drc: svp: some missed r9 handling for apple
[picodrive.git] / pico / carthw / svp / compiler.c
1 /*
2  * SSP1601 to ARM recompiler
3  * (C) notaz, 2008,2009,2010
4  *
5  * This work is licensed under the terms of MAME license.
6  * See COPYING file in the top-level directory.
7  */
8
9 #include "../../pico_int.h"
10 #include "../../../cpu/drc/cmn.h"
11 #include "compiler.h"
12
13 // FIXME: asm has these hardcoded
14 #define SSP_BLOCKTAB_ENTS       (0x5090/2)
15 #define SSP_BLOCKTAB_IRAM_ONE   (0x800/2) // table entries
16 #define SSP_BLOCKTAB_IRAM_ENTS  (15*SSP_BLOCKTAB_IRAM_ONE)
17
18 static u32 **ssp_block_table; // [0x5090/2];
19 static u32 **ssp_block_table_iram; // [15][0x800/2];
20
21 static u32 *tcache_ptr = NULL;
22
23 static int nblocks = 0;
24 static int n_in_ops = 0;
25
26 extern ssp1601_t *ssp;
27
28 #define rPC    ssp->gr[SSP_PC].h
29 #define rPMC   ssp->gr[SSP_PMC]
30
31 #define SSP_FLAG_Z (1<<0xd)
32 #define SSP_FLAG_N (1<<0xf)
33
34 #ifndef __arm__
35 //#define DUMP_BLOCK 0x0c9a
36 void ssp_drc_next(void){}
37 void ssp_drc_next_patch(void){}
38 void ssp_drc_end(void){}
39 #endif
40
41 #define COUNT_OP
42 #include "../../../cpu/drc/emit_arm.c"
43
44 // -----------------------------------------------------
45
46 static int get_inc(int mode)
47 {
48         int inc = (mode >> 11) & 7;
49         if (inc != 0) {
50                 if (inc != 7) inc--;
51                 inc = 1 << inc; // 0 1 2 4 8 16 32 128
52                 if (mode & 0x8000) inc = -inc; // decrement mode
53         }
54         return inc;
55 }
56
57 u32 ssp_pm_read(int reg)
58 {
59         u32 d = 0, mode;
60
61         if (ssp->emu_status & SSP_PMC_SET)
62         {
63                 ssp->pmac_read[reg] = rPMC.v;
64                 ssp->emu_status &= ~SSP_PMC_SET;
65                 return 0;
66         }
67
68         // just in case
69         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
70
71         mode = ssp->pmac_read[reg]>>16;
72         if      ((mode & 0xfff0) == 0x0800) // ROM
73         {
74                 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
75                 ssp->pmac_read[reg] += 1;
76         }
77         else if ((mode & 0x47ff) == 0x0018) // DRAM
78         {
79                 unsigned short *dram = (unsigned short *)svp->dram;
80                 int inc = get_inc(mode);
81                 d = dram[ssp->pmac_read[reg]&0xffff];
82                 ssp->pmac_read[reg] += inc;
83         }
84
85         // PMC value corresponds to last PMR accessed
86         rPMC.v = ssp->pmac_read[reg];
87
88         return d;
89 }
90
91 #define overwrite_write(dst, d) \
92 { \
93         if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
94         if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
95         if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
96         if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
97 }
98
99 void ssp_pm_write(u32 d, int reg)
100 {
101         unsigned short *dram;
102         int mode, addr;
103
104         if (ssp->emu_status & SSP_PMC_SET)
105         {
106                 ssp->pmac_write[reg] = rPMC.v;
107                 ssp->emu_status &= ~SSP_PMC_SET;
108                 return;
109         }
110
111         // just in case
112         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
113
114         dram = (unsigned short *)svp->dram;
115         mode = ssp->pmac_write[reg]>>16;
116         addr = ssp->pmac_write[reg]&0xffff;
117         if      ((mode & 0x43ff) == 0x0018) // DRAM
118         {
119                 int inc = get_inc(mode);
120                 if (mode & 0x0400) {
121                        overwrite_write(dram[addr], d);
122                 } else dram[addr] = d;
123                 ssp->pmac_write[reg] += inc;
124         }
125         else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
126         {
127                 if (mode & 0x0400) {
128                        overwrite_write(dram[addr], d);
129                 } else dram[addr] = d;
130                 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
131         }
132         else if ((mode & 0x47ff) == 0x001c) // IRAM
133         {
134                 int inc = get_inc(mode);
135                 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
136                 ssp->pmac_write[reg] += inc;
137                 ssp->drc.iram_dirty = 1;
138         }
139
140         rPMC.v = ssp->pmac_write[reg];
141 }
142
143
144 // -----------------------------------------------------
145
146 // 14 IRAM blocks
147 static unsigned char iram_context_map[] =
148 {
149          0, 0, 0, 0, 1, 0, 0, 0, // 04
150          0, 0, 0, 0, 0, 0, 2, 0, // 0e
151          0, 0, 0, 0, 0, 3, 0, 4, // 15 17
152          5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
153          8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
154          0, 0, 0, 0, 0, 0, 0, 0,
155          0, 0,11, 0, 0,12, 0, 0, // 32 35
156         13,14, 0, 0, 0, 0, 0, 0  // 38 39
157 };
158
159 int ssp_get_iram_context(void)
160 {
161         unsigned char *ir = (unsigned char *)svp->iram_rom;
162         int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
163         val1 = iram_context_map[(val>>1)&0x3f];
164
165         if (val1 == 0) {
166                 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
167                 //debug_dump2file(name, svp->iram_rom, 0x800);
168                 //exit(1);
169         }
170         return val1;
171 }
172
173 // -----------------------------------------------------
174
175 /* regs with known values */
176 static struct
177 {
178         ssp_reg_t gr[8];
179         unsigned char r[8];
180         unsigned int pmac_read[5];
181         unsigned int pmac_write[5];
182         ssp_reg_t pmc;
183         unsigned int emu_status;
184 } known_regs;
185
186 #define KRREG_X     (1 << SSP_X)
187 #define KRREG_Y     (1 << SSP_Y)
188 #define KRREG_A     (1 << SSP_A)        /* AH only */
189 #define KRREG_ST    (1 << SSP_ST)
190 #define KRREG_STACK (1 << SSP_STACK)
191 #define KRREG_PC    (1 << SSP_PC)
192 #define KRREG_P     (1 << SSP_P)
193 #define KRREG_PR0   (1 << 8)
194 #define KRREG_PR4   (1 << 12)
195 #define KRREG_AL    (1 << 16)
196 #define KRREG_PMCM  (1 << 18)           /* only mode word of PMC */
197 #define KRREG_PMC   (1 << 19)
198 #define KRREG_PM0R  (1 << 20)
199 #define KRREG_PM1R  (1 << 21)
200 #define KRREG_PM2R  (1 << 22)
201 #define KRREG_PM3R  (1 << 23)
202 #define KRREG_PM4R  (1 << 24)
203 #define KRREG_PM0W  (1 << 25)
204 #define KRREG_PM1W  (1 << 26)
205 #define KRREG_PM2W  (1 << 27)
206 #define KRREG_PM3W  (1 << 28)
207 #define KRREG_PM4W  (1 << 29)
208
209 /* bitfield of known register values */
210 static u32 known_regb = 0;
211
212 /* known vals, which need to be flushed
213  * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
214  * ST means flags are being held in ARM PSR
215  * P means that it needs to be recalculated
216  */
217 static u32 dirty_regb = 0;
218
219 /* known values of host regs.
220  * -1            - unknown
221  * 000000-00ffff - 16bit value
222  * 100000-10ffff - base reg (r7) + 16bit val
223  * 0r0000        - means reg (low) eq gr[r].h, r != AL
224  */
225 static int hostreg_r[4];
226
227 static void hostreg_clear(void)
228 {
229         int i;
230         for (i = 0; i < 4; i++)
231                 hostreg_r[i] = -1;
232 }
233
234 static void hostreg_sspreg_changed(int sspreg)
235 {
236         int i;
237         for (i = 0; i < 4; i++)
238                 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
239 }
240
241
242 #define PROGRAM(x)   ((unsigned short *)svp->iram_rom)[x]
243 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
244
245 void tr_unhandled(void)
246 {
247         //FILE *f = fopen("tcache.bin", "wb");
248         //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
249         //fclose(f);
250         elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
251         //exit(1);
252 }
253
254 /* update P, if needed. Trashes r0 */
255 static void tr_flush_dirty_P(void)
256 {
257         // TODO: const regs
258         if (!(dirty_regb & KRREG_P)) return;
259         EOP_MOV_REG_ASR(10, 4, 16);             // mov  r10, r4, asr #16
260         EOP_MOV_REG_LSL( 0, 4, 16);             // mov  r0,  r4, lsl #16
261         EOP_MOV_REG_ASR( 0, 0, 15);             // mov  r0,  r0, asr #15
262         EOP_MUL(10, 0, 10);                     // mul  r10, r0, r10
263         dirty_regb &= ~KRREG_P;
264         hostreg_r[0] = -1;
265 }
266
267 /* write dirty pr to host reg. Nothing is trashed */
268 static void tr_flush_dirty_pr(int r)
269 {
270         int ror = 0, reg;
271
272         if (!(dirty_regb & (1 << (r+8)))) return;
273
274         switch (r&3) {
275                 case 0: ror =    0; break;
276                 case 1: ror = 24/2; break;
277                 case 2: ror = 16/2; break;
278         }
279         reg = (r < 4) ? 8 : 9;
280         EOP_BIC_IMM(reg,reg,ror,0xff);
281         if (known_regs.r[r] != 0)
282                 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
283         dirty_regb &= ~(1 << (r+8));
284 }
285
286 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
287 static void tr_flush_dirty_prs(void)
288 {
289         int i, ror = 0, reg;
290         int dirty = dirty_regb >> 8;
291         if ((dirty&7) == 7) {
292                 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
293                 dirty &= ~7;
294         }
295         if ((dirty&0x70) == 0x70) {
296                 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
297                 dirty &= ~0x70;
298         }
299         /* r0-r7 */
300         for (i = 0; dirty && i < 8; i++, dirty >>= 1)
301         {
302                 if (!(dirty&1)) continue;
303                 switch (i&3) {
304                         case 0: ror =    0; break;
305                         case 1: ror = 24/2; break;
306                         case 2: ror = 16/2; break;
307                 }
308                 reg = (i < 4) ? 8 : 9;
309                 EOP_BIC_IMM(reg,reg,ror,0xff);
310                 if (known_regs.r[i] != 0)
311                         EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
312         }
313         dirty_regb &= ~0xff00;
314 }
315
316 /* write dirty pr and "forget" it. Nothing is trashed. */
317 static void tr_release_pr(int r)
318 {
319         tr_flush_dirty_pr(r);
320         known_regb &= ~(1 << (r+8));
321 }
322
323 /* fush ARM PSR to r6. Trashes r1 */
324 static void tr_flush_dirty_ST(void)
325 {
326         if (!(dirty_regb & KRREG_ST)) return;
327         EOP_BIC_IMM(6,6,0,0x0f);
328         EOP_MRS(1);
329         EOP_ORR_REG_LSR(6,6,1,28);
330         dirty_regb &= ~KRREG_ST;
331         hostreg_r[1] = -1;
332 }
333
334 /* inverse of above. Trashes r1 */
335 static void tr_make_dirty_ST(void)
336 {
337         if (dirty_regb & KRREG_ST) return;
338         if (known_regb & KRREG_ST) {
339                 int flags = 0;
340                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
341                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
342                 EOP_MSR_IMM(4/2, flags);
343         } else {
344                 EOP_MOV_REG_LSL(1, 6, 28);
345                 EOP_MSR_REG(1);
346                 hostreg_r[1] = -1;
347         }
348         dirty_regb |= KRREG_ST;
349 }
350
351 /* load 16bit val into host reg r0-r3. Nothing is trashed */
352 static void tr_mov16(int r, int val)
353 {
354         if (hostreg_r[r] != val) {
355                 emith_move_r_imm(r, val);
356                 hostreg_r[r] = val;
357         }
358 }
359
360 static void tr_mov16_cond(int cond, int r, int val)
361 {
362         emith_op_imm(cond, 0, A_OP_MOV, r, val);
363         hostreg_r[r] = -1;
364 }
365
366 /* trashes r1 */
367 static void tr_flush_dirty_pmcrs(void)
368 {
369         u32 i, val = (u32)-1;
370         if (!(dirty_regb & 0x3ff80000)) return;
371
372         if (dirty_regb & KRREG_PMC) {
373                 val = known_regs.pmc.v;
374                 emith_move_r_imm(1, val);
375                 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
376
377                 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
378                         elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
379                         tr_unhandled();
380                 }
381         }
382         for (i = 0; i < 5; i++)
383         {
384                 if (dirty_regb & (1 << (20+i))) {
385                         if (val != known_regs.pmac_read[i]) {
386                                 val = known_regs.pmac_read[i];
387                                 emith_move_r_imm(1, val);
388                         }
389                         EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
390                 }
391                 if (dirty_regb & (1 << (25+i))) {
392                         if (val != known_regs.pmac_write[i]) {
393                                 val = known_regs.pmac_write[i];
394                                 emith_move_r_imm(1, val);
395                         }
396                         EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
397                 }
398         }
399         dirty_regb &= ~0x3ff80000;
400         hostreg_r[1] = -1;
401 }
402
403 /* read bank word to r0 (upper bits zero). Thrashes r1. */
404 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
405 {
406         int breg = 7;
407         if (addr > 0x7f) {
408                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
409                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
410                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
411                 }
412                 breg = 1;
413         }
414         EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1);    // ldrh r0, [r1, (op&0x7f)<<1]
415         hostreg_r[0] = -1;
416 }
417
418 /* write r0 to bank. Trashes r1. */
419 static void tr_bank_write(int addr)
420 {
421         int breg = 7;
422         if (addr > 0x7f) {
423                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
424                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
425                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
426                 }
427                 breg = 1;
428         }
429         EOP_STRH_IMM(0,breg,(addr&0x7f)<<1);            // strh r0, [r1, (op&0x7f)<<1]
430 }
431
432 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
433 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
434 {
435         int modulo_shift = -1;  /* unknown */
436
437         if (mod == 0) return;
438
439         if (!need_modulo || mod == 1) // +!
440                 modulo_shift = 8;
441         else if (need_modulo && (known_regb & KRREG_ST)) {
442                 modulo_shift = known_regs.gr[SSP_ST].h & 7;
443                 if (modulo_shift == 0) modulo_shift = 8;
444         }
445
446         if (modulo_shift == -1)
447         {
448                 int reg = (r < 4) ? 8 : 9;
449                 tr_release_pr(r);
450                 if (dirty_regb & KRREG_ST) {
451                         // avoid flushing ARM flags
452                         EOP_AND_IMM(1, 6, 0, 0x70);
453                         EOP_SUB_IMM(1, 1, 0, 0x10);
454                         EOP_AND_IMM(1, 1, 0, 0x70);
455                         EOP_ADD_IMM(1, 1, 0, 0x10);
456                 } else {
457                         EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands  r1, r6, #0x70
458                         EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
459                 }
460                 EOP_MOV_REG_LSR(1, 1, 4);               // mov r1, r1, lsr #4
461                 EOP_RSB_IMM(2, 1, 0, 8);                // rsb r1, r1, #8
462                 EOP_MOV_IMM(3, 8/2, count);             // mov r3, #0x01000000
463                 if (r&3)
464                         EOP_ADD_IMM(1, 1, 0, (r&3)*8);  // add r1, r1, #(r&3)*8
465                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
466                 if (mod == 2)
467                      EOP_SUB_REG2_LSL(reg,reg,3,2);     // sub reg, reg, #0x01000000 << r2
468                 else EOP_ADD_REG2_LSL(reg,reg,3,2);
469                 EOP_RSB_IMM(1, 1, 0, 32);               // rsb r1, r1, #32
470                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
471                 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
472         }
473         else if (known_regb & (1 << (r + 8)))
474         {
475                 int modulo = (1 << modulo_shift) - 1;
476                 if (mod == 2)
477                      known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
478                 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
479         }
480         else
481         {
482                 int reg = (r < 4) ? 8 : 9;
483                 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
484                 EOP_MOV_REG_ROR(reg,reg,ror);
485                 // {add|sub} reg, reg, #1<<shift
486                 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
487                 EOP_MOV_REG_ROR(reg,reg,32-ror);
488         }
489 }
490
491 /* handle writes r0 to (rX). Trashes r1.
492  * fortunately we can ignore modulo increment modes for writes. */
493 static void tr_rX_write(int op)
494 {
495         if ((op&3) == 3)
496         {
497                 int mod = (op>>2) & 3; // direct addressing
498                 tr_bank_write((op & 0x100) + mod);
499         }
500         else
501         {
502                 int r = (op&3) | ((op>>6)&4);
503                 if (known_regb & (1 << (r + 8))) {
504                         tr_bank_write((op&0x100) | known_regs.r[r]);
505                 } else {
506                         int reg = (r < 4) ? 8 : 9;
507                         int ror = ((4 - (r&3))*8) & 0x1f;
508                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
509                         if (r >= 4)
510                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
511                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
512                         else     EOP_ADD_REG_LSL(1,7,1,1);
513                         EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
514                         hostreg_r[1] = -1;
515                 }
516                 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
517         }
518 }
519
520 /* read (rX) to r0. Trashes r1-r3. */
521 static void tr_rX_read(int r, int mod)
522 {
523         if ((r&3) == 3)
524         {
525                 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
526         }
527         else
528         {
529                 if (known_regb & (1 << (r + 8))) {
530                         tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
531                 } else {
532                         int reg = (r < 4) ? 8 : 9;
533                         int ror = ((4 - (r&3))*8) & 0x1f;
534                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
535                         if (r >= 4)
536                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
537                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
538                         else     EOP_ADD_REG_LSL(1,7,1,1);
539                         EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
540                         hostreg_r[0] = hostreg_r[1] = -1;
541                 }
542                 tr_ptrr_mod(r, mod, 1, 1);
543         }
544 }
545
546 /* read ((rX)) to r0. Trashes r1,r2. */
547 static void tr_rX_read2(int op)
548 {
549         int r = (op&3) | ((op>>6)&4); // src
550
551         if ((r&3) == 3) {
552                 tr_bank_read((op&0x100) | ((op>>2)&3));
553         } else if (known_regb & (1 << (r+8))) {
554                 tr_bank_read((op&0x100) | known_regs.r[r]);
555         } else {
556                 int reg = (r < 4) ? 8 : 9;
557                 int ror = ((4 - (r&3))*8) & 0x1f;
558                 EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
559                 if (r >= 4)
560                         EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
561                 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
562                 else     EOP_ADD_REG_LSL(1,7,1,1);
563                 EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
564         }
565         EOP_LDR_IMM(2,7,0x48c);                                 // ptr_iram_rom
566         EOP_ADD_REG_LSL(2,2,0,1);                               // add  r2, r2, r0, lsl #1
567         EOP_ADD_IMM(0,0,0,1);                                   // add  r0, r0, #1
568         if ((r&3) == 3) {
569                 tr_bank_write((op&0x100) | ((op>>2)&3));
570         } else if (known_regb & (1 << (r+8))) {
571                 tr_bank_write((op&0x100) | known_regs.r[r]);
572         } else {
573                 EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
574                 hostreg_r[1] = -1;
575         }
576         EOP_LDRH_SIMPLE(0,2);                                   // ldrh r0, [r2]
577         hostreg_r[0] = hostreg_r[2] = -1;
578 }
579
580 // check if AL is going to be used later in block
581 static int tr_predict_al_need(void)
582 {
583         int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
584
585         while (1)
586         {
587                 op = PROGRAM(pc);
588                 switch (op >> 9)
589                 {
590                         // ld d, s
591                         case 0x00:
592                                 tmpv2 = (op >> 4) & 0xf; // dst
593                                 tmpv  = op & 0xf; // src
594                                 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
595                                         return 0;
596                                 break;
597
598                         // ld (ri), s
599                         case 0x02:
600                         // ld ri, s
601                         case 0x0a:
602                         // OP a, s
603                         case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
604                                 tmpv  = op & 0xf; // src
605                                 if (tmpv == SSP_AL) // OP *, AL
606                                         return 1;
607                                 break;
608
609                         case 0x04:
610                         case 0x06:
611                         case 0x14:
612                         case 0x34:
613                         case 0x44:
614                         case 0x64:
615                         case 0x74: pc++; break;
616
617                         // call cond, addr
618                         case 0x24:
619                         // bra cond, addr
620                         case 0x26:
621                         // mod cond, op
622                         case 0x48:
623                         // mpys?
624                         case 0x1b:
625                         // mpya (rj), (ri), b
626                         case 0x4b: return 1;
627
628                         // mld (rj), (ri), b
629                         case 0x5b: return 0; // cleared anyway
630
631                         // and A, *
632                         case 0x50:
633                                 tmpv  = op & 0xf; // src
634                                 if (tmpv == SSP_AL) return 1;
635                         case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
636                                 return 0;
637                 }
638                 pc++;
639         }
640 }
641
642
643 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
644 static int tr_cond_check(int op)
645 {
646         int f = (op & 0x100) >> 8;
647         switch (op&0xf0) {
648                 case 0x00: return A_COND_AL;    /* always true */
649                 case 0x50:                      /* Z matches f(?) bit */
650                         if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
651                         EOP_TST_IMM(6, 0, 4);
652                         return f ? A_COND_NE : A_COND_EQ;
653                 case 0x70:                      /* N matches f(?) bit */
654                         if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
655                         EOP_TST_IMM(6, 0, 8);
656                         return f ? A_COND_NE : A_COND_EQ;
657                 default:
658                         elprintf(EL_ANOMALY, "unimplemented cond?\n");
659                         tr_unhandled();
660                         return 0;
661         }
662 }
663
664 static int tr_neg_cond(int cond)
665 {
666         switch (cond) {
667                 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
668                 case A_COND_EQ: return A_COND_NE;
669                 case A_COND_NE: return A_COND_EQ;
670                 case A_COND_MI: return A_COND_PL;
671                 case A_COND_PL: return A_COND_MI;
672                 default:        elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
673         }
674         return 0;
675 }
676
677 static int tr_aop_ssp2arm(int op)
678 {
679         switch (op) {
680                 case 1: return A_OP_SUB;
681                 case 3: return A_OP_CMP;
682                 case 4: return A_OP_ADD;
683                 case 5: return A_OP_AND;
684                 case 6: return A_OP_ORR;
685                 case 7: return A_OP_EOR;
686         }
687
688         tr_unhandled();
689         return 0;
690 }
691
692 #ifdef __MACH__
693 /* spacial version of call for calling C needed on ios, since we use r9.. */
694 static void emith_call_c_func(void *target)
695 {
696         EOP_STMFD_SP(A_R7M|A_R9M);
697         emith_call(target);
698         EOP_LDMFD_SP(A_R7M|A_R9M);
699 }
700 #else
701 #define emith_call_c_func emith_call
702 #endif
703
704 // -----------------------------------------------------
705
706 //@ r4:  XXYY
707 //@ r5:  A
708 //@ r6:  STACK and emu flags
709 //@ r7:  SSP context
710 //@ r10: P
711
712 // read general reg to r0. Trashes r1
713 static void tr_GR0_to_r0(int op)
714 {
715         tr_mov16(0, 0xffff);
716 }
717
718 static void tr_X_to_r0(int op)
719 {
720         if (hostreg_r[0] != (SSP_X<<16)) {
721                 EOP_MOV_REG_LSR(0, 4, 16);      // mov  r0, r4, lsr #16
722                 hostreg_r[0] = SSP_X<<16;
723         }
724 }
725
726 static void tr_Y_to_r0(int op)
727 {
728         if (hostreg_r[0] != (SSP_Y<<16)) {
729                 EOP_MOV_REG_SIMPLE(0, 4);       // mov  r0, r4
730                 hostreg_r[0] = SSP_Y<<16;
731         }
732 }
733
734 static void tr_A_to_r0(int op)
735 {
736         if (hostreg_r[0] != (SSP_A<<16)) {
737                 EOP_MOV_REG_LSR(0, 5, 16);      // mov  r0, r5, lsr #16  @ AH
738                 hostreg_r[0] = SSP_A<<16;
739         }
740 }
741
742 static void tr_ST_to_r0(int op)
743 {
744         // VR doesn't need much accuracy here..
745         EOP_MOV_REG_LSR(0, 6, 4);               // mov  r0, r6, lsr #4
746         EOP_AND_IMM(0, 0, 0, 0x67);             // and  r0, r0, #0x67
747         hostreg_r[0] = -1;
748 }
749
750 static void tr_STACK_to_r0(int op)
751 {
752         // 448
753         EOP_SUB_IMM(6, 6,  8/2, 0x20);          // sub  r6, r6, #1<<29
754         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
755         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
756         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
757         EOP_LDRH_SIMPLE(0, 1);                  // ldrh r0, [r1]
758         hostreg_r[0] = hostreg_r[1] = -1;
759 }
760
761 static void tr_PC_to_r0(int op)
762 {
763         tr_mov16(0, known_regs.gr[SSP_PC].h);
764 }
765
766 static void tr_P_to_r0(int op)
767 {
768         tr_flush_dirty_P();
769         EOP_MOV_REG_LSR(0, 10, 16);             // mov  r0, r10, lsr #16
770         hostreg_r[0] = -1;
771 }
772
773 static void tr_AL_to_r0(int op)
774 {
775         if (op == 0x000f) {
776                 if (known_regb & KRREG_PMC) {
777                         known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
778                 } else {
779                         EOP_LDR_IMM(0,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
780                         EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
781                         EOP_STR_IMM(0,7,0x484);
782                 }
783         }
784
785         if (hostreg_r[0] != (SSP_AL<<16)) {
786                 EOP_MOV_REG_SIMPLE(0, 5);       // mov  r0, r5
787                 hostreg_r[0] = SSP_AL<<16;
788         }
789 }
790
791 static void tr_PMX_to_r0(int reg)
792 {
793         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
794         {
795                 known_regs.pmac_read[reg] = known_regs.pmc.v;
796                 known_regs.emu_status &= ~SSP_PMC_SET;
797                 known_regb |= 1 << (20+reg);
798                 dirty_regb |= 1 << (20+reg);
799                 return;
800         }
801
802         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
803         {
804                 u32 pmcv = known_regs.pmac_read[reg];
805                 int mode = pmcv>>16;
806                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
807
808                 if      ((mode & 0xfff0) == 0x0800)
809                 {
810                         EOP_LDR_IMM(1,7,0x488);         // rom_ptr
811                         emith_move_r_imm(0, (pmcv&0xfffff)<<1);
812                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
813                         known_regs.pmac_read[reg] += 1;
814                 }
815                 else if ((mode & 0x47ff) == 0x0018) // DRAM
816                 {
817                         int inc = get_inc(mode);
818                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
819                         emith_move_r_imm(0, (pmcv&0xffff)<<1);
820                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
821                         if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
822                         {
823                                 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
824                                 tr_flush_dirty_ST();
825                                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
826                                 EOP_TST_REG_SIMPLE(0,0);
827                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1);       // subeq r11, r11, #1024
828                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
829                                 EOP_STR_IMM(1,7,0x484);                 // str r1, [r7, #0x484] // emu_status
830                         }
831                         known_regs.pmac_read[reg] += inc;
832                 }
833                 else
834                 {
835                         tr_unhandled();
836                 }
837                 known_regs.pmc.v = known_regs.pmac_read[reg];
838                 //known_regb |= KRREG_PMC;
839                 dirty_regb |= KRREG_PMC;
840                 dirty_regb |= 1 << (20+reg);
841                 hostreg_r[0] = hostreg_r[1] = -1;
842                 return;
843         }
844
845         known_regb &= ~KRREG_PMC;
846         dirty_regb &= ~KRREG_PMC;
847         known_regb &= ~(1 << (20+reg));
848         dirty_regb &= ~(1 << (20+reg));
849
850         // call the C code to handle this
851         tr_flush_dirty_ST();
852         //tr_flush_dirty_pmcrs();
853         tr_mov16(0, reg);
854         emith_call_c_func(ssp_pm_read);
855         hostreg_clear();
856 }
857
858 static void tr_PM0_to_r0(int op)
859 {
860         tr_PMX_to_r0(0);
861 }
862
863 static void tr_PM1_to_r0(int op)
864 {
865         tr_PMX_to_r0(1);
866 }
867
868 static void tr_PM2_to_r0(int op)
869 {
870         tr_PMX_to_r0(2);
871 }
872
873 static void tr_XST_to_r0(int op)
874 {
875         EOP_ADD_IMM(0, 7, 24/2, 4);     // add r0, r7, #0x400
876         EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
877 }
878
879 static void tr_PM4_to_r0(int op)
880 {
881         tr_PMX_to_r0(4);
882 }
883
884 static void tr_PMC_to_r0(int op)
885 {
886         if (known_regb & KRREG_PMC)
887         {
888                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
889                         known_regs.emu_status |= SSP_PMC_SET;
890                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
891                         // do nothing - this is handled elsewhere
892                 } else {
893                         tr_mov16(0, known_regs.pmc.l);
894                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
895                 }
896         }
897         else
898         {
899                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
900                 tr_flush_dirty_ST();
901                 if (op != 0x000e)
902                         EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
903                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
904                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
905                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
906                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
907                 EOP_STR_IMM(1,7,0x484);
908                 hostreg_r[0] = hostreg_r[1] = -1;
909         }
910 }
911
912
913 typedef void (tr_read_func)(int op);
914
915 static tr_read_func *tr_read_funcs[16] =
916 {
917         tr_GR0_to_r0,
918         tr_X_to_r0,
919         tr_Y_to_r0,
920         tr_A_to_r0,
921         tr_ST_to_r0,
922         tr_STACK_to_r0,
923         tr_PC_to_r0,
924         tr_P_to_r0,
925         tr_PM0_to_r0,
926         tr_PM1_to_r0,
927         tr_PM2_to_r0,
928         tr_XST_to_r0,
929         tr_PM4_to_r0,
930         (tr_read_func *)tr_unhandled,
931         tr_PMC_to_r0,
932         tr_AL_to_r0
933 };
934
935
936 // write r0 to general reg handlers. Trashes r1
937 #define TR_WRITE_R0_TO_REG(reg) \
938 { \
939         hostreg_sspreg_changed(reg); \
940         hostreg_r[0] = (reg)<<16; \
941         if (const_val != -1) { \
942                 known_regs.gr[reg].h = const_val; \
943                 known_regb |= 1 << (reg); \
944         } else { \
945                 known_regb &= ~(1 << (reg)); \
946         } \
947 }
948
949 static void tr_r0_to_GR0(int const_val)
950 {
951         // do nothing
952 }
953
954 static void tr_r0_to_X(int const_val)
955 {
956         EOP_MOV_REG_LSL(4, 4, 16);              // mov  r4, r4, lsl #16
957         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
958         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
959         dirty_regb |= KRREG_P;                  // touching X or Y makes P dirty.
960         TR_WRITE_R0_TO_REG(SSP_X);
961 }
962
963 static void tr_r0_to_Y(int const_val)
964 {
965         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
966         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
967         EOP_MOV_REG_ROR(4, 4, 16);              // mov  r4, r4, ror #16
968         dirty_regb |= KRREG_P;
969         TR_WRITE_R0_TO_REG(SSP_Y);
970 }
971
972 static void tr_r0_to_A(int const_val)
973 {
974         if (tr_predict_al_need()) {
975                 EOP_MOV_REG_LSL(5, 5, 16);      // mov  r5, r5, lsl #16
976                 EOP_MOV_REG_LSR(5, 5, 16);      // mov  r5, r5, lsr #16  @ AL
977                 EOP_ORR_REG_LSL(5, 5, 0, 16);   // orr  r5, r5, r0, lsl #16
978         }
979         else
980                 EOP_MOV_REG_LSL(5, 0, 16);
981         TR_WRITE_R0_TO_REG(SSP_A);
982 }
983
984 static void tr_r0_to_ST(int const_val)
985 {
986         // VR doesn't need much accuracy here..
987         EOP_AND_IMM(1, 0,   0, 0x67);           // and   r1, r0, #0x67
988         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
989         EOP_ORR_REG_LSL(6, 6, 1, 4);            // orr   r6, r6, r1, lsl #4
990         TR_WRITE_R0_TO_REG(SSP_ST);
991         hostreg_r[1] = -1;
992         dirty_regb &= ~KRREG_ST;
993 }
994
995 static void tr_r0_to_STACK(int const_val)
996 {
997         // 448
998         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
999         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
1000         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
1001         EOP_STRH_SIMPLE(0, 1);                  // strh r0, [r1]
1002         EOP_ADD_IMM(6, 6,  8/2, 0x20);          // add  r6, r6, #1<<29
1003         hostreg_r[1] = -1;
1004 }
1005
1006 static void tr_r0_to_PC(int const_val)
1007 {
1008 /*
1009  * do nothing - dispatcher will take care of this
1010         EOP_MOV_REG_LSL(1, 0, 16);              // mov  r1, r0, lsl #16
1011         EOP_STR_IMM(1,7,0x400+6*4);             // str  r1, [r7, #(0x400+6*8)]
1012         hostreg_r[1] = -1;
1013 */
1014 }
1015
1016 static void tr_r0_to_AL(int const_val)
1017 {
1018         EOP_MOV_REG_LSR(5, 5, 16);              // mov  r5, r5, lsr #16
1019         EOP_ORR_REG_LSL(5, 5, 0, 16);           // orr  r5, r5, r0, lsl #16
1020         EOP_MOV_REG_ROR(5, 5, 16);              // mov  r5, r5, ror #16
1021         hostreg_sspreg_changed(SSP_AL);
1022         if (const_val != -1) {
1023                 known_regs.gr[SSP_A].l = const_val;
1024                 known_regb |= 1 << SSP_AL;
1025         } else
1026                 known_regb &= ~(1 << SSP_AL);
1027 }
1028
1029 static void tr_r0_to_PMX(int reg)
1030 {
1031         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1032         {
1033                 known_regs.pmac_write[reg] = known_regs.pmc.v;
1034                 known_regs.emu_status &= ~SSP_PMC_SET;
1035                 known_regb |= 1 << (25+reg);
1036                 dirty_regb |= 1 << (25+reg);
1037                 return;
1038         }
1039
1040         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1041         {
1042                 int mode, addr;
1043
1044                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1045
1046                 mode = known_regs.pmac_write[reg]>>16;
1047                 addr = known_regs.pmac_write[reg]&0xffff;
1048                 if      ((mode & 0x43ff) == 0x0018) // DRAM
1049                 {
1050                         int inc = get_inc(mode);
1051                         if (mode & 0x0400) tr_unhandled();
1052                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1053                         emith_move_r_imm(2, addr << 1);
1054                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1055                         known_regs.pmac_write[reg] += inc;
1056                 }
1057                 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1058                 {
1059                         if (mode & 0x0400) tr_unhandled();
1060                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1061                         emith_move_r_imm(2, addr << 1);
1062                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1063                         known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1064                 }
1065                 else if ((mode & 0x47ff) == 0x001c) // IRAM
1066                 {
1067                         int inc = get_inc(mode);
1068                         EOP_LDR_IMM(1,7,0x48c);         // iram_ptr
1069                         emith_move_r_imm(2, (addr&0x3ff) << 1);
1070                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1071                         EOP_MOV_IMM(1,0,1);
1072                         EOP_STR_IMM(1,7,0x494);         // iram_dirty
1073                         known_regs.pmac_write[reg] += inc;
1074                 }
1075                 else
1076                         tr_unhandled();
1077
1078                 known_regs.pmc.v = known_regs.pmac_write[reg];
1079                 //known_regb |= KRREG_PMC;
1080                 dirty_regb |= KRREG_PMC;
1081                 dirty_regb |= 1 << (25+reg);
1082                 hostreg_r[1] = hostreg_r[2] = -1;
1083                 return;
1084         }
1085
1086         known_regb &= ~KRREG_PMC;
1087         dirty_regb &= ~KRREG_PMC;
1088         known_regb &= ~(1 << (25+reg));
1089         dirty_regb &= ~(1 << (25+reg));
1090
1091         // call the C code to handle this
1092         tr_flush_dirty_ST();
1093         //tr_flush_dirty_pmcrs();
1094         tr_mov16(1, reg);
1095         emith_call_c_func(ssp_pm_write);
1096         hostreg_clear();
1097 }
1098
1099 static void tr_r0_to_PM0(int const_val)
1100 {
1101         tr_r0_to_PMX(0);
1102 }
1103
1104 static void tr_r0_to_PM1(int const_val)
1105 {
1106         tr_r0_to_PMX(1);
1107 }
1108
1109 static void tr_r0_to_PM2(int const_val)
1110 {
1111         tr_r0_to_PMX(2);
1112 }
1113
1114 static void tr_r0_to_PM4(int const_val)
1115 {
1116         tr_r0_to_PMX(4);
1117 }
1118
1119 static void tr_r0_to_PMC(int const_val)
1120 {
1121         if ((known_regb & KRREG_PMC) && const_val != -1)
1122         {
1123                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1124                         known_regs.emu_status |= SSP_PMC_SET;
1125                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1126                         known_regs.pmc.h = const_val;
1127                 } else {
1128                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1129                         known_regs.pmc.l = const_val;
1130                 }
1131         }
1132         else
1133         {
1134                 tr_flush_dirty_ST();
1135                 if (known_regb & KRREG_PMC) {
1136                         emith_move_r_imm(1, known_regs.pmc.v);
1137                         EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1138                         known_regb &= ~KRREG_PMC;
1139                         dirty_regb &= ~KRREG_PMC;
1140                 }
1141                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
1142                 EOP_ADD_IMM(2,7,24/2,4);                // add r2, r7, #0x400
1143                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1144                 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4);         // strxx r0, [r2, #SSP_PMC]
1145                 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1146                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1147                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1148                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
1149                 EOP_STR_IMM(1,7,0x484);
1150                 hostreg_r[1] = hostreg_r[2] = -1;
1151         }
1152 }
1153
1154 typedef void (tr_write_func)(int const_val);
1155
1156 static tr_write_func *tr_write_funcs[16] =
1157 {
1158         tr_r0_to_GR0,
1159         tr_r0_to_X,
1160         tr_r0_to_Y,
1161         tr_r0_to_A,
1162         tr_r0_to_ST,
1163         tr_r0_to_STACK,
1164         tr_r0_to_PC,
1165         (tr_write_func *)tr_unhandled,
1166         tr_r0_to_PM0,
1167         tr_r0_to_PM1,
1168         tr_r0_to_PM2,
1169         (tr_write_func *)tr_unhandled,
1170         tr_r0_to_PM4,
1171         (tr_write_func *)tr_unhandled,
1172         tr_r0_to_PMC,
1173         tr_r0_to_AL
1174 };
1175
1176 static void tr_mac_load_XY(int op)
1177 {
1178         tr_rX_read(op&3, (op>>2)&3); // X
1179         EOP_MOV_REG_LSL(4, 0, 16);
1180         tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1181         EOP_ORR_REG_SIMPLE(4, 0);
1182         dirty_regb |= KRREG_P;
1183         hostreg_sspreg_changed(SSP_X);
1184         hostreg_sspreg_changed(SSP_Y);
1185         known_regb &= ~KRREG_X;
1186         known_regb &= ~KRREG_Y;
1187 }
1188
1189 // -----------------------------------------------------
1190
1191 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1192 {
1193         u32 pmcv, tmpv;
1194         if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1195
1196         // programming PMC:
1197         // ldi PMC, imm1
1198         // ldi PMC, imm2
1199         (*pc)++;
1200         pmcv = imm | (PROGRAM((*pc)++) << 16);
1201         known_regs.pmc.v = pmcv;
1202         known_regb |= KRREG_PMC;
1203         dirty_regb |= KRREG_PMC;
1204         known_regs.emu_status |= SSP_PMC_SET;
1205         n_in_ops++;
1206
1207         // check for possible reg programming
1208         tmpv = PROGRAM(*pc);
1209         if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1210         {
1211                 int is_write = (tmpv & 0xff8f) == 0x80;
1212                 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1213                 if (reg > 4) tr_unhandled();
1214                 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1215                 if (is_write)
1216                         known_regs.pmac_write[reg] = pmcv;
1217                 else
1218                         known_regs.pmac_read[reg] = pmcv;
1219                 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1220                 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1221                 known_regs.emu_status &= ~SSP_PMC_SET;
1222                 (*pc)++;
1223                 n_in_ops++;
1224                 return 5;
1225         }
1226
1227         tr_unhandled();
1228         return 4;
1229 }
1230
1231 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1232
1233 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1234 {
1235         // ldi ST, 0
1236         // ldi PM0, 0
1237         // ldi PM0, 0
1238         // ldi ST, 60h
1239         unsigned short *pp;
1240         if (op != 0x0840 || imm != 0) return 0;
1241         pp = PROGRAM_P(*pc);
1242         if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1243
1244         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
1245         EOP_ORR_IMM(6, 6, 24/2, 6);             // orr   r6, r6, 0x600
1246         hostreg_sspreg_changed(SSP_ST);
1247         known_regs.gr[SSP_ST].h = 0x60;
1248         known_regb |= 1 << SSP_ST;
1249         dirty_regb &= ~KRREG_ST;
1250         (*pc) += 3*2;
1251         n_in_ops += 3;
1252         return 4*2;
1253 }
1254
1255 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1256 {
1257         // @ 3DA2 and 426A
1258         // ld PMC, (r3|00)
1259         // ld (r3|00), PMC
1260         // ld -, AL
1261         if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1262
1263         tr_bank_read(0);
1264         EOP_MOV_REG_LSL(0, 0, 4);
1265         EOP_ORR_REG_LSR(0, 0, 0, 16);
1266         tr_bank_write(0);
1267         (*pc) += 2;
1268         n_in_ops += 2;
1269         return 3;
1270 }
1271
1272 // -----------------------------------------------------
1273
1274 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1275 {
1276         u32 tmpv, tmpv2, tmpv3;
1277         int ret = 0;
1278         known_regs.gr[SSP_PC].h = *pc;
1279
1280         switch (op >> 9)
1281         {
1282                 // ld d, s
1283                 case 0x00:
1284                         if (op == 0) { ret++; break; } // nop
1285                         tmpv  = op & 0xf; // src
1286                         tmpv2 = (op >> 4) & 0xf; // dst
1287                         if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1288                                 tr_flush_dirty_P();
1289                                 EOP_MOV_REG_SIMPLE(5, 10);
1290                                 hostreg_sspreg_changed(SSP_A);
1291                                 known_regb &= ~(KRREG_A|KRREG_AL);
1292                                 ret++; break;
1293                         }
1294                         tr_read_funcs[tmpv](op);
1295                         tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1296                         if (tmpv2 == SSP_PC) {
1297                                 ret |= 0x10000;
1298                                 *end_cond = -A_COND_AL;
1299                         }
1300                         ret++; break;
1301
1302                 // ld d, (ri)
1303                 case 0x01: {
1304                         int r = (op&3) | ((op>>6)&4);
1305                         int mod = (op>>2)&3;
1306                         tmpv = (op >> 4) & 0xf; // dst
1307                         ret = tr_detect_rotate(op, pc, imm);
1308                         if (ret > 0) break;
1309                         if (tmpv != 0)
1310                                 tr_rX_read(r, mod);
1311                         else {
1312                                 int cnt = 1;
1313                                 while (PROGRAM(*pc) == op) {
1314                                         (*pc)++; cnt++; ret++;
1315                                         n_in_ops++;
1316                                 }
1317                                 tr_ptrr_mod(r, mod, 1, cnt); // skip
1318                         }
1319                         tr_write_funcs[tmpv](-1);
1320                         if (tmpv == SSP_PC) {
1321                                 ret |= 0x10000;
1322                                 *end_cond = -A_COND_AL;
1323                         }
1324                         ret++; break;
1325                 }
1326
1327                 // ld (ri), s
1328                 case 0x02:
1329                         tmpv = (op >> 4) & 0xf; // src
1330                         tr_read_funcs[tmpv](op);
1331                         tr_rX_write(op);
1332                         ret++; break;
1333
1334                 // ld a, adr
1335                 case 0x03:
1336                         tr_bank_read(op&0x1ff);
1337                         tr_r0_to_A(-1);
1338                         ret++; break;
1339
1340                 // ldi d, imm
1341                 case 0x04:
1342                         tmpv = (op & 0xf0) >> 4; // dst
1343                         ret = tr_detect_pm0_block(op, pc, imm);
1344                         if (ret > 0) break;
1345                         ret = tr_detect_set_pm(op, pc, imm);
1346                         if (ret > 0) break;
1347                         tr_mov16(0, imm);
1348                         tr_write_funcs[tmpv](imm);
1349                         if (tmpv == SSP_PC) {
1350                                 ret |= 0x10000;
1351                                 *jump_pc = imm;
1352                         }
1353                         ret += 2; break;
1354
1355                 // ld d, ((ri))
1356                 case 0x05:
1357                         tmpv2 = (op >> 4) & 0xf;  // dst
1358                         tr_rX_read2(op);
1359                         tr_write_funcs[tmpv2](-1);
1360                         if (tmpv2 == SSP_PC) {
1361                                 ret |= 0x10000;
1362                                 *end_cond = -A_COND_AL;
1363                         }
1364                         ret += 3; break;
1365
1366                 // ldi (ri), imm
1367                 case 0x06:
1368                         tr_mov16(0, imm);
1369                         tr_rX_write(op);
1370                         ret += 2; break;
1371
1372                 // ld adr, a
1373                 case 0x07:
1374                         tr_A_to_r0(op);
1375                         tr_bank_write(op&0x1ff);
1376                         ret++; break;
1377
1378                 // ld d, ri
1379                 case 0x09: {
1380                         int r;
1381                         r = (op&3) | ((op>>6)&4); // src
1382                         tmpv2 = (op >> 4) & 0xf;  // dst
1383                         if ((r&3) == 3) tr_unhandled();
1384
1385                         if (known_regb & (1 << (r+8))) {
1386                                 tr_mov16(0, known_regs.r[r]);
1387                                 tr_write_funcs[tmpv2](known_regs.r[r]);
1388                         } else {
1389                                 int reg = (r < 4) ? 8 : 9;
1390                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1391                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1392                                 hostreg_r[0] = -1;
1393                                 tr_write_funcs[tmpv2](-1);
1394                         }
1395                         ret++; break;
1396                 }
1397
1398                 // ld ri, s
1399                 case 0x0a: {
1400                         int r;
1401                         r = (op&3) | ((op>>6)&4); // dst
1402                         tmpv = (op >> 4) & 0xf;   // src
1403                         if ((r&3) == 3) tr_unhandled();
1404
1405                         if (known_regb & (1 << tmpv)) {
1406                                 known_regs.r[r] = known_regs.gr[tmpv].h;
1407                                 known_regb |= 1 << (r + 8);
1408                                 dirty_regb |= 1 << (r + 8);
1409                         } else {
1410                                 int reg = (r < 4) ? 8 : 9;
1411                                 int ror = ((4 - (r&3))*8) & 0x1f;
1412                                 tr_read_funcs[tmpv](op);
1413                                 EOP_BIC_IMM(reg, reg, ror/2, 0xff);             // bic r{7,8}, r{7,8}, <mask>
1414                                 EOP_AND_IMM(0, 0, 0, 0xff);                     // and r0, r0, 0xff
1415                                 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8);          // orr r{7,8}, r{7,8}, r0, lsl #lsl
1416                                 hostreg_r[0] = -1;
1417                                 known_regb &= ~(1 << (r+8));
1418                                 dirty_regb &= ~(1 << (r+8));
1419                         }
1420                         ret++; break;
1421                 }
1422
1423                 // ldi ri, simm
1424                 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1425                         tmpv = (op>>8)&7;
1426                         known_regs.r[tmpv] = op;
1427                         known_regb |= 1 << (tmpv + 8);
1428                         dirty_regb |= 1 << (tmpv + 8);
1429                         ret++; break;
1430
1431                 // call cond, addr
1432                 case 0x24: {
1433                         u32 *jump_op = NULL;
1434                         tmpv = tr_cond_check(op);
1435                         if (tmpv != A_COND_AL) {
1436                                 jump_op = tcache_ptr;
1437                                 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1438                         }
1439                         tr_mov16(0, *pc);
1440                         tr_r0_to_STACK(*pc);
1441                         if (tmpv != A_COND_AL) {
1442                                 u32 *real_ptr = tcache_ptr;
1443                                 tcache_ptr = jump_op;
1444                                 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1445                                 tcache_ptr = real_ptr;
1446                         }
1447                         tr_mov16_cond(tmpv, 0, imm);
1448                         if (tmpv != A_COND_AL)
1449                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1450                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1451                         ret |= 0x10000;
1452                         *end_cond = tmpv;
1453                         *jump_pc = imm;
1454                         ret += 2; break;
1455                 }
1456
1457                 // ld d, (a)
1458                 case 0x25:
1459                         tmpv2 = (op >> 4) & 0xf;  // dst
1460                         tr_A_to_r0(op);
1461                         EOP_LDR_IMM(1,7,0x48c);                                 // ptr_iram_rom
1462                         EOP_ADD_REG_LSL(0,1,0,1);                               // add  r0, r1, r0, lsl #1
1463                         EOP_LDRH_SIMPLE(0,0);                                   // ldrh r0, [r0]
1464                         hostreg_r[0] = hostreg_r[1] = -1;
1465                         tr_write_funcs[tmpv2](-1);
1466                         if (tmpv2 == SSP_PC) {
1467                                 ret |= 0x10000;
1468                                 *end_cond = -A_COND_AL;
1469                         }
1470                         ret += 3; break;
1471
1472                 // bra cond, addr
1473                 case 0x26:
1474                         tmpv = tr_cond_check(op);
1475                         tr_mov16_cond(tmpv, 0, imm);
1476                         if (tmpv != A_COND_AL)
1477                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1478                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1479                         ret |= 0x10000;
1480                         *end_cond = tmpv;
1481                         *jump_pc = imm;
1482                         ret += 2; break;
1483
1484                 // mod cond, op
1485                 case 0x48: {
1486                         // check for repeats of this op
1487                         tmpv = 1; // count
1488                         while (PROGRAM(*pc) == op && (op & 7) != 6) {
1489                                 (*pc)++; tmpv++;
1490                                 n_in_ops++;
1491                         }
1492                         if ((op&0xf0) != 0) // !always
1493                                 tr_make_dirty_ST();
1494
1495                         tmpv2 = tr_cond_check(op);
1496                         switch (op & 7) {
1497                                 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1498                                 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1499                                 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1500                                 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor  r1, r5, r5, asr #31
1501                                         EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1502                                         hostreg_r[1] = -1; break; // abs
1503                                 default: tr_unhandled();
1504                         }
1505
1506                         hostreg_sspreg_changed(SSP_A);
1507                         dirty_regb |=  KRREG_ST;
1508                         known_regb &= ~KRREG_ST;
1509                         known_regb &= ~(KRREG_A|KRREG_AL);
1510                         ret += tmpv; break;
1511                 }
1512
1513                 // mpys?
1514                 case 0x1b:
1515                         tr_flush_dirty_P();
1516                         tr_mac_load_XY(op);
1517                         tr_make_dirty_ST();
1518                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1519                         hostreg_sspreg_changed(SSP_A);
1520                         known_regb &= ~(KRREG_A|KRREG_AL);
1521                         dirty_regb |= KRREG_ST;
1522                         ret++; break;
1523
1524                 // mpya (rj), (ri), b
1525                 case 0x4b:
1526                         tr_flush_dirty_P();
1527                         tr_mac_load_XY(op);
1528                         tr_make_dirty_ST();
1529                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1530                         hostreg_sspreg_changed(SSP_A);
1531                         known_regb &= ~(KRREG_A|KRREG_AL);
1532                         dirty_regb |= KRREG_ST;
1533                         ret++; break;
1534
1535                 // mld (rj), (ri), b
1536                 case 0x5b:
1537                         EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1538                         hostreg_sspreg_changed(SSP_A);
1539                         known_regs.gr[SSP_A].v = 0;
1540                         known_regb |= (KRREG_A|KRREG_AL);
1541                         dirty_regb |= KRREG_ST;
1542                         tr_mac_load_XY(op);
1543                         ret++; break;
1544
1545                 // OP a, s
1546                 case 0x10:
1547                 case 0x30:
1548                 case 0x40:
1549                 case 0x50:
1550                 case 0x60:
1551                 case 0x70:
1552                         tmpv = op & 0xf; // src
1553                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1554                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1555                         if (tmpv == SSP_P) {
1556                                 tr_flush_dirty_P();
1557                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1558                         } else if (tmpv == SSP_A) {
1559                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1560                         } else {
1561                                 tr_read_funcs[tmpv](op);
1562                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1563                         }
1564                         hostreg_sspreg_changed(SSP_A);
1565                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1566                         dirty_regb |= KRREG_ST;
1567                         ret++; break;
1568
1569                 // OP a, (ri)
1570                 case 0x11:
1571                 case 0x31:
1572                 case 0x41:
1573                 case 0x51:
1574                 case 0x61:
1575                 case 0x71:
1576                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1577                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1578                         tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1579                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1580                         hostreg_sspreg_changed(SSP_A);
1581                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1582                         dirty_regb |= KRREG_ST;
1583                         ret++; break;
1584
1585                 // OP a, adr
1586                 case 0x13:
1587                 case 0x33:
1588                 case 0x43:
1589                 case 0x53:
1590                 case 0x63:
1591                 case 0x73:
1592                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1593                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1594                         tr_bank_read(op&0x1ff);
1595                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1596                         hostreg_sspreg_changed(SSP_A);
1597                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1598                         dirty_regb |= KRREG_ST;
1599                         ret++; break;
1600
1601                 // OP a, imm
1602                 case 0x14:
1603                 case 0x34:
1604                 case 0x44:
1605                 case 0x54:
1606                 case 0x64:
1607                 case 0x74:
1608                         tmpv = (op & 0xf0) >> 4;
1609                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1610                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1611                         tr_mov16(0, imm);
1612                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1613                         hostreg_sspreg_changed(SSP_A);
1614                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1615                         dirty_regb |= KRREG_ST;
1616                         ret += 2; break;
1617
1618                 // OP a, ((ri))
1619                 case 0x15:
1620                 case 0x35:
1621                 case 0x45:
1622                 case 0x55:
1623                 case 0x65:
1624                 case 0x75:
1625                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1626                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1627                         tr_rX_read2(op);
1628                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1629                         hostreg_sspreg_changed(SSP_A);
1630                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1631                         dirty_regb |= KRREG_ST;
1632                         ret += 3; break;
1633
1634                 // OP a, ri
1635                 case 0x19:
1636                 case 0x39:
1637                 case 0x49:
1638                 case 0x59:
1639                 case 0x69:
1640                 case 0x79: {
1641                         int r;
1642                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1643                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1644                         r = (op&3) | ((op>>6)&4); // src
1645                         if ((r&3) == 3) tr_unhandled();
1646
1647                         if (known_regb & (1 << (r+8))) {
1648                                 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]);  // OPs r5, r5, #val<<16
1649                         } else {
1650                                 int reg = (r < 4) ? 8 : 9;
1651                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1652                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1653                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1654                                 hostreg_r[0] = -1;
1655                         }
1656                         hostreg_sspreg_changed(SSP_A);
1657                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1658                         dirty_regb |= KRREG_ST;
1659                         ret++; break;
1660                 }
1661
1662                 // OP simm
1663                 case 0x1c:
1664                 case 0x3c:
1665                 case 0x4c:
1666                 case 0x5c:
1667                 case 0x6c:
1668                 case 0x7c:
1669                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1670                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1671                         EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff);        // OPs r5, r5, #val<<16
1672                         hostreg_sspreg_changed(SSP_A);
1673                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1674                         dirty_regb |= KRREG_ST;
1675                         ret++; break;
1676         }
1677
1678         n_in_ops++;
1679
1680         return ret;
1681 }
1682
1683 static void emit_block_prologue(void)
1684 {
1685         // check if there are enough cycles..
1686         // note: r0 must contain PC of current block
1687         EOP_CMP_IMM(11,0,0);                    // cmp r11, #0
1688         emith_jump_cond(A_COND_LE, ssp_drc_end);
1689 }
1690
1691 /* cond:
1692  * >0: direct (un)conditional jump
1693  * <0: indirect jump
1694  */
1695 static void *emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1696 {
1697         void *end_ptr = NULL;
1698
1699         if (cycles > 0xff) {
1700                 elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles);
1701                 cycles = 0xff;
1702         }
1703         EOP_SUB_IMM(11,11,0,cycles);            // sub r11, r11, #cycles
1704
1705         if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1706                 // indirect jump, or rom -> iram jump, must use dispatcher
1707                 emith_jump(ssp_drc_next);
1708         }
1709         else if (cond == A_COND_AL) {
1710                 u32 *target = (pc < 0x400) ?
1711                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1712                         ssp_block_table[pc];
1713                 if (target != NULL)
1714                         emith_jump(target);
1715                 else {
1716                         int ops = emith_jump(ssp_drc_next);
1717                         end_ptr = tcache_ptr;
1718                         // cause the next block to be emitted over jump instruction
1719                         tcache_ptr -= ops;
1720                 }
1721         }
1722         else {
1723                 u32 *target1 = (pc     < 0x400) ?
1724                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1725                         ssp_block_table[pc];
1726                 u32 *target2 = (end_pc < 0x400) ?
1727                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1728                         ssp_block_table[end_pc];
1729                 if (target1 != NULL)
1730                      emith_jump_cond(cond, target1);
1731                 if (target2 != NULL)
1732                      emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1733 #ifndef __EPOC32__
1734                 // emit patchable branches
1735                 if (target1 == NULL)
1736                         emith_call_cond(cond, ssp_drc_next_patch);
1737                 if (target2 == NULL)
1738                         emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1739 #else
1740                 // won't patch indirect jumps
1741                 if (target1 == NULL || target2 == NULL)
1742                         emith_jump(ssp_drc_next);
1743 #endif
1744         }
1745
1746         if (end_ptr == NULL)
1747                 end_ptr = tcache_ptr;
1748
1749         return end_ptr;
1750 }
1751
1752 void *ssp_translate_block(int pc)
1753 {
1754         unsigned int op, op1, imm, ccount = 0;
1755         unsigned int *block_start, *block_end;
1756         int ret, end_cond = A_COND_AL, jump_pc = -1;
1757
1758         //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1759
1760         block_start = tcache_ptr;
1761         known_regb = 0;
1762         dirty_regb = KRREG_P;
1763         known_regs.emu_status = 0;
1764         hostreg_clear();
1765
1766         emit_block_prologue();
1767
1768         for (; ccount < 100;)
1769         {
1770                 op = PROGRAM(pc++);
1771                 op1 = op >> 9;
1772                 imm = (u32)-1;
1773
1774                 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1775                         imm = PROGRAM(pc++); // immediate
1776
1777                 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1778                 if (ret <= 0)
1779                 {
1780                         elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1781                         //exit(1);
1782                 }
1783
1784                 ccount += ret & 0xffff;
1785                 if (ret & 0x10000) break;
1786         }
1787
1788         if (ccount >= 100) {
1789                 end_cond = A_COND_AL;
1790                 jump_pc = pc;
1791                 emith_move_r_imm(0, pc);
1792         }
1793
1794         tr_flush_dirty_prs();
1795         tr_flush_dirty_ST();
1796         tr_flush_dirty_pmcrs();
1797         block_end = emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1798
1799         if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1800                 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1801                 fflush(stdout);
1802                 exit(1);
1803         }
1804
1805         // stats
1806         nblocks++;
1807         //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1808         //      (double)(tcache_ptr - tcache) / (double)n_in_ops);
1809
1810 #ifdef DUMP_BLOCK
1811         {
1812                 FILE *f = fopen("tcache.bin", "wb");
1813                 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1814                 fclose(f);
1815         }
1816         printf("dumped tcache.bin\n");
1817         exit(0);
1818 #endif
1819
1820 #ifdef __arm__
1821         cache_flush_d_inval_i(block_start, block_end);
1822 #endif
1823
1824         return block_start;
1825 }
1826
1827
1828
1829 // -----------------------------------------------------
1830
1831 static void ssp1601_state_load(void)
1832 {
1833         ssp->drc.iram_dirty = 1;
1834         ssp->drc.iram_context = 0;
1835 }
1836
1837 void ssp1601_dyn_exit(void)
1838 {
1839         free(ssp_block_table);
1840         free(ssp_block_table_iram);
1841         ssp_block_table = ssp_block_table_iram = NULL;
1842
1843         drc_cmn_cleanup();
1844 }
1845
1846 int ssp1601_dyn_startup(void)
1847 {
1848         drc_cmn_init();
1849
1850         ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1851         if (ssp_block_table == NULL)
1852                 return -1;
1853         ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1854         if (ssp_block_table_iram == NULL) {
1855                 free(ssp_block_table);
1856                 return -1;
1857         }
1858
1859         memset(tcache, 0, DRC_TCACHE_SIZE);
1860         tcache_ptr = (void *)tcache;
1861
1862         PicoLoadStateHook = ssp1601_state_load;
1863
1864         n_in_ops = 0;
1865 #ifdef __arm__
1866         // hle'd blocks
1867         ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1868         ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1869         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1870         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1871         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1872         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1873         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1874         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1875 #endif
1876
1877         return 0;
1878 }
1879
1880
1881 void ssp1601_dyn_reset(ssp1601_t *ssp)
1882 {
1883         ssp1601_reset(ssp);
1884         ssp->drc.iram_dirty = 1;
1885         ssp->drc.iram_context = 0;
1886         // must do this here because ssp is not available @ startup()
1887         ssp->drc.ptr_rom = (u32) Pico.rom;
1888         ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1889         ssp->drc.ptr_dram = (u32) svp->dram;
1890         ssp->drc.ptr_btable = (u32) ssp_block_table;
1891         ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1892
1893         // prevent new versions of IRAM from appearing
1894         memset(svp->iram_rom, 0, 0x800);
1895 }
1896
1897
1898 void ssp1601_dyn_run(int cycles)
1899 {
1900         if (ssp->emu_status & SSP_WAIT_MASK) return;
1901
1902 #ifdef DUMP_BLOCK
1903         ssp_translate_block(DUMP_BLOCK >> 1);
1904 #endif
1905 #ifdef __arm__
1906         ssp_drc_entry(ssp, cycles);
1907 #endif
1908 }
1909