drc: fix COP2 decoding
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
3d624f89 25#include "emu_if.h" //emulator interface
57871462 26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 uint64_t unneeded_reg[MAXBLOCK];
88 uint64_t unneeded_reg_upper[MAXBLOCK];
89 uint64_t branch_unneeded_reg[MAXBLOCK];
90 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91 uint64_t p32[MAXBLOCK];
92 uint64_t pr32[MAXBLOCK];
93 signed char regmap_pre[MAXBLOCK][HOST_REGS];
94 signed char regmap[MAXBLOCK][HOST_REGS];
95 signed char regmap_entry[MAXBLOCK][HOST_REGS];
96 uint64_t constmap[MAXBLOCK][HOST_REGS];
97 uint64_t known_value[HOST_REGS];
98 u_int known_reg;
99 struct regstat regs[MAXBLOCK];
100 struct regstat branch_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
b9b61529 138#define FTEMP 38 // FPU/LDL/LDR temporary register
57871462 139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
7139f3c8 178#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 179#define COP2 27 // Coprocessor 2 move
180#define C2LS 28 // Coprocessor 2 load/store
181#define C2OP 29 // Coprocessor 2 operation
1e973cb0 182#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 183
184 /* stubs */
185#define CC_STUB 1
186#define FP_STUB 2
187#define LOADB_STUB 3
188#define LOADH_STUB 4
189#define LOADW_STUB 5
190#define LOADD_STUB 6
191#define LOADBU_STUB 7
192#define LOADHU_STUB 8
193#define STOREB_STUB 9
194#define STOREH_STUB 10
195#define STOREW_STUB 11
196#define STORED_STUB 12
197#define STORELR_STUB 13
198#define INVCODE_STUB 14
199
200 /* branch codes */
201#define TAKEN 1
202#define NOTTAKEN 2
203#define NULLDS 3
204
205// asm linkage
206int new_recompile_block(int addr);
207void *get_addr_ht(u_int vaddr);
208void invalidate_block(u_int block);
209void invalidate_addr(u_int addr);
210void remove_hash(int vaddr);
211void jump_vaddr();
212void dyna_linker();
213void dyna_linker_ds();
214void verify_code();
215void verify_code_vm();
216void verify_code_ds();
217void cc_interrupt();
218void fp_exception();
219void fp_exception_ds();
220void jump_syscall();
7139f3c8 221void jump_syscall_hle();
57871462 222void jump_eret();
7139f3c8 223void jump_hlecall();
1e973cb0 224void jump_intcall();
7139f3c8 225void new_dyna_leave();
57871462 226
227// TLB
228void TLBWI_new();
229void TLBWR_new();
230void read_nomem_new();
231void read_nomemb_new();
232void read_nomemh_new();
233void read_nomemd_new();
234void write_nomem_new();
235void write_nomemb_new();
236void write_nomemh_new();
237void write_nomemd_new();
238void write_rdram_new();
239void write_rdramb_new();
240void write_rdramh_new();
241void write_rdramd_new();
242extern u_int memory_map[1048576];
243
244// Needed by assembler
245void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248void load_all_regs(signed char i_regmap[]);
249void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250void load_regs_entry(int t);
251void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253int tracedebug=0;
254
255//#define DEBUG_CYCLE_COUNT 1
256
257void nullf() {}
258//#define assem_debug printf
259//#define inv_debug printf
260#define assem_debug nullf
261#define inv_debug nullf
262
94d23bb9 263static void tlb_hacks()
57871462 264{
94d23bb9 265#ifndef DISABLE_TLB
57871462 266 // Goldeneye hack
267 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268 {
269 u_int addr;
270 int n;
271 switch (ROM_HEADER->Country_code&0xFF)
272 {
273 case 0x45: // U
274 addr=0x34b30;
275 break;
276 case 0x4A: // J
277 addr=0x34b70;
278 break;
279 case 0x50: // E
280 addr=0x329f0;
281 break;
282 default:
283 // Unknown country code
284 addr=0;
285 break;
286 }
287 u_int rom_addr=(u_int)rom;
288 #ifdef ROM_COPY
289 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290 // in the lower 4G of memory to use this hack. Copy it if necessary.
291 if((void *)rom>(void *)0xffffffff) {
292 munmap(ROM_COPY, 67108864);
293 if(mmap(ROM_COPY, 12582912,
294 PROT_READ | PROT_WRITE,
295 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296 -1, 0) <= 0) {printf("mmap() failed\n");}
297 memcpy(ROM_COPY,rom,12582912);
298 rom_addr=(u_int)ROM_COPY;
299 }
300 #endif
301 if(addr) {
302 for(n=0x7F000;n<0x80000;n++) {
303 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304 }
305 }
306 }
94d23bb9 307#endif
57871462 308}
309
94d23bb9 310static u_int get_page(u_int vaddr)
57871462 311{
312 u_int page=(vaddr^0x80000000)>>12;
94d23bb9 313#ifndef DISABLE_TLB
57871462 314 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 315#endif
57871462 316 if(page>2048) page=2048+(page&2047);
94d23bb9 317 return page;
318}
319
320static u_int get_vpage(u_int vaddr)
321{
322 u_int vpage=(vaddr^0x80000000)>>12;
323#ifndef DISABLE_TLB
57871462 324 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 325#endif
57871462 326 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 327 return vpage;
328}
329
330// Get address from virtual address
331// This is called from the recompiled JR/JALR instructions
332void *get_addr(u_int vaddr)
333{
334 u_int page=get_page(vaddr);
335 u_int vpage=get_vpage(vaddr);
57871462 336 struct ll_entry *head;
337 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
338 head=jump_in[page];
339 while(head!=NULL) {
340 if(head->vaddr==vaddr&&head->reg32==0) {
341 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
342 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
343 ht_bin[3]=ht_bin[1];
344 ht_bin[2]=ht_bin[0];
345 ht_bin[1]=(int)head->addr;
346 ht_bin[0]=vaddr;
347 return head->addr;
348 }
349 head=head->next;
350 }
351 head=jump_dirty[vpage];
352 while(head!=NULL) {
353 if(head->vaddr==vaddr&&head->reg32==0) {
354 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
355 // Don't restore blocks which are about to expire from the cache
356 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
357 if(verify_dirty(head->addr)) {
358 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
359 invalid_code[vaddr>>12]=0;
360 memory_map[vaddr>>12]|=0x40000000;
361 if(vpage<2048) {
94d23bb9 362#ifndef DISABLE_TLB
57871462 363 if(tlb_LUT_r[vaddr>>12]) {
364 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
365 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
366 }
94d23bb9 367#endif
57871462 368 restore_candidate[vpage>>3]|=1<<(vpage&7);
369 }
370 else restore_candidate[page>>3]|=1<<(page&7);
371 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
372 if(ht_bin[0]==vaddr) {
373 ht_bin[1]=(int)head->addr; // Replace existing entry
374 }
375 else
376 {
377 ht_bin[3]=ht_bin[1];
378 ht_bin[2]=ht_bin[0];
379 ht_bin[1]=(int)head->addr;
380 ht_bin[0]=vaddr;
381 }
382 return head->addr;
383 }
384 }
385 head=head->next;
386 }
387 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
388 int r=new_recompile_block(vaddr);
389 if(r==0) return get_addr(vaddr);
390 // Execute in unmapped page, generate pagefault execption
391 Status|=2;
392 Cause=(vaddr<<31)|0x8;
393 EPC=(vaddr&1)?vaddr-5:vaddr;
394 BadVAddr=(vaddr&~1);
395 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
396 EntryHi=BadVAddr&0xFFFFE000;
397 return get_addr_ht(0x80000000);
398}
399// Look up address in hash table first
400void *get_addr_ht(u_int vaddr)
401{
402 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
403 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
404 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
405 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
406 return get_addr(vaddr);
407}
408
409void *get_addr_32(u_int vaddr,u_int flags)
410{
7139f3c8 411#ifdef FORCE32
412 return get_addr(vaddr);
560e4a12 413#else
57871462 414 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
415 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
416 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
417 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 418 u_int page=get_page(vaddr);
419 u_int vpage=get_vpage(vaddr);
57871462 420 struct ll_entry *head;
421 head=jump_in[page];
422 while(head!=NULL) {
423 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
424 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
425 if(head->reg32==0) {
426 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
427 if(ht_bin[0]==-1) {
428 ht_bin[1]=(int)head->addr;
429 ht_bin[0]=vaddr;
430 }else if(ht_bin[2]==-1) {
431 ht_bin[3]=(int)head->addr;
432 ht_bin[2]=vaddr;
433 }
434 //ht_bin[3]=ht_bin[1];
435 //ht_bin[2]=ht_bin[0];
436 //ht_bin[1]=(int)head->addr;
437 //ht_bin[0]=vaddr;
438 }
439 return head->addr;
440 }
441 head=head->next;
442 }
443 head=jump_dirty[vpage];
444 while(head!=NULL) {
445 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
446 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
447 // Don't restore blocks which are about to expire from the cache
448 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
449 if(verify_dirty(head->addr)) {
450 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
451 invalid_code[vaddr>>12]=0;
452 memory_map[vaddr>>12]|=0x40000000;
453 if(vpage<2048) {
94d23bb9 454#ifndef DISABLE_TLB
57871462 455 if(tlb_LUT_r[vaddr>>12]) {
456 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
457 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
458 }
94d23bb9 459#endif
57871462 460 restore_candidate[vpage>>3]|=1<<(vpage&7);
461 }
462 else restore_candidate[page>>3]|=1<<(page&7);
463 if(head->reg32==0) {
464 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
465 if(ht_bin[0]==-1) {
466 ht_bin[1]=(int)head->addr;
467 ht_bin[0]=vaddr;
468 }else if(ht_bin[2]==-1) {
469 ht_bin[3]=(int)head->addr;
470 ht_bin[2]=vaddr;
471 }
472 //ht_bin[3]=ht_bin[1];
473 //ht_bin[2]=ht_bin[0];
474 //ht_bin[1]=(int)head->addr;
475 //ht_bin[0]=vaddr;
476 }
477 return head->addr;
478 }
479 }
480 head=head->next;
481 }
482 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
483 int r=new_recompile_block(vaddr);
484 if(r==0) return get_addr(vaddr);
485 // Execute in unmapped page, generate pagefault execption
486 Status|=2;
487 Cause=(vaddr<<31)|0x8;
488 EPC=(vaddr&1)?vaddr-5:vaddr;
489 BadVAddr=(vaddr&~1);
490 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
491 EntryHi=BadVAddr&0xFFFFE000;
492 return get_addr_ht(0x80000000);
560e4a12 493#endif
57871462 494}
495
496void clear_all_regs(signed char regmap[])
497{
498 int hr;
499 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
500}
501
502signed char get_reg(signed char regmap[],int r)
503{
504 int hr;
505 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
506 return -1;
507}
508
509// Find a register that is available for two consecutive cycles
510signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
511{
512 int hr;
513 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
514 return -1;
515}
516
517int count_free_regs(signed char regmap[])
518{
519 int count=0;
520 int hr;
521 for(hr=0;hr<HOST_REGS;hr++)
522 {
523 if(hr!=EXCLUDE_REG) {
524 if(regmap[hr]<0) count++;
525 }
526 }
527 return count;
528}
529
530void dirty_reg(struct regstat *cur,signed char reg)
531{
532 int hr;
533 if(!reg) return;
534 for (hr=0;hr<HOST_REGS;hr++) {
535 if((cur->regmap[hr]&63)==reg) {
536 cur->dirty|=1<<hr;
537 }
538 }
539}
540
541// If we dirty the lower half of a 64 bit register which is now being
542// sign-extended, we need to dump the upper half.
543// Note: Do this only after completion of the instruction, because
544// some instructions may need to read the full 64-bit value even if
545// overwriting it (eg SLTI, DSRA32).
546static void flush_dirty_uppers(struct regstat *cur)
547{
548 int hr,reg;
549 for (hr=0;hr<HOST_REGS;hr++) {
550 if((cur->dirty>>hr)&1) {
551 reg=cur->regmap[hr];
552 if(reg>=64)
553 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
554 }
555 }
556}
557
558void set_const(struct regstat *cur,signed char reg,uint64_t value)
559{
560 int hr;
561 if(!reg) return;
562 for (hr=0;hr<HOST_REGS;hr++) {
563 if(cur->regmap[hr]==reg) {
564 cur->isconst|=1<<hr;
565 cur->constmap[hr]=value;
566 }
567 else if((cur->regmap[hr]^64)==reg) {
568 cur->isconst|=1<<hr;
569 cur->constmap[hr]=value>>32;
570 }
571 }
572}
573
574void clear_const(struct regstat *cur,signed char reg)
575{
576 int hr;
577 if(!reg) return;
578 for (hr=0;hr<HOST_REGS;hr++) {
579 if((cur->regmap[hr]&63)==reg) {
580 cur->isconst&=~(1<<hr);
581 }
582 }
583}
584
585int is_const(struct regstat *cur,signed char reg)
586{
587 int hr;
588 if(!reg) return 1;
589 for (hr=0;hr<HOST_REGS;hr++) {
590 if((cur->regmap[hr]&63)==reg) {
591 return (cur->isconst>>hr)&1;
592 }
593 }
594 return 0;
595}
596uint64_t get_const(struct regstat *cur,signed char reg)
597{
598 int hr;
599 if(!reg) return 0;
600 for (hr=0;hr<HOST_REGS;hr++) {
601 if(cur->regmap[hr]==reg) {
602 return cur->constmap[hr];
603 }
604 }
605 printf("Unknown constant in r%d\n",reg);
606 exit(1);
607}
608
609// Least soon needed registers
610// Look at the next ten instructions and see which registers
611// will be used. Try not to reallocate these.
612void lsn(u_char hsn[], int i, int *preferred_reg)
613{
614 int j;
615 int b=-1;
616 for(j=0;j<9;j++)
617 {
618 if(i+j>=slen) {
619 j=slen-i-1;
620 break;
621 }
622 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
623 {
624 // Don't go past an unconditonal jump
625 j++;
626 break;
627 }
628 }
629 for(;j>=0;j--)
630 {
631 if(rs1[i+j]) hsn[rs1[i+j]]=j;
632 if(rs2[i+j]) hsn[rs2[i+j]]=j;
633 if(rt1[i+j]) hsn[rt1[i+j]]=j;
634 if(rt2[i+j]) hsn[rt2[i+j]]=j;
635 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
636 // Stores can allocate zero
637 hsn[rs1[i+j]]=j;
638 hsn[rs2[i+j]]=j;
639 }
640 // On some architectures stores need invc_ptr
641 #if defined(HOST_IMM8)
b9b61529 642 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 643 hsn[INVCP]=j;
644 }
645 #endif
646 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
647 {
648 hsn[CCREG]=j;
649 b=j;
650 }
651 }
652 if(b>=0)
653 {
654 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
655 {
656 // Follow first branch
657 int t=(ba[i+b]-start)>>2;
658 j=7-b;if(t+j>=slen) j=slen-t-1;
659 for(;j>=0;j--)
660 {
661 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
662 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
663 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
664 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
665 }
666 }
667 // TODO: preferred register based on backward branch
668 }
669 // Delay slot should preferably not overwrite branch conditions or cycle count
670 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
671 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
672 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
673 hsn[CCREG]=1;
674 // ...or hash tables
675 hsn[RHASH]=1;
676 hsn[RHTBL]=1;
677 }
678 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 679 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 680 hsn[FTEMP]=0;
681 }
682 // Load L/R also uses FTEMP as a temporary register
683 if(itype[i]==LOADLR) {
684 hsn[FTEMP]=0;
685 }
b7918751 686 // Also SWL/SWR/SDL/SDR
687 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 688 hsn[FTEMP]=0;
689 }
690 // Don't remove the TLB registers either
b9b61529 691 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 692 hsn[TLREG]=0;
693 }
694 // Don't remove the miniht registers
695 if(itype[i]==UJUMP||itype[i]==RJUMP)
696 {
697 hsn[RHASH]=0;
698 hsn[RHTBL]=0;
699 }
700}
701
702// We only want to allocate registers if we're going to use them again soon
703int needed_again(int r, int i)
704{
705 int j;
706 int b=-1;
707 int rn=10;
708 int hr;
709 u_char hsn[MAXREG+1];
710 int preferred_reg;
711
712 memset(hsn,10,sizeof(hsn));
713 lsn(hsn,i,&preferred_reg);
714
715 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
716 {
717 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
718 return 0; // Don't need any registers if exiting the block
719 }
720 for(j=0;j<9;j++)
721 {
722 if(i+j>=slen) {
723 j=slen-i-1;
724 break;
725 }
726 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
727 {
728 // Don't go past an unconditonal jump
729 j++;
730 break;
731 }
1e973cb0 732 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 733 {
734 break;
735 }
736 }
737 for(;j>=1;j--)
738 {
739 if(rs1[i+j]==r) rn=j;
740 if(rs2[i+j]==r) rn=j;
741 if((unneeded_reg[i+j]>>r)&1) rn=10;
742 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
743 {
744 b=j;
745 }
746 }
747 /*
748 if(b>=0)
749 {
750 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
751 {
752 // Follow first branch
753 int o=rn;
754 int t=(ba[i+b]-start)>>2;
755 j=7-b;if(t+j>=slen) j=slen-t-1;
756 for(;j>=0;j--)
757 {
758 if(!((unneeded_reg[t+j]>>r)&1)) {
759 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
760 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
761 }
762 else rn=o;
763 }
764 }
765 }*/
766 for(hr=0;hr<HOST_REGS;hr++) {
767 if(hr!=EXCLUDE_REG) {
768 if(rn<hsn[hr]) return 1;
769 }
770 }
771 return 0;
772}
773
774// Try to match register allocations at the end of a loop with those
775// at the beginning
776int loop_reg(int i, int r, int hr)
777{
778 int j,k;
779 for(j=0;j<9;j++)
780 {
781 if(i+j>=slen) {
782 j=slen-i-1;
783 break;
784 }
785 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
786 {
787 // Don't go past an unconditonal jump
788 j++;
789 break;
790 }
791 }
792 k=0;
793 if(i>0){
794 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
795 k--;
796 }
797 for(;k<j;k++)
798 {
799 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
800 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
801 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
802 {
803 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
804 {
805 int t=(ba[i+k]-start)>>2;
806 int reg=get_reg(regs[t].regmap_entry,r);
807 if(reg>=0) return reg;
808 //reg=get_reg(regs[t+1].regmap_entry,r);
809 //if(reg>=0) return reg;
810 }
811 }
812 }
813 return hr;
814}
815
816
817// Allocate every register, preserving source/target regs
818void alloc_all(struct regstat *cur,int i)
819{
820 int hr;
821
822 for(hr=0;hr<HOST_REGS;hr++) {
823 if(hr!=EXCLUDE_REG) {
824 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
825 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
826 {
827 cur->regmap[hr]=-1;
828 cur->dirty&=~(1<<hr);
829 }
830 // Don't need zeros
831 if((cur->regmap[hr]&63)==0)
832 {
833 cur->regmap[hr]=-1;
834 cur->dirty&=~(1<<hr);
835 }
836 }
837 }
838}
839
840
841void div64(int64_t dividend,int64_t divisor)
842{
843 lo=dividend/divisor;
844 hi=dividend%divisor;
845 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
846 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
847}
848void divu64(uint64_t dividend,uint64_t divisor)
849{
850 lo=dividend/divisor;
851 hi=dividend%divisor;
852 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
853 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854}
855
856void mult64(uint64_t m1,uint64_t m2)
857{
858 unsigned long long int op1, op2, op3, op4;
859 unsigned long long int result1, result2, result3, result4;
860 unsigned long long int temp1, temp2, temp3, temp4;
861 int sign = 0;
862
863 if (m1 < 0)
864 {
865 op2 = -m1;
866 sign = 1 - sign;
867 }
868 else op2 = m1;
869 if (m2 < 0)
870 {
871 op4 = -m2;
872 sign = 1 - sign;
873 }
874 else op4 = m2;
875
876 op1 = op2 & 0xFFFFFFFF;
877 op2 = (op2 >> 32) & 0xFFFFFFFF;
878 op3 = op4 & 0xFFFFFFFF;
879 op4 = (op4 >> 32) & 0xFFFFFFFF;
880
881 temp1 = op1 * op3;
882 temp2 = (temp1 >> 32) + op1 * op4;
883 temp3 = op2 * op3;
884 temp4 = (temp3 >> 32) + op2 * op4;
885
886 result1 = temp1 & 0xFFFFFFFF;
887 result2 = temp2 + (temp3 & 0xFFFFFFFF);
888 result3 = (result2 >> 32) + temp4;
889 result4 = (result3 >> 32);
890
891 lo = result1 | (result2 << 32);
892 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
893 if (sign)
894 {
895 hi = ~hi;
896 if (!lo) hi++;
897 else lo = ~lo + 1;
898 }
899}
900
901void multu64(uint64_t m1,uint64_t m2)
902{
903 unsigned long long int op1, op2, op3, op4;
904 unsigned long long int result1, result2, result3, result4;
905 unsigned long long int temp1, temp2, temp3, temp4;
906
907 op1 = m1 & 0xFFFFFFFF;
908 op2 = (m1 >> 32) & 0xFFFFFFFF;
909 op3 = m2 & 0xFFFFFFFF;
910 op4 = (m2 >> 32) & 0xFFFFFFFF;
911
912 temp1 = op1 * op3;
913 temp2 = (temp1 >> 32) + op1 * op4;
914 temp3 = op2 * op3;
915 temp4 = (temp3 >> 32) + op2 * op4;
916
917 result1 = temp1 & 0xFFFFFFFF;
918 result2 = temp2 + (temp3 & 0xFFFFFFFF);
919 result3 = (result2 >> 32) + temp4;
920 result4 = (result3 >> 32);
921
922 lo = result1 | (result2 << 32);
923 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
924
925 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
926 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
927}
928
929uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
930{
931 if(bits) {
932 original<<=64-bits;
933 original>>=64-bits;
934 loaded<<=bits;
935 original|=loaded;
936 }
937 else original=loaded;
938 return original;
939}
940uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
941{
942 if(bits^56) {
943 original>>=64-(bits^56);
944 original<<=64-(bits^56);
945 loaded>>=bits^56;
946 original|=loaded;
947 }
948 else original=loaded;
949 return original;
950}
951
952#ifdef __i386__
953#include "assem_x86.c"
954#endif
955#ifdef __x86_64__
956#include "assem_x64.c"
957#endif
958#ifdef __arm__
959#include "assem_arm.c"
960#endif
961
962// Add virtual address mapping to linked list
963void ll_add(struct ll_entry **head,int vaddr,void *addr)
964{
965 struct ll_entry *new_entry;
966 new_entry=malloc(sizeof(struct ll_entry));
967 assert(new_entry!=NULL);
968 new_entry->vaddr=vaddr;
969 new_entry->reg32=0;
970 new_entry->addr=addr;
971 new_entry->next=*head;
972 *head=new_entry;
973}
974
975// Add virtual address mapping for 32-bit compiled block
976void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
977{
7139f3c8 978 ll_add(head,vaddr,addr);
979#ifndef FORCE32
980 (*head)->reg32=reg32;
981#endif
57871462 982}
983
984// Check if an address is already compiled
985// but don't return addresses which are about to expire from the cache
986void *check_addr(u_int vaddr)
987{
988 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
989 if(ht_bin[0]==vaddr) {
990 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
991 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
992 }
993 if(ht_bin[2]==vaddr) {
994 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
995 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
996 }
94d23bb9 997 u_int page=get_page(vaddr);
57871462 998 struct ll_entry *head;
999 head=jump_in[page];
1000 while(head!=NULL) {
1001 if(head->vaddr==vaddr&&head->reg32==0) {
1002 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1003 // Update existing entry with current address
1004 if(ht_bin[0]==vaddr) {
1005 ht_bin[1]=(int)head->addr;
1006 return head->addr;
1007 }
1008 if(ht_bin[2]==vaddr) {
1009 ht_bin[3]=(int)head->addr;
1010 return head->addr;
1011 }
1012 // Insert into hash table with low priority.
1013 // Don't evict existing entries, as they are probably
1014 // addresses that are being accessed frequently.
1015 if(ht_bin[0]==-1) {
1016 ht_bin[1]=(int)head->addr;
1017 ht_bin[0]=vaddr;
1018 }else if(ht_bin[2]==-1) {
1019 ht_bin[3]=(int)head->addr;
1020 ht_bin[2]=vaddr;
1021 }
1022 return head->addr;
1023 }
1024 }
1025 head=head->next;
1026 }
1027 return 0;
1028}
1029
1030void remove_hash(int vaddr)
1031{
1032 //printf("remove hash: %x\n",vaddr);
1033 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1034 if(ht_bin[2]==vaddr) {
1035 ht_bin[2]=ht_bin[3]=-1;
1036 }
1037 if(ht_bin[0]==vaddr) {
1038 ht_bin[0]=ht_bin[2];
1039 ht_bin[1]=ht_bin[3];
1040 ht_bin[2]=ht_bin[3]=-1;
1041 }
1042}
1043
1044void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1045{
1046 struct ll_entry *next;
1047 while(*head) {
1048 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1049 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1050 {
1051 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1052 remove_hash((*head)->vaddr);
1053 next=(*head)->next;
1054 free(*head);
1055 *head=next;
1056 }
1057 else
1058 {
1059 head=&((*head)->next);
1060 }
1061 }
1062}
1063
1064// Remove all entries from linked list
1065void ll_clear(struct ll_entry **head)
1066{
1067 struct ll_entry *cur;
1068 struct ll_entry *next;
1069 if(cur=*head) {
1070 *head=0;
1071 while(cur) {
1072 next=cur->next;
1073 free(cur);
1074 cur=next;
1075 }
1076 }
1077}
1078
1079// Dereference the pointers and remove if it matches
1080void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1081{
f76eeef9 1082 u_int old_host_addr=0;
57871462 1083 while(head) {
1084 int ptr=get_pointer(head->addr);
1085 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1086 if(((ptr>>shift)==(addr>>shift)) ||
1087 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1088 {
5088bb70 1089 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1090 u_int host_addr=(u_int)kill_pointer(head->addr);
1091
1092 if((host_addr>>12)!=(old_host_addr>>12)) {
1093 #ifdef __arm__
1094 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1095 #endif
1096 old_host_addr=host_addr;
1097 }
57871462 1098 }
1099 head=head->next;
1100 }
f76eeef9 1101 #ifdef __arm__
1102 if (old_host_addr)
1103 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1104 #endif
57871462 1105}
1106
1107// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1108void invalidate_page(u_int page)
57871462 1109{
57871462 1110 struct ll_entry *head;
1111 struct ll_entry *next;
f76eeef9 1112 u_int old_host_addr=0;
57871462 1113 head=jump_in[page];
1114 jump_in[page]=0;
1115 while(head!=NULL) {
1116 inv_debug("INVALIDATE: %x\n",head->vaddr);
1117 remove_hash(head->vaddr);
1118 next=head->next;
1119 free(head);
1120 head=next;
1121 }
1122 head=jump_out[page];
1123 jump_out[page]=0;
1124 while(head!=NULL) {
1125 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1126 u_int host_addr=(u_int)kill_pointer(head->addr);
1127
1128 if((host_addr>>12)!=(old_host_addr>>12)) {
1129 #ifdef __arm__
1130 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1131 #endif
1132 old_host_addr=host_addr;
1133 }
57871462 1134 next=head->next;
1135 free(head);
1136 head=next;
1137 }
f76eeef9 1138 #ifdef __arm__
1139 if (old_host_addr)
1140 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1141 #endif
57871462 1142}
1143void invalidate_block(u_int block)
1144{
94d23bb9 1145 u_int page=get_page(block<<12);
1146 u_int vpage=get_vpage(block<<12);
57871462 1147 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1148 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1149 u_int first,last;
1150 first=last=page;
1151 struct ll_entry *head;
1152 head=jump_dirty[vpage];
1153 //printf("page=%d vpage=%d\n",page,vpage);
1154 while(head!=NULL) {
1155 u_int start,end;
1156 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1157 get_bounds((int)head->addr,&start,&end);
1158 //printf("start: %x end: %x\n",start,end);
4cb76aa4 1159 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
57871462 1160 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1161 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1162 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1163 }
1164 }
90ae6d4e 1165#ifndef DISABLE_TLB
57871462 1166 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1167 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1168 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1169 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1170 }
1171 }
90ae6d4e 1172#endif
57871462 1173 }
1174 head=head->next;
1175 }
1176 //printf("first=%d last=%d\n",first,last);
f76eeef9 1177 invalidate_page(page);
57871462 1178 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1179 assert(last<page+5);
1180 // Invalidate the adjacent pages if a block crosses a 4K boundary
1181 while(first<page) {
1182 invalidate_page(first);
1183 first++;
1184 }
1185 for(first=page+1;first<last;first++) {
1186 invalidate_page(first);
1187 }
1188
1189 // Don't trap writes
1190 invalid_code[block]=1;
94d23bb9 1191#ifndef DISABLE_TLB
57871462 1192 // If there is a valid TLB entry for this page, remove write protect
1193 if(tlb_LUT_w[block]) {
1194 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1195 // CHECK: Is this right?
1196 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1197 u_int real_block=tlb_LUT_w[block]>>12;
1198 invalid_code[real_block]=1;
1199 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1200 }
1201 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1202#endif
f76eeef9 1203
57871462 1204 #ifdef USE_MINI_HT
1205 memset(mini_ht,-1,sizeof(mini_ht));
1206 #endif
1207}
1208void invalidate_addr(u_int addr)
1209{
1210 invalidate_block(addr>>12);
1211}
1212void invalidate_all_pages()
1213{
1214 u_int page,n;
1215 for(page=0;page<4096;page++)
1216 invalidate_page(page);
1217 for(page=0;page<1048576;page++)
1218 if(!invalid_code[page]) {
1219 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1220 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1221 }
1222 #ifdef __arm__
1223 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1224 #endif
1225 #ifdef USE_MINI_HT
1226 memset(mini_ht,-1,sizeof(mini_ht));
1227 #endif
94d23bb9 1228 #ifndef DISABLE_TLB
57871462 1229 // TLB
1230 for(page=0;page<0x100000;page++) {
1231 if(tlb_LUT_r[page]) {
1232 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1233 if(!tlb_LUT_w[page]||!invalid_code[page])
1234 memory_map[page]|=0x40000000; // Write protect
1235 }
1236 else memory_map[page]=-1;
1237 if(page==0x80000) page=0xC0000;
1238 }
1239 tlb_hacks();
94d23bb9 1240 #endif
57871462 1241}
1242
1243// Add an entry to jump_out after making a link
1244void add_link(u_int vaddr,void *src)
1245{
94d23bb9 1246 u_int page=get_page(vaddr);
57871462 1247 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1248 ll_add(jump_out+page,vaddr,src);
1249 //int ptr=get_pointer(src);
1250 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1251}
1252
1253// If a code block was found to be unmodified (bit was set in
1254// restore_candidate) and it remains unmodified (bit is clear
1255// in invalid_code) then move the entries for that 4K page from
1256// the dirty list to the clean list.
1257void clean_blocks(u_int page)
1258{
1259 struct ll_entry *head;
1260 inv_debug("INV: clean_blocks page=%d\n",page);
1261 head=jump_dirty[page];
1262 while(head!=NULL) {
1263 if(!invalid_code[head->vaddr>>12]) {
1264 // Don't restore blocks which are about to expire from the cache
1265 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1266 u_int start,end;
1267 if(verify_dirty((int)head->addr)) {
1268 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1269 u_int i;
1270 u_int inv=0;
1271 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1272 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1273 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1274 inv|=invalid_code[i];
1275 }
1276 }
1277 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1278 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1279 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1280 if(addr<start||addr>=end) inv=1;
1281 }
4cb76aa4 1282 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1283 inv=1;
1284 }
1285 if(!inv) {
1286 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1287 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1288 u_int ppage=page;
94d23bb9 1289#ifndef DISABLE_TLB
57871462 1290 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1291#endif
57871462 1292 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1293 //printf("page=%x, addr=%x\n",page,head->vaddr);
1294 //assert(head->vaddr>>12==(page|0x80000));
1295 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1296 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1297 if(!head->reg32) {
1298 if(ht_bin[0]==head->vaddr) {
1299 ht_bin[1]=(int)clean_addr; // Replace existing entry
1300 }
1301 if(ht_bin[2]==head->vaddr) {
1302 ht_bin[3]=(int)clean_addr; // Replace existing entry
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309 }
1310 head=head->next;
1311 }
1312}
1313
1314
1315void mov_alloc(struct regstat *current,int i)
1316{
1317 // Note: Don't need to actually alloc the source registers
1318 if((~current->is32>>rs1[i])&1) {
1319 //alloc_reg64(current,i,rs1[i]);
1320 alloc_reg64(current,i,rt1[i]);
1321 current->is32&=~(1LL<<rt1[i]);
1322 } else {
1323 //alloc_reg(current,i,rs1[i]);
1324 alloc_reg(current,i,rt1[i]);
1325 current->is32|=(1LL<<rt1[i]);
1326 }
1327 clear_const(current,rs1[i]);
1328 clear_const(current,rt1[i]);
1329 dirty_reg(current,rt1[i]);
1330}
1331
1332void shiftimm_alloc(struct regstat *current,int i)
1333{
1334 clear_const(current,rs1[i]);
1335 clear_const(current,rt1[i]);
1336 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1337 {
1338 if(rt1[i]) {
1339 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1340 else lt1[i]=rs1[i];
1341 alloc_reg(current,i,rt1[i]);
1342 current->is32|=1LL<<rt1[i];
1343 dirty_reg(current,rt1[i]);
1344 }
1345 }
1346 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1347 {
1348 if(rt1[i]) {
1349 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1350 alloc_reg64(current,i,rt1[i]);
1351 current->is32&=~(1LL<<rt1[i]);
1352 dirty_reg(current,rt1[i]);
1353 }
1354 }
1355 if(opcode2[i]==0x3c) // DSLL32
1356 {
1357 if(rt1[i]) {
1358 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1359 alloc_reg64(current,i,rt1[i]);
1360 current->is32&=~(1LL<<rt1[i]);
1361 dirty_reg(current,rt1[i]);
1362 }
1363 }
1364 if(opcode2[i]==0x3e) // DSRL32
1365 {
1366 if(rt1[i]) {
1367 alloc_reg64(current,i,rs1[i]);
1368 if(imm[i]==32) {
1369 alloc_reg64(current,i,rt1[i]);
1370 current->is32&=~(1LL<<rt1[i]);
1371 } else {
1372 alloc_reg(current,i,rt1[i]);
1373 current->is32|=1LL<<rt1[i];
1374 }
1375 dirty_reg(current,rt1[i]);
1376 }
1377 }
1378 if(opcode2[i]==0x3f) // DSRA32
1379 {
1380 if(rt1[i]) {
1381 alloc_reg64(current,i,rs1[i]);
1382 alloc_reg(current,i,rt1[i]);
1383 current->is32|=1LL<<rt1[i];
1384 dirty_reg(current,rt1[i]);
1385 }
1386 }
1387}
1388
1389void shift_alloc(struct regstat *current,int i)
1390{
1391 if(rt1[i]) {
1392 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1393 {
1394 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1395 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1396 alloc_reg(current,i,rt1[i]);
1397 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1398 current->is32|=1LL<<rt1[i];
1399 } else { // DSLLV/DSRLV/DSRAV
1400 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1401 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1402 alloc_reg64(current,i,rt1[i]);
1403 current->is32&=~(1LL<<rt1[i]);
1404 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1405 alloc_reg_temp(current,i,-1);
1406 }
1407 clear_const(current,rs1[i]);
1408 clear_const(current,rs2[i]);
1409 clear_const(current,rt1[i]);
1410 dirty_reg(current,rt1[i]);
1411 }
1412}
1413
1414void alu_alloc(struct regstat *current,int i)
1415{
1416 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1417 if(rt1[i]) {
1418 if(rs1[i]&&rs2[i]) {
1419 alloc_reg(current,i,rs1[i]);
1420 alloc_reg(current,i,rs2[i]);
1421 }
1422 else {
1423 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1424 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1425 }
1426 alloc_reg(current,i,rt1[i]);
1427 }
1428 current->is32|=1LL<<rt1[i];
1429 }
1430 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1431 if(rt1[i]) {
1432 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1433 {
1434 alloc_reg64(current,i,rs1[i]);
1435 alloc_reg64(current,i,rs2[i]);
1436 alloc_reg(current,i,rt1[i]);
1437 } else {
1438 alloc_reg(current,i,rs1[i]);
1439 alloc_reg(current,i,rs2[i]);
1440 alloc_reg(current,i,rt1[i]);
1441 }
1442 }
1443 current->is32|=1LL<<rt1[i];
1444 }
1445 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1446 if(rt1[i]) {
1447 if(rs1[i]&&rs2[i]) {
1448 alloc_reg(current,i,rs1[i]);
1449 alloc_reg(current,i,rs2[i]);
1450 }
1451 else
1452 {
1453 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1454 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1455 }
1456 alloc_reg(current,i,rt1[i]);
1457 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1458 {
1459 if(!((current->uu>>rt1[i])&1)) {
1460 alloc_reg64(current,i,rt1[i]);
1461 }
1462 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1463 if(rs1[i]&&rs2[i]) {
1464 alloc_reg64(current,i,rs1[i]);
1465 alloc_reg64(current,i,rs2[i]);
1466 }
1467 else
1468 {
1469 // Is is really worth it to keep 64-bit values in registers?
1470 #ifdef NATIVE_64BIT
1471 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1472 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1473 #endif
1474 }
1475 }
1476 current->is32&=~(1LL<<rt1[i]);
1477 } else {
1478 current->is32|=1LL<<rt1[i];
1479 }
1480 }
1481 }
1482 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1483 if(rt1[i]) {
1484 if(rs1[i]&&rs2[i]) {
1485 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1486 alloc_reg64(current,i,rs1[i]);
1487 alloc_reg64(current,i,rs2[i]);
1488 alloc_reg64(current,i,rt1[i]);
1489 } else {
1490 alloc_reg(current,i,rs1[i]);
1491 alloc_reg(current,i,rs2[i]);
1492 alloc_reg(current,i,rt1[i]);
1493 }
1494 }
1495 else {
1496 alloc_reg(current,i,rt1[i]);
1497 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1498 // DADD used as move, or zeroing
1499 // If we have a 64-bit source, then make the target 64 bits too
1500 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1501 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1502 alloc_reg64(current,i,rt1[i]);
1503 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1504 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1505 alloc_reg64(current,i,rt1[i]);
1506 }
1507 if(opcode2[i]>=0x2e&&rs2[i]) {
1508 // DSUB used as negation - 64-bit result
1509 // If we have a 32-bit register, extend it to 64 bits
1510 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511 alloc_reg64(current,i,rt1[i]);
1512 }
1513 }
1514 }
1515 if(rs1[i]&&rs2[i]) {
1516 current->is32&=~(1LL<<rt1[i]);
1517 } else if(rs1[i]) {
1518 current->is32&=~(1LL<<rt1[i]);
1519 if((current->is32>>rs1[i])&1)
1520 current->is32|=1LL<<rt1[i];
1521 } else if(rs2[i]) {
1522 current->is32&=~(1LL<<rt1[i]);
1523 if((current->is32>>rs2[i])&1)
1524 current->is32|=1LL<<rt1[i];
1525 } else {
1526 current->is32|=1LL<<rt1[i];
1527 }
1528 }
1529 }
1530 clear_const(current,rs1[i]);
1531 clear_const(current,rs2[i]);
1532 clear_const(current,rt1[i]);
1533 dirty_reg(current,rt1[i]);
1534}
1535
1536void imm16_alloc(struct regstat *current,int i)
1537{
1538 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1539 else lt1[i]=rs1[i];
1540 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1541 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1542 current->is32&=~(1LL<<rt1[i]);
1543 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1544 // TODO: Could preserve the 32-bit flag if the immediate is zero
1545 alloc_reg64(current,i,rt1[i]);
1546 alloc_reg64(current,i,rs1[i]);
1547 }
1548 clear_const(current,rs1[i]);
1549 clear_const(current,rt1[i]);
1550 }
1551 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1552 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1553 current->is32|=1LL<<rt1[i];
1554 clear_const(current,rs1[i]);
1555 clear_const(current,rt1[i]);
1556 }
1557 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1558 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1559 if(rs1[i]!=rt1[i]) {
1560 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1561 alloc_reg64(current,i,rt1[i]);
1562 current->is32&=~(1LL<<rt1[i]);
1563 }
1564 }
1565 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1566 if(is_const(current,rs1[i])) {
1567 int v=get_const(current,rs1[i]);
1568 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1569 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1570 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1571 }
1572 else clear_const(current,rt1[i]);
1573 }
1574 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1575 if(is_const(current,rs1[i])) {
1576 int v=get_const(current,rs1[i]);
1577 set_const(current,rt1[i],v+imm[i]);
1578 }
1579 else clear_const(current,rt1[i]);
1580 current->is32|=1LL<<rt1[i];
1581 }
1582 else {
1583 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1584 current->is32|=1LL<<rt1[i];
1585 }
1586 dirty_reg(current,rt1[i]);
1587}
1588
1589void load_alloc(struct regstat *current,int i)
1590{
1591 clear_const(current,rt1[i]);
1592 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1593 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1594 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1595 if(rt1[i]) {
1596 alloc_reg(current,i,rt1[i]);
1597 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1598 {
1599 current->is32&=~(1LL<<rt1[i]);
1600 alloc_reg64(current,i,rt1[i]);
1601 }
1602 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1603 {
1604 current->is32&=~(1LL<<rt1[i]);
1605 alloc_reg64(current,i,rt1[i]);
1606 alloc_all(current,i);
1607 alloc_reg64(current,i,FTEMP);
1608 }
1609 else current->is32|=1LL<<rt1[i];
1610 dirty_reg(current,rt1[i]);
1611 // If using TLB, need a register for pointer to the mapping table
1612 if(using_tlb) alloc_reg(current,i,TLREG);
1613 // LWL/LWR need a temporary register for the old value
1614 if(opcode[i]==0x22||opcode[i]==0x26)
1615 {
1616 alloc_reg(current,i,FTEMP);
1617 alloc_reg_temp(current,i,-1);
1618 }
1619 }
1620 else
1621 {
1622 // Load to r0 (dummy load)
1623 // but we still need a register to calculate the address
1624 alloc_reg_temp(current,i,-1);
1625 }
1626}
1627
1628void store_alloc(struct regstat *current,int i)
1629{
1630 clear_const(current,rs2[i]);
1631 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1632 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1633 alloc_reg(current,i,rs2[i]);
1634 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1635 alloc_reg64(current,i,rs2[i]);
1636 if(rs2[i]) alloc_reg(current,i,FTEMP);
1637 }
1638 // If using TLB, need a register for pointer to the mapping table
1639 if(using_tlb) alloc_reg(current,i,TLREG);
1640 #if defined(HOST_IMM8)
1641 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1642 else alloc_reg(current,i,INVCP);
1643 #endif
b7918751 1644 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1645 alloc_reg(current,i,FTEMP);
1646 }
1647 // We need a temporary register for address generation
1648 alloc_reg_temp(current,i,-1);
1649}
1650
1651void c1ls_alloc(struct regstat *current,int i)
1652{
1653 //clear_const(current,rs1[i]); // FIXME
1654 clear_const(current,rt1[i]);
1655 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1656 alloc_reg(current,i,CSREG); // Status
1657 alloc_reg(current,i,FTEMP);
1658 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1659 alloc_reg64(current,i,FTEMP);
1660 }
1661 // If using TLB, need a register for pointer to the mapping table
1662 if(using_tlb) alloc_reg(current,i,TLREG);
1663 #if defined(HOST_IMM8)
1664 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1665 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1666 alloc_reg(current,i,INVCP);
1667 #endif
1668 // We need a temporary register for address generation
1669 alloc_reg_temp(current,i,-1);
1670}
1671
b9b61529 1672void c2ls_alloc(struct regstat *current,int i)
1673{
1674 clear_const(current,rt1[i]);
1675 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1676 alloc_reg(current,i,FTEMP);
1677 // If using TLB, need a register for pointer to the mapping table
1678 if(using_tlb) alloc_reg(current,i,TLREG);
1679 #if defined(HOST_IMM8)
1680 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1681 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1682 alloc_reg(current,i,INVCP);
1683 #endif
1684 // We need a temporary register for address generation
1685 alloc_reg_temp(current,i,-1);
1686}
1687
57871462 1688#ifndef multdiv_alloc
1689void multdiv_alloc(struct regstat *current,int i)
1690{
1691 // case 0x18: MULT
1692 // case 0x19: MULTU
1693 // case 0x1A: DIV
1694 // case 0x1B: DIVU
1695 // case 0x1C: DMULT
1696 // case 0x1D: DMULTU
1697 // case 0x1E: DDIV
1698 // case 0x1F: DDIVU
1699 clear_const(current,rs1[i]);
1700 clear_const(current,rs2[i]);
1701 if(rs1[i]&&rs2[i])
1702 {
1703 if((opcode2[i]&4)==0) // 32-bit
1704 {
1705 current->u&=~(1LL<<HIREG);
1706 current->u&=~(1LL<<LOREG);
1707 alloc_reg(current,i,HIREG);
1708 alloc_reg(current,i,LOREG);
1709 alloc_reg(current,i,rs1[i]);
1710 alloc_reg(current,i,rs2[i]);
1711 current->is32|=1LL<<HIREG;
1712 current->is32|=1LL<<LOREG;
1713 dirty_reg(current,HIREG);
1714 dirty_reg(current,LOREG);
1715 }
1716 else // 64-bit
1717 {
1718 current->u&=~(1LL<<HIREG);
1719 current->u&=~(1LL<<LOREG);
1720 current->uu&=~(1LL<<HIREG);
1721 current->uu&=~(1LL<<LOREG);
1722 alloc_reg64(current,i,HIREG);
1723 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1724 alloc_reg64(current,i,rs1[i]);
1725 alloc_reg64(current,i,rs2[i]);
1726 alloc_all(current,i);
1727 current->is32&=~(1LL<<HIREG);
1728 current->is32&=~(1LL<<LOREG);
1729 dirty_reg(current,HIREG);
1730 dirty_reg(current,LOREG);
1731 }
1732 }
1733 else
1734 {
1735 // Multiply by zero is zero.
1736 // MIPS does not have a divide by zero exception.
1737 // The result is undefined, we return zero.
1738 alloc_reg(current,i,HIREG);
1739 alloc_reg(current,i,LOREG);
1740 current->is32|=1LL<<HIREG;
1741 current->is32|=1LL<<LOREG;
1742 dirty_reg(current,HIREG);
1743 dirty_reg(current,LOREG);
1744 }
1745}
1746#endif
1747
1748void cop0_alloc(struct regstat *current,int i)
1749{
1750 if(opcode2[i]==0) // MFC0
1751 {
1752 if(rt1[i]) {
1753 clear_const(current,rt1[i]);
1754 alloc_all(current,i);
1755 alloc_reg(current,i,rt1[i]);
1756 current->is32|=1LL<<rt1[i];
1757 dirty_reg(current,rt1[i]);
1758 }
1759 }
1760 else if(opcode2[i]==4) // MTC0
1761 {
1762 if(rs1[i]){
1763 clear_const(current,rs1[i]);
1764 alloc_reg(current,i,rs1[i]);
1765 alloc_all(current,i);
1766 }
1767 else {
1768 alloc_all(current,i); // FIXME: Keep r0
1769 current->u&=~1LL;
1770 alloc_reg(current,i,0);
1771 }
1772 }
1773 else
1774 {
1775 // TLBR/TLBWI/TLBWR/TLBP/ERET
1776 assert(opcode2[i]==0x10);
1777 alloc_all(current,i);
1778 }
1779}
1780
1781void cop1_alloc(struct regstat *current,int i)
1782{
1783 alloc_reg(current,i,CSREG); // Load status
1784 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1785 {
1786 assert(rt1[i]);
1787 clear_const(current,rt1[i]);
1788 if(opcode2[i]==1) {
1789 alloc_reg64(current,i,rt1[i]); // DMFC1
1790 current->is32&=~(1LL<<rt1[i]);
1791 }else{
1792 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1793 current->is32|=1LL<<rt1[i];
1794 }
1795 dirty_reg(current,rt1[i]);
1796 alloc_reg_temp(current,i,-1);
1797 }
1798 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1799 {
1800 if(rs1[i]){
1801 clear_const(current,rs1[i]);
1802 if(opcode2[i]==5)
1803 alloc_reg64(current,i,rs1[i]); // DMTC1
1804 else
1805 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1806 alloc_reg_temp(current,i,-1);
1807 }
1808 else {
1809 current->u&=~1LL;
1810 alloc_reg(current,i,0);
1811 alloc_reg_temp(current,i,-1);
1812 }
1813 }
1814}
1815void fconv_alloc(struct regstat *current,int i)
1816{
1817 alloc_reg(current,i,CSREG); // Load status
1818 alloc_reg_temp(current,i,-1);
1819}
1820void float_alloc(struct regstat *current,int i)
1821{
1822 alloc_reg(current,i,CSREG); // Load status
1823 alloc_reg_temp(current,i,-1);
1824}
b9b61529 1825void c2op_alloc(struct regstat *current,int i)
1826{
1827 alloc_reg_temp(current,i,-1);
1828}
57871462 1829void fcomp_alloc(struct regstat *current,int i)
1830{
1831 alloc_reg(current,i,CSREG); // Load status
1832 alloc_reg(current,i,FSREG); // Load flags
1833 dirty_reg(current,FSREG); // Flag will be modified
1834 alloc_reg_temp(current,i,-1);
1835}
1836
1837void syscall_alloc(struct regstat *current,int i)
1838{
1839 alloc_cc(current,i);
1840 dirty_reg(current,CCREG);
1841 alloc_all(current,i);
1842 current->isconst=0;
1843}
1844
1845void delayslot_alloc(struct regstat *current,int i)
1846{
1847 switch(itype[i]) {
1848 case UJUMP:
1849 case CJUMP:
1850 case SJUMP:
1851 case RJUMP:
1852 case FJUMP:
1853 case SYSCALL:
7139f3c8 1854 case HLECALL:
57871462 1855 case SPAN:
1856 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1857 printf("Disabled speculative precompilation\n");
1858 stop_after_jal=1;
1859 break;
1860 case IMM16:
1861 imm16_alloc(current,i);
1862 break;
1863 case LOAD:
1864 case LOADLR:
1865 load_alloc(current,i);
1866 break;
1867 case STORE:
1868 case STORELR:
1869 store_alloc(current,i);
1870 break;
1871 case ALU:
1872 alu_alloc(current,i);
1873 break;
1874 case SHIFT:
1875 shift_alloc(current,i);
1876 break;
1877 case MULTDIV:
1878 multdiv_alloc(current,i);
1879 break;
1880 case SHIFTIMM:
1881 shiftimm_alloc(current,i);
1882 break;
1883 case MOV:
1884 mov_alloc(current,i);
1885 break;
1886 case COP0:
1887 cop0_alloc(current,i);
1888 break;
1889 case COP1:
b9b61529 1890 case COP2:
57871462 1891 cop1_alloc(current,i);
1892 break;
1893 case C1LS:
1894 c1ls_alloc(current,i);
1895 break;
b9b61529 1896 case C2LS:
1897 c2ls_alloc(current,i);
1898 break;
57871462 1899 case FCONV:
1900 fconv_alloc(current,i);
1901 break;
1902 case FLOAT:
1903 float_alloc(current,i);
1904 break;
1905 case FCOMP:
1906 fcomp_alloc(current,i);
1907 break;
b9b61529 1908 case C2OP:
1909 c2op_alloc(current,i);
1910 break;
57871462 1911 }
1912}
1913
1914// Special case where a branch and delay slot span two pages in virtual memory
1915static void pagespan_alloc(struct regstat *current,int i)
1916{
1917 current->isconst=0;
1918 current->wasconst=0;
1919 regs[i].wasconst=0;
1920 alloc_all(current,i);
1921 alloc_cc(current,i);
1922 dirty_reg(current,CCREG);
1923 if(opcode[i]==3) // JAL
1924 {
1925 alloc_reg(current,i,31);
1926 dirty_reg(current,31);
1927 }
1928 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1929 {
1930 alloc_reg(current,i,rs1[i]);
5067f341 1931 if (rt1[i]!=0) {
1932 alloc_reg(current,i,rt1[i]);
1933 dirty_reg(current,rt1[i]);
57871462 1934 }
1935 }
1936 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1937 {
1938 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1939 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1940 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1941 {
1942 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1943 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1944 }
1945 }
1946 else
1947 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1948 {
1949 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1950 if(!((current->is32>>rs1[i])&1))
1951 {
1952 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1953 }
1954 }
1955 else
1956 if(opcode[i]==0x11) // BC1
1957 {
1958 alloc_reg(current,i,FSREG);
1959 alloc_reg(current,i,CSREG);
1960 }
1961 //else ...
1962}
1963
1964add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1965{
1966 stubs[stubcount][0]=type;
1967 stubs[stubcount][1]=addr;
1968 stubs[stubcount][2]=retaddr;
1969 stubs[stubcount][3]=a;
1970 stubs[stubcount][4]=b;
1971 stubs[stubcount][5]=c;
1972 stubs[stubcount][6]=d;
1973 stubs[stubcount][7]=e;
1974 stubcount++;
1975}
1976
1977// Write out a single register
1978void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1979{
1980 int hr;
1981 for(hr=0;hr<HOST_REGS;hr++) {
1982 if(hr!=EXCLUDE_REG) {
1983 if((regmap[hr]&63)==r) {
1984 if((dirty>>hr)&1) {
1985 if(regmap[hr]<64) {
1986 emit_storereg(r,hr);
24385cae 1987#ifndef FORCE32
57871462 1988 if((is32>>regmap[hr])&1) {
1989 emit_sarimm(hr,31,hr);
1990 emit_storereg(r|64,hr);
1991 }
24385cae 1992#endif
57871462 1993 }else{
1994 emit_storereg(r|64,hr);
1995 }
1996 }
1997 }
1998 }
1999 }
2000}
2001
2002int mchecksum()
2003{
2004 //if(!tracedebug) return 0;
2005 int i;
2006 int sum=0;
2007 for(i=0;i<2097152;i++) {
2008 unsigned int temp=sum;
2009 sum<<=1;
2010 sum|=(~temp)>>31;
2011 sum^=((u_int *)rdram)[i];
2012 }
2013 return sum;
2014}
2015int rchecksum()
2016{
2017 int i;
2018 int sum=0;
2019 for(i=0;i<64;i++)
2020 sum^=((u_int *)reg)[i];
2021 return sum;
2022}
57871462 2023void rlist()
2024{
2025 int i;
2026 printf("TRACE: ");
2027 for(i=0;i<32;i++)
2028 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2029 printf("\n");
3d624f89 2030#ifndef DISABLE_COP1
57871462 2031 printf("TRACE: ");
2032 for(i=0;i<32;i++)
2033 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2034 printf("\n");
3d624f89 2035#endif
57871462 2036}
2037
2038void enabletrace()
2039{
2040 tracedebug=1;
2041}
2042
2043void memdebug(int i)
2044{
2045 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2046 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2047 //rlist();
2048 //if(tracedebug) {
2049 //if(Count>=-2084597794) {
2050 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2051 //if(0) {
2052 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2053 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2054 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2055 rlist();
2056 #ifdef __i386__
2057 printf("TRACE: %x\n",(&i)[-1]);
2058 #endif
2059 #ifdef __arm__
2060 int j;
2061 printf("TRACE: %x \n",(&j)[10]);
2062 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2063 #endif
2064 //fflush(stdout);
2065 }
2066 //printf("TRACE: %x\n",(&i)[-1]);
2067}
2068
2069void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2070{
2071 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2072}
2073
2074void alu_assemble(int i,struct regstat *i_regs)
2075{
2076 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2077 if(rt1[i]) {
2078 signed char s1,s2,t;
2079 t=get_reg(i_regs->regmap,rt1[i]);
2080 if(t>=0) {
2081 s1=get_reg(i_regs->regmap,rs1[i]);
2082 s2=get_reg(i_regs->regmap,rs2[i]);
2083 if(rs1[i]&&rs2[i]) {
2084 assert(s1>=0);
2085 assert(s2>=0);
2086 if(opcode2[i]&2) emit_sub(s1,s2,t);
2087 else emit_add(s1,s2,t);
2088 }
2089 else if(rs1[i]) {
2090 if(s1>=0) emit_mov(s1,t);
2091 else emit_loadreg(rs1[i],t);
2092 }
2093 else if(rs2[i]) {
2094 if(s2>=0) {
2095 if(opcode2[i]&2) emit_neg(s2,t);
2096 else emit_mov(s2,t);
2097 }
2098 else {
2099 emit_loadreg(rs2[i],t);
2100 if(opcode2[i]&2) emit_neg(t,t);
2101 }
2102 }
2103 else emit_zeroreg(t);
2104 }
2105 }
2106 }
2107 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2108 if(rt1[i]) {
2109 signed char s1l,s2l,s1h,s2h,tl,th;
2110 tl=get_reg(i_regs->regmap,rt1[i]);
2111 th=get_reg(i_regs->regmap,rt1[i]|64);
2112 if(tl>=0) {
2113 s1l=get_reg(i_regs->regmap,rs1[i]);
2114 s2l=get_reg(i_regs->regmap,rs2[i]);
2115 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2116 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2117 if(rs1[i]&&rs2[i]) {
2118 assert(s1l>=0);
2119 assert(s2l>=0);
2120 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2121 else emit_adds(s1l,s2l,tl);
2122 if(th>=0) {
2123 #ifdef INVERTED_CARRY
2124 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2125 #else
2126 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2127 #endif
2128 else emit_add(s1h,s2h,th);
2129 }
2130 }
2131 else if(rs1[i]) {
2132 if(s1l>=0) emit_mov(s1l,tl);
2133 else emit_loadreg(rs1[i],tl);
2134 if(th>=0) {
2135 if(s1h>=0) emit_mov(s1h,th);
2136 else emit_loadreg(rs1[i]|64,th);
2137 }
2138 }
2139 else if(rs2[i]) {
2140 if(s2l>=0) {
2141 if(opcode2[i]&2) emit_negs(s2l,tl);
2142 else emit_mov(s2l,tl);
2143 }
2144 else {
2145 emit_loadreg(rs2[i],tl);
2146 if(opcode2[i]&2) emit_negs(tl,tl);
2147 }
2148 if(th>=0) {
2149 #ifdef INVERTED_CARRY
2150 if(s2h>=0) emit_mov(s2h,th);
2151 else emit_loadreg(rs2[i]|64,th);
2152 if(opcode2[i]&2) {
2153 emit_adcimm(-1,th); // x86 has inverted carry flag
2154 emit_not(th,th);
2155 }
2156 #else
2157 if(opcode2[i]&2) {
2158 if(s2h>=0) emit_rscimm(s2h,0,th);
2159 else {
2160 emit_loadreg(rs2[i]|64,th);
2161 emit_rscimm(th,0,th);
2162 }
2163 }else{
2164 if(s2h>=0) emit_mov(s2h,th);
2165 else emit_loadreg(rs2[i]|64,th);
2166 }
2167 #endif
2168 }
2169 }
2170 else {
2171 emit_zeroreg(tl);
2172 if(th>=0) emit_zeroreg(th);
2173 }
2174 }
2175 }
2176 }
2177 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2178 if(rt1[i]) {
2179 signed char s1l,s1h,s2l,s2h,t;
2180 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2181 {
2182 t=get_reg(i_regs->regmap,rt1[i]);
2183 //assert(t>=0);
2184 if(t>=0) {
2185 s1l=get_reg(i_regs->regmap,rs1[i]);
2186 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2187 s2l=get_reg(i_regs->regmap,rs2[i]);
2188 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2189 if(rs2[i]==0) // rx<r0
2190 {
2191 assert(s1h>=0);
2192 if(opcode2[i]==0x2a) // SLT
2193 emit_shrimm(s1h,31,t);
2194 else // SLTU (unsigned can not be less than zero)
2195 emit_zeroreg(t);
2196 }
2197 else if(rs1[i]==0) // r0<rx
2198 {
2199 assert(s2h>=0);
2200 if(opcode2[i]==0x2a) // SLT
2201 emit_set_gz64_32(s2h,s2l,t);
2202 else // SLTU (set if not zero)
2203 emit_set_nz64_32(s2h,s2l,t);
2204 }
2205 else {
2206 assert(s1l>=0);assert(s1h>=0);
2207 assert(s2l>=0);assert(s2h>=0);
2208 if(opcode2[i]==0x2a) // SLT
2209 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2210 else // SLTU
2211 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2212 }
2213 }
2214 } else {
2215 t=get_reg(i_regs->regmap,rt1[i]);
2216 //assert(t>=0);
2217 if(t>=0) {
2218 s1l=get_reg(i_regs->regmap,rs1[i]);
2219 s2l=get_reg(i_regs->regmap,rs2[i]);
2220 if(rs2[i]==0) // rx<r0
2221 {
2222 assert(s1l>=0);
2223 if(opcode2[i]==0x2a) // SLT
2224 emit_shrimm(s1l,31,t);
2225 else // SLTU (unsigned can not be less than zero)
2226 emit_zeroreg(t);
2227 }
2228 else if(rs1[i]==0) // r0<rx
2229 {
2230 assert(s2l>=0);
2231 if(opcode2[i]==0x2a) // SLT
2232 emit_set_gz32(s2l,t);
2233 else // SLTU (set if not zero)
2234 emit_set_nz32(s2l,t);
2235 }
2236 else{
2237 assert(s1l>=0);assert(s2l>=0);
2238 if(opcode2[i]==0x2a) // SLT
2239 emit_set_if_less32(s1l,s2l,t);
2240 else // SLTU
2241 emit_set_if_carry32(s1l,s2l,t);
2242 }
2243 }
2244 }
2245 }
2246 }
2247 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2248 if(rt1[i]) {
2249 signed char s1l,s1h,s2l,s2h,th,tl;
2250 tl=get_reg(i_regs->regmap,rt1[i]);
2251 th=get_reg(i_regs->regmap,rt1[i]|64);
2252 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2253 {
2254 assert(tl>=0);
2255 if(tl>=0) {
2256 s1l=get_reg(i_regs->regmap,rs1[i]);
2257 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2258 s2l=get_reg(i_regs->regmap,rs2[i]);
2259 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2260 if(rs1[i]&&rs2[i]) {
2261 assert(s1l>=0);assert(s1h>=0);
2262 assert(s2l>=0);assert(s2h>=0);
2263 if(opcode2[i]==0x24) { // AND
2264 emit_and(s1l,s2l,tl);
2265 emit_and(s1h,s2h,th);
2266 } else
2267 if(opcode2[i]==0x25) { // OR
2268 emit_or(s1l,s2l,tl);
2269 emit_or(s1h,s2h,th);
2270 } else
2271 if(opcode2[i]==0x26) { // XOR
2272 emit_xor(s1l,s2l,tl);
2273 emit_xor(s1h,s2h,th);
2274 } else
2275 if(opcode2[i]==0x27) { // NOR
2276 emit_or(s1l,s2l,tl);
2277 emit_or(s1h,s2h,th);
2278 emit_not(tl,tl);
2279 emit_not(th,th);
2280 }
2281 }
2282 else
2283 {
2284 if(opcode2[i]==0x24) { // AND
2285 emit_zeroreg(tl);
2286 emit_zeroreg(th);
2287 } else
2288 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2289 if(rs1[i]){
2290 if(s1l>=0) emit_mov(s1l,tl);
2291 else emit_loadreg(rs1[i],tl);
2292 if(s1h>=0) emit_mov(s1h,th);
2293 else emit_loadreg(rs1[i]|64,th);
2294 }
2295 else
2296 if(rs2[i]){
2297 if(s2l>=0) emit_mov(s2l,tl);
2298 else emit_loadreg(rs2[i],tl);
2299 if(s2h>=0) emit_mov(s2h,th);
2300 else emit_loadreg(rs2[i]|64,th);
2301 }
2302 else{
2303 emit_zeroreg(tl);
2304 emit_zeroreg(th);
2305 }
2306 } else
2307 if(opcode2[i]==0x27) { // NOR
2308 if(rs1[i]){
2309 if(s1l>=0) emit_not(s1l,tl);
2310 else{
2311 emit_loadreg(rs1[i],tl);
2312 emit_not(tl,tl);
2313 }
2314 if(s1h>=0) emit_not(s1h,th);
2315 else{
2316 emit_loadreg(rs1[i]|64,th);
2317 emit_not(th,th);
2318 }
2319 }
2320 else
2321 if(rs2[i]){
2322 if(s2l>=0) emit_not(s2l,tl);
2323 else{
2324 emit_loadreg(rs2[i],tl);
2325 emit_not(tl,tl);
2326 }
2327 if(s2h>=0) emit_not(s2h,th);
2328 else{
2329 emit_loadreg(rs2[i]|64,th);
2330 emit_not(th,th);
2331 }
2332 }
2333 else {
2334 emit_movimm(-1,tl);
2335 emit_movimm(-1,th);
2336 }
2337 }
2338 }
2339 }
2340 }
2341 else
2342 {
2343 // 32 bit
2344 if(tl>=0) {
2345 s1l=get_reg(i_regs->regmap,rs1[i]);
2346 s2l=get_reg(i_regs->regmap,rs2[i]);
2347 if(rs1[i]&&rs2[i]) {
2348 assert(s1l>=0);
2349 assert(s2l>=0);
2350 if(opcode2[i]==0x24) { // AND
2351 emit_and(s1l,s2l,tl);
2352 } else
2353 if(opcode2[i]==0x25) { // OR
2354 emit_or(s1l,s2l,tl);
2355 } else
2356 if(opcode2[i]==0x26) { // XOR
2357 emit_xor(s1l,s2l,tl);
2358 } else
2359 if(opcode2[i]==0x27) { // NOR
2360 emit_or(s1l,s2l,tl);
2361 emit_not(tl,tl);
2362 }
2363 }
2364 else
2365 {
2366 if(opcode2[i]==0x24) { // AND
2367 emit_zeroreg(tl);
2368 } else
2369 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2370 if(rs1[i]){
2371 if(s1l>=0) emit_mov(s1l,tl);
2372 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2373 }
2374 else
2375 if(rs2[i]){
2376 if(s2l>=0) emit_mov(s2l,tl);
2377 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2378 }
2379 else emit_zeroreg(tl);
2380 } else
2381 if(opcode2[i]==0x27) { // NOR
2382 if(rs1[i]){
2383 if(s1l>=0) emit_not(s1l,tl);
2384 else {
2385 emit_loadreg(rs1[i],tl);
2386 emit_not(tl,tl);
2387 }
2388 }
2389 else
2390 if(rs2[i]){
2391 if(s2l>=0) emit_not(s2l,tl);
2392 else {
2393 emit_loadreg(rs2[i],tl);
2394 emit_not(tl,tl);
2395 }
2396 }
2397 else emit_movimm(-1,tl);
2398 }
2399 }
2400 }
2401 }
2402 }
2403 }
2404}
2405
2406void imm16_assemble(int i,struct regstat *i_regs)
2407{
2408 if (opcode[i]==0x0f) { // LUI
2409 if(rt1[i]) {
2410 signed char t;
2411 t=get_reg(i_regs->regmap,rt1[i]);
2412 //assert(t>=0);
2413 if(t>=0) {
2414 if(!((i_regs->isconst>>t)&1))
2415 emit_movimm(imm[i]<<16,t);
2416 }
2417 }
2418 }
2419 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2420 if(rt1[i]) {
2421 signed char s,t;
2422 t=get_reg(i_regs->regmap,rt1[i]);
2423 s=get_reg(i_regs->regmap,rs1[i]);
2424 if(rs1[i]) {
2425 //assert(t>=0);
2426 //assert(s>=0);
2427 if(t>=0) {
2428 if(!((i_regs->isconst>>t)&1)) {
2429 if(s<0) {
2430 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2431 emit_addimm(t,imm[i],t);
2432 }else{
2433 if(!((i_regs->wasconst>>s)&1))
2434 emit_addimm(s,imm[i],t);
2435 else
2436 emit_movimm(constmap[i][s]+imm[i],t);
2437 }
2438 }
2439 }
2440 } else {
2441 if(t>=0) {
2442 if(!((i_regs->isconst>>t)&1))
2443 emit_movimm(imm[i],t);
2444 }
2445 }
2446 }
2447 }
2448 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2449 if(rt1[i]) {
2450 signed char sh,sl,th,tl;
2451 th=get_reg(i_regs->regmap,rt1[i]|64);
2452 tl=get_reg(i_regs->regmap,rt1[i]);
2453 sh=get_reg(i_regs->regmap,rs1[i]|64);
2454 sl=get_reg(i_regs->regmap,rs1[i]);
2455 if(tl>=0) {
2456 if(rs1[i]) {
2457 assert(sh>=0);
2458 assert(sl>=0);
2459 if(th>=0) {
2460 emit_addimm64_32(sh,sl,imm[i],th,tl);
2461 }
2462 else {
2463 emit_addimm(sl,imm[i],tl);
2464 }
2465 } else {
2466 emit_movimm(imm[i],tl);
2467 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2468 }
2469 }
2470 }
2471 }
2472 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2473 if(rt1[i]) {
2474 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2475 signed char sh,sl,t;
2476 t=get_reg(i_regs->regmap,rt1[i]);
2477 sh=get_reg(i_regs->regmap,rs1[i]|64);
2478 sl=get_reg(i_regs->regmap,rs1[i]);
2479 //assert(t>=0);
2480 if(t>=0) {
2481 if(rs1[i]>0) {
2482 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2483 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2484 if(opcode[i]==0x0a) { // SLTI
2485 if(sl<0) {
2486 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2487 emit_slti32(t,imm[i],t);
2488 }else{
2489 emit_slti32(sl,imm[i],t);
2490 }
2491 }
2492 else { // SLTIU
2493 if(sl<0) {
2494 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2495 emit_sltiu32(t,imm[i],t);
2496 }else{
2497 emit_sltiu32(sl,imm[i],t);
2498 }
2499 }
2500 }else{ // 64-bit
2501 assert(sl>=0);
2502 if(opcode[i]==0x0a) // SLTI
2503 emit_slti64_32(sh,sl,imm[i],t);
2504 else // SLTIU
2505 emit_sltiu64_32(sh,sl,imm[i],t);
2506 }
2507 }else{
2508 // SLTI(U) with r0 is just stupid,
2509 // nonetheless examples can be found
2510 if(opcode[i]==0x0a) // SLTI
2511 if(0<imm[i]) emit_movimm(1,t);
2512 else emit_zeroreg(t);
2513 else // SLTIU
2514 {
2515 if(imm[i]) emit_movimm(1,t);
2516 else emit_zeroreg(t);
2517 }
2518 }
2519 }
2520 }
2521 }
2522 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2523 if(rt1[i]) {
2524 signed char sh,sl,th,tl;
2525 th=get_reg(i_regs->regmap,rt1[i]|64);
2526 tl=get_reg(i_regs->regmap,rt1[i]);
2527 sh=get_reg(i_regs->regmap,rs1[i]|64);
2528 sl=get_reg(i_regs->regmap,rs1[i]);
2529 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2530 if(opcode[i]==0x0c) //ANDI
2531 {
2532 if(rs1[i]) {
2533 if(sl<0) {
2534 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2535 emit_andimm(tl,imm[i],tl);
2536 }else{
2537 if(!((i_regs->wasconst>>sl)&1))
2538 emit_andimm(sl,imm[i],tl);
2539 else
2540 emit_movimm(constmap[i][sl]&imm[i],tl);
2541 }
2542 }
2543 else
2544 emit_zeroreg(tl);
2545 if(th>=0) emit_zeroreg(th);
2546 }
2547 else
2548 {
2549 if(rs1[i]) {
2550 if(sl<0) {
2551 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2552 }
2553 if(th>=0) {
2554 if(sh<0) {
2555 emit_loadreg(rs1[i]|64,th);
2556 }else{
2557 emit_mov(sh,th);
2558 }
2559 }
2560 if(opcode[i]==0x0d) //ORI
2561 if(sl<0) {
2562 emit_orimm(tl,imm[i],tl);
2563 }else{
2564 if(!((i_regs->wasconst>>sl)&1))
2565 emit_orimm(sl,imm[i],tl);
2566 else
2567 emit_movimm(constmap[i][sl]|imm[i],tl);
2568 }
2569 if(opcode[i]==0x0e) //XORI
2570 if(sl<0) {
2571 emit_xorimm(tl,imm[i],tl);
2572 }else{
2573 if(!((i_regs->wasconst>>sl)&1))
2574 emit_xorimm(sl,imm[i],tl);
2575 else
2576 emit_movimm(constmap[i][sl]^imm[i],tl);
2577 }
2578 }
2579 else {
2580 emit_movimm(imm[i],tl);
2581 if(th>=0) emit_zeroreg(th);
2582 }
2583 }
2584 }
2585 }
2586 }
2587}
2588
2589void shiftimm_assemble(int i,struct regstat *i_regs)
2590{
2591 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2592 {
2593 if(rt1[i]) {
2594 signed char s,t;
2595 t=get_reg(i_regs->regmap,rt1[i]);
2596 s=get_reg(i_regs->regmap,rs1[i]);
2597 //assert(t>=0);
2598 if(t>=0){
2599 if(rs1[i]==0)
2600 {
2601 emit_zeroreg(t);
2602 }
2603 else
2604 {
2605 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2606 if(imm[i]) {
2607 if(opcode2[i]==0) // SLL
2608 {
2609 emit_shlimm(s<0?t:s,imm[i],t);
2610 }
2611 if(opcode2[i]==2) // SRL
2612 {
2613 emit_shrimm(s<0?t:s,imm[i],t);
2614 }
2615 if(opcode2[i]==3) // SRA
2616 {
2617 emit_sarimm(s<0?t:s,imm[i],t);
2618 }
2619 }else{
2620 // Shift by zero
2621 if(s>=0 && s!=t) emit_mov(s,t);
2622 }
2623 }
2624 }
2625 //emit_storereg(rt1[i],t); //DEBUG
2626 }
2627 }
2628 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2629 {
2630 if(rt1[i]) {
2631 signed char sh,sl,th,tl;
2632 th=get_reg(i_regs->regmap,rt1[i]|64);
2633 tl=get_reg(i_regs->regmap,rt1[i]);
2634 sh=get_reg(i_regs->regmap,rs1[i]|64);
2635 sl=get_reg(i_regs->regmap,rs1[i]);
2636 if(tl>=0) {
2637 if(rs1[i]==0)
2638 {
2639 emit_zeroreg(tl);
2640 if(th>=0) emit_zeroreg(th);
2641 }
2642 else
2643 {
2644 assert(sl>=0);
2645 assert(sh>=0);
2646 if(imm[i]) {
2647 if(opcode2[i]==0x38) // DSLL
2648 {
2649 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2650 emit_shlimm(sl,imm[i],tl);
2651 }
2652 if(opcode2[i]==0x3a) // DSRL
2653 {
2654 emit_shrdimm(sl,sh,imm[i],tl);
2655 if(th>=0) emit_shrimm(sh,imm[i],th);
2656 }
2657 if(opcode2[i]==0x3b) // DSRA
2658 {
2659 emit_shrdimm(sl,sh,imm[i],tl);
2660 if(th>=0) emit_sarimm(sh,imm[i],th);
2661 }
2662 }else{
2663 // Shift by zero
2664 if(sl!=tl) emit_mov(sl,tl);
2665 if(th>=0&&sh!=th) emit_mov(sh,th);
2666 }
2667 }
2668 }
2669 }
2670 }
2671 if(opcode2[i]==0x3c) // DSLL32
2672 {
2673 if(rt1[i]) {
2674 signed char sl,tl,th;
2675 tl=get_reg(i_regs->regmap,rt1[i]);
2676 th=get_reg(i_regs->regmap,rt1[i]|64);
2677 sl=get_reg(i_regs->regmap,rs1[i]);
2678 if(th>=0||tl>=0){
2679 assert(tl>=0);
2680 assert(th>=0);
2681 assert(sl>=0);
2682 emit_mov(sl,th);
2683 emit_zeroreg(tl);
2684 if(imm[i]>32)
2685 {
2686 emit_shlimm(th,imm[i]&31,th);
2687 }
2688 }
2689 }
2690 }
2691 if(opcode2[i]==0x3e) // DSRL32
2692 {
2693 if(rt1[i]) {
2694 signed char sh,tl,th;
2695 tl=get_reg(i_regs->regmap,rt1[i]);
2696 th=get_reg(i_regs->regmap,rt1[i]|64);
2697 sh=get_reg(i_regs->regmap,rs1[i]|64);
2698 if(tl>=0){
2699 assert(sh>=0);
2700 emit_mov(sh,tl);
2701 if(th>=0) emit_zeroreg(th);
2702 if(imm[i]>32)
2703 {
2704 emit_shrimm(tl,imm[i]&31,tl);
2705 }
2706 }
2707 }
2708 }
2709 if(opcode2[i]==0x3f) // DSRA32
2710 {
2711 if(rt1[i]) {
2712 signed char sh,tl;
2713 tl=get_reg(i_regs->regmap,rt1[i]);
2714 sh=get_reg(i_regs->regmap,rs1[i]|64);
2715 if(tl>=0){
2716 assert(sh>=0);
2717 emit_mov(sh,tl);
2718 if(imm[i]>32)
2719 {
2720 emit_sarimm(tl,imm[i]&31,tl);
2721 }
2722 }
2723 }
2724 }
2725}
2726
2727#ifndef shift_assemble
2728void shift_assemble(int i,struct regstat *i_regs)
2729{
2730 printf("Need shift_assemble for this architecture.\n");
2731 exit(1);
2732}
2733#endif
2734
2735void load_assemble(int i,struct regstat *i_regs)
2736{
2737 int s,th,tl,addr,map=-1;
2738 int offset;
2739 int jaddr=0;
5bf843dc 2740 int memtarget=0,c=0;
57871462 2741 u_int hr,reglist=0;
2742 th=get_reg(i_regs->regmap,rt1[i]|64);
2743 tl=get_reg(i_regs->regmap,rt1[i]);
2744 s=get_reg(i_regs->regmap,rs1[i]);
2745 offset=imm[i];
2746 for(hr=0;hr<HOST_REGS;hr++) {
2747 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2748 }
2749 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2750 if(s>=0) {
2751 c=(i_regs->wasconst>>s)&1;
4cb76aa4 2752 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 2753 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2754 }
57871462 2755 //printf("load_assemble: c=%d\n",c);
2756 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2757 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2758#ifdef PCSX
f18c0f46 2759 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2760 ||rt1[i]==0) {
5bf843dc 2761 // could be FIFO, must perform the read
f18c0f46 2762 // ||dummy read
5bf843dc 2763 assem_debug("(forced read)\n");
2764 tl=get_reg(i_regs->regmap,-1);
2765 assert(tl>=0);
5bf843dc 2766 }
f18c0f46 2767#endif
5bf843dc 2768 if(offset||s<0||c) addr=tl;
2769 else addr=s;
57871462 2770 if(tl>=0) {
2771 //assert(tl>=0);
2772 //assert(rt1[i]);
2773 reglist&=~(1<<tl);
2774 if(th>=0) reglist&=~(1<<th);
2775 if(!using_tlb) {
2776 if(!c) {
2777//#define R29_HACK 1
2778 #ifdef R29_HACK
2779 // Strmnnrmn's speed hack
4cb76aa4 2780 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 2781 #endif
2782 {
4cb76aa4 2783 emit_cmpimm(addr,RAM_SIZE);
57871462 2784 jaddr=(int)out;
2785 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2786 // Hint to branch predictor that the branch is unlikely to be taken
2787 if(rs1[i]>=28)
2788 emit_jno_unlikely(0);
2789 else
2790 #endif
2791 emit_jno(0);
2792 }
2793 }
2794 }else{ // using tlb
2795 int x=0;
2796 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2797 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2798 map=get_reg(i_regs->regmap,TLREG);
2799 assert(map>=0);
2800 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2801 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2802 }
2803 if (opcode[i]==0x20) { // LB
2804 if(!c||memtarget) {
2805 #ifdef HOST_IMM_ADDR32
2806 if(c)
2807 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2808 else
2809 #endif
2810 {
2811 //emit_xorimm(addr,3,tl);
2812 //gen_tlb_addr_r(tl,map);
2813 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2814 int x=0;
2002a1db 2815#ifdef BIG_ENDIAN_MIPS
57871462 2816 if(!c) emit_xorimm(addr,3,tl);
2817 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2818#else
2819 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2820 else if (tl!=addr) emit_mov(addr,tl);
2821#endif
57871462 2822 emit_movsbl_indexed_tlb(x,tl,map,tl);
2823 }
2824 if(jaddr)
2825 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2826 }
2827 else
2828 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2829 }
2830 if (opcode[i]==0x21) { // LH
2831 if(!c||memtarget) {
2832 #ifdef HOST_IMM_ADDR32
2833 if(c)
2834 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2835 else
2836 #endif
2837 {
2838 int x=0;
2002a1db 2839#ifdef BIG_ENDIAN_MIPS
57871462 2840 if(!c) emit_xorimm(addr,2,tl);
2841 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2842#else
2843 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2844 else if (tl!=addr) emit_mov(addr,tl);
2845#endif
57871462 2846 //#ifdef
2847 //emit_movswl_indexed_tlb(x,tl,map,tl);
2848 //else
2849 if(map>=0) {
2850 gen_tlb_addr_r(tl,map);
2851 emit_movswl_indexed(x,tl,tl);
2852 }else
2853 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2854 }
2855 if(jaddr)
2856 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2857 }
2858 else
2859 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2860 }
2861 if (opcode[i]==0x23) { // LW
2862 if(!c||memtarget) {
2863 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2864 #ifdef HOST_IMM_ADDR32
2865 if(c)
2866 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2867 else
2868 #endif
2869 emit_readword_indexed_tlb(0,addr,map,tl);
2870 if(jaddr)
2871 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2872 }
2873 else
2874 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2875 }
2876 if (opcode[i]==0x24) { // LBU
2877 if(!c||memtarget) {
2878 #ifdef HOST_IMM_ADDR32
2879 if(c)
2880 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2881 else
2882 #endif
2883 {
2884 //emit_xorimm(addr,3,tl);
2885 //gen_tlb_addr_r(tl,map);
2886 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2887 int x=0;
2002a1db 2888#ifdef BIG_ENDIAN_MIPS
57871462 2889 if(!c) emit_xorimm(addr,3,tl);
2890 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2891#else
2892 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2893 else if (tl!=addr) emit_mov(addr,tl);
2894#endif
57871462 2895 emit_movzbl_indexed_tlb(x,tl,map,tl);
2896 }
2897 if(jaddr)
2898 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2899 }
2900 else
2901 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2902 }
2903 if (opcode[i]==0x25) { // LHU
2904 if(!c||memtarget) {
2905 #ifdef HOST_IMM_ADDR32
2906 if(c)
2907 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2908 else
2909 #endif
2910 {
2911 int x=0;
2002a1db 2912#ifdef BIG_ENDIAN_MIPS
57871462 2913 if(!c) emit_xorimm(addr,2,tl);
2914 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2915#else
2916 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2917 else if (tl!=addr) emit_mov(addr,tl);
2918#endif
57871462 2919 //#ifdef
2920 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2921 //#else
2922 if(map>=0) {
2923 gen_tlb_addr_r(tl,map);
2924 emit_movzwl_indexed(x,tl,tl);
2925 }else
2926 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2927 if(jaddr)
2928 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2929 }
2930 }
2931 else
2932 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2933 }
2934 if (opcode[i]==0x27) { // LWU
2935 assert(th>=0);
2936 if(!c||memtarget) {
2937 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2938 #ifdef HOST_IMM_ADDR32
2939 if(c)
2940 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2941 else
2942 #endif
2943 emit_readword_indexed_tlb(0,addr,map,tl);
2944 if(jaddr)
2945 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2946 }
2947 else {
2948 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2949 }
2950 emit_zeroreg(th);
2951 }
2952 if (opcode[i]==0x37) { // LD
2953 if(!c||memtarget) {
2954 //gen_tlb_addr_r(tl,map);
2955 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2956 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2957 #ifdef HOST_IMM_ADDR32
2958 if(c)
2959 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2960 else
2961 #endif
2962 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2963 if(jaddr)
2964 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2965 }
2966 else
2967 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2968 }
2969 //emit_storereg(rt1[i],tl); // DEBUG
2970 }
2971 //if(opcode[i]==0x23)
2972 //if(opcode[i]==0x24)
2973 //if(opcode[i]==0x23||opcode[i]==0x24)
2974 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2975 {
2976 //emit_pusha();
2977 save_regs(0x100f);
2978 emit_readword((int)&last_count,ECX);
2979 #ifdef __i386__
2980 if(get_reg(i_regs->regmap,CCREG)<0)
2981 emit_loadreg(CCREG,HOST_CCREG);
2982 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2983 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2984 emit_writeword(HOST_CCREG,(int)&Count);
2985 #endif
2986 #ifdef __arm__
2987 if(get_reg(i_regs->regmap,CCREG)<0)
2988 emit_loadreg(CCREG,0);
2989 else
2990 emit_mov(HOST_CCREG,0);
2991 emit_add(0,ECX,0);
2992 emit_addimm(0,2*ccadj[i],0);
2993 emit_writeword(0,(int)&Count);
2994 #endif
2995 emit_call((int)memdebug);
2996 //emit_popa();
2997 restore_regs(0x100f);
2998 }/**/
2999}
3000
3001#ifndef loadlr_assemble
3002void loadlr_assemble(int i,struct regstat *i_regs)
3003{
3004 printf("Need loadlr_assemble for this architecture.\n");
3005 exit(1);
3006}
3007#endif
3008
3009void store_assemble(int i,struct regstat *i_regs)
3010{
3011 int s,th,tl,map=-1;
3012 int addr,temp;
3013 int offset;
3014 int jaddr=0,jaddr2,type;
666a299d 3015 int memtarget=0,c=0;
57871462 3016 int agr=AGEN1+(i&1);
3017 u_int hr,reglist=0;
3018 th=get_reg(i_regs->regmap,rs2[i]|64);
3019 tl=get_reg(i_regs->regmap,rs2[i]);
3020 s=get_reg(i_regs->regmap,rs1[i]);
3021 temp=get_reg(i_regs->regmap,agr);
3022 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3023 offset=imm[i];
3024 if(s>=0) {
3025 c=(i_regs->wasconst>>s)&1;
4cb76aa4 3026 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 3027 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3028 }
3029 assert(tl>=0);
3030 assert(temp>=0);
3031 for(hr=0;hr<HOST_REGS;hr++) {
3032 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3033 }
3034 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3035 if(offset||s<0||c) addr=temp;
3036 else addr=s;
3037 if(!using_tlb) {
3038 if(!c) {
3039 #ifdef R29_HACK
3040 // Strmnnrmn's speed hack
3041 memtarget=1;
4cb76aa4 3042 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3043 #endif
4cb76aa4 3044 emit_cmpimm(addr,RAM_SIZE);
57871462 3045 #ifdef DESTRUCTIVE_SHIFT
3046 if(s==addr) emit_mov(s,temp);
3047 #endif
3048 #ifdef R29_HACK
4cb76aa4 3049 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3050 #endif
3051 {
3052 jaddr=(int)out;
3053 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3054 // Hint to branch predictor that the branch is unlikely to be taken
3055 if(rs1[i]>=28)
3056 emit_jno_unlikely(0);
3057 else
3058 #endif
3059 emit_jno(0);
3060 }
3061 }
3062 }else{ // using tlb
3063 int x=0;
3064 if (opcode[i]==0x28) x=3; // SB
3065 if (opcode[i]==0x29) x=2; // SH
3066 map=get_reg(i_regs->regmap,TLREG);
3067 assert(map>=0);
3068 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3069 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3070 }
3071
3072 if (opcode[i]==0x28) { // SB
3073 if(!c||memtarget) {
3074 int x=0;
2002a1db 3075#ifdef BIG_ENDIAN_MIPS
57871462 3076 if(!c) emit_xorimm(addr,3,temp);
3077 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3078#else
3079 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3080 else if (addr!=temp) emit_mov(addr,temp);
3081#endif
57871462 3082 //gen_tlb_addr_w(temp,map);
3083 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3084 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3085 }
3086 type=STOREB_STUB;
3087 }
3088 if (opcode[i]==0x29) { // SH
3089 if(!c||memtarget) {
3090 int x=0;
2002a1db 3091#ifdef BIG_ENDIAN_MIPS
57871462 3092 if(!c) emit_xorimm(addr,2,temp);
3093 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3094#else
3095 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3096 else if (addr!=temp) emit_mov(addr,temp);
3097#endif
57871462 3098 //#ifdef
3099 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3100 //#else
3101 if(map>=0) {
3102 gen_tlb_addr_w(temp,map);
3103 emit_writehword_indexed(tl,x,temp);
3104 }else
3105 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3106 }
3107 type=STOREH_STUB;
3108 }
3109 if (opcode[i]==0x2B) { // SW
3110 if(!c||memtarget)
3111 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3112 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3113 type=STOREW_STUB;
3114 }
3115 if (opcode[i]==0x3F) { // SD
3116 if(!c||memtarget) {
3117 if(rs2[i]) {
3118 assert(th>=0);
3119 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3120 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3121 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3122 }else{
3123 // Store zero
3124 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3125 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3126 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3127 }
3128 }
3129 type=STORED_STUB;
3130 }
666a299d 3131 if(!using_tlb&&(!c||memtarget))
3132 // addr could be a temp, make sure it survives STORE*_STUB
3133 reglist|=1<<addr;
57871462 3134 if(jaddr) {
3135 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3136 } else if(!memtarget) {
3137 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3138 }
3139 if(!using_tlb) {
3140 if(!c||memtarget) {
3141 #ifdef DESTRUCTIVE_SHIFT
3142 // The x86 shift operation is 'destructive'; it overwrites the
3143 // source register, so we need to make a copy first and use that.
3144 addr=temp;
3145 #endif
3146 #if defined(HOST_IMM8)
3147 int ir=get_reg(i_regs->regmap,INVCP);
3148 assert(ir>=0);
3149 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3150 #else
3151 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3152 #endif
3153 jaddr2=(int)out;
3154 emit_jne(0);
3155 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3156 }
3157 }
3158 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3159 //if(opcode[i]==0x2B || opcode[i]==0x28)
3160 //if(opcode[i]==0x2B || opcode[i]==0x29)
3161 //if(opcode[i]==0x2B)
3162 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3163 {
3164 //emit_pusha();
3165 save_regs(0x100f);
3166 emit_readword((int)&last_count,ECX);
3167 #ifdef __i386__
3168 if(get_reg(i_regs->regmap,CCREG)<0)
3169 emit_loadreg(CCREG,HOST_CCREG);
3170 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3171 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3172 emit_writeword(HOST_CCREG,(int)&Count);
3173 #endif
3174 #ifdef __arm__
3175 if(get_reg(i_regs->regmap,CCREG)<0)
3176 emit_loadreg(CCREG,0);
3177 else
3178 emit_mov(HOST_CCREG,0);
3179 emit_add(0,ECX,0);
3180 emit_addimm(0,2*ccadj[i],0);
3181 emit_writeword(0,(int)&Count);
3182 #endif
3183 emit_call((int)memdebug);
3184 //emit_popa();
3185 restore_regs(0x100f);
3186 }/**/
3187}
3188
3189void storelr_assemble(int i,struct regstat *i_regs)
3190{
3191 int s,th,tl;
3192 int temp;
3193 int temp2;
3194 int offset;
3195 int jaddr=0,jaddr2;
3196 int case1,case2,case3;
3197 int done0,done1,done2;
3198 int memtarget,c=0;
fab5d06d 3199 int agr=AGEN1+(i&1);
57871462 3200 u_int hr,reglist=0;
3201 th=get_reg(i_regs->regmap,rs2[i]|64);
3202 tl=get_reg(i_regs->regmap,rs2[i]);
3203 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3204 temp=get_reg(i_regs->regmap,agr);
3205 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3206 offset=imm[i];
3207 if(s>=0) {
3208 c=(i_regs->isconst>>s)&1;
4cb76aa4 3209 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 3210 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3211 }
3212 assert(tl>=0);
3213 for(hr=0;hr<HOST_REGS;hr++) {
3214 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3215 }
3216 if(tl>=0) {
3217 assert(temp>=0);
3218 if(!using_tlb) {
3219 if(!c) {
4cb76aa4 3220 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
57871462 3221 if(!offset&&s!=temp) emit_mov(s,temp);
3222 jaddr=(int)out;
3223 emit_jno(0);
3224 }
3225 else
3226 {
3227 if(!memtarget||!rs1[i]) {
3228 jaddr=(int)out;
3229 emit_jmp(0);
3230 }
3231 }
3232 if((u_int)rdram!=0x80000000)
3233 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3234 }else{ // using tlb
3235 int map=get_reg(i_regs->regmap,TLREG);
3236 assert(map>=0);
3237 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3238 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3239 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3240 if(!jaddr&&!memtarget) {
3241 jaddr=(int)out;
3242 emit_jmp(0);
3243 }
3244 gen_tlb_addr_w(temp,map);
3245 }
3246
3247 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3248 temp2=get_reg(i_regs->regmap,FTEMP);
3249 if(!rs2[i]) temp2=th=tl;
3250 }
3251
2002a1db 3252#ifndef BIG_ENDIAN_MIPS
3253 emit_xorimm(temp,3,temp);
3254#endif
57871462 3255 emit_testimm(temp,2);
3256 case2=(int)out;
3257 emit_jne(0);
3258 emit_testimm(temp,1);
3259 case1=(int)out;
3260 emit_jne(0);
3261 // 0
3262 if (opcode[i]==0x2A) { // SWL
3263 emit_writeword_indexed(tl,0,temp);
3264 }
3265 if (opcode[i]==0x2E) { // SWR
3266 emit_writebyte_indexed(tl,3,temp);
3267 }
3268 if (opcode[i]==0x2C) { // SDL
3269 emit_writeword_indexed(th,0,temp);
3270 if(rs2[i]) emit_mov(tl,temp2);
3271 }
3272 if (opcode[i]==0x2D) { // SDR
3273 emit_writebyte_indexed(tl,3,temp);
3274 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3275 }
3276 done0=(int)out;
3277 emit_jmp(0);
3278 // 1
3279 set_jump_target(case1,(int)out);
3280 if (opcode[i]==0x2A) { // SWL
3281 // Write 3 msb into three least significant bytes
3282 if(rs2[i]) emit_rorimm(tl,8,tl);
3283 emit_writehword_indexed(tl,-1,temp);
3284 if(rs2[i]) emit_rorimm(tl,16,tl);
3285 emit_writebyte_indexed(tl,1,temp);
3286 if(rs2[i]) emit_rorimm(tl,8,tl);
3287 }
3288 if (opcode[i]==0x2E) { // SWR
3289 // Write two lsb into two most significant bytes
3290 emit_writehword_indexed(tl,1,temp);
3291 }
3292 if (opcode[i]==0x2C) { // SDL
3293 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3294 // Write 3 msb into three least significant bytes
3295 if(rs2[i]) emit_rorimm(th,8,th);
3296 emit_writehword_indexed(th,-1,temp);
3297 if(rs2[i]) emit_rorimm(th,16,th);
3298 emit_writebyte_indexed(th,1,temp);
3299 if(rs2[i]) emit_rorimm(th,8,th);
3300 }
3301 if (opcode[i]==0x2D) { // SDR
3302 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3303 // Write two lsb into two most significant bytes
3304 emit_writehword_indexed(tl,1,temp);
3305 }
3306 done1=(int)out;
3307 emit_jmp(0);
3308 // 2
3309 set_jump_target(case2,(int)out);
3310 emit_testimm(temp,1);
3311 case3=(int)out;
3312 emit_jne(0);
3313 if (opcode[i]==0x2A) { // SWL
3314 // Write two msb into two least significant bytes
3315 if(rs2[i]) emit_rorimm(tl,16,tl);
3316 emit_writehword_indexed(tl,-2,temp);
3317 if(rs2[i]) emit_rorimm(tl,16,tl);
3318 }
3319 if (opcode[i]==0x2E) { // SWR
3320 // Write 3 lsb into three most significant bytes
3321 emit_writebyte_indexed(tl,-1,temp);
3322 if(rs2[i]) emit_rorimm(tl,8,tl);
3323 emit_writehword_indexed(tl,0,temp);
3324 if(rs2[i]) emit_rorimm(tl,24,tl);
3325 }
3326 if (opcode[i]==0x2C) { // SDL
3327 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3328 // Write two msb into two least significant bytes
3329 if(rs2[i]) emit_rorimm(th,16,th);
3330 emit_writehword_indexed(th,-2,temp);
3331 if(rs2[i]) emit_rorimm(th,16,th);
3332 }
3333 if (opcode[i]==0x2D) { // SDR
3334 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3335 // Write 3 lsb into three most significant bytes
3336 emit_writebyte_indexed(tl,-1,temp);
3337 if(rs2[i]) emit_rorimm(tl,8,tl);
3338 emit_writehword_indexed(tl,0,temp);
3339 if(rs2[i]) emit_rorimm(tl,24,tl);
3340 }
3341 done2=(int)out;
3342 emit_jmp(0);
3343 // 3
3344 set_jump_target(case3,(int)out);
3345 if (opcode[i]==0x2A) { // SWL
3346 // Write msb into least significant byte
3347 if(rs2[i]) emit_rorimm(tl,24,tl);
3348 emit_writebyte_indexed(tl,-3,temp);
3349 if(rs2[i]) emit_rorimm(tl,8,tl);
3350 }
3351 if (opcode[i]==0x2E) { // SWR
3352 // Write entire word
3353 emit_writeword_indexed(tl,-3,temp);
3354 }
3355 if (opcode[i]==0x2C) { // SDL
3356 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3357 // Write msb into least significant byte
3358 if(rs2[i]) emit_rorimm(th,24,th);
3359 emit_writebyte_indexed(th,-3,temp);
3360 if(rs2[i]) emit_rorimm(th,8,th);
3361 }
3362 if (opcode[i]==0x2D) { // SDR
3363 if(rs2[i]) emit_mov(th,temp2);
3364 // Write entire word
3365 emit_writeword_indexed(tl,-3,temp);
3366 }
3367 set_jump_target(done0,(int)out);
3368 set_jump_target(done1,(int)out);
3369 set_jump_target(done2,(int)out);
3370 if (opcode[i]==0x2C) { // SDL
3371 emit_testimm(temp,4);
3372 done0=(int)out;
3373 emit_jne(0);
3374 emit_andimm(temp,~3,temp);
3375 emit_writeword_indexed(temp2,4,temp);
3376 set_jump_target(done0,(int)out);
3377 }
3378 if (opcode[i]==0x2D) { // SDR
3379 emit_testimm(temp,4);
3380 done0=(int)out;
3381 emit_jeq(0);
3382 emit_andimm(temp,~3,temp);
3383 emit_writeword_indexed(temp2,-4,temp);
3384 set_jump_target(done0,(int)out);
3385 }
3386 if(!c||!memtarget)
b7918751 3387 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3388 }
3389 if(!using_tlb) {
3390 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3391 #if defined(HOST_IMM8)
3392 int ir=get_reg(i_regs->regmap,INVCP);
3393 assert(ir>=0);
3394 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3395 #else
3396 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3397 #endif
3398 jaddr2=(int)out;
3399 emit_jne(0);
3400 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3401 }
3402 /*
3403 emit_pusha();
3404 //save_regs(0x100f);
3405 emit_readword((int)&last_count,ECX);
3406 if(get_reg(i_regs->regmap,CCREG)<0)
3407 emit_loadreg(CCREG,HOST_CCREG);
3408 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3409 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3410 emit_writeword(HOST_CCREG,(int)&Count);
3411 emit_call((int)memdebug);
3412 emit_popa();
3413 //restore_regs(0x100f);
3414 /**/
3415}
3416
3417void c1ls_assemble(int i,struct regstat *i_regs)
3418{
3d624f89 3419#ifndef DISABLE_COP1
57871462 3420 int s,th,tl;
3421 int temp,ar;
3422 int map=-1;