32x: drc: ARM implementation, start unification with SVP (untested)
[picodrive.git] / pico / carthw / svp / compiler.c
1 // SSP1601 to ARM recompiler
2
3 // (c) Copyright 2008, Grazvydas "notaz" Ignotas
4 // Free for non-commercial use.
5
6 #include "../../pico_int.h"
7 #include "../../../cpu/drc/cmn.h"
8 #include "compiler.h"
9
10 // FIXME: asm has these hardcoded
11 #define SSP_BLOCKTAB_ENTS       (0x5090/2)
12 #define SSP_BLOCKTAB_IRAM_ONE   (0x800/2) // table entries
13 #define SSP_BLOCKTAB_IRAM_ENTS  (15*SSP_BLOCKTAB_IRAM_ONE)
14
15 static u32 **ssp_block_table; // [0x5090/2];
16 static u32 **ssp_block_table_iram; // [15][0x800/2];
17
18 static u32 *tcache_ptr = NULL;
19
20 static int nblocks = 0;
21 static int n_in_ops = 0;
22
23 extern ssp1601_t *ssp;
24
25 #define rPC    ssp->gr[SSP_PC].h
26 #define rPMC   ssp->gr[SSP_PMC]
27
28 #define SSP_FLAG_Z (1<<0xd)
29 #define SSP_FLAG_N (1<<0xf)
30
31 #ifndef ARM
32 //#define DUMP_BLOCK 0x0c9a
33 void ssp_drc_next(void){}
34 void ssp_drc_next_patch(void){}
35 void ssp_drc_end(void){}
36 #endif
37
38 #include "../../../cpu/drc/emit_arm.c"
39
40 // -----------------------------------------------------
41
42 static int get_inc(int mode)
43 {
44         int inc = (mode >> 11) & 7;
45         if (inc != 0) {
46                 if (inc != 7) inc--;
47                 inc = 1 << inc; // 0 1 2 4 8 16 32 128
48                 if (mode & 0x8000) inc = -inc; // decrement mode
49         }
50         return inc;
51 }
52
53 u32 ssp_pm_read(int reg)
54 {
55         u32 d = 0, mode;
56
57         if (ssp->emu_status & SSP_PMC_SET)
58         {
59                 ssp->pmac_read[reg] = rPMC.v;
60                 ssp->emu_status &= ~SSP_PMC_SET;
61                 return 0;
62         }
63
64         // just in case
65         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
66
67         mode = ssp->pmac_read[reg]>>16;
68         if      ((mode & 0xfff0) == 0x0800) // ROM
69         {
70                 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
71                 ssp->pmac_read[reg] += 1;
72         }
73         else if ((mode & 0x47ff) == 0x0018) // DRAM
74         {
75                 unsigned short *dram = (unsigned short *)svp->dram;
76                 int inc = get_inc(mode);
77                 d = dram[ssp->pmac_read[reg]&0xffff];
78                 ssp->pmac_read[reg] += inc;
79         }
80
81         // PMC value corresponds to last PMR accessed
82         rPMC.v = ssp->pmac_read[reg];
83
84         return d;
85 }
86
87 #define overwrite_write(dst, d) \
88 { \
89         if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
90         if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
91         if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
92         if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
93 }
94
95 void ssp_pm_write(u32 d, int reg)
96 {
97         unsigned short *dram;
98         int mode, addr;
99
100         if (ssp->emu_status & SSP_PMC_SET)
101         {
102                 ssp->pmac_write[reg] = rPMC.v;
103                 ssp->emu_status &= ~SSP_PMC_SET;
104                 return;
105         }
106
107         // just in case
108         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
109
110         dram = (unsigned short *)svp->dram;
111         mode = ssp->pmac_write[reg]>>16;
112         addr = ssp->pmac_write[reg]&0xffff;
113         if      ((mode & 0x43ff) == 0x0018) // DRAM
114         {
115                 int inc = get_inc(mode);
116                 if (mode & 0x0400) {
117                        overwrite_write(dram[addr], d);
118                 } else dram[addr] = d;
119                 ssp->pmac_write[reg] += inc;
120         }
121         else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
122         {
123                 if (mode & 0x0400) {
124                        overwrite_write(dram[addr], d);
125                 } else dram[addr] = d;
126                 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
127         }
128         else if ((mode & 0x47ff) == 0x001c) // IRAM
129         {
130                 int inc = get_inc(mode);
131                 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
132                 ssp->pmac_write[reg] += inc;
133                 ssp->drc.iram_dirty = 1;
134         }
135
136         rPMC.v = ssp->pmac_write[reg];
137 }
138
139
140 // -----------------------------------------------------
141
142 // 14 IRAM blocks
143 static unsigned char iram_context_map[] =
144 {
145          0, 0, 0, 0, 1, 0, 0, 0, // 04
146          0, 0, 0, 0, 0, 0, 2, 0, // 0e
147          0, 0, 0, 0, 0, 3, 0, 4, // 15 17
148          5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
149          8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
150          0, 0, 0, 0, 0, 0, 0, 0,
151          0, 0,11, 0, 0,12, 0, 0, // 32 35
152         13,14, 0, 0, 0, 0, 0, 0  // 38 39
153 };
154
155 int ssp_get_iram_context(void)
156 {
157         unsigned char *ir = (unsigned char *)svp->iram_rom;
158         int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
159         val1 = iram_context_map[(val>>1)&0x3f];
160
161         if (val1 == 0) {
162                 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
163                 //debug_dump2file(name, svp->iram_rom, 0x800);
164                 //exit(1);
165         }
166         return val1;
167 }
168
169 // -----------------------------------------------------
170
171 /* regs with known values */
172 static struct
173 {
174         ssp_reg_t gr[8];
175         unsigned char r[8];
176         unsigned int pmac_read[5];
177         unsigned int pmac_write[5];
178         ssp_reg_t pmc;
179         unsigned int emu_status;
180 } known_regs;
181
182 #define KRREG_X     (1 << SSP_X)
183 #define KRREG_Y     (1 << SSP_Y)
184 #define KRREG_A     (1 << SSP_A)        /* AH only */
185 #define KRREG_ST    (1 << SSP_ST)
186 #define KRREG_STACK (1 << SSP_STACK)
187 #define KRREG_PC    (1 << SSP_PC)
188 #define KRREG_P     (1 << SSP_P)
189 #define KRREG_PR0   (1 << 8)
190 #define KRREG_PR4   (1 << 12)
191 #define KRREG_AL    (1 << 16)
192 #define KRREG_PMCM  (1 << 18)           /* only mode word of PMC */
193 #define KRREG_PMC   (1 << 19)
194 #define KRREG_PM0R  (1 << 20)
195 #define KRREG_PM1R  (1 << 21)
196 #define KRREG_PM2R  (1 << 22)
197 #define KRREG_PM3R  (1 << 23)
198 #define KRREG_PM4R  (1 << 24)
199 #define KRREG_PM0W  (1 << 25)
200 #define KRREG_PM1W  (1 << 26)
201 #define KRREG_PM2W  (1 << 27)
202 #define KRREG_PM3W  (1 << 28)
203 #define KRREG_PM4W  (1 << 29)
204
205 /* bitfield of known register values */
206 static u32 known_regb = 0;
207
208 /* known vals, which need to be flushed
209  * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
210  * ST means flags are being held in ARM PSR
211  * P means that it needs to be recalculated
212  */
213 static u32 dirty_regb = 0;
214
215 /* known values of host regs.
216  * -1            - unknown
217  * 000000-00ffff - 16bit value
218  * 100000-10ffff - base reg (r7) + 16bit val
219  * 0r0000        - means reg (low) eq gr[r].h, r != AL
220  */
221 static int hostreg_r[4];
222
223 static void hostreg_clear(void)
224 {
225         int i;
226         for (i = 0; i < 4; i++)
227                 hostreg_r[i] = -1;
228 }
229
230 static void hostreg_sspreg_changed(int sspreg)
231 {
232         int i;
233         for (i = 0; i < 4; i++)
234                 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
235 }
236
237
238 #define PROGRAM(x)   ((unsigned short *)svp->iram_rom)[x]
239 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
240
241 void tr_unhandled(void)
242 {
243         //FILE *f = fopen("tcache.bin", "wb");
244         //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
245         //fclose(f);
246         elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
247         //exit(1);
248 }
249
250 /* update P, if needed. Trashes r0 */
251 static void tr_flush_dirty_P(void)
252 {
253         // TODO: const regs
254         if (!(dirty_regb & KRREG_P)) return;
255         EOP_MOV_REG_ASR(10, 4, 16);             // mov  r10, r4, asr #16
256         EOP_MOV_REG_LSL( 0, 4, 16);             // mov  r0,  r4, lsl #16
257         EOP_MOV_REG_ASR( 0, 0, 15);             // mov  r0,  r0, asr #15
258         EOP_MUL(10, 0, 10);                     // mul  r10, r0, r10
259         dirty_regb &= ~KRREG_P;
260         hostreg_r[0] = -1;
261 }
262
263 /* write dirty pr to host reg. Nothing is trashed */
264 static void tr_flush_dirty_pr(int r)
265 {
266         int ror = 0, reg;
267
268         if (!(dirty_regb & (1 << (r+8)))) return;
269
270         switch (r&3) {
271                 case 0: ror =    0; break;
272                 case 1: ror = 24/2; break;
273                 case 2: ror = 16/2; break;
274         }
275         reg = (r < 4) ? 8 : 9;
276         EOP_BIC_IMM(reg,reg,ror,0xff);
277         if (known_regs.r[r] != 0)
278                 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
279         dirty_regb &= ~(1 << (r+8));
280 }
281
282 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
283 static void tr_flush_dirty_prs(void)
284 {
285         int i, ror = 0, reg;
286         int dirty = dirty_regb >> 8;
287         if ((dirty&7) == 7) {
288                 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
289                 dirty &= ~7;
290         }
291         if ((dirty&0x70) == 0x70) {
292                 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
293                 dirty &= ~0x70;
294         }
295         /* r0-r7 */
296         for (i = 0; dirty && i < 8; i++, dirty >>= 1)
297         {
298                 if (!(dirty&1)) continue;
299                 switch (i&3) {
300                         case 0: ror =    0; break;
301                         case 1: ror = 24/2; break;
302                         case 2: ror = 16/2; break;
303                 }
304                 reg = (i < 4) ? 8 : 9;
305                 EOP_BIC_IMM(reg,reg,ror,0xff);
306                 if (known_regs.r[i] != 0)
307                         EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
308         }
309         dirty_regb &= ~0xff00;
310 }
311
312 /* write dirty pr and "forget" it. Nothing is trashed. */
313 static void tr_release_pr(int r)
314 {
315         tr_flush_dirty_pr(r);
316         known_regb &= ~(1 << (r+8));
317 }
318
319 /* fush ARM PSR to r6. Trashes r1 */
320 static void tr_flush_dirty_ST(void)
321 {
322         if (!(dirty_regb & KRREG_ST)) return;
323         EOP_BIC_IMM(6,6,0,0x0f);
324         EOP_MRS(1);
325         EOP_ORR_REG_LSR(6,6,1,28);
326         dirty_regb &= ~KRREG_ST;
327         hostreg_r[1] = -1;
328 }
329
330 /* inverse of above. Trashes r1 */
331 static void tr_make_dirty_ST(void)
332 {
333         if (dirty_regb & KRREG_ST) return;
334         if (known_regb & KRREG_ST) {
335                 int flags = 0;
336                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
337                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
338                 EOP_MSR_IMM(4/2, flags);
339         } else {
340                 EOP_MOV_REG_LSL(1, 6, 28);
341                 EOP_MSR_REG(1);
342                 hostreg_r[1] = -1;
343         }
344         dirty_regb |= KRREG_ST;
345 }
346
347 /* load 16bit val into host reg r0-r3. Nothing is trashed */
348 static void tr_mov16(int r, int val)
349 {
350         if (hostreg_r[r] != val) {
351                 emith_move_r_imm(r, val);
352                 hostreg_r[r] = val;
353         }
354 }
355
356 static void tr_mov16_cond(int cond, int r, int val)
357 {
358         emith_op_imm(cond, A_OP_MOV, r, val);
359         hostreg_r[r] = -1;
360 }
361
362 /* trashes r1 */
363 static void tr_flush_dirty_pmcrs(void)
364 {
365         u32 i, val = (u32)-1;
366         if (!(dirty_regb & 0x3ff80000)) return;
367
368         if (dirty_regb & KRREG_PMC) {
369                 val = known_regs.pmc.v;
370                 emith_move_r_imm(1, val);
371                 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
372
373                 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
374                         elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
375                         tr_unhandled();
376                 }
377         }
378         for (i = 0; i < 5; i++)
379         {
380                 if (dirty_regb & (1 << (20+i))) {
381                         if (val != known_regs.pmac_read[i]) {
382                                 val = known_regs.pmac_read[i];
383                                 emith_move_r_imm(1, val);
384                         }
385                         EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
386                 }
387                 if (dirty_regb & (1 << (25+i))) {
388                         if (val != known_regs.pmac_write[i]) {
389                                 val = known_regs.pmac_write[i];
390                                 emith_move_r_imm(1, val);
391                         }
392                         EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
393                 }
394         }
395         dirty_regb &= ~0x3ff80000;
396         hostreg_r[1] = -1;
397 }
398
399 /* read bank word to r0 (upper bits zero). Thrashes r1. */
400 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
401 {
402         int breg = 7;
403         if (addr > 0x7f) {
404                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
405                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
406                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
407                 }
408                 breg = 1;
409         }
410         EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1);    // ldrh r0, [r1, (op&0x7f)<<1]
411         hostreg_r[0] = -1;
412 }
413
414 /* write r0 to bank. Trashes r1. */
415 static void tr_bank_write(int addr)
416 {
417         int breg = 7;
418         if (addr > 0x7f) {
419                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
420                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
421                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
422                 }
423                 breg = 1;
424         }
425         EOP_STRH_IMM(0,breg,(addr&0x7f)<<1);            // strh r0, [r1, (op&0x7f)<<1]
426 }
427
428 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
429 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
430 {
431         int modulo_shift = -1;  /* unknown */
432
433         if (mod == 0) return;
434
435         if (!need_modulo || mod == 1) // +!
436                 modulo_shift = 8;
437         else if (need_modulo && (known_regb & KRREG_ST)) {
438                 modulo_shift = known_regs.gr[SSP_ST].h & 7;
439                 if (modulo_shift == 0) modulo_shift = 8;
440         }
441
442         if (modulo_shift == -1)
443         {
444                 int reg = (r < 4) ? 8 : 9;
445                 tr_release_pr(r);
446                 if (dirty_regb & KRREG_ST) {
447                         // avoid flushing ARM flags
448                         EOP_AND_IMM(1, 6, 0, 0x70);
449                         EOP_SUB_IMM(1, 1, 0, 0x10);
450                         EOP_AND_IMM(1, 1, 0, 0x70);
451                         EOP_ADD_IMM(1, 1, 0, 0x10);
452                 } else {
453                         EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands  r1, r6, #0x70
454                         EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
455                 }
456                 EOP_MOV_REG_LSR(1, 1, 4);               // mov r1, r1, lsr #4
457                 EOP_RSB_IMM(2, 1, 0, 8);                // rsb r1, r1, #8
458                 EOP_MOV_IMM(3, 8/2, count);             // mov r3, #0x01000000
459                 if (r&3)
460                         EOP_ADD_IMM(1, 1, 0, (r&3)*8);  // add r1, r1, #(r&3)*8
461                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
462                 if (mod == 2)
463                      EOP_SUB_REG2_LSL(reg,reg,3,2);     // sub reg, reg, #0x01000000 << r2
464                 else EOP_ADD_REG2_LSL(reg,reg,3,2);
465                 EOP_RSB_IMM(1, 1, 0, 32);               // rsb r1, r1, #32
466                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
467                 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
468         }
469         else if (known_regb & (1 << (r + 8)))
470         {
471                 int modulo = (1 << modulo_shift) - 1;
472                 if (mod == 2)
473                      known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
474                 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
475         }
476         else
477         {
478                 int reg = (r < 4) ? 8 : 9;
479                 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
480                 EOP_MOV_REG_ROR(reg,reg,ror);
481                 // {add|sub} reg, reg, #1<<shift
482                 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
483                 EOP_MOV_REG_ROR(reg,reg,32-ror);
484         }
485 }
486
487 /* handle writes r0 to (rX). Trashes r1.
488  * fortunately we can ignore modulo increment modes for writes. */
489 static void tr_rX_write(int op)
490 {
491         if ((op&3) == 3)
492         {
493                 int mod = (op>>2) & 3; // direct addressing
494                 tr_bank_write((op & 0x100) + mod);
495         }
496         else
497         {
498                 int r = (op&3) | ((op>>6)&4);
499                 if (known_regb & (1 << (r + 8))) {
500                         tr_bank_write((op&0x100) | known_regs.r[r]);
501                 } else {
502                         int reg = (r < 4) ? 8 : 9;
503                         int ror = ((4 - (r&3))*8) & 0x1f;
504                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
505                         if (r >= 4)
506                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
507                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
508                         else     EOP_ADD_REG_LSL(1,7,1,1);
509                         EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
510                         hostreg_r[1] = -1;
511                 }
512                 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
513         }
514 }
515
516 /* read (rX) to r0. Trashes r1-r3. */
517 static void tr_rX_read(int r, int mod)
518 {
519         if ((r&3) == 3)
520         {
521                 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
522         }
523         else
524         {
525                 if (known_regb & (1 << (r + 8))) {
526                         tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
527                 } else {
528                         int reg = (r < 4) ? 8 : 9;
529                         int ror = ((4 - (r&3))*8) & 0x1f;
530                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
531                         if (r >= 4)
532                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
533                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
534                         else     EOP_ADD_REG_LSL(1,7,1,1);
535                         EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
536                         hostreg_r[0] = hostreg_r[1] = -1;
537                 }
538                 tr_ptrr_mod(r, mod, 1, 1);
539         }
540 }
541
542 /* read ((rX)) to r0. Trashes r1,r2. */
543 static void tr_rX_read2(int op)
544 {
545         int r = (op&3) | ((op>>6)&4); // src
546
547         if ((r&3) == 3) {
548                 tr_bank_read((op&0x100) | ((op>>2)&3));
549         } else if (known_regb & (1 << (r+8))) {
550                 tr_bank_read((op&0x100) | known_regs.r[r]);
551         } else {
552                 int reg = (r < 4) ? 8 : 9;
553                 int ror = ((4 - (r&3))*8) & 0x1f;
554                 EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
555                 if (r >= 4)
556                         EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
557                 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
558                 else     EOP_ADD_REG_LSL(1,7,1,1);
559                 EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
560         }
561         EOP_LDR_IMM(2,7,0x48c);                                 // ptr_iram_rom
562         EOP_ADD_REG_LSL(2,2,0,1);                               // add  r2, r2, r0, lsl #1
563         EOP_ADD_IMM(0,0,0,1);                                   // add  r0, r0, #1
564         if ((r&3) == 3) {
565                 tr_bank_write((op&0x100) | ((op>>2)&3));
566         } else if (known_regb & (1 << (r+8))) {
567                 tr_bank_write((op&0x100) | known_regs.r[r]);
568         } else {
569                 EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
570                 hostreg_r[1] = -1;
571         }
572         EOP_LDRH_SIMPLE(0,2);                                   // ldrh r0, [r2]
573         hostreg_r[0] = hostreg_r[2] = -1;
574 }
575
576 // check if AL is going to be used later in block
577 static int tr_predict_al_need(void)
578 {
579         int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
580
581         while (1)
582         {
583                 op = PROGRAM(pc);
584                 switch (op >> 9)
585                 {
586                         // ld d, s
587                         case 0x00:
588                                 tmpv2 = (op >> 4) & 0xf; // dst
589                                 tmpv  = op & 0xf; // src
590                                 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
591                                         return 0;
592                                 break;
593
594                         // ld (ri), s
595                         case 0x02:
596                         // ld ri, s
597                         case 0x0a:
598                         // OP a, s
599                         case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
600                                 tmpv  = op & 0xf; // src
601                                 if (tmpv == SSP_AL) // OP *, AL
602                                         return 1;
603                                 break;
604
605                         case 0x04:
606                         case 0x06:
607                         case 0x14:
608                         case 0x34:
609                         case 0x44:
610                         case 0x64:
611                         case 0x74: pc++; break;
612
613                         // call cond, addr
614                         case 0x24:
615                         // bra cond, addr
616                         case 0x26:
617                         // mod cond, op
618                         case 0x48:
619                         // mpys?
620                         case 0x1b:
621                         // mpya (rj), (ri), b
622                         case 0x4b: return 1;
623
624                         // mld (rj), (ri), b
625                         case 0x5b: return 0; // cleared anyway
626
627                         // and A, *
628                         case 0x50:
629                                 tmpv  = op & 0xf; // src
630                                 if (tmpv == SSP_AL) return 1;
631                         case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
632                                 return 0;
633                 }
634                 pc++;
635         }
636 }
637
638
639 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
640 static int tr_cond_check(int op)
641 {
642         int f = (op & 0x100) >> 8;
643         switch (op&0xf0) {
644                 case 0x00: return A_COND_AL;    /* always true */
645                 case 0x50:                      /* Z matches f(?) bit */
646                         if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
647                         EOP_TST_IMM(6, 0, 4);
648                         return f ? A_COND_NE : A_COND_EQ;
649                 case 0x70:                      /* N matches f(?) bit */
650                         if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
651                         EOP_TST_IMM(6, 0, 8);
652                         return f ? A_COND_NE : A_COND_EQ;
653                 default:
654                         elprintf(EL_ANOMALY, "unimplemented cond?\n");
655                         tr_unhandled();
656                         return 0;
657         }
658 }
659
660 static int tr_neg_cond(int cond)
661 {
662         switch (cond) {
663                 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
664                 case A_COND_EQ: return A_COND_NE;
665                 case A_COND_NE: return A_COND_EQ;
666                 case A_COND_MI: return A_COND_PL;
667                 case A_COND_PL: return A_COND_MI;
668                 default:        elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
669         }
670         return 0;
671 }
672
673 static int tr_aop_ssp2arm(int op)
674 {
675         switch (op) {
676                 case 1: return A_OP_SUB;
677                 case 3: return A_OP_CMP;
678                 case 4: return A_OP_ADD;
679                 case 5: return A_OP_AND;
680                 case 6: return A_OP_ORR;
681                 case 7: return A_OP_EOR;
682         }
683
684         tr_unhandled();
685         return 0;
686 }
687
688 // -----------------------------------------------------
689
690 //@ r4:  XXYY
691 //@ r5:  A
692 //@ r6:  STACK and emu flags
693 //@ r7:  SSP context
694 //@ r10: P
695
696 // read general reg to r0. Trashes r1
697 static void tr_GR0_to_r0(int op)
698 {
699         tr_mov16(0, 0xffff);
700 }
701
702 static void tr_X_to_r0(int op)
703 {
704         if (hostreg_r[0] != (SSP_X<<16)) {
705                 EOP_MOV_REG_LSR(0, 4, 16);      // mov  r0, r4, lsr #16
706                 hostreg_r[0] = SSP_X<<16;
707         }
708 }
709
710 static void tr_Y_to_r0(int op)
711 {
712         if (hostreg_r[0] != (SSP_Y<<16)) {
713                 EOP_MOV_REG_SIMPLE(0, 4);       // mov  r0, r4
714                 hostreg_r[0] = SSP_Y<<16;
715         }
716 }
717
718 static void tr_A_to_r0(int op)
719 {
720         if (hostreg_r[0] != (SSP_A<<16)) {
721                 EOP_MOV_REG_LSR(0, 5, 16);      // mov  r0, r5, lsr #16  @ AH
722                 hostreg_r[0] = SSP_A<<16;
723         }
724 }
725
726 static void tr_ST_to_r0(int op)
727 {
728         // VR doesn't need much accuracy here..
729         EOP_MOV_REG_LSR(0, 6, 4);               // mov  r0, r6, lsr #4
730         EOP_AND_IMM(0, 0, 0, 0x67);             // and  r0, r0, #0x67
731         hostreg_r[0] = -1;
732 }
733
734 static void tr_STACK_to_r0(int op)
735 {
736         // 448
737         EOP_SUB_IMM(6, 6,  8/2, 0x20);          // sub  r6, r6, #1<<29
738         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
739         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
740         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
741         EOP_LDRH_SIMPLE(0, 1);                  // ldrh r0, [r1]
742         hostreg_r[0] = hostreg_r[1] = -1;
743 }
744
745 static void tr_PC_to_r0(int op)
746 {
747         tr_mov16(0, known_regs.gr[SSP_PC].h);
748 }
749
750 static void tr_P_to_r0(int op)
751 {
752         tr_flush_dirty_P();
753         EOP_MOV_REG_LSR(0, 10, 16);             // mov  r0, r10, lsr #16
754         hostreg_r[0] = -1;
755 }
756
757 static void tr_AL_to_r0(int op)
758 {
759         if (op == 0x000f) {
760                 if (known_regb & KRREG_PMC) {
761                         known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
762                 } else {
763                         EOP_LDR_IMM(0,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
764                         EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
765                         EOP_STR_IMM(0,7,0x484);
766                 }
767         }
768
769         if (hostreg_r[0] != (SSP_AL<<16)) {
770                 EOP_MOV_REG_SIMPLE(0, 5);       // mov  r0, r5
771                 hostreg_r[0] = SSP_AL<<16;
772         }
773 }
774
775 static void tr_PMX_to_r0(int reg)
776 {
777         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
778         {
779                 known_regs.pmac_read[reg] = known_regs.pmc.v;
780                 known_regs.emu_status &= ~SSP_PMC_SET;
781                 known_regb |= 1 << (20+reg);
782                 dirty_regb |= 1 << (20+reg);
783                 return;
784         }
785
786         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
787         {
788                 u32 pmcv = known_regs.pmac_read[reg];
789                 int mode = pmcv>>16;
790                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
791
792                 if      ((mode & 0xfff0) == 0x0800)
793                 {
794                         EOP_LDR_IMM(1,7,0x488);         // rom_ptr
795                         emith_move_r_imm(0, (pmcv&0xfffff)<<1);
796                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
797                         known_regs.pmac_read[reg] += 1;
798                 }
799                 else if ((mode & 0x47ff) == 0x0018) // DRAM
800                 {
801                         int inc = get_inc(mode);
802                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
803                         emith_move_r_imm(0, (pmcv&0xffff)<<1);
804                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
805                         if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
806                         {
807                                 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
808                                 tr_flush_dirty_ST();
809                                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
810                                 EOP_TST_REG_SIMPLE(0,0);
811                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1);       // subeq r11, r11, #1024
812                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
813                                 EOP_STR_IMM(1,7,0x484);                 // str r1, [r7, #0x484] // emu_status
814                         }
815                         known_regs.pmac_read[reg] += inc;
816                 }
817                 else
818                 {
819                         tr_unhandled();
820                 }
821                 known_regs.pmc.v = known_regs.pmac_read[reg];
822                 //known_regb |= KRREG_PMC;
823                 dirty_regb |= KRREG_PMC;
824                 dirty_regb |= 1 << (20+reg);
825                 hostreg_r[0] = hostreg_r[1] = -1;
826                 return;
827         }
828
829         known_regb &= ~KRREG_PMC;
830         dirty_regb &= ~KRREG_PMC;
831         known_regb &= ~(1 << (20+reg));
832         dirty_regb &= ~(1 << (20+reg));
833
834         // call the C code to handle this
835         tr_flush_dirty_ST();
836         //tr_flush_dirty_pmcrs();
837         tr_mov16(0, reg);
838         emith_call(ssp_pm_read);
839         hostreg_clear();
840 }
841
842 static void tr_PM0_to_r0(int op)
843 {
844         tr_PMX_to_r0(0);
845 }
846
847 static void tr_PM1_to_r0(int op)
848 {
849         tr_PMX_to_r0(1);
850 }
851
852 static void tr_PM2_to_r0(int op)
853 {
854         tr_PMX_to_r0(2);
855 }
856
857 static void tr_XST_to_r0(int op)
858 {
859         EOP_ADD_IMM(0, 7, 24/2, 4);     // add r0, r7, #0x400
860         EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
861 }
862
863 static void tr_PM4_to_r0(int op)
864 {
865         tr_PMX_to_r0(4);
866 }
867
868 static void tr_PMC_to_r0(int op)
869 {
870         if (known_regb & KRREG_PMC)
871         {
872                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
873                         known_regs.emu_status |= SSP_PMC_SET;
874                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
875                         // do nothing - this is handled elsewhere
876                 } else {
877                         tr_mov16(0, known_regs.pmc.l);
878                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
879                 }
880         }
881         else
882         {
883                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
884                 tr_flush_dirty_ST();
885                 if (op != 0x000e)
886                         EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
887                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
888                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
889                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
890                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
891                 EOP_STR_IMM(1,7,0x484);
892                 hostreg_r[0] = hostreg_r[1] = -1;
893         }
894 }
895
896
897 typedef void (tr_read_func)(int op);
898
899 static tr_read_func *tr_read_funcs[16] =
900 {
901         tr_GR0_to_r0,
902         tr_X_to_r0,
903         tr_Y_to_r0,
904         tr_A_to_r0,
905         tr_ST_to_r0,
906         tr_STACK_to_r0,
907         tr_PC_to_r0,
908         tr_P_to_r0,
909         tr_PM0_to_r0,
910         tr_PM1_to_r0,
911         tr_PM2_to_r0,
912         tr_XST_to_r0,
913         tr_PM4_to_r0,
914         (tr_read_func *)tr_unhandled,
915         tr_PMC_to_r0,
916         tr_AL_to_r0
917 };
918
919
920 // write r0 to general reg handlers. Trashes r1
921 #define TR_WRITE_R0_TO_REG(reg) \
922 { \
923         hostreg_sspreg_changed(reg); \
924         hostreg_r[0] = (reg)<<16; \
925         if (const_val != -1) { \
926                 known_regs.gr[reg].h = const_val; \
927                 known_regb |= 1 << (reg); \
928         } else { \
929                 known_regb &= ~(1 << (reg)); \
930         } \
931 }
932
933 static void tr_r0_to_GR0(int const_val)
934 {
935         // do nothing
936 }
937
938 static void tr_r0_to_X(int const_val)
939 {
940         EOP_MOV_REG_LSL(4, 4, 16);              // mov  r4, r4, lsl #16
941         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
942         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
943         dirty_regb |= KRREG_P;                  // touching X or Y makes P dirty.
944         TR_WRITE_R0_TO_REG(SSP_X);
945 }
946
947 static void tr_r0_to_Y(int const_val)
948 {
949         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
950         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
951         EOP_MOV_REG_ROR(4, 4, 16);              // mov  r4, r4, ror #16
952         dirty_regb |= KRREG_P;
953         TR_WRITE_R0_TO_REG(SSP_Y);
954 }
955
956 static void tr_r0_to_A(int const_val)
957 {
958         if (tr_predict_al_need()) {
959                 EOP_MOV_REG_LSL(5, 5, 16);      // mov  r5, r5, lsl #16
960                 EOP_MOV_REG_LSR(5, 5, 16);      // mov  r5, r5, lsr #16  @ AL
961                 EOP_ORR_REG_LSL(5, 5, 0, 16);   // orr  r5, r5, r0, lsl #16
962         }
963         else
964                 EOP_MOV_REG_LSL(5, 0, 16);
965         TR_WRITE_R0_TO_REG(SSP_A);
966 }
967
968 static void tr_r0_to_ST(int const_val)
969 {
970         // VR doesn't need much accuracy here..
971         EOP_AND_IMM(1, 0,   0, 0x67);           // and   r1, r0, #0x67
972         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
973         EOP_ORR_REG_LSL(6, 6, 1, 4);            // orr   r6, r6, r1, lsl #4
974         TR_WRITE_R0_TO_REG(SSP_ST);
975         hostreg_r[1] = -1;
976         dirty_regb &= ~KRREG_ST;
977 }
978
979 static void tr_r0_to_STACK(int const_val)
980 {
981         // 448
982         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
983         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
984         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
985         EOP_STRH_SIMPLE(0, 1);                  // strh r0, [r1]
986         EOP_ADD_IMM(6, 6,  8/2, 0x20);          // add  r6, r6, #1<<29
987         hostreg_r[1] = -1;
988 }
989
990 static void tr_r0_to_PC(int const_val)
991 {
992 /*
993  * do nothing - dispatcher will take care of this
994         EOP_MOV_REG_LSL(1, 0, 16);              // mov  r1, r0, lsl #16
995         EOP_STR_IMM(1,7,0x400+6*4);             // str  r1, [r7, #(0x400+6*8)]
996         hostreg_r[1] = -1;
997 */
998 }
999
1000 static void tr_r0_to_AL(int const_val)
1001 {
1002         EOP_MOV_REG_LSR(5, 5, 16);              // mov  r5, r5, lsr #16
1003         EOP_ORR_REG_LSL(5, 5, 0, 16);           // orr  r5, r5, r0, lsl #16
1004         EOP_MOV_REG_ROR(5, 5, 16);              // mov  r5, r5, ror #16
1005         hostreg_sspreg_changed(SSP_AL);
1006         if (const_val != -1) {
1007                 known_regs.gr[SSP_A].l = const_val;
1008                 known_regb |= 1 << SSP_AL;
1009         } else
1010                 known_regb &= ~(1 << SSP_AL);
1011 }
1012
1013 static void tr_r0_to_PMX(int reg)
1014 {
1015         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1016         {
1017                 known_regs.pmac_write[reg] = known_regs.pmc.v;
1018                 known_regs.emu_status &= ~SSP_PMC_SET;
1019                 known_regb |= 1 << (25+reg);
1020                 dirty_regb |= 1 << (25+reg);
1021                 return;
1022         }
1023
1024         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1025         {
1026                 int mode, addr;
1027
1028                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1029
1030                 mode = known_regs.pmac_write[reg]>>16;
1031                 addr = known_regs.pmac_write[reg]&0xffff;
1032                 if      ((mode & 0x43ff) == 0x0018) // DRAM
1033                 {
1034                         int inc = get_inc(mode);
1035                         if (mode & 0x0400) tr_unhandled();
1036                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1037                         emith_move_r_imm(2, addr << 1);
1038                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1039                         known_regs.pmac_write[reg] += inc;
1040                 }
1041                 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1042                 {
1043                         if (mode & 0x0400) tr_unhandled();
1044                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1045                         emith_move_r_imm(2, addr << 1);
1046                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1047                         known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1048                 }
1049                 else if ((mode & 0x47ff) == 0x001c) // IRAM
1050                 {
1051                         int inc = get_inc(mode);
1052                         EOP_LDR_IMM(1,7,0x48c);         // iram_ptr
1053                         emith_move_r_imm(2, (addr&0x3ff) << 1);
1054                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1055                         EOP_MOV_IMM(1,0,1);
1056                         EOP_STR_IMM(1,7,0x494);         // iram_dirty
1057                         known_regs.pmac_write[reg] += inc;
1058                 }
1059                 else
1060                         tr_unhandled();
1061
1062                 known_regs.pmc.v = known_regs.pmac_write[reg];
1063                 //known_regb |= KRREG_PMC;
1064                 dirty_regb |= KRREG_PMC;
1065                 dirty_regb |= 1 << (25+reg);
1066                 hostreg_r[1] = hostreg_r[2] = -1;
1067                 return;
1068         }
1069
1070         known_regb &= ~KRREG_PMC;
1071         dirty_regb &= ~KRREG_PMC;
1072         known_regb &= ~(1 << (25+reg));
1073         dirty_regb &= ~(1 << (25+reg));
1074
1075         // call the C code to handle this
1076         tr_flush_dirty_ST();
1077         //tr_flush_dirty_pmcrs();
1078         tr_mov16(1, reg);
1079         emith_call(ssp_pm_write);
1080         hostreg_clear();
1081 }
1082
1083 static void tr_r0_to_PM0(int const_val)
1084 {
1085         tr_r0_to_PMX(0);
1086 }
1087
1088 static void tr_r0_to_PM1(int const_val)
1089 {
1090         tr_r0_to_PMX(1);
1091 }
1092
1093 static void tr_r0_to_PM2(int const_val)
1094 {
1095         tr_r0_to_PMX(2);
1096 }
1097
1098 static void tr_r0_to_PM4(int const_val)
1099 {
1100         tr_r0_to_PMX(4);
1101 }
1102
1103 static void tr_r0_to_PMC(int const_val)
1104 {
1105         if ((known_regb & KRREG_PMC) && const_val != -1)
1106         {
1107                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1108                         known_regs.emu_status |= SSP_PMC_SET;
1109                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1110                         known_regs.pmc.h = const_val;
1111                 } else {
1112                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1113                         known_regs.pmc.l = const_val;
1114                 }
1115         }
1116         else
1117         {
1118                 tr_flush_dirty_ST();
1119                 if (known_regb & KRREG_PMC) {
1120                         emith_move_r_imm(1, known_regs.pmc.v);
1121                         EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1122                         known_regb &= ~KRREG_PMC;
1123                         dirty_regb &= ~KRREG_PMC;
1124                 }
1125                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
1126                 EOP_ADD_IMM(2,7,24/2,4);                // add r2, r7, #0x400
1127                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1128                 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4);         // strxx r0, [r2, #SSP_PMC]
1129                 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1130                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1131                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1132                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
1133                 EOP_STR_IMM(1,7,0x484);
1134                 hostreg_r[1] = hostreg_r[2] = -1;
1135         }
1136 }
1137
1138 typedef void (tr_write_func)(int const_val);
1139
1140 static tr_write_func *tr_write_funcs[16] =
1141 {
1142         tr_r0_to_GR0,
1143         tr_r0_to_X,
1144         tr_r0_to_Y,
1145         tr_r0_to_A,
1146         tr_r0_to_ST,
1147         tr_r0_to_STACK,
1148         tr_r0_to_PC,
1149         (tr_write_func *)tr_unhandled,
1150         tr_r0_to_PM0,
1151         tr_r0_to_PM1,
1152         tr_r0_to_PM2,
1153         (tr_write_func *)tr_unhandled,
1154         tr_r0_to_PM4,
1155         (tr_write_func *)tr_unhandled,
1156         tr_r0_to_PMC,
1157         tr_r0_to_AL
1158 };
1159
1160 static void tr_mac_load_XY(int op)
1161 {
1162         tr_rX_read(op&3, (op>>2)&3); // X
1163         EOP_MOV_REG_LSL(4, 0, 16);
1164         tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1165         EOP_ORR_REG_SIMPLE(4, 0);
1166         dirty_regb |= KRREG_P;
1167         hostreg_sspreg_changed(SSP_X);
1168         hostreg_sspreg_changed(SSP_Y);
1169         known_regb &= ~KRREG_X;
1170         known_regb &= ~KRREG_Y;
1171 }
1172
1173 // -----------------------------------------------------
1174
1175 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1176 {
1177         u32 pmcv, tmpv;
1178         if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1179
1180         // programming PMC:
1181         // ldi PMC, imm1
1182         // ldi PMC, imm2
1183         (*pc)++;
1184         pmcv = imm | (PROGRAM((*pc)++) << 16);
1185         known_regs.pmc.v = pmcv;
1186         known_regb |= KRREG_PMC;
1187         dirty_regb |= KRREG_PMC;
1188         known_regs.emu_status |= SSP_PMC_SET;
1189         n_in_ops++;
1190
1191         // check for possible reg programming
1192         tmpv = PROGRAM(*pc);
1193         if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1194         {
1195                 int is_write = (tmpv & 0xff8f) == 0x80;
1196                 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1197                 if (reg > 4) tr_unhandled();
1198                 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1199                 known_regs.pmac_read[is_write ? reg + 5 : reg] = pmcv;
1200                 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1201                 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1202                 known_regs.emu_status &= ~SSP_PMC_SET;
1203                 (*pc)++;
1204                 n_in_ops++;
1205                 return 5;
1206         }
1207
1208         tr_unhandled();
1209         return 4;
1210 }
1211
1212 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1213
1214 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1215 {
1216         // ldi ST, 0
1217         // ldi PM0, 0
1218         // ldi PM0, 0
1219         // ldi ST, 60h
1220         unsigned short *pp;
1221         if (op != 0x0840 || imm != 0) return 0;
1222         pp = PROGRAM_P(*pc);
1223         if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1224
1225         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
1226         EOP_ORR_IMM(6, 6, 24/2, 6);             // orr   r6, r6, 0x600
1227         hostreg_sspreg_changed(SSP_ST);
1228         known_regs.gr[SSP_ST].h = 0x60;
1229         known_regb |= 1 << SSP_ST;
1230         dirty_regb &= ~KRREG_ST;
1231         (*pc) += 3*2;
1232         n_in_ops += 3;
1233         return 4*2;
1234 }
1235
1236 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1237 {
1238         // @ 3DA2 and 426A
1239         // ld PMC, (r3|00)
1240         // ld (r3|00), PMC
1241         // ld -, AL
1242         if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1243
1244         tr_bank_read(0);
1245         EOP_MOV_REG_LSL(0, 0, 4);
1246         EOP_ORR_REG_LSR(0, 0, 0, 16);
1247         tr_bank_write(0);
1248         (*pc) += 2;
1249         n_in_ops += 2;
1250         return 3;
1251 }
1252
1253 // -----------------------------------------------------
1254
1255 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1256 {
1257         u32 tmpv, tmpv2, tmpv3;
1258         int ret = 0;
1259         known_regs.gr[SSP_PC].h = *pc;
1260
1261         switch (op >> 9)
1262         {
1263                 // ld d, s
1264                 case 0x00:
1265                         if (op == 0) { ret++; break; } // nop
1266                         tmpv  = op & 0xf; // src
1267                         tmpv2 = (op >> 4) & 0xf; // dst
1268                         if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1269                                 tr_flush_dirty_P();
1270                                 EOP_MOV_REG_SIMPLE(5, 10);
1271                                 hostreg_sspreg_changed(SSP_A);
1272                                 known_regb &= ~(KRREG_A|KRREG_AL);
1273                                 ret++; break;
1274                         }
1275                         tr_read_funcs[tmpv](op);
1276                         tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1277                         if (tmpv2 == SSP_PC) {
1278                                 ret |= 0x10000;
1279                                 *end_cond = -A_COND_AL;
1280                         }
1281                         ret++; break;
1282
1283                 // ld d, (ri)
1284                 case 0x01: {
1285                         int r = (op&3) | ((op>>6)&4);
1286                         int mod = (op>>2)&3;
1287                         tmpv = (op >> 4) & 0xf; // dst
1288                         ret = tr_detect_rotate(op, pc, imm);
1289                         if (ret > 0) break;
1290                         if (tmpv != 0)
1291                                 tr_rX_read(r, mod);
1292                         else {
1293                                 int cnt = 1;
1294                                 while (PROGRAM(*pc) == op) {
1295                                         (*pc)++; cnt++; ret++;
1296                                         n_in_ops++;
1297                                 }
1298                                 tr_ptrr_mod(r, mod, 1, cnt); // skip
1299                         }
1300                         tr_write_funcs[tmpv](-1);
1301                         if (tmpv == SSP_PC) {
1302                                 ret |= 0x10000;
1303                                 *end_cond = -A_COND_AL;
1304                         }
1305                         ret++; break;
1306                 }
1307
1308                 // ld (ri), s
1309                 case 0x02:
1310                         tmpv = (op >> 4) & 0xf; // src
1311                         tr_read_funcs[tmpv](op);
1312                         tr_rX_write(op);
1313                         ret++; break;
1314
1315                 // ld a, adr
1316                 case 0x03:
1317                         tr_bank_read(op&0x1ff);
1318                         tr_r0_to_A(-1);
1319                         ret++; break;
1320
1321                 // ldi d, imm
1322                 case 0x04:
1323                         tmpv = (op & 0xf0) >> 4; // dst
1324                         ret = tr_detect_pm0_block(op, pc, imm);
1325                         if (ret > 0) break;
1326                         ret = tr_detect_set_pm(op, pc, imm);
1327                         if (ret > 0) break;
1328                         tr_mov16(0, imm);
1329                         tr_write_funcs[tmpv](imm);
1330                         if (tmpv == SSP_PC) {
1331                                 ret |= 0x10000;
1332                                 *jump_pc = imm;
1333                         }
1334                         ret += 2; break;
1335
1336                 // ld d, ((ri))
1337                 case 0x05:
1338                         tmpv2 = (op >> 4) & 0xf;  // dst
1339                         tr_rX_read2(op);
1340                         tr_write_funcs[tmpv2](-1);
1341                         if (tmpv2 == SSP_PC) {
1342                                 ret |= 0x10000;
1343                                 *end_cond = -A_COND_AL;
1344                         }
1345                         ret += 3; break;
1346
1347                 // ldi (ri), imm
1348                 case 0x06:
1349                         tr_mov16(0, imm);
1350                         tr_rX_write(op);
1351                         ret += 2; break;
1352
1353                 // ld adr, a
1354                 case 0x07:
1355                         tr_A_to_r0(op);
1356                         tr_bank_write(op&0x1ff);
1357                         ret++; break;
1358
1359                 // ld d, ri
1360                 case 0x09: {
1361                         int r;
1362                         r = (op&3) | ((op>>6)&4); // src
1363                         tmpv2 = (op >> 4) & 0xf;  // dst
1364                         if ((r&3) == 3) tr_unhandled();
1365
1366                         if (known_regb & (1 << (r+8))) {
1367                                 tr_mov16(0, known_regs.r[r]);
1368                                 tr_write_funcs[tmpv2](known_regs.r[r]);
1369                         } else {
1370                                 int reg = (r < 4) ? 8 : 9;
1371                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1372                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1373                                 hostreg_r[0] = -1;
1374                                 tr_write_funcs[tmpv2](-1);
1375                         }
1376                         ret++; break;
1377                 }
1378
1379                 // ld ri, s
1380                 case 0x0a: {
1381                         int r;
1382                         r = (op&3) | ((op>>6)&4); // dst
1383                         tmpv = (op >> 4) & 0xf;   // src
1384                         if ((r&3) == 3) tr_unhandled();
1385
1386                         if (known_regb & (1 << tmpv)) {
1387                                 known_regs.r[r] = known_regs.gr[tmpv].h;
1388                                 known_regb |= 1 << (r + 8);
1389                                 dirty_regb |= 1 << (r + 8);
1390                         } else {
1391                                 int reg = (r < 4) ? 8 : 9;
1392                                 int ror = ((4 - (r&3))*8) & 0x1f;
1393                                 tr_read_funcs[tmpv](op);
1394                                 EOP_BIC_IMM(reg, reg, ror/2, 0xff);             // bic r{7,8}, r{7,8}, <mask>
1395                                 EOP_AND_IMM(0, 0, 0, 0xff);                     // and r0, r0, 0xff
1396                                 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8);          // orr r{7,8}, r{7,8}, r0, lsl #lsl
1397                                 hostreg_r[0] = -1;
1398                                 known_regb &= ~(1 << (r+8));
1399                                 dirty_regb &= ~(1 << (r+8));
1400                         }
1401                         ret++; break;
1402                 }
1403
1404                 // ldi ri, simm
1405                 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1406                         tmpv = (op>>8)&7;
1407                         known_regs.r[tmpv] = op;
1408                         known_regb |= 1 << (tmpv + 8);
1409                         dirty_regb |= 1 << (tmpv + 8);
1410                         ret++; break;
1411
1412                 // call cond, addr
1413                 case 0x24: {
1414                         u32 *jump_op = NULL;
1415                         tmpv = tr_cond_check(op);
1416                         if (tmpv != A_COND_AL) {
1417                                 jump_op = tcache_ptr;
1418                                 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1419                         }
1420                         tr_mov16(0, *pc);
1421                         tr_r0_to_STACK(*pc);
1422                         if (tmpv != A_COND_AL) {
1423                                 u32 *real_ptr = tcache_ptr;
1424                                 tcache_ptr = jump_op;
1425                                 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1426                                 tcache_ptr = real_ptr;
1427                         }
1428                         tr_mov16_cond(tmpv, 0, imm);
1429                         if (tmpv != A_COND_AL)
1430                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1431                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1432                         ret |= 0x10000;
1433                         *end_cond = tmpv;
1434                         *jump_pc = imm;
1435                         ret += 2; break;
1436                 }
1437
1438                 // ld d, (a)
1439                 case 0x25:
1440                         tmpv2 = (op >> 4) & 0xf;  // dst
1441                         tr_A_to_r0(op);
1442                         EOP_LDR_IMM(1,7,0x48c);                                 // ptr_iram_rom
1443                         EOP_ADD_REG_LSL(0,1,0,1);                               // add  r0, r1, r0, lsl #1
1444                         EOP_LDRH_SIMPLE(0,0);                                   // ldrh r0, [r0]
1445                         hostreg_r[0] = hostreg_r[1] = -1;
1446                         tr_write_funcs[tmpv2](-1);
1447                         if (tmpv2 == SSP_PC) {
1448                                 ret |= 0x10000;
1449                                 *end_cond = -A_COND_AL;
1450                         }
1451                         ret += 3; break;
1452
1453                 // bra cond, addr
1454                 case 0x26:
1455                         tmpv = tr_cond_check(op);
1456                         tr_mov16_cond(tmpv, 0, imm);
1457                         if (tmpv != A_COND_AL)
1458                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1459                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1460                         ret |= 0x10000;
1461                         *end_cond = tmpv;
1462                         *jump_pc = imm;
1463                         ret += 2; break;
1464
1465                 // mod cond, op
1466                 case 0x48: {
1467                         // check for repeats of this op
1468                         tmpv = 1; // count
1469                         while (PROGRAM(*pc) == op && (op & 7) != 6) {
1470                                 (*pc)++; tmpv++;
1471                                 n_in_ops++;
1472                         }
1473                         if ((op&0xf0) != 0) // !always
1474                                 tr_make_dirty_ST();
1475
1476                         tmpv2 = tr_cond_check(op);
1477                         switch (op & 7) {
1478                                 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1479                                 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1480                                 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1481                                 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor  r1, r5, r5, asr #31
1482                                         EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1483                                         hostreg_r[1] = -1; break; // abs
1484                                 default: tr_unhandled();
1485                         }
1486
1487                         hostreg_sspreg_changed(SSP_A);
1488                         dirty_regb |=  KRREG_ST;
1489                         known_regb &= ~KRREG_ST;
1490                         known_regb &= ~(KRREG_A|KRREG_AL);
1491                         ret += tmpv; break;
1492                 }
1493
1494                 // mpys?
1495                 case 0x1b:
1496                         tr_flush_dirty_P();
1497                         tr_mac_load_XY(op);
1498                         tr_make_dirty_ST();
1499                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1500                         hostreg_sspreg_changed(SSP_A);
1501                         known_regb &= ~(KRREG_A|KRREG_AL);
1502                         dirty_regb |= KRREG_ST;
1503                         ret++; break;
1504
1505                 // mpya (rj), (ri), b
1506                 case 0x4b:
1507                         tr_flush_dirty_P();
1508                         tr_mac_load_XY(op);
1509                         tr_make_dirty_ST();
1510                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1511                         hostreg_sspreg_changed(SSP_A);
1512                         known_regb &= ~(KRREG_A|KRREG_AL);
1513                         dirty_regb |= KRREG_ST;
1514                         ret++; break;
1515
1516                 // mld (rj), (ri), b
1517                 case 0x5b:
1518                         EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1519                         hostreg_sspreg_changed(SSP_A);
1520                         known_regs.gr[SSP_A].v = 0;
1521                         known_regb |= (KRREG_A|KRREG_AL);
1522                         dirty_regb |= KRREG_ST;
1523                         tr_mac_load_XY(op);
1524                         ret++; break;
1525
1526                 // OP a, s
1527                 case 0x10:
1528                 case 0x30:
1529                 case 0x40:
1530                 case 0x50:
1531                 case 0x60:
1532                 case 0x70:
1533                         tmpv = op & 0xf; // src
1534                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1535                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1536                         if (tmpv == SSP_P) {
1537                                 tr_flush_dirty_P();
1538                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1539                         } else if (tmpv == SSP_A) {
1540                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1541                         } else {
1542                                 tr_read_funcs[tmpv](op);
1543                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1544                         }
1545                         hostreg_sspreg_changed(SSP_A);
1546                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1547                         dirty_regb |= KRREG_ST;
1548                         ret++; break;
1549
1550                 // OP a, (ri)
1551                 case 0x11:
1552                 case 0x31:
1553                 case 0x41:
1554                 case 0x51:
1555                 case 0x61:
1556                 case 0x71:
1557                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1558                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1559                         tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1560                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1561                         hostreg_sspreg_changed(SSP_A);
1562                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1563                         dirty_regb |= KRREG_ST;
1564                         ret++; break;
1565
1566                 // OP a, adr
1567                 case 0x13:
1568                 case 0x33:
1569                 case 0x43:
1570                 case 0x53:
1571                 case 0x63:
1572                 case 0x73:
1573                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1574                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1575                         tr_bank_read(op&0x1ff);
1576                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1577                         hostreg_sspreg_changed(SSP_A);
1578                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1579                         dirty_regb |= KRREG_ST;
1580                         ret++; break;
1581
1582                 // OP a, imm
1583                 case 0x14:
1584                 case 0x34:
1585                 case 0x44:
1586                 case 0x54:
1587                 case 0x64:
1588                 case 0x74:
1589                         tmpv = (op & 0xf0) >> 4;
1590                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1591                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1592                         tr_mov16(0, imm);
1593                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1594                         hostreg_sspreg_changed(SSP_A);
1595                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1596                         dirty_regb |= KRREG_ST;
1597                         ret += 2; break;
1598
1599                 // OP a, ((ri))
1600                 case 0x15:
1601                 case 0x35:
1602                 case 0x45:
1603                 case 0x55:
1604                 case 0x65:
1605                 case 0x75:
1606                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1607                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1608                         tr_rX_read2(op);
1609                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1610                         hostreg_sspreg_changed(SSP_A);
1611                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1612                         dirty_regb |= KRREG_ST;
1613                         ret += 3; break;
1614
1615                 // OP a, ri
1616                 case 0x19:
1617                 case 0x39:
1618                 case 0x49:
1619                 case 0x59:
1620                 case 0x69:
1621                 case 0x79: {
1622                         int r;
1623                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1624                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1625                         r = (op&3) | ((op>>6)&4); // src
1626                         if ((r&3) == 3) tr_unhandled();
1627
1628                         if (known_regb & (1 << (r+8))) {
1629                                 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]);  // OPs r5, r5, #val<<16
1630                         } else {
1631                                 int reg = (r < 4) ? 8 : 9;
1632                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1633                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1634                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1635                                 hostreg_r[0] = -1;
1636                         }
1637                         hostreg_sspreg_changed(SSP_A);
1638                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1639                         dirty_regb |= KRREG_ST;
1640                         ret++; break;
1641                 }
1642
1643                 // OP simm
1644                 case 0x1c:
1645                 case 0x3c:
1646                 case 0x4c:
1647                 case 0x5c:
1648                 case 0x6c:
1649                 case 0x7c:
1650                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1651                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1652                         EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff);        // OPs r5, r5, #val<<16
1653                         hostreg_sspreg_changed(SSP_A);
1654                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1655                         dirty_regb |= KRREG_ST;
1656                         ret++; break;
1657         }
1658
1659         n_in_ops++;
1660
1661         return ret;
1662 }
1663
1664 static void emit_block_prologue(void)
1665 {
1666         // check if there are enough cycles..
1667         // note: r0 must contain PC of current block
1668         EOP_CMP_IMM(11,0,0);                    // cmp r11, #0
1669         emith_jump_cond(A_COND_LE, ssp_drc_end);
1670 }
1671
1672 /* cond:
1673  * >0: direct (un)conditional jump
1674  * <0: indirect jump
1675  */
1676 static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1677 {
1678         if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1679         EOP_SUB_IMM(11,11,0,cycles);            // sub r11, r11, #cycles
1680
1681         if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1682                 // indirect jump, or rom -> iram jump, must use dispatcher
1683                 emith_jump(ssp_drc_next);
1684         }
1685         else if (cond == A_COND_AL) {
1686                 u32 *target = (pc < 0x400) ?
1687                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1688                         ssp_block_table[pc];
1689                 if (target != NULL)
1690                         emith_jump(target);
1691                 else {
1692                         int ops = emith_jump(ssp_drc_next);
1693                         // cause the next block to be emitted over jump instruction
1694                         tcache_ptr -= ops;
1695                 }
1696         }
1697         else {
1698                 u32 *target1 = (pc     < 0x400) ?
1699                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1700                         ssp_block_table[pc];
1701                 u32 *target2 = (end_pc < 0x400) ?
1702                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1703                         ssp_block_table[end_pc];
1704                 if (target1 != NULL)
1705                      emith_jump_cond(cond, target1);
1706                 if (target2 != NULL)
1707                      emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1708 #ifndef __EPOC32__
1709                 // emit patchable branches
1710                 if (target1 == NULL)
1711                         emith_call_cond(cond, ssp_drc_next_patch);
1712                 if (target2 == NULL)
1713                         emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1714 #else
1715                 // won't patch indirect jumps
1716                 if (target1 == NULL || target2 == NULL)
1717                         emith_jump(ssp_drc_next);
1718 #endif
1719         }
1720 }
1721
1722 void *ssp_translate_block(int pc)
1723 {
1724         unsigned int op, op1, imm, ccount = 0;
1725         unsigned int *block_start;
1726         int ret, end_cond = A_COND_AL, jump_pc = -1;
1727
1728         //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1729
1730         block_start = tcache_ptr;
1731         known_regb = 0;
1732         dirty_regb = KRREG_P;
1733         known_regs.emu_status = 0;
1734         hostreg_clear();
1735
1736         emit_block_prologue();
1737
1738         for (; ccount < 100;)
1739         {
1740                 op = PROGRAM(pc++);
1741                 op1 = op >> 9;
1742                 imm = (u32)-1;
1743
1744                 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1745                         imm = PROGRAM(pc++); // immediate
1746
1747                 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1748                 if (ret <= 0)
1749                 {
1750                         elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1751                         //exit(1);
1752                 }
1753
1754                 ccount += ret & 0xffff;
1755                 if (ret & 0x10000) break;
1756         }
1757
1758         if (ccount >= 100) {
1759                 end_cond = A_COND_AL;
1760                 jump_pc = pc;
1761                 emith_move_r_imm(0, pc);
1762         }
1763
1764         tr_flush_dirty_prs();
1765         tr_flush_dirty_ST();
1766         tr_flush_dirty_pmcrs();
1767         emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1768
1769         if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1770                 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1771                 fflush(stdout);
1772                 exit(1);
1773         }
1774
1775         // stats
1776         nblocks++;
1777         //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1778         //      (double)(tcache_ptr - tcache) / (double)n_in_ops);
1779
1780 #ifdef DUMP_BLOCK
1781         {
1782                 FILE *f = fopen("tcache.bin", "wb");
1783                 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1784                 fclose(f);
1785         }
1786         printf("dumped tcache.bin\n");
1787         exit(0);
1788 #endif
1789
1790         handle_caches();
1791
1792         return block_start;
1793 }
1794
1795
1796
1797 // -----------------------------------------------------
1798
1799 static void ssp1601_state_load(void)
1800 {
1801         ssp->drc.iram_dirty = 1;
1802         ssp->drc.iram_context = 0;
1803 }
1804
1805 void ssp1601_dyn_exit(void)
1806 {
1807         free(ssp_block_table);
1808         free(ssp_block_table_iram);
1809         ssp_block_table = ssp_block_table_iram = NULL;
1810
1811         drc_cmn_cleanup();
1812 }
1813
1814 int ssp1601_dyn_startup(void)
1815 {
1816         drc_cmn_init();
1817
1818         ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1819         if (ssp_block_table == NULL)
1820                 return -1;
1821         ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1822         if (ssp_block_table_iram == NULL) {
1823                 free(ssp_block_table);
1824                 return -1;
1825         }
1826
1827         memset(tcache, 0, DRC_TCACHE_SIZE);
1828         tcache_ptr = (void *)tcache;
1829
1830         PicoLoadStateHook = ssp1601_state_load;
1831
1832         n_in_ops = 0;
1833 #ifdef ARM
1834         // hle'd blocks
1835         ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1836         ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1837         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1838         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1839         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1840         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1841         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1842         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1843 #endif
1844
1845         return 0;
1846 }
1847
1848
1849 void ssp1601_dyn_reset(ssp1601_t *ssp)
1850 {
1851         ssp1601_reset(ssp);
1852         ssp->drc.iram_dirty = 1;
1853         ssp->drc.iram_context = 0;
1854         // must do this here because ssp is not available @ startup()
1855         ssp->drc.ptr_rom = (u32) Pico.rom;
1856         ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1857         ssp->drc.ptr_dram = (u32) svp->dram;
1858         ssp->drc.ptr_btable = (u32) ssp_block_table;
1859         ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1860
1861         // prevent new versions of IRAM from appearing
1862         memset(svp->iram_rom, 0, 0x800);
1863 }
1864
1865
1866 void ssp1601_dyn_run(int cycles)
1867 {
1868         if (ssp->emu_status & SSP_WAIT_MASK) return;
1869
1870 #ifdef DUMP_BLOCK
1871         ssp_translate_block(DUMP_BLOCK >> 1);
1872 #endif
1873 #ifdef ARM
1874         ssp_drc_entry(cycles);
1875 #endif
1876 }
1877