psxinterpreter: use cycle_multiplier also
[pcsx_rearmed.git] / libpcsxcore / psxinterpreter.c
1 /***************************************************************************
2  *   Copyright (C) 2007 Ryan Schultz, PCSX-df Team, PCSX team              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   51 Franklin Street, Fifth Floor, Boston, MA 02111-1307 USA.           *
18  ***************************************************************************/
19
20 /*
21  * PSX assembly interpreter.
22  */
23
24 #include "psxcommon.h"
25 #include "r3000a.h"
26 #include "gte.h"
27 #include "psxhle.h"
28 #include "psxinterpreter.h"
29 #include <stddef.h>
30 #include <assert.h>
31 //#include "debug.h"
32 #define ProcessDebug()
33
34 static int branch = 0;
35 static int branch2 = 0;
36 static u32 branchPC;
37
38 // These macros are used to assemble the repassembler functions
39
40 #ifdef PSXCPU_LOG
41 #define debugI() PSXCPU_LOG("%s\n", disR3000AF(psxRegs.code, psxRegs.pc)); 
42 #else
43 #define debugI()
44 #endif
45
46 #ifdef __i386__
47 #define INT_ATTR __attribute__((regparm(2)))
48 #else
49 #define INT_ATTR
50 #endif
51 #ifndef INVALID_PTR
52 #define INVALID_PTR NULL
53 #endif
54
55 // Subsets
56 static void (INT_ATTR *psxBSC[64])(psxRegisters *regs_, u32 code);
57 static void (INT_ATTR *psxSPC[64])(psxRegisters *regs_, u32 code);
58
59 static u32 INT_ATTR fetchNoCache(u8 **memRLUT, u32 pc)
60 {
61         u8 *base = memRLUT[pc >> 16];
62         if (base == INVALID_PTR)
63                 return 0;
64         u32 *code = (u32 *)(base + (pc & 0xfffc));
65         return SWAP32(*code);
66 }
67
68 /*
69 Formula One 2001 :
70 Use old CPU cache code when the RAM location is updated with new code (affects in-game racing)
71 */
72 static struct cache_entry {
73         u32 tag;
74         u32 data[4];
75 } ICache[256];
76
77 static u32 INT_ATTR fetchICache(u8 **memRLUT, u32 pc)
78 {
79         // cached?
80         if (pc < 0xa0000000)
81         {
82                 // this is not how the hardware works but whatever
83                 struct cache_entry *entry = &ICache[(pc & 0xff0) >> 4];
84
85                 if (((entry->tag ^ pc) & 0xfffffff0) != 0 || pc < entry->tag)
86                 {
87                         const u8 *base = memRLUT[pc >> 16];
88                         const u32 *code;
89                         if (base == INVALID_PTR)
90                                 return 0;
91                         code = (u32 *)(base + (pc & 0xfff0));
92
93                         entry->tag = pc;
94                         // treat as 4 words, although other configurations are said to be possible
95                         switch (pc & 0x0c)
96                         {
97                                 case 0x00: entry->data[0] = SWAP32(code[0]);
98                                 case 0x04: entry->data[1] = SWAP32(code[1]);
99                                 case 0x08: entry->data[2] = SWAP32(code[2]);
100                                 case 0x0c: entry->data[3] = SWAP32(code[3]);
101                         }
102                 }
103                 return entry->data[(pc & 0x0f) >> 2];
104         }
105
106         return fetchNoCache(memRLUT, pc);
107 }
108
109 static u32 (INT_ATTR *fetch)(u8 **memRLUT, u32 pc) = fetchNoCache;
110
111 // Make the timing events trigger faster as we are currently assuming everything
112 // takes one cycle, which is not the case on real hardware.
113 // FIXME: count cache misses, memory latencies, stalls to get rid of this
114 static inline void addCycle(void)
115 {
116         assert(psxRegs.subCycleStep >= 0x10000);
117         psxRegs.subCycle += psxRegs.subCycleStep;
118         psxRegs.cycle += psxRegs.subCycle >> 16;
119         psxRegs.subCycle &= 0xffff;
120 }
121
122 static void delayRead(int reg, u32 bpc) {
123         u32 rold, rnew;
124
125 //      SysPrintf("delayRead at %x!\n", psxRegs.pc);
126
127         rold = psxRegs.GPR.r[reg];
128         psxBSC[psxRegs.code >> 26](&psxRegs, psxRegs.code); // branch delay load
129         rnew = psxRegs.GPR.r[reg];
130
131         psxRegs.pc = bpc;
132
133         branch = 0;
134
135         psxRegs.GPR.r[reg] = rold;
136         execI(); // first branch opcode
137         psxRegs.GPR.r[reg] = rnew;
138
139         psxBranchTest();
140 }
141
142 static void delayWrite(int reg, u32 bpc) {
143
144 /*      SysPrintf("delayWrite at %x!\n", psxRegs.pc);
145
146         SysPrintf("%s\n", disR3000AF(psxRegs.code, psxRegs.pc-4));
147         SysPrintf("%s\n", disR3000AF(PSXMu32(bpc), bpc));*/
148
149         // no changes from normal behavior
150
151         psxBSC[psxRegs.code >> 26](&psxRegs, psxRegs.code);
152
153         branch = 0;
154         psxRegs.pc = bpc;
155
156         psxBranchTest();
157 }
158
159 static void delayReadWrite(int reg, u32 bpc) {
160
161 //      SysPrintf("delayReadWrite at %x!\n", psxRegs.pc);
162
163         // the branch delay load is skipped
164
165         branch = 0;
166         psxRegs.pc = bpc;
167
168         psxBranchTest();
169 }
170
171 /**** R3000A Instruction Macros ****/
172 #define _PC_            regs_->pc       // The next PC to be executed
173
174 #define _fOp_(code)     ((code >> 26)       )  // The opcode part of the instruction register
175 #define _fFunct_(code)  ((code      ) & 0x3F)  // The funct part of the instruction register
176 #define _fRd_(code)     ((code >> 11) & 0x1F)  // The rd part of the instruction register
177 #define _fRt_(code)     ((code >> 16) & 0x1F)  // The rt part of the instruction register
178 #define _fRs_(code)     ((code >> 21) & 0x1F)  // The rs part of the instruction register
179 #define _fSa_(code)     ((code >>  6) & 0x1F)  // The sa part of the instruction register
180 #define _fIm_(code)     ((u16)code)            // The immediate part of the instruction register
181 #define _fTarget_(code) (code & 0x03ffffff)    // The target part of the instruction register
182
183 #define _fImm_(code)    ((s16)code)            // sign-extended immediate
184 #define _fImmU_(code)   (code&0xffff)          // zero-extended immediate
185
186 #define _Op_     _fOp_(code)
187 #define _Funct_  _fFunct_(code)
188 #define _Rd_     _fRd_(code)
189 #define _Rt_     _fRt_(code)
190 #define _Rs_     _fRs_(code)
191 #define _Sa_     _fSa_(code)
192 #define _Im_     _fIm_(code)
193 #define _Target_ _fTarget_(code)
194
195 #define _Imm_    _fImm_(code)
196 #define _ImmU_   _fImmU_(code)
197
198 #define _rRs_   regs_->GPR.r[_Rs_]   // Rs register
199 #define _rRt_   regs_->GPR.r[_Rt_]   // Rt register
200 #define _rRd_   regs_->GPR.r[_Rd_]   // Rd register
201 #define _rSa_   regs_->GPR.r[_Sa_]   // Sa register
202 #define _rFs_   regs_->CP0.r[_Rd_]   // Fs register
203
204 #define _rHi_   regs_->GPR.n.hi   // The HI register
205 #define _rLo_   regs_->GPR.n.lo   // The LO register
206
207 #define _JumpTarget_    ((_Target_ * 4) + (_PC_ & 0xf0000000))   // Calculates the target during a jump instruction
208 #define _BranchTarget_  ((s16)_Im_ * 4 + _PC_)                 // Calculates the target during a branch instruction
209
210 #define _SetLink(x)     regs_->GPR.r[x] = _PC_ + 4;       // Sets the return address in the link register
211
212 #define OP(name) \
213         static inline INT_ATTR void name(psxRegisters *regs_, u32 code)
214
215 // this defines shall be used with the tmp 
216 // of the next func (instead of _Funct_...)
217 #define _tFunct_  ((tmp      ) & 0x3F)  // The funct part of the instruction register 
218 #define _tRd_     ((tmp >> 11) & 0x1F)  // The rd part of the instruction register 
219 #define _tRt_     ((tmp >> 16) & 0x1F)  // The rt part of the instruction register 
220 #define _tRs_     ((tmp >> 21) & 0x1F)  // The rs part of the instruction register 
221 #define _tSa_     ((tmp >>  6) & 0x1F)  // The sa part of the instruction register
222
223 #define _i32(x) (s32)(x)
224 #define _u32(x) (u32)(x)
225
226 static int psxTestLoadDelay(int reg, u32 tmp) {
227         if (tmp == 0) return 0; // NOP
228         switch (tmp >> 26) {
229                 case 0x00: // SPECIAL
230                         switch (_tFunct_) {
231                                 case 0x00: // SLL
232                                 case 0x02: case 0x03: // SRL/SRA
233                                         if (_tRd_ == reg && _tRt_ == reg) return 1; else
234                                         if (_tRt_ == reg) return 2; else
235                                         if (_tRd_ == reg) return 3;
236                                         break;
237
238                                 case 0x08: // JR
239                                         if (_tRs_ == reg) return 2;
240                                         break;
241                                 case 0x09: // JALR
242                                         if (_tRd_ == reg && _tRs_ == reg) return 1; else
243                                         if (_tRs_ == reg) return 2; else
244                                         if (_tRd_ == reg) return 3;
245                                         break;
246
247                                 // SYSCALL/BREAK just a break;
248
249                                 case 0x20: case 0x21: case 0x22: case 0x23:
250                                 case 0x24: case 0x25: case 0x26: case 0x27: 
251                                 case 0x2a: case 0x2b: // ADD/ADDU...
252                                 case 0x04: case 0x06: case 0x07: // SLLV...
253                                         if (_tRd_ == reg && (_tRt_ == reg || _tRs_ == reg)) return 1; else
254                                         if (_tRt_ == reg || _tRs_ == reg) return 2; else
255                                         if (_tRd_ == reg) return 3;
256                                         break;
257
258                                 case 0x10: case 0x12: // MFHI/MFLO
259                                         if (_tRd_ == reg) return 3;
260                                         break;
261                                 case 0x11: case 0x13: // MTHI/MTLO
262                                         if (_tRs_ == reg) return 2;
263                                         break;
264
265                                 case 0x18: case 0x19:
266                                 case 0x1a: case 0x1b: // MULT/DIV...
267                                         if (_tRt_ == reg || _tRs_ == reg) return 2;
268                                         break;
269                         }
270                         break;
271
272                 case 0x01: // REGIMM
273                         switch (_tRt_) {
274                                 case 0x00: case 0x01:
275                                 case 0x10: case 0x11: // BLTZ/BGEZ...
276                                         // Xenogears - lbu v0 / beq v0
277                                         // - no load delay (fixes battle loading)
278                                         break;
279
280                                         if (_tRs_ == reg) return 2;
281                                         break;
282                         }
283                         break;
284
285                 // J would be just a break;
286                 case 0x03: // JAL
287                         if (31 == reg) return 3;
288                         break;
289
290                 case 0x04: case 0x05: // BEQ/BNE
291                         // Xenogears - lbu v0 / beq v0
292                         // - no load delay (fixes battle loading)
293                         break;
294
295                         if (_tRs_ == reg || _tRt_ == reg) return 2;
296                         break;
297
298                 case 0x06: case 0x07: // BLEZ/BGTZ
299                         // Xenogears - lbu v0 / beq v0
300                         // - no load delay (fixes battle loading)
301                         break;
302
303                         if (_tRs_ == reg) return 2;
304                         break;
305
306                 case 0x08: case 0x09: case 0x0a: case 0x0b:
307                 case 0x0c: case 0x0d: case 0x0e: // ADDI/ADDIU...
308                         if (_tRt_ == reg && _tRs_ == reg) return 1; else
309                         if (_tRs_ == reg) return 2; else
310                         if (_tRt_ == reg) return 3;
311                         break;
312
313                 case 0x0f: // LUI
314                         if (_tRt_ == reg) return 3;
315                         break;
316
317                 case 0x10: // COP0
318                         switch (_tFunct_) {
319                                 case 0x00: // MFC0
320                                         if (_tRt_ == reg) return 3;
321                                         break;
322                                 case 0x02: // CFC0
323                                         if (_tRt_ == reg) return 3;
324                                         break;
325                                 case 0x04: // MTC0
326                                         if (_tRt_ == reg) return 2;
327                                         break;
328                                 case 0x06: // CTC0
329                                         if (_tRt_ == reg) return 2;
330                                         break;
331                                 // RFE just a break;
332                         }
333                         break;
334
335                 case 0x12: // COP2
336                         switch (_tFunct_) {
337                                 case 0x00: 
338                                         switch (_tRs_) {
339                                                 case 0x00: // MFC2
340                                                         if (_tRt_ == reg) return 3;
341                                                         break;
342                                                 case 0x02: // CFC2
343                                                         if (_tRt_ == reg) return 3;
344                                                         break;
345                                                 case 0x04: // MTC2
346                                                         if (_tRt_ == reg) return 2;
347                                                         break;
348                                                 case 0x06: // CTC2
349                                                         if (_tRt_ == reg) return 2;
350                                                         break;
351                                         }
352                                         break;
353                                 // RTPS... break;
354                         }
355                         break;
356
357                 case 0x22: case 0x26: // LWL/LWR
358                         if (_tRt_ == reg) return 3; else
359                         if (_tRs_ == reg) return 2;
360                         break;
361
362                 case 0x20: case 0x21: case 0x23:
363                 case 0x24: case 0x25: // LB/LH/LW/LBU/LHU
364                         if (_tRt_ == reg && _tRs_ == reg) return 1; else
365                         if (_tRs_ == reg) return 2; else
366                         if (_tRt_ == reg) return 3;
367                         break;
368
369                 case 0x28: case 0x29: case 0x2a:
370                 case 0x2b: case 0x2e: // SB/SH/SWL/SW/SWR
371                         if (_tRt_ == reg || _tRs_ == reg) return 2;
372                         break;
373
374                 case 0x32: case 0x3a: // LWC2/SWC2
375                         if (_tRs_ == reg) return 2;
376                         break;
377         }
378
379         return 0;
380 }
381
382 static void psxDelayTest(int reg, u32 bpc) {
383         u32 tmp = fetch(psxMemRLUT, bpc);
384         branch = 1;
385
386         switch (psxTestLoadDelay(reg, tmp)) {
387                 case 1:
388                         delayReadWrite(reg, bpc); return;
389                 case 2:
390                         delayRead(reg, bpc); return;
391                 case 3:
392                         delayWrite(reg, bpc); return;
393         }
394         psxBSC[psxRegs.code >> 26](&psxRegs, psxRegs.code);
395
396         branch = 0;
397         psxRegs.pc = bpc;
398
399         psxBranchTest();
400 }
401
402 static u32 psxBranchNoDelay(psxRegisters *regs_) {
403         u32 temp, code;
404
405         regs_->code = code = fetch(psxMemRLUT, regs_->pc);
406         switch (_Op_) {
407                 case 0x00: // SPECIAL
408                         switch (_Funct_) {
409                                 case 0x08: // JR
410                                         return _u32(_rRs_);
411                                 case 0x09: // JALR
412                                         temp = _u32(_rRs_);
413                                         if (_Rd_) { _SetLink(_Rd_); }
414                                         return temp;
415                         }
416                         break;
417                 case 0x01: // REGIMM
418                         switch (_Rt_) {
419                                 case 0x00: // BLTZ
420                                         if (_i32(_rRs_) < 0)
421                                                 return _BranchTarget_;
422                                         break;
423                                 case 0x01: // BGEZ
424                                         if (_i32(_rRs_) >= 0)
425                                                 return _BranchTarget_;
426                                         break;
427                                 case 0x08: // BLTZAL
428                                         if (_i32(_rRs_) < 0) {
429                                                 _SetLink(31);
430                                                 return _BranchTarget_;
431                                         }
432                                         break;
433                                 case 0x09: // BGEZAL
434                                         if (_i32(_rRs_) >= 0) {
435                                                 _SetLink(31);
436                                                 return _BranchTarget_;
437                                         }
438                                         break;
439                         }
440                         break;
441                 case 0x02: // J
442                         return _JumpTarget_;
443                 case 0x03: // JAL
444                         _SetLink(31);
445                         return _JumpTarget_;
446                 case 0x04: // BEQ
447                         if (_i32(_rRs_) == _i32(_rRt_))
448                                 return _BranchTarget_;
449                         break;
450                 case 0x05: // BNE
451                         if (_i32(_rRs_) != _i32(_rRt_))
452                                 return _BranchTarget_;
453                         break;
454                 case 0x06: // BLEZ
455                         if (_i32(_rRs_) <= 0)
456                                 return _BranchTarget_;
457                         break;
458                 case 0x07: // BGTZ
459                         if (_i32(_rRs_) > 0)
460                                 return _BranchTarget_;
461                         break;
462         }
463
464         return (u32)-1;
465 }
466
467 static int psxDelayBranchExec(u32 tar) {
468         execI();
469
470         branch = 0;
471         psxRegs.pc = tar;
472         addCycle();
473         psxBranchTest();
474         return 1;
475 }
476
477 static int psxDelayBranchTest(u32 tar1) {
478         u32 tar2, tmp1, tmp2;
479
480         tar2 = psxBranchNoDelay(&psxRegs);
481         if (tar2 == (u32)-1)
482                 return 0;
483
484         debugI();
485
486         /*
487          * Branch in delay slot:
488          * - execute 1 instruction at tar1
489          * - jump to tar2 (target of branch in delay slot; this branch
490          *   has no normal delay slot, instruction at tar1 was fetched instead)
491          */
492         psxRegs.pc = tar1;
493         tmp1 = psxBranchNoDelay(&psxRegs);
494         if (tmp1 == (u32)-1) {
495                 return psxDelayBranchExec(tar2);
496         }
497         debugI();
498         addCycle();
499
500         /*
501          * Got a branch at tar1:
502          * - execute 1 instruction at tar2
503          * - jump to target of that branch (tmp1)
504          */
505         psxRegs.pc = tar2;
506         tmp2 = psxBranchNoDelay(&psxRegs);
507         if (tmp2 == (u32)-1) {
508                 return psxDelayBranchExec(tmp1);
509         }
510         debugI();
511         addCycle();
512
513         /*
514          * Got a branch at tar2:
515          * - execute 1 instruction at tmp1
516          * - jump to target of that branch (tmp2)
517          */
518         psxRegs.pc = tmp1;
519         return psxDelayBranchExec(tmp2);
520 }
521
522 static void doBranch(u32 tar) {
523         u32 tmp, code;
524
525         branch2 = branch = 1;
526         branchPC = tar;
527
528         // check for branch in delay slot
529         if (psxDelayBranchTest(tar))
530                 return;
531
532         psxRegs.code = code = fetch(psxMemRLUT, psxRegs.pc);
533
534         debugI();
535
536         psxRegs.pc += 4;
537         addCycle();
538
539         // check for load delay
540         tmp = psxRegs.code >> 26;
541         switch (tmp) {
542                 case 0x10: // COP0
543                         switch (_Rs_) {
544                                 case 0x00: // MFC0
545                                 case 0x02: // CFC0
546                                         psxDelayTest(_Rt_, branchPC);
547                                         return;
548                         }
549                         break;
550                 case 0x12: // COP2
551                         switch (_Funct_) {
552                                 case 0x00:
553                                         switch (_Rs_) {
554                                                 case 0x00: // MFC2
555                                                 case 0x02: // CFC2
556                                                         psxDelayTest(_Rt_, branchPC);
557                                                         return;
558                                         }
559                                         break;
560                         }
561                         break;
562                 case 0x32: // LWC2
563                         psxDelayTest(_Rt_, branchPC);
564                         return;
565                 default:
566                         if (tmp >= 0x20 && tmp <= 0x26) { // LB/LH/LWL/LW/LBU/LHU/LWR
567                                 psxDelayTest(_Rt_, branchPC);
568                                 return;
569                         }
570                         break;
571         }
572
573         psxBSC[psxRegs.code >> 26](&psxRegs, psxRegs.code);
574
575         branch = 0;
576         psxRegs.pc = branchPC;
577
578         psxBranchTest();
579 }
580
581 /*********************************************************
582 * Arithmetic with immediate operand                      *
583 * Format:  OP rt, rs, immediate                          *
584 *********************************************************/
585 OP(psxADDI)  { if (!_Rt_) return; _rRt_ = _u32(_rRs_) + _Imm_ ; }  // Rt = Rs + Im      (Exception on Integer Overflow)
586 OP(psxADDIU) { if (!_Rt_) return; _rRt_ = _u32(_rRs_) + _Imm_ ; }  // Rt = Rs + Im
587 OP(psxANDI)  { if (!_Rt_) return; _rRt_ = _u32(_rRs_) & _ImmU_; }  // Rt = Rs And Im
588 OP(psxORI)   { if (!_Rt_) return; _rRt_ = _u32(_rRs_) | _ImmU_; }  // Rt = Rs Or  Im
589 OP(psxXORI)  { if (!_Rt_) return; _rRt_ = _u32(_rRs_) ^ _ImmU_; }  // Rt = Rs Xor Im
590 OP(psxSLTI)  { if (!_Rt_) return; _rRt_ = _i32(_rRs_) < _Imm_ ; }  // Rt = Rs < Im              (Signed)
591 OP(psxSLTIU) { if (!_Rt_) return; _rRt_ = _u32(_rRs_) < ((u32)_Imm_); } // Rt = Rs < Im         (Unsigned)
592
593 /*********************************************************
594 * Register arithmetic                                    *
595 * Format:  OP rd, rs, rt                                 *
596 *********************************************************/
597 OP(psxADD)   { if (!_Rd_) return; _rRd_ = _u32(_rRs_) + _u32(_rRt_); }  // Rd = Rs + Rt         (Exception on Integer Overflow)
598 OP(psxADDU)  { if (!_Rd_) return; _rRd_ = _u32(_rRs_) + _u32(_rRt_); }  // Rd = Rs + Rt
599 OP(psxSUB)   { if (!_Rd_) return; _rRd_ = _u32(_rRs_) - _u32(_rRt_); }  // Rd = Rs - Rt         (Exception on Integer Overflow)
600 OP(psxSUBU)  { if (!_Rd_) return; _rRd_ = _u32(_rRs_) - _u32(_rRt_); }  // Rd = Rs - Rt
601 OP(psxAND)   { if (!_Rd_) return; _rRd_ = _u32(_rRs_) & _u32(_rRt_); }  // Rd = Rs And Rt
602 OP(psxOR)    { if (!_Rd_) return; _rRd_ = _u32(_rRs_) | _u32(_rRt_); }  // Rd = Rs Or  Rt
603 OP(psxXOR)   { if (!_Rd_) return; _rRd_ = _u32(_rRs_) ^ _u32(_rRt_); }  // Rd = Rs Xor Rt
604 OP(psxNOR)   { if (!_Rd_) return; _rRd_ =~(_u32(_rRs_) | _u32(_rRt_)); }// Rd = Rs Nor Rt
605 OP(psxSLT)   { if (!_Rd_) return; _rRd_ = _i32(_rRs_) < _i32(_rRt_); }  // Rd = Rs < Rt         (Signed)
606 OP(psxSLTU)  { if (!_Rd_) return; _rRd_ = _u32(_rRs_) < _u32(_rRt_); }  // Rd = Rs < Rt         (Unsigned)
607
608 /*********************************************************
609 * Register mult/div & Register trap logic                *
610 * Format:  OP rs, rt                                     *
611 *********************************************************/
612 OP(psxDIV) {
613         if (!_rRt_) {
614                 _rHi_ = _rRs_;
615                 if (_rRs_ & 0x80000000) {
616                         _rLo_ = 1;
617                 } else {
618                         _rLo_ = 0xFFFFFFFF;
619                 }
620         }
621 #if !defined(__arm__) && !defined(__aarch64__)
622         else if (_rRs_ == 0x80000000 && _rRt_ == 0xFFFFFFFF) {
623                 _rLo_ = 0x80000000;
624                 _rHi_ = 0;
625         }
626 #endif
627         else {
628                 _rLo_ = _i32(_rRs_) / _i32(_rRt_);
629                 _rHi_ = _i32(_rRs_) % _i32(_rRt_);
630         }
631 }
632
633 OP(psxDIV_stall) {
634         regs_->muldivBusyCycle = regs_->cycle + 37;
635         psxDIV(regs_, code);
636 }
637
638 OP(psxDIVU) {
639         if (_rRt_ != 0) {
640                 _rLo_ = _rRs_ / _rRt_;
641                 _rHi_ = _rRs_ % _rRt_;
642         }
643         else {
644                 _rLo_ = 0xffffffff;
645                 _rHi_ = _rRs_;
646         }
647 }
648
649 OP(psxDIVU_stall) {
650         regs_->muldivBusyCycle = regs_->cycle + 37;
651         psxDIVU(regs_, code);
652 }
653
654 OP(psxMULT) {
655         u64 res = (s64)_i32(_rRs_) * _i32(_rRt_);
656
657         regs_->GPR.n.lo = (u32)res;
658         regs_->GPR.n.hi = (u32)(res >> 32);
659 }
660
661 OP(psxMULT_stall) {
662         // approximate, but maybe good enough
663         u32 rs = _rRs_;
664         u32 lz = __builtin_clz(((rs ^ ((s32)rs >> 21)) | 1));
665         u32 c = 7 + (2 - (lz / 11)) * 4;
666         regs_->muldivBusyCycle = regs_->cycle + c;
667         psxMULT(regs_, code);
668 }
669
670 OP(psxMULTU) {
671         u64 res = (u64)_u32(_rRs_) * _u32(_rRt_);
672
673         regs_->GPR.n.lo = (u32)(res & 0xffffffff);
674         regs_->GPR.n.hi = (u32)((res >> 32) & 0xffffffff);
675 }
676
677 OP(psxMULTU_stall) {
678         // approximate, but maybe good enough
679         u32 lz = __builtin_clz(_rRs_ | 1);
680         u32 c = 7 + (2 - (lz / 11)) * 4;
681         regs_->muldivBusyCycle = regs_->cycle + c;
682         psxMULTU(regs_, code);
683 }
684
685 /*********************************************************
686 * Register branch logic                                  *
687 * Format:  OP rs, offset                                 *
688 *********************************************************/
689 #define RepZBranchi32(op)      if(_i32(_rRs_) op 0) doBranch(_BranchTarget_);
690 #define RepZBranchLinki32(op)  { _SetLink(31); if(_i32(_rRs_) op 0) { doBranch(_BranchTarget_); } }
691
692 OP(psxBGEZ)   { RepZBranchi32(>=) }      // Branch if Rs >= 0
693 OP(psxBGEZAL) { RepZBranchLinki32(>=) }  // Branch if Rs >= 0 and link
694 OP(psxBGTZ)   { RepZBranchi32(>) }       // Branch if Rs >  0
695 OP(psxBLEZ)   { RepZBranchi32(<=) }      // Branch if Rs <= 0
696 OP(psxBLTZ)   { RepZBranchi32(<) }       // Branch if Rs <  0
697 OP(psxBLTZAL) { RepZBranchLinki32(<) }   // Branch if Rs <  0 and link
698
699 /*********************************************************
700 * Shift arithmetic with constant shift                   *
701 * Format:  OP rd, rt, sa                                 *
702 *********************************************************/
703 OP(psxSLL) { if (!_Rd_) return; _rRd_ = _u32(_rRt_) << _Sa_; } // Rd = Rt << sa
704 OP(psxSRA) { if (!_Rd_) return; _rRd_ = _i32(_rRt_) >> _Sa_; } // Rd = Rt >> sa (arithmetic)
705 OP(psxSRL) { if (!_Rd_) return; _rRd_ = _u32(_rRt_) >> _Sa_; } // Rd = Rt >> sa (logical)
706
707 /*********************************************************
708 * Shift arithmetic with variant register shift           *
709 * Format:  OP rd, rt, rs                                 *
710 *********************************************************/
711 OP(psxSLLV) { if (!_Rd_) return; _rRd_ = _u32(_rRt_) << (_u32(_rRs_) & 0x1F); } // Rd = Rt << rs
712 OP(psxSRAV) { if (!_Rd_) return; _rRd_ = _i32(_rRt_) >> (_u32(_rRs_) & 0x1F); } // Rd = Rt >> rs (arithmetic)
713 OP(psxSRLV) { if (!_Rd_) return; _rRd_ = _u32(_rRt_) >> (_u32(_rRs_) & 0x1F); } // Rd = Rt >> rs (logical)
714
715 /*********************************************************
716 * Load higher 16 bits of the first word in GPR with imm  *
717 * Format:  OP rt, immediate                              *
718 *********************************************************/
719 OP(psxLUI) { if (!_Rt_) return; _rRt_ = code << 16; } // Upper halfword of Rt = Im
720
721 /*********************************************************
722 * Move from HI/LO to GPR                                 *
723 * Format:  OP rd                                         *
724 *********************************************************/
725 OP(psxMFHI) { if (!_Rd_) return; _rRd_ = _rHi_; } // Rd = Hi
726 OP(psxMFLO) { if (!_Rd_) return; _rRd_ = _rLo_; } // Rd = Lo
727
728 static void mflohiCheckStall(psxRegisters *regs_)
729 {
730         u32 left = regs_->muldivBusyCycle - regs_->cycle;
731         if (left <= 37) {
732                 //printf("muldiv stall %u\n", left);
733                 regs_->cycle = regs_->muldivBusyCycle;
734         }
735 }
736
737 OP(psxMFHI_stall) { mflohiCheckStall(regs_); psxMFHI(regs_, code); }
738 OP(psxMFLO_stall) { mflohiCheckStall(regs_); psxMFLO(regs_, code); }
739
740 /*********************************************************
741 * Move to GPR to HI/LO & Register jump                   *
742 * Format:  OP rs                                         *
743 *********************************************************/
744 OP(psxMTHI) { _rHi_ = _rRs_; } // Hi = Rs
745 OP(psxMTLO) { _rLo_ = _rRs_; } // Lo = Rs
746
747 /*********************************************************
748 * Special purpose instructions                           *
749 * Format:  OP                                            *
750 *********************************************************/
751 OP(psxBREAK) {
752         regs_->pc -= 4;
753         psxException(0x24, branch);
754 }
755
756 OP(psxSYSCALL) {
757         regs_->pc -= 4;
758         psxException(0x20, branch);
759 }
760
761 static inline void psxTestSWInts(psxRegisters *regs_) {
762         if (regs_->CP0.n.Cause & regs_->CP0.n.Status & 0x0300 &&
763            regs_->CP0.n.Status & 0x1) {
764                 regs_->CP0.n.Cause &= ~0x7c;
765                 psxException(regs_->CP0.n.Cause, branch);
766         }
767 }
768
769 OP(psxRFE) {
770 //      SysPrintf("psxRFE\n");
771         regs_->CP0.n.Status = (regs_->CP0.n.Status & 0xfffffff0) |
772                               ((regs_->CP0.n.Status & 0x3c) >> 2);
773         psxTestSWInts(regs_);
774 }
775
776 /*********************************************************
777 * Register branch logic                                  *
778 * Format:  OP rs, rt, offset                             *
779 *********************************************************/
780 #define RepBranchi32(op)      if(_i32(_rRs_) op _i32(_rRt_)) doBranch(_BranchTarget_);
781
782 OP(psxBEQ) { RepBranchi32(==) }  // Branch if Rs == Rt
783 OP(psxBNE) { RepBranchi32(!=) }  // Branch if Rs != Rt
784
785 /*********************************************************
786 * Jump to target                                         *
787 * Format:  OP target                                     *
788 *********************************************************/
789 OP(psxJ)   {               doBranch(_JumpTarget_); }
790 OP(psxJAL) { _SetLink(31); doBranch(_JumpTarget_); }
791
792 /*********************************************************
793 * Register jump                                          *
794 * Format:  OP rs, rd                                     *
795 *********************************************************/
796 OP(psxJR) {
797         doBranch(_rRs_ & ~3);
798         psxJumpTest();
799 }
800
801 OP(psxJALR) {
802         u32 temp = _u32(_rRs_);
803         if (_Rd_) { _SetLink(_Rd_); }
804         doBranch(temp & ~3);
805 }
806
807 /*********************************************************
808 * Load and store for GPR                                 *
809 * Format:  OP rt, offset(base)                           *
810 *********************************************************/
811
812 #define _oB_ (regs_->GPR.r[_Rs_] + _Imm_)
813
814 OP(psxLB)  { u32 v =  (s8)psxMemRead8(_oB_);  if (_Rt_) _rRt_ = v; }
815 OP(psxLBU) { u32 v =      psxMemRead8(_oB_);  if (_Rt_) _rRt_ = v; }
816 OP(psxLH)  { u32 v = (s16)psxMemRead16(_oB_); if (_Rt_) _rRt_ = v; }
817 OP(psxLHU) { u32 v =      psxMemRead16(_oB_); if (_Rt_) _rRt_ = v; }
818 OP(psxLW)  { u32 v =      psxMemRead32(_oB_); if (_Rt_) _rRt_ = v; }
819
820 OP(psxLWL) {
821         static const u32 LWL_MASK[4] = { 0xffffff, 0xffff, 0xff, 0 };
822         static const u32 LWL_SHIFT[4] = { 24, 16, 8, 0 };
823         u32 addr = _oB_;
824         u32 shift = addr & 3;
825         u32 mem = psxMemRead32(addr & ~3);
826
827         if (!_Rt_) return;
828         _rRt_ = (_u32(_rRt_) & LWL_MASK[shift]) | (mem << LWL_SHIFT[shift]);
829
830         /*
831         Mem = 1234.  Reg = abcd
832
833         0   4bcd   (mem << 24) | (reg & 0x00ffffff)
834         1   34cd   (mem << 16) | (reg & 0x0000ffff)
835         2   234d   (mem <<  8) | (reg & 0x000000ff)
836         3   1234   (mem      ) | (reg & 0x00000000)
837         */
838 }
839
840 OP(psxLWR) {
841         static const u32 LWR_MASK[4] = { 0, 0xff000000, 0xffff0000, 0xffffff00 };
842         static const u32 LWR_SHIFT[4] = { 0, 8, 16, 24 };
843         u32 addr = _oB_;
844         u32 shift = addr & 3;
845         u32 mem = psxMemRead32(addr & ~3);
846
847         if (!_Rt_) return;
848         _rRt_ = (_u32(_rRt_) & LWR_MASK[shift]) | (mem >> LWR_SHIFT[shift]);
849
850         /*
851         Mem = 1234.  Reg = abcd
852
853         0   1234   (mem      ) | (reg & 0x00000000)
854         1   a123   (mem >>  8) | (reg & 0xff000000)
855         2   ab12   (mem >> 16) | (reg & 0xffff0000)
856         3   abc1   (mem >> 24) | (reg & 0xffffff00)
857         */
858 }
859
860 OP(psxSB) { psxMemWrite8 (_oB_, _rRt_ &   0xff); }
861 OP(psxSH) { psxMemWrite16(_oB_, _rRt_ & 0xffff); }
862 OP(psxSW) { psxMemWrite32(_oB_, _rRt_); }
863
864 OP(psxSWL) {
865         static const u32 SWL_MASK[4] = { 0xffffff00, 0xffff0000, 0xff000000, 0 };
866         static const u32 SWL_SHIFT[4] = { 24, 16, 8, 0 };
867         u32 addr = _oB_;
868         u32 shift = addr & 3;
869         u32 mem = psxMemRead32(addr & ~3);
870
871         psxMemWrite32(addr & ~3,  (_u32(_rRt_) >> SWL_SHIFT[shift]) |
872                              (  mem & SWL_MASK[shift]) );
873         /*
874         Mem = 1234.  Reg = abcd
875
876         0   123a   (reg >> 24) | (mem & 0xffffff00)
877         1   12ab   (reg >> 16) | (mem & 0xffff0000)
878         2   1abc   (reg >>  8) | (mem & 0xff000000)
879         3   abcd   (reg      ) | (mem & 0x00000000)
880         */
881 }
882
883 OP(psxSWR) {
884         static const u32 SWR_MASK[4] = { 0, 0xff, 0xffff, 0xffffff };
885         static const u32 SWR_SHIFT[4] = { 0, 8, 16, 24 };
886         u32 addr = _oB_;
887         u32 shift = addr & 3;
888         u32 mem = psxMemRead32(addr & ~3);
889
890         psxMemWrite32(addr & ~3,  (_u32(_rRt_) << SWR_SHIFT[shift]) |
891                              (  mem & SWR_MASK[shift]) );
892
893         /*
894         Mem = 1234.  Reg = abcd
895
896         0   abcd   (reg      ) | (mem & 0x00000000)
897         1   bcd4   (reg <<  8) | (mem & 0x000000ff)
898         2   cd34   (reg << 16) | (mem & 0x0000ffff)
899         3   d234   (reg << 24) | (mem & 0x00ffffff)
900         */
901 }
902
903 /*********************************************************
904 * Moves between GPR and COPx                             *
905 * Format:  OP rt, fs                                     *
906 *********************************************************/
907 OP(psxMFC0) { if (!_Rt_) return; _rRt_ = _rFs_; }
908 OP(psxCFC0) { if (!_Rt_) return; _rRt_ = _rFs_; }
909
910 void MTC0(psxRegisters *regs_, int reg, u32 val) {
911 //      SysPrintf("MTC0 %d: %x\n", reg, val);
912         switch (reg) {
913                 case 12: // Status
914                         regs_->CP0.r[12] = val;
915                         psxTestSWInts(regs_);
916                         break;
917
918                 case 13: // Cause
919                         regs_->CP0.n.Cause &= ~0x0300;
920                         regs_->CP0.n.Cause |= val & 0x0300;
921                         psxTestSWInts(regs_);
922                         break;
923
924                 default:
925                         regs_->CP0.r[reg] = val;
926                         break;
927         }
928 }
929
930 OP(psxMTC0) { MTC0(regs_, _Rd_, _u32(_rRt_)); }
931 OP(psxCTC0) { MTC0(regs_, _Rd_, _u32(_rRt_)); }
932
933 /*********************************************************
934 * Unknow instruction (would generate an exception)       *
935 * Format:  ?                                             *
936 *********************************************************/
937 static inline void psxNULL_(void) {
938 #ifdef PSXCPU_LOG
939         PSXCPU_LOG("psx: Unimplemented op %x\n", psxRegs.code);
940 #endif
941 }
942
943 OP(psxNULL) { psxNULL_(); }
944 void gteNULL(struct psxCP2Regs *regs) { psxNULL_(); }
945
946 OP(psxSPECIAL) {
947         psxSPC[_Funct_](regs_, code);
948 }
949
950 OP(psxCOP0) {
951         switch (_Rs_) {
952                 case 0x00: psxMFC0(regs_, code); break;
953                 case 0x02: psxCFC0(regs_, code); break;
954                 case 0x04: psxMTC0(regs_, code); break;
955                 case 0x06: psxCTC0(regs_, code); break;
956                 case 0x10: psxRFE(regs_, code);  break;
957                 default:   psxNULL_();           break;
958         }
959 }
960
961 OP(psxCOP2) {
962         psxCP2[_Funct_](&regs_->CP2);
963 }
964
965 OP(psxCOP2_stall) {
966         u32 f = _Funct_;
967         gteCheckStall(f);
968         psxCP2[f](&regs_->CP2);
969 }
970
971 OP(gteMFC2) {
972         if (!_Rt_) return;
973         regs_->GPR.r[_Rt_] = MFC2(&regs_->CP2, _Rd_);
974 }
975
976 OP(gteCFC2) {
977         if (!_Rt_) return;
978         regs_->GPR.r[_Rt_] = regs_->CP2C.r[_Rd_];
979 }
980
981 OP(gteMTC2) {
982         MTC2(&regs_->CP2, regs_->GPR.r[_Rt_], _Rd_);
983 }
984
985 OP(gteCTC2) {
986         CTC2(&regs_->CP2, regs_->GPR.r[_Rt_], _Rd_);
987 }
988
989 OP(gteLWC2) {
990         MTC2(&regs_->CP2, psxMemRead32(_oB_), _Rt_);
991 }
992
993 OP(gteSWC2) {
994         psxMemWrite32(_oB_, MFC2(&regs_->CP2, _Rt_));
995 }
996
997 OP(gteLWC2_stall) {
998         gteCheckStall(0);
999         gteLWC2(regs_, code);
1000 }
1001
1002 OP(gteSWC2_stall) {
1003         gteCheckStall(0);
1004         gteSWC2(regs_, code);
1005 }
1006
1007 static void psxBASIC(struct psxCP2Regs *cp2regs) {
1008         psxRegisters *regs_ = (void *)((char *)cp2regs - offsetof(psxRegisters, CP2));
1009         u32 code = regs_->code;
1010         assert(regs_ == &psxRegs);
1011         switch (_Rs_) {
1012                 case 0x00: gteMFC2(regs_, code); break;
1013                 case 0x02: gteCFC2(regs_, code); break;
1014                 case 0x04: gteMTC2(regs_, code); break;
1015                 case 0x06: gteCTC2(regs_, code); break;
1016                 default:   psxNULL_();           break;
1017         }
1018 }
1019
1020 OP(psxREGIMM) {
1021         switch (_Rt_) {
1022                 case 0x00: psxBLTZ(regs_, code);   break;
1023                 case 0x01: psxBGEZ(regs_, code);   break;
1024                 case 0x10: psxBLTZAL(regs_, code); break;
1025                 case 0x11: psxBGEZAL(regs_, code); break;
1026                 default:   psxNULL_();             break;
1027         }
1028 }
1029
1030 OP(psxHLE) {
1031     uint32_t hleCode = code & 0x03ffffff;
1032     if (hleCode >= (sizeof(psxHLEt) / sizeof(psxHLEt[0]))) {
1033         psxNULL_();
1034     } else {
1035         psxHLEt[hleCode]();
1036     }
1037 }
1038
1039 static void (INT_ATTR *psxBSC[64])(psxRegisters *regs_, u32 code) = {
1040         psxSPECIAL, psxREGIMM, psxJ   , psxJAL  , psxBEQ , psxBNE , psxBLEZ, psxBGTZ,
1041         psxADDI   , psxADDIU , psxSLTI, psxSLTIU, psxANDI, psxORI , psxXORI, psxLUI ,
1042         psxCOP0   , psxNULL  , psxCOP2, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL,
1043         psxNULL   , psxNULL  , psxNULL, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL,
1044         psxLB     , psxLH    , psxLWL , psxLW   , psxLBU , psxLHU , psxLWR , psxNULL,
1045         psxSB     , psxSH    , psxSWL , psxSW   , psxNULL, psxNULL, psxSWR , psxNULL, 
1046         psxNULL   , psxNULL  , gteLWC2, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL,
1047         psxNULL   , psxNULL  , gteSWC2, psxHLE  , psxNULL, psxNULL, psxNULL, psxNULL 
1048 };
1049
1050 static void (INT_ATTR *psxSPC[64])(psxRegisters *regs_, u32 code) = {
1051         psxSLL , psxNULL , psxSRL , psxSRA , psxSLLV   , psxNULL , psxSRLV, psxSRAV,
1052         psxJR  , psxJALR , psxNULL, psxNULL, psxSYSCALL, psxBREAK, psxNULL, psxNULL,
1053         psxMFHI, psxMTHI , psxMFLO, psxMTLO, psxNULL   , psxNULL , psxNULL, psxNULL,
1054         psxMULT, psxMULTU, psxDIV , psxDIVU, psxNULL   , psxNULL , psxNULL, psxNULL,
1055         psxADD , psxADDU , psxSUB , psxSUBU, psxAND    , psxOR   , psxXOR , psxNOR ,
1056         psxNULL, psxNULL , psxSLT , psxSLTU, psxNULL   , psxNULL , psxNULL, psxNULL,
1057         psxNULL, psxNULL , psxNULL, psxNULL, psxNULL   , psxNULL , psxNULL, psxNULL,
1058         psxNULL, psxNULL , psxNULL, psxNULL, psxNULL   , psxNULL , psxNULL, psxNULL
1059 };
1060
1061 void (*psxCP2[64])(struct psxCP2Regs *regs) = {
1062         psxBASIC, gteRTPS , gteNULL , gteNULL, gteNULL, gteNULL , gteNCLIP, gteNULL, // 00
1063         gteNULL , gteNULL , gteNULL , gteNULL, gteOP  , gteNULL , gteNULL , gteNULL, // 08
1064         gteDPCS , gteINTPL, gteMVMVA, gteNCDS, gteCDP , gteNULL , gteNCDT , gteNULL, // 10
1065         gteNULL , gteNULL , gteNULL , gteNCCS, gteCC  , gteNULL , gteNCS  , gteNULL, // 18
1066         gteNCT  , gteNULL , gteNULL , gteNULL, gteNULL, gteNULL , gteNULL , gteNULL, // 20
1067         gteSQR  , gteDCPL , gteDPCT , gteNULL, gteNULL, gteAVSZ3, gteAVSZ4, gteNULL, // 28
1068         gteRTPT , gteNULL , gteNULL , gteNULL, gteNULL, gteNULL , gteNULL , gteNULL, // 30
1069         gteNULL , gteNULL , gteNULL , gteNULL, gteNULL, gteGPF  , gteGPL  , gteNCCT  // 38
1070 };
1071
1072 ///////////////////////////////////////////
1073
1074 static int intInit() {
1075         return 0;
1076 }
1077
1078 static void intReset() {
1079         memset(&ICache, 0xff, sizeof(ICache));
1080 }
1081
1082 static inline void execI_(u8 **memRLUT, psxRegisters *regs_) {
1083         regs_->code = fetch(memRLUT, regs_->pc);
1084
1085         debugI();
1086
1087         if (Config.Debug) ProcessDebug();
1088
1089         regs_->pc += 4;
1090         addCycle();
1091
1092         psxBSC[regs_->code >> 26](regs_, regs_->code);
1093 }
1094
1095 static void intExecute() {
1096         psxRegisters *regs_ = &psxRegs;
1097         u8 **memRLUT = psxMemRLUT;
1098         extern int stop;
1099
1100         while (!stop)
1101                 execI_(memRLUT, regs_);
1102 }
1103
1104 static void intExecuteBlock() {
1105         psxRegisters *regs_ = &psxRegs;
1106         u8 **memRLUT = psxMemRLUT;
1107
1108         branch2 = 0;
1109         while (!branch2)
1110                 execI_(memRLUT, regs_);
1111 }
1112
1113 static void intClear(u32 Addr, u32 Size) {
1114 }
1115
1116 void intNotify (int note, void *data) {
1117         /* Gameblabla - Only clear the icache if it's isolated */
1118         if (note == R3000ACPU_NOTIFY_CACHE_ISOLATED)
1119         {
1120                 memset(&ICache, 0xff, sizeof(ICache));
1121         }
1122 }
1123
1124 void intApplyConfig() {
1125         int cycle_mult;
1126
1127         assert(psxBSC[18] == psxCOP2  || psxBSC[18] == psxCOP2_stall);
1128         assert(psxBSC[50] == gteLWC2  || psxBSC[50] == gteLWC2_stall);
1129         assert(psxBSC[58] == gteSWC2  || psxBSC[58] == gteSWC2_stall);
1130         assert(psxSPC[16] == psxMFHI  || psxSPC[16] == psxMFHI_stall);
1131         assert(psxSPC[18] == psxMFLO  || psxSPC[18] == psxMFLO_stall);
1132         assert(psxSPC[24] == psxMULT  || psxSPC[24] == psxMULT_stall);
1133         assert(psxSPC[25] == psxMULTU || psxSPC[25] == psxMULTU_stall);
1134         assert(psxSPC[26] == psxDIV   || psxSPC[26] == psxDIV_stall);
1135         assert(psxSPC[27] == psxDIVU  || psxSPC[27] == psxDIVU_stall);
1136
1137         if (Config.DisableStalls) {
1138                 psxBSC[18] = psxCOP2;
1139                 psxBSC[50] = gteLWC2;
1140                 psxBSC[58] = gteSWC2;
1141                 psxSPC[16] = psxMFHI;
1142                 psxSPC[18] = psxMFLO;
1143                 psxSPC[24] = psxMULT;
1144                 psxSPC[25] = psxMULTU;
1145                 psxSPC[26] = psxDIV;
1146                 psxSPC[27] = psxDIVU;
1147         } else {
1148                 psxBSC[18] = psxCOP2_stall;
1149                 psxBSC[50] = gteLWC2_stall;
1150                 psxBSC[58] = gteSWC2_stall;
1151                 psxSPC[16] = psxMFHI_stall;
1152                 psxSPC[18] = psxMFLO_stall;
1153                 psxSPC[24] = psxMULT_stall;
1154                 psxSPC[25] = psxMULTU_stall;
1155                 psxSPC[26] = psxDIV_stall;
1156                 psxSPC[27] = psxDIVU_stall;
1157         }
1158
1159         // dynarec may occasionally call the interpreter, in such a case the
1160         // cache won't work (cache only works right if all fetches go through it)
1161         if (!Config.icache_emulation || psxCpu != &psxInt)
1162                 fetch = fetchNoCache;
1163         else
1164                 fetch = fetchICache;
1165
1166         cycle_mult = Config.cycle_multiplier_override && Config.cycle_multiplier == CYCLE_MULT_DEFAULT
1167                 ? Config.cycle_multiplier_override : Config.cycle_multiplier;
1168         psxRegs.subCycleStep = 0x10000 * cycle_mult / 100;
1169 }
1170
1171 static void intShutdown() {
1172 }
1173
1174 // single step (may do several ops in case of a branch)
1175 void execI() {
1176         execI_(psxMemRLUT, &psxRegs);
1177 }
1178
1179 R3000Acpu psxInt = {
1180         intInit,
1181         intReset,
1182         intExecute,
1183         intExecuteBlock,
1184         intClear,
1185         intNotify,
1186         intApplyConfig,
1187         intShutdown
1188 };