drc: merge Ari64's patch: 11_reduce_invstub_memory_usage
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
3d624f89 25#include "emu_if.h" //emulator interface
57871462 26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
e1190b87 87 char ooo[MAXBLOCK];
57871462 88 uint64_t unneeded_reg[MAXBLOCK];
89 uint64_t unneeded_reg_upper[MAXBLOCK];
90 uint64_t branch_unneeded_reg[MAXBLOCK];
91 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92 uint64_t p32[MAXBLOCK];
93 uint64_t pr32[MAXBLOCK];
94 signed char regmap_pre[MAXBLOCK][HOST_REGS];
95 signed char regmap[MAXBLOCK][HOST_REGS];
96 signed char regmap_entry[MAXBLOCK][HOST_REGS];
97 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 98 struct regstat regs[MAXBLOCK];
99 struct regstat branch_regs[MAXBLOCK];
e1190b87 100 signed char minimum_free_regs[MAXBLOCK];
57871462 101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
b9b61529 138#define FTEMP 38 // FPU/LDL/LDR temporary register
57871462 139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
7139f3c8 178#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 179#define COP2 27 // Coprocessor 2 move
180#define C2LS 28 // Coprocessor 2 load/store
181#define C2OP 29 // Coprocessor 2 operation
1e973cb0 182#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 183
184 /* stubs */
185#define CC_STUB 1
186#define FP_STUB 2
187#define LOADB_STUB 3
188#define LOADH_STUB 4
189#define LOADW_STUB 5
190#define LOADD_STUB 6
191#define LOADBU_STUB 7
192#define LOADHU_STUB 8
193#define STOREB_STUB 9
194#define STOREH_STUB 10
195#define STOREW_STUB 11
196#define STORED_STUB 12
197#define STORELR_STUB 13
198#define INVCODE_STUB 14
199
200 /* branch codes */
201#define TAKEN 1
202#define NOTTAKEN 2
203#define NULLDS 3
204
205// asm linkage
206int new_recompile_block(int addr);
207void *get_addr_ht(u_int vaddr);
208void invalidate_block(u_int block);
209void invalidate_addr(u_int addr);
210void remove_hash(int vaddr);
211void jump_vaddr();
212void dyna_linker();
213void dyna_linker_ds();
214void verify_code();
215void verify_code_vm();
216void verify_code_ds();
217void cc_interrupt();
218void fp_exception();
219void fp_exception_ds();
220void jump_syscall();
7139f3c8 221void jump_syscall_hle();
57871462 222void jump_eret();
7139f3c8 223void jump_hlecall();
1e973cb0 224void jump_intcall();
7139f3c8 225void new_dyna_leave();
57871462 226
227// TLB
228void TLBWI_new();
229void TLBWR_new();
230void read_nomem_new();
231void read_nomemb_new();
232void read_nomemh_new();
233void read_nomemd_new();
234void write_nomem_new();
235void write_nomemb_new();
236void write_nomemh_new();
237void write_nomemd_new();
238void write_rdram_new();
239void write_rdramb_new();
240void write_rdramh_new();
241void write_rdramd_new();
242extern u_int memory_map[1048576];
243
244// Needed by assembler
245void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248void load_all_regs(signed char i_regmap[]);
249void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250void load_regs_entry(int t);
251void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253int tracedebug=0;
254
255//#define DEBUG_CYCLE_COUNT 1
256
257void nullf() {}
258//#define assem_debug printf
259//#define inv_debug printf
260#define assem_debug nullf
261#define inv_debug nullf
262
94d23bb9 263static void tlb_hacks()
57871462 264{
94d23bb9 265#ifndef DISABLE_TLB
57871462 266 // Goldeneye hack
267 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268 {
269 u_int addr;
270 int n;
271 switch (ROM_HEADER->Country_code&0xFF)
272 {
273 case 0x45: // U
274 addr=0x34b30;
275 break;
276 case 0x4A: // J
277 addr=0x34b70;
278 break;
279 case 0x50: // E
280 addr=0x329f0;
281 break;
282 default:
283 // Unknown country code
284 addr=0;
285 break;
286 }
287 u_int rom_addr=(u_int)rom;
288 #ifdef ROM_COPY
289 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290 // in the lower 4G of memory to use this hack. Copy it if necessary.
291 if((void *)rom>(void *)0xffffffff) {
292 munmap(ROM_COPY, 67108864);
293 if(mmap(ROM_COPY, 12582912,
294 PROT_READ | PROT_WRITE,
295 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296 -1, 0) <= 0) {printf("mmap() failed\n");}
297 memcpy(ROM_COPY,rom,12582912);
298 rom_addr=(u_int)ROM_COPY;
299 }
300 #endif
301 if(addr) {
302 for(n=0x7F000;n<0x80000;n++) {
303 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304 }
305 }
306 }
94d23bb9 307#endif
57871462 308}
309
94d23bb9 310static u_int get_page(u_int vaddr)
57871462 311{
0ce47d46 312#ifndef PCSX
57871462 313 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 314#else
315 u_int page=vaddr&~0xe0000000;
316 if (page < 0x1000000)
317 page &= ~0x0e00000; // RAM mirrors
318 page>>=12;
319#endif
94d23bb9 320#ifndef DISABLE_TLB
57871462 321 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 322#endif
57871462 323 if(page>2048) page=2048+(page&2047);
94d23bb9 324 return page;
325}
326
327static u_int get_vpage(u_int vaddr)
328{
329 u_int vpage=(vaddr^0x80000000)>>12;
330#ifndef DISABLE_TLB
57871462 331 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 332#endif
57871462 333 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 334 return vpage;
335}
336
337// Get address from virtual address
338// This is called from the recompiled JR/JALR instructions
339void *get_addr(u_int vaddr)
340{
341 u_int page=get_page(vaddr);
342 u_int vpage=get_vpage(vaddr);
57871462 343 struct ll_entry *head;
344 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
345 head=jump_in[page];
346 while(head!=NULL) {
347 if(head->vaddr==vaddr&&head->reg32==0) {
348 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
349 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350 ht_bin[3]=ht_bin[1];
351 ht_bin[2]=ht_bin[0];
352 ht_bin[1]=(int)head->addr;
353 ht_bin[0]=vaddr;
354 return head->addr;
355 }
356 head=head->next;
357 }
358 head=jump_dirty[vpage];
359 while(head!=NULL) {
360 if(head->vaddr==vaddr&&head->reg32==0) {
361 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
362 // Don't restore blocks which are about to expire from the cache
363 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
364 if(verify_dirty(head->addr)) {
365 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
366 invalid_code[vaddr>>12]=0;
367 memory_map[vaddr>>12]|=0x40000000;
368 if(vpage<2048) {
94d23bb9 369#ifndef DISABLE_TLB
57871462 370 if(tlb_LUT_r[vaddr>>12]) {
371 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
372 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
373 }
94d23bb9 374#endif
57871462 375 restore_candidate[vpage>>3]|=1<<(vpage&7);
376 }
377 else restore_candidate[page>>3]|=1<<(page&7);
378 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
379 if(ht_bin[0]==vaddr) {
380 ht_bin[1]=(int)head->addr; // Replace existing entry
381 }
382 else
383 {
384 ht_bin[3]=ht_bin[1];
385 ht_bin[2]=ht_bin[0];
386 ht_bin[1]=(int)head->addr;
387 ht_bin[0]=vaddr;
388 }
389 return head->addr;
390 }
391 }
392 head=head->next;
393 }
394 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
395 int r=new_recompile_block(vaddr);
396 if(r==0) return get_addr(vaddr);
397 // Execute in unmapped page, generate pagefault execption
398 Status|=2;
399 Cause=(vaddr<<31)|0x8;
400 EPC=(vaddr&1)?vaddr-5:vaddr;
401 BadVAddr=(vaddr&~1);
402 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
403 EntryHi=BadVAddr&0xFFFFE000;
404 return get_addr_ht(0x80000000);
405}
406// Look up address in hash table first
407void *get_addr_ht(u_int vaddr)
408{
409 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
410 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
413 return get_addr(vaddr);
414}
415
416void *get_addr_32(u_int vaddr,u_int flags)
417{
7139f3c8 418#ifdef FORCE32
419 return get_addr(vaddr);
560e4a12 420#else
57871462 421 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
422 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 425 u_int page=get_page(vaddr);
426 u_int vpage=get_vpage(vaddr);
57871462 427 struct ll_entry *head;
428 head=jump_in[page];
429 while(head!=NULL) {
430 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
431 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
432 if(head->reg32==0) {
433 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434 if(ht_bin[0]==-1) {
435 ht_bin[1]=(int)head->addr;
436 ht_bin[0]=vaddr;
437 }else if(ht_bin[2]==-1) {
438 ht_bin[3]=(int)head->addr;
439 ht_bin[2]=vaddr;
440 }
441 //ht_bin[3]=ht_bin[1];
442 //ht_bin[2]=ht_bin[0];
443 //ht_bin[1]=(int)head->addr;
444 //ht_bin[0]=vaddr;
445 }
446 return head->addr;
447 }
448 head=head->next;
449 }
450 head=jump_dirty[vpage];
451 while(head!=NULL) {
452 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
454 // Don't restore blocks which are about to expire from the cache
455 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
456 if(verify_dirty(head->addr)) {
457 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
458 invalid_code[vaddr>>12]=0;
459 memory_map[vaddr>>12]|=0x40000000;
460 if(vpage<2048) {
94d23bb9 461#ifndef DISABLE_TLB
57871462 462 if(tlb_LUT_r[vaddr>>12]) {
463 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
464 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
465 }
94d23bb9 466#endif
57871462 467 restore_candidate[vpage>>3]|=1<<(vpage&7);
468 }
469 else restore_candidate[page>>3]|=1<<(page&7);
470 if(head->reg32==0) {
471 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472 if(ht_bin[0]==-1) {
473 ht_bin[1]=(int)head->addr;
474 ht_bin[0]=vaddr;
475 }else if(ht_bin[2]==-1) {
476 ht_bin[3]=(int)head->addr;
477 ht_bin[2]=vaddr;
478 }
479 //ht_bin[3]=ht_bin[1];
480 //ht_bin[2]=ht_bin[0];
481 //ht_bin[1]=(int)head->addr;
482 //ht_bin[0]=vaddr;
483 }
484 return head->addr;
485 }
486 }
487 head=head->next;
488 }
489 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
490 int r=new_recompile_block(vaddr);
491 if(r==0) return get_addr(vaddr);
492 // Execute in unmapped page, generate pagefault execption
493 Status|=2;
494 Cause=(vaddr<<31)|0x8;
495 EPC=(vaddr&1)?vaddr-5:vaddr;
496 BadVAddr=(vaddr&~1);
497 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
498 EntryHi=BadVAddr&0xFFFFE000;
499 return get_addr_ht(0x80000000);
560e4a12 500#endif
57871462 501}
502
503void clear_all_regs(signed char regmap[])
504{
505 int hr;
506 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
507}
508
509signed char get_reg(signed char regmap[],int r)
510{
511 int hr;
512 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
513 return -1;
514}
515
516// Find a register that is available for two consecutive cycles
517signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
518{
519 int hr;
520 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
521 return -1;
522}
523
524int count_free_regs(signed char regmap[])
525{
526 int count=0;
527 int hr;
528 for(hr=0;hr<HOST_REGS;hr++)
529 {
530 if(hr!=EXCLUDE_REG) {
531 if(regmap[hr]<0) count++;
532 }
533 }
534 return count;
535}
536
537void dirty_reg(struct regstat *cur,signed char reg)
538{
539 int hr;
540 if(!reg) return;
541 for (hr=0;hr<HOST_REGS;hr++) {
542 if((cur->regmap[hr]&63)==reg) {
543 cur->dirty|=1<<hr;
544 }
545 }
546}
547
548// If we dirty the lower half of a 64 bit register which is now being
549// sign-extended, we need to dump the upper half.
550// Note: Do this only after completion of the instruction, because
551// some instructions may need to read the full 64-bit value even if
552// overwriting it (eg SLTI, DSRA32).
553static void flush_dirty_uppers(struct regstat *cur)
554{
555 int hr,reg;
556 for (hr=0;hr<HOST_REGS;hr++) {
557 if((cur->dirty>>hr)&1) {
558 reg=cur->regmap[hr];
559 if(reg>=64)
560 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
561 }
562 }
563}
564
565void set_const(struct regstat *cur,signed char reg,uint64_t value)
566{
567 int hr;
568 if(!reg) return;
569 for (hr=0;hr<HOST_REGS;hr++) {
570 if(cur->regmap[hr]==reg) {
571 cur->isconst|=1<<hr;
572 cur->constmap[hr]=value;
573 }
574 else if((cur->regmap[hr]^64)==reg) {
575 cur->isconst|=1<<hr;
576 cur->constmap[hr]=value>>32;
577 }
578 }
579}
580
581void clear_const(struct regstat *cur,signed char reg)
582{
583 int hr;
584 if(!reg) return;
585 for (hr=0;hr<HOST_REGS;hr++) {
586 if((cur->regmap[hr]&63)==reg) {
587 cur->isconst&=~(1<<hr);
588 }
589 }
590}
591
592int is_const(struct regstat *cur,signed char reg)
593{
594 int hr;
595 if(!reg) return 1;
596 for (hr=0;hr<HOST_REGS;hr++) {
597 if((cur->regmap[hr]&63)==reg) {
598 return (cur->isconst>>hr)&1;
599 }
600 }
601 return 0;
602}
603uint64_t get_const(struct regstat *cur,signed char reg)
604{
605 int hr;
606 if(!reg) return 0;
607 for (hr=0;hr<HOST_REGS;hr++) {
608 if(cur->regmap[hr]==reg) {
609 return cur->constmap[hr];
610 }
611 }
612 printf("Unknown constant in r%d\n",reg);
613 exit(1);
614}
615
616// Least soon needed registers
617// Look at the next ten instructions and see which registers
618// will be used. Try not to reallocate these.
619void lsn(u_char hsn[], int i, int *preferred_reg)
620{
621 int j;
622 int b=-1;
623 for(j=0;j<9;j++)
624 {
625 if(i+j>=slen) {
626 j=slen-i-1;
627 break;
628 }
629 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
630 {
631 // Don't go past an unconditonal jump
632 j++;
633 break;
634 }
635 }
636 for(;j>=0;j--)
637 {
638 if(rs1[i+j]) hsn[rs1[i+j]]=j;
639 if(rs2[i+j]) hsn[rs2[i+j]]=j;
640 if(rt1[i+j]) hsn[rt1[i+j]]=j;
641 if(rt2[i+j]) hsn[rt2[i+j]]=j;
642 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
643 // Stores can allocate zero
644 hsn[rs1[i+j]]=j;
645 hsn[rs2[i+j]]=j;
646 }
647 // On some architectures stores need invc_ptr
648 #if defined(HOST_IMM8)
b9b61529 649 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 650 hsn[INVCP]=j;
651 }
652 #endif
653 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
654 {
655 hsn[CCREG]=j;
656 b=j;
657 }
658 }
659 if(b>=0)
660 {
661 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
662 {
663 // Follow first branch
664 int t=(ba[i+b]-start)>>2;
665 j=7-b;if(t+j>=slen) j=slen-t-1;
666 for(;j>=0;j--)
667 {
668 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
669 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
670 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
671 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
672 }
673 }
674 // TODO: preferred register based on backward branch
675 }
676 // Delay slot should preferably not overwrite branch conditions or cycle count
677 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
678 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
679 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
680 hsn[CCREG]=1;
681 // ...or hash tables
682 hsn[RHASH]=1;
683 hsn[RHTBL]=1;
684 }
685 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 686 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 687 hsn[FTEMP]=0;
688 }
689 // Load L/R also uses FTEMP as a temporary register
690 if(itype[i]==LOADLR) {
691 hsn[FTEMP]=0;
692 }
b7918751 693 // Also SWL/SWR/SDL/SDR
694 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 695 hsn[FTEMP]=0;
696 }
697 // Don't remove the TLB registers either
b9b61529 698 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 699 hsn[TLREG]=0;
700 }
701 // Don't remove the miniht registers
702 if(itype[i]==UJUMP||itype[i]==RJUMP)
703 {
704 hsn[RHASH]=0;
705 hsn[RHTBL]=0;
706 }
707}
708
709// We only want to allocate registers if we're going to use them again soon
710int needed_again(int r, int i)
711{
712 int j;
713 int b=-1;
714 int rn=10;
715 int hr;
716 u_char hsn[MAXREG+1];
717 int preferred_reg;
718
719 memset(hsn,10,sizeof(hsn));
720 lsn(hsn,i,&preferred_reg);
721
722 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
723 {
724 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
725 return 0; // Don't need any registers if exiting the block
726 }
727 for(j=0;j<9;j++)
728 {
729 if(i+j>=slen) {
730 j=slen-i-1;
731 break;
732 }
733 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
734 {
735 // Don't go past an unconditonal jump
736 j++;
737 break;
738 }
1e973cb0 739 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 740 {
741 break;
742 }
743 }
744 for(;j>=1;j--)
745 {
746 if(rs1[i+j]==r) rn=j;
747 if(rs2[i+j]==r) rn=j;
748 if((unneeded_reg[i+j]>>r)&1) rn=10;
749 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
750 {
751 b=j;
752 }
753 }
754 /*
755 if(b>=0)
756 {
757 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
758 {
759 // Follow first branch
760 int o=rn;
761 int t=(ba[i+b]-start)>>2;
762 j=7-b;if(t+j>=slen) j=slen-t-1;
763 for(;j>=0;j--)
764 {
765 if(!((unneeded_reg[t+j]>>r)&1)) {
766 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
767 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
768 }
769 else rn=o;
770 }
771 }
772 }*/
773 for(hr=0;hr<HOST_REGS;hr++) {
774 if(hr!=EXCLUDE_REG) {
775 if(rn<hsn[hr]) return 1;
776 }
777 }
778 return 0;
779}
780
781// Try to match register allocations at the end of a loop with those
782// at the beginning
783int loop_reg(int i, int r, int hr)
784{
785 int j,k;
786 for(j=0;j<9;j++)
787 {
788 if(i+j>=slen) {
789 j=slen-i-1;
790 break;
791 }
792 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
793 {
794 // Don't go past an unconditonal jump
795 j++;
796 break;
797 }
798 }
799 k=0;
800 if(i>0){
801 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
802 k--;
803 }
804 for(;k<j;k++)
805 {
806 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
807 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
808 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
809 {
810 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
811 {
812 int t=(ba[i+k]-start)>>2;
813 int reg=get_reg(regs[t].regmap_entry,r);
814 if(reg>=0) return reg;
815 //reg=get_reg(regs[t+1].regmap_entry,r);
816 //if(reg>=0) return reg;
817 }
818 }
819 }
820 return hr;
821}
822
823
824// Allocate every register, preserving source/target regs
825void alloc_all(struct regstat *cur,int i)
826{
827 int hr;
828
829 for(hr=0;hr<HOST_REGS;hr++) {
830 if(hr!=EXCLUDE_REG) {
831 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
832 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
833 {
834 cur->regmap[hr]=-1;
835 cur->dirty&=~(1<<hr);
836 }
837 // Don't need zeros
838 if((cur->regmap[hr]&63)==0)
839 {
840 cur->regmap[hr]=-1;
841 cur->dirty&=~(1<<hr);
842 }
843 }
844 }
845}
846
847
848void div64(int64_t dividend,int64_t divisor)
849{
850 lo=dividend/divisor;
851 hi=dividend%divisor;
852 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
853 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854}
855void divu64(uint64_t dividend,uint64_t divisor)
856{
857 lo=dividend/divisor;
858 hi=dividend%divisor;
859 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
860 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
861}
862
863void mult64(uint64_t m1,uint64_t m2)
864{
865 unsigned long long int op1, op2, op3, op4;
866 unsigned long long int result1, result2, result3, result4;
867 unsigned long long int temp1, temp2, temp3, temp4;
868 int sign = 0;
869
870 if (m1 < 0)
871 {
872 op2 = -m1;
873 sign = 1 - sign;
874 }
875 else op2 = m1;
876 if (m2 < 0)
877 {
878 op4 = -m2;
879 sign = 1 - sign;
880 }
881 else op4 = m2;
882
883 op1 = op2 & 0xFFFFFFFF;
884 op2 = (op2 >> 32) & 0xFFFFFFFF;
885 op3 = op4 & 0xFFFFFFFF;
886 op4 = (op4 >> 32) & 0xFFFFFFFF;
887
888 temp1 = op1 * op3;
889 temp2 = (temp1 >> 32) + op1 * op4;
890 temp3 = op2 * op3;
891 temp4 = (temp3 >> 32) + op2 * op4;
892
893 result1 = temp1 & 0xFFFFFFFF;
894 result2 = temp2 + (temp3 & 0xFFFFFFFF);
895 result3 = (result2 >> 32) + temp4;
896 result4 = (result3 >> 32);
897
898 lo = result1 | (result2 << 32);
899 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900 if (sign)
901 {
902 hi = ~hi;
903 if (!lo) hi++;
904 else lo = ~lo + 1;
905 }
906}
907
908void multu64(uint64_t m1,uint64_t m2)
909{
910 unsigned long long int op1, op2, op3, op4;
911 unsigned long long int result1, result2, result3, result4;
912 unsigned long long int temp1, temp2, temp3, temp4;
913
914 op1 = m1 & 0xFFFFFFFF;
915 op2 = (m1 >> 32) & 0xFFFFFFFF;
916 op3 = m2 & 0xFFFFFFFF;
917 op4 = (m2 >> 32) & 0xFFFFFFFF;
918
919 temp1 = op1 * op3;
920 temp2 = (temp1 >> 32) + op1 * op4;
921 temp3 = op2 * op3;
922 temp4 = (temp3 >> 32) + op2 * op4;
923
924 result1 = temp1 & 0xFFFFFFFF;
925 result2 = temp2 + (temp3 & 0xFFFFFFFF);
926 result3 = (result2 >> 32) + temp4;
927 result4 = (result3 >> 32);
928
929 lo = result1 | (result2 << 32);
930 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
931
932 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
933 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
934}
935
936uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937{
938 if(bits) {
939 original<<=64-bits;
940 original>>=64-bits;
941 loaded<<=bits;
942 original|=loaded;
943 }
944 else original=loaded;
945 return original;
946}
947uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948{
949 if(bits^56) {
950 original>>=64-(bits^56);
951 original<<=64-(bits^56);
952 loaded>>=bits^56;
953 original|=loaded;
954 }
955 else original=loaded;
956 return original;
957}
958
959#ifdef __i386__
960#include "assem_x86.c"
961#endif
962#ifdef __x86_64__
963#include "assem_x64.c"
964#endif
965#ifdef __arm__
966#include "assem_arm.c"
967#endif
968
969// Add virtual address mapping to linked list
970void ll_add(struct ll_entry **head,int vaddr,void *addr)
971{
972 struct ll_entry *new_entry;
973 new_entry=malloc(sizeof(struct ll_entry));
974 assert(new_entry!=NULL);
975 new_entry->vaddr=vaddr;
976 new_entry->reg32=0;
977 new_entry->addr=addr;
978 new_entry->next=*head;
979 *head=new_entry;
980}
981
982// Add virtual address mapping for 32-bit compiled block
983void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
984{
7139f3c8 985 ll_add(head,vaddr,addr);
986#ifndef FORCE32
987 (*head)->reg32=reg32;
988#endif
57871462 989}
990
991// Check if an address is already compiled
992// but don't return addresses which are about to expire from the cache
993void *check_addr(u_int vaddr)
994{
995 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
996 if(ht_bin[0]==vaddr) {
997 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
998 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
999 }
1000 if(ht_bin[2]==vaddr) {
1001 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1003 }
94d23bb9 1004 u_int page=get_page(vaddr);
57871462 1005 struct ll_entry *head;
1006 head=jump_in[page];
1007 while(head!=NULL) {
1008 if(head->vaddr==vaddr&&head->reg32==0) {
1009 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1010 // Update existing entry with current address
1011 if(ht_bin[0]==vaddr) {
1012 ht_bin[1]=(int)head->addr;
1013 return head->addr;
1014 }
1015 if(ht_bin[2]==vaddr) {
1016 ht_bin[3]=(int)head->addr;
1017 return head->addr;
1018 }
1019 // Insert into hash table with low priority.
1020 // Don't evict existing entries, as they are probably
1021 // addresses that are being accessed frequently.
1022 if(ht_bin[0]==-1) {
1023 ht_bin[1]=(int)head->addr;
1024 ht_bin[0]=vaddr;
1025 }else if(ht_bin[2]==-1) {
1026 ht_bin[3]=(int)head->addr;
1027 ht_bin[2]=vaddr;
1028 }
1029 return head->addr;
1030 }
1031 }
1032 head=head->next;
1033 }
1034 return 0;
1035}
1036
1037void remove_hash(int vaddr)
1038{
1039 //printf("remove hash: %x\n",vaddr);
1040 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1041 if(ht_bin[2]==vaddr) {
1042 ht_bin[2]=ht_bin[3]=-1;
1043 }
1044 if(ht_bin[0]==vaddr) {
1045 ht_bin[0]=ht_bin[2];
1046 ht_bin[1]=ht_bin[3];
1047 ht_bin[2]=ht_bin[3]=-1;
1048 }
1049}
1050
1051void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1052{
1053 struct ll_entry *next;
1054 while(*head) {
1055 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1056 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1057 {
1058 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1059 remove_hash((*head)->vaddr);
1060 next=(*head)->next;
1061 free(*head);
1062 *head=next;
1063 }
1064 else
1065 {
1066 head=&((*head)->next);
1067 }
1068 }
1069}
1070
1071// Remove all entries from linked list
1072void ll_clear(struct ll_entry **head)
1073{
1074 struct ll_entry *cur;
1075 struct ll_entry *next;
1076 if(cur=*head) {
1077 *head=0;
1078 while(cur) {
1079 next=cur->next;
1080 free(cur);
1081 cur=next;
1082 }
1083 }
1084}
1085
1086// Dereference the pointers and remove if it matches
1087void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1088{
1089 while(head) {
1090 int ptr=get_pointer(head->addr);
1091 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1092 if(((ptr>>shift)==(addr>>shift)) ||
1093 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1094 {
5088bb70 1095 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1096 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1097 #ifdef __arm__
1098 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1099 #endif
57871462 1100 }
1101 head=head->next;
1102 }
1103}
1104
1105// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1106void invalidate_page(u_int page)
57871462 1107{
57871462 1108 struct ll_entry *head;
1109 struct ll_entry *next;
1110 head=jump_in[page];
1111 jump_in[page]=0;
1112 while(head!=NULL) {
1113 inv_debug("INVALIDATE: %x\n",head->vaddr);
1114 remove_hash(head->vaddr);
1115 next=head->next;
1116 free(head);
1117 head=next;
1118 }
1119 head=jump_out[page];
1120 jump_out[page]=0;
1121 while(head!=NULL) {
1122 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1123 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1124 #ifdef __arm__
1125 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1126 #endif
57871462 1127 next=head->next;
1128 free(head);
1129 head=next;
1130 }
57871462 1131}
1132void invalidate_block(u_int block)
1133{
94d23bb9 1134 u_int page=get_page(block<<12);
1135 u_int vpage=get_vpage(block<<12);
57871462 1136 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1137 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1138 u_int first,last;
1139 first=last=page;
1140 struct ll_entry *head;
1141 head=jump_dirty[vpage];
1142 //printf("page=%d vpage=%d\n",page,vpage);
1143 while(head!=NULL) {
1144 u_int start,end;
1145 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1146 get_bounds((int)head->addr,&start,&end);
1147 //printf("start: %x end: %x\n",start,end);
4cb76aa4 1148 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
57871462 1149 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1150 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1151 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1152 }
1153 }
90ae6d4e 1154#ifndef DISABLE_TLB
57871462 1155 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1156 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1157 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1158 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1159 }
1160 }
90ae6d4e 1161#endif
57871462 1162 }
1163 head=head->next;
1164 }
1165 //printf("first=%d last=%d\n",first,last);
f76eeef9 1166 invalidate_page(page);
57871462 1167 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1168 assert(last<page+5);
1169 // Invalidate the adjacent pages if a block crosses a 4K boundary
1170 while(first<page) {
1171 invalidate_page(first);
1172 first++;
1173 }
1174 for(first=page+1;first<last;first++) {
1175 invalidate_page(first);
1176 }
dd3a91a1 1177 #ifdef __arm__
1178 do_clear_cache();
1179 #endif
57871462 1180
1181 // Don't trap writes
1182 invalid_code[block]=1;
94d23bb9 1183#ifndef DISABLE_TLB
57871462 1184 // If there is a valid TLB entry for this page, remove write protect
1185 if(tlb_LUT_w[block]) {
1186 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1187 // CHECK: Is this right?
1188 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1189 u_int real_block=tlb_LUT_w[block]>>12;
1190 invalid_code[real_block]=1;
1191 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1192 }
1193 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1194#endif
f76eeef9 1195
57871462 1196 #ifdef USE_MINI_HT
1197 memset(mini_ht,-1,sizeof(mini_ht));
1198 #endif
1199}
1200void invalidate_addr(u_int addr)
1201{
1202 invalidate_block(addr>>12);
1203}
dd3a91a1 1204// This is called when loading a save state.
1205// Anything could have changed, so invalidate everything.
57871462 1206void invalidate_all_pages()
1207{
1208 u_int page,n;
1209 for(page=0;page<4096;page++)
1210 invalidate_page(page);
1211 for(page=0;page<1048576;page++)
1212 if(!invalid_code[page]) {
1213 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1214 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1215 }
1216 #ifdef __arm__
1217 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1218 #endif
1219 #ifdef USE_MINI_HT
1220 memset(mini_ht,-1,sizeof(mini_ht));
1221 #endif
94d23bb9 1222 #ifndef DISABLE_TLB
57871462 1223 // TLB
1224 for(page=0;page<0x100000;page++) {
1225 if(tlb_LUT_r[page]) {
1226 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1227 if(!tlb_LUT_w[page]||!invalid_code[page])
1228 memory_map[page]|=0x40000000; // Write protect
1229 }
1230 else memory_map[page]=-1;
1231 if(page==0x80000) page=0xC0000;
1232 }
1233 tlb_hacks();
94d23bb9 1234 #endif
57871462 1235}
1236
1237// Add an entry to jump_out after making a link
1238void add_link(u_int vaddr,void *src)
1239{
94d23bb9 1240 u_int page=get_page(vaddr);
57871462 1241 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1242 ll_add(jump_out+page,vaddr,src);
1243 //int ptr=get_pointer(src);
1244 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1245}
1246
1247// If a code block was found to be unmodified (bit was set in
1248// restore_candidate) and it remains unmodified (bit is clear
1249// in invalid_code) then move the entries for that 4K page from
1250// the dirty list to the clean list.
1251void clean_blocks(u_int page)
1252{
1253 struct ll_entry *head;
1254 inv_debug("INV: clean_blocks page=%d\n",page);
1255 head=jump_dirty[page];
1256 while(head!=NULL) {
1257 if(!invalid_code[head->vaddr>>12]) {
1258 // Don't restore blocks which are about to expire from the cache
1259 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1260 u_int start,end;
1261 if(verify_dirty((int)head->addr)) {
1262 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1263 u_int i;
1264 u_int inv=0;
1265 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1266 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1267 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1268 inv|=invalid_code[i];
1269 }
1270 }
1271 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1272 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1273 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1274 if(addr<start||addr>=end) inv=1;
1275 }
4cb76aa4 1276 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1277 inv=1;
1278 }
1279 if(!inv) {
1280 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1281 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1282 u_int ppage=page;
94d23bb9 1283#ifndef DISABLE_TLB
57871462 1284 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1285#endif
57871462 1286 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1287 //printf("page=%x, addr=%x\n",page,head->vaddr);
1288 //assert(head->vaddr>>12==(page|0x80000));
1289 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1290 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1291 if(!head->reg32) {
1292 if(ht_bin[0]==head->vaddr) {
1293 ht_bin[1]=(int)clean_addr; // Replace existing entry
1294 }
1295 if(ht_bin[2]==head->vaddr) {
1296 ht_bin[3]=(int)clean_addr; // Replace existing entry
1297 }
1298 }
1299 }
1300 }
1301 }
1302 }
1303 }
1304 head=head->next;
1305 }
1306}
1307
1308
1309void mov_alloc(struct regstat *current,int i)
1310{
1311 // Note: Don't need to actually alloc the source registers
1312 if((~current->is32>>rs1[i])&1) {
1313 //alloc_reg64(current,i,rs1[i]);
1314 alloc_reg64(current,i,rt1[i]);
1315 current->is32&=~(1LL<<rt1[i]);
1316 } else {
1317 //alloc_reg(current,i,rs1[i]);
1318 alloc_reg(current,i,rt1[i]);
1319 current->is32|=(1LL<<rt1[i]);
1320 }
1321 clear_const(current,rs1[i]);
1322 clear_const(current,rt1[i]);
1323 dirty_reg(current,rt1[i]);
1324}
1325
1326void shiftimm_alloc(struct regstat *current,int i)
1327{
1328 clear_const(current,rs1[i]);
1329 clear_const(current,rt1[i]);
1330 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1331 {
1332 if(rt1[i]) {
1333 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1334 else lt1[i]=rs1[i];
1335 alloc_reg(current,i,rt1[i]);
1336 current->is32|=1LL<<rt1[i];
1337 dirty_reg(current,rt1[i]);
1338 }
1339 }
1340 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1341 {
1342 if(rt1[i]) {
1343 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1344 alloc_reg64(current,i,rt1[i]);
1345 current->is32&=~(1LL<<rt1[i]);
1346 dirty_reg(current,rt1[i]);
1347 }
1348 }
1349 if(opcode2[i]==0x3c) // DSLL32
1350 {
1351 if(rt1[i]) {
1352 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1353 alloc_reg64(current,i,rt1[i]);
1354 current->is32&=~(1LL<<rt1[i]);
1355 dirty_reg(current,rt1[i]);
1356 }
1357 }
1358 if(opcode2[i]==0x3e) // DSRL32
1359 {
1360 if(rt1[i]) {
1361 alloc_reg64(current,i,rs1[i]);
1362 if(imm[i]==32) {
1363 alloc_reg64(current,i,rt1[i]);
1364 current->is32&=~(1LL<<rt1[i]);
1365 } else {
1366 alloc_reg(current,i,rt1[i]);
1367 current->is32|=1LL<<rt1[i];
1368 }
1369 dirty_reg(current,rt1[i]);
1370 }
1371 }
1372 if(opcode2[i]==0x3f) // DSRA32
1373 {
1374 if(rt1[i]) {
1375 alloc_reg64(current,i,rs1[i]);
1376 alloc_reg(current,i,rt1[i]);
1377 current->is32|=1LL<<rt1[i];
1378 dirty_reg(current,rt1[i]);
1379 }
1380 }
1381}
1382
1383void shift_alloc(struct regstat *current,int i)
1384{
1385 if(rt1[i]) {
1386 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1387 {
1388 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1389 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1390 alloc_reg(current,i,rt1[i]);
e1190b87 1391 if(rt1[i]==rs2[i]) {
1392 alloc_reg_temp(current,i,-1);
1393 minimum_free_regs[i]=1;
1394 }
57871462 1395 current->is32|=1LL<<rt1[i];
1396 } else { // DSLLV/DSRLV/DSRAV
1397 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1398 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1399 alloc_reg64(current,i,rt1[i]);
1400 current->is32&=~(1LL<<rt1[i]);
1401 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1402 {
57871462 1403 alloc_reg_temp(current,i,-1);
e1190b87 1404 minimum_free_regs[i]=1;
1405 }
57871462 1406 }
1407 clear_const(current,rs1[i]);
1408 clear_const(current,rs2[i]);
1409 clear_const(current,rt1[i]);
1410 dirty_reg(current,rt1[i]);
1411 }
1412}
1413
1414void alu_alloc(struct regstat *current,int i)
1415{
1416 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1417 if(rt1[i]) {
1418 if(rs1[i]&&rs2[i]) {
1419 alloc_reg(current,i,rs1[i]);
1420 alloc_reg(current,i,rs2[i]);
1421 }
1422 else {
1423 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1424 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1425 }
1426 alloc_reg(current,i,rt1[i]);
1427 }
1428 current->is32|=1LL<<rt1[i];
1429 }
1430 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1431 if(rt1[i]) {
1432 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1433 {
1434 alloc_reg64(current,i,rs1[i]);
1435 alloc_reg64(current,i,rs2[i]);
1436 alloc_reg(current,i,rt1[i]);
1437 } else {
1438 alloc_reg(current,i,rs1[i]);
1439 alloc_reg(current,i,rs2[i]);
1440 alloc_reg(current,i,rt1[i]);
1441 }
1442 }
1443 current->is32|=1LL<<rt1[i];
1444 }
1445 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1446 if(rt1[i]) {
1447 if(rs1[i]&&rs2[i]) {
1448 alloc_reg(current,i,rs1[i]);
1449 alloc_reg(current,i,rs2[i]);
1450 }
1451 else
1452 {
1453 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1454 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1455 }
1456 alloc_reg(current,i,rt1[i]);
1457 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1458 {
1459 if(!((current->uu>>rt1[i])&1)) {
1460 alloc_reg64(current,i,rt1[i]);
1461 }
1462 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1463 if(rs1[i]&&rs2[i]) {
1464 alloc_reg64(current,i,rs1[i]);
1465 alloc_reg64(current,i,rs2[i]);
1466 }
1467 else
1468 {
1469 // Is is really worth it to keep 64-bit values in registers?
1470 #ifdef NATIVE_64BIT
1471 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1472 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1473 #endif
1474 }
1475 }
1476 current->is32&=~(1LL<<rt1[i]);
1477 } else {
1478 current->is32|=1LL<<rt1[i];
1479 }
1480 }
1481 }
1482 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1483 if(rt1[i]) {
1484 if(rs1[i]&&rs2[i]) {
1485 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1486 alloc_reg64(current,i,rs1[i]);
1487 alloc_reg64(current,i,rs2[i]);
1488 alloc_reg64(current,i,rt1[i]);
1489 } else {
1490 alloc_reg(current,i,rs1[i]);
1491 alloc_reg(current,i,rs2[i]);
1492 alloc_reg(current,i,rt1[i]);
1493 }
1494 }
1495 else {
1496 alloc_reg(current,i,rt1[i]);
1497 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1498 // DADD used as move, or zeroing
1499 // If we have a 64-bit source, then make the target 64 bits too
1500 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1501 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1502 alloc_reg64(current,i,rt1[i]);
1503 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1504 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1505 alloc_reg64(current,i,rt1[i]);
1506 }
1507 if(opcode2[i]>=0x2e&&rs2[i]) {
1508 // DSUB used as negation - 64-bit result
1509 // If we have a 32-bit register, extend it to 64 bits
1510 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511 alloc_reg64(current,i,rt1[i]);
1512 }
1513 }
1514 }
1515 if(rs1[i]&&rs2[i]) {
1516 current->is32&=~(1LL<<rt1[i]);
1517 } else if(rs1[i]) {
1518 current->is32&=~(1LL<<rt1[i]);
1519 if((current->is32>>rs1[i])&1)
1520 current->is32|=1LL<<rt1[i];
1521 } else if(rs2[i]) {
1522 current->is32&=~(1LL<<rt1[i]);
1523 if((current->is32>>rs2[i])&1)
1524 current->is32|=1LL<<rt1[i];
1525 } else {
1526 current->is32|=1LL<<rt1[i];
1527 }
1528 }
1529 }
1530 clear_const(current,rs1[i]);
1531 clear_const(current,rs2[i]);
1532 clear_const(current,rt1[i]);
1533 dirty_reg(current,rt1[i]);
1534}
1535
1536void imm16_alloc(struct regstat *current,int i)
1537{
1538 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1539 else lt1[i]=rs1[i];
1540 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1541 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1542 current->is32&=~(1LL<<rt1[i]);
1543 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1544 // TODO: Could preserve the 32-bit flag if the immediate is zero
1545 alloc_reg64(current,i,rt1[i]);
1546 alloc_reg64(current,i,rs1[i]);
1547 }
1548 clear_const(current,rs1[i]);
1549 clear_const(current,rt1[i]);
1550 }
1551 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1552 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1553 current->is32|=1LL<<rt1[i];
1554 clear_const(current,rs1[i]);
1555 clear_const(current,rt1[i]);
1556 }
1557 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1558 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1559 if(rs1[i]!=rt1[i]) {
1560 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1561 alloc_reg64(current,i,rt1[i]);
1562 current->is32&=~(1LL<<rt1[i]);
1563 }
1564 }
1565 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1566 if(is_const(current,rs1[i])) {
1567 int v=get_const(current,rs1[i]);
1568 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1569 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1570 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1571 }
1572 else clear_const(current,rt1[i]);
1573 }
1574 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1575 if(is_const(current,rs1[i])) {
1576 int v=get_const(current,rs1[i]);
1577 set_const(current,rt1[i],v+imm[i]);
1578 }
1579 else clear_const(current,rt1[i]);
1580 current->is32|=1LL<<rt1[i];
1581 }
1582 else {
1583 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1584 current->is32|=1LL<<rt1[i];
1585 }
1586 dirty_reg(current,rt1[i]);
1587}
1588
1589void load_alloc(struct regstat *current,int i)
1590{
1591 clear_const(current,rt1[i]);
1592 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1593 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1594 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1595 if(rt1[i]) {
1596 alloc_reg(current,i,rt1[i]);
535d208a 1597 if(get_reg(current->regmap,rt1[i])<0) {
1598 // dummy load, but we still need a register to calculate the address
1599 alloc_reg_temp(current,i,-1);
e1190b87 1600 minimum_free_regs[i]=1;
535d208a 1601 }
57871462 1602 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1603 {
1604 current->is32&=~(1LL<<rt1[i]);
1605 alloc_reg64(current,i,rt1[i]);
1606 }
1607 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1608 {
1609 current->is32&=~(1LL<<rt1[i]);
1610 alloc_reg64(current,i,rt1[i]);
1611 alloc_all(current,i);
1612 alloc_reg64(current,i,FTEMP);
e1190b87 1613 minimum_free_regs[i]=HOST_REGS;
57871462 1614 }
1615 else current->is32|=1LL<<rt1[i];
1616 dirty_reg(current,rt1[i]);
1617 // If using TLB, need a register for pointer to the mapping table
1618 if(using_tlb) alloc_reg(current,i,TLREG);
1619 // LWL/LWR need a temporary register for the old value
1620 if(opcode[i]==0x22||opcode[i]==0x26)
1621 {
1622 alloc_reg(current,i,FTEMP);
1623 alloc_reg_temp(current,i,-1);
e1190b87 1624 minimum_free_regs[i]=1;
57871462 1625 }
1626 }
1627 else
1628 {
1629 // Load to r0 (dummy load)
1630 // but we still need a register to calculate the address
535d208a 1631 if(opcode[i]==0x22||opcode[i]==0x26)
1632 {
1633 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1634 }
57871462 1635 alloc_reg_temp(current,i,-1);
e1190b87 1636 minimum_free_regs[i]=1;
535d208a 1637 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1638 {
1639 alloc_all(current,i);
1640 alloc_reg64(current,i,FTEMP);
e1190b87 1641 minimum_free_regs[i]=HOST_REGS;
535d208a 1642 }
57871462 1643 }
1644}
1645
1646void store_alloc(struct regstat *current,int i)
1647{
1648 clear_const(current,rs2[i]);
1649 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1650 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1651 alloc_reg(current,i,rs2[i]);
1652 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1653 alloc_reg64(current,i,rs2[i]);
1654 if(rs2[i]) alloc_reg(current,i,FTEMP);
1655 }
1656 // If using TLB, need a register for pointer to the mapping table
1657 if(using_tlb) alloc_reg(current,i,TLREG);
1658 #if defined(HOST_IMM8)
1659 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1660 else alloc_reg(current,i,INVCP);
1661 #endif
b7918751 1662 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1663 alloc_reg(current,i,FTEMP);
1664 }
1665 // We need a temporary register for address generation
1666 alloc_reg_temp(current,i,-1);
e1190b87 1667 minimum_free_regs[i]=1;
57871462 1668}
1669
1670void c1ls_alloc(struct regstat *current,int i)
1671{
1672 //clear_const(current,rs1[i]); // FIXME
1673 clear_const(current,rt1[i]);
1674 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1675 alloc_reg(current,i,CSREG); // Status
1676 alloc_reg(current,i,FTEMP);
1677 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1678 alloc_reg64(current,i,FTEMP);
1679 }
1680 // If using TLB, need a register for pointer to the mapping table
1681 if(using_tlb) alloc_reg(current,i,TLREG);
1682 #if defined(HOST_IMM8)
1683 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1684 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1685 alloc_reg(current,i,INVCP);
1686 #endif
1687 // We need a temporary register for address generation
1688 alloc_reg_temp(current,i,-1);
1689}
1690
b9b61529 1691void c2ls_alloc(struct regstat *current,int i)
1692{
1693 clear_const(current,rt1[i]);
1694 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1695 alloc_reg(current,i,FTEMP);
1696 // If using TLB, need a register for pointer to the mapping table
1697 if(using_tlb) alloc_reg(current,i,TLREG);
1698 #if defined(HOST_IMM8)
1699 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1700 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1701 alloc_reg(current,i,INVCP);
1702 #endif
1703 // We need a temporary register for address generation
1704 alloc_reg_temp(current,i,-1);
e1190b87 1705 minimum_free_regs[i]=1;
b9b61529 1706}
1707
57871462 1708#ifndef multdiv_alloc
1709void multdiv_alloc(struct regstat *current,int i)
1710{
1711 // case 0x18: MULT
1712 // case 0x19: MULTU
1713 // case 0x1A: DIV
1714 // case 0x1B: DIVU
1715 // case 0x1C: DMULT
1716 // case 0x1D: DMULTU
1717 // case 0x1E: DDIV
1718 // case 0x1F: DDIVU
1719 clear_const(current,rs1[i]);
1720 clear_const(current,rs2[i]);
1721 if(rs1[i]&&rs2[i])
1722 {
1723 if((opcode2[i]&4)==0) // 32-bit
1724 {
1725 current->u&=~(1LL<<HIREG);
1726 current->u&=~(1LL<<LOREG);
1727 alloc_reg(current,i,HIREG);
1728 alloc_reg(current,i,LOREG);
1729 alloc_reg(current,i,rs1[i]);
1730 alloc_reg(current,i,rs2[i]);
1731 current->is32|=1LL<<HIREG;
1732 current->is32|=1LL<<LOREG;
1733 dirty_reg(current,HIREG);
1734 dirty_reg(current,LOREG);
1735 }
1736 else // 64-bit
1737 {
1738 current->u&=~(1LL<<HIREG);
1739 current->u&=~(1LL<<LOREG);
1740 current->uu&=~(1LL<<HIREG);
1741 current->uu&=~(1LL<<LOREG);
1742 alloc_reg64(current,i,HIREG);
1743 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1744 alloc_reg64(current,i,rs1[i]);
1745 alloc_reg64(current,i,rs2[i]);
1746 alloc_all(current,i);
1747 current->is32&=~(1LL<<HIREG);
1748 current->is32&=~(1LL<<LOREG);
1749 dirty_reg(current,HIREG);
1750 dirty_reg(current,LOREG);
e1190b87 1751 minimum_free_regs[i]=HOST_REGS;
57871462 1752 }
1753 }
1754 else
1755 {
1756 // Multiply by zero is zero.
1757 // MIPS does not have a divide by zero exception.
1758 // The result is undefined, we return zero.
1759 alloc_reg(current,i,HIREG);
1760 alloc_reg(current,i,LOREG);
1761 current->is32|=1LL<<HIREG;
1762 current->is32|=1LL<<LOREG;
1763 dirty_reg(current,HIREG);
1764 dirty_reg(current,LOREG);
1765 }
1766}
1767#endif
1768
1769void cop0_alloc(struct regstat *current,int i)
1770{
1771 if(opcode2[i]==0) // MFC0
1772 {
1773 if(rt1[i]) {
1774 clear_const(current,rt1[i]);
1775 alloc_all(current,i);
1776 alloc_reg(current,i,rt1[i]);
1777 current->is32|=1LL<<rt1[i];
1778 dirty_reg(current,rt1[i]);
1779 }
1780 }
1781 else if(opcode2[i]==4) // MTC0
1782 {
1783 if(rs1[i]){
1784 clear_const(current,rs1[i]);
1785 alloc_reg(current,i,rs1[i]);
1786 alloc_all(current,i);
1787 }
1788 else {
1789 alloc_all(current,i); // FIXME: Keep r0
1790 current->u&=~1LL;
1791 alloc_reg(current,i,0);
1792 }
1793 }
1794 else
1795 {
1796 // TLBR/TLBWI/TLBWR/TLBP/ERET
1797 assert(opcode2[i]==0x10);
1798 alloc_all(current,i);
1799 }
e1190b87 1800 minimum_free_regs[i]=HOST_REGS;
57871462 1801}
1802
1803void cop1_alloc(struct regstat *current,int i)
1804{
1805 alloc_reg(current,i,CSREG); // Load status
1806 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1807 {
7de557a6 1808 if(rt1[i]){
1809 clear_const(current,rt1[i]);
1810 if(opcode2[i]==1) {
1811 alloc_reg64(current,i,rt1[i]); // DMFC1
1812 current->is32&=~(1LL<<rt1[i]);
1813 }else{
1814 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1815 current->is32|=1LL<<rt1[i];
1816 }
1817 dirty_reg(current,rt1[i]);
57871462 1818 }
57871462 1819 alloc_reg_temp(current,i,-1);
1820 }
1821 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1822 {
1823 if(rs1[i]){
1824 clear_const(current,rs1[i]);
1825 if(opcode2[i]==5)
1826 alloc_reg64(current,i,rs1[i]); // DMTC1
1827 else
1828 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1829 alloc_reg_temp(current,i,-1);
1830 }
1831 else {
1832 current->u&=~1LL;
1833 alloc_reg(current,i,0);
1834 alloc_reg_temp(current,i,-1);
1835 }
1836 }
e1190b87 1837 minimum_free_regs[i]=1;
57871462 1838}
1839void fconv_alloc(struct regstat *current,int i)
1840{
1841 alloc_reg(current,i,CSREG); // Load status
1842 alloc_reg_temp(current,i,-1);
e1190b87 1843 minimum_free_regs[i]=1;
57871462 1844}
1845void float_alloc(struct regstat *current,int i)
1846{
1847 alloc_reg(current,i,CSREG); // Load status
1848 alloc_reg_temp(current,i,-1);
e1190b87 1849 minimum_free_regs[i]=1;
57871462 1850}
b9b61529 1851void c2op_alloc(struct regstat *current,int i)
1852{
1853 alloc_reg_temp(current,i,-1);
1854}
57871462 1855void fcomp_alloc(struct regstat *current,int i)
1856{
1857 alloc_reg(current,i,CSREG); // Load status
1858 alloc_reg(current,i,FSREG); // Load flags
1859 dirty_reg(current,FSREG); // Flag will be modified
1860 alloc_reg_temp(current,i,-1);
e1190b87 1861 minimum_free_regs[i]=1;
57871462 1862}
1863
1864void syscall_alloc(struct regstat *current,int i)
1865{
1866 alloc_cc(current,i);
1867 dirty_reg(current,CCREG);
1868 alloc_all(current,i);
e1190b87 1869 minimum_free_regs[i]=HOST_REGS;
57871462 1870 current->isconst=0;
1871}
1872
1873void delayslot_alloc(struct regstat *current,int i)
1874{
1875 switch(itype[i]) {
1876 case UJUMP:
1877 case CJUMP:
1878 case SJUMP:
1879 case RJUMP:
1880 case FJUMP:
1881 case SYSCALL:
7139f3c8 1882 case HLECALL:
57871462 1883 case SPAN:
1884 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1885 printf("Disabled speculative precompilation\n");
1886 stop_after_jal=1;
1887 break;
1888 case IMM16:
1889 imm16_alloc(current,i);
1890 break;
1891 case LOAD:
1892 case LOADLR:
1893 load_alloc(current,i);
1894 break;
1895 case STORE:
1896 case STORELR:
1897 store_alloc(current,i);
1898 break;
1899 case ALU:
1900 alu_alloc(current,i);
1901 break;
1902 case SHIFT:
1903 shift_alloc(current,i);
1904 break;
1905 case MULTDIV:
1906 multdiv_alloc(current,i);
1907 break;
1908 case SHIFTIMM:
1909 shiftimm_alloc(current,i);
1910 break;
1911 case MOV:
1912 mov_alloc(current,i);
1913 break;
1914 case COP0:
1915 cop0_alloc(current,i);
1916 break;
1917 case COP1:
b9b61529 1918 case COP2:
57871462 1919 cop1_alloc(current,i);
1920 break;
1921 case C1LS:
1922 c1ls_alloc(current,i);
1923 break;
b9b61529 1924 case C2LS:
1925 c2ls_alloc(current,i);
1926 break;
57871462 1927 case FCONV:
1928 fconv_alloc(current,i);
1929 break;
1930 case FLOAT:
1931 float_alloc(current,i);
1932 break;
1933 case FCOMP:
1934 fcomp_alloc(current,i);
1935 break;
b9b61529 1936 case C2OP:
1937 c2op_alloc(current,i);
1938 break;
57871462 1939 }
1940}
1941
1942// Special case where a branch and delay slot span two pages in virtual memory
1943static void pagespan_alloc(struct regstat *current,int i)
1944{
1945 current->isconst=0;
1946 current->wasconst=0;
1947 regs[i].wasconst=0;
e1190b87 1948 minimum_free_regs[i]=HOST_REGS;
57871462 1949 alloc_all(current,i);
1950 alloc_cc(current,i);
1951 dirty_reg(current,CCREG);
1952 if(opcode[i]==3) // JAL
1953 {
1954 alloc_reg(current,i,31);
1955 dirty_reg(current,31);
1956 }
1957 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1958 {
1959 alloc_reg(current,i,rs1[i]);
5067f341 1960 if (rt1[i]!=0) {
1961 alloc_reg(current,i,rt1[i]);
1962 dirty_reg(current,rt1[i]);
57871462 1963 }
1964 }
1965 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1966 {
1967 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1968 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1969 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1970 {
1971 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1972 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1973 }
1974 }
1975 else
1976 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1977 {
1978 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1979 if(!((current->is32>>rs1[i])&1))
1980 {
1981 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1982 }
1983 }
1984 else
1985 if(opcode[i]==0x11) // BC1
1986 {
1987 alloc_reg(current,i,FSREG);
1988 alloc_reg(current,i,CSREG);
1989 }
1990 //else ...
1991}
1992
1993add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1994{
1995 stubs[stubcount][0]=type;
1996 stubs[stubcount][1]=addr;
1997 stubs[stubcount][2]=retaddr;
1998 stubs[stubcount][3]=a;
1999 stubs[stubcount][4]=b;
2000 stubs[stubcount][5]=c;
2001 stubs[stubcount][6]=d;
2002 stubs[stubcount][7]=e;
2003 stubcount++;
2004}
2005
2006// Write out a single register
2007void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2008{
2009 int hr;
2010 for(hr=0;hr<HOST_REGS;hr++) {
2011 if(hr!=EXCLUDE_REG) {
2012 if((regmap[hr]&63)==r) {
2013 if((dirty>>hr)&1) {
2014 if(regmap[hr]<64) {
2015 emit_storereg(r,hr);
24385cae 2016#ifndef FORCE32
57871462 2017 if((is32>>regmap[hr])&1) {
2018 emit_sarimm(hr,31,hr);
2019 emit_storereg(r|64,hr);
2020 }
24385cae 2021#endif
57871462 2022 }else{
2023 emit_storereg(r|64,hr);
2024 }
2025 }
2026 }
2027 }
2028 }
2029}
2030
2031int mchecksum()
2032{
2033 //if(!tracedebug) return 0;
2034 int i;
2035 int sum=0;
2036 for(i=0;i<2097152;i++) {
2037 unsigned int temp=sum;
2038 sum<<=1;
2039 sum|=(~temp)>>31;
2040 sum^=((u_int *)rdram)[i];
2041 }
2042 return sum;
2043}
2044int rchecksum()
2045{
2046 int i;
2047 int sum=0;
2048 for(i=0;i<64;i++)
2049 sum^=((u_int *)reg)[i];
2050 return sum;
2051}
57871462 2052void rlist()
2053{
2054 int i;
2055 printf("TRACE: ");
2056 for(i=0;i<32;i++)
2057 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2058 printf("\n");
3d624f89 2059#ifndef DISABLE_COP1
57871462 2060 printf("TRACE: ");
2061 for(i=0;i<32;i++)
2062 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2063 printf("\n");
3d624f89 2064#endif
57871462 2065}
2066
2067void enabletrace()
2068{
2069 tracedebug=1;
2070}
2071
2072void memdebug(int i)
2073{
2074 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2075 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2076 //rlist();
2077 //if(tracedebug) {
2078 //if(Count>=-2084597794) {
2079 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2080 //if(0) {
2081 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2082 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2083 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2084 rlist();
2085 #ifdef __i386__
2086 printf("TRACE: %x\n",(&i)[-1]);
2087 #endif
2088 #ifdef __arm__
2089 int j;
2090 printf("TRACE: %x \n",(&j)[10]);
2091 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2092 #endif
2093 //fflush(stdout);
2094 }
2095 //printf("TRACE: %x\n",(&i)[-1]);
2096}
2097
2098void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2099{
2100 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2101}
2102
2103void alu_assemble(int i,struct regstat *i_regs)
2104{
2105 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2106 if(rt1[i]) {
2107 signed char s1,s2,t;
2108 t=get_reg(i_regs->regmap,rt1[i]);
2109 if(t>=0) {
2110 s1=get_reg(i_regs->regmap,rs1[i]);
2111 s2=get_reg(i_regs->regmap,rs2[i]);
2112 if(rs1[i]&&rs2[i]) {
2113 assert(s1>=0);
2114 assert(s2>=0);
2115 if(opcode2[i]&2) emit_sub(s1,s2,t);
2116 else emit_add(s1,s2,t);
2117 }
2118 else if(rs1[i]) {
2119 if(s1>=0) emit_mov(s1,t);
2120 else emit_loadreg(rs1[i],t);
2121 }
2122 else if(rs2[i]) {
2123 if(s2>=0) {
2124 if(opcode2[i]&2) emit_neg(s2,t);
2125 else emit_mov(s2,t);
2126 }
2127 else {
2128 emit_loadreg(rs2[i],t);
2129 if(opcode2[i]&2) emit_neg(t,t);
2130 }
2131 }
2132 else emit_zeroreg(t);
2133 }
2134 }
2135 }
2136 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2137 if(rt1[i]) {
2138 signed char s1l,s2l,s1h,s2h,tl,th;
2139 tl=get_reg(i_regs->regmap,rt1[i]);
2140 th=get_reg(i_regs->regmap,rt1[i]|64);
2141 if(tl>=0) {
2142 s1l=get_reg(i_regs->regmap,rs1[i]);
2143 s2l=get_reg(i_regs->regmap,rs2[i]);
2144 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2145 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2146 if(rs1[i]&&rs2[i]) {
2147 assert(s1l>=0);
2148 assert(s2l>=0);
2149 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2150 else emit_adds(s1l,s2l,tl);
2151 if(th>=0) {
2152 #ifdef INVERTED_CARRY
2153 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2154 #else
2155 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2156 #endif
2157 else emit_add(s1h,s2h,th);
2158 }
2159 }
2160 else if(rs1[i]) {
2161 if(s1l>=0) emit_mov(s1l,tl);
2162 else emit_loadreg(rs1[i],tl);
2163 if(th>=0) {
2164 if(s1h>=0) emit_mov(s1h,th);
2165 else emit_loadreg(rs1[i]|64,th);
2166 }
2167 }
2168 else if(rs2[i]) {
2169 if(s2l>=0) {
2170 if(opcode2[i]&2) emit_negs(s2l,tl);
2171 else emit_mov(s2l,tl);
2172 }
2173 else {
2174 emit_loadreg(rs2[i],tl);
2175 if(opcode2[i]&2) emit_negs(tl,tl);
2176 }
2177 if(th>=0) {
2178 #ifdef INVERTED_CARRY
2179 if(s2h>=0) emit_mov(s2h,th);
2180 else emit_loadreg(rs2[i]|64,th);
2181 if(opcode2[i]&2) {
2182 emit_adcimm(-1,th); // x86 has inverted carry flag
2183 emit_not(th,th);
2184 }
2185 #else
2186 if(opcode2[i]&2) {
2187 if(s2h>=0) emit_rscimm(s2h,0,th);
2188 else {
2189 emit_loadreg(rs2[i]|64,th);
2190 emit_rscimm(th,0,th);
2191 }
2192 }else{
2193 if(s2h>=0) emit_mov(s2h,th);
2194 else emit_loadreg(rs2[i]|64,th);
2195 }
2196 #endif
2197 }
2198 }
2199 else {
2200 emit_zeroreg(tl);
2201 if(th>=0) emit_zeroreg(th);
2202 }
2203 }
2204 }
2205 }
2206 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2207 if(rt1[i]) {
2208 signed char s1l,s1h,s2l,s2h,t;
2209 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2210 {
2211 t=get_reg(i_regs->regmap,rt1[i]);
2212 //assert(t>=0);
2213 if(t>=0) {
2214 s1l=get_reg(i_regs->regmap,rs1[i]);
2215 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2216 s2l=get_reg(i_regs->regmap,rs2[i]);
2217 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2218 if(rs2[i]==0) // rx<r0
2219 {
2220 assert(s1h>=0);
2221 if(opcode2[i]==0x2a) // SLT
2222 emit_shrimm(s1h,31,t);
2223 else // SLTU (unsigned can not be less than zero)
2224 emit_zeroreg(t);
2225 }
2226 else if(rs1[i]==0) // r0<rx
2227 {
2228 assert(s2h>=0);
2229 if(opcode2[i]==0x2a) // SLT
2230 emit_set_gz64_32(s2h,s2l,t);
2231 else // SLTU (set if not zero)
2232 emit_set_nz64_32(s2h,s2l,t);
2233 }
2234 else {
2235 assert(s1l>=0);assert(s1h>=0);
2236 assert(s2l>=0);assert(s2h>=0);
2237 if(opcode2[i]==0x2a) // SLT
2238 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2239 else // SLTU
2240 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2241 }
2242 }
2243 } else {
2244 t=get_reg(i_regs->regmap,rt1[i]);
2245 //assert(t>=0);
2246 if(t>=0) {
2247 s1l=get_reg(i_regs->regmap,rs1[i]);
2248 s2l=get_reg(i_regs->regmap,rs2[i]);
2249 if(rs2[i]==0) // rx<r0
2250 {
2251 assert(s1l>=0);
2252 if(opcode2[i]==0x2a) // SLT
2253 emit_shrimm(s1l,31,t);
2254 else // SLTU (unsigned can not be less than zero)
2255 emit_zeroreg(t);
2256 }
2257 else if(rs1[i]==0) // r0<rx
2258 {
2259 assert(s2l>=0);
2260 if(opcode2[i]==0x2a) // SLT
2261 emit_set_gz32(s2l,t);
2262 else // SLTU (set if not zero)
2263 emit_set_nz32(s2l,t);
2264 }
2265 else{
2266 assert(s1l>=0);assert(s2l>=0);
2267 if(opcode2[i]==0x2a) // SLT
2268 emit_set_if_less32(s1l,s2l,t);
2269 else // SLTU
2270 emit_set_if_carry32(s1l,s2l,t);
2271 }
2272 }
2273 }
2274 }
2275 }
2276 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2277 if(rt1[i]) {
2278 signed char s1l,s1h,s2l,s2h,th,tl;
2279 tl=get_reg(i_regs->regmap,rt1[i]);
2280 th=get_reg(i_regs->regmap,rt1[i]|64);
2281 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2282 {
2283 assert(tl>=0);
2284 if(tl>=0) {
2285 s1l=get_reg(i_regs->regmap,rs1[i]);
2286 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2287 s2l=get_reg(i_regs->regmap,rs2[i]);
2288 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2289 if(rs1[i]&&rs2[i]) {
2290 assert(s1l>=0);assert(s1h>=0);
2291 assert(s2l>=0);assert(s2h>=0);
2292 if(opcode2[i]==0x24) { // AND
2293 emit_and(s1l,s2l,tl);
2294 emit_and(s1h,s2h,th);
2295 } else
2296 if(opcode2[i]==0x25) { // OR
2297 emit_or(s1l,s2l,tl);
2298 emit_or(s1h,s2h,th);
2299 } else
2300 if(opcode2[i]==0x26) { // XOR
2301 emit_xor(s1l,s2l,tl);
2302 emit_xor(s1h,s2h,th);
2303 } else
2304 if(opcode2[i]==0x27) { // NOR
2305 emit_or(s1l,s2l,tl);
2306 emit_or(s1h,s2h,th);
2307 emit_not(tl,tl);
2308 emit_not(th,th);
2309 }
2310 }
2311 else
2312 {
2313 if(opcode2[i]==0x24) { // AND
2314 emit_zeroreg(tl);
2315 emit_zeroreg(th);
2316 } else
2317 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2318 if(rs1[i]){
2319 if(s1l>=0) emit_mov(s1l,tl);
2320 else emit_loadreg(rs1[i],tl);
2321 if(s1h>=0) emit_mov(s1h,th);
2322 else emit_loadreg(rs1[i]|64,th);
2323 }
2324 else
2325 if(rs2[i]){
2326 if(s2l>=0) emit_mov(s2l,tl);
2327 else emit_loadreg(rs2[i],tl);
2328 if(s2h>=0) emit_mov(s2h,th);
2329 else emit_loadreg(rs2[i]|64,th);
2330 }
2331 else{
2332 emit_zeroreg(tl);
2333 emit_zeroreg(th);
2334 }
2335 } else
2336 if(opcode2[i]==0x27) { // NOR
2337 if(rs1[i]){
2338 if(s1l>=0) emit_not(s1l,tl);
2339 else{
2340 emit_loadreg(rs1[i],tl);
2341 emit_not(tl,tl);
2342 }
2343 if(s1h>=0) emit_not(s1h,th);
2344 else{
2345 emit_loadreg(rs1[i]|64,th);
2346 emit_not(th,th);
2347 }
2348 }
2349 else
2350 if(rs2[i]){
2351 if(s2l>=0) emit_not(s2l,tl);
2352 else{
2353 emit_loadreg(rs2[i],tl);
2354 emit_not(tl,tl);
2355 }
2356 if(s2h>=0) emit_not(s2h,th);
2357 else{
2358 emit_loadreg(rs2[i]|64,th);
2359 emit_not(th,th);
2360 }
2361 }
2362 else {
2363 emit_movimm(-1,tl);
2364 emit_movimm(-1,th);
2365 }
2366 }
2367 }
2368 }
2369 }
2370 else
2371 {
2372 // 32 bit
2373 if(tl>=0) {
2374 s1l=get_reg(i_regs->regmap,rs1[i]);
2375 s2l=get_reg(i_regs->regmap,rs2[i]);
2376 if(rs1[i]&&rs2[i]) {
2377 assert(s1l>=0);
2378 assert(s2l>=0);
2379 if(opcode2[i]==0x24) { // AND
2380 emit_and(s1l,s2l,tl);
2381 } else
2382 if(opcode2[i]==0x25) { // OR
2383 emit_or(s1l,s2l,tl);
2384 } else
2385 if(opcode2[i]==0x26) { // XOR
2386 emit_xor(s1l,s2l,tl);
2387 } else
2388 if(opcode2[i]==0x27) { // NOR
2389 emit_or(s1l,s2l,tl);
2390 emit_not(tl,tl);
2391 }
2392 }
2393 else
2394 {
2395 if(opcode2[i]==0x24) { // AND
2396 emit_zeroreg(tl);
2397 } else
2398 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2399 if(rs1[i]){
2400 if(s1l>=0) emit_mov(s1l,tl);
2401 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2402 }
2403 else
2404 if(rs2[i]){
2405 if(s2l>=0) emit_mov(s2l,tl);
2406 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2407 }
2408 else emit_zeroreg(tl);
2409 } else
2410 if(opcode2[i]==0x27) { // NOR
2411 if(rs1[i]){
2412 if(s1l>=0) emit_not(s1l,tl);
2413 else {
2414 emit_loadreg(rs1[i],tl);
2415 emit_not(tl,tl);
2416 }
2417 }
2418 else
2419 if(rs2[i]){
2420 if(s2l>=0) emit_not(s2l,tl);
2421 else {
2422 emit_loadreg(rs2[i],tl);
2423 emit_not(tl,tl);
2424 }
2425 }
2426 else emit_movimm(-1,tl);
2427 }
2428 }
2429 }
2430 }
2431 }
2432 }
2433}
2434
2435void imm16_assemble(int i,struct regstat *i_regs)
2436{
2437 if (opcode[i]==0x0f) { // LUI
2438 if(rt1[i]) {
2439 signed char t;
2440 t=get_reg(i_regs->regmap,rt1[i]);
2441 //assert(t>=0);
2442 if(t>=0) {
2443 if(!((i_regs->isconst>>t)&1))
2444 emit_movimm(imm[i]<<16,t);
2445 }
2446 }
2447 }
2448 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2449 if(rt1[i]) {
2450 signed char s,t;
2451 t=get_reg(i_regs->regmap,rt1[i]);
2452 s=get_reg(i_regs->regmap,rs1[i]);
2453 if(rs1[i]) {
2454 //assert(t>=0);
2455 //assert(s>=0);
2456 if(t>=0) {
2457 if(!((i_regs->isconst>>t)&1)) {
2458 if(s<0) {
2459 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2460 emit_addimm(t,imm[i],t);
2461 }else{
2462 if(!((i_regs->wasconst>>s)&1))
2463 emit_addimm(s,imm[i],t);
2464 else
2465 emit_movimm(constmap[i][s]+imm[i],t);
2466 }
2467 }
2468 }
2469 } else {
2470 if(t>=0) {
2471 if(!((i_regs->isconst>>t)&1))
2472 emit_movimm(imm[i],t);
2473 }
2474 }
2475 }
2476 }
2477 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2478 if(rt1[i]) {
2479 signed char sh,sl,th,tl;
2480 th=get_reg(i_regs->regmap,rt1[i]|64);
2481 tl=get_reg(i_regs->regmap,rt1[i]);
2482 sh=get_reg(i_regs->regmap,rs1[i]|64);
2483 sl=get_reg(i_regs->regmap,rs1[i]);
2484 if(tl>=0) {
2485 if(rs1[i]) {
2486 assert(sh>=0);
2487 assert(sl>=0);
2488 if(th>=0) {
2489 emit_addimm64_32(sh,sl,imm[i],th,tl);
2490 }
2491 else {
2492 emit_addimm(sl,imm[i],tl);
2493 }
2494 } else {
2495 emit_movimm(imm[i],tl);
2496 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2497 }
2498 }
2499 }
2500 }
2501 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2502 if(rt1[i]) {
2503 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2504 signed char sh,sl,t;
2505 t=get_reg(i_regs->regmap,rt1[i]);
2506 sh=get_reg(i_regs->regmap,rs1[i]|64);
2507 sl=get_reg(i_regs->regmap,rs1[i]);
2508 //assert(t>=0);
2509 if(t>=0) {
2510 if(rs1[i]>0) {
2511 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2512 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2513 if(opcode[i]==0x0a) { // SLTI
2514 if(sl<0) {
2515 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2516 emit_slti32(t,imm[i],t);
2517 }else{
2518 emit_slti32(sl,imm[i],t);
2519 }
2520 }
2521 else { // SLTIU
2522 if(sl<0) {
2523 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2524 emit_sltiu32(t,imm[i],t);
2525 }else{
2526 emit_sltiu32(sl,imm[i],t);
2527 }
2528 }
2529 }else{ // 64-bit
2530 assert(sl>=0);
2531 if(opcode[i]==0x0a) // SLTI
2532 emit_slti64_32(sh,sl,imm[i],t);
2533 else // SLTIU
2534 emit_sltiu64_32(sh,sl,imm[i],t);
2535 }
2536 }else{
2537 // SLTI(U) with r0 is just stupid,
2538 // nonetheless examples can be found
2539 if(opcode[i]==0x0a) // SLTI
2540 if(0<imm[i]) emit_movimm(1,t);
2541 else emit_zeroreg(t);
2542 else // SLTIU
2543 {
2544 if(imm[i]) emit_movimm(1,t);
2545 else emit_zeroreg(t);
2546 }
2547 }
2548 }
2549 }
2550 }
2551 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2552 if(rt1[i]) {
2553 signed char sh,sl,th,tl;
2554 th=get_reg(i_regs->regmap,rt1[i]|64);
2555 tl=get_reg(i_regs->regmap,rt1[i]);
2556 sh=get_reg(i_regs->regmap,rs1[i]|64);
2557 sl=get_reg(i_regs->regmap,rs1[i]);
2558 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2559 if(opcode[i]==0x0c) //ANDI
2560 {
2561 if(rs1[i]) {
2562 if(sl<0) {
2563 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2564 emit_andimm(tl,imm[i],tl);
2565 }else{
2566 if(!((i_regs->wasconst>>sl)&1))
2567 emit_andimm(sl,imm[i],tl);
2568 else
2569 emit_movimm(constmap[i][sl]&imm[i],tl);
2570 }
2571 }
2572 else
2573 emit_zeroreg(tl);
2574 if(th>=0) emit_zeroreg(th);
2575 }
2576 else
2577 {
2578 if(rs1[i]) {
2579 if(sl<0) {
2580 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2581 }
2582 if(th>=0) {
2583 if(sh<0) {
2584 emit_loadreg(rs1[i]|64,th);
2585 }else{
2586 emit_mov(sh,th);
2587 }
2588 }
2589 if(opcode[i]==0x0d) //ORI
2590 if(sl<0) {
2591 emit_orimm(tl,imm[i],tl);
2592 }else{
2593 if(!((i_regs->wasconst>>sl)&1))
2594 emit_orimm(sl,imm[i],tl);
2595 else
2596 emit_movimm(constmap[i][sl]|imm[i],tl);
2597 }
2598 if(opcode[i]==0x0e) //XORI
2599 if(sl<0) {
2600 emit_xorimm(tl,imm[i],tl);
2601 }else{
2602 if(!((i_regs->wasconst>>sl)&1))
2603 emit_xorimm(sl,imm[i],tl);
2604 else
2605 emit_movimm(constmap[i][sl]^imm[i],tl);
2606 }
2607 }
2608 else {
2609 emit_movimm(imm[i],tl);
2610 if(th>=0) emit_zeroreg(th);
2611 }
2612 }
2613 }
2614 }
2615 }
2616}
2617
2618void shiftimm_assemble(int i,struct regstat *i_regs)
2619{
2620 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2621 {
2622 if(rt1[i]) {
2623 signed char s,t;
2624 t=get_reg(i_regs->regmap,rt1[i]);
2625 s=get_reg(i_regs->regmap,rs1[i]);
2626 //assert(t>=0);
2627 if(t>=0){
2628 if(rs1[i]==0)
2629 {
2630 emit_zeroreg(t);
2631 }
2632 else
2633 {
2634 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2635 if(imm[i]) {
2636 if(opcode2[i]==0) // SLL
2637 {
2638 emit_shlimm(s<0?t:s,imm[i],t);
2639 }
2640 if(opcode2[i]==2) // SRL
2641 {
2642 emit_shrimm(s<0?t:s,imm[i],t);
2643 }
2644 if(opcode2[i]==3) // SRA
2645 {
2646 emit_sarimm(s<0?t:s,imm[i],t);
2647 }
2648 }else{
2649 // Shift by zero
2650 if(s>=0 && s!=t) emit_mov(s,t);
2651 }
2652 }
2653 }
2654 //emit_storereg(rt1[i],t); //DEBUG
2655 }
2656 }
2657 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2658 {
2659 if(rt1[i]) {
2660 signed char sh,sl,th,tl;
2661 th=get_reg(i_regs->regmap,rt1[i]|64);
2662 tl=get_reg(i_regs->regmap,rt1[i]);
2663 sh=get_reg(i_regs->regmap,rs1[i]|64);
2664 sl=get_reg(i_regs->regmap,rs1[i]);
2665 if(tl>=0) {
2666 if(rs1[i]==0)
2667 {
2668 emit_zeroreg(tl);
2669 if(th>=0) emit_zeroreg(th);
2670 }
2671 else
2672 {
2673 assert(sl>=0);
2674 assert(sh>=0);
2675 if(imm[i]) {
2676 if(opcode2[i]==0x38) // DSLL
2677 {
2678 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2679 emit_shlimm(sl,imm[i],tl);
2680 }
2681 if(opcode2[i]==0x3a) // DSRL
2682 {
2683 emit_shrdimm(sl,sh,imm[i],tl);
2684 if(th>=0) emit_shrimm(sh,imm[i],th);
2685 }
2686 if(opcode2[i]==0x3b) // DSRA
2687 {
2688 emit_shrdimm(sl,sh,imm[i],tl);
2689 if(th>=0) emit_sarimm(sh,imm[i],th);
2690 }
2691 }else{
2692 // Shift by zero
2693 if(sl!=tl) emit_mov(sl,tl);
2694 if(th>=0&&sh!=th) emit_mov(sh,th);
2695 }
2696 }
2697 }
2698 }
2699 }
2700 if(opcode2[i]==0x3c) // DSLL32
2701 {
2702 if(rt1[i]) {
2703 signed char sl,tl,th;
2704 tl=get_reg(i_regs->regmap,rt1[i]);
2705 th=get_reg(i_regs->regmap,rt1[i]|64);
2706 sl=get_reg(i_regs->regmap,rs1[i]);
2707 if(th>=0||tl>=0){
2708 assert(tl>=0);
2709 assert(th>=0);
2710 assert(sl>=0);
2711 emit_mov(sl,th);
2712 emit_zeroreg(tl);
2713 if(imm[i]>32)
2714 {
2715 emit_shlimm(th,imm[i]&31,th);
2716 }
2717 }
2718 }
2719 }
2720 if(opcode2[i]==0x3e) // DSRL32
2721 {
2722 if(rt1[i]) {
2723 signed char sh,tl,th;
2724 tl=get_reg(i_regs->regmap,rt1[i]);
2725 th=get_reg(i_regs->regmap,rt1[i]|64);
2726 sh=get_reg(i_regs->regmap,rs1[i]|64);
2727 if(tl>=0){
2728 assert(sh>=0);
2729 emit_mov(sh,tl);
2730 if(th>=0) emit_zeroreg(th);
2731 if(imm[i]>32)
2732 {
2733 emit_shrimm(tl,imm[i]&31,tl);
2734 }
2735 }
2736 }
2737 }
2738 if(opcode2[i]==0x3f) // DSRA32
2739 {
2740 if(rt1[i]) {
2741 signed char sh,tl;
2742 tl=get_reg(i_regs->regmap,rt1[i]);
2743 sh=get_reg(i_regs->regmap,rs1[i]|64);
2744 if(tl>=0){
2745 assert(sh>=0);
2746 emit_mov(sh,tl);
2747 if(imm[i]>32)
2748 {
2749 emit_sarimm(tl,imm[i]&31,tl);
2750 }
2751 }
2752 }
2753 }
2754}
2755
2756#ifndef shift_assemble
2757void shift_assemble(int i,struct regstat *i_regs)
2758{
2759 printf("Need shift_assemble for this architecture.\n");
2760 exit(1);
2761}
2762#endif
2763
2764void load_assemble(int i,struct regstat *i_regs)
2765{
2766 int s,th,tl,addr,map=-1;
2767 int offset;
2768 int jaddr=0;
5bf843dc 2769 int memtarget=0,c=0;
57871462 2770 u_int hr,reglist=0;
2771 th=get_reg(i_regs->regmap,rt1[i]|64);
2772 tl=get_reg(i_regs->regmap,rt1[i]);
2773 s=get_reg(i_regs->regmap,rs1[i]);
2774 offset=imm[i];
2775 for(hr=0;hr<HOST_REGS;hr++) {
2776 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2777 }
2778 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2779 if(s>=0) {
2780 c=(i_regs->wasconst>>s)&1;
4cb76aa4 2781 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 2782 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2783 }
57871462 2784 //printf("load_assemble: c=%d\n",c);
2785 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2786 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2787#ifdef PCSX
f18c0f46 2788 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2789 ||rt1[i]==0) {
5bf843dc 2790 // could be FIFO, must perform the read
f18c0f46 2791 // ||dummy read
5bf843dc 2792 assem_debug("(forced read)\n");
2793 tl=get_reg(i_regs->regmap,-1);
2794 assert(tl>=0);
5bf843dc 2795 }
f18c0f46 2796#endif
5bf843dc 2797 if(offset||s<0||c) addr=tl;
2798 else addr=s;
535d208a 2799 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2800 if(tl>=0) {
2801 //printf("load_assemble: c=%d\n",c);
2802 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2803 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2804 reglist&=~(1<<tl);
2805 if(th>=0) reglist&=~(1<<th);
2806 if(!using_tlb) {
2807 if(!c) {
2808 #ifdef RAM_OFFSET
2809 map=get_reg(i_regs->regmap,ROREG);
2810 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2811 #endif
57871462 2812//#define R29_HACK 1
535d208a 2813 #ifdef R29_HACK
2814 // Strmnnrmn's speed hack
2815 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2816 #endif
2817 {
2818 emit_cmpimm(addr,RAM_SIZE);
2819 jaddr=(int)out;
2820 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2821 // Hint to branch predictor that the branch is unlikely to be taken
2822 if(rs1[i]>=28)
2823 emit_jno_unlikely(0);
2824 else
57871462 2825 #endif
535d208a 2826 emit_jno(0);
57871462 2827 }
535d208a 2828 }
2829 }else{ // using tlb
2830 int x=0;
2831 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2832 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2833 map=get_reg(i_regs->regmap,TLREG);
2834 assert(map>=0);
2835 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2836 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2837 }
2838 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2839 if (opcode[i]==0x20) { // LB
2840 if(!c||memtarget) {
2841 if(!dummy) {
57871462 2842 #ifdef HOST_IMM_ADDR32
2843 if(c)
2844 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2845 else
2846 #endif
2847 {
2848 //emit_xorimm(addr,3,tl);
2849 //gen_tlb_addr_r(tl,map);
2850 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2851 int x=0,a=tl;
2002a1db 2852#ifdef BIG_ENDIAN_MIPS
57871462 2853 if(!c) emit_xorimm(addr,3,tl);
2854 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2855#else
535d208a 2856 if(!c) a=addr;
2002a1db 2857#endif
535d208a 2858 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2859 }
57871462 2860 }
535d208a 2861 if(jaddr)
2862 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2863 }
535d208a 2864 else
2865 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2866 }
2867 if (opcode[i]==0x21) { // LH
2868 if(!c||memtarget) {
2869 if(!dummy) {
57871462 2870 #ifdef HOST_IMM_ADDR32
2871 if(c)
2872 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2873 else
2874 #endif
2875 {
535d208a 2876 int x=0,a=tl;
2002a1db 2877#ifdef BIG_ENDIAN_MIPS
57871462 2878 if(!c) emit_xorimm(addr,2,tl);
2879 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2880#else
535d208a 2881 if(!c) a=addr;
2002a1db 2882#endif
57871462 2883 //#ifdef
2884 //emit_movswl_indexed_tlb(x,tl,map,tl);
2885 //else
2886 if(map>=0) {
535d208a 2887 gen_tlb_addr_r(a,map);
2888 emit_movswl_indexed(x,a,tl);
2889 }else{
2890 #ifdef RAM_OFFSET
2891 emit_movswl_indexed(x,a,tl);
2892 #else
2893 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2894 #endif
2895 }
57871462 2896 }
57871462 2897 }
535d208a 2898 if(jaddr)
2899 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2900 }
535d208a 2901 else
2902 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2903 }
2904 if (opcode[i]==0x23) { // LW
2905 if(!c||memtarget) {
2906 if(!dummy) {
57871462 2907 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2908 #ifdef HOST_IMM_ADDR32
2909 if(c)
2910 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2911 else
2912 #endif
2913 emit_readword_indexed_tlb(0,addr,map,tl);
57871462 2914 }
535d208a 2915 if(jaddr)
2916 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2917 }
535d208a 2918 else
2919 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2920 }
2921 if (opcode[i]==0x24) { // LBU
2922 if(!c||memtarget) {
2923 if(!dummy) {
57871462 2924 #ifdef HOST_IMM_ADDR32
2925 if(c)
2926 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2927 else
2928 #endif
2929 {
2930 //emit_xorimm(addr,3,tl);
2931 //gen_tlb_addr_r(tl,map);
2932 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2933 int x=0,a=tl;
2002a1db 2934#ifdef BIG_ENDIAN_MIPS
57871462 2935 if(!c) emit_xorimm(addr,3,tl);
2936 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2937#else
535d208a 2938 if(!c) a=addr;
2002a1db 2939#endif
535d208a 2940 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 2941 }
57871462 2942 }
535d208a 2943 if(jaddr)
2944 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2945 }
535d208a 2946 else
2947 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2948 }
2949 if (opcode[i]==0x25) { // LHU
2950 if(!c||memtarget) {
2951 if(!dummy) {
57871462 2952 #ifdef HOST_IMM_ADDR32
2953 if(c)
2954 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2955 else
2956 #endif
2957 {
535d208a 2958 int x=0,a=tl;
2002a1db 2959#ifdef BIG_ENDIAN_MIPS
57871462 2960 if(!c) emit_xorimm(addr,2,tl);
2961 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2962#else
535d208a 2963 if(!c) a=addr;
2002a1db 2964#endif
57871462 2965 //#ifdef
2966 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2967 //#else
2968 if(map>=0) {
535d208a 2969 gen_tlb_addr_r(a,map);
2970 emit_movzwl_indexed(x,a,tl);
2971 }else{
2972 #ifdef RAM_OFFSET
2973 emit_movzwl_indexed(x,a,tl);
2974 #else
2975 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2976 #endif
2977 }
57871462 2978 }
2979 }
535d208a 2980 if(jaddr)
2981 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2982 }
535d208a 2983 else
2984 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2985 }
2986 if (opcode[i]==0x27) { // LWU
2987 assert(th>=0);
2988 if(!c||memtarget) {
2989 if(!dummy) {
57871462 2990 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2991 #ifdef HOST_IMM_ADDR32
2992 if(c)
2993 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2994 else
2995 #endif
2996 emit_readword_indexed_tlb(0,addr,map,tl);
57871462 2997 }
535d208a 2998 if(jaddr)
2999 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3000 }
3001 else {
3002 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3003 }
535d208a 3004 emit_zeroreg(th);
3005 }
3006 if (opcode[i]==0x37) { // LD
3007 if(!c||memtarget) {
3008 if(!dummy) {
57871462 3009 //gen_tlb_addr_r(tl,map);
3010 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3011 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3012 #ifdef HOST_IMM_ADDR32
3013 if(c)
3014 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3015 else
3016 #endif
3017 emit_readdword_indexed_tlb(0,addr,map,th,tl);
57871462 3018 }
535d208a 3019 if(jaddr)
3020 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3021 }
535d208a 3022 else
3023 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3024 }
535d208a 3025 }
3026 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3027 //if(opcode[i]==0x23)
3028 //if(opcode[i]==0x24)
3029 //if(opcode[i]==0x23||opcode[i]==0x24)
3030 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3031 {
3032 //emit_pusha();
3033 save_regs(0x100f);
3034 emit_readword((int)&last_count,ECX);
3035 #ifdef __i386__
3036 if(get_reg(i_regs->regmap,CCREG)<0)
3037 emit_loadreg(CCREG,HOST_CCREG);
3038 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3039 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3040 emit_writeword(HOST_CCREG,(int)&Count);
3041 #endif
3042 #ifdef __arm__
3043 if(get_reg(i_regs->regmap,CCREG)<0)
3044 emit_loadreg(CCREG,0);
3045 else
3046 emit_mov(HOST_CCREG,0);
3047 emit_add(0,ECX,0);
3048 emit_addimm(0,2*ccadj[i],0);
3049 emit_writeword(0,(int)&Count);
3050 #endif
3051 emit_call((int)memdebug);
3052 //emit_popa();
3053 restore_regs(0x100f);
3054 }/**/
3055}
3056
3057#ifndef loadlr_assemble
3058void loadlr_assemble(int i,struct regstat *i_regs)
3059{
3060 printf("Need loadlr_assemble for this architecture.\n");
3061 exit(1);
3062}
3063#endif
3064
3065void store_assemble(int i,struct regstat *i_regs)
3066{
3067 int s,th,tl,map=-1;
3068 int addr,temp;
3069 int offset;
3070 int jaddr=0,jaddr2,type;
666a299d 3071 int memtarget=0,c=0;
57871462 3072 int agr=AGEN1+(i&1);
3073 u_int hr,reglist=0;
3074 th=get_reg(i_regs->regmap,rs2[i]|64);
3075 tl=get_reg(i_regs->regmap,rs2[i]);
3076 s=get_reg(i_regs->regmap,rs1[i]);
3077 temp=get_reg(i_regs->regmap,agr);
3078 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3079 offset=imm[i];
3080 if(s>=0) {
3081 c=(i_regs->wasconst>>s)&1;
4cb76aa4 3082 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 3083 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3084 }
3085 assert(tl>=0);
3086 assert(temp>=0);
3087 for(hr=0;hr<HOST_REGS;hr++) {
3088 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3089 }
3090 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3091 if(offset||s<0||c) addr=temp;
3092 else addr=s;
3093 if(!using_tlb) {
3094 if(!c) {
3095 #ifdef R29_HACK
3096 // Strmnnrmn's speed hack
3097 memtarget=1;
4cb76aa4 3098 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3099 #endif
4cb76aa4 3100 emit_cmpimm(addr,RAM_SIZE);
57871462 3101 #ifdef DESTRUCTIVE_SHIFT
3102 if(s==addr) emit_mov(s,temp);
3103 #endif
3104 #ifdef R29_HACK
4cb76aa4 3105 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3106 #endif
3107 {
3108 jaddr=(int)out;
3109 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3110 // Hint to branch predictor that the branch is unlikely to be taken
3111 if(rs1[i]>=28)
3112 emit_jno_unlikely(0);
3113 else
3114 #endif
3115 emit_jno(0);
3116 }
3117 }
3118 }else{ // using tlb
3119 int x=0;
3120 if (opcode[i]==0x28) x=3; // SB
3121 if (opcode[i]==0x29) x=2; // SH
3122 map=get_reg(i_regs->regmap,TLREG);
3123 assert(map>=0);
3124 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3125 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3126 }
3127
3128 if (opcode[i]==0x28) { // SB
3129 if(!c||memtarget) {
3130 int x=0;
2002a1db 3131#ifdef BIG_ENDIAN_MIPS
57871462 3132 if(!c) emit_xorimm(addr,3,temp);
3133 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3134#else
3135 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3136 else if (addr!=temp) emit_mov(addr,temp);
3137#endif
57871462 3138 //gen_tlb_addr_w(temp,map);
3139 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3140 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3141 }
3142 type=STOREB_STUB;
3143 }
3144 if (opcode[i]==0x29) { // SH
3145 if(!c||memtarget) {
3146 int x=0;
2002a1db 3147#ifdef BIG_ENDIAN_MIPS
57871462 3148 if(!c) emit_xorimm(addr,2,temp);
3149 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3150#else
3151 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3152 else if (addr!=temp) emit_mov(addr,temp);
3153#endif
57871462 3154 //#ifdef
3155 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3156 //#else
3157 if(map>=0) {
3158 gen_tlb_addr_w(temp,map);
3159 emit_writehword_indexed(tl,x,temp);
3160 }else
3161 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3162 }
3163 type=STOREH_STUB;
3164 }
3165 if (opcode[i]==0x2B) { // SW
3166 if(!c||memtarget)
3167 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3168 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3169 type=STOREW_STUB;
3170 }
3171 if (opcode[i]==0x3F) { // SD
3172 if(!c||memtarget) {
3173 if(rs2[i]) {
3174 assert(th>=0);
3175 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3176 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3177 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3178 }else{
3179 // Store zero
3180 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3181 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3182 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3183 }
3184 }
3185 type=STORED_STUB;
3186 }
57871462 3187 if(!using_tlb) {
3188 if(!c||memtarget) {
3189 #ifdef DESTRUCTIVE_SHIFT
3190 // The x86 shift operation is 'destructive'; it overwrites the
3191 // source register, so we need to make a copy first and use that.
3192 addr=temp;
3193 #endif
3194 #if defined(HOST_IMM8)
3195 int ir=get_reg(i_regs->regmap,INVCP);
3196 assert(ir>=0);
3197 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3198 #else
3199 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3200 #endif
0bbd1454 3201 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3202 emit_callne(invalidate_addr_reg[addr]);
3203 #else
57871462 3204 jaddr2=(int)out;
3205 emit_jne(0);
3206 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3207 #endif
57871462 3208 }
3209 }
3eaa7048 3210 if(jaddr) {
3211 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3212 } else if(c&&!memtarget) {
3213 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3214 }
57871462 3215 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3216 //if(opcode[i]==0x2B || opcode[i]==0x28)
3217 //if(opcode[i]==0x2B || opcode[i]==0x29)
3218 //if(opcode[i]==0x2B)
3219 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3220 {
3221 //emit_pusha();
3222 save_regs(0x100f);
3223 emit_readword((int)&last_count,ECX);
3224 #ifdef __i386__
3225 if(get_reg(i_regs->regmap,CCREG)<0)
3226 emit_loadreg(CCREG,HOST_CCREG);
3227 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3228 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3229 emit_writeword(HOST_CCREG,(int)&Count);
3230 #endif
3231 #ifdef __arm__
3232 if(get_reg(i_regs->regmap,CCREG)<0)
3233 emit_loadreg(CCREG,0);
3234 else
3235 emit_mov(HOST_CCREG,0);
3236 emit_add(0,ECX,0);
3237 emit_addimm(0,2*ccadj[i],0);
3238 emit_writeword(0,(int)&Count);
3239 #endif
3240 emit_call((int)memdebug);
3241 //emit_popa();
3242 restore_regs(0x100f);
3243 }/**/
3244}
3245
3246void storelr_assemble(int i,struct regstat *i_regs)
3247{
3248 int s,th,tl;
3249 int temp;
3250 int temp2;
3251 int offset;
3252 int jaddr=0,jaddr2;
3253 int case1,case2,case3;
3254 int done0,done1,done2;
3255 int memtarget,c=0;
fab5d06d 3256 int agr=AGEN1+(i&1);
57871462 3257 u_int hr,reglist=0;
3258 th=get_reg(i_regs->regmap,rs2[i]|64);
3259 tl=get_reg(i_regs->regmap,rs2[i]);
3260 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3261 temp=get_reg(i_regs->regmap,agr);
3262 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3263 offset=imm[i];
3264 if(s>=0) {
3265 c=(i_regs->isconst>>s)&1;
4cb76aa4 3266 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
57871462 3267 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3268 }
3269 assert(tl>=0);
3270 for(hr=0;hr<HOST_REGS;hr++) {
3271 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3272 }
535d208a 3273 assert(temp>=0);
3274 if(!using_tlb) {
3275 if(!c) {
3276 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3277 if(!offset&&s!=temp) emit_mov(s,temp);
3278 jaddr=(int)out;
3279 emit_jno(0);
3280 }
3281 else
3282 {
3283 if(!memtarget||!rs1[i]) {
57871462 3284 jaddr=(int)out;
3285 emit_jmp(0);
3286 }
57871462 3287 }
535d208a 3288 #ifdef RAM_OFFSET
3289 int map=get_reg(i_regs->regmap,ROREG);
3290 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3291 gen_tlb_addr_w(temp,map);
3292 #else
3293 if((u_int)rdram!=0x80000000)
3294 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3295 #endif
3296 }else{ // using tlb
3297 int map=get_reg(i_regs->regmap,TLREG);
3298 assert(map>=0);
3299 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3300 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3301 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3302 if(!jaddr&&!memtarget) {
3303 jaddr=(int)out;
3304 emit_jmp(0);
57871462 3305 }
535d208a 3306 gen_tlb_addr_w(temp,map);
3307 }
3308
3309 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3310 temp2=get_reg(i_regs->regmap,FTEMP);
3311 if(!rs2[i]) temp2=th=tl;
3312 }
57871462 3313
2002a1db 3314#ifndef BIG_ENDIAN_MIPS
3315 emit_xorimm(temp,3,temp);
3316#endif
535d208a 3317 emit_testimm(temp,2);
3318 case2=(int)out;
3319 emit_jne(0);
3320 emit_testimm(temp,1);
3321 case1=(int)out;
3322 emit_jne(0);
3323 // 0
3324 if (opcode[i]==0x2A) { // SWL
3325 emit_writeword_indexed(tl,0,temp);
3326 }
3327 if (opcode[i]==0x2E) { // SWR
3328 emit_writebyte_indexed(tl,3,temp);
3329 }
3330 if (opcode[i]==0x2C) { // SDL
3331 emit_writeword_indexed(th,0,temp);
3332 if(rs2[i]) emit_mov(tl,temp2);
3333 }
3334 if (opcode[i]==0x2D) { // SDR
3335 emit_writebyte_indexed(tl,3,temp);
3336 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3337 }
3338 done0=(int)out;
3339 emit_jmp(0);
3340 // 1
3341 set_jump_target(case1,(int)out);
3342 if (opcode[i]==0x2A) { // SWL
3343 // Write 3 msb into three least significant bytes
3344 if(rs2[i]) emit_rorimm(tl,8,tl);
3345 emit_writehword_indexed(tl,-1,temp);
3346 if(rs2[i]) emit_rorimm(tl,16,tl);
3347 emit_writebyte_indexed(tl,1,temp);
3348 if(rs2[i]) emit_rorimm(tl,8,tl);
3349 }
3350 if (opcode[i]==0x2E) { // SWR
3351 // Write two lsb into two most significant bytes
3352 emit_writehword_indexed(tl,1,temp);
3353 }
3354 if (opcode[i]==0x2C) { // SDL
3355 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3356 // Write 3 msb into three least significant bytes
3357 if(rs2[i]) emit_rorimm(th,8,th);
3358 emit_writehword_indexed(th,-1,temp);
3359 if(rs2[i]) emit_rorimm(th,16,th);
3360 emit_writebyte_indexed(th,1,temp);
3361 if(rs2[i]) emit_rorimm(th,8,th);
3362 }
3363 if (opcode[i]==0x2D) { // SDR
3364 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3365 // Write two lsb into two most significant bytes
3366 emit_writehword_indexed(tl,1,temp);
3367 }
3368 done1=(int)out;
3369 emit_jmp(0);
3370 // 2
3371 set_jump_target(case2,(int)out);
3372 emit_testimm(temp,1);
3373 case3=(int)out;
3374 emit_jne(0);
3375 if (opcode[i]==0x2A) { // SWL
3376 // Write two msb into two least significant bytes
3377 if(rs2[i]) emit_rorimm(tl,16,tl);
3378 emit_writehword_indexed(tl,-2,temp);
3379 if(rs2[i]) emit_rorimm(tl,16,tl);
3380 }
3381 if (opcode[i]==0x2E) { // SWR
3382 // Write 3 lsb into three most significant bytes
3383 emit_writebyte_indexed(tl,-1,temp);
3384 if(rs2[i]) emit_rorimm(tl,8,tl);
3385 emit_writehword_indexed(tl,0,temp);
3386 if(rs2[i]) emit_rorimm(tl,24,tl);
3387 }
3388 if (opcode[i]==0x2C) { // SDL
3389 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3390 // Write two msb into two least significant bytes
3391 if(rs2[i]) emit_rorimm(th,16,th);
3392 emit_writehword_indexed(th,-2,temp);
3393 if(rs2[i]) emit_rorimm(th,16,th);
3394 }
3395 if (opcode[i]==0x2D) { // SDR
3396 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3397 // Write 3 lsb into three most significant bytes
3398 emit_writebyte_indexed(tl,-1,temp);
3399 if(rs2[i]) emit_rorimm(tl,8,tl);
3400 emit_writehword_indexed(tl,0,temp);
3401 if(rs2[i]) emit_rorimm(tl,24,tl);
3402 }
3403 done2=(int)out;
3404 emit_jmp(0);
3405 // 3
3406 set_jump_target(case3,(int)out);
3407 if (opcode[i]==0x2A) { // SWL
3408 // Write msb into least significant byte
3409 if(rs2[i]) emit_rorimm(tl,24,tl);
3410 emit_writebyte_indexed(tl,-3,temp);
3411 if(rs2[i]) emit_rorimm(tl,8,tl);
3412 }
3413 if (opcode[i]==0x2E) { // SWR
3414 // Write entire word
3415 emit_writeword_indexed(tl,-3,temp);
3416 }
3417 if (opcode[i]==0x2C) { // SDL
3418 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3419 // Write msb into least significant byte
3420 if(rs2[i]) emit_rorimm(th,24,th);
3421 emit_writebyte_indexed(th,-3,temp);
3422 if(rs2[i]) emit_rorimm(th,8,th);
3423 }
3424 if (opcode[i]==0x2D) { // SDR
3425 if(rs2[i]) emit_mov(th,temp2);
3426 // Write entire word
3427 emit_writeword_indexed(tl,-3,temp);
3428 }
3429 set_jump_target(done0,(int)out);
3430 set_jump_target(done1,(int)out);
3431 set_jump_target(done2,(int)out);
3432 if (opcode[i]==0x2C) { // SDL
3433 emit_testimm(temp,4);
57871462 3434 done0=(int)out;
57871462 3435 emit_jne(0);
535d208a 3436 emit_andimm(temp,~3,temp);
3437 emit_writeword_indexed(temp2,4,temp);
3438 set_jump_target(done0,(int)out);
3439 }
3440 if (opcode[i]==0x2D) { // SDR
3441 emit_testimm(temp,4);
3442 done0=(int)out;
3443 emit_jeq(0);
3444 emit_andimm(temp,~3,temp);
3445 emit_writeword_indexed(temp2,-4,temp);
57871462 3446 set_jump_target(done0,(int)out);
57871462 3447 }
535d208a 3448 if(!c||!memtarget)
3449 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3450 if(!using_tlb) {
535d208a 3451 #ifdef RAM_OFFSET
3452 int map=get_reg(i_regs->regmap,ROREG);
3453 if(map<0) map=HOST_TEMPREG;
3454 gen_orig_addr_w(temp,map);
3455 #else
57871462 3456 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3457 #endif
57871462 3458 #if defined(HOST_IMM8)
3459 int ir=get_reg(i_regs->regmap,INVCP);
3460 assert(ir>=0);
3461 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3462 #else
3463 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3464 #endif
535d208a 3465 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3466 emit_callne(invalidate_addr_reg[temp]);
3467 #else
57871462 3468 jaddr2=(int)out;
3469 emit_jne(0);
3470 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3471 #endif
57871462 3472 }
3473 /*
3474 emit_pusha();
3475 //save_regs(0x100f);
3476 emit_readword((int)&last_count,ECX);
3477 if(get_reg(i_regs->regmap,CCREG)<0)
3478 emit_loadreg(CCREG,HOST_CCREG);
3479 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3480 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3481 emit_writeword(HOST_CCREG,(int)&Count);
3482 emit_call((int)memdebug);
3483 emit_popa();
3484 //restore_regs(0x100f);
3485 /**/
3486}
3487
3488void c1ls_assemble(int i,struct regstat *i_regs)
3489{
3d624f89 3490#ifndef DISABLE_COP1
57871462 3491 int s,th,tl;
3492 int temp,ar;
3493 int map=-1;
3494 int offset;
3495 int c=0;
3496 int jaddr,jaddr2=0,jaddr3,type;
3497 int agr=AGEN1+(i&1);
3498 u_int hr,reglist=0;
3499 th=get_reg(i_regs->regmap,FTEMP|64);
3500 tl=get_reg(i_regs->regmap,FTEMP);
3501 s=get_reg(i_regs->regmap,rs1[i]);
3502 temp=get_reg(i_regs->regmap,agr);
3503 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3504 offset=imm[i];
3505 assert(tl>=0);
3506 assert(rs1[i]>0);
3507 assert(temp>=0);
3508 for(hr=0;hr<HOST_REGS;hr++) {
3509 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3510 }
3511 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3512 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3513 {
3514 // Loads use a temporary register which we need to save
3515 reglist|=1<<temp;
3516 }
3517 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3518 ar=temp;
3519 else // LWC1/LDC1
3520 ar=tl;
3521 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3522 //else c=(i_regs->wasconst>>s)&1;
3523 if(s>=0) c=(i_regs->wasconst>>s)&1;
3524 // Check cop1 unusable
3525 if(!cop1_usable) {
3526 signed char rs=get_reg(i_regs->regmap,CSREG);
3527 assert(rs>=0);
3528 emit_testimm(rs,0x20000000);
3529 jaddr=(int)out;
3530 emit_jeq(0);
3531 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3532 cop1_usable=1;
3533 }
3534 if (opcode[i]==0x39) { // SWC1 (get float address)
3535 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3536 }
3537 if (opcode[i]==0x3D) { // SDC1 (get double address)
3538 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3539 }
3540 // Generate address + offset
3541 if(!using_tlb) {
3542 if(!c)
4cb76aa4 3543 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3544 }
3545 else
3546 {
3547 map=get_reg(i_regs->regmap,TLREG);
3548 assert(map>=0);
3549 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3550 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3551 }
3552 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3553 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3554 }
3555 }
3556 if (opcode[i]==0x39) { // SWC1 (read float)
3557 emit_readword_indexed(0,tl,tl);
3558 }
3559 if (opcode[i]==0x3D) { // SDC1 (read double)
3560 emit_readword_indexed(4,tl,th);
3561 emit_readword_indexed(0,tl,tl);
3562 }
3563 if (opcode[i]==0x31) { // LWC1 (get target address)
3564 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3565 }
3566 if (opcode[i]==0x35) { // LDC1 (get target address)
3567 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3568 }
3569 if(!using_tlb) {
3570 if(!c) {
3571 jaddr2=(int)out;
3572 emit_jno(0);
3573 }
4cb76aa4 3574 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3575 jaddr2=(int)out;
3576 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3577 }
3578 #ifdef DESTRUCTIVE_SHIFT
3579 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3580 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3581 }
3582 #endif
3583 }else{
3584 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3585 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3586 }
3587 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3588 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3589 }
3590 }
3591 if (opcode[i]==0x31) { // LWC1
3592 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3593 //gen_tlb_addr_r(ar,map);
3594 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3595 #ifdef HOST_IMM_ADDR32
3596 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3597 else
3598 #endif
3599 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3600 type=LOADW_STUB;
3601 }
3602 if (opcode[i]==0x35) { // LDC1
3603 assert(th>=0);
3604 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3605 //gen_tlb_addr_r(ar,map);
3606 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3607 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3608 #ifdef HOST_IMM_ADDR32
3609 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3610 else
3611 #endif
3612 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3613 type=LOADD_STUB;
3614 }
3615 if (opcode[i]==0x39) { // SWC1
3616 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3617 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3618 type=STOREW_STUB;
3619 }
3620 if (opcode[i]==0x3D) { // SDC1
3621 assert(th>=0);
3622 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3623 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3624 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3625 type=STORED_STUB;
3626 }
3627 if(!using_tlb) {
3628 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3629 #ifndef DESTRUCTIVE_SHIFT
3630 temp=offset||c||s<0?ar:s;
3631 #endif
3632 #if defined(HOST_IMM8)
3633 int ir=get_reg(i_regs->regmap,INVCP);
3634 assert(ir>=0);
3635 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3636 #else
3637 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3638 #endif
0bbd1454 3639 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3640 emit_callne(invalidate_addr_reg[temp]);
3641 #else
57871462 3642 jaddr3=(int)out;
3643 emit_jne(0);
3644 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3645 #endif
57871462 3646 }
3647 }
3648 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3649 if (opcode[i]==0x31) { // LWC1 (write float)
3650 emit_writeword_indexed(tl,0,temp);
3651 }
3652 if (opcode[i]==0x35) { // LDC1 (write double)
3653 emit_writeword_indexed(th,4,temp);
3654 emit_writeword_indexed(tl,0,temp);
3655 }
3656 //if(opcode[i]==0x39)
3657 /*if(opcode[i]==0x39||opcode[i]==0x31)
3658 {
3659 emit_pusha();
3660 emit_readword((int)&last_count,ECX);
3661 if(get_reg(i_regs->regmap,CCREG)<0)
3662 emit_loadreg(CCREG,HOST_CCREG);
3663 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3664 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3665 emit_writeword(HOST_CCREG,(int)&Count);
3666 emit_call((int)memdebug);
3667 emit_popa();
3668 }/**/
3d624f89 3669#else
3670 cop1_unusable(i, i_regs);
3671#endif
57871462 3672}
3673
b9b61529 3674void c2ls_assemble(int i,struct regstat *i_regs)
3675{
3676 int s,tl;
3677 int ar;
3678 int offset;
1fd1aceb 3679 int memtarget=0,c=0;
b9b61529 3680 int jaddr,jaddr2=0,jaddr3,type;
3681 int agr=AGEN1+(i&1);
3682 u_int hr,reglist=0;
3683 u_int copr=(source[i]>>16)&0x1f;
3684 s=get_reg(i_regs->regmap,rs1[i]);
3685 tl=get_reg(i_regs->regmap,FTEMP);
3686 offset=imm[i];
3687 assert(rs1[i]>0);
3688 assert(tl>=0);
3689 assert(!using_tlb);
3690
3691 for(hr=0;hr<HOST_REGS;hr++) {
3692 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3693 }
3694 if(i_regs->regmap[HOST_CCREG]==CCREG)
3695 reglist&=~(1<<HOST_CCREG);
3696
3697 // get the address
3698 if (opcode[i]==0x3a) { // SWC2
3699 ar=get_reg(i_regs->regmap,agr);
3700 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3701 reglist|=1<<ar;
3702 } else { // LWC2
3703 ar=tl;
3704 }
1fd1aceb 3705 if(s>=0) c=(i_regs->wasconst>>s)&1;
3706 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3707 if (!offset&&!c&&s>=0) ar=s;
3708 assert(ar>=0);
3709
3710 if (opcode[i]==0x3a) { // SWC2
3711 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3712 type=STOREW_STUB;
b9b61529 3713 }
1fd1aceb 3714 else
b9b61529 3715 type=LOADW_STUB;
1fd1aceb 3716
3717 if(c&&!memtarget) {
3718 jaddr2=(int)out;
3719 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3720 }
1fd1aceb 3721 else {
3722 if(!c) {
3723 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3724 jaddr2=(int)out;
3725 emit_jno(0);
3726 }
3727 if (opcode[i]==0x32) { // LWC2
3728 #ifdef HOST_IMM_ADDR32
3729 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3730 else
3731 #endif
3732 emit_readword_indexed(0,ar,tl);
3733 }
3734 if (opcode[i]==0x3a) { // SWC2
3735 #ifdef DESTRUCTIVE_SHIFT
3736 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3737 #endif
3738 emit_writeword_indexed(tl,0,ar);
3739 }
b9b61529 3740 }
3741 if(jaddr2)
3742 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3743 if (opcode[i]==0x3a) { // SWC2
3744#if defined(HOST_IMM8)
3745 int ir=get_reg(i_regs->regmap,INVCP);
3746 assert(ir>=0);
3747 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3748#else
3749 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3750#endif
0bbd1454 3751 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3752 emit_callne(invalidate_addr_reg[ar]);
3753 #else
b9b61529 3754 jaddr3=(int)out;
3755 emit_jne(0);
3756 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3757 #endif
b9b61529 3758 }
3759 if (opcode[i]==0x32) { // LWC2
3760 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3761 }
3762}
3763
57871462 3764#ifndef multdiv_assemble
3765void multdiv_assemble(int i,struct regstat *i_regs)
3766{
3767 printf("Need multdiv_assemble for this architecture.\n");
3768 exit(1);
3769}
3770#endif
3771
3772void mov_assemble(int i,struct regstat *i_regs)
3773{
3774 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3775 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3776 if(rt1[i]) {
3777 signed char sh,sl,th,tl;
3778 th=get_reg(i_regs->regmap,rt1[i]|64);
3779 tl=get_reg(i_regs->regmap,rt1[i]);
3780 //assert(tl>=0);
3781 if(tl>=0) {
3782 sh=get_reg(i_regs->regmap,rs1[i]|64);
3783 sl=get_reg(i_regs->regmap,rs1[i]);
3784 if(sl>=0) emit_mov(sl,tl);
3785 else emit_loadreg(rs1[i],tl);
3786 if(th>=0) {
3787 if(sh>=0) emit_mov(sh,th);
3788 else emit_loadreg(rs1[i]|64,th);
3789 }
3790 }
3791 }
3792}
3793
3794#ifndef fconv_assemble
3795void fconv_assemble(int i,struct regstat *i_regs)
3796{
3797 printf("Need fconv_assemble for this architecture.\n");
3798 exit(1);
3799}
3800#endif
3801
3802#if 0
3803void float_assemble(int i,struct regstat *i_regs)
3804{
3805 printf("Need float_assemble for this architecture.\n");
3806 exit(1);
3807}
3808#endif
3809
3810void syscall_assemble(int i,struct regstat *i_regs)
3811{
3812 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3813 assert(ccreg==HOST_CCREG);
3814 assert(!is_delayslot);
3815 emit_movimm(start+i*4,EAX); // Get PC
3816 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3817 emit_jmp((int)jump_syscall_hle); // XXX
3818}
3819
3820void hlecall_assemble(int i,struct regstat *i_regs)
3821{
3822 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3823 assert(ccreg==HOST_CCREG);
3824 assert(!is_delayslot);
3825 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3826 emit_movimm((int)psxHLEt[source[i]&7],1);
7139f3c8 3827 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
67ba0fb4 3828 emit_jmp((int)jump_hlecall);
57871462 3829}
3830
1e973cb0 3831void intcall_assemble(int i,struct regstat *i_regs)
3832{
3833 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3834 assert(ccreg==HOST_CCREG);
3835 assert(!is_delayslot);
3836 emit_movimm(start+i*4,0); // Get PC
3837 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3838 emit_jmp((int)jump_intcall);
3839}
3840
57871462 3841void ds_assemble(int i,struct regstat *i_regs)
3842{
3843 is_delayslot=1;
3844 switch(itype[i]) {
3845 case ALU:
3846 alu_assemble(i,i_regs);break;
3847 case IMM16:
3848 imm16_assemble(i,i_regs);break;
3849 case SHIFT:
3850 shift_assemble(i,i_regs);break;
3851 case SHIFTIMM:
3852 shiftimm_assemble(i,i_regs);break;
3853 case LOAD:
3854 load_assemble(i,i_regs);break;
3855 case LOADLR:
3856 loadlr_assemble(i,i_regs);break;
3857 case STORE:
3858 store_assemble(i,i_regs);break;
3859 case STORELR:
3860 storelr_assemble(i,i_regs);break;
3861 case COP0:
3862 cop0_assemble(i,i_regs);break;
3863 case COP1:
3864 cop1_assemble(i,i_regs);break;
3865 case C1LS:
3866 c1ls_assemble(i,i_regs);break;
b9b61529 3867 case COP2:
3868 cop2_assemble(i,i_regs);break;
3869 case C2LS:
3870 c2ls_assemble(i,i_regs);break;
3871 case C2OP:
3872 c2op_assemble(i,i_regs);break;
57871462 3873 case FCONV:
3874 fconv_assemble(i,i_regs);break;
3875 case FLOAT:
3876 float_assemble(i,i_regs);break;
3877 case FCOMP:
3878 fcomp_assemble(i,i_regs);break;
3879 case MULTDIV:
3880 multdiv_assemble(i,i_regs);break;
3881 case MOV:
3882 mov_assemble(i,i_regs);break;
3883 case SYSCALL:
7139f3c8 3884 case HLECALL:
1e973cb0 3885 case INTCALL:
57871462 3886 case SPAN:
3887 case UJUMP:
3888 case RJUMP:
3889 case CJUMP:
3890 case SJUMP:
3891 case FJUMP:
3892 printf("Jump in the delay slot. This is probably a bug.\n");
3893 }
3894 is_delayslot=0;
3895}
3896
3897// Is the branch target a valid internal jump?
3898int internal_branch(uint64_t i_is32,int addr)
3899{
3900 if(addr&1) return 0; // Indirect (register) jump
3901 if(addr>=start && addr<start+slen*4-4)
3902 {
3903 int t=(addr-start)>>2;
3904 // Delay slots are not valid branch targets
3905 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3906 // 64 -> 32 bit transition requires a recompile
3907 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3908 {
3909 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3910 else printf("optimizable: yes\n");
3911 }*/
3912 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 3913#ifndef FORCE32
57871462 3914 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 3915 else
3916#endif
3917 return 1;
57871462 3918 }
3919 return 0;
3920}
3921
3922#ifndef wb_invalidate
3923void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3924 uint64_t u,uint64_t uu)
3925{
3926 int hr;
3927 for(hr=0;hr<HOST_REGS;hr++) {
3928 if(hr!=EXCLUDE_REG) {
3929 if(pre[hr]!=entry[hr]) {
3930 if(pre[hr]>=0) {
3931 if((dirty>>hr)&1) {
3932 if(get_reg(entry,pre[hr])<0) {
3933 if(pre[hr]<64) {
3934 if(!((u>>pre[hr])&1)) {
3935 emit_storereg(pre[hr],hr);
3936 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3937 emit_sarimm(hr,31,hr);
3938 emit_storereg(pre[hr]|64,hr);
3939 }
3940 }
3941 }else{
3942 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3943 emit_storereg(pre[hr],hr);
3944 }
3945 }
3946 }
3947 }
3948 }
3949 }
3950 }
3951 }
3952 // Move from one register to another (no writeback)
3953 for(hr=0;hr<HOST_REGS;hr++) {
3954 if(hr!=EXCLUDE_REG) {
3955 if(pre[hr]!=entry[hr]) {
3956 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3957 int nr;
3958 if((nr=get_reg(entry,pre[hr]))>=0) {
3959 emit_mov(hr,nr);
3960 }
3961 }
3962 }
3963 }
3964 }
3965}
3966#endif
3967
3968// Load the specified registers
3969// This only loads the registers given as arguments because
3970// we don't want to load things that will be overwritten
3971void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3972{
3973 int hr;
3974 // Load 32-bit regs
3975 for(hr=0;hr<HOST_REGS;hr++) {
3976 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3977 if(entry[hr]!=regmap[hr]) {
3978 if(regmap[hr]==rs1||regmap[hr]==rs2)
3979 {
3980 if(regmap[hr]==0) {
3981 emit_zeroreg(hr);
3982 }
3983 else
3984 {
3985 emit_loadreg(regmap[hr],hr);
3986 }
3987 }
3988 }
3989 }
3990 }
3991 //Load 64-bit regs
3992 for(hr=0;hr<HOST_REGS;hr++) {
3993 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3994 if(entry[hr]!=regmap[hr]) {
3995 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3996 {
3997 assert(regmap[hr]!=64);
3998 if((is32>>(regmap[hr]&63))&1) {
3999 int lr=get_reg(regmap,regmap[hr]-64);
4000 if(lr>=0)
4001 emit_sarimm(lr,31,hr);
4002 else
4003 emit_loadreg(regmap[hr],hr);
4004 }
4005 else
4006 {
4007 emit_loadreg(regmap[hr],hr);
4008 }
4009 }
4010 }
4011 }
4012 }
4013}
4014
4015// Load registers prior to the start of a loop
4016// so that they are not loaded within the loop
4017static void loop_preload(signed char pre[],signed char entry[])
4018{
4019 int hr;
4020 for(hr=0;hr<HOST_REGS;hr++) {
4021 if(hr!=EXCLUDE_REG) {
4022 if(pre[hr]!=entry[hr]) {
4023 if(entry[hr]>=0) {
4024 if(get_reg(pre,entry[hr])<0) {
4025 assem_debug("loop preload:\n");
4026 //printf("loop preload: %d\n",hr);
4027 if(entry[hr]==0) {
4028 emit_zeroreg(hr);
4029 }
4030 else if(entry[hr]<TEMPREG)
4031 {
4032 emit_loadreg(entry[hr],hr);
4033 }
4034 else if(entry[hr]-64<TEMPREG)
4035 {
4036 emit_loadreg(entry[hr],hr);
4037 }
4038 }
4039 }
4040 }
4041 }
4042 }
4043}
4044
4045// Generate address for load/store instruction
b9b61529 4046// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4047void address_generation(int i,struct regstat *i_regs,signed char entry[])
4048{
b9b61529 4049 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
57871462 4050 int ra;
4051 int agr=AGEN1+(i&1);
4052 int mgr=MGEN1+(i&1);
4053 if(itype[i]==LOAD) {
4054 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4055 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4056 assert(ra>=0);
57871462 4057 }
4058 if(itype[i]==LOADLR) {
4059 ra=get_reg(i_regs->regmap,FTEMP);
4060 }
4061 if(itype[i]==STORE||itype[i]==STORELR) {
4062 ra=get_reg(i_regs->regmap,agr);
4063 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4064 }
b9b61529 4065 if(itype[i]==C1LS||itype[i]==C2LS) {
4066 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4067 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4068 else { // SWC1/SDC1/SWC2/SDC2
57871462 4069 ra=get_reg(i_regs->regmap,agr);
4070 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4071 }
4072 }
4073 int rs=get_reg(i_regs->regmap,rs1[i]);
4074 int rm=get_reg(i_regs->regmap,TLREG);
4075 if(ra>=0) {
4076 int offset=imm[i];
4077 int c=(i_regs->wasconst>>rs)&1;
4078 if(rs1[i]==0) {
4079 // Using r0 as a base address
4080 /*if(rm>=0) {
4081 if(!entry||entry[rm]!=mgr) {
4082 generate_map_const(offset,rm);
4083 } // else did it in the previous cycle
4084 }*/
4085 if(!entry||entry[ra]!=agr) {
4086 if (opcode[i]==0x22||opcode[i]==0x26) {
4087 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4088 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4089 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4090 }else{
4091 emit_movimm(offset,ra);
4092 }
4093 } // else did it in the previous cycle
4094 }
4095 else if(rs<0) {
4096 if(!entry||entry[ra]!=rs1[i])
4097 emit_loadreg(rs1[i],ra);
4098 //if(!entry||entry[ra]!=rs1[i])
4099 // printf("poor load scheduling!\n");
4100 }
4101 else if(c) {
4102 if(rm>=0) {
4103 if(!entry||entry[rm]!=mgr) {
b9b61529 4104 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4105 // Stores to memory go thru the mapper to detect self-modifying
4106 // code, loads don't.
4107 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4108 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4109 generate_map_const(constmap[i][rs]+offset,rm);
4110 }else{
4111 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4112 generate_map_const(constmap[i][rs]+offset,rm);
4113 }
4114 }
4115 }
4116 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4117 if(!entry||entry[ra]!=agr) {
4118 if (opcode[i]==0x22||opcode[i]==0x26) {
4119 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4120 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4121 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4122 }else{
4123 #ifdef HOST_IMM_ADDR32
b9b61529 4124 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4125 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4126 #endif
4127 emit_movimm(constmap[i][rs]+offset,ra);
4128 }
4129 } // else did it in the previous cycle
4130 } // else load_consts already did it
4131 }
4132 if(offset&&!c&&rs1[i]) {
4133 if(rs>=0) {
4134 emit_addimm(rs,offset,ra);
4135 }else{
4136 emit_addimm(ra,offset,ra);
4137 }
4138 }
4139 }
4140 }
4141 // Preload constants for next instruction
b9b61529 4142 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4143 int agr,ra;
4144 #ifndef HOST_IMM_ADDR32
4145 // Mapper entry
4146 agr=MGEN1+((i+1)&1);
4147 ra=get_reg(i_regs->regmap,agr);
4148 if(ra>=0) {
4149 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4150 int offset=imm[i+1];
4151 int c=(regs[i+1].wasconst>>rs)&1;
4152 if(c) {
b9b61529 4153 if(itype[i+1]==STORE||itype[i+1]==STORELR
4154 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4155 // Stores to memory go thru the mapper to detect self-modifying
4156 // code, loads don't.
4157 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4158 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4159 generate_map_const(constmap[i+1][rs]+offset,ra);
4160 }else{
4161 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4162 generate_map_const(constmap[i+1][rs]+offset,ra);
4163 }
4164 }
4165 /*else if(rs1[i]==0) {
4166 generate_map_const(offset,ra);
4167 }*/
4168 }
4169 #endif
4170 // Actual address
4171 agr=AGEN1+((i+1)&1);
4172 ra=get_reg(i_regs->regmap,agr);
4173 if(ra>=0) {
4174 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4175 int offset=imm[i+1];
4176 int c=(regs[i+1].wasconst>>rs)&1;
4177 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4178 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4179 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4180 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4181 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4182 }else{
4183 #ifdef HOST_IMM_ADDR32
b9b61529 4184 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4185 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4186 #endif
4187 emit_movimm(constmap[i+1][rs]+offset,ra);
4188 }
4189 }
4190 else if(rs1[i+1]==0) {
4191 // Using r0 as a base address
4192 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4193 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4194 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4195 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4196 }else{
4197 emit_movimm(offset,ra);
4198 }
4199 }
4200 }
4201 }
4202}
4203
4204int get_final_value(int hr, int i, int *value)
4205{
4206 int reg=regs[i].regmap[hr];
4207 while(i<slen-1) {
4208 if(regs[i+1].regmap[hr]!=reg) break;
4209 if(!((regs[i+1].isconst>>hr)&1)) break;
4210 if(bt[i+1]) break;
4211 i++;
4212 }
4213 if(i<slen-1) {
4214 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4215 *value=constmap[i][hr];
4216 return 1;
4217 }
4218 if(!bt[i+1]) {
4219 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4220 // Load in delay slot, out-of-order execution
4221 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4222 {
4223 #ifdef HOST_IMM_ADDR32
4224 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4225 #endif
4226 // Precompute load address
4227 *value=constmap[i][hr]+imm[i+2];
4228 return 1;
4229 }
4230 }
4231 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4232 {
4233 #ifdef HOST_IMM_ADDR32
4234 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4235 #endif
4236 // Precompute load address
4237 *value=constmap[i][hr]+imm[i+1];
4238 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4239 return 1;
4240 }
4241 }
4242 }
4243 *value=constmap[i][hr];
4244 //printf("c=%x\n",(int)constmap[i][hr]);
4245 if(i==slen-1) return 1;
4246 if(reg<64) {
4247 return !((unneeded_reg[i+1]>>reg)&1);
4248 }else{
4249 return !((unneeded_reg_upper[i+1]>>reg)&1);
4250 }
4251}
4252
4253// Load registers with known constants
4254void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4255{
4256 int hr;
4257 // Load 32-bit regs
4258 for(hr=0;hr<HOST_REGS;hr++) {
4259 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4260 //if(entry[hr]!=regmap[hr]) {
4261 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4262 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4263 int value;
4264 if(get_final_value(hr,i,&value)) {
4265 if(value==0) {
4266 emit_zeroreg(hr);
4267 }
4268 else {
4269 emit_movimm(value,hr);
4270 }
4271 }
4272 }
4273 }
4274 }
4275 }
4276 // Load 64-bit regs
4277 for(hr=0;hr<HOST_REGS;hr++) {
4278 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4279 //if(entry[hr]!=regmap[hr]) {
4280 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4281 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4282 if((is32>>(regmap[hr]&63))&1) {
4283 int lr=get_reg(regmap,regmap[hr]-64);
4284 assert(lr>=0);
4285 emit_sarimm(lr,31,hr);
4286 }
4287 else
4288 {
4289 int value;
4290 if(get_final_value(hr,i,&value)) {
4291 if(value==0) {
4292 emit_zeroreg(hr);
4293 }
4294 else {
4295 emit_movimm(value,hr);
4296 }
4297 }
4298 }
4299 }
4300 }
4301 }
4302 }
4303}
4304void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4305{
4306 int hr;
4307 // Load 32-bit regs
4308 for(hr=0;hr<HOST_REGS;hr++) {
4309 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4310 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4311 int value=constmap[i][hr];
4312 if(value==0) {
4313 emit_zeroreg(hr);
4314 }
4315 else {
4316 emit_movimm(value,hr);
4317 }
4318 }
4319 }
4320 }
4321 // Load 64-bit regs
4322 for(hr=0;hr<HOST_REGS;hr++) {
4323 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4324 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4325 if((is32>>(regmap[hr]&63))&1) {
4326 int lr=get_reg(regmap,regmap[hr]-64);
4327 assert(lr>=0);
4328 emit_sarimm(lr,31,hr);
4329 }
4330 else
4331 {
4332 int value=constmap[i][hr];
4333 if(value==0) {
4334 emit_zeroreg(hr);
4335 }
4336 else {
4337 emit_movimm(value,hr);
4338 }
4339 }
4340 }
4341 }
4342 }
4343}
4344
4345// Write out all dirty registers (except cycle count)
4346void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4347{
4348 int hr;
4349 for(hr=0;hr<HOST_REGS;hr++) {
4350 if(hr!=EXCLUDE_REG) {
4351 if(i_regmap[hr]>0) {
4352 if(i_regmap[hr]!=CCREG) {
4353 if((i_dirty>>hr)&1) {
4354 if(i_regmap[hr]<64) {
4355 emit_storereg(i_regmap[hr],hr);
24385cae 4356#ifndef FORCE32
57871462 4357 if( ((i_is32>>i_regmap[hr])&1) ) {
4358 #ifdef DESTRUCTIVE_WRITEBACK
4359 emit_sarimm(hr,31,hr);
4360 emit_storereg(i_regmap[hr]|64,hr);
4361 #else
4362 emit_sarimm(hr,31,HOST_TEMPREG);
4363 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4364 #endif
4365 }
24385cae 4366#endif
57871462 4367 }else{
4368 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4369 emit_storereg(i_regmap[hr],hr);
4370 }
4371 }
4372 }
4373 }
4374 }
4375 }
4376 }
4377}
4378// Write out dirty registers that we need to reload (pair with load_needed_regs)
4379// This writes the registers not written by store_regs_bt
4380void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4381{
4382 int hr;
4383 int t=(addr-start)>>2;
4384 for(hr=0;hr<HOST_REGS;hr++) {
4385 if(hr!=EXCLUDE_REG) {
4386 if(i_regmap[hr]>0) {
4387 if(i_regmap[hr]!=CCREG) {
4388 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4389 if((i_dirty>>hr)&1) {
4390 if(i_regmap[hr]<64) {
4391 emit_storereg(i_regmap[hr],hr);
24385cae 4392#ifndef FORCE32
57871462 4393 if( ((i_is32>>i_regmap[hr])&1) ) {
4394 #ifdef DESTRUCTIVE_WRITEBACK
4395 emit_sarimm(hr,31,hr);
4396 emit_storereg(i_regmap[hr]|64,hr);
4397 #else
4398 emit_sarimm(hr,31,HOST_TEMPREG);
4399 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4400 #endif
4401 }
24385cae 4402#endif
57871462 4403 }else{
4404 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4405 emit_storereg(i_regmap[hr],hr);
4406 }
4407 }
4408 }
4409 }
4410 }
4411 }
4412 }
4413 }
4414}
4415
4416// Load all registers (except cycle count)
4417void load_all_regs(signed char i_regmap[])
4418{
4419 int hr;
4420 for(hr=0;hr<HOST_REGS;hr++) {
4421 if(hr!=EXCLUDE_REG) {
4422 if(i_regmap[hr]==0) {
4423 emit_zeroreg(hr);
4424 }
4425 else
4426 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4427 {
4428 emit_loadreg(i_regmap[hr],hr);
4429 }
4430 }
4431 }
4432}
4433
4434// Load all current registers also needed by next instruction
4435void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4436{
4437 int hr;
4438 for(hr=0;hr<HOST_REGS;hr++) {
4439 if(hr!=EXCLUDE_REG) {
4440 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4441 if(i_regmap[hr]==0) {
4442 emit_zeroreg(hr);
4443 }
4444 else
4445 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4446 {
4447 emit_loadreg(i_regmap[hr],hr);
4448 }
4449 }
4450 }
4451 }
4452}
4453
4454// Load all regs, storing cycle count if necessary
4455void load_regs_entry(int t)
4456{
4457 int hr;
4458 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4459 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4460 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4461 emit_storereg(CCREG,HOST_CCREG);
4462 }
4463 // Load 32-bit regs
4464 for(hr=0;hr<HOST_REGS;hr++) {
4465 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4466 if(regs[t].regmap_entry[hr]==0) {
4467 emit_zeroreg(hr);
4468 }
4469 else if(regs[t].regmap_entry[hr]!=CCREG)
4470 {
4471 emit_loadreg(regs[t].regmap_entry[hr],hr);
4472 }
4473 }
4474 }
4475 // Load 64-bit regs
4476 for(hr=0;hr<HOST_REGS;hr++) {
4477 if(regs[t].regmap_entry[hr]>=64) {
4478 assert(regs[t].regmap_entry[hr]!=64);
4479 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4480 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4481 if(lr<0) {
4482 emit_loadreg(regs[t].regmap_entry[hr],hr);
4483 }
4484 else
4485 {
4486 emit_sarimm(lr,31,hr);
4487 }
4488 }
4489 else
4490 {
4491 emit_loadreg(regs[t].regmap_entry[hr],hr);
4492 }
4493 }
4494 }
4495}
4496
4497// Store dirty registers prior to branch
4498void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4499{
4500 if(internal_branch(i_is32,addr))
4501 {
4502 int t=(addr-start)>>2;
4503 int hr;
4504 for(hr=0;hr<HOST_REGS;hr++) {
4505 if(hr!=EXCLUDE_REG) {
4506 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4507 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4508 if((i_dirty>>hr)&1) {
4509 if(i_regmap[hr]<64) {
4510 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4511 emit_storereg(i_regmap[hr],hr);
4512 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4513 #ifdef DESTRUCTIVE_WRITEBACK
4514 emit_sarimm(hr,31,hr);
4515 emit_storereg(i_regmap[hr]|64,hr);
4516 #else
4517 emit_sarimm(hr,31,HOST_TEMPREG);
4518 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4519 #endif
4520 }
4521 }
4522 }else{
4523 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4524 emit_storereg(i_regmap[hr],hr);
4525 }
4526 }
4527 }
4528 }
4529 }
4530 }
4531 }
4532 }
4533 else
4534 {
4535 // Branch out of this block, write out all dirty regs
4536 wb_dirtys(i_regmap,i_is32,i_dirty);
4537 }
4538}
4539
4540// Load all needed registers for branch target
4541void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4542{
4543 //if(addr>=start && addr<(start+slen*4))
4544 if(internal_branch(i_is32,addr))
4545 {
4546 int t=(addr-start)>>2;
4547 int hr;
4548 // Store the cycle count before loading something else
4549 if(i_regmap[HOST_CCREG]!=CCREG) {
4550 assert(i_regmap[HOST_CCREG]==-1);
4551 }
4552 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4553 emit_storereg(CCREG,HOST_CCREG);
4554 }
4555 // Load 32-bit regs
4556 for(hr=0;hr<HOST_REGS;hr++) {
4557 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4558 #ifdef DESTRUCTIVE_WRITEBACK
4559 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4560 #else
4561 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4562 #endif
4563 if(regs[t].regmap_entry[hr]==0) {
4564 emit_zeroreg(hr);
4565 }
4566 else if(regs[t].regmap_entry[hr]!=CCREG)
4567 {
4568 emit_loadreg(regs[t].regmap_entry[hr],hr);
4569 }
4570 }
4571 }
4572 }
4573 //Load 64-bit regs
4574 for(hr=0;hr<HOST_REGS;hr++) {
4575 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4576 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4577 assert(regs[t].regmap_entry[hr]!=64);
4578 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4579 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4580 if(lr<0) {
4581 emit_loadreg(regs[t].regmap_entry[hr],hr);
4582 }
4583 else
4584 {
4585 emit_sarimm(lr,31,hr);
4586 }
4587 }
4588 else
4589 {
4590 emit_loadreg(regs[t].regmap_entry[hr],hr);
4591 }
4592 }
4593 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4594 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4595 assert(lr>=0);
4596 emit_sarimm(lr,31,hr);
4597 }
4598 }
4599 }
4600 }
4601}
4602
4603int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4604{
4605 if(addr>=start && addr<start+slen*4-4)
4606 {
4607 int t=(addr-start)>>2;
4608 int hr;
4609 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4610 for(hr=0;hr<HOST_REGS;hr++)
4611 {
4612 if(hr!=EXCLUDE_REG)
4613 {
4614 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4615 {
4616 if(regs[t].regmap_entry[hr]!=-1)
4617 {
4618 return 0;
4619 }
4620 else
4621 if((i_dirty>>hr)&1)
4622 {
4623 if(i_regmap[hr]<64)
4624 {
4625 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4626 return 0;
4627 }
4628 else
4629 {
4630 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4631 return 0;
4632 }
4633 }
4634 }
4635 else // Same register but is it 32-bit or dirty?
4636 if(i_regmap[hr]>=0)
4637 {
4638 if(!((regs[t].dirty>>hr)&1))
4639 {
4640 if((i_dirty>>hr)&1)
4641 {
4642 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4643 {
4644 //printf("%x: dirty no match\n",addr);
4645 return 0;
4646 }
4647 }
4648 }
4649 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4650 {
4651 //printf("%x: is32 no match\n",addr);
4652 return 0;
4653 }
4654 }
4655 }
4656 }
4657 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4658#ifndef FORCE32
57871462 4659 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4660#endif
57871462 4661 // Delay slots are not valid branch targets
4662 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4663 // Delay slots require additional processing, so do not match
4664 if(is_ds[t]) return 0;
4665 }
4666 else
4667 {
4668 int hr;
4669 for(hr=0;hr<HOST_REGS;hr++)
4670 {
4671 if(hr!=EXCLUDE_REG)
4672 {
4673 if(i_regmap[hr]>=0)
4674 {
4675 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4676 {
4677 if((i_dirty>>hr)&1)
4678 {
4679 return 0;
4680 }
4681 }
4682 }
4683 }
4684 }
4685 }
4686 return 1;
4687}
4688
4689// Used when a branch jumps into the delay slot of another branch
4690void ds_assemble_entry(int i)
4691{
4692 int t=(ba[i]-start)>>2;
4693 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4694 assem_debug("Assemble delay slot at %x\n",ba[i]);
4695 assem_debug("<->\n");
4696 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4697 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4698 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4699 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4700 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4701 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4702 cop1_usable=0;
4703 is_delayslot=0;
4704 switch(itype[t]) {
4705 case ALU:
4706 alu_assemble(t,&regs[t]);break;
4707 case IMM16:
4708 imm16_assemble(t,&regs[t]);break;
4709 case SHIFT:
4710 shift_assemble(t,&regs[t]);break;
4711 case SHIFTIMM:
4712 shiftimm_assemble(t,&regs[t]);break;
4713 case LOAD:
4714 load_assemble(t,&regs[t]);break;
4715 case LOADLR:
4716 loadlr_assemble(t,&regs[t]);break;
4717 case STORE:
4718 store_assemble(t,&regs[t]);break;
4719 case STORELR:
4720 storelr_assemble(t,&regs[t]);break;
4721 case COP0:
4722 cop0_assemble(t,&regs[t]);break;
4723 case COP1:
4724 cop1_assemble(t,&regs[t]);break;
4725 case C1LS:
4726 c1ls_assemble(t,&regs[t]);break;
b9b61529 4727 case COP2:
4728 cop2_assemble(t,&regs[t]);break;
4729 case C2LS:
4730 c2ls_assemble(t,&regs[t]);break;
4731 case C2OP:
4732 c2op_assemble(t,&regs[t]);break;
57871462 4733 case FCONV:
4734 fconv_assemble(t,&regs[t]);break;
4735 case FLOAT:
4736 float_assemble(t,&regs[t]);break;
4737 case FCOMP:
4738 fcomp_assemble(t,&regs[t]);break;
4739 case MULTDIV:
4740 multdiv_assemble(t,&regs[t]);break;
4741 case MOV:
4742 mov_assemble(t,&regs[t]);break;
4743 case SYSCALL:
7139f3c8 4744 case HLECALL:
1e973cb0 4745 case INTCALL:
57871462 4746 case SPAN:
4747 case UJUMP:
4748 case RJUMP:
4749 case CJUMP:
4750 case SJUMP:
4751 case FJUMP:
4752 printf("Jump in the delay slot. This is probably a bug.\n");
4753 }
4754 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4755 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4756 if(internal_branch(regs[t].is32,ba[i]+4))
4757 assem_debug("branch: internal\n");
4758 else
4759 assem_debug("branch: external\n");
4760 assert(internal_branch(regs[t].is32,ba[i]+4));
4761 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4762 emit_jmp(0);
4763}
4764
4765void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4766{
4767 int count;
4768 int jaddr;
4769 int idle=0;
4770 if(itype[i]==RJUMP)
4771 {
4772 *adj=0;
4773 }
4774 //if(ba[i]>=start && ba[i]<(start+slen*4))
4775 if(internal_branch(branch_regs[i].is32,ba[i]))
4776 {
4777 int t=(ba[i]-start)>>2;
4778 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4779 else *adj=ccadj[t];
4780 }
4781 else
4782 {
4783 *adj=0;
4784 }
4785 count=ccadj[i];
4786 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4787 // Idle loop
4788 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4789 idle=(int)out;
4790 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4791 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4792 jaddr=(int)out;
4793 emit_jmp(0);
4794 }
4795 else if(*adj==0||invert) {
4796 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4797 jaddr=(int)out;
4798 emit_jns(0);
4799 }
4800 else
4801 {
4802 emit_cmpimm(HOST_CCREG,-2*(count+2));
4803 jaddr=(int)out;
4804 emit_jns(0);
4805 }
4806 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4807}
4808
4809void do_ccstub(int n)
4810{
4811 literal_pool(256);
4812 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4813 set_jump_target(stubs[n][1],(int)out);
4814 int i=stubs[n][4];
4815 if(stubs[n][6]==NULLDS) {
4816 // Delay slot instruction is nullified ("likely" branch)
4817 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4818 }
4819 else if(stubs[n][6]!=TAKEN) {
4820 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4821 }
4822 else {
4823 if(internal_branch(branch_regs[i].is32,ba[i]))
4824 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4825 }
4826 if(stubs[n][5]!=-1)
4827 {
4828 // Save PC as return address
4829 emit_movimm(stubs[n][5],EAX);
4830 emit_writeword(EAX,(int)&pcaddr);
4831 }
4832 else
4833 {
4834 // Return address depends on which way the branch goes
4835 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4836 {
4837 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4838 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4839 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4840 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4841 if(rs1[i]==0)
4842 {
4843 s1l=s2l;s1h=s2h;
4844 s2l=s2h=-1;
4845 }
4846 else if(rs2[i]==0)
4847 {
4848 s2l=s2h=-1;
4849 }
4850 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4851 s1h=s2h=-1;
4852 }
4853 assert(s1l>=0);
4854 #ifdef DESTRUCTIVE_WRITEBACK
4855 if(rs1[i]) {
4856 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4857 emit_loadreg(rs1[i],s1l);
4858 }
4859 else {
4860 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4861 emit_loadreg(rs2[i],s1l);
4862 }
4863 if(s2l>=0)
4864 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4865 emit_loadreg(rs2[i],s2l);
4866 #endif
4867 int hr=0;
4868 int addr,alt,ntaddr;
4869 while(hr<HOST_REGS)
4870 {
4871 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4872 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4873 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4874 {
4875 addr=hr++;break;
4876 }
4877 hr++;
4878 }
4879 while(hr<HOST_REGS)
4880 {
4881 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4882 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4883 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4884 {
4885 alt=hr++;break;
4886 }
4887 hr++;
4888 }
4889 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4890 {
4891 while(hr<HOST_REGS)
4892 {
4893 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4894 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4895 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4896 {
4897 ntaddr=hr;break;
4898 }
4899 hr++;
4900 }
4901 assert(hr<HOST_REGS);
4902 }
4903 if((opcode[i]&0x2f)==4) // BEQ
4904 {
4905 #ifdef HAVE_CMOV_IMM
4906 if(s1h<0) {
4907 if(s2l>=0) emit_cmp(s1l,s2l);
4908 else emit_test(s1l,s1l);
4909 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4910 }
4911 else
4912 #endif
4913 {
4914 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4915 if(s1h>=0) {
4916 if(s2h>=0) emit_cmp(s1h,s2h);
4917 else emit_test(s1h,s1h);
4918 emit_cmovne_reg(alt,addr);
4919 }
4920 if(s2l>=0) emit_cmp(s1l,s2l);
4921 else emit_test(s1l,s1l);
4922 emit_cmovne_reg(alt,addr);
4923 }
4924 }
4925 if((opcode[i]&0x2f)==5) // BNE
4926 {
4927 #ifdef HAVE_CMOV_IMM
4928 if(s1h<0) {
4929 if(s2l>=0) emit_cmp(s1l,s2l);
4930 else emit_test(s1l,s1l);
4931 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4932 }
4933 else
4934 #endif
4935 {
4936 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4937 if(s1h>=0) {
4938 if(s2h>=0) emit_cmp(s1h,s2h);
4939 else emit_test(s1h,s1h);
4940 emit_cmovne_reg(alt,addr);
4941 }
4942 if(s2l>=0) emit_cmp(s1l,s2l);
4943 else emit_test(s1l,s1l);
4944 emit_cmovne_reg(alt,addr);
4945 }
4946 }
4947 if((opcode[i]&0x2f)==6) // BLEZ
4948 {
4949 //emit_movimm(ba[i],alt);
4950 //emit_movimm(start+i*4+8,addr);
4951 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4952 emit_cmpimm(s1l,1);
4953 if(s1h>=0) emit_mov(addr,ntaddr);
4954 emit_cmovl_reg(alt,addr);
4955 if(s1h>=0) {
4956 emit_test(s1h,s1h);
4957 emit_cmovne_reg(ntaddr,addr);
4958 emit_cmovs_reg(alt,addr);
4959 }
4960 }
4961 if((opcode[i]&0x2f)==7) // BGTZ
4962 {
4963 //emit_movimm(ba[i],addr);
4964 //emit_movimm(start+i*4+8,ntaddr);
4965 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4966 emit_cmpimm(s1l,1);
4967 if(s1h>=0) emit_mov(addr,alt);
4968 emit_cmovl_reg(ntaddr,addr);
4969 if(s1h>=0) {
4970 emit_test(s1h,s1h);
4971 emit_cmovne_reg(alt,addr);
4972 emit_cmovs_reg(ntaddr,addr);
4973 }
4974 }
4975 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4976 {
4977 //emit_movimm(ba[i],alt);
4978 //emit_movimm(start+i*4+8,addr);
4979 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4980 if(s1h>=0) emit_test(s1h,s1h);
4981 else emit_test(s1l,s1l);
4982 emit_cmovs_reg(alt,addr);
4983 }
4984 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4985 {
4986 //emit_movimm(ba[i],addr);
4987 //emit_movimm(start+i*4+8,alt);
4988 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4989 if(s1h>=0) emit_test(s1h,s1h);
4990 else emit_test(s1l,s1l);
4991 emit_cmovs_reg(alt,addr);
4992 }
4993 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4994 if(source[i]&0x10000) // BC1T
4995 {
4996 //emit_movimm(ba[i],alt);
4997 //emit_movimm(start+i*4+8,addr);
4998 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4999 emit_testimm(s1l,0x800000);
5000 emit_cmovne_reg(alt,addr);
5001 }
5002 else // BC1F
5003 {
5004 //emit_movimm(ba[i],addr);
5005 //emit_movimm(start+i*4+8,alt);
5006 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5007 emit_testimm(s1l,0x800000);
5008 emit_cmovne_reg(alt,addr);
5009 }
5010 }
5011 emit_writeword(addr,(int)&pcaddr);
5012 }
5013 else
5014 if(itype[i]==RJUMP)
5015 {
5016 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5017 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5018 r=get_reg(branch_regs[i].regmap,RTEMP);
5019 }
5020 emit_writeword(r,(int)&pcaddr);
5021 }
5022 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5023 }
5024 // Update cycle count
5025 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5026 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5027 emit_call((int)cc_interrupt);
5028 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5029 if(stubs[n][6]==TAKEN) {
5030 if(internal_branch(branch_regs[i].is32,ba[i]))
5031 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5032 else if(itype[i]==RJUMP) {
5033 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5034 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5035 else
5036 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5037 }
5038 }else if(stubs[n][6]==NOTTAKEN) {
5039 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5040 else load_all_regs(branch_regs[i].regmap);
5041 }else if(stubs[n][6]==NULLDS) {
5042 // Delay slot instruction is nullified ("likely" branch)
5043 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5044 else load_all_regs(regs[i].regmap);
5045 }else{
5046 load_all_regs(branch_regs[i].regmap);
5047 }
5048 emit_jmp(stubs[n][2]); // return address
5049
5050 /* This works but uses a lot of memory...
5051 emit_readword((int)&last_count,ECX);
5052 emit_add(HOST_CCREG,ECX,EAX);
5053 emit_writeword(EAX,(int)&Count);
5054 emit_call((int)gen_interupt);
5055 emit_readword((int)&Count,HOST_CCREG);
5056 emit_readword((int)&next_interupt,EAX);
5057 emit_readword((int)&pending_exception,EBX);
5058 emit_writeword(EAX,(int)&last_count);
5059 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5060 emit_test(EBX,EBX);
5061 int jne_instr=(int)out;
5062 emit_jne(0);
5063 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5064 load_all_regs(branch_regs[i].regmap);
5065 emit_jmp(stubs[n][2]); // return address
5066 set_jump_target(jne_instr,(int)out);
5067 emit_readword((int)&pcaddr,EAX);
5068 // Call get_addr_ht instead of doing the hash table here.
5069 // This code is executed infrequently and takes up a lot of space
5070 // so smaller is better.
5071 emit_storereg(CCREG,HOST_CCREG);
5072 emit_pushreg(EAX);
5073 emit_call((int)get_addr_ht);
5074 emit_loadreg(CCREG,HOST_CCREG);
5075 emit_addimm(ESP,4,ESP);
5076 emit_jmpreg(EAX);*/
5077}
5078
5079add_to_linker(int addr,int target,int ext)
5080{
5081 link_addr[linkcount][0]=addr;
5082 link_addr[linkcount][1]=target;
5083 link_addr[linkcount][2]=ext;
5084 linkcount++;
5085}
5086
5087void ujump_assemble(int i,struct regstat *i_regs)
5088{
5089 signed char *i_regmap=i_regs->regmap;
5090 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5091 address_generation(i+1,i_regs,regs[i].regmap_entry);
5092 #ifdef REG_PREFETCH
5093 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5094 if(rt1[i]==31&&temp>=0)
5095 {
5096 int return_address=start+i*4+8;
5097 if(get_reg(branch_regs[i].regmap,31)>0)
5098 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5099 }
5100 #endif
5101 ds_assemble(i+1,i_regs);
5102 uint64_t bc_unneeded=branch_regs[i].u;
5103 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5104 bc_unneeded|=1|(1LL<<rt1[i]);
5105 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5106 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5107 bc_unneeded,bc_unneeded_upper);
5108 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5109 if(rt1[i]==31) {
5110 int rt;
5111 unsigned int return_address;
5112 assert(rt1[i+1]!=31);
5113 assert(rt2[i+1]!=31);
5114 rt=get_reg(branch_regs[i].regmap,31);
5115 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5116 //assert(rt>=0);
5117 return_address=start+i*4+8;
5118 if(rt>=0) {
5119 #ifdef USE_MINI_HT
5120 if(internal_branch(branch_regs[i].is32,return_address)) {
5121 int temp=rt+1;
5122 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5123 branch_regs[i].regmap[temp]>=0)
5124 {
5125 temp=get_reg(branch_regs[i].regmap,-1);
5126 }
5127 #ifdef HOST_TEMPREG
5128 if(temp<0) temp=HOST_TEMPREG;
5129 #endif
5130 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5131 else emit_movimm(return_address,rt);
5132 }
5133 else
5134 #endif
5135 {
5136 #ifdef REG_PREFETCH
5137 if(temp>=0)
5138 {
5139 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5140 }
5141 #endif
5142 emit_movimm(return_address,rt); // PC into link register
5143 #ifdef IMM_PREFETCH
5144 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5145 #endif
5146 }
5147 }
5148 }
5149 int cc,adj;
5150 cc=get_reg(branch_regs[i].regmap,CCREG);
5151 assert(cc==HOST_CCREG);
5152 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5153 #ifdef REG_PREFETCH
5154 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5155 #endif
5156 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5157 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5158 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5159 if(internal_branch(branch_regs[i].is32,ba[i]))
5160 assem_debug("branch: internal\n");
5161 else
5162 assem_debug("branch: external\n");
5163 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5164 ds_assemble_entry(i);
5165 }
5166 else {
5167 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5168 emit_jmp(0);
5169 }
5170}
5171
5172void rjump_assemble(int i,struct regstat *i_regs)
5173{
5174 signed char *i_regmap=i_regs->regmap;
5175 int temp;
5176 int rs,cc,adj;
5177 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5178 assert(rs>=0);
5179 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5180 // Delay slot abuse, make a copy of the branch address register
5181 temp=get_reg(branch_regs[i].regmap,RTEMP);
5182 assert(temp>=0);
5183 assert(regs[i].regmap[temp]==RTEMP);
5184 emit_mov(rs,temp);
5185 rs=temp;
5186 }
5187 address_generation(i+1,i_regs,regs[i].regmap_entry);
5188 #ifdef REG_PREFETCH
5189 if(rt1[i]==31)
5190 {
5191 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5192 int return_address=start+i*4+8;
5193 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5194 }
5195 }
5196 #endif
5197 #ifdef USE_MINI_HT
5198 if(rs1[i]==31) {
5199 int rh=get_reg(regs[i].regmap,RHASH);
5200 if(rh>=0) do_preload_rhash(rh);
5201 }
5202 #endif
5203 ds_assemble(i+1,i_regs);
5204 uint64_t bc_unneeded=branch_regs[i].u;
5205 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5206 bc_unneeded|=1|(1LL<<rt1[i]);
5207 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5208 bc_unneeded&=~(1LL<<rs1[i]);
5209 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5210 bc_unneeded,bc_unneeded_upper);
5211 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5067f341 5212 if(rt1[i]!=0) {
57871462 5213 int rt,return_address;
5067f341 5214 assert(rt1[i+1]!=rt1[i]);
5215 assert(rt2[i+1]!=rt1[i]);
5216 rt=get_reg(branch_regs[i].regmap,rt1[i]);
57871462 5217 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5218 assert(rt>=0);
5219 return_address=start+i*4+8;
5220 #ifdef REG_PREFETCH
5221 if(temp>=0)
5222 {
5223 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5224 }
5225 #endif
5226 emit_movimm(return_address,rt); // PC into link register
5227 #ifdef IMM_PREFETCH
5228 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5229 #endif
5230 }
5231 cc=get_reg(branch_regs[i].regmap,CCREG);
5232 assert(cc==HOST_CCREG);
5233 #ifdef USE_MINI_HT
5234 int rh=get_reg(branch_regs[i].regmap,RHASH);
5235 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5236 if(rs1[i]==31) {
5237 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5238 do_preload_rhtbl(ht);
5239 do_rhash(rs,rh);
5240 }
5241 #endif
5242 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5243 #ifdef DESTRUCTIVE_WRITEBACK
5244 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5245 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5246 emit_loadreg(rs1[i],rs);
5247 }
5248 }
5249 #endif
5250 #ifdef REG_PREFETCH
5251 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5252 #endif
5253 #ifdef USE_MINI_HT
5254 if(rs1[i]==31) {
5255 do_miniht_load(ht,rh);
5256 }
5257 #endif
5258 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5259 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5260 //assert(adj==0);
5261 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5262 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5263 emit_jns(0);
5264 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5265 #ifdef USE_MINI_HT
5266 if(rs1[i]==31) {
5267 do_miniht_jump(rs,rh,ht);
5268 }
5269 else
5270 #endif
5271 {
5272 //if(rs!=EAX) emit_mov(rs,EAX);
5273 //emit_jmp((int)jump_vaddr_eax);
5274 emit_jmp(jump_vaddr_reg[rs]);
5275 }
5276 /* Check hash table
5277 temp=!rs;
5278 emit_mov(rs,temp);
5279 emit_shrimm(rs,16,rs);
5280 emit_xor(temp,rs,rs);
5281 emit_movzwl_reg(rs,rs);
5282 emit_shlimm(rs,4,rs);
5283 emit_cmpmem_indexed((int)hash_table,rs,temp);
5284 emit_jne((int)out+14);
5285 emit_readword_indexed((int)hash_table+4,rs,rs);
5286 emit_jmpreg(rs);
5287 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5288 emit_addimm_no_flags(8,rs);
5289 emit_jeq((int)out-17);
5290 // No hit on hash table, call compiler
5291 emit_pushreg(temp);
5292//DEBUG >
5293#ifdef DEBUG_CYCLE_COUNT
5294 emit_readword((int)&last_count,ECX);
5295 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5296 emit_readword((int)&next_interupt,ECX);
5297 emit_writeword(HOST_CCREG,(int)&Count);
5298 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5299 emit_writeword(ECX,(int)&last_count);
5300#endif
5301//DEBUG <
5302 emit_storereg(CCREG,HOST_CCREG);
5303 emit_call((int)get_addr);
5304 emit_loadreg(CCREG,HOST_CCREG);
5305 emit_addimm(ESP,4,ESP);
5306 emit_jmpreg(EAX);*/
5307 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5308 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5309 #endif
5310}
5311
5312void cjump_assemble(int i,struct regstat *i_regs)
5313{
5314 signed char *i_regmap=i_regs->regmap;
5315 int cc;
5316 int match;
5317 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5318 assem_debug("match=%d\n",match);
5319 int s1h,s1l,s2h,s2l;
5320 int prev_cop1_usable=cop1_usable;
5321 int unconditional=0,nop=0;
5322 int only32=0;
57871462 5323 int invert=0;
5324 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5325 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5326 if(!match) invert=1;
5327 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5328 if(i>(ba[i]-start)>>2) invert=1;
5329 #endif
e1190b87 5330
5331 if(ooo[i]) {
57871462 5332 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5333 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5334 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5335 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5336 }
5337 else {
5338 s1l=get_reg(i_regmap,rs1[i]);
5339 s1h=get_reg(i_regmap,rs1[i]|64);
5340 s2l=get_reg(i_regmap,rs2[i]);
5341 s2h=get_reg(i_regmap,rs2[i]|64);
5342 }
5343 if(rs1[i]==0&&rs2[i]==0)
5344 {
5345 if(opcode[i]&1) nop=1;
5346 else unconditional=1;
5347 //assert(opcode[i]!=5);
5348 //assert(opcode[i]!=7);
5349 //assert(opcode[i]!=0x15);
5350 //assert(opcode[i]!=0x17);
5351 }
5352 else if(rs1[i]==0)
5353 {
5354 s1l=s2l;s1h=s2h;
5355 s2l=s2h=-1;
5356 only32=(regs[i].was32>>rs2[i])&1;
5357 }
5358 else if(rs2[i]==0)
5359 {
5360 s2l=s2h=-1;
5361 only32=(regs[i].was32>>rs1[i])&1;
5362 }
5363 else {
5364 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5365 }
5366
e1190b87 5367 if(ooo[i]) {
57871462 5368 // Out of order execution (delay slot first)
5369 //printf("OOOE\n");
5370 address_generation(i+1,i_regs,regs[i].regmap_entry);
5371 ds_assemble(i+1,i_regs);
5372 int adj;
5373 uint64_t bc_unneeded=branch_regs[i].u;
5374 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5375 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5376 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5377 bc_unneeded|=1;
5378 bc_unneeded_upper|=1;
5379 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5380 bc_unneeded,bc_unneeded_upper);
5381 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5382 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5383 cc=get_reg(branch_regs[i].regmap,CCREG);
5384 assert(cc==HOST_CCREG);
5385 if(unconditional)
5386 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5387 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5388 //assem_debug("cycle count (adj)\n");
5389 if(unconditional) {
5390 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5391 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5392 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5393 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5394 if(internal)
5395 assem_debug("branch: internal\n");
5396 else
5397 assem_debug("branch: external\n");
5398 if(internal&&is_ds[(ba[i]-start)>>2]) {
5399 ds_assemble_entry(i);
5400 }
5401 else {
5402 add_to_linker((int)out,ba[i],internal);
5403 emit_jmp(0);
5404 }
5405 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5406 if(((u_int)out)&7) emit_addnop(0);
5407 #endif
5408 }
5409 }
5410 else if(nop) {
5411 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5412 int jaddr=(int)out;
5413 emit_jns(0);
5414 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5415 }
5416 else {
5417 int taken=0,nottaken=0,nottaken1=0;
5418 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5419 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5420 if(!only32)
5421 {
5422 assert(s1h>=0);
5423 if(opcode[i]==4) // BEQ
5424 {
5425 if(s2h>=0) emit_cmp(s1h,s2h);
5426 else emit_test(s1h,s1h);
5427 nottaken1=(int)out;
5428 emit_jne(1);
5429 }
5430 if(opcode[i]==5) // BNE
5431 {
5432 if(s2h>=0) emit_cmp(s1h,s2h);
5433 else emit_test(s1h,s1h);
5434 if(invert) taken=(int)out;
5435 else add_to_linker((int)out,ba[i],internal);
5436 emit_jne(0);
5437 }
5438 if(opcode[i]==6) // BLEZ
5439 {
5440 emit_test(s1h,s1h);
5441 if(invert) taken=(int)out;
5442 else add_to_linker((int)out,ba[i],internal);
5443 emit_js(0);
5444 nottaken1=(int)out;
5445 emit_jne(1);
5446 }
5447 if(opcode[i]==7) // BGTZ
5448 {
5449 emit_test(s1h,s1h);
5450 nottaken1=(int)out;
5451 emit_js(1);
5452 if(invert) taken=(int)out;
5453 else add_to_linker((int)out,ba[i],internal);
5454 emit_jne(0);
5455 }
5456 } // if(!only32)
5457
5458 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5459 assert(s1l>=0);
5460 if(opcode[i]==4) // BEQ
5461 {
5462 if(s2l>=0) emit_cmp(s1l,s2l);
5463 else emit_test(s1l,s1l);
5464 if(invert){
5465 nottaken=(int)out;
5466 emit_jne(1);
5467 }else{
5468 add_to_linker((int)out,ba[i],internal);
5469 emit_jeq(0);
5470 }
5471 }
5472 if(opcode[i]==5) // BNE
5473 {
5474 if(s2l>=0) emit_cmp(s1l,s2l);
5475 else emit_test(s1l,s1l);
5476 if(invert){
5477 nottaken=(int)out;
5478 emit_jeq(1);
5479 }else{
5480 add_to_linker((int)out,ba[i],internal);
5481 emit_jne(0);
5482 }
5483 }
5484 if(opcode[i]==6) // BLEZ
5485 {
5486 emit_cmpimm(s1l,1);
5487 if(invert){
5488 nottaken=(int)out;
5489 emit_jge(1);
5490 }else{
5491 add_to_linker((int)out,ba[i],internal);
5492 emit_jl(0);
5493 }
5494 }
5495 if(opcode[i]==7) // BGTZ
5496 {
5497 emit_cmpimm(s1l,1);
5498 if(invert){
5499 nottaken=(int)out;
5500 emit_jl(1);
5501 }else{
5502 add_to_linker((int)out,ba[i],internal);
5503 emit_jge(0);
5504 }
5505 }
5506 if(invert) {
5507 if(taken) set_jump_target(taken,(int)out);
5508 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5509 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5510 if(adj) {
5511 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5512 add_to_linker((int)out,ba[i],internal);
5513 }else{
5514 emit_addnop(13);
5515 add_to_linker((int)out,ba[i],internal*2);
5516 }
5517 emit_jmp(0);
5518 }else
5519 #endif
5520 {
5521 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5522 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5523 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5524 if(internal)
5525 assem_debug("branch: internal\n");
5526 else
5527 assem_debug("branch: external\n");
5528 if(internal&&is_ds[(ba[i]-start)>>2]) {
5529 ds_assemble_entry(i);
5530 }
5531 else {
5532 add_to_linker((int)out,ba[i],internal);
5533 emit_jmp(0);
5534 }
5535 }
5536 set_jump_target(nottaken,(int)out);
5537 }
5538
5539 if(nottaken1) set_jump_target(nottaken1,(int)out);
5540 if(adj) {
5541 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5542 }
5543 } // (!unconditional)
5544 } // if(ooo)
5545 else
5546 {
5547 // In-order execution (branch first)
5548 //if(likely[i]) printf("IOL\n");
5549 //else
5550 //printf("IOE\n");
5551 int taken=0,nottaken=0,nottaken1=0;
5552 if(!unconditional&&!nop) {
5553 if(!only32)
5554 {
5555 assert(s1h>=0);
5556 if((opcode[i]&0x2f)==4) // BEQ
5557 {
5558 if(s2h>=0) emit_cmp(s1h,s2h);
5559 else emit_test(s1h,s1h);
5560 nottaken1=(int)out;
5561 emit_jne(2);
5562 }
5563 if((opcode[i]&0x2f)==5) // BNE
5564 {
5565 if(s2h>=0) emit_cmp(s1h,s2h);
5566 else emit_test(s1h,s1h);
5567 taken=(int)out;
5568 emit_jne(1);
5569 }
5570 if((opcode[i]&0x2f)==6) // BLEZ
5571 {
5572 emit_test(s1h,s1h);
5573 taken=(int)out;
5574 emit_js(1);
5575 nottaken1=(int)out;
5576 emit_jne(2);
5577 }
5578 if((opcode[i]&0x2f)==7) // BGTZ
5579 {
5580 emit_test(s1h,s1h);
5581 nottaken1=(int)out;
5582 emit_js(2);
5583 taken=(int)out;
5584 emit_jne(1);
5585 }
5586 } // if(!only32)
5587
5588 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5589 assert(s1l>=0);
5590 if((opcode[i]&0x2f)==4) // BEQ
5591 {
5592 if(s2l>=0) emit_cmp(s1l,s2l);
5593 else emit_test(s1l,s1l);
5594 nottaken=(int)out;
5595 emit_jne(2);
5596 }
5597 if((opcode[i]&0x2f)==5) // BNE
5598 {
5599 if(s2l>=0) emit_cmp(s1l,s2l);
5600 else emit_test(s1l,s1l);
5601 nottaken=(int)out;
5602 emit_jeq(2);
5603 }
5604 if((opcode[i]&0x2f)==6) // BLEZ
5605 {
5606 emit_cmpimm(s1l,1);
5607 nottaken=(int)out;
5608 emit_jge(2);
5609 }
5610 if((opcode[i]&0x2f)==7) // BGTZ
5611 {
5612 emit_cmpimm(s1l,1);
5613 nottaken=(int)out;
5614 emit_jl(2);
5615 }
5616 } // if(!unconditional)
5617 int adj;
5618 uint64_t ds_unneeded=branch_regs[i].u;
5619 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5620 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5621 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5622 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5623 ds_unneeded|=1;
5624 ds_unneeded_upper|=1;
5625 // branch taken
5626 if(!nop) {
5627 if(taken) set_jump_target(taken,(int)out);
5628 assem_debug("1:\n");
5629 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5630 ds_unneeded,ds_unneeded_upper);
5631 // load regs
5632 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5633 address_generation(i+1,&branch_regs[i],0);
5634 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5635 ds_assemble(i+1,&branch_regs[i]);
5636 cc=get_reg(branch_regs[i].regmap,CCREG);
5637 if(cc==-1) {
5638 emit_loadreg(CCREG,cc=HOST_CCREG);
5639 // CHECK: Is the following instruction (fall thru) allocated ok?
5640 }
5641 assert(cc==HOST_CCREG);
5642 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5643 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5644 assem_debug("cycle count (adj)\n");
5645 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5646 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5647 if(internal)
5648 assem_debug("branch: internal\n");
5649 else
5650 assem_debug("branch: external\n");
5651 if(internal&&is_ds[(ba[i]-start)>>2]) {
5652 ds_assemble_entry(i);
5653 }
5654 else {
5655 add_to_linker((int)out,ba[i],internal);
5656 emit_jmp(0);
5657 }
5658 }
5659 // branch not taken
5660 cop1_usable=prev_cop1_usable;
5661 if(!unconditional) {
5662 if(nottaken1) set_jump_target(nottaken1,(int)out);
5663 set_jump_target(nottaken,(int)out);
5664 assem_debug("2:\n");
5665 if(!likely[i]) {
5666 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5667 ds_unneeded,ds_unneeded_upper);
5668 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5669 address_generation(i+1,&branch_regs[i],0);
5670 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5671 ds_assemble(i+1,&branch_regs[i]);
5672 }
5673 cc=get_reg(branch_regs[i].regmap,CCREG);
5674 if(cc==-1&&!likely[i]) {
5675 // Cycle count isn't in a register, temporarily load it then write it out
5676 emit_loadreg(CCREG,HOST_CCREG);
5677 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5678 int jaddr=(int)out;
5679 emit_jns(0);
5680 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5681 emit_storereg(CCREG,HOST_CCREG);
5682 }
5683 else{
5684 cc=get_reg(i_regmap,CCREG);
5685 assert(cc==HOST_CCREG);
5686 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5687 int jaddr=(int)out;
5688 emit_jns(0);
5689 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5690 }
5691 }
5692 }
5693}
5694
5695void sjump_assemble(int i,struct regstat *i_regs)
5696{
5697 signed char *i_regmap=i_regs->regmap;
5698 int cc;
5699 int match;
5700 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5701 assem_debug("smatch=%d\n",match);
5702 int s1h,s1l;
5703 int prev_cop1_usable=cop1_usable;
5704 int unconditional=0,nevertaken=0;
5705 int only32=0;
57871462 5706 int invert=0;
5707 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5708 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5709 if(!match) invert=1;
5710 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5711 if(i>(ba[i]-start)>>2) invert=1;
5712 #endif
5713
5714 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5715 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5716
e1190b87 5717 if(ooo[i]) {
57871462 5718 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5719 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5720 }
5721 else {
5722 s1l=get_reg(i_regmap,rs1[i]);
5723 s1h=get_reg(i_regmap,rs1[i]|64);
5724 }
5725 if(rs1[i]==0)
5726 {
5727 if(opcode2[i]&1) unconditional=1;
5728 else nevertaken=1;
5729 // These are never taken (r0 is never less than zero)
5730 //assert(opcode2[i]!=0);
5731 //assert(opcode2[i]!=2);
5732 //assert(opcode2[i]!=0x10);
5733 //assert(opcode2[i]!=0x12);
5734 }
5735 else {
5736 only32=(regs[i].was32>>rs1[i])&1;
5737 }
5738
e1190b87 5739 if(ooo[i]) {
57871462 5740 // Out of order execution (delay slot first)
5741 //printf("OOOE\n");
5742 address_generation(i+1,i_regs,regs[i].regmap_entry);
5743 ds_assemble(i+1,i_regs);
5744 int adj;
5745 uint64_t bc_unneeded=branch_regs[i].u;
5746 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5747 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5748 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5749 bc_unneeded|=1;
5750 bc_unneeded_upper|=1;
5751 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5752 bc_unneeded,bc_unneeded_upper);
5753 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5754 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5755 if(rt1[i]==31) {
5756 int rt,return_address;
57871462 5757 rt=get_reg(branch_regs[i].regmap,31);
5758 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5759 if(rt>=0) {
5760 // Save the PC even if the branch is not taken
5761 return_address=start+i*4+8;
5762 emit_movimm(return_address,rt); // PC into link register
5763 #ifdef IMM_PREFETCH
5764 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5765 #endif
5766 }
5767 }
5768 cc=get_reg(branch_regs[i].regmap,CCREG);
5769 assert(cc==HOST_CCREG);
5770 if(unconditional)
5771 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5772 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5773 assem_debug("cycle count (adj)\n");
5774 if(unconditional) {
5775 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5776 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5777 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5778 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5779 if(internal)
5780 assem_debug("branch: internal\n");
5781 else
5782 assem_debug("branch: external\n");
5783 if(internal&&is_ds[(ba[i]-start)>>2]) {
5784 ds_assemble_entry(i);
5785 }
5786 else {
5787 add_to_linker((int)out,ba[i],internal);
5788 emit_jmp(0);
5789 }
5790 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5791 if(((u_int)out)&7) emit_addnop(0);
5792 #endif
5793 }
5794 }
5795 else if(nevertaken) {
5796 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5797 int jaddr=(int)out;
5798 emit_jns(0);
5799 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5800 }
5801 else {
5802 int nottaken=0;
5803 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5804 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5805 if(!only32)
5806 {
5807 assert(s1h>=0);
df894a3a 5808 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5809 {
5810 emit_test(s1h,s1h);
5811 if(invert){
5812 nottaken=(int)out;
5813 emit_jns(1);
5814 }else{
5815 add_to_linker((int)out,ba[i],internal);
5816 emit_js(0);
5817 }
5818 }
df894a3a 5819 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5820 {
5821 emit_test(s1h,s1h);
5822 if(invert){
5823 nottaken=(int)out;
5824 emit_js(1);
5825 }else{
5826 add_to_linker((int)out,ba[i],internal);
5827 emit_jns(0);
5828 }
5829 }
5830 } // if(!only32)
5831 else
5832 {
5833 assert(s1l>=0);
df894a3a 5834 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5835 {
5836 emit_test(s1l,s1l);
5837 if(invert){
5838 nottaken=(int)out;
5839 emit_jns(1);
5840 }else{
5841 add_to_linker((int)out,ba[i],internal);
5842 emit_js(0);
5843 }
5844 }
df894a3a 5845 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5846 {
5847 emit_test(s1l,s1l);
5848 if(invert){
5849 nottaken=(int)out;
5850 emit_js(1);
5851 }else{
5852 add_to_linker((int)out,ba[i],internal);
5853 emit_jns(0);
5854 }
5855 }
5856 } // if(!only32)
5857
5858 if(invert) {
5859 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5860 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5861 if(adj) {
5862 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5863 add_to_linker((int)out,ba[i],internal);
5864 }else{
5865 emit_addnop(13);
5866 add_to_linker((int)out,ba[i],internal*2);
5867 }
5868 emit_jmp(0);
5869 }else
5870 #endif
5871 {
5872 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5873 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5874 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5875 if(internal)
5876 assem_debug("branch: internal\n");
5877 else
5878 assem_debug("branch: external\n");
5879 if(internal&&is_ds[(ba[i]-start)>>2]) {
5880 ds_assemble_entry(i);
5881 }
5882 else {
5883 add_to_linker((int)out,ba[i],internal);
5884 emit_jmp(0);
5885 }
5886 }
5887 set_jump_target(nottaken,(int)out);
5888 }
5889
5890 if(adj) {
5891 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5892 }
5893 } // (!unconditional)
5894 } // if(ooo)
5895 else
5896 {
5897 // In-order execution (branch first)
5898 //printf("IOE\n");
5899 int nottaken=0;
a6491170 5900 if(rt1[i]==31) {
5901 int rt,return_address;
a6491170 5902 rt=get_reg(branch_regs[i].regmap,31);
5903 if(rt>=0) {
5904 // Save the PC even if the branch is not taken
5905 return_address=start+i*4+8;
5906 emit_movimm(return_address,rt); // PC into link register
5907 #ifdef IMM_PREFETCH
5908 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5909 #endif
5910 }
5911 }
57871462 5912 if(!unconditional) {
5913 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5914 if(!only32)
5915 {
5916 assert(s1h>=0);
a6491170 5917 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 5918 {
5919 emit_test(s1h,s1h);
5920 nottaken=(int)out;
5921 emit_jns(1);
5922 }
a6491170 5923 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 5924 {
5925 emit_test(s1h,s1h);
5926 nottaken=(int)out;
5927 emit_js(1);
5928 }
5929 } // if(!only32)
5930 else
5931 {
5932 assert(s1l>=0);
a6491170 5933 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 5934 {
5935 emit_test(s1l,s1l);
5936 nottaken=(int)out;
5937 emit_jns(1);
5938 }
a6491170 5939 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 5940 {
5941 emit_test(s1l,s1l);
5942 nottaken=(int)out;
5943 emit_js(1);
5944 }
5945 }
5946 } // if(!unconditional)
5947 int adj;
5948 uint64_t ds_unneeded=branch_regs[i].u;
5949 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5950 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5951 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5952 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5953 ds_unneeded|=1;
5954 ds_unneeded_upper|=1;
5955 // branch taken
5956 if(!nevertaken) {
5957 //assem_debug("1:\n");
5958 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5959 ds_unneeded,ds_unneeded_upper);
5960 // load regs
5961 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5962 address_generation(i+1,&branch_regs[i],0);
5963 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5964 ds_assemble(i+1,&branch_regs[i]);
5965 cc=get_reg(branch_regs[i].regmap,CCREG);
5966 if(cc==-1) {
5967 emit_loadreg(CCREG,cc=HOST_CCREG);
5968 // CHECK: Is the following instruction (fall thru) allocated ok?
5969 }
5970 assert(cc==HOST_CCREG);
5971 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5972 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5973 assem_debug("cycle count (adj)\n");
5974 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5975 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5976 if(internal)
5977 assem_debug("branch: internal\n");
5978 else
5979 assem_debug("branch: external\n");
5980 if(internal&&is_ds[(ba[i]-start)>>2]) {
5981 ds_assemble_entry(i);
5982 }
5983 else {
5984 add_to_linker((int)out,ba[i],internal);
5985 emit_jmp(0);
5986 }
5987 }
5988 // branch not taken
5989 cop1_usable=prev_cop1_usable;
5990 if(!unconditional) {
5991 set_jump_target(nottaken,(int)out);
5992 assem_debug("1:\n");
5993 if(!likely[i]) {
5994 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5995 ds_unneeded,ds_unneeded_upper);
5996 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5997 address_generation(i+1,&branch_regs[i],0);
5998 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5999 ds_assemble(i+1,&branch_regs[i]);
6000 }
6001 cc=get_reg(branch_regs[i].regmap,CCREG);
6002 if(cc==-1&&!likely[i]) {
6003 // Cycle count isn't in a register, temporarily load it then write it out
6004 emit_loadreg(CCREG,HOST_CCREG);
6005 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6006 int jaddr=(int)out;
6007 emit_jns(0);
6008 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6009 emit_storereg(CCREG,HOST_CCREG);
6010 }
6011 else{
6012 cc=get_reg(i_regmap,CCREG);
6013 assert(cc==HOST_CCREG);
6014 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6015 int jaddr=(int)out;
6016 emit_jns(0);
6017 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6018 }
6019 }
6020 }
6021}
6022
6023void fjump_assemble(int i,struct regstat *i_regs)
6024{
6025 signed char *i_regmap=i_regs->regmap;
6026 int cc;
6027 int match;
6028 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6029 assem_debug("fmatch=%d\n",match);
6030 int fs,cs;
6031 int eaddr;
57871462 6032 int invert=0;
6033 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6034 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6035 if(!match) invert=1;
6036 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6037 if(i>(ba[i]-start)>>2) invert=1;
6038 #endif
6039
e1190b87 6040 if(ooo[i]) {
57871462 6041 fs=get_reg(branch_regs[i].regmap,FSREG);
6042 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6043 }
6044 else {
6045 fs=get_reg(i_regmap,FSREG);
6046 }
6047
6048 // Check cop1 unusable
6049 if(!cop1_usable) {
6050 cs=get_reg(i_regmap,CSREG);
6051 assert(cs>=0);
6052 emit_testimm(cs,0x20000000);
6053 eaddr=(int)out;
6054 emit_jeq(0);
6055 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6056 cop1_usable=1;
6057 }
6058
e1190b87 6059 if(ooo[i]) {
57871462 6060 // Out of order execution (delay slot first)
6061 //printf("OOOE\n");
6062 ds_assemble(i+1,i_regs);
6063 int adj;
6064 uint64_t bc_unneeded=branch_regs[i].u;
6065 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6066 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6067 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6068 bc_unneeded|=1;
6069 bc_unneeded_upper|=1;
6070 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6071 bc_unneeded,bc_unneeded_upper);
6072 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6073 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6074 cc=get_reg(branch_regs[i].regmap,CCREG);
6075 assert(cc==HOST_CCREG);
6076 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6077 assem_debug("cycle count (adj)\n");
6078 if(1) {
6079 int nottaken=0;
6080 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6081 if(1) {
6082 assert(fs>=0);
6083 emit_testimm(fs,0x800000);
6084 if(source[i]&0x10000) // BC1T
6085 {
6086 if(invert){
6087 nottaken=(int)out;
6088 emit_jeq(1);
6089 }else{
6090 add_to_linker((int)out,ba[i],internal);
6091 emit_jne(0);
6092 }
6093 }
6094 else // BC1F
6095 if(invert){
6096 nottaken=(int)out;
6097 emit_jne(1);
6098 }else{
6099 add_to_linker((int)out,ba[i],internal);
6100 emit_jeq(0);
6101 }
6102 {
6103 }
6104 } // if(!only32)
6105
6106 if(invert) {
6107 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6108 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6109 else if(match) emit_addnop(13);
6110 #endif
6111 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6112 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6113 if(internal)
6114 assem_debug("branch: internal\n");
6115 else
6116 assem_debug("branch: external\n");
6117 if(internal&&is_ds[(ba[i]-start)>>2]) {
6118 ds_assemble_entry(i);
6119 }
6120 else {
6121 add_to_linker((int)out,ba[i],internal);
6122 emit_jmp(0);
6123 }
6124 set_jump_target(nottaken,(int)out);
6125 }
6126
6127 if(adj) {
6128 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6129 }
6130 } // (!unconditional)
6131 } // if(ooo)
6132 else
6133 {
6134 // In-order execution (branch first)
6135 //printf("IOE\n");
6136 int nottaken=0;
6137 if(1) {
6138 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6139 if(1) {
6140 assert(fs>=0);
6141 emit_testimm(fs,0x800000);
6142 if(source[i]&0x10000) // BC1T
6143 {
6144 nottaken=(int)out;
6145 emit_jeq(1);
6146 }
6147 else // BC1F
6148 {
6149 nottaken=(int)out;
6150 emit_jne(1);
6151 }
6152 }
6153 } // if(!unconditional)
6154 int adj;
6155 uint64_t ds_unneeded=branch_regs[i].u;
6156 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6157 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6158 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6159 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6160 ds_unneeded|=1;
6161 ds_unneeded_upper|=1;
6162 // branch taken
6163 //assem_debug("1:\n");
6164 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6165 ds_unneeded,ds_unneeded_upper);
6166 // load regs
6167 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6168 address_generation(i+1,&branch_regs[i],0);
6169 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6170 ds_assemble(i+1,&branch_regs[i]);
6171 cc=get_reg(branch_regs[i].regmap,CCREG);
6172 if(cc==-1) {
6173 emit_loadreg(CCREG,cc=HOST_CCREG);
6174 // CHECK: Is the following instruction (fall thru) allocated ok?
6175 }
6176 assert(cc==HOST_CCREG);
6177 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6178 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6179 assem_debug("cycle count (adj)\n");
6180 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6181 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6182 if(internal)
6183 assem_debug("branch: internal\n");
6184 else
6185 assem_debug("branch: external\n");
6186 if(internal&&is_ds[(ba[i]-start)>>2]) {
6187 ds_assemble_entry(i);
6188 }
6189 else {
6190 add_to_linker((int)out,ba[i],internal);
6191 emit_jmp(0);
6192 }
6193
6194 // branch not taken
6195 if(1) { // <- FIXME (don't need this)
6196 set_jump_target(nottaken,(int)out);
6197 assem_debug("1:\n");
6198 if(!likely[i]) {
6199 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6200 ds_unneeded,ds_unneeded_upper);
6201 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6202 address_generation(i+1,&branch_regs[i],0);
6203 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6204 ds_assemble(i+1,&branch_regs[i]);
6205 }
6206 cc=get_reg(branch_regs[i].regmap,CCREG);
6207 if(cc==-1&&!likely[i]) {
6208 // Cycle count isn't in a register, temporarily load it then write it out
6209 emit_loadreg(CCREG,HOST_CCREG);
6210 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6211 int jaddr=(int)out;
6212 emit_jns(0);
6213 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6214 emit_storereg(CCREG,HOST_CCREG);
6215 }
6216 else{
6217 cc=get_reg(i_regmap,CCREG);
6218 assert(cc==HOST_CCREG);
6219 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6220 int jaddr=(int)out;
6221 emit_jns(0);
6222 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6223 }
6224 }
6225 }
6226}
6227
6228static void pagespan_assemble(int i,struct regstat *i_regs)
6229{
6230 int s1l=get_reg(i_regs->regmap,rs1[i]);
6231 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6232 int s2l=get_reg(i_regs->regmap,rs2[i]);
6233 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6234 void *nt_branch=NULL;
6235 int taken=0;
6236 int nottaken=0;
6237 int unconditional=0;
6238 if(rs1[i]==0)
6239 {
6240 s1l=s2l;s1h=s2h;
6241 s2l=s2h=-1;
6242 }
6243 else if(rs2[i]==0)
6244 {
6245 s2l=s2h=-1;
6246 }
6247 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6248 s1h=s2h=-1;
6249 }
6250 int hr=0;
6251 int addr,alt,ntaddr;
6252 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6253 else {
6254 while(hr<HOST_REGS)
6255 {
6256 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6257 (i_regs->regmap[hr]&63)!=rs1[i] &&
6258 (i_regs->regmap[hr]&63)!=rs2[i] )
6259 {
6260 addr=hr++;break;
6261 }
6262 hr++;
6263 }
6264 }
6265 while(hr<HOST_REGS)
6266 {
6267 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6268 (i_regs->regmap[hr]&63)!=rs1[i] &&
6269 (i_regs->regmap[hr]&63)!=rs2[i] )
6270 {
6271 alt=hr++;break;
6272 }
6273 hr++;
6274 }
6275 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6276 {
6277 while(hr<HOST_REGS)
6278 {
6279 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6280 (i_regs->regmap[hr]&63)!=rs1[i] &&
6281 (i_regs->regmap[hr]&63)!=rs2[i] )
6282 {
6283 ntaddr=hr;break;
6284 }
6285 hr++;
6286 }
6287 }
6288 assert(hr<HOST_REGS);
6289 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6290 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6291 }
6292 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6293 if(opcode[i]==2) // J
6294 {
6295 unconditional=1;
6296 }
6297 if(opcode[i]==3) // JAL
6298 {
6299 // TODO: mini_ht
6300 int rt=get_reg(i_regs->regmap,31);
6301 emit_movimm(start+i*4+8,rt);
6302 unconditional=1;
6303 }
6304 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6305 {
6306 emit_mov(s1l,addr);
6307 if(opcode2[i]==9) // JALR
6308 {
5067f341 6309 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6310 emit_movimm(start+i*4+8,rt);
6311 }
6312 }
6313 if((opcode[i]&0x3f)==4) // BEQ
6314 {
6315 if(rs1[i]==rs2[i])
6316 {
6317 unconditional=1;
6318 }
6319 else
6320 #ifdef HAVE_CMOV_IMM
6321 if(s1h<0) {
6322 if(s2l>=0) emit_cmp(s1l,s2l);
6323 else emit_test(s1l,s1l);
6324 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6325 }
6326 else
6327 #endif
6328 {
6329 assert(s1l>=0);
6330 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6331 if(s1h>=0) {
6332 if(s2h>=0) emit_cmp(s1h,s2h);
6333 else emit_test(s1h,s1h);
6334 emit_cmovne_reg(alt,addr);
6335 }
6336 if(s2l>=0) emit_cmp(s1l,s2l);
6337 else emit_test(s1l,s1l);
6338 emit_cmovne_reg(alt,addr);
6339 }
6340 }
6341 if((opcode[i]&0x3f)==5) // BNE
6342 {
6343 #ifdef HAVE_CMOV_IMM
6344 if(s1h<0) {
6345 if(s2l>=0) emit_cmp(s1l,s2l);
6346 else emit_test(s1l,s1l);
6347 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6348 }
6349 else
6350 #endif
6351 {
6352 assert(s1l>=0);
6353 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6354 if(s1h>=0) {
6355 if(s2h>=0) emit_cmp(s1h,s2h);
6356 else emit_test(s1h,s1h);
6357 emit_cmovne_reg(alt,addr);
6358 }
6359 if(s2l>=0) emit_cmp(s1l,s2l);
6360 else emit_test(s1l,s1l);
6361 emit_cmovne_reg(alt,addr);
6362 }
6363 }
6364 if((opcode[i]&0x3f)==0x14) // BEQL
6365 {
6366 if(s1h>=0) {
6367 if(s2h>=0) emit_cmp(s1h,s2h);
6368 else emit_test(s1h,s1h);
6369 nottaken=(int)out;
6370 emit_jne(0);
6371 }
6372 if(s2l>=0) emit_cmp(s1l,s2l);
6373 else emit_test(s1l,s1l);
6374 if(nottaken) set_jump_target(nottaken,(int)out);
6375 nottaken=(int)out;
6376 emit_jne(0);
6377 }
6378 if((opcode[i]&0x3f)==0x15) // BNEL
6379 {
6380 if(s1h>=0) {
6381 if(s2h>=0) emit_cmp(s1h,s2h);
6382 else emit_test(s1h,s1h);
6383 taken=(int)out;
6384 emit_jne(0);
6385 }
6386 if(s2l>=0) emit_cmp(s1l,s2l);
6387 else emit_test(s1l,s1l);
6388 nottaken=(int)out;
6389 emit_jeq(0);
6390 if(taken) set_jump_target(taken,(int)out);
6391 }
6392 if((opcode[i]&0x3f)==6) // BLEZ
6393 {
6394 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6395 emit_cmpimm(s1l,1);
6396 if(s1h>=0) emit_mov(addr,ntaddr);
6397 emit_cmovl_reg(alt,addr);
6398 if(s1h>=0) {
6399 emit_test(s1h,s1h);
6400 emit_cmovne_reg(ntaddr,addr);
6401 emit_cmovs_reg(alt,addr);
6402 }
6403 }
6404 if((opcode[i]&0x3f)==7) // BGTZ
6405 {
6406 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6407 emit_cmpimm(s1l,1);
6408 if(s1h>=0) emit_mov(addr,alt);
6409 emit_cmovl_reg(ntaddr,addr);
6410 if(s1h>=0) {
6411 emit_test(s1h,s1h);
6412 emit_cmovne_reg(alt,addr);
6413 emit_cmovs_reg(ntaddr,addr);
6414 }
6415 }
6416 if((opcode[i]&0x3f)==0x16) // BLEZL
6417 {
6418 assert((opcode[i]&0x3f)!=0x16);
6419 }
6420 if((opcode[i]&0x3f)==0x17) // BGTZL
6421 {
6422 assert((opcode[i]&0x3f)!=0x17);
6423 }
6424 assert(opcode[i]!=1); // BLTZ/BGEZ
6425
6426 //FIXME: Check CSREG
6427 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6428 if((source[i]&0x30000)==0) // BC1F
6429 {
6430 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6431 emit_testimm(s1l,0x800000);
6432 emit_cmovne_reg(alt,addr);
6433 }
6434 if((source[i]&0x30000)==0x10000) // BC1T
6435 {
6436 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6437 emit_testimm(s1l,0x800000);
6438 emit_cmovne_reg(alt,addr);
6439 }
6440 if((source[i]&0x30000)==0x20000) // BC1FL
6441 {
6442 emit_testimm(s1l,0x800000);
6443 nottaken=(int)out;
6444 emit_jne(0);
6445 }
6446 if((source[i]&0x30000)==0x30000) // BC1TL
6447 {
6448 emit_testimm(s1l,0x800000);
6449 nottaken=(int)out;
6450 emit_jeq(0);
6451 }
6452 }
6453
6454 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6455 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6456 if(likely[i]||unconditional)
6457 {
6458 emit_movimm(ba[i],HOST_BTREG);
6459 }
6460 else if(addr!=HOST_BTREG)
6461 {
6462 emit_mov(addr,HOST_BTREG);
6463 }
6464 void *branch_addr=out;
6465 emit_jmp(0);
6466 int target_addr=start+i*4+5;
6467 void *stub=out;
6468 void *compiled_target_addr=check_addr(target_addr);
6469 emit_extjump_ds((int)branch_addr,target_addr);
6470 if(compiled_target_addr) {
6471 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6472 add_link(target_addr,stub);
6473 }
6474 else set_jump_target((int)branch_addr,(int)stub);
6475 if(likely[i]) {
6476 // Not-taken path
6477 set_jump_target((int)nottaken,(int)out);
6478 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6479 void *branch_addr=out;
6480 emit_jmp(0);
6481 int target_addr=start+i*4+8;
6482 void *stub=out;
6483 void *compiled_target_addr=check_addr(target_addr);
6484 emit_extjump_ds((int)branch_addr,target_addr);
6485 if(compiled_target_addr) {
6486 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6487 add_link(target_addr,stub);
6488 }
6489 else set_jump_target((int)branch_addr,(int)stub);
6490 }
6491}
6492
6493// Assemble the delay slot for the above
6494static void pagespan_ds()
6495{
6496 assem_debug("initial delay slot:\n");
6497 u_int vaddr=start+1;
94d23bb9 6498 u_int page=get_page(vaddr);
6499 u_int vpage=get_vpage(vaddr);
57871462 6500 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6501 do_dirty_stub_ds();
6502 ll_add(jump_in+page,vaddr,(void *)out);
6503 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6504 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6505 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6506 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6507 emit_writeword(HOST_BTREG,(int)&branch_target);
6508 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6509 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6510 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6511 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6512 cop1_usable=0;
6513 is_delayslot=0;
6514 switch(itype[0]) {
6515 case ALU:
6516 alu_assemble(0,&regs[0]);break;
6517 case IMM16:
6518 imm16_assemble(0,&regs[0]);break;
6519 case SHIFT:
6520 shift_assemble(0,&regs[0]);break;
6521 case SHIFTIMM:
6522 shiftimm_assemble(0,&regs[0]);break;
6523 case LOAD:
6524 load_assemble(0,&regs[0]);break;
6525 case LOADLR:
6526 loadlr_assemble(0,&regs[0]);break;
6527 case STORE:
6528 store_assemble(0,&regs[0]);break;
6529 case STORELR:
6530 storelr_assemble(0,&regs[0]);break;
6531 case COP0:
6532 cop0_assemble(0,&regs[0]);break;
6533 case COP1:
6534 cop1_assemble(0,&regs[0]);break;
6535 case C1LS:
6536 c1ls_assemble(0,&regs[0]);break;
b9b61529 6537 case COP2:
6538 cop2_assemble(0,&regs[0]);break;
6539 case C2LS:
6540 c2ls_assemble(0,&regs[0]);break;
6541 case C2OP:
6542 c2op_assemble(0,&regs[0]);break;
57871462 6543 case FCONV:
6544 fconv_assemble(0,&regs[0]);break;
6545 case FLOAT:
6546 float_assemble(0,&regs[0]);break;
6547 case FCOMP:
6548 fcomp_assemble(0,&regs[0]);break;
6549 case MULTDIV:
6550 multdiv_assemble(0,&regs[0]);break;
6551 case MOV:
6552 mov_assemble(0,&regs[0]);break;
6553 case SYSCALL:
7139f3c8 6554 case HLECALL:
1e973cb0 6555 case INTCALL:
57871462 6556 case SPAN:
6557 case UJUMP:
6558 case RJUMP:
6559 case CJUMP:
6560 case SJUMP:
6561 case FJUMP:
6562 printf("Jump in the delay slot. This is probably a bug.\n");
6563 }
6564 int btaddr=get_reg(regs[0].regmap,BTREG);
6565 if(btaddr<0) {
6566 btaddr=get_reg(regs[0].regmap,-1);
6567 emit_readword((int)&branch_target,btaddr);
6568 }
6569 assert(btaddr!=HOST_CCREG);
6570 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6571#ifdef HOST_IMM8
6572 emit_movimm(start+4,HOST_TEMPREG);
6573 emit_cmp(btaddr,HOST_TEMPREG);
6574#else
6575 emit_cmpimm(btaddr,start+4);
6576#endif
6577 int branch=(int)out;
6578 emit_jeq(0);
6579 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6580 emit_jmp(jump_vaddr_reg[btaddr]);
6581 set_jump_target(branch,(int)out);
6582 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6583 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6584}
6585
6586// Basic liveness analysis for MIPS registers
6587void unneeded_registers(int istart,int iend,int r)
6588{
6589 int i;
6590 uint64_t u,uu,b,bu;
6591 uint64_t temp_u,temp_uu;
6592 uint64_t tdep;
6593 if(iend==slen-1) {
6594 u=1;uu=1;
6595 }else{
6596 u=unneeded_reg[iend+1];
6597 uu=unneeded_reg_upper[iend+1];
6598 u=1;uu=1;
6599 }
6600 for (i=iend;i>=istart;i--)
6601 {
6602 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6603 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6604 {
6605 // If subroutine call, flag return address as a possible branch target
6606 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6607
6608 if(ba[i]<start || ba[i]>=(start+slen*4))
6609 {
6610 // Branch out of this block, flush all regs
6611 u=1;
6612 uu=1;
6613 /* Hexagon hack
6614 if(itype[i]==UJUMP&&rt1[i]==31)
6615 {
6616 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6617 }
6618 if(itype[i]==RJUMP&&rs1[i]==31)
6619 {
6620 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6621 }
4cb76aa4 6622 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6623 if(itype[i]==UJUMP&&rt1[i]==31)
6624 {
6625 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6626 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6627 }
6628 if(itype[i]==RJUMP&&rs1[i]==31)
6629 {
6630 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6631 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6632 }
6633 }*/
6634 branch_unneeded_reg[i]=u;
6635 branch_unneeded_reg_upper[i]=uu;
6636 // Merge in delay slot
6637 tdep=(~uu>>rt1[i+1])&1;
6638 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6639 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6640 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6641 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6642 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6643 u|=1;uu|=1;
6644 // If branch is "likely" (and conditional)
6645 // then we skip the delay slot on the fall-thru path
6646 if(likely[i]) {
6647 if(i<slen-1) {
6648 u&=unneeded_reg[i+2];
6649 uu&=unneeded_reg_upper[i+2];
6650 }
6651 else
6652 {
6653 u=1;
6654 uu=1;
6655 }
6656 }
6657 }
6658 else
6659 {
6660 // Internal branch, flag target
6661 bt[(ba[i]-start)>>2]=1;
6662 if(ba[i]<=start+i*4) {
6663 // Backward branch
6664 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6665 {
6666 // Unconditional branch
6667 temp_u=1;temp_uu=1;
6668 } else {
6669 // Conditional branch (not taken case)
6670 temp_u=unneeded_reg[i+2];
6671 temp_uu=unneeded_reg_upper[i+2];
6672 }
6673 // Merge in delay slot
6674 tdep=(~temp_uu>>rt1[i+1])&1;
6675 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6676 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6677 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6678 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6679 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6680 temp_u|=1;temp_uu|=1;
6681 // If branch is "likely" (and conditional)
6682 // then we skip the delay slot on the fall-thru path
6683 if(likely[i]) {
6684 if(i<slen-1) {
6685 temp_u&=unneeded_reg[i+2];
6686 temp_uu&=unneeded_reg_upper[i+2];
6687 }
6688 else
6689 {
6690 temp_u=1;
6691 temp_uu=1;
6692 }
6693 }
6694 tdep=(~temp_uu>>rt1[i])&1;
6695 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6696 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6697 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6698 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6699 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6700 temp_u|=1;temp_uu|=1;
6701 unneeded_reg[i]=temp_u;
6702 unneeded_reg_upper[i]=temp_uu;
6703 // Only go three levels deep. This recursion can take an
6704 // excessive amount of time if there are a lot of nested loops.
6705 if(r<2) {
6706 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6707 }else{
6708 unneeded_reg[(ba[i]-start)>>2]=1;
6709 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6710 }
6711 } /*else*/ if(1) {
6712 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6713 {
6714 // Unconditional branch
6715 u=unneeded_reg[(ba[i]-start)>>2];
6716 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6717 branch_unneeded_reg[i]=u;
6718 branch_unneeded_reg_upper[i]=uu;
6719 //u=1;
6720 //uu=1;
6721 //branch_unneeded_reg[i]=u;
6722 //branch_unneeded_reg_upper[i]=uu;
6723 // Merge in delay slot
6724 tdep=(~uu>>rt1[i+1])&1;
6725 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6726 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6727 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6728 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6729 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6730 u|=1;uu|=1;
6731 } else {
6732 // Conditional branch
6733 b=unneeded_reg[(ba[i]-start)>>2];
6734 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6735 branch_unneeded_reg[i]=b;
6736 branch_unneeded_reg_upper[i]=bu;
6737 //b=1;
6738 //bu=1;
6739 //branch_unneeded_reg[i]=b;
6740 //branch_unneeded_reg_upper[i]=bu;
6741 // Branch delay slot
6742 tdep=(~uu>>rt1[i+1])&1;
6743 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6744 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6745 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6746 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6747 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6748 b|=1;bu|=1;
6749 // If branch is "likely" then we skip the
6750 // delay slot on the fall-thru path
6751 if(likely[i]) {
6752 u=b;
6753 uu=bu;
6754 if(i<slen-1) {
6755 u&=unneeded_reg[i+2];
6756 uu&=unneeded_reg_upper[i+2];
6757 //u=1;
6758 //uu=1;
6759 }
6760 } else {
6761 u&=b;
6762 uu&=bu;
6763 //u=1;
6764 //uu=1;
6765 }
6766 if(i<slen-1) {
6767 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6768 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6769 //branch_unneeded_reg[i]=1;
6770 //branch_unneeded_reg_upper[i]=1;
6771 } else {
6772 branch_unneeded_reg[i]=1;
6773 branch_unneeded_reg_upper[i]=1;
6774 }
6775 }
6776 }
6777 }
6778 }
1e973cb0 6779 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6780 {
6781 // SYSCALL instruction (software interrupt)
6782 u=1;
6783 uu=1;
6784 }
6785 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6786 {
6787 // ERET instruction (return from interrupt)
6788 u=1;
6789 uu=1;
6790 }
6791 //u=uu=1; // DEBUG
6792 tdep=(~uu>>rt1[i])&1;
6793 // Written registers are unneeded
6794 u|=1LL<<rt1[i];
6795 u|=1LL<<rt2[i];
6796 uu|=1LL<<rt1[i];
6797 uu|=1LL<<rt2[i];
6798 // Accessed registers are needed
6799 u&=~(1LL<<rs1[i]);
6800 u&=~(1LL<<rs2[i]);
6801 uu&=~(1LL<<us1[i]);
6802 uu&=~(1LL<<us2[i]);
6803 // Source-target dependencies
6804 uu&=~(tdep<<dep1[i]);
6805 uu&=~(tdep<<dep2[i]);
6806 // R0 is always unneeded
6807 u|=1;uu|=1;
6808 // Save it
6809 unneeded_reg[i]=u;
6810 unneeded_reg_upper[i]=uu;
6811 /*
6812 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6813 printf("U:");
6814 int r;
6815 for(r=1;r<=CCREG;r++) {
6816 if((unneeded_reg[i]>>r)&1) {
6817 if(r==HIREG) printf(" HI");
6818 else if(r==LOREG) printf(" LO");
6819 else printf(" r%d",r);
6820 }
6821 }
6822 printf(" UU:");
6823 for(r=1;r<=CCREG;r++) {
6824 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6825 if(r==HIREG) printf(" HI");
6826 else if(r==LOREG) printf(" LO");
6827 else printf(" r%d",r);
6828 }
6829 }
6830 printf("\n");*/
6831 }
252c20fc 6832#ifdef FORCE32
6833 for (i=iend;i>=istart;i--)
6834 {
6835 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6836 }
6837#endif
57871462 6838}
6839
6840// Identify registers which are likely to contain 32-bit values
6841// This is used to predict whether any branches will jump to a
6842// location with 64-bit values in registers.
6843static void provisional_32bit()
6844{
6845 int i,j;
6846 uint64_t is32=1;
6847 uint64_t lastbranch=1;
6848
6849 for(i=0;i<slen;i++)
6850 {
6851 if(i>0) {
6852 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6853 if(i>1) is32=lastbranch;
6854 else is32=1;
6855 }
6856 }
6857 if(i>1)
6858 {
6859 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6860 if(likely[i-2]) {
6861 if(i>2) is32=lastbranch;
6862 else is32=1;
6863 }
6864 }
6865 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6866 {
6867 if(rs1[i-2]==0||rs2[i-2]==0)
6868 {
6869 if(rs1[i-2]) {
6870 is32|=1LL<<rs1[i-2];
6871 }
6872 if(rs2[i-2]) {
6873 is32|=1LL<<rs2[i-2];
6874 }
6875 }
6876 }
6877 }
6878 // If something jumps here with 64-bit values
6879 // then promote those registers to 64 bits
6880 if(bt[i])
6881 {
6882 uint64_t temp_is32=is32;
6883 for(j=i-1;j>=0;j--)
6884 {
6885 if(ba[j]==start+i*4)
6886 //temp_is32&=branch_regs[j].is32;
6887 temp_is32&=p32[j];
6888 }
6889 for(j=i;j<slen;j++)
6890 {
6891 if(ba[j]==start+i*4)
6892 temp_is32=1;
6893 }
6894 is32=temp_is32;
6895 }
6896 int type=itype[i];
6897 int op=opcode[i];
6898 int op2=opcode2[i];
6899 int rt=rt1[i];
6900 int s1=rs1[i];
6901 int s2=rs2[i];
6902 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6903 // Branches don't write registers, consider the delay slot instead.
6904 type=itype[i+1];
6905 op=opcode[i+1];
6906 op2=opcode2[i+1];
6907 rt=rt1[i+1];
6908 s1=rs1[i+1];
6909 s2=rs2[i+1];
6910 lastbranch=is32;
6911 }
6912 switch(type) {
6913 case LOAD:
6914 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6915 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6916 is32&=~(1LL<<rt);
6917 else
6918 is32|=1LL<<rt;
6919 break;
6920 case STORE:
6921 case STORELR:
6922 break;
6923 case LOADLR:
6924 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6925 if(op==0x22) is32|=1LL<<rt; // LWL
6926 break;
6927 case IMM16:
6928 if (op==0x08||op==0x09|| // ADDI/ADDIU
6929 op==0x0a||op==0x0b|| // SLTI/SLTIU
6930 op==0x0c|| // ANDI
6931 op==0x0f) // LUI
6932 {
6933 is32|=1LL<<rt;
6934 }
6935 if(op==0x18||op==0x19) { // DADDI/DADDIU
6936 is32&=~(1LL<<rt);
6937 //if(imm[i]==0)
6938 // is32|=((is32>>s1)&1LL)<<rt;
6939 }
6940 if(op==0x0d||op==0x0e) { // ORI/XORI
6941 uint64_t sr=((is32>>s1)&1LL);
6942 is32&=~(1LL<<rt);
6943 is32|=sr<<rt;
6944 }
6945 break;
6946 case UJUMP:
6947 break;
6948 case RJUMP:
6949 break;
6950 case CJUMP:
6951 break;
6952 case SJUMP:
6953 break;
6954 case FJUMP:
6955 break;
6956 case ALU:
6957 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6958 is32|=1LL<<rt;
6959 }
6960 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6961 is32|=1LL<<rt;
6962 }
6963 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6964 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6965 is32&=~(1LL<<rt);
6966 is32|=sr<<rt;
6967 }
6968 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6969 if(s1==0&&s2==0) {
6970 is32|=1LL<<rt;
6971 }
6972 else if(s2==0) {
6973 uint64_t sr=((is32>>s1)&1LL);
6974 is32&=~(1LL<<rt);
6975 is32|=sr<<rt;
6976 }
6977 else if(s1==0) {
6978 uint64_t sr=((is32>>s2)&1LL);
6979 is32&=~(1LL<<rt);
6980 is32|=sr<<rt;
6981 }
6982 else {
6983 is32&=~(1LL<<rt);
6984 }
6985 }
6986 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6987 if(s1==0&&s2==0) {
6988 is32|=1LL<<rt;
6989 }
6990 else if(s2==0) {
6991 uint64_t sr=((is32>>s1)&1LL);
6992 is32&=~(1LL<<rt);
6993 is32|=sr<<rt;
6994 }
6995 else {
6996 is32&=~(1LL<<rt);
6997 }
6998 }
6999 break;
7000 case MULTDIV:
7001 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7002 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7003 }
7004 else {
7005 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7006 }
7007 break;
7008 case MOV:
7009 {
7010 uint64_t sr=((is32>>s1)&1LL);
7011 is32&=~(1LL<<rt);
7012 is32|=sr<<rt;
7013 }
7014 break;
7015 case SHIFT:
7016 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7017 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7018 break;
7019 case SHIFTIMM:
7020 is32|=1LL<<rt;
7021 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7022 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7023 break;
7024 case COP0:
7025 if(op2==0) is32|=1LL<<rt; // MFC0
7026 break;
7027 case COP1:
b9b61529 7028 case COP2:
57871462 7029 if(op2==0) is32|=1LL<<rt; // MFC1
7030 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7031 if(op2==2) is32|=1LL<<rt; // CFC1
7032 break;
7033 case C1LS:
b9b61529 7034 case C2LS:
57871462 7035 break;
7036 case FLOAT:
7037 case FCONV:
7038 break;
7039 case FCOMP:
7040 break;
b9b61529 7041 case C2OP:
57871462 7042 case SYSCALL:
7139f3c8 7043 case HLECALL:
57871462 7044 break;
7045 default:
7046 break;
7047 }
7048 is32|=1;
7049 p32[i]=is32;
7050
7051 if(i>0)
7052 {
7053 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7054 {
7055 if(rt1[i-1]==31) // JAL/JALR
7056 {
7057 // Subroutine call will return here, don't alloc any registers
7058 is32=1;
7059 }
7060 else if(i+1<slen)
7061 {
7062 // Internal branch will jump here, match registers to caller
7063 is32=0x3FFFFFFFFLL;
7064 }
7065 }
7066 }
7067 }
7068}
7069
7070// Identify registers which may be assumed to contain 32-bit values
7071// and where optimizations will rely on this.
7072// This is used to determine whether backward branches can safely
7073// jump to a location with 64-bit values in registers.
7074static void provisional_r32()
7075{
7076 u_int r32=0;
7077 int i;
7078
7079 for (i=slen-1;i>=0;i--)
7080 {
7081 int hr;
7082 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7083 {
7084 if(ba[i]<start || ba[i]>=(start+slen*4))
7085 {
7086 // Branch out of this block, don't need anything
7087 r32=0;
7088 }
7089 else
7090 {
7091 // Internal branch
7092 // Need whatever matches the target
7093 // (and doesn't get overwritten by the delay slot instruction)
7094 r32=0;
7095 int t=(ba[i]-start)>>2;
7096 if(ba[i]>start+i*4) {
7097 // Forward branch
7098 //if(!(requires_32bit[t]&~regs[i].was32))
7099 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7100 if(!(pr32[t]&~regs[i].was32))
7101 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7102 }else{
7103 // Backward branch
7104 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7105 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7106 }
7107 }
7108 // Conditional branch may need registers for following instructions
7109 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7110 {
7111 if(i<slen-2) {
7112 //r32|=requires_32bit[i+2];
7113 r32|=pr32[i+2];
7114 r32&=regs[i].was32;
7115 // Mark this address as a branch target since it may be called
7116 // upon return from interrupt
7117 //bt[i+2]=1;
7118 }
7119 }
7120 // Merge in delay slot
7121 if(!likely[i]) {
7122 // These are overwritten unless the branch is "likely"
7123 // and the delay slot is nullified if not taken
7124 r32&=~(1LL<<rt1[i+1]);
7125 r32&=~(1LL<<rt2[i+1]);
7126 }
7127 // Assume these are needed (delay slot)
7128 if(us1[i+1]>0)
7129 {
7130 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7131 }
7132 if(us2[i+1]>0)
7133 {
7134 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7135 }
7136 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7137 {
7138 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7139 }
7140 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7141 {
7142 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7143 }
7144 }
1e973cb0 7145 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7146 {
7147 // SYSCALL instruction (software interrupt)
7148 r32=0;
7149 }
7150 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7151 {
7152 // ERET instruction (return from interrupt)
7153 r32=0;
7154 }
7155 // Check 32 bits
7156 r32&=~(1LL<<rt1[i]);
7157 r32&=~(1LL<<rt2[i]);
7158 if(us1[i]>0)
7159 {
7160 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7161 }
7162 if(us2[i]>0)
7163 {
7164 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7165 }
7166 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7167 {
7168 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7169 }
7170 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7171 {
7172 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7173 }
7174 //requires_32bit[i]=r32;
7175 pr32[i]=r32;
7176
7177 // Dirty registers which are 32-bit, require 32-bit input
7178 // as they will be written as 32-bit values
7179 for(hr=0;hr<HOST_REGS;hr++)
7180 {
7181 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7182 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7183 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7184 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7185 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7186 }
7187 }
7188 }
7189 }
7190}
7191
7192// Write back dirty registers as soon as we will no longer modify them,
7193// so that we don't end up with lots of writes at the branches.
7194void clean_registers(int istart,int iend,int wr)
7195{
7196 int i;
7197 int r;
7198 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7199 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7200 if(iend==slen-1) {
7201 will_dirty_i=will_dirty_next=0;
7202 wont_dirty_i=wont_dirty_next=0;
7203 }else{
7204 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7205 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7206 }
7207 for (i=iend;i>=istart;i--)
7208 {
7209 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7210 {
7211 if(ba[i]<start || ba[i]>=(start+slen*4))
7212 {
7213 // Branch out of this block, flush all regs
7214 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7215 {
7216 // Unconditional branch
7217 will_dirty_i=0;
7218 wont_dirty_i=0;
7219 // Merge in delay slot (will dirty)
7220 for(r=0;r<HOST_REGS;r++) {
7221 if(r!=EXCLUDE_REG) {
7222 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7223 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7224 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7225 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7226 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7227 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7228 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7229 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7230 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7231 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7232 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7233 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7234 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7235 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7236 }
7237 }
7238 }
7239 else
7240 {
7241 // Conditional branch
7242 will_dirty_i=0;
7243 wont_dirty_i=wont_dirty_next;
7244 // Merge in delay slot (will dirty)
7245 for(r=0;r<HOST_REGS;r++) {
7246 if(r!=EXCLUDE_REG) {
7247 if(!likely[i]) {
7248 // Might not dirty if likely branch is not taken
7249 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7250 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7251 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7252 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7253 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7254 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7255 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7256 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7257 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7258 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7259 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7260 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7261 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7262 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7263 }
7264 }
7265 }
7266 }
7267 // Merge in delay slot (wont dirty)
7268 for(r=0;r<HOST_REGS;r++) {
7269 if(r!=EXCLUDE_REG) {
7270 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7271 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7272 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7273 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7274 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7275 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7276 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7277 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7278 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7279 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7280 }
7281 }
7282 if(wr) {
7283 #ifndef DESTRUCTIVE_WRITEBACK
7284 branch_regs[i].dirty&=wont_dirty_i;
7285 #endif
7286 branch_regs[i].dirty|=will_dirty_i;
7287 }
7288 }
7289 else
7290 {
7291 // Internal branch
7292 if(ba[i]<=start+i*4) {
7293 // Backward branch
7294 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7295 {
7296 // Unconditional branch
7297 temp_will_dirty=0;
7298 temp_wont_dirty=0;
7299 // Merge in delay slot (will dirty)
7300 for(r=0;r<HOST_REGS;r++) {
7301 if(r!=EXCLUDE_REG) {
7302 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7303 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7304 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7305 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7306 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7307 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7308 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7309 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7310 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7311 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7312 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7313 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7314 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7315 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7316 }
7317 }
7318 } else {
7319 // Conditional branch (not taken case)
7320 temp_will_dirty=will_dirty_next;
7321 temp_wont_dirty=wont_dirty_next;
7322 // Merge in delay slot (will dirty)
7323 for(r=0;r<HOST_REGS;r++) {
7324 if(r!=EXCLUDE_REG) {
7325 if(!likely[i]) {
7326 // Will not dirty if likely branch is not taken
7327 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7328 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7329 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7330 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7331 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7332 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7333 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7334 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7335 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7336 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7337 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7338 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7339 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7340 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7341 }
7342 }
7343 }
7344 }
7345 // Merge in delay slot (wont dirty)
7346 for(r=0;r<HOST_REGS;r++) {
7347 if(r!=EXCLUDE_REG) {
7348 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7349 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7350 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7351 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7352 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7353 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7354 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7355 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7356 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7357 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7358 }
7359 }
7360 // Deal with changed mappings
7361 if(i<iend) {
7362 for(r=0;r<HOST_REGS;r++) {
7363 if(r!=EXCLUDE_REG) {
7364 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7365 temp_will_dirty&=~(1<<r);
7366 temp_wont_dirty&=~(1<<r);
7367 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7368 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7369 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7370 } else {
7371 temp_will_dirty|=1<<r;
7372 temp_wont_dirty|=1<<r;
7373 }
7374 }
7375 }
7376 }
7377 }
7378 if(wr) {
7379 will_dirty[i]=temp_will_dirty;
7380 wont_dirty[i]=temp_wont_dirty;
7381 clean_registers((ba[i]-start)>>2,i-1,0);
7382 }else{
7383 // Limit recursion. It can take an excessive amount
7384 // of time if there are a lot of nested loops.
7385 will_dirty[(ba[i]-start)>>2]=0;
7386 wont_dirty[(ba[i]-start)>>2]=-1;
7387 }
7388 }
7389 /*else*/ if(1)
7390 {
7391 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7392 {
7393 // Unconditional branch
7394 will_dirty_i=0;
7395 wont_dirty_i=0;
7396 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7397 for(r=0;r<HOST_REGS;r++) {
7398 if(r!=EXCLUDE_REG) {
7399 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7400 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7401 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7402 }
7403 }
7404 }
7405 //}
7406 // Merge in delay slot
7407 for(r=0;r<HOST_REGS;r++) {
7408 if(r!=EXCLUDE_REG) {
7409 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7410 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7411 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7412 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7413 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7414 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7415 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7416 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7417 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7418 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7419 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7420 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7421 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7422 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7423 }
7424 }
7425 } else {
7426 // Conditional branch
7427 will_dirty_i=will_dirty_next;
7428 wont_dirty_i=wont_dirty_next;
7429 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7430 for(r=0;r<HOST_REGS;r++) {
7431 if(r!=EXCLUDE_REG) {
7432 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7433 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7434 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7435 }
7436 else
7437 {
7438 will_dirty_i&=~(1<<r);
7439 }
7440 // Treat delay slot as part of branch too
7441 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7442 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7443 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7444 }
7445 else
7446 {
7447 will_dirty[i+1]&=~(1<<r);
7448 }*/
7449 }
7450 }
7451 //}
7452 // Merge in delay slot
7453 for(r=0;r<HOST_REGS;r++) {
7454 if(r!=EXCLUDE_REG) {
7455 if(!likely[i]) {
7456 // Might not dirty if likely branch is not taken
7457 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7458 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7459 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7460 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7461 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7462 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7463 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7464 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7465 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7466 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7467 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7468 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7469 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7470 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7471 }
7472 }
7473 }
7474 }
7475 // Merge in delay slot
7476 for(r=0;r<HOST_REGS;r++) {
7477 if(r!=EXCLUDE_REG) {
7478 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7479 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7480 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7481 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7482 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7483 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7484 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7485 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7486 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7487 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7488 }
7489 }
7490 if(wr) {
7491 #ifndef DESTRUCTIVE_WRITEBACK
7492 branch_regs[i].dirty&=wont_dirty_i;
7493 #endif
7494 branch_regs[i].dirty|=will_dirty_i;
7495 }
7496 }
7497 }
7498 }
1e973cb0 7499 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7500 {
7501 // SYSCALL instruction (software interrupt)
7502 will_dirty_i=0;
7503 wont_dirty_i=0;
7504 }
7505 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7506 {
7507 // ERET instruction (return from interrupt)
7508 will_dirty_i=0;
7509 wont_dirty_i=0;
7510 }
7511 will_dirty_next=will_dirty_i;
7512 wont_dirty_next=wont_dirty_i;
7513 for(r=0;r<HOST_REGS;r++) {
7514 if(r!=EXCLUDE_REG) {
7515 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7516 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7517 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7518 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7519 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7520 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7521 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7522 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7523 if(i>istart) {
7524 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7525 {
7526 // Don't store a register immediately after writing it,
7527 // may prevent dual-issue.
7528 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7529 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7530 }
7531 }
7532 }
7533 }
7534 // Save it
7535 will_dirty[i]=will_dirty_i;
7536 wont_dirty[i]=wont_dirty_i;
7537 // Mark registers that won't be dirtied as not dirty
7538 if(wr) {
7539 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7540 for(r=0;r<HOST_REGS;r++) {
7541 if((will_dirty_i>>r)&1) {
7542 printf(" r%d",r);
7543 }
7544 }
7545 printf("\n");*/
7546
7547 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7548 regs[i].dirty|=will_dirty_i;
7549 #ifndef DESTRUCTIVE_WRITEBACK
7550 regs[i].dirty&=wont_dirty_i;
7551 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7552 {
7553 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7554 for(r=0;r<HOST_REGS;r++) {
7555 if(r!=EXCLUDE_REG) {
7556 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7557 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7558 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7559 }
7560 }
7561 }
7562 }
7563 else
7564 {
7565 if(i<iend) {
7566 for(r=0;r<HOST_REGS;r++) {
7567 if(r!=EXCLUDE_REG) {
7568 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7569 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7570 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7571 }
7572 }
7573 }
7574 }
7575 #endif
7576 //}
7577 }
7578 // Deal with changed mappings
7579 temp_will_dirty=will_dirty_i;
7580 temp_wont_dirty=wont_dirty_i;
7581 for(r=0;r<HOST_REGS;r++) {
7582 if(r!=EXCLUDE_REG) {
7583 int nr;
7584 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7585 if(wr) {
7586 #ifndef DESTRUCTIVE_WRITEBACK
7587 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7588 #endif
7589 regs[i].wasdirty|=will_dirty_i&(1<<r);
7590 }
7591 }
7592 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7593 // Register moved to a different register
7594 will_dirty_i&=~(1<<r);
7595 wont_dirty_i&=~(1<<r);
7596 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7597 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7598 if(wr) {
7599 #ifndef DESTRUCTIVE_WRITEBACK
7600 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7601 #endif
7602 regs[i].wasdirty|=will_dirty_i&(1<<r);
7603 }
7604 }
7605 else {
7606 will_dirty_i&=~(1<<r);
7607 wont_dirty_i&=~(1<<r);
7608 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7609 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7610 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7611 } else {
7612 wont_dirty_i|=1<<r;
7613 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7614 }
7615 }
7616 }
7617 }
7618 }
7619}
7620
7621 /* disassembly */
7622void disassemble_inst(int i)
7623{
7624 if (bt[i]) printf("*"); else printf(" ");
7625 switch(itype[i]) {
7626 case UJUMP:
7627 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7628 case CJUMP:
7629 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7630 case SJUMP:
7631 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7632 case FJUMP:
7633 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7634 case RJUMP:
74426039 7635 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7636 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7637 else
7638 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7639 break;
57871462 7640 case SPAN:
7641 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7642 case IMM16:
7643 if(opcode[i]==0xf) //LUI
7644 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7645 else
7646 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7647 break;
7648 case LOAD:
7649 case LOADLR:
7650 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7651 break;
7652 case STORE:
7653 case STORELR:
7654 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7655 break;
7656 case ALU:
7657 case SHIFT:
7658 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7659 break;
7660 case MULTDIV:
7661 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7662 break;
7663 case SHIFTIMM:
7664 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7665 break;
7666 case MOV:
7667 if((opcode2[i]&0x1d)==0x10)
7668 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7669 else if((opcode2[i]&0x1d)==0x11)
7670 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7671 else
7672 printf (" %x: %s\n",start+i*4,insn[i]);
7673 break;
7674 case COP0:
7675 if(opcode2[i]==0)
7676 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7677 else if(opcode2[i]==4)
7678 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7679 else printf (" %x: %s\n",start+i*4,insn[i]);
7680 break;
7681 case COP1:
7682 if(opcode2[i]<3)
7683 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7684 else if(opcode2[i]>3)
7685 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7686 else printf (" %x: %s\n",start+i*4,insn[i]);
7687 break;
b9b61529 7688 case COP2:
7689 if(opcode2[i]<3)
7690 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7691 else if(opcode2[i]>3)
7692 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7693 else printf (" %x: %s\n",start+i*4,insn[i]);
7694 break;
57871462 7695 case C1LS:
7696 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7697 break;
b9b61529 7698 case C2LS:
7699 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7700 break;
1e973cb0 7701 case INTCALL:
7702 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7703 break;
57871462 7704 default:
7705 //printf (" %s %8x\n",insn[i],source[i]);
7706 printf (" %x: %s\n",start+i*4,insn[i]);
7707 }
7708}
7709
7710void new_dynarec_init()
7711{
7712 printf("Init new dynarec\n");
7713 out=(u_char *)BASE_ADDR;
7714 if (mmap (out, 1<<TARGET_SIZE_2,
7715 PROT_READ | PROT_WRITE | PROT_EXEC,
7716 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7717 -1, 0) <= 0) {printf("mmap() failed\n");}
3d624f89 7718#ifdef MUPEN64
57871462 7719 rdword=&readmem_dword;
7720 fake_pc.f.r.rs=&readmem_dword;
7721 fake_pc.f.r.rt=&readmem_dword;
7722 fake_pc.f.r.rd=&readmem_dword;
3d624f89 7723#endif
57871462 7724 int n;
7725 for(n=0x80000;n<0x80800;n++)
7726 invalid_code[n]=1;
7727 for(n=0;n<65536;n++)
7728 hash_table[n][0]=hash_table[n][2]=-1;
7729 memset(mini_ht,-1,sizeof(mini_ht));
7730 memset(restore_candidate,0,sizeof(restore_candidate));
7731 copy=shadow;
7732 expirep=16384; // Expiry pointer, +2 blocks
7733 pending_exception=0;
7734 literalcount=0;
7735#ifdef HOST_IMM8
7736 // Copy this into local area so we don't have to put it in every literal pool
7737 invc_ptr=invalid_code;
7738#endif
7739 stop_after_jal=0;
7740 // TLB
7741 using_tlb=0;
7742 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7743 memory_map[n]=-1;
7744 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7745 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7746 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7747 memory_map[n]=-1;
24385cae 7748#ifdef MUPEN64
57871462 7749 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7750 writemem[n] = write_nomem_new;
7751 writememb[n] = write_nomemb_new;
7752 writememh[n] = write_nomemh_new;
24385cae 7753#ifndef FORCE32
57871462 7754 writememd[n] = write_nomemd_new;
24385cae 7755#endif
57871462 7756 readmem[n] = read_nomem_new;
7757 readmemb[n] = read_nomemb_new;
7758 readmemh[n] = read_nomemh_new;
24385cae 7759#ifndef FORCE32
57871462 7760 readmemd[n] = read_nomemd_new;
24385cae 7761#endif
57871462 7762 }
7763 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7764 writemem[n] = write_rdram_new;
7765 writememb[n] = write_rdramb_new;
7766 writememh[n] = write_rdramh_new;
24385cae 7767#ifndef FORCE32
57871462 7768 writememd[n] = write_rdramd_new;
24385cae 7769#endif
57871462 7770 }
7771 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7772 writemem[n] = write_nomem_new;
7773 writememb[n] = write_nomemb_new;
7774 writememh[n] = write_nomemh_new;
24385cae 7775#ifndef FORCE32
57871462 7776 writememd[n] = write_nomemd_new;
24385cae 7777#endif
57871462 7778 readmem[n] = read_nomem_new;
7779 readmemb[n] = read_nomemb_new;
7780 readmemh[n] = read_nomemh_new;
24385cae 7781#ifndef FORCE32
57871462 7782 readmemd[n] = read_nomemd_new;
24385cae 7783#endif
57871462 7784 }
24385cae 7785#endif
57871462 7786 tlb_hacks();
7787 arch_init();
7788}
7789
7790void new_dynarec_cleanup()
7791{
7792 int n;
7793 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7794 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7795 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7796 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7797 #ifdef ROM_COPY
7798 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7799 #endif
7800}
7801
7802int new_recompile_block(int addr)
7803{
7804/*
7805 if(addr==0x800cd050) {
7806 int block;
7807 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7808 int n;
7809 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7810 }
7811*/
7812 //if(Count==365117028) tracedebug=1;
7813 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7814 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7815 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7816 //if(debug)
7817 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7818 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7819 /*if(Count>=312978186) {
7820 rlist();
7821 }*/
7822 //rlist();
7823 start = (u_int)addr&~3;
7824 //assert(((u_int)addr&1)==0);
7139f3c8 7825#ifdef PCSX
9ad4d757 7826 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 7827 {
7139f3c8 7828 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 7829 u_int beginning=(u_int)out;
7139f3c8 7830 u_int page=get_page(start);
7139f3c8 7831 invalid_code[start>>12]=0;
7832 emit_movimm(start,0);
7833 emit_writeword(0,(int)&pcaddr);
bb5285ef 7834 emit_jmp((int)new_dyna_leave);
7835#ifdef __arm__
7836 __clear_cache((void *)beginning,out);
7837#endif
9ad4d757 7838 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 7839 return 0;
7840 }
560e4a12 7841 else if ((u_int)addr < 0x00200000 ||
7842 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 7843 // used for BIOS calls mostly?
560e4a12 7844 source = (u_int *)((u_int)rdram+(start&0x1fffff));
7845 pagelimit = (addr&0xa0000000)|0x00200000;
7846 }
7847 else if (!Config.HLE && (
7848/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7849 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7850 // BIOS
7851 source = (u_int *)((u_int)psxR+(start&0x7ffff));
7852 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 7853 }
7854 else
7855#endif
3d624f89 7856#ifdef MUPEN64
57871462 7857 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7858 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7859 pagelimit = 0xa4001000;
7860 }
3d624f89 7861 else
7862#endif
4cb76aa4 7863 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 7864 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 7865 pagelimit = 0x80000000+RAM_SIZE;
57871462 7866 }
90ae6d4e 7867#ifndef DISABLE_TLB
57871462 7868 else if ((signed int)addr >= (signed int)0xC0000000) {
7869 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7870 //if(tlb_LUT_r[start>>12])
7871 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7872 if((signed int)memory_map[start>>12]>=0) {
7873 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7874 pagelimit=(start+4096)&0xFFFFF000;
7875 int map=memory_map[start>>12];
7876 int i;
7877 for(i=0;i<5;i++) {
7878 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7879 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7880 }
7881 assem_debug("pagelimit=%x\n",pagelimit);
7882 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7883 }
7884 else {
7885 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7886 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 7887 return -1; // Caller will invoke exception handler
57871462 7888 }
7889 //printf("source= %x\n",(int)source);
7890 }
90ae6d4e 7891#endif
57871462 7892 else {
7893 printf("Compile at bogus memory address: %x \n", (int)addr);
7894 exit(1);
7895 }
7896
7897 /* Pass 1: disassemble */
7898 /* Pass 2: register dependencies, branch targets */
7899 /* Pass 3: register allocation */
7900 /* Pass 4: branch dependencies */
7901 /* Pass 5: pre-alloc */
7902 /* Pass 6: optimize clean/dirty state */
7903 /* Pass 7: flag 32-bit registers */
7904 /* Pass 8: assembly */
7905 /* Pass 9: linker */
7906 /* Pass 10: garbage collection / free memory */
7907
7908 int i,j;
7909 int done=0;
7910 unsigned int type,op,op2;
7911
7912 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7913
7914 /* Pass 1 disassembly */
7915
7916 for(i=0;!done;i++) {
e1190b87 7917 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7918 minimum_free_regs[i]=0;
57871462 7919 opcode[i]=op=source[i]>>26;
7920 switch(op)
7921 {
7922 case 0x00: strcpy(insn[i],"special"); type=NI;
7923 op2=source[i]&0x3f;
7924 switch(op2)
7925 {
7926 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7927 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7928 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7929 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7930 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7931 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7932 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7933 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7934 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7935 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7936 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7937 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7938 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7939 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7940 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7941 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7942 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7943 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7944 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7945 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7946 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7947 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7948 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7949 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7950 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7951 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7952 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7953 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7954 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7955 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7956 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7957 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7958 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7959 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7960 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7961 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7962 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7963 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7964 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7965 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7966 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7967 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7968 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7969 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7970 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7971 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7972 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7973 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7974 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7975 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7976 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7977 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7978 }
7979 break;
7980 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7981 op2=(source[i]>>16)&0x1f;
7982 switch(op2)
7983 {
7984 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7985 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7986 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7987 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7988 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7989 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7990 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7991 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7992 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7993 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7994 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7995 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7996 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7997 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7998 }
7999 break;
8000 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8001 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8002 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8003 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8004 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8005 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8006 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8007 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8008 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8009 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8010 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8011 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8012 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8013 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8014 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8015 op2=(source[i]>>21)&0x1f;
8016 switch(op2)
8017 {
8018 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8019 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8020 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8021 switch(source[i]&0x3f)
8022 {
8023 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8024 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8025 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8026 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8027#ifdef PCSX
8028 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8029#else
57871462 8030 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8031#endif
57871462 8032 }
8033 }
8034 break;
8035 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8036 op2=(source[i]>>21)&0x1f;
8037 switch(op2)
8038 {
8039 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8040 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8041 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8042 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8043 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8044 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8045 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8046 switch((source[i]>>16)&0x3)
8047 {
8048 case 0x00: strcpy(insn[i],"BC1F"); break;
8049 case 0x01: strcpy(insn[i],"BC1T"); break;
8050 case 0x02: strcpy(insn[i],"BC1FL"); break;
8051 case 0x03: strcpy(insn[i],"BC1TL"); break;
8052 }
8053 break;
8054 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8055 switch(source[i]&0x3f)
8056 {
8057 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8058 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8059 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8060 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8061 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8062 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8063 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8064 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8065 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8066 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8067 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8068 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8069 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8070 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8071 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8072 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8073 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8074 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8075 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8076 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8077 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8078 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8079 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8080 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8081 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8082 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8083 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8084 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8085 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8086 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8087 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8088 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8089 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8090 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8091 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8092 }
8093 break;
8094 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8095 switch(source[i]&0x3f)
8096 {
8097 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8098 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8099 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8100 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8101 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8102 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8103 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8104 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8105 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8106 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8107 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8108 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8109 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8110 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8111 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8112 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8113 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8114 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8115 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8116 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8117 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8118 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8119 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8120 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8121 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8122 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8123 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8124 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8125 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8126 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8127 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8128 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8129 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8130 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8131 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8132 }
8133 break;
8134 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8135 switch(source[i]&0x3f)
8136 {
8137 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8138 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8139 }
8140 break;
8141 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8142 switch(source[i]&0x3f)
8143 {
8144 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8145 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8146 }
8147 break;
8148 }
8149 break;
909168d6 8150#ifndef FORCE32
57871462 8151 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8152 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8153 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8154 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8155 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8156 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8157 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8158 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8159#endif
57871462 8160 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8161 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8162 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8163 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8164 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8165 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8166 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8167 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8168 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8169 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8170 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8171 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8172#ifndef FORCE32
57871462 8173 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8174 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8175#endif
57871462 8176 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8177 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8178 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8179 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8180#ifndef FORCE32
57871462 8181 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8182 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8183 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8184#endif
57871462 8185 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8186 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8187#ifndef FORCE32
57871462 8188 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8189 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8190 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8191#endif
b9b61529 8192#ifdef PCSX
8193 case 0x12: strcpy(insn[i],"COP2"); type=NI;
c7abc864 8194 // note: COP MIPS-1 encoding differs from MIPS32
b9b61529 8195 op2=(source[i]>>21)&0x1f;
c7abc864 8196 if (source[i]&0x3f) {
8197 if (gte_handlers[source[i]&0x3f]!=NULL) {
8198 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8199 type=C2OP;
8200 }
8201 }
8202 else switch(op2)
b9b61529 8203 {
8204 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8205 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8206 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8207 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8208 }
8209 break;
8210 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8211 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8212 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8213#endif
90ae6d4e 8214 default: strcpy(insn[i],"???"); type=NI;
75dec299 8215 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8216 break;
57871462 8217 }
1e973cb0 8218#ifdef PCSX
8219 /* detect branch in delay slot early */
8220 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8221 opcode[i+1]=source[i+1]>>26;
8222 opcode2[i+1]=source[i+1]&0x3f;
8223 if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8224 printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8225 // don't handle first branch and call interpreter if it's hit
8226 type=INTCALL;
8227 }
8228 }
8229#endif
57871462 8230 itype[i]=type;
8231 opcode2[i]=op2;
8232 /* Get registers/immediates */
8233 lt1[i]=0;
8234 us1[i]=0;
8235 us2[i]=0;
8236 dep1[i]=0;
8237 dep2[i]=0;
8238 switch(type) {
8239 case LOAD:
8240 rs1[i]=(source[i]>>21)&0x1f;
8241 rs2[i]=0;
8242 rt1[i]=(source[i]>>16)&0x1f;
8243 rt2[i]=0;
8244 imm[i]=(short)source[i];
8245 break;
8246 case STORE:
8247 case STORELR:
8248 rs1[i]=(source[i]>>21)&0x1f;
8249 rs2[i]=(source[i]>>16)&0x1f;
8250 rt1[i]=0;
8251 rt2[i]=0;
8252 imm[i]=(short)source[i];
8253 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8254 break;
8255 case LOADLR:
8256 // LWL/LWR only load part of the register,
8257 // therefore the target register must be treated as a source too
8258 rs1[i]=(source[i]>>21)&0x1f;
8259 rs2[i]=(source[i]>>16)&0x1f;
8260 rt1[i]=(source[i]>>16)&0x1f;
8261 rt2[i]=0;
8262 imm[i]=(short)source[i];
8263 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8264 if(op==0x26) dep1[i]=rt1[i]; // LWR
8265 break;
8266 case IMM16:
8267 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8268 else rs1[i]=(source[i]>>21)&0x1f;
8269 rs2[i]=0;
8270 rt1[i]=(source[i]>>16)&0x1f;
8271 rt2[i]=0;
8272 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8273 imm[i]=(unsigned short)source[i];
8274 }else{
8275 imm[i]=(short)source[i];
8276 }
8277 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8278 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8279 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8280 break;
8281 case UJUMP:
8282 rs1[i]=0;
8283 rs2[i]=0;
8284 rt1[i]=0;
8285 rt2[i]=0;
8286 // The JAL instruction writes to r31.
8287 if (op&1) {
8288 rt1[i]=31;
8289 }
8290 rs2[i]=CCREG;
8291 break;
8292 case RJUMP:
8293 rs1[i]=(source[i]>>21)&0x1f;
8294 rs2[i]=0;
8295 rt1[i]=0;
8296 rt2[i]=0;
5067f341 8297 // The JALR instruction writes to rd.
57871462 8298 if (op2&1) {
5067f341 8299 rt1[i]=(source[i]>>11)&0x1f;
57871462 8300 }
8301 rs2[i]=CCREG;
8302 break;
8303 case CJUMP:
8304 rs1[i]=(source[i]>>21)&0x1f;
8305 rs2[i]=(source[i]>>16)&0x1f;
8306 rt1[i]=0;
8307 rt2[i]=0;
8308 if(op&2) { // BGTZ/BLEZ
8309 rs2[i]=0;
8310 }
8311 us1[i]=rs1[i];
8312 us2[i]=rs2[i];
8313 likely[i]=op>>4;
8314 break;
8315 case SJUMP:
8316 rs1[i]=(source[i]>>21)&0x1f;
8317 rs2[i]=CCREG;
8318 rt1[i]=0;
8319 rt2[i]=0;
8320 us1[i]=rs1[i];
8321 if(op2&0x10) { // BxxAL
8322 rt1[i]=31;
8323 // NOTE: If the branch is not taken, r31 is still overwritten
8324 }
8325 likely[i]=(op2&2)>>1;
8326 break;
8327 case FJUMP:
8328 rs1[i]=FSREG;
8329 rs2[i]=CSREG;
8330 rt1[i]=0;
8331 rt2[i]=0;
8332 likely[i]=((source[i])>>17)&1;
8333 break;
8334 case ALU:
8335 rs1[i]=(source[i]>>21)&0x1f; // source
8336 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8337 rt1[i]=(source[i]>>11)&0x1f; // destination
8338 rt2[i]=0;
8339 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8340 us1[i]=rs1[i];us2[i]=rs2[i];
8341 }
8342 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8343 dep1[i]=rs1[i];dep2[i]=rs2[i];
8344 }
8345 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8346 dep1[i]=rs1[i];dep2[i]=rs2[i];
8347 }
8348 break;
8349 case MULTDIV:
8350 rs1[i]=(source[i]>>21)&0x1f; // source
8351 rs2[i]=(source[i]>>16)&0x1f; // divisor
8352 rt1[i]=HIREG;
8353 rt2[i]=LOREG;
8354 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8355 us1[i]=rs1[i];us2[i]=rs2[i];
8356 }
8357 break;
8358 case MOV:
8359 rs1[i]=0;
8360 rs2[i]=0;
8361 rt1[i]=0;
8362 rt2[i]=0;
8363 if(op2==0x10) rs1[i]=HIREG; // MFHI
8364 if(op2==0x11) rt1[i]=HIREG; // MTHI
8365 if(op2==0x12) rs1[i]=LOREG; // MFLO
8366 if(op2==0x13) rt1[i]=LOREG; // MTLO
8367 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8368 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8369 dep1[i]=rs1[i];
8370 break;
8371 case SHIFT:
8372 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8373 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8374 rt1[i]=(source[i]>>11)&0x1f; // destination
8375 rt2[i]=0;
8376 // DSLLV/DSRLV/DSRAV are 64-bit
8377 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8378 break;
8379 case SHIFTIMM:
8380 rs1[i]=(source[i]>>16)&0x1f;
8381 rs2[i]=0;
8382 rt1[i]=(source[i]>>11)&0x1f;
8383 rt2[i]=0;
8384 imm[i]=(source[i]>>6)&0x1f;
8385 // DSxx32 instructions
8386 if(op2>=0x3c) imm[i]|=0x20;
8387 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8388 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8389 break;
8390 case COP0:
8391 rs1[i]=0;
8392 rs2[i]=0;
8393 rt1[i]=0;
8394 rt2[i]=0;
8395 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8396 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8397 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8398 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8399 break;
8400 case COP1:
b9b61529 8401 case COP2:
57871462 8402 rs1[i]=0;
8403 rs2[i]=0;
8404 rt1[i]=0;
8405 rt2[i]=0;
8406 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8407 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8408 if(op2==5) us1[i]=rs1[i]; // DMTC1
8409 rs2[i]=CSREG;
8410 break;
8411 case C1LS:
8412 rs1[i]=(source[i]>>21)&0x1F;
8413 rs2[i]=CSREG;
8414 rt1[i]=0;
8415 rt2[i]=0;
8416 imm[i]=(short)source[i];
8417 break;
b9b61529 8418 case C2LS:
8419 rs1[i]=(source[i]>>21)&0x1F;
8420 rs2[i]=0;
8421 rt1[i]=0;
8422 rt2[i]=0;
8423 imm[i]=(short)source[i];
8424 break;
57871462 8425 case FLOAT:
8426 case FCONV:
8427 rs1[i]=0;
8428 rs2[i]=CSREG;
8429 rt1[i]=0;
8430 rt2[i]=0;
8431 break;
8432 case FCOMP:
8433 rs1[i]=FSREG;
8434 rs2[i]=CSREG;
8435 rt1[i]=FSREG;
8436 rt2[i]=0;
8437 break;
8438 case SYSCALL:
7139f3c8 8439 case HLECALL:
1e973cb0 8440 case INTCALL:
57871462 8441 rs1[i]=CCREG;
8442 rs2[i]=0;
8443 rt1[i]=0;
8444 rt2[i]=0;
8445 break;
8446 default:
8447 rs1[i]=0;
8448 rs2[i]=0;
8449 rt1[i]=0;
8450 rt2[i]=0;
8451 }
8452 /* Calculate branch target addresses */
8453 if(type==UJUMP)
8454 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8455 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8456 ba[i]=start+i*4+8; // Ignore never taken branch
8457 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8458 ba[i]=start+i*4+8; // Ignore never taken branch
8459 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8460 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8461 else ba[i]=-1;
8462 /* Is this the end of the block? */
8463 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
26869094 8464#ifdef PCSX
8465 // check for link register access in delay slot
8466 int rt1_=rt1[i-1];
8467 if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8468 printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8469 ba[i-1]=-1;
8470 itype[i-1]=INTCALL;
8471 done=2;
8472 }
8473 else
8474#endif
5067f341 8475 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8476 done=2;
57871462 8477 }
8478 else {
8479 if(stop_after_jal) done=1;
8480 // Stop on BREAK
8481 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8482 }
8483 // Don't recompile stuff that's already compiled
8484 if(check_addr(start+i*4+4)) done=1;
8485 // Don't get too close to the limit
8486 if(i>MAXBLOCK/2) done=1;
8487 }
75dec299 8488 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8489 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8490 if(done==2) {
8491 // Does the block continue due to a branch?
8492 for(j=i-1;j>=0;j--)
8493 {
8494 if(ba[j]==start+i*4+4) done=j=0;
8495 if(ba[j]==start+i*4+8) done=j=0;
8496 }
8497 }
75dec299 8498 //assert(i<MAXBLOCK-1);
57871462 8499 if(start+i*4==pagelimit-4) done=1;
8500 assert(start+i*4<pagelimit);
8501 if (i==MAXBLOCK-1) done=1;
8502 // Stop if we're compiling junk
8503 if(itype[i]==NI&&opcode[i]==0x11) {
8504 done=stop_after_jal=1;
8505 printf("Disabled speculative precompilation\n");
8506 }
8507 }
8508 slen=i;
8509 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8510 if(start+i*4==pagelimit) {
8511 itype[i-1]=SPAN;
8512 }
8513 }
8514 assert(slen>0);
8515
8516 /* Pass 2 - Register dependencies and branch targets */
8517
8518 unneeded_registers(0,slen-1,0);
8519
8520 /* Pass 3 - Register allocation */
8521
8522 struct regstat current; // Current register allocations/status
8523 current.is32=1;
8524 current.dirty=0;
8525 current.u=unneeded_reg[0];
8526 current.uu=unneeded_reg_upper[0];
8527 clear_all_regs(current.regmap);
8528 alloc_reg(&current,0,CCREG);
8529 dirty_reg(&current,CCREG);
8530 current.isconst=0;
8531 current.wasconst=0;
8532 int ds=0;
8533 int cc=0;
8534 int hr;
6ebf4adf 8535
8536#ifndef FORCE32
57871462 8537 provisional_32bit();
6ebf4adf 8538#endif
57871462 8539 if((u_int)addr&1) {
8540 // First instruction is delay slot
8541 cc=-1;
8542 bt[1]=1;
8543 ds=1;
8544 unneeded_reg[0]=1;
8545 unneeded_reg_upper[0]=1;
8546 current.regmap[HOST_BTREG]=BTREG;
8547 }
8548
8549 for(i=0;i<slen;i++)
8550 {
8551 if(bt[i])
8552 {
8553 int hr;
8554 for(hr=0;hr<HOST_REGS;hr++)
8555 {
8556 // Is this really necessary?
8557 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8558 }
8559 current.isconst=0;
8560 }
8561 if(i>1)
8562 {
8563 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8564 {
8565 if(rs1[i-2]==0||rs2[i-2]==0)
8566 {
8567 if(rs1[i-2]) {
8568 current.is32|=1LL<<rs1[i-2];
8569 int hr=get_reg(current.regmap,rs1[i-2]|64);
8570 if(hr>=0) current.regmap[hr]=-1;
8571 }
8572 if(rs2[i-2]) {
8573 current.is32|=1LL<<rs2[i-2];
8574 int hr=get_reg(current.regmap,rs2[i-2]|64);
8575 if(hr>=0) current.regmap[hr]=-1;
8576 }
8577 }
8578 }
8579 }
6ebf4adf 8580#ifndef FORCE32
57871462 8581 // If something jumps here with 64-bit values
8582 // then promote those registers to 64 bits
8583 if(bt[i])
8584 {
8585 uint64_t temp_is32=current.is32;
8586 for(j=i-1;j>=0;j--)
8587 {
8588 if(ba[j]==start+i*4)
8589 temp_is32&=branch_regs[j].is32;
8590 }
8591 for(j=i;j<slen;j++)
8592 {
8593 if(ba[j]==start+i*4)
8594 //temp_is32=1;
8595 temp_is32&=p32[j];
8596 }
8597 if(temp_is32!=current.is32) {
8598 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8599 #ifdef DESTRUCTIVE_WRITEBACK
8600 for(hr=0;hr<HOST_REGS;hr++)
8601 {
8602 int r=current.regmap[hr];
8603 if(r>0&&r<64)
8604 {
8605 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8606 temp_is32|=1LL<<r;
8607 //printf("restore %d\n",r);
8608 }
8609 }
8610 }
8611 #endif
8612 current.is32=temp_is32;
8613 }
8614 }
6ebf4adf 8615#else
24385cae 8616 current.is32=-1LL;
8617#endif
8618
57871462 8619 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8620 regs[i].wasconst=current.isconst;
8621 regs[i].was32=current.is32;
8622 regs[i].wasdirty=current.dirty;
6ebf4adf 8623 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8624 // To change a dirty register from 32 to 64 bits, we must write
8625 // it out during the previous cycle (for branches, 2 cycles)
8626 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8627 {
8628 uint64_t temp_is32=current.is32;
8629 for(j=i-1;j>=0;j--)
8630 {
8631 if(ba[j]==start+i*4+4)
8632 temp_is32&=branch_regs[j].is32;
8633 }
8634 for(j=i;j<slen;j++)
8635 {
8636 if(ba[j]==start+i*4+4)
8637 //temp_is32=1;
8638 temp_is32&=p32[j];
8639 }
8640 if(temp_is32!=current.is32) {
8641 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8642 for(hr=0;hr<HOST_REGS;hr++)
8643 {
8644 int r=current.regmap[hr];
8645 if(r>0)
8646 {
8647 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8648 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8649 {
8650 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8651 {
8652 //printf("dump %d/r%d\n",hr,r);
8653 current.regmap[hr]=-1;
8654 if(get_reg(current.regmap,r|64)>=0)
8655 current.regmap[get_reg(current.regmap,r|64)]=-1;
8656 }
8657 }
8658 }
8659 }
8660 }
8661 }
8662 }
8663 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8664 {
8665 uint64_t temp_is32=current.is32;
8666 for(j=i-1;j>=0;j--)
8667 {
8668 if(ba[j]==start+i*4+8)
8669 temp_is32&=branch_regs[j].is32;
8670 }
8671 for(j=i;j<slen;j++)
8672 {
8673 if(ba[j]==start+i*4+8)
8674 //temp_is32=1;
8675 temp_is32&=p32[j];
8676 }
8677 if(temp_is32!=current.is32) {
8678 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8679 for(hr=0;hr<HOST_REGS;hr++)
8680 {
8681 int r=current.regmap[hr];
8682 if(r>0)
8683 {
8684 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8685 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8686 {
8687 //printf("dump %d/r%d\n",hr,r);
8688 current.regmap[hr]=-1;
8689 if(get_reg(current.regmap,r|64)>=0)
8690 current.regmap[get_reg(current.regmap,r|64)]=-1;
8691 }
8692 }
8693 }
8694 }
8695 }
8696 }
8697 #endif
8698 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8699 if(i+1<slen) {
8700 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8701 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8702 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8703 current.u|=1;
8704 current.uu|=1;
8705 } else {
8706 current.u=1;
8707 current.uu=1;
8708 }
8709 } else {
8710 if(i+1<slen) {
8711 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8712 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8713 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8714 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8715 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8716 current.u|=1;
8717 current.uu|=1;
8718 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8719 }
8720 is_ds[i]=ds;
8721 if(ds) {
8722 ds=0; // Skip delay slot, already allocated as part of branch
8723 // ...but we need to alloc it in case something jumps here
8724 if(i+1<slen) {
8725 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8726 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8727 }else{
8728 current.u=branch_unneeded_reg[i-1];
8729 current.uu=branch_unneeded_reg_upper[i-1];
8730 }
8731 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8732 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8733 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8734 current.u|=1;
8735 current.uu|=1;
8736 struct regstat temp;
8737 memcpy(&temp,&current,sizeof(current));
8738 temp.wasdirty=temp.dirty;
8739 temp.was32=temp.is32;
8740 // TODO: Take into account unconditional branches, as below
8741 delayslot_alloc(&temp,i);
8742 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8743 regs[i].wasdirty=temp.wasdirty;
8744 regs[i].was32=temp.was32;
8745 regs[i].dirty=temp.dirty;
8746 regs[i].is32=temp.is32;
8747 regs[i].isconst=0;
8748 regs[i].wasconst=0;
8749 current.isconst=0;
8750 // Create entry (branch target) regmap
8751 for(hr=0;hr<HOST_REGS;hr++)
8752 {
8753 int r=temp.regmap[hr];
8754 if(r>=0) {
8755 if(r!=regmap_pre[i][hr]) {
8756 regs[i].regmap_entry[hr]=-1;
8757 }
8758 else
8759 {
8760 if(r<64){
8761 if((current.u>>r)&1) {
8762 regs[i].regmap_entry[hr]=-1;
8763 regs[i].regmap[hr]=-1;
8764 //Don't clear regs in the delay slot as the branch might need them
8765 //current.regmap[hr]=-1;
8766 }else
8767 regs[i].regmap_entry[hr]=r;
8768 }
8769 else {
8770 if((current.uu>>(r&63))&1) {
8771 regs[i].regmap_entry[hr]=-1;
8772 regs[i].regmap[hr]=-1;
8773 //Don't clear regs in the delay slot as the branch might need them
8774 //current.regmap[hr]=-1;
8775 }else
8776 regs[i].regmap_entry[hr]=r;
8777 }
8778 }
8779 } else {
8780 // First instruction expects CCREG to be allocated
8781 if(i==0&&hr==HOST_CCREG)
8782 regs[i].regmap_entry[hr]=CCREG;
8783 else
8784 regs[i].regmap_entry[hr]=-1;
8785 }
8786 }
8787 }
8788 else { // Not delay slot
8789 switch(itype[i]) {
8790 case UJUMP:
8791 //current.isconst=0; // DEBUG
8792 //current.wasconst=0; // DEBUG
8793 //regs[i].wasconst=0; // DEBUG
8794 clear_const(&current,rt1[i]);
8795 alloc_cc(&current,i);
8796 dirty_reg(&current,CCREG);
8797 if (rt1[i]==31) {
8798 alloc_reg(&current,i,31);
8799 dirty_reg(&current,31);
68b3faee 8800 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
076655d1 8801 assert(rt1[i+1]!=rt1[i]);
57871462 8802 #ifdef REG_PREFETCH
8803 alloc_reg(&current,i,PTEMP);
8804 #endif
8805 //current.is32|=1LL<<rt1[i];
8806 }
e1190b87 8807 ooo[i]=1;
57871462 8808 delayslot_alloc(&current,i+1);
8809 //current.isconst=0; // DEBUG
8810 ds=1;
8811 //printf("i=%d, isconst=%x\n",i,current.isconst);
8812 break;
8813 case RJUMP:
8814 //current.isconst=0;
8815 //current.wasconst=0;
8816 //regs[i].wasconst=0;
8817 clear_const(&current,rs1[i]);
8818 clear_const(&current,rt1[i]);
8819 alloc_cc(&current,i);
8820 dirty_reg(&current,CCREG);
8821 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8822 alloc_reg(&current,i,rs1[i]);
5067f341 8823 if (rt1[i]!=0) {
8824 alloc_reg(&current,i,rt1[i]);
8825 dirty_reg(&current,rt1[i]);
68b3faee 8826 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 8827 assert(rt1[i+1]!=rt1[i]);
57871462 8828 #ifdef REG_PREFETCH
8829 alloc_reg(&current,i,PTEMP);
8830 #endif
8831 }
8832 #ifdef USE_MINI_HT
8833 if(rs1[i]==31) { // JALR
8834 alloc_reg(&current,i,RHASH);
8835 #ifndef HOST_IMM_ADDR32
8836 alloc_reg(&current,i,RHTBL);
8837 #endif
8838 }
8839 #endif
8840 delayslot_alloc(&current,i+1);
8841 } else {
8842 // The delay slot overwrites our source register,
8843 // allocate a temporary register to hold the old value.
8844 current.isconst=0;
8845 current.wasconst=0;
8846 regs[i].wasconst=0;
8847 delayslot_alloc(&current,i+1);
8848 current.isconst=0;
8849 alloc_reg(&current,i,RTEMP);
8850 }
8851 //current.isconst=0; // DEBUG
e1190b87 8852 ooo[i]=1;
57871462 8853 ds=1;
8854 break;
8855 case CJUMP:
8856 //current.isconst=0;
8857 //current.wasconst=0;
8858 //regs[i].wasconst=0;
8859 clear_const(&current,rs1[i]);
8860 clear_const(&current,rs2[i]);
8861 if((opcode[i]&0x3E)==4) // BEQ/BNE
8862 {
8863 alloc_cc(&current,i);
8864 dirty_reg(&current,CCREG);
8865 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8866 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8867 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8868 {
8869 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8870 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8871 }
8872 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8873 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8874 // The delay slot overwrites one of our conditions.
8875 // Allocate the branch condition registers instead.
57871462 8876 current.isconst=0;
8877 current.wasconst=0;
8878 regs[i].wasconst=0;
8879 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8880 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8881 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8882 {
8883 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8884 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8885 }
8886 }
e1190b87 8887 else
8888 {
8889 ooo[i]=1;
8890 delayslot_alloc(&current,i+1);
8891 }
57871462 8892 }
8893 else
8894 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8895 {
8896 alloc_cc(&current,i);
8897 dirty_reg(&current,CCREG);
8898 alloc_reg(&current,i,rs1[i]);
8899 if(!(current.is32>>rs1[i]&1))
8900 {
8901 alloc_reg64(&current,i,rs1[i]);
8902 }
8903 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8904 // The delay slot overwrites one of our conditions.
8905 // Allocate the branch condition registers instead.
57871462 8906 current.isconst=0;
8907 current.wasconst=0;
8908 regs[i].wasconst=0;
8909 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8910 if(!((current.is32>>rs1[i])&1))
8911 {
8912 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8913 }
8914 }
e1190b87 8915 else
8916 {
8917 ooo[i]=1;
8918 delayslot_alloc(&current,i+1);
8919 }
57871462 8920 }
8921 else
8922 // Don't alloc the delay slot yet because we might not execute it
8923 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8924 {
8925 current.isconst=0;
8926 current.wasconst=0;
8927 regs[i].wasconst=0;
8928 alloc_cc(&current,i);
8929 dirty_reg(&current,CCREG);
8930 alloc_reg(&current,i,rs1[i]);
8931 alloc_reg(&current,i,rs2[i]);
8932 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8933 {
8934 alloc_reg64(&current,i,rs1[i]);
8935 alloc_reg64(&current,i,rs2[i]);
8936 }
8937 }
8938 else
8939 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8940 {
8941 current.isconst=0;
8942 current.wasconst=0;
8943 regs[i].wasconst=0;
8944 alloc_cc(&current,i);
8945 dirty_reg(&current,CCREG);
8946 alloc_reg(&current,i,rs1[i]);
8947 if(!(current.is32>>rs1[i]&1))
8948 {
8949 alloc_reg64(&current,i,rs1[i]);
8950 }
8951 }
8952 ds=1;
8953 //current.isconst=0;
8954 break;
8955 case SJUMP:
8956 //current.isconst=0;
8957 //current.wasconst=0;
8958 //regs[i].wasconst=0;
8959 clear_const(&current,rs1[i]);
8960 clear_const(&current,rt1[i]);
8961 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8962 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8963 {
8964 alloc_cc(&current,i);
8965 dirty_reg(&current,CCREG);
8966 alloc_reg(&current,i,rs1[i]);
8967 if(!(current.is32>>rs1[i]&1))
8968 {
8969 alloc_reg64(&current,i,rs1[i]);
8970 }
8971 if (rt1[i]==31) { // BLTZAL/BGEZAL
8972 alloc_reg(&current,i,31);
8973 dirty_reg(&current,31);
57871462 8974 //#ifdef REG_PREFETCH
8975 //alloc_reg(&current,i,PTEMP);
8976 //#endif
8977 //current.is32|=1LL<<rt1[i];
8978 }
e1190b87 8979 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8980 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 8981 // Allocate the branch condition registers instead.
57871462 8982 current.isconst=0;
8983 current.wasconst=0;
8984 regs[i].wasconst=0;
8985 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8986 if(!((current.is32>>rs1[i])&1))
8987 {
8988 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8989 }
8990 }
e1190b87 8991 else
8992 {
8993 ooo[i]=1;
8994 delayslot_alloc(&current,i+1);
8995 }
57871462 8996 }
8997 else
8998 // Don't alloc the delay slot yet because we might not execute it
8999 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9000 {
9001 current.isconst=0;
9002 current.wasconst=0;
9003 regs[i].wasconst=0;
9004 alloc_cc(&current,i);
9005 dirty_reg(&current,CCREG);
9006 alloc_reg(&current,i,rs1[i]);
9007 if(!(current.is32>>rs1[i]&1))
9008 {
9009 alloc_reg64(&current,i,rs1[i]);
9010 }
9011 }
9012 ds=1;
9013 //current.isconst=0;
9014 break;
9015 case FJUMP:
9016 current.isconst=0;
9017 current.wasconst=0;
9018 regs[i].wasconst=0;
9019 if(likely[i]==0) // BC1F/BC1T
9020 {
9021 // TODO: Theoretically we can run out of registers here on x86.
9022 // The delay slot can allocate up to six, and we need to check
9023 // CSREG before executing the delay slot. Possibly we can drop
9024 // the cycle count and then reload it after checking that the
9025 // FPU is in a usable state, or don't do out-of-order execution.
9026 alloc_cc(&current,i);
9027 dirty_reg(&current,CCREG);
9028 alloc_reg(&current,i,FSREG);
9029 alloc_reg(&current,i,CSREG);
9030 if(itype[i+1]==FCOMP) {
9031 // The delay slot overwrites the branch condition.
9032 // Allocate the branch condition registers instead.
57871462 9033 alloc_cc(&current,i);
9034 dirty_reg(&current,CCREG);
9035 alloc_reg(&current,i,CSREG);
9036 alloc_reg(&current,i,FSREG);
9037 }
9038 else {
e1190b87 9039 ooo[i]=1;
57871462 9040 delayslot_alloc(&current,i+1);
9041 alloc_reg(&current,i+1,CSREG);
9042 }
9043 }
9044 else
9045 // Don't alloc the delay slot yet because we might not execute it
9046 if(likely[i]) // BC1FL/BC1TL
9047 {
9048 alloc_cc(&current,i);
9049 dirty_reg(&current,CCREG);
9050 alloc_reg(&current,i,CSREG);
9051 alloc_reg(&current,i,FSREG);
9052 }
9053 ds=1;
9054 current.isconst=0;
9055 break;
9056 case IMM16:
9057 imm16_alloc(&current,i);
9058 break;
9059 case LOAD:
9060 case LOADLR:
9061 load_alloc(&current,i);
9062 break;
9063 case STORE:
9064 case STORELR:
9065 store_alloc(&current,i);
9066 break;
9067 case ALU:
9068 alu_alloc(&current,i);
9069 break;
9070 case SHIFT:
9071 shift_alloc(&current,i);
9072 break;
9073 case MULTDIV:
9074 multdiv_alloc(&current,i);
9075 break;
9076 case SHIFTIMM:
9077 shiftimm_alloc(&current,i);
9078 break;
9079 case MOV:
9080 mov_alloc(&current,i);
9081 break;
9082 case COP0:
9083 cop0_alloc(&current,i);
9084 break;
9085 case COP1:
b9b61529 9086 case COP2:
57871462 9087 cop1_alloc(&current,i);
9088 break;
9089 case C1LS:
9090 c1ls_alloc(&current,i);
9091 break;
b9b61529 9092 case C2LS:
9093 c2ls_alloc(&current,i);
9094 break;
9095 case C2OP:
9096 c2op_alloc(&current,i);
9097 break;
57871462 9098 case FCONV:
9099 fconv_alloc(&current,i);
9100 break;
9101 case FLOAT:
9102 float_alloc(&current,i);
9103 break;
9104 case FCOMP:
9105 fcomp_alloc(&current,i);
9106 break;
9107 case SYSCALL:
7139f3c8 9108 case HLECALL:
1e973cb0 9109 case INTCALL:
57871462 9110 syscall_alloc(&current,i);
9111 break;
9112 case SPAN:
9113 pagespan_alloc(&current,i);
9114 break;
9115 }
9116
9117 // Drop the upper half of registers that have become 32-bit
9118 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9119 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9120 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9121 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9122 current.uu|=1;
9123 } else {
9124 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9125 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9126 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9127 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9128 current.uu|=1;
9129 }
9130
9131 // Create entry (branch target) regmap
9132 for(hr=0;hr<HOST_REGS;hr++)
9133 {
9134 int r,or,er;
9135 r=current.regmap[hr];
9136 if(r>=0) {
9137 if(r!=regmap_pre[i][hr]) {
9138 // TODO: delay slot (?)
9139 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9140 if(or<0||(r&63)>=TEMPREG){
9141 regs[i].regmap_entry[hr]=-1;
9142 }
9143 else
9144 {
9145 // Just move it to a different register
9146 regs[i].regmap_entry[hr]=r;
9147 // If it was dirty before, it's still dirty
9148 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9149 }
9150 }
9151 else
9152 {
9153 // Unneeded
9154 if(r==0){
9155 regs[i].regmap_entry[hr]=0;
9156 }
9157 else
9158 if(r<64){
9159 if((current.u>>r)&1) {
9160 regs[i].regmap_entry[hr]=-1;
9161 //regs[i].regmap[hr]=-1;
9162 current.regmap[hr]=-1;
9163 }else
9164 regs[i].regmap_entry[hr]=r;
9165 }
9166 else {
9167 if((current.uu>>(r&63))&1) {
9168 regs[i].regmap_entry[hr]=-1;
9169 //regs[i].regmap[hr]=-1;
9170 current.regmap[hr]=-1;
9171 }else
9172 regs[i].regmap_entry[hr]=r;
9173 }
9174 }
9175 } else {
9176 // Branches expect CCREG to be allocated at the target
9177 if(regmap_pre[i][hr]==CCREG)
9178 regs[i].regmap_entry[hr]=CCREG;
9179 else
9180 regs[i].regmap_entry[hr]=-1;
9181 }
9182 }
9183 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9184 }
9185 /* Branch post-alloc */
9186 if(i>0)
9187 {
9188 current.was32=current.is32;
9189 current.wasdirty=current.dirty;
9190 switch(itype[i-1]) {
9191 case UJUMP:
9192 memcpy(&branch_regs[i-1],&current,sizeof(current));
9193 branch_regs[i-1].isconst=0;
9194 branch_regs[i-1].wasconst=0;
9195 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9196 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9197 alloc_cc(&branch_regs[i-1],i-1);
9198 dirty_reg(&branch_regs[i-1],CCREG);
9199 if(rt1[i-1]==31) { // JAL
9200 alloc_reg(&branch_regs[i-1],i-1,31);
9201 dirty_reg(&branch_regs[i-1],31);
9202 branch_regs[i-1].is32|=1LL<<31;
9203 }
9204 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9205 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9206 break;
9207 case RJUMP:
9208 memcpy(&branch_regs[i-1],&current,sizeof(current));
9209 branch_regs[i-1].isconst=0;
9210 branch_regs[i-1].wasconst=0;
9211 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9212 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9213 alloc_cc(&branch_regs[i-1],i-1);
9214 dirty_reg(&branch_regs[i-1],CCREG);
9215 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9216 if(rt1[i-1]!=0) { // JALR
9217 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9218 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9219 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9220 }
9221 #ifdef USE_MINI_HT
9222 if(rs1[i-1]==31) { // JALR
9223 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9224 #ifndef HOST_IMM_ADDR32
9225 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9226 #endif
9227 }
9228 #endif
9229 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9230 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9231 break;
9232 case CJUMP:
9233 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9234 {
9235 alloc_cc(&current,i-1);
9236 dirty_reg(&current,CCREG);
9237 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9238 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9239 // The delay slot overwrote one of our conditions
9240 // Delay slot goes after the test (in order)
9241 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9242 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9243 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9244 current.u|=1;
9245 current.uu|=1;
9246 delayslot_alloc(&current,i);
9247 current.isconst=0;
9248 }
9249 else
9250 {
9251 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9252 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9253 // Alloc the branch condition registers
9254 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9255 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9256 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9257 {
9258 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9259 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9260 }
9261 }
9262 memcpy(&branch_regs[i-1],&current,sizeof(current));
9263 branch_regs[i-1].isconst=0;
9264 branch_regs[i-1].wasconst=0;
9265 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9266 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9267 }
9268 else
9269 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9270 {
9271 alloc_cc(&current,i-1);
9272 dirty_reg(&current,CCREG);
9273 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9274 // The delay slot overwrote the branch condition
9275 // Delay slot goes after the test (in order)
9276 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9277 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9278 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9279 current.u|=1;
9280 current.uu|=1;
9281 delayslot_alloc(&current,i);
9282 current.isconst=0;
9283 }
9284 else
9285 {
9286 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9287 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9288 // Alloc the branch condition register
9289 alloc_reg(&current,i-1,rs1[i-1]);
9290 if(!(current.is32>>rs1[i-1]&1))
9291 {
9292 alloc_reg64(&current,i-1,rs1[i-1]);
9293 }
9294 }
9295 memcpy(&branch_regs[i-1],&current,sizeof(current));
9296 branch_regs[i-1].isconst=0;
9297 branch_regs[i-1].wasconst=0;
9298 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9299 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9300 }
9301 else
9302 // Alloc the delay slot in case the branch is taken
9303 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9304 {
9305 memcpy(&branch_regs[i-1],&current,sizeof(current));
9306 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9307 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9308 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9309 alloc_cc(&branch_regs[i-1],i);
9310 dirty_reg(&branch_regs[i-1],CCREG);
9311 delayslot_alloc(&branch_regs[i-1],i);
9312 branch_regs[i-1].isconst=0;
9313 alloc_reg(&current,i,CCREG); // Not taken path
9314 dirty_reg(&current,CCREG);
9315 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9316 }
9317 else
9318 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9319 {
9320 memcpy(&branch_regs[i-1],&current,sizeof(current));
9321 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9322 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9323 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9324 alloc_cc(&branch_regs[i-1],i);
9325 dirty_reg(&branch_regs[i-1],CCREG);
9326 delayslot_alloc(&branch_regs[i-1],i);
9327 branch_regs[i-1].isconst=0;
9328 alloc_reg(&current,i,CCREG); // Not taken path
9329 dirty_reg(&current,CCREG);
9330 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9331 }
9332 break;
9333 case SJUMP:
9334 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9335 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9336 {
9337 alloc_cc(&current,i-1);
9338 dirty_reg(&current,CCREG);
9339 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9340 // The delay slot overwrote the branch condition
9341 // Delay slot goes after the test (in order)
9342 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9343 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9344 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9345 current.u|=1;
9346 current.uu|=1;
9347 delayslot_alloc(&current,i);
9348 current.isconst=0;
9349 }
9350 else
9351 {
9352 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9353 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9354 // Alloc the branch condition register
9355 alloc_reg(&current,i-1,rs1[i-1]);
9356 if(!(current.is32>>rs1[i-1]&1))
9357 {
9358 alloc_reg64(&current,i-1,rs1[i-1]);
9359 }
9360 }
9361 memcpy(&branch_regs[i-1],&current,sizeof(current));
9362 branch_regs[i-1].isconst=0;
9363 branch_regs[i-1].wasconst=0;
9364 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9365 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9366 }
9367 else
9368 // Alloc the delay slot in case the branch is taken
9369 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9370 {
9371 memcpy(&branch_regs[i-1],&current,sizeof(current));
9372 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9373 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9374 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9375 alloc_cc(&branch_regs[i-1],i);
9376 dirty_reg(&branch_regs[i-1],CCREG);
9377 delayslot_alloc(&branch_regs[i-1],i);
9378 branch_regs[i-1].isconst=0;
9379 alloc_reg(&current,i,CCREG); // Not taken path
9380 dirty_reg(&current,CCREG);
9381 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9382 }
9383 // FIXME: BLTZAL/BGEZAL
9384 if(opcode2[i-1]&0x10) { // BxxZAL
9385 alloc_reg(&branch_regs[i-1],i-1,31);
9386 dirty_reg(&branch_regs[i-1],31);
9387 branch_regs[i-1].is32|=1LL<<31;
9388 }
9389 break;
9390 case FJUMP:
9391 if(likely[i-1]==0) // BC1F/BC1T
9392 {
9393 alloc_cc(&current,i-1);
9394 dirty_reg(&current,CCREG);
9395 if(itype[i]==FCOMP) {
9396 // The delay slot overwrote the branch condition
9397 // Delay slot goes after the test (in order)
9398 delayslot_alloc(&current,i);
9399 current.isconst=0;
9400 }
9401 else
9402 {
9403 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9404 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9405 // Alloc the branch condition register
9406 alloc_reg(&current,i-1,FSREG);
9407 }
9408 memcpy(&branch_regs[i-1],&current,sizeof(current));
9409 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9410 }
9411 else // BC1FL/BC1TL
9412 {
9413 // Alloc the delay slot in case the branch is taken
9414 memcpy(&branch_regs[i-1],&current,sizeof(current));
9415 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9416 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9417 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9418 alloc_cc(&branch_regs[i-1],i);
9419 dirty_reg(&branch_regs[i-1],CCREG);
9420 delayslot_alloc(&branch_regs[i-1],i);
9421 branch_regs[i-1].isconst=0;
9422 alloc_reg(&current,i,CCREG); // Not taken path
9423 dirty_reg(&current,CCREG);
9424 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9425 }
9426 break;
9427 }
9428
9429 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9430 {
9431 if(rt1[i-1]==31) // JAL/JALR
9432 {
9433 // Subroutine call will return here, don't alloc any registers
9434 current.is32=1;
9435 current.dirty=0;
9436 clear_all_regs(current.regmap);
9437 alloc_reg(&current,i,CCREG);
9438 dirty_reg(&current,CCREG);
9439 }
9440 else if(i+1<slen)
9441 {
9442 // Internal branch will jump here, match registers to caller
9443 current.is32=0x3FFFFFFFFLL;
9444 current.dirty=0;
9445 clear_all_regs(current.regmap);
9446 alloc_reg(&current,i,CCREG);
9447 dirty_reg(&current,CCREG);
9448 for(j=i-1;j>=0;j--)
9449 {
9450 if(ba[j]==start+i*4+4) {
9451 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9452 current.is32=branch_regs[j].is32;
9453 current.dirty=branch_regs[j].dirty;
9454 break;
9455 }
9456 }
9457 while(j>=0) {
9458 if(ba[j]==start+i*4+4) {
9459 for(hr=0;hr<HOST_REGS;hr++) {
9460 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9461 current.regmap[hr]=-1;
9462 }
9463 current.is32&=branch_regs[j].is32;
9464 current.dirty&=branch_regs[j].dirty;
9465 }
9466 }
9467 j--;
9468 }
9469 }
9470 }
9471 }
9472
9473 // Count cycles in between branches
9474 ccadj[i]=cc;
7139f3c8 9475 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9476 {
9477 cc=0;
9478 }
9479 else
9480 {
9481 cc++;
9482 }
9483
9484 flush_dirty_uppers(&current);
9485 if(!is_ds[i]) {
9486 regs[i].is32=current.is32;
9487 regs[i].dirty=current.dirty;
9488 regs[i].isconst=current.isconst;
9489 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9490 }
9491 for(hr=0;hr<HOST_REGS;hr++) {
9492 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9493 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9494 regs[i].wasconst&=~(1<<hr);
9495 }
9496 }
9497 }
9498 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9499 }
9500
9501 /* Pass 4 - Cull unused host registers */
9502
9503 uint64_t nr=0;
9504
9505 for (i=slen-1;i>=0;i--)
9506 {
9507 int hr;
9508 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9509 {
9510 if(ba[i]<start || ba[i]>=(start+slen*4))
9511 {
9512 // Branch out of this block, don't need anything
9513 nr=0;
9514 }
9515 else
9516 {
9517 // Internal branch
9518 // Need whatever matches the target
9519 nr=0;
9520 int t=(ba[i]-start)>>2;
9521 for(hr=0;hr<HOST_REGS;hr++)
9522 {
9523 if(regs[i].regmap_entry[hr]>=0) {
9524 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9525 }
9526 }
9527 }
9528 // Conditional branch may need registers for following instructions
9529 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9530 {
9531 if(i<slen-2) {
9532 nr|=needed_reg[i+2];
9533 for(hr=0;hr<HOST_REGS;hr++)
9534 {
9535 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9536 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9537 }
9538 }
9539 }
9540 // Don't need stuff which is overwritten
9541 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9542 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9543 // Merge in delay slot
9544 for(hr=0;hr<HOST_REGS;hr++)
9545 {
9546 if(!likely[i]) {
9547 // These are overwritten unless the branch is "likely"
9548 // and the delay slot is nullified if not taken
9549 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9550 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9551 }
9552 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9553 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9554 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9555 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9556 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9557 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9558 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9559 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9560 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9561 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9562 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9563 }
9564 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9565 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9566 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9567 }
b9b61529 9568 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9569 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9570 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9571 }
9572 }
9573 }
1e973cb0 9574 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9575 {
9576 // SYSCALL instruction (software interrupt)
9577 nr=0;
9578 }
9579 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9580 {
9581 // ERET instruction (return from interrupt)
9582 nr=0;
9583 }
9584 else // Non-branch
9585 {
9586 if(i<slen-1) {
9587 for(hr=0;hr<HOST_REGS;hr++) {
9588 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9589 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9590 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9591 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9592 }
9593 }
9594 }
9595 for(hr=0;hr<HOST_REGS;hr++)
9596 {
9597 // Overwritten registers are not needed
9598 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9599 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9600 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9601 // Source registers are needed
9602 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9603 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9604 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9605 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9606 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9607 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9608 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9609 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9610 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9611 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9612 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9613 }
9614 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9615 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9616 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9617 }
b9b61529 9618 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9619 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9620 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9621 }
9622 // Don't store a register immediately after writing it,
9623 // may prevent dual-issue.
9624 // But do so if this is a branch target, otherwise we
9625 // might have to load the register before the branch.
9626 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9627 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9628 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9629 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9630 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9631 }
9632 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9633 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9634 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9635 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9636 }
9637 }
9638 }
9639 // Cycle count is needed at branches. Assume it is needed at the target too.
9640 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9641 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9642 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9643 }
9644 // Save it
9645 needed_reg[i]=nr;
9646
9647 // Deallocate unneeded registers
9648 for(hr=0;hr<HOST_REGS;hr++)
9649 {
9650 if(!((nr>>hr)&1)) {
9651 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9652 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9653 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9654 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9655 {
9656 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9657 {
9658 if(likely[i]) {
9659 regs[i].regmap[hr]=-1;
9660 regs[i].isconst&=~(1<<hr);
9661 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9662 }
9663 }
9664 }
9665 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9666 {
9667 int d1=0,d2=0,map=0,temp=0;
9668 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9669 {
9670 d1=dep1[i+1];
9671 d2=dep2[i+1];
9672 }
9673 if(using_tlb) {
9674 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9675 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 9676 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9677 map=TLREG;
9678 } else
b9b61529 9679 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9680 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9681 map=INVCP;
9682 }
9683 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 9684 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9685 temp=FTEMP;
9686 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9687 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9688 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9689 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9690 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9691 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9692 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9693 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9694 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9695 regs[i].regmap[hr]!=map )
9696 {
9697 regs[i].regmap[hr]=-1;
9698 regs[i].isconst&=~(1<<hr);
9699 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9700 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9701 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9702 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9703 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9704 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9705 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9706 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9707 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9708 branch_regs[i].regmap[hr]!=map)
9709 {
9710 branch_regs[i].regmap[hr]=-1;
9711 branch_regs[i].regmap_entry[hr]=-1;
9712 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9713 {
9714 if(!likely[i]&&i<slen-2) {
9715 regmap_pre[i+2][hr]=-1;
9716 }
9717 }
9718 }
9719 }
9720 }
9721 else
9722 {
9723 // Non-branch
9724 if(i>0)
9725 {
9726 int d1=0,d2=0,map=-1,temp=-1;
9727 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9728 {
9729 d1=dep1[i];
9730 d2=dep2[i];
9731 }
9732 if(using_tlb) {
9733 if(itype[i]==LOAD || itype[i]==LOADLR ||
9734 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 9735 itype[i]==C1LS || itype[i]==C2LS)
57871462 9736 map=TLREG;
b9b61529 9737 } else if(itype[i]==STORE || itype[i]==STORELR ||
9738 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9739 map=INVCP;
9740 }
9741 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 9742 itype[i]==C1LS || itype[i]==C2LS)
57871462 9743 temp=FTEMP;
9744 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9745 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9746 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9747 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9748 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9749 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9750 {
9751 if(i<slen-1&&!is_ds[i]) {
9752 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9753 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9754 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9755 {
9756 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9757 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9758 }
9759 regmap_pre[i+1][hr]=-1;
9760 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9761 }
9762 regs[i].regmap[hr]=-1;
9763 regs[i].isconst&=~(1<<hr);
9764 }
9765 }
9766 }
9767 }
9768 }
9769 }
9770
9771 /* Pass 5 - Pre-allocate registers */
9772
9773 // If a register is allocated during a loop, try to allocate it for the
9774 // entire loop, if possible. This avoids loading/storing registers
9775 // inside of the loop.
9776
9777 signed char f_regmap[HOST_REGS];
9778 clear_all_regs(f_regmap);
9779 for(i=0;i<slen-1;i++)
9780 {
9781 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9782 {
9783 if(ba[i]>=start && ba[i]<(start+i*4))
9784 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9785 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9786 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9787 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 9788 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9789 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 9790 {
9791 int t=(ba[i]-start)>>2;
9792 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9793 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9794 for(hr=0;hr<HOST_REGS;hr++)
9795 {
9796 if(regs[i].regmap[hr]>64) {
9797 if(!((regs[i].dirty>>hr)&1))
9798 f_regmap[hr]=regs[i].regmap[hr];
9799 else f_regmap[hr]=-1;
9800 }
b372a952 9801 else if(regs[i].regmap[hr]>=0) {
9802 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9803 // dealloc old register
9804 int n;
9805 for(n=0;n<HOST_REGS;n++)
9806 {
9807 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9808 }
9809 // and alloc new one
9810 f_regmap[hr]=regs[i].regmap[hr];
9811 }
9812 }
57871462 9813 if(branch_regs[i].regmap[hr]>64) {
9814 if(!((branch_regs[i].dirty>>hr)&1))
9815 f_regmap[hr]=branch_regs[i].regmap[hr];
9816 else f_regmap[hr]=-1;
9817 }
b372a952 9818 else if(branch_regs[i].regmap[hr]>=0) {
9819 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9820 // dealloc old register
9821 int n;
9822 for(n=0;n<HOST_REGS;n++)
9823 {
9824 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9825 }
9826 // and alloc new one
9827 f_regmap[hr]=branch_regs[i].regmap[hr];
9828 }
9829 }
e1190b87 9830 if(ooo[i]) {
9831 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9832 f_regmap[hr]=branch_regs[i].regmap[hr];
9833 }else{
9834 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 9835 f_regmap[hr]=branch_regs[i].regmap[hr];
9836 }
9837 // Avoid dirty->clean transition
e1190b87 9838 #ifdef DESTRUCTIVE_WRITEBACK
57871462 9839 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 9840 #endif
9841 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9842 // case above, however it's always a good idea. We can't hoist the
9843 // load if the register was already allocated, so there's no point
9844 // wasting time analyzing most of these cases. It only "succeeds"
9845 // when the mapping was different and the load can be replaced with
9846 // a mov, which is of negligible benefit. So such cases are
9847 // skipped below.
57871462 9848 if(f_regmap[hr]>0) {
e1190b87 9849 if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
57871462 9850 int r=f_regmap[hr];
9851 for(j=t;j<=i;j++)
9852 {
9853 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9854 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9855 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9856 if(r>63) {
9857 // NB This can exclude the case where the upper-half
9858 // register is lower numbered than the lower-half
9859 // register. Not sure if it's worth fixing...
9860 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 9861 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 9862 if(regs[j].is32&(1LL<<(r&63))) break;
9863 }
9864 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9865 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9866 int k;
9867 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9868 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9869 if(r>63) {
9870 if(get_reg(regs[i].regmap,r&63)<0) break;
9871 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9872 }
9873 k=i;
9874 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 9875 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9876 //printf("no free regs for store %x\n",start+(k-1)*4);
9877 break;
57871462 9878 }
57871462 9879 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9880 //printf("no-match due to different register\n");
9881 break;
9882 }
9883 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9884 //printf("no-match due to branch\n");
9885 break;
9886 }
9887 // call/ret fast path assumes no registers allocated
9888 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9889 break;
9890 }
9891 if(r>63) {
9892 // NB This can exclude the case where the upper-half
9893 // register is lower numbered than the lower-half
9894 // register. Not sure if it's worth fixing...
9895 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9896 if(regs[k-1].is32&(1LL<<(r&63))) break;
9897 }
9898 k--;
9899 }
9900 if(i<slen-1) {
9901 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9902 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9903 //printf("bad match after branch\n");
9904 break;
9905 }
9906 }
9907 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9908 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9909 while(k<i) {
9910 regs[k].regmap_entry[hr]=f_regmap[hr];
9911 regs[k].regmap[hr]=f_regmap[hr];
9912 regmap_pre[k+1][hr]=f_regmap[hr];
9913 regs[k].wasdirty&=~(1<<hr);
9914 regs[k].dirty&=~(1<<hr);
9915 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9916 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9917 regs[k].wasconst&=~(1<<hr);
9918 regs[k].isconst&=~(1<<hr);
9919 k++;
9920 }
9921 }
9922 else {
9923 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9924 break;
9925 }
9926 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9927 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9928 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9929 regs[i].regmap_entry[hr]=f_regmap[hr];
9930 regs[i].regmap[hr]=f_regmap[hr];
9931 regs[i].wasdirty&=~(1<<hr);
9932 regs[i].dirty&=~(1<<hr);
9933 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9934 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9935 regs[i].wasconst&=~(1<<hr);
9936 regs[i].isconst&=~(1<<hr);
9937 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9938 branch_regs[i].wasdirty&=~(1<<hr);
9939 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9940 branch_regs[i].regmap[hr]=f_regmap[hr];
9941 branch_regs[i].dirty&=~(1<<hr);
9942 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9943 branch_regs[i].wasconst&=~(1<<hr);
9944 branch_regs[i].isconst&=~(1<<hr);
9945 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9946 regmap_pre[i+2][hr]=f_regmap[hr];
9947 regs[i+2].wasdirty&=~(1<<hr);
9948 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9949 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9950 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9951 }
9952 }
9953 }
9954 for(k=t;k<j;k++) {
e1190b87 9955 // Alloc register clean at beginning of loop,
9956 // but may dirty it in pass 6
57871462 9957 regs[k].regmap_entry[hr]=f_regmap[hr];
9958 regs[k].regmap[hr]=f_regmap[hr];
57871462 9959 regs[k].dirty&=~(1<<hr);
9960 regs[k].wasconst&=~(1<<hr);
9961 regs[k].isconst&=~(1<<hr);
e1190b87 9962 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9963 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9964 branch_regs[k].regmap[hr]=f_regmap[hr];
9965 branch_regs[k].dirty&=~(1<<hr);
9966 branch_regs[k].wasconst&=~(1<<hr);
9967 branch_regs[k].isconst&=~(1<<hr);
9968 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9969 regmap_pre[k+2][hr]=f_regmap[hr];
9970 regs[k+2].wasdirty&=~(1<<hr);
9971 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9972 (regs[k+2].was32&(1LL<<f_regmap[hr])));
9973 }
9974 }
9975 else
9976 {
9977 regmap_pre[k+1][hr]=f_regmap[hr];
9978 regs[k+1].wasdirty&=~(1<<hr);
9979 }
57871462 9980 }
9981 if(regs[j].regmap[hr]==f_regmap[hr])
9982 regs[j].regmap_entry[hr]=f_regmap[hr];
9983 break;
9984 }
9985 if(j==i) break;
9986 if(regs[j].regmap[hr]>=0)
9987 break;
9988 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9989 //printf("no-match due to different register\n");
9990 break;
9991 }
9992 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9993 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9994 break;
9995 }
e1190b87 9996 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9997 {
9998 // Stop on unconditional branch
9999 break;
10000 }
10001 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10002 {
10003 if(ooo[j]) {
10004 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10005 break;
10006 }else{
10007 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10008 break;
10009 }
10010 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10011 //printf("no-match due to different register (branch)\n");
57871462 10012 break;
10013 }
10014 }
e1190b87 10015 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10016 //printf("No free regs for store %x\n",start+j*4);
10017 break;
10018 }
57871462 10019 if(f_regmap[hr]>=64) {
10020 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10021 break;
10022 }
10023 else
10024 {
10025 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10026 break;
10027 }
10028 }
10029 }
10030 }
10031 }
10032 }
10033 }
10034 }
10035 }else{
10036 int count=0;
10037 for(hr=0;hr<HOST_REGS;hr++)
10038 {
10039 if(hr!=EXCLUDE_REG) {
10040 if(regs[i].regmap[hr]>64) {
10041 if(!((regs[i].dirty>>hr)&1))
10042 f_regmap[hr]=regs[i].regmap[hr];
10043 }
b372a952 10044 else if(regs[i].regmap[hr]>=0) {
10045 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10046 // dealloc old register
10047 int n;
10048 for(n=0;n<HOST_REGS;n++)
10049 {
10050 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10051 }
10052 // and alloc new one
10053 f_regmap[hr]=regs[i].regmap[hr];
10054 }
10055 }
57871462 10056 else if(regs[i].regmap[hr]<0) count++;
10057 }
10058 }
10059 // Try to restore cycle count at branch targets
10060 if(bt[i]) {
10061 for(j=i;j<slen-1;j++) {
10062 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10063 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10064 //printf("no free regs for store %x\n",start+j*4);
10065 break;
57871462 10066 }
57871462 10067 }
10068 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10069 int k=i;
10070 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10071 while(k<j) {
10072 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10073 regs[k].regmap[HOST_CCREG]=CCREG;
10074 regmap_pre[k+1][HOST_CCREG]=CCREG;
10075 regs[k+1].wasdirty|=1<<HOST_CCREG;
10076 regs[k].dirty|=1<<HOST_CCREG;
10077 regs[k].wasconst&=~(1<<HOST_CCREG);
10078 regs[k].isconst&=~(1<<HOST_CCREG);
10079 k++;
10080 }
10081 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10082 }
10083 // Work backwards from the branch target
10084 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10085 {
10086 //printf("Extend backwards\n");
10087 int k;
10088 k=i;
10089 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10090 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10091 //printf("no free regs for store %x\n",start+(k-1)*4);
10092 break;
57871462 10093 }
57871462 10094 k--;
10095 }
10096 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10097 //printf("Extend CC, %x ->\n",start+k*4);
10098 while(k<=i) {
10099 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10100 regs[k].regmap[HOST_CCREG]=CCREG;
10101 regmap_pre[k+1][HOST_CCREG]=CCREG;
10102 regs[k+1].wasdirty|=1<<HOST_CCREG;
10103 regs[k].dirty|=1<<HOST_CCREG;
10104 regs[k].wasconst&=~(1<<HOST_CCREG);
10105 regs[k].isconst&=~(1<<HOST_CCREG);
10106 k++;
10107 }
10108 }
10109 else {
10110 //printf("Fail Extend CC, %x ->\n",start+k*4);
10111 }
10112 }
10113 }
10114 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10115 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10116 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10117 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10118 {
10119 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10120 }
10121 }
10122 }
10123
10124 // This allocates registers (if possible) one instruction prior
10125 // to use, which can avoid a load-use penalty on certain CPUs.
10126 for(i=0;i<slen-1;i++)
10127 {
10128 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10129 {
10130 if(!bt[i+1])
10131 {
b9b61529 10132 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10133 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10134 {
10135 if(rs1[i+1]) {
10136 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10137 {
10138 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10139 {
10140 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10141 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10142 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10143 regs[i].isconst&=~(1<<hr);
10144 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10145 constmap[i][hr]=constmap[i+1][hr];
10146 regs[i+1].wasdirty&=~(1<<hr);
10147 regs[i].dirty&=~(1<<hr);
10148 }
10149 }
10150 }
10151 if(rs2[i+1]) {
10152 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10153 {
10154 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10155 {
10156 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10157 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10158 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10159 regs[i].isconst&=~(1<<hr);
10160 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10161 constmap[i][hr]=constmap[i+1][hr];
10162 regs[i+1].wasdirty&=~(1<<hr);
10163 regs[i].dirty&=~(1<<hr);
10164 }
10165 }
10166 }
10167 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10168 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10169 {
10170 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10171 {
10172 regs[i].regmap[hr]=rs1[i+1];
10173 regmap_pre[i+1][hr]=rs1[i+1];
10174 regs[i+1].regmap_entry[hr]=rs1[i+1];
10175 regs[i].isconst&=~(1<<hr);
10176 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10177 constmap[i][hr]=constmap[i+1][hr];
10178 regs[i+1].wasdirty&=~(1<<hr);
10179 regs[i].dirty&=~(1<<hr);
10180 }
10181 }
10182 }
10183 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10184 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10185 {
10186 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10187 {
10188 regs[i].regmap[hr]=rs1[i+1];
10189 regmap_pre[i+1][hr]=rs1[i+1];
10190 regs[i+1].regmap_entry[hr]=rs1[i+1];
10191 regs[i].isconst&=~(1<<hr);
10192 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10193 constmap[i][hr]=constmap[i+1][hr];
10194 regs[i+1].wasdirty&=~(1<<hr);
10195 regs[i].dirty&=~(1<<hr);
10196 }
10197 }
10198 }
10199 #ifndef HOST_IMM_ADDR32
b9b61529 10200 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10201 hr=get_reg(regs[i+1].regmap,TLREG);
10202 if(hr>=0) {
10203 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10204 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10205 int nr;
10206 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10207 {
10208 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10209 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10210 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10211 regs[i].isconst&=~(1<<hr);
10212 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10213 constmap[i][hr]=constmap[i+1][hr];
10214 regs[i+1].wasdirty&=~(1<<hr);
10215 regs[i].dirty&=~(1<<hr);
10216 }
10217 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10218 {
10219 // move it to another register
10220 regs[i+1].regmap[hr]=-1;
10221 regmap_pre[i+2][hr]=-1;
10222 regs[i+1].regmap[nr]=TLREG;
10223 regmap_pre[i+2][nr]=TLREG;
10224 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10225 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10226 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10227 regs[i].isconst&=~(1<<nr);
10228 regs[i+1].isconst&=~(1<<nr);
10229 regs[i].dirty&=~(1<<nr);
10230 regs[i+1].wasdirty&=~(1<<nr);
10231 regs[i+1].dirty&=~(1<<nr);
10232 regs[i+2].wasdirty&=~(1<<nr);
10233 }
10234 }
10235 }
10236 }
10237 #endif
b9b61529 10238 if(itype[i+1]==STORE||itype[i+1]==STORELR
10239 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10240 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10241 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10242 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10243 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10244 assert(hr>=0);
10245 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10246 {
10247 regs[i].regmap[hr]=rs1[i+1];
10248 regmap_pre[i+1][hr]=rs1[i+1];
10249 regs[i+1].regmap_entry[hr]=rs1[i+1];
10250 regs[i].isconst&=~(1<<hr);
10251 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10252 constmap[i][hr]=constmap[i+1][hr];
10253 regs[i+1].wasdirty&=~(1<<hr);
10254 regs[i].dirty&=~(1<<hr);
10255 }
10256 }
10257 }
b9b61529 10258 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10259 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10260 int nr;
10261 hr=get_reg(regs[i+1].regmap,FTEMP);
10262 assert(hr>=0);
10263 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10264 {
10265 regs[i].regmap[hr]=rs1[i+1];
10266 regmap_pre[i+1][hr]=rs1[i+1];
10267 regs[i+1].regmap_entry[hr]=rs1[i+1];
10268 regs[i].isconst&=~(1<<hr);
10269 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10270 constmap[i][hr]=constmap[i+1][hr];
10271 regs[i+1].wasdirty&=~(1<<hr);
10272 regs[i].dirty&=~(1<<hr);
10273 }
10274 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10275 {
10276 // move it to another register
10277 regs[i+1].regmap[hr]=-1;
10278 regmap_pre[i+2][hr]=-1;
10279 regs[i+1].regmap[nr]=FTEMP;
10280 regmap_pre[i+2][nr]=FTEMP;
10281 regs[i].regmap[nr]=rs1[i+1];
10282 regmap_pre[i+1][nr]=rs1[i+1];
10283 regs[i+1].regmap_entry[nr]=rs1[i+1];
10284 regs[i].isconst&=~(1<<nr);
10285 regs[i+1].isconst&=~(1<<nr);
10286 regs[i].dirty&=~(1<<nr);
10287 regs[i+1].wasdirty&=~(1<<nr);
10288 regs[i+1].dirty&=~(1<<nr);
10289 regs[i+2].wasdirty&=~(1<<nr);
10290 }
10291 }
10292 }
b9b61529 10293 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10294 if(itype[i+1]==LOAD)
10295 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10296 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10297 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10298 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10299 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10300 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10301 }
10302 if(hr>=0&&regs[i].regmap[hr]<0) {
10303 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10304 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10305 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10306 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10307 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10308 regs[i].isconst&=~(1<<hr);
10309 regs[i+1].wasdirty&=~(1<<hr);
10310 regs[i].dirty&=~(1<<hr);
10311 }
10312 }
10313 }
10314 }
10315 }
10316 }
10317 }
10318
10319 /* Pass 6 - Optimize clean/dirty state */
10320 clean_registers(0,slen-1,1);
10321
10322 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10323#ifndef FORCE32
57871462 10324 provisional_r32();
10325
10326 u_int r32=0;
10327
10328 for (i=slen-1;i>=0;i--)
10329 {
10330 int hr;
10331 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10332 {
10333 if(ba[i]<start || ba[i]>=(start+slen*4))
10334 {
10335 // Branch out of this block, don't need anything
10336 r32=0;
10337 }
10338 else
10339 {
10340 // Internal branch
10341 // Need whatever matches the target
10342 // (and doesn't get overwritten by the delay slot instruction)
10343 r32=0;
10344 int t=(ba[i]-start)>>2;
10345 if(ba[i]>start+i*4) {
10346 // Forward branch
10347 if(!(requires_32bit[t]&~regs[i].was32))
10348 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10349 }else{
10350 // Backward branch
10351 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10352 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10353 if(!(pr32[t]&~regs[i].was32))
10354 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10355 }
10356 }
10357 // Conditional branch may need registers for following instructions
10358 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10359 {
10360 if(i<slen-2) {
10361 r32|=requires_32bit[i+2];
10362 r32&=regs[i].was32;
10363 // Mark this address as a branch target since it may be called
10364 // upon return from interrupt
10365 bt[i+2]=1;
10366 }
10367 }
10368 // Merge in delay slot
10369 if(!likely[i]) {
10370 // These are overwritten unless the branch is "likely"
10371 // and the delay slot is nullified if not taken
10372 r32&=~(1LL<<rt1[i+1]);
10373 r32&=~(1LL<<rt2[i+1]);
10374 }
10375 // Assume these are needed (delay slot)
10376 if(us1[i+1]>0)
10377 {
10378 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10379 }
10380 if(us2[i+1]>0)
10381 {
10382 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10383 }
10384 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10385 {
10386 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10387 }
10388 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10389 {
10390 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10391 }
10392 }
1e973cb0 10393 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10394 {
10395 // SYSCALL instruction (software interrupt)
10396 r32=0;
10397 }
10398 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10399 {
10400 // ERET instruction (return from interrupt)
10401 r32=0;
10402 }
10403 // Check 32 bits
10404 r32&=~(1LL<<rt1[i]);
10405 r32&=~(1LL<<rt2[i]);
10406 if(us1[i]>0)
10407 {
10408 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10409 }
10410 if(us2[i]>0)
10411 {
10412 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10413 }
10414 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10415 {
10416 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10417 }
10418 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10419 {
10420 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10421 }
10422 requires_32bit[i]=r32;
10423
10424 // Dirty registers which are 32-bit, require 32-bit input
10425 // as they will be written as 32-bit values
10426 for(hr=0;hr<HOST_REGS;hr++)
10427 {
10428 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10429 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10430 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10431 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10432 }
10433 }
10434 }
10435 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10436 }
a28c6ce8 10437#endif
57871462 10438
10439 if(itype[slen-1]==SPAN) {
10440 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10441 }
10442
10443 /* Debug/disassembly */
10444 if((void*)assem_debug==(void*)printf)
10445 for(i=0;i<slen;i++)
10446 {
10447 printf("U:");
10448 int r;
10449 for(r=1;r<=CCREG;r++) {
10450 if((unneeded_reg[i]>>r)&1) {
10451 if(r==HIREG) printf(" HI");
10452 else if(r==LOREG) printf(" LO");
10453 else printf(" r%d",r);
10454 }
10455 }
90ae6d4e 10456#ifndef FORCE32
57871462 10457 printf(" UU:");
10458 for(r=1;r<=CCREG;r++) {
10459 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10460 if(r==HIREG) printf(" HI");
10461 else if(r==LOREG) printf(" LO");
10462 else printf(" r%d",r);
10463 }
10464 }
10465 printf(" 32:");
10466 for(r=0;r<=CCREG;r++) {
10467 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10468 if((regs[i].was32>>r)&1) {
10469 if(r==CCREG) printf(" CC");
10470 else if(r==HIREG) printf(" HI");
10471 else if(r==LOREG) printf(" LO");
10472 else printf(" r%d",r);
10473 }
10474 }
90ae6d4e 10475#endif
57871462 10476 printf("\n");
10477 #if defined(__i386__) || defined(__x86_64__)
10478 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10479 #endif
10480 #ifdef __arm__
10481 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10482 #endif
10483 printf("needs: ");
10484 if(needed_reg[i]&1) printf("eax ");
10485 if((needed_reg[i]>>1)&1) printf("ecx ");
10486 if((needed_reg[i]>>2)&1) printf("edx ");
10487 if((needed_reg[i]>>3)&1) printf("ebx ");
10488 if((needed_reg[i]>>5)&1) printf("ebp ");
10489 if((needed_reg[i]>>6)&1) printf("esi ");
10490 if((needed_reg[i]>>7)&1) printf("edi ");
10491 printf("r:");
10492 for(r=0;r<=CCREG;r++) {
10493 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10494 if((requires_32bit[i]>>r)&1) {
10495 if(r==CCREG) printf(" CC");
10496 else if(r==HIREG) printf(" HI");
10497 else if(r==LOREG) printf(" LO");
10498 else printf(" r%d",r);
10499 }
10500 }
10501 printf("\n");
10502 /*printf("pr:");
10503 for(r=0;r<=CCREG;r++) {
10504 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10505 if((pr32[i]>>r)&1) {
10506 if(r==CCREG) printf(" CC");
10507 else if(r==HIREG) printf(" HI");
10508 else if(r==LOREG) printf(" LO");
10509 else printf(" r%d",r);
10510 }
10511 }
10512 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10513 printf("\n");*/
10514 #if defined(__i386__) || defined(__x86_64__)
10515 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10516 printf("dirty: ");
10517 if(regs[i].wasdirty&1) printf("eax ");
10518 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10519 if((regs[i].wasdirty>>2)&1) printf("edx ");
10520 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10521 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10522 if((regs[i].wasdirty>>6)&1) printf("esi ");
10523 if((regs[i].wasdirty>>7)&1) printf("edi ");
10524 #endif
10525 #ifdef __arm__
10526 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10527 printf("dirty: ");
10528 if(regs[i].wasdirty&1) printf("r0 ");
10529 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10530 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10531 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10532 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10533 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10534 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10535 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10536 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10537 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10538 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10539 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10540 #endif
10541 printf("\n");
10542 disassemble_inst(i);
10543 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10544 #if defined(__i386__) || defined(__x86_64__)
10545 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10546 if(regs[i].dirty&1) printf("eax ");
10547 if((regs[i].dirty>>1)&1) printf("ecx ");
10548 if((regs[i].dirty>>2)&1) printf("edx ");
10549 if((regs[i].dirty>>3)&1) printf("ebx ");
10550 if((regs[i].dirty>>5)&1) printf("ebp ");
10551 if((regs[i].dirty>>6)&1) printf("esi ");
10552 if((regs[i].dirty>>7)&1) printf("edi ");
10553 #endif
10554 #ifdef __arm__
10555 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10556 if(regs[i].dirty&1) printf("r0 ");
10557 if((regs[i].dirty>>1)&1) printf("r1 ");
10558 if((regs[i].dirty>>2)&1) printf("r2 ");
10559 if((regs[i].dirty>>3)&1) printf("r3 ");
10560 if((regs[i].dirty>>4)&1) printf("r4 ");
10561 if((regs[i].dirty>>5)&1) printf("r5 ");
10562 if((regs[i].dirty>>6)&1) printf("r6 ");
10563 if((regs[i].dirty>>7)&1) printf("r7 ");
10564 if((regs[i].dirty>>8)&1) printf("r8 ");
10565 if((regs[i].dirty>>9)&1) printf("r9 ");
10566 if((regs[i].dirty>>10)&1) printf("r10 ");
10567 if((regs[i].dirty>>12)&1) printf("r12 ");
10568 #endif
10569 printf("\n");
10570 if(regs[i].isconst) {
10571 printf("constants: ");
10572 #if defined(__i386__) || defined(__x86_64__)
10573 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10574 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10575 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10576 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10577 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10578 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10579 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10580 #endif
10581 #ifdef __arm__
10582 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10583 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10584 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10585 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10586 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10587 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10588 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10589 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10590 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10591 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10592 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10593 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10594 #endif
10595 printf("\n");
10596 }
90ae6d4e 10597#ifndef FORCE32
57871462 10598 printf(" 32:");
10599 for(r=0;r<=CCREG;r++) {
10600 if((regs[i].is32>>r)&1) {
10601 if(r==CCREG) printf(" CC");
10602 else if(r==HIREG) printf(" HI");
10603 else if(r==LOREG) printf(" LO");
10604 else printf(" r%d",r);
10605 }
10606 }
10607 printf("\n");
90ae6d4e 10608#endif
57871462 10609 /*printf(" p32:");
10610 for(r=0;r<=CCREG;r++) {
10611 if((p32[i]>>r)&1) {
10612 if(r==CCREG) printf(" CC");
10613 else if(r==HIREG) printf(" HI");
10614 else if(r==LOREG) printf(" LO");
10615 else printf(" r%d",r);
10616 }
10617 }
10618 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10619 else printf("\n");*/
10620 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10621 #if defined(__i386__) || defined(__x86_64__)
10622 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10623 if(branch_regs[i].dirty&1) printf("eax ");
10624 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10625 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10626 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10627 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10628 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10629 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10630 #endif
10631 #ifdef __arm__
10632 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10633 if(branch_regs[i].dirty&1) printf("r0 ");
10634 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10635 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10636 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10637 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10638 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10639 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10640 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10641 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10642 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10643 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10644 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10645 #endif
90ae6d4e 10646#ifndef FORCE32
57871462 10647 printf(" 32:");
10648 for(r=0;r<=CCREG;r++) {
10649 if((branch_regs[i].is32>>r)&1) {
10650 if(r==CCREG) printf(" CC");
10651 else if(r==HIREG) printf(" HI");
10652 else if(r==LOREG) printf(" LO");
10653 else printf(" r%d",r);
10654 }
10655 }
10656 printf("\n");
90ae6d4e 10657#endif
57871462 10658 }
10659 }
10660
10661 /* Pass 8 - Assembly */
10662 linkcount=0;stubcount=0;
10663 ds=0;is_delayslot=0;
10664 cop1_usable=0;
10665 uint64_t is32_pre=0;
10666 u_int dirty_pre=0;
10667 u_int beginning=(u_int)out;
10668 if((u_int)addr&1) {
10669 ds=1;
10670 pagespan_ds();
10671 }
9ad4d757 10672 u_int instr_addr0_override=0;
10673
10674#ifdef PCSX
10675 if (start == 0x80030000) {
10676 // nasty hack for fastbios thing
10677 instr_addr0_override=(u_int)out;
10678 emit_movimm(start,0);
10679 emit_readword((int)&pcaddr,1);
10680 emit_writeword(0,(int)&pcaddr);
10681 emit_cmp(0,1);
10682 emit_jne((int)new_dyna_leave);
10683 }
10684#endif
57871462 10685 for(i=0;i<slen;i++)
10686 {
10687 //if(ds) printf("ds: ");
10688 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10689 if(ds) {
10690 ds=0; // Skip delay slot
10691 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10692 instr_addr[i]=0;
10693 } else {
10694 #ifndef DESTRUCTIVE_WRITEBACK
10695 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10696 {
10697 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10698 unneeded_reg[i],unneeded_reg_upper[i]);
10699 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10700 unneeded_reg[i],unneeded_reg_upper[i]);
10701 }
10702 is32_pre=regs[i].is32;
10703 dirty_pre=regs[i].dirty;
10704 #endif
10705 // write back
10706 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10707 {
10708 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10709 unneeded_reg[i],unneeded_reg_upper[i]);
10710 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10711 }
10712 // branch target entry point
10713 instr_addr[i]=(u_int)out;
10714 assem_debug("<->\n");
10715 // load regs
10716 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10717 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10718 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10719 address_generation(i,&regs[i],regs[i].regmap_entry);
10720 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10721 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10722 {
10723 // Load the delay slot registers if necessary
10724 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10725 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10726 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10727 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 10728 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 10729 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10730 }
10731 else if(i+1<slen)
10732 {
10733 // Preload registers for following instruction
10734 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10735 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10736 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10737 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10738 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10739 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10740 }
10741 // TODO: if(is_ooo(i)) address_generation(i+1);
10742 if(itype[i]==CJUMP||itype[i]==FJUMP)
10743 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 10744 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 10745 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10746 if(bt[i]) cop1_usable=0;
10747 // assemble
10748 switch(itype[i]) {
10749 case ALU:
10750 alu_assemble(i,&regs[i]);break;
10751 case IMM16:
10752 imm16_assemble(i,&regs[i]);break;
10753 case SHIFT:
10754 shift_assemble(i,&regs[i]);break;
10755 case SHIFTIMM:
10756 shiftimm_assemble(i,&regs[i]);break;
10757 case LOAD:
10758 load_assemble(i,&regs[i]);break;
10759 case LOADLR:
10760 loadlr_assemble(i,&regs[i]);break;
10761 case STORE:
10762 store_assemble(i,&regs[i]);break;
10763 case STORELR:
10764 storelr_assemble(i,&regs[i]);break;
10765 case COP0:
10766 cop0_assemble(i,&regs[i]);break;
10767 case COP1:
10768 cop1_assemble(i,&regs[i]);break;
10769 case C1LS:
10770 c1ls_assemble(i,&regs[i]);break;
b9b61529 10771 case COP2:
10772 cop2_assemble(i,&regs[i]);break;
10773 case C2LS:
10774 c2ls_assemble(i,&regs[i]);break;
10775 case C2OP:
10776 c2op_assemble(i,&regs[i]);break;
57871462 10777 case FCONV:
10778 fconv_assemble(i,&regs[i]);break;
10779 case FLOAT:
10780 float_assemble(i,&regs[i]);break;
10781 case FCOMP:
10782 fcomp_assemble(i,&regs[i]);break;
10783 case MULTDIV:
10784 multdiv_assemble(i,&regs[i]);break;
10785 case MOV:
10786 mov_assemble(i,&regs[i]);break;
10787 case SYSCALL:
10788 syscall_assemble(i,&regs[i]);break;
7139f3c8 10789 case HLECALL:
10790 hlecall_assemble(i,&regs[i]);break;
1e973cb0 10791 case INTCALL:
10792 intcall_assemble(i,&regs[i]);break;
57871462 10793 case UJUMP:
10794 ujump_assemble(i,&regs[i]);ds=1;break;
10795 case RJUMP:
10796 rjump_assemble(i,&regs[i]);ds=1;break;
10797 case CJUMP:
10798 cjump_assemble(i,&regs[i]);ds=1;break;
10799 case SJUMP:
10800 sjump_assemble(i,&regs[i]);ds=1;break;
10801 case FJUMP:
10802 fjump_assemble(i,&regs[i]);ds=1;break;
10803 case SPAN:
10804 pagespan_assemble(i,&regs[i]);break;
10805 }
10806 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10807 literal_pool(1024);
10808 else
10809 literal_pool_jumpover(256);
10810 }
10811 }
10812 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10813 // If the block did not end with an unconditional branch,
10814 // add a jump to the next instruction.
10815 if(i>1) {
10816 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10817 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10818 assert(i==slen);
10819 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10820 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10821 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10822 emit_loadreg(CCREG,HOST_CCREG);
10823 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10824 }
10825 else if(!likely[i-2])
10826 {
10827 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10828 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10829 }
10830 else
10831 {
10832 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10833 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10834 }
10835 add_to_linker((int)out,start+i*4,0);
10836 emit_jmp(0);
10837 }
10838 }
10839 else
10840 {
10841 assert(i>0);
10842 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10843 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10844 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10845 emit_loadreg(CCREG,HOST_CCREG);
10846 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10847 add_to_linker((int)out,start+i*4,0);
10848 emit_jmp(0);
10849 }
10850
10851 // TODO: delay slot stubs?
10852 // Stubs
10853 for(i=0;i<stubcount;i++)
10854 {
10855 switch(stubs[i][0])
10856 {
10857 case LOADB_STUB:
10858 case LOADH_STUB:
10859 case LOADW_STUB:
10860 case LOADD_STUB:
10861 case LOADBU_STUB:
10862 case LOADHU_STUB:
10863 do_readstub(i);break;
10864 case STOREB_STUB:
10865 case STOREH_STUB:
10866 case STOREW_STUB:
10867 case STORED_STUB:
10868 do_writestub(i);break;
10869 case CC_STUB:
10870 do_ccstub(i);break;
10871 case INVCODE_STUB:
10872 do_invstub(i);break;
10873 case FP_STUB:
10874 do_cop1stub(i);break;
10875 case STORELR_STUB:
10876 do_unalignedwritestub(i);break;
10877 }
10878 }
10879
9ad4d757 10880 if (instr_addr0_override)
10881 instr_addr[0] = instr_addr0_override;
10882
57871462 10883 /* Pass 9 - Linker */
10884 for(i=0;i<linkcount;i++)
10885 {
10886 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10887 literal_pool(64);
10888 if(!link_addr[i][2])
10889 {
10890 void *stub=out;
10891 void *addr=check_addr(link_addr[i][1]);
10892 emit_extjump(link_addr[i][0],link_addr[i][1]);
10893 if(addr) {
10894 set_jump_target(link_addr[i][0],(int)addr);
10895 add_link(link_addr[i][1],stub);
10896 }
10897 else set_jump_target(link_addr[i][0],(int)stub);
10898 }
10899 else
10900 {
10901 // Internal branch
10902 int target=(link_addr[i][1]-start)>>2;
10903 assert(target>=0&&target<slen);
10904 assert(instr_addr[target]);
10905 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10906 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10907 //#else
10908 set_jump_target(link_addr[i][0],instr_addr[target]);
10909 //#endif
10910 }
10911 }
10912 // External Branch Targets (jump_in)
10913 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10914 for(i=0;i<slen;i++)
10915 {
10916 if(bt[i]||i==0)
10917 {
10918 if(instr_addr[i]) // TODO - delay slots (=null)
10919 {
10920 u_int vaddr=start+i*4;
94d23bb9 10921 u_int page=get_page(vaddr);
10922 u_int vpage=get_vpage(vaddr);
57871462 10923 literal_pool(256);
10924 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 10925#ifndef FORCE32
57871462 10926 if(!requires_32bit[i])
a28c6ce8 10927#else
10928 if(1)
10929#endif
57871462 10930 {
10931 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10932 assem_debug("jump_in: %x\n",start+i*4);
10933 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10934 int entry_point=do_dirty_stub(i);
10935 ll_add(jump_in+page,vaddr,(void *)entry_point);
10936 // If there was an existing entry in the hash table,
10937 // replace it with the new address.
10938 // Don't add new entries. We'll insert the
10939 // ones that actually get used in check_addr().
10940 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10941 if(ht_bin[0]==vaddr) {
10942 ht_bin[1]=entry_point;
10943 }
10944 if(ht_bin[2]==vaddr) {
10945 ht_bin[3]=entry_point;
10946 }
10947 }
10948 else
10949 {
10950 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10951 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10952 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10953 //int entry_point=(int)out;
10954 ////assem_debug("entry_point: %x\n",entry_point);
10955 //load_regs_entry(i);
10956 //if(entry_point==(int)out)
10957 // entry_point=instr_addr[i];
10958 //else
10959 // emit_jmp(instr_addr[i]);
10960 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10961 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10962 int entry_point=do_dirty_stub(i);
10963 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10964 }
10965 }
10966 }
10967 }
10968 // Write out the literal pool if necessary
10969 literal_pool(0);
10970 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10971 // Align code
10972 if(((u_int)out)&7) emit_addnop(13);
10973 #endif
10974 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10975 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10976 memcpy(copy,source,slen*4);
10977 copy+=slen*4;
10978
10979 #ifdef __arm__
10980 __clear_cache((void *)beginning,out);
10981 #endif
10982
10983 // If we're within 256K of the end of the buffer,
10984 // start over from the beginning. (Is 256K enough?)
10985 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10986
10987 // Trap writes to any of the pages we compiled
10988 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10989 invalid_code[i]=0;
90ae6d4e 10990#ifndef DISABLE_TLB
57871462 10991 memory_map[i]|=0x40000000;
10992 if((signed int)start>=(signed int)0xC0000000) {
10993 assert(using_tlb);
10994 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10995 invalid_code[j]=0;
10996 memory_map[j]|=0x40000000;
10997 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10998 }
90ae6d4e 10999#endif
57871462 11000 }
11001
11002 /* Pass 10 - Free memory by expiring oldest blocks */
11003
11004 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11005 while(expirep!=end)
11006 {
11007 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11008 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11009 inv_debug("EXP: Phase %d\n",expirep);
11010 switch((expirep>>11)&3)
11011 {
11012 case 0:
11013 // Clear jump_in and jump_dirty
11014 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11015 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11016 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11017 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11018 break;
11019 case 1:
11020 // Clear pointers
11021 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11022 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11023 break;
11024 case 2:
11025 // Clear hash table
11026 for(i=0;i<32;i++) {
11027 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11028 if((ht_bin[3]>>shift)==(base>>shift) ||
11029 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11030 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11031 ht_bin[2]=ht_bin[3]=-1;
11032 }
11033 if((ht_bin[1]>>shift)==(base>>shift) ||
11034 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11035 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11036 ht_bin[0]=ht_bin[2];
11037 ht_bin[1]=ht_bin[3];
11038 ht_bin[2]=ht_bin[3]=-1;
11039 }
11040 }
11041 break;
11042 case 3:
11043 // Clear jump_out
dd3a91a1 11044 #ifdef __arm__
11045 if((expirep&2047)==0)
11046 do_clear_cache();
11047 #endif
57871462 11048 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11049 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11050 break;
11051 }
11052 expirep=(expirep+1)&65535;
11053 }
11054 return 0;
11055}
b9b61529 11056
11057// vim:shiftwidth=2:expandtab