make sure all branches link
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
3d624f89 25#include "emu_if.h" //emulator interface
57871462 26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 uint64_t unneeded_reg[MAXBLOCK];
88 uint64_t unneeded_reg_upper[MAXBLOCK];
89 uint64_t branch_unneeded_reg[MAXBLOCK];
90 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91 uint64_t p32[MAXBLOCK];
92 uint64_t pr32[MAXBLOCK];
93 signed char regmap_pre[MAXBLOCK][HOST_REGS];
94 signed char regmap[MAXBLOCK][HOST_REGS];
95 signed char regmap_entry[MAXBLOCK][HOST_REGS];
96 uint64_t constmap[MAXBLOCK][HOST_REGS];
97 uint64_t known_value[HOST_REGS];
98 u_int known_reg;
99 struct regstat regs[MAXBLOCK];
100 struct regstat branch_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
138#define FTEMP 38 // FPU temporary register
139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
178
179 /* stubs */
180#define CC_STUB 1
181#define FP_STUB 2
182#define LOADB_STUB 3
183#define LOADH_STUB 4
184#define LOADW_STUB 5
185#define LOADD_STUB 6
186#define LOADBU_STUB 7
187#define LOADHU_STUB 8
188#define STOREB_STUB 9
189#define STOREH_STUB 10
190#define STOREW_STUB 11
191#define STORED_STUB 12
192#define STORELR_STUB 13
193#define INVCODE_STUB 14
194
195 /* branch codes */
196#define TAKEN 1
197#define NOTTAKEN 2
198#define NULLDS 3
199
200// asm linkage
201int new_recompile_block(int addr);
202void *get_addr_ht(u_int vaddr);
203void invalidate_block(u_int block);
204void invalidate_addr(u_int addr);
205void remove_hash(int vaddr);
206void jump_vaddr();
207void dyna_linker();
208void dyna_linker_ds();
209void verify_code();
210void verify_code_vm();
211void verify_code_ds();
212void cc_interrupt();
213void fp_exception();
214void fp_exception_ds();
215void jump_syscall();
216void jump_eret();
217
218// TLB
219void TLBWI_new();
220void TLBWR_new();
221void read_nomem_new();
222void read_nomemb_new();
223void read_nomemh_new();
224void read_nomemd_new();
225void write_nomem_new();
226void write_nomemb_new();
227void write_nomemh_new();
228void write_nomemd_new();
229void write_rdram_new();
230void write_rdramb_new();
231void write_rdramh_new();
232void write_rdramd_new();
233extern u_int memory_map[1048576];
234
235// Needed by assembler
236void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
237void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
238void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
239void load_all_regs(signed char i_regmap[]);
240void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
241void load_regs_entry(int t);
242void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
243
244int tracedebug=0;
245
246//#define DEBUG_CYCLE_COUNT 1
247
248void nullf() {}
249//#define assem_debug printf
250//#define inv_debug printf
251#define assem_debug nullf
252#define inv_debug nullf
253
94d23bb9 254static void tlb_hacks()
57871462 255{
94d23bb9 256#ifndef DISABLE_TLB
57871462 257 // Goldeneye hack
258 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
259 {
260 u_int addr;
261 int n;
262 switch (ROM_HEADER->Country_code&0xFF)
263 {
264 case 0x45: // U
265 addr=0x34b30;
266 break;
267 case 0x4A: // J
268 addr=0x34b70;
269 break;
270 case 0x50: // E
271 addr=0x329f0;
272 break;
273 default:
274 // Unknown country code
275 addr=0;
276 break;
277 }
278 u_int rom_addr=(u_int)rom;
279 #ifdef ROM_COPY
280 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
281 // in the lower 4G of memory to use this hack. Copy it if necessary.
282 if((void *)rom>(void *)0xffffffff) {
283 munmap(ROM_COPY, 67108864);
284 if(mmap(ROM_COPY, 12582912,
285 PROT_READ | PROT_WRITE,
286 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
287 -1, 0) <= 0) {printf("mmap() failed\n");}
288 memcpy(ROM_COPY,rom,12582912);
289 rom_addr=(u_int)ROM_COPY;
290 }
291 #endif
292 if(addr) {
293 for(n=0x7F000;n<0x80000;n++) {
294 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
295 }
296 }
297 }
94d23bb9 298#endif
57871462 299}
300
94d23bb9 301static u_int get_page(u_int vaddr)
57871462 302{
303 u_int page=(vaddr^0x80000000)>>12;
94d23bb9 304#ifndef DISABLE_TLB
57871462 305 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 306#endif
57871462 307 if(page>2048) page=2048+(page&2047);
94d23bb9 308 return page;
309}
310
311static u_int get_vpage(u_int vaddr)
312{
313 u_int vpage=(vaddr^0x80000000)>>12;
314#ifndef DISABLE_TLB
57871462 315 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 316#endif
57871462 317 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 318 return vpage;
319}
320
321// Get address from virtual address
322// This is called from the recompiled JR/JALR instructions
323void *get_addr(u_int vaddr)
324{
325 u_int page=get_page(vaddr);
326 u_int vpage=get_vpage(vaddr);
57871462 327 struct ll_entry *head;
328 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
329 head=jump_in[page];
330 while(head!=NULL) {
331 if(head->vaddr==vaddr&&head->reg32==0) {
332 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
333 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
334 ht_bin[3]=ht_bin[1];
335 ht_bin[2]=ht_bin[0];
336 ht_bin[1]=(int)head->addr;
337 ht_bin[0]=vaddr;
338 return head->addr;
339 }
340 head=head->next;
341 }
342 head=jump_dirty[vpage];
343 while(head!=NULL) {
344 if(head->vaddr==vaddr&&head->reg32==0) {
345 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
346 // Don't restore blocks which are about to expire from the cache
347 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
348 if(verify_dirty(head->addr)) {
349 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
350 invalid_code[vaddr>>12]=0;
351 memory_map[vaddr>>12]|=0x40000000;
352 if(vpage<2048) {
94d23bb9 353#ifndef DISABLE_TLB
57871462 354 if(tlb_LUT_r[vaddr>>12]) {
355 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
356 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
357 }
94d23bb9 358#endif
57871462 359 restore_candidate[vpage>>3]|=1<<(vpage&7);
360 }
361 else restore_candidate[page>>3]|=1<<(page&7);
362 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
363 if(ht_bin[0]==vaddr) {
364 ht_bin[1]=(int)head->addr; // Replace existing entry
365 }
366 else
367 {
368 ht_bin[3]=ht_bin[1];
369 ht_bin[2]=ht_bin[0];
370 ht_bin[1]=(int)head->addr;
371 ht_bin[0]=vaddr;
372 }
373 return head->addr;
374 }
375 }
376 head=head->next;
377 }
378 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
379 int r=new_recompile_block(vaddr);
380 if(r==0) return get_addr(vaddr);
381 // Execute in unmapped page, generate pagefault execption
382 Status|=2;
383 Cause=(vaddr<<31)|0x8;
384 EPC=(vaddr&1)?vaddr-5:vaddr;
385 BadVAddr=(vaddr&~1);
386 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
387 EntryHi=BadVAddr&0xFFFFE000;
388 return get_addr_ht(0x80000000);
389}
390// Look up address in hash table first
391void *get_addr_ht(u_int vaddr)
392{
393 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
394 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
395 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
396 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
397 return get_addr(vaddr);
398}
399
400void *get_addr_32(u_int vaddr,u_int flags)
401{
402 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
403 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
404 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
405 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 406 u_int page=get_page(vaddr);
407 u_int vpage=get_vpage(vaddr);
57871462 408 struct ll_entry *head;
409 head=jump_in[page];
410 while(head!=NULL) {
411 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
412 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
413 if(head->reg32==0) {
414 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
415 if(ht_bin[0]==-1) {
416 ht_bin[1]=(int)head->addr;
417 ht_bin[0]=vaddr;
418 }else if(ht_bin[2]==-1) {
419 ht_bin[3]=(int)head->addr;
420 ht_bin[2]=vaddr;
421 }
422 //ht_bin[3]=ht_bin[1];
423 //ht_bin[2]=ht_bin[0];
424 //ht_bin[1]=(int)head->addr;
425 //ht_bin[0]=vaddr;
426 }
427 return head->addr;
428 }
429 head=head->next;
430 }
431 head=jump_dirty[vpage];
432 while(head!=NULL) {
433 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
434 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
435 // Don't restore blocks which are about to expire from the cache
436 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
437 if(verify_dirty(head->addr)) {
438 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
439 invalid_code[vaddr>>12]=0;
440 memory_map[vaddr>>12]|=0x40000000;
441 if(vpage<2048) {
94d23bb9 442#ifndef DISABLE_TLB
57871462 443 if(tlb_LUT_r[vaddr>>12]) {
444 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
445 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
446 }
94d23bb9 447#endif
57871462 448 restore_candidate[vpage>>3]|=1<<(vpage&7);
449 }
450 else restore_candidate[page>>3]|=1<<(page&7);
451 if(head->reg32==0) {
452 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
453 if(ht_bin[0]==-1) {
454 ht_bin[1]=(int)head->addr;
455 ht_bin[0]=vaddr;
456 }else if(ht_bin[2]==-1) {
457 ht_bin[3]=(int)head->addr;
458 ht_bin[2]=vaddr;
459 }
460 //ht_bin[3]=ht_bin[1];
461 //ht_bin[2]=ht_bin[0];
462 //ht_bin[1]=(int)head->addr;
463 //ht_bin[0]=vaddr;
464 }
465 return head->addr;
466 }
467 }
468 head=head->next;
469 }
470 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
471 int r=new_recompile_block(vaddr);
472 if(r==0) return get_addr(vaddr);
473 // Execute in unmapped page, generate pagefault execption
474 Status|=2;
475 Cause=(vaddr<<31)|0x8;
476 EPC=(vaddr&1)?vaddr-5:vaddr;
477 BadVAddr=(vaddr&~1);
478 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
479 EntryHi=BadVAddr&0xFFFFE000;
480 return get_addr_ht(0x80000000);
481}
482
483void clear_all_regs(signed char regmap[])
484{
485 int hr;
486 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
487}
488
489signed char get_reg(signed char regmap[],int r)
490{
491 int hr;
492 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
493 return -1;
494}
495
496// Find a register that is available for two consecutive cycles
497signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
498{
499 int hr;
500 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
501 return -1;
502}
503
504int count_free_regs(signed char regmap[])
505{
506 int count=0;
507 int hr;
508 for(hr=0;hr<HOST_REGS;hr++)
509 {
510 if(hr!=EXCLUDE_REG) {
511 if(regmap[hr]<0) count++;
512 }
513 }
514 return count;
515}
516
517void dirty_reg(struct regstat *cur,signed char reg)
518{
519 int hr;
520 if(!reg) return;
521 for (hr=0;hr<HOST_REGS;hr++) {
522 if((cur->regmap[hr]&63)==reg) {
523 cur->dirty|=1<<hr;
524 }
525 }
526}
527
528// If we dirty the lower half of a 64 bit register which is now being
529// sign-extended, we need to dump the upper half.
530// Note: Do this only after completion of the instruction, because
531// some instructions may need to read the full 64-bit value even if
532// overwriting it (eg SLTI, DSRA32).
533static void flush_dirty_uppers(struct regstat *cur)
534{
535 int hr,reg;
536 for (hr=0;hr<HOST_REGS;hr++) {
537 if((cur->dirty>>hr)&1) {
538 reg=cur->regmap[hr];
539 if(reg>=64)
540 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
541 }
542 }
543}
544
545void set_const(struct regstat *cur,signed char reg,uint64_t value)
546{
547 int hr;
548 if(!reg) return;
549 for (hr=0;hr<HOST_REGS;hr++) {
550 if(cur->regmap[hr]==reg) {
551 cur->isconst|=1<<hr;
552 cur->constmap[hr]=value;
553 }
554 else if((cur->regmap[hr]^64)==reg) {
555 cur->isconst|=1<<hr;
556 cur->constmap[hr]=value>>32;
557 }
558 }
559}
560
561void clear_const(struct regstat *cur,signed char reg)
562{
563 int hr;
564 if(!reg) return;
565 for (hr=0;hr<HOST_REGS;hr++) {
566 if((cur->regmap[hr]&63)==reg) {
567 cur->isconst&=~(1<<hr);
568 }
569 }
570}
571
572int is_const(struct regstat *cur,signed char reg)
573{
574 int hr;
575 if(!reg) return 1;
576 for (hr=0;hr<HOST_REGS;hr++) {
577 if((cur->regmap[hr]&63)==reg) {
578 return (cur->isconst>>hr)&1;
579 }
580 }
581 return 0;
582}
583uint64_t get_const(struct regstat *cur,signed char reg)
584{
585 int hr;
586 if(!reg) return 0;
587 for (hr=0;hr<HOST_REGS;hr++) {
588 if(cur->regmap[hr]==reg) {
589 return cur->constmap[hr];
590 }
591 }
592 printf("Unknown constant in r%d\n",reg);
593 exit(1);
594}
595
596// Least soon needed registers
597// Look at the next ten instructions and see which registers
598// will be used. Try not to reallocate these.
599void lsn(u_char hsn[], int i, int *preferred_reg)
600{
601 int j;
602 int b=-1;
603 for(j=0;j<9;j++)
604 {
605 if(i+j>=slen) {
606 j=slen-i-1;
607 break;
608 }
609 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
610 {
611 // Don't go past an unconditonal jump
612 j++;
613 break;
614 }
615 }
616 for(;j>=0;j--)
617 {
618 if(rs1[i+j]) hsn[rs1[i+j]]=j;
619 if(rs2[i+j]) hsn[rs2[i+j]]=j;
620 if(rt1[i+j]) hsn[rt1[i+j]]=j;
621 if(rt2[i+j]) hsn[rt2[i+j]]=j;
622 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
623 // Stores can allocate zero
624 hsn[rs1[i+j]]=j;
625 hsn[rs2[i+j]]=j;
626 }
627 // On some architectures stores need invc_ptr
628 #if defined(HOST_IMM8)
629 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
630 hsn[INVCP]=j;
631 }
632 #endif
633 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
634 {
635 hsn[CCREG]=j;
636 b=j;
637 }
638 }
639 if(b>=0)
640 {
641 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
642 {
643 // Follow first branch
644 int t=(ba[i+b]-start)>>2;
645 j=7-b;if(t+j>=slen) j=slen-t-1;
646 for(;j>=0;j--)
647 {
648 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
649 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
650 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
651 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
652 }
653 }
654 // TODO: preferred register based on backward branch
655 }
656 // Delay slot should preferably not overwrite branch conditions or cycle count
657 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
658 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
659 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
660 hsn[CCREG]=1;
661 // ...or hash tables
662 hsn[RHASH]=1;
663 hsn[RHTBL]=1;
664 }
665 // Coprocessor load/store needs FTEMP, even if not declared
666 if(itype[i]==C1LS) {
667 hsn[FTEMP]=0;
668 }
669 // Load L/R also uses FTEMP as a temporary register
670 if(itype[i]==LOADLR) {
671 hsn[FTEMP]=0;
672 }
673 // Also 64-bit SDL/SDR
674 if(opcode[i]==0x2c||opcode[i]==0x2d) {
675 hsn[FTEMP]=0;
676 }
677 // Don't remove the TLB registers either
678 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
679 hsn[TLREG]=0;
680 }
681 // Don't remove the miniht registers
682 if(itype[i]==UJUMP||itype[i]==RJUMP)
683 {
684 hsn[RHASH]=0;
685 hsn[RHTBL]=0;
686 }
687}
688
689// We only want to allocate registers if we're going to use them again soon
690int needed_again(int r, int i)
691{
692 int j;
693 int b=-1;
694 int rn=10;
695 int hr;
696 u_char hsn[MAXREG+1];
697 int preferred_reg;
698
699 memset(hsn,10,sizeof(hsn));
700 lsn(hsn,i,&preferred_reg);
701
702 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
703 {
704 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
705 return 0; // Don't need any registers if exiting the block
706 }
707 for(j=0;j<9;j++)
708 {
709 if(i+j>=slen) {
710 j=slen-i-1;
711 break;
712 }
713 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
714 {
715 // Don't go past an unconditonal jump
716 j++;
717 break;
718 }
719 if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
720 {
721 break;
722 }
723 }
724 for(;j>=1;j--)
725 {
726 if(rs1[i+j]==r) rn=j;
727 if(rs2[i+j]==r) rn=j;
728 if((unneeded_reg[i+j]>>r)&1) rn=10;
729 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
730 {
731 b=j;
732 }
733 }
734 /*
735 if(b>=0)
736 {
737 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
738 {
739 // Follow first branch
740 int o=rn;
741 int t=(ba[i+b]-start)>>2;
742 j=7-b;if(t+j>=slen) j=slen-t-1;
743 for(;j>=0;j--)
744 {
745 if(!((unneeded_reg[t+j]>>r)&1)) {
746 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
747 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
748 }
749 else rn=o;
750 }
751 }
752 }*/
753 for(hr=0;hr<HOST_REGS;hr++) {
754 if(hr!=EXCLUDE_REG) {
755 if(rn<hsn[hr]) return 1;
756 }
757 }
758 return 0;
759}
760
761// Try to match register allocations at the end of a loop with those
762// at the beginning
763int loop_reg(int i, int r, int hr)
764{
765 int j,k;
766 for(j=0;j<9;j++)
767 {
768 if(i+j>=slen) {
769 j=slen-i-1;
770 break;
771 }
772 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
773 {
774 // Don't go past an unconditonal jump
775 j++;
776 break;
777 }
778 }
779 k=0;
780 if(i>0){
781 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
782 k--;
783 }
784 for(;k<j;k++)
785 {
786 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
787 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
788 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
789 {
790 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
791 {
792 int t=(ba[i+k]-start)>>2;
793 int reg=get_reg(regs[t].regmap_entry,r);
794 if(reg>=0) return reg;
795 //reg=get_reg(regs[t+1].regmap_entry,r);
796 //if(reg>=0) return reg;
797 }
798 }
799 }
800 return hr;
801}
802
803
804// Allocate every register, preserving source/target regs
805void alloc_all(struct regstat *cur,int i)
806{
807 int hr;
808
809 for(hr=0;hr<HOST_REGS;hr++) {
810 if(hr!=EXCLUDE_REG) {
811 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
812 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
813 {
814 cur->regmap[hr]=-1;
815 cur->dirty&=~(1<<hr);
816 }
817 // Don't need zeros
818 if((cur->regmap[hr]&63)==0)
819 {
820 cur->regmap[hr]=-1;
821 cur->dirty&=~(1<<hr);
822 }
823 }
824 }
825}
826
827
828void div64(int64_t dividend,int64_t divisor)
829{
830 lo=dividend/divisor;
831 hi=dividend%divisor;
832 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
833 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
834}
835void divu64(uint64_t dividend,uint64_t divisor)
836{
837 lo=dividend/divisor;
838 hi=dividend%divisor;
839 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
840 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
841}
842
843void mult64(uint64_t m1,uint64_t m2)
844{
845 unsigned long long int op1, op2, op3, op4;
846 unsigned long long int result1, result2, result3, result4;
847 unsigned long long int temp1, temp2, temp3, temp4;
848 int sign = 0;
849
850 if (m1 < 0)
851 {
852 op2 = -m1;
853 sign = 1 - sign;
854 }
855 else op2 = m1;
856 if (m2 < 0)
857 {
858 op4 = -m2;
859 sign = 1 - sign;
860 }
861 else op4 = m2;
862
863 op1 = op2 & 0xFFFFFFFF;
864 op2 = (op2 >> 32) & 0xFFFFFFFF;
865 op3 = op4 & 0xFFFFFFFF;
866 op4 = (op4 >> 32) & 0xFFFFFFFF;
867
868 temp1 = op1 * op3;
869 temp2 = (temp1 >> 32) + op1 * op4;
870 temp3 = op2 * op3;
871 temp4 = (temp3 >> 32) + op2 * op4;
872
873 result1 = temp1 & 0xFFFFFFFF;
874 result2 = temp2 + (temp3 & 0xFFFFFFFF);
875 result3 = (result2 >> 32) + temp4;
876 result4 = (result3 >> 32);
877
878 lo = result1 | (result2 << 32);
879 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
880 if (sign)
881 {
882 hi = ~hi;
883 if (!lo) hi++;
884 else lo = ~lo + 1;
885 }
886}
887
888void multu64(uint64_t m1,uint64_t m2)
889{
890 unsigned long long int op1, op2, op3, op4;
891 unsigned long long int result1, result2, result3, result4;
892 unsigned long long int temp1, temp2, temp3, temp4;
893
894 op1 = m1 & 0xFFFFFFFF;
895 op2 = (m1 >> 32) & 0xFFFFFFFF;
896 op3 = m2 & 0xFFFFFFFF;
897 op4 = (m2 >> 32) & 0xFFFFFFFF;
898
899 temp1 = op1 * op3;
900 temp2 = (temp1 >> 32) + op1 * op4;
901 temp3 = op2 * op3;
902 temp4 = (temp3 >> 32) + op2 * op4;
903
904 result1 = temp1 & 0xFFFFFFFF;
905 result2 = temp2 + (temp3 & 0xFFFFFFFF);
906 result3 = (result2 >> 32) + temp4;
907 result4 = (result3 >> 32);
908
909 lo = result1 | (result2 << 32);
910 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
911
912 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
913 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
914}
915
916uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
917{
918 if(bits) {
919 original<<=64-bits;
920 original>>=64-bits;
921 loaded<<=bits;
922 original|=loaded;
923 }
924 else original=loaded;
925 return original;
926}
927uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
928{
929 if(bits^56) {
930 original>>=64-(bits^56);
931 original<<=64-(bits^56);
932 loaded>>=bits^56;
933 original|=loaded;
934 }
935 else original=loaded;
936 return original;
937}
938
939#ifdef __i386__
940#include "assem_x86.c"
941#endif
942#ifdef __x86_64__
943#include "assem_x64.c"
944#endif
945#ifdef __arm__
946#include "assem_arm.c"
947#endif
948
949// Add virtual address mapping to linked list
950void ll_add(struct ll_entry **head,int vaddr,void *addr)
951{
952 struct ll_entry *new_entry;
953 new_entry=malloc(sizeof(struct ll_entry));
954 assert(new_entry!=NULL);
955 new_entry->vaddr=vaddr;
956 new_entry->reg32=0;
957 new_entry->addr=addr;
958 new_entry->next=*head;
959 *head=new_entry;
960}
961
962// Add virtual address mapping for 32-bit compiled block
963void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
964{
965 struct ll_entry *new_entry;
966 new_entry=malloc(sizeof(struct ll_entry));
967 assert(new_entry!=NULL);
968 new_entry->vaddr=vaddr;
969 new_entry->reg32=reg32;
970 new_entry->addr=addr;
971 new_entry->next=*head;
972 *head=new_entry;
973}
974
975// Check if an address is already compiled
976// but don't return addresses which are about to expire from the cache
977void *check_addr(u_int vaddr)
978{
979 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
980 if(ht_bin[0]==vaddr) {
981 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
982 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
983 }
984 if(ht_bin[2]==vaddr) {
985 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
986 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
987 }
94d23bb9 988 u_int page=get_page(vaddr);
57871462 989 struct ll_entry *head;
990 head=jump_in[page];
991 while(head!=NULL) {
992 if(head->vaddr==vaddr&&head->reg32==0) {
993 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
994 // Update existing entry with current address
995 if(ht_bin[0]==vaddr) {
996 ht_bin[1]=(int)head->addr;
997 return head->addr;
998 }
999 if(ht_bin[2]==vaddr) {
1000 ht_bin[3]=(int)head->addr;
1001 return head->addr;
1002 }
1003 // Insert into hash table with low priority.
1004 // Don't evict existing entries, as they are probably
1005 // addresses that are being accessed frequently.
1006 if(ht_bin[0]==-1) {
1007 ht_bin[1]=(int)head->addr;
1008 ht_bin[0]=vaddr;
1009 }else if(ht_bin[2]==-1) {
1010 ht_bin[3]=(int)head->addr;
1011 ht_bin[2]=vaddr;
1012 }
1013 return head->addr;
1014 }
1015 }
1016 head=head->next;
1017 }
1018 return 0;
1019}
1020
1021void remove_hash(int vaddr)
1022{
1023 //printf("remove hash: %x\n",vaddr);
1024 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1025 if(ht_bin[2]==vaddr) {
1026 ht_bin[2]=ht_bin[3]=-1;
1027 }
1028 if(ht_bin[0]==vaddr) {
1029 ht_bin[0]=ht_bin[2];
1030 ht_bin[1]=ht_bin[3];
1031 ht_bin[2]=ht_bin[3]=-1;
1032 }
1033}
1034
1035void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1036{
1037 struct ll_entry *next;
1038 while(*head) {
1039 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1040 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1041 {
1042 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1043 remove_hash((*head)->vaddr);
1044 next=(*head)->next;
1045 free(*head);
1046 *head=next;
1047 }
1048 else
1049 {
1050 head=&((*head)->next);
1051 }
1052 }
1053}
1054
1055// Remove all entries from linked list
1056void ll_clear(struct ll_entry **head)
1057{
1058 struct ll_entry *cur;
1059 struct ll_entry *next;
1060 if(cur=*head) {
1061 *head=0;
1062 while(cur) {
1063 next=cur->next;
1064 free(cur);
1065 cur=next;
1066 }
1067 }
1068}
1069
1070// Dereference the pointers and remove if it matches
1071void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1072{
1073 while(head) {
1074 int ptr=get_pointer(head->addr);
1075 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1076 if(((ptr>>shift)==(addr>>shift)) ||
1077 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1078 {
1079 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1080 kill_pointer(head->addr);
1081 }
1082 head=head->next;
1083 }
1084}
1085
1086// This is called when we write to a compiled block (see do_invstub)
1087int invalidate_page(u_int page)
1088{
1089 int modified=0;
1090 struct ll_entry *head;
1091 struct ll_entry *next;
1092 head=jump_in[page];
1093 jump_in[page]=0;
1094 while(head!=NULL) {
1095 inv_debug("INVALIDATE: %x\n",head->vaddr);
1096 remove_hash(head->vaddr);
1097 next=head->next;
1098 free(head);
1099 head=next;
1100 }
1101 head=jump_out[page];
1102 jump_out[page]=0;
1103 while(head!=NULL) {
1104 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1105 kill_pointer(head->addr);
1106 modified=1;
1107 next=head->next;
1108 free(head);
1109 head=next;
1110 }
1111 return modified;
1112}
1113void invalidate_block(u_int block)
1114{
1115 int modified;
94d23bb9 1116 u_int page=get_page(block<<12);
1117 u_int vpage=get_vpage(block<<12);
57871462 1118 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1119 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1120 u_int first,last;
1121 first=last=page;
1122 struct ll_entry *head;
1123 head=jump_dirty[vpage];
1124 //printf("page=%d vpage=%d\n",page,vpage);
1125 while(head!=NULL) {
1126 u_int start,end;
1127 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1128 get_bounds((int)head->addr,&start,&end);
1129 //printf("start: %x end: %x\n",start,end);
1130 if(page<2048&&start>=0x80000000&&end<0x80800000) {
1131 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1132 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1133 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1134 }
1135 }
1136 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1137 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1138 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1139 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1140 }
1141 }
1142 }
1143 head=head->next;
1144 }
1145 //printf("first=%d last=%d\n",first,last);
1146 modified=invalidate_page(page);
1147 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1148 assert(last<page+5);
1149 // Invalidate the adjacent pages if a block crosses a 4K boundary
1150 while(first<page) {
1151 invalidate_page(first);
1152 first++;
1153 }
1154 for(first=page+1;first<last;first++) {
1155 invalidate_page(first);
1156 }
1157
1158 // Don't trap writes
1159 invalid_code[block]=1;
94d23bb9 1160#ifndef DISABLE_TLB
57871462 1161 // If there is a valid TLB entry for this page, remove write protect
1162 if(tlb_LUT_w[block]) {
1163 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1164 // CHECK: Is this right?
1165 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1166 u_int real_block=tlb_LUT_w[block]>>12;
1167 invalid_code[real_block]=1;
1168 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1169 }
1170 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1171#endif
57871462 1172 #ifdef __arm__
1173 if(modified)
1174 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1175 #endif
1176 #ifdef USE_MINI_HT
1177 memset(mini_ht,-1,sizeof(mini_ht));
1178 #endif
1179}
1180void invalidate_addr(u_int addr)
1181{
1182 invalidate_block(addr>>12);
1183}
1184void invalidate_all_pages()
1185{
1186 u_int page,n;
1187 for(page=0;page<4096;page++)
1188 invalidate_page(page);
1189 for(page=0;page<1048576;page++)
1190 if(!invalid_code[page]) {
1191 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1192 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1193 }
1194 #ifdef __arm__
1195 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1196 #endif
1197 #ifdef USE_MINI_HT
1198 memset(mini_ht,-1,sizeof(mini_ht));
1199 #endif
94d23bb9 1200 #ifndef DISABLE_TLB
57871462 1201 // TLB
1202 for(page=0;page<0x100000;page++) {
1203 if(tlb_LUT_r[page]) {
1204 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1205 if(!tlb_LUT_w[page]||!invalid_code[page])
1206 memory_map[page]|=0x40000000; // Write protect
1207 }
1208 else memory_map[page]=-1;
1209 if(page==0x80000) page=0xC0000;
1210 }
1211 tlb_hacks();
94d23bb9 1212 #endif
57871462 1213}
1214
1215// Add an entry to jump_out after making a link
1216void add_link(u_int vaddr,void *src)
1217{
94d23bb9 1218 u_int page=get_page(vaddr);
57871462 1219 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1220 ll_add(jump_out+page,vaddr,src);
1221 //int ptr=get_pointer(src);
1222 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1223}
1224
1225// If a code block was found to be unmodified (bit was set in
1226// restore_candidate) and it remains unmodified (bit is clear
1227// in invalid_code) then move the entries for that 4K page from
1228// the dirty list to the clean list.
1229void clean_blocks(u_int page)
1230{
1231 struct ll_entry *head;
1232 inv_debug("INV: clean_blocks page=%d\n",page);
1233 head=jump_dirty[page];
1234 while(head!=NULL) {
1235 if(!invalid_code[head->vaddr>>12]) {
1236 // Don't restore blocks which are about to expire from the cache
1237 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1238 u_int start,end;
1239 if(verify_dirty((int)head->addr)) {
1240 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1241 u_int i;
1242 u_int inv=0;
1243 get_bounds((int)head->addr,&start,&end);
1244 if(start-(u_int)rdram<0x800000) {
1245 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1246 inv|=invalid_code[i];
1247 }
1248 }
1249 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1250 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1251 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1252 if(addr<start||addr>=end) inv=1;
1253 }
1254 else if((signed int)head->vaddr>=(signed int)0x80800000) {
1255 inv=1;
1256 }
1257 if(!inv) {
1258 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1259 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1260 u_int ppage=page;
94d23bb9 1261#ifndef DISABLE_TLB
57871462 1262 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1263#endif
57871462 1264 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1265 //printf("page=%x, addr=%x\n",page,head->vaddr);
1266 //assert(head->vaddr>>12==(page|0x80000));
1267 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1268 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1269 if(!head->reg32) {
1270 if(ht_bin[0]==head->vaddr) {
1271 ht_bin[1]=(int)clean_addr; // Replace existing entry
1272 }
1273 if(ht_bin[2]==head->vaddr) {
1274 ht_bin[3]=(int)clean_addr; // Replace existing entry
1275 }
1276 }
1277 }
1278 }
1279 }
1280 }
1281 }
1282 head=head->next;
1283 }
1284}
1285
1286
1287void mov_alloc(struct regstat *current,int i)
1288{
1289 // Note: Don't need to actually alloc the source registers
1290 if((~current->is32>>rs1[i])&1) {
1291 //alloc_reg64(current,i,rs1[i]);
1292 alloc_reg64(current,i,rt1[i]);
1293 current->is32&=~(1LL<<rt1[i]);
1294 } else {
1295 //alloc_reg(current,i,rs1[i]);
1296 alloc_reg(current,i,rt1[i]);
1297 current->is32|=(1LL<<rt1[i]);
1298 }
1299 clear_const(current,rs1[i]);
1300 clear_const(current,rt1[i]);
1301 dirty_reg(current,rt1[i]);
1302}
1303
1304void shiftimm_alloc(struct regstat *current,int i)
1305{
1306 clear_const(current,rs1[i]);
1307 clear_const(current,rt1[i]);
1308 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1309 {
1310 if(rt1[i]) {
1311 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1312 else lt1[i]=rs1[i];
1313 alloc_reg(current,i,rt1[i]);
1314 current->is32|=1LL<<rt1[i];
1315 dirty_reg(current,rt1[i]);
1316 }
1317 }
1318 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1319 {
1320 if(rt1[i]) {
1321 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1322 alloc_reg64(current,i,rt1[i]);
1323 current->is32&=~(1LL<<rt1[i]);
1324 dirty_reg(current,rt1[i]);
1325 }
1326 }
1327 if(opcode2[i]==0x3c) // DSLL32
1328 {
1329 if(rt1[i]) {
1330 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1331 alloc_reg64(current,i,rt1[i]);
1332 current->is32&=~(1LL<<rt1[i]);
1333 dirty_reg(current,rt1[i]);
1334 }
1335 }
1336 if(opcode2[i]==0x3e) // DSRL32
1337 {
1338 if(rt1[i]) {
1339 alloc_reg64(current,i,rs1[i]);
1340 if(imm[i]==32) {
1341 alloc_reg64(current,i,rt1[i]);
1342 current->is32&=~(1LL<<rt1[i]);
1343 } else {
1344 alloc_reg(current,i,rt1[i]);
1345 current->is32|=1LL<<rt1[i];
1346 }
1347 dirty_reg(current,rt1[i]);
1348 }
1349 }
1350 if(opcode2[i]==0x3f) // DSRA32
1351 {
1352 if(rt1[i]) {
1353 alloc_reg64(current,i,rs1[i]);
1354 alloc_reg(current,i,rt1[i]);
1355 current->is32|=1LL<<rt1[i];
1356 dirty_reg(current,rt1[i]);
1357 }
1358 }
1359}
1360
1361void shift_alloc(struct regstat *current,int i)
1362{
1363 if(rt1[i]) {
1364 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1365 {
1366 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1367 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1368 alloc_reg(current,i,rt1[i]);
1369 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1370 current->is32|=1LL<<rt1[i];
1371 } else { // DSLLV/DSRLV/DSRAV
1372 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1373 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1374 alloc_reg64(current,i,rt1[i]);
1375 current->is32&=~(1LL<<rt1[i]);
1376 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1377 alloc_reg_temp(current,i,-1);
1378 }
1379 clear_const(current,rs1[i]);
1380 clear_const(current,rs2[i]);
1381 clear_const(current,rt1[i]);
1382 dirty_reg(current,rt1[i]);
1383 }
1384}
1385
1386void alu_alloc(struct regstat *current,int i)
1387{
1388 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1389 if(rt1[i]) {
1390 if(rs1[i]&&rs2[i]) {
1391 alloc_reg(current,i,rs1[i]);
1392 alloc_reg(current,i,rs2[i]);
1393 }
1394 else {
1395 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1396 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1397 }
1398 alloc_reg(current,i,rt1[i]);
1399 }
1400 current->is32|=1LL<<rt1[i];
1401 }
1402 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1403 if(rt1[i]) {
1404 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1405 {
1406 alloc_reg64(current,i,rs1[i]);
1407 alloc_reg64(current,i,rs2[i]);
1408 alloc_reg(current,i,rt1[i]);
1409 } else {
1410 alloc_reg(current,i,rs1[i]);
1411 alloc_reg(current,i,rs2[i]);
1412 alloc_reg(current,i,rt1[i]);
1413 }
1414 }
1415 current->is32|=1LL<<rt1[i];
1416 }
1417 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1418 if(rt1[i]) {
1419 if(rs1[i]&&rs2[i]) {
1420 alloc_reg(current,i,rs1[i]);
1421 alloc_reg(current,i,rs2[i]);
1422 }
1423 else
1424 {
1425 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1426 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1427 }
1428 alloc_reg(current,i,rt1[i]);
1429 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1430 {
1431 if(!((current->uu>>rt1[i])&1)) {
1432 alloc_reg64(current,i,rt1[i]);
1433 }
1434 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1435 if(rs1[i]&&rs2[i]) {
1436 alloc_reg64(current,i,rs1[i]);
1437 alloc_reg64(current,i,rs2[i]);
1438 }
1439 else
1440 {
1441 // Is is really worth it to keep 64-bit values in registers?
1442 #ifdef NATIVE_64BIT
1443 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1444 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1445 #endif
1446 }
1447 }
1448 current->is32&=~(1LL<<rt1[i]);
1449 } else {
1450 current->is32|=1LL<<rt1[i];
1451 }
1452 }
1453 }
1454 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1455 if(rt1[i]) {
1456 if(rs1[i]&&rs2[i]) {
1457 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1458 alloc_reg64(current,i,rs1[i]);
1459 alloc_reg64(current,i,rs2[i]);
1460 alloc_reg64(current,i,rt1[i]);
1461 } else {
1462 alloc_reg(current,i,rs1[i]);
1463 alloc_reg(current,i,rs2[i]);
1464 alloc_reg(current,i,rt1[i]);
1465 }
1466 }
1467 else {
1468 alloc_reg(current,i,rt1[i]);
1469 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1470 // DADD used as move, or zeroing
1471 // If we have a 64-bit source, then make the target 64 bits too
1472 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1473 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1474 alloc_reg64(current,i,rt1[i]);
1475 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1476 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1477 alloc_reg64(current,i,rt1[i]);
1478 }
1479 if(opcode2[i]>=0x2e&&rs2[i]) {
1480 // DSUB used as negation - 64-bit result
1481 // If we have a 32-bit register, extend it to 64 bits
1482 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1483 alloc_reg64(current,i,rt1[i]);
1484 }
1485 }
1486 }
1487 if(rs1[i]&&rs2[i]) {
1488 current->is32&=~(1LL<<rt1[i]);
1489 } else if(rs1[i]) {
1490 current->is32&=~(1LL<<rt1[i]);
1491 if((current->is32>>rs1[i])&1)
1492 current->is32|=1LL<<rt1[i];
1493 } else if(rs2[i]) {
1494 current->is32&=~(1LL<<rt1[i]);
1495 if((current->is32>>rs2[i])&1)
1496 current->is32|=1LL<<rt1[i];
1497 } else {
1498 current->is32|=1LL<<rt1[i];
1499 }
1500 }
1501 }
1502 clear_const(current,rs1[i]);
1503 clear_const(current,rs2[i]);
1504 clear_const(current,rt1[i]);
1505 dirty_reg(current,rt1[i]);
1506}
1507
1508void imm16_alloc(struct regstat *current,int i)
1509{
1510 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1511 else lt1[i]=rs1[i];
1512 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1513 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1514 current->is32&=~(1LL<<rt1[i]);
1515 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1516 // TODO: Could preserve the 32-bit flag if the immediate is zero
1517 alloc_reg64(current,i,rt1[i]);
1518 alloc_reg64(current,i,rs1[i]);
1519 }
1520 clear_const(current,rs1[i]);
1521 clear_const(current,rt1[i]);
1522 }
1523 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1524 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1525 current->is32|=1LL<<rt1[i];
1526 clear_const(current,rs1[i]);
1527 clear_const(current,rt1[i]);
1528 }
1529 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1530 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1531 if(rs1[i]!=rt1[i]) {
1532 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1533 alloc_reg64(current,i,rt1[i]);
1534 current->is32&=~(1LL<<rt1[i]);
1535 }
1536 }
1537 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1538 if(is_const(current,rs1[i])) {
1539 int v=get_const(current,rs1[i]);
1540 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1541 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1542 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1543 }
1544 else clear_const(current,rt1[i]);
1545 }
1546 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1547 if(is_const(current,rs1[i])) {
1548 int v=get_const(current,rs1[i]);
1549 set_const(current,rt1[i],v+imm[i]);
1550 }
1551 else clear_const(current,rt1[i]);
1552 current->is32|=1LL<<rt1[i];
1553 }
1554 else {
1555 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1556 current->is32|=1LL<<rt1[i];
1557 }
1558 dirty_reg(current,rt1[i]);
1559}
1560
1561void load_alloc(struct regstat *current,int i)
1562{
1563 clear_const(current,rt1[i]);
1564 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1565 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1566 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1567 if(rt1[i]) {
1568 alloc_reg(current,i,rt1[i]);
1569 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1570 {
1571 current->is32&=~(1LL<<rt1[i]);
1572 alloc_reg64(current,i,rt1[i]);
1573 }
1574 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1575 {
1576 current->is32&=~(1LL<<rt1[i]);
1577 alloc_reg64(current,i,rt1[i]);
1578 alloc_all(current,i);
1579 alloc_reg64(current,i,FTEMP);
1580 }
1581 else current->is32|=1LL<<rt1[i];
1582 dirty_reg(current,rt1[i]);
1583 // If using TLB, need a register for pointer to the mapping table
1584 if(using_tlb) alloc_reg(current,i,TLREG);
1585 // LWL/LWR need a temporary register for the old value
1586 if(opcode[i]==0x22||opcode[i]==0x26)
1587 {
1588 alloc_reg(current,i,FTEMP);
1589 alloc_reg_temp(current,i,-1);
1590 }
1591 }
1592 else
1593 {
1594 // Load to r0 (dummy load)
1595 // but we still need a register to calculate the address
1596 alloc_reg_temp(current,i,-1);
1597 }
1598}
1599
1600void store_alloc(struct regstat *current,int i)
1601{
1602 clear_const(current,rs2[i]);
1603 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1604 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1605 alloc_reg(current,i,rs2[i]);
1606 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1607 alloc_reg64(current,i,rs2[i]);
1608 if(rs2[i]) alloc_reg(current,i,FTEMP);
1609 }
1610 // If using TLB, need a register for pointer to the mapping table
1611 if(using_tlb) alloc_reg(current,i,TLREG);
1612 #if defined(HOST_IMM8)
1613 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1614 else alloc_reg(current,i,INVCP);
1615 #endif
1616 if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1617 alloc_reg(current,i,FTEMP);
1618 }
1619 // We need a temporary register for address generation
1620 alloc_reg_temp(current,i,-1);
1621}
1622
1623void c1ls_alloc(struct regstat *current,int i)
1624{
1625 //clear_const(current,rs1[i]); // FIXME
1626 clear_const(current,rt1[i]);
1627 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1628 alloc_reg(current,i,CSREG); // Status
1629 alloc_reg(current,i,FTEMP);
1630 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1631 alloc_reg64(current,i,FTEMP);
1632 }
1633 // If using TLB, need a register for pointer to the mapping table
1634 if(using_tlb) alloc_reg(current,i,TLREG);
1635 #if defined(HOST_IMM8)
1636 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1637 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1638 alloc_reg(current,i,INVCP);
1639 #endif
1640 // We need a temporary register for address generation
1641 alloc_reg_temp(current,i,-1);
1642}
1643
1644#ifndef multdiv_alloc
1645void multdiv_alloc(struct regstat *current,int i)
1646{
1647 // case 0x18: MULT
1648 // case 0x19: MULTU
1649 // case 0x1A: DIV
1650 // case 0x1B: DIVU
1651 // case 0x1C: DMULT
1652 // case 0x1D: DMULTU
1653 // case 0x1E: DDIV
1654 // case 0x1F: DDIVU
1655 clear_const(current,rs1[i]);
1656 clear_const(current,rs2[i]);
1657 if(rs1[i]&&rs2[i])
1658 {
1659 if((opcode2[i]&4)==0) // 32-bit
1660 {
1661 current->u&=~(1LL<<HIREG);
1662 current->u&=~(1LL<<LOREG);
1663 alloc_reg(current,i,HIREG);
1664 alloc_reg(current,i,LOREG);
1665 alloc_reg(current,i,rs1[i]);
1666 alloc_reg(current,i,rs2[i]);
1667 current->is32|=1LL<<HIREG;
1668 current->is32|=1LL<<LOREG;
1669 dirty_reg(current,HIREG);
1670 dirty_reg(current,LOREG);
1671 }
1672 else // 64-bit
1673 {
1674 current->u&=~(1LL<<HIREG);
1675 current->u&=~(1LL<<LOREG);
1676 current->uu&=~(1LL<<HIREG);
1677 current->uu&=~(1LL<<LOREG);
1678 alloc_reg64(current,i,HIREG);
1679 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1680 alloc_reg64(current,i,rs1[i]);
1681 alloc_reg64(current,i,rs2[i]);
1682 alloc_all(current,i);
1683 current->is32&=~(1LL<<HIREG);
1684 current->is32&=~(1LL<<LOREG);
1685 dirty_reg(current,HIREG);
1686 dirty_reg(current,LOREG);
1687 }
1688 }
1689 else
1690 {
1691 // Multiply by zero is zero.
1692 // MIPS does not have a divide by zero exception.
1693 // The result is undefined, we return zero.
1694 alloc_reg(current,i,HIREG);
1695 alloc_reg(current,i,LOREG);
1696 current->is32|=1LL<<HIREG;
1697 current->is32|=1LL<<LOREG;
1698 dirty_reg(current,HIREG);
1699 dirty_reg(current,LOREG);
1700 }
1701}
1702#endif
1703
1704void cop0_alloc(struct regstat *current,int i)
1705{
1706 if(opcode2[i]==0) // MFC0
1707 {
1708 if(rt1[i]) {
1709 clear_const(current,rt1[i]);
1710 alloc_all(current,i);
1711 alloc_reg(current,i,rt1[i]);
1712 current->is32|=1LL<<rt1[i];
1713 dirty_reg(current,rt1[i]);
1714 }
1715 }
1716 else if(opcode2[i]==4) // MTC0
1717 {
1718 if(rs1[i]){
1719 clear_const(current,rs1[i]);
1720 alloc_reg(current,i,rs1[i]);
1721 alloc_all(current,i);
1722 }
1723 else {
1724 alloc_all(current,i); // FIXME: Keep r0
1725 current->u&=~1LL;
1726 alloc_reg(current,i,0);
1727 }
1728 }
1729 else
1730 {
1731 // TLBR/TLBWI/TLBWR/TLBP/ERET
1732 assert(opcode2[i]==0x10);
1733 alloc_all(current,i);
1734 }
1735}
1736
1737void cop1_alloc(struct regstat *current,int i)
1738{
1739 alloc_reg(current,i,CSREG); // Load status
1740 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1741 {
1742 assert(rt1[i]);
1743 clear_const(current,rt1[i]);
1744 if(opcode2[i]==1) {
1745 alloc_reg64(current,i,rt1[i]); // DMFC1
1746 current->is32&=~(1LL<<rt1[i]);
1747 }else{
1748 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1749 current->is32|=1LL<<rt1[i];
1750 }
1751 dirty_reg(current,rt1[i]);
1752 alloc_reg_temp(current,i,-1);
1753 }
1754 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1755 {
1756 if(rs1[i]){
1757 clear_const(current,rs1[i]);
1758 if(opcode2[i]==5)
1759 alloc_reg64(current,i,rs1[i]); // DMTC1
1760 else
1761 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1762 alloc_reg_temp(current,i,-1);
1763 }
1764 else {
1765 current->u&=~1LL;
1766 alloc_reg(current,i,0);
1767 alloc_reg_temp(current,i,-1);
1768 }
1769 }
1770}
1771void fconv_alloc(struct regstat *current,int i)
1772{
1773 alloc_reg(current,i,CSREG); // Load status
1774 alloc_reg_temp(current,i,-1);
1775}
1776void float_alloc(struct regstat *current,int i)
1777{
1778 alloc_reg(current,i,CSREG); // Load status
1779 alloc_reg_temp(current,i,-1);
1780}
1781void fcomp_alloc(struct regstat *current,int i)
1782{
1783 alloc_reg(current,i,CSREG); // Load status
1784 alloc_reg(current,i,FSREG); // Load flags
1785 dirty_reg(current,FSREG); // Flag will be modified
1786 alloc_reg_temp(current,i,-1);
1787}
1788
1789void syscall_alloc(struct regstat *current,int i)
1790{
1791 alloc_cc(current,i);
1792 dirty_reg(current,CCREG);
1793 alloc_all(current,i);
1794 current->isconst=0;
1795}
1796
1797void delayslot_alloc(struct regstat *current,int i)
1798{
1799 switch(itype[i]) {
1800 case UJUMP:
1801 case CJUMP:
1802 case SJUMP:
1803 case RJUMP:
1804 case FJUMP:
1805 case SYSCALL:
1806 case SPAN:
1807 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1808 printf("Disabled speculative precompilation\n");
1809 stop_after_jal=1;
1810 break;
1811 case IMM16:
1812 imm16_alloc(current,i);
1813 break;
1814 case LOAD:
1815 case LOADLR:
1816 load_alloc(current,i);
1817 break;
1818 case STORE:
1819 case STORELR:
1820 store_alloc(current,i);
1821 break;
1822 case ALU:
1823 alu_alloc(current,i);
1824 break;
1825 case SHIFT:
1826 shift_alloc(current,i);
1827 break;
1828 case MULTDIV:
1829 multdiv_alloc(current,i);
1830 break;
1831 case SHIFTIMM:
1832 shiftimm_alloc(current,i);
1833 break;
1834 case MOV:
1835 mov_alloc(current,i);
1836 break;
1837 case COP0:
1838 cop0_alloc(current,i);
1839 break;
1840 case COP1:
1841 cop1_alloc(current,i);
1842 break;
1843 case C1LS:
1844 c1ls_alloc(current,i);
1845 break;
1846 case FCONV:
1847 fconv_alloc(current,i);
1848 break;
1849 case FLOAT:
1850 float_alloc(current,i);
1851 break;
1852 case FCOMP:
1853 fcomp_alloc(current,i);
1854 break;
1855 }
1856}
1857
1858// Special case where a branch and delay slot span two pages in virtual memory
1859static void pagespan_alloc(struct regstat *current,int i)
1860{
1861 current->isconst=0;
1862 current->wasconst=0;
1863 regs[i].wasconst=0;
1864 alloc_all(current,i);
1865 alloc_cc(current,i);
1866 dirty_reg(current,CCREG);
1867 if(opcode[i]==3) // JAL
1868 {
1869 alloc_reg(current,i,31);
1870 dirty_reg(current,31);
1871 }
1872 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1873 {
1874 alloc_reg(current,i,rs1[i]);
1875 if (rt1[i]==31) {
1876 alloc_reg(current,i,31);
1877 dirty_reg(current,31);
1878 }
1879 }
1880 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1881 {
1882 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1883 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1884 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1885 {
1886 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1887 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1888 }
1889 }
1890 else
1891 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1892 {
1893 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1894 if(!((current->is32>>rs1[i])&1))
1895 {
1896 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1897 }
1898 }
1899 else
1900 if(opcode[i]==0x11) // BC1
1901 {
1902 alloc_reg(current,i,FSREG);
1903 alloc_reg(current,i,CSREG);
1904 }
1905 //else ...
1906}
1907
1908add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1909{
1910 stubs[stubcount][0]=type;
1911 stubs[stubcount][1]=addr;
1912 stubs[stubcount][2]=retaddr;
1913 stubs[stubcount][3]=a;
1914 stubs[stubcount][4]=b;
1915 stubs[stubcount][5]=c;
1916 stubs[stubcount][6]=d;
1917 stubs[stubcount][7]=e;
1918 stubcount++;
1919}
1920
1921// Write out a single register
1922void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1923{
1924 int hr;
1925 for(hr=0;hr<HOST_REGS;hr++) {
1926 if(hr!=EXCLUDE_REG) {
1927 if((regmap[hr]&63)==r) {
1928 if((dirty>>hr)&1) {
1929 if(regmap[hr]<64) {
1930 emit_storereg(r,hr);
1931 if((is32>>regmap[hr])&1) {
1932 emit_sarimm(hr,31,hr);
1933 emit_storereg(r|64,hr);
1934 }
1935 }else{
1936 emit_storereg(r|64,hr);
1937 }
1938 }
1939 }
1940 }
1941 }
1942}
1943
1944int mchecksum()
1945{
1946 //if(!tracedebug) return 0;
1947 int i;
1948 int sum=0;
1949 for(i=0;i<2097152;i++) {
1950 unsigned int temp=sum;
1951 sum<<=1;
1952 sum|=(~temp)>>31;
1953 sum^=((u_int *)rdram)[i];
1954 }
1955 return sum;
1956}
1957int rchecksum()
1958{
1959 int i;
1960 int sum=0;
1961 for(i=0;i<64;i++)
1962 sum^=((u_int *)reg)[i];
1963 return sum;
1964}
57871462 1965void rlist()
1966{
1967 int i;
1968 printf("TRACE: ");
1969 for(i=0;i<32;i++)
1970 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1971 printf("\n");
3d624f89 1972#ifndef DISABLE_COP1
57871462 1973 printf("TRACE: ");
1974 for(i=0;i<32;i++)
1975 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
1976 printf("\n");
3d624f89 1977#endif
57871462 1978}
1979
1980void enabletrace()
1981{
1982 tracedebug=1;
1983}
1984
1985void memdebug(int i)
1986{
1987 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
1988 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
1989 //rlist();
1990 //if(tracedebug) {
1991 //if(Count>=-2084597794) {
1992 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
1993 //if(0) {
1994 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
1995 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
1996 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
1997 rlist();
1998 #ifdef __i386__
1999 printf("TRACE: %x\n",(&i)[-1]);
2000 #endif
2001 #ifdef __arm__
2002 int j;
2003 printf("TRACE: %x \n",(&j)[10]);
2004 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2005 #endif
2006 //fflush(stdout);
2007 }
2008 //printf("TRACE: %x\n",(&i)[-1]);
2009}
2010
2011void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2012{
2013 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2014}
2015
2016void alu_assemble(int i,struct regstat *i_regs)
2017{
2018 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2019 if(rt1[i]) {
2020 signed char s1,s2,t;
2021 t=get_reg(i_regs->regmap,rt1[i]);
2022 if(t>=0) {
2023 s1=get_reg(i_regs->regmap,rs1[i]);
2024 s2=get_reg(i_regs->regmap,rs2[i]);
2025 if(rs1[i]&&rs2[i]) {
2026 assert(s1>=0);
2027 assert(s2>=0);
2028 if(opcode2[i]&2) emit_sub(s1,s2,t);
2029 else emit_add(s1,s2,t);
2030 }
2031 else if(rs1[i]) {
2032 if(s1>=0) emit_mov(s1,t);
2033 else emit_loadreg(rs1[i],t);
2034 }
2035 else if(rs2[i]) {
2036 if(s2>=0) {
2037 if(opcode2[i]&2) emit_neg(s2,t);
2038 else emit_mov(s2,t);
2039 }
2040 else {
2041 emit_loadreg(rs2[i],t);
2042 if(opcode2[i]&2) emit_neg(t,t);
2043 }
2044 }
2045 else emit_zeroreg(t);
2046 }
2047 }
2048 }
2049 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2050 if(rt1[i]) {
2051 signed char s1l,s2l,s1h,s2h,tl,th;
2052 tl=get_reg(i_regs->regmap,rt1[i]);
2053 th=get_reg(i_regs->regmap,rt1[i]|64);
2054 if(tl>=0) {
2055 s1l=get_reg(i_regs->regmap,rs1[i]);
2056 s2l=get_reg(i_regs->regmap,rs2[i]);
2057 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2058 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2059 if(rs1[i]&&rs2[i]) {
2060 assert(s1l>=0);
2061 assert(s2l>=0);
2062 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2063 else emit_adds(s1l,s2l,tl);
2064 if(th>=0) {
2065 #ifdef INVERTED_CARRY
2066 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2067 #else
2068 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2069 #endif
2070 else emit_add(s1h,s2h,th);
2071 }
2072 }
2073 else if(rs1[i]) {
2074 if(s1l>=0) emit_mov(s1l,tl);
2075 else emit_loadreg(rs1[i],tl);
2076 if(th>=0) {
2077 if(s1h>=0) emit_mov(s1h,th);
2078 else emit_loadreg(rs1[i]|64,th);
2079 }
2080 }
2081 else if(rs2[i]) {
2082 if(s2l>=0) {
2083 if(opcode2[i]&2) emit_negs(s2l,tl);
2084 else emit_mov(s2l,tl);
2085 }
2086 else {
2087 emit_loadreg(rs2[i],tl);
2088 if(opcode2[i]&2) emit_negs(tl,tl);
2089 }
2090 if(th>=0) {
2091 #ifdef INVERTED_CARRY
2092 if(s2h>=0) emit_mov(s2h,th);
2093 else emit_loadreg(rs2[i]|64,th);
2094 if(opcode2[i]&2) {
2095 emit_adcimm(-1,th); // x86 has inverted carry flag
2096 emit_not(th,th);
2097 }
2098 #else
2099 if(opcode2[i]&2) {
2100 if(s2h>=0) emit_rscimm(s2h,0,th);
2101 else {
2102 emit_loadreg(rs2[i]|64,th);
2103 emit_rscimm(th,0,th);
2104 }
2105 }else{
2106 if(s2h>=0) emit_mov(s2h,th);
2107 else emit_loadreg(rs2[i]|64,th);
2108 }
2109 #endif
2110 }
2111 }
2112 else {
2113 emit_zeroreg(tl);
2114 if(th>=0) emit_zeroreg(th);
2115 }
2116 }
2117 }
2118 }
2119 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2120 if(rt1[i]) {
2121 signed char s1l,s1h,s2l,s2h,t;
2122 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2123 {
2124 t=get_reg(i_regs->regmap,rt1[i]);
2125 //assert(t>=0);
2126 if(t>=0) {
2127 s1l=get_reg(i_regs->regmap,rs1[i]);
2128 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2129 s2l=get_reg(i_regs->regmap,rs2[i]);
2130 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2131 if(rs2[i]==0) // rx<r0
2132 {
2133 assert(s1h>=0);
2134 if(opcode2[i]==0x2a) // SLT
2135 emit_shrimm(s1h,31,t);
2136 else // SLTU (unsigned can not be less than zero)
2137 emit_zeroreg(t);
2138 }
2139 else if(rs1[i]==0) // r0<rx
2140 {
2141 assert(s2h>=0);
2142 if(opcode2[i]==0x2a) // SLT
2143 emit_set_gz64_32(s2h,s2l,t);
2144 else // SLTU (set if not zero)
2145 emit_set_nz64_32(s2h,s2l,t);
2146 }
2147 else {
2148 assert(s1l>=0);assert(s1h>=0);
2149 assert(s2l>=0);assert(s2h>=0);
2150 if(opcode2[i]==0x2a) // SLT
2151 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2152 else // SLTU
2153 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2154 }
2155 }
2156 } else {
2157 t=get_reg(i_regs->regmap,rt1[i]);
2158 //assert(t>=0);
2159 if(t>=0) {
2160 s1l=get_reg(i_regs->regmap,rs1[i]);
2161 s2l=get_reg(i_regs->regmap,rs2[i]);
2162 if(rs2[i]==0) // rx<r0
2163 {
2164 assert(s1l>=0);
2165 if(opcode2[i]==0x2a) // SLT
2166 emit_shrimm(s1l,31,t);
2167 else // SLTU (unsigned can not be less than zero)
2168 emit_zeroreg(t);
2169 }
2170 else if(rs1[i]==0) // r0<rx
2171 {
2172 assert(s2l>=0);
2173 if(opcode2[i]==0x2a) // SLT
2174 emit_set_gz32(s2l,t);
2175 else // SLTU (set if not zero)
2176 emit_set_nz32(s2l,t);
2177 }
2178 else{
2179 assert(s1l>=0);assert(s2l>=0);
2180 if(opcode2[i]==0x2a) // SLT
2181 emit_set_if_less32(s1l,s2l,t);
2182 else // SLTU
2183 emit_set_if_carry32(s1l,s2l,t);
2184 }
2185 }
2186 }
2187 }
2188 }
2189 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2190 if(rt1[i]) {
2191 signed char s1l,s1h,s2l,s2h,th,tl;
2192 tl=get_reg(i_regs->regmap,rt1[i]);
2193 th=get_reg(i_regs->regmap,rt1[i]|64);
2194 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2195 {
2196 assert(tl>=0);
2197 if(tl>=0) {
2198 s1l=get_reg(i_regs->regmap,rs1[i]);
2199 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2200 s2l=get_reg(i_regs->regmap,rs2[i]);
2201 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2202 if(rs1[i]&&rs2[i]) {
2203 assert(s1l>=0);assert(s1h>=0);
2204 assert(s2l>=0);assert(s2h>=0);
2205 if(opcode2[i]==0x24) { // AND
2206 emit_and(s1l,s2l,tl);
2207 emit_and(s1h,s2h,th);
2208 } else
2209 if(opcode2[i]==0x25) { // OR
2210 emit_or(s1l,s2l,tl);
2211 emit_or(s1h,s2h,th);
2212 } else
2213 if(opcode2[i]==0x26) { // XOR
2214 emit_xor(s1l,s2l,tl);
2215 emit_xor(s1h,s2h,th);
2216 } else
2217 if(opcode2[i]==0x27) { // NOR
2218 emit_or(s1l,s2l,tl);
2219 emit_or(s1h,s2h,th);
2220 emit_not(tl,tl);
2221 emit_not(th,th);
2222 }
2223 }
2224 else
2225 {
2226 if(opcode2[i]==0x24) { // AND
2227 emit_zeroreg(tl);
2228 emit_zeroreg(th);
2229 } else
2230 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2231 if(rs1[i]){
2232 if(s1l>=0) emit_mov(s1l,tl);
2233 else emit_loadreg(rs1[i],tl);
2234 if(s1h>=0) emit_mov(s1h,th);
2235 else emit_loadreg(rs1[i]|64,th);
2236 }
2237 else
2238 if(rs2[i]){
2239 if(s2l>=0) emit_mov(s2l,tl);
2240 else emit_loadreg(rs2[i],tl);
2241 if(s2h>=0) emit_mov(s2h,th);
2242 else emit_loadreg(rs2[i]|64,th);
2243 }
2244 else{
2245 emit_zeroreg(tl);
2246 emit_zeroreg(th);
2247 }
2248 } else
2249 if(opcode2[i]==0x27) { // NOR
2250 if(rs1[i]){
2251 if(s1l>=0) emit_not(s1l,tl);
2252 else{
2253 emit_loadreg(rs1[i],tl);
2254 emit_not(tl,tl);
2255 }
2256 if(s1h>=0) emit_not(s1h,th);
2257 else{
2258 emit_loadreg(rs1[i]|64,th);
2259 emit_not(th,th);
2260 }
2261 }
2262 else
2263 if(rs2[i]){
2264 if(s2l>=0) emit_not(s2l,tl);
2265 else{
2266 emit_loadreg(rs2[i],tl);
2267 emit_not(tl,tl);
2268 }
2269 if(s2h>=0) emit_not(s2h,th);
2270 else{
2271 emit_loadreg(rs2[i]|64,th);
2272 emit_not(th,th);
2273 }
2274 }
2275 else {
2276 emit_movimm(-1,tl);
2277 emit_movimm(-1,th);
2278 }
2279 }
2280 }
2281 }
2282 }
2283 else
2284 {
2285 // 32 bit
2286 if(tl>=0) {
2287 s1l=get_reg(i_regs->regmap,rs1[i]);
2288 s2l=get_reg(i_regs->regmap,rs2[i]);
2289 if(rs1[i]&&rs2[i]) {
2290 assert(s1l>=0);
2291 assert(s2l>=0);
2292 if(opcode2[i]==0x24) { // AND
2293 emit_and(s1l,s2l,tl);
2294 } else
2295 if(opcode2[i]==0x25) { // OR
2296 emit_or(s1l,s2l,tl);
2297 } else
2298 if(opcode2[i]==0x26) { // XOR
2299 emit_xor(s1l,s2l,tl);
2300 } else
2301 if(opcode2[i]==0x27) { // NOR
2302 emit_or(s1l,s2l,tl);
2303 emit_not(tl,tl);
2304 }
2305 }
2306 else
2307 {
2308 if(opcode2[i]==0x24) { // AND
2309 emit_zeroreg(tl);
2310 } else
2311 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2312 if(rs1[i]){
2313 if(s1l>=0) emit_mov(s1l,tl);
2314 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2315 }
2316 else
2317 if(rs2[i]){
2318 if(s2l>=0) emit_mov(s2l,tl);
2319 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2320 }
2321 else emit_zeroreg(tl);
2322 } else
2323 if(opcode2[i]==0x27) { // NOR
2324 if(rs1[i]){
2325 if(s1l>=0) emit_not(s1l,tl);
2326 else {
2327 emit_loadreg(rs1[i],tl);
2328 emit_not(tl,tl);
2329 }
2330 }
2331 else
2332 if(rs2[i]){
2333 if(s2l>=0) emit_not(s2l,tl);
2334 else {
2335 emit_loadreg(rs2[i],tl);
2336 emit_not(tl,tl);
2337 }
2338 }
2339 else emit_movimm(-1,tl);
2340 }
2341 }
2342 }
2343 }
2344 }
2345 }
2346}
2347
2348void imm16_assemble(int i,struct regstat *i_regs)
2349{
2350 if (opcode[i]==0x0f) { // LUI
2351 if(rt1[i]) {
2352 signed char t;
2353 t=get_reg(i_regs->regmap,rt1[i]);
2354 //assert(t>=0);
2355 if(t>=0) {
2356 if(!((i_regs->isconst>>t)&1))
2357 emit_movimm(imm[i]<<16,t);
2358 }
2359 }
2360 }
2361 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2362 if(rt1[i]) {
2363 signed char s,t;
2364 t=get_reg(i_regs->regmap,rt1[i]);
2365 s=get_reg(i_regs->regmap,rs1[i]);
2366 if(rs1[i]) {
2367 //assert(t>=0);
2368 //assert(s>=0);
2369 if(t>=0) {
2370 if(!((i_regs->isconst>>t)&1)) {
2371 if(s<0) {
2372 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2373 emit_addimm(t,imm[i],t);
2374 }else{
2375 if(!((i_regs->wasconst>>s)&1))
2376 emit_addimm(s,imm[i],t);
2377 else
2378 emit_movimm(constmap[i][s]+imm[i],t);
2379 }
2380 }
2381 }
2382 } else {
2383 if(t>=0) {
2384 if(!((i_regs->isconst>>t)&1))
2385 emit_movimm(imm[i],t);
2386 }
2387 }
2388 }
2389 }
2390 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2391 if(rt1[i]) {
2392 signed char sh,sl,th,tl;
2393 th=get_reg(i_regs->regmap,rt1[i]|64);
2394 tl=get_reg(i_regs->regmap,rt1[i]);
2395 sh=get_reg(i_regs->regmap,rs1[i]|64);
2396 sl=get_reg(i_regs->regmap,rs1[i]);
2397 if(tl>=0) {
2398 if(rs1[i]) {
2399 assert(sh>=0);
2400 assert(sl>=0);
2401 if(th>=0) {
2402 emit_addimm64_32(sh,sl,imm[i],th,tl);
2403 }
2404 else {
2405 emit_addimm(sl,imm[i],tl);
2406 }
2407 } else {
2408 emit_movimm(imm[i],tl);
2409 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2410 }
2411 }
2412 }
2413 }
2414 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2415 if(rt1[i]) {
2416 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2417 signed char sh,sl,t;
2418 t=get_reg(i_regs->regmap,rt1[i]);
2419 sh=get_reg(i_regs->regmap,rs1[i]|64);
2420 sl=get_reg(i_regs->regmap,rs1[i]);
2421 //assert(t>=0);
2422 if(t>=0) {
2423 if(rs1[i]>0) {
2424 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2425 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2426 if(opcode[i]==0x0a) { // SLTI
2427 if(sl<0) {
2428 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2429 emit_slti32(t,imm[i],t);
2430 }else{
2431 emit_slti32(sl,imm[i],t);
2432 }
2433 }
2434 else { // SLTIU
2435 if(sl<0) {
2436 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2437 emit_sltiu32(t,imm[i],t);
2438 }else{
2439 emit_sltiu32(sl,imm[i],t);
2440 }
2441 }
2442 }else{ // 64-bit
2443 assert(sl>=0);
2444 if(opcode[i]==0x0a) // SLTI
2445 emit_slti64_32(sh,sl,imm[i],t);
2446 else // SLTIU
2447 emit_sltiu64_32(sh,sl,imm[i],t);
2448 }
2449 }else{
2450 // SLTI(U) with r0 is just stupid,
2451 // nonetheless examples can be found
2452 if(opcode[i]==0x0a) // SLTI
2453 if(0<imm[i]) emit_movimm(1,t);
2454 else emit_zeroreg(t);
2455 else // SLTIU
2456 {
2457 if(imm[i]) emit_movimm(1,t);
2458 else emit_zeroreg(t);
2459 }
2460 }
2461 }
2462 }
2463 }
2464 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2465 if(rt1[i]) {
2466 signed char sh,sl,th,tl;
2467 th=get_reg(i_regs->regmap,rt1[i]|64);
2468 tl=get_reg(i_regs->regmap,rt1[i]);
2469 sh=get_reg(i_regs->regmap,rs1[i]|64);
2470 sl=get_reg(i_regs->regmap,rs1[i]);
2471 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2472 if(opcode[i]==0x0c) //ANDI
2473 {
2474 if(rs1[i]) {
2475 if(sl<0) {
2476 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2477 emit_andimm(tl,imm[i],tl);
2478 }else{
2479 if(!((i_regs->wasconst>>sl)&1))
2480 emit_andimm(sl,imm[i],tl);
2481 else
2482 emit_movimm(constmap[i][sl]&imm[i],tl);
2483 }
2484 }
2485 else
2486 emit_zeroreg(tl);
2487 if(th>=0) emit_zeroreg(th);
2488 }
2489 else
2490 {
2491 if(rs1[i]) {
2492 if(sl<0) {
2493 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2494 }
2495 if(th>=0) {
2496 if(sh<0) {
2497 emit_loadreg(rs1[i]|64,th);
2498 }else{
2499 emit_mov(sh,th);
2500 }
2501 }
2502 if(opcode[i]==0x0d) //ORI
2503 if(sl<0) {
2504 emit_orimm(tl,imm[i],tl);
2505 }else{
2506 if(!((i_regs->wasconst>>sl)&1))
2507 emit_orimm(sl,imm[i],tl);
2508 else
2509 emit_movimm(constmap[i][sl]|imm[i],tl);
2510 }
2511 if(opcode[i]==0x0e) //XORI
2512 if(sl<0) {
2513 emit_xorimm(tl,imm[i],tl);
2514 }else{
2515 if(!((i_regs->wasconst>>sl)&1))
2516 emit_xorimm(sl,imm[i],tl);
2517 else
2518 emit_movimm(constmap[i][sl]^imm[i],tl);
2519 }
2520 }
2521 else {
2522 emit_movimm(imm[i],tl);
2523 if(th>=0) emit_zeroreg(th);
2524 }
2525 }
2526 }
2527 }
2528 }
2529}
2530
2531void shiftimm_assemble(int i,struct regstat *i_regs)
2532{
2533 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2534 {
2535 if(rt1[i]) {
2536 signed char s,t;
2537 t=get_reg(i_regs->regmap,rt1[i]);
2538 s=get_reg(i_regs->regmap,rs1[i]);
2539 //assert(t>=0);
2540 if(t>=0){
2541 if(rs1[i]==0)
2542 {
2543 emit_zeroreg(t);
2544 }
2545 else
2546 {
2547 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2548 if(imm[i]) {
2549 if(opcode2[i]==0) // SLL
2550 {
2551 emit_shlimm(s<0?t:s,imm[i],t);
2552 }
2553 if(opcode2[i]==2) // SRL
2554 {
2555 emit_shrimm(s<0?t:s,imm[i],t);
2556 }
2557 if(opcode2[i]==3) // SRA
2558 {
2559 emit_sarimm(s<0?t:s,imm[i],t);
2560 }
2561 }else{
2562 // Shift by zero
2563 if(s>=0 && s!=t) emit_mov(s,t);
2564 }
2565 }
2566 }
2567 //emit_storereg(rt1[i],t); //DEBUG
2568 }
2569 }
2570 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2571 {
2572 if(rt1[i]) {
2573 signed char sh,sl,th,tl;
2574 th=get_reg(i_regs->regmap,rt1[i]|64);
2575 tl=get_reg(i_regs->regmap,rt1[i]);
2576 sh=get_reg(i_regs->regmap,rs1[i]|64);
2577 sl=get_reg(i_regs->regmap,rs1[i]);
2578 if(tl>=0) {
2579 if(rs1[i]==0)
2580 {
2581 emit_zeroreg(tl);
2582 if(th>=0) emit_zeroreg(th);
2583 }
2584 else
2585 {
2586 assert(sl>=0);
2587 assert(sh>=0);
2588 if(imm[i]) {
2589 if(opcode2[i]==0x38) // DSLL
2590 {
2591 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2592 emit_shlimm(sl,imm[i],tl);
2593 }
2594 if(opcode2[i]==0x3a) // DSRL
2595 {
2596 emit_shrdimm(sl,sh,imm[i],tl);
2597 if(th>=0) emit_shrimm(sh,imm[i],th);
2598 }
2599 if(opcode2[i]==0x3b) // DSRA
2600 {
2601 emit_shrdimm(sl,sh,imm[i],tl);
2602 if(th>=0) emit_sarimm(sh,imm[i],th);
2603 }
2604 }else{
2605 // Shift by zero
2606 if(sl!=tl) emit_mov(sl,tl);
2607 if(th>=0&&sh!=th) emit_mov(sh,th);
2608 }
2609 }
2610 }
2611 }
2612 }
2613 if(opcode2[i]==0x3c) // DSLL32
2614 {
2615 if(rt1[i]) {
2616 signed char sl,tl,th;
2617 tl=get_reg(i_regs->regmap,rt1[i]);
2618 th=get_reg(i_regs->regmap,rt1[i]|64);
2619 sl=get_reg(i_regs->regmap,rs1[i]);
2620 if(th>=0||tl>=0){
2621 assert(tl>=0);
2622 assert(th>=0);
2623 assert(sl>=0);
2624 emit_mov(sl,th);
2625 emit_zeroreg(tl);
2626 if(imm[i]>32)
2627 {
2628 emit_shlimm(th,imm[i]&31,th);
2629 }
2630 }
2631 }
2632 }
2633 if(opcode2[i]==0x3e) // DSRL32
2634 {
2635 if(rt1[i]) {
2636 signed char sh,tl,th;
2637 tl=get_reg(i_regs->regmap,rt1[i]);
2638 th=get_reg(i_regs->regmap,rt1[i]|64);
2639 sh=get_reg(i_regs->regmap,rs1[i]|64);
2640 if(tl>=0){
2641 assert(sh>=0);
2642 emit_mov(sh,tl);
2643 if(th>=0) emit_zeroreg(th);
2644 if(imm[i]>32)
2645 {
2646 emit_shrimm(tl,imm[i]&31,tl);
2647 }
2648 }
2649 }
2650 }
2651 if(opcode2[i]==0x3f) // DSRA32
2652 {
2653 if(rt1[i]) {
2654 signed char sh,tl;
2655 tl=get_reg(i_regs->regmap,rt1[i]);
2656 sh=get_reg(i_regs->regmap,rs1[i]|64);
2657 if(tl>=0){
2658 assert(sh>=0);
2659 emit_mov(sh,tl);
2660 if(imm[i]>32)
2661 {
2662 emit_sarimm(tl,imm[i]&31,tl);
2663 }
2664 }
2665 }
2666 }
2667}
2668
2669#ifndef shift_assemble
2670void shift_assemble(int i,struct regstat *i_regs)
2671{
2672 printf("Need shift_assemble for this architecture.\n");
2673 exit(1);
2674}
2675#endif
2676
2677void load_assemble(int i,struct regstat *i_regs)
2678{
2679 int s,th,tl,addr,map=-1;
2680 int offset;
2681 int jaddr=0;
2682 int memtarget,c=0;
2683 u_int hr,reglist=0;
2684 th=get_reg(i_regs->regmap,rt1[i]|64);
2685 tl=get_reg(i_regs->regmap,rt1[i]);
2686 s=get_reg(i_regs->regmap,rs1[i]);
2687 offset=imm[i];
2688 for(hr=0;hr<HOST_REGS;hr++) {
2689 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2690 }
2691 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2692 if(s>=0) {
2693 c=(i_regs->wasconst>>s)&1;
2694 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2695 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2696 }
2697 if(offset||s<0||c) addr=tl;
2698 else addr=s;
2699 //printf("load_assemble: c=%d\n",c);
2700 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2701 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2702 if(tl>=0) {
2703 //assert(tl>=0);
2704 //assert(rt1[i]);
2705 reglist&=~(1<<tl);
2706 if(th>=0) reglist&=~(1<<th);
2707 if(!using_tlb) {
2708 if(!c) {
2709//#define R29_HACK 1
2710 #ifdef R29_HACK
2711 // Strmnnrmn's speed hack
2712 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2713 #endif
2714 {
2715 emit_cmpimm(addr,0x800000);
2716 jaddr=(int)out;
2717 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2718 // Hint to branch predictor that the branch is unlikely to be taken
2719 if(rs1[i]>=28)
2720 emit_jno_unlikely(0);
2721 else
2722 #endif
2723 emit_jno(0);
2724 }
2725 }
2726 }else{ // using tlb
2727 int x=0;
2728 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2729 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2730 map=get_reg(i_regs->regmap,TLREG);
2731 assert(map>=0);
2732 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2733 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2734 }
2735 if (opcode[i]==0x20) { // LB
2736 if(!c||memtarget) {
2737 #ifdef HOST_IMM_ADDR32
2738 if(c)
2739 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2740 else
2741 #endif
2742 {
2743 //emit_xorimm(addr,3,tl);
2744 //gen_tlb_addr_r(tl,map);
2745 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2746 int x=0;
2747 if(!c) emit_xorimm(addr,3,tl);
2748 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2749 emit_movsbl_indexed_tlb(x,tl,map,tl);
2750 }
2751 if(jaddr)
2752 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2753 }
2754 else
2755 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2756 }
2757 if (opcode[i]==0x21) { // LH
2758 if(!c||memtarget) {
2759 #ifdef HOST_IMM_ADDR32
2760 if(c)
2761 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2762 else
2763 #endif
2764 {
2765 int x=0;
2766 if(!c) emit_xorimm(addr,2,tl);
2767 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2768 //#ifdef
2769 //emit_movswl_indexed_tlb(x,tl,map,tl);
2770 //else
2771 if(map>=0) {
2772 gen_tlb_addr_r(tl,map);
2773 emit_movswl_indexed(x,tl,tl);
2774 }else
2775 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2776 }
2777 if(jaddr)
2778 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2779 }
2780 else
2781 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2782 }
2783 if (opcode[i]==0x23) { // LW
2784 if(!c||memtarget) {
2785 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2786 #ifdef HOST_IMM_ADDR32
2787 if(c)
2788 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2789 else
2790 #endif
2791 emit_readword_indexed_tlb(0,addr,map,tl);
2792 if(jaddr)
2793 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2794 }
2795 else
2796 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2797 }
2798 if (opcode[i]==0x24) { // LBU
2799 if(!c||memtarget) {
2800 #ifdef HOST_IMM_ADDR32
2801 if(c)
2802 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2803 else
2804 #endif
2805 {
2806 //emit_xorimm(addr,3,tl);
2807 //gen_tlb_addr_r(tl,map);
2808 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2809 int x=0;
2810 if(!c) emit_xorimm(addr,3,tl);
2811 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2812 emit_movzbl_indexed_tlb(x,tl,map,tl);
2813 }
2814 if(jaddr)
2815 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2816 }
2817 else
2818 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2819 }
2820 if (opcode[i]==0x25) { // LHU
2821 if(!c||memtarget) {
2822 #ifdef HOST_IMM_ADDR32
2823 if(c)
2824 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2825 else
2826 #endif
2827 {
2828 int x=0;
2829 if(!c) emit_xorimm(addr,2,tl);
2830 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2831 //#ifdef
2832 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2833 //#else
2834 if(map>=0) {
2835 gen_tlb_addr_r(tl,map);
2836 emit_movzwl_indexed(x,tl,tl);
2837 }else
2838 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2839 if(jaddr)
2840 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2841 }
2842 }
2843 else
2844 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2845 }
2846 if (opcode[i]==0x27) { // LWU
2847 assert(th>=0);
2848 if(!c||memtarget) {
2849 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2850 #ifdef HOST_IMM_ADDR32
2851 if(c)
2852 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2853 else
2854 #endif
2855 emit_readword_indexed_tlb(0,addr,map,tl);
2856 if(jaddr)
2857 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2858 }
2859 else {
2860 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2861 }
2862 emit_zeroreg(th);
2863 }
2864 if (opcode[i]==0x37) { // LD
2865 if(!c||memtarget) {
2866 //gen_tlb_addr_r(tl,map);
2867 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2868 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2869 #ifdef HOST_IMM_ADDR32
2870 if(c)
2871 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2872 else
2873 #endif
2874 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2875 if(jaddr)
2876 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2877 }
2878 else
2879 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2880 }
2881 //emit_storereg(rt1[i],tl); // DEBUG
2882 }
2883 //if(opcode[i]==0x23)
2884 //if(opcode[i]==0x24)
2885 //if(opcode[i]==0x23||opcode[i]==0x24)
2886 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2887 {
2888 //emit_pusha();
2889 save_regs(0x100f);
2890 emit_readword((int)&last_count,ECX);
2891 #ifdef __i386__
2892 if(get_reg(i_regs->regmap,CCREG)<0)
2893 emit_loadreg(CCREG,HOST_CCREG);
2894 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2895 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2896 emit_writeword(HOST_CCREG,(int)&Count);
2897 #endif
2898 #ifdef __arm__
2899 if(get_reg(i_regs->regmap,CCREG)<0)
2900 emit_loadreg(CCREG,0);
2901 else
2902 emit_mov(HOST_CCREG,0);
2903 emit_add(0,ECX,0);
2904 emit_addimm(0,2*ccadj[i],0);
2905 emit_writeword(0,(int)&Count);
2906 #endif
2907 emit_call((int)memdebug);
2908 //emit_popa();
2909 restore_regs(0x100f);
2910 }/**/
2911}
2912
2913#ifndef loadlr_assemble
2914void loadlr_assemble(int i,struct regstat *i_regs)
2915{
2916 printf("Need loadlr_assemble for this architecture.\n");
2917 exit(1);
2918}
2919#endif
2920
2921void store_assemble(int i,struct regstat *i_regs)
2922{
2923 int s,th,tl,map=-1;
2924 int addr,temp;
2925 int offset;
2926 int jaddr=0,jaddr2,type;
2927 int memtarget,c=0;
2928 int agr=AGEN1+(i&1);
2929 u_int hr,reglist=0;
2930 th=get_reg(i_regs->regmap,rs2[i]|64);
2931 tl=get_reg(i_regs->regmap,rs2[i]);
2932 s=get_reg(i_regs->regmap,rs1[i]);
2933 temp=get_reg(i_regs->regmap,agr);
2934 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2935 offset=imm[i];
2936 if(s>=0) {
2937 c=(i_regs->wasconst>>s)&1;
2938 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2939 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2940 }
2941 assert(tl>=0);
2942 assert(temp>=0);
2943 for(hr=0;hr<HOST_REGS;hr++) {
2944 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2945 }
2946 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2947 if(offset||s<0||c) addr=temp;
2948 else addr=s;
2949 if(!using_tlb) {
2950 if(!c) {
2951 #ifdef R29_HACK
2952 // Strmnnrmn's speed hack
2953 memtarget=1;
2954 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2955 #endif
2956 emit_cmpimm(addr,0x800000);
2957 #ifdef DESTRUCTIVE_SHIFT
2958 if(s==addr) emit_mov(s,temp);
2959 #endif
2960 #ifdef R29_HACK
2961 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2962 #endif
2963 {
2964 jaddr=(int)out;
2965 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2966 // Hint to branch predictor that the branch is unlikely to be taken
2967 if(rs1[i]>=28)
2968 emit_jno_unlikely(0);
2969 else
2970 #endif
2971 emit_jno(0);
2972 }
2973 }
2974 }else{ // using tlb
2975 int x=0;
2976 if (opcode[i]==0x28) x=3; // SB
2977 if (opcode[i]==0x29) x=2; // SH
2978 map=get_reg(i_regs->regmap,TLREG);
2979 assert(map>=0);
2980 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
2981 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
2982 }
2983
2984 if (opcode[i]==0x28) { // SB
2985 if(!c||memtarget) {
2986 int x=0;
2987 if(!c) emit_xorimm(addr,3,temp);
2988 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2989 //gen_tlb_addr_w(temp,map);
2990 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
2991 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
2992 }
2993 type=STOREB_STUB;
2994 }
2995 if (opcode[i]==0x29) { // SH
2996 if(!c||memtarget) {
2997 int x=0;
2998 if(!c) emit_xorimm(addr,2,temp);
2999 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3000 //#ifdef
3001 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3002 //#else
3003 if(map>=0) {
3004 gen_tlb_addr_w(temp,map);
3005 emit_writehword_indexed(tl,x,temp);
3006 }else
3007 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3008 }
3009 type=STOREH_STUB;
3010 }
3011 if (opcode[i]==0x2B) { // SW
3012 if(!c||memtarget)
3013 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3014 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3015 type=STOREW_STUB;
3016 }
3017 if (opcode[i]==0x3F) { // SD
3018 if(!c||memtarget) {
3019 if(rs2[i]) {
3020 assert(th>=0);
3021 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3022 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3023 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3024 }else{
3025 // Store zero
3026 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3027 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3028 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3029 }
3030 }
3031 type=STORED_STUB;
3032 }
3033 if(jaddr) {
3034 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3035 } else if(!memtarget) {
3036 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3037 }
3038 if(!using_tlb) {
3039 if(!c||memtarget) {
3040 #ifdef DESTRUCTIVE_SHIFT
3041 // The x86 shift operation is 'destructive'; it overwrites the
3042 // source register, so we need to make a copy first and use that.
3043 addr=temp;
3044 #endif
3045 #if defined(HOST_IMM8)
3046 int ir=get_reg(i_regs->regmap,INVCP);
3047 assert(ir>=0);
3048 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3049 #else
3050 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3051 #endif
3052 jaddr2=(int)out;
3053 emit_jne(0);
3054 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3055 }
3056 }
3057 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3058 //if(opcode[i]==0x2B || opcode[i]==0x28)
3059 //if(opcode[i]==0x2B || opcode[i]==0x29)
3060 //if(opcode[i]==0x2B)
3061 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3062 {
3063 //emit_pusha();
3064 save_regs(0x100f);
3065 emit_readword((int)&last_count,ECX);
3066 #ifdef __i386__
3067 if(get_reg(i_regs->regmap,CCREG)<0)
3068 emit_loadreg(CCREG,HOST_CCREG);
3069 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3070 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3071 emit_writeword(HOST_CCREG,(int)&Count);
3072 #endif
3073 #ifdef __arm__
3074 if(get_reg(i_regs->regmap,CCREG)<0)
3075 emit_loadreg(CCREG,0);
3076 else
3077 emit_mov(HOST_CCREG,0);
3078 emit_add(0,ECX,0);
3079 emit_addimm(0,2*ccadj[i],0);
3080 emit_writeword(0,(int)&Count);
3081 #endif
3082 emit_call((int)memdebug);
3083 //emit_popa();
3084 restore_regs(0x100f);
3085 }/**/
3086}
3087
3088void storelr_assemble(int i,struct regstat *i_regs)
3089{
3090 int s,th,tl;
3091 int temp;
3092 int temp2;
3093 int offset;
3094 int jaddr=0,jaddr2;
3095 int case1,case2,case3;
3096 int done0,done1,done2;
3097 int memtarget,c=0;
3098 u_int hr,reglist=0;
3099 th=get_reg(i_regs->regmap,rs2[i]|64);
3100 tl=get_reg(i_regs->regmap,rs2[i]);
3101 s=get_reg(i_regs->regmap,rs1[i]);
3102 temp=get_reg(i_regs->regmap,-1);
3103 offset=imm[i];
3104 if(s>=0) {
3105 c=(i_regs->isconst>>s)&1;
3106 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3107 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3108 }
3109 assert(tl>=0);
3110 for(hr=0;hr<HOST_REGS;hr++) {
3111 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3112 }
3113 if(tl>=0) {
3114 assert(temp>=0);
3115 if(!using_tlb) {
3116 if(!c) {
3117 emit_cmpimm(s<0||offset?temp:s,0x800000);
3118 if(!offset&&s!=temp) emit_mov(s,temp);
3119 jaddr=(int)out;
3120 emit_jno(0);
3121 }
3122 else
3123 {
3124 if(!memtarget||!rs1[i]) {
3125 jaddr=(int)out;
3126 emit_jmp(0);
3127 }
3128 }
3129 if((u_int)rdram!=0x80000000)
3130 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3131 }else{ // using tlb
3132 int map=get_reg(i_regs->regmap,TLREG);
3133 assert(map>=0);
3134 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3135 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3136 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3137 if(!jaddr&&!memtarget) {
3138 jaddr=(int)out;
3139 emit_jmp(0);
3140 }
3141 gen_tlb_addr_w(temp,map);
3142 }
3143
3144 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3145 temp2=get_reg(i_regs->regmap,FTEMP);
3146 if(!rs2[i]) temp2=th=tl;
3147 }
3148
3149 emit_testimm(temp,2);
3150 case2=(int)out;
3151 emit_jne(0);
3152 emit_testimm(temp,1);
3153 case1=(int)out;
3154 emit_jne(0);
3155 // 0
3156 if (opcode[i]==0x2A) { // SWL
3157 emit_writeword_indexed(tl,0,temp);
3158 }
3159 if (opcode[i]==0x2E) { // SWR
3160 emit_writebyte_indexed(tl,3,temp);
3161 }
3162 if (opcode[i]==0x2C) { // SDL
3163 emit_writeword_indexed(th,0,temp);
3164 if(rs2[i]) emit_mov(tl,temp2);
3165 }
3166 if (opcode[i]==0x2D) { // SDR
3167 emit_writebyte_indexed(tl,3,temp);
3168 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3169 }
3170 done0=(int)out;
3171 emit_jmp(0);
3172 // 1
3173 set_jump_target(case1,(int)out);
3174 if (opcode[i]==0x2A) { // SWL
3175 // Write 3 msb into three least significant bytes
3176 if(rs2[i]) emit_rorimm(tl,8,tl);
3177 emit_writehword_indexed(tl,-1,temp);
3178 if(rs2[i]) emit_rorimm(tl,16,tl);
3179 emit_writebyte_indexed(tl,1,temp);
3180 if(rs2[i]) emit_rorimm(tl,8,tl);
3181 }
3182 if (opcode[i]==0x2E) { // SWR
3183 // Write two lsb into two most significant bytes
3184 emit_writehword_indexed(tl,1,temp);
3185 }
3186 if (opcode[i]==0x2C) { // SDL
3187 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3188 // Write 3 msb into three least significant bytes
3189 if(rs2[i]) emit_rorimm(th,8,th);
3190 emit_writehword_indexed(th,-1,temp);
3191 if(rs2[i]) emit_rorimm(th,16,th);
3192 emit_writebyte_indexed(th,1,temp);
3193 if(rs2[i]) emit_rorimm(th,8,th);
3194 }
3195 if (opcode[i]==0x2D) { // SDR
3196 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3197 // Write two lsb into two most significant bytes
3198 emit_writehword_indexed(tl,1,temp);
3199 }
3200 done1=(int)out;
3201 emit_jmp(0);
3202 // 2
3203 set_jump_target(case2,(int)out);
3204 emit_testimm(temp,1);
3205 case3=(int)out;
3206 emit_jne(0);
3207 if (opcode[i]==0x2A) { // SWL
3208 // Write two msb into two least significant bytes
3209 if(rs2[i]) emit_rorimm(tl,16,tl);
3210 emit_writehword_indexed(tl,-2,temp);
3211 if(rs2[i]) emit_rorimm(tl,16,tl);
3212 }
3213 if (opcode[i]==0x2E) { // SWR
3214 // Write 3 lsb into three most significant bytes
3215 emit_writebyte_indexed(tl,-1,temp);
3216 if(rs2[i]) emit_rorimm(tl,8,tl);
3217 emit_writehword_indexed(tl,0,temp);
3218 if(rs2[i]) emit_rorimm(tl,24,tl);
3219 }
3220 if (opcode[i]==0x2C) { // SDL
3221 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3222 // Write two msb into two least significant bytes
3223 if(rs2[i]) emit_rorimm(th,16,th);
3224 emit_writehword_indexed(th,-2,temp);
3225 if(rs2[i]) emit_rorimm(th,16,th);
3226 }
3227 if (opcode[i]==0x2D) { // SDR
3228 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3229 // Write 3 lsb into three most significant bytes
3230 emit_writebyte_indexed(tl,-1,temp);
3231 if(rs2[i]) emit_rorimm(tl,8,tl);
3232 emit_writehword_indexed(tl,0,temp);
3233 if(rs2[i]) emit_rorimm(tl,24,tl);
3234 }
3235 done2=(int)out;
3236 emit_jmp(0);
3237 // 3
3238 set_jump_target(case3,(int)out);
3239 if (opcode[i]==0x2A) { // SWL
3240 // Write msb into least significant byte
3241 if(rs2[i]) emit_rorimm(tl,24,tl);
3242 emit_writebyte_indexed(tl,-3,temp);
3243 if(rs2[i]) emit_rorimm(tl,8,tl);
3244 }
3245 if (opcode[i]==0x2E) { // SWR
3246 // Write entire word
3247 emit_writeword_indexed(tl,-3,temp);
3248 }
3249 if (opcode[i]==0x2C) { // SDL
3250 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3251 // Write msb into least significant byte
3252 if(rs2[i]) emit_rorimm(th,24,th);
3253 emit_writebyte_indexed(th,-3,temp);
3254 if(rs2[i]) emit_rorimm(th,8,th);
3255 }
3256 if (opcode[i]==0x2D) { // SDR
3257 if(rs2[i]) emit_mov(th,temp2);
3258 // Write entire word
3259 emit_writeword_indexed(tl,-3,temp);
3260 }
3261 set_jump_target(done0,(int)out);
3262 set_jump_target(done1,(int)out);
3263 set_jump_target(done2,(int)out);
3264 if (opcode[i]==0x2C) { // SDL
3265 emit_testimm(temp,4);
3266 done0=(int)out;
3267 emit_jne(0);
3268 emit_andimm(temp,~3,temp);
3269 emit_writeword_indexed(temp2,4,temp);
3270 set_jump_target(done0,(int)out);
3271 }
3272 if (opcode[i]==0x2D) { // SDR
3273 emit_testimm(temp,4);
3274 done0=(int)out;
3275 emit_jeq(0);
3276 emit_andimm(temp,~3,temp);
3277 emit_writeword_indexed(temp2,-4,temp);
3278 set_jump_target(done0,(int)out);
3279 }
3280 if(!c||!memtarget)
3281 add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3282 }
3283 if(!using_tlb) {
3284 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3285 #if defined(HOST_IMM8)
3286 int ir=get_reg(i_regs->regmap,INVCP);
3287 assert(ir>=0);
3288 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3289 #else
3290 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3291 #endif
3292 jaddr2=(int)out;
3293 emit_jne(0);
3294 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3295 }
3296 /*
3297 emit_pusha();
3298 //save_regs(0x100f);
3299 emit_readword((int)&last_count,ECX);
3300 if(get_reg(i_regs->regmap,CCREG)<0)
3301 emit_loadreg(CCREG,HOST_CCREG);
3302 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3303 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3304 emit_writeword(HOST_CCREG,(int)&Count);
3305 emit_call((int)memdebug);
3306 emit_popa();
3307 //restore_regs(0x100f);
3308 /**/
3309}
3310
3311void c1ls_assemble(int i,struct regstat *i_regs)
3312{
3d624f89 3313#ifndef DISABLE_COP1
57871462 3314 int s,th,tl;
3315 int temp,ar;
3316 int map=-1;
3317 int offset;
3318 int c=0;
3319 int jaddr,jaddr2=0,jaddr3,type;
3320 int agr=AGEN1+(i&1);
3321 u_int hr,reglist=0;
3322 th=get_reg(i_regs->regmap,FTEMP|64);
3323 tl=get_reg(i_regs->regmap,FTEMP);
3324 s=get_reg(i_regs->regmap,rs1[i]);
3325 temp=get_reg(i_regs->regmap,agr);
3326 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3327 offset=imm[i];
3328 assert(tl>=0);
3329 assert(rs1[i]>0);
3330 assert(temp>=0);
3331 for(hr=0;hr<HOST_REGS;hr++) {
3332 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3333 }
3334 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3335 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3336 {
3337 // Loads use a temporary register which we need to save
3338 reglist|=1<<temp;
3339 }
3340 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3341 ar=temp;
3342 else // LWC1/LDC1
3343 ar=tl;
3344 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3345 //else c=(i_regs->wasconst>>s)&1;
3346 if(s>=0) c=(i_regs->wasconst>>s)&1;
3347 // Check cop1 unusable
3348 if(!cop1_usable) {
3349 signed char rs=get_reg(i_regs->regmap,CSREG);
3350 assert(rs>=0);
3351 emit_testimm(rs,0x20000000);
3352 jaddr=(int)out;
3353 emit_jeq(0);
3354 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3355 cop1_usable=1;
3356 }
3357 if (opcode[i]==0x39) { // SWC1 (get float address)
3358 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3359 }
3360 if (opcode[i]==0x3D) { // SDC1 (get double address)
3361 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3362 }
3363 // Generate address + offset
3364 if(!using_tlb) {
3365 if(!c)
3366 emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3367 }
3368 else
3369 {
3370 map=get_reg(i_regs->regmap,TLREG);
3371 assert(map>=0);
3372 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3373 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3374 }
3375 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3376 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3377 }
3378 }
3379 if (opcode[i]==0x39) { // SWC1 (read float)
3380 emit_readword_indexed(0,tl,tl);
3381 }
3382 if (opcode[i]==0x3D) { // SDC1 (read double)
3383 emit_readword_indexed(4,tl,th);
3384 emit_readword_indexed(0,tl,tl);
3385 }
3386 if (opcode[i]==0x31) { // LWC1 (get target address)
3387 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3388 }
3389 if (opcode[i]==0x35) { // LDC1 (get target address)
3390 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3391 }
3392 if(!using_tlb) {
3393 if(!c) {
3394 jaddr2=(int)out;
3395 emit_jno(0);
3396 }
3397 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3398 jaddr2=(int)out;
3399 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3400 }
3401 #ifdef DESTRUCTIVE_SHIFT
3402 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3403 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3404 }
3405 #endif
3406 }else{
3407 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3408 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3409 }
3410 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3411 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3412 }
3413 }
3414 if (opcode[i]==0x31) { // LWC1
3415 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3416 //gen_tlb_addr_r(ar,map);
3417 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3418 #ifdef HOST_IMM_ADDR32
3419 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3420 else
3421 #endif
3422 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3423 type=LOADW_STUB;
3424 }
3425 if (opcode[i]==0x35) { // LDC1
3426 assert(th>=0);
3427 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3428 //gen_tlb_addr_r(ar,map);
3429 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3430 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3431 #ifdef HOST_IMM_ADDR32
3432 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3433 else
3434 #endif
3435 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3436 type=LOADD_STUB;
3437 }
3438 if (opcode[i]==0x39) { // SWC1
3439 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3440 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3441 type=STOREW_STUB;
3442 }
3443 if (opcode[i]==0x3D) { // SDC1
3444 assert(th>=0);
3445 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3446 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3447 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3448 type=STORED_STUB;
3449 }
3450 if(!using_tlb) {
3451 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3452 #ifndef DESTRUCTIVE_SHIFT
3453 temp=offset||c||s<0?ar:s;
3454 #endif
3455 #if defined(HOST_IMM8)
3456 int ir=get_reg(i_regs->regmap,INVCP);
3457 assert(ir>=0);
3458 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3459 #else
3460 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3461 #endif
3462 jaddr3=(int)out;
3463 emit_jne(0);
3464 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3465 }
3466 }
3467 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3468 if (opcode[i]==0x31) { // LWC1 (write float)
3469 emit_writeword_indexed(tl,0,temp);
3470 }
3471 if (opcode[i]==0x35) { // LDC1 (write double)
3472 emit_writeword_indexed(th,4,temp);
3473 emit_writeword_indexed(tl,0,temp);
3474 }
3475 //if(opcode[i]==0x39)
3476 /*if(opcode[i]==0x39||opcode[i]==0x31)
3477 {
3478 emit_pusha();
3479 emit_readword((int)&last_count,ECX);
3480 if(get_reg(i_regs->regmap,CCREG)<0)
3481 emit_loadreg(CCREG,HOST_CCREG);
3482 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3483 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3484 emit_writeword(HOST_CCREG,(int)&Count);
3485 emit_call((int)memdebug);
3486 emit_popa();
3487 }/**/
3d624f89 3488#else
3489 cop1_unusable(i, i_regs);
3490#endif
57871462 3491}
3492
3493#ifndef multdiv_assemble
3494void multdiv_assemble(int i,struct regstat *i_regs)
3495{
3496 printf("Need multdiv_assemble for this architecture.\n");
3497 exit(1);
3498}
3499#endif
3500
3501void mov_assemble(int i,struct regstat *i_regs)
3502{
3503 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3504 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3505 assert(rt1[i]>0);
3506 if(rt1[i]) {
3507 signed char sh,sl,th,tl;
3508 th=get_reg(i_regs->regmap,rt1[i]|64);
3509 tl=get_reg(i_regs->regmap,rt1[i]);
3510 //assert(tl>=0);
3511 if(tl>=0) {
3512 sh=get_reg(i_regs->regmap,rs1[i]|64);
3513 sl=get_reg(i_regs->regmap,rs1[i]);
3514 if(sl>=0) emit_mov(sl,tl);
3515 else emit_loadreg(rs1[i],tl);
3516 if(th>=0) {
3517 if(sh>=0) emit_mov(sh,th);
3518 else emit_loadreg(rs1[i]|64,th);
3519 }
3520 }
3521 }
3522}
3523
3524#ifndef fconv_assemble
3525void fconv_assemble(int i,struct regstat *i_regs)
3526{
3527 printf("Need fconv_assemble for this architecture.\n");
3528 exit(1);
3529}
3530#endif
3531
3532#if 0
3533void float_assemble(int i,struct regstat *i_regs)
3534{
3535 printf("Need float_assemble for this architecture.\n");
3536 exit(1);
3537}
3538#endif
3539
3540void syscall_assemble(int i,struct regstat *i_regs)
3541{
3542 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3543 assert(ccreg==HOST_CCREG);
3544 assert(!is_delayslot);
3545 emit_movimm(start+i*4,EAX); // Get PC
3546 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3547 emit_jmp((int)jump_syscall);
3548}
3549
3550void ds_assemble(int i,struct regstat *i_regs)
3551{
3552 is_delayslot=1;
3553 switch(itype[i]) {
3554 case ALU:
3555 alu_assemble(i,i_regs);break;
3556 case IMM16:
3557 imm16_assemble(i,i_regs);break;
3558 case SHIFT:
3559 shift_assemble(i,i_regs);break;
3560 case SHIFTIMM:
3561 shiftimm_assemble(i,i_regs);break;
3562 case LOAD:
3563 load_assemble(i,i_regs);break;
3564 case LOADLR:
3565 loadlr_assemble(i,i_regs);break;
3566 case STORE:
3567 store_assemble(i,i_regs);break;
3568 case STORELR:
3569 storelr_assemble(i,i_regs);break;
3570 case COP0:
3571 cop0_assemble(i,i_regs);break;
3572 case COP1:
3573 cop1_assemble(i,i_regs);break;
3574 case C1LS:
3575 c1ls_assemble(i,i_regs);break;
3576 case FCONV:
3577 fconv_assemble(i,i_regs);break;
3578 case FLOAT:
3579 float_assemble(i,i_regs);break;
3580 case FCOMP:
3581 fcomp_assemble(i,i_regs);break;
3582 case MULTDIV:
3583 multdiv_assemble(i,i_regs);break;
3584 case MOV:
3585 mov_assemble(i,i_regs);break;
3586 case SYSCALL:
3587 case SPAN:
3588 case UJUMP:
3589 case RJUMP:
3590 case CJUMP:
3591 case SJUMP:
3592 case FJUMP:
3593 printf("Jump in the delay slot. This is probably a bug.\n");
3594 }
3595 is_delayslot=0;
3596}
3597
3598// Is the branch target a valid internal jump?
3599int internal_branch(uint64_t i_is32,int addr)
3600{
3601 if(addr&1) return 0; // Indirect (register) jump
3602 if(addr>=start && addr<start+slen*4-4)
3603 {
3604 int t=(addr-start)>>2;
3605 // Delay slots are not valid branch targets
3606 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3607 // 64 -> 32 bit transition requires a recompile
3608 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3609 {
3610 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3611 else printf("optimizable: yes\n");
3612 }*/
3613 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3614 if(requires_32bit[t]&~i_is32) return 0;
3615 else return 1;
3616 }
3617 return 0;
3618}
3619
3620#ifndef wb_invalidate
3621void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3622 uint64_t u,uint64_t uu)
3623{
3624 int hr;
3625 for(hr=0;hr<HOST_REGS;hr++) {
3626 if(hr!=EXCLUDE_REG) {
3627 if(pre[hr]!=entry[hr]) {
3628 if(pre[hr]>=0) {
3629 if((dirty>>hr)&1) {
3630 if(get_reg(entry,pre[hr])<0) {
3631 if(pre[hr]<64) {
3632 if(!((u>>pre[hr])&1)) {
3633 emit_storereg(pre[hr],hr);
3634 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3635 emit_sarimm(hr,31,hr);
3636 emit_storereg(pre[hr]|64,hr);
3637 }
3638 }
3639 }else{
3640 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3641 emit_storereg(pre[hr],hr);
3642 }
3643 }
3644 }
3645 }
3646 }
3647 }
3648 }
3649 }
3650 // Move from one register to another (no writeback)
3651 for(hr=0;hr<HOST_REGS;hr++) {
3652 if(hr!=EXCLUDE_REG) {
3653 if(pre[hr]!=entry[hr]) {
3654 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3655 int nr;
3656 if((nr=get_reg(entry,pre[hr]))>=0) {
3657 emit_mov(hr,nr);
3658 }
3659 }
3660 }
3661 }
3662 }
3663}
3664#endif
3665
3666// Load the specified registers
3667// This only loads the registers given as arguments because
3668// we don't want to load things that will be overwritten
3669void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3670{
3671 int hr;
3672 // Load 32-bit regs
3673 for(hr=0;hr<HOST_REGS;hr++) {
3674 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3675 if(entry[hr]!=regmap[hr]) {
3676 if(regmap[hr]==rs1||regmap[hr]==rs2)
3677 {
3678 if(regmap[hr]==0) {
3679 emit_zeroreg(hr);
3680 }
3681 else
3682 {
3683 emit_loadreg(regmap[hr],hr);
3684 }
3685 }
3686 }
3687 }
3688 }
3689 //Load 64-bit regs
3690 for(hr=0;hr<HOST_REGS;hr++) {
3691 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3692 if(entry[hr]!=regmap[hr]) {
3693 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3694 {
3695 assert(regmap[hr]!=64);
3696 if((is32>>(regmap[hr]&63))&1) {
3697 int lr=get_reg(regmap,regmap[hr]-64);
3698 if(lr>=0)
3699 emit_sarimm(lr,31,hr);
3700 else
3701 emit_loadreg(regmap[hr],hr);
3702 }
3703 else
3704 {
3705 emit_loadreg(regmap[hr],hr);
3706 }
3707 }
3708 }
3709 }
3710 }
3711}
3712
3713// Load registers prior to the start of a loop
3714// so that they are not loaded within the loop
3715static void loop_preload(signed char pre[],signed char entry[])
3716{
3717 int hr;
3718 for(hr=0;hr<HOST_REGS;hr++) {
3719 if(hr!=EXCLUDE_REG) {
3720 if(pre[hr]!=entry[hr]) {
3721 if(entry[hr]>=0) {
3722 if(get_reg(pre,entry[hr])<0) {
3723 assem_debug("loop preload:\n");
3724 //printf("loop preload: %d\n",hr);
3725 if(entry[hr]==0) {
3726 emit_zeroreg(hr);
3727 }
3728 else if(entry[hr]<TEMPREG)
3729 {
3730 emit_loadreg(entry[hr],hr);
3731 }
3732 else if(entry[hr]-64<TEMPREG)
3733 {
3734 emit_loadreg(entry[hr],hr);
3735 }
3736 }
3737 }
3738 }
3739 }
3740 }
3741}
3742
3743// Generate address for load/store instruction
3744void address_generation(int i,struct regstat *i_regs,signed char entry[])
3745{
3746 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
3747 int ra;
3748 int agr=AGEN1+(i&1);
3749 int mgr=MGEN1+(i&1);
3750 if(itype[i]==LOAD) {
3751 ra=get_reg(i_regs->regmap,rt1[i]);
3752 //if(rt1[i]) assert(ra>=0);
3753 }
3754 if(itype[i]==LOADLR) {
3755 ra=get_reg(i_regs->regmap,FTEMP);
3756 }
3757 if(itype[i]==STORE||itype[i]==STORELR) {
3758 ra=get_reg(i_regs->regmap,agr);
3759 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3760 }
3761 if(itype[i]==C1LS) {
3762 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3763 ra=get_reg(i_regs->regmap,FTEMP);
3764 else { // SWC1/SDC1
3765 ra=get_reg(i_regs->regmap,agr);
3766 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3767 }
3768 }
3769 int rs=get_reg(i_regs->regmap,rs1[i]);
3770 int rm=get_reg(i_regs->regmap,TLREG);
3771 if(ra>=0) {
3772 int offset=imm[i];
3773 int c=(i_regs->wasconst>>rs)&1;
3774 if(rs1[i]==0) {
3775 // Using r0 as a base address
3776 /*if(rm>=0) {
3777 if(!entry||entry[rm]!=mgr) {
3778 generate_map_const(offset,rm);
3779 } // else did it in the previous cycle
3780 }*/
3781 if(!entry||entry[ra]!=agr) {
3782 if (opcode[i]==0x22||opcode[i]==0x26) {
3783 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3784 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3785 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3786 }else{
3787 emit_movimm(offset,ra);
3788 }
3789 } // else did it in the previous cycle
3790 }
3791 else if(rs<0) {
3792 if(!entry||entry[ra]!=rs1[i])
3793 emit_loadreg(rs1[i],ra);
3794 //if(!entry||entry[ra]!=rs1[i])
3795 // printf("poor load scheduling!\n");
3796 }
3797 else if(c) {
3798 if(rm>=0) {
3799 if(!entry||entry[rm]!=mgr) {
3800 if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
3801 // Stores to memory go thru the mapper to detect self-modifying
3802 // code, loads don't.
3803 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
3804 (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
3805 generate_map_const(constmap[i][rs]+offset,rm);
3806 }else{
3807 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
3808 generate_map_const(constmap[i][rs]+offset,rm);
3809 }
3810 }
3811 }
3812 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3813 if(!entry||entry[ra]!=agr) {
3814 if (opcode[i]==0x22||opcode[i]==0x26) {
3815 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3816 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3817 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3818 }else{
3819 #ifdef HOST_IMM_ADDR32
3820 if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
3821 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
3822 #endif
3823 emit_movimm(constmap[i][rs]+offset,ra);
3824 }
3825 } // else did it in the previous cycle
3826 } // else load_consts already did it
3827 }
3828 if(offset&&!c&&rs1[i]) {
3829 if(rs>=0) {
3830 emit_addimm(rs,offset,ra);
3831 }else{
3832 emit_addimm(ra,offset,ra);
3833 }
3834 }
3835 }
3836 }
3837 // Preload constants for next instruction
3838 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
3839 int agr,ra;
3840 #ifndef HOST_IMM_ADDR32
3841 // Mapper entry
3842 agr=MGEN1+((i+1)&1);
3843 ra=get_reg(i_regs->regmap,agr);
3844 if(ra>=0) {
3845 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3846 int offset=imm[i+1];
3847 int c=(regs[i+1].wasconst>>rs)&1;
3848 if(c) {
3849 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
3850 // Stores to memory go thru the mapper to detect self-modifying
3851 // code, loads don't.
3852 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
3853 (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
3854 generate_map_const(constmap[i+1][rs]+offset,ra);
3855 }else{
3856 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
3857 generate_map_const(constmap[i+1][rs]+offset,ra);
3858 }
3859 }
3860 /*else if(rs1[i]==0) {
3861 generate_map_const(offset,ra);
3862 }*/
3863 }
3864 #endif
3865 // Actual address
3866 agr=AGEN1+((i+1)&1);
3867 ra=get_reg(i_regs->regmap,agr);
3868 if(ra>=0) {
3869 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3870 int offset=imm[i+1];
3871 int c=(regs[i+1].wasconst>>rs)&1;
3872 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3873 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3874 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3875 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3876 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3877 }else{
3878 #ifdef HOST_IMM_ADDR32
3879 if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
3880 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
3881 #endif
3882 emit_movimm(constmap[i+1][rs]+offset,ra);
3883 }
3884 }
3885 else if(rs1[i+1]==0) {
3886 // Using r0 as a base address
3887 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3888 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3889 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3890 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3891 }else{
3892 emit_movimm(offset,ra);
3893 }
3894 }
3895 }
3896 }
3897}
3898
3899int get_final_value(int hr, int i, int *value)
3900{
3901 int reg=regs[i].regmap[hr];
3902 while(i<slen-1) {
3903 if(regs[i+1].regmap[hr]!=reg) break;
3904 if(!((regs[i+1].isconst>>hr)&1)) break;
3905 if(bt[i+1]) break;
3906 i++;
3907 }
3908 if(i<slen-1) {
3909 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3910 *value=constmap[i][hr];
3911 return 1;
3912 }
3913 if(!bt[i+1]) {
3914 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3915 // Load in delay slot, out-of-order execution
3916 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3917 {
3918 #ifdef HOST_IMM_ADDR32
3919 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
3920 #endif
3921 // Precompute load address
3922 *value=constmap[i][hr]+imm[i+2];
3923 return 1;
3924 }
3925 }
3926 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3927 {
3928 #ifdef HOST_IMM_ADDR32
3929 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
3930 #endif
3931 // Precompute load address
3932 *value=constmap[i][hr]+imm[i+1];
3933 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3934 return 1;
3935 }
3936 }
3937 }
3938 *value=constmap[i][hr];
3939 //printf("c=%x\n",(int)constmap[i][hr]);
3940 if(i==slen-1) return 1;
3941 if(reg<64) {
3942 return !((unneeded_reg[i+1]>>reg)&1);
3943 }else{
3944 return !((unneeded_reg_upper[i+1]>>reg)&1);
3945 }
3946}
3947
3948// Load registers with known constants
3949void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3950{
3951 int hr;
3952 // Load 32-bit regs
3953 for(hr=0;hr<HOST_REGS;hr++) {
3954 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3955 //if(entry[hr]!=regmap[hr]) {
3956 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3957 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3958 int value;
3959 if(get_final_value(hr,i,&value)) {
3960 if(value==0) {
3961 emit_zeroreg(hr);
3962 }
3963 else {
3964 emit_movimm(value,hr);
3965 }
3966 }
3967 }
3968 }
3969 }
3970 }
3971 // Load 64-bit regs
3972 for(hr=0;hr<HOST_REGS;hr++) {
3973 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3974 //if(entry[hr]!=regmap[hr]) {
3975 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3976 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3977 if((is32>>(regmap[hr]&63))&1) {
3978 int lr=get_reg(regmap,regmap[hr]-64);
3979 assert(lr>=0);
3980 emit_sarimm(lr,31,hr);
3981 }
3982 else
3983 {
3984 int value;
3985 if(get_final_value(hr,i,&value)) {
3986 if(value==0) {
3987 emit_zeroreg(hr);
3988 }
3989 else {
3990 emit_movimm(value,hr);
3991 }
3992 }
3993 }
3994 }
3995 }
3996 }
3997 }
3998}
3999void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4000{
4001 int hr;
4002 // Load 32-bit regs
4003 for(hr=0;hr<HOST_REGS;hr++) {
4004 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4005 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4006 int value=constmap[i][hr];
4007 if(value==0) {
4008 emit_zeroreg(hr);
4009 }
4010 else {
4011 emit_movimm(value,hr);
4012 }
4013 }
4014 }
4015 }
4016 // Load 64-bit regs
4017 for(hr=0;hr<HOST_REGS;hr++) {
4018 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4019 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4020 if((is32>>(regmap[hr]&63))&1) {
4021 int lr=get_reg(regmap,regmap[hr]-64);
4022 assert(lr>=0);
4023 emit_sarimm(lr,31,hr);
4024 }
4025 else
4026 {
4027 int value=constmap[i][hr];
4028 if(value==0) {
4029 emit_zeroreg(hr);
4030 }
4031 else {
4032 emit_movimm(value,hr);
4033 }
4034 }
4035 }
4036 }
4037 }
4038}
4039
4040// Write out all dirty registers (except cycle count)
4041void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4042{
4043 int hr;
4044 for(hr=0;hr<HOST_REGS;hr++) {
4045 if(hr!=EXCLUDE_REG) {
4046 if(i_regmap[hr]>0) {
4047 if(i_regmap[hr]!=CCREG) {
4048 if((i_dirty>>hr)&1) {
4049 if(i_regmap[hr]<64) {
4050 emit_storereg(i_regmap[hr],hr);
4051 if( ((i_is32>>i_regmap[hr])&1) ) {
4052 #ifdef DESTRUCTIVE_WRITEBACK
4053 emit_sarimm(hr,31,hr);
4054 emit_storereg(i_regmap[hr]|64,hr);
4055 #else
4056 emit_sarimm(hr,31,HOST_TEMPREG);
4057 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4058 #endif
4059 }
4060 }else{
4061 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4062 emit_storereg(i_regmap[hr],hr);
4063 }
4064 }
4065 }
4066 }
4067 }
4068 }
4069 }
4070}
4071// Write out dirty registers that we need to reload (pair with load_needed_regs)
4072// This writes the registers not written by store_regs_bt
4073void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4074{
4075 int hr;
4076 int t=(addr-start)>>2;
4077 for(hr=0;hr<HOST_REGS;hr++) {
4078 if(hr!=EXCLUDE_REG) {
4079 if(i_regmap[hr]>0) {
4080 if(i_regmap[hr]!=CCREG) {
4081 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4082 if((i_dirty>>hr)&1) {
4083 if(i_regmap[hr]<64) {
4084 emit_storereg(i_regmap[hr],hr);
4085 if( ((i_is32>>i_regmap[hr])&1) ) {
4086 #ifdef DESTRUCTIVE_WRITEBACK
4087 emit_sarimm(hr,31,hr);
4088 emit_storereg(i_regmap[hr]|64,hr);
4089 #else
4090 emit_sarimm(hr,31,HOST_TEMPREG);
4091 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4092 #endif
4093 }
4094 }else{
4095 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4096 emit_storereg(i_regmap[hr],hr);
4097 }
4098 }
4099 }
4100 }
4101 }
4102 }
4103 }
4104 }
4105}
4106
4107// Load all registers (except cycle count)
4108void load_all_regs(signed char i_regmap[])
4109{
4110 int hr;
4111 for(hr=0;hr<HOST_REGS;hr++) {
4112 if(hr!=EXCLUDE_REG) {
4113 if(i_regmap[hr]==0) {
4114 emit_zeroreg(hr);
4115 }
4116 else
4117 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4118 {
4119 emit_loadreg(i_regmap[hr],hr);
4120 }
4121 }
4122 }
4123}
4124
4125// Load all current registers also needed by next instruction
4126void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4127{
4128 int hr;
4129 for(hr=0;hr<HOST_REGS;hr++) {
4130 if(hr!=EXCLUDE_REG) {
4131 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4132 if(i_regmap[hr]==0) {
4133 emit_zeroreg(hr);
4134 }
4135 else
4136 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4137 {
4138 emit_loadreg(i_regmap[hr],hr);
4139 }
4140 }
4141 }
4142 }
4143}
4144
4145// Load all regs, storing cycle count if necessary
4146void load_regs_entry(int t)
4147{
4148 int hr;
4149 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4150 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4151 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4152 emit_storereg(CCREG,HOST_CCREG);
4153 }
4154 // Load 32-bit regs
4155 for(hr=0;hr<HOST_REGS;hr++) {
4156 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4157 if(regs[t].regmap_entry[hr]==0) {
4158 emit_zeroreg(hr);
4159 }
4160 else if(regs[t].regmap_entry[hr]!=CCREG)
4161 {
4162 emit_loadreg(regs[t].regmap_entry[hr],hr);
4163 }
4164 }
4165 }
4166 // Load 64-bit regs
4167 for(hr=0;hr<HOST_REGS;hr++) {
4168 if(regs[t].regmap_entry[hr]>=64) {
4169 assert(regs[t].regmap_entry[hr]!=64);
4170 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4171 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4172 if(lr<0) {
4173 emit_loadreg(regs[t].regmap_entry[hr],hr);
4174 }
4175 else
4176 {
4177 emit_sarimm(lr,31,hr);
4178 }
4179 }
4180 else
4181 {
4182 emit_loadreg(regs[t].regmap_entry[hr],hr);
4183 }
4184 }
4185 }
4186}
4187
4188// Store dirty registers prior to branch
4189void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4190{
4191 if(internal_branch(i_is32,addr))
4192 {
4193 int t=(addr-start)>>2;
4194 int hr;
4195 for(hr=0;hr<HOST_REGS;hr++) {
4196 if(hr!=EXCLUDE_REG) {
4197 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4198 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4199 if((i_dirty>>hr)&1) {
4200 if(i_regmap[hr]<64) {
4201 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4202 emit_storereg(i_regmap[hr],hr);
4203 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4204 #ifdef DESTRUCTIVE_WRITEBACK
4205 emit_sarimm(hr,31,hr);
4206 emit_storereg(i_regmap[hr]|64,hr);
4207 #else
4208 emit_sarimm(hr,31,HOST_TEMPREG);
4209 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4210 #endif
4211 }
4212 }
4213 }else{
4214 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4215 emit_storereg(i_regmap[hr],hr);
4216 }
4217 }
4218 }
4219 }
4220 }
4221 }
4222 }
4223 }
4224 else
4225 {
4226 // Branch out of this block, write out all dirty regs
4227 wb_dirtys(i_regmap,i_is32,i_dirty);
4228 }
4229}
4230
4231// Load all needed registers for branch target
4232void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4233{
4234 //if(addr>=start && addr<(start+slen*4))
4235 if(internal_branch(i_is32,addr))
4236 {
4237 int t=(addr-start)>>2;
4238 int hr;
4239 // Store the cycle count before loading something else
4240 if(i_regmap[HOST_CCREG]!=CCREG) {
4241 assert(i_regmap[HOST_CCREG]==-1);
4242 }
4243 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4244 emit_storereg(CCREG,HOST_CCREG);
4245 }
4246 // Load 32-bit regs
4247 for(hr=0;hr<HOST_REGS;hr++) {
4248 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4249 #ifdef DESTRUCTIVE_WRITEBACK
4250 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4251 #else
4252 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4253 #endif
4254 if(regs[t].regmap_entry[hr]==0) {
4255 emit_zeroreg(hr);
4256 }
4257 else if(regs[t].regmap_entry[hr]!=CCREG)
4258 {
4259 emit_loadreg(regs[t].regmap_entry[hr],hr);
4260 }
4261 }
4262 }
4263 }
4264 //Load 64-bit regs
4265 for(hr=0;hr<HOST_REGS;hr++) {
4266 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4267 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4268 assert(regs[t].regmap_entry[hr]!=64);
4269 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4270 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4271 if(lr<0) {
4272 emit_loadreg(regs[t].regmap_entry[hr],hr);
4273 }
4274 else
4275 {
4276 emit_sarimm(lr,31,hr);
4277 }
4278 }
4279 else
4280 {
4281 emit_loadreg(regs[t].regmap_entry[hr],hr);
4282 }
4283 }
4284 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4285 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4286 assert(lr>=0);
4287 emit_sarimm(lr,31,hr);
4288 }
4289 }
4290 }
4291 }
4292}
4293
4294int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4295{
4296 if(addr>=start && addr<start+slen*4-4)
4297 {
4298 int t=(addr-start)>>2;
4299 int hr;
4300 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4301 for(hr=0;hr<HOST_REGS;hr++)
4302 {
4303 if(hr!=EXCLUDE_REG)
4304 {
4305 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4306 {
4307 if(regs[t].regmap_entry[hr]!=-1)
4308 {
4309 return 0;
4310 }
4311 else
4312 if((i_dirty>>hr)&1)
4313 {
4314 if(i_regmap[hr]<64)
4315 {
4316 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4317 return 0;
4318 }
4319 else
4320 {
4321 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4322 return 0;
4323 }
4324 }
4325 }
4326 else // Same register but is it 32-bit or dirty?
4327 if(i_regmap[hr]>=0)
4328 {
4329 if(!((regs[t].dirty>>hr)&1))
4330 {
4331 if((i_dirty>>hr)&1)
4332 {
4333 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4334 {
4335 //printf("%x: dirty no match\n",addr);
4336 return 0;
4337 }
4338 }
4339 }
4340 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4341 {
4342 //printf("%x: is32 no match\n",addr);
4343 return 0;
4344 }
4345 }
4346 }
4347 }
4348 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4349 if(requires_32bit[t]&~i_is32) return 0;
4350 // Delay slots are not valid branch targets
4351 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4352 // Delay slots require additional processing, so do not match
4353 if(is_ds[t]) return 0;
4354 }
4355 else
4356 {
4357 int hr;
4358 for(hr=0;hr<HOST_REGS;hr++)
4359 {
4360 if(hr!=EXCLUDE_REG)
4361 {
4362 if(i_regmap[hr]>=0)
4363 {
4364 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4365 {
4366 if((i_dirty>>hr)&1)
4367 {
4368 return 0;
4369 }
4370 }
4371 }
4372 }
4373 }
4374 }
4375 return 1;
4376}
4377
4378// Used when a branch jumps into the delay slot of another branch
4379void ds_assemble_entry(int i)
4380{
4381 int t=(ba[i]-start)>>2;
4382 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4383 assem_debug("Assemble delay slot at %x\n",ba[i]);
4384 assem_debug("<->\n");
4385 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4386 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4387 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4388 address_generation(t,&regs[t],regs[t].regmap_entry);
4389 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
4390 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4391 cop1_usable=0;
4392 is_delayslot=0;
4393 switch(itype[t]) {
4394 case ALU:
4395 alu_assemble(t,&regs[t]);break;
4396 case IMM16:
4397 imm16_assemble(t,&regs[t]);break;
4398 case SHIFT:
4399 shift_assemble(t,&regs[t]);break;
4400 case SHIFTIMM:
4401 shiftimm_assemble(t,&regs[t]);break;
4402 case LOAD:
4403 load_assemble(t,&regs[t]);break;
4404 case LOADLR:
4405 loadlr_assemble(t,&regs[t]);break;
4406 case STORE:
4407 store_assemble(t,&regs[t]);break;
4408 case STORELR:
4409 storelr_assemble(t,&regs[t]);break;
4410 case COP0:
4411 cop0_assemble(t,&regs[t]);break;
4412 case COP1:
4413 cop1_assemble(t,&regs[t]);break;
4414 case C1LS:
4415 c1ls_assemble(t,&regs[t]);break;
4416 case FCONV:
4417 fconv_assemble(t,&regs[t]);break;
4418 case FLOAT:
4419 float_assemble(t,&regs[t]);break;
4420 case FCOMP:
4421 fcomp_assemble(t,&regs[t]);break;
4422 case MULTDIV:
4423 multdiv_assemble(t,&regs[t]);break;
4424 case MOV:
4425 mov_assemble(t,&regs[t]);break;
4426 case SYSCALL:
4427 case SPAN:
4428 case UJUMP:
4429 case RJUMP:
4430 case CJUMP:
4431 case SJUMP:
4432 case FJUMP:
4433 printf("Jump in the delay slot. This is probably a bug.\n");
4434 }
4435 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4436 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4437 if(internal_branch(regs[t].is32,ba[i]+4))
4438 assem_debug("branch: internal\n");
4439 else
4440 assem_debug("branch: external\n");
4441 assert(internal_branch(regs[t].is32,ba[i]+4));
4442 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4443 emit_jmp(0);
4444}
4445
4446void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4447{
4448 int count;
4449 int jaddr;
4450 int idle=0;
4451 if(itype[i]==RJUMP)
4452 {
4453 *adj=0;
4454 }
4455 //if(ba[i]>=start && ba[i]<(start+slen*4))
4456 if(internal_branch(branch_regs[i].is32,ba[i]))
4457 {
4458 int t=(ba[i]-start)>>2;
4459 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4460 else *adj=ccadj[t];
4461 }
4462 else
4463 {
4464 *adj=0;
4465 }
4466 count=ccadj[i];
4467 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4468 // Idle loop
4469 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4470 idle=(int)out;
4471 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4472 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4473 jaddr=(int)out;
4474 emit_jmp(0);
4475 }
4476 else if(*adj==0||invert) {
4477 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4478 jaddr=(int)out;
4479 emit_jns(0);
4480 }
4481 else
4482 {
4483 emit_cmpimm(HOST_CCREG,-2*(count+2));
4484 jaddr=(int)out;
4485 emit_jns(0);
4486 }
4487 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4488}
4489
4490void do_ccstub(int n)
4491{
4492 literal_pool(256);
4493 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4494 set_jump_target(stubs[n][1],(int)out);
4495 int i=stubs[n][4];
4496 if(stubs[n][6]==NULLDS) {
4497 // Delay slot instruction is nullified ("likely" branch)
4498 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4499 }
4500 else if(stubs[n][6]!=TAKEN) {
4501 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4502 }
4503 else {
4504 if(internal_branch(branch_regs[i].is32,ba[i]))
4505 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4506 }
4507 if(stubs[n][5]!=-1)
4508 {
4509 // Save PC as return address
4510 emit_movimm(stubs[n][5],EAX);
4511 emit_writeword(EAX,(int)&pcaddr);
4512 }
4513 else
4514 {
4515 // Return address depends on which way the branch goes
4516 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4517 {
4518 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4519 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4520 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4521 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4522 if(rs1[i]==0)
4523 {
4524 s1l=s2l;s1h=s2h;
4525 s2l=s2h=-1;
4526 }
4527 else if(rs2[i]==0)
4528 {
4529 s2l=s2h=-1;
4530 }
4531 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4532 s1h=s2h=-1;
4533 }
4534 assert(s1l>=0);
4535 #ifdef DESTRUCTIVE_WRITEBACK
4536 if(rs1[i]) {
4537 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4538 emit_loadreg(rs1[i],s1l);
4539 }
4540 else {
4541 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4542 emit_loadreg(rs2[i],s1l);
4543 }
4544 if(s2l>=0)
4545 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4546 emit_loadreg(rs2[i],s2l);
4547 #endif
4548 int hr=0;
4549 int addr,alt,ntaddr;
4550 while(hr<HOST_REGS)
4551 {
4552 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4553 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4554 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4555 {
4556 addr=hr++;break;
4557 }
4558 hr++;
4559 }
4560 while(hr<HOST_REGS)
4561 {
4562 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4563 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4564 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4565 {
4566 alt=hr++;break;
4567 }
4568 hr++;
4569 }
4570 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4571 {
4572 while(hr<HOST_REGS)
4573 {
4574 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4575 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4576 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4577 {
4578 ntaddr=hr;break;
4579 }
4580 hr++;
4581 }
4582 assert(hr<HOST_REGS);
4583 }
4584 if((opcode[i]&0x2f)==4) // BEQ
4585 {
4586 #ifdef HAVE_CMOV_IMM
4587 if(s1h<0) {
4588 if(s2l>=0) emit_cmp(s1l,s2l);
4589 else emit_test(s1l,s1l);
4590 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4591 }
4592 else
4593 #endif
4594 {
4595 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4596 if(s1h>=0) {
4597 if(s2h>=0) emit_cmp(s1h,s2h);
4598 else emit_test(s1h,s1h);
4599 emit_cmovne_reg(alt,addr);
4600 }
4601 if(s2l>=0) emit_cmp(s1l,s2l);
4602 else emit_test(s1l,s1l);
4603 emit_cmovne_reg(alt,addr);
4604 }
4605 }
4606 if((opcode[i]&0x2f)==5) // BNE
4607 {
4608 #ifdef HAVE_CMOV_IMM
4609 if(s1h<0) {
4610 if(s2l>=0) emit_cmp(s1l,s2l);
4611 else emit_test(s1l,s1l);
4612 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4613 }
4614 else
4615 #endif
4616 {
4617 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4618 if(s1h>=0) {
4619 if(s2h>=0) emit_cmp(s1h,s2h);
4620 else emit_test(s1h,s1h);
4621 emit_cmovne_reg(alt,addr);
4622 }
4623 if(s2l>=0) emit_cmp(s1l,s2l);
4624 else emit_test(s1l,s1l);
4625 emit_cmovne_reg(alt,addr);
4626 }
4627 }
4628 if((opcode[i]&0x2f)==6) // BLEZ
4629 {
4630 //emit_movimm(ba[i],alt);
4631 //emit_movimm(start+i*4+8,addr);
4632 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4633 emit_cmpimm(s1l,1);
4634 if(s1h>=0) emit_mov(addr,ntaddr);
4635 emit_cmovl_reg(alt,addr);
4636 if(s1h>=0) {
4637 emit_test(s1h,s1h);
4638 emit_cmovne_reg(ntaddr,addr);
4639 emit_cmovs_reg(alt,addr);
4640 }
4641 }
4642 if((opcode[i]&0x2f)==7) // BGTZ
4643 {
4644 //emit_movimm(ba[i],addr);
4645 //emit_movimm(start+i*4+8,ntaddr);
4646 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4647 emit_cmpimm(s1l,1);
4648 if(s1h>=0) emit_mov(addr,alt);
4649 emit_cmovl_reg(ntaddr,addr);
4650 if(s1h>=0) {
4651 emit_test(s1h,s1h);
4652 emit_cmovne_reg(alt,addr);
4653 emit_cmovs_reg(ntaddr,addr);
4654 }
4655 }
4656 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4657 {
4658 //emit_movimm(ba[i],alt);
4659 //emit_movimm(start+i*4+8,addr);
4660 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4661 if(s1h>=0) emit_test(s1h,s1h);
4662 else emit_test(s1l,s1l);
4663 emit_cmovs_reg(alt,addr);
4664 }
4665 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4666 {
4667 //emit_movimm(ba[i],addr);
4668 //emit_movimm(start+i*4+8,alt);
4669 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4670 if(s1h>=0) emit_test(s1h,s1h);
4671 else emit_test(s1l,s1l);
4672 emit_cmovs_reg(alt,addr);
4673 }
4674 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4675 if(source[i]&0x10000) // BC1T
4676 {
4677 //emit_movimm(ba[i],alt);
4678 //emit_movimm(start+i*4+8,addr);
4679 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4680 emit_testimm(s1l,0x800000);
4681 emit_cmovne_reg(alt,addr);
4682 }
4683 else // BC1F
4684 {
4685 //emit_movimm(ba[i],addr);
4686 //emit_movimm(start+i*4+8,alt);
4687 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4688 emit_testimm(s1l,0x800000);
4689 emit_cmovne_reg(alt,addr);
4690 }
4691 }
4692 emit_writeword(addr,(int)&pcaddr);
4693 }
4694 else
4695 if(itype[i]==RJUMP)
4696 {
4697 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4698 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4699 r=get_reg(branch_regs[i].regmap,RTEMP);
4700 }
4701 emit_writeword(r,(int)&pcaddr);
4702 }
4703 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4704 }
4705 // Update cycle count
4706 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4707 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4708 emit_call((int)cc_interrupt);
4709 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4710 if(stubs[n][6]==TAKEN) {
4711 if(internal_branch(branch_regs[i].is32,ba[i]))
4712 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4713 else if(itype[i]==RJUMP) {
4714 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4715 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4716 else
4717 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4718 }
4719 }else if(stubs[n][6]==NOTTAKEN) {
4720 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4721 else load_all_regs(branch_regs[i].regmap);
4722 }else if(stubs[n][6]==NULLDS) {
4723 // Delay slot instruction is nullified ("likely" branch)
4724 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4725 else load_all_regs(regs[i].regmap);
4726 }else{
4727 load_all_regs(branch_regs[i].regmap);
4728 }
4729 emit_jmp(stubs[n][2]); // return address
4730
4731 /* This works but uses a lot of memory...
4732 emit_readword((int)&last_count,ECX);
4733 emit_add(HOST_CCREG,ECX,EAX);
4734 emit_writeword(EAX,(int)&Count);
4735 emit_call((int)gen_interupt);
4736 emit_readword((int)&Count,HOST_CCREG);
4737 emit_readword((int)&next_interupt,EAX);
4738 emit_readword((int)&pending_exception,EBX);
4739 emit_writeword(EAX,(int)&last_count);
4740 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4741 emit_test(EBX,EBX);
4742 int jne_instr=(int)out;
4743 emit_jne(0);
4744 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4745 load_all_regs(branch_regs[i].regmap);
4746 emit_jmp(stubs[n][2]); // return address
4747 set_jump_target(jne_instr,(int)out);
4748 emit_readword((int)&pcaddr,EAX);
4749 // Call get_addr_ht instead of doing the hash table here.
4750 // This code is executed infrequently and takes up a lot of space
4751 // so smaller is better.
4752 emit_storereg(CCREG,HOST_CCREG);
4753 emit_pushreg(EAX);
4754 emit_call((int)get_addr_ht);
4755 emit_loadreg(CCREG,HOST_CCREG);
4756 emit_addimm(ESP,4,ESP);
4757 emit_jmpreg(EAX);*/
4758}
4759
4760add_to_linker(int addr,int target,int ext)
4761{
4762 link_addr[linkcount][0]=addr;
4763 link_addr[linkcount][1]=target;
4764 link_addr[linkcount][2]=ext;
4765 linkcount++;
4766}
4767
4768void ujump_assemble(int i,struct regstat *i_regs)
4769{
4770 signed char *i_regmap=i_regs->regmap;
4771 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4772 address_generation(i+1,i_regs,regs[i].regmap_entry);
4773 #ifdef REG_PREFETCH
4774 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4775 if(rt1[i]==31&&temp>=0)
4776 {
4777 int return_address=start+i*4+8;
4778 if(get_reg(branch_regs[i].regmap,31)>0)
4779 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4780 }
4781 #endif
4782 ds_assemble(i+1,i_regs);
4783 uint64_t bc_unneeded=branch_regs[i].u;
4784 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4785 bc_unneeded|=1|(1LL<<rt1[i]);
4786 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4787 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4788 bc_unneeded,bc_unneeded_upper);
4789 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4790 if(rt1[i]==31) {
4791 int rt;
4792 unsigned int return_address;
4793 assert(rt1[i+1]!=31);
4794 assert(rt2[i+1]!=31);
4795 rt=get_reg(branch_regs[i].regmap,31);
4796 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4797 //assert(rt>=0);
4798 return_address=start+i*4+8;
4799 if(rt>=0) {
4800 #ifdef USE_MINI_HT
4801 if(internal_branch(branch_regs[i].is32,return_address)) {
4802 int temp=rt+1;
4803 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
4804 branch_regs[i].regmap[temp]>=0)
4805 {
4806 temp=get_reg(branch_regs[i].regmap,-1);
4807 }
4808 #ifdef HOST_TEMPREG
4809 if(temp<0) temp=HOST_TEMPREG;
4810 #endif
4811 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4812 else emit_movimm(return_address,rt);
4813 }
4814 else
4815 #endif
4816 {
4817 #ifdef REG_PREFETCH
4818 if(temp>=0)
4819 {
4820 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4821 }
4822 #endif
4823 emit_movimm(return_address,rt); // PC into link register
4824 #ifdef IMM_PREFETCH
4825 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4826 #endif
4827 }
4828 }
4829 }
4830 int cc,adj;
4831 cc=get_reg(branch_regs[i].regmap,CCREG);
4832 assert(cc==HOST_CCREG);
4833 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4834 #ifdef REG_PREFETCH
4835 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4836 #endif
4837 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4838 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
4839 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4840 if(internal_branch(branch_regs[i].is32,ba[i]))
4841 assem_debug("branch: internal\n");
4842 else
4843 assem_debug("branch: external\n");
4844 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4845 ds_assemble_entry(i);
4846 }
4847 else {
4848 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4849 emit_jmp(0);
4850 }
4851}
4852
4853void rjump_assemble(int i,struct regstat *i_regs)
4854{
4855 signed char *i_regmap=i_regs->regmap;
4856 int temp;
4857 int rs,cc,adj;
4858 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4859 assert(rs>=0);
4860 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4861 // Delay slot abuse, make a copy of the branch address register
4862 temp=get_reg(branch_regs[i].regmap,RTEMP);
4863 assert(temp>=0);
4864 assert(regs[i].regmap[temp]==RTEMP);
4865 emit_mov(rs,temp);
4866 rs=temp;
4867 }
4868 address_generation(i+1,i_regs,regs[i].regmap_entry);
4869 #ifdef REG_PREFETCH
4870 if(rt1[i]==31)
4871 {
4872 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4873 int return_address=start+i*4+8;
4874 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4875 }
4876 }
4877 #endif
4878 #ifdef USE_MINI_HT
4879 if(rs1[i]==31) {
4880 int rh=get_reg(regs[i].regmap,RHASH);
4881 if(rh>=0) do_preload_rhash(rh);
4882 }
4883 #endif
4884 ds_assemble(i+1,i_regs);
4885 uint64_t bc_unneeded=branch_regs[i].u;
4886 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4887 bc_unneeded|=1|(1LL<<rt1[i]);
4888 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4889 bc_unneeded&=~(1LL<<rs1[i]);
4890 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4891 bc_unneeded,bc_unneeded_upper);
4892 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4893 if(rt1[i]==31) {
4894 int rt,return_address;
4895 assert(rt1[i+1]!=31);
4896 assert(rt2[i+1]!=31);
4897 rt=get_reg(branch_regs[i].regmap,31);
4898 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4899 assert(rt>=0);
4900 return_address=start+i*4+8;
4901 #ifdef REG_PREFETCH
4902 if(temp>=0)
4903 {
4904 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4905 }
4906 #endif
4907 emit_movimm(return_address,rt); // PC into link register
4908 #ifdef IMM_PREFETCH
4909 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4910 #endif
4911 }
4912 cc=get_reg(branch_regs[i].regmap,CCREG);
4913 assert(cc==HOST_CCREG);
4914 #ifdef USE_MINI_HT
4915 int rh=get_reg(branch_regs[i].regmap,RHASH);
4916 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4917 if(rs1[i]==31) {
4918 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4919 do_preload_rhtbl(ht);
4920 do_rhash(rs,rh);
4921 }
4922 #endif
4923 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4924 #ifdef DESTRUCTIVE_WRITEBACK
4925 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4926 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4927 emit_loadreg(rs1[i],rs);
4928 }
4929 }
4930 #endif
4931 #ifdef REG_PREFETCH
4932 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4933 #endif
4934 #ifdef USE_MINI_HT
4935 if(rs1[i]==31) {
4936 do_miniht_load(ht,rh);
4937 }
4938 #endif
4939 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4940 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4941 //assert(adj==0);
4942 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
4943 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4944 emit_jns(0);
4945 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4946 #ifdef USE_MINI_HT
4947 if(rs1[i]==31) {
4948 do_miniht_jump(rs,rh,ht);
4949 }
4950 else
4951 #endif
4952 {
4953 //if(rs!=EAX) emit_mov(rs,EAX);
4954 //emit_jmp((int)jump_vaddr_eax);
4955 emit_jmp(jump_vaddr_reg[rs]);
4956 }
4957 /* Check hash table
4958 temp=!rs;
4959 emit_mov(rs,temp);
4960 emit_shrimm(rs,16,rs);
4961 emit_xor(temp,rs,rs);
4962 emit_movzwl_reg(rs,rs);
4963 emit_shlimm(rs,4,rs);
4964 emit_cmpmem_indexed((int)hash_table,rs,temp);
4965 emit_jne((int)out+14);
4966 emit_readword_indexed((int)hash_table+4,rs,rs);
4967 emit_jmpreg(rs);
4968 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4969 emit_addimm_no_flags(8,rs);
4970 emit_jeq((int)out-17);
4971 // No hit on hash table, call compiler
4972 emit_pushreg(temp);
4973//DEBUG >
4974#ifdef DEBUG_CYCLE_COUNT
4975 emit_readword((int)&last_count,ECX);
4976 emit_add(HOST_CCREG,ECX,HOST_CCREG);
4977 emit_readword((int)&next_interupt,ECX);
4978 emit_writeword(HOST_CCREG,(int)&Count);
4979 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4980 emit_writeword(ECX,(int)&last_count);
4981#endif
4982//DEBUG <
4983 emit_storereg(CCREG,HOST_CCREG);
4984 emit_call((int)get_addr);
4985 emit_loadreg(CCREG,HOST_CCREG);
4986 emit_addimm(ESP,4,ESP);
4987 emit_jmpreg(EAX);*/
4988 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4989 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4990 #endif
4991}
4992
4993void cjump_assemble(int i,struct regstat *i_regs)
4994{
4995 signed char *i_regmap=i_regs->regmap;
4996 int cc;
4997 int match;
4998 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4999 assem_debug("match=%d\n",match);
5000 int s1h,s1l,s2h,s2l;
5001 int prev_cop1_usable=cop1_usable;
5002 int unconditional=0,nop=0;
5003 int only32=0;
5004 int ooo=1;
5005 int invert=0;
5006 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5007 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5008 if(likely[i]) ooo=0;
5009 if(!match) invert=1;
5010 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5011 if(i>(ba[i]-start)>>2) invert=1;
5012 #endif
5013
5014 if(ooo)
5015 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5016 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5017 {
5018 // Write-after-read dependency prevents out of order execution
5019 // First test branch condition, then execute delay slot, then branch
5020 ooo=0;
5021 }
5022
5023 if(ooo) {
5024 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5025 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5026 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5027 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5028 }
5029 else {
5030 s1l=get_reg(i_regmap,rs1[i]);
5031 s1h=get_reg(i_regmap,rs1[i]|64);
5032 s2l=get_reg(i_regmap,rs2[i]);
5033 s2h=get_reg(i_regmap,rs2[i]|64);
5034 }
5035 if(rs1[i]==0&&rs2[i]==0)
5036 {
5037 if(opcode[i]&1) nop=1;
5038 else unconditional=1;
5039 //assert(opcode[i]!=5);
5040 //assert(opcode[i]!=7);
5041 //assert(opcode[i]!=0x15);
5042 //assert(opcode[i]!=0x17);
5043 }
5044 else if(rs1[i]==0)
5045 {
5046 s1l=s2l;s1h=s2h;
5047 s2l=s2h=-1;
5048 only32=(regs[i].was32>>rs2[i])&1;
5049 }
5050 else if(rs2[i]==0)
5051 {
5052 s2l=s2h=-1;
5053 only32=(regs[i].was32>>rs1[i])&1;
5054 }
5055 else {
5056 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5057 }
5058
5059 if(ooo) {
5060 // Out of order execution (delay slot first)
5061 //printf("OOOE\n");
5062 address_generation(i+1,i_regs,regs[i].regmap_entry);
5063 ds_assemble(i+1,i_regs);
5064 int adj;
5065 uint64_t bc_unneeded=branch_regs[i].u;
5066 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5067 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5068 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5069 bc_unneeded|=1;
5070 bc_unneeded_upper|=1;
5071 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5072 bc_unneeded,bc_unneeded_upper);
5073 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5074 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5075 cc=get_reg(branch_regs[i].regmap,CCREG);
5076 assert(cc==HOST_CCREG);
5077 if(unconditional)
5078 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5079 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5080 //assem_debug("cycle count (adj)\n");
5081 if(unconditional) {
5082 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5083 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5084 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5085 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5086 if(internal)
5087 assem_debug("branch: internal\n");
5088 else
5089 assem_debug("branch: external\n");
5090 if(internal&&is_ds[(ba[i]-start)>>2]) {
5091 ds_assemble_entry(i);
5092 }
5093 else {
5094 add_to_linker((int)out,ba[i],internal);
5095 emit_jmp(0);
5096 }
5097 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5098 if(((u_int)out)&7) emit_addnop(0);
5099 #endif
5100 }
5101 }
5102 else if(nop) {
5103 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5104 int jaddr=(int)out;
5105 emit_jns(0);
5106 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5107 }
5108 else {
5109 int taken=0,nottaken=0,nottaken1=0;
5110 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5111 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5112 if(!only32)
5113 {
5114 assert(s1h>=0);
5115 if(opcode[i]==4) // BEQ
5116 {
5117 if(s2h>=0) emit_cmp(s1h,s2h);
5118 else emit_test(s1h,s1h);
5119 nottaken1=(int)out;
5120 emit_jne(1);
5121 }
5122 if(opcode[i]==5) // BNE
5123 {
5124 if(s2h>=0) emit_cmp(s1h,s2h);
5125 else emit_test(s1h,s1h);
5126 if(invert) taken=(int)out;
5127 else add_to_linker((int)out,ba[i],internal);
5128 emit_jne(0);
5129 }
5130 if(opcode[i]==6) // BLEZ
5131 {
5132 emit_test(s1h,s1h);
5133 if(invert) taken=(int)out;
5134 else add_to_linker((int)out,ba[i],internal);
5135 emit_js(0);
5136 nottaken1=(int)out;
5137 emit_jne(1);
5138 }
5139 if(opcode[i]==7) // BGTZ
5140 {
5141 emit_test(s1h,s1h);
5142 nottaken1=(int)out;
5143 emit_js(1);
5144 if(invert) taken=(int)out;
5145 else add_to_linker((int)out,ba[i],internal);
5146 emit_jne(0);
5147 }
5148 } // if(!only32)
5149
5150 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5151 assert(s1l>=0);
5152 if(opcode[i]==4) // BEQ
5153 {
5154 if(s2l>=0) emit_cmp(s1l,s2l);
5155 else emit_test(s1l,s1l);
5156 if(invert){
5157 nottaken=(int)out;
5158 emit_jne(1);
5159 }else{
5160 add_to_linker((int)out,ba[i],internal);
5161 emit_jeq(0);
5162 }
5163 }
5164 if(opcode[i]==5) // BNE
5165 {
5166 if(s2l>=0) emit_cmp(s1l,s2l);
5167 else emit_test(s1l,s1l);
5168 if(invert){
5169 nottaken=(int)out;
5170 emit_jeq(1);
5171 }else{
5172 add_to_linker((int)out,ba[i],internal);
5173 emit_jne(0);
5174 }
5175 }
5176 if(opcode[i]==6) // BLEZ
5177 {
5178 emit_cmpimm(s1l,1);
5179 if(invert){
5180 nottaken=(int)out;
5181 emit_jge(1);
5182 }else{
5183 add_to_linker((int)out,ba[i],internal);
5184 emit_jl(0);
5185 }
5186 }
5187 if(opcode[i]==7) // BGTZ
5188 {
5189 emit_cmpimm(s1l,1);
5190 if(invert){
5191 nottaken=(int)out;
5192 emit_jl(1);
5193 }else{
5194 add_to_linker((int)out,ba[i],internal);
5195 emit_jge(0);
5196 }
5197 }
5198 if(invert) {
5199 if(taken) set_jump_target(taken,(int)out);
5200 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5201 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5202 if(adj) {
5203 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5204 add_to_linker((int)out,ba[i],internal);
5205 }else{
5206 emit_addnop(13);
5207 add_to_linker((int)out,ba[i],internal*2);
5208 }
5209 emit_jmp(0);
5210 }else
5211 #endif
5212 {
5213 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5214 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5215 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5216 if(internal)
5217 assem_debug("branch: internal\n");
5218 else
5219 assem_debug("branch: external\n");
5220 if(internal&&is_ds[(ba[i]-start)>>2]) {
5221 ds_assemble_entry(i);
5222 }
5223 else {
5224 add_to_linker((int)out,ba[i],internal);
5225 emit_jmp(0);
5226 }
5227 }
5228 set_jump_target(nottaken,(int)out);
5229 }
5230
5231 if(nottaken1) set_jump_target(nottaken1,(int)out);
5232 if(adj) {
5233 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5234 }
5235 } // (!unconditional)
5236 } // if(ooo)
5237 else
5238 {
5239 // In-order execution (branch first)
5240 //if(likely[i]) printf("IOL\n");
5241 //else
5242 //printf("IOE\n");
5243 int taken=0,nottaken=0,nottaken1=0;
5244 if(!unconditional&&!nop) {
5245 if(!only32)
5246 {
5247 assert(s1h>=0);
5248 if((opcode[i]&0x2f)==4) // BEQ
5249 {
5250 if(s2h>=0) emit_cmp(s1h,s2h);
5251 else emit_test(s1h,s1h);
5252 nottaken1=(int)out;
5253 emit_jne(2);
5254 }
5255 if((opcode[i]&0x2f)==5) // BNE
5256 {
5257 if(s2h>=0) emit_cmp(s1h,s2h);
5258 else emit_test(s1h,s1h);
5259 taken=(int)out;
5260 emit_jne(1);
5261 }
5262 if((opcode[i]&0x2f)==6) // BLEZ
5263 {
5264 emit_test(s1h,s1h);
5265 taken=(int)out;
5266 emit_js(1);
5267 nottaken1=(int)out;
5268 emit_jne(2);
5269 }
5270 if((opcode[i]&0x2f)==7) // BGTZ
5271 {
5272 emit_test(s1h,s1h);
5273 nottaken1=(int)out;
5274 emit_js(2);
5275 taken=(int)out;
5276 emit_jne(1);
5277 }
5278 } // if(!only32)
5279
5280 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5281 assert(s1l>=0);
5282 if((opcode[i]&0x2f)==4) // BEQ
5283 {
5284 if(s2l>=0) emit_cmp(s1l,s2l);
5285 else emit_test(s1l,s1l);
5286 nottaken=(int)out;
5287 emit_jne(2);
5288 }
5289 if((opcode[i]&0x2f)==5) // BNE
5290 {
5291 if(s2l>=0) emit_cmp(s1l,s2l);
5292 else emit_test(s1l,s1l);
5293 nottaken=(int)out;
5294 emit_jeq(2);
5295 }
5296 if((opcode[i]&0x2f)==6) // BLEZ
5297 {
5298 emit_cmpimm(s1l,1);
5299 nottaken=(int)out;
5300 emit_jge(2);
5301 }
5302 if((opcode[i]&0x2f)==7) // BGTZ
5303 {
5304 emit_cmpimm(s1l,1);
5305 nottaken=(int)out;
5306 emit_jl(2);
5307 }
5308 } // if(!unconditional)
5309 int adj;
5310 uint64_t ds_unneeded=branch_regs[i].u;
5311 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5312 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5313 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5314 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5315 ds_unneeded|=1;
5316 ds_unneeded_upper|=1;
5317 // branch taken
5318 if(!nop) {
5319 if(taken) set_jump_target(taken,(int)out);
5320 assem_debug("1:\n");
5321 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5322 ds_unneeded,ds_unneeded_upper);
5323 // load regs
5324 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5325 address_generation(i+1,&branch_regs[i],0);
5326 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5327 ds_assemble(i+1,&branch_regs[i]);
5328 cc=get_reg(branch_regs[i].regmap,CCREG);
5329 if(cc==-1) {
5330 emit_loadreg(CCREG,cc=HOST_CCREG);
5331 // CHECK: Is the following instruction (fall thru) allocated ok?
5332 }
5333 assert(cc==HOST_CCREG);
5334 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5335 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5336 assem_debug("cycle count (adj)\n");
5337 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5338 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5339 if(internal)
5340 assem_debug("branch: internal\n");
5341 else
5342 assem_debug("branch: external\n");
5343 if(internal&&is_ds[(ba[i]-start)>>2]) {
5344 ds_assemble_entry(i);
5345 }
5346 else {
5347 add_to_linker((int)out,ba[i],internal);
5348 emit_jmp(0);
5349 }
5350 }
5351 // branch not taken
5352 cop1_usable=prev_cop1_usable;
5353 if(!unconditional) {
5354 if(nottaken1) set_jump_target(nottaken1,(int)out);
5355 set_jump_target(nottaken,(int)out);
5356 assem_debug("2:\n");
5357 if(!likely[i]) {
5358 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5359 ds_unneeded,ds_unneeded_upper);
5360 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5361 address_generation(i+1,&branch_regs[i],0);
5362 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5363 ds_assemble(i+1,&branch_regs[i]);
5364 }
5365 cc=get_reg(branch_regs[i].regmap,CCREG);
5366 if(cc==-1&&!likely[i]) {
5367 // Cycle count isn't in a register, temporarily load it then write it out
5368 emit_loadreg(CCREG,HOST_CCREG);
5369 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5370 int jaddr=(int)out;
5371 emit_jns(0);
5372 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5373 emit_storereg(CCREG,HOST_CCREG);
5374 }
5375 else{
5376 cc=get_reg(i_regmap,CCREG);
5377 assert(cc==HOST_CCREG);
5378 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5379 int jaddr=(int)out;
5380 emit_jns(0);
5381 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5382 }
5383 }
5384 }
5385}
5386
5387void sjump_assemble(int i,struct regstat *i_regs)
5388{
5389 signed char *i_regmap=i_regs->regmap;
5390 int cc;
5391 int match;
5392 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5393 assem_debug("smatch=%d\n",match);
5394 int s1h,s1l;
5395 int prev_cop1_usable=cop1_usable;
5396 int unconditional=0,nevertaken=0;
5397 int only32=0;
5398 int ooo=1;
5399 int invert=0;
5400 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5401 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5402 if(likely[i]) ooo=0;
5403 if(!match) invert=1;
5404 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5405 if(i>(ba[i]-start)>>2) invert=1;
5406 #endif
5407
5408 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5409 assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5410
5411 if(ooo)
5412 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5413 {
5414 // Write-after-read dependency prevents out of order execution
5415 // First test branch condition, then execute delay slot, then branch
5416 ooo=0;
5417 }
5418 // TODO: Conditional branches w/link must execute in-order so that
5419 // condition test and write to r31 occur before cycle count test
5420
5421 if(ooo) {
5422 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5423 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5424 }
5425 else {
5426 s1l=get_reg(i_regmap,rs1[i]);
5427 s1h=get_reg(i_regmap,rs1[i]|64);
5428 }
5429 if(rs1[i]==0)
5430 {
5431 if(opcode2[i]&1) unconditional=1;
5432 else nevertaken=1;
5433 // These are never taken (r0 is never less than zero)
5434 //assert(opcode2[i]!=0);
5435 //assert(opcode2[i]!=2);
5436 //assert(opcode2[i]!=0x10);
5437 //assert(opcode2[i]!=0x12);
5438 }
5439 else {
5440 only32=(regs[i].was32>>rs1[i])&1;
5441 }
5442
5443 if(ooo) {
5444 // Out of order execution (delay slot first)
5445 //printf("OOOE\n");
5446 address_generation(i+1,i_regs,regs[i].regmap_entry);
5447 ds_assemble(i+1,i_regs);
5448 int adj;
5449 uint64_t bc_unneeded=branch_regs[i].u;
5450 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5451 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5452 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5453 bc_unneeded|=1;
5454 bc_unneeded_upper|=1;
5455 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5456 bc_unneeded,bc_unneeded_upper);
5457 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5458 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5459 if(rt1[i]==31) {
5460 int rt,return_address;
5461 assert(rt1[i+1]!=31);
5462 assert(rt2[i+1]!=31);
5463 rt=get_reg(branch_regs[i].regmap,31);
5464 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5465 if(rt>=0) {
5466 // Save the PC even if the branch is not taken
5467 return_address=start+i*4+8;
5468 emit_movimm(return_address,rt); // PC into link register
5469 #ifdef IMM_PREFETCH
5470 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5471 #endif
5472 }
5473 }
5474 cc=get_reg(branch_regs[i].regmap,CCREG);
5475 assert(cc==HOST_CCREG);
5476 if(unconditional)
5477 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5478 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5479 assem_debug("cycle count (adj)\n");
5480 if(unconditional) {
5481 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5482 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5483 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5484 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5485 if(internal)
5486 assem_debug("branch: internal\n");
5487 else
5488 assem_debug("branch: external\n");
5489 if(internal&&is_ds[(ba[i]-start)>>2]) {
5490 ds_assemble_entry(i);
5491 }
5492 else {
5493 add_to_linker((int)out,ba[i],internal);
5494 emit_jmp(0);
5495 }
5496 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5497 if(((u_int)out)&7) emit_addnop(0);
5498 #endif
5499 }
5500 }
5501 else if(nevertaken) {
5502 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5503 int jaddr=(int)out;
5504 emit_jns(0);
5505 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5506 }
5507 else {
5508 int nottaken=0;
5509 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5510 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5511 if(!only32)
5512 {
5513 assert(s1h>=0);
5514 if(opcode2[i]==0) // BLTZ
5515 {
5516 emit_test(s1h,s1h);
5517 if(invert){
5518 nottaken=(int)out;
5519 emit_jns(1);
5520 }else{
5521 add_to_linker((int)out,ba[i],internal);
5522 emit_js(0);
5523 }
5524 }
5525 if(opcode2[i]==1) // BGEZ
5526 {
5527 emit_test(s1h,s1h);
5528 if(invert){
5529 nottaken=(int)out;
5530 emit_js(1);
5531 }else{
5532 add_to_linker((int)out,ba[i],internal);
5533 emit_jns(0);
5534 }
5535 }
5536 } // if(!only32)
5537 else
5538 {
5539 assert(s1l>=0);
5540 if(opcode2[i]==0) // BLTZ
5541 {
5542 emit_test(s1l,s1l);
5543 if(invert){
5544 nottaken=(int)out;
5545 emit_jns(1);
5546 }else{
5547 add_to_linker((int)out,ba[i],internal);
5548 emit_js(0);
5549 }
5550 }
5551 if(opcode2[i]==1) // BGEZ
5552 {
5553 emit_test(s1l,s1l);
5554 if(invert){
5555 nottaken=(int)out;
5556 emit_js(1);
5557 }else{
5558 add_to_linker((int)out,ba[i],internal);
5559 emit_jns(0);
5560 }
5561 }
5562 } // if(!only32)
5563
5564 if(invert) {
5565 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5566 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5567 if(adj) {
5568 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5569 add_to_linker((int)out,ba[i],internal);
5570 }else{
5571 emit_addnop(13);
5572 add_to_linker((int)out,ba[i],internal*2);
5573 }
5574 emit_jmp(0);
5575 }else
5576 #endif
5577 {
5578 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5579 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5580 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5581 if(internal)
5582 assem_debug("branch: internal\n");
5583 else
5584 assem_debug("branch: external\n");
5585 if(internal&&is_ds[(ba[i]-start)>>2]) {
5586 ds_assemble_entry(i);
5587 }
5588 else {
5589 add_to_linker((int)out,ba[i],internal);
5590 emit_jmp(0);
5591 }
5592 }
5593 set_jump_target(nottaken,(int)out);
5594 }
5595
5596 if(adj) {
5597 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5598 }
5599 } // (!unconditional)
5600 } // if(ooo)
5601 else
5602 {
5603 // In-order execution (branch first)
5604 //printf("IOE\n");
5605 int nottaken=0;
5606 if(!unconditional) {
5607 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5608 if(!only32)
5609 {
5610 assert(s1h>=0);
5611 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5612 {
5613 emit_test(s1h,s1h);
5614 nottaken=(int)out;
5615 emit_jns(1);
5616 }
5617 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5618 {
5619 emit_test(s1h,s1h);
5620 nottaken=(int)out;
5621 emit_js(1);
5622 }
5623 } // if(!only32)
5624 else
5625 {
5626 assert(s1l>=0);
5627 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5628 {
5629 emit_test(s1l,s1l);
5630 nottaken=(int)out;
5631 emit_jns(1);
5632 }
5633 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5634 {
5635 emit_test(s1l,s1l);
5636 nottaken=(int)out;
5637 emit_js(1);
5638 }
5639 }
5640 } // if(!unconditional)
5641 int adj;
5642 uint64_t ds_unneeded=branch_regs[i].u;
5643 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5644 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5645 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5646 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5647 ds_unneeded|=1;
5648 ds_unneeded_upper|=1;
5649 // branch taken
5650 if(!nevertaken) {
5651 //assem_debug("1:\n");
5652 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5653 ds_unneeded,ds_unneeded_upper);
5654 // load regs
5655 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5656 address_generation(i+1,&branch_regs[i],0);
5657 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5658 ds_assemble(i+1,&branch_regs[i]);
5659 cc=get_reg(branch_regs[i].regmap,CCREG);
5660 if(cc==-1) {
5661 emit_loadreg(CCREG,cc=HOST_CCREG);
5662 // CHECK: Is the following instruction (fall thru) allocated ok?
5663 }
5664 assert(cc==HOST_CCREG);
5665 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5666 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5667 assem_debug("cycle count (adj)\n");
5668 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5669 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5670 if(internal)
5671 assem_debug("branch: internal\n");
5672 else
5673 assem_debug("branch: external\n");
5674 if(internal&&is_ds[(ba[i]-start)>>2]) {
5675 ds_assemble_entry(i);
5676 }
5677 else {
5678 add_to_linker((int)out,ba[i],internal);
5679 emit_jmp(0);
5680 }
5681 }
5682 // branch not taken
5683 cop1_usable=prev_cop1_usable;
5684 if(!unconditional) {
5685 set_jump_target(nottaken,(int)out);
5686 assem_debug("1:\n");
5687 if(!likely[i]) {
5688 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5689 ds_unneeded,ds_unneeded_upper);
5690 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5691 address_generation(i+1,&branch_regs[i],0);
5692 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5693 ds_assemble(i+1,&branch_regs[i]);
5694 }
5695 cc=get_reg(branch_regs[i].regmap,CCREG);
5696 if(cc==-1&&!likely[i]) {
5697 // Cycle count isn't in a register, temporarily load it then write it out
5698 emit_loadreg(CCREG,HOST_CCREG);
5699 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5700 int jaddr=(int)out;
5701 emit_jns(0);
5702 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5703 emit_storereg(CCREG,HOST_CCREG);
5704 }
5705 else{
5706 cc=get_reg(i_regmap,CCREG);
5707 assert(cc==HOST_CCREG);
5708 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5709 int jaddr=(int)out;
5710 emit_jns(0);
5711 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5712 }
5713 }
5714 }
5715}
5716
5717void fjump_assemble(int i,struct regstat *i_regs)
5718{
5719 signed char *i_regmap=i_regs->regmap;
5720 int cc;
5721 int match;
5722 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5723 assem_debug("fmatch=%d\n",match);
5724 int fs,cs;
5725 int eaddr;
5726 int ooo=1;
5727 int invert=0;
5728 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5729 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5730 if(likely[i]) ooo=0;
5731 if(!match) invert=1;
5732 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5733 if(i>(ba[i]-start)>>2) invert=1;
5734 #endif
5735
5736 if(ooo)
5737 if(itype[i+1]==FCOMP)
5738 {
5739 // Write-after-read dependency prevents out of order execution
5740 // First test branch condition, then execute delay slot, then branch
5741 ooo=0;
5742 }
5743
5744 if(ooo) {
5745 fs=get_reg(branch_regs[i].regmap,FSREG);
5746 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5747 }
5748 else {
5749 fs=get_reg(i_regmap,FSREG);
5750 }
5751
5752 // Check cop1 unusable
5753 if(!cop1_usable) {
5754 cs=get_reg(i_regmap,CSREG);
5755 assert(cs>=0);
5756 emit_testimm(cs,0x20000000);
5757 eaddr=(int)out;
5758 emit_jeq(0);
5759 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5760 cop1_usable=1;
5761 }
5762
5763 if(ooo) {
5764 // Out of order execution (delay slot first)
5765 //printf("OOOE\n");
5766 ds_assemble(i+1,i_regs);
5767 int adj;
5768 uint64_t bc_unneeded=branch_regs[i].u;
5769 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5770 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5771 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5772 bc_unneeded|=1;
5773 bc_unneeded_upper|=1;
5774 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5775 bc_unneeded,bc_unneeded_upper);
5776 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5777 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5778 cc=get_reg(branch_regs[i].regmap,CCREG);
5779 assert(cc==HOST_CCREG);
5780 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5781 assem_debug("cycle count (adj)\n");
5782 if(1) {
5783 int nottaken=0;
5784 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5785 if(1) {
5786 assert(fs>=0);
5787 emit_testimm(fs,0x800000);
5788 if(source[i]&0x10000) // BC1T
5789 {
5790 if(invert){
5791 nottaken=(int)out;
5792 emit_jeq(1);
5793 }else{
5794 add_to_linker((int)out,ba[i],internal);
5795 emit_jne(0);
5796 }
5797 }
5798 else // BC1F
5799 if(invert){
5800 nottaken=(int)out;
5801 emit_jne(1);
5802 }else{
5803 add_to_linker((int)out,ba[i],internal);
5804 emit_jeq(0);
5805 }
5806 {
5807 }
5808 } // if(!only32)
5809
5810 if(invert) {
5811 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5812 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5813 else if(match) emit_addnop(13);
5814 #endif
5815 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5816 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5817 if(internal)
5818 assem_debug("branch: internal\n");
5819 else
5820 assem_debug("branch: external\n");
5821 if(internal&&is_ds[(ba[i]-start)>>2]) {
5822 ds_assemble_entry(i);
5823 }
5824 else {
5825 add_to_linker((int)out,ba[i],internal);
5826 emit_jmp(0);
5827 }
5828 set_jump_target(nottaken,(int)out);
5829 }
5830
5831 if(adj) {
5832 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5833 }
5834 } // (!unconditional)
5835 } // if(ooo)
5836 else
5837 {
5838 // In-order execution (branch first)
5839 //printf("IOE\n");
5840 int nottaken=0;
5841 if(1) {
5842 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5843 if(1) {
5844 assert(fs>=0);
5845 emit_testimm(fs,0x800000);
5846 if(source[i]&0x10000) // BC1T
5847 {
5848 nottaken=(int)out;
5849 emit_jeq(1);
5850 }
5851 else // BC1F
5852 {
5853 nottaken=(int)out;
5854 emit_jne(1);
5855 }
5856 }
5857 } // if(!unconditional)
5858 int adj;
5859 uint64_t ds_unneeded=branch_regs[i].u;
5860 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5861 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5862 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5863 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5864 ds_unneeded|=1;
5865 ds_unneeded_upper|=1;
5866 // branch taken
5867 //assem_debug("1:\n");
5868 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5869 ds_unneeded,ds_unneeded_upper);
5870 // load regs
5871 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5872 address_generation(i+1,&branch_regs[i],0);
5873 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5874 ds_assemble(i+1,&branch_regs[i]);
5875 cc=get_reg(branch_regs[i].regmap,CCREG);
5876 if(cc==-1) {
5877 emit_loadreg(CCREG,cc=HOST_CCREG);
5878 // CHECK: Is the following instruction (fall thru) allocated ok?
5879 }
5880 assert(cc==HOST_CCREG);
5881 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5882 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5883 assem_debug("cycle count (adj)\n");
5884 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5885 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5886 if(internal)
5887 assem_debug("branch: internal\n");
5888 else
5889 assem_debug("branch: external\n");
5890 if(internal&&is_ds[(ba[i]-start)>>2]) {
5891 ds_assemble_entry(i);
5892 }
5893 else {
5894 add_to_linker((int)out,ba[i],internal);
5895 emit_jmp(0);
5896 }
5897
5898 // branch not taken
5899 if(1) { // <- FIXME (don't need this)
5900 set_jump_target(nottaken,(int)out);
5901 assem_debug("1:\n");
5902 if(!likely[i]) {
5903 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5904 ds_unneeded,ds_unneeded_upper);
5905 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5906 address_generation(i+1,&branch_regs[i],0);
5907 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5908 ds_assemble(i+1,&branch_regs[i]);
5909 }
5910 cc=get_reg(branch_regs[i].regmap,CCREG);
5911 if(cc==-1&&!likely[i]) {
5912 // Cycle count isn't in a register, temporarily load it then write it out
5913 emit_loadreg(CCREG,HOST_CCREG);
5914 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5915 int jaddr=(int)out;
5916 emit_jns(0);
5917 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5918 emit_storereg(CCREG,HOST_CCREG);
5919 }
5920 else{
5921 cc=get_reg(i_regmap,CCREG);
5922 assert(cc==HOST_CCREG);
5923 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5924 int jaddr=(int)out;
5925 emit_jns(0);
5926 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5927 }
5928 }
5929 }
5930}
5931
5932static void pagespan_assemble(int i,struct regstat *i_regs)
5933{
5934 int s1l=get_reg(i_regs->regmap,rs1[i]);
5935 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5936 int s2l=get_reg(i_regs->regmap,rs2[i]);
5937 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5938 void *nt_branch=NULL;
5939 int taken=0;
5940 int nottaken=0;
5941 int unconditional=0;
5942 if(rs1[i]==0)
5943 {
5944 s1l=s2l;s1h=s2h;
5945 s2l=s2h=-1;
5946 }
5947 else if(rs2[i]==0)
5948 {
5949 s2l=s2h=-1;
5950 }
5951 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5952 s1h=s2h=-1;
5953 }
5954 int hr=0;
5955 int addr,alt,ntaddr;
5956 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5957 else {
5958 while(hr<HOST_REGS)
5959 {
5960 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5961 (i_regs->regmap[hr]&63)!=rs1[i] &&
5962 (i_regs->regmap[hr]&63)!=rs2[i] )
5963 {
5964 addr=hr++;break;
5965 }
5966 hr++;
5967 }
5968 }
5969 while(hr<HOST_REGS)
5970 {
5971 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5972 (i_regs->regmap[hr]&63)!=rs1[i] &&
5973 (i_regs->regmap[hr]&63)!=rs2[i] )
5974 {
5975 alt=hr++;break;
5976 }
5977 hr++;
5978 }
5979 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5980 {
5981 while(hr<HOST_REGS)
5982 {
5983 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5984 (i_regs->regmap[hr]&63)!=rs1[i] &&
5985 (i_regs->regmap[hr]&63)!=rs2[i] )
5986 {
5987 ntaddr=hr;break;
5988 }
5989 hr++;
5990 }
5991 }
5992 assert(hr<HOST_REGS);
5993 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5994 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5995 }
5996 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5997 if(opcode[i]==2) // J
5998 {
5999 unconditional=1;
6000 }
6001 if(opcode[i]==3) // JAL
6002 {
6003 // TODO: mini_ht
6004 int rt=get_reg(i_regs->regmap,31);
6005 emit_movimm(start+i*4+8,rt);
6006 unconditional=1;
6007 }
6008 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6009 {
6010 emit_mov(s1l,addr);
6011 if(opcode2[i]==9) // JALR
6012 {
6013 int rt=get_reg(i_regs->regmap,31);
6014 emit_movimm(start+i*4+8,rt);
6015 }
6016 }
6017 if((opcode[i]&0x3f)==4) // BEQ
6018 {
6019 if(rs1[i]==rs2[i])
6020 {
6021 unconditional=1;
6022 }
6023 else
6024 #ifdef HAVE_CMOV_IMM
6025 if(s1h<0) {
6026 if(s2l>=0) emit_cmp(s1l,s2l);
6027 else emit_test(s1l,s1l);
6028 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6029 }
6030 else
6031 #endif
6032 {
6033 assert(s1l>=0);
6034 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6035 if(s1h>=0) {
6036 if(s2h>=0) emit_cmp(s1h,s2h);
6037 else emit_test(s1h,s1h);
6038 emit_cmovne_reg(alt,addr);
6039 }
6040 if(s2l>=0) emit_cmp(s1l,s2l);
6041 else emit_test(s1l,s1l);
6042 emit_cmovne_reg(alt,addr);
6043 }
6044 }
6045 if((opcode[i]&0x3f)==5) // BNE
6046 {
6047 #ifdef HAVE_CMOV_IMM
6048 if(s1h<0) {
6049 if(s2l>=0) emit_cmp(s1l,s2l);
6050 else emit_test(s1l,s1l);
6051 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6052 }
6053 else
6054 #endif
6055 {
6056 assert(s1l>=0);
6057 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6058 if(s1h>=0) {
6059 if(s2h>=0) emit_cmp(s1h,s2h);
6060 else emit_test(s1h,s1h);
6061 emit_cmovne_reg(alt,addr);
6062 }
6063 if(s2l>=0) emit_cmp(s1l,s2l);
6064 else emit_test(s1l,s1l);
6065 emit_cmovne_reg(alt,addr);
6066 }
6067 }
6068 if((opcode[i]&0x3f)==0x14) // BEQL
6069 {
6070 if(s1h>=0) {
6071 if(s2h>=0) emit_cmp(s1h,s2h);
6072 else emit_test(s1h,s1h);
6073 nottaken=(int)out;
6074 emit_jne(0);
6075 }
6076 if(s2l>=0) emit_cmp(s1l,s2l);
6077 else emit_test(s1l,s1l);
6078 if(nottaken) set_jump_target(nottaken,(int)out);
6079 nottaken=(int)out;
6080 emit_jne(0);
6081 }
6082 if((opcode[i]&0x3f)==0x15) // BNEL
6083 {
6084 if(s1h>=0) {
6085 if(s2h>=0) emit_cmp(s1h,s2h);
6086 else emit_test(s1h,s1h);
6087 taken=(int)out;
6088 emit_jne(0);
6089 }
6090 if(s2l>=0) emit_cmp(s1l,s2l);
6091 else emit_test(s1l,s1l);
6092 nottaken=(int)out;
6093 emit_jeq(0);
6094 if(taken) set_jump_target(taken,(int)out);
6095 }
6096 if((opcode[i]&0x3f)==6) // BLEZ
6097 {
6098 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6099 emit_cmpimm(s1l,1);
6100 if(s1h>=0) emit_mov(addr,ntaddr);
6101 emit_cmovl_reg(alt,addr);
6102 if(s1h>=0) {
6103 emit_test(s1h,s1h);
6104 emit_cmovne_reg(ntaddr,addr);
6105 emit_cmovs_reg(alt,addr);
6106 }
6107 }
6108 if((opcode[i]&0x3f)==7) // BGTZ
6109 {
6110 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6111 emit_cmpimm(s1l,1);
6112 if(s1h>=0) emit_mov(addr,alt);
6113 emit_cmovl_reg(ntaddr,addr);
6114 if(s1h>=0) {
6115 emit_test(s1h,s1h);
6116 emit_cmovne_reg(alt,addr);
6117 emit_cmovs_reg(ntaddr,addr);
6118 }
6119 }
6120 if((opcode[i]&0x3f)==0x16) // BLEZL
6121 {
6122 assert((opcode[i]&0x3f)!=0x16);
6123 }
6124 if((opcode[i]&0x3f)==0x17) // BGTZL
6125 {
6126 assert((opcode[i]&0x3f)!=0x17);
6127 }
6128 assert(opcode[i]!=1); // BLTZ/BGEZ
6129
6130 //FIXME: Check CSREG
6131 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6132 if((source[i]&0x30000)==0) // BC1F
6133 {
6134 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6135 emit_testimm(s1l,0x800000);
6136 emit_cmovne_reg(alt,addr);
6137 }
6138 if((source[i]&0x30000)==0x10000) // BC1T
6139 {
6140 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6141 emit_testimm(s1l,0x800000);
6142 emit_cmovne_reg(alt,addr);
6143 }
6144 if((source[i]&0x30000)==0x20000) // BC1FL
6145 {
6146 emit_testimm(s1l,0x800000);
6147 nottaken=(int)out;
6148 emit_jne(0);
6149 }
6150 if((source[i]&0x30000)==0x30000) // BC1TL
6151 {
6152 emit_testimm(s1l,0x800000);
6153 nottaken=(int)out;
6154 emit_jeq(0);
6155 }
6156 }
6157
6158 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6159 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6160 if(likely[i]||unconditional)
6161 {
6162 emit_movimm(ba[i],HOST_BTREG);
6163 }
6164 else if(addr!=HOST_BTREG)
6165 {
6166 emit_mov(addr,HOST_BTREG);
6167 }
6168 void *branch_addr=out;
6169 emit_jmp(0);
6170 int target_addr=start+i*4+5;
6171 void *stub=out;
6172 void *compiled_target_addr=check_addr(target_addr);
6173 emit_extjump_ds((int)branch_addr,target_addr);
6174 if(compiled_target_addr) {
6175 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6176 add_link(target_addr,stub);
6177 }
6178 else set_jump_target((int)branch_addr,(int)stub);
6179 if(likely[i]) {
6180 // Not-taken path
6181 set_jump_target((int)nottaken,(int)out);
6182 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6183 void *branch_addr=out;
6184 emit_jmp(0);
6185 int target_addr=start+i*4+8;
6186 void *stub=out;
6187 void *compiled_target_addr=check_addr(target_addr);
6188 emit_extjump_ds((int)branch_addr,target_addr);
6189 if(compiled_target_addr) {
6190 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6191 add_link(target_addr,stub);
6192 }
6193 else set_jump_target((int)branch_addr,(int)stub);
6194 }
6195}
6196
6197// Assemble the delay slot for the above
6198static void pagespan_ds()
6199{
6200 assem_debug("initial delay slot:\n");
6201 u_int vaddr=start+1;
94d23bb9 6202 u_int page=get_page(vaddr);
6203 u_int vpage=get_vpage(vaddr);
57871462 6204 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6205 do_dirty_stub_ds();
6206 ll_add(jump_in+page,vaddr,(void *)out);
6207 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6208 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6209 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6210 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6211 emit_writeword(HOST_BTREG,(int)&branch_target);
6212 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6213 address_generation(0,&regs[0],regs[0].regmap_entry);
6214 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
6215 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6216 cop1_usable=0;
6217 is_delayslot=0;
6218 switch(itype[0]) {
6219 case ALU:
6220 alu_assemble(0,&regs[0]);break;
6221 case IMM16:
6222 imm16_assemble(0,&regs[0]);break;
6223 case SHIFT:
6224 shift_assemble(0,&regs[0]);break;
6225 case SHIFTIMM:
6226 shiftimm_assemble(0,&regs[0]);break;
6227 case LOAD:
6228 load_assemble(0,&regs[0]);break;
6229 case LOADLR:
6230 loadlr_assemble(0,&regs[0]);break;
6231 case STORE:
6232 store_assemble(0,&regs[0]);break;
6233 case STORELR:
6234 storelr_assemble(0,&regs[0]);break;
6235 case COP0:
6236 cop0_assemble(0,&regs[0]);break;
6237 case COP1:
6238 cop1_assemble(0,&regs[0]);break;
6239 case C1LS:
6240 c1ls_assemble(0,&regs[0]);break;
6241 case FCONV:
6242 fconv_assemble(0,&regs[0]);break;
6243 case FLOAT:
6244 float_assemble(0,&regs[0]);break;
6245 case FCOMP:
6246 fcomp_assemble(0,&regs[0]);break;
6247 case MULTDIV:
6248 multdiv_assemble(0,&regs[0]);break;
6249 case MOV:
6250 mov_assemble(0,&regs[0]);break;
6251 case SYSCALL:
6252 case SPAN:
6253 case UJUMP:
6254 case RJUMP:
6255 case CJUMP:
6256 case SJUMP:
6257 case FJUMP:
6258 printf("Jump in the delay slot. This is probably a bug.\n");
6259 }
6260 int btaddr=get_reg(regs[0].regmap,BTREG);
6261 if(btaddr<0) {
6262 btaddr=get_reg(regs[0].regmap,-1);
6263 emit_readword((int)&branch_target,btaddr);
6264 }
6265 assert(btaddr!=HOST_CCREG);
6266 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6267#ifdef HOST_IMM8
6268 emit_movimm(start+4,HOST_TEMPREG);
6269 emit_cmp(btaddr,HOST_TEMPREG);
6270#else
6271 emit_cmpimm(btaddr,start+4);
6272#endif
6273 int branch=(int)out;
6274 emit_jeq(0);
6275 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6276 emit_jmp(jump_vaddr_reg[btaddr]);
6277 set_jump_target(branch,(int)out);
6278 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6279 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6280}
6281
6282// Basic liveness analysis for MIPS registers
6283void unneeded_registers(int istart,int iend,int r)
6284{
6285 int i;
6286 uint64_t u,uu,b,bu;
6287 uint64_t temp_u,temp_uu;
6288 uint64_t tdep;
6289 if(iend==slen-1) {
6290 u=1;uu=1;
6291 }else{
6292 u=unneeded_reg[iend+1];
6293 uu=unneeded_reg_upper[iend+1];
6294 u=1;uu=1;
6295 }
6296 for (i=iend;i>=istart;i--)
6297 {
6298 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6299 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6300 {
6301 // If subroutine call, flag return address as a possible branch target
6302 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6303
6304 if(ba[i]<start || ba[i]>=(start+slen*4))
6305 {
6306 // Branch out of this block, flush all regs
6307 u=1;
6308 uu=1;
6309 /* Hexagon hack
6310 if(itype[i]==UJUMP&&rt1[i]==31)
6311 {
6312 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6313 }
6314 if(itype[i]==RJUMP&&rs1[i]==31)
6315 {
6316 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6317 }
6318 if(start>0x80000400&&start<0x80800000) {
6319 if(itype[i]==UJUMP&&rt1[i]==31)
6320 {
6321 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6322 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6323 }
6324 if(itype[i]==RJUMP&&rs1[i]==31)
6325 {
6326 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6327 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6328 }
6329 }*/
6330 branch_unneeded_reg[i]=u;
6331 branch_unneeded_reg_upper[i]=uu;
6332 // Merge in delay slot
6333 tdep=(~uu>>rt1[i+1])&1;
6334 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6335 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6336 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6337 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6338 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6339 u|=1;uu|=1;
6340 // If branch is "likely" (and conditional)
6341 // then we skip the delay slot on the fall-thru path
6342 if(likely[i]) {
6343 if(i<slen-1) {
6344 u&=unneeded_reg[i+2];
6345 uu&=unneeded_reg_upper[i+2];
6346 }
6347 else
6348 {
6349 u=1;
6350 uu=1;
6351 }
6352 }
6353 }
6354 else
6355 {
6356 // Internal branch, flag target
6357 bt[(ba[i]-start)>>2]=1;
6358 if(ba[i]<=start+i*4) {
6359 // Backward branch
6360 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6361 {
6362 // Unconditional branch
6363 temp_u=1;temp_uu=1;
6364 } else {
6365 // Conditional branch (not taken case)
6366 temp_u=unneeded_reg[i+2];
6367 temp_uu=unneeded_reg_upper[i+2];
6368 }
6369 // Merge in delay slot
6370 tdep=(~temp_uu>>rt1[i+1])&1;
6371 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6372 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6373 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6374 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6375 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6376 temp_u|=1;temp_uu|=1;
6377 // If branch is "likely" (and conditional)
6378 // then we skip the delay slot on the fall-thru path
6379 if(likely[i]) {
6380 if(i<slen-1) {
6381 temp_u&=unneeded_reg[i+2];
6382 temp_uu&=unneeded_reg_upper[i+2];
6383 }
6384 else
6385 {
6386 temp_u=1;
6387 temp_uu=1;
6388 }
6389 }
6390 tdep=(~temp_uu>>rt1[i])&1;
6391 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6392 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6393 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6394 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6395 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6396 temp_u|=1;temp_uu|=1;
6397 unneeded_reg[i]=temp_u;
6398 unneeded_reg_upper[i]=temp_uu;
6399 // Only go three levels deep. This recursion can take an
6400 // excessive amount of time if there are a lot of nested loops.
6401 if(r<2) {
6402 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6403 }else{
6404 unneeded_reg[(ba[i]-start)>>2]=1;
6405 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6406 }
6407 } /*else*/ if(1) {
6408 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6409 {
6410 // Unconditional branch
6411 u=unneeded_reg[(ba[i]-start)>>2];
6412 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6413 branch_unneeded_reg[i]=u;
6414 branch_unneeded_reg_upper[i]=uu;
6415 //u=1;
6416 //uu=1;
6417 //branch_unneeded_reg[i]=u;
6418 //branch_unneeded_reg_upper[i]=uu;
6419 // Merge in delay slot
6420 tdep=(~uu>>rt1[i+1])&1;
6421 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6422 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6423 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6424 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6425 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6426 u|=1;uu|=1;
6427 } else {
6428 // Conditional branch
6429 b=unneeded_reg[(ba[i]-start)>>2];
6430 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6431 branch_unneeded_reg[i]=b;
6432 branch_unneeded_reg_upper[i]=bu;
6433 //b=1;
6434 //bu=1;
6435 //branch_unneeded_reg[i]=b;
6436 //branch_unneeded_reg_upper[i]=bu;
6437 // Branch delay slot
6438 tdep=(~uu>>rt1[i+1])&1;
6439 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6440 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6441 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6442 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6443 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6444 b|=1;bu|=1;
6445 // If branch is "likely" then we skip the
6446 // delay slot on the fall-thru path
6447 if(likely[i]) {
6448 u=b;
6449 uu=bu;
6450 if(i<slen-1) {
6451 u&=unneeded_reg[i+2];
6452 uu&=unneeded_reg_upper[i+2];
6453 //u=1;
6454 //uu=1;
6455 }
6456 } else {
6457 u&=b;
6458 uu&=bu;
6459 //u=1;
6460 //uu=1;
6461 }
6462 if(i<slen-1) {
6463 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6464 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6465 //branch_unneeded_reg[i]=1;
6466 //branch_unneeded_reg_upper[i]=1;
6467 } else {
6468 branch_unneeded_reg[i]=1;
6469 branch_unneeded_reg_upper[i]=1;
6470 }
6471 }
6472 }
6473 }
6474 }
6475 else if(itype[i]==SYSCALL)
6476 {
6477 // SYSCALL instruction (software interrupt)
6478 u=1;
6479 uu=1;
6480 }
6481 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6482 {
6483 // ERET instruction (return from interrupt)
6484 u=1;
6485 uu=1;
6486 }
6487 //u=uu=1; // DEBUG
6488 tdep=(~uu>>rt1[i])&1;
6489 // Written registers are unneeded
6490 u|=1LL<<rt1[i];
6491 u|=1LL<<rt2[i];
6492 uu|=1LL<<rt1[i];
6493 uu|=1LL<<rt2[i];
6494 // Accessed registers are needed
6495 u&=~(1LL<<rs1[i]);
6496 u&=~(1LL<<rs2[i]);
6497 uu&=~(1LL<<us1[i]);
6498 uu&=~(1LL<<us2[i]);
6499 // Source-target dependencies
6500 uu&=~(tdep<<dep1[i]);
6501 uu&=~(tdep<<dep2[i]);
6502 // R0 is always unneeded
6503 u|=1;uu|=1;
6504 // Save it
6505 unneeded_reg[i]=u;
6506 unneeded_reg_upper[i]=uu;
6507 /*
6508 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6509 printf("U:");
6510 int r;
6511 for(r=1;r<=CCREG;r++) {
6512 if((unneeded_reg[i]>>r)&1) {
6513 if(r==HIREG) printf(" HI");
6514 else if(r==LOREG) printf(" LO");
6515 else printf(" r%d",r);
6516 }
6517 }
6518 printf(" UU:");
6519 for(r=1;r<=CCREG;r++) {
6520 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6521 if(r==HIREG) printf(" HI");
6522 else if(r==LOREG) printf(" LO");
6523 else printf(" r%d",r);
6524 }
6525 }
6526 printf("\n");*/
6527 }
6528}
6529
6530// Identify registers which are likely to contain 32-bit values
6531// This is used to predict whether any branches will jump to a
6532// location with 64-bit values in registers.
6533static void provisional_32bit()
6534{
6535 int i,j;
6536 uint64_t is32=1;
6537 uint64_t lastbranch=1;
6538
6539 for(i=0;i<slen;i++)
6540 {
6541 if(i>0) {
6542 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6543 if(i>1) is32=lastbranch;
6544 else is32=1;
6545 }
6546 }
6547 if(i>1)
6548 {
6549 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6550 if(likely[i-2]) {
6551 if(i>2) is32=lastbranch;
6552 else is32=1;
6553 }
6554 }
6555 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6556 {
6557 if(rs1[i-2]==0||rs2[i-2]==0)
6558 {
6559 if(rs1[i-2]) {
6560 is32|=1LL<<rs1[i-2];
6561 }
6562 if(rs2[i-2]) {
6563 is32|=1LL<<rs2[i-2];
6564 }
6565 }
6566 }
6567 }
6568 // If something jumps here with 64-bit values
6569 // then promote those registers to 64 bits
6570 if(bt[i])
6571 {
6572 uint64_t temp_is32=is32;
6573 for(j=i-1;j>=0;j--)
6574 {
6575 if(ba[j]==start+i*4)
6576 //temp_is32&=branch_regs[j].is32;
6577 temp_is32&=p32[j];
6578 }
6579 for(j=i;j<slen;j++)
6580 {
6581 if(ba[j]==start+i*4)
6582 temp_is32=1;
6583 }
6584 is32=temp_is32;
6585 }
6586 int type=itype[i];
6587 int op=opcode[i];
6588 int op2=opcode2[i];
6589 int rt=rt1[i];
6590 int s1=rs1[i];
6591 int s2=rs2[i];
6592 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6593 // Branches don't write registers, consider the delay slot instead.
6594 type=itype[i+1];
6595 op=opcode[i+1];
6596 op2=opcode2[i+1];
6597 rt=rt1[i+1];
6598 s1=rs1[i+1];
6599 s2=rs2[i+1];
6600 lastbranch=is32;
6601 }
6602 switch(type) {
6603 case LOAD:
6604 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6605 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6606 is32&=~(1LL<<rt);
6607 else
6608 is32|=1LL<<rt;
6609 break;
6610 case STORE:
6611 case STORELR:
6612 break;
6613 case LOADLR:
6614 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6615 if(op==0x22) is32|=1LL<<rt; // LWL
6616 break;
6617 case IMM16:
6618 if (op==0x08||op==0x09|| // ADDI/ADDIU
6619 op==0x0a||op==0x0b|| // SLTI/SLTIU
6620 op==0x0c|| // ANDI
6621 op==0x0f) // LUI
6622 {
6623 is32|=1LL<<rt;
6624 }
6625 if(op==0x18||op==0x19) { // DADDI/DADDIU
6626 is32&=~(1LL<<rt);
6627 //if(imm[i]==0)
6628 // is32|=((is32>>s1)&1LL)<<rt;
6629 }
6630 if(op==0x0d||op==0x0e) { // ORI/XORI
6631 uint64_t sr=((is32>>s1)&1LL);
6632 is32&=~(1LL<<rt);
6633 is32|=sr<<rt;
6634 }
6635 break;
6636 case UJUMP:
6637 break;
6638 case RJUMP:
6639 break;
6640 case CJUMP:
6641 break;
6642 case SJUMP:
6643 break;
6644 case FJUMP:
6645 break;
6646 case ALU:
6647 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6648 is32|=1LL<<rt;
6649 }
6650 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6651 is32|=1LL<<rt;
6652 }
6653 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6654 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6655 is32&=~(1LL<<rt);
6656 is32|=sr<<rt;
6657 }
6658 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6659 if(s1==0&&s2==0) {
6660 is32|=1LL<<rt;
6661 }
6662 else if(s2==0) {
6663 uint64_t sr=((is32>>s1)&1LL);
6664 is32&=~(1LL<<rt);
6665 is32|=sr<<rt;
6666 }
6667 else if(s1==0) {
6668 uint64_t sr=((is32>>s2)&1LL);
6669 is32&=~(1LL<<rt);
6670 is32|=sr<<rt;
6671 }
6672 else {
6673 is32&=~(1LL<<rt);
6674 }
6675 }
6676 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6677 if(s1==0&&s2==0) {
6678 is32|=1LL<<rt;
6679 }
6680 else if(s2==0) {
6681 uint64_t sr=((is32>>s1)&1LL);
6682 is32&=~(1LL<<rt);
6683 is32|=sr<<rt;
6684 }
6685 else {
6686 is32&=~(1LL<<rt);
6687 }
6688 }
6689 break;
6690 case MULTDIV:
6691 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6692 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6693 }
6694 else {
6695 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6696 }
6697 break;
6698 case MOV:
6699 {
6700 uint64_t sr=((is32>>s1)&1LL);
6701 is32&=~(1LL<<rt);
6702 is32|=sr<<rt;
6703 }
6704 break;
6705 case SHIFT:
6706 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6707 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6708 break;
6709 case SHIFTIMM:
6710 is32|=1LL<<rt;
6711 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6712 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6713 break;
6714 case COP0:
6715 if(op2==0) is32|=1LL<<rt; // MFC0
6716 break;
6717 case COP1:
6718 if(op2==0) is32|=1LL<<rt; // MFC1
6719 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6720 if(op2==2) is32|=1LL<<rt; // CFC1
6721 break;
6722 case C1LS:
6723 break;
6724 case FLOAT:
6725 case FCONV:
6726 break;
6727 case FCOMP:
6728 break;
6729 case SYSCALL:
6730 break;
6731 default:
6732 break;
6733 }
6734 is32|=1;
6735 p32[i]=is32;
6736
6737 if(i>0)
6738 {
6739 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6740 {
6741 if(rt1[i-1]==31) // JAL/JALR
6742 {
6743 // Subroutine call will return here, don't alloc any registers
6744 is32=1;
6745 }
6746 else if(i+1<slen)
6747 {
6748 // Internal branch will jump here, match registers to caller
6749 is32=0x3FFFFFFFFLL;
6750 }
6751 }
6752 }
6753 }
6754}
6755
6756// Identify registers which may be assumed to contain 32-bit values
6757// and where optimizations will rely on this.
6758// This is used to determine whether backward branches can safely
6759// jump to a location with 64-bit values in registers.
6760static void provisional_r32()
6761{
6762 u_int r32=0;
6763 int i;
6764
6765 for (i=slen-1;i>=0;i--)
6766 {
6767 int hr;
6768 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6769 {
6770 if(ba[i]<start || ba[i]>=(start+slen*4))
6771 {
6772 // Branch out of this block, don't need anything
6773 r32=0;
6774 }
6775 else
6776 {
6777 // Internal branch
6778 // Need whatever matches the target
6779 // (and doesn't get overwritten by the delay slot instruction)
6780 r32=0;
6781 int t=(ba[i]-start)>>2;
6782 if(ba[i]>start+i*4) {
6783 // Forward branch
6784 //if(!(requires_32bit[t]&~regs[i].was32))
6785 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6786 if(!(pr32[t]&~regs[i].was32))
6787 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6788 }else{
6789 // Backward branch
6790 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
6791 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6792 }
6793 }
6794 // Conditional branch may need registers for following instructions
6795 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
6796 {
6797 if(i<slen-2) {
6798 //r32|=requires_32bit[i+2];
6799 r32|=pr32[i+2];
6800 r32&=regs[i].was32;
6801 // Mark this address as a branch target since it may be called
6802 // upon return from interrupt
6803 //bt[i+2]=1;
6804 }
6805 }
6806 // Merge in delay slot
6807 if(!likely[i]) {
6808 // These are overwritten unless the branch is "likely"
6809 // and the delay slot is nullified if not taken
6810 r32&=~(1LL<<rt1[i+1]);
6811 r32&=~(1LL<<rt2[i+1]);
6812 }
6813 // Assume these are needed (delay slot)
6814 if(us1[i+1]>0)
6815 {
6816 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
6817 }
6818 if(us2[i+1]>0)
6819 {
6820 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
6821 }
6822 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
6823 {
6824 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
6825 }
6826 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
6827 {
6828 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
6829 }
6830 }
6831 else if(itype[i]==SYSCALL)
6832 {
6833 // SYSCALL instruction (software interrupt)
6834 r32=0;
6835 }
6836 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6837 {
6838 // ERET instruction (return from interrupt)
6839 r32=0;
6840 }
6841 // Check 32 bits
6842 r32&=~(1LL<<rt1[i]);
6843 r32&=~(1LL<<rt2[i]);
6844 if(us1[i]>0)
6845 {
6846 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
6847 }
6848 if(us2[i]>0)
6849 {
6850 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
6851 }
6852 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
6853 {
6854 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
6855 }
6856 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
6857 {
6858 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
6859 }
6860 //requires_32bit[i]=r32;
6861 pr32[i]=r32;
6862
6863 // Dirty registers which are 32-bit, require 32-bit input
6864 // as they will be written as 32-bit values
6865 for(hr=0;hr<HOST_REGS;hr++)
6866 {
6867 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
6868 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
6869 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
6870 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
6871 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
6872 }
6873 }
6874 }
6875 }
6876}
6877
6878// Write back dirty registers as soon as we will no longer modify them,
6879// so that we don't end up with lots of writes at the branches.
6880void clean_registers(int istart,int iend,int wr)
6881{
6882 int i;
6883 int r;
6884 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6885 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6886 if(iend==slen-1) {
6887 will_dirty_i=will_dirty_next=0;
6888 wont_dirty_i=wont_dirty_next=0;
6889 }else{
6890 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6891 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6892 }
6893 for (i=iend;i>=istart;i--)
6894 {
6895 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6896 {
6897 if(ba[i]<start || ba[i]>=(start+slen*4))
6898 {
6899 // Branch out of this block, flush all regs
6900 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6901 {
6902 // Unconditional branch
6903 will_dirty_i=0;
6904 wont_dirty_i=0;
6905 // Merge in delay slot (will dirty)
6906 for(r=0;r<HOST_REGS;r++) {
6907 if(r!=EXCLUDE_REG) {
6908 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6909 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6910 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6911 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6912 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6913 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6914 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6915 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6916 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6917 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6918 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6919 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6920 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6921 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6922 }
6923 }
6924 }
6925 else
6926 {
6927 // Conditional branch
6928 will_dirty_i=0;
6929 wont_dirty_i=wont_dirty_next;
6930 // Merge in delay slot (will dirty)
6931 for(r=0;r<HOST_REGS;r++) {
6932 if(r!=EXCLUDE_REG) {
6933 if(!likely[i]) {
6934 // Might not dirty if likely branch is not taken
6935 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6936 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6937 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6938 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6939 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6940 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6941 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6942 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6943 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6944 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6945 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6946 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6947 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6948 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6949 }
6950 }
6951 }
6952 }
6953 // Merge in delay slot (wont dirty)
6954 for(r=0;r<HOST_REGS;r++) {
6955 if(r!=EXCLUDE_REG) {
6956 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6957 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6958 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6959 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6960 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6961 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6962 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6963 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6964 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6965 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6966 }
6967 }
6968 if(wr) {
6969 #ifndef DESTRUCTIVE_WRITEBACK
6970 branch_regs[i].dirty&=wont_dirty_i;
6971 #endif
6972 branch_regs[i].dirty|=will_dirty_i;
6973 }
6974 }
6975 else
6976 {
6977 // Internal branch
6978 if(ba[i]<=start+i*4) {
6979 // Backward branch
6980 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6981 {
6982 // Unconditional branch
6983 temp_will_dirty=0;
6984 temp_wont_dirty=0;
6985 // Merge in delay slot (will dirty)
6986 for(r=0;r<HOST_REGS;r++) {
6987 if(r!=EXCLUDE_REG) {
6988 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6989 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6990 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6991 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6992 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6993 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6994 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6995 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6996 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6997 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6998 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6999 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7000 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7001 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7002 }
7003 }
7004 } else {
7005 // Conditional branch (not taken case)
7006 temp_will_dirty=will_dirty_next;
7007 temp_wont_dirty=wont_dirty_next;
7008 // Merge in delay slot (will dirty)
7009 for(r=0;r<HOST_REGS;r++) {
7010 if(r!=EXCLUDE_REG) {
7011 if(!likely[i]) {
7012 // Will not dirty if likely branch is not taken
7013 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7014 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7015 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7016 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7017 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7018 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7019 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7020 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7021 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7022 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7023 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7024 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7025 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7026 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7027 }
7028 }
7029 }
7030 }
7031 // Merge in delay slot (wont dirty)
7032 for(r=0;r<HOST_REGS;r++) {
7033 if(r!=EXCLUDE_REG) {
7034 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7035 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7036 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7037 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7038 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7039 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7040 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7041 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7042 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7043 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7044 }
7045 }
7046 // Deal with changed mappings
7047 if(i<iend) {
7048 for(r=0;r<HOST_REGS;r++) {
7049 if(r!=EXCLUDE_REG) {
7050 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7051 temp_will_dirty&=~(1<<r);
7052 temp_wont_dirty&=~(1<<r);
7053 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7054 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7055 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7056 } else {
7057 temp_will_dirty|=1<<r;
7058 temp_wont_dirty|=1<<r;
7059 }
7060 }
7061 }
7062 }
7063 }
7064 if(wr) {
7065 will_dirty[i]=temp_will_dirty;
7066 wont_dirty[i]=temp_wont_dirty;
7067 clean_registers((ba[i]-start)>>2,i-1,0);
7068 }else{
7069 // Limit recursion. It can take an excessive amount
7070 // of time if there are a lot of nested loops.
7071 will_dirty[(ba[i]-start)>>2]=0;
7072 wont_dirty[(ba[i]-start)>>2]=-1;
7073 }
7074 }
7075 /*else*/ if(1)
7076 {
7077 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7078 {
7079 // Unconditional branch
7080 will_dirty_i=0;
7081 wont_dirty_i=0;
7082 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7083 for(r=0;r<HOST_REGS;r++) {
7084 if(r!=EXCLUDE_REG) {
7085 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7086 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7087 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7088 }
7089 }
7090 }
7091 //}
7092 // Merge in delay slot
7093 for(r=0;r<HOST_REGS;r++) {
7094 if(r!=EXCLUDE_REG) {
7095 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7096 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7097 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7098 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7099 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7100 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7101 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7102 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7103 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7104 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7105 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7106 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7107 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7108 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7109 }
7110 }
7111 } else {
7112 // Conditional branch
7113 will_dirty_i=will_dirty_next;
7114 wont_dirty_i=wont_dirty_next;
7115 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7116 for(r=0;r<HOST_REGS;r++) {
7117 if(r!=EXCLUDE_REG) {
7118 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7119 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7120 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7121 }
7122 else
7123 {
7124 will_dirty_i&=~(1<<r);
7125 }
7126 // Treat delay slot as part of branch too
7127 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7128 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7129 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7130 }
7131 else
7132 {
7133 will_dirty[i+1]&=~(1<<r);
7134 }*/
7135 }
7136 }
7137 //}
7138 // Merge in delay slot
7139 for(r=0;r<HOST_REGS;r++) {
7140 if(r!=EXCLUDE_REG) {
7141 if(!likely[i]) {
7142 // Might not dirty if likely branch is not taken
7143 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7144 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7145 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7146 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7147 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7148 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7149 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7150 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7151 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7152 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7153 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7154 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7155 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7156 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7157 }
7158 }
7159 }
7160 }
7161 // Merge in delay slot
7162 for(r=0;r<HOST_REGS;r++) {
7163 if(r!=EXCLUDE_REG) {
7164 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7165 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7166 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7167 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7168 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7169 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7170 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7171 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7172 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7173 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7174 }
7175 }
7176 if(wr) {
7177 #ifndef DESTRUCTIVE_WRITEBACK
7178 branch_regs[i].dirty&=wont_dirty_i;
7179 #endif
7180 branch_regs[i].dirty|=will_dirty_i;
7181 }
7182 }
7183 }
7184 }
7185 else if(itype[i]==SYSCALL)
7186 {
7187 // SYSCALL instruction (software interrupt)
7188 will_dirty_i=0;
7189 wont_dirty_i=0;
7190 }
7191 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7192 {
7193 // ERET instruction (return from interrupt)
7194 will_dirty_i=0;
7195 wont_dirty_i=0;
7196 }
7197 will_dirty_next=will_dirty_i;
7198 wont_dirty_next=wont_dirty_i;
7199 for(r=0;r<HOST_REGS;r++) {
7200 if(r!=EXCLUDE_REG) {
7201 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7202 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7203 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7204 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7205 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7206 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7207 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7208 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7209 if(i>istart) {
7210 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7211 {
7212 // Don't store a register immediately after writing it,
7213 // may prevent dual-issue.
7214 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7215 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7216 }
7217 }
7218 }
7219 }
7220 // Save it
7221 will_dirty[i]=will_dirty_i;
7222 wont_dirty[i]=wont_dirty_i;
7223 // Mark registers that won't be dirtied as not dirty
7224 if(wr) {
7225 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7226 for(r=0;r<HOST_REGS;r++) {
7227 if((will_dirty_i>>r)&1) {
7228 printf(" r%d",r);
7229 }
7230 }
7231 printf("\n");*/
7232
7233 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7234 regs[i].dirty|=will_dirty_i;
7235 #ifndef DESTRUCTIVE_WRITEBACK
7236 regs[i].dirty&=wont_dirty_i;
7237 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7238 {
7239 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7240 for(r=0;r<HOST_REGS;r++) {
7241 if(r!=EXCLUDE_REG) {
7242 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7243 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7244 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7245 }
7246 }
7247 }
7248 }
7249 else
7250 {
7251 if(i<iend) {
7252 for(r=0;r<HOST_REGS;r++) {
7253 if(r!=EXCLUDE_REG) {
7254 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7255 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7256 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7257 }
7258 }
7259 }
7260 }
7261 #endif
7262 //}
7263 }
7264 // Deal with changed mappings
7265 temp_will_dirty=will_dirty_i;
7266 temp_wont_dirty=wont_dirty_i;
7267 for(r=0;r<HOST_REGS;r++) {
7268 if(r!=EXCLUDE_REG) {
7269 int nr;
7270 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7271 if(wr) {
7272 #ifndef DESTRUCTIVE_WRITEBACK
7273 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7274 #endif
7275 regs[i].wasdirty|=will_dirty_i&(1<<r);
7276 }
7277 }
7278 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7279 // Register moved to a different register
7280 will_dirty_i&=~(1<<r);
7281 wont_dirty_i&=~(1<<r);
7282 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7283 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7284 if(wr) {
7285 #ifndef DESTRUCTIVE_WRITEBACK
7286 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7287 #endif
7288 regs[i].wasdirty|=will_dirty_i&(1<<r);
7289 }
7290 }
7291 else {
7292 will_dirty_i&=~(1<<r);
7293 wont_dirty_i&=~(1<<r);
7294 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7295 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7296 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7297 } else {
7298 wont_dirty_i|=1<<r;
7299 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7300 }
7301 }
7302 }
7303 }
7304 }
7305}
7306
7307 /* disassembly */
7308void disassemble_inst(int i)
7309{
7310 if (bt[i]) printf("*"); else printf(" ");
7311 switch(itype[i]) {
7312 case UJUMP:
7313 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7314 case CJUMP:
7315 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7316 case SJUMP:
7317 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7318 case FJUMP:
7319 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7320 case RJUMP:
7321 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);break;
7322 case SPAN:
7323 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7324 case IMM16:
7325 if(opcode[i]==0xf) //LUI
7326 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7327 else
7328 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7329 break;
7330 case LOAD:
7331 case LOADLR:
7332 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7333 break;
7334 case STORE:
7335 case STORELR:
7336 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7337 break;
7338 case ALU:
7339 case SHIFT:
7340 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7341 break;
7342 case MULTDIV:
7343 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7344 break;
7345 case SHIFTIMM:
7346 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7347 break;
7348 case MOV:
7349 if((opcode2[i]&0x1d)==0x10)
7350 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7351 else if((opcode2[i]&0x1d)==0x11)
7352 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7353 else
7354 printf (" %x: %s\n",start+i*4,insn[i]);
7355 break;
7356 case COP0:
7357 if(opcode2[i]==0)
7358 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7359 else if(opcode2[i]==4)
7360 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7361 else printf (" %x: %s\n",start+i*4,insn[i]);
7362 break;
7363 case COP1:
7364 if(opcode2[i]<3)
7365 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7366 else if(opcode2[i]>3)
7367 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7368 else printf (" %x: %s\n",start+i*4,insn[i]);
7369 break;
7370 case C1LS:
7371 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7372 break;
7373 default:
7374 //printf (" %s %8x\n",insn[i],source[i]);
7375 printf (" %x: %s\n",start+i*4,insn[i]);
7376 }
7377}
7378
7379void new_dynarec_init()
7380{
7381 printf("Init new dynarec\n");
7382 out=(u_char *)BASE_ADDR;
7383 if (mmap (out, 1<<TARGET_SIZE_2,
7384 PROT_READ | PROT_WRITE | PROT_EXEC,
7385 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7386 -1, 0) <= 0) {printf("mmap() failed\n");}
3d624f89 7387#ifdef MUPEN64
57871462 7388 rdword=&readmem_dword;
7389 fake_pc.f.r.rs=&readmem_dword;
7390 fake_pc.f.r.rt=&readmem_dword;
7391 fake_pc.f.r.rd=&readmem_dword;
3d624f89 7392#endif
57871462 7393 int n;
7394 for(n=0x80000;n<0x80800;n++)
7395 invalid_code[n]=1;
7396 for(n=0;n<65536;n++)
7397 hash_table[n][0]=hash_table[n][2]=-1;
7398 memset(mini_ht,-1,sizeof(mini_ht));
7399 memset(restore_candidate,0,sizeof(restore_candidate));
7400 copy=shadow;
7401 expirep=16384; // Expiry pointer, +2 blocks
7402 pending_exception=0;
7403 literalcount=0;
7404#ifdef HOST_IMM8
7405 // Copy this into local area so we don't have to put it in every literal pool
7406 invc_ptr=invalid_code;
7407#endif
7408 stop_after_jal=0;
7409 // TLB
7410 using_tlb=0;
7411 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7412 memory_map[n]=-1;
7413 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7414 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7415 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7416 memory_map[n]=-1;
7417 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7418 writemem[n] = write_nomem_new;
7419 writememb[n] = write_nomemb_new;
7420 writememh[n] = write_nomemh_new;
7421 writememd[n] = write_nomemd_new;
7422 readmem[n] = read_nomem_new;
7423 readmemb[n] = read_nomemb_new;
7424 readmemh[n] = read_nomemh_new;
7425 readmemd[n] = read_nomemd_new;
7426 }
7427 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7428 writemem[n] = write_rdram_new;
7429 writememb[n] = write_rdramb_new;
7430 writememh[n] = write_rdramh_new;
7431 writememd[n] = write_rdramd_new;
7432 }
7433 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7434 writemem[n] = write_nomem_new;
7435 writememb[n] = write_nomemb_new;
7436 writememh[n] = write_nomemh_new;
7437 writememd[n] = write_nomemd_new;
7438 readmem[n] = read_nomem_new;
7439 readmemb[n] = read_nomemb_new;
7440 readmemh[n] = read_nomemh_new;
7441 readmemd[n] = read_nomemd_new;
7442 }
7443 tlb_hacks();
7444 arch_init();
7445}
7446
7447void new_dynarec_cleanup()
7448{
7449 int n;
7450 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7451 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7452 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7453 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7454 #ifdef ROM_COPY
7455 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7456 #endif
7457}
7458
7459int new_recompile_block(int addr)
7460{
7461/*
7462 if(addr==0x800cd050) {
7463 int block;
7464 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7465 int n;
7466 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7467 }
7468*/
7469 //if(Count==365117028) tracedebug=1;
7470 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7471 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7472 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7473 //if(debug)
7474 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7475 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7476 /*if(Count>=312978186) {
7477 rlist();
7478 }*/
7479 //rlist();
7480 start = (u_int)addr&~3;
7481 //assert(((u_int)addr&1)==0);
3d624f89 7482#ifdef MUPEN64
57871462 7483 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7484 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7485 pagelimit = 0xa4001000;
7486 }
3d624f89 7487 else
7488#endif
7489 if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
57871462 7490 source = (u_int *)((u_int)rdram+start-0x80000000);
7491 pagelimit = 0x80800000;
7492 }
7493 else if ((signed int)addr >= (signed int)0xC0000000) {
7494 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7495 //if(tlb_LUT_r[start>>12])
7496 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7497 if((signed int)memory_map[start>>12]>=0) {
7498 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7499 pagelimit=(start+4096)&0xFFFFF000;
7500 int map=memory_map[start>>12];
7501 int i;
7502 for(i=0;i<5;i++) {
7503 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7504 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7505 }
7506 assem_debug("pagelimit=%x\n",pagelimit);
7507 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7508 }
7509 else {
7510 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7511 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7512 return 1; // Caller will invoke exception handler
7513 }
7514 //printf("source= %x\n",(int)source);
7515 }
7516 else {
7517 printf("Compile at bogus memory address: %x \n", (int)addr);
7518 exit(1);
7519 }
7520
7521 /* Pass 1: disassemble */
7522 /* Pass 2: register dependencies, branch targets */
7523 /* Pass 3: register allocation */
7524 /* Pass 4: branch dependencies */
7525 /* Pass 5: pre-alloc */
7526 /* Pass 6: optimize clean/dirty state */
7527 /* Pass 7: flag 32-bit registers */
7528 /* Pass 8: assembly */
7529 /* Pass 9: linker */
7530 /* Pass 10: garbage collection / free memory */
7531
7532 int i,j;
7533 int done=0;
7534 unsigned int type,op,op2;
7535
7536 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7537
7538 /* Pass 1 disassembly */
7539
7540 for(i=0;!done;i++) {
7541 bt[i]=0;likely[i]=0;op2=0;
7542 opcode[i]=op=source[i]>>26;
7543 switch(op)
7544 {
7545 case 0x00: strcpy(insn[i],"special"); type=NI;
7546 op2=source[i]&0x3f;
7547 switch(op2)
7548 {
7549 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7550 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7551 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7552 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7553 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7554 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7555 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7556 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7557 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7558 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7559 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7560 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7561 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7562 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7563 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7564 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7565 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7566 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7567 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7568 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7569 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7570 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7571 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7572 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7573 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7574 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7575 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7576 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7577 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7578 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7579 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7580 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7581 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7582 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7583 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7584 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7585 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7586 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7587 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7588 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7589 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7590 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7591 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7592 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7593 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7594 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7595 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7596 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7597 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7598 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7599 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7600 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7601 }
7602 break;
7603 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7604 op2=(source[i]>>16)&0x1f;
7605 switch(op2)
7606 {
7607 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7608 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7609 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7610 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7611 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7612 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7613 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7614 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7615 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7616 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7617 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7618 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7619 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7620 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7621 }
7622 break;
7623 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7624 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7625 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7626 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7627 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7628 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7629 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7630 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7631 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7632 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7633 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7634 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7635 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7636 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7637 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7638 op2=(source[i]>>21)&0x1f;
7639 switch(op2)
7640 {
7641 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7642 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7643 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7644 switch(source[i]&0x3f)
7645 {
7646 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7647 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7648 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7649 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7650 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7651 }
7652 }
7653 break;
7654 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7655 op2=(source[i]>>21)&0x1f;
7656 switch(op2)
7657 {
7658 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7659 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7660 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7661 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7662 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7663 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7664 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7665 switch((source[i]>>16)&0x3)
7666 {
7667 case 0x00: strcpy(insn[i],"BC1F"); break;
7668 case 0x01: strcpy(insn[i],"BC1T"); break;
7669 case 0x02: strcpy(insn[i],"BC1FL"); break;
7670 case 0x03: strcpy(insn[i],"BC1TL"); break;
7671 }
7672 break;
7673 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7674 switch(source[i]&0x3f)
7675 {
7676 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7677 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7678 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7679 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7680 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7681 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7682 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7683 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7684 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7685 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7686 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7687 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7688 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7689 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7690 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7691 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7692 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7693 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7694 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7695 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7696 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7697 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7698 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7699 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7700 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7701 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7702 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7703 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7704 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7705 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7706 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7707 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7708 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7709 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7710 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7711 }
7712 break;
7713 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7714 switch(source[i]&0x3f)
7715 {
7716 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7717 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7718 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7719 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7720 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7721 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7722 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7723 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7724 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7725 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7726 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7727 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7728 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7729 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7730 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7731 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7732 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7733 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7734 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7735 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7736 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7737 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7738 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7739 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7740 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7741 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7742 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7743 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7744 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7745 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7746 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7747 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7748 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7749 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7750 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7751 }
7752 break;
7753 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7754 switch(source[i]&0x3f)
7755 {
7756 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7757 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7758 }
7759 break;
7760 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7761 switch(source[i]&0x3f)
7762 {
7763 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7764 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7765 }
7766 break;
7767 }
7768 break;
7769 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7770 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7771 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7772 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7773 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7774 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7775 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7776 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7777 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7778 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7779 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7780 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7781 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7782 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7783 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7784 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7785 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7786 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7787 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7788 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7789 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7790 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7791 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7792 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7793 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7794 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7795 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7796 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7797 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7798 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7799 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7800 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7801 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7802 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7803 default: strcpy(insn[i],"???"); type=NI; break;
7804 }
7805 itype[i]=type;
7806 opcode2[i]=op2;
7807 /* Get registers/immediates */
7808 lt1[i]=0;
7809 us1[i]=0;
7810 us2[i]=0;
7811 dep1[i]=0;
7812 dep2[i]=0;
7813 switch(type) {
7814 case LOAD:
7815 rs1[i]=(source[i]>>21)&0x1f;
7816 rs2[i]=0;
7817 rt1[i]=(source[i]>>16)&0x1f;
7818 rt2[i]=0;
7819 imm[i]=(short)source[i];
7820 break;
7821 case STORE:
7822 case STORELR:
7823 rs1[i]=(source[i]>>21)&0x1f;
7824 rs2[i]=(source[i]>>16)&0x1f;
7825 rt1[i]=0;
7826 rt2[i]=0;
7827 imm[i]=(short)source[i];
7828 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7829 break;
7830 case LOADLR:
7831 // LWL/LWR only load part of the register,
7832 // therefore the target register must be treated as a source too
7833 rs1[i]=(source[i]>>21)&0x1f;
7834 rs2[i]=(source[i]>>16)&0x1f;
7835 rt1[i]=(source[i]>>16)&0x1f;
7836 rt2[i]=0;
7837 imm[i]=(short)source[i];
7838 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7839 if(op==0x26) dep1[i]=rt1[i]; // LWR
7840 break;
7841 case IMM16:
7842 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7843 else rs1[i]=(source[i]>>21)&0x1f;
7844 rs2[i]=0;
7845 rt1[i]=(source[i]>>16)&0x1f;
7846 rt2[i]=0;
7847 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7848 imm[i]=(unsigned short)source[i];
7849 }else{
7850 imm[i]=(short)source[i];
7851 }
7852 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7853 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7854 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7855 break;
7856 case UJUMP:
7857 rs1[i]=0;
7858 rs2[i]=0;
7859 rt1[i]=0;
7860 rt2[i]=0;
7861 // The JAL instruction writes to r31.
7862 if (op&1) {
7863 rt1[i]=31;
7864 }
7865 rs2[i]=CCREG;
7866 break;
7867 case RJUMP:
7868 rs1[i]=(source[i]>>21)&0x1f;
7869 rs2[i]=0;
7870 rt1[i]=0;
7871 rt2[i]=0;
7872 // The JALR instruction writes to r31.
7873 if (op2&1) {
7874 rt1[i]=31;
7875 }
7876 rs2[i]=CCREG;
7877 break;
7878 case CJUMP:
7879 rs1[i]=(source[i]>>21)&0x1f;
7880 rs2[i]=(source[i]>>16)&0x1f;
7881 rt1[i]=0;
7882 rt2[i]=0;
7883 if(op&2) { // BGTZ/BLEZ
7884 rs2[i]=0;
7885 }
7886 us1[i]=rs1[i];
7887 us2[i]=rs2[i];
7888 likely[i]=op>>4;
7889 break;
7890 case SJUMP:
7891 rs1[i]=(source[i]>>21)&0x1f;
7892 rs2[i]=CCREG;
7893 rt1[i]=0;
7894 rt2[i]=0;
7895 us1[i]=rs1[i];
7896 if(op2&0x10) { // BxxAL
7897 rt1[i]=31;
7898 // NOTE: If the branch is not taken, r31 is still overwritten
7899 }
7900 likely[i]=(op2&2)>>1;
7901 break;
7902 case FJUMP:
7903 rs1[i]=FSREG;
7904 rs2[i]=CSREG;
7905 rt1[i]=0;
7906 rt2[i]=0;
7907 likely[i]=((source[i])>>17)&1;
7908 break;
7909 case ALU:
7910 rs1[i]=(source[i]>>21)&0x1f; // source
7911 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7912 rt1[i]=(source[i]>>11)&0x1f; // destination
7913 rt2[i]=0;
7914 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7915 us1[i]=rs1[i];us2[i]=rs2[i];
7916 }
7917 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7918 dep1[i]=rs1[i];dep2[i]=rs2[i];
7919 }
7920 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7921 dep1[i]=rs1[i];dep2[i]=rs2[i];
7922 }
7923 break;
7924 case MULTDIV:
7925 rs1[i]=(source[i]>>21)&0x1f; // source
7926 rs2[i]=(source[i]>>16)&0x1f; // divisor
7927 rt1[i]=HIREG;
7928 rt2[i]=LOREG;
7929 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7930 us1[i]=rs1[i];us2[i]=rs2[i];
7931 }
7932 break;
7933 case MOV:
7934 rs1[i]=0;
7935 rs2[i]=0;
7936 rt1[i]=0;
7937 rt2[i]=0;
7938 if(op2==0x10) rs1[i]=HIREG; // MFHI
7939 if(op2==0x11) rt1[i]=HIREG; // MTHI
7940 if(op2==0x12) rs1[i]=LOREG; // MFLO
7941 if(op2==0x13) rt1[i]=LOREG; // MTLO
7942 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7943 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7944 dep1[i]=rs1[i];
7945 break;
7946 case SHIFT:
7947 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7948 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7949 rt1[i]=(source[i]>>11)&0x1f; // destination
7950 rt2[i]=0;
7951 // DSLLV/DSRLV/DSRAV are 64-bit
7952 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7953 break;
7954 case SHIFTIMM:
7955 rs1[i]=(source[i]>>16)&0x1f;
7956 rs2[i]=0;
7957 rt1[i]=(source[i]>>11)&0x1f;
7958 rt2[i]=0;
7959 imm[i]=(source[i]>>6)&0x1f;
7960 // DSxx32 instructions
7961 if(op2>=0x3c) imm[i]|=0x20;
7962 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7963 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7964 break;
7965 case COP0:
7966 rs1[i]=0;
7967 rs2[i]=0;
7968 rt1[i]=0;
7969 rt2[i]=0;
7970 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7971 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7972 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7973 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7974 break;
7975 case COP1:
7976 rs1[i]=0;
7977 rs2[i]=0;
7978 rt1[i]=0;
7979 rt2[i]=0;
7980 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7981 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7982 if(op2==5) us1[i]=rs1[i]; // DMTC1
7983 rs2[i]=CSREG;
7984 break;
7985 case C1LS:
7986 rs1[i]=(source[i]>>21)&0x1F;
7987 rs2[i]=CSREG;
7988 rt1[i]=0;
7989 rt2[i]=0;
7990 imm[i]=(short)source[i];
7991 break;
7992 case FLOAT:
7993 case FCONV:
7994 rs1[i]=0;
7995 rs2[i]=CSREG;
7996 rt1[i]=0;
7997 rt2[i]=0;
7998 break;
7999 case FCOMP:
8000 rs1[i]=FSREG;
8001 rs2[i]=CSREG;
8002 rt1[i]=FSREG;
8003 rt2[i]=0;
8004 break;
8005 case SYSCALL:
8006 rs1[i]=CCREG;
8007 rs2[i]=0;
8008 rt1[i]=0;
8009 rt2[i]=0;
8010 break;
8011 default:
8012 rs1[i]=0;
8013 rs2[i]=0;
8014 rt1[i]=0;
8015 rt2[i]=0;
8016 }
8017 /* Calculate branch target addresses */
8018 if(type==UJUMP)
8019 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8020 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8021 ba[i]=start+i*4+8; // Ignore never taken branch
8022 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8023 ba[i]=start+i*4+8; // Ignore never taken branch
8024 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8025 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8026 else ba[i]=-1;
8027 /* Is this the end of the block? */
8028 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8029 if(rt1[i-1]!=31) { // Continue past subroutine call (JAL)
8030 done=1;
8031 // Does the block continue due to a branch?
8032 for(j=i-1;j>=0;j--)
8033 {
8034 if(ba[j]==start+i*4+4) done=j=0;
8035 if(ba[j]==start+i*4+8) done=j=0;
8036 }
8037 }
8038 else {
8039 if(stop_after_jal) done=1;
8040 // Stop on BREAK
8041 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8042 }
8043 // Don't recompile stuff that's already compiled
8044 if(check_addr(start+i*4+4)) done=1;
8045 // Don't get too close to the limit
8046 if(i>MAXBLOCK/2) done=1;
8047 }
8048 if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8049 assert(i<MAXBLOCK-1);
8050 if(start+i*4==pagelimit-4) done=1;
8051 assert(start+i*4<pagelimit);
8052 if (i==MAXBLOCK-1) done=1;
8053 // Stop if we're compiling junk
8054 if(itype[i]==NI&&opcode[i]==0x11) {
8055 done=stop_after_jal=1;
8056 printf("Disabled speculative precompilation\n");
8057 }
8058 }
8059 slen=i;
8060 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8061 if(start+i*4==pagelimit) {
8062 itype[i-1]=SPAN;
8063 }
8064 }
8065 assert(slen>0);
8066
8067 /* Pass 2 - Register dependencies and branch targets */
8068
8069 unneeded_registers(0,slen-1,0);
8070
8071 /* Pass 3 - Register allocation */
8072
8073 struct regstat current; // Current register allocations/status
8074 current.is32=1;
8075 current.dirty=0;
8076 current.u=unneeded_reg[0];
8077 current.uu=unneeded_reg_upper[0];
8078 clear_all_regs(current.regmap);
8079 alloc_reg(&current,0,CCREG);
8080 dirty_reg(&current,CCREG);
8081 current.isconst=0;
8082 current.wasconst=0;
8083 int ds=0;
8084 int cc=0;
8085 int hr;
8086
8087 provisional_32bit();
8088
8089 if((u_int)addr&1) {
8090 // First instruction is delay slot
8091 cc=-1;
8092 bt[1]=1;
8093 ds=1;
8094 unneeded_reg[0]=1;
8095 unneeded_reg_upper[0]=1;
8096 current.regmap[HOST_BTREG]=BTREG;
8097 }
8098
8099 for(i=0;i<slen;i++)
8100 {
8101 if(bt[i])
8102 {
8103 int hr;
8104 for(hr=0;hr<HOST_REGS;hr++)
8105 {
8106 // Is this really necessary?
8107 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8108 }
8109 current.isconst=0;
8110 }
8111 if(i>1)
8112 {
8113 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8114 {
8115 if(rs1[i-2]==0||rs2[i-2]==0)
8116 {
8117 if(rs1[i-2]) {
8118 current.is32|=1LL<<rs1[i-2];
8119 int hr=get_reg(current.regmap,rs1[i-2]|64);
8120 if(hr>=0) current.regmap[hr]=-1;
8121 }
8122 if(rs2[i-2]) {
8123 current.is32|=1LL<<rs2[i-2];
8124 int hr=get_reg(current.regmap,rs2[i-2]|64);
8125 if(hr>=0) current.regmap[hr]=-1;
8126 }
8127 }
8128 }
8129 }
8130 // If something jumps here with 64-bit values
8131 // then promote those registers to 64 bits
8132 if(bt[i])
8133 {
8134 uint64_t temp_is32=current.is32;
8135 for(j=i-1;j>=0;j--)
8136 {
8137 if(ba[j]==start+i*4)
8138 temp_is32&=branch_regs[j].is32;
8139 }
8140 for(j=i;j<slen;j++)
8141 {
8142 if(ba[j]==start+i*4)
8143 //temp_is32=1;
8144 temp_is32&=p32[j];
8145 }
8146 if(temp_is32!=current.is32) {
8147 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8148 #ifdef DESTRUCTIVE_WRITEBACK
8149 for(hr=0;hr<HOST_REGS;hr++)
8150 {
8151 int r=current.regmap[hr];
8152 if(r>0&&r<64)
8153 {
8154 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8155 temp_is32|=1LL<<r;
8156 //printf("restore %d\n",r);
8157 }
8158 }
8159 }
8160 #endif
8161 current.is32=temp_is32;
8162 }
8163 }
8164 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8165 regs[i].wasconst=current.isconst;
8166 regs[i].was32=current.is32;
8167 regs[i].wasdirty=current.dirty;
8168 #ifdef DESTRUCTIVE_WRITEBACK
8169 // To change a dirty register from 32 to 64 bits, we must write
8170 // it out during the previous cycle (for branches, 2 cycles)
8171 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8172 {
8173 uint64_t temp_is32=current.is32;
8174 for(j=i-1;j>=0;j--)
8175 {
8176 if(ba[j]==start+i*4+4)
8177 temp_is32&=branch_regs[j].is32;
8178 }
8179 for(j=i;j<slen;j++)
8180 {
8181 if(ba[j]==start+i*4+4)
8182 //temp_is32=1;
8183 temp_is32&=p32[j];
8184 }
8185 if(temp_is32!=current.is32) {
8186 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8187 for(hr=0;hr<HOST_REGS;hr++)
8188 {
8189 int r=current.regmap[hr];
8190 if(r>0)
8191 {
8192 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8193 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8194 {
8195 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8196 {
8197 //printf("dump %d/r%d\n",hr,r);
8198 current.regmap[hr]=-1;
8199 if(get_reg(current.regmap,r|64)>=0)
8200 current.regmap[get_reg(current.regmap,r|64)]=-1;
8201 }
8202 }
8203 }
8204 }
8205 }
8206 }
8207 }
8208 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8209 {
8210 uint64_t temp_is32=current.is32;
8211 for(j=i-1;j>=0;j--)
8212 {
8213 if(ba[j]==start+i*4+8)
8214 temp_is32&=branch_regs[j].is32;
8215 }
8216 for(j=i;j<slen;j++)
8217 {
8218 if(ba[j]==start+i*4+8)
8219 //temp_is32=1;
8220 temp_is32&=p32[j];
8221 }
8222 if(temp_is32!=current.is32) {
8223 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8224 for(hr=0;hr<HOST_REGS;hr++)
8225 {
8226 int r=current.regmap[hr];
8227 if(r>0)
8228 {
8229 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8230 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8231 {
8232 //printf("dump %d/r%d\n",hr,r);
8233 current.regmap[hr]=-1;
8234 if(get_reg(current.regmap,r|64)>=0)
8235 current.regmap[get_reg(current.regmap,r|64)]=-1;
8236 }
8237 }
8238 }
8239 }
8240 }
8241 }
8242 #endif
8243 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8244 if(i+1<slen) {
8245 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8246 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8247 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8248 current.u|=1;
8249 current.uu|=1;
8250 } else {
8251 current.u=1;
8252 current.uu=1;
8253 }
8254 } else {
8255 if(i+1<slen) {
8256 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8257 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8258 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8259 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8260 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8261 current.u|=1;
8262 current.uu|=1;
8263 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8264 }
8265 is_ds[i]=ds;
8266 if(ds) {
8267 ds=0; // Skip delay slot, already allocated as part of branch
8268 // ...but we need to alloc it in case something jumps here
8269 if(i+1<slen) {
8270 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8271 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8272 }else{
8273 current.u=branch_unneeded_reg[i-1];
8274 current.uu=branch_unneeded_reg_upper[i-1];
8275 }
8276 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8277 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8278 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8279 current.u|=1;
8280 current.uu|=1;
8281 struct regstat temp;
8282 memcpy(&temp,&current,sizeof(current));
8283 temp.wasdirty=temp.dirty;
8284 temp.was32=temp.is32;
8285 // TODO: Take into account unconditional branches, as below
8286 delayslot_alloc(&temp,i);
8287 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8288 regs[i].wasdirty=temp.wasdirty;
8289 regs[i].was32=temp.was32;
8290 regs[i].dirty=temp.dirty;
8291 regs[i].is32=temp.is32;
8292 regs[i].isconst=0;
8293 regs[i].wasconst=0;
8294 current.isconst=0;
8295 // Create entry (branch target) regmap
8296 for(hr=0;hr<HOST_REGS;hr++)
8297 {
8298 int r=temp.regmap[hr];
8299 if(r>=0) {
8300 if(r!=regmap_pre[i][hr]) {
8301 regs[i].regmap_entry[hr]=-1;
8302 }
8303 else
8304 {
8305 if(r<64){
8306 if((current.u>>r)&1) {
8307 regs[i].regmap_entry[hr]=-1;
8308 regs[i].regmap[hr]=-1;
8309 //Don't clear regs in the delay slot as the branch might need them
8310 //current.regmap[hr]=-1;
8311 }else
8312 regs[i].regmap_entry[hr]=r;
8313 }
8314 else {
8315 if((current.uu>>(r&63))&1) {
8316 regs[i].regmap_entry[hr]=-1;
8317 regs[i].regmap[hr]=-1;
8318 //Don't clear regs in the delay slot as the branch might need them
8319 //current.regmap[hr]=-1;
8320 }else
8321 regs[i].regmap_entry[hr]=r;
8322 }
8323 }
8324 } else {
8325 // First instruction expects CCREG to be allocated
8326 if(i==0&&hr==HOST_CCREG)
8327 regs[i].regmap_entry[hr]=CCREG;
8328 else
8329 regs[i].regmap_entry[hr]=-1;
8330 }
8331 }
8332 }
8333 else { // Not delay slot
8334 switch(itype[i]) {
8335 case UJUMP:
8336 //current.isconst=0; // DEBUG
8337 //current.wasconst=0; // DEBUG
8338 //regs[i].wasconst=0; // DEBUG
8339 clear_const(&current,rt1[i]);
8340 alloc_cc(&current,i);
8341 dirty_reg(&current,CCREG);
8342 if (rt1[i]==31) {
8343 alloc_reg(&current,i,31);
8344 dirty_reg(&current,31);
8345 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8346 #ifdef REG_PREFETCH
8347 alloc_reg(&current,i,PTEMP);
8348 #endif
8349 //current.is32|=1LL<<rt1[i];
8350 }
8351 delayslot_alloc(&current,i+1);
8352 //current.isconst=0; // DEBUG
8353 ds=1;
8354 //printf("i=%d, isconst=%x\n",i,current.isconst);
8355 break;
8356 case RJUMP:
8357 //current.isconst=0;
8358 //current.wasconst=0;
8359 //regs[i].wasconst=0;
8360 clear_const(&current,rs1[i]);
8361 clear_const(&current,rt1[i]);
8362 alloc_cc(&current,i);
8363 dirty_reg(&current,CCREG);
8364 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8365 alloc_reg(&current,i,rs1[i]);
8366 if (rt1[i]==31) {
8367 alloc_reg(&current,i,31);
8368 dirty_reg(&current,31);
8369 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8370 #ifdef REG_PREFETCH
8371 alloc_reg(&current,i,PTEMP);
8372 #endif
8373 }
8374 #ifdef USE_MINI_HT
8375 if(rs1[i]==31) { // JALR
8376 alloc_reg(&current,i,RHASH);
8377 #ifndef HOST_IMM_ADDR32
8378 alloc_reg(&current,i,RHTBL);
8379 #endif
8380 }
8381 #endif
8382 delayslot_alloc(&current,i+1);
8383 } else {
8384 // The delay slot overwrites our source register,
8385 // allocate a temporary register to hold the old value.
8386 current.isconst=0;
8387 current.wasconst=0;
8388 regs[i].wasconst=0;
8389 delayslot_alloc(&current,i+1);
8390 current.isconst=0;
8391 alloc_reg(&current,i,RTEMP);
8392 }
8393 //current.isconst=0; // DEBUG
8394 ds=1;
8395 break;
8396 case CJUMP:
8397 //current.isconst=0;
8398 //current.wasconst=0;
8399 //regs[i].wasconst=0;
8400 clear_const(&current,rs1[i]);
8401 clear_const(&current,rs2[i]);
8402 if((opcode[i]&0x3E)==4) // BEQ/BNE
8403 {
8404 alloc_cc(&current,i);
8405 dirty_reg(&current,CCREG);
8406 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8407 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8408 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8409 {
8410 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8411 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8412 }
8413 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8414 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8415 // The delay slot overwrites one of our conditions.
8416 // Allocate the branch condition registers instead.
8417 // Note that such a sequence of instructions could
8418 // be considered a bug since the branch can not be
8419 // re-executed if an exception occurs.
8420 current.isconst=0;
8421 current.wasconst=0;
8422 regs[i].wasconst=0;
8423 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8424 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8425 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8426 {
8427 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8428 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8429 }
8430 }
8431 else delayslot_alloc(&current,i+1);
8432 }
8433 else
8434 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8435 {
8436 alloc_cc(&current,i);
8437 dirty_reg(&current,CCREG);
8438 alloc_reg(&current,i,rs1[i]);
8439 if(!(current.is32>>rs1[i]&1))
8440 {
8441 alloc_reg64(&current,i,rs1[i]);
8442 }
8443 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8444 // The delay slot overwrites one of our conditions.
8445 // Allocate the branch condition registers instead.
8446 // Note that such a sequence of instructions could
8447 // be considered a bug since the branch can not be
8448 // re-executed if an exception occurs.
8449 current.isconst=0;
8450 current.wasconst=0;
8451 regs[i].wasconst=0;
8452 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8453 if(!((current.is32>>rs1[i])&1))
8454 {
8455 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8456 }
8457 }
8458 else delayslot_alloc(&current,i+1);
8459 }
8460 else
8461 // Don't alloc the delay slot yet because we might not execute it
8462 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8463 {
8464 current.isconst=0;
8465 current.wasconst=0;
8466 regs[i].wasconst=0;
8467 alloc_cc(&current,i);
8468 dirty_reg(&current,CCREG);
8469 alloc_reg(&current,i,rs1[i]);
8470 alloc_reg(&current,i,rs2[i]);
8471 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8472 {
8473 alloc_reg64(&current,i,rs1[i]);
8474 alloc_reg64(&current,i,rs2[i]);
8475 }
8476 }
8477 else
8478 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8479 {
8480 current.isconst=0;
8481 current.wasconst=0;
8482 regs[i].wasconst=0;
8483 alloc_cc(&current,i);
8484 dirty_reg(&current,CCREG);
8485 alloc_reg(&current,i,rs1[i]);
8486 if(!(current.is32>>rs1[i]&1))
8487 {
8488 alloc_reg64(&current,i,rs1[i]);
8489 }
8490 }
8491 ds=1;
8492 //current.isconst=0;
8493 break;
8494 case SJUMP:
8495 //current.isconst=0;
8496 //current.wasconst=0;
8497 //regs[i].wasconst=0;
8498 clear_const(&current,rs1[i]);
8499 clear_const(&current,rt1[i]);
8500 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8501 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8502 {
8503 alloc_cc(&current,i);
8504 dirty_reg(&current,CCREG);
8505 alloc_reg(&current,i,rs1[i]);
8506 if(!(current.is32>>rs1[i]&1))
8507 {
8508 alloc_reg64(&current,i,rs1[i]);
8509 }
8510 if (rt1[i]==31) { // BLTZAL/BGEZAL
8511 alloc_reg(&current,i,31);
8512 dirty_reg(&current,31);
8513 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8514 //#ifdef REG_PREFETCH
8515 //alloc_reg(&current,i,PTEMP);
8516 //#endif
8517 //current.is32|=1LL<<rt1[i];
8518 }
8519 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8520 // The delay slot overwrites the branch condition.
8521 // Allocate the branch condition registers instead.
8522 // Note that such a sequence of instructions could
8523 // be considered a bug since the branch can not be
8524 // re-executed if an exception occurs.
8525 current.isconst=0;
8526 current.wasconst=0;
8527 regs[i].wasconst=0;
8528 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8529 if(!((current.is32>>rs1[i])&1))
8530 {
8531 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8532 }
8533 }
8534 else delayslot_alloc(&current,i+1);
8535 }
8536 else
8537 // Don't alloc the delay slot yet because we might not execute it
8538 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8539 {
8540 current.isconst=0;
8541 current.wasconst=0;
8542 regs[i].wasconst=0;
8543 alloc_cc(&current,i);
8544 dirty_reg(&current,CCREG);
8545 alloc_reg(&current,i,rs1[i]);
8546 if(!(current.is32>>rs1[i]&1))
8547 {
8548 alloc_reg64(&current,i,rs1[i]);
8549 }
8550 }
8551 ds=1;
8552 //current.isconst=0;
8553 break;
8554 case FJUMP:
8555 current.isconst=0;
8556 current.wasconst=0;
8557 regs[i].wasconst=0;
8558 if(likely[i]==0) // BC1F/BC1T
8559 {
8560 // TODO: Theoretically we can run out of registers here on x86.
8561 // The delay slot can allocate up to six, and we need to check
8562 // CSREG before executing the delay slot. Possibly we can drop
8563 // the cycle count and then reload it after checking that the
8564 // FPU is in a usable state, or don't do out-of-order execution.
8565 alloc_cc(&current,i);
8566 dirty_reg(&current,CCREG);
8567 alloc_reg(&current,i,FSREG);
8568 alloc_reg(&current,i,CSREG);
8569 if(itype[i+1]==FCOMP) {
8570 // The delay slot overwrites the branch condition.
8571 // Allocate the branch condition registers instead.
8572 // Note that such a sequence of instructions could
8573 // be considered a bug since the branch can not be
8574 // re-executed if an exception occurs.
8575 alloc_cc(&current,i);
8576 dirty_reg(&current,CCREG);
8577 alloc_reg(&current,i,CSREG);
8578 alloc_reg(&current,i,FSREG);
8579 }
8580 else {
8581 delayslot_alloc(&current,i+1);
8582 alloc_reg(&current,i+1,CSREG);
8583 }
8584 }
8585 else
8586 // Don't alloc the delay slot yet because we might not execute it
8587 if(likely[i]) // BC1FL/BC1TL
8588 {
8589 alloc_cc(&current,i);
8590 dirty_reg(&current,CCREG);
8591 alloc_reg(&current,i,CSREG);
8592 alloc_reg(&current,i,FSREG);
8593 }
8594 ds=1;
8595 current.isconst=0;
8596 break;
8597 case IMM16:
8598 imm16_alloc(&current,i);
8599 break;
8600 case LOAD:
8601 case LOADLR:
8602 load_alloc(&current,i);
8603 break;
8604 case STORE:
8605 case STORELR:
8606 store_alloc(&current,i);
8607 break;
8608 case ALU:
8609 alu_alloc(&current,i);
8610 break;
8611 case SHIFT:
8612 shift_alloc(&current,i);
8613 break;
8614 case MULTDIV:
8615 multdiv_alloc(&current,i);
8616 break;
8617 case SHIFTIMM:
8618 shiftimm_alloc(&current,i);
8619 break;
8620 case MOV:
8621 mov_alloc(&current,i);
8622 break;
8623 case COP0:
8624 cop0_alloc(&current,i);
8625 break;
8626 case COP1:
8627 cop1_alloc(&current,i);
8628 break;
8629 case C1LS:
8630 c1ls_alloc(&current,i);
8631 break;
8632 case FCONV:
8633 fconv_alloc(&current,i);
8634 break;
8635 case FLOAT:
8636 float_alloc(&current,i);
8637 break;
8638 case FCOMP:
8639 fcomp_alloc(&current,i);
8640 break;
8641 case SYSCALL:
8642 syscall_alloc(&current,i);
8643 break;
8644 case SPAN:
8645 pagespan_alloc(&current,i);
8646 break;
8647 }
8648
8649 // Drop the upper half of registers that have become 32-bit
8650 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8651 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8652 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8653 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8654 current.uu|=1;
8655 } else {
8656 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8657 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8658 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8659 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8660 current.uu|=1;
8661 }
8662
8663 // Create entry (branch target) regmap
8664 for(hr=0;hr<HOST_REGS;hr++)
8665 {
8666 int r,or,er;
8667 r=current.regmap[hr];
8668 if(r>=0) {
8669 if(r!=regmap_pre[i][hr]) {
8670 // TODO: delay slot (?)
8671 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8672 if(or<0||(r&63)>=TEMPREG){
8673 regs[i].regmap_entry[hr]=-1;
8674 }
8675 else
8676 {
8677 // Just move it to a different register
8678 regs[i].regmap_entry[hr]=r;
8679 // If it was dirty before, it's still dirty
8680 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8681 }
8682 }
8683 else
8684 {
8685 // Unneeded
8686 if(r==0){
8687 regs[i].regmap_entry[hr]=0;
8688 }
8689 else
8690 if(r<64){
8691 if((current.u>>r)&1) {
8692 regs[i].regmap_entry[hr]=-1;
8693 //regs[i].regmap[hr]=-1;
8694 current.regmap[hr]=-1;
8695 }else
8696 regs[i].regmap_entry[hr]=r;
8697 }
8698 else {
8699 if((current.uu>>(r&63))&1) {
8700 regs[i].regmap_entry[hr]=-1;
8701 //regs[i].regmap[hr]=-1;
8702 current.regmap[hr]=-1;
8703 }else
8704 regs[i].regmap_entry[hr]=r;
8705 }
8706 }
8707 } else {
8708 // Branches expect CCREG to be allocated at the target
8709 if(regmap_pre[i][hr]==CCREG)
8710 regs[i].regmap_entry[hr]=CCREG;
8711 else
8712 regs[i].regmap_entry[hr]=-1;
8713 }
8714 }
8715 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8716 }
8717 /* Branch post-alloc */
8718 if(i>0)
8719 {
8720 current.was32=current.is32;
8721 current.wasdirty=current.dirty;
8722 switch(itype[i-1]) {
8723 case UJUMP:
8724 memcpy(&branch_regs[i-1],&current,sizeof(current));
8725 branch_regs[i-1].isconst=0;
8726 branch_regs[i-1].wasconst=0;
8727 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8728 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8729 alloc_cc(&branch_regs[i-1],i-1);
8730 dirty_reg(&branch_regs[i-1],CCREG);
8731 if(rt1[i-1]==31) { // JAL
8732 alloc_reg(&branch_regs[i-1],i-1,31);
8733 dirty_reg(&branch_regs[i-1],31);
8734 branch_regs[i-1].is32|=1LL<<31;
8735 }
8736 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8737 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8738 break;
8739 case RJUMP:
8740 memcpy(&branch_regs[i-1],&current,sizeof(current));
8741 branch_regs[i-1].isconst=0;
8742 branch_regs[i-1].wasconst=0;
8743 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8744 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8745 alloc_cc(&branch_regs[i-1],i-1);
8746 dirty_reg(&branch_regs[i-1],CCREG);
8747 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8748 if(rt1[i-1]==31) { // JALR
8749 alloc_reg(&branch_regs[i-1],i-1,31);
8750 dirty_reg(&branch_regs[i-1],31);
8751 branch_regs[i-1].is32|=1LL<<31;
8752 }
8753 #ifdef USE_MINI_HT
8754 if(rs1[i-1]==31) { // JALR
8755 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8756 #ifndef HOST_IMM_ADDR32
8757 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8758 #endif
8759 }
8760 #endif
8761 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8762 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8763 break;
8764 case CJUMP:
8765 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8766 {
8767 alloc_cc(&current,i-1);
8768 dirty_reg(&current,CCREG);
8769 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8770 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8771 // The delay slot overwrote one of our conditions
8772 // Delay slot goes after the test (in order)
8773 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8774 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8775 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8776 current.u|=1;
8777 current.uu|=1;
8778 delayslot_alloc(&current,i);
8779 current.isconst=0;
8780 }
8781 else
8782 {
8783 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8784 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8785 // Alloc the branch condition registers
8786 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8787 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8788 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8789 {
8790 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8791 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8792 }
8793 }
8794 memcpy(&branch_regs[i-1],&current,sizeof(current));
8795 branch_regs[i-1].isconst=0;
8796 branch_regs[i-1].wasconst=0;
8797 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8798 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8799 }
8800 else
8801 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8802 {
8803 alloc_cc(&current,i-1);
8804 dirty_reg(&current,CCREG);
8805 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8806 // The delay slot overwrote the branch condition
8807 // Delay slot goes after the test (in order)
8808 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8809 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8810 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8811 current.u|=1;
8812 current.uu|=1;
8813 delayslot_alloc(&current,i);
8814 current.isconst=0;
8815 }
8816 else
8817 {
8818 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8819 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8820 // Alloc the branch condition register
8821 alloc_reg(&current,i-1,rs1[i-1]);
8822 if(!(current.is32>>rs1[i-1]&1))
8823 {
8824 alloc_reg64(&current,i-1,rs1[i-1]);
8825 }
8826 }
8827 memcpy(&branch_regs[i-1],&current,sizeof(current));
8828 branch_regs[i-1].isconst=0;
8829 branch_regs[i-1].wasconst=0;
8830 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8831 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8832 }
8833 else
8834 // Alloc the delay slot in case the branch is taken
8835 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8836 {
8837 memcpy(&branch_regs[i-1],&current,sizeof(current));
8838 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8839 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8840 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8841 alloc_cc(&branch_regs[i-1],i);
8842 dirty_reg(&branch_regs[i-1],CCREG);
8843 delayslot_alloc(&branch_regs[i-1],i);
8844 branch_regs[i-1].isconst=0;
8845 alloc_reg(&current,i,CCREG); // Not taken path
8846 dirty_reg(&current,CCREG);
8847 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8848 }
8849 else
8850 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8851 {
8852 memcpy(&branch_regs[i-1],&current,sizeof(current));
8853 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8854 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8855 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8856 alloc_cc(&branch_regs[i-1],i);
8857 dirty_reg(&branch_regs[i-1],CCREG);
8858 delayslot_alloc(&branch_regs[i-1],i);
8859 branch_regs[i-1].isconst=0;
8860 alloc_reg(&current,i,CCREG); // Not taken path
8861 dirty_reg(&current,CCREG);
8862 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8863 }
8864 break;
8865 case SJUMP:
8866 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8867 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8868 {
8869 alloc_cc(&current,i-1);
8870 dirty_reg(&current,CCREG);
8871 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8872 // The delay slot overwrote the branch condition
8873 // Delay slot goes after the test (in order)
8874 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8875 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8876 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8877 current.u|=1;
8878 current.uu|=1;
8879 delayslot_alloc(&current,i);
8880 current.isconst=0;
8881 }
8882 else
8883 {
8884 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8885 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8886 // Alloc the branch condition register
8887 alloc_reg(&current,i-1,rs1[i-1]);
8888 if(!(current.is32>>rs1[i-1]&1))
8889 {
8890 alloc_reg64(&current,i-1,rs1[i-1]);
8891 }
8892 }
8893 memcpy(&branch_regs[i-1],&current,sizeof(current));
8894 branch_regs[i-1].isconst=0;
8895 branch_regs[i-1].wasconst=0;
8896 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8897 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8898 }
8899 else
8900 // Alloc the delay slot in case the branch is taken
8901 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8902 {
8903 memcpy(&branch_regs[i-1],&current,sizeof(current));
8904 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8905 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8906 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8907 alloc_cc(&branch_regs[i-1],i);
8908 dirty_reg(&branch_regs[i-1],CCREG);
8909 delayslot_alloc(&branch_regs[i-1],i);
8910 branch_regs[i-1].isconst=0;
8911 alloc_reg(&current,i,CCREG); // Not taken path
8912 dirty_reg(&current,CCREG);
8913 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8914 }
8915 // FIXME: BLTZAL/BGEZAL
8916 if(opcode2[i-1]&0x10) { // BxxZAL
8917 alloc_reg(&branch_regs[i-1],i-1,31);
8918 dirty_reg(&branch_regs[i-1],31);
8919 branch_regs[i-1].is32|=1LL<<31;
8920 }
8921 break;
8922 case FJUMP:
8923 if(likely[i-1]==0) // BC1F/BC1T
8924 {
8925 alloc_cc(&current,i-1);
8926 dirty_reg(&current,CCREG);
8927 if(itype[i]==FCOMP) {
8928 // The delay slot overwrote the branch condition
8929 // Delay slot goes after the test (in order)
8930 delayslot_alloc(&current,i);
8931 current.isconst=0;
8932 }
8933 else
8934 {
8935 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8936 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8937 // Alloc the branch condition register
8938 alloc_reg(&current,i-1,FSREG);
8939 }
8940 memcpy(&branch_regs[i-1],&current,sizeof(current));
8941 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8942 }
8943 else // BC1FL/BC1TL
8944 {
8945 // Alloc the delay slot in case the branch is taken
8946 memcpy(&branch_regs[i-1],&current,sizeof(current));
8947 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8948 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8949 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8950 alloc_cc(&branch_regs[i-1],i);
8951 dirty_reg(&branch_regs[i-1],CCREG);
8952 delayslot_alloc(&branch_regs[i-1],i);
8953 branch_regs[i-1].isconst=0;
8954 alloc_reg(&current,i,CCREG); // Not taken path
8955 dirty_reg(&current,CCREG);
8956 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8957 }
8958 break;
8959 }
8960
8961 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8962 {
8963 if(rt1[i-1]==31) // JAL/JALR
8964 {
8965 // Subroutine call will return here, don't alloc any registers
8966 current.is32=1;
8967 current.dirty=0;
8968 clear_all_regs(current.regmap);
8969 alloc_reg(&current,i,CCREG);
8970 dirty_reg(&current,CCREG);
8971 }
8972 else if(i+1<slen)
8973 {
8974 // Internal branch will jump here, match registers to caller
8975 current.is32=0x3FFFFFFFFLL;
8976 current.dirty=0;
8977 clear_all_regs(current.regmap);
8978 alloc_reg(&current,i,CCREG);
8979 dirty_reg(&current,CCREG);
8980 for(j=i-1;j>=0;j--)
8981 {
8982 if(ba[j]==start+i*4+4) {
8983 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8984 current.is32=branch_regs[j].is32;
8985 current.dirty=branch_regs[j].dirty;
8986 break;
8987 }
8988 }
8989 while(j>=0) {
8990 if(ba[j]==start+i*4+4) {
8991 for(hr=0;hr<HOST_REGS;hr++) {
8992 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8993 current.regmap[hr]=-1;
8994 }
8995 current.is32&=branch_regs[j].is32;
8996 current.dirty&=branch_regs[j].dirty;
8997 }
8998 }
8999 j--;
9000 }
9001 }
9002 }
9003 }
9004
9005 // Count cycles in between branches
9006 ccadj[i]=cc;
9007 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
9008 {
9009 cc=0;
9010 }
9011 else
9012 {
9013 cc++;
9014 }
9015
9016 flush_dirty_uppers(&current);
9017 if(!is_ds[i]) {
9018 regs[i].is32=current.is32;
9019 regs[i].dirty=current.dirty;
9020 regs[i].isconst=current.isconst;
9021 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9022 }
9023 for(hr=0;hr<HOST_REGS;hr++) {
9024 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9025 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9026 regs[i].wasconst&=~(1<<hr);
9027 }
9028 }
9029 }
9030 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9031 }
9032
9033 /* Pass 4 - Cull unused host registers */
9034
9035 uint64_t nr=0;
9036
9037 for (i=slen-1;i>=0;i--)
9038 {
9039 int hr;
9040 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9041 {
9042 if(ba[i]<start || ba[i]>=(start+slen*4))
9043 {
9044 // Branch out of this block, don't need anything
9045 nr=0;
9046 }
9047 else
9048 {
9049 // Internal branch
9050 // Need whatever matches the target
9051 nr=0;
9052 int t=(ba[i]-start)>>2;
9053 for(hr=0;hr<HOST_REGS;hr++)
9054 {
9055 if(regs[i].regmap_entry[hr]>=0) {
9056 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9057 }
9058 }
9059 }
9060 // Conditional branch may need registers for following instructions
9061 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9062 {
9063 if(i<slen-2) {
9064 nr|=needed_reg[i+2];
9065 for(hr=0;hr<HOST_REGS;hr++)
9066 {
9067 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9068 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9069 }
9070 }
9071 }
9072 // Don't need stuff which is overwritten
9073 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9074 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9075 // Merge in delay slot
9076 for(hr=0;hr<HOST_REGS;hr++)
9077 {
9078 if(!likely[i]) {
9079 // These are overwritten unless the branch is "likely"
9080 // and the delay slot is nullified if not taken
9081 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9082 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9083 }
9084 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9085 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9086 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9087 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9088 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9089 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9090 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9091 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9092 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9093 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9094 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9095 }
9096 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9097 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9098 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9099 }
9100 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9101 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9102 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9103 }
9104 }
9105 }
9106 else if(itype[i]==SYSCALL)
9107 {
9108 // SYSCALL instruction (software interrupt)
9109 nr=0;
9110 }
9111 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9112 {
9113 // ERET instruction (return from interrupt)
9114 nr=0;
9115 }
9116 else // Non-branch
9117 {
9118 if(i<slen-1) {
9119 for(hr=0;hr<HOST_REGS;hr++) {
9120 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9121 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9122 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9123 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9124 }
9125 }
9126 }
9127 for(hr=0;hr<HOST_REGS;hr++)
9128 {
9129 // Overwritten registers are not needed
9130 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9131 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9132 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9133 // Source registers are needed
9134 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9135 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9136 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9137 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9138 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9139 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9140 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9141 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9142 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9143 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9144 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9145 }
9146 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9147 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9148 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9149 }
9150 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9151 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9152 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9153 }
9154 // Don't store a register immediately after writing it,
9155 // may prevent dual-issue.
9156 // But do so if this is a branch target, otherwise we
9157 // might have to load the register before the branch.
9158 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9159 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9160 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9161 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9162 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9163 }
9164 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9165 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9166 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9167 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9168 }
9169 }
9170 }
9171 // Cycle count is needed at branches. Assume it is needed at the target too.
9172 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9173 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9174 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9175 }
9176 // Save it
9177 needed_reg[i]=nr;
9178
9179 // Deallocate unneeded registers
9180 for(hr=0;hr<HOST_REGS;hr++)
9181 {
9182 if(!((nr>>hr)&1)) {
9183 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9184 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9185 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9186 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9187 {
9188 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9189 {
9190 if(likely[i]) {
9191 regs[i].regmap[hr]=-1;
9192 regs[i].isconst&=~(1<<hr);
9193 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9194 }
9195 }
9196 }
9197 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9198 {
9199 int d1=0,d2=0,map=0,temp=0;
9200 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9201 {
9202 d1=dep1[i+1];
9203 d2=dep2[i+1];
9204 }
9205 if(using_tlb) {
9206 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9207 itype[i+1]==STORE || itype[i+1]==STORELR ||
9208 itype[i+1]==C1LS )
9209 map=TLREG;
9210 } else
9211 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9212 map=INVCP;
9213 }
9214 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9215 itype[i+1]==C1LS )
9216 temp=FTEMP;
9217 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9218 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9219 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9220 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9221 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9222 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9223 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9224 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9225 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9226 regs[i].regmap[hr]!=map )
9227 {
9228 regs[i].regmap[hr]=-1;
9229 regs[i].isconst&=~(1<<hr);
9230 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9231 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9232 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9233 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9234 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9235 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9236 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9237 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9238 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9239 branch_regs[i].regmap[hr]!=map)
9240 {
9241 branch_regs[i].regmap[hr]=-1;
9242 branch_regs[i].regmap_entry[hr]=-1;
9243 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9244 {
9245 if(!likely[i]&&i<slen-2) {
9246 regmap_pre[i+2][hr]=-1;
9247 }
9248 }
9249 }
9250 }
9251 }
9252 else
9253 {
9254 // Non-branch
9255 if(i>0)
9256 {
9257 int d1=0,d2=0,map=-1,temp=-1;
9258 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9259 {
9260 d1=dep1[i];
9261 d2=dep2[i];
9262 }
9263 if(using_tlb) {
9264 if(itype[i]==LOAD || itype[i]==LOADLR ||
9265 itype[i]==STORE || itype[i]==STORELR ||
9266 itype[i]==C1LS )
9267 map=TLREG;
9268 } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9269 map=INVCP;
9270 }
9271 if(itype[i]==LOADLR || itype[i]==STORELR ||
9272 itype[i]==C1LS )
9273 temp=FTEMP;
9274 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9275 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9276 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9277 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9278 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9279 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9280 {
9281 if(i<slen-1&&!is_ds[i]) {
9282 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9283 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9284 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9285 {
9286 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9287 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9288 }
9289 regmap_pre[i+1][hr]=-1;
9290 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9291 }
9292 regs[i].regmap[hr]=-1;
9293 regs[i].isconst&=~(1<<hr);
9294 }
9295 }
9296 }
9297 }
9298 }
9299 }
9300
9301 /* Pass 5 - Pre-allocate registers */
9302
9303 // If a register is allocated during a loop, try to allocate it for the
9304 // entire loop, if possible. This avoids loading/storing registers
9305 // inside of the loop.
9306
9307 signed char f_regmap[HOST_REGS];
9308 clear_all_regs(f_regmap);
9309 for(i=0;i<slen-1;i++)
9310 {
9311 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9312 {
9313 if(ba[i]>=start && ba[i]<(start+i*4))
9314 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9315 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9316 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9317 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9318 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9319 {
9320 int t=(ba[i]-start)>>2;
9321 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9322 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9323 for(hr=0;hr<HOST_REGS;hr++)
9324 {
9325 if(regs[i].regmap[hr]>64) {
9326 if(!((regs[i].dirty>>hr)&1))
9327 f_regmap[hr]=regs[i].regmap[hr];
9328 else f_regmap[hr]=-1;
9329 }
9330 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9331 if(branch_regs[i].regmap[hr]>64) {
9332 if(!((branch_regs[i].dirty>>hr)&1))
9333 f_regmap[hr]=branch_regs[i].regmap[hr];
9334 else f_regmap[hr]=-1;
9335 }
9336 else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
9337 if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9338 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9339 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9340 {
9341 // Test both in case the delay slot is ooo,
9342 // could be done better...
9343 if(count_free_regs(branch_regs[i].regmap)<2
9344 ||count_free_regs(regs[i].regmap)<2)
9345 f_regmap[hr]=branch_regs[i].regmap[hr];
9346 }
9347 // Avoid dirty->clean transition
9348 // #ifdef DESTRUCTIVE_WRITEBACK here?
9349 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9350 if(f_regmap[hr]>0) {
9351 if(regs[t].regmap_entry[hr]<0) {
9352 int r=f_regmap[hr];
9353 for(j=t;j<=i;j++)
9354 {
9355 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9356 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9357 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9358 if(r>63) {
9359 // NB This can exclude the case where the upper-half
9360 // register is lower numbered than the lower-half
9361 // register. Not sure if it's worth fixing...
9362 if(get_reg(regs[j].regmap,r&63)<0) break;
9363 if(regs[j].is32&(1LL<<(r&63))) break;
9364 }
9365 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9366 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9367 int k;
9368 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9369 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9370 if(r>63) {
9371 if(get_reg(regs[i].regmap,r&63)<0) break;
9372 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9373 }
9374 k=i;
9375 while(k>1&&regs[k-1].regmap[hr]==-1) {
9376 if(itype[k-1]==STORE||itype[k-1]==STORELR
9377 ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9378 ||itype[k-1]==FLOAT||itype[k-1]==FCONV
9379 ||itype[k-1]==FCOMP) {
9380 if(count_free_regs(regs[k-1].regmap)<2) {
9381 //printf("no free regs for store %x\n",start+(k-1)*4);
9382 break;
9383 }
9384 }
9385 else
9386 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9387 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9388 //printf("no-match due to different register\n");
9389 break;
9390 }
9391 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9392 //printf("no-match due to branch\n");
9393 break;
9394 }
9395 // call/ret fast path assumes no registers allocated
9396 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9397 break;
9398 }
9399 if(r>63) {
9400 // NB This can exclude the case where the upper-half
9401 // register is lower numbered than the lower-half
9402 // register. Not sure if it's worth fixing...
9403 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9404 if(regs[k-1].is32&(1LL<<(r&63))) break;
9405 }
9406 k--;
9407 }
9408 if(i<slen-1) {
9409 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9410 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9411 //printf("bad match after branch\n");
9412 break;
9413 }
9414 }
9415 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9416 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9417 while(k<i) {
9418 regs[k].regmap_entry[hr]=f_regmap[hr];
9419 regs[k].regmap[hr]=f_regmap[hr];
9420 regmap_pre[k+1][hr]=f_regmap[hr];
9421 regs[k].wasdirty&=~(1<<hr);
9422 regs[k].dirty&=~(1<<hr);
9423 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9424 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9425 regs[k].wasconst&=~(1<<hr);
9426 regs[k].isconst&=~(1<<hr);
9427 k++;
9428 }
9429 }
9430 else {
9431 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9432 break;
9433 }
9434 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9435 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9436 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9437 regs[i].regmap_entry[hr]=f_regmap[hr];
9438 regs[i].regmap[hr]=f_regmap[hr];
9439 regs[i].wasdirty&=~(1<<hr);
9440 regs[i].dirty&=~(1<<hr);
9441 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9442 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9443 regs[i].wasconst&=~(1<<hr);
9444 regs[i].isconst&=~(1<<hr);
9445 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9446 branch_regs[i].wasdirty&=~(1<<hr);
9447 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9448 branch_regs[i].regmap[hr]=f_regmap[hr];
9449 branch_regs[i].dirty&=~(1<<hr);
9450 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9451 branch_regs[i].wasconst&=~(1<<hr);
9452 branch_regs[i].isconst&=~(1<<hr);
9453 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9454 regmap_pre[i+2][hr]=f_regmap[hr];
9455 regs[i+2].wasdirty&=~(1<<hr);
9456 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9457 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9458 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9459 }
9460 }
9461 }
9462 for(k=t;k<j;k++) {
9463 regs[k].regmap_entry[hr]=f_regmap[hr];
9464 regs[k].regmap[hr]=f_regmap[hr];
9465 regmap_pre[k+1][hr]=f_regmap[hr];
9466 regs[k+1].wasdirty&=~(1<<hr);
9467 regs[k].dirty&=~(1<<hr);
9468 regs[k].wasconst&=~(1<<hr);
9469 regs[k].isconst&=~(1<<hr);
9470 }
9471 if(regs[j].regmap[hr]==f_regmap[hr])
9472 regs[j].regmap_entry[hr]=f_regmap[hr];
9473 break;
9474 }
9475 if(j==i) break;
9476 if(regs[j].regmap[hr]>=0)
9477 break;
9478 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9479 //printf("no-match due to different register\n");
9480 break;
9481 }
9482 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9483 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9484 break;
9485 }
9486 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9487 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9488 ||itype[j]==FCOMP||itype[j]==FCONV) {
9489 if(count_free_regs(regs[j].regmap)<2) {
9490 //printf("No free regs for store %x\n",start+j*4);
9491 break;
9492 }
9493 }
9494 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9495 if(f_regmap[hr]>=64) {
9496 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9497 break;
9498 }
9499 else
9500 {
9501 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9502 break;
9503 }
9504 }
9505 }
9506 }
9507 }
9508 }
9509 }
9510 }
9511 }else{
9512 int count=0;
9513 for(hr=0;hr<HOST_REGS;hr++)
9514 {
9515 if(hr!=EXCLUDE_REG) {
9516 if(regs[i].regmap[hr]>64) {
9517 if(!((regs[i].dirty>>hr)&1))
9518 f_regmap[hr]=regs[i].regmap[hr];
9519 }
9520 else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9521 else if(regs[i].regmap[hr]<0) count++;
9522 }
9523 }
9524 // Try to restore cycle count at branch targets
9525 if(bt[i]) {
9526 for(j=i;j<slen-1;j++) {
9527 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9528 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9529 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9530 ||itype[j]==FCOMP||itype[j]==FCONV) {
9531 if(count_free_regs(regs[j].regmap)<2) {
9532 //printf("no free regs for store %x\n",start+j*4);
9533 break;
9534 }
9535 }
9536 else
9537 if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9538 }
9539 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9540 int k=i;
9541 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9542 while(k<j) {
9543 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9544 regs[k].regmap[HOST_CCREG]=CCREG;
9545 regmap_pre[k+1][HOST_CCREG]=CCREG;
9546 regs[k+1].wasdirty|=1<<HOST_CCREG;
9547 regs[k].dirty|=1<<HOST_CCREG;
9548 regs[k].wasconst&=~(1<<HOST_CCREG);
9549 regs[k].isconst&=~(1<<HOST_CCREG);
9550 k++;
9551 }
9552 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9553 }
9554 // Work backwards from the branch target
9555 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9556 {
9557 //printf("Extend backwards\n");
9558 int k;
9559 k=i;
9560 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9561 if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9562 ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9563 ||itype[k-1]==FCONV||itype[k-1]==FCOMP) {
9564 if(count_free_regs(regs[k-1].regmap)<2) {
9565 //printf("no free regs for store %x\n",start+(k-1)*4);
9566 break;
9567 }
9568 }
9569 else
9570 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9571 k--;
9572 }
9573 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9574 //printf("Extend CC, %x ->\n",start+k*4);
9575 while(k<=i) {
9576 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9577 regs[k].regmap[HOST_CCREG]=CCREG;
9578 regmap_pre[k+1][HOST_CCREG]=CCREG;
9579 regs[k+1].wasdirty|=1<<HOST_CCREG;
9580 regs[k].dirty|=1<<HOST_CCREG;
9581 regs[k].wasconst&=~(1<<HOST_CCREG);
9582 regs[k].isconst&=~(1<<HOST_CCREG);
9583 k++;
9584 }
9585 }
9586 else {
9587 //printf("Fail Extend CC, %x ->\n",start+k*4);
9588 }
9589 }
9590 }
9591 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9592 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9593 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9594 itype[i]!=FCONV&&itype[i]!=FCOMP)
9595 {
9596 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9597 }
9598 }
9599 }
9600
9601 // This allocates registers (if possible) one instruction prior
9602 // to use, which can avoid a load-use penalty on certain CPUs.
9603 for(i=0;i<slen-1;i++)
9604 {
9605 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9606 {
9607 if(!bt[i+1])
9608 {
9609 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
9610 {
9611 if(rs1[i+1]) {
9612 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9613 {
9614 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9615 {
9616 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9617 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9618 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9619 regs[i].isconst&=~(1<<hr);
9620 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9621 constmap[i][hr]=constmap[i+1][hr];
9622 regs[i+1].wasdirty&=~(1<<hr);
9623 regs[i].dirty&=~(1<<hr);
9624 }
9625 }
9626 }
9627 if(rs2[i+1]) {
9628 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9629 {
9630 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9631 {
9632 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9633 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9634 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9635 regs[i].isconst&=~(1<<hr);
9636 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9637 constmap[i][hr]=constmap[i+1][hr];
9638 regs[i+1].wasdirty&=~(1<<hr);
9639 regs[i].dirty&=~(1<<hr);
9640 }
9641 }
9642 }
9643 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9644 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9645 {
9646 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9647 {
9648 regs[i].regmap[hr]=rs1[i+1];
9649 regmap_pre[i+1][hr]=rs1[i+1];
9650 regs[i+1].regmap_entry[hr]=rs1[i+1];
9651 regs[i].isconst&=~(1<<hr);
9652 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9653 constmap[i][hr]=constmap[i+1][hr];
9654 regs[i+1].wasdirty&=~(1<<hr);
9655 regs[i].dirty&=~(1<<hr);
9656 }
9657 }
9658 }
9659 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9660 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9661 {
9662 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9663 {
9664 regs[i].regmap[hr]=rs1[i+1];
9665 regmap_pre[i+1][hr]=rs1[i+1];
9666 regs[i+1].regmap_entry[hr]=rs1[i+1];
9667 regs[i].isconst&=~(1<<hr);
9668 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9669 constmap[i][hr]=constmap[i+1][hr];
9670 regs[i+1].wasdirty&=~(1<<hr);
9671 regs[i].dirty&=~(1<<hr);
9672 }
9673 }
9674 }
9675 #ifndef HOST_IMM_ADDR32
9676 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
9677 hr=get_reg(regs[i+1].regmap,TLREG);
9678 if(hr>=0) {
9679 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
9680 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
9681 int nr;
9682 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9683 {
9684 regs[i].regmap[hr]=MGEN1+((i+1)&1);
9685 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
9686 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
9687 regs[i].isconst&=~(1<<hr);
9688 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9689 constmap[i][hr]=constmap[i+1][hr];
9690 regs[i+1].wasdirty&=~(1<<hr);
9691 regs[i].dirty&=~(1<<hr);
9692 }
9693 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9694 {
9695 // move it to another register
9696 regs[i+1].regmap[hr]=-1;
9697 regmap_pre[i+2][hr]=-1;
9698 regs[i+1].regmap[nr]=TLREG;
9699 regmap_pre[i+2][nr]=TLREG;
9700 regs[i].regmap[nr]=MGEN1+((i+1)&1);
9701 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
9702 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
9703 regs[i].isconst&=~(1<<nr);
9704 regs[i+1].isconst&=~(1<<nr);
9705 regs[i].dirty&=~(1<<nr);
9706 regs[i+1].wasdirty&=~(1<<nr);
9707 regs[i+1].dirty&=~(1<<nr);
9708 regs[i+2].wasdirty&=~(1<<nr);
9709 }
9710 }
9711 }
9712 }
9713 #endif
9714 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
9715 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9716 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9717 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9718 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9719 assert(hr>=0);
9720 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9721 {
9722 regs[i].regmap[hr]=rs1[i+1];
9723 regmap_pre[i+1][hr]=rs1[i+1];
9724 regs[i+1].regmap_entry[hr]=rs1[i+1];
9725 regs[i].isconst&=~(1<<hr);
9726 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9727 constmap[i][hr]=constmap[i+1][hr];
9728 regs[i+1].wasdirty&=~(1<<hr);
9729 regs[i].dirty&=~(1<<hr);
9730 }
9731 }
9732 }
9733 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
9734 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9735 int nr;
9736 hr=get_reg(regs[i+1].regmap,FTEMP);
9737 assert(hr>=0);
9738 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9739 {
9740 regs[i].regmap[hr]=rs1[i+1];
9741 regmap_pre[i+1][hr]=rs1[i+1];
9742 regs[i+1].regmap_entry[hr]=rs1[i+1];
9743 regs[i].isconst&=~(1<<hr);
9744 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9745 constmap[i][hr]=constmap[i+1][hr];
9746 regs[i+1].wasdirty&=~(1<<hr);
9747 regs[i].dirty&=~(1<<hr);
9748 }
9749 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9750 {
9751 // move it to another register
9752 regs[i+1].regmap[hr]=-1;
9753 regmap_pre[i+2][hr]=-1;
9754 regs[i+1].regmap[nr]=FTEMP;
9755 regmap_pre[i+2][nr]=FTEMP;
9756 regs[i].regmap[nr]=rs1[i+1];
9757 regmap_pre[i+1][nr]=rs1[i+1];
9758 regs[i+1].regmap_entry[nr]=rs1[i+1];
9759 regs[i].isconst&=~(1<<nr);
9760 regs[i+1].isconst&=~(1<<nr);
9761 regs[i].dirty&=~(1<<nr);
9762 regs[i+1].wasdirty&=~(1<<nr);
9763 regs[i+1].dirty&=~(1<<nr);
9764 regs[i+2].wasdirty&=~(1<<nr);
9765 }
9766 }
9767 }
9768 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
9769 if(itype[i+1]==LOAD)
9770 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9771 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
9772 hr=get_reg(regs[i+1].regmap,FTEMP);
9773 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
9774 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9775 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9776 }
9777 if(hr>=0&&regs[i].regmap[hr]<0) {
9778 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9779 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9780 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9781 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9782 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9783 regs[i].isconst&=~(1<<hr);
9784 regs[i+1].wasdirty&=~(1<<hr);
9785 regs[i].dirty&=~(1<<hr);
9786 }
9787 }
9788 }
9789 }
9790 }
9791 }
9792 }
9793
9794 /* Pass 6 - Optimize clean/dirty state */
9795 clean_registers(0,slen-1,1);
9796
9797 /* Pass 7 - Identify 32-bit registers */
9798
9799 provisional_r32();
9800
9801 u_int r32=0;
9802
9803 for (i=slen-1;i>=0;i--)
9804 {
9805 int hr;
9806 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9807 {
9808 if(ba[i]<start || ba[i]>=(start+slen*4))
9809 {
9810 // Branch out of this block, don't need anything
9811 r32=0;
9812 }
9813 else
9814 {
9815 // Internal branch
9816 // Need whatever matches the target
9817 // (and doesn't get overwritten by the delay slot instruction)
9818 r32=0;
9819 int t=(ba[i]-start)>>2;
9820 if(ba[i]>start+i*4) {
9821 // Forward branch
9822 if(!(requires_32bit[t]&~regs[i].was32))
9823 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9824 }else{
9825 // Backward branch
9826 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
9827 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9828 if(!(pr32[t]&~regs[i].was32))
9829 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
9830 }
9831 }
9832 // Conditional branch may need registers for following instructions
9833 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9834 {
9835 if(i<slen-2) {
9836 r32|=requires_32bit[i+2];
9837 r32&=regs[i].was32;
9838 // Mark this address as a branch target since it may be called
9839 // upon return from interrupt
9840 bt[i+2]=1;
9841 }
9842 }
9843 // Merge in delay slot
9844 if(!likely[i]) {
9845 // These are overwritten unless the branch is "likely"
9846 // and the delay slot is nullified if not taken
9847 r32&=~(1LL<<rt1[i+1]);
9848 r32&=~(1LL<<rt2[i+1]);
9849 }
9850 // Assume these are needed (delay slot)
9851 if(us1[i+1]>0)
9852 {
9853 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
9854 }
9855 if(us2[i+1]>0)
9856 {
9857 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
9858 }
9859 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
9860 {
9861 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
9862 }
9863 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
9864 {
9865 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
9866 }
9867 }
9868 else if(itype[i]==SYSCALL)
9869 {
9870 // SYSCALL instruction (software interrupt)
9871 r32=0;
9872 }
9873 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9874 {
9875 // ERET instruction (return from interrupt)
9876 r32=0;
9877 }
9878 // Check 32 bits
9879 r32&=~(1LL<<rt1[i]);
9880 r32&=~(1LL<<rt2[i]);
9881 if(us1[i]>0)
9882 {
9883 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
9884 }
9885 if(us2[i]>0)
9886 {
9887 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
9888 }
9889 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
9890 {
9891 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
9892 }
9893 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
9894 {
9895 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
9896 }
9897 requires_32bit[i]=r32;
9898
9899 // Dirty registers which are 32-bit, require 32-bit input
9900 // as they will be written as 32-bit values
9901 for(hr=0;hr<HOST_REGS;hr++)
9902 {
9903 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
9904 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
9905 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
9906 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
9907 }
9908 }
9909 }
9910 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
9911 }
9912
9913 if(itype[slen-1]==SPAN) {
9914 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9915 }
9916
9917 /* Debug/disassembly */
9918 if((void*)assem_debug==(void*)printf)
9919 for(i=0;i<slen;i++)
9920 {
9921 printf("U:");
9922 int r;
9923 for(r=1;r<=CCREG;r++) {
9924 if((unneeded_reg[i]>>r)&1) {
9925 if(r==HIREG) printf(" HI");
9926 else if(r==LOREG) printf(" LO");
9927 else printf(" r%d",r);
9928 }
9929 }
9930 printf(" UU:");
9931 for(r=1;r<=CCREG;r++) {
9932 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
9933 if(r==HIREG) printf(" HI");
9934 else if(r==LOREG) printf(" LO");
9935 else printf(" r%d",r);
9936 }
9937 }
9938 printf(" 32:");
9939 for(r=0;r<=CCREG;r++) {
9940 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9941 if((regs[i].was32>>r)&1) {
9942 if(r==CCREG) printf(" CC");
9943 else if(r==HIREG) printf(" HI");
9944 else if(r==LOREG) printf(" LO");
9945 else printf(" r%d",r);
9946 }
9947 }
9948 printf("\n");
9949 #if defined(__i386__) || defined(__x86_64__)
9950 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9951 #endif
9952 #ifdef __arm__
9953 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9954 #endif
9955 printf("needs: ");
9956 if(needed_reg[i]&1) printf("eax ");
9957 if((needed_reg[i]>>1)&1) printf("ecx ");
9958 if((needed_reg[i]>>2)&1) printf("edx ");
9959 if((needed_reg[i]>>3)&1) printf("ebx ");
9960 if((needed_reg[i]>>5)&1) printf("ebp ");
9961 if((needed_reg[i]>>6)&1) printf("esi ");
9962 if((needed_reg[i]>>7)&1) printf("edi ");
9963 printf("r:");
9964 for(r=0;r<=CCREG;r++) {
9965 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9966 if((requires_32bit[i]>>r)&1) {
9967 if(r==CCREG) printf(" CC");
9968 else if(r==HIREG) printf(" HI");
9969 else if(r==LOREG) printf(" LO");
9970 else printf(" r%d",r);
9971 }
9972 }
9973 printf("\n");
9974 /*printf("pr:");
9975 for(r=0;r<=CCREG;r++) {
9976 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9977 if((pr32[i]>>r)&1) {
9978 if(r==CCREG) printf(" CC");
9979 else if(r==HIREG) printf(" HI");
9980 else if(r==LOREG) printf(" LO");
9981 else printf(" r%d",r);
9982 }
9983 }
9984 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
9985 printf("\n");*/
9986 #if defined(__i386__) || defined(__x86_64__)
9987 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9988 printf("dirty: ");
9989 if(regs[i].wasdirty&1) printf("eax ");
9990 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9991 if((regs[i].wasdirty>>2)&1) printf("edx ");
9992 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9993 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9994 if((regs[i].wasdirty>>6)&1) printf("esi ");
9995 if((regs[i].wasdirty>>7)&1) printf("edi ");
9996 #endif
9997 #ifdef __arm__
9998 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9999 printf("dirty: ");
10000 if(regs[i].wasdirty&1) printf("r0 ");
10001 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10002 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10003 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10004 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10005 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10006 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10007 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10008 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10009 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10010 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10011 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10012 #endif
10013 printf("\n");
10014 disassemble_inst(i);
10015 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10016 #if defined(__i386__) || defined(__x86_64__)
10017 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10018 if(regs[i].dirty&1) printf("eax ");
10019 if((regs[i].dirty>>1)&1) printf("ecx ");
10020 if((regs[i].dirty>>2)&1) printf("edx ");
10021 if((regs[i].dirty>>3)&1) printf("ebx ");
10022 if((regs[i].dirty>>5)&1) printf("ebp ");
10023 if((regs[i].dirty>>6)&1) printf("esi ");
10024 if((regs[i].dirty>>7)&1) printf("edi ");
10025 #endif
10026 #ifdef __arm__
10027 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10028 if(regs[i].dirty&1) printf("r0 ");
10029 if((regs[i].dirty>>1)&1) printf("r1 ");
10030 if((regs[i].dirty>>2)&1) printf("r2 ");
10031 if((regs[i].dirty>>3)&1) printf("r3 ");
10032 if((regs[i].dirty>>4)&1) printf("r4 ");
10033 if((regs[i].dirty>>5)&1) printf("r5 ");
10034 if((regs[i].dirty>>6)&1) printf("r6 ");
10035 if((regs[i].dirty>>7)&1) printf("r7 ");
10036 if((regs[i].dirty>>8)&1) printf("r8 ");
10037 if((regs[i].dirty>>9)&1) printf("r9 ");
10038 if((regs[i].dirty>>10)&1) printf("r10 ");
10039 if((regs[i].dirty>>12)&1) printf("r12 ");
10040 #endif
10041 printf("\n");
10042 if(regs[i].isconst) {
10043 printf("constants: ");
10044 #if defined(__i386__) || defined(__x86_64__)
10045 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10046 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10047 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10048 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10049 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10050 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10051 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10052 #endif
10053 #ifdef __arm__
10054 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10055 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10056 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10057 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10058 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10059 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10060 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10061 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10062 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10063 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10064 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10065 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10066 #endif
10067 printf("\n");
10068 }
10069 printf(" 32:");
10070 for(r=0;r<=CCREG;r++) {
10071 if((regs[i].is32>>r)&1) {
10072 if(r==CCREG) printf(" CC");
10073 else if(r==HIREG) printf(" HI");
10074 else if(r==LOREG) printf(" LO");
10075 else printf(" r%d",r);
10076 }
10077 }
10078 printf("\n");
10079 /*printf(" p32:");
10080 for(r=0;r<=CCREG;r++) {
10081 if((p32[i]>>r)&1) {
10082 if(r==CCREG) printf(" CC");
10083 else if(r==HIREG) printf(" HI");
10084 else if(r==LOREG) printf(" LO");
10085 else printf(" r%d",r);
10086 }
10087 }
10088 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10089 else printf("\n");*/
10090 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10091 #if defined(__i386__) || defined(__x86_64__)
10092 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10093 if(branch_regs[i].dirty&1) printf("eax ");
10094 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10095 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10096 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10097 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10098 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10099 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10100 #endif
10101 #ifdef __arm__
10102 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10103 if(branch_regs[i].dirty&1) printf("r0 ");
10104 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10105 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10106 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10107 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10108 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10109 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10110 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10111 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10112 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10113 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10114 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10115 #endif
10116 printf(" 32:");
10117 for(r=0;r<=CCREG;r++) {
10118 if((branch_regs[i].is32>>r)&1) {
10119 if(r==CCREG) printf(" CC");
10120 else if(r==HIREG) printf(" HI");
10121 else if(r==LOREG) printf(" LO");
10122 else printf(" r%d",r);
10123 }
10124 }
10125 printf("\n");
10126 }
10127 }
10128
10129 /* Pass 8 - Assembly */
10130 linkcount=0;stubcount=0;
10131 ds=0;is_delayslot=0;
10132 cop1_usable=0;
10133 uint64_t is32_pre=0;
10134 u_int dirty_pre=0;
10135 u_int beginning=(u_int)out;
10136 if((u_int)addr&1) {
10137 ds=1;
10138 pagespan_ds();
10139 }
10140 for(i=0;i<slen;i++)
10141 {
10142 //if(ds) printf("ds: ");
10143 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10144 if(ds) {
10145 ds=0; // Skip delay slot
10146 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10147 instr_addr[i]=0;
10148 } else {
10149 #ifndef DESTRUCTIVE_WRITEBACK
10150 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10151 {
10152 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10153 unneeded_reg[i],unneeded_reg_upper[i]);
10154 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10155 unneeded_reg[i],unneeded_reg_upper[i]);
10156 }
10157 is32_pre=regs[i].is32;
10158 dirty_pre=regs[i].dirty;
10159 #endif
10160 // write back
10161 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10162 {
10163 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10164 unneeded_reg[i],unneeded_reg_upper[i]);
10165 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10166 }
10167 // branch target entry point
10168 instr_addr[i]=(u_int)out;
10169 assem_debug("<->\n");
10170 // load regs
10171 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10172 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10173 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10174 address_generation(i,&regs[i],regs[i].regmap_entry);
10175 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10176 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10177 {
10178 // Load the delay slot registers if necessary
10179 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10180 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10181 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10182 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10183 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
10184 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10185 }
10186 else if(i+1<slen)
10187 {
10188 // Preload registers for following instruction
10189 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10190 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10191 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10192 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10193 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10194 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10195 }
10196 // TODO: if(is_ooo(i)) address_generation(i+1);
10197 if(itype[i]==CJUMP||itype[i]==FJUMP)
10198 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10199 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
10200 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10201 if(bt[i]) cop1_usable=0;
10202 // assemble
10203 switch(itype[i]) {
10204 case ALU:
10205 alu_assemble(i,&regs[i]);break;
10206 case IMM16:
10207 imm16_assemble(i,&regs[i]);break;
10208 case SHIFT:
10209 shift_assemble(i,&regs[i]);break;
10210 case SHIFTIMM:
10211 shiftimm_assemble(i,&regs[i]);break;
10212 case LOAD:
10213 load_assemble(i,&regs[i]);break;
10214 case LOADLR:
10215 loadlr_assemble(i,&regs[i]);break;
10216 case STORE:
10217 store_assemble(i,&regs[i]);break;
10218 case STORELR:
10219 storelr_assemble(i,&regs[i]);break;
10220 case COP0:
10221 cop0_assemble(i,&regs[i]);break;
10222 case COP1:
10223 cop1_assemble(i,&regs[i]);break;
10224 case C1LS:
10225 c1ls_assemble(i,&regs[i]);break;
10226 case FCONV:
10227 fconv_assemble(i,&regs[i]);break;
10228 case FLOAT:
10229 float_assemble(i,&regs[i]);break;
10230 case FCOMP:
10231 fcomp_assemble(i,&regs[i]);break;
10232 case MULTDIV:
10233 multdiv_assemble(i,&regs[i]);break;
10234 case MOV:
10235 mov_assemble(i,&regs[i]);break;
10236 case SYSCALL:
10237 syscall_assemble(i,&regs[i]);break;
10238 case UJUMP:
10239 ujump_assemble(i,&regs[i]);ds=1;break;
10240 case RJUMP:
10241 rjump_assemble(i,&regs[i]);ds=1;break;
10242 case CJUMP:
10243 cjump_assemble(i,&regs[i]);ds=1;break;
10244 case SJUMP:
10245 sjump_assemble(i,&regs[i]);ds=1;break;
10246 case FJUMP:
10247 fjump_assemble(i,&regs[i]);ds=1;break;
10248 case SPAN:
10249 pagespan_assemble(i,&regs[i]);break;
10250 }
10251 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10252 literal_pool(1024);
10253 else
10254 literal_pool_jumpover(256);
10255 }
10256 }
10257 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10258 // If the block did not end with an unconditional branch,
10259 // add a jump to the next instruction.
10260 if(i>1) {
10261 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10262 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10263 assert(i==slen);
10264 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10265 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10266 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10267 emit_loadreg(CCREG,HOST_CCREG);
10268 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10269 }
10270 else if(!likely[i-2])
10271 {
10272 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10273 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10274 }
10275 else
10276 {
10277 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10278 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10279 }
10280 add_to_linker((int)out,start+i*4,0);
10281 emit_jmp(0);
10282 }
10283 }
10284 else
10285 {
10286 assert(i>0);
10287 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10288 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10289 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10290 emit_loadreg(CCREG,HOST_CCREG);
10291 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10292 add_to_linker((int)out,start+i*4,0);
10293 emit_jmp(0);
10294 }
10295
10296 // TODO: delay slot stubs?
10297 // Stubs
10298 for(i=0;i<stubcount;i++)
10299 {
10300 switch(stubs[i][0])
10301 {
10302 case LOADB_STUB:
10303 case LOADH_STUB:
10304 case LOADW_STUB:
10305 case LOADD_STUB:
10306 case LOADBU_STUB:
10307 case LOADHU_STUB:
10308 do_readstub(i);break;
10309 case STOREB_STUB:
10310 case STOREH_STUB:
10311 case STOREW_STUB:
10312 case STORED_STUB:
10313 do_writestub(i);break;
10314 case CC_STUB:
10315 do_ccstub(i);break;
10316 case INVCODE_STUB:
10317 do_invstub(i);break;
10318 case FP_STUB:
10319 do_cop1stub(i);break;
10320 case STORELR_STUB:
10321 do_unalignedwritestub(i);break;
10322 }
10323 }
10324
10325 /* Pass 9 - Linker */
10326 for(i=0;i<linkcount;i++)
10327 {
10328 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10329 literal_pool(64);
10330 if(!link_addr[i][2])
10331 {
10332 void *stub=out;
10333 void *addr=check_addr(link_addr[i][1]);
10334 emit_extjump(link_addr[i][0],link_addr[i][1]);
10335 if(addr) {
10336 set_jump_target(link_addr[i][0],(int)addr);
10337 add_link(link_addr[i][1],stub);
10338 }
10339 else set_jump_target(link_addr[i][0],(int)stub);
10340 }
10341 else
10342 {
10343 // Internal branch
10344 int target=(link_addr[i][1]-start)>>2;
10345 assert(target>=0&&target<slen);
10346 assert(instr_addr[target]);
10347 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10348 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10349 //#else
10350 set_jump_target(link_addr[i][0],instr_addr[target]);
10351 //#endif
10352 }
10353 }
10354 // External Branch Targets (jump_in)
10355 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10356 for(i=0;i<slen;i++)
10357 {
10358 if(bt[i]||i==0)
10359 {
10360 if(instr_addr[i]) // TODO - delay slots (=null)
10361 {
10362 u_int vaddr=start+i*4;
94d23bb9 10363 u_int page=get_page(vaddr);
10364 u_int vpage=get_vpage(vaddr);
57871462 10365 literal_pool(256);
10366 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10367 if(!requires_32bit[i])
10368 {
10369 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10370 assem_debug("jump_in: %x\n",start+i*4);
10371 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10372 int entry_point=do_dirty_stub(i);
10373 ll_add(jump_in+page,vaddr,(void *)entry_point);
10374 // If there was an existing entry in the hash table,
10375 // replace it with the new address.
10376 // Don't add new entries. We'll insert the
10377 // ones that actually get used in check_addr().
10378 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10379 if(ht_bin[0]==vaddr) {
10380 ht_bin[1]=entry_point;
10381 }
10382 if(ht_bin[2]==vaddr) {
10383 ht_bin[3]=entry_point;
10384 }
10385 }
10386 else
10387 {
10388 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10389 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10390 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10391 //int entry_point=(int)out;
10392 ////assem_debug("entry_point: %x\n",entry_point);
10393 //load_regs_entry(i);
10394 //if(entry_point==(int)out)
10395 // entry_point=instr_addr[i];
10396 //else
10397 // emit_jmp(instr_addr[i]);
10398 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10399 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10400 int entry_point=do_dirty_stub(i);
10401 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10402 }
10403 }
10404 }
10405 }
10406 // Write out the literal pool if necessary
10407 literal_pool(0);
10408 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10409 // Align code
10410 if(((u_int)out)&7) emit_addnop(13);
10411 #endif
10412 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10413 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10414 memcpy(copy,source,slen*4);
10415 copy+=slen*4;
10416
10417 #ifdef __arm__
10418 __clear_cache((void *)beginning,out);
10419 #endif
10420
10421 // If we're within 256K of the end of the buffer,
10422 // start over from the beginning. (Is 256K enough?)
10423 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10424
10425 // Trap writes to any of the pages we compiled
10426 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10427 invalid_code[i]=0;
10428 memory_map[i]|=0x40000000;
10429 if((signed int)start>=(signed int)0xC0000000) {
10430 assert(using_tlb);
10431 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10432 invalid_code[j]=0;
10433 memory_map[j]|=0x40000000;
10434 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10435 }
10436 }
10437
10438 /* Pass 10 - Free memory by expiring oldest blocks */
10439
10440 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10441 while(expirep!=end)
10442 {
10443 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10444 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10445 inv_debug("EXP: Phase %d\n",expirep);
10446 switch((expirep>>11)&3)
10447 {
10448 case 0:
10449 // Clear jump_in and jump_dirty
10450 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10451 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10452 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10453 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10454 break;
10455 case 1:
10456 // Clear pointers
10457 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10458 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10459 break;
10460 case 2:
10461 // Clear hash table
10462 for(i=0;i<32;i++) {
10463 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10464 if((ht_bin[3]>>shift)==(base>>shift) ||
10465 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10466 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10467 ht_bin[2]=ht_bin[3]=-1;
10468 }
10469 if((ht_bin[1]>>shift)==(base>>shift) ||
10470 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10471 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10472 ht_bin[0]=ht_bin[2];
10473 ht_bin[1]=ht_bin[3];
10474 ht_bin[2]=ht_bin[3]=-1;
10475 }
10476 }
10477 break;
10478 case 3:
10479 // Clear jump_out
10480 #ifdef __arm__
10481 if((expirep&2047)==0)
10482 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
10483 #endif
10484 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10485 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10486 break;
10487 }
10488 expirep=(expirep+1)&65535;
10489 }
10490 return 0;
10491}