[hr]&63))&1) {
3919             int lr=get_reg(regmap,regmap[hr]-64);
3920             if(lr>=0)
3921               emit_sarimm(lr,31,hr);
3922             else
3923               emit_loadreg(regmap[hr],hr);
3924           }
3925           else
3926           {
3927             emit_loadreg(regmap[hr],hr);
3928           }
3929         }
3930       }
3931     }
3932   }
3933 }
3934
3935 // Load registers prior to the start of a loop
3936 // so that they are not loaded within the loop
3937 static void loop_preload(signed char pre[],signed char entry[])
3938 {
3939   int hr;
3940   for(hr=0;hr<HOST_REGS;hr++) {
3941     if(hr!=EXCLUDE_REG) {
3942       if(pre[hr]!=entry[hr]) {
3943         if(entry[hr]>=0) {
3944           if(get_reg(pre,entry[hr])<0) {
3945             assem_debug("loop preload:\n");
3946             //printf("loop preload: %d\n",hr);
3947             if(entry[hr]==0) {
3948               emit_zeroreg(hr);
3949             }
3950             else if(entry[hr]<TEMPREG)
3951             {
3952               emit_loadreg(entry[hr],hr);
3953             }
3954             else if(entry[hr]-64<TEMPREG)
3955             {
3956               emit_loadreg(entry[hr],hr);
3957             }
3958           }
3959         }
3960       }
3961     }
3962   }
3963 }
3964
3965 // Generate address for load/store instruction
3966 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3967 void address_generation(int i,struct regstat *i_regs,signed char entry[])
3968 {
3969   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3970     int ra;
3971     int agr=AGEN1+(i&1);
3972     int mgr=MGEN1+(i&1);
3973     if(itype[i]==LOAD) {
3974       ra=get_reg(i_regs->regmap,rt1[i]);
3975       //if(rt1[i]) assert(ra>=0);
3976     }
3977     if(itype[i]==LOADLR) {
3978       ra=get_reg(i_regs->regmap,FTEMP);
3979     }
3980     if(itype[i]==STORE||itype[i]==STORELR) {
3981       ra=get_reg(i_regs->regmap,agr);
3982       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3983     }
3984     if(itype[i]==C1LS||itype[i]==C2LS) {
3985       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3986         ra=get_reg(i_regs->regmap,FTEMP);
3987       else { // SWC1/SDC1/SWC2/SDC2
3988         ra=get_reg(i_regs->regmap,agr);
3989         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3990       }
3991     }
3992     int rs=get_reg(i_regs->regmap,rs1[i]);
3993     int rm=get_reg(i_regs->regmap,TLREG);
3994     if(ra>=0) {
3995       int offset=imm[i];
3996       int c=(i_regs->wasconst>>rs)&1;
3997       if(rs1[i]==0) {
3998         // Using r0 as a base address
3999         /*if(rm>=0) {
4000           if(!entry||entry[rm]!=mgr) {
4001             generate_map_const(offset,rm);
4002           } // else did it in the previous cycle
4003         }*/
4004         if(!entry||entry[ra]!=agr) {
4005           if (opcode[i]==0x22||opcode[i]==0x26) {
4006             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4007           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4008             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4009           }else{
4010             emit_movimm(offset,ra);
4011           }
4012         } // else did it in the previous cycle
4013       }
4014       else if(rs<0) {
4015         if(!entry||entry[ra]!=rs1[i])
4016           emit_loadreg(rs1[i],ra);
4017         //if(!entry||entry[ra]!=rs1[i])
4018         //  printf("poor load scheduling!\n");
4019       }
4020       else if(c) {
4021         if(rm>=0) {
4022           if(!entry||entry[rm]!=mgr) {
4023             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4024               // Stores to memory go thru the mapper to detect self-modifying
4025               // code, loads don't.
4026               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4027                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4028                 generate_map_const(constmap[i][rs]+offset,rm);
4029             }else{
4030               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4031                 generate_map_const(constmap[i][rs]+offset,rm);
4032             }
4033           }
4034         }
4035         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4036           if(!entry||entry[ra]!=agr) {
4037             if (opcode[i]==0x22||opcode[i]==0x26) {
4038               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4039             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4040               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4041             }else{
4042               #ifdef HOST_IMM_ADDR32
4043               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4044                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4045               #endif
4046               emit_movimm(constmap[i][rs]+offset,ra);
4047             }
4048           } // else did it in the previous cycle
4049         } // else load_consts already did it
4050       }
4051       if(offset&&!c&&rs1[i]) {
4052         if(rs>=0) {
4053           emit_addimm(rs,offset,ra);
4054         }else{
4055           emit_addimm(ra,offset,ra);
4056         }
4057       }
4058     }
4059   }
4060   // Preload constants for next instruction
4061   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4062     int agr,ra;
4063     #ifndef HOST_IMM_ADDR32
4064     // Mapper entry
4065     agr=MGEN1+((i+1)&1);
4066     ra=get_reg(i_regs->regmap,agr);
4067     if(ra>=0) {
4068       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4069       int offset=imm[i+1];
4070       int c=(regs[i+1].wasconst>>rs)&1;
4071       if(c) {
4072         if(itype[i+1]==STORE||itype[i+1]==STORELR
4073            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4074           // Stores to memory go thru the mapper to detect self-modifying
4075           // code, loads don't.
4076           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4077              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4078             generate_map_const(constmap[i+1][rs]+offset,ra);
4079         }else{
4080           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4081             generate_map_const(constmap[i+1][rs]+offset,ra);
4082         }
4083       }
4084       /*else if(rs1[i]==0) {
4085         generate_map_const(offset,ra);
4086       }*/
4087     }
4088     #endif
4089     // Actual address
4090     agr=AGEN1+((i+1)&1);
4091     ra=get_reg(i_regs->regmap,agr);
4092     if(ra>=0) {
4093       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4094       int offset=imm[i+1];
4095       int c=(regs[i+1].wasconst>>rs)&1;
4096       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4097         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4098           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4099         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4100           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4101         }else{
4102           #ifdef HOST_IMM_ADDR32
4103           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4104              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4105           #endif
4106           emit_movimm(constmap[i+1][rs]+offset,ra);
4107         }
4108       }
4109       else if(rs1[i+1]==0) {
4110         // Using r0 as a base address
4111         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4112           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4113         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4114           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4115         }else{
4116           emit_movimm(offset,ra);
4117         }
4118       }
4119     }
4120   }
4121 }
4122
4123 int get_final_value(int hr, int i, int *value)
4124 {
4125   int reg=regs[i].regmap[hr];
4126   while(i<slen-1) {
4127     if(regs[i+1].regmap[hr]!=reg) break;
4128     if(!((regs[i+1].isconst>>hr)&1)) break;
4129     if(bt[i+1]) break;
4130     i++;
4131   }
4132   if(i<slen-1) {
4133     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4134       *value=constmap[i][hr];
4135       return 1;
4136     }
4137     if(!bt[i+1]) {
4138       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4139         // Load in delay slot, out-of-order execution
4140         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4141         {
4142           #ifdef HOST_IMM_ADDR32
4143           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4144           #endif
4145           // Precompute load address
4146           *value=constmap[i][hr]+imm[i+2];
4147           return 1;
4148         }
4149       }
4150       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4151       {
4152         #ifdef HOST_IMM_ADDR32
4153         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4154         #endif
4155         // Precompute load address
4156         *value=constmap[i][hr]+imm[i+1];
4157         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4158         return 1;
4159       }
4160     }
4161   }
4162   *value=constmap[i][hr];
4163   //printf("c=%x\n",(int)constmap[i][hr]);
4164   if(i==slen-1) return 1;
4165   if(reg<64) {
4166     return !((unneeded_reg[i+1]>>reg)&1);
4167   }else{
4168     return !((unneeded_reg_upper[i+1]>>reg)&1);
4169   }
4170 }
4171
4172 // Load registers with known constants
4173 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4174 {
4175   int hr;
4176   // Load 32-bit regs
4177   for(hr=0;hr<HOST_REGS;hr++) {
4178     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4179       //if(entry[hr]!=regmap[hr]) {
4180       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4181         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4182           int value;
4183           if(get_final_value(hr,i,&value)) {
4184             if(value==0) {
4185               emit_zeroreg(hr);
4186             }
4187             else {
4188               emit_movimm(value,hr);
4189             }
4190           }
4191         }
4192       }
4193     }
4194   }
4195   // Load 64-bit regs
4196   for(hr=0;hr<HOST_REGS;hr++) {
4197     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4198       //if(entry[hr]!=regmap[hr]) {
4199       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4200         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4201           if((is32>>(regmap[hr]&63))&1) {
4202             int lr=get_reg(regmap,regmap[hr]-64);
4203             assert(lr>=0);
4204             emit_sarimm(lr,31,hr);
4205           }
4206           else
4207           {
4208             int value;
4209             if(get_final_value(hr,i,&value)) {
4210               if(value==0) {
4211                 emit_zeroreg(hr);
4212               }
4213               else {
4214                 emit_movimm(value,hr);
4215               }
4216             }
4217           }
4218         }
4219       }
4220     }
4221   }
4222 }
4223 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4224 {
4225   int hr;
4226   // Load 32-bit regs
4227   for(hr=0;hr<HOST_REGS;hr++) {
4228     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4229       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4230         int value=constmap[i][hr];
4231         if(value==0) {
4232           emit_zeroreg(hr);
4233         }
4234         else {
4235           emit_movimm(value,hr);
4236         }
4237       }
4238     }
4239   }
4240   // Load 64-bit regs
4241   for(hr=0;hr<HOST_REGS;hr++) {
4242     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4243       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4244         if((is32>>(regmap[hr]&63))&1) {
4245           int lr=get_reg(regmap,regmap[hr]-64);
4246           assert(lr>=0);
4247           emit_sarimm(lr,31,hr);
4248         }
4249         else
4250         {
4251           int value=constmap[i][hr];
4252           if(value==0) {
4253             emit_zeroreg(hr);
4254           }
4255           else {
4256             emit_movimm(value,hr);
4257           }
4258         }
4259       }
4260     }
4261   }
4262 }
4263
4264 // Write out all dirty registers (except cycle count)
4265 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4266 {
4267   int hr;
4268   for(hr=0;hr<HOST_REGS;hr++) {
4269     if(hr!=EXCLUDE_REG) {
4270       if(i_regmap[hr]>0) {
4271         if(i_regmap[hr]!=CCREG) {
4272           if((i_dirty>>hr)&1) {
4273             if(i_regmap[hr]<64) {
4274               emit_storereg(i_regmap[hr],hr);
4275 #ifndef FORCE32
4276               if( ((i_is32>>i_regmap[hr])&1) ) {
4277                 #ifdef DESTRUCTIVE_WRITEBACK
4278                 emit_sarimm(hr,31,hr);
4279                 emit_storereg(i_regmap[hr]|64,hr);
4280                 #else
4281                 emit_sarimm(hr,31,HOST_TEMPREG);
4282                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4283                 #endif
4284               }
4285 #endif
4286             }else{
4287               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4288                 emit_storereg(i_regmap[hr],hr);
4289               }
4290             }
4291           }
4292         }
4293       }
4294     }
4295   }
4296 }
4297 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4298 // This writes the registers not written by store_regs_bt
4299 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4300 {
4301   int hr;
4302   int t=(addr-start)>>2;
4303   for(hr=0;hr<HOST_REGS;hr++) {
4304     if(hr!=EXCLUDE_REG) {
4305       if(i_regmap[hr]>0) {
4306         if(i_regmap[hr]!=CCREG) {
4307           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4308             if((i_dirty>>hr)&1) {
4309               if(i_regmap[hr]<64) {
4310                 emit_storereg(i_regmap[hr],hr);
4311 #ifndef FORCE32
4312                 if( ((i_is32>>i_regmap[hr])&1) ) {
4313                   #ifdef DESTRUCTIVE_WRITEBACK
4314                   emit_sarimm(hr,31,hr);
4315                   emit_storereg(i_regmap[hr]|64,hr);
4316                   #else
4317                   emit_sarimm(hr,31,HOST_TEMPREG);
4318                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4319                   #endif
4320                 }
4321 #endif
4322               }else{
4323                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4324                   emit_storereg(i_regmap[hr],hr);
4325                 }
4326               }
4327             }
4328           }
4329         }
4330       }
4331     }
4332   }
4333 }
4334
4335 // Load all registers (except cycle count)
4336 void load_all_regs(signed char i_regmap[])
4337 {
4338   int hr;
4339   for(hr=0;hr<HOST_REGS;hr++) {
4340     if(hr!=EXCLUDE_REG) {
4341       if(i_regmap[hr]==0) {
4342         emit_zeroreg(hr);
4343       }
4344       else
4345       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4346       {
4347         emit_loadreg(i_regmap[hr],hr);
4348       }
4349     }
4350   }
4351 }
4352
4353 // Load all current registers also needed by next instruction
4354 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4355 {
4356   int hr;
4357   for(hr=0;hr<HOST_REGS;hr++) {
4358     if(hr!=EXCLUDE_REG) {
4359       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4360         if(i_regmap[hr]==0) {
4361           emit_zeroreg(hr);
4362         }
4363         else
4364         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4365         {
4366           emit_loadreg(i_regmap[hr],hr);
4367         }
4368       }
4369     }
4370   }
4371 }
4372
4373 // Load all regs, storing cycle count if necessary
4374 void load_regs_entry(int t)
4375 {
4376   int hr;
4377   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4378   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4379   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4380     emit_storereg(CCREG,HOST_CCREG);
4381   }
4382   // Load 32-bit regs
4383   for(hr=0;hr<HOST_REGS;hr++) {
4384     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4385       if(regs[t].regmap_entry[hr]==0) {
4386         emit_zeroreg(hr);
4387       }
4388       else if(regs[t].regmap_entry[hr]!=CCREG)
4389       {
4390         emit_loadreg(regs[t].regmap_entry[hr],hr);
4391       }
4392     }
4393   }
4394   // Load 64-bit regs
4395   for(hr=0;hr<HOST_REGS;hr++) {
4396     if(regs[t].regmap_entry[hr]>=64) {
4397       assert(regs[t].regmap_entry[hr]!=64);
4398       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4399         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4400         if(lr<0) {
4401           emit_loadreg(regs[t].regmap_entry[hr],hr);
4402         }
4403         else
4404         {
4405           emit_sarimm(lr,31,hr);
4406         }
4407       }
4408       else
4409       {
4410         emit_loadreg(regs[t].regmap_entry[hr],hr);
4411       }
4412     }
4413   }
4414 }
4415
4416 // Store dirty registers prior to branch
4417 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4418 {
4419   if(internal_branch(i_is32,addr))
4420   {
4421     int t=(addr-start)>>2;
4422     int hr;
4423     for(hr=0;hr<HOST_REGS;hr++) {
4424       if(hr!=EXCLUDE_REG) {
4425         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4426           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4427             if((i_dirty>>hr)&1) {
4428               if(i_regmap[hr]<64) {
4429                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4430                   emit_storereg(i_regmap[hr],hr);
4431                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4432                     #ifdef DESTRUCTIVE_WRITEBACK
4433                     emit_sarimm(hr,31,hr);
4434                     emit_storereg(i_regmap[hr]|64,hr);
4435                     #else
4436                     emit_sarimm(hr,31,HOST_TEMPREG);
4437                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4438                     #endif
4439                   }
4440                 }
4441               }else{
4442                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4443                   emit_storereg(i_regmap[hr],hr);
4444                 }
4445               }
4446             }
4447           }
4448         }
4449       }
4450     }
4451   }
4452   else
4453   {
4454     // Branch out of this block, write out all dirty regs
4455     wb_dirtys(i_regmap,i_is32,i_dirty);
4456   }
4457 }
4458
4459 // Load all needed registers for branch target
4460 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4461 {
4462   //if(addr>=start && addr<(start+slen*4))
4463   if(internal_branch(i_is32,addr))
4464   {
4465     int t=(addr-start)>>2;
4466     int hr;
4467     // Store the cycle count before loading something else
4468     if(i_regmap[HOST_CCREG]!=CCREG) {
4469       assert(i_regmap[HOST_CCREG]==-1);
4470     }
4471     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4472       emit_storereg(CCREG,HOST_CCREG);
4473     }
4474     // Load 32-bit regs
4475     for(hr=0;hr<HOST_REGS;hr++) {
4476       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4477         #ifdef DESTRUCTIVE_WRITEBACK
4478         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4479         #else
4480         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4481         #endif
4482           if(regs[t].regmap_entry[hr]==0) {
4483             emit_zeroreg(hr);
4484           }
4485           else if(regs[t].regmap_entry[hr]!=CCREG)
4486           {
4487             emit_loadreg(regs[t].regmap_entry[hr],hr);
4488           }
4489         }
4490       }
4491     }
4492     //Load 64-bit regs
4493     for(hr=0;hr<HOST_REGS;hr++) {
4494       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4495         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4496           assert(regs[t].regmap_entry[hr]!=64);
4497           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4498             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4499             if(lr<0) {
4500               emit_loadreg(regs[t].regmap_entry[hr],hr);
4501             }
4502             else
4503             {
4504               emit_sarimm(lr,31,hr);
4505             }
4506           }
4507           else
4508           {
4509             emit_loadreg(regs[t].regmap_entry[hr],hr);
4510           }
4511         }
4512         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4513           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4514           assert(lr>=0);
4515           emit_sarimm(lr,31,hr);
4516         }
4517       }
4518     }
4519   }
4520 }
4521
4522 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4523 {
4524   if(addr>=start && addr<start+slen*4-4)
4525   {
4526     int t=(addr-start)>>2;
4527     int hr;
4528     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4529     for(hr=0;hr<HOST_REGS;hr++)
4530     {
4531       if(hr!=EXCLUDE_REG)
4532       {
4533         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4534         {
4535           if(regs[t].regmap_entry[hr]!=-1)
4536           {
4537             return 0;
4538           }
4539           else 
4540           if((i_dirty>>hr)&1)
4541           {
4542             if(i_regmap[hr]<64)
4543             {
4544               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4545                 return 0;
4546             }
4547             else
4548             {
4549               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4550                 return 0;
4551             }
4552           }
4553         }
4554         else // Same register but is it 32-bit or dirty?
4555         if(i_regmap[hr]>=0)
4556         {
4557           if(!((regs[t].dirty>>hr)&1))
4558           {
4559             if((i_dirty>>hr)&1)
4560             {
4561               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4562               {
4563                 //printf("%x: dirty no match\n",addr);
4564                 return 0;
4565               }
4566             }
4567           }
4568           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4569           {
4570             //printf("%x: is32 no match\n",addr);
4571             return 0;
4572           }
4573         }
4574       }
4575     }
4576     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4577     if(requires_32bit[t]&~i_is32) return 0;
4578     // Delay slots are not valid branch targets
4579     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4580     // Delay slots require additional processing, so do not match
4581     if(is_ds[t]) return 0;
4582   }
4583   else
4584   {
4585     int hr;
4586     for(hr=0;hr<HOST_REGS;hr++)
4587     {
4588       if(hr!=EXCLUDE_REG)
4589       {
4590         if(i_regmap[hr]>=0)
4591         {
4592           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4593           {
4594             if((i_dirty>>hr)&1)
4595             {
4596               return 0;
4597             }
4598           }
4599         }
4600       }
4601     }
4602   }
4603   return 1;
4604 }
4605
4606 // Used when a branch jumps into the delay slot of another branch
4607 void ds_assemble_entry(int i)
4608 {
4609   int t=(ba[i]-start)>>2;
4610   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4611   assem_debug("Assemble delay slot at %x\n",ba[i]);
4612   assem_debug("<->\n");
4613   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4614     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4615   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4616   address_generation(t,&regs[t],regs[t].regmap_entry);
4617   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4618     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4619   cop1_usable=0;
4620   is_delayslot=0;
4621   switch(itype[t]) {
4622     case ALU:
4623       alu_assemble(t,&regs[t]);break;
4624     case IMM16:
4625       imm16_assemble(t,&regs[t]);break;
4626     case SHIFT:
4627       shift_assemble(t,&regs[t]);break;
4628     case SHIFTIMM:
4629       shiftimm_assemble(t,&regs[t]);break;
4630     case LOAD:
4631       load_assemble(t,&regs[t]);break;
4632     case LOADLR:
4633       loadlr_assemble(t,&regs[t]);break;
4634     case STORE:
4635       store_assemble(t,&regs[t]);break;
4636     case STORELR:
4637       storelr_assemble(t,&regs[t]);break;
4638     case COP0:
4639       cop0_assemble(t,&regs[t]);break;
4640     case COP1:
4641       cop1_assemble(t,&regs[t]);break;
4642     case C1LS:
4643       c1ls_assemble(t,&regs[t]);break;
4644     case COP2:
4645       cop2_assemble(t,&regs[t]);break;
4646     case C2LS:
4647       c2ls_assemble(t,&regs[t]);break;
4648     case C2OP:
4649       c2op_assemble(t,&regs[t]);break;
4650     case FCONV:
4651       fconv_assemble(t,&regs[t]);break;
4652     case FLOAT:
4653       float_assemble(t,&regs[t]);break;
4654     case FCOMP:
4655       fcomp_assemble(t,&regs[t]);break;
4656     case MULTDIV:
4657       multdiv_assemble(t,&regs[t]);break;
4658     case MOV:
4659       mov_assemble(t,&regs[t]);break;
4660     case SYSCALL:
4661     case HLECALL:
4662     case INTCALL:
4663     case SPAN:
4664     case UJUMP:
4665     case RJUMP:
4666     case CJUMP:
4667     case SJUMP:
4668     case FJUMP:
4669       printf("Jump in the delay slot.  This is probably a bug.\n");
4670   }
4671   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4672   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4673   if(internal_branch(regs[t].is32,ba[i]+4))
4674     assem_debug("branch: internal\n");
4675   else
4676     assem_debug("branch: external\n");
4677   assert(internal_branch(regs[t].is32,ba[i]+4));
4678   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4679   emit_jmp(0);
4680 }
4681
4682 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4683 {
4684   int count;
4685   int jaddr;
4686   int idle=0;
4687   if(itype[i]==RJUMP)
4688   {
4689     *adj=0;
4690   }
4691   //if(ba[i]>=start && ba[i]<(start+slen*4))
4692   if(internal_branch(branch_regs[i].is32,ba[i]))
4693   {
4694     int t=(ba[i]-start)>>2;
4695     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4696     else *adj=ccadj[t];
4697   }
4698   else
4699   {
4700     *adj=0;
4701   }
4702   count=ccadj[i];
4703   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4704     // Idle loop
4705     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4706     idle=(int)out;
4707     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4708     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4709     jaddr=(int)out;
4710     emit_jmp(0);
4711   }
4712   else if(*adj==0||invert) {
4713     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4714     jaddr=(int)out;
4715     emit_jns(0);
4716   }
4717   else
4718   {
4719     emit_cmpimm(HOST_CCREG,-2*(count+2));
4720     jaddr=(int)out;
4721     emit_jns(0);
4722   }
4723   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4724 }
4725
4726 void do_ccstub(int n)
4727 {
4728   literal_pool(256);
4729   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4730   set_jump_target(stubs[n][1],(int)out);
4731   int i=stubs[n][4];
4732   if(stubs[n][6]==NULLDS) {
4733     // Delay slot instruction is nullified ("likely" branch)
4734     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4735   }
4736   else if(stubs[n][6]!=TAKEN) {
4737     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4738   }
4739   else {
4740     if(internal_branch(branch_regs[i].is32,ba[i]))
4741       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4742   }
4743   if(stubs[n][5]!=-1)
4744   {
4745     // Save PC as return address
4746     emit_movimm(stubs[n][5],EAX);
4747     emit_writeword(EAX,(int)&pcaddr);
4748   }
4749   else
4750   {
4751     // Return address depends on which way the branch goes
4752     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4753     {
4754       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4755       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4756       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4757       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4758       if(rs1[i]==0)
4759       {
4760         s1l=s2l;s1h=s2h;
4761         s2l=s2h=-1;
4762       }
4763       else if(rs2[i]==0)
4764       {
4765         s2l=s2h=-1;
4766       }
4767       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4768         s1h=s2h=-1;
4769       }
4770       assert(s1l>=0);
4771       #ifdef DESTRUCTIVE_WRITEBACK
4772       if(rs1[i]) {
4773         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4774           emit_loadreg(rs1[i],s1l);
4775       } 
4776       else {
4777         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4778           emit_loadreg(rs2[i],s1l);
4779       }
4780       if(s2l>=0)
4781         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4782           emit_loadreg(rs2[i],s2l);
4783       #endif
4784       int hr=0;
4785       int addr,alt,ntaddr;
4786       while(hr<HOST_REGS)
4787       {
4788         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4789            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4790            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4791         {
4792           addr=hr++;break;
4793         }
4794         hr++;
4795       }
4796       while(hr<HOST_REGS)
4797       {
4798         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4799            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4800            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4801         {
4802           alt=hr++;break;
4803         }
4804         hr++;
4805       }
4806       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4807       {
4808         while(hr<HOST_REGS)
4809         {
4810           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4811              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4812              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4813           {
4814             ntaddr=hr;break;
4815           }
4816           hr++;
4817         }
4818         assert(hr<HOST_REGS);
4819       }
4820       if((opcode[i]&0x2f)==4) // BEQ
4821       {
4822         #ifdef HAVE_CMOV_IMM
4823         if(s1h<0) {
4824           if(s2l>=0) emit_cmp(s1l,s2l);
4825           else emit_test(s1l,s1l);
4826           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4827         }
4828         else
4829         #endif
4830         {
4831           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4832           if(s1h>=0) {
4833             if(s2h>=0) emit_cmp(s1h,s2h);
4834             else emit_test(s1h,s1h);
4835             emit_cmovne_reg(alt,addr);
4836           }
4837           if(s2l>=0) emit_cmp(s1l,s2l);
4838           else emit_test(s1l,s1l);
4839           emit_cmovne_reg(alt,addr);
4840         }
4841       }
4842       if((opcode[i]&0x2f)==5) // BNE
4843       {
4844         #ifdef HAVE_CMOV_IMM
4845         if(s1h<0) {
4846           if(s2l>=0) emit_cmp(s1l,s2l);
4847           else emit_test(s1l,s1l);
4848           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4849         }
4850         else
4851         #endif
4852         {
4853           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4854           if(s1h>=0) {
4855             if(s2h>=0) emit_cmp(s1h,s2h);
4856             else emit_test(s1h,s1h);
4857             emit_cmovne_reg(alt,addr);
4858           }
4859           if(s2l>=0) emit_cmp(s1l,s2l);
4860           else emit_test(s1l,s1l);
4861           emit_cmovne_reg(alt,addr);
4862         }
4863       }
4864       if((opcode[i]&0x2f)==6) // BLEZ
4865       {
4866         //emit_movimm(ba[i],alt);
4867         //emit_movimm(start+i*4+8,addr);
4868         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4869         emit_cmpimm(s1l,1);
4870         if(s1h>=0) emit_mov(addr,ntaddr);
4871         emit_cmovl_reg(alt,addr);
4872         if(s1h>=0) {
4873           emit_test(s1h,s1h);
4874           emit_cmovne_reg(ntaddr,addr);
4875           emit_cmovs_reg(alt,addr);
4876         }
4877       }
4878       if((opcode[i]&0x2f)==7) // BGTZ
4879       {
4880         //emit_movimm(ba[i],addr);
4881         //emit_movimm(start+i*4+8,ntaddr);
4882         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4883         emit_cmpimm(s1l,1);
4884         if(s1h>=0) emit_mov(addr,alt);
4885         emit_cmovl_reg(ntaddr,addr);
4886         if(s1h>=0) {
4887           emit_test(s1h,s1h);
4888           emit_cmovne_reg(alt,addr);
4889           emit_cmovs_reg(ntaddr,addr);
4890         }
4891       }
4892       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4893       {
4894         //emit_movimm(ba[i],alt);
4895         //emit_movimm(start+i*4+8,addr);
4896         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4897         if(s1h>=0) emit_test(s1h,s1h);
4898         else emit_test(s1l,s1l);
4899         emit_cmovs_reg(alt,addr);
4900       }
4901       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4902       {
4903         //emit_movimm(ba[i],addr);
4904         //emit_movimm(start+i*4+8,alt);
4905         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4906         if(s1h>=0) emit_test(s1h,s1h);
4907         else emit_test(s1l,s1l);
4908         emit_cmovs_reg(alt,addr);
4909       }
4910       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4911         if(source[i]&0x10000) // BC1T
4912         {
4913           //emit_movimm(ba[i],alt);
4914           //emit_movimm(start+i*4+8,addr);
4915           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4916           emit_testimm(s1l,0x800000);
4917           emit_cmovne_reg(alt,addr);
4918         }
4919         else // BC1F
4920         {
4921           //emit_movimm(ba[i],addr);
4922           //emit_movimm(start+i*4+8,alt);
4923           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4924           emit_testimm(s1l,0x800000);
4925           emit_cmovne_reg(alt,addr);
4926         }
4927       }
4928       emit_writeword(addr,(int)&pcaddr);
4929     }
4930     else
4931     if(itype[i]==RJUMP)
4932     {
4933       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4934       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4935         r=get_reg(branch_regs[i].regmap,RTEMP);
4936       }
4937       emit_writeword(r,(int)&pcaddr);
4938     }
4939     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4940   }
4941   // Update cycle count
4942   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4943   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4944   emit_call((int)cc_interrupt);
4945   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4946   if(stubs[n][6]==TAKEN) {
4947     if(internal_branch(branch_regs[i].is32,ba[i]))
4948       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4949     else if(itype[i]==RJUMP) {
4950       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4951         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4952       else
4953         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4954     }
4955   }else if(stubs[n][6]==NOTTAKEN) {
4956     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4957     else load_all_regs(branch_regs[i].regmap);
4958   }else if(stubs[n][6]==NULLDS) {
4959     // Delay slot instruction is nullified ("likely" branch)
4960     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4961     else load_all_regs(regs[i].regmap);
4962   }else{
4963     load_all_regs(branch_regs[i].regmap);
4964   }
4965   emit_jmp(stubs[n][2]); // return address
4966   
4967   /* This works but uses a lot of memory...
4968   emit_readword((int)&last_count,ECX);
4969   emit_add(HOST_CCREG,ECX,EAX);
4970   emit_writeword(EAX,(int)&Count);
4971   emit_call((int)gen_interupt);
4972   emit_readword((int)&Count,HOST_CCREG);
4973   emit_readword((int)&next_interupt,EAX);
4974   emit_readword((int)&pending_exception,EBX);
4975   emit_writeword(EAX,(int)&last_count);
4976   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4977   emit_test(EBX,EBX);
4978   int jne_instr=(int)out;
4979   emit_jne(0);
4980   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4981   load_all_regs(branch_regs[i].regmap);
4982   emit_jmp(stubs[n][2]); // return address
4983   set_jump_target(jne_instr,(int)out);
4984   emit_readword((int)&pcaddr,EAX);
4985   // Call get_addr_ht instead of doing the hash table here.
4986   // This code is executed infrequently and takes up a lot of space
4987   // so smaller is better.
4988   emit_storereg(CCREG,HOST_CCREG);
4989   emit_pushreg(EAX);
4990   emit_call((int)get_addr_ht);
4991   emit_loadreg(CCREG,HOST_CCREG);
4992   emit_addimm(ESP,4,ESP);
4993   emit_jmpreg(EAX);*/
4994 }
4995
4996 add_to_linker(int addr,int target,int ext)
4997 {
4998   link_addr[linkcount][0]=addr;
4999   link_addr[linkcount][1]=target;
5000   link_addr[linkcount][2]=ext;  
5001   linkcount++;
5002 }
5003
5004 void ujump_assemble(int i,struct regstat *i_regs)
5005 {
5006   signed char *i_regmap=i_regs->regmap;
5007   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5008   address_generation(i+1,i_regs,regs[i].regmap_entry);
5009   #ifdef REG_PREFETCH
5010   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5011   if(rt1[i]==31&&temp>=0) 
5012   {
5013     int return_address=start+i*4+8;
5014     if(get_reg(branch_regs[i].regmap,31)>0) 
5015     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5016   }
5017   #endif
5018   ds_assemble(i+1,i_regs);
5019   uint64_t bc_unneeded=branch_regs[i].u;
5020   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5021   bc_unneeded|=1|(1LL<<rt1[i]);
5022   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5023   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5024                 bc_unneeded,bc_unneeded_upper);
5025   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5026   if(rt1[i]==31) {
5027     int rt;
5028     unsigned int return_address;
5029     assert(rt1[i+1]!=31);
5030     assert(rt2[i+1]!=31);
5031     rt=get_reg(branch_regs[i].regmap,31);
5032     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5033     //assert(rt>=0);
5034     return_address=start+i*4+8;
5035     if(rt>=0) {
5036       #ifdef USE_MINI_HT
5037       if(internal_branch(branch_regs[i].is32,return_address)) {
5038         int temp=rt+1;
5039         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5040            branch_regs[i].regmap[temp]>=0)
5041         {
5042           temp=get_reg(branch_regs[i].regmap,-1);
5043         }
5044         #ifdef HOST_TEMPREG
5045         if(temp<0) temp=HOST_TEMPREG;
5046         #endif
5047         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5048         else emit_movimm(return_address,rt);
5049       }
5050       else
5051       #endif
5052       {
5053         #ifdef REG_PREFETCH
5054         if(temp>=0) 
5055         {
5056           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5057         }
5058         #endif
5059         emit_movimm(return_address,rt); // PC into link register
5060         #ifdef IMM_PREFETCH
5061         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5062         #endif
5063       }
5064     }
5065   }
5066   int cc,adj;
5067   cc=get_reg(branch_regs[i].regmap,CCREG);
5068   assert(cc==HOST_CCREG);
5069   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5070   #ifdef REG_PREFETCH
5071   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5072   #endif
5073   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5074   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5075   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5076   if(internal_branch(branch_regs[i].is32,ba[i]))
5077     assem_debug("branch: internal\n");
5078   else
5079     assem_debug("branch: external\n");
5080   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5081     ds_assemble_entry(i);
5082   }
5083   else {
5084     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5085     emit_jmp(0);
5086   }
5087 }
5088
5089 void rjump_assemble(int i,struct regstat *i_regs)
5090 {
5091   signed char *i_regmap=i_regs->regmap;
5092   int temp;
5093   int rs,cc,adj;
5094   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5095   assert(rs>=0);
5096   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5097     // Delay slot abuse, make a copy of the branch address register
5098     temp=get_reg(branch_regs[i].regmap,RTEMP);
5099     assert(temp>=0);
5100     assert(regs[i].regmap[temp]==RTEMP);
5101     emit_mov(rs,temp);
5102     rs=temp;
5103   }
5104   address_generation(i+1,i_regs,regs[i].regmap_entry);
5105   #ifdef REG_PREFETCH
5106   if(rt1[i]==31) 
5107   {
5108     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5109       int return_address=start+i*4+8;
5110       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5111     }
5112   }
5113   #endif
5114   #ifdef USE_MINI_HT
5115   if(rs1[i]==31) {
5116     int rh=get_reg(regs[i].regmap,RHASH);
5117     if(rh>=0) do_preload_rhash(rh);
5118   }
5119   #endif
5120   ds_assemble(i+1,i_regs);
5121   uint64_t bc_unneeded=branch_regs[i].u;
5122   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5123   bc_unneeded|=1|(1LL<<rt1[i]);
5124   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5125   bc_unneeded&=~(1LL<<rs1[i]);
5126   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5127                 bc_unneeded,bc_unneeded_upper);
5128   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5129   if(rt1[i]!=0) {
5130     int rt,return_address;
5131     assert(rt1[i+1]!=rt1[i]);
5132     assert(rt2[i+1]!=rt1[i]);
5133     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5134     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5135     assert(rt>=0);
5136     return_address=start+i*4+8;
5137     #ifdef REG_PREFETCH
5138     if(temp>=0) 
5139     {
5140       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5141     }
5142     #endif
5143     emit_movimm(return_address,rt); // PC into link register
5144     #ifdef IMM_PREFETCH
5145     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5146     #endif
5147   }
5148   cc=get_reg(branch_regs[i].regmap,CCREG);
5149   assert(cc==HOST_CCREG);
5150   #ifdef USE_MINI_HT
5151   int rh=get_reg(branch_regs[i].regmap,RHASH);
5152   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5153   if(rs1[i]==31) {
5154     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5155     do_preload_rhtbl(ht);
5156     do_rhash(rs,rh);
5157   }
5158   #endif
5159   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5160   #ifdef DESTRUCTIVE_WRITEBACK
5161   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5162     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5163       emit_loadreg(rs1[i],rs);
5164     }
5165   }
5166   #endif
5167   #ifdef REG_PREFETCH
5168   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5169   #endif
5170   #ifdef USE_MINI_HT
5171   if(rs1[i]==31) {
5172     do_miniht_load(ht,rh);
5173   }
5174   #endif
5175   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5176   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5177   //assert(adj==0);
5178   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5179   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5180   emit_jns(0);
5181   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5182   #ifdef USE_MINI_HT
5183   if(rs1[i]==31) {
5184     do_miniht_jump(rs,rh,ht);
5185   }
5186   else
5187   #endif
5188   {
5189     //if(rs!=EAX) emit_mov(rs,EAX);
5190     //emit_jmp((int)jump_vaddr_eax);
5191     emit_jmp(jump_vaddr_reg[rs]);
5192   }
5193   /* Check hash table
5194   temp=!rs;
5195   emit_mov(rs,temp);
5196   emit_shrimm(rs,16,rs);
5197   emit_xor(temp,rs,rs);
5198   emit_movzwl_reg(rs,rs);
5199   emit_shlimm(rs,4,rs);
5200   emit_cmpmem_indexed((int)hash_table,rs,temp);
5201   emit_jne((int)out+14);
5202   emit_readword_indexed((int)hash_table+4,rs,rs);
5203   emit_jmpreg(rs);
5204   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5205   emit_addimm_no_flags(8,rs);
5206   emit_jeq((int)out-17);
5207   // No hit on hash table, call compiler
5208   emit_pushreg(temp);
5209 //DEBUG >
5210 #ifdef DEBUG_CYCLE_COUNT
5211   emit_readword((int)&last_count,ECX);
5212   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5213   emit_readword((int)&next_interupt,ECX);
5214   emit_writeword(HOST_CCREG,(int)&Count);
5215   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5216   emit_writeword(ECX,(int)&last_count);
5217 #endif
5218 //DEBUG <
5219   emit_storereg(CCREG,HOST_CCREG);
5220   emit_call((int)get_addr);
5221   emit_loadreg(CCREG,HOST_CCREG);
5222   emit_addimm(ESP,4,ESP);
5223   emit_jmpreg(EAX);*/
5224   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5225   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5226   #endif
5227 }
5228
5229 void cjump_assemble(int i,struct regstat *i_regs)
5230 {
5231   signed char *i_regmap=i_regs->regmap;
5232   int cc;
5233   int match;
5234   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5235   assem_debug("match=%d\n",match);
5236   int s1h,s1l,s2h,s2l;
5237   int prev_cop1_usable=cop1_usable;
5238   int unconditional=0,nop=0;
5239   int only32=0;
5240   int ooo=1;
5241   int invert=0;
5242   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5243   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5244   if(likely[i]) ooo=0;
5245   if(!match) invert=1;
5246   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5247   if(i>(ba[i]-start)>>2) invert=1;
5248   #endif
5249     
5250   if(ooo)
5251     if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5252        (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5253   {
5254     // Write-after-read dependency prevents out of order execution
5255     // First test branch condition, then execute delay slot, then branch
5256     ooo=0;
5257   }
5258
5259   if(ooo) {
5260     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5261     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5262     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5263     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5264   }
5265   else {
5266     s1l=get_reg(i_regmap,rs1[i]);
5267     s1h=get_reg(i_regmap,rs1[i]|64);
5268     s2l=get_reg(i_regmap,rs2[i]);
5269     s2h=get_reg(i_regmap,rs2[i]|64);
5270   }
5271   if(rs1[i]==0&&rs2[i]==0)
5272   {
5273     if(opcode[i]&1) nop=1;
5274     else unconditional=1;
5275     //assert(opcode[i]!=5);
5276     //assert(opcode[i]!=7);
5277     //assert(opcode[i]!=0x15);
5278     //assert(opcode[i]!=0x17);
5279   }
5280   else if(rs1[i]==0)
5281   {
5282     s1l=s2l;s1h=s2h;
5283     s2l=s2h=-1;
5284     only32=(regs[i].was32>>rs2[i])&1;
5285   }
5286   else if(rs2[i]==0)
5287   {
5288     s2l=s2h=-1;
5289     only32=(regs[i].was32>>rs1[i])&1;
5290   }
5291   else {
5292     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5293   }
5294
5295   if(ooo) {
5296     // Out of order execution (delay slot first)
5297     //printf("OOOE\n");
5298     address_generation(i+1,i_regs,regs[i].regmap_entry);
5299     ds_assemble(i+1,i_regs);
5300     int adj;
5301     uint64_t bc_unneeded=branch_regs[i].u;
5302     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5303     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5304     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5305     bc_unneeded|=1;
5306     bc_unneeded_upper|=1;
5307     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5308                   bc_unneeded,bc_unneeded_upper);
5309     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5310     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5311     cc=get_reg(branch_regs[i].regmap,CCREG);
5312     assert(cc==HOST_CCREG);
5313     if(unconditional) 
5314       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5315     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5316     //assem_debug("cycle count (adj)\n");
5317     if(unconditional) {
5318       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5319       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5320         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5321         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5322         if(internal)
5323           assem_debug("branch: internal\n");
5324         else
5325           assem_debug("branch: external\n");
5326         if(internal&&is_ds[(ba[i]-start)>>2]) {
5327           ds_assemble_entry(i);
5328         }
5329         else {
5330           add_to_linker((int)out,ba[i],internal);
5331           emit_jmp(0);
5332         }
5333         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5334         if(((u_int)out)&7) emit_addnop(0);
5335         #endif
5336       }
5337     }
5338     else if(nop) {
5339       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5340       int jaddr=(int)out;
5341       emit_jns(0);
5342       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5343     }
5344     else {
5345       int taken=0,nottaken=0,nottaken1=0;
5346       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5347       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5348       if(!only32)
5349       {
5350         assert(s1h>=0);
5351         if(opcode[i]==4) // BEQ
5352         {
5353           if(s2h>=0) emit_cmp(s1h,s2h);
5354           else emit_test(s1h,s1h);
5355           nottaken1=(int)out;
5356           emit_jne(1);
5357         }
5358         if(opcode[i]==5) // BNE
5359         {
5360           if(s2h>=0) emit_cmp(s1h,s2h);
5361           else emit_test(s1h,s1h);
5362           if(invert) taken=(int)out;
5363           else add_to_linker((int)out,ba[i],internal);
5364           emit_jne(0);
5365         }
5366         if(opcode[i]==6) // BLEZ
5367         {
5368           emit_test(s1h,s1h);
5369           if(invert) taken=(int)out;
5370           else add_to_linker((int)out,ba[i],internal);
5371           emit_js(0);
5372           nottaken1=(int)out;
5373           emit_jne(1);
5374         }
5375         if(opcode[i]==7) // BGTZ
5376         {
5377           emit_test(s1h,s1h);
5378           nottaken1=(int)out;
5379           emit_js(1);
5380           if(invert) taken=(int)out;
5381           else add_to_linker((int)out,ba[i],internal);
5382           emit_jne(0);
5383         }
5384       } // if(!only32)
5385           
5386       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5387       assert(s1l>=0);
5388       if(opcode[i]==4) // BEQ
5389       {
5390         if(s2l>=0) emit_cmp(s1l,s2l);
5391         else emit_test(s1l,s1l);
5392         if(invert){
5393           nottaken=(int)out;
5394           emit_jne(1);
5395         }else{
5396           add_to_linker((int)out,ba[i],internal);
5397           emit_jeq(0);
5398         }
5399       }
5400       if(opcode[i]==5) // BNE
5401       {
5402         if(s2l>=0) emit_cmp(s1l,s2l);
5403         else emit_test(s1l,s1l);
5404         if(invert){
5405           nottaken=(int)out;
5406           emit_jeq(1);
5407         }else{
5408           add_to_linker((int)out,ba[i],internal);
5409           emit_jne(0);
5410         }
5411       }
5412       if(opcode[i]==6) // BLEZ
5413       {
5414         emit_cmpimm(s1l,1);
5415         if(invert){
5416           nottaken=(int)out;
5417           emit_jge(1);
5418         }else{
5419           add_to_linker((int)out,ba[i],internal);
5420           emit_jl(0);
5421         }
5422       }
5423       if(opcode[i]==7) // BGTZ
5424       {
5425         emit_cmpimm(s1l,1);
5426         if(invert){
5427           nottaken=(int)out;
5428           emit_jl(1);
5429         }else{
5430           add_to_linker((int)out,ba[i],internal);
5431           emit_jge(0);
5432         }
5433       }
5434       if(invert) {
5435         if(taken) set_jump_target(taken,(int)out);
5436         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5437         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5438           if(adj) {
5439             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5440             add_to_linker((int)out,ba[i],internal);
5441           }else{
5442             emit_addnop(13);
5443             add_to_linker((int)out,ba[i],internal*2);
5444           }
5445           emit_jmp(0);
5446         }else
5447         #endif
5448         {
5449           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5450           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5451           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5452           if(internal)
5453             assem_debug("branch: internal\n");
5454           else
5455             assem_debug("branch: external\n");
5456           if(internal&&is_ds[(ba[i]-start)>>2]) {
5457             ds_assemble_entry(i);
5458           }
5459           else {
5460             add_to_linker((int)out,ba[i],internal);
5461             emit_jmp(0);
5462           }
5463         }
5464         set_jump_target(nottaken,(int)out);
5465       }
5466
5467       if(nottaken1) set_jump_target(nottaken1,(int)out);
5468       if(adj) {
5469         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5470       }
5471     } // (!unconditional)
5472   } // if(ooo)
5473   else
5474   {
5475     // In-order execution (branch first)
5476     //if(likely[i]) printf("IOL\n");
5477     //else
5478     //printf("IOE\n");
5479     int taken=0,nottaken=0,nottaken1=0;
5480     if(!unconditional&&!nop) {
5481       if(!only32)
5482       {
5483         assert(s1h>=0);
5484         if((opcode[i]&0x2f)==4) // BEQ
5485         {
5486           if(s2h>=0) emit_cmp(s1h,s2h);
5487           else emit_test(s1h,s1h);
5488           nottaken1=(int)out;
5489           emit_jne(2);
5490         }
5491         if((opcode[i]&0x2f)==5) // BNE
5492         {
5493           if(s2h>=0) emit_cmp(s1h,s2h);
5494           else emit_test(s1h,s1h);
5495           taken=(int)out;
5496           emit_jne(1);
5497         }
5498         if((opcode[i]&0x2f)==6) // BLEZ
5499         {
5500           emit_test(s1h,s1h);
5501           taken=(int)out;
5502           emit_js(1);
5503           nottaken1=(int)out;
5504           emit_jne(2);
5505         }
5506         if((opcode[i]&0x2f)==7) // BGTZ
5507         {
5508           emit_test(s1h,s1h);
5509           nottaken1=(int)out;
5510           emit_js(2);
5511           taken=(int)out;
5512           emit_jne(1);
5513         }
5514       } // if(!only32)
5515           
5516       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5517       assert(s1l>=0);
5518       if((opcode[i]&0x2f)==4) // BEQ
5519       {
5520         if(s2l>=0) emit_cmp(s1l,s2l);
5521         else emit_test(s1l,s1l);
5522         nottaken=(int)out;
5523         emit_jne(2);
5524       }
5525       if((opcode[i]&0x2f)==5) // BNE
5526       {
5527         if(s2l>=0) emit_cmp(s1l,s2l);
5528         else emit_test(s1l,s1l);
5529         nottaken=(int)out;
5530         emit_jeq(2);
5531       }
5532       if((opcode[i]&0x2f)==6) // BLEZ
5533       {
5534         emit_cmpimm(s1l,1);
5535         nottaken=(int)out;
5536         emit_jge(2);
5537       }
5538       if((opcode[i]&0x2f)==7) // BGTZ
5539       {
5540         emit_cmpimm(s1l,1);
5541         nottaken=(int)out;
5542         emit_jl(2);
5543       }
5544     } // if(!unconditional)
5545     int adj;
5546     uint64_t ds_unneeded=branch_regs[i].u;
5547     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5548     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5549     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5550     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5551     ds_unneeded|=1;
5552     ds_unneeded_upper|=1;
5553     // branch taken
5554     if(!nop) {
5555       if(taken) set_jump_target(taken,(int)out);
5556       assem_debug("1:\n");
5557       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5558                     ds_unneeded,ds_unneeded_upper);
5559       // load regs
5560       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5561       address_generation(i+1,&branch_regs[i],0);
5562       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5563       ds_assemble(i+1,&branch_regs[i]);
5564       cc=get_reg(branch_regs[i].regmap,CCREG);
5565       if(cc==-1) {
5566         emit_loadreg(CCREG,cc=HOST_CCREG);
5567         // CHECK: Is the following instruction (fall thru) allocated ok?
5568       }
5569       assert(cc==HOST_CCREG);
5570       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5571       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5572       assem_debug("cycle count (adj)\n");
5573       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5574       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5575       if(internal)
5576         assem_debug("branch: internal\n");
5577       else
5578         assem_debug("branch: external\n");
5579       if(internal&&is_ds[(ba[i]-start)>>2]) {
5580         ds_assemble_entry(i);
5581       }
5582       else {
5583         add_to_linker((int)out,ba[i],internal);
5584         emit_jmp(0);
5585       }
5586     }
5587     // branch not taken
5588     cop1_usable=prev_cop1_usable;
5589     if(!unconditional) {
5590       if(nottaken1) set_jump_target(nottaken1,(int)out);
5591       set_jump_target(nottaken,(int)out);
5592       assem_debug("2:\n");
5593       if(!likely[i]) {
5594         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5595                       ds_unneeded,ds_unneeded_upper);
5596         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5597         address_generation(i+1,&branch_regs[i],0);
5598         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5599         ds_assemble(i+1,&branch_regs[i]);
5600       }
5601       cc=get_reg(branch_regs[i].regmap,CCREG);
5602       if(cc==-1&&!likely[i]) {
5603         // Cycle count isn't in a register, temporarily load it then write it out
5604         emit_loadreg(CCREG,HOST_CCREG);
5605         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5606         int jaddr=(int)out;
5607         emit_jns(0);
5608         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5609         emit_storereg(CCREG,HOST_CCREG);
5610       }
5611       else{
5612         cc=get_reg(i_regmap,CCREG);
5613         assert(cc==HOST_CCREG);
5614         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5615         int jaddr=(int)out;
5616         emit_jns(0);
5617         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5618       }
5619     }
5620   }
5621 }
5622
5623 void sjump_assemble(int i,struct regstat *i_regs)
5624 {
5625   signed char *i_regmap=i_regs->regmap;
5626   int cc;
5627   int match;
5628   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5629   assem_debug("smatch=%d\n",match);
5630   int s1h,s1l;
5631   int prev_cop1_usable=cop1_usable;
5632   int unconditional=0,nevertaken=0;
5633   int only32=0;
5634   int ooo=1;
5635   int invert=0;
5636   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5637   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5638   if(likely[i]) ooo=0;
5639   if(!match) invert=1;
5640   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5641   if(i>(ba[i]-start)>>2) invert=1;
5642   #endif
5643
5644   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5645   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5646
5647   if(ooo)
5648     if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5649   {
5650     // Write-after-read dependency prevents out of order execution
5651     // First test branch condition, then execute delay slot, then branch
5652     ooo=0;
5653   }
5654
5655   if(ooo) {
5656     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5657     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5658   }
5659   else {
5660     s1l=get_reg(i_regmap,rs1[i]);
5661     s1h=get_reg(i_regmap,rs1[i]|64);
5662   }
5663   if(rs1[i]==0)
5664   {
5665     if(opcode2[i]&1) unconditional=1;
5666     else nevertaken=1;
5667     // These are never taken (r0 is never less than zero)
5668     //assert(opcode2[i]!=0);
5669     //assert(opcode2[i]!=2);
5670     //assert(opcode2[i]!=0x10);
5671     //assert(opcode2[i]!=0x12);
5672   }
5673   else {
5674     only32=(regs[i].was32>>rs1[i])&1;
5675   }
5676
5677   if(ooo) {
5678     // Out of order execution (delay slot first)
5679     //printf("OOOE\n");
5680     address_generation(i+1,i_regs,regs[i].regmap_entry);
5681     ds_assemble(i+1,i_regs);
5682     int adj;
5683     uint64_t bc_unneeded=branch_regs[i].u;
5684     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5685     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5686     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5687     bc_unneeded|=1;
5688     bc_unneeded_upper|=1;
5689     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5690                   bc_unneeded,bc_unneeded_upper);
5691     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5692     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5693     if(rt1[i]==31) {
5694       int rt,return_address;
5695       assert(rt1[i+1]!=31);
5696       assert(rt2[i+1]!=31);
5697       rt=get_reg(branch_regs[i].regmap,31);
5698       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5699       if(rt>=0) {
5700         // Save the PC even if the branch is not taken
5701         return_address=start+i*4+8;
5702         emit_movimm(return_address,rt); // PC into link register
5703         #ifdef IMM_PREFETCH
5704         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5705         #endif
5706       }
5707     }
5708     cc=get_reg(branch_regs[i].regmap,CCREG);
5709     assert(cc==HOST_CCREG);
5710     if(unconditional) 
5711       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5712     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5713     assem_debug("cycle count (adj)\n");
5714     if(unconditional) {
5715       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5716       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5717         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5718         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5719         if(internal)
5720           assem_debug("branch: internal\n");
5721         else
5722           assem_debug("branch: external\n");
5723         if(internal&&is_ds[(ba[i]-start)>>2]) {
5724           ds_assemble_entry(i);
5725         }
5726         else {
5727           add_to_linker((int)out,ba[i],internal);
5728           emit_jmp(0);
5729         }
5730         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5731         if(((u_int)out)&7) emit_addnop(0);
5732         #endif
5733       }
5734     }
5735     else if(nevertaken) {
5736       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5737       int jaddr=(int)out;
5738       emit_jns(0);
5739       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5740     }
5741     else {
5742       int nottaken=0;
5743       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5744       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5745       if(!only32)
5746       {
5747         assert(s1h>=0);
5748         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5749         {
5750           emit_test(s1h,s1h);
5751           if(invert){
5752             nottaken=(int)out;
5753             emit_jns(1);
5754           }else{
5755             add_to_linker((int)out,ba[i],internal);
5756             emit_js(0);
5757           }
5758         }
5759         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5760         {
5761           emit_test(s1h,s1h);
5762           if(invert){
5763             nottaken=(int)out;
5764             emit_js(1);
5765           }else{
5766             add_to_linker((int)out,ba[i],internal);
5767             emit_jns(0);
5768           }
5769         }
5770       } // if(!only32)
5771       else
5772       {
5773         assert(s1l>=0);
5774         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5775         {
5776           emit_test(s1l,s1l);
5777           if(invert){
5778             nottaken=(int)out;
5779             emit_jns(1);
5780           }else{
5781             add_to_linker((int)out,ba[i],internal);
5782             emit_js(0);
5783           }
5784         }
5785         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5786         {
5787           emit_test(s1l,s1l);
5788           if(invert){
5789             nottaken=(int)out;
5790             emit_js(1);
5791           }else{
5792             add_to_linker((int)out,ba[i],internal);
5793             emit_jns(0);
5794           }
5795         }
5796       } // if(!only32)
5797           
5798       if(invert) {
5799         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5800         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5801           if(adj) {
5802             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5803             add_to_linker((int)out,ba[i],internal);
5804           }else{
5805             emit_addnop(13);
5806             add_to_linker((int)out,ba[i],internal*2);
5807           }
5808           emit_jmp(0);
5809         }else
5810         #endif
5811         {
5812           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5813           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5814           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5815           if(internal)
5816             assem_debug("branch: internal\n");
5817           else
5818             assem_debug("branch: external\n");
5819           if(internal&&is_ds[(ba[i]-start)>>2]) {
5820             ds_assemble_entry(i);
5821           }
5822           else {
5823             add_to_linker((int)out,ba[i],internal);
5824             emit_jmp(0);
5825           }
5826         }
5827         set_jump_target(nottaken,(int)out);
5828       }
5829
5830       if(adj) {
5831         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5832       }
5833     } // (!unconditional)
5834   } // if(ooo)
5835   else
5836   {
5837     // In-order execution (branch first)
5838     //printf("IOE\n");
5839     int nottaken=0;
5840     if(rt1[i]==31) {
5841       int rt,return_address;
5842       assert(rt1[i+1]!=31);
5843       assert(rt2[i+1]!=31);
5844       rt=get_reg(branch_regs[i].regmap,31);
5845       if(rt>=0) {
5846         // Save the PC even if the branch is not taken
5847         return_address=start+i*4+8;
5848         emit_movimm(return_address,rt); // PC into link register
5849         #ifdef IMM_PREFETCH
5850         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5851         #endif
5852       }
5853     }
5854     if(!unconditional) {
5855       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5856       if(!only32)
5857       {
5858         assert(s1h>=0);
5859         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5860         {
5861           emit_test(s1h,s1h);
5862           nottaken=(int)out;
5863           emit_jns(1);
5864         }
5865         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5866         {
5867           emit_test(s1h,s1h);
5868           nottaken=(int)out;
5869           emit_js(1);
5870         }
5871       } // if(!only32)
5872       else
5873       {
5874         assert(s1l>=0);
5875         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5876         {
5877           emit_test(s1l,s1l);
5878           nottaken=(int)out;
5879           emit_jns(1);
5880         }
5881         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5882         {
5883           emit_test(s1l,s1l);
5884           nottaken=(int)out;
5885           emit_js(1);
5886         }
5887       }
5888     } // if(!unconditional)
5889     int adj;
5890     uint64_t ds_unneeded=branch_regs[i].u;
5891     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5892     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5893     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5894     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5895     ds_unneeded|=1;
5896     ds_unneeded_upper|=1;
5897     // branch taken
5898     if(!nevertaken) {
5899       //assem_debug("1:\n");
5900       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5901                     ds_unneeded,ds_unneeded_upper);
5902       // load regs
5903       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5904       address_generation(i+1,&branch_regs[i],0);
5905       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5906       ds_assemble(i+1,&branch_regs[i]);
5907       cc=get_reg(branch_regs[i].regmap,CCREG);
5908       if(cc==-1) {
5909         emit_loadreg(CCREG,cc=HOST_CCREG);
5910         // CHECK: Is the following instruction (fall thru) allocated ok?
5911       }
5912       assert(cc==HOST_CCREG);
5913       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5914       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5915       assem_debug("cycle count (adj)\n");
5916       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5917       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5918       if(internal)
5919         assem_debug("branch: internal\n");
5920       else
5921         assem_debug("branch: external\n");
5922       if(internal&&is_ds[(ba[i]-start)>>2]) {
5923         ds_assemble_entry(i);
5924       }
5925       else {
5926         add_to_linker((int)out,ba[i],internal);
5927         emit_jmp(0);
5928       }
5929     }
5930     // branch not taken
5931     cop1_usable=prev_cop1_usable;
5932     if(!unconditional) {
5933       set_jump_target(nottaken,(int)out);
5934       assem_debug("1:\n");
5935       if(!likely[i]) {
5936         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5937                       ds_unneeded,ds_unneeded_upper);
5938         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5939         address_generation(i+1,&branch_regs[i],0);
5940         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5941         ds_assemble(i+1,&branch_regs[i]);
5942       }
5943       cc=get_reg(branch_regs[i].regmap,CCREG);
5944       if(cc==-1&&!likely[i]) {
5945         // Cycle count isn't in a register, temporarily load it then write it out
5946         emit_loadreg(CCREG,HOST_CCREG);
5947         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5948         int jaddr=(int)out;
5949         emit_jns(0);
5950         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5951         emit_storereg(CCREG,HOST_CCREG);
5952       }
5953       else{
5954         cc=get_reg(i_regmap,CCREG);
5955         assert(cc==HOST_CCREG);
5956         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5957         int jaddr=(int)out;
5958         emit_jns(0);
5959         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5960       }
5961     }
5962   }
5963 }
5964
5965 void fjump_assemble(int i,struct regstat *i_regs)
5966 {
5967   signed char *i_regmap=i_regs->regmap;
5968   int cc;
5969   int match;
5970   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5971   assem_debug("fmatch=%d\n",match);
5972   int fs,cs;
5973   int eaddr;
5974   int ooo=1;
5975   int invert=0;
5976   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5977   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5978   if(likely[i]) ooo=0;
5979   if(!match) invert=1;
5980   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5981   if(i>(ba[i]-start)>>2) invert=1;
5982   #endif
5983
5984   if(ooo)
5985     if(itype[i+1]==FCOMP)
5986   {
5987     // Write-after-read dependency prevents out of order execution
5988     // First test branch condition, then execute delay slot, then branch
5989     ooo=0;
5990   }
5991
5992   if(ooo) {
5993     fs=get_reg(branch_regs[i].regmap,FSREG);
5994     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5995   }
5996   else {
5997     fs=get_reg(i_regmap,FSREG);
5998   }
5999
6000   // Check cop1 unusable
6001   if(!cop1_usable) {
6002     cs=get_reg(i_regmap,CSREG);
6003     assert(cs>=0);
6004     emit_testimm(cs,0x20000000);
6005     eaddr=(int)out;
6006     emit_jeq(0);
6007     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6008     cop1_usable=1;
6009   }
6010
6011   if(ooo) {
6012     // Out of order execution (delay slot first)
6013     //printf("OOOE\n");
6014     ds_assemble(i+1,i_regs);
6015     int adj;
6016     uint64_t bc_unneeded=branch_regs[i].u;
6017     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6018     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6019     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6020     bc_unneeded|=1;
6021     bc_unneeded_upper|=1;
6022     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6023                   bc_unneeded,bc_unneeded_upper);
6024     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6025     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6026     cc=get_reg(branch_regs[i].regmap,CCREG);
6027     assert(cc==HOST_CCREG);
6028     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6029     assem_debug("cycle count (adj)\n");
6030     if(1) {
6031       int nottaken=0;
6032       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6033       if(1) {
6034         assert(fs>=0);
6035         emit_testimm(fs,0x800000);
6036         if(source[i]&0x10000) // BC1T
6037         {
6038           if(invert){
6039             nottaken=(int)out;
6040             emit_jeq(1);
6041           }else{
6042             add_to_linker((int)out,ba[i],internal);
6043             emit_jne(0);
6044           }
6045         }
6046         else // BC1F
6047           if(invert){
6048             nottaken=(int)out;
6049             emit_jne(1);
6050           }else{
6051             add_to_linker((int)out,ba[i],internal);
6052             emit_jeq(0);
6053           }
6054         {
6055         }
6056       } // if(!only32)
6057           
6058       if(invert) {
6059         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6060         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6061         else if(match) emit_addnop(13);
6062         #endif
6063         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6064         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6065         if(internal)
6066           assem_debug("branch: internal\n");
6067         else
6068           assem_debug("branch: external\n");
6069         if(internal&&is_ds[(ba[i]-start)>>2]) {
6070           ds_assemble_entry(i);
6071         }
6072         else {
6073           add_to_linker((int)out,ba[i],internal);
6074           emit_jmp(0);
6075         }
6076         set_jump_target(nottaken,(int)out);
6077       }
6078
6079       if(adj) {
6080         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6081       }
6082     } // (!unconditional)
6083   } // if(ooo)
6084   else
6085   {
6086     // In-order execution (branch first)
6087     //printf("IOE\n");
6088     int nottaken=0;
6089     if(1) {
6090       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6091       if(1) {
6092         assert(fs>=0);
6093         emit_testimm(fs,0x800000);
6094         if(source[i]&0x10000) // BC1T
6095         {
6096           nottaken=(int)out;
6097           emit_jeq(1);
6098         }
6099         else // BC1F
6100         {
6101           nottaken=(int)out;
6102           emit_jne(1);
6103         }
6104       }
6105     } // if(!unconditional)
6106     int adj;
6107     uint64_t ds_unneeded=branch_regs[i].u;
6108     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6109     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6110     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6111     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6112     ds_unneeded|=1;
6113     ds_unneeded_upper|=1;
6114     // branch taken
6115     //assem_debug("1:\n");
6116     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6117                   ds_unneeded,ds_unneeded_upper);
6118     // load regs
6119     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6120     address_generation(i+1,&branch_regs[i],0);
6121     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6122     ds_assemble(i+1,&branch_regs[i]);
6123     cc=get_reg(branch_regs[i].regmap,CCREG);
6124     if(cc==-1) {
6125       emit_loadreg(CCREG,cc=HOST_CCREG);
6126       // CHECK: Is the following instruction (fall thru) allocated ok?
6127     }
6128     assert(cc==HOST_CCREG);
6129     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6130     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6131     assem_debug("cycle count (adj)\n");
6132     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6133     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6134     if(internal)
6135       assem_debug("branch: internal\n");
6136     else
6137       assem_debug("branch: external\n");
6138     if(internal&&is_ds[(ba[i]-start)>>2]) {
6139       ds_assemble_entry(i);
6140     }
6141     else {
6142       add_to_linker((int)out,ba[i],internal);
6143       emit_jmp(0);
6144     }
6145
6146     // branch not taken
6147     if(1) { // <- FIXME (don't need this)
6148       set_jump_target(nottaken,(int)out);
6149       assem_debug("1:\n");
6150       if(!likely[i]) {
6151         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6152                       ds_unneeded,ds_unneeded_upper);
6153         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6154         address_generation(i+1,&branch_regs[i],0);
6155         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6156         ds_assemble(i+1,&branch_regs[i]);
6157       }
6158       cc=get_reg(branch_regs[i].regmap,CCREG);
6159       if(cc==-1&&!likely[i]) {
6160         // Cycle count isn't in a register, temporarily load it then write it out
6161         emit_loadreg(CCREG,HOST_CCREG);
6162         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6163         int jaddr=(int)out;
6164         emit_jns(0);
6165         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6166         emit_storereg(CCREG,HOST_CCREG);
6167       }
6168       else{
6169         cc=get_reg(i_regmap,CCREG);
6170         assert(cc==HOST_CCREG);
6171         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6172         int jaddr=(int)out;
6173         emit_jns(0);
6174         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6175       }
6176     }
6177   }
6178 }
6179
6180 static void pagespan_assemble(int i,struct regstat *i_regs)
6181 {
6182   int s1l=get_reg(i_regs->regmap,rs1[i]);
6183   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6184   int s2l=get_reg(i_regs->regmap,rs2[i]);
6185   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6186   void *nt_branch=NULL;
6187   int taken=0;
6188   int nottaken=0;
6189   int unconditional=0;
6190   if(rs1[i]==0)
6191   {
6192     s1l=s2l;s1h=s2h;
6193     s2l=s2h=-1;
6194   }
6195   else if(rs2[i]==0)
6196   {
6197     s2l=s2h=-1;
6198   }
6199   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6200     s1h=s2h=-1;
6201   }
6202   int hr=0;
6203   int addr,alt,ntaddr;
6204   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6205   else {
6206     while(hr<HOST_REGS)
6207     {
6208       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6209          (i_regs->regmap[hr]&63)!=rs1[i] &&
6210          (i_regs->regmap[hr]&63)!=rs2[i] )
6211       {
6212         addr=hr++;break;
6213       }
6214       hr++;
6215     }
6216   }
6217   while(hr<HOST_REGS)
6218   {
6219     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6220        (i_regs->regmap[hr]&63)!=rs1[i] &&
6221        (i_regs->regmap[hr]&63)!=rs2[i] )
6222     {
6223       alt=hr++;break;
6224     }
6225     hr++;
6226   }
6227   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6228   {
6229     while(hr<HOST_REGS)
6230     {
6231       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6232          (i_regs->regmap[hr]&63)!=rs1[i] &&
6233          (i_regs->regmap[hr]&63)!=rs2[i] )
6234       {
6235         ntaddr=hr;break;
6236       }
6237       hr++;
6238     }
6239   }
6240   assert(hr<HOST_REGS);
6241   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6242     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6243   }
6244   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6245   if(opcode[i]==2) // J
6246   {
6247     unconditional=1;
6248   }
6249   if(opcode[i]==3) // JAL
6250   {
6251     // TODO: mini_ht
6252     int rt=get_reg(i_regs->regmap,31);
6253     emit_movimm(start+i*4+8,rt);
6254     unconditional=1;
6255   }
6256   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6257   {
6258     emit_mov(s1l,addr);
6259     if(opcode2[i]==9) // JALR
6260     {
6261       int rt=get_reg(i_regs->regmap,rt1[i]);
6262       emit_movimm(start+i*4+8,rt);
6263     }
6264   }
6265   if((opcode[i]&0x3f)==4) // BEQ
6266   {
6267     if(rs1[i]==rs2[i])
6268     {
6269       unconditional=1;
6270     }
6271     else
6272     #ifdef HAVE_CMOV_IMM
6273     if(s1h<0) {
6274       if(s2l>=0) emit_cmp(s1l,s2l);
6275       else emit_test(s1l,s1l);
6276       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6277     }
6278     else
6279     #endif
6280     {
6281       assert(s1l>=0);
6282       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6283       if(s1h>=0) {
6284         if(s2h>=0) emit_cmp(s1h,s2h);
6285         else emit_test(s1h,s1h);
6286         emit_cmovne_reg(alt,addr);
6287       }
6288       if(s2l>=0) emit_cmp(s1l,s2l);
6289       else emit_test(s1l,s1l);
6290       emit_cmovne_reg(alt,addr);
6291     }
6292   }
6293   if((opcode[i]&0x3f)==5) // BNE
6294   {
6295     #ifdef HAVE_CMOV_IMM
6296     if(s1h<0) {
6297       if(s2l>=0) emit_cmp(s1l,s2l);
6298       else emit_test(s1l,s1l);
6299       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6300     }
6301     else
6302     #endif
6303     {
6304       assert(s1l>=0);
6305       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6306       if(s1h>=0) {
6307         if(s2h>=0) emit_cmp(s1h,s2h);
6308         else emit_test(s1h,s1h);
6309         emit_cmovne_reg(alt,addr);
6310       }
6311       if(s2l>=0) emit_cmp(s1l,s2l);
6312       else emit_test(s1l,s1l);
6313       emit_cmovne_reg(alt,addr);
6314     }
6315   }
6316   if((opcode[i]&0x3f)==0x14) // BEQL
6317   {
6318     if(s1h>=0) {
6319       if(s2h>=0) emit_cmp(s1h,s2h);
6320       else emit_test(s1h,s1h);
6321       nottaken=(int)out;
6322       emit_jne(0);
6323     }
6324     if(s2l>=0) emit_cmp(s1l,s2l);
6325     else emit_test(s1l,s1l);
6326     if(nottaken) set_jump_target(nottaken,(int)out);
6327     nottaken=(int)out;
6328     emit_jne(0);
6329   }
6330   if((opcode[i]&0x3f)==0x15) // BNEL
6331   {
6332     if(s1h>=0) {
6333       if(s2h>=0) emit_cmp(s1h,s2h);
6334       else emit_test(s1h,s1h);
6335       taken=(int)out;
6336       emit_jne(0);
6337     }
6338     if(s2l>=0) emit_cmp(s1l,s2l);
6339     else emit_test(s1l,s1l);
6340     nottaken=(int)out;
6341     emit_jeq(0);
6342     if(taken) set_jump_target(taken,(int)out);
6343   }
6344   if((opcode[i]&0x3f)==6) // BLEZ
6345   {
6346     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6347     emit_cmpimm(s1l,1);
6348     if(s1h>=0) emit_mov(addr,ntaddr);
6349     emit_cmovl_reg(alt,addr);
6350     if(s1h>=0) {
6351       emit_test(s1h,s1h);
6352       emit_cmovne_reg(ntaddr,addr);
6353       emit_cmovs_reg(alt,addr);
6354     }
6355   }
6356   if((opcode[i]&0x3f)==7) // BGTZ
6357   {
6358     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6359     emit_cmpimm(s1l,1);
6360     if(s1h>=0) emit_mov(addr,alt);
6361     emit_cmovl_reg(ntaddr,addr);
6362     if(s1h>=0) {
6363       emit_test(s1h,s1h);
6364       emit_cmovne_reg(alt,addr);
6365       emit_cmovs_reg(ntaddr,addr);
6366     }
6367   }
6368   if((opcode[i]&0x3f)==0x16) // BLEZL
6369   {
6370     assert((opcode[i]&0x3f)!=0x16);
6371   }
6372   if((opcode[i]&0x3f)==0x17) // BGTZL
6373   {
6374     assert((opcode[i]&0x3f)!=0x17);
6375   }
6376   assert(opcode[i]!=1); // BLTZ/BGEZ
6377
6378   //FIXME: Check CSREG
6379   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6380     if((source[i]&0x30000)==0) // BC1F
6381     {
6382       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6383       emit_testimm(s1l,0x800000);
6384       emit_cmovne_reg(alt,addr);
6385     }
6386     if((source[i]&0x30000)==0x10000) // BC1T
6387     {
6388       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6389       emit_testimm(s1l,0x800000);
6390       emit_cmovne_reg(alt,addr);
6391     }
6392     if((source[i]&0x30000)==0x20000) // BC1FL
6393     {
6394       emit_testimm(s1l,0x800000);
6395       nottaken=(int)out;
6396       emit_jne(0);
6397     }
6398     if((source[i]&0x30000)==0x30000) // BC1TL
6399     {
6400       emit_testimm(s1l,0x800000);
6401       nottaken=(int)out;
6402       emit_jeq(0);
6403     }
6404   }
6405
6406   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6407   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6408   if(likely[i]||unconditional)
6409   {
6410     emit_movimm(ba[i],HOST_BTREG);
6411   }
6412   else if(addr!=HOST_BTREG)
6413   {
6414     emit_mov(addr,HOST_BTREG);
6415   }
6416   void *branch_addr=out;
6417   emit_jmp(0);
6418   int target_addr=start+i*4+5;
6419   void *stub=out;
6420   void *compiled_target_addr=check_addr(target_addr);
6421   emit_extjump_ds((int)branch_addr,target_addr);
6422   if(compiled_target_addr) {
6423     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6424     add_link(target_addr,stub);
6425   }
6426   else set_jump_target((int)branch_addr,(int)stub);
6427   if(likely[i]) {
6428     // Not-taken path
6429     set_jump_target((int)nottaken,(int)out);
6430     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6431     void *branch_addr=out;
6432     emit_jmp(0);
6433     int target_addr=start+i*4+8;
6434     void *stub=out;
6435     void *compiled_target_addr=check_addr(target_addr);
6436     emit_extjump_ds((int)branch_addr,target_addr);
6437     if(compiled_target_addr) {
6438       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6439       add_link(target_addr,stub);
6440     }
6441     else set_jump_target((int)branch_addr,(int)stub);
6442   }
6443 }
6444
6445 // Assemble the delay slot for the above
6446 static void pagespan_ds()
6447 {
6448   assem_debug("initial delay slot:\n");
6449   u_int vaddr=start+1;
6450   u_int page=get_page(vaddr);
6451   u_int vpage=get_vpage(vaddr);
6452   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6453   do_dirty_stub_ds();
6454   ll_add(jump_in+page,vaddr,(void *)out);
6455   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6456   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6457     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6458   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6459     emit_writeword(HOST_BTREG,(int)&branch_target);
6460   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6461   address_generation(0,&regs[0],regs[0].regmap_entry);
6462   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6463     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6464   cop1_usable=0;
6465   is_delayslot=0;
6466   switch(itype[0]) {
6467     case ALU:
6468       alu_assemble(0,&regs[0]);break;
6469     case IMM16:
6470       imm16_assemble(0,&regs[0]);break;
6471     case SHIFT:
6472       shift_assemble(0,&regs[0]);break;
6473     case SHIFTIMM:
6474       shiftimm_assemble(0,&regs[0]);break;
6475     case LOAD:
6476       load_assemble(0,&regs[0]);break;
6477     case LOADLR:
6478       loadlr_assemble(0,&regs[0]);break;
6479     case STORE:
6480       store_assemble(0,&regs[0]);break;
6481     case STORELR:
6482       storelr_assemble(0,&regs[0]);break;
6483     case COP0:
6484       cop0_assemble(0,&regs[0]);break;
6485     case COP1:
6486       cop1_assemble(0,&regs[0]);break;
6487     case C1LS:
6488       c1ls_assemble(0,&regs[0]);break;
6489     case COP2:
6490       cop2_assemble(0,&regs[0]);break;
6491     case C2LS:
6492       c2ls_assemble(0,&regs[0]);break;
6493     case C2OP:
6494       c2op_assemble(0,&regs[0]);break;
6495     case FCONV:
6496       fconv_assemble(0,&regs[0]);break;
6497     case FLOAT:
6498       float_assemble(0,&regs[0]);break;
6499     case FCOMP:
6500       fcomp_assemble(0,&regs[0]);break;
6501     case MULTDIV:
6502       multdiv_assemble(0,&regs[0]);break;
6503     case MOV:
6504       mov_assemble(0,&regs[0]);break;
6505     case SYSCALL:
6506     case HLECALL:
6507     case INTCALL:
6508     case SPAN:
6509     case UJUMP:
6510     case RJUMP:
6511     case CJUMP:
6512     case SJUMP:
6513     case FJUMP:
6514       printf("Jump in the delay slot.  This is probably a bug.\n");
6515   }
6516   int btaddr=get_reg(regs[0].regmap,BTREG);
6517   if(btaddr<0) {
6518     btaddr=get_reg(regs[0].regmap,-1);
6519     emit_readword((int)&branch_target,btaddr);
6520   }
6521   assert(btaddr!=HOST_CCREG);
6522   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6523 #ifdef HOST_IMM8
6524   emit_movimm(start+4,HOST_TEMPREG);
6525   emit_cmp(btaddr,HOST_TEMPREG);
6526 #else
6527   emit_cmpimm(btaddr,start+4);
6528 #endif
6529   int branch=(int)out;
6530   emit_jeq(0);
6531   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6532   emit_jmp(jump_vaddr_reg[btaddr]);
6533   set_jump_target(branch,(int)out);
6534   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6535   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6536 }
6537
6538 // Basic liveness analysis for MIPS registers
6539 void unneeded_registers(int istart,int iend,int r)
6540 {
6541   int i;
6542   uint64_t u,uu,b,bu;
6543   uint64_t temp_u,temp_uu;
6544   uint64_t tdep;
6545   if(iend==slen-1) {
6546     u=1;uu=1;
6547   }else{
6548     u=unneeded_reg[iend+1];
6549     uu=unneeded_reg_upper[iend+1];
6550     u=1;uu=1;
6551   }
6552   for (i=iend;i>=istart;i--)
6553   {
6554     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6555     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6556     {
6557       // If subroutine call, flag return address as a possible branch target
6558       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6559       
6560       if(ba[i]<start || ba[i]>=(start+slen*4))
6561       {
6562         // Branch out of this block, flush all regs
6563         u=1;
6564         uu=1;
6565         /* Hexagon hack 
6566         if(itype[i]==UJUMP&&rt1[i]==31)
6567         {
6568           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6569         }
6570         if(itype[i]==RJUMP&&rs1[i]==31)
6571         {
6572           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6573         }
6574         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6575           if(itype[i]==UJUMP&&rt1[i]==31)
6576           {
6577             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6578             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6579           }
6580           if(itype[i]==RJUMP&&rs1[i]==31)
6581           {
6582             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6583             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6584           }
6585         }*/
6586         branch_unneeded_reg[i]=u;
6587         branch_unneeded_reg_upper[i]=uu;
6588         // Merge in delay slot
6589         tdep=(~uu>>rt1[i+1])&1;
6590         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6591         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6592         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6593         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6594         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6595         u|=1;uu|=1;
6596         // If branch is "likely" (and conditional)
6597         // then we skip the delay slot on the fall-thru path
6598         if(likely[i]) {
6599           if(i<slen-1) {
6600             u&=unneeded_reg[i+2];
6601             uu&=unneeded_reg_upper[i+2];
6602           }
6603           else
6604           {
6605             u=1;
6606             uu=1;
6607           }
6608         }
6609       }
6610       else
6611       {
6612         // Internal branch, flag target
6613         bt[(ba[i]-start)>>2]=1;
6614         if(ba[i]<=start+i*4) {
6615           // Backward branch
6616           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6617           {
6618             // Unconditional branch
6619             temp_u=1;temp_uu=1;
6620           } else {
6621             // Conditional branch (not taken case)
6622             temp_u=unneeded_reg[i+2];
6623             temp_uu=unneeded_reg_upper[i+2];
6624           }
6625           // Merge in delay slot
6626           tdep=(~temp_uu>>rt1[i+1])&1;
6627           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6628           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6629           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6630           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6631           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6632           temp_u|=1;temp_uu|=1;
6633           // If branch is "likely" (and conditional)
6634           // then we skip the delay slot on the fall-thru path
6635           if(likely[i]) {
6636             if(i<slen-1) {
6637               temp_u&=unneeded_reg[i+2];
6638               temp_uu&=unneeded_reg_upper[i+2];
6639             }
6640             else
6641             {
6642               temp_u=1;
6643               temp_uu=1;
6644             }
6645           }
6646           tdep=(~temp_uu>>rt1[i])&1;
6647           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6648           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6649           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6650           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6651           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6652           temp_u|=1;temp_uu|=1;
6653           unneeded_reg[i]=temp_u;
6654           unneeded_reg_upper[i]=temp_uu;
6655           // Only go three levels deep.  This recursion can take an
6656           // excessive amount of time if there are a lot of nested loops.
6657           if(r<2) {
6658             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6659           }else{
6660             unneeded_reg[(ba[i]-start)>>2]=1;
6661             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6662           }
6663         } /*else*/ if(1) {
6664           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6665           {
6666             // Unconditional branch
6667             u=unneeded_reg[(ba[i]-start)>>2];
6668             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6669             branch_unneeded_reg[i]=u;
6670             branch_unneeded_reg_upper[i]=uu;
6671         //u=1;
6672         //uu=1;
6673         //branch_unneeded_reg[i]=u;
6674         //branch_unneeded_reg_upper[i]=uu;
6675             // Merge in delay slot
6676             tdep=(~uu>>rt1[i+1])&1;
6677             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6678             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6679             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6680             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6681             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6682             u|=1;uu|=1;
6683           } else {
6684             // Conditional branch
6685             b=unneeded_reg[(ba[i]-start)>>2];
6686             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6687             branch_unneeded_reg[i]=b;
6688             branch_unneeded_reg_upper[i]=bu;
6689         //b=1;
6690         //bu=1;
6691         //branch_unneeded_reg[i]=b;
6692         //branch_unneeded_reg_upper[i]=bu;
6693             // Branch delay slot
6694             tdep=(~uu>>rt1[i+1])&1;
6695             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6696             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6697             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6698             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6699             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6700             b|=1;bu|=1;
6701             // If branch is "likely" then we skip the
6702             // delay slot on the fall-thru path
6703             if(likely[i]) {
6704               u=b;
6705               uu=bu;
6706               if(i<slen-1) {
6707                 u&=unneeded_reg[i+2];
6708                 uu&=unneeded_reg_upper[i+2];
6709         //u=1;
6710         //uu=1;
6711               }
6712             } else {
6713               u&=b;
6714               uu&=bu;
6715         //u=1;
6716         //uu=1;
6717             }
6718             if(i<slen-1) {
6719               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6720               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6721         //branch_unneeded_reg[i]=1;
6722         //branch_unneeded_reg_upper[i]=1;
6723             } else {
6724               branch_unneeded_reg[i]=1;
6725               branch_unneeded_reg_upper[i]=1;
6726             }
6727           }
6728         }
6729       }
6730     }
6731     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6732     {
6733       // SYSCALL instruction (software interrupt)
6734       u=1;
6735       uu=1;
6736     }
6737     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6738     {
6739       // ERET instruction (return from interrupt)
6740       u=1;
6741       uu=1;
6742     }
6743     //u=uu=1; // DEBUG
6744     tdep=(~uu>>rt1[i])&1;
6745     // Written registers are unneeded
6746     u|=1LL<<rt1[i];
6747     u|=1LL<<rt2[i];
6748     uu|=1LL<<rt1[i];
6749     uu|=1LL<<rt2[i];
6750     // Accessed registers are needed
6751     u&=~(1LL<<rs1[i]);
6752     u&=~(1LL<<rs2[i]);
6753     uu&=~(1LL<<us1[i]);
6754     uu&=~(1LL<<us2[i]);
6755     // Source-target dependencies
6756     uu&=~(tdep<<dep1[i]);
6757     uu&=~(tdep<<dep2[i]);
6758     // R0 is always unneeded
6759     u|=1;uu|=1;
6760     // Save it
6761     unneeded_reg[i]=u;
6762     unneeded_reg_upper[i]=uu;
6763     /*
6764     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6765     printf("U:");
6766     int r;
6767     for(r=1;r<=CCREG;r++) {
6768       if((unneeded_reg[i]>>r)&1) {
6769         if(r==HIREG) printf(" HI");
6770         else if(r==LOREG) printf(" LO");
6771         else printf(" r%d",r);
6772       }
6773     }
6774     printf(" UU:");
6775     for(r=1;r<=CCREG;r++) {
6776       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6777         if(r==HIREG) printf(" HI");
6778         else if(r==LOREG) printf(" LO");
6779         else printf(" r%d",r);
6780       }
6781     }
6782     printf("\n");*/
6783   }
6784 #ifdef FORCE32
6785   for (i=iend;i>=istart;i--)
6786   {
6787     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6788   }
6789 #endif
6790 }
6791
6792 // Identify registers which are likely to contain 32-bit values
6793 // This is used to predict whether any branches will jump to a
6794 // location with 64-bit values in registers.
6795 static void provisional_32bit()
6796 {
6797   int i,j;
6798   uint64_t is32=1;
6799   uint64_t lastbranch=1;
6800   
6801   for(i=0;i<slen;i++)
6802   {
6803     if(i>0) {
6804       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6805         if(i>1) is32=lastbranch;
6806         else is32=1;
6807       }
6808     }
6809     if(i>1)
6810     {
6811       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6812         if(likely[i-2]) {
6813           if(i>2) is32=lastbranch;
6814           else is32=1;
6815         }
6816       }
6817       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6818       {
6819         if(rs1[i-2]==0||rs2[i-2]==0)
6820         {
6821           if(rs1[i-2]) {
6822             is32|=1LL<<rs1[i-2];
6823           }
6824           if(rs2[i-2]) {
6825             is32|=1LL<<rs2[i-2];
6826           }
6827         }
6828       }
6829     }
6830     // If something jumps here with 64-bit values
6831     // then promote those registers to 64 bits
6832     if(bt[i])
6833     {
6834       uint64_t temp_is32=is32;
6835       for(j=i-1;j>=0;j--)
6836       {
6837         if(ba[j]==start+i*4) 
6838           //temp_is32&=branch_regs[j].is32;
6839           temp_is32&=p32[j];
6840       }
6841       for(j=i;j<slen;j++)
6842       {
6843         if(ba[j]==start+i*4) 
6844           temp_is32=1;
6845       }
6846       is32=temp_is32;
6847     }
6848     int type=itype[i];
6849     int op=opcode[i];
6850     int op2=opcode2[i];
6851     int rt=rt1[i];
6852     int s1=rs1[i];
6853     int s2=rs2[i];
6854     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6855       // Branches don't write registers, consider the delay slot instead.
6856       type=itype[i+1];
6857       op=opcode[i+1];
6858       op2=opcode2[i+1];
6859       rt=rt1[i+1];
6860       s1=rs1[i+1];
6861       s2=rs2[i+1];
6862       lastbranch=is32;
6863     }
6864     switch(type) {
6865       case LOAD:
6866         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6867            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6868           is32&=~(1LL<<rt);
6869         else
6870           is32|=1LL<<rt;
6871         break;
6872       case STORE:
6873       case STORELR:
6874         break;
6875       case LOADLR:
6876         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6877         if(op==0x22) is32|=1LL<<rt; // LWL
6878         break;
6879       case IMM16:
6880         if (op==0x08||op==0x09|| // ADDI/ADDIU
6881             op==0x0a||op==0x0b|| // SLTI/SLTIU
6882             op==0x0c|| // ANDI
6883             op==0x0f)  // LUI
6884         {
6885           is32|=1LL<<rt;
6886         }
6887         if(op==0x18||op==0x19) { // DADDI/DADDIU
6888           is32&=~(1LL<<rt);
6889           //if(imm[i]==0)
6890           //  is32|=((is32>>s1)&1LL)<<rt;
6891         }
6892         if(op==0x0d||op==0x0e) { // ORI/XORI
6893           uint64_t sr=((is32>>s1)&1LL);
6894           is32&=~(1LL<<rt);
6895           is32|=sr<<rt;
6896         }
6897         break;
6898       case UJUMP:
6899         break;
6900       case RJUMP:
6901         break;
6902       case CJUMP:
6903         break;
6904       case SJUMP:
6905         break;
6906       case FJUMP:
6907         break;
6908       case ALU:
6909         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6910           is32|=1LL<<rt;
6911         }
6912         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6913           is32|=1LL<<rt;
6914         }
6915         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6916           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6917           is32&=~(1LL<<rt);
6918           is32|=sr<<rt;
6919         }
6920         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6921           if(s1==0&&s2==0) {
6922             is32|=1LL<<rt;
6923           }
6924           else if(s2==0) {
6925             uint64_t sr=((is32>>s1)&1LL);
6926             is32&=~(1LL<<rt);
6927             is32|=sr<<rt;
6928           }
6929           else if(s1==0) {
6930             uint64_t sr=((is32>>s2)&1LL);
6931             is32&=~(1LL<<rt);
6932             is32|=sr<<rt;
6933           }
6934           else {
6935             is32&=~(1LL<<rt);
6936           }
6937         }
6938         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6939           if(s1==0&&s2==0) {
6940             is32|=1LL<<rt;
6941           }
6942           else if(s2==0) {
6943             uint64_t sr=((is32>>s1)&1LL);
6944             is32&=~(1LL<<rt);
6945             is32|=sr<<rt;
6946           }
6947           else {
6948             is32&=~(1LL<<rt);
6949           }
6950         }
6951         break;
6952       case MULTDIV:
6953         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6954           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6955         }
6956         else {
6957           is32|=(1LL<<HIREG)|(1LL<<LOREG);
6958         }
6959         break;
6960       case MOV:
6961         {
6962           uint64_t sr=((is32>>s1)&1LL);
6963           is32&=~(1LL<<rt);
6964           is32|=sr<<rt;
6965         }
6966         break;
6967       case SHIFT:
6968         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6969         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6970         break;
6971       case SHIFTIMM:
6972         is32|=1LL<<rt;
6973         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6974         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6975         break;
6976       case COP0:
6977         if(op2==0) is32|=1LL<<rt; // MFC0
6978         break;
6979       case COP1:
6980       case COP2:
6981         if(op2==0) is32|=1LL<<rt; // MFC1
6982         if(op2==1) is32&=~(1LL<<rt); // DMFC1
6983         if(op2==2) is32|=1LL<<rt; // CFC1
6984         break;
6985       case C1LS:
6986       case C2LS:
6987         break;
6988       case FLOAT:
6989       case FCONV:
6990         break;
6991       case FCOMP:
6992         break;
6993       case C2OP:
6994       case SYSCALL:
6995       case HLECALL:
6996         break;
6997       default:
6998         break;
6999     }
7000     is32|=1;
7001     p32[i]=is32;
7002
7003     if(i>0)
7004     {
7005       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7006       {
7007         if(rt1[i-1]==31) // JAL/JALR
7008         {
7009           // Subroutine call will return here, don't alloc any registers
7010           is32=1;
7011         }
7012         else if(i+1<slen)
7013         {
7014           // Internal branch will jump here, match registers to caller
7015           is32=0x3FFFFFFFFLL;
7016         }
7017       }
7018     }
7019   }
7020 }
7021
7022 // Identify registers which may be assumed to contain 32-bit values
7023 // and where optimizations will rely on this.
7024 // This is used to determine whether backward branches can safely
7025 // jump to a location with 64-bit values in registers.
7026 static void provisional_r32()
7027 {
7028   u_int r32=0;
7029   int i;
7030   
7031   for (i=slen-1;i>=0;i--)
7032   {
7033     int hr;
7034     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7035     {
7036       if(ba[i]<start || ba[i]>=(start+slen*4))
7037       {
7038         // Branch out of this block, don't need anything
7039         r32=0;
7040       }
7041       else
7042       {
7043         // Internal branch
7044         // Need whatever matches the target
7045         // (and doesn't get overwritten by the delay slot instruction)
7046         r32=0;
7047         int t=(ba[i]-start)>>2;
7048         if(ba[i]>start+i*4) {
7049           // Forward branch
7050           //if(!(requires_32bit[t]&~regs[i].was32))
7051           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7052           if(!(pr32[t]&~regs[i].was32))
7053             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7054         }else{
7055           // Backward branch
7056           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7057             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7058         }
7059       }
7060       // Conditional branch may need registers for following instructions
7061       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7062       {
7063         if(i<slen-2) {
7064           //r32|=requires_32bit[i+2];
7065           r32|=pr32[i+2];
7066           r32&=regs[i].was32;
7067           // Mark this address as a branch target since it may be called
7068           // upon return from interrupt
7069           //bt[i+2]=1;
7070         }
7071       }
7072       // Merge in delay slot
7073       if(!likely[i]) {
7074         // These are overwritten unless the branch is "likely"
7075         // and the delay slot is nullified if not taken
7076         r32&=~(1LL<<rt1[i+1]);
7077         r32&=~(1LL<<rt2[i+1]);
7078       }
7079       // Assume these are needed (delay slot)
7080       if(us1[i+1]>0)
7081       {
7082         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7083       }
7084       if(us2[i+1]>0)
7085       {
7086         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7087       }
7088       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7089       {
7090         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7091       }
7092       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7093       {
7094         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7095       }
7096     }
7097     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7098     {
7099       // SYSCALL instruction (software interrupt)
7100       r32=0;
7101     }
7102     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7103     {
7104       // ERET instruction (return from interrupt)
7105       r32=0;
7106     }
7107     // Check 32 bits
7108     r32&=~(1LL<<rt1[i]);
7109     r32&=~(1LL<<rt2[i]);
7110     if(us1[i]>0)
7111     {
7112       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7113     }
7114     if(us2[i]>0)
7115     {
7116       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7117     }
7118     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7119     {
7120       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7121     }
7122     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7123     {
7124       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7125     }
7126     //requires_32bit[i]=r32;
7127     pr32[i]=r32;
7128     
7129     // Dirty registers which are 32-bit, require 32-bit input
7130     // as they will be written as 32-bit values
7131     for(hr=0;hr<HOST_REGS;hr++)
7132     {
7133       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7134         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7135           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7136           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7137           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7138         }
7139       }
7140     }
7141   }
7142 }
7143
7144 // Write back dirty registers as soon as we will no longer modify them,
7145 // so that we don't end up with lots of writes at the branches.
7146 void clean_registers(int istart,int iend,int wr)
7147 {
7148   int i;
7149   int r;
7150   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7151   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7152   if(iend==slen-1) {
7153     will_dirty_i=will_dirty_next=0;
7154     wont_dirty_i=wont_dirty_next=0;
7155   }else{
7156     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7157     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7158   }
7159   for (i=iend;i>=istart;i--)
7160   {
7161     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7162     {
7163       if(ba[i]<start || ba[i]>=(start+slen*4))
7164       {
7165         // Branch out of this block, flush all regs
7166         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7167         {
7168           // Unconditional branch
7169           will_dirty_i=0;
7170           wont_dirty_i=0;
7171           // Merge in delay slot (will dirty)
7172           for(r=0;r<HOST_REGS;r++) {
7173             if(r!=EXCLUDE_REG) {
7174               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7175               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7176               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7177               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7178               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7179               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7180               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7181               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7182               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7183               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7184               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7185               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7186               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7187               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7188             }
7189           }
7190         }
7191         else
7192         {
7193           // Conditional branch
7194           will_dirty_i=0;
7195           wont_dirty_i=wont_dirty_next;
7196           // Merge in delay slot (will dirty)
7197           for(r=0;r<HOST_REGS;r++) {
7198             if(r!=EXCLUDE_REG) {
7199               if(!likely[i]) {
7200                 // Might not dirty if likely branch is not taken
7201                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7202                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7203                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7204                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7205                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7206                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7207                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7208                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7209                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7210                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7211                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7212                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7213                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7214                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7215               }
7216             }
7217           }
7218         }
7219         // Merge in delay slot (wont dirty)
7220         for(r=0;r<HOST_REGS;r++) {
7221           if(r!=EXCLUDE_REG) {
7222             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7223             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7224             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7225             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7226             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7227             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7228             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7229             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7230             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7231             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7232           }
7233         }
7234         if(wr) {
7235           #ifndef DESTRUCTIVE_WRITEBACK
7236           branch_regs[i].dirty&=wont_dirty_i;
7237           #endif
7238           branch_regs[i].dirty|=will_dirty_i;
7239         }
7240       }
7241       else
7242       {
7243         // Internal branch
7244         if(ba[i]<=start+i*4) {
7245           // Backward branch
7246           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7247           {
7248             // Unconditional branch
7249             temp_will_dirty=0;
7250             temp_wont_dirty=0;
7251             // Merge in delay slot (will dirty)
7252             for(r=0;r<HOST_REGS;r++) {
7253               if(r!=EXCLUDE_REG) {
7254                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7255                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7256                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7257                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7258                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7259                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7260                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7261                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7262                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7263                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7264                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7265                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7266                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7267                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7268               }
7269             }
7270           } else {
7271             // Conditional branch (not taken case)
7272             temp_will_dirty=will_dirty_next;
7273             temp_wont_dirty=wont_dirty_next;
7274             // Merge in delay slot (will dirty)
7275             for(r=0;r<HOST_REGS;r++) {
7276               if(r!=EXCLUDE_REG) {
7277                 if(!likely[i]) {
7278                   // Will not dirty if likely branch is not taken
7279                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7280                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7281                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7282                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7283                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7284                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7285                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7286                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7287                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7288                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7289                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7290                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7291                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7292                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7293                 }
7294               }
7295             }
7296           }
7297           // Merge in delay slot (wont dirty)
7298           for(r=0;r<HOST_REGS;r++) {
7299             if(r!=EXCLUDE_REG) {
7300               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7301               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7302               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7303               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7304               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7305               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7306               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7307               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7308               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7309               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7310             }
7311           }
7312           // Deal with changed mappings
7313           if(i<iend) {
7314             for(r=0;r<HOST_REGS;r++) {
7315               if(r!=EXCLUDE_REG) {
7316                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7317                   temp_will_dirty&=~(1<<r);
7318                   temp_wont_dirty&=~(1<<r);
7319                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7320                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7321                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7322                   } else {
7323                     temp_will_dirty|=1<<r;
7324                     temp_wont_dirty|=1<<r;
7325                   }
7326                 }
7327               }
7328             }
7329           }
7330           if(wr) {
7331             will_dirty[i]=temp_will_dirty;
7332             wont_dirty[i]=temp_wont_dirty;
7333             clean_registers((ba[i]-start)>>2,i-1,0);
7334           }else{
7335             // Limit recursion.  It can take an excessive amount
7336             // of time if there are a lot of nested loops.
7337             will_dirty[(ba[i]-start)>>2]=0;
7338             wont_dirty[(ba[i]-start)>>2]=-1;
7339           }
7340         }
7341         /*else*/ if(1)
7342         {
7343           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7344           {
7345             // Unconditional branch
7346             will_dirty_i=0;
7347             wont_dirty_i=0;
7348           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7349             for(r=0;r<HOST_REGS;r++) {
7350               if(r!=EXCLUDE_REG) {
7351                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7352                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7353                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7354                 }
7355               }
7356             }
7357           //}
7358             // Merge in delay slot
7359             for(r=0;r<HOST_REGS;r++) {
7360               if(r!=EXCLUDE_REG) {
7361                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7362                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7363                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7364                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7365                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7366                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7367                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7368                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7369                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7370                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7371                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7372                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7373                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7374                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7375               }
7376             }
7377           } else {
7378             // Conditional branch
7379             will_dirty_i=will_dirty_next;
7380             wont_dirty_i=wont_dirty_next;
7381           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7382             for(r=0;r<HOST_REGS;r++) {
7383               if(r!=EXCLUDE_REG) {
7384                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7385                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7386                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7387                 }
7388                 else
7389                 {
7390                   will_dirty_i&=~(1<<r);
7391                 }
7392                 // Treat delay slot as part of branch too
7393                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7394                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7395                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7396                 }
7397                 else
7398                 {
7399                   will_dirty[i+1]&=~(1<<r);
7400                 }*/
7401               }
7402             }
7403           //}
7404             // Merge in delay slot
7405             for(r=0;r<HOST_REGS;r++) {
7406               if(r!=EXCLUDE_REG) {
7407                 if(!likely[i]) {
7408                   // Might not dirty if likely branch is not taken
7409                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7410                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7411                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7412                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7413                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7414                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7415                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7416                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7417                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7418                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7419                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7420                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7421                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7422                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7423                 }
7424               }
7425             }
7426           }
7427           // Merge in delay slot
7428           for(r=0;r<HOST_REGS;r++) {
7429             if(r!=EXCLUDE_REG) {
7430               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7431               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7432               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7433               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7434               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7435               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7436               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7437               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7438               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7439               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7440             }
7441           }
7442           if(wr) {
7443             #ifndef DESTRUCTIVE_WRITEBACK
7444             branch_regs[i].dirty&=wont_dirty_i;
7445             #endif
7446             branch_regs[i].dirty|=will_dirty_i;
7447           }
7448         }
7449       }
7450     }
7451     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7452     {
7453       // SYSCALL instruction (software interrupt)
7454       will_dirty_i=0;
7455       wont_dirty_i=0;
7456     }
7457     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7458     {
7459       // ERET instruction (return from interrupt)
7460       will_dirty_i=0;
7461       wont_dirty_i=0;
7462     }
7463     will_dirty_next=will_dirty_i;
7464     wont_dirty_next=wont_dirty_i;
7465     for(r=0;r<HOST_REGS;r++) {
7466       if(r!=EXCLUDE_REG) {
7467         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7468         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7469         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7470         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7471         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7472         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7473         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7474         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7475         if(i>istart) {
7476           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7477           {
7478             // Don't store a register immediately after writing it,
7479             // may prevent dual-issue.
7480             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7481             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7482           }
7483         }
7484       }
7485     }
7486     // Save it
7487     will_dirty[i]=will_dirty_i;
7488     wont_dirty[i]=wont_dirty_i;
7489     // Mark registers that won't be dirtied as not dirty
7490     if(wr) {
7491       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7492       for(r=0;r<HOST_REGS;r++) {
7493         if((will_dirty_i>>r)&1) {
7494           printf(" r%d",r);
7495         }
7496       }
7497       printf("\n");*/
7498
7499       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7500         regs[i].dirty|=will_dirty_i;
7501         #ifndef DESTRUCTIVE_WRITEBACK
7502         regs[i].dirty&=wont_dirty_i;
7503         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7504         {
7505           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7506             for(r=0;r<HOST_REGS;r++) {
7507               if(r!=EXCLUDE_REG) {
7508                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7509                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7510                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7511               }
7512             }
7513           }
7514         }
7515         else
7516         {
7517           if(i<iend) {
7518             for(r=0;r<HOST_REGS;r++) {
7519               if(r!=EXCLUDE_REG) {
7520                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7521                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7522                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7523               }
7524             }
7525           }
7526         }
7527         #endif
7528       //}
7529     }
7530     // Deal with changed mappings
7531     temp_will_dirty=will_dirty_i;
7532     temp_wont_dirty=wont_dirty_i;
7533     for(r=0;r<HOST_REGS;r++) {
7534       if(r!=EXCLUDE_REG) {
7535         int nr;
7536         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7537           if(wr) {
7538             #ifndef DESTRUCTIVE_WRITEBACK
7539             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7540             #endif
7541             regs[i].wasdirty|=will_dirty_i&(1<<r);
7542           }
7543         }
7544         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7545           // Register moved to a different register
7546           will_dirty_i&=~(1<<r);
7547           wont_dirty_i&=~(1<<r);
7548           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7549           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7550           if(wr) {
7551             #ifndef DESTRUCTIVE_WRITEBACK
7552             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7553             #endif
7554             regs[i].wasdirty|=will_dirty_i&(1<<r);
7555           }
7556         }
7557         else {
7558           will_dirty_i&=~(1<<r);
7559           wont_dirty_i&=~(1<<r);
7560           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7561             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7562             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7563           } else {
7564             wont_dirty_i|=1<<r;
7565             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7566           }
7567         }
7568       }
7569     }
7570   }
7571 }
7572
7573   /* disassembly */
7574 void disassemble_inst(int i)
7575 {
7576     if (bt[i]) printf("*"); else printf(" ");
7577     switch(itype[i]) {
7578       case UJUMP:
7579         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7580       case CJUMP:
7581         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7582       case SJUMP:
7583         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7584       case FJUMP:
7585         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7586       case RJUMP:
7587         if (opcode[i]==0x9&&rt1[i]!=31)
7588           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7589         else
7590           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7591         break;
7592       case SPAN:
7593         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7594       case IMM16:
7595         if(opcode[i]==0xf) //LUI
7596           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7597         else
7598           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7599         break;
7600       case LOAD:
7601       case LOADLR:
7602         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7603         break;
7604       case STORE:
7605       case STORELR:
7606         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7607         break;
7608       case ALU:
7609       case SHIFT:
7610         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7611         break;
7612       case MULTDIV:
7613         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7614         break;
7615       case SHIFTIMM:
7616         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7617         break;
7618       case MOV:
7619         if((opcode2[i]&0x1d)==0x10)
7620           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7621         else if((opcode2[i]&0x1d)==0x11)
7622           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7623         else
7624           printf (" %x: %s\n",start+i*4,insn[i]);
7625         break;
7626       case COP0:
7627         if(opcode2[i]==0)
7628           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7629         else if(opcode2[i]==4)
7630           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7631         else printf (" %x: %s\n",start+i*4,insn[i]);
7632         break;
7633       case COP1:
7634         if(opcode2[i]<3)
7635           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7636         else if(opcode2[i]>3)
7637           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7638         else printf (" %x: %s\n",start+i*4,insn[i]);
7639         break;
7640       case COP2:
7641         if(opcode2[i]<3)
7642           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7643         else if(opcode2[i]>3)
7644           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7645         else printf (" %x: %s\n",start+i*4,insn[i]);
7646         break;
7647       case C1LS:
7648         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7649         break;
7650       case C2LS:
7651         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7652         break;
7653       case INTCALL:
7654         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7655         break;
7656       default:
7657         //printf (" %s %8x\n",insn[i],source[i]);
7658         printf (" %x: %s\n",start+i*4,insn[i]);
7659     }
7660 }
7661
7662 void new_dynarec_init()
7663 {
7664   printf("Init new dynarec\n");
7665   out=(u_char *)BASE_ADDR;
7666   if (mmap (out, 1<<TARGET_SIZE_2,
7667             PROT_READ | PROT_WRITE | PROT_EXEC,
7668             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7669             -1, 0) <= 0) {printf("mmap() failed\n");}
7670 #ifdef MUPEN64
7671   rdword=&readmem_dword;
7672   fake_pc.f.r.rs=&readmem_dword;
7673   fake_pc.f.r.rt=&readmem_dword;
7674   fake_pc.f.r.rd=&readmem_dword;
7675 #endif
7676   int n;
7677   for(n=0x80000;n<0x80800;n++)
7678     invalid_code[n]=1;
7679   for(n=0;n<65536;n++)
7680     hash_table[n][0]=hash_table[n][2]=-1;
7681   memset(mini_ht,-1,sizeof(mini_ht));
7682   memset(restore_candidate,0,sizeof(restore_candidate));
7683   copy=shadow;
7684   expirep=16384; // Expiry pointer, +2 blocks
7685   pending_exception=0;
7686   literalcount=0;
7687 #ifdef HOST_IMM8
7688   // Copy this into local area so we don't have to put it in every literal pool
7689   invc_ptr=invalid_code;
7690 #endif
7691   stop_after_jal=0;
7692   // TLB
7693   using_tlb=0;
7694   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7695     memory_map[n]=-1;
7696   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7697     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7698   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7699     memory_map[n]=-1;
7700 #ifdef MUPEN64
7701   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7702     writemem[n] = write_nomem_new;
7703     writememb[n] = write_nomemb_new;
7704     writememh[n] = write_nomemh_new;
7705 #ifndef FORCE32
7706     writememd[n] = write_nomemd_new;
7707 #endif
7708     readmem[n] = read_nomem_new;
7709     readmemb[n] = read_nomemb_new;
7710     readmemh[n] = read_nomemh_new;
7711 #ifndef FORCE32
7712     readmemd[n] = read_nomemd_new;
7713 #endif
7714   }
7715   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7716     writemem[n] = write_rdram_new;
7717     writememb[n] = write_rdramb_new;
7718     writememh[n] = write_rdramh_new;
7719 #ifndef FORCE32
7720     writememd[n] = write_rdramd_new;
7721 #endif
7722   }
7723   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7724     writemem[n] = write_nomem_new;
7725     writememb[n] = write_nomemb_new;
7726     writememh[n] = write_nomemh_new;
7727 #ifndef FORCE32
7728     writememd[n] = write_nomemd_new;
7729 #endif
7730     readmem[n] = read_nomem_new;
7731     readmemb[n] = read_nomemb_new;
7732     readmemh[n] = read_nomemh_new;
7733 #ifndef FORCE32
7734     readmemd[n] = read_nomemd_new;
7735 #endif
7736   }
7737 #endif
7738   tlb_hacks();
7739   arch_init();
7740 }
7741
7742 void new_dynarec_cleanup()
7743 {
7744   int n;
7745   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7746   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7747   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7748   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7749   #ifdef ROM_COPY
7750   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7751   #endif
7752 }
7753
7754 int new_recompile_block(int addr)
7755 {
7756 /*
7757   if(addr==0x800cd050) {
7758     int block;
7759     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7760     int n;
7761     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7762   }
7763 */
7764   //if(Count==365117028) tracedebug=1;
7765   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7766   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7767   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7768   //if(debug) 
7769   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7770   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7771   /*if(Count>=312978186) {
7772     rlist();
7773   }*/
7774   //rlist();
7775   start = (u_int)addr&~3;
7776   //assert(((u_int)addr&1)==0);
7777 #ifdef PCSX
7778   if (Config.HLE && start == 0x80001000) // hlecall
7779   {
7780     // XXX: is this enough? Maybe check hleSoftCall?
7781     u_int beginning=(u_int)out;
7782     u_int page=get_page(start);
7783     invalid_code[start>>12]=0;
7784     emit_movimm(start,0);
7785     emit_writeword(0,(int)&pcaddr);
7786     emit_jmp((int)new_dyna_leave);
7787 #ifdef __arm__
7788     __clear_cache((void *)beginning,out);
7789 #endif
7790     ll_add(jump_in+page,start,(void *)beginning);
7791     return 0;
7792   }
7793   else if ((u_int)addr < 0x00200000 ||
7794     (0xa0000000 <= addr && addr < 0xa0200000)) {
7795     // used for BIOS calls mostly?
7796     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7797     pagelimit = (addr&0xa0000000)|0x00200000;
7798   }
7799   else if (!Config.HLE && (
7800 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7801     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7802     // BIOS
7803     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7804     pagelimit = (addr&0xfff00000)|0x80000;
7805   }
7806   else
7807 #endif
7808 #ifdef MUPEN64
7809   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7810     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7811     pagelimit = 0xa4001000;
7812   }
7813   else
7814 #endif
7815   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7816     source = (u_int *)((u_int)rdram+start-0x80000000);
7817     pagelimit = 0x80000000+RAM_SIZE;
7818   }
7819 #ifndef DISABLE_TLB
7820   else if ((signed int)addr >= (signed int)0xC0000000) {
7821     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7822     //if(tlb_LUT_r[start>>12])
7823       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7824     if((signed int)memory_map[start>>12]>=0) {
7825       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7826       pagelimit=(start+4096)&0xFFFFF000;
7827       int map=memory_map[start>>12];
7828       int i;
7829       for(i=0;i<5;i++) {
7830         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7831         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7832       }
7833       assem_debug("pagelimit=%x\n",pagelimit);
7834       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7835     }
7836     else {
7837       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7838       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7839       return -1; // Caller will invoke exception handler
7840     }
7841     //printf("source= %x\n",(int)source);
7842   }
7843 #endif
7844   else {
7845     printf("Compile at bogus memory address: %x \n", (int)addr);
7846     exit(1);
7847   }
7848
7849   /* Pass 1: disassemble */
7850   /* Pass 2: register dependencies, branch targets */
7851   /* Pass 3: register allocation */
7852   /* Pass 4: branch dependencies */
7853   /* Pass 5: pre-alloc */
7854   /* Pass 6: optimize clean/dirty state */
7855   /* Pass 7: flag 32-bit registers */
7856   /* Pass 8: assembly */
7857   /* Pass 9: linker */
7858   /* Pass 10: garbage collection / free memory */
7859
7860   int i,j;
7861   int done=0;
7862   unsigned int type,op,op2;
7863
7864   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7865   
7866   /* Pass 1 disassembly */
7867
7868   for(i=0;!done;i++) {
7869     bt[i]=0;likely[i]=0;op2=0;
7870     opcode[i]=op=source[i]>>26;
7871     switch(op)
7872     {
7873       case 0x00: strcpy(insn[i],"special"); type=NI;
7874         op2=source[i]&0x3f;
7875         switch(op2)
7876         {
7877           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7878           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7879           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7880           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7881           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7882           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7883           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7884           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7885           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7886           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7887           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7888           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7889           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7890           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7891           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7892           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7893           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7894           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7895           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7896           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7897           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7898           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7899           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7900           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7901           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7902           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7903           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7904           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7905           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7906           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7907           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7908           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7909           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7910           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7911           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7912           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7913           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7914           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7915           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7916           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7917           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7918           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7919           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7920           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7921           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7922           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7923           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7924           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7925           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7926           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7927           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7928           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7929         }
7930         break;
7931       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7932         op2=(source[i]>>16)&0x1f;
7933         switch(op2)
7934         {
7935           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7936           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7937           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7938           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7939           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7940           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7941           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7942           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7943           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7944           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7945           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7946           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7947           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7948           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7949         }
7950         break;
7951       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7952       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7953       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7954       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7955       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7956       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7957       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7958       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7959       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7960       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7961       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7962       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7963       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7964       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7965       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7966         op2=(source[i]>>21)&0x1f;
7967         switch(op2)
7968         {
7969           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7970           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7971           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7972           switch(source[i]&0x3f)
7973           {
7974             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7975             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7976             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7977             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7978 #ifdef PCSX
7979             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7980 #else
7981             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7982 #endif
7983           }
7984         }
7985         break;
7986       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7987         op2=(source[i]>>21)&0x1f;
7988         switch(op2)
7989         {
7990           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7991           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7992           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7993           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7994           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7995           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7996           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7997           switch((source[i]>>16)&0x3)
7998           {
7999             case 0x00: strcpy(insn[i],"BC1F"); break;
8000             case 0x01: strcpy(insn[i],"BC1T"); break;
8001             case 0x02: strcpy(insn[i],"BC1FL"); break;
8002             case 0x03: strcpy(insn[i],"BC1TL"); break;
8003           }
8004           break;
8005           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8006           switch(source[i]&0x3f)
8007           {
8008             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8009             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8010             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8011             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8012             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8013             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8014             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8015             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8016             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8017             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8018             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8019             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8020             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8021             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8022             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8023             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8024             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8025             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8026             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8027             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8028             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8029             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8030             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8031             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8032             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8033             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8034             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8035             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8036             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8037             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8038             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8039             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8040             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8041             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8042             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8043           }
8044           break;
8045           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8046           switch(source[i]&0x3f)
8047           {
8048             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8049             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8050             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8051             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8052             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8053             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8054             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8055             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8056             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8057             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8058             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8059             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8060             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8061             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8062             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8063             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8064             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8065             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8066             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8067             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8068             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8069             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8070             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8071             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8072             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8073             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8074             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8075             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8076             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8077             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8078             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8079             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8080             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8081             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8082             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8083           }
8084           break;
8085           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8086           switch(source[i]&0x3f)
8087           {
8088             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8089             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8090           }
8091           break;
8092           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8093           switch(source[i]&0x3f)
8094           {
8095             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8096             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8097           }
8098           break;
8099         }
8100         break;
8101 #ifndef FORCE32
8102       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8103       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8104       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8105       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8106       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8107       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8108       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8109       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8110 #endif
8111       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8112       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8113       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8114       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8115       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8116       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8117       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8118       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8119       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8120       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8121       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8122       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8123 #ifndef FORCE32
8124       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8125       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8126 #endif
8127       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8128       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8129       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8130       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8131 #ifndef FORCE32
8132       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8133       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8134       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8135 #endif
8136       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8137       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8138 #ifndef FORCE32
8139       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8140       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8141       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8142 #endif
8143 #ifdef PCSX
8144       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8145         // note: COP MIPS-1 encoding differs from MIPS32
8146         op2=(source[i]>>21)&0x1f;
8147         if (source[i]&0x3f) {
8148           if (gte_handlers[source[i]&0x3f]!=NULL) {
8149             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8150             type=C2OP;
8151           }
8152         }
8153         else switch(op2)
8154         {
8155           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8156           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8157           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8158           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8159         }
8160         break;
8161       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8162       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8163       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8164 #endif
8165       default: strcpy(insn[i],"???"); type=NI;
8166         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8167         break;
8168     }
8169 #ifdef PCSX
8170     /* detect branch in delay slot early */
8171     if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8172       opcode[i+1]=source[i+1]>>26;
8173       opcode2[i+1]=source[i+1]&0x3f;
8174       if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8175         printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8176         // don't handle first branch and call interpreter if it's hit
8177         type=INTCALL;
8178       }
8179     }
8180 #endif
8181     itype[i]=type;
8182     opcode2[i]=op2;
8183     /* Get registers/immediates */
8184     lt1[i]=0;
8185     us1[i]=0;
8186     us2[i]=0;
8187     dep1[i]=0;
8188     dep2[i]=0;
8189     switch(type) {
8190       case LOAD:
8191         rs1[i]=(source[i]>>21)&0x1f;
8192         rs2[i]=0;
8193         rt1[i]=(source[i]>>16)&0x1f;
8194         rt2[i]=0;
8195         imm[i]=(short)source[i];
8196         break;
8197       case STORE:
8198       case STORELR:
8199         rs1[i]=(source[i]>>21)&0x1f;
8200         rs2[i]=(source[i]>>16)&0x1f;
8201         rt1[i]=0;
8202         rt2[i]=0;
8203         imm[i]=(short)source[i];
8204         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8205         break;
8206       case LOADLR:
8207         // LWL/LWR only load part of the register,
8208         // therefore the target register must be treated as a source too
8209         rs1[i]=(source[i]>>21)&0x1f;
8210         rs2[i]=(source[i]>>16)&0x1f;
8211         rt1[i]=(source[i]>>16)&0x1f;
8212         rt2[i]=0;
8213         imm[i]=(short)source[i];
8214         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8215         if(op==0x26) dep1[i]=rt1[i]; // LWR
8216         break;
8217       case IMM16:
8218         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8219         else rs1[i]=(source[i]>>21)&0x1f;
8220         rs2[i]=0;
8221         rt1[i]=(source[i]>>16)&0x1f;
8222         rt2[i]=0;
8223         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8224           imm[i]=(unsigned short)source[i];
8225         }else{
8226           imm[i]=(short)source[i];
8227         }
8228         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8229         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8230         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8231         break;
8232       case UJUMP:
8233         rs1[i]=0;
8234         rs2[i]=0;
8235         rt1[i]=0;
8236         rt2[i]=0;
8237         // The JAL instruction writes to r31.
8238         if (op&1) {
8239           rt1[i]=31;
8240         }
8241         rs2[i]=CCREG;
8242         break;
8243       case RJUMP:
8244         rs1[i]=(source[i]>>21)&0x1f;
8245         rs2[i]=0;
8246         rt1[i]=0;
8247         rt2[i]=0;
8248         // The JALR instruction writes to rd.
8249         if (op2&1) {
8250           rt1[i]=(source[i]>>11)&0x1f;
8251         }
8252         rs2[i]=CCREG;
8253         break;
8254       case CJUMP:
8255         rs1[i]=(source[i]>>21)&0x1f;
8256         rs2[i]=(source[i]>>16)&0x1f;
8257         rt1[i]=0;
8258         rt2[i]=0;
8259         if(op&2) { // BGTZ/BLEZ
8260           rs2[i]=0;
8261         }
8262         us1[i]=rs1[i];
8263         us2[i]=rs2[i];
8264         likely[i]=op>>4;
8265         break;
8266       case SJUMP:
8267         rs1[i]=(source[i]>>21)&0x1f;
8268         rs2[i]=CCREG;
8269         rt1[i]=0;
8270         rt2[i]=0;
8271         us1[i]=rs1[i];
8272         if(op2&0x10) { // BxxAL
8273           rt1[i]=31;
8274           // NOTE: If the branch is not taken, r31 is still overwritten
8275         }
8276         likely[i]=(op2&2)>>1;
8277         break;
8278       case FJUMP:
8279         rs1[i]=FSREG;
8280         rs2[i]=CSREG;
8281         rt1[i]=0;
8282         rt2[i]=0;
8283         likely[i]=((source[i])>>17)&1;
8284         break;
8285       case ALU:
8286         rs1[i]=(source[i]>>21)&0x1f; // source
8287         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8288         rt1[i]=(source[i]>>11)&0x1f; // destination
8289         rt2[i]=0;
8290         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8291           us1[i]=rs1[i];us2[i]=rs2[i];
8292         }
8293         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8294           dep1[i]=rs1[i];dep2[i]=rs2[i];
8295         }
8296         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8297           dep1[i]=rs1[i];dep2[i]=rs2[i];
8298         }
8299         break;
8300       case MULTDIV:
8301         rs1[i]=(source[i]>>21)&0x1f; // source
8302         rs2[i]=(source[i]>>16)&0x1f; // divisor
8303         rt1[i]=HIREG;
8304         rt2[i]=LOREG;
8305         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8306           us1[i]=rs1[i];us2[i]=rs2[i];
8307         }
8308         break;
8309       case MOV:
8310         rs1[i]=0;
8311         rs2[i]=0;
8312         rt1[i]=0;
8313         rt2[i]=0;
8314         if(op2==0x10) rs1[i]=HIREG; // MFHI
8315         if(op2==0x11) rt1[i]=HIREG; // MTHI
8316         if(op2==0x12) rs1[i]=LOREG; // MFLO
8317         if(op2==0x13) rt1[i]=LOREG; // MTLO
8318         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8319         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8320         dep1[i]=rs1[i];
8321         break;
8322       case SHIFT:
8323         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8324         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8325         rt1[i]=(source[i]>>11)&0x1f; // destination
8326         rt2[i]=0;
8327         // DSLLV/DSRLV/DSRAV are 64-bit
8328         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8329         break;
8330       case SHIFTIMM:
8331         rs1[i]=(source[i]>>16)&0x1f;
8332         rs2[i]=0;
8333         rt1[i]=(source[i]>>11)&0x1f;
8334         rt2[i]=0;
8335         imm[i]=(source[i]>>6)&0x1f;
8336         // DSxx32 instructions
8337         if(op2>=0x3c) imm[i]|=0x20;
8338         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8339         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8340         break;
8341       case COP0:
8342         rs1[i]=0;
8343         rs2[i]=0;
8344         rt1[i]=0;
8345         rt2[i]=0;
8346         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8347         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8348         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8349         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8350         break;
8351       case COP1:
8352       case COP2:
8353         rs1[i]=0;
8354         rs2[i]=0;
8355         rt1[i]=0;
8356         rt2[i]=0;
8357         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8358         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8359         if(op2==5) us1[i]=rs1[i]; // DMTC1
8360         rs2[i]=CSREG;
8361         break;
8362       case C1LS:
8363         rs1[i]=(source[i]>>21)&0x1F;
8364         rs2[i]=CSREG;
8365         rt1[i]=0;
8366         rt2[i]=0;
8367         imm[i]=(short)source[i];
8368         break;
8369       case C2LS:
8370         rs1[i]=(source[i]>>21)&0x1F;
8371         rs2[i]=0;
8372         rt1[i]=0;
8373         rt2[i]=0;
8374         imm[i]=(short)source[i];
8375         break;
8376       case FLOAT:
8377       case FCONV:
8378         rs1[i]=0;
8379         rs2[i]=CSREG;
8380         rt1[i]=0;
8381         rt2[i]=0;
8382         break;
8383       case FCOMP:
8384         rs1[i]=FSREG;
8385         rs2[i]=CSREG;
8386         rt1[i]=FSREG;
8387         rt2[i]=0;
8388         break;
8389       case SYSCALL:
8390       case HLECALL:
8391       case INTCALL:
8392         rs1[i]=CCREG;
8393         rs2[i]=0;
8394         rt1[i]=0;
8395         rt2[i]=0;
8396         break;
8397       default:
8398         rs1[i]=0;
8399         rs2[i]=0;
8400         rt1[i]=0;
8401         rt2[i]=0;
8402     }
8403     /* Calculate branch target addresses */
8404     if(type==UJUMP)
8405       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8406     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8407       ba[i]=start+i*4+8; // Ignore never taken branch
8408     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8409       ba[i]=start+i*4+8; // Ignore never taken branch
8410     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8411       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8412     else ba[i]=-1;
8413     /* Is this the end of the block? */
8414     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8415       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8416         done=2;
8417       }
8418       else {
8419         if(stop_after_jal) done=1;
8420         // Stop on BREAK
8421         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8422       }
8423       // Don't recompile stuff that's already compiled
8424       if(check_addr(start+i*4+4)) done=1;
8425       // Don't get too close to the limit
8426       if(i>MAXBLOCK/2) done=1;
8427     }
8428     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8429     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8430     if(done==2) {
8431       // Does the block continue due to a branch?
8432       for(j=i-1;j>=0;j--)
8433       {
8434         if(ba[j]==start+i*4+4) done=j=0;
8435         if(ba[j]==start+i*4+8) done=j=0;
8436       }
8437     }
8438     //assert(i<MAXBLOCK-1);
8439     if(start+i*4==pagelimit-4) done=1;
8440     assert(start+i*4<pagelimit);
8441     if (i==MAXBLOCK-1) done=1;
8442     // Stop if we're compiling junk
8443     if(itype[i]==NI&&opcode[i]==0x11) {
8444       done=stop_after_jal=1;
8445       printf("Disabled speculative precompilation\n");
8446     }
8447   }
8448   slen=i;
8449   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8450     if(start+i*4==pagelimit) {
8451       itype[i-1]=SPAN;
8452     }
8453   }
8454   assert(slen>0);
8455
8456   /* Pass 2 - Register dependencies and branch targets */
8457
8458   unneeded_registers(0,slen-1,0);
8459   
8460   /* Pass 3 - Register allocation */
8461
8462   struct regstat current; // Current register allocations/status
8463   current.is32=1;
8464   current.dirty=0;
8465   current.u=unneeded_reg[0];
8466   current.uu=unneeded_reg_upper[0];
8467   clear_all_regs(current.regmap);
8468   alloc_reg(&current,0,CCREG);
8469   dirty_reg(&current,CCREG);
8470   current.isconst=0;
8471   current.wasconst=0;
8472   int ds=0;
8473   int cc=0;
8474   int hr;
8475   
8476   provisional_32bit();
8477   
8478   if((u_int)addr&1) {
8479     // First instruction is delay slot
8480     cc=-1;
8481     bt[1]=1;
8482     ds=1;
8483     unneeded_reg[0]=1;
8484     unneeded_reg_upper[0]=1;
8485     current.regmap[HOST_BTREG]=BTREG;
8486   }
8487   
8488   for(i=0;i<slen;i++)
8489   {
8490     if(bt[i])
8491     {
8492       int hr;
8493       for(hr=0;hr<HOST_REGS;hr++)
8494       {
8495         // Is this really necessary?
8496         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8497       }
8498       current.isconst=0;
8499     }
8500     if(i>1)
8501     {
8502       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8503       {
8504         if(rs1[i-2]==0||rs2[i-2]==0)
8505         {
8506           if(rs1[i-2]) {
8507             current.is32|=1LL<<rs1[i-2];
8508             int hr=get_reg(current.regmap,rs1[i-2]|64);
8509             if(hr>=0) current.regmap[hr]=-1;
8510           }
8511           if(rs2[i-2]) {
8512             current.is32|=1LL<<rs2[i-2];
8513             int hr=get_reg(current.regmap,rs2[i-2]|64);
8514             if(hr>=0) current.regmap[hr]=-1;
8515           }
8516         }
8517       }
8518     }
8519     // If something jumps here with 64-bit values
8520     // then promote those registers to 64 bits
8521     if(bt[i])
8522     {
8523       uint64_t temp_is32=current.is32;
8524       for(j=i-1;j>=0;j--)
8525       {
8526         if(ba[j]==start+i*4) 
8527           temp_is32&=branch_regs[j].is32;
8528       }
8529       for(j=i;j<slen;j++)
8530       {
8531         if(ba[j]==start+i*4) 
8532           //temp_is32=1;
8533           temp_is32&=p32[j];
8534       }
8535       if(temp_is32!=current.is32) {
8536         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8537         #ifdef DESTRUCTIVE_WRITEBACK
8538         for(hr=0;hr<HOST_REGS;hr++)
8539         {
8540           int r=current.regmap[hr];
8541           if(r>0&&r<64)
8542           {
8543             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8544               temp_is32|=1LL<<r;
8545               //printf("restore %d\n",r);
8546             }
8547           }
8548         }
8549         #endif
8550         current.is32=temp_is32;
8551       }
8552     }
8553 #ifdef FORCE32
8554     memset(p32, 0xff, sizeof(p32));
8555     current.is32=-1LL;
8556 #endif
8557
8558     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8559     regs[i].wasconst=current.isconst;
8560     regs[i].was32=current.is32;
8561     regs[i].wasdirty=current.dirty;
8562     #ifdef DESTRUCTIVE_WRITEBACK
8563     // To change a dirty register from 32 to 64 bits, we must write
8564     // it out during the previous cycle (for branches, 2 cycles)
8565     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8566     {
8567       uint64_t temp_is32=current.is32;
8568       for(j=i-1;j>=0;j--)
8569       {
8570         if(ba[j]==start+i*4+4) 
8571           temp_is32&=branch_regs[j].is32;
8572       }
8573       for(j=i;j<slen;j++)
8574       {
8575         if(ba[j]==start+i*4+4) 
8576           //temp_is32=1;
8577           temp_is32&=p32[j];
8578       }
8579       if(temp_is32!=current.is32) {
8580         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8581         for(hr=0;hr<HOST_REGS;hr++)
8582         {
8583           int r=current.regmap[hr];
8584           if(r>0)
8585           {
8586             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8587               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8588               {
8589                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8590                 {
8591                   //printf("dump %d/r%d\n",hr,r);
8592                   current.regmap[hr]=-1;
8593                   if(get_reg(current.regmap,r|64)>=0) 
8594                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8595                 }
8596               }
8597             }
8598           }
8599         }
8600       }
8601     }
8602     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8603     {
8604       uint64_t temp_is32=current.is32;
8605       for(j=i-1;j>=0;j--)
8606       {
8607         if(ba[j]==start+i*4+8) 
8608           temp_is32&=branch_regs[j].is32;
8609       }
8610       for(j=i;j<slen;j++)
8611       {
8612         if(ba[j]==start+i*4+8) 
8613           //temp_is32=1;
8614           temp_is32&=p32[j];
8615       }
8616       if(temp_is32!=current.is32) {
8617         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8618         for(hr=0;hr<HOST_REGS;hr++)
8619         {
8620           int r=current.regmap[hr];
8621           if(r>0)
8622           {
8623             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8624               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8625               {
8626                 //printf("dump %d/r%d\n",hr,r);
8627                 current.regmap[hr]=-1;
8628                 if(get_reg(current.regmap,r|64)>=0) 
8629                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8630               }
8631             }
8632           }
8633         }
8634       }
8635     }
8636     #endif
8637     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8638       if(i+1<slen) {
8639         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8640         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8641         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8642         current.u|=1;
8643         current.uu|=1;
8644       } else {
8645         current.u=1;
8646         current.uu=1;
8647       }
8648     } else {
8649       if(i+1<slen) {
8650         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8651         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8652         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8653         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8654         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8655         current.u|=1;
8656         current.uu|=1;
8657       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8658     }
8659     is_ds[i]=ds;
8660     if(ds) {
8661       ds=0; // Skip delay slot, already allocated as part of branch
8662       // ...but we need to alloc it in case something jumps here
8663       if(i+1<slen) {
8664         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8665         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8666       }else{
8667         current.u=branch_unneeded_reg[i-1];
8668         current.uu=branch_unneeded_reg_upper[i-1];
8669       }
8670       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8671       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8672       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8673       current.u|=1;
8674       current.uu|=1;
8675       struct regstat temp;
8676       memcpy(&temp,&current,sizeof(current));
8677       temp.wasdirty=temp.dirty;
8678       temp.was32=temp.is32;
8679       // TODO: Take into account unconditional branches, as below
8680       delayslot_alloc(&temp,i);
8681       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8682       regs[i].wasdirty=temp.wasdirty;
8683       regs[i].was32=temp.was32;
8684       regs[i].dirty=temp.dirty;
8685       regs[i].is32=temp.is32;
8686       regs[i].isconst=0;
8687       regs[i].wasconst=0;
8688       current.isconst=0;
8689       // Create entry (branch target) regmap
8690       for(hr=0;hr<HOST_REGS;hr++)
8691       {
8692         int r=temp.regmap[hr];
8693         if(r>=0) {
8694           if(r!=regmap_pre[i][hr]) {
8695             regs[i].regmap_entry[hr]=-1;
8696           }
8697           else
8698           {
8699             if(r<64){
8700               if((current.u>>r)&1) {
8701                 regs[i].regmap_entry[hr]=-1;
8702                 regs[i].regmap[hr]=-1;
8703                 //Don't clear regs in the delay slot as the branch might need them
8704                 //current.regmap[hr]=-1;
8705               }else
8706                 regs[i].regmap_entry[hr]=r;
8707             }
8708             else {
8709               if((current.uu>>(r&63))&1) {
8710                 regs[i].regmap_entry[hr]=-1;
8711                 regs[i].regmap[hr]=-1;
8712                 //Don't clear regs in the delay slot as the branch might need them
8713                 //current.regmap[hr]=-1;
8714               }else
8715                 regs[i].regmap_entry[hr]=r;
8716             }
8717           }
8718         } else {
8719           // First instruction expects CCREG to be allocated
8720           if(i==0&&hr==HOST_CCREG) 
8721             regs[i].regmap_entry[hr]=CCREG;
8722           else
8723             regs[i].regmap_entry[hr]=-1;
8724         }
8725       }
8726     }
8727     else { // Not delay slot
8728       switch(itype[i]) {
8729         case UJUMP:
8730           //current.isconst=0; // DEBUG
8731           //current.wasconst=0; // DEBUG
8732           //regs[i].wasconst=0; // DEBUG
8733           clear_const(&current,rt1[i]);
8734           alloc_cc(&current,i);
8735           dirty_reg(&current,CCREG);
8736           if (rt1[i]==31) {
8737             alloc_reg(&current,i,31);
8738             dirty_reg(&current,31);
8739             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8740             assert(rt1[i+1]!=rt1[i]);
8741             #ifdef REG_PREFETCH
8742             alloc_reg(&current,i,PTEMP);
8743             #endif
8744             //current.is32|=1LL<<rt1[i];
8745           }
8746           delayslot_alloc(&current,i+1);
8747           //current.isconst=0; // DEBUG
8748           ds=1;
8749           //printf("i=%d, isconst=%x\n",i,current.isconst);
8750           break;
8751         case RJUMP:
8752           //current.isconst=0;
8753           //current.wasconst=0;
8754           //regs[i].wasconst=0;
8755           clear_const(&current,rs1[i]);
8756           clear_const(&current,rt1[i]);
8757           alloc_cc(&current,i);
8758           dirty_reg(&current,CCREG);
8759           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8760             alloc_reg(&current,i,rs1[i]);
8761             if (rt1[i]!=0) {
8762               alloc_reg(&current,i,rt1[i]);
8763               dirty_reg(&current,rt1[i]);
8764               //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8765               assert(rt1[i+1]!=rt1[i]);
8766               #ifdef REG_PREFETCH
8767               alloc_reg(&current,i,PTEMP);
8768               #endif
8769             }
8770             #ifdef USE_MINI_HT
8771             if(rs1[i]==31) { // JALR
8772               alloc_reg(&current,i,RHASH);
8773               #ifndef HOST_IMM_ADDR32
8774               alloc_reg(&current,i,RHTBL);
8775               #endif
8776             }
8777             #endif
8778             delayslot_alloc(&current,i+1);
8779           } else {
8780             // The delay slot overwrites our source register,
8781             // allocate a temporary register to hold the old value.
8782             current.isconst=0;
8783             current.wasconst=0;
8784             regs[i].wasconst=0;
8785             delayslot_alloc(&current,i+1);
8786             current.isconst=0;
8787             alloc_reg(&current,i,RTEMP);
8788           }
8789           //current.isconst=0; // DEBUG
8790           ds=1;
8791           break;
8792         case CJUMP:
8793           //current.isconst=0;
8794           //current.wasconst=0;
8795           //regs[i].wasconst=0;
8796           clear_const(&current,rs1[i]);
8797           clear_const(&current,rs2[i]);
8798           if((opcode[i]&0x3E)==4) // BEQ/BNE
8799           {
8800             alloc_cc(&current,i);
8801             dirty_reg(&current,CCREG);
8802             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8803             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8804             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8805             {
8806               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8807               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8808             }
8809             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8810                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8811               // The delay slot overwrites one of our conditions.
8812               // Allocate the branch condition registers instead.
8813               // Note that such a sequence of instructions could
8814               // be considered a bug since the branch can not be
8815               // re-executed if an exception occurs.
8816               current.isconst=0;
8817               current.wasconst=0;
8818               regs[i].wasconst=0;
8819               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8820               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8821               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8822               {
8823                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8824                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8825               }
8826             }
8827             else delayslot_alloc(&current,i+1);
8828           }
8829           else
8830           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8831           {
8832             alloc_cc(&current,i);
8833             dirty_reg(&current,CCREG);
8834             alloc_reg(&current,i,rs1[i]);
8835             if(!(current.is32>>rs1[i]&1))
8836             {
8837               alloc_reg64(&current,i,rs1[i]);
8838             }
8839             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8840               // The delay slot overwrites one of our conditions.
8841               // Allocate the branch condition registers instead.
8842               // Note that such a sequence of instructions could
8843               // be considered a bug since the branch can not be
8844               // re-executed if an exception occurs.
8845               current.isconst=0;
8846               current.wasconst=0;
8847               regs[i].wasconst=0;
8848               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8849               if(!((current.is32>>rs1[i])&1))
8850               {
8851                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8852               }
8853             }
8854             else delayslot_alloc(&current,i+1);
8855           }
8856           else
8857           // Don't alloc the delay slot yet because we might not execute it
8858           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8859           {
8860             current.isconst=0;
8861             current.wasconst=0;
8862             regs[i].wasconst=0;
8863             alloc_cc(&current,i);
8864             dirty_reg(&current,CCREG);
8865             alloc_reg(&current,i,rs1[i]);
8866             alloc_reg(&current,i,rs2[i]);
8867             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8868             {
8869               alloc_reg64(&current,i,rs1[i]);
8870               alloc_reg64(&current,i,rs2[i]);
8871             }
8872           }
8873           else
8874           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8875           {
8876             current.isconst=0;
8877             current.wasconst=0;
8878             regs[i].wasconst=0;
8879             alloc_cc(&current,i);
8880             dirty_reg(&current,CCREG);
8881             alloc_reg(&current,i,rs1[i]);
8882             if(!(current.is32>>rs1[i]&1))
8883             {
8884               alloc_reg64(&current,i,rs1[i]);
8885             }
8886           }
8887           ds=1;
8888           //current.isconst=0;
8889           break;
8890         case SJUMP:
8891           //current.isconst=0;
8892           //current.wasconst=0;
8893           //regs[i].wasconst=0;
8894           clear_const(&current,rs1[i]);
8895           clear_const(&current,rt1[i]);
8896           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8897           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8898           {
8899             alloc_cc(&current,i);
8900             dirty_reg(&current,CCREG);
8901             alloc_reg(&current,i,rs1[i]);
8902             if(!(current.is32>>rs1[i]&1))
8903             {
8904               alloc_reg64(&current,i,rs1[i]);
8905             }
8906             if (rt1[i]==31) { // BLTZAL/BGEZAL
8907               alloc_reg(&current,i,31);
8908               dirty_reg(&current,31);
8909               assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8910               //#ifdef REG_PREFETCH
8911               //alloc_reg(&current,i,PTEMP);
8912               //#endif
8913               //current.is32|=1LL<<rt1[i];
8914             }
8915             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8916               // The delay slot overwrites the branch condition.
8917               // Allocate the branch condition registers instead.
8918               // Note that such a sequence of instructions could
8919               // be considered a bug since the branch can not be
8920               // re-executed if an exception occurs.
8921               current.isconst=0;
8922               current.wasconst=0;
8923               regs[i].wasconst=0;
8924               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8925               if(!((current.is32>>rs1[i])&1))
8926               {
8927                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8928               }
8929             }
8930             else delayslot_alloc(&current,i+1);
8931           }
8932           else
8933           // Don't alloc the delay slot yet because we might not execute it
8934           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8935           {
8936             current.isconst=0;
8937             current.wasconst=0;
8938             regs[i].wasconst=0;
8939             alloc_cc(&current,i);
8940             dirty_reg(&current,CCREG);
8941             alloc_reg(&current,i,rs1[i]);
8942             if(!(current.is32>>rs1[i]&1))
8943             {
8944               alloc_reg64(&current,i,rs1[i]);
8945             }
8946           }
8947           ds=1;
8948           //current.isconst=0;
8949           break;
8950         case FJUMP:
8951           current.isconst=0;
8952           current.wasconst=0;
8953           regs[i].wasconst=0;
8954           if(likely[i]==0) // BC1F/BC1T
8955           {
8956             // TODO: Theoretically we can run out of registers here on x86.
8957             // The delay slot can allocate up to six, and we need to check
8958             // CSREG before executing the delay slot.  Possibly we can drop
8959             // the cycle count and then reload it after checking that the
8960             // FPU is in a usable state, or don't do out-of-order execution.
8961             alloc_cc(&current,i);
8962             dirty_reg(&current,CCREG);
8963             alloc_reg(&current,i,FSREG);
8964             alloc_reg(&current,i,CSREG);
8965             if(itype[i+1]==FCOMP) {
8966               // The delay slot overwrites the branch condition.
8967               // Allocate the branch condition registers instead.
8968               // Note that such a sequence of instructions could
8969               // be considered a bug since the branch can not be
8970               // re-executed if an exception occurs.
8971               alloc_cc(&current,i);
8972               dirty_reg(&current,CCREG);
8973               alloc_reg(&current,i,CSREG);
8974               alloc_reg(&current,i,FSREG);
8975             }
8976             else {
8977               delayslot_alloc(&current,i+1);
8978               alloc_reg(&current,i+1,CSREG);
8979             }
8980           }
8981           else
8982           // Don't alloc the delay slot yet because we might not execute it
8983           if(likely[i]) // BC1FL/BC1TL
8984           {
8985             alloc_cc(&current,i);
8986             dirty_reg(&current,CCREG);
8987             alloc_reg(&current,i,CSREG);
8988             alloc_reg(&current,i,FSREG);
8989           }
8990           ds=1;
8991           current.isconst=0;
8992           break;
8993         case IMM16:
8994           imm16_alloc(&current,i);
8995           break;
8996         case LOAD:
8997         case LOADLR:
8998           load_alloc(&current,i);
8999           break;
9000         case STORE:
9001         case STORELR:
9002           store_alloc(&current,i);
9003           break;
9004         case ALU:
9005           alu_alloc(&current,i);
9006           break;
9007         case SHIFT:
9008           shift_alloc(&current,i);
9009           break;
9010         case MULTDIV:
9011           multdiv_alloc(&current,i);
9012           break;
9013         case SHIFTIMM:
9014           shiftimm_alloc(&current,i);
9015           break;
9016         case MOV:
9017           mov_alloc(&current,i);
9018           break;
9019         case COP0:
9020           cop0_alloc(&current,i);
9021           break;
9022         case COP1:
9023         case COP2:
9024           cop1_alloc(&current,i);
9025           break;
9026         case C1LS:
9027           c1ls_alloc(&current,i);
9028           break;
9029         case C2LS:
9030           c2ls_alloc(&current,i);
9031           break;
9032         case C2OP:
9033           c2op_alloc(&current,i);
9034           break;
9035         case FCONV:
9036           fconv_alloc(&current,i);
9037           break;
9038         case FLOAT:
9039           float_alloc(&current,i);
9040           break;
9041         case FCOMP:
9042           fcomp_alloc(&current,i);
9043           break;
9044         case SYSCALL:
9045         case HLECALL:
9046         case INTCALL:
9047           syscall_alloc(&current,i);
9048           break;
9049         case SPAN:
9050           pagespan_alloc(&current,i);
9051           break;
9052       }
9053       
9054       // Drop the upper half of registers that have become 32-bit
9055       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9056       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9057         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9058         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9059         current.uu|=1;
9060       } else {
9061         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9062         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9063         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9064         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9065         current.uu|=1;
9066       }
9067
9068       // Create entry (branch target) regmap
9069       for(hr=0;hr<HOST_REGS;hr++)
9070       {
9071         int r,or,er;
9072         r=current.regmap[hr];
9073         if(r>=0) {
9074           if(r!=regmap_pre[i][hr]) {
9075             // TODO: delay slot (?)
9076             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9077             if(or<0||(r&63)>=TEMPREG){
9078               regs[i].regmap_entry[hr]=-1;
9079             }
9080             else
9081             {
9082               // Just move it to a different register
9083               regs[i].regmap_entry[hr]=r;
9084               // If it was dirty before, it's still dirty
9085               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9086             }
9087           }
9088           else
9089           {
9090             // Unneeded
9091             if(r==0){
9092               regs[i].regmap_entry[hr]=0;
9093             }
9094             else
9095             if(r<64){
9096               if((current.u>>r)&1) {
9097                 regs[i].regmap_entry[hr]=-1;
9098                 //regs[i].regmap[hr]=-1;
9099                 current.regmap[hr]=-1;
9100               }else
9101                 regs[i].regmap_entry[hr]=r;
9102             }
9103             else {
9104               if((current.uu>>(r&63))&1) {
9105                 regs[i].regmap_entry[hr]=-1;
9106                 //regs[i].regmap[hr]=-1;
9107                 current.regmap[hr]=-1;
9108               }else
9109                 regs[i].regmap_entry[hr]=r;
9110             }
9111           }
9112         } else {
9113           // Branches expect CCREG to be allocated at the target
9114           if(regmap_pre[i][hr]==CCREG) 
9115             regs[i].regmap_entry[hr]=CCREG;
9116           else
9117             regs[i].regmap_entry[hr]=-1;
9118         }
9119       }
9120       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9121     }
9122     /* Branch post-alloc */
9123     if(i>0)
9124     {
9125       current.was32=current.is32;
9126       current.wasdirty=current.dirty;
9127       switch(itype[i-1]) {
9128         case UJUMP:
9129           memcpy(&branch_regs[i-1],&current,sizeof(current));
9130           branch_regs[i-1].isconst=0;
9131           branch_regs[i-1].wasconst=0;
9132           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9133           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9134           alloc_cc(&branch_regs[i-1],i-1);
9135           dirty_reg(&branch_regs[i-1],CCREG);
9136           if(rt1[i-1]==31) { // JAL
9137             alloc_reg(&branch_regs[i-1],i-1,31);
9138             dirty_reg(&branch_regs[i-1],31);
9139             branch_regs[i-1].is32|=1LL<<31;
9140           }
9141           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9142           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9143           break;
9144         case RJUMP:
9145           memcpy(&branch_regs[i-1],&current,sizeof(current));
9146           branch_regs[i-1].isconst=0;
9147           branch_regs[i-1].wasconst=0;
9148           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9149           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9150           alloc_cc(&branch_regs[i-1],i-1);
9151           dirty_reg(&branch_regs[i-1],CCREG);
9152           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9153           if(rt1[i-1]!=0) { // JALR
9154             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9155             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9156             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9157           }
9158           #ifdef USE_MINI_HT
9159           if(rs1[i-1]==31) { // JALR
9160             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9161             #ifndef HOST_IMM_ADDR32
9162             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9163             #endif
9164           }
9165           #endif
9166           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9167           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9168           break;
9169         case CJUMP:
9170           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9171           {
9172             alloc_cc(&current,i-1);
9173             dirty_reg(&current,CCREG);
9174             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9175                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9176               // The delay slot overwrote one of our conditions
9177               // Delay slot goes after the test (in order)
9178               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9179               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9180               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9181               current.u|=1;
9182               current.uu|=1;
9183               delayslot_alloc(&current,i);
9184               current.isconst=0;
9185             }
9186             else
9187             {
9188               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9189               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9190               // Alloc the branch condition registers
9191               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9192               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9193               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9194               {
9195                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9196                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9197               }
9198             }
9199             memcpy(&branch_regs[i-1],&current,sizeof(current));
9200             branch_regs[i-1].isconst=0;
9201             branch_regs[i-1].wasconst=0;
9202             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9203             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9204           }
9205           else
9206           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9207           {
9208             alloc_cc(&current,i-1);
9209             dirty_reg(&current,CCREG);
9210             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9211               // The delay slot overwrote the branch condition
9212               // Delay slot goes after the test (in order)
9213               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9214               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9215               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9216               current.u|=1;
9217               current.uu|=1;
9218               delayslot_alloc(&current,i);
9219               current.isconst=0;
9220             }
9221             else
9222             {
9223               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9224               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9225               // Alloc the branch condition register
9226               alloc_reg(&current,i-1,rs1[i-1]);
9227               if(!(current.is32>>rs1[i-1]&1))
9228               {
9229                 alloc_reg64(&current,i-1,rs1[i-1]);
9230               }
9231             }
9232             memcpy(&branch_regs[i-1],&current,sizeof(current));
9233             branch_regs[i-1].isconst=0;
9234             branch_regs[i-1].wasconst=0;
9235             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9236             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9237           }
9238           else
9239           // Alloc the delay slot in case the branch is taken
9240           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9241           {
9242             memcpy(&branch_regs[i-1],&current,sizeof(current));
9243             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9244             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9245             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9246             alloc_cc(&branch_regs[i-1],i);
9247             dirty_reg(&branch_regs[i-1],CCREG);
9248             delayslot_alloc(&branch_regs[i-1],i);
9249             branch_regs[i-1].isconst=0;
9250             alloc_reg(&current,i,CCREG); // Not taken path
9251             dirty_reg(&current,CCREG);
9252             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9253           }
9254           else
9255           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9256           {
9257             memcpy(&branch_regs[i-1],&current,sizeof(current));
9258             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9259             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9260             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9261             alloc_cc(&branch_regs[i-1],i);
9262             dirty_reg(&branch_regs[i-1],CCREG);
9263             delayslot_alloc(&branch_regs[i-1],i);
9264             branch_regs[i-1].isconst=0;
9265             alloc_reg(&current,i,CCREG); // Not taken path
9266             dirty_reg(&current,CCREG);
9267             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9268           }
9269           break;
9270         case SJUMP:
9271           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9272           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9273           {
9274             alloc_cc(&current,i-1);
9275             dirty_reg(&current,CCREG);
9276             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9277               // The delay slot overwrote the branch condition
9278               // Delay slot goes after the test (in order)
9279               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9280               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9281               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9282               current.u|=1;
9283               current.uu|=1;
9284               delayslot_alloc(&current,i);
9285               current.isconst=0;
9286             }
9287             else
9288             {
9289               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9290               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9291               // Alloc the branch condition register
9292               alloc_reg(&current,i-1,rs1[i-1]);
9293               if(!(current.is32>>rs1[i-1]&1))
9294               {
9295                 alloc_reg64(&current,i-1,rs1[i-1]);
9296               }
9297             }
9298             memcpy(&branch_regs[i-1],&current,sizeof(current));
9299             branch_regs[i-1].isconst=0;
9300             branch_regs[i-1].wasconst=0;
9301             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9302             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9303           }
9304           else
9305           // Alloc the delay slot in case the branch is taken
9306           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9307           {
9308             memcpy(&branch_regs[i-1],&current,sizeof(current));
9309             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9310             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9311             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9312             alloc_cc(&branch_regs[i-1],i);
9313             dirty_reg(&branch_regs[i-1],CCREG);
9314             delayslot_alloc(&branch_regs[i-1],i);
9315             branch_regs[i-1].isconst=0;
9316             alloc_reg(&current,i,CCREG); // Not taken path
9317             dirty_reg(&current,CCREG);
9318             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9319           }
9320           // FIXME: BLTZAL/BGEZAL
9321           if(opcode2[i-1]&0x10) { // BxxZAL
9322             alloc_reg(&branch_regs[i-1],i-1,31);
9323             dirty_reg(&branch_regs[i-1],31);
9324             branch_regs[i-1].is32|=1LL<<31;
9325           }
9326           break;
9327         case FJUMP:
9328           if(likely[i-1]==0) // BC1F/BC1T
9329           {
9330             alloc_cc(&current,i-1);
9331             dirty_reg(&current,CCREG);
9332             if(itype[i]==FCOMP) {
9333               // The delay slot overwrote the branch condition
9334               // Delay slot goes after the test (in order)
9335               delayslot_alloc(&current,i);
9336               current.isconst=0;
9337             }
9338             else
9339             {
9340               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9341               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9342               // Alloc the branch condition register
9343               alloc_reg(&current,i-1,FSREG);
9344             }
9345             memcpy(&branch_regs[i-1],&current,sizeof(current));
9346             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9347           }
9348           else // BC1FL/BC1TL
9349           {
9350             // Alloc the delay slot in case the branch is taken
9351             memcpy(&branch_regs[i-1],&current,sizeof(current));
9352             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9353             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9354             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9355             alloc_cc(&branch_regs[i-1],i);
9356             dirty_reg(&branch_regs[i-1],CCREG);
9357             delayslot_alloc(&branch_regs[i-1],i);
9358             branch_regs[i-1].isconst=0;
9359             alloc_reg(&current,i,CCREG); // Not taken path
9360             dirty_reg(&current,CCREG);
9361             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9362           }
9363           break;
9364       }
9365
9366       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9367       {
9368         if(rt1[i-1]==31) // JAL/JALR
9369         {
9370           // Subroutine call will return here, don't alloc any registers
9371           current.is32=1;
9372           current.dirty=0;
9373           clear_all_regs(current.regmap);
9374           alloc_reg(&current,i,CCREG);
9375           dirty_reg(&current,CCREG);
9376         }
9377         else if(i+1<slen)
9378         {
9379           // Internal branch will jump here, match registers to caller
9380           current.is32=0x3FFFFFFFFLL;
9381           current.dirty=0;
9382           clear_all_regs(current.regmap);
9383           alloc_reg(&current,i,CCREG);
9384           dirty_reg(&current,CCREG);
9385           for(j=i-1;j>=0;j--)
9386           {
9387             if(ba[j]==start+i*4+4) {
9388               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9389               current.is32=branch_regs[j].is32;
9390               current.dirty=branch_regs[j].dirty;
9391               break;
9392             }
9393           }
9394           while(j>=0) {
9395             if(ba[j]==start+i*4+4) {
9396               for(hr=0;hr<HOST_REGS;hr++) {
9397                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9398                   current.regmap[hr]=-1;
9399                 }
9400                 current.is32&=branch_regs[j].is32;
9401                 current.dirty&=branch_regs[j].dirty;
9402               }
9403             }
9404             j--;
9405           }
9406         }
9407       }
9408     }
9409
9410     // Count cycles in between branches
9411     ccadj[i]=cc;
9412     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9413     {
9414       cc=0;
9415     }
9416     else
9417     {
9418       cc++;
9419     }
9420
9421     flush_dirty_uppers(&current);
9422     if(!is_ds[i]) {
9423       regs[i].is32=current.is32;
9424       regs[i].dirty=current.dirty;
9425       regs[i].isconst=current.isconst;
9426       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9427     }
9428     for(hr=0;hr<HOST_REGS;hr++) {
9429       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9430         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9431           regs[i].wasconst&=~(1<<hr);
9432         }
9433       }
9434     }
9435     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9436   }
9437   
9438   /* Pass 4 - Cull unused host registers */
9439   
9440   uint64_t nr=0;
9441   
9442   for (i=slen-1;i>=0;i--)
9443   {
9444     int hr;
9445     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9446     {
9447       if(ba[i]<start || ba[i]>=(start+slen*4))
9448       {
9449         // Branch out of this block, don't need anything
9450         nr=0;
9451       }
9452       else
9453       {
9454         // Internal branch
9455         // Need whatever matches the target
9456         nr=0;
9457         int t=(ba[i]-start)>>2;
9458         for(hr=0;hr<HOST_REGS;hr++)
9459         {
9460           if(regs[i].regmap_entry[hr]>=0) {
9461             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9462           }
9463         }
9464       }
9465       // Conditional branch may need registers for following instructions
9466       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9467       {
9468         if(i<slen-2) {
9469           nr|=needed_reg[i+2];
9470           for(hr=0;hr<HOST_REGS;hr++)
9471           {
9472             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9473             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9474           }
9475         }
9476       }
9477       // Don't need stuff which is overwritten
9478       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9479       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9480       // Merge in delay slot
9481       for(hr=0;hr<HOST_REGS;hr++)
9482       {
9483         if(!likely[i]) {
9484           // These are overwritten unless the branch is "likely"
9485           // and the delay slot is nullified if not taken
9486           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9487           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9488         }
9489         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9490         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9491         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9492         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9493         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9494         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9495         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9496         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9497         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9498           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9499           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9500         }
9501         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9502           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9503           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9504         }
9505         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9506           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9507           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9508         }
9509       }
9510     }
9511     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9512     {
9513       // SYSCALL instruction (software interrupt)
9514       nr=0;
9515     }
9516     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9517     {
9518       // ERET instruction (return from interrupt)
9519       nr=0;
9520     }
9521     else // Non-branch
9522     {
9523       if(i<slen-1) {
9524         for(hr=0;hr<HOST_REGS;hr++) {
9525           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9526           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9527           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9528           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9529         }
9530       }
9531     }
9532     for(hr=0;hr<HOST_REGS;hr++)
9533     {
9534       // Overwritten registers are not needed
9535       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9536       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9537       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9538       // Source registers are needed
9539       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9540       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9541       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9542       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9543       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9544       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9545       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9546       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9547       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9548         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9549         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9550       }
9551       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9552         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9553         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9554       }
9555       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9556         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9557         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9558       }
9559       // Don't store a register immediately after writing it,
9560       // may prevent dual-issue.
9561       // But do so if this is a branch target, otherwise we
9562       // might have to load the register before the branch.
9563       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9564         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9565            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9566           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9567           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9568         }
9569         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9570            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9571           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9572           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9573         }
9574       }
9575     }
9576     // Cycle count is needed at branches.  Assume it is needed at the target too.
9577     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9578       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9579       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9580     }
9581     // Save it
9582     needed_reg[i]=nr;
9583     
9584     // Deallocate unneeded registers
9585     for(hr=0;hr<HOST_REGS;hr++)
9586     {
9587       if(!((nr>>hr)&1)) {
9588         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9589         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9590            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9591            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9592         {
9593           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9594           {
9595             if(likely[i]) {
9596               regs[i].regmap[hr]=-1;
9597               regs[i].isconst&=~(1<<hr);
9598               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9599             }
9600           }
9601         }
9602         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9603         {
9604           int d1=0,d2=0,map=0,temp=0;
9605           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9606           {
9607             d1=dep1[i+1];
9608             d2=dep2[i+1];
9609           }
9610           if(using_tlb) {
9611             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9612                itype[i+1]==STORE || itype[i+1]==STORELR ||
9613                itype[i+1]==C1LS || itype[i+1]==C2LS)
9614             map=TLREG;
9615           } else
9616           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9617              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9618             map=INVCP;
9619           }
9620           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9621              itype[i+1]==C1LS || itype[i+1]==C2LS)
9622             temp=FTEMP;
9623           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9624              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9625              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9626              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9627              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9628              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9629              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9630              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9631              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9632              regs[i].regmap[hr]!=map )
9633           {
9634             regs[i].regmap[hr]=-1;
9635             regs[i].isconst&=~(1<<hr);
9636             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9637                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9638                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9639                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9640                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9641                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9642                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9643                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9644                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9645                branch_regs[i].regmap[hr]!=map)
9646             {
9647               branch_regs[i].regmap[hr]=-1;
9648               branch_regs[i].regmap_entry[hr]=-1;
9649               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9650               {
9651                 if(!likely[i]&&i<slen-2) {
9652                   regmap_pre[i+2][hr]=-1;
9653                 }
9654               }
9655             }
9656           }
9657         }
9658         else
9659         {
9660           // Non-branch
9661           if(i>0)
9662           {
9663             int d1=0,d2=0,map=-1,temp=-1;
9664             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9665             {
9666               d1=dep1[i];
9667               d2=dep2[i];
9668             }
9669             if(using_tlb) {
9670               if(itype[i]==LOAD || itype[i]==LOADLR ||
9671                  itype[i]==STORE || itype[i]==STORELR ||
9672                  itype[i]==C1LS || itype[i]==C2LS)
9673               map=TLREG;
9674             } else if(itype[i]==STORE || itype[i]==STORELR ||
9675                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9676               map=INVCP;
9677             }
9678             if(itype[i]==LOADLR || itype[i]==STORELR ||
9679                itype[i]==C1LS || itype[i]==C2LS)
9680               temp=FTEMP;
9681             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9682                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9683                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9684                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9685                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9686                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9687             {
9688               if(i<slen-1&&!is_ds[i]) {
9689                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9690                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9691                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9692                 {
9693                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9694                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9695                 }
9696                 regmap_pre[i+1][hr]=-1;
9697                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9698               }
9699               regs[i].regmap[hr]=-1;
9700               regs[i].isconst&=~(1<<hr);
9701             }
9702           }
9703         }
9704       }
9705     }
9706   }
9707   
9708   /* Pass 5 - Pre-allocate registers */
9709   
9710   // If a register is allocated during a loop, try to allocate it for the
9711   // entire loop, if possible.  This avoids loading/storing registers
9712   // inside of the loop.
9713
9714   signed char f_regmap[HOST_REGS];
9715   clear_all_regs(f_regmap);
9716   for(i=0;i<slen-1;i++)
9717   {
9718     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9719     {
9720       if(ba[i]>=start && ba[i]<(start+i*4)) 
9721       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9722       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9723       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9724       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9725       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9726       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9727       {
9728         int t=(ba[i]-start)>>2;
9729         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9730         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9731         for(hr=0;hr<HOST_REGS;hr++)
9732         {
9733           if(regs[i].regmap[hr]>64) {
9734             if(!((regs[i].dirty>>hr)&1))
9735               f_regmap[hr]=regs[i].regmap[hr];
9736             else f_regmap[hr]=-1;
9737           }
9738           else if(regs[i].regmap[hr]>=0) {
9739             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9740               // dealloc old register
9741               int n;
9742               for(n=0;n<HOST_REGS;n++)
9743               {
9744                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9745               }
9746               // and alloc new one
9747               f_regmap[hr]=regs[i].regmap[hr];
9748             }
9749           }
9750           if(branch_regs[i].regmap[hr]>64) {
9751             if(!((branch_regs[i].dirty>>hr)&1))
9752               f_regmap[hr]=branch_regs[i].regmap[hr];
9753             else f_regmap[hr]=-1;
9754           }
9755           else if(branch_regs[i].regmap[hr]>=0) {
9756             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9757               // dealloc old register
9758               int n;
9759               for(n=0;n<HOST_REGS;n++)
9760               {
9761                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9762               }
9763               // and alloc new one
9764               f_regmap[hr]=branch_regs[i].regmap[hr];
9765             }
9766           }
9767           if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9768           ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9769           ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9770           ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9771           {
9772             // Test both in case the delay slot is ooo,
9773             // could be done better...
9774             if(count_free_regs(branch_regs[i].regmap)<2
9775              ||count_free_regs(regs[i].regmap)<2) 
9776               f_regmap[hr]=branch_regs[i].regmap[hr];
9777           }
9778           // Avoid dirty->clean transition
9779           // #ifdef DESTRUCTIVE_WRITEBACK here?
9780           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9781           if(f_regmap[hr]>0) {
9782             if(regs[t].regmap_entry[hr]<0) {
9783               int r=f_regmap[hr];
9784               for(j=t;j<=i;j++)
9785               {
9786                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9787                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9788                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9789                 if(r>63) {
9790                   // NB This can exclude the case where the upper-half
9791                   // register is lower numbered than the lower-half
9792                   // register.  Not sure if it's worth fixing...
9793                   if(get_reg(regs[j].regmap,r&63)<0) break;
9794                   if(regs[j].is32&(1LL<<(r&63))) break;
9795                 }
9796                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9797                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9798                   int k;
9799                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9800                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9801                     if(r>63) {
9802                       if(get_reg(regs[i].regmap,r&63)<0) break;
9803                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9804                     }
9805                     k=i;
9806                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9807                       if(itype[k-1]==STORE||itype[k-1]==STORELR
9808                       ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9809                       ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9810                       ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9811                         if(count_free_regs(regs[k-1].regmap)<2) {
9812                           //printf("no free regs for store %x\n",start+(k-1)*4);
9813                           break;
9814                         }
9815                       }
9816                       else
9817                       if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9818                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9819                         //printf("no-match due to different register\n");
9820                         break;
9821                       }
9822                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9823                         //printf("no-match due to branch\n");
9824                         break;
9825                       }
9826                       // call/ret fast path assumes no registers allocated
9827                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9828                         break;
9829                       }
9830                       if(r>63) {
9831                         // NB This can exclude the case where the upper-half
9832                         // register is lower numbered than the lower-half
9833                         // register.  Not sure if it's worth fixing...
9834                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9835                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9836                       }
9837                       k--;
9838                     }
9839                     if(i<slen-1) {
9840                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9841                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9842                         //printf("bad match after branch\n");
9843                         break;
9844                       }
9845                     }
9846                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9847                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9848                       while(k<i) {
9849                         regs[k].regmap_entry[hr]=f_regmap[hr];
9850                         regs[k].regmap[hr]=f_regmap[hr];
9851                         regmap_pre[k+1][hr]=f_regmap[hr];
9852                         regs[k].wasdirty&=~(1<<hr);
9853                         regs[k].dirty&=~(1<<hr);
9854                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9855                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9856                         regs[k].wasconst&=~(1<<hr);
9857                         regs[k].isconst&=~(1<<hr);
9858                         k++;
9859                       }
9860                     }
9861                     else {
9862                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9863                       break;
9864                     }
9865                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9866                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9867                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9868                       regs[i].regmap_entry[hr]=f_regmap[hr];
9869                       regs[i].regmap[hr]=f_regmap[hr];
9870                       regs[i].wasdirty&=~(1<<hr);
9871                       regs[i].dirty&=~(1<<hr);
9872                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9873                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9874                       regs[i].wasconst&=~(1<<hr);
9875                       regs[i].isconst&=~(1<<hr);
9876                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9877                       branch_regs[i].wasdirty&=~(1<<hr);
9878                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9879                       branch_regs[i].regmap[hr]=f_regmap[hr];
9880                       branch_regs[i].dirty&=~(1<<hr);
9881                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9882                       branch_regs[i].wasconst&=~(1<<hr);
9883                       branch_regs[i].isconst&=~(1<<hr);
9884                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9885                         regmap_pre[i+2][hr]=f_regmap[hr];
9886                         regs[i+2].wasdirty&=~(1<<hr);
9887                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9888                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9889                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9890                       }
9891                     }
9892                   }
9893                   for(k=t;k<j;k++) {
9894                     regs[k].regmap_entry[hr]=f_regmap[hr];
9895                     regs[k].regmap[hr]=f_regmap[hr];
9896                     regmap_pre[k+1][hr]=f_regmap[hr];
9897                     regs[k+1].wasdirty&=~(1<<hr);
9898                     regs[k].dirty&=~(1<<hr);
9899                     regs[k].wasconst&=~(1<<hr);
9900                     regs[k].isconst&=~(1<<hr);
9901                   }
9902                   if(regs[j].regmap[hr]==f_regmap[hr])
9903                     regs[j].regmap_entry[hr]=f_regmap[hr];
9904                   break;
9905                 }
9906                 if(j==i) break;
9907                 if(regs[j].regmap[hr]>=0)
9908                   break;
9909                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9910                   //printf("no-match due to different register\n");
9911                   break;
9912                 }
9913                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9914                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9915                   break;
9916                 }
9917                 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9918                 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9919                 ||itype[j]==FCOMP||itype[j]==FCONV
9920                 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9921                   if(count_free_regs(regs[j].regmap)<2) {
9922                     //printf("No free regs for store %x\n",start+j*4);
9923                     break;
9924                   }
9925                 }
9926                 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9927                 if(f_regmap[hr]>=64) {
9928                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9929                     break;
9930                   }
9931                   else
9932                   {
9933                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9934                       break;
9935                     }
9936                   }
9937                 }
9938               }
9939             }
9940           }
9941         }
9942       }
9943     }else{
9944       int count=0;
9945       for(hr=0;hr<HOST_REGS;hr++)
9946       {
9947         if(hr!=EXCLUDE_REG) {
9948           if(regs[i].regmap[hr]>64) {
9949             if(!((regs[i].dirty>>hr)&1))
9950               f_regmap[hr]=regs[i].regmap[hr];
9951           }
9952           else if(regs[i].regmap[hr]>=0) {
9953             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9954               // dealloc old register
9955               int n;
9956               for(n=0;n<HOST_REGS;n++)
9957               {
9958                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9959               }
9960               // and alloc new one
9961               f_regmap[hr]=regs[i].regmap[hr];
9962             }
9963           }
9964           else if(regs[i].regmap[hr]<0) count++;
9965         }
9966       }
9967       // Try to restore cycle count at branch targets
9968       if(bt[i]) {
9969         for(j=i;j<slen-1;j++) {
9970           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9971           if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9972           ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9973           ||itype[j]==FCOMP||itype[j]==FCONV
9974           ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9975             if(count_free_regs(regs[j].regmap)<2) {
9976               //printf("no free regs for store %x\n",start+j*4);
9977               break;
9978             }
9979           }
9980           else
9981           if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9982         }
9983         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9984           int k=i;
9985           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9986           while(k<j) {
9987             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9988             regs[k].regmap[HOST_CCREG]=CCREG;
9989             regmap_pre[k+1][HOST_CCREG]=CCREG;
9990             regs[k+1].wasdirty|=1<<HOST_CCREG;
9991             regs[k].dirty|=1<<HOST_CCREG;
9992             regs[k].wasconst&=~(1<<HOST_CCREG);
9993             regs[k].isconst&=~(1<<HOST_CCREG);
9994             k++;
9995           }
9996           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
9997         }
9998         // Work backwards from the branch target
9999         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10000         {
10001           //printf("Extend backwards\n");
10002           int k;
10003           k=i;
10004           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10005             if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
10006             ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
10007             ||itype[k-1]==FCONV||itype[k-1]==FCOMP
10008             ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
10009               if(count_free_regs(regs[k-1].regmap)<2) {
10010                 //printf("no free regs for store %x\n",start+(k-1)*4);
10011                 break;
10012               }
10013             }
10014             else
10015             if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
10016             k--;
10017           }
10018           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10019             //printf("Extend CC, %x ->\n",start+k*4);
10020             while(k<=i) {
10021               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10022               regs[k].regmap[HOST_CCREG]=CCREG;
10023               regmap_pre[k+1][HOST_CCREG]=CCREG;
10024               regs[k+1].wasdirty|=1<<HOST_CCREG;
10025               regs[k].dirty|=1<<HOST_CCREG;
10026               regs[k].wasconst&=~(1<<HOST_CCREG);
10027               regs[k].isconst&=~(1<<HOST_CCREG);
10028               k++;
10029             }
10030           }
10031           else {
10032             //printf("Fail Extend CC, %x ->\n",start+k*4);
10033           }
10034         }
10035       }
10036       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10037          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10038          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10039          itype[i]!=FCONV&&itype[i]!=FCOMP&&
10040          itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
10041       {
10042         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10043       }
10044     }
10045   }
10046   
10047   // This allocates registers (if possible) one instruction prior
10048   // to use, which can avoid a load-use penalty on certain CPUs.
10049   for(i=0;i<slen-1;i++)
10050   {
10051     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10052     {
10053       if(!bt[i+1])
10054       {
10055         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10056            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10057         {
10058           if(rs1[i+1]) {
10059             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10060             {
10061               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10062               {
10063                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10064                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10065                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10066                 regs[i].isconst&=~(1<<hr);
10067                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10068                 constmap[i][hr]=constmap[i+1][hr];
10069                 regs[i+1].wasdirty&=~(1<<hr);
10070                 regs[i].dirty&=~(1<<hr);
10071               }
10072             }
10073           }
10074           if(rs2[i+1]) {
10075             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10076             {
10077               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10078               {
10079                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10080                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10081                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10082                 regs[i].isconst&=~(1<<hr);
10083                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10084                 constmap[i][hr]=constmap[i+1][hr];
10085                 regs[i+1].wasdirty&=~(1<<hr);
10086                 regs[i].dirty&=~(1<<hr);
10087               }
10088             }
10089           }
10090           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10091             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10092             {
10093               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10094               {
10095                 regs[i].regmap[hr]=rs1[i+1];
10096                 regmap_pre[i+1][hr]=rs1[i+1];
10097                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10098                 regs[i].isconst&=~(1<<hr);
10099                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10100                 constmap[i][hr]=constmap[i+1][hr];
10101                 regs[i+1].wasdirty&=~(1<<hr);
10102                 regs[i].dirty&=~(1<<hr);
10103               }
10104             }
10105           }
10106           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10107             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10108             {
10109               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10110               {
10111                 regs[i].regmap[hr]=rs1[i+1];
10112                 regmap_pre[i+1][hr]=rs1[i+1];
10113                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10114                 regs[i].isconst&=~(1<<hr);
10115                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10116                 constmap[i][hr]=constmap[i+1][hr];
10117                 regs[i+1].wasdirty&=~(1<<hr);
10118                 regs[i].dirty&=~(1<<hr);
10119               }
10120             }
10121           }
10122           #ifndef HOST_IMM_ADDR32
10123           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10124             hr=get_reg(regs[i+1].regmap,TLREG);
10125             if(hr>=0) {
10126               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10127               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10128                 int nr;
10129                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10130                 {
10131                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10132                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10133                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10134                   regs[i].isconst&=~(1<<hr);
10135                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10136                   constmap[i][hr]=constmap[i+1][hr];
10137                   regs[i+1].wasdirty&=~(1<<hr);
10138                   regs[i].dirty&=~(1<<hr);
10139                 }
10140                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10141                 {
10142                   // move it to another register
10143                   regs[i+1].regmap[hr]=-1;
10144                   regmap_pre[i+2][hr]=-1;
10145                   regs[i+1].regmap[nr]=TLREG;
10146                   regmap_pre[i+2][nr]=TLREG;
10147                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10148                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10149                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10150                   regs[i].isconst&=~(1<<nr);
10151                   regs[i+1].isconst&=~(1<<nr);
10152                   regs[i].dirty&=~(1<<nr);
10153                   regs[i+1].wasdirty&=~(1<<nr);
10154                   regs[i+1].dirty&=~(1<<nr);
10155                   regs[i+2].wasdirty&=~(1<<nr);
10156                 }
10157               }
10158             }
10159           }
10160           #endif
10161           if(itype[i+1]==STORE||itype[i+1]==STORELR
10162              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10163             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10164               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10165               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10166               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10167               assert(hr>=0);
10168               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10169               {
10170                 regs[i].regmap[hr]=rs1[i+1];
10171                 regmap_pre[i+1][hr]=rs1[i+1];
10172                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10173                 regs[i].isconst&=~(1<<hr);
10174                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10175                 constmap[i][hr]=constmap[i+1][hr];
10176                 regs[i+1].wasdirty&=~(1<<hr);
10177                 regs[i].dirty&=~(1<<hr);
10178               }
10179             }
10180           }
10181           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10182             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10183               int nr;
10184               hr=get_reg(regs[i+1].regmap,FTEMP);
10185               assert(hr>=0);
10186               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10187               {
10188                 regs[i].regmap[hr]=rs1[i+1];
10189                 regmap_pre[i+1][hr]=rs1[i+1];
10190                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10191                 regs[i].isconst&=~(1<<hr);
10192                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10193                 constmap[i][hr]=constmap[i+1][hr];
10194                 regs[i+1].wasdirty&=~(1<<hr);
10195                 regs[i].dirty&=~(1<<hr);
10196               }
10197               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10198               {
10199                 // move it to another register
10200                 regs[i+1].regmap[hr]=-1;
10201                 regmap_pre[i+2][hr]=-1;
10202                 regs[i+1].regmap[nr]=FTEMP;
10203                 regmap_pre[i+2][nr]=FTEMP;
10204                 regs[i].regmap[nr]=rs1[i+1];
10205                 regmap_pre[i+1][nr]=rs1[i+1];
10206                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10207                 regs[i].isconst&=~(1<<nr);
10208                 regs[i+1].isconst&=~(1<<nr);
10209                 regs[i].dirty&=~(1<<nr);
10210                 regs[i+1].wasdirty&=~(1<<nr);
10211                 regs[i+1].dirty&=~(1<<nr);
10212                 regs[i+2].wasdirty&=~(1<<nr);
10213               }
10214             }
10215           }
10216           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10217             if(itype[i+1]==LOAD) 
10218               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10219             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10220               hr=get_reg(regs[i+1].regmap,FTEMP);
10221             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10222               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10223               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10224             }
10225             if(hr>=0&&regs[i].regmap[hr]<0) {
10226               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10227               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10228                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10229                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10230                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10231                 regs[i].isconst&=~(1<<hr);
10232                 regs[i+1].wasdirty&=~(1<<hr);
10233                 regs[i].dirty&=~(1<<hr);
10234               }
10235             }
10236           }
10237         }
10238       }
10239     }
10240   }
10241   
10242   /* Pass 6 - Optimize clean/dirty state */
10243   clean_registers(0,slen-1,1);
10244   
10245   /* Pass 7 - Identify 32-bit registers */
10246   
10247   provisional_r32();
10248
10249   u_int r32=0;
10250   
10251   for (i=slen-1;i>=0;i--)
10252   {
10253     int hr;
10254     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10255     {
10256       if(ba[i]<start || ba[i]>=(start+slen*4))
10257       {
10258         // Branch out of this block, don't need anything
10259         r32=0;
10260       }
10261       else
10262       {
10263         // Internal branch
10264         // Need whatever matches the target
10265         // (and doesn't get overwritten by the delay slot instruction)
10266         r32=0;
10267         int t=(ba[i]-start)>>2;
10268         if(ba[i]>start+i*4) {
10269           // Forward branch
10270           if(!(requires_32bit[t]&~regs[i].was32))
10271             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10272         }else{
10273           // Backward branch
10274           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10275           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10276           if(!(pr32[t]&~regs[i].was32))
10277             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10278         }
10279       }
10280       // Conditional branch may need registers for following instructions
10281       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10282       {
10283         if(i<slen-2) {
10284           r32|=requires_32bit[i+2];
10285           r32&=regs[i].was32;
10286           // Mark this address as a branch target since it may be called
10287           // upon return from interrupt
10288           bt[i+2]=1;
10289         }
10290       }
10291       // Merge in delay slot
10292       if(!likely[i]) {
10293         // These are overwritten unless the branch is "likely"
10294         // and the delay slot is nullified if not taken
10295         r32&=~(1LL<<rt1[i+1]);
10296         r32&=~(1LL<<rt2[i+1]);
10297       }
10298       // Assume these are needed (delay slot)
10299       if(us1[i+1]>0)
10300       {
10301         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10302       }
10303       if(us2[i+1]>0)
10304       {
10305         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10306       }
10307       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10308       {
10309         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10310       }
10311       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10312       {
10313         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10314       }
10315     }
10316     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10317     {
10318       // SYSCALL instruction (software interrupt)
10319       r32=0;
10320     }
10321     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10322     {
10323       // ERET instruction (return from interrupt)
10324       r32=0;
10325     }
10326     // Check 32 bits
10327     r32&=~(1LL<<rt1[i]);
10328     r32&=~(1LL<<rt2[i]);
10329     if(us1[i]>0)
10330     {
10331       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10332     }
10333     if(us2[i]>0)
10334     {
10335       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10336     }
10337     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10338     {
10339       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10340     }
10341     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10342     {
10343       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10344     }
10345     requires_32bit[i]=r32;
10346     
10347     // Dirty registers which are 32-bit, require 32-bit input
10348     // as they will be written as 32-bit values
10349     for(hr=0;hr<HOST_REGS;hr++)
10350     {
10351       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10352         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10353           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10354           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10355         }
10356       }
10357     }
10358     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10359   }
10360
10361   if(itype[slen-1]==SPAN) {
10362     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10363   }
10364   
10365   /* Debug/disassembly */
10366   if((void*)assem_debug==(void*)printf) 
10367   for(i=0;i<slen;i++)
10368   {
10369     printf("U:");
10370     int r;
10371     for(r=1;r<=CCREG;r++) {
10372       if((unneeded_reg[i]>>r)&1) {
10373         if(r==HIREG) printf(" HI");
10374         else if(r==LOREG) printf(" LO");
10375         else printf(" r%d",r);
10376       }
10377     }
10378 #ifndef FORCE32
10379     printf(" UU:");
10380     for(r=1;r<=CCREG;r++) {
10381       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10382         if(r==HIREG) printf(" HI");
10383         else if(r==LOREG) printf(" LO");
10384         else printf(" r%d",r);
10385       }
10386     }
10387     printf(" 32:");
10388     for(r=0;r<=CCREG;r++) {
10389       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10390       if((regs[i].was32>>r)&1) {
10391         if(r==CCREG) printf(" CC");
10392         else if(r==HIREG) printf(" HI");
10393         else if(r==LOREG) printf(" LO");
10394         else printf(" r%d",r);
10395       }
10396     }
10397 #endif
10398     printf("\n");
10399     #if defined(__i386__) || defined(__x86_64__)
10400     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10401     #endif
10402     #ifdef __arm__
10403     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10404     #endif
10405     printf("needs: ");
10406     if(needed_reg[i]&1) printf("eax ");
10407     if((needed_reg[i]>>1)&1) printf("ecx ");
10408     if((needed_reg[i]>>2)&1) printf("edx ");
10409     if((needed_reg[i]>>3)&1) printf("ebx ");
10410     if((needed_reg[i]>>5)&1) printf("ebp ");
10411     if((needed_reg[i]>>6)&1) printf("esi ");
10412     if((needed_reg[i]>>7)&1) printf("edi ");
10413     printf("r:");
10414     for(r=0;r<=CCREG;r++) {
10415       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10416       if((requires_32bit[i]>>r)&1) {
10417         if(r==CCREG) printf(" CC");
10418         else if(r==HIREG) printf(" HI");
10419         else if(r==LOREG) printf(" LO");
10420         else printf(" r%d",r);
10421       }
10422     }
10423     printf("\n");
10424     /*printf("pr:");
10425     for(r=0;r<=CCREG;r++) {
10426       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10427       if((pr32[i]>>r)&1) {
10428         if(r==CCREG) printf(" CC");
10429         else if(r==HIREG) printf(" HI");
10430         else if(r==LOREG) printf(" LO");
10431         else printf(" r%d",r);
10432       }
10433     }
10434     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10435     printf("\n");*/
10436     #if defined(__i386__) || defined(__x86_64__)
10437     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10438     printf("dirty: ");
10439     if(regs[i].wasdirty&1) printf("eax ");
10440     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10441     if((regs[i].wasdirty>>2)&1) printf("edx ");
10442     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10443     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10444     if((regs[i].wasdirty>>6)&1) printf("esi ");
10445     if((regs[i].wasdirty>>7)&1) printf("edi ");
10446     #endif
10447     #ifdef __arm__
10448     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10449     printf("dirty: ");
10450     if(regs[i].wasdirty&1) printf("r0 ");
10451     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10452     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10453     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10454     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10455     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10456     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10457     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10458     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10459     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10460     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10461     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10462     #endif
10463     printf("\n");
10464     disassemble_inst(i);
10465     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10466     #if defined(__i386__) || defined(__x86_64__)
10467     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10468     if(regs[i].dirty&1) printf("eax ");
10469     if((regs[i].dirty>>1)&1) printf("ecx ");
10470     if((regs[i].dirty>>2)&1) printf("edx ");
10471     if((regs[i].dirty>>3)&1) printf("ebx ");
10472     if((regs[i].dirty>>5)&1) printf("ebp ");
10473     if((regs[i].dirty>>6)&1) printf("esi ");
10474     if((regs[i].dirty>>7)&1) printf("edi ");
10475     #endif
10476     #ifdef __arm__
10477     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10478     if(regs[i].dirty&1) printf("r0 ");
10479     if((regs[i].dirty>>1)&1) printf("r1 ");
10480     if((regs[i].dirty>>2)&1) printf("r2 ");
10481     if((regs[i].dirty>>3)&1) printf("r3 ");
10482     if((regs[i].dirty>>4)&1) printf("r4 ");
10483     if((regs[i].dirty>>5)&1) printf("r5 ");
10484     if((regs[i].dirty>>6)&1) printf("r6 ");
10485     if((regs[i].dirty>>7)&1) printf("r7 ");
10486     if((regs[i].dirty>>8)&1) printf("r8 ");
10487     if((regs[i].dirty>>9)&1) printf("r9 ");
10488     if((regs[i].dirty>>10)&1) printf("r10 ");
10489     if((regs[i].dirty>>12)&1) printf("r12 ");
10490     #endif
10491     printf("\n");
10492     if(regs[i].isconst) {
10493       printf("constants: ");
10494       #if defined(__i386__) || defined(__x86_64__)
10495       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10496       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10497       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10498       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10499       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10500       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10501       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10502       #endif
10503       #ifdef __arm__
10504       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10505       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10506       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10507       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10508       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10509       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10510       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10511       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10512       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10513       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10514       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10515       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10516       #endif
10517       printf("\n");
10518     }
10519 #ifndef FORCE32
10520     printf(" 32:");
10521     for(r=0;r<=CCREG;r++) {
10522       if((regs[i].is32>>r)&1) {
10523         if(r==CCREG) printf(" CC");
10524         else if(r==HIREG) printf(" HI");
10525         else if(r==LOREG) printf(" LO");
10526         else printf(" r%d",r);
10527       }
10528     }
10529     printf("\n");
10530 #endif
10531     /*printf(" p32:");
10532     for(r=0;r<=CCREG;r++) {
10533       if((p32[i]>>r)&1) {
10534         if(r==CCREG) printf(" CC");
10535         else if(r==HIREG) printf(" HI");
10536         else if(r==LOREG) printf(" LO");
10537         else printf(" r%d",r);
10538       }
10539     }
10540     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10541     else printf("\n");*/
10542     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10543       #if defined(__i386__) || defined(__x86_64__)
10544       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10545       if(branch_regs[i].dirty&1) printf("eax ");
10546       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10547       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10548       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10549       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10550       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10551       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10552       #endif
10553       #ifdef __arm__
10554       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10555       if(branch_regs[i].dirty&1) printf("r0 ");
10556       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10557       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10558       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10559       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10560       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10561       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10562       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10563       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10564       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10565       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10566       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10567       #endif
10568 #ifndef FORCE32
10569       printf(" 32:");
10570       for(r=0;r<=CCREG;r++) {
10571         if((branch_regs[i].is32>>r)&1) {
10572           if(r==CCREG) printf(" CC");
10573           else if(r==HIREG) printf(" HI");
10574           else if(r==LOREG) printf(" LO");
10575           else printf(" r%d",r);
10576         }
10577       }
10578       printf("\n");
10579 #endif
10580     }
10581   }
10582
10583   /* Pass 8 - Assembly */
10584   linkcount=0;stubcount=0;
10585   ds=0;is_delayslot=0;
10586   cop1_usable=0;
10587   uint64_t is32_pre=0;
10588   u_int dirty_pre=0;
10589   u_int beginning=(u_int)out;
10590   if((u_int)addr&1) {
10591     ds=1;
10592     pagespan_ds();
10593   }
10594   u_int instr_addr0_override=0;
10595
10596 #ifdef PCSX
10597   if (start == 0x80030000) {
10598     // nasty hack for fastbios thing
10599     instr_addr0_override=(u_int)out;
10600     emit_movimm(start,0);
10601     emit_readword((int)&pcaddr,1);
10602     emit_writeword(0,(int)&pcaddr);
10603     emit_cmp(0,1);
10604     emit_jne((int)new_dyna_leave);
10605   }
10606 #endif
10607   for(i=0;i<slen;i++)
10608   {
10609     //if(ds) printf("ds: ");
10610     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10611     if(ds) {
10612       ds=0; // Skip delay slot
10613       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10614       instr_addr[i]=0;
10615     } else {
10616       #ifndef DESTRUCTIVE_WRITEBACK
10617       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10618       {
10619         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10620               unneeded_reg[i],unneeded_reg_upper[i]);
10621         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10622               unneeded_reg[i],unneeded_reg_upper[i]);
10623       }
10624       is32_pre=regs[i].is32;
10625       dirty_pre=regs[i].dirty;
10626       #endif
10627       // write back
10628       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10629       {
10630         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10631                       unneeded_reg[i],unneeded_reg_upper[i]);
10632         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10633       }
10634       // branch target entry point
10635       instr_addr[i]=(u_int)out;
10636       assem_debug("<->\n");
10637       // load regs
10638       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10639         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10640       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10641       address_generation(i,&regs[i],regs[i].regmap_entry);
10642       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10643       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10644       {
10645         // Load the delay slot registers if necessary
10646         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10647           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10648         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10649           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10650         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10651           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10652       }
10653       else if(i+1<slen)
10654       {
10655         // Preload registers for following instruction
10656         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10657           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10658             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10659         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10660           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10661             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10662       }
10663       // TODO: if(is_ooo(i)) address_generation(i+1);
10664       if(itype[i]==CJUMP||itype[i]==FJUMP)
10665         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10666       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10667         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10668       if(bt[i]) cop1_usable=0;
10669       // assemble
10670       switch(itype[i]) {
10671         case ALU:
10672           alu_assemble(i,&regs[i]);break;
10673         case IMM16:
10674           imm16_assemble(i,&regs[i]);break;
10675         case SHIFT:
10676           shift_assemble(i,&regs[i]);break;
10677         case SHIFTIMM:
10678           shiftimm_assemble(i,&regs[i]);break;
10679         case LOAD:
10680           load_assemble(i,&regs[i]);break;
10681         case LOADLR:
10682           loadlr_assemble(i,&regs[i]);break;
10683         case STORE:
10684           store_assemble(i,&regs[i]);break;
10685         case STORELR:
10686           storelr_assemble(i,&regs[i]);break;
10687         case COP0:
10688           cop0_assemble(i,&regs[i]);break;
10689         case COP1:
10690           cop1_assemble(i,&regs[i]);break;
10691         case C1LS:
10692           c1ls_assemble(i,&regs[i]);break;
10693         case COP2:
10694           cop2_assemble(i,&regs[i]);break;
10695         case C2LS:
10696           c2ls_assemble(i,&regs[i]);break;
10697         case C2OP:
10698           c2op_assemble(i,&regs[i]);break;
10699         case FCONV:
10700           fconv_assemble(i,&regs[i]);break;
10701         case FLOAT:
10702           float_assemble(i,&regs[i]);break;
10703         case FCOMP:
10704           fcomp_assemble(i,&regs[i]);break;
10705         case MULTDIV:
10706           multdiv_assemble(i,&regs[i]);break;
10707         case MOV:
10708           mov_assemble(i,&regs[i]);break;
10709         case SYSCALL:
10710           syscall_assemble(i,&regs[i]);break;
10711         case HLECALL:
10712           hlecall_assemble(i,&regs[i]);break;
10713         case INTCALL:
10714           intcall_assemble(i,&regs[i]);break;
10715         case UJUMP:
10716           ujump_assemble(i,&regs[i]);ds=1;break;
10717         case RJUMP:
10718           rjump_assemble(i,&regs[i]);ds=1;break;
10719         case CJUMP:
10720           cjump_assemble(i,&regs[i]);ds=1;break;
10721         case SJUMP:
10722           sjump_assemble(i,&regs[i]);ds=1;break;
10723         case FJUMP:
10724           fjump_assemble(i,&regs[i]);ds=1;break;
10725         case SPAN:
10726           pagespan_assemble(i,&regs[i]);break;
10727       }
10728       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10729         literal_pool(1024);
10730       else
10731         literal_pool_jumpover(256);
10732     }
10733   }
10734   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10735   // If the block did not end with an unconditional branch,
10736   // add a jump to the next instruction.
10737   if(i>1) {
10738     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10739       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10740       assert(i==slen);
10741       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10742         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10743         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10744           emit_loadreg(CCREG,HOST_CCREG);
10745         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10746       }
10747       else if(!likely[i-2])
10748       {
10749         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10750         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10751       }
10752       else
10753       {
10754         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10755         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10756       }
10757       add_to_linker((int)out,start+i*4,0);
10758       emit_jmp(0);
10759     }
10760   }
10761   else
10762   {
10763     assert(i>0);
10764     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10765     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10766     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10767       emit_loadreg(CCREG,HOST_CCREG);
10768     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10769     add_to_linker((int)out,start+i*4,0);
10770     emit_jmp(0);
10771   }
10772
10773   // TODO: delay slot stubs?
10774   // Stubs
10775   for(i=0;i<stubcount;i++)
10776   {
10777     switch(stubs[i][0])
10778     {
10779       case LOADB_STUB:
10780       case LOADH_STUB:
10781       case LOADW_STUB:
10782       case LOADD_STUB:
10783       case LOADBU_STUB:
10784       case LOADHU_STUB:
10785         do_readstub(i);break;
10786       case STOREB_STUB:
10787       case STOREH_STUB:
10788       case STOREW_STUB:
10789       case STORED_STUB:
10790         do_writestub(i);break;
10791       case CC_STUB:
10792         do_ccstub(i);break;
10793       case INVCODE_STUB:
10794         do_invstub(i);break;
10795       case FP_STUB:
10796         do_cop1stub(i);break;
10797       case STORELR_STUB:
10798         do_unalignedwritestub(i);break;
10799     }
10800   }
10801
10802   if (instr_addr0_override)
10803     instr_addr[0] = instr_addr0_override;
10804
10805   /* Pass 9 - Linker */
10806   for(i=0;i<linkcount;i++)
10807   {
10808     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10809     literal_pool(64);
10810     if(!link_addr[i][2])
10811     {
10812       void *stub=out;
10813       void *addr=check_addr(link_addr[i][1]);
10814       emit_extjump(link_addr[i][0],link_addr[i][1]);
10815       if(addr) {
10816         set_jump_target(link_addr[i][0],(int)addr);
10817         add_link(link_addr[i][1],stub);
10818       }
10819       else set_jump_target(link_addr[i][0],(int)stub);
10820     }
10821     else
10822     {
10823       // Internal branch
10824       int target=(link_addr[i][1]-start)>>2;
10825       assert(target>=0&&target<slen);
10826       assert(instr_addr[target]);
10827       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10828       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10829       //#else
10830       set_jump_target(link_addr[i][0],instr_addr[target]);
10831       //#endif
10832     }
10833   }
10834   // External Branch Targets (jump_in)
10835   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10836   for(i=0;i<slen;i++)
10837   {
10838     if(bt[i]||i==0)
10839     {
10840       if(instr_addr[i]) // TODO - delay slots (=null)
10841       {
10842         u_int vaddr=start+i*4;
10843         u_int page=get_page(vaddr);
10844         u_int vpage=get_vpage(vaddr);
10845         literal_pool(256);
10846         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10847         if(!requires_32bit[i])
10848         {
10849           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10850           assem_debug("jump_in: %x\n",start+i*4);
10851           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10852           int entry_point=do_dirty_stub(i);
10853           ll_add(jump_in+page,vaddr,(void *)entry_point);
10854           // If there was an existing entry in the hash table,
10855           // replace it with the new address.
10856           // Don't add new entries.  We'll insert the
10857           // ones that actually get used in check_addr().
10858           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10859           if(ht_bin[0]==vaddr) {
10860             ht_bin[1]=entry_point;
10861           }
10862           if(ht_bin[2]==vaddr) {
10863             ht_bin[3]=entry_point;
10864           }
10865         }
10866         else
10867         {
10868           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10869           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10870           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10871           //int entry_point=(int)out;
10872           ////assem_debug("entry_point: %x\n",entry_point);
10873           //load_regs_entry(i);
10874           //if(entry_point==(int)out)
10875           //  entry_point=instr_addr[i];
10876           //else
10877           //  emit_jmp(instr_addr[i]);
10878           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10879           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10880           int entry_point=do_dirty_stub(i);
10881           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10882         }
10883       }
10884     }
10885   }
10886   // Write out the literal pool if necessary
10887   literal_pool(0);
10888   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10889   // Align code
10890   if(((u_int)out)&7) emit_addnop(13);
10891   #endif
10892   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10893   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10894   memcpy(copy,source,slen*4);
10895   copy+=slen*4;
10896   
10897   #ifdef __arm__
10898   __clear_cache((void *)beginning,out);
10899   #endif
10900   
10901   // If we're within 256K of the end of the buffer,
10902   // start over from the beginning. (Is 256K enough?)
10903   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10904   
10905   // Trap writes to any of the pages we compiled
10906   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10907     invalid_code[i]=0;
10908 #ifndef DISABLE_TLB
10909     memory_map[i]|=0x40000000;
10910     if((signed int)start>=(signed int)0xC0000000) {
10911       assert(using_tlb);
10912       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10913       invalid_code[j]=0;
10914       memory_map[j]|=0x40000000;
10915       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10916     }
10917 #endif
10918   }
10919   
10920   /* Pass 10 - Free memory by expiring oldest blocks */
10921   
10922   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10923   while(expirep!=end)
10924   {
10925     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10926     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10927     inv_debug("EXP: Phase %d\n",expirep);
10928     switch((expirep>>11)&3)
10929     {
10930       case 0:
10931         // Clear jump_in and jump_dirty
10932         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10933         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10934         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10935         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10936         break;
10937       case 1:
10938         // Clear pointers
10939         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10940         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10941         break;
10942       case 2:
10943         // Clear hash table
10944         for(i=0;i<32;i++) {
10945           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10946           if((ht_bin[3]>>shift)==(base>>shift) ||
10947              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10948             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10949             ht_bin[2]=ht_bin[3]=-1;
10950           }
10951           if((ht_bin[1]>>shift)==(base>>shift) ||
10952              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10953             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10954             ht_bin[0]=ht_bin[2];
10955             ht_bin[1]=ht_bin[3];
10956             ht_bin[2]=ht_bin[3]=-1;
10957           }
10958         }
10959         break;
10960       case 3:
10961         // Clear jump_out
10962         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10963         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10964         break;
10965     }
10966     expirep=(expirep+1)&65535;
10967   }
10968   return 0;
10969 }
10970
10971 // vim:shiftwidth=2:expandtab