drc: get rid of pass 7/provisional_r32 too
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
3d624f89 25#include "emu_if.h" //emulator interface
57871462 26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 uint64_t unneeded_reg[MAXBLOCK];
88 uint64_t unneeded_reg_upper[MAXBLOCK];
89 uint64_t branch_unneeded_reg[MAXBLOCK];
90 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91 uint64_t p32[MAXBLOCK];
92 uint64_t pr32[MAXBLOCK];
93 signed char regmap_pre[MAXBLOCK][HOST_REGS];
94 signed char regmap[MAXBLOCK][HOST_REGS];
95 signed char regmap_entry[MAXBLOCK][HOST_REGS];
96 uint64_t constmap[MAXBLOCK][HOST_REGS];
97 uint64_t known_value[HOST_REGS];
98 u_int known_reg;
99 struct regstat regs[MAXBLOCK];
100 struct regstat branch_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
b9b61529 138#define FTEMP 38 // FPU/LDL/LDR temporary register
57871462 139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
7139f3c8 178#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 179#define COP2 27 // Coprocessor 2 move
180#define C2LS 28 // Coprocessor 2 load/store
181#define C2OP 29 // Coprocessor 2 operation
1e973cb0 182#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 183
184 /* stubs */
185#define CC_STUB 1
186#define FP_STUB 2
187#define LOADB_STUB 3
188#define LOADH_STUB 4
189#define LOADW_STUB 5
190#define LOADD_STUB 6
191#define LOADBU_STUB 7
192#define LOADHU_STUB 8
193#define STOREB_STUB 9
194#define STOREH_STUB 10
195#define STOREW_STUB 11
196#define STORED_STUB 12
197#define STORELR_STUB 13
198#define INVCODE_STUB 14
199
200 /* branch codes */
201#define TAKEN 1
202#define NOTTAKEN 2
203#define NULLDS 3
204
205// asm linkage
206int new_recompile_block(int addr);
207void *get_addr_ht(u_int vaddr);
208void invalidate_block(u_int block);
209void invalidate_addr(u_int addr);
210void remove_hash(int vaddr);
211void jump_vaddr();
212void dyna_linker();
213void dyna_linker_ds();
214void verify_code();
215void verify_code_vm();
216void verify_code_ds();
217void cc_interrupt();
218void fp_exception();
219void fp_exception_ds();
220void jump_syscall();
7139f3c8 221void jump_syscall_hle();
57871462 222void jump_eret();
7139f3c8 223void jump_hlecall();
1e973cb0 224void jump_intcall();
7139f3c8 225void new_dyna_leave();
57871462 226
227// TLB
228void TLBWI_new();
229void TLBWR_new();
230void read_nomem_new();
231void read_nomemb_new();
232void read_nomemh_new();
233void read_nomemd_new();
234void write_nomem_new();
235void write_nomemb_new();
236void write_nomemh_new();
237void write_nomemd_new();
238void write_rdram_new();
239void write_rdramb_new();
240void write_rdramh_new();
241void write_rdramd_new();
242extern u_int memory_map[1048576];
243
244// Needed by assembler
245void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248void load_all_regs(signed char i_regmap[]);
249void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250void load_regs_entry(int t);
251void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253int tracedebug=0;
254
255//#define DEBUG_CYCLE_COUNT 1
256
257void nullf() {}
258//#define assem_debug printf
259//#define inv_debug printf
260#define assem_debug nullf
261#define inv_debug nullf
262
94d23bb9 263static void tlb_hacks()
57871462 264{
94d23bb9 265#ifndef DISABLE_TLB
57871462 266 // Goldeneye hack
267 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268 {
269 u_int addr;
270 int n;
271 switch (ROM_HEADER->Country_code&0xFF)
272 {
273 case 0x45: // U
274 addr=0x34b30;
275 break;
276 case 0x4A: // J
277 addr=0x34b70;
278 break;
279 case 0x50: // E
280 addr=0x329f0;
281 break;
282 default:
283 // Unknown country code
284 addr=0;
285 break;
286 }
287 u_int rom_addr=(u_int)rom;
288 #ifdef ROM_COPY
289 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290 // in the lower 4G of memory to use this hack. Copy it if necessary.
291 if((void *)rom>(void *)0xffffffff) {
292 munmap(ROM_COPY, 67108864);
293 if(mmap(ROM_COPY, 12582912,
294 PROT_READ | PROT_WRITE,
295 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296 -1, 0) <= 0) {printf("mmap() failed\n");}
297 memcpy(ROM_COPY,rom,12582912);
298 rom_addr=(u_int)ROM_COPY;
299 }
300 #endif
301 if(addr) {
302 for(n=0x7F000;n<0x80000;n++) {
303 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304 }
305 }
306 }
94d23bb9 307#endif
57871462 308}
309
94d23bb9 310static u_int get_page(u_int vaddr)
57871462 311{
0ce47d46 312#ifndef PCSX
57871462 313 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 314#else
315 u_int page=vaddr&~0xe0000000;
316 if (page < 0x1000000)
317 page &= ~0x0e00000; // RAM mirrors
318 page>>=12;
319#endif
94d23bb9 320#ifndef DISABLE_TLB
57871462 321 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 322#endif
57871462 323 if(page>2048) page=2048+(page&2047);
94d23bb9 324 return page;
325}
326
327static u_int get_vpage(u_int vaddr)
328{
329 u_int vpage=(vaddr^0x80000000)>>12;
330#ifndef DISABLE_TLB
57871462 331 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 332#endif
57871462 333 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 334 return vpage;
335}
336
337// Get address from virtual address
338// This is called from the recompiled JR/JALR instructions
339void *get_addr(u_int vaddr)
340{
341 u_int page=get_page(vaddr);
342 u_int vpage=get_vpage(vaddr);
57871462 343 struct ll_entry *head;
344 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
345 head=jump_in[page];
346 while(head!=NULL) {
347 if(head->vaddr==vaddr&&head->reg32==0) {
348 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
349 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350 ht_bin[3]=ht_bin[1];
351 ht_bin[2]=ht_bin[0];
352 ht_bin[1]=(int)head->addr;
353 ht_bin[0]=vaddr;
354 return head->addr;
355 }
356 head=head->next;
357 }
358 head=jump_dirty[vpage];
359 while(head!=NULL) {
360 if(head->vaddr==vaddr&&head->reg32==0) {
361 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
362 // Don't restore blocks which are about to expire from the cache
363 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
364 if(verify_dirty(head->addr)) {
365 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
366 invalid_code[vaddr>>12]=0;
367 memory_map[vaddr>>12]|=0x40000000;
368 if(vpage<2048) {
94d23bb9 369#ifndef DISABLE_TLB
57871462 370 if(tlb_LUT_r[vaddr>>12]) {
371 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
372 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
373 }
94d23bb9 374#endif
57871462 375 restore_candidate[vpage>>3]|=1<<(vpage&7);
376 }
377 else restore_candidate[page>>3]|=1<<(page&7);
378 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
379 if(ht_bin[0]==vaddr) {
380 ht_bin[1]=(int)head->addr; // Replace existing entry
381 }
382 else
383 {
384 ht_bin[3]=ht_bin[1];
385 ht_bin[2]=ht_bin[0];
386 ht_bin[1]=(int)head->addr;
387 ht_bin[0]=vaddr;
388 }
389 return head->addr;
390 }
391 }
392 head=head->next;
393 }
394 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
395 int r=new_recompile_block(vaddr);
396 if(r==0) return get_addr(vaddr);
397 // Execute in unmapped page, generate pagefault execption
398 Status|=2;
399 Cause=(vaddr<<31)|0x8;
400 EPC=(vaddr&1)?vaddr-5:vaddr;
401 BadVAddr=(vaddr&~1);
402 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
403 EntryHi=BadVAddr&0xFFFFE000;
404 return get_addr_ht(0x80000000);
405}
406// Look up address in hash table first
407void *get_addr_ht(u_int vaddr)
408{
409 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
410 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
413 return get_addr(vaddr);
414}
415
416void *get_addr_32(u_int vaddr,u_int flags)
417{
7139f3c8 418#ifdef FORCE32
419 return get_addr(vaddr);
560e4a12 420#else
57871462 421 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
422 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 425 u_int page=get_page(vaddr);
426 u_int vpage=get_vpage(vaddr);
57871462 427 struct ll_entry *head;
428 head=jump_in[page];
429 while(head!=NULL) {
430 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
431 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
432 if(head->reg32==0) {
433 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434 if(ht_bin[0]==-1) {
435 ht_bin[1]=(int)head->addr;
436 ht_bin[0]=vaddr;
437 }else if(ht_bin[2]==-1) {
438 ht_bin[3]=(int)head->addr;
439 ht_bin[2]=vaddr;
440 }
441 //ht_bin[3]=ht_bin[1];
442 //ht_bin[2]=ht_bin[0];
443 //ht_bin[1]=(int)head->addr;
444 //ht_bin[0]=vaddr;
445 }
446 return head->addr;
447 }
448 head=head->next;
449 }
450 head=jump_dirty[vpage];
451 while(head!=NULL) {
452 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
454 // Don't restore blocks which are about to expire from the cache
455 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
456 if(verify_dirty(head->addr)) {
457 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
458 invalid_code[vaddr>>12]=0;
459 memory_map[vaddr>>12]|=0x40000000;
460 if(vpage<2048) {
94d23bb9 461#ifndef DISABLE_TLB
57871462 462 if(tlb_LUT_r[vaddr>>12]) {
463 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
464 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
465 }
94d23bb9 466#endif
57871462 467 restore_candidate[vpage>>3]|=1<<(vpage&7);
468 }
469 else restore_candidate[page>>3]|=1<<(page&7);
470 if(head->reg32==0) {
471 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472 if(ht_bin[0]==-1) {
473 ht_bin[1]=(int)head->addr;
474 ht_bin[0]=vaddr;
475 }else if(ht_bin[2]==-1) {
476 ht_bin[3]=(int)head->addr;
477 ht_bin[2]=vaddr;
478 }
479 //ht_bin[3]=ht_bin[1];
480 //ht_bin[2]=ht_bin[0];
481 //ht_bin[1]=(int)head->addr;
482 //ht_bin[0]=vaddr;
483 }
484 return head->addr;
485 }
486 }
487 head=head->next;
488 }
489 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
490 int r=new_recompile_block(vaddr);
491 if(r==0) return get_addr(vaddr);
492 // Execute in unmapped page, generate pagefault execption
493 Status|=2;
494 Cause=(vaddr<<31)|0x8;
495 EPC=(vaddr&1)?vaddr-5:vaddr;
496 BadVAddr=(vaddr&~1);
497 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
498 EntryHi=BadVAddr&0xFFFFE000;
499 return get_addr_ht(0x80000000);
560e4a12 500#endif
57871462 501}
502
503void clear_all_regs(signed char regmap[])
504{
505 int hr;
506 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
507}
508
509signed char get_reg(signed char regmap[],int r)
510{
511 int hr;
512 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
513 return -1;
514}
515
516// Find a register that is available for two consecutive cycles
517signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
518{
519 int hr;
520 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
521 return -1;
522}
523
524int count_free_regs(signed char regmap[])
525{
526 int count=0;
527 int hr;
528 for(hr=0;hr<HOST_REGS;hr++)
529 {
530 if(hr!=EXCLUDE_REG) {
531 if(regmap[hr]<0) count++;
532 }
533 }
534 return count;
535}
536
537void dirty_reg(struct regstat *cur,signed char reg)
538{
539 int hr;
540 if(!reg) return;
541 for (hr=0;hr<HOST_REGS;hr++) {
542 if((cur->regmap[hr]&63)==reg) {
543 cur->dirty|=1<<hr;
544 }
545 }
546}
547
548// If we dirty the lower half of a 64 bit register which is now being
549// sign-extended, we need to dump the upper half.
550// Note: Do this only after completion of the instruction, because
551// some instructions may need to read the full 64-bit value even if
552// overwriting it (eg SLTI, DSRA32).
553static void flush_dirty_uppers(struct regstat *cur)
554{
555 int hr,reg;
556 for (hr=0;hr<HOST_REGS;hr++) {
557 if((cur->dirty>>hr)&1) {
558 reg=cur->regmap[hr];
559 if(reg>=64)
560 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
561 }
562 }
563}
564
565void set_const(struct regstat *cur,signed char reg,uint64_t value)
566{
567 int hr;
568 if(!reg) return;
569 for (hr=0;hr<HOST_REGS;hr++) {
570 if(cur->regmap[hr]==reg) {
571 cur->isconst|=1<<hr;
572 cur->constmap[hr]=value;
573 }
574 else if((cur->regmap[hr]^64)==reg) {
575 cur->isconst|=1<<hr;
576 cur->constmap[hr]=value>>32;
577 }
578 }
579}
580
581void clear_const(struct regstat *cur,signed char reg)
582{
583 int hr;
584 if(!reg) return;
585 for (hr=0;hr<HOST_REGS;hr++) {
586 if((cur->regmap[hr]&63)==reg) {
587 cur->isconst&=~(1<<hr);
588 }
589 }
590}
591
592int is_const(struct regstat *cur,signed char reg)
593{
594 int hr;
595 if(!reg) return 1;
596 for (hr=0;hr<HOST_REGS;hr++) {
597 if((cur->regmap[hr]&63)==reg) {
598 return (cur->isconst>>hr)&1;
599 }
600 }
601 return 0;
602}
603uint64_t get_const(struct regstat *cur,signed char reg)
604{
605 int hr;
606 if(!reg) return 0;
607 for (hr=0;hr<HOST_REGS;hr++) {
608 if(cur->regmap[hr]==reg) {
609 return cur->constmap[hr];
610 }
611 }
612 printf("Unknown constant in r%d\n",reg);
613 exit(1);
614}
615
616// Least soon needed registers
617// Look at the next ten instructions and see which registers
618// will be used. Try not to reallocate these.
619void lsn(u_char hsn[], int i, int *preferred_reg)
620{
621 int j;
622 int b=-1;
623 for(j=0;j<9;j++)
624 {
625 if(i+j>=slen) {
626 j=slen-i-1;
627 break;
628 }
629 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
630 {
631 // Don't go past an unconditonal jump
632 j++;
633 break;
634 }
635 }
636 for(;j>=0;j--)
637 {
638 if(rs1[i+j]) hsn[rs1[i+j]]=j;
639 if(rs2[i+j]) hsn[rs2[i+j]]=j;
640 if(rt1[i+j]) hsn[rt1[i+j]]=j;
641 if(rt2[i+j]) hsn[rt2[i+j]]=j;
642 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
643 // Stores can allocate zero
644 hsn[rs1[i+j]]=j;
645 hsn[rs2[i+j]]=j;
646 }
647 // On some architectures stores need invc_ptr
648 #if defined(HOST_IMM8)
b9b61529 649 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 650 hsn[INVCP]=j;
651 }
652 #endif
653 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
654 {
655 hsn[CCREG]=j;
656 b=j;
657 }
658 }
659 if(b>=0)
660 {
661 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
662 {
663 // Follow first branch
664 int t=(ba[i+b]-start)>>2;
665 j=7-b;if(t+j>=slen) j=slen-t-1;
666 for(;j>=0;j--)
667 {
668 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
669 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
670 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
671 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
672 }
673 }
674 // TODO: preferred register based on backward branch
675 }
676 // Delay slot should preferably not overwrite branch conditions or cycle count
677 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
678 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
679 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
680 hsn[CCREG]=1;
681 // ...or hash tables
682 hsn[RHASH]=1;
683 hsn[RHTBL]=1;
684 }
685 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 686 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 687 hsn[FTEMP]=0;
688 }
689 // Load L/R also uses FTEMP as a temporary register
690 if(itype[i]==LOADLR) {
691 hsn[FTEMP]=0;
692 }
b7918751 693 // Also SWL/SWR/SDL/SDR
694 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 695 hsn[FTEMP]=0;
696 }
697 // Don't remove the TLB registers either
b9b61529 698 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 699 hsn[TLREG]=0;
700 }
701 // Don't remove the miniht registers
702 if(itype[i]==UJUMP||itype[i]==RJUMP)
703 {
704 hsn[RHASH]=0;
705 hsn[RHTBL]=0;
706 }
707}
708
709// We only want to allocate registers if we're going to use them again soon
710int needed_again(int r, int i)
711{
712 int j;
713 int b=-1;
714 int rn=10;
715 int hr;
716 u_char hsn[MAXREG+1];
717 int preferred_reg;
718
719 memset(hsn,10,sizeof(hsn));
720 lsn(hsn,i,&preferred_reg);
721
722 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
723 {
724 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
725 return 0; // Don't need any registers if exiting the block
726 }
727 for(j=0;j<9;j++)
728 {
729 if(i+j>=slen) {
730 j=slen-i-1;
731 break;
732 }
733 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
734 {
735 // Don't go past an unconditonal jump
736 j++;
737 break;
738 }
1e973cb0 739 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 740 {
741 break;
742 }
743 }
744 for(;j>=1;j--)
745 {
746 if(rs1[i+j]==r) rn=j;
747 if(rs2[i+j]==r) rn=j;
748 if((unneeded_reg[i+j]>>r)&1) rn=10;
749 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
750 {
751 b=j;
752 }
753 }
754 /*
755 if(b>=0)
756 {
757 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
758 {
759 // Follow first branch
760 int o=rn;
761 int t=(ba[i+b]-start)>>2;
762 j=7-b;if(t+j>=slen) j=slen-t-1;
763 for(;j>=0;j--)
764 {
765 if(!((unneeded_reg[t+j]>>r)&1)) {
766 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
767 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
768 }
769 else rn=o;
770 }
771 }
772 }*/
773 for(hr=0;hr<HOST_REGS;hr++) {
774 if(hr!=EXCLUDE_REG) {
775 if(rn<hsn[hr]) return 1;
776 }
777 }
778 return 0;
779}
780
781// Try to match register allocations at the end of a loop with those
782// at the beginning
783int loop_reg(int i, int r, int hr)
784{
785 int j,k;
786 for(j=0;j<9;j++)
787 {
788 if(i+j>=slen) {
789 j=slen-i-1;
790 break;
791 }
792 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
793 {
794 // Don't go past an unconditonal jump
795 j++;
796 break;
797 }
798 }
799 k=0;
800 if(i>0){
801 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
802 k--;
803 }
804 for(;k<j;k++)
805 {
806 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
807 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
808 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
809 {
810 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
811 {
812 int t=(ba[i+k]-start)>>2;
813 int reg=get_reg(regs[t].regmap_entry,r);
814 if(reg>=0) return reg;
815 //reg=get_reg(regs[t+1].regmap_entry,r);
816 //if(reg>=0) return reg;
817 }
818 }
819 }
820 return hr;
821}
822
823
824// Allocate every register, preserving source/target regs
825void alloc_all(struct regstat *cur,int i)
826{
827 int hr;
828
829 for(hr=0;hr<HOST_REGS;hr++) {
830 if(hr!=EXCLUDE_REG) {
831 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
832 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
833 {
834 cur->regmap[hr]=-1;
835 cur->dirty&=~(1<<hr);
836 }
837 // Don't need zeros
838 if((cur->regmap[hr]&63)==0)
839 {
840 cur->regmap[hr]=-1;
841 cur->dirty&=~(1<<hr);
842 }
843 }
844 }
845}
846
847
848void div64(int64_t dividend,int64_t divisor)
849{
850 lo=dividend/divisor;
851 hi=dividend%divisor;
852 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
853 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854}
855void divu64(uint64_t dividend,uint64_t divisor)
856{
857 lo=dividend/divisor;
858 hi=dividend%divisor;
859 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
860 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
861}
862
863void mult64(uint64_t m1,uint64_t m2)
864{
865 unsigned long long int op1, op2, op3, op4;
866 unsigned long long int result1, result2, result3, result4;
867 unsigned long long int temp1, temp2, temp3, temp4;
868 int sign = 0;
869
870 if (m1 < 0)
871 {
872 op2 = -m1;
873 sign = 1 - sign;
874 }
875 else op2 = m1;
876 if (m2 < 0)
877 {
878 op4 = -m2;
879 sign = 1 - sign;
880 }
881 else op4 = m2;
882
883 op1 = op2 & 0xFFFFFFFF;
884 op2 = (op2 >> 32) & 0xFFFFFFFF;
885 op3 = op4 & 0xFFFFFFFF;
886 op4 = (op4 >> 32) & 0xFFFFFFFF;
887
888 temp1 = op1 * op3;
889 temp2 = (temp1 >> 32) + op1 * op4;
890 temp3 = op2 * op3;
891 temp4 = (temp3 >> 32) + op2 * op4;
892
893 result1 = temp1 & 0xFFFFFFFF;
894 result2 = temp2 + (temp3 & 0xFFFFFFFF);
895 result3 = (result2 >> 32) + temp4;
896 result4 = (result3 >> 32);
897
898 lo = result1 | (result2 << 32);
899 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900 if (sign)
901 {
902 hi = ~hi;
903 if (!lo) hi++;
904 else lo = ~lo + 1;
905 }
906}
907
908void multu64(uint64_t m1,uint64_t m2)
909{
910 unsigned long long int op1, op2, op3, op4;
911 unsigned long long int result1, result2, result3, result4;
912 unsigned long long int temp1, temp2, temp3, temp4;
913
914 op1 = m1 & 0xFFFFFFFF;
915 op2 = (m1 >> 32) & 0xFFFFFFFF;
916 op3 = m2 & 0xFFFFFFFF;
917 op4 = (m2 >> 32) & 0xFFFFFFFF;
918
919 temp1 = op1 * op3;
920 temp2 = (temp1 >> 32) + op1 * op4;
921 temp3 = op2 * op3;
922 temp4 = (temp3 >> 32) + op2 * op4;
923
924 result1 = temp1 & 0xFFFFFFFF;
925 result2 = temp2 + (temp3 & 0xFFFFFFFF);
926 result3 = (result2 >> 32) + temp4;
927 result4 = (result3 >> 32);
928
929 lo = result1 | (result2 << 32);
930 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
931
932 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
933 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
934}
935
936uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937{
938 if(bits) {
939 original<<=64-bits;
940 original>>=64-bits;
941 loaded<<=bits;
942 original|=loaded;
943 }
944 else original=loaded;
945 return original;
946}
947uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948{
949 if(bits^56) {
950 original>>=64-(bits^56);
951 original<<=64-(bits^56);
952 loaded>>=bits^56;
953 original|=loaded;
954 }
955 else original=loaded;
956 return original;
957}
958
959#ifdef __i386__
960#include "assem_x86.c"
961#endif
962#ifdef __x86_64__
963#include "assem_x64.c"
964#endif
965#ifdef __arm__
966#include "assem_arm.c"
967#endif
968
969// Add virtual address mapping to linked list
970void ll_add(struct ll_entry **head,int vaddr,void *addr)
971{
972 struct ll_entry *new_entry;
973 new_entry=malloc(sizeof(struct ll_entry));
974 assert(new_entry!=NULL);
975 new_entry->vaddr=vaddr;
976 new_entry->reg32=0;
977 new_entry->addr=addr;
978 new_entry->next=*head;
979 *head=new_entry;
980}
981
982// Add virtual address mapping for 32-bit compiled block
983void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
984{
7139f3c8 985 ll_add(head,vaddr,addr);
986#ifndef FORCE32
987 (*head)->reg32=reg32;
988#endif
57871462 989}
990
991// Check if an address is already compiled
992// but don't return addresses which are about to expire from the cache
993void *check_addr(u_int vaddr)
994{
995 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
996 if(ht_bin[0]==vaddr) {
997 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
998 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
999 }
1000 if(ht_bin[2]==vaddr) {
1001 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1003 }
94d23bb9 1004 u_int page=get_page(vaddr);
57871462 1005 struct ll_entry *head;
1006 head=jump_in[page];
1007 while(head!=NULL) {
1008 if(head->vaddr==vaddr&&head->reg32==0) {
1009 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1010 // Update existing entry with current address
1011 if(ht_bin[0]==vaddr) {
1012 ht_bin[1]=(int)head->addr;
1013 return head->addr;
1014 }
1015 if(ht_bin[2]==vaddr) {
1016 ht_bin[3]=(int)head->addr;
1017 return head->addr;
1018 }
1019 // Insert into hash table with low priority.
1020 // Don't evict existing entries, as they are probably
1021 // addresses that are being accessed frequently.
1022 if(ht_bin[0]==-1) {
1023 ht_bin[1]=(int)head->addr;
1024 ht_bin[0]=vaddr;
1025 }else if(ht_bin[2]==-1) {
1026 ht_bin[3]=(int)head->addr;
1027 ht_bin[2]=vaddr;
1028 }
1029 return head->addr;
1030 }
1031 }
1032 head=head->next;
1033 }
1034 return 0;
1035}
1036
1037void remove_hash(int vaddr)
1038{
1039 //printf("remove hash: %x\n",vaddr);
1040 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1041 if(ht_bin[2]==vaddr) {
1042 ht_bin[2]=ht_bin[3]=-1;
1043 }
1044 if(ht_bin[0]==vaddr) {
1045 ht_bin[0]=ht_bin[2];
1046 ht_bin[1]=ht_bin[3];
1047 ht_bin[2]=ht_bin[3]=-1;
1048 }
1049}
1050
1051void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1052{
1053 struct ll_entry *next;
1054 while(*head) {
1055 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1056 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1057 {
1058 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1059 remove_hash((*head)->vaddr);
1060 next=(*head)->next;
1061 free(*head);
1062 *head=next;
1063 }
1064 else
1065 {
1066 head=&((*head)->next);
1067 }
1068 }
1069}
1070
1071// Remove all entries from linked list
1072void ll_clear(struct ll_entry **head)
1073{
1074 struct ll_entry *cur;
1075 struct ll_entry *next;
1076 if(cur=*head) {
1077 *head=0;
1078 while(cur) {
1079 next=cur->next;
1080 free(cur);
1081 cur=next;
1082 }
1083 }
1084}
1085
1086// Dereference the pointers and remove if it matches
1087void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1088{
f76eeef9 1089 u_int old_host_addr=0;
57871462 1090 while(head) {
1091 int ptr=get_pointer(head->addr);
1092 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1093 if(((ptr>>shift)==(addr>>shift)) ||
1094 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1095 {
5088bb70 1096 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1097 u_int host_addr=(u_int)kill_pointer(head->addr);
1098
1099 if((host_addr>>12)!=(old_host_addr>>12)) {
1100 #ifdef __arm__
1101 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1102 #endif
1103 old_host_addr=host_addr;
1104 }
57871462 1105 }
1106 head=head->next;
1107 }
f76eeef9 1108 #ifdef __arm__
1109 if (old_host_addr)
1110 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1111 #endif
57871462 1112}
1113
1114// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1115void invalidate_page(u_int page)
57871462 1116{
57871462 1117 struct ll_entry *head;
1118 struct ll_entry *next;
f76eeef9 1119 u_int old_host_addr=0;
57871462 1120 head=jump_in[page];
1121 jump_in[page]=0;
1122 while(head!=NULL) {
1123 inv_debug("INVALIDATE: %x\n",head->vaddr);
1124 remove_hash(head->vaddr);
1125 next=head->next;
1126 free(head);
1127 head=next;
1128 }
1129 head=jump_out[page];
1130 jump_out[page]=0;
1131 while(head!=NULL) {
1132 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1133 u_int host_addr=(u_int)kill_pointer(head->addr);
1134
1135 if((host_addr>>12)!=(old_host_addr>>12)) {
1136 #ifdef __arm__
1137 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1138 #endif
1139 old_host_addr=host_addr;
1140 }
57871462 1141 next=head->next;
1142 free(head);
1143 head=next;
1144 }
f76eeef9 1145 #ifdef __arm__
1146 if (old_host_addr)
1147 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1148 #endif
57871462 1149}
1150void invalidate_block(u_int block)
1151{
94d23bb9 1152 u_int page=get_page(block<<12);
1153 u_int vpage=get_vpage(block<<12);
57871462 1154 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1155 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1156 u_int first,last;
1157 first=last=page;
1158 struct ll_entry *head;
1159 head=jump_dirty[vpage];
1160 //printf("page=%d vpage=%d\n",page,vpage);
1161 while(head!=NULL) {
1162 u_int start,end;
1163 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1164 get_bounds((int)head->addr,&start,&end);
1165 //printf("start: %x end: %x\n",start,end);
4cb76aa4 1166 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
57871462 1167 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1168 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1169 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1170 }
1171 }
90ae6d4e 1172#ifndef DISABLE_TLB
57871462 1173 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1174 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1175 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1176 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1177 }
1178 }
90ae6d4e 1179#endif
57871462 1180 }
1181 head=head->next;
1182 }
1183 //printf("first=%d last=%d\n",first,last);
f76eeef9 1184 invalidate_page(page);
57871462 1185 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1186 assert(last<page+5);
1187 // Invalidate the adjacent pages if a block crosses a 4K boundary
1188 while(first<page) {
1189 invalidate_page(first);
1190 first++;
1191 }
1192 for(first=page+1;first<last;first++) {
1193 invalidate_page(first);
1194 }
1195
1196 // Don't trap writes
1197 invalid_code[block]=1;
94d23bb9 1198#ifndef DISABLE_TLB
57871462 1199 // If there is a valid TLB entry for this page, remove write protect
1200 if(tlb_LUT_w[block]) {
1201 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1202 // CHECK: Is this right?
1203 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1204 u_int real_block=tlb_LUT_w[block]>>12;
1205 invalid_code[real_block]=1;
1206 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1207 }
1208 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1209#endif
f76eeef9 1210
57871462 1211 #ifdef USE_MINI_HT
1212 memset(mini_ht,-1,sizeof(mini_ht));
1213 #endif
1214}
1215void invalidate_addr(u_int addr)
1216{
1217 invalidate_block(addr>>12);
1218}
1219void invalidate_all_pages()
1220{
1221 u_int page,n;
1222 for(page=0;page<4096;page++)
1223 invalidate_page(page);
1224 for(page=0;page<1048576;page++)
1225 if(!invalid_code[page]) {
1226 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1227 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1228 }
1229 #ifdef __arm__
1230 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1231 #endif
1232 #ifdef USE_MINI_HT
1233 memset(mini_ht,-1,sizeof(mini_ht));
1234 #endif
94d23bb9 1235 #ifndef DISABLE_TLB
57871462 1236 // TLB
1237 for(page=0;page<0x100000;page++) {
1238 if(tlb_LUT_r[page]) {
1239 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1240 if(!tlb_LUT_w[page]||!invalid_code[page])
1241 memory_map[page]|=0x40000000; // Write protect
1242 }
1243 else memory_map[page]=-1;
1244 if(page==0x80000) page=0xC0000;
1245 }
1246 tlb_hacks();
94d23bb9 1247 #endif
57871462 1248}
1249
1250// Add an entry to jump_out after making a link
1251void add_link(u_int vaddr,void *src)
1252{
94d23bb9 1253 u_int page=get_page(vaddr);
57871462 1254 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1255 ll_add(jump_out+page,vaddr,src);
1256 //int ptr=get_pointer(src);
1257 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1258}
1259
1260// If a code block was found to be unmodified (bit was set in
1261// restore_candidate) and it remains unmodified (bit is clear
1262// in invalid_code) then move the entries for that 4K page from
1263// the dirty list to the clean list.
1264void clean_blocks(u_int page)
1265{
1266 struct ll_entry *head;
1267 inv_debug("INV: clean_blocks page=%d\n",page);
1268 head=jump_dirty[page];
1269 while(head!=NULL) {
1270 if(!invalid_code[head->vaddr>>12]) {
1271 // Don't restore blocks which are about to expire from the cache
1272 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1273 u_int start,end;
1274 if(verify_dirty((int)head->addr)) {
1275 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1276 u_int i;
1277 u_int inv=0;
1278 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1279 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1280 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1281 inv|=invalid_code[i];
1282 }
1283 }
1284 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1285 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1286 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1287 if(addr<start||addr>=end) inv=1;
1288 }
4cb76aa4 1289 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1290 inv=1;
1291 }
1292 if(!inv) {
1293 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1294 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1295 u_int ppage=page;
94d23bb9 1296#ifndef DISABLE_TLB
57871462 1297 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1298#endif
57871462 1299 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1300 //printf("page=%x, addr=%x\n",page,head->vaddr);
1301 //assert(head->vaddr>>12==(page|0x80000));
1302 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1303 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1304 if(!head->reg32) {
1305 if(ht_bin[0]==head->vaddr) {
1306 ht_bin[1]=(int)clean_addr; // Replace existing entry
1307 }
1308 if(ht_bin[2]==head->vaddr) {
1309 ht_bin[3]=(int)clean_addr; // Replace existing entry
1310 }
1311 }
1312 }
1313 }
1314 }
1315 }
1316 }
1317 head=head->next;
1318 }
1319}
1320
1321
1322void mov_alloc(struct regstat *current,int i)
1323{
1324 // Note: Don't need to actually alloc the source registers
1325 if((~current->is32>>rs1[i])&1) {
1326 //alloc_reg64(current,i,rs1[i]);
1327 alloc_reg64(current,i,rt1[i]);
1328 current->is32&=~(1LL<<rt1[i]);
1329 } else {
1330 //alloc_reg(current,i,rs1[i]);
1331 alloc_reg(current,i,rt1[i]);
1332 current->is32|=(1LL<<rt1[i]);
1333 }
1334 clear_const(current,rs1[i]);
1335 clear_const(current,rt1[i]);
1336 dirty_reg(current,rt1[i]);
1337}
1338
1339void shiftimm_alloc(struct regstat *current,int i)
1340{
1341 clear_const(current,rs1[i]);
1342 clear_const(current,rt1[i]);
1343 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1344 {
1345 if(rt1[i]) {
1346 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1347 else lt1[i]=rs1[i];
1348 alloc_reg(current,i,rt1[i]);
1349 current->is32|=1LL<<rt1[i];
1350 dirty_reg(current,rt1[i]);
1351 }
1352 }
1353 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1354 {
1355 if(rt1[i]) {
1356 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1357 alloc_reg64(current,i,rt1[i]);
1358 current->is32&=~(1LL<<rt1[i]);
1359 dirty_reg(current,rt1[i]);
1360 }
1361 }
1362 if(opcode2[i]==0x3c) // DSLL32
1363 {
1364 if(rt1[i]) {
1365 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1366 alloc_reg64(current,i,rt1[i]);
1367 current->is32&=~(1LL<<rt1[i]);
1368 dirty_reg(current,rt1[i]);
1369 }
1370 }
1371 if(opcode2[i]==0x3e) // DSRL32
1372 {
1373 if(rt1[i]) {
1374 alloc_reg64(current,i,rs1[i]);
1375 if(imm[i]==32) {
1376 alloc_reg64(current,i,rt1[i]);
1377 current->is32&=~(1LL<<rt1[i]);
1378 } else {
1379 alloc_reg(current,i,rt1[i]);
1380 current->is32|=1LL<<rt1[i];
1381 }
1382 dirty_reg(current,rt1[i]);
1383 }
1384 }
1385 if(opcode2[i]==0x3f) // DSRA32
1386 {
1387 if(rt1[i]) {
1388 alloc_reg64(current,i,rs1[i]);
1389 alloc_reg(current,i,rt1[i]);
1390 current->is32|=1LL<<rt1[i];
1391 dirty_reg(current,rt1[i]);
1392 }
1393 }
1394}
1395
1396void shift_alloc(struct regstat *current,int i)
1397{
1398 if(rt1[i]) {
1399 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1400 {
1401 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1402 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1403 alloc_reg(current,i,rt1[i]);
1404 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1405 current->is32|=1LL<<rt1[i];
1406 } else { // DSLLV/DSRLV/DSRAV
1407 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1408 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1409 alloc_reg64(current,i,rt1[i]);
1410 current->is32&=~(1LL<<rt1[i]);
1411 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1412 alloc_reg_temp(current,i,-1);
1413 }
1414 clear_const(current,rs1[i]);
1415 clear_const(current,rs2[i]);
1416 clear_const(current,rt1[i]);
1417 dirty_reg(current,rt1[i]);
1418 }
1419}
1420
1421void alu_alloc(struct regstat *current,int i)
1422{
1423 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1424 if(rt1[i]) {
1425 if(rs1[i]&&rs2[i]) {
1426 alloc_reg(current,i,rs1[i]);
1427 alloc_reg(current,i,rs2[i]);
1428 }
1429 else {
1430 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1431 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1432 }
1433 alloc_reg(current,i,rt1[i]);
1434 }
1435 current->is32|=1LL<<rt1[i];
1436 }
1437 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1438 if(rt1[i]) {
1439 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1440 {
1441 alloc_reg64(current,i,rs1[i]);
1442 alloc_reg64(current,i,rs2[i]);
1443 alloc_reg(current,i,rt1[i]);
1444 } else {
1445 alloc_reg(current,i,rs1[i]);
1446 alloc_reg(current,i,rs2[i]);
1447 alloc_reg(current,i,rt1[i]);
1448 }
1449 }
1450 current->is32|=1LL<<rt1[i];
1451 }
1452 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1453 if(rt1[i]) {
1454 if(rs1[i]&&rs2[i]) {
1455 alloc_reg(current,i,rs1[i]);
1456 alloc_reg(current,i,rs2[i]);
1457 }
1458 else
1459 {
1460 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1461 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1462 }
1463 alloc_reg(current,i,rt1[i]);
1464 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1465 {
1466 if(!((current->uu>>rt1[i])&1)) {
1467 alloc_reg64(current,i,rt1[i]);
1468 }
1469 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1470 if(rs1[i]&&rs2[i]) {
1471 alloc_reg64(current,i,rs1[i]);
1472 alloc_reg64(current,i,rs2[i]);
1473 }
1474 else
1475 {
1476 // Is is really worth it to keep 64-bit values in registers?
1477 #ifdef NATIVE_64BIT
1478 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1479 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1480 #endif
1481 }
1482 }
1483 current->is32&=~(1LL<<rt1[i]);
1484 } else {
1485 current->is32|=1LL<<rt1[i];
1486 }
1487 }
1488 }
1489 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1490 if(rt1[i]) {
1491 if(rs1[i]&&rs2[i]) {
1492 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1493 alloc_reg64(current,i,rs1[i]);
1494 alloc_reg64(current,i,rs2[i]);
1495 alloc_reg64(current,i,rt1[i]);
1496 } else {
1497 alloc_reg(current,i,rs1[i]);
1498 alloc_reg(current,i,rs2[i]);
1499 alloc_reg(current,i,rt1[i]);
1500 }
1501 }
1502 else {
1503 alloc_reg(current,i,rt1[i]);
1504 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1505 // DADD used as move, or zeroing
1506 // If we have a 64-bit source, then make the target 64 bits too
1507 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1508 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1509 alloc_reg64(current,i,rt1[i]);
1510 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1511 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1512 alloc_reg64(current,i,rt1[i]);
1513 }
1514 if(opcode2[i]>=0x2e&&rs2[i]) {
1515 // DSUB used as negation - 64-bit result
1516 // If we have a 32-bit register, extend it to 64 bits
1517 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1518 alloc_reg64(current,i,rt1[i]);
1519 }
1520 }
1521 }
1522 if(rs1[i]&&rs2[i]) {
1523 current->is32&=~(1LL<<rt1[i]);
1524 } else if(rs1[i]) {
1525 current->is32&=~(1LL<<rt1[i]);
1526 if((current->is32>>rs1[i])&1)
1527 current->is32|=1LL<<rt1[i];
1528 } else if(rs2[i]) {
1529 current->is32&=~(1LL<<rt1[i]);
1530 if((current->is32>>rs2[i])&1)
1531 current->is32|=1LL<<rt1[i];
1532 } else {
1533 current->is32|=1LL<<rt1[i];
1534 }
1535 }
1536 }
1537 clear_const(current,rs1[i]);
1538 clear_const(current,rs2[i]);
1539 clear_const(current,rt1[i]);
1540 dirty_reg(current,rt1[i]);
1541}
1542
1543void imm16_alloc(struct regstat *current,int i)
1544{
1545 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1546 else lt1[i]=rs1[i];
1547 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1548 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1549 current->is32&=~(1LL<<rt1[i]);
1550 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1551 // TODO: Could preserve the 32-bit flag if the immediate is zero
1552 alloc_reg64(current,i,rt1[i]);
1553 alloc_reg64(current,i,rs1[i]);
1554 }
1555 clear_const(current,rs1[i]);
1556 clear_const(current,rt1[i]);
1557 }
1558 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1559 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1560 current->is32|=1LL<<rt1[i];
1561 clear_const(current,rs1[i]);
1562 clear_const(current,rt1[i]);
1563 }
1564 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1565 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1566 if(rs1[i]!=rt1[i]) {
1567 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1568 alloc_reg64(current,i,rt1[i]);
1569 current->is32&=~(1LL<<rt1[i]);
1570 }
1571 }
1572 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1573 if(is_const(current,rs1[i])) {
1574 int v=get_const(current,rs1[i]);
1575 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1576 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1577 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1578 }
1579 else clear_const(current,rt1[i]);
1580 }
1581 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1582 if(is_const(current,rs1[i])) {
1583 int v=get_const(current,rs1[i]);
1584 set_const(current,rt1[i],v+imm[i]);
1585 }
1586 else clear_const(current,rt1[i]);
1587 current->is32|=1LL<<rt1[i];
1588 }
1589 else {
1590 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1591 current->is32|=1LL<<rt1[i];
1592 }
1593 dirty_reg(current,rt1[i]);
1594}
1595
1596void load_alloc(struct regstat *current,int i)
1597{
1598 clear_const(current,rt1[i]);
1599 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1600 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1601 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1602 if(rt1[i]) {
1603 alloc_reg(current,i,rt1[i]);
1604 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1605 {
1606 current->is32&=~(1LL<<rt1[i]);
1607 alloc_reg64(current,i,rt1[i]);
1608 }
1609 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1610 {
1611 current->is32&=~(1LL<<rt1[i]);
1612 alloc_reg64(current,i,rt1[i]);
1613 alloc_all(current,i);
1614 alloc_reg64(current,i,FTEMP);
1615 }
1616 else current->is32|=1LL<<rt1[i];
1617 dirty_reg(current,rt1[i]);
1618 // If using TLB, need a register for pointer to the mapping table
1619 if(using_tlb) alloc_reg(current,i,TLREG);
1620 // LWL/LWR need a temporary register for the old value
1621 if(opcode[i]==0x22||opcode[i]==0x26)
1622 {
1623 alloc_reg(current,i,FTEMP);
1624 alloc_reg_temp(current,i,-1);
1625 }
1626 }
1627 else
1628 {
1629 // Load to r0 (dummy load)
1630 // but we still need a register to calculate the address
1631 alloc_reg_temp(current,i,-1);
1632 }
1633}
1634
1635void store_alloc(struct regstat *current,int i)
1636{
1637 clear_const(current,rs2[i]);
1638 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1639 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1640 alloc_reg(current,i,rs2[i]);
1641 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1642 alloc_reg64(current,i,rs2[i]);
1643 if(rs2[i]) alloc_reg(current,i,FTEMP);
1644 }
1645 // If using TLB, need a register for pointer to the mapping table
1646 if(using_tlb) alloc_reg(current,i,TLREG);
1647 #if defined(HOST_IMM8)
1648 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1649 else alloc_reg(current,i,INVCP);
1650 #endif
b7918751 1651 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1652 alloc_reg(current,i,FTEMP);
1653 }
1654 // We need a temporary register for address generation
1655 alloc_reg_temp(current,i,-1);
1656}
1657
1658void c1ls_alloc(struct regstat *current,int i)
1659{
1660 //clear_const(current,rs1[i]); // FIXME
1661 clear_const(current,rt1[i]);
1662 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1663 alloc_reg(current,i,CSREG); // Status
1664 alloc_reg(current,i,FTEMP);
1665 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1666 alloc_reg64(current,i,FTEMP);
1667 }
1668 // If using TLB, need a register for pointer to the mapping table
1669 if(using_tlb) alloc_reg(current,i,TLREG);
1670 #if defined(HOST_IMM8)
1671 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1672 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1673 alloc_reg(current,i,INVCP);
1674 #endif
1675 // We need a temporary register for address generation
1676 alloc_reg_temp(current,i,-1);
1677}
1678
b9b61529 1679void c2ls_alloc(struct regstat *current,int i)
1680{
1681 clear_const(current,rt1[i]);
1682 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1683 alloc_reg(current,i,FTEMP);
1684 // If using TLB, need a register for pointer to the mapping table
1685 if(using_tlb) alloc_reg(current,i,TLREG);
1686 #if defined(HOST_IMM8)
1687 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1688 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1689 alloc_reg(current,i,INVCP);
1690 #endif
1691 // We need a temporary register for address generation
1692 alloc_reg_temp(current,i,-1);
1693}
1694
57871462 1695#ifndef multdiv_alloc
1696void multdiv_alloc(struct regstat *current,int i)
1697{
1698 // case 0x18: MULT
1699 // case 0x19: MULTU
1700 // case 0x1A: DIV
1701 // case 0x1B: DIVU
1702 // case 0x1C: DMULT
1703 // case 0x1D: DMULTU
1704 // case 0x1E: DDIV
1705 // case 0x1F: DDIVU
1706 clear_const(current,rs1[i]);
1707 clear_const(current,rs2[i]);
1708 if(rs1[i]&&rs2[i])
1709 {
1710 if((opcode2[i]&4)==0) // 32-bit
1711 {
1712 current->u&=~(1LL<<HIREG);
1713 current->u&=~(1LL<<LOREG);
1714 alloc_reg(current,i,HIREG);
1715 alloc_reg(current,i,LOREG);
1716 alloc_reg(current,i,rs1[i]);
1717 alloc_reg(current,i,rs2[i]);
1718 current->is32|=1LL<<HIREG;
1719 current->is32|=1LL<<LOREG;
1720 dirty_reg(current,HIREG);
1721 dirty_reg(current,LOREG);
1722 }
1723 else // 64-bit
1724 {
1725 current->u&=~(1LL<<HIREG);
1726 current->u&=~(1LL<<LOREG);
1727 current->uu&=~(1LL<<HIREG);
1728 current->uu&=~(1LL<<LOREG);
1729 alloc_reg64(current,i,HIREG);
1730 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1731 alloc_reg64(current,i,rs1[i]);
1732 alloc_reg64(current,i,rs2[i]);
1733 alloc_all(current,i);
1734 current->is32&=~(1LL<<HIREG);
1735 current->is32&=~(1LL<<LOREG);
1736 dirty_reg(current,HIREG);
1737 dirty_reg(current,LOREG);
1738 }
1739 }
1740 else
1741 {
1742 // Multiply by zero is zero.
1743 // MIPS does not have a divide by zero exception.
1744 // The result is undefined, we return zero.
1745 alloc_reg(current,i,HIREG);
1746 alloc_reg(current,i,LOREG);
1747 current->is32|=1LL<<HIREG;
1748 current->is32|=1LL<<LOREG;
1749 dirty_reg(current,HIREG);
1750 dirty_reg(current,LOREG);
1751 }
1752}
1753#endif
1754
1755void cop0_alloc(struct regstat *current,int i)
1756{
1757 if(opcode2[i]==0) // MFC0
1758 {
1759 if(rt1[i]) {
1760 clear_const(current,rt1[i]);
1761 alloc_all(current,i);
1762 alloc_reg(current,i,rt1[i]);
1763 current->is32|=1LL<<rt1[i];
1764 dirty_reg(current,rt1[i]);
1765 }
1766 }
1767 else if(opcode2[i]==4) // MTC0
1768 {
1769 if(rs1[i]){
1770 clear_const(current,rs1[i]);
1771 alloc_reg(current,i,rs1[i]);
1772 alloc_all(current,i);
1773 }
1774 else {
1775 alloc_all(current,i); // FIXME: Keep r0
1776 current->u&=~1LL;
1777 alloc_reg(current,i,0);
1778 }
1779 }
1780 else
1781 {
1782 // TLBR/TLBWI/TLBWR/TLBP/ERET
1783 assert(opcode2[i]==0x10);
1784 alloc_all(current,i);
1785 }
1786}
1787
1788void cop1_alloc(struct regstat *current,int i)
1789{
1790 alloc_reg(current,i,CSREG); // Load status
1791 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1792 {
7de557a6 1793 if(rt1[i]){
1794 clear_const(current,rt1[i]);
1795 if(opcode2[i]==1) {
1796 alloc_reg64(current,i,rt1[i]); // DMFC1
1797 current->is32&=~(1LL<<rt1[i]);
1798 }else{
1799 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1800 current->is32|=1LL<<rt1[i];
1801 }
1802 dirty_reg(current,rt1[i]);
57871462 1803 }
57871462 1804 alloc_reg_temp(current,i,-1);
1805 }
1806 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1807 {
1808 if(rs1[i]){
1809 clear_const(current,rs1[i]);
1810 if(opcode2[i]==5)
1811 alloc_reg64(current,i,rs1[i]); // DMTC1
1812 else
1813 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1814 alloc_reg_temp(current,i,-1);
1815 }
1816 else {
1817 current->u&=~1LL;
1818 alloc_reg(current,i,0);
1819 alloc_reg_temp(current,i,-1);
1820 }
1821 }
1822}
1823void fconv_alloc(struct regstat *current,int i)
1824{
1825 alloc_reg(current,i,CSREG); // Load status
1826 alloc_reg_temp(current,i,-1);
1827}
1828void float_alloc(struct regstat *current,int i)
1829{
1830 alloc_reg(current,i,CSREG); // Load status
1831 alloc_reg_temp(current,i,-1);
1832}
b9b61529 1833void c2op_alloc(struct regstat *current,int i)
1834{
1835 alloc_reg_temp(current,i,-1);
1836}
57871462 1837void fcomp_alloc(struct regstat *current,int i)
1838{
1839 alloc_reg(current,i,CSREG); // Load status
1840 alloc_reg(current,i,FSREG); // Load flags
1841 dirty_reg(current,FSREG); // Flag will be modified
1842 alloc_reg_temp(current,i,-1);
1843}
1844
1845void syscall_alloc(struct regstat *current,int i)
1846{
1847 alloc_cc(current,i);
1848 dirty_reg(current,CCREG);
1849 alloc_all(current,i);
1850 current->isconst=0;
1851}
1852
1853void delayslot_alloc(struct regstat *current,int i)
1854{
1855 switch(itype[i]) {
1856 case UJUMP:
1857 case CJUMP:
1858 case SJUMP:
1859 case RJUMP:
1860 case FJUMP:
1861 case SYSCALL:
7139f3c8 1862 case HLECALL:
57871462 1863 case SPAN:
1864 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1865 printf("Disabled speculative precompilation\n");
1866 stop_after_jal=1;
1867 break;
1868 case IMM16:
1869 imm16_alloc(current,i);
1870 break;
1871 case LOAD:
1872 case LOADLR:
1873 load_alloc(current,i);
1874 break;
1875 case STORE:
1876 case STORELR:
1877 store_alloc(current,i);
1878 break;
1879 case ALU:
1880 alu_alloc(current,i);
1881 break;
1882 case SHIFT:
1883 shift_alloc(current,i);
1884 break;
1885 case MULTDIV:
1886 multdiv_alloc(current,i);
1887 break;
1888 case SHIFTIMM:
1889 shiftimm_alloc(current,i);
1890 break;
1891 case MOV:
1892 mov_alloc(current,i);
1893 break;
1894 case COP0:
1895 cop0_alloc(current,i);
1896 break;
1897 case COP1:
b9b61529 1898 case COP2:
57871462 1899 cop1_alloc(current,i);
1900 break;
1901 case C1LS:
1902 c1ls_alloc(current,i);
1903 break;
b9b61529 1904 case C2LS:
1905 c2ls_alloc(current,i);
1906 break;
57871462 1907 case FCONV:
1908 fconv_alloc(current,i);
1909 break;
1910 case FLOAT:
1911 float_alloc(current,i);
1912 break;
1913 case FCOMP:
1914 fcomp_alloc(current,i);
1915 break;
b9b61529 1916 case C2OP:
1917 c2op_alloc(current,i);
1918 break;
57871462 1919 }
1920}
1921
1922// Special case where a branch and delay slot span two pages in virtual memory
1923static void pagespan_alloc(struct regstat *current,int i)
1924{
1925 current->isconst=0;
1926 current->wasconst=0;
1927 regs[i].wasconst=0;
1928 alloc_all(current,i);
1929 alloc_cc(current,i);
1930 dirty_reg(current,CCREG);
1931 if(opcode[i]==3) // JAL
1932 {
1933 alloc_reg(current,i,31);
1934 dirty_reg(current,31);
1935 }
1936 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1937 {
1938 alloc_reg(current,i,rs1[i]);
5067f341 1939 if (rt1[i]!=0) {
1940 alloc_reg(current,i,rt1[i]);
1941 dirty_reg(current,rt1[i]);
57871462 1942 }
1943 }
1944 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1945 {
1946 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1947 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1948 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1949 {
1950 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1951 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1952 }
1953 }
1954 else
1955 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1956 {
1957 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1958 if(!((current->is32>>rs1[i])&1))
1959 {
1960 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1961 }
1962 }
1963 else
1964 if(opcode[i]==0x11) // BC1
1965 {
1966 alloc_reg(current,i,FSREG);
1967 alloc_reg(current,i,CSREG);
1968 }
1969 //else ...
1970}
1971
1972add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1973{
1974 stubs[stubcount][0]=type;
1975 stubs[stubcount][1]=addr;
1976 stubs[stubcount][2]=retaddr;
1977 stubs[stubcount][3]=a;
1978 stubs[stubcount][4]=b;
1979 stubs[stubcount][5]=c;
1980 stubs[stubcount][6]=d;
1981 stubs[stubcount][7]=e;
1982 stubcount++;
1983}
1984
1985// Write out a single register
1986void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1987{
1988 int hr;
1989 for(hr=0;hr<HOST_REGS;hr++) {
1990 if(hr!=EXCLUDE_REG) {
1991 if((regmap[hr]&63)==r) {
1992 if((dirty>>hr)&1) {
1993 if(regmap[hr]<64) {
1994 emit_storereg(r,hr);
24385cae 1995#ifndef FORCE32
57871462 1996 if((is32>>regmap[hr])&1) {
1997 emit_sarimm(hr,31,hr);
1998 emit_storereg(r|64,hr);
1999 }
24385cae 2000#endif
57871462 2001 }else{
2002 emit_storereg(r|64,hr);
2003 }
2004 }
2005 }
2006 }
2007 }
2008}
2009
2010int mchecksum()
2011{
2012 //if(!tracedebug) return 0;
2013 int i;
2014 int sum=0;
2015 for(i=0;i<2097152;i++) {
2016 unsigned int temp=sum;
2017 sum<<=1;
2018 sum|=(~temp)>>31;
2019 sum^=((u_int *)rdram)[i];
2020 }
2021 return sum;
2022}
2023int rchecksum()
2024{
2025 int i;
2026 int sum=0;
2027 for(i=0;i<64;i++)
2028 sum^=((u_int *)reg)[i];
2029 return sum;
2030}
57871462 2031void rlist()
2032{
2033 int i;
2034 printf("TRACE: ");
2035 for(i=0;i<32;i++)
2036 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2037 printf("\n");
3d624f89 2038#ifndef DISABLE_COP1
57871462 2039 printf("TRACE: ");
2040 for(i=0;i<32;i++)
2041 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2042 printf("\n");
3d624f89 2043#endif
57871462 2044}
2045
2046void enabletrace()
2047{
2048 tracedebug=1;
2049}
2050
2051void memdebug(int i)
2052{
2053 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2054 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2055 //rlist();
2056 //if(tracedebug) {
2057 //if(Count>=-2084597794) {
2058 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2059 //if(0) {
2060 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2061 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2062 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2063 rlist();
2064 #ifdef __i386__
2065 printf("TRACE: %x\n",(&i)[-1]);
2066 #endif
2067 #ifdef __arm__
2068 int j;
2069 printf("TRACE: %x \n",(&j)[10]);
2070 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2071 #endif
2072 //fflush(stdout);
2073 }
2074 //printf("TRACE: %x\n",(&i)[-1]);
2075}
2076
2077void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2078{
2079 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2080}
2081
2082void alu_assemble(int i,struct regstat *i_regs)
2083{
2084 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2085 if(rt1[i]) {
2086 signed char s1,s2,t;
2087 t=get_reg(i_regs->regmap,rt1[i]);
2088 if(t>=0) {
2089 s1=get_reg(i_regs->regmap,rs1[i]);
2090 s2=get_reg(i_regs->regmap,rs2[i]);
2091 if(rs1[i]&&rs2[i]) {
2092 assert(s1>=0);
2093 assert(s2>=0);
2094 if(opcode2[i]&2) emit_sub(s1,s2,t);
2095 else emit_add(s1,s2,t);
2096 }
2097 else if(rs1[i]) {
2098 if(s1>=0) emit_mov(s1,t);
2099 else emit_loadreg(rs1[i],t);
2100 }
2101 else if(rs2[i]) {
2102 if(s2>=0) {
2103 if(opcode2[i]&2) emit_neg(s2,t);
2104 else emit_mov(s2,t);
2105 }
2106 else {
2107 emit_loadreg(rs2[i],t);
2108 if(opcode2[i]&2) emit_neg(t,t);
2109 }
2110 }
2111 else emit_zeroreg(t);
2112 }
2113 }
2114 }
2115 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2116 if(rt1[i]) {
2117 signed char s1l,s2l,s1h,s2h,tl,th;
2118 tl=get_reg(i_regs->regmap,rt1[i]);
2119 th=get_reg(i_regs->regmap,rt1[i]|64);
2120 if(tl>=0) {
2121 s1l=get_reg(i_regs->regmap,rs1[i]);
2122 s2l=get_reg(i_regs->regmap,rs2[i]);
2123 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2124 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2125 if(rs1[i]&&rs2[i]) {
2126 assert(s1l>=0);
2127 assert(s2l>=0);
2128 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2129 else emit_adds(s1l,s2l,tl);
2130 if(th>=0) {
2131 #ifdef INVERTED_CARRY
2132 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2133 #else
2134 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2135 #endif
2136 else emit_add(s1h,s2h,th);
2137 }
2138 }
2139 else if(rs1[i]) {
2140 if(s1l>=0) emit_mov(s1l,tl);
2141 else emit_loadreg(rs1[i],tl);
2142 if(th>=0) {
2143 if(s1h>=0) emit_mov(s1h,th);
2144 else emit_loadreg(rs1[i]|64,th);
2145 }
2146 }
2147 else if(rs2[i]) {
2148 if(s2l>=0) {
2149 if(opcode2[i]&2) emit_negs(s2l,tl);
2150 else emit_mov(s2l,tl);
2151 }
2152 else {
2153 emit_loadreg(rs2[i],tl);
2154 if(opcode2[i]&2) emit_negs(tl,tl);
2155 }
2156 if(th>=0) {
2157 #ifdef INVERTED_CARRY
2158 if(s2h>=0) emit_mov(s2h,th);
2159 else emit_loadreg(rs2[i]|64,th);
2160 if(opcode2[i]&2) {
2161 emit_adcimm(-1,th); // x86 has inverted carry flag
2162 emit_not(th,th);
2163 }
2164 #else
2165 if(opcode2[i]&2) {
2166 if(s2h>=0) emit_rscimm(s2h,0,th);
2167 else {
2168 emit_loadreg(rs2[i]|64,th);
2169 emit_rscimm(th,0,th);
2170 }
2171 }else{
2172 if(s2h>=0) emit_mov(s2h,th);
2173 else emit_loadreg(rs2[i]|64,th);
2174 }
2175 #endif
2176 }
2177 }
2178 else {
2179 emit_zeroreg(tl);
2180 if(th>=0) emit_zeroreg(th);
2181 }
2182 }
2183 }
2184 }
2185 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2186 if(rt1[i]) {
2187 signed char s1l,s1h,s2l,s2h,t;
2188 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2189 {
2190 t=get_reg(i_regs->regmap,rt1[i]);
2191 //assert(t>=0);
2192 if(t>=0) {
2193 s1l=get_reg(i_regs->regmap,rs1[i]);
2194 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2195 s2l=get_reg(i_regs->regmap,rs2[i]);
2196 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2197 if(rs2[i]==0) // rx<r0
2198 {
2199 assert(s1h>=0);
2200 if(opcode2[i]==0x2a) // SLT
2201 emit_shrimm(s1h,31,t);
2202 else // SLTU (unsigned can not be less than zero)
2203 emit_zeroreg(t);
2204 }
2205 else if(rs1[i]==0) // r0<rx
2206 {
2207 assert(s2h>=0);
2208 if(opcode2[i]==0x2a) // SLT
2209 emit_set_gz64_32(s2h,s2l,t);
2210 else // SLTU (set if not zero)
2211 emit_set_nz64_32(s2h,s2l,t);
2212 }
2213 else {
2214 assert(s1l>=0);assert(s1h>=0);
2215 assert(s2l>=0);assert(s2h>=0);
2216 if(opcode2[i]==0x2a) // SLT
2217 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2218 else // SLTU
2219 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2220 }
2221 }
2222 } else {
2223 t=get_reg(i_regs->regmap,rt1[i]);
2224 //assert(t>=0);
2225 if(t>=0) {
2226 s1l=get_reg(i_regs->regmap,rs1[i]);
2227 s2l=get_reg(i_regs->regmap,rs2[i]);
2228 if(rs2[i]==0) // rx<r0
2229 {
2230 assert(s1l>=0);
2231 if(opcode2[i]==0x2a) // SLT
2232 emit_shrimm(s1l,31,t);
2233 else // SLTU (unsigned can not be less than zero)
2234 emit_zeroreg(t);
2235 }
2236 else if(rs1[i]==0) // r0<rx
2237 {
2238 assert(s2l>=0);
2239 if(opcode2[i]==0x2a) // SLT
2240 emit_set_gz32(s2l,t);
2241 else // SLTU (set if not zero)
2242 emit_set_nz32(s2l,t);
2243 }
2244 else{
2245 assert(s1l>=0);assert(s2l>=0);
2246 if(opcode2[i]==0x2a) // SLT
2247 emit_set_if_less32(s1l,s2l,t);
2248 else // SLTU
2249 emit_set_if_carry32(s1l,s2l,t);
2250 }
2251 }
2252 }
2253 }
2254 }
2255 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2256 if(rt1[i]) {
2257 signed char s1l,s1h,s2l,s2h,th,tl;
2258 tl=get_reg(i_regs->regmap,rt1[i]);
2259 th=get_reg(i_regs->regmap,rt1[i]|64);
2260 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2261 {
2262 assert(tl>=0);
2263 if(tl>=0) {
2264 s1l=get_reg(i_regs->regmap,rs1[i]);
2265 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2266 s2l=get_reg(i_regs->regmap,rs2[i]);
2267 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2268 if(rs1[i]&&rs2[i]) {
2269 assert(s1l>=0);assert(s1h>=0);
2270 assert(s2l>=0);assert(s2h>=0);
2271 if(opcode2[i]==0x24) { // AND
2272 emit_and(s1l,s2l,tl);
2273 emit_and(s1h,s2h,th);
2274 } else
2275 if(opcode2[i]==0x25) { // OR
2276 emit_or(s1l,s2l,tl);
2277 emit_or(s1h,s2h,th);
2278 } else
2279 if(opcode2[i]==0x26) { // XOR
2280 emit_xor(s1l,s2l,tl);
2281 emit_xor(s1h,s2h,th);
2282 } else
2283 if(opcode2[i]==0x27) { // NOR
2284 emit_or(s1l,s2l,tl);
2285 emit_or(s1h,s2h,th);
2286 emit_not(tl,tl);
2287 emit_not(th,th);
2288 }
2289 }
2290 else
2291 {
2292 if(opcode2[i]==0x24) { // AND
2293 emit_zeroreg(tl);
2294 emit_zeroreg(th);
2295 } else
2296 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2297 if(rs1[i]){
2298 if(s1l>=0) emit_mov(s1l,tl);
2299 else emit_loadreg(rs1[i],tl);
2300 if(s1h>=0) emit_mov(s1h,th);
2301 else emit_loadreg(rs1[i]|64,th);
2302 }
2303 else
2304 if(rs2[i]){
2305 if(s2l>=0) emit_mov(s2l,tl);
2306 else emit_loadreg(rs2[i],tl);
2307 if(s2h>=0) emit_mov(s2h,th);
2308 else emit_loadreg(rs2[i]|64,th);
2309 }
2310 else{
2311 emit_zeroreg(tl);
2312 emit_zeroreg(th);
2313 }
2314 } else
2315 if(opcode2[i]==0x27) { // NOR
2316 if(rs1[i]){
2317 if(s1l>=0) emit_not(s1l,tl);
2318 else{
2319 emit_loadreg(rs1[i],tl);
2320 emit_not(tl,tl);
2321 }
2322 if(s1h>=0) emit_not(s1h,th);
2323 else{
2324 emit_loadreg(rs1[i]|64,th);
2325 emit_not(th,th);
2326 }
2327 }
2328 else
2329 if(rs2[i]){
2330 if(s2l>=0) emit_not(s2l,tl);
2331 else{
2332 emit_loadreg(rs2[i],tl);
2333 emit_not(tl,tl);
2334 }
2335 if(s2h>=0) emit_not(s2h,th);
2336 else{
2337 emit_loadreg(rs2[i]|64,th);
2338 emit_not(th,th);
2339 }
2340 }
2341 else {
2342 emit_movimm(-1,tl);
2343 emit_movimm(-1,th);
2344 }
2345 }
2346 }
2347 }
2348 }
2349 else
2350 {
2351 // 32 bit
2352 if(tl>=0) {
2353 s1l=get_reg(i_regs->regmap,rs1[i]);
2354 s2l=get_reg(i_regs->regmap,rs2[i]);
2355 if(rs1[i]&&rs2[i]) {
2356 assert(s1l>=0);
2357 assert(s2l>=0);
2358 if(opcode2[i]==0x24) { // AND
2359 emit_and(s1l,s2l,tl);
2360 } else
2361 if(opcode2[i]==0x25) { // OR
2362 emit_or(s1l,s2l,tl);
2363 } else
2364 if(opcode2[i]==0x26) { // XOR
2365 emit_xor(s1l,s2l,tl);
2366 } else
2367 if(opcode2[i]==0x27) { // NOR
2368 emit_or(s1l,s2l,tl);
2369 emit_not(tl,tl);
2370 }
2371 }
2372 else
2373 {
2374 if(opcode2[i]==0x24) { // AND
2375 emit_zeroreg(tl);
2376 } else
2377 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2378 if(rs1[i]){
2379 if(s1l>=0) emit_mov(s1l,tl);
2380 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2381 }
2382 else
2383 if(rs2[i]){
2384 if(s2l>=0) emit_mov(s2l,tl);
2385 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2386 }
2387 else emit_zeroreg(tl);
2388 } else
2389 if(opcode2[i]==0x27) { // NOR
2390 if(rs1[i]){
2391 if(s1l>=0) emit_not(s1l,tl);
2392 else {
2393 emit_loadreg(rs1[i],tl);
2394 emit_not(tl,tl);
2395 }
2396 }
2397 else
2398 if(rs2[i]){
2399 if(s2l>=0) emit_not(s2l,tl);
2400 else {
2401 emit_loadreg(rs2[i],tl);
2402 emit_not(tl,tl);
2403 }
2404 }
2405 else emit_movimm(-1,tl);
2406 }
2407 }
2408 }
2409 }
2410 }
2411 }
2412}
2413
2414void imm16_assemble(int i,struct regstat *i_regs)
2415{
2416 if (opcode[i]==0x0f) { // LUI
2417 if(rt1[i]) {
2418 signed char t;
2419 t=get_reg(i_regs->regmap,rt1[i]);
2420 //assert(t>=0);
2421 if(t>=0) {
2422 if(!((i_regs->isconst>>t)&1))
2423 emit_movimm(imm[i]<<16,t);
2424 }
2425 }
2426 }
2427 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2428 if(rt1[i]) {
2429 signed char s,t;
2430 t=get_reg(i_regs->regmap,rt1[i]);
2431 s=get_reg(i_regs->regmap,rs1[i]);
2432 if(rs1[i]) {
2433 //assert(t>=0);
2434 //assert(s>=0);
2435 if(t>=0) {
2436 if(!((i_regs->isconst>>t)&1)) {
2437 if(s<0) {
2438 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2439 emit_addimm(t,imm[i],t);
2440 }else{
2441 if(!((i_regs->wasconst>>s)&1))
2442 emit_addimm(s,imm[i],t);
2443 else
2444 emit_movimm(constmap[i][s]+imm[i],t);
2445 }
2446 }
2447 }
2448 } else {
2449 if(t>=0) {
2450 if(!((i_regs->isconst>>t)&1))
2451 emit_movimm(imm[i],t);
2452 }
2453 }
2454 }
2455 }
2456 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2457 if(rt1[i]) {
2458 signed char sh,sl,th,tl;
2459 th=get_reg(i_regs->regmap,rt1[i]|64);
2460 tl=get_reg(i_regs->regmap,rt1[i]);
2461 sh=get_reg(i_regs->regmap,rs1[i]|64);
2462 sl=get_reg(i_regs->regmap,rs1[i]);
2463 if(tl>=0) {
2464 if(rs1[i]) {
2465 assert(sh>=0);
2466 assert(sl>=0);
2467 if(th>=0) {
2468 emit_addimm64_32(sh,sl,imm[i],th,tl);
2469 }
2470 else {
2471 emit_addimm(sl,imm[i],tl);
2472 }
2473 } else {
2474 emit_movimm(imm[i],tl);
2475 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2476 }
2477 }
2478 }
2479 }
2480 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2481 if(rt1[i]) {
2482 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2483 signed char sh,sl,t;
2484 t=get_reg(i_regs->regmap,rt1[i]);
2485 sh=get_reg(i_regs->regmap,rs1[i]|64);
2486 sl=get_reg(i_regs->regmap,rs1[i]);
2487 //assert(t>=0);
2488 if(t>=0) {
2489 if(rs1[i]>0) {
2490 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2491 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2492 if(opcode[i]==0x0a) { // SLTI
2493 if(sl<0) {
2494 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2495 emit_slti32(t,imm[i],t);
2496 }else{
2497 emit_slti32(sl,imm[i],t);
2498 }
2499 }
2500 else { // SLTIU
2501 if(sl<0) {
2502 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2503 emit_sltiu32(t,imm[i],t);
2504 }else{
2505 emit_sltiu32(sl,imm[i],t);
2506 }
2507 }
2508 }else{ // 64-bit
2509 assert(sl>=0);
2510 if(opcode[i]==0x0a) // SLTI
2511 emit_slti64_32(sh,sl,imm[i],t);
2512 else // SLTIU
2513 emit_sltiu64_32(sh,sl,imm[i],t);
2514 }
2515 }else{
2516 // SLTI(U) with r0 is just stupid,
2517 // nonetheless examples can be found
2518 if(opcode[i]==0x0a) // SLTI
2519 if(0<imm[i]) emit_movimm(1,t);
2520 else emit_zeroreg(t);
2521 else // SLTIU
2522 {
2523 if(imm[i]) emit_movimm(1,t);
2524 else emit_zeroreg(t);
2525 }
2526 }
2527 }
2528 }
2529 }
2530 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2531 if(rt1[i]) {
2532 signed char sh,sl,th,tl;
2533 th=get_reg(i_regs->regmap,rt1[i]|64);
2534 tl=get_reg(i_regs->regmap,rt1[i]);
2535 sh=get_reg(i_regs->regmap,rs1[i]|64);
2536 sl=get_reg(i_regs->regmap,rs1[i]);
2537 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2538 if(opcode[i]==0x0c) //ANDI
2539 {
2540 if(rs1[i]) {
2541 if(sl<0) {
2542 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2543 emit_andimm(tl,imm[i],tl);
2544 }else{
2545 if(!((i_regs->wasconst>>sl)&1))
2546 emit_andimm(sl,imm[i],tl);
2547 else
2548 emit_movimm(constmap[i][sl]&imm[i],tl);
2549 }
2550 }
2551 else
2552 emit_zeroreg(tl);
2553 if(th>=0) emit_zeroreg(th);
2554 }
2555 else
2556 {
2557 if(rs1[i]) {
2558 if(sl<0) {
2559 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2560 }
2561 if(th>=0) {
2562 if(sh<0) {
2563 emit_loadreg(rs1[i]|64,th);
2564 }else{
2565 emit_mov(sh,th);
2566 }
2567 }
2568 if(opcode[i]==0x0d) //ORI
2569 if(sl<0) {
2570 emit_orimm(tl,imm[i],tl);
2571 }else{
2572 if(!((i_regs->wasconst>>sl)&1))
2573 emit_orimm(sl,imm[i],tl);
2574 else
2575 emit_movimm(constmap[i][sl]|imm[i],tl);
2576 }
2577 if(opcode[i]==0x0e) //XORI
2578 if(sl<0) {
2579 emit_xorimm(tl,imm[i],tl);
2580 }else{
2581 if(!((i_regs->wasconst>>sl)&1))
2582 emit_xorimm(sl,imm[i],tl);
2583 else
2584 emit_movimm(constmap[i][sl]^imm[i],tl);
2585 }
2586 }
2587 else {
2588 emit_movimm(imm[i],tl);
2589 if(th>=0) emit_zeroreg(th);
2590 }
2591 }
2592 }
2593 }
2594 }
2595}
2596
2597void shiftimm_assemble(int i,struct regstat *i_regs)
2598{
2599 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2600 {
2601 if(rt1[i]) {
2602 signed char s,t;
2603 t=get_reg(i_regs->regmap,rt1[i]);
2604 s=get_reg(i_regs->regmap,rs1[i]);
2605 //assert(t>=0);
2606 if(t>=0){
2607 if(rs1[i]==0)
2608 {
2609 emit_zeroreg(t);
2610 }
2611 else
2612 {
2613 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2614 if(imm[i]) {
2615 if(opcode2[i]==0) // SLL
2616 {
2617 emit_shlimm(s<0?t:s,imm[i],t);
2618 }
2619 if(opcode2[i]==2) // SRL
2620 {
2621 emit_shrimm(s<0?t:s,imm[i],t);
2622 }
2623 if(opcode2[i]==3) // SRA
2624 {
2625 emit_sarimm(s<0?t:s,imm[i],t);
2626 }
2627 }else{
2628 // Shift by zero
2629 if(s>=0 && s!=t) emit_mov(s,t);
2630 }
2631 }
2632 }
2633 //emit_storereg(rt1[i],t); //DEBUG
2634 }
2635 }
2636 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2637 {
2638 if(rt1[i]) {
2639 signed char sh,sl,th,tl;
2640 th=get_reg(i_regs->regmap,rt1[i]|64);
2641 tl=get_reg(i_regs->regmap,rt1[i]);
2642 sh=get_reg(i_regs->regmap,rs1[i]|64);
2643 sl=get_reg(i_regs->regmap,rs1[i]);
2644 if(tl>=0) {
2645 if(rs1[i]==0)
2646 {
2647 emit_zeroreg(tl);
2648 if(th>=0) emit_zeroreg(th);
2649 }
2650 else
2651 {
2652 assert(sl>=0);
2653 assert(sh>=0);
2654 if(imm[i]) {
2655 if(opcode2[i]==0x38) // DSLL
2656 {
2657 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2658 emit_shlimm(sl,imm[i],tl);
2659 }
2660 if(opcode2[i]==0x3a) // DSRL
2661 {
2662 emit_shrdimm(sl,sh,imm[i],tl);
2663 if(th>=0) emit_shrimm(sh,imm[i],th);
2664 }
2665 if(opcode2[i]==0x3b) // DSRA
2666 {
2667 emit_shrdimm(sl,sh,imm[i],tl);
2668 if(th>=0) emit_sarimm(sh,imm[i],th);
2669 }
2670 }else{
2671 // Shift by zero
2672 if(sl!=tl) emit_mov(sl,tl);
2673 if(th>=0&&sh!=th) emit_mov(sh,th);
2674 }
2675 }
2676 }
2677 }
2678 }
2679 if(opcode2[i]==0x3c) // DSLL32
2680 {
2681 if(rt1[i]) {
2682 signed char sl,tl,th;
2683 tl=get_reg(i_regs->regmap,rt1[i]);
2684 th=get_reg(i_regs->regmap,rt1[i]|64);
2685 sl=get_reg(i_regs->regmap,rs1[i]);
2686 if(th>=0||tl>=0){
2687 assert(tl>=0);
2688 assert(th>=0);
2689 assert(sl>=0);
2690 emit_mov(sl,th);
2691 emit_zeroreg(tl);
2692 if(imm[i]>32)
2693 {
2694 emit_shlimm(th,imm[i]&31,th);
2695 }
2696 }
2697 }
2698 }
2699 if(opcode2[i]==0x3e) // DSRL32
2700 {
2701 if(rt1[i]) {
2702 signed char sh,tl,th;
2703 tl=get_reg(i_regs->regmap,rt1[i]);
2704 th=get_reg(i_regs->regmap,rt1[i]|64);
2705 sh=get_reg(i_regs->regmap,rs1[i]|64);
2706 if(tl>=0){
2707 assert(sh>=0);
2708 emit_mov(sh,tl);
2709 if(th>=0) emit_zeroreg(th);
2710 if(imm[i]>32)
2711 {
2712 emit_shrimm(tl,imm[i]&31,tl);
2713 }
2714 }
2715 }
2716 }
2717 if(opcode2[i]==0x3f) // DSRA32
2718 {
2719 if(rt1[i]) {
2720 signed char sh,tl;
2721 tl=get_reg(i_regs->regmap,rt1[i]);
2722 sh=get_reg(i_regs->regmap,rs1[i]|64);
2723 if(tl>=0){
2724 assert(sh>=0);
2725 emit_mov(sh,tl);
2726 if(imm[i]>32)
2727 {
2728 emit_sarimm(tl,imm[i]&31,tl);
2729 }
2730 }
2731 }
2732 }
2733}
2734
2735#ifndef shift_assemble
2736void shift_assemble(int i,struct regstat *i_regs)
2737{
2738 printf("Need shift_assemble for this architecture.\n");
2739 exit(1);
2740}
2741#endif
2742
2743void load_assemble(int i,struct regstat *i_regs)
2744{
2745 int s,th,tl,addr,map=-1;
2746 int offset;
2747 int jaddr=0;
5bf843dc 2748 int memtarget=0,c=0;
57871462 2749 u_int hr,reglist=0;
2750 th=get_reg(i_regs->regmap,rt1[i]|64);
2751 tl=get_reg(i_regs->regmap,rt1[i]);
2752 s=get_reg(i_regs->regmap,rs1[i]);
2753 offset=imm[i];
2754 for(hr=0;hr<HOST_REGS;hr++) {
2755 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2756 }
2757 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2758 if(s>=0) {
2759 c=(i_regs->wasconst>>s)&1;
4cb76aa4 2760 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 2761 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2762 }
57871462 2763 //printf("load_assemble: c=%d\n",c);
2764 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2765 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2766#ifdef PCSX
f18c0f46 2767 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2768 ||rt1[i]==0) {
5bf843dc 2769 // could be FIFO, must perform the read
f18c0f46 2770 // ||dummy read
5bf843dc 2771 assem_debug("(forced read)\n");
2772 tl=get_reg(i_regs->regmap,-1);
2773 assert(tl>=0);
5bf843dc 2774 }
f18c0f46 2775#endif
5bf843dc 2776 if(offset||s<0||c) addr=tl;
2777 else addr=s;
57871462 2778 if(tl>=0) {
2779 //assert(tl>=0);
2780 //assert(rt1[i]);
2781 reglist&=~(1<<tl);
2782 if(th>=0) reglist&=~(1<<th);
2783 if(!using_tlb) {
2784 if(!c) {
2785//#define R29_HACK 1
2786 #ifdef R29_HACK
2787 // Strmnnrmn's speed hack
4cb76aa4 2788 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 2789 #endif
2790 {
4cb76aa4 2791 emit_cmpimm(addr,RAM_SIZE);
57871462 2792 jaddr=(int)out;
2793 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2794 // Hint to branch predictor that the branch is unlikely to be taken
2795 if(rs1[i]>=28)
2796 emit_jno_unlikely(0);
2797 else
2798 #endif
2799 emit_jno(0);
2800 }
2801 }
2802 }else{ // using tlb
2803 int x=0;
2804 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2805 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2806 map=get_reg(i_regs->regmap,TLREG);
2807 assert(map>=0);
2808 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2809 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2810 }
2811 if (opcode[i]==0x20) { // LB
2812 if(!c||memtarget) {
2813 #ifdef HOST_IMM_ADDR32
2814 if(c)
2815 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2816 else
2817 #endif
2818 {
2819 //emit_xorimm(addr,3,tl);
2820 //gen_tlb_addr_r(tl,map);
2821 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2822 int x=0;
2002a1db 2823#ifdef BIG_ENDIAN_MIPS
57871462 2824 if(!c) emit_xorimm(addr,3,tl);
2825 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2826#else
2827 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2828 else if (tl!=addr) emit_mov(addr,tl);
2829#endif
57871462 2830 emit_movsbl_indexed_tlb(x,tl,map,tl);
2831 }
2832 if(jaddr)
2833 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2834 }
2835 else
2836 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2837 }
2838 if (opcode[i]==0x21) { // LH
2839 if(!c||memtarget) {
2840 #ifdef HOST_IMM_ADDR32
2841 if(c)
2842 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2843 else
2844 #endif
2845 {
2846 int x=0;
2002a1db 2847#ifdef BIG_ENDIAN_MIPS
57871462 2848 if(!c) emit_xorimm(addr,2,tl);
2849 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2850#else
2851 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2852 else if (tl!=addr) emit_mov(addr,tl);
2853#endif
57871462 2854 //#ifdef
2855 //emit_movswl_indexed_tlb(x,tl,map,tl);
2856 //else
2857 if(map>=0) {
2858 gen_tlb_addr_r(tl,map);
2859 emit_movswl_indexed(x,tl,tl);
2860 }else
2861 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2862 }
2863 if(jaddr)
2864 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2865 }
2866 else
2867 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2868 }
2869 if (opcode[i]==0x23) { // LW
2870 if(!c||memtarget) {
2871 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2872 #ifdef HOST_IMM_ADDR32
2873 if(c)
2874 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2875 else
2876 #endif
2877 emit_readword_indexed_tlb(0,addr,map,tl);
2878 if(jaddr)
2879 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2880 }
2881 else
2882 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2883 }
2884 if (opcode[i]==0x24) { // LBU
2885 if(!c||memtarget) {
2886 #ifdef HOST_IMM_ADDR32
2887 if(c)
2888 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2889 else
2890 #endif
2891 {
2892 //emit_xorimm(addr,3,tl);
2893 //gen_tlb_addr_r(tl,map);
2894 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2895 int x=0;
2002a1db 2896#ifdef BIG_ENDIAN_MIPS
57871462 2897 if(!c) emit_xorimm(addr,3,tl);
2898 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2899#else
2900 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2901 else if (tl!=addr) emit_mov(addr,tl);
2902#endif
57871462 2903 emit_movzbl_indexed_tlb(x,tl,map,tl);
2904 }
2905 if(jaddr)
2906 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2907 }
2908 else
2909 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2910 }
2911 if (opcode[i]==0x25) { // LHU
2912 if(!c||memtarget) {
2913 #ifdef HOST_IMM_ADDR32
2914 if(c)
2915 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2916 else
2917 #endif
2918 {
2919 int x=0;
2002a1db 2920#ifdef BIG_ENDIAN_MIPS
57871462 2921 if(!c) emit_xorimm(addr,2,tl);
2922 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2923#else
2924 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2925 else if (tl!=addr) emit_mov(addr,tl);
2926#endif
57871462 2927 //#ifdef
2928 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2929 //#else
2930 if(map>=0) {
2931 gen_tlb_addr_r(tl,map);
2932 emit_movzwl_indexed(x,tl,tl);
2933 }else
2934 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2935 if(jaddr)
2936 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2937 }
2938 }
2939 else
2940 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2941 }
2942 if (opcode[i]==0x27) { // LWU
2943 assert(th>=0);
2944 if(!c||memtarget) {
2945 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2946 #ifdef HOST_IMM_ADDR32
2947 if(c)
2948 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2949 else
2950 #endif
2951 emit_readword_indexed_tlb(0,addr,map,tl);
2952 if(jaddr)
2953 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2954 }
2955 else {
2956 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2957 }
2958 emit_zeroreg(th);
2959 }
2960 if (opcode[i]==0x37) { // LD
2961 if(!c||memtarget) {
2962 //gen_tlb_addr_r(tl,map);
2963 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2964 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2965 #ifdef HOST_IMM_ADDR32
2966 if(c)
2967 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2968 else
2969 #endif
2970 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2971 if(jaddr)
2972 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2973 }
2974 else
2975 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2976 }
2977 //emit_storereg(rt1[i],tl); // DEBUG
2978 }
2979 //if(opcode[i]==0x23)
2980 //if(opcode[i]==0x24)
2981 //if(opcode[i]==0x23||opcode[i]==0x24)
2982 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2983 {
2984 //emit_pusha();
2985 save_regs(0x100f);
2986 emit_readword((int)&last_count,ECX);
2987 #ifdef __i386__
2988 if(get_reg(i_regs->regmap,CCREG)<0)
2989 emit_loadreg(CCREG,HOST_CCREG);
2990 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2991 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2992 emit_writeword(HOST_CCREG,(int)&Count);
2993 #endif
2994 #ifdef __arm__
2995 if(get_reg(i_regs->regmap,CCREG)<0)
2996 emit_loadreg(CCREG,0);
2997 else
2998 emit_mov(HOST_CCREG,0);
2999 emit_add(0,ECX,0);
3000 emit_addimm(0,2*ccadj[i],0);
3001 emit_writeword(0,(int)&Count);
3002 #endif
3003 emit_call((int)memdebug);
3004 //emit_popa();
3005 restore_regs(0x100f);
3006 }/**/
3007}
3008
3009#ifndef loadlr_assemble
3010void loadlr_assemble(int i,struct regstat *i_regs)
3011{
3012 printf("Need loadlr_assemble for this architecture.\n");
3013 exit(1);
3014}
3015#endif
3016
3017void store_assemble(int i,struct regstat *i_regs)
3018{
3019 int s,th,tl,map=-1;
3020 int addr,temp;
3021 int offset;
3022 int jaddr=0,jaddr2,type;
666a299d 3023 int memtarget=0,c=0;
57871462 3024 int agr=AGEN1+(i&1);
3025 u_int hr,reglist=0;
3026 th=get_reg(i_regs->regmap,rs2[i]|64);
3027 tl=get_reg(i_regs->regmap,rs2[i]);
3028 s=get_reg(i_regs->regmap,rs1[i]);
3029 temp=get_reg(i_regs->regmap,agr);
3030 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3031 offset=imm[i];
3032 if(s>=0) {
3033 c=(i_regs->wasconst>>s)&1;
4cb76aa4 3034 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 3035 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3036 }
3037 assert(tl>=0);
3038 assert(temp>=0);
3039 for(hr=0;hr<HOST_REGS;hr++) {
3040 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3041 }
3042 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3043 if(offset||s<0||c) addr=temp;
3044 else addr=s;
3045 if(!using_tlb) {
3046 if(!c) {
3047 #ifdef R29_HACK
3048 // Strmnnrmn's speed hack
3049 memtarget=1;
4cb76aa4 3050 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3051 #endif
4cb76aa4 3052 emit_cmpimm(addr,RAM_SIZE);
57871462 3053 #ifdef DESTRUCTIVE_SHIFT
3054 if(s==addr) emit_mov(s,temp);
3055 #endif
3056 #ifdef R29_HACK
4cb76aa4 3057 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3058 #endif
3059 {
3060 jaddr=(int)out;
3061 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3062 // Hint to branch predictor that the branch is unlikely to be taken
3063 if(rs1[i]>=28)
3064 emit_jno_unlikely(0);
3065 else
3066 #endif
3067 emit_jno(0);
3068 }
3069 }
3070 }else{ // using tlb
3071 int x=0;
3072 if (opcode[i]==0x28) x=3; // SB
3073 if (opcode[i]==0x29) x=2; // SH
3074 map=get_reg(i_regs->regmap,TLREG);
3075 assert(map>=0);
3076 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3077 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3078 }
3079
3080 if (opcode[i]==0x28) { // SB
3081 if(!c||memtarget) {
3082 int x=0;
2002a1db 3083#ifdef BIG_ENDIAN_MIPS
57871462 3084 if(!c) emit_xorimm(addr,3,temp);
3085 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3086#else
3087 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3088 else if (addr!=temp) emit_mov(addr,temp);
3089#endif
57871462 3090 //gen_tlb_addr_w(temp,map);
3091 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3092 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3093 }
3094 type=STOREB_STUB;
3095 }
3096 if (opcode[i]==0x29) { // SH
3097 if(!c||memtarget) {
3098 int x=0;
2002a1db 3099#ifdef BIG_ENDIAN_MIPS
57871462 3100 if(!c) emit_xorimm(addr,2,temp);
3101 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3102#else
3103 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3104 else if (addr!=temp) emit_mov(addr,temp);
3105#endif
57871462 3106 //#ifdef
3107 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3108 //#else
3109 if(map>=0) {
3110 gen_tlb_addr_w(temp,map);
3111 emit_writehword_indexed(tl,x,temp);
3112 }else
3113 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3114 }
3115 type=STOREH_STUB;
3116 }
3117 if (opcode[i]==0x2B) { // SW
3118 if(!c||memtarget)
3119 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3120 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3121 type=STOREW_STUB;
3122 }
3123 if (opcode[i]==0x3F) { // SD
3124 if(!c||memtarget) {
3125 if(rs2[i]) {
3126 assert(th>=0);
3127 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3128 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3129 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3130 }else{
3131 // Store zero
3132 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3133 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3134 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3135 }
3136 }
3137 type=STORED_STUB;
3138 }
666a299d 3139 if(!using_tlb&&(!c||memtarget))
3140 // addr could be a temp, make sure it survives STORE*_STUB
3141 reglist|=1<<addr;
57871462 3142 if(jaddr) {
3143 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3144 } else if(!memtarget) {
3145 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3146 }
3147 if(!using_tlb) {
3148 if(!c||memtarget) {
3149 #ifdef DESTRUCTIVE_SHIFT
3150 // The x86 shift operation is 'destructive'; it overwrites the
3151 // source register, so we need to make a copy first and use that.
3152 addr=temp;
3153 #endif
3154 #if defined(HOST_IMM8)
3155 int ir=get_reg(i_regs->regmap,INVCP);
3156 assert(ir>=0);
3157 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3158 #else
3159 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3160 #endif
3161 jaddr2=(int)out;
3162 emit_jne(0);
3163 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3164 }
3165 }
3166 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3167 //if(opcode[i]==0x2B || opcode[i]==0x28)
3168 //if(opcode[i]==0x2B || opcode[i]==0x29)
3169 //if(opcode[i]==0x2B)
3170 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3171 {
3172 //emit_pusha();
3173 save_regs(0x100f);
3174 emit_readword((int)&last_count,ECX);
3175 #ifdef __i386__
3176 if(get_reg(i_regs->regmap,CCREG)<0)
3177 emit_loadreg(CCREG,HOST_CCREG);
3178 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3179 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3180 emit_writeword(HOST_CCREG,(int)&Count);
3181 #endif
3182 #ifdef __arm__
3183 if(get_reg(i_regs->regmap,CCREG)<0)
3184 emit_loadreg(CCREG,0);
3185 else
3186 emit_mov(HOST_CCREG,0);
3187 emit_add(0,ECX,0);
3188 emit_addimm(0,2*ccadj[i],0);
3189 emit_writeword(0,(int)&Count);
3190 #endif
3191 emit_call((int)memdebug);
3192 //emit_popa();
3193 restore_regs(0x100f);
3194 }/**/
3195}
3196
3197void storelr_assemble(int i,struct regstat *i_regs)
3198{
3199 int s,th,tl;
3200 int temp;
3201 int temp2;
3202 int offset;
3203 int jaddr=0,jaddr2;
3204 int case1,case2,case3;
3205 int done0,done1,done2;
3206 int memtarget,c=0;
fab5d06d 3207 int agr=AGEN1+(i&1);
57871462 3208 u_int hr,reglist=0;
3209 th=get_reg(i_regs->regmap,rs2[i]|64);
3210 tl=get_reg(i_regs->regmap,rs2[i]);
3211 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3212 temp=get_reg(i_regs->regmap,agr);
3213 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3214 offset=imm[i];
3215 if(s>=0) {
3216 c=(i_regs->isconst>>s)&1;
4cb76aa4 3217 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 3218 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3219 }
3220 assert(tl>=0);
3221 for(hr=0;hr<HOST_REGS;hr++) {
3222 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3223 }
3224 if(tl>=0) {
3225 assert(temp>=0);
3226 if(!using_tlb) {
3227 if(!c) {
4cb76aa4 3228 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
57871462 3229 if(!offset&&s!=temp) emit_mov(s,temp);
3230 jaddr=(int)out;
3231 emit_jno(0);
3232 }
3233 else
3234 {
3235 if(!memtarget||!rs1[i]) {
3236 jaddr=(int)out;
3237 emit_jmp(0);
3238 }
3239 }
3240 if((u_int)rdram!=0x80000000)
3241 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3242 }else{ // using tlb
3243 int map=get_reg(i_regs->regmap,TLREG);
3244 assert(map>=0);
3245 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3246 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3247 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3248 if(!jaddr&&!memtarget) {
3249 jaddr=(int)out;
3250 emit_jmp(0);
3251 }
3252 gen_tlb_addr_w(temp,map);
3253 }
3254
3255 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3256 temp2=get_reg(i_regs->regmap,FTEMP);
3257 if(!rs2[i]) temp2=th=tl;
3258 }
3259
2002a1db 3260#ifndef BIG_ENDIAN_MIPS
3261 emit_xorimm(temp,3,temp);
3262#endif
57871462 3263 emit_testimm(temp,2);
3264 case2=(int)out;
3265 emit_jne(0);
3266 emit_testimm(temp,1);
3267 case1=(int)out;
3268 emit_jne(0);
3269 // 0
3270 if (opcode[i]==0x2A) { // SWL
3271 emit_writeword_indexed(tl,0,temp);
3272 }
3273 if (opcode[i]==0x2E) { // SWR
3274 emit_writebyte_indexed(tl,3,temp);
3275 }
3276 if (opcode[i]==0x2C) { // SDL
3277 emit_writeword_indexed(th,0,temp);
3278 if(rs2[i]) emit_mov(tl,temp2);
3279 }
3280 if (opcode[i]==0x2D) { // SDR
3281 emit_writebyte_indexed(tl,3,temp);
3282 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3283 }
3284 done0=(int)out;
3285 emit_jmp(0);
3286 // 1
3287 set_jump_target(case1,(int)out);
3288 if (opcode[i]==0x2A) { // SWL
3289 // Write 3 msb into three least significant bytes
3290 if(rs2[i]) emit_rorimm(tl,8,tl);
3291 emit_writehword_indexed(tl,-1,temp);
3292 if(rs2[i]) emit_rorimm(tl,16,tl);
3293 emit_writebyte_indexed(tl,1,temp);
3294 if(rs2[i]) emit_rorimm(tl,8,tl);
3295 }
3296 if (opcode[i]==0x2E) { // SWR
3297 // Write two lsb into two most significant bytes
3298 emit_writehword_indexed(tl,1,temp);
3299 }
3300 if (opcode[i]==0x2C) { // SDL
3301 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3302 // Write 3 msb into three least significant bytes
3303 if(rs2[i]) emit_rorimm(th,8,th);
3304 emit_writehword_indexed(th,-1,temp);
3305 if(rs2[i]) emit_rorimm(th,16,th);
3306 emit_writebyte_indexed(th,1,temp);
3307 if(rs2[i]) emit_rorimm(th,8,th);
3308 }
3309 if (opcode[i]==0x2D) { // SDR
3310 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3311 // Write two lsb into two most significant bytes
3312 emit_writehword_indexed(tl,1,temp);
3313 }
3314 done1=(int)out;
3315 emit_jmp(0);
3316 // 2
3317 set_jump_target(case2,(int)out);
3318 emit_testimm(temp,1);
3319 case3=(int)out;
3320 emit_jne(0);
3321 if (opcode[i]==0x2A) { // SWL
3322 // Write two msb into two least significant bytes
3323 if(rs2[i]) emit_rorimm(tl,16,tl);
3324 emit_writehword_indexed(tl,-2,temp);
3325 if(rs2[i]) emit_rorimm(tl,16,tl);
3326 }
3327 if (opcode[i]==0x2E) { // SWR
3328 // Write 3 lsb into three most significant bytes
3329 emit_writebyte_indexed(tl,-1,temp);
3330 if(rs2[i]) emit_rorimm(tl,8,tl);
3331 emit_writehword_indexed(tl,0,temp);
3332 if(rs2[i]) emit_rorimm(tl,24,tl);
3333 }
3334 if (opcode[i]==0x2C) { // SDL
3335 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3336 // Write two msb into two least significant bytes
3337 if(rs2[i]) emit_rorimm(th,16,th);
3338 emit_writehword_indexed(th,-2,temp);
3339 if(rs2[i]) emit_rorimm(th,16,th);
3340 }
3341 if (opcode[i]==0x2D) { // SDR
3342 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3343 // Write 3 lsb into three most significant bytes
3344 emit_writebyte_indexed(tl,-1,temp);
3345 if(rs2[i]) emit_rorimm(tl,8,tl);
3346 emit_writehword_indexed(tl,0,temp);
3347 if(rs2[i]) emit_rorimm(tl,24,tl);
3348 }
3349 done2=(int)out;
3350 emit_jmp(0);
3351 // 3
3352 set_jump_target(case3,(int)out);
3353 if (opcode[i]==0x2A) { // SWL
3354 // Write msb into least significant byte
3355 if(rs2[i]) emit_rorimm(tl,24,tl);
3356 emit_writebyte_indexed(tl,-3,temp);
3357 if(rs2[i]) emit_rorimm(tl,8,tl);
3358 }
3359 if (opcode[i]==0x2E) { // SWR
3360 // Write entire word
3361 emit_writeword_indexed(tl,-3,temp);
3362 }
3363 if (opcode[i]==0x2C) { // SDL
3364 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3365 // Write msb into least significant byte
3366 if(rs2[i]) emit_rorimm(th,24,th);
3367 emit_writebyte_indexed(th,-3,temp);
3368 if(rs2[i]) emit_rorimm(th,8,th);
3369 }
3370 if (opcode[i]==0x2D) { // SDR
3371 if(rs2[i]) emit_mov(th,temp2);
3372 // Write entire word
3373 emit_writeword_indexed(tl,-3,temp);
3374 }
3375 set_jump_target(done0,(int)out);
3376 set_jump_target(done1,(int)out);
3377 set_jump_target(done2,(int)out);
3378 if (opcode[i]==0x2C) { // SDL
3379 emit_testimm(temp,4);
3380 done0=(int)out;
3381 emit_jne(0);
3382 emit_andimm(temp,~3,temp);
3383 emit_writeword_indexed(temp2,4,temp);
3384 set_jump_target(done0,(int)out);
3385 }
3386 if (opcode[i]==0x2D) { // SDR
3387 emit_testimm(temp,4);
3388 done0=(int)out;
3389 emit_jeq(0);
3390 emit_andimm(temp,~3,temp);
3391 emit_writeword_indexed(temp2,-4,temp);
3392 set_jump_target(done0,(int)out);
3393 }
3394 if(!c||!memtarget)
b7918751 3395 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3396 }
3397 if(!using_tlb) {
3398 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3399 #if defined(HOST_IMM8)
3400 int ir=get_reg(i_regs->regmap,INVCP);
3401 assert(ir>=0);
3402 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3403 #else
3404 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3405 #endif
3406 jaddr2=(int)out;
3407 emit_jne(0);
3408 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3409 }
3410 /*
3411 emit_pusha();
3412 //save_regs(0x100f);
3413 emit_readword((int)&last_count,ECX);
3414 if(get_reg(i_regs->regmap,CCREG)<0)
3415 emit_loadreg(CCREG,HOST_CCREG);
3416 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3417 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3418 emit_writeword(HOST_CCREG,(int)&Count);
3419 emit_call((int)memdebug);
3420 emit_popa();