yet more random armv5 tweaks
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
3d624f89 25#include "emu_if.h" //emulator interface
57871462 26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
bedfea38 83 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
84 static uint64_t gte_rt[MAXBLOCK];
85 static uint64_t gte_unneeded[MAXBLOCK];
86 static int gte_reads_flags; // gte flag read encountered
57871462 87 int imm[MAXBLOCK];
88 u_int ba[MAXBLOCK];
89 char likely[MAXBLOCK];
90 char is_ds[MAXBLOCK];
e1190b87 91 char ooo[MAXBLOCK];
57871462 92 uint64_t unneeded_reg[MAXBLOCK];
93 uint64_t unneeded_reg_upper[MAXBLOCK];
94 uint64_t branch_unneeded_reg[MAXBLOCK];
95 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
96 uint64_t p32[MAXBLOCK];
97 uint64_t pr32[MAXBLOCK];
98 signed char regmap_pre[MAXBLOCK][HOST_REGS];
99 signed char regmap[MAXBLOCK][HOST_REGS];
100 signed char regmap_entry[MAXBLOCK][HOST_REGS];
101 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 102 struct regstat regs[MAXBLOCK];
103 struct regstat branch_regs[MAXBLOCK];
e1190b87 104 signed char minimum_free_regs[MAXBLOCK];
57871462 105 u_int needed_reg[MAXBLOCK];
106 uint64_t requires_32bit[MAXBLOCK];
107 u_int wont_dirty[MAXBLOCK];
108 u_int will_dirty[MAXBLOCK];
109 int ccadj[MAXBLOCK];
110 int slen;
111 u_int instr_addr[MAXBLOCK];
112 u_int link_addr[MAXBLOCK][3];
113 int linkcount;
114 u_int stubs[MAXBLOCK*3][8];
115 int stubcount;
116 u_int literals[1024][2];
117 int literalcount;
118 int is_delayslot;
119 int cop1_usable;
120 u_char *out;
121 struct ll_entry *jump_in[4096];
122 struct ll_entry *jump_out[4096];
123 struct ll_entry *jump_dirty[4096];
124 u_int hash_table[65536][4] __attribute__((aligned(16)));
125 char shadow[1048576] __attribute__((aligned(16)));
126 void *copy;
127 int expirep;
af4ee1fe 128#ifndef PCSX
57871462 129 u_int using_tlb;
af4ee1fe 130#else
131 static const u_int using_tlb=0;
132#endif
dadf55f2 133 static u_int sp_in_mirror;
57871462 134 u_int stop_after_jal;
135 extern u_char restore_candidate[512];
136 extern int cycle_count;
137
138 /* registers that may be allocated */
139 /* 1-31 gpr */
140#define HIREG 32 // hi
141#define LOREG 33 // lo
142#define FSREG 34 // FPU status (FCSR)
143#define CSREG 35 // Coprocessor status
144#define CCREG 36 // Cycle count
145#define INVCP 37 // Pointer to invalid_code
619e5ded 146#define MMREG 38 // Pointer to memory_map
147#define ROREG 39 // ram offset (if rdram!=0x80000000)
148#define TEMPREG 40
149#define FTEMP 40 // FPU temporary register
150#define PTEMP 41 // Prefetch temporary register
151#define TLREG 42 // TLB mapping offset
152#define RHASH 43 // Return address hash
153#define RHTBL 44 // Return address hash table address
154#define RTEMP 45 // JR/JALR address register
155#define MAXREG 45
156#define AGEN1 46 // Address generation temporary register
157#define AGEN2 47 // Address generation temporary register
158#define MGEN1 48 // Maptable address generation temporary register
159#define MGEN2 49 // Maptable address generation temporary register
160#define BTREG 50 // Branch target temporary register
57871462 161
162 /* instruction types */
163#define NOP 0 // No operation
164#define LOAD 1 // Load
165#define STORE 2 // Store
166#define LOADLR 3 // Unaligned load
167#define STORELR 4 // Unaligned store
168#define MOV 5 // Move
169#define ALU 6 // Arithmetic/logic
170#define MULTDIV 7 // Multiply/divide
171#define SHIFT 8 // Shift by register
172#define SHIFTIMM 9// Shift by immediate
173#define IMM16 10 // 16-bit immediate
174#define RJUMP 11 // Unconditional jump to register
175#define UJUMP 12 // Unconditional jump
176#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
177#define SJUMP 14 // Conditional branch (regimm format)
178#define COP0 15 // Coprocessor 0
179#define COP1 16 // Coprocessor 1
180#define C1LS 17 // Coprocessor 1 load/store
181#define FJUMP 18 // Conditional branch (floating point)
182#define FLOAT 19 // Floating point unit
183#define FCONV 20 // Convert integer to float
184#define FCOMP 21 // Floating point compare (sets FSREG)
185#define SYSCALL 22// SYSCALL
186#define OTHER 23 // Other
187#define SPAN 24 // Branch/delay slot spans 2 pages
188#define NI 25 // Not implemented
7139f3c8 189#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 190#define COP2 27 // Coprocessor 2 move
191#define C2LS 28 // Coprocessor 2 load/store
192#define C2OP 29 // Coprocessor 2 operation
1e973cb0 193#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 194
195 /* stubs */
196#define CC_STUB 1
197#define FP_STUB 2
198#define LOADB_STUB 3
199#define LOADH_STUB 4
200#define LOADW_STUB 5
201#define LOADD_STUB 6
202#define LOADBU_STUB 7
203#define LOADHU_STUB 8
204#define STOREB_STUB 9
205#define STOREH_STUB 10
206#define STOREW_STUB 11
207#define STORED_STUB 12
208#define STORELR_STUB 13
209#define INVCODE_STUB 14
210
211 /* branch codes */
212#define TAKEN 1
213#define NOTTAKEN 2
214#define NULLDS 3
215
216// asm linkage
217int new_recompile_block(int addr);
218void *get_addr_ht(u_int vaddr);
219void invalidate_block(u_int block);
220void invalidate_addr(u_int addr);
221void remove_hash(int vaddr);
222void jump_vaddr();
223void dyna_linker();
224void dyna_linker_ds();
225void verify_code();
226void verify_code_vm();
227void verify_code_ds();
228void cc_interrupt();
229void fp_exception();
230void fp_exception_ds();
231void jump_syscall();
7139f3c8 232void jump_syscall_hle();
57871462 233void jump_eret();
7139f3c8 234void jump_hlecall();
1e973cb0 235void jump_intcall();
7139f3c8 236void new_dyna_leave();
57871462 237
238// TLB
239void TLBWI_new();
240void TLBWR_new();
241void read_nomem_new();
242void read_nomemb_new();
243void read_nomemh_new();
244void read_nomemd_new();
245void write_nomem_new();
246void write_nomemb_new();
247void write_nomemh_new();
248void write_nomemd_new();
249void write_rdram_new();
250void write_rdramb_new();
251void write_rdramh_new();
252void write_rdramd_new();
253extern u_int memory_map[1048576];
254
255// Needed by assembler
256void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
257void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
258void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
259void load_all_regs(signed char i_regmap[]);
260void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
261void load_regs_entry(int t);
262void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
263
264int tracedebug=0;
265
266//#define DEBUG_CYCLE_COUNT 1
267
268void nullf() {}
269//#define assem_debug printf
270//#define inv_debug printf
271#define assem_debug nullf
272#define inv_debug nullf
273
94d23bb9 274static void tlb_hacks()
57871462 275{
94d23bb9 276#ifndef DISABLE_TLB
57871462 277 // Goldeneye hack
278 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
279 {
280 u_int addr;
281 int n;
282 switch (ROM_HEADER->Country_code&0xFF)
283 {
284 case 0x45: // U
285 addr=0x34b30;
286 break;
287 case 0x4A: // J
288 addr=0x34b70;
289 break;
290 case 0x50: // E
291 addr=0x329f0;
292 break;
293 default:
294 // Unknown country code
295 addr=0;
296 break;
297 }
298 u_int rom_addr=(u_int)rom;
299 #ifdef ROM_COPY
300 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
301 // in the lower 4G of memory to use this hack. Copy it if necessary.
302 if((void *)rom>(void *)0xffffffff) {
303 munmap(ROM_COPY, 67108864);
304 if(mmap(ROM_COPY, 12582912,
305 PROT_READ | PROT_WRITE,
306 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
307 -1, 0) <= 0) {printf("mmap() failed\n");}
308 memcpy(ROM_COPY,rom,12582912);
309 rom_addr=(u_int)ROM_COPY;
310 }
311 #endif
312 if(addr) {
313 for(n=0x7F000;n<0x80000;n++) {
314 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
315 }
316 }
317 }
94d23bb9 318#endif
57871462 319}
320
94d23bb9 321static u_int get_page(u_int vaddr)
57871462 322{
0ce47d46 323#ifndef PCSX
57871462 324 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 325#else
326 u_int page=vaddr&~0xe0000000;
327 if (page < 0x1000000)
328 page &= ~0x0e00000; // RAM mirrors
329 page>>=12;
330#endif
94d23bb9 331#ifndef DISABLE_TLB
57871462 332 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 333#endif
57871462 334 if(page>2048) page=2048+(page&2047);
94d23bb9 335 return page;
336}
337
338static u_int get_vpage(u_int vaddr)
339{
340 u_int vpage=(vaddr^0x80000000)>>12;
341#ifndef DISABLE_TLB
57871462 342 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 343#endif
57871462 344 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 345 return vpage;
346}
347
348// Get address from virtual address
349// This is called from the recompiled JR/JALR instructions
350void *get_addr(u_int vaddr)
351{
352 u_int page=get_page(vaddr);
353 u_int vpage=get_vpage(vaddr);
57871462 354 struct ll_entry *head;
355 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
356 head=jump_in[page];
357 while(head!=NULL) {
358 if(head->vaddr==vaddr&&head->reg32==0) {
359 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
360 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
361 ht_bin[3]=ht_bin[1];
362 ht_bin[2]=ht_bin[0];
363 ht_bin[1]=(int)head->addr;
364 ht_bin[0]=vaddr;
365 return head->addr;
366 }
367 head=head->next;
368 }
369 head=jump_dirty[vpage];
370 while(head!=NULL) {
371 if(head->vaddr==vaddr&&head->reg32==0) {
372 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
373 // Don't restore blocks which are about to expire from the cache
374 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
375 if(verify_dirty(head->addr)) {
376 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
377 invalid_code[vaddr>>12]=0;
9be4ba64 378 inv_code_start=inv_code_end=~0;
57871462 379 memory_map[vaddr>>12]|=0x40000000;
380 if(vpage<2048) {
94d23bb9 381#ifndef DISABLE_TLB
57871462 382 if(tlb_LUT_r[vaddr>>12]) {
383 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
384 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
385 }
94d23bb9 386#endif
57871462 387 restore_candidate[vpage>>3]|=1<<(vpage&7);
388 }
389 else restore_candidate[page>>3]|=1<<(page&7);
390 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
391 if(ht_bin[0]==vaddr) {
392 ht_bin[1]=(int)head->addr; // Replace existing entry
393 }
394 else
395 {
396 ht_bin[3]=ht_bin[1];
397 ht_bin[2]=ht_bin[0];
398 ht_bin[1]=(int)head->addr;
399 ht_bin[0]=vaddr;
400 }
401 return head->addr;
402 }
403 }
404 head=head->next;
405 }
406 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
407 int r=new_recompile_block(vaddr);
408 if(r==0) return get_addr(vaddr);
409 // Execute in unmapped page, generate pagefault execption
410 Status|=2;
411 Cause=(vaddr<<31)|0x8;
412 EPC=(vaddr&1)?vaddr-5:vaddr;
413 BadVAddr=(vaddr&~1);
414 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
415 EntryHi=BadVAddr&0xFFFFE000;
416 return get_addr_ht(0x80000000);
417}
418// Look up address in hash table first
419void *get_addr_ht(u_int vaddr)
420{
421 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
422 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
425 return get_addr(vaddr);
426}
427
428void *get_addr_32(u_int vaddr,u_int flags)
429{
7139f3c8 430#ifdef FORCE32
431 return get_addr(vaddr);
560e4a12 432#else
57871462 433 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
434 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
435 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
436 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 437 u_int page=get_page(vaddr);
438 u_int vpage=get_vpage(vaddr);
57871462 439 struct ll_entry *head;
440 head=jump_in[page];
441 while(head!=NULL) {
442 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
443 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
444 if(head->reg32==0) {
445 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
446 if(ht_bin[0]==-1) {
447 ht_bin[1]=(int)head->addr;
448 ht_bin[0]=vaddr;
449 }else if(ht_bin[2]==-1) {
450 ht_bin[3]=(int)head->addr;
451 ht_bin[2]=vaddr;
452 }
453 //ht_bin[3]=ht_bin[1];
454 //ht_bin[2]=ht_bin[0];
455 //ht_bin[1]=(int)head->addr;
456 //ht_bin[0]=vaddr;
457 }
458 return head->addr;
459 }
460 head=head->next;
461 }
462 head=jump_dirty[vpage];
463 while(head!=NULL) {
464 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
465 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
466 // Don't restore blocks which are about to expire from the cache
467 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
468 if(verify_dirty(head->addr)) {
469 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
470 invalid_code[vaddr>>12]=0;
9be4ba64 471 inv_code_start=inv_code_end=~0;
57871462 472 memory_map[vaddr>>12]|=0x40000000;
473 if(vpage<2048) {
94d23bb9 474#ifndef DISABLE_TLB
57871462 475 if(tlb_LUT_r[vaddr>>12]) {
476 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
477 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
478 }
94d23bb9 479#endif
57871462 480 restore_candidate[vpage>>3]|=1<<(vpage&7);
481 }
482 else restore_candidate[page>>3]|=1<<(page&7);
483 if(head->reg32==0) {
484 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
485 if(ht_bin[0]==-1) {
486 ht_bin[1]=(int)head->addr;
487 ht_bin[0]=vaddr;
488 }else if(ht_bin[2]==-1) {
489 ht_bin[3]=(int)head->addr;
490 ht_bin[2]=vaddr;
491 }
492 //ht_bin[3]=ht_bin[1];
493 //ht_bin[2]=ht_bin[0];
494 //ht_bin[1]=(int)head->addr;
495 //ht_bin[0]=vaddr;
496 }
497 return head->addr;
498 }
499 }
500 head=head->next;
501 }
502 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
503 int r=new_recompile_block(vaddr);
504 if(r==0) return get_addr(vaddr);
505 // Execute in unmapped page, generate pagefault execption
506 Status|=2;
507 Cause=(vaddr<<31)|0x8;
508 EPC=(vaddr&1)?vaddr-5:vaddr;
509 BadVAddr=(vaddr&~1);
510 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
511 EntryHi=BadVAddr&0xFFFFE000;
512 return get_addr_ht(0x80000000);
560e4a12 513#endif
57871462 514}
515
516void clear_all_regs(signed char regmap[])
517{
518 int hr;
519 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
520}
521
522signed char get_reg(signed char regmap[],int r)
523{
524 int hr;
525 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
526 return -1;
527}
528
529// Find a register that is available for two consecutive cycles
530signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
531{
532 int hr;
533 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
534 return -1;
535}
536
537int count_free_regs(signed char regmap[])
538{
539 int count=0;
540 int hr;
541 for(hr=0;hr<HOST_REGS;hr++)
542 {
543 if(hr!=EXCLUDE_REG) {
544 if(regmap[hr]<0) count++;
545 }
546 }
547 return count;
548}
549
550void dirty_reg(struct regstat *cur,signed char reg)
551{
552 int hr;
553 if(!reg) return;
554 for (hr=0;hr<HOST_REGS;hr++) {
555 if((cur->regmap[hr]&63)==reg) {
556 cur->dirty|=1<<hr;
557 }
558 }
559}
560
561// If we dirty the lower half of a 64 bit register which is now being
562// sign-extended, we need to dump the upper half.
563// Note: Do this only after completion of the instruction, because
564// some instructions may need to read the full 64-bit value even if
565// overwriting it (eg SLTI, DSRA32).
566static void flush_dirty_uppers(struct regstat *cur)
567{
568 int hr,reg;
569 for (hr=0;hr<HOST_REGS;hr++) {
570 if((cur->dirty>>hr)&1) {
571 reg=cur->regmap[hr];
572 if(reg>=64)
573 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
574 }
575 }
576}
577
578void set_const(struct regstat *cur,signed char reg,uint64_t value)
579{
580 int hr;
581 if(!reg) return;
582 for (hr=0;hr<HOST_REGS;hr++) {
583 if(cur->regmap[hr]==reg) {
584 cur->isconst|=1<<hr;
585 cur->constmap[hr]=value;
586 }
587 else if((cur->regmap[hr]^64)==reg) {
588 cur->isconst|=1<<hr;
589 cur->constmap[hr]=value>>32;
590 }
591 }
592}
593
594void clear_const(struct regstat *cur,signed char reg)
595{
596 int hr;
597 if(!reg) return;
598 for (hr=0;hr<HOST_REGS;hr++) {
599 if((cur->regmap[hr]&63)==reg) {
600 cur->isconst&=~(1<<hr);
601 }
602 }
603}
604
605int is_const(struct regstat *cur,signed char reg)
606{
607 int hr;
79c75f1b 608 if(reg<0) return 0;
57871462 609 if(!reg) return 1;
610 for (hr=0;hr<HOST_REGS;hr++) {
611 if((cur->regmap[hr]&63)==reg) {
612 return (cur->isconst>>hr)&1;
613 }
614 }
615 return 0;
616}
617uint64_t get_const(struct regstat *cur,signed char reg)
618{
619 int hr;
620 if(!reg) return 0;
621 for (hr=0;hr<HOST_REGS;hr++) {
622 if(cur->regmap[hr]==reg) {
623 return cur->constmap[hr];
624 }
625 }
626 printf("Unknown constant in r%d\n",reg);
627 exit(1);
628}
629
630// Least soon needed registers
631// Look at the next ten instructions and see which registers
632// will be used. Try not to reallocate these.
633void lsn(u_char hsn[], int i, int *preferred_reg)
634{
635 int j;
636 int b=-1;
637 for(j=0;j<9;j++)
638 {
639 if(i+j>=slen) {
640 j=slen-i-1;
641 break;
642 }
643 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
644 {
645 // Don't go past an unconditonal jump
646 j++;
647 break;
648 }
649 }
650 for(;j>=0;j--)
651 {
652 if(rs1[i+j]) hsn[rs1[i+j]]=j;
653 if(rs2[i+j]) hsn[rs2[i+j]]=j;
654 if(rt1[i+j]) hsn[rt1[i+j]]=j;
655 if(rt2[i+j]) hsn[rt2[i+j]]=j;
656 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
657 // Stores can allocate zero
658 hsn[rs1[i+j]]=j;
659 hsn[rs2[i+j]]=j;
660 }
661 // On some architectures stores need invc_ptr
662 #if defined(HOST_IMM8)
b9b61529 663 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 664 hsn[INVCP]=j;
665 }
666 #endif
667 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
668 {
669 hsn[CCREG]=j;
670 b=j;
671 }
672 }
673 if(b>=0)
674 {
675 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
676 {
677 // Follow first branch
678 int t=(ba[i+b]-start)>>2;
679 j=7-b;if(t+j>=slen) j=slen-t-1;
680 for(;j>=0;j--)
681 {
682 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
683 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
684 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
685 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
686 }
687 }
688 // TODO: preferred register based on backward branch
689 }
690 // Delay slot should preferably not overwrite branch conditions or cycle count
691 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
692 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
693 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
694 hsn[CCREG]=1;
695 // ...or hash tables
696 hsn[RHASH]=1;
697 hsn[RHTBL]=1;
698 }
699 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 700 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 701 hsn[FTEMP]=0;
702 }
703 // Load L/R also uses FTEMP as a temporary register
704 if(itype[i]==LOADLR) {
705 hsn[FTEMP]=0;
706 }
b7918751 707 // Also SWL/SWR/SDL/SDR
708 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 709 hsn[FTEMP]=0;
710 }
711 // Don't remove the TLB registers either
b9b61529 712 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 713 hsn[TLREG]=0;
714 }
715 // Don't remove the miniht registers
716 if(itype[i]==UJUMP||itype[i]==RJUMP)
717 {
718 hsn[RHASH]=0;
719 hsn[RHTBL]=0;
720 }
721}
722
723// We only want to allocate registers if we're going to use them again soon
724int needed_again(int r, int i)
725{
726 int j;
727 int b=-1;
728 int rn=10;
57871462 729
730 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
731 {
732 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
733 return 0; // Don't need any registers if exiting the block
734 }
735 for(j=0;j<9;j++)
736 {
737 if(i+j>=slen) {
738 j=slen-i-1;
739 break;
740 }
741 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
742 {
743 // Don't go past an unconditonal jump
744 j++;
745 break;
746 }
1e973cb0 747 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 748 {
749 break;
750 }
751 }
752 for(;j>=1;j--)
753 {
754 if(rs1[i+j]==r) rn=j;
755 if(rs2[i+j]==r) rn=j;
756 if((unneeded_reg[i+j]>>r)&1) rn=10;
757 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
758 {
759 b=j;
760 }
761 }
762 /*
763 if(b>=0)
764 {
765 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
766 {
767 // Follow first branch
768 int o=rn;
769 int t=(ba[i+b]-start)>>2;
770 j=7-b;if(t+j>=slen) j=slen-t-1;
771 for(;j>=0;j--)
772 {
773 if(!((unneeded_reg[t+j]>>r)&1)) {
774 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
775 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
776 }
777 else rn=o;
778 }
779 }
780 }*/
b7217e13 781 if(rn<10) return 1;
57871462 782 return 0;
783}
784
785// Try to match register allocations at the end of a loop with those
786// at the beginning
787int loop_reg(int i, int r, int hr)
788{
789 int j,k;
790 for(j=0;j<9;j++)
791 {
792 if(i+j>=slen) {
793 j=slen-i-1;
794 break;
795 }
796 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
797 {
798 // Don't go past an unconditonal jump
799 j++;
800 break;
801 }
802 }
803 k=0;
804 if(i>0){
805 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
806 k--;
807 }
808 for(;k<j;k++)
809 {
810 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
811 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
812 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
813 {
814 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
815 {
816 int t=(ba[i+k]-start)>>2;
817 int reg=get_reg(regs[t].regmap_entry,r);
818 if(reg>=0) return reg;
819 //reg=get_reg(regs[t+1].regmap_entry,r);
820 //if(reg>=0) return reg;
821 }
822 }
823 }
824 return hr;
825}
826
827
828// Allocate every register, preserving source/target regs
829void alloc_all(struct regstat *cur,int i)
830{
831 int hr;
832
833 for(hr=0;hr<HOST_REGS;hr++) {
834 if(hr!=EXCLUDE_REG) {
835 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
836 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
837 {
838 cur->regmap[hr]=-1;
839 cur->dirty&=~(1<<hr);
840 }
841 // Don't need zeros
842 if((cur->regmap[hr]&63)==0)
843 {
844 cur->regmap[hr]=-1;
845 cur->dirty&=~(1<<hr);
846 }
847 }
848 }
849}
850
851
852void div64(int64_t dividend,int64_t divisor)
853{
854 lo=dividend/divisor;
855 hi=dividend%divisor;
856 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
857 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
858}
859void divu64(uint64_t dividend,uint64_t divisor)
860{
861 lo=dividend/divisor;
862 hi=dividend%divisor;
863 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
864 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
865}
866
867void mult64(uint64_t m1,uint64_t m2)
868{
869 unsigned long long int op1, op2, op3, op4;
870 unsigned long long int result1, result2, result3, result4;
871 unsigned long long int temp1, temp2, temp3, temp4;
872 int sign = 0;
873
874 if (m1 < 0)
875 {
876 op2 = -m1;
877 sign = 1 - sign;
878 }
879 else op2 = m1;
880 if (m2 < 0)
881 {
882 op4 = -m2;
883 sign = 1 - sign;
884 }
885 else op4 = m2;
886
887 op1 = op2 & 0xFFFFFFFF;
888 op2 = (op2 >> 32) & 0xFFFFFFFF;
889 op3 = op4 & 0xFFFFFFFF;
890 op4 = (op4 >> 32) & 0xFFFFFFFF;
891
892 temp1 = op1 * op3;
893 temp2 = (temp1 >> 32) + op1 * op4;
894 temp3 = op2 * op3;
895 temp4 = (temp3 >> 32) + op2 * op4;
896
897 result1 = temp1 & 0xFFFFFFFF;
898 result2 = temp2 + (temp3 & 0xFFFFFFFF);
899 result3 = (result2 >> 32) + temp4;
900 result4 = (result3 >> 32);
901
902 lo = result1 | (result2 << 32);
903 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
904 if (sign)
905 {
906 hi = ~hi;
907 if (!lo) hi++;
908 else lo = ~lo + 1;
909 }
910}
911
912void multu64(uint64_t m1,uint64_t m2)
913{
914 unsigned long long int op1, op2, op3, op4;
915 unsigned long long int result1, result2, result3, result4;
916 unsigned long long int temp1, temp2, temp3, temp4;
917
918 op1 = m1 & 0xFFFFFFFF;
919 op2 = (m1 >> 32) & 0xFFFFFFFF;
920 op3 = m2 & 0xFFFFFFFF;
921 op4 = (m2 >> 32) & 0xFFFFFFFF;
922
923 temp1 = op1 * op3;
924 temp2 = (temp1 >> 32) + op1 * op4;
925 temp3 = op2 * op3;
926 temp4 = (temp3 >> 32) + op2 * op4;
927
928 result1 = temp1 & 0xFFFFFFFF;
929 result2 = temp2 + (temp3 & 0xFFFFFFFF);
930 result3 = (result2 >> 32) + temp4;
931 result4 = (result3 >> 32);
932
933 lo = result1 | (result2 << 32);
934 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
935
936 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
937 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
938}
939
940uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
941{
942 if(bits) {
943 original<<=64-bits;
944 original>>=64-bits;
945 loaded<<=bits;
946 original|=loaded;
947 }
948 else original=loaded;
949 return original;
950}
951uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
952{
953 if(bits^56) {
954 original>>=64-(bits^56);
955 original<<=64-(bits^56);
956 loaded>>=bits^56;
957 original|=loaded;
958 }
959 else original=loaded;
960 return original;
961}
962
963#ifdef __i386__
964#include "assem_x86.c"
965#endif
966#ifdef __x86_64__
967#include "assem_x64.c"
968#endif
969#ifdef __arm__
970#include "assem_arm.c"
971#endif
972
973// Add virtual address mapping to linked list
974void ll_add(struct ll_entry **head,int vaddr,void *addr)
975{
976 struct ll_entry *new_entry;
977 new_entry=malloc(sizeof(struct ll_entry));
978 assert(new_entry!=NULL);
979 new_entry->vaddr=vaddr;
980 new_entry->reg32=0;
981 new_entry->addr=addr;
982 new_entry->next=*head;
983 *head=new_entry;
984}
985
986// Add virtual address mapping for 32-bit compiled block
987void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
988{
7139f3c8 989 ll_add(head,vaddr,addr);
990#ifndef FORCE32
991 (*head)->reg32=reg32;
992#endif
57871462 993}
994
995// Check if an address is already compiled
996// but don't return addresses which are about to expire from the cache
997void *check_addr(u_int vaddr)
998{
999 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1000 if(ht_bin[0]==vaddr) {
1001 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1003 }
1004 if(ht_bin[2]==vaddr) {
1005 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1006 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1007 }
94d23bb9 1008 u_int page=get_page(vaddr);
57871462 1009 struct ll_entry *head;
1010 head=jump_in[page];
1011 while(head!=NULL) {
1012 if(head->vaddr==vaddr&&head->reg32==0) {
1013 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1014 // Update existing entry with current address
1015 if(ht_bin[0]==vaddr) {
1016 ht_bin[1]=(int)head->addr;
1017 return head->addr;
1018 }
1019 if(ht_bin[2]==vaddr) {
1020 ht_bin[3]=(int)head->addr;
1021 return head->addr;
1022 }
1023 // Insert into hash table with low priority.
1024 // Don't evict existing entries, as they are probably
1025 // addresses that are being accessed frequently.
1026 if(ht_bin[0]==-1) {
1027 ht_bin[1]=(int)head->addr;
1028 ht_bin[0]=vaddr;
1029 }else if(ht_bin[2]==-1) {
1030 ht_bin[3]=(int)head->addr;
1031 ht_bin[2]=vaddr;
1032 }
1033 return head->addr;
1034 }
1035 }
1036 head=head->next;
1037 }
1038 return 0;
1039}
1040
1041void remove_hash(int vaddr)
1042{
1043 //printf("remove hash: %x\n",vaddr);
1044 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1045 if(ht_bin[2]==vaddr) {
1046 ht_bin[2]=ht_bin[3]=-1;
1047 }
1048 if(ht_bin[0]==vaddr) {
1049 ht_bin[0]=ht_bin[2];
1050 ht_bin[1]=ht_bin[3];
1051 ht_bin[2]=ht_bin[3]=-1;
1052 }
1053}
1054
1055void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1056{
1057 struct ll_entry *next;
1058 while(*head) {
1059 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1060 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1061 {
1062 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1063 remove_hash((*head)->vaddr);
1064 next=(*head)->next;
1065 free(*head);
1066 *head=next;
1067 }
1068 else
1069 {
1070 head=&((*head)->next);
1071 }
1072 }
1073}
1074
1075// Remove all entries from linked list
1076void ll_clear(struct ll_entry **head)
1077{
1078 struct ll_entry *cur;
1079 struct ll_entry *next;
1080 if(cur=*head) {
1081 *head=0;
1082 while(cur) {
1083 next=cur->next;
1084 free(cur);
1085 cur=next;
1086 }
1087 }
1088}
1089
1090// Dereference the pointers and remove if it matches
1091void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1092{
1093 while(head) {
1094 int ptr=get_pointer(head->addr);
1095 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1096 if(((ptr>>shift)==(addr>>shift)) ||
1097 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1098 {
5088bb70 1099 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1100 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1101 #ifdef __arm__
1102 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1103 #endif
57871462 1104 }
1105 head=head->next;
1106 }
1107}
1108
1109// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1110void invalidate_page(u_int page)
57871462 1111{
57871462 1112 struct ll_entry *head;
1113 struct ll_entry *next;
1114 head=jump_in[page];
1115 jump_in[page]=0;
1116 while(head!=NULL) {
1117 inv_debug("INVALIDATE: %x\n",head->vaddr);
1118 remove_hash(head->vaddr);
1119 next=head->next;
1120 free(head);
1121 head=next;
1122 }
1123 head=jump_out[page];
1124 jump_out[page]=0;
1125 while(head!=NULL) {
1126 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1127 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1128 #ifdef __arm__
1129 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1130 #endif
57871462 1131 next=head->next;
1132 free(head);
1133 head=next;
1134 }
57871462 1135}
9be4ba64 1136
1137static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1138{
94d23bb9 1139 u_int page=get_page(block<<12);
57871462 1140 //printf("first=%d last=%d\n",first,last);
f76eeef9 1141 invalidate_page(page);
57871462 1142 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1143 assert(last<page+5);
1144 // Invalidate the adjacent pages if a block crosses a 4K boundary
1145 while(first<page) {
1146 invalidate_page(first);
1147 first++;
1148 }
1149 for(first=page+1;first<last;first++) {
1150 invalidate_page(first);
1151 }
dd3a91a1 1152 #ifdef __arm__
1153 do_clear_cache();
1154 #endif
57871462 1155
1156 // Don't trap writes
1157 invalid_code[block]=1;
94d23bb9 1158#ifndef DISABLE_TLB
57871462 1159 // If there is a valid TLB entry for this page, remove write protect
1160 if(tlb_LUT_w[block]) {
1161 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1162 // CHECK: Is this right?
1163 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1164 u_int real_block=tlb_LUT_w[block]>>12;
1165 invalid_code[real_block]=1;
1166 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1167 }
1168 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1169#endif
f76eeef9 1170
57871462 1171 #ifdef USE_MINI_HT
1172 memset(mini_ht,-1,sizeof(mini_ht));
1173 #endif
1174}
9be4ba64 1175
1176void invalidate_block(u_int block)
1177{
1178 u_int page=get_page(block<<12);
1179 u_int vpage=get_vpage(block<<12);
1180 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1181 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1182 u_int first,last;
1183 first=last=page;
1184 struct ll_entry *head;
1185 head=jump_dirty[vpage];
1186 //printf("page=%d vpage=%d\n",page,vpage);
1187 while(head!=NULL) {
1188 u_int start,end;
1189 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1190 get_bounds((int)head->addr,&start,&end);
1191 //printf("start: %x end: %x\n",start,end);
1192 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1193 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1194 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1195 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1196 }
1197 }
1198#ifndef DISABLE_TLB
1199 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1200 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1201 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1202 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1203 }
1204 }
1205#endif
1206 }
1207 head=head->next;
1208 }
1209 invalidate_block_range(block,first,last);
1210}
1211
57871462 1212void invalidate_addr(u_int addr)
1213{
9be4ba64 1214#ifdef PCSX
1215 //static int rhits;
1216 // this check is done by the caller
1217 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1218 u_int page=get_page(addr);
1219 if(page<2048) { // RAM
1220 struct ll_entry *head;
1221 u_int addr_min=~0, addr_max=0;
1222 int mask=RAM_SIZE-1;
1223 int pg1;
1224 inv_code_start=addr&~0xfff;
1225 inv_code_end=addr|0xfff;
1226 pg1=page;
1227 if (pg1>0) {
1228 // must check previous page too because of spans..
1229 pg1--;
1230 inv_code_start-=0x1000;
1231 }
1232 for(;pg1<=page;pg1++) {
1233 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1234 u_int start,end;
1235 get_bounds((int)head->addr,&start,&end);
1236 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1237 if(start<addr_min) addr_min=start;
1238 if(end>addr_max) addr_max=end;
1239 }
1240 else if(addr<start) {
1241 if(start<inv_code_end)
1242 inv_code_end=start-1;
1243 }
1244 else {
1245 if(end>inv_code_start)
1246 inv_code_start=end;
1247 }
1248 }
1249 }
1250 if (addr_min!=~0) {
1251 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1252 inv_code_start=inv_code_end=~0;
1253 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1254 return;
1255 }
1256 else {
1257 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);//rhits);
1258 }
1259 //rhits=0;
1260 if(page!=0) // FIXME: don't know what's up with page 0 (Klonoa)
1261 return;
1262 }
1263#endif
57871462 1264 invalidate_block(addr>>12);
1265}
9be4ba64 1266
dd3a91a1 1267// This is called when loading a save state.
1268// Anything could have changed, so invalidate everything.
57871462 1269void invalidate_all_pages()
1270{
1271 u_int page,n;
1272 for(page=0;page<4096;page++)
1273 invalidate_page(page);
1274 for(page=0;page<1048576;page++)
1275 if(!invalid_code[page]) {
1276 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1277 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1278 }
1279 #ifdef __arm__
1280 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1281 #endif
1282 #ifdef USE_MINI_HT
1283 memset(mini_ht,-1,sizeof(mini_ht));
1284 #endif
94d23bb9 1285 #ifndef DISABLE_TLB
57871462 1286 // TLB
1287 for(page=0;page<0x100000;page++) {
1288 if(tlb_LUT_r[page]) {
1289 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1290 if(!tlb_LUT_w[page]||!invalid_code[page])
1291 memory_map[page]|=0x40000000; // Write protect
1292 }
1293 else memory_map[page]=-1;
1294 if(page==0x80000) page=0xC0000;
1295 }
1296 tlb_hacks();
94d23bb9 1297 #endif
57871462 1298}
1299
1300// Add an entry to jump_out after making a link
1301void add_link(u_int vaddr,void *src)
1302{
94d23bb9 1303 u_int page=get_page(vaddr);
57871462 1304 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1305 int *ptr=(int *)(src+4);
1306 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1307 ll_add(jump_out+page,vaddr,src);
1308 //int ptr=get_pointer(src);
1309 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1310}
1311
1312// If a code block was found to be unmodified (bit was set in
1313// restore_candidate) and it remains unmodified (bit is clear
1314// in invalid_code) then move the entries for that 4K page from
1315// the dirty list to the clean list.
1316void clean_blocks(u_int page)
1317{
1318 struct ll_entry *head;
1319 inv_debug("INV: clean_blocks page=%d\n",page);
1320 head=jump_dirty[page];
1321 while(head!=NULL) {
1322 if(!invalid_code[head->vaddr>>12]) {
1323 // Don't restore blocks which are about to expire from the cache
1324 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1325 u_int start,end;
1326 if(verify_dirty((int)head->addr)) {
1327 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1328 u_int i;
1329 u_int inv=0;
1330 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1331 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1332 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1333 inv|=invalid_code[i];
1334 }
1335 }
1336 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1337 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1338 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1339 if(addr<start||addr>=end) inv=1;
1340 }
4cb76aa4 1341 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1342 inv=1;
1343 }
1344 if(!inv) {
1345 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1346 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1347 u_int ppage=page;
94d23bb9 1348#ifndef DISABLE_TLB
57871462 1349 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1350#endif
57871462 1351 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1352 //printf("page=%x, addr=%x\n",page,head->vaddr);
1353 //assert(head->vaddr>>12==(page|0x80000));
1354 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1355 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1356 if(!head->reg32) {
1357 if(ht_bin[0]==head->vaddr) {
1358 ht_bin[1]=(int)clean_addr; // Replace existing entry
1359 }
1360 if(ht_bin[2]==head->vaddr) {
1361 ht_bin[3]=(int)clean_addr; // Replace existing entry
1362 }
1363 }
1364 }
1365 }
1366 }
1367 }
1368 }
1369 head=head->next;
1370 }
1371}
1372
1373
1374void mov_alloc(struct regstat *current,int i)
1375{
1376 // Note: Don't need to actually alloc the source registers
1377 if((~current->is32>>rs1[i])&1) {
1378 //alloc_reg64(current,i,rs1[i]);
1379 alloc_reg64(current,i,rt1[i]);
1380 current->is32&=~(1LL<<rt1[i]);
1381 } else {
1382 //alloc_reg(current,i,rs1[i]);
1383 alloc_reg(current,i,rt1[i]);
1384 current->is32|=(1LL<<rt1[i]);
1385 }
1386 clear_const(current,rs1[i]);
1387 clear_const(current,rt1[i]);
1388 dirty_reg(current,rt1[i]);
1389}
1390
1391void shiftimm_alloc(struct regstat *current,int i)
1392{
1393 clear_const(current,rs1[i]);
1394 clear_const(current,rt1[i]);
1395 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1396 {
1397 if(rt1[i]) {
1398 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1399 else lt1[i]=rs1[i];
1400 alloc_reg(current,i,rt1[i]);
1401 current->is32|=1LL<<rt1[i];
1402 dirty_reg(current,rt1[i]);
1403 }
1404 }
1405 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1406 {
1407 if(rt1[i]) {
1408 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1409 alloc_reg64(current,i,rt1[i]);
1410 current->is32&=~(1LL<<rt1[i]);
1411 dirty_reg(current,rt1[i]);
1412 }
1413 }
1414 if(opcode2[i]==0x3c) // DSLL32
1415 {
1416 if(rt1[i]) {
1417 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1418 alloc_reg64(current,i,rt1[i]);
1419 current->is32&=~(1LL<<rt1[i]);
1420 dirty_reg(current,rt1[i]);
1421 }
1422 }
1423 if(opcode2[i]==0x3e) // DSRL32
1424 {
1425 if(rt1[i]) {
1426 alloc_reg64(current,i,rs1[i]);
1427 if(imm[i]==32) {
1428 alloc_reg64(current,i,rt1[i]);
1429 current->is32&=~(1LL<<rt1[i]);
1430 } else {
1431 alloc_reg(current,i,rt1[i]);
1432 current->is32|=1LL<<rt1[i];
1433 }
1434 dirty_reg(current,rt1[i]);
1435 }
1436 }
1437 if(opcode2[i]==0x3f) // DSRA32
1438 {
1439 if(rt1[i]) {
1440 alloc_reg64(current,i,rs1[i]);
1441 alloc_reg(current,i,rt1[i]);
1442 current->is32|=1LL<<rt1[i];
1443 dirty_reg(current,rt1[i]);
1444 }
1445 }
1446}
1447
1448void shift_alloc(struct regstat *current,int i)
1449{
1450 if(rt1[i]) {
1451 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1452 {
1453 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1454 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1455 alloc_reg(current,i,rt1[i]);
e1190b87 1456 if(rt1[i]==rs2[i]) {
1457 alloc_reg_temp(current,i,-1);
1458 minimum_free_regs[i]=1;
1459 }
57871462 1460 current->is32|=1LL<<rt1[i];
1461 } else { // DSLLV/DSRLV/DSRAV
1462 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1463 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1464 alloc_reg64(current,i,rt1[i]);
1465 current->is32&=~(1LL<<rt1[i]);
1466 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1467 {
57871462 1468 alloc_reg_temp(current,i,-1);
e1190b87 1469 minimum_free_regs[i]=1;
1470 }
57871462 1471 }
1472 clear_const(current,rs1[i]);
1473 clear_const(current,rs2[i]);
1474 clear_const(current,rt1[i]);
1475 dirty_reg(current,rt1[i]);
1476 }
1477}
1478
1479void alu_alloc(struct regstat *current,int i)
1480{
1481 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1482 if(rt1[i]) {
1483 if(rs1[i]&&rs2[i]) {
1484 alloc_reg(current,i,rs1[i]);
1485 alloc_reg(current,i,rs2[i]);
1486 }
1487 else {
1488 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1489 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1490 }
1491 alloc_reg(current,i,rt1[i]);
1492 }
1493 current->is32|=1LL<<rt1[i];
1494 }
1495 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1496 if(rt1[i]) {
1497 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1498 {
1499 alloc_reg64(current,i,rs1[i]);
1500 alloc_reg64(current,i,rs2[i]);
1501 alloc_reg(current,i,rt1[i]);
1502 } else {
1503 alloc_reg(current,i,rs1[i]);
1504 alloc_reg(current,i,rs2[i]);
1505 alloc_reg(current,i,rt1[i]);
1506 }
1507 }
1508 current->is32|=1LL<<rt1[i];
1509 }
1510 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1511 if(rt1[i]) {
1512 if(rs1[i]&&rs2[i]) {
1513 alloc_reg(current,i,rs1[i]);
1514 alloc_reg(current,i,rs2[i]);
1515 }
1516 else
1517 {
1518 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1519 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1520 }
1521 alloc_reg(current,i,rt1[i]);
1522 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1523 {
1524 if(!((current->uu>>rt1[i])&1)) {
1525 alloc_reg64(current,i,rt1[i]);
1526 }
1527 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1528 if(rs1[i]&&rs2[i]) {
1529 alloc_reg64(current,i,rs1[i]);
1530 alloc_reg64(current,i,rs2[i]);
1531 }
1532 else
1533 {
1534 // Is is really worth it to keep 64-bit values in registers?
1535 #ifdef NATIVE_64BIT
1536 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1537 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1538 #endif
1539 }
1540 }
1541 current->is32&=~(1LL<<rt1[i]);
1542 } else {
1543 current->is32|=1LL<<rt1[i];
1544 }
1545 }
1546 }
1547 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1548 if(rt1[i]) {
1549 if(rs1[i]&&rs2[i]) {
1550 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1551 alloc_reg64(current,i,rs1[i]);
1552 alloc_reg64(current,i,rs2[i]);
1553 alloc_reg64(current,i,rt1[i]);
1554 } else {
1555 alloc_reg(current,i,rs1[i]);
1556 alloc_reg(current,i,rs2[i]);
1557 alloc_reg(current,i,rt1[i]);
1558 }
1559 }
1560 else {
1561 alloc_reg(current,i,rt1[i]);
1562 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1563 // DADD used as move, or zeroing
1564 // If we have a 64-bit source, then make the target 64 bits too
1565 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1566 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1567 alloc_reg64(current,i,rt1[i]);
1568 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1569 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1570 alloc_reg64(current,i,rt1[i]);
1571 }
1572 if(opcode2[i]>=0x2e&&rs2[i]) {
1573 // DSUB used as negation - 64-bit result
1574 // If we have a 32-bit register, extend it to 64 bits
1575 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1576 alloc_reg64(current,i,rt1[i]);
1577 }
1578 }
1579 }
1580 if(rs1[i]&&rs2[i]) {
1581 current->is32&=~(1LL<<rt1[i]);
1582 } else if(rs1[i]) {
1583 current->is32&=~(1LL<<rt1[i]);
1584 if((current->is32>>rs1[i])&1)
1585 current->is32|=1LL<<rt1[i];
1586 } else if(rs2[i]) {
1587 current->is32&=~(1LL<<rt1[i]);
1588 if((current->is32>>rs2[i])&1)
1589 current->is32|=1LL<<rt1[i];
1590 } else {
1591 current->is32|=1LL<<rt1[i];
1592 }
1593 }
1594 }
1595 clear_const(current,rs1[i]);
1596 clear_const(current,rs2[i]);
1597 clear_const(current,rt1[i]);
1598 dirty_reg(current,rt1[i]);
1599}
1600
1601void imm16_alloc(struct regstat *current,int i)
1602{
1603 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1604 else lt1[i]=rs1[i];
1605 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1606 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1607 current->is32&=~(1LL<<rt1[i]);
1608 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1609 // TODO: Could preserve the 32-bit flag if the immediate is zero
1610 alloc_reg64(current,i,rt1[i]);
1611 alloc_reg64(current,i,rs1[i]);
1612 }
1613 clear_const(current,rs1[i]);
1614 clear_const(current,rt1[i]);
1615 }
1616 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1617 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1618 current->is32|=1LL<<rt1[i];
1619 clear_const(current,rs1[i]);
1620 clear_const(current,rt1[i]);
1621 }
1622 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1623 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1624 if(rs1[i]!=rt1[i]) {
1625 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1626 alloc_reg64(current,i,rt1[i]);
1627 current->is32&=~(1LL<<rt1[i]);
1628 }
1629 }
1630 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1631 if(is_const(current,rs1[i])) {
1632 int v=get_const(current,rs1[i]);
1633 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1634 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1635 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1636 }
1637 else clear_const(current,rt1[i]);
1638 }
1639 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1640 if(is_const(current,rs1[i])) {
1641 int v=get_const(current,rs1[i]);
1642 set_const(current,rt1[i],v+imm[i]);
1643 }
1644 else clear_const(current,rt1[i]);
1645 current->is32|=1LL<<rt1[i];
1646 }
1647 else {
1648 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1649 current->is32|=1LL<<rt1[i];
1650 }
1651 dirty_reg(current,rt1[i]);
1652}
1653
1654void load_alloc(struct regstat *current,int i)
1655{
1656 clear_const(current,rt1[i]);
1657 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1658 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1659 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1660 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1661 alloc_reg(current,i,rt1[i]);
373d1d07 1662 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1663 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1664 {
1665 current->is32&=~(1LL<<rt1[i]);
1666 alloc_reg64(current,i,rt1[i]);
1667 }
1668 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1669 {
1670 current->is32&=~(1LL<<rt1[i]);
1671 alloc_reg64(current,i,rt1[i]);
1672 alloc_all(current,i);
1673 alloc_reg64(current,i,FTEMP);
e1190b87 1674 minimum_free_regs[i]=HOST_REGS;
57871462 1675 }
1676 else current->is32|=1LL<<rt1[i];
1677 dirty_reg(current,rt1[i]);
1678 // If using TLB, need a register for pointer to the mapping table
1679 if(using_tlb) alloc_reg(current,i,TLREG);
1680 // LWL/LWR need a temporary register for the old value
1681 if(opcode[i]==0x22||opcode[i]==0x26)
1682 {
1683 alloc_reg(current,i,FTEMP);
1684 alloc_reg_temp(current,i,-1);
e1190b87 1685 minimum_free_regs[i]=1;
57871462 1686 }
1687 }
1688 else
1689 {
373d1d07 1690 // Load to r0 or unneeded register (dummy load)
57871462 1691 // but we still need a register to calculate the address
535d208a 1692 if(opcode[i]==0x22||opcode[i]==0x26)
1693 {
1694 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1695 }
373d1d07 1696 // If using TLB, need a register for pointer to the mapping table
1697 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1698 alloc_reg_temp(current,i,-1);
e1190b87 1699 minimum_free_regs[i]=1;
535d208a 1700 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1701 {
1702 alloc_all(current,i);
1703 alloc_reg64(current,i,FTEMP);
e1190b87 1704 minimum_free_regs[i]=HOST_REGS;
535d208a 1705 }
57871462 1706 }
1707}
1708
1709void store_alloc(struct regstat *current,int i)
1710{
1711 clear_const(current,rs2[i]);
1712 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1713 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1714 alloc_reg(current,i,rs2[i]);
1715 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1716 alloc_reg64(current,i,rs2[i]);
1717 if(rs2[i]) alloc_reg(current,i,FTEMP);
1718 }
1719 // If using TLB, need a register for pointer to the mapping table
1720 if(using_tlb) alloc_reg(current,i,TLREG);
1721 #if defined(HOST_IMM8)
1722 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1723 else alloc_reg(current,i,INVCP);
1724 #endif
b7918751 1725 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1726 alloc_reg(current,i,FTEMP);
1727 }
1728 // We need a temporary register for address generation
1729 alloc_reg_temp(current,i,-1);
e1190b87 1730 minimum_free_regs[i]=1;
57871462 1731}
1732
1733void c1ls_alloc(struct regstat *current,int i)
1734{
1735 //clear_const(current,rs1[i]); // FIXME
1736 clear_const(current,rt1[i]);
1737 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1738 alloc_reg(current,i,CSREG); // Status
1739 alloc_reg(current,i,FTEMP);
1740 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1741 alloc_reg64(current,i,FTEMP);
1742 }
1743 // If using TLB, need a register for pointer to the mapping table
1744 if(using_tlb) alloc_reg(current,i,TLREG);
1745 #if defined(HOST_IMM8)
1746 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1747 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1748 alloc_reg(current,i,INVCP);
1749 #endif
1750 // We need a temporary register for address generation
1751 alloc_reg_temp(current,i,-1);
1752}
1753
b9b61529 1754void c2ls_alloc(struct regstat *current,int i)
1755{
1756 clear_const(current,rt1[i]);
1757 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1758 alloc_reg(current,i,FTEMP);
1759 // If using TLB, need a register for pointer to the mapping table
1760 if(using_tlb) alloc_reg(current,i,TLREG);
1761 #if defined(HOST_IMM8)
1762 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1763 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1764 alloc_reg(current,i,INVCP);
1765 #endif
1766 // We need a temporary register for address generation
1767 alloc_reg_temp(current,i,-1);
e1190b87 1768 minimum_free_regs[i]=1;
b9b61529 1769}
1770
57871462 1771#ifndef multdiv_alloc
1772void multdiv_alloc(struct regstat *current,int i)
1773{
1774 // case 0x18: MULT
1775 // case 0x19: MULTU
1776 // case 0x1A: DIV
1777 // case 0x1B: DIVU
1778 // case 0x1C: DMULT
1779 // case 0x1D: DMULTU
1780 // case 0x1E: DDIV
1781 // case 0x1F: DDIVU
1782 clear_const(current,rs1[i]);
1783 clear_const(current,rs2[i]);
1784 if(rs1[i]&&rs2[i])
1785 {
1786 if((opcode2[i]&4)==0) // 32-bit
1787 {
1788 current->u&=~(1LL<<HIREG);
1789 current->u&=~(1LL<<LOREG);
1790 alloc_reg(current,i,HIREG);
1791 alloc_reg(current,i,LOREG);
1792 alloc_reg(current,i,rs1[i]);
1793 alloc_reg(current,i,rs2[i]);
1794 current->is32|=1LL<<HIREG;
1795 current->is32|=1LL<<LOREG;
1796 dirty_reg(current,HIREG);
1797 dirty_reg(current,LOREG);
1798 }
1799 else // 64-bit
1800 {
1801 current->u&=~(1LL<<HIREG);
1802 current->u&=~(1LL<<LOREG);
1803 current->uu&=~(1LL<<HIREG);
1804 current->uu&=~(1LL<<LOREG);
1805 alloc_reg64(current,i,HIREG);
1806 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1807 alloc_reg64(current,i,rs1[i]);
1808 alloc_reg64(current,i,rs2[i]);
1809 alloc_all(current,i);
1810 current->is32&=~(1LL<<HIREG);
1811 current->is32&=~(1LL<<LOREG);
1812 dirty_reg(current,HIREG);
1813 dirty_reg(current,LOREG);
e1190b87 1814 minimum_free_regs[i]=HOST_REGS;
57871462 1815 }
1816 }
1817 else
1818 {
1819 // Multiply by zero is zero.
1820 // MIPS does not have a divide by zero exception.
1821 // The result is undefined, we return zero.
1822 alloc_reg(current,i,HIREG);
1823 alloc_reg(current,i,LOREG);
1824 current->is32|=1LL<<HIREG;
1825 current->is32|=1LL<<LOREG;
1826 dirty_reg(current,HIREG);
1827 dirty_reg(current,LOREG);
1828 }
1829}
1830#endif
1831
1832void cop0_alloc(struct regstat *current,int i)
1833{
1834 if(opcode2[i]==0) // MFC0
1835 {
1836 if(rt1[i]) {
1837 clear_const(current,rt1[i]);
1838 alloc_all(current,i);
1839 alloc_reg(current,i,rt1[i]);
1840 current->is32|=1LL<<rt1[i];
1841 dirty_reg(current,rt1[i]);
1842 }
1843 }
1844 else if(opcode2[i]==4) // MTC0
1845 {
1846 if(rs1[i]){
1847 clear_const(current,rs1[i]);
1848 alloc_reg(current,i,rs1[i]);
1849 alloc_all(current,i);
1850 }
1851 else {
1852 alloc_all(current,i); // FIXME: Keep r0
1853 current->u&=~1LL;
1854 alloc_reg(current,i,0);
1855 }
1856 }
1857 else
1858 {
1859 // TLBR/TLBWI/TLBWR/TLBP/ERET
1860 assert(opcode2[i]==0x10);
1861 alloc_all(current,i);
1862 }
e1190b87 1863 minimum_free_regs[i]=HOST_REGS;
57871462 1864}
1865
1866void cop1_alloc(struct regstat *current,int i)
1867{
1868 alloc_reg(current,i,CSREG); // Load status
1869 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1870 {
7de557a6 1871 if(rt1[i]){
1872 clear_const(current,rt1[i]);
1873 if(opcode2[i]==1) {
1874 alloc_reg64(current,i,rt1[i]); // DMFC1
1875 current->is32&=~(1LL<<rt1[i]);
1876 }else{
1877 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1878 current->is32|=1LL<<rt1[i];
1879 }
1880 dirty_reg(current,rt1[i]);
57871462 1881 }
57871462 1882 alloc_reg_temp(current,i,-1);
1883 }
1884 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1885 {
1886 if(rs1[i]){
1887 clear_const(current,rs1[i]);
1888 if(opcode2[i]==5)
1889 alloc_reg64(current,i,rs1[i]); // DMTC1
1890 else
1891 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1892 alloc_reg_temp(current,i,-1);
1893 }
1894 else {
1895 current->u&=~1LL;
1896 alloc_reg(current,i,0);
1897 alloc_reg_temp(current,i,-1);
1898 }
1899 }
e1190b87 1900 minimum_free_regs[i]=1;
57871462 1901}
1902void fconv_alloc(struct regstat *current,int i)
1903{
1904 alloc_reg(current,i,CSREG); // Load status
1905 alloc_reg_temp(current,i,-1);
e1190b87 1906 minimum_free_regs[i]=1;
57871462 1907}
1908void float_alloc(struct regstat *current,int i)
1909{
1910 alloc_reg(current,i,CSREG); // Load status
1911 alloc_reg_temp(current,i,-1);
e1190b87 1912 minimum_free_regs[i]=1;
57871462 1913}
b9b61529 1914void c2op_alloc(struct regstat *current,int i)
1915{
1916 alloc_reg_temp(current,i,-1);
1917}
57871462 1918void fcomp_alloc(struct regstat *current,int i)
1919{
1920 alloc_reg(current,i,CSREG); // Load status
1921 alloc_reg(current,i,FSREG); // Load flags
1922 dirty_reg(current,FSREG); // Flag will be modified
1923 alloc_reg_temp(current,i,-1);
e1190b87 1924 minimum_free_regs[i]=1;
57871462 1925}
1926
1927void syscall_alloc(struct regstat *current,int i)
1928{
1929 alloc_cc(current,i);
1930 dirty_reg(current,CCREG);
1931 alloc_all(current,i);
e1190b87 1932 minimum_free_regs[i]=HOST_REGS;
57871462 1933 current->isconst=0;
1934}
1935
1936void delayslot_alloc(struct regstat *current,int i)
1937{
1938 switch(itype[i]) {
1939 case UJUMP:
1940 case CJUMP:
1941 case SJUMP:
1942 case RJUMP:
1943 case FJUMP:
1944 case SYSCALL:
7139f3c8 1945 case HLECALL:
57871462 1946 case SPAN:
1947 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1948 printf("Disabled speculative precompilation\n");
1949 stop_after_jal=1;
1950 break;
1951 case IMM16:
1952 imm16_alloc(current,i);
1953 break;
1954 case LOAD:
1955 case LOADLR:
1956 load_alloc(current,i);
1957 break;
1958 case STORE:
1959 case STORELR:
1960 store_alloc(current,i);
1961 break;
1962 case ALU:
1963 alu_alloc(current,i);
1964 break;
1965 case SHIFT:
1966 shift_alloc(current,i);
1967 break;
1968 case MULTDIV:
1969 multdiv_alloc(current,i);
1970 break;
1971 case SHIFTIMM:
1972 shiftimm_alloc(current,i);
1973 break;
1974 case MOV:
1975 mov_alloc(current,i);
1976 break;
1977 case COP0:
1978 cop0_alloc(current,i);
1979 break;
1980 case COP1:
b9b61529 1981 case COP2:
57871462 1982 cop1_alloc(current,i);
1983 break;
1984 case C1LS:
1985 c1ls_alloc(current,i);
1986 break;
b9b61529 1987 case C2LS:
1988 c2ls_alloc(current,i);
1989 break;
57871462 1990 case FCONV:
1991 fconv_alloc(current,i);
1992 break;
1993 case FLOAT:
1994 float_alloc(current,i);
1995 break;
1996 case FCOMP:
1997 fcomp_alloc(current,i);
1998 break;
b9b61529 1999 case C2OP:
2000 c2op_alloc(current,i);
2001 break;
57871462 2002 }
2003}
2004
2005// Special case where a branch and delay slot span two pages in virtual memory
2006static void pagespan_alloc(struct regstat *current,int i)
2007{
2008 current->isconst=0;
2009 current->wasconst=0;
2010 regs[i].wasconst=0;
e1190b87 2011 minimum_free_regs[i]=HOST_REGS;
57871462 2012 alloc_all(current,i);
2013 alloc_cc(current,i);
2014 dirty_reg(current,CCREG);
2015 if(opcode[i]==3) // JAL
2016 {
2017 alloc_reg(current,i,31);
2018 dirty_reg(current,31);
2019 }
2020 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2021 {
2022 alloc_reg(current,i,rs1[i]);
5067f341 2023 if (rt1[i]!=0) {
2024 alloc_reg(current,i,rt1[i]);
2025 dirty_reg(current,rt1[i]);
57871462 2026 }
2027 }
2028 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2029 {
2030 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2031 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2032 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2033 {
2034 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2035 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2036 }
2037 }
2038 else
2039 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2040 {
2041 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2042 if(!((current->is32>>rs1[i])&1))
2043 {
2044 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2045 }
2046 }
2047 else
2048 if(opcode[i]==0x11) // BC1
2049 {
2050 alloc_reg(current,i,FSREG);
2051 alloc_reg(current,i,CSREG);
2052 }
2053 //else ...
2054}
2055
2056add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2057{
2058 stubs[stubcount][0]=type;
2059 stubs[stubcount][1]=addr;
2060 stubs[stubcount][2]=retaddr;
2061 stubs[stubcount][3]=a;
2062 stubs[stubcount][4]=b;
2063 stubs[stubcount][5]=c;
2064 stubs[stubcount][6]=d;
2065 stubs[stubcount][7]=e;
2066 stubcount++;
2067}
2068
2069// Write out a single register
2070void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2071{
2072 int hr;
2073 for(hr=0;hr<HOST_REGS;hr++) {
2074 if(hr!=EXCLUDE_REG) {
2075 if((regmap[hr]&63)==r) {
2076 if((dirty>>hr)&1) {
2077 if(regmap[hr]<64) {
2078 emit_storereg(r,hr);
24385cae 2079#ifndef FORCE32
57871462 2080 if((is32>>regmap[hr])&1) {
2081 emit_sarimm(hr,31,hr);
2082 emit_storereg(r|64,hr);
2083 }
24385cae 2084#endif
57871462 2085 }else{
2086 emit_storereg(r|64,hr);
2087 }
2088 }
2089 }
2090 }
2091 }
2092}
2093
2094int mchecksum()
2095{
2096 //if(!tracedebug) return 0;
2097 int i;
2098 int sum=0;
2099 for(i=0;i<2097152;i++) {
2100 unsigned int temp=sum;
2101 sum<<=1;
2102 sum|=(~temp)>>31;
2103 sum^=((u_int *)rdram)[i];
2104 }
2105 return sum;
2106}
2107int rchecksum()
2108{
2109 int i;
2110 int sum=0;
2111 for(i=0;i<64;i++)
2112 sum^=((u_int *)reg)[i];
2113 return sum;
2114}
57871462 2115void rlist()
2116{
2117 int i;
2118 printf("TRACE: ");
2119 for(i=0;i<32;i++)
2120 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2121 printf("\n");
3d624f89 2122#ifndef DISABLE_COP1
57871462 2123 printf("TRACE: ");
2124 for(i=0;i<32;i++)
2125 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2126 printf("\n");
3d624f89 2127#endif
57871462 2128}
2129
2130void enabletrace()
2131{
2132 tracedebug=1;
2133}
2134
2135void memdebug(int i)
2136{
2137 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2138 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2139 //rlist();
2140 //if(tracedebug) {
2141 //if(Count>=-2084597794) {
2142 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2143 //if(0) {
2144 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2145 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2146 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2147 rlist();
2148 #ifdef __i386__
2149 printf("TRACE: %x\n",(&i)[-1]);
2150 #endif
2151 #ifdef __arm__
2152 int j;
2153 printf("TRACE: %x \n",(&j)[10]);
2154 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2155 #endif
2156 //fflush(stdout);
2157 }
2158 //printf("TRACE: %x\n",(&i)[-1]);
2159}
2160
2161void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2162{
2163 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2164}
2165
2166void alu_assemble(int i,struct regstat *i_regs)
2167{
2168 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2169 if(rt1[i]) {
2170 signed char s1,s2,t;
2171 t=get_reg(i_regs->regmap,rt1[i]);
2172 if(t>=0) {
2173 s1=get_reg(i_regs->regmap,rs1[i]);
2174 s2=get_reg(i_regs->regmap,rs2[i]);
2175 if(rs1[i]&&rs2[i]) {
2176 assert(s1>=0);
2177 assert(s2>=0);
2178 if(opcode2[i]&2) emit_sub(s1,s2,t);
2179 else emit_add(s1,s2,t);
2180 }
2181 else if(rs1[i]) {
2182 if(s1>=0) emit_mov(s1,t);
2183 else emit_loadreg(rs1[i],t);
2184 }
2185 else if(rs2[i]) {
2186 if(s2>=0) {
2187 if(opcode2[i]&2) emit_neg(s2,t);
2188 else emit_mov(s2,t);
2189 }
2190 else {
2191 emit_loadreg(rs2[i],t);
2192 if(opcode2[i]&2) emit_neg(t,t);
2193 }
2194 }
2195 else emit_zeroreg(t);
2196 }
2197 }
2198 }
2199 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2200 if(rt1[i]) {
2201 signed char s1l,s2l,s1h,s2h,tl,th;
2202 tl=get_reg(i_regs->regmap,rt1[i]);
2203 th=get_reg(i_regs->regmap,rt1[i]|64);
2204 if(tl>=0) {
2205 s1l=get_reg(i_regs->regmap,rs1[i]);
2206 s2l=get_reg(i_regs->regmap,rs2[i]);
2207 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2208 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2209 if(rs1[i]&&rs2[i]) {
2210 assert(s1l>=0);
2211 assert(s2l>=0);
2212 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2213 else emit_adds(s1l,s2l,tl);
2214 if(th>=0) {
2215 #ifdef INVERTED_CARRY
2216 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2217 #else
2218 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2219 #endif
2220 else emit_add(s1h,s2h,th);
2221 }
2222 }
2223 else if(rs1[i]) {
2224 if(s1l>=0) emit_mov(s1l,tl);
2225 else emit_loadreg(rs1[i],tl);
2226 if(th>=0) {
2227 if(s1h>=0) emit_mov(s1h,th);
2228 else emit_loadreg(rs1[i]|64,th);
2229 }
2230 }
2231 else if(rs2[i]) {
2232 if(s2l>=0) {
2233 if(opcode2[i]&2) emit_negs(s2l,tl);
2234 else emit_mov(s2l,tl);
2235 }
2236 else {
2237 emit_loadreg(rs2[i],tl);
2238 if(opcode2[i]&2) emit_negs(tl,tl);
2239 }
2240 if(th>=0) {
2241 #ifdef INVERTED_CARRY
2242 if(s2h>=0) emit_mov(s2h,th);
2243 else emit_loadreg(rs2[i]|64,th);
2244 if(opcode2[i]&2) {
2245 emit_adcimm(-1,th); // x86 has inverted carry flag
2246 emit_not(th,th);
2247 }
2248 #else
2249 if(opcode2[i]&2) {
2250 if(s2h>=0) emit_rscimm(s2h,0,th);
2251 else {
2252 emit_loadreg(rs2[i]|64,th);
2253 emit_rscimm(th,0,th);
2254 }
2255 }else{
2256 if(s2h>=0) emit_mov(s2h,th);
2257 else emit_loadreg(rs2[i]|64,th);
2258 }
2259 #endif
2260 }
2261 }
2262 else {
2263 emit_zeroreg(tl);
2264 if(th>=0) emit_zeroreg(th);
2265 }
2266 }
2267 }
2268 }
2269 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2270 if(rt1[i]) {
2271 signed char s1l,s1h,s2l,s2h,t;
2272 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2273 {
2274 t=get_reg(i_regs->regmap,rt1[i]);
2275 //assert(t>=0);
2276 if(t>=0) {
2277 s1l=get_reg(i_regs->regmap,rs1[i]);
2278 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2279 s2l=get_reg(i_regs->regmap,rs2[i]);
2280 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2281 if(rs2[i]==0) // rx<r0
2282 {
2283 assert(s1h>=0);
2284 if(opcode2[i]==0x2a) // SLT
2285 emit_shrimm(s1h,31,t);
2286 else // SLTU (unsigned can not be less than zero)
2287 emit_zeroreg(t);
2288 }
2289 else if(rs1[i]==0) // r0<rx
2290 {
2291 assert(s2h>=0);
2292 if(opcode2[i]==0x2a) // SLT
2293 emit_set_gz64_32(s2h,s2l,t);
2294 else // SLTU (set if not zero)
2295 emit_set_nz64_32(s2h,s2l,t);
2296 }
2297 else {
2298 assert(s1l>=0);assert(s1h>=0);
2299 assert(s2l>=0);assert(s2h>=0);
2300 if(opcode2[i]==0x2a) // SLT
2301 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2302 else // SLTU
2303 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2304 }
2305 }
2306 } else {
2307 t=get_reg(i_regs->regmap,rt1[i]);
2308 //assert(t>=0);
2309 if(t>=0) {
2310 s1l=get_reg(i_regs->regmap,rs1[i]);
2311 s2l=get_reg(i_regs->regmap,rs2[i]);
2312 if(rs2[i]==0) // rx<r0
2313 {
2314 assert(s1l>=0);
2315 if(opcode2[i]==0x2a) // SLT
2316 emit_shrimm(s1l,31,t);
2317 else // SLTU (unsigned can not be less than zero)
2318 emit_zeroreg(t);
2319 }
2320 else if(rs1[i]==0) // r0<rx
2321 {
2322 assert(s2l>=0);
2323 if(opcode2[i]==0x2a) // SLT
2324 emit_set_gz32(s2l,t);
2325 else // SLTU (set if not zero)
2326 emit_set_nz32(s2l,t);
2327 }
2328 else{
2329 assert(s1l>=0);assert(s2l>=0);
2330 if(opcode2[i]==0x2a) // SLT
2331 emit_set_if_less32(s1l,s2l,t);
2332 else // SLTU
2333 emit_set_if_carry32(s1l,s2l,t);
2334 }
2335 }
2336 }
2337 }
2338 }
2339 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2340 if(rt1[i]) {
2341 signed char s1l,s1h,s2l,s2h,th,tl;
2342 tl=get_reg(i_regs->regmap,rt1[i]);
2343 th=get_reg(i_regs->regmap,rt1[i]|64);
2344 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2345 {
2346 assert(tl>=0);
2347 if(tl>=0) {
2348 s1l=get_reg(i_regs->regmap,rs1[i]);
2349 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2350 s2l=get_reg(i_regs->regmap,rs2[i]);
2351 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2352 if(rs1[i]&&rs2[i]) {
2353 assert(s1l>=0);assert(s1h>=0);
2354 assert(s2l>=0);assert(s2h>=0);
2355 if(opcode2[i]==0x24) { // AND
2356 emit_and(s1l,s2l,tl);
2357 emit_and(s1h,s2h,th);
2358 } else
2359 if(opcode2[i]==0x25) { // OR
2360 emit_or(s1l,s2l,tl);
2361 emit_or(s1h,s2h,th);
2362 } else
2363 if(opcode2[i]==0x26) { // XOR
2364 emit_xor(s1l,s2l,tl);
2365 emit_xor(s1h,s2h,th);
2366 } else
2367 if(opcode2[i]==0x27) { // NOR
2368 emit_or(s1l,s2l,tl);
2369 emit_or(s1h,s2h,th);
2370 emit_not(tl,tl);
2371 emit_not(th,th);
2372 }
2373 }
2374 else
2375 {
2376 if(opcode2[i]==0x24) { // AND
2377 emit_zeroreg(tl);
2378 emit_zeroreg(th);
2379 } else
2380 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2381 if(rs1[i]){
2382 if(s1l>=0) emit_mov(s1l,tl);
2383 else emit_loadreg(rs1[i],tl);
2384 if(s1h>=0) emit_mov(s1h,th);
2385 else emit_loadreg(rs1[i]|64,th);
2386 }
2387 else
2388 if(rs2[i]){
2389 if(s2l>=0) emit_mov(s2l,tl);
2390 else emit_loadreg(rs2[i],tl);
2391 if(s2h>=0) emit_mov(s2h,th);
2392 else emit_loadreg(rs2[i]|64,th);
2393 }
2394 else{
2395 emit_zeroreg(tl);
2396 emit_zeroreg(th);
2397 }
2398 } else
2399 if(opcode2[i]==0x27) { // NOR
2400 if(rs1[i]){
2401 if(s1l>=0) emit_not(s1l,tl);
2402 else{
2403 emit_loadreg(rs1[i],tl);
2404 emit_not(tl,tl);
2405 }
2406 if(s1h>=0) emit_not(s1h,th);
2407 else{
2408 emit_loadreg(rs1[i]|64,th);
2409 emit_not(th,th);
2410 }
2411 }
2412 else
2413 if(rs2[i]){
2414 if(s2l>=0) emit_not(s2l,tl);
2415 else{
2416 emit_loadreg(rs2[i],tl);
2417 emit_not(tl,tl);
2418 }
2419 if(s2h>=0) emit_not(s2h,th);
2420 else{
2421 emit_loadreg(rs2[i]|64,th);
2422 emit_not(th,th);
2423 }
2424 }
2425 else {
2426 emit_movimm(-1,tl);
2427 emit_movimm(-1,th);
2428 }
2429 }
2430 }
2431 }
2432 }
2433 else
2434 {
2435 // 32 bit
2436 if(tl>=0) {
2437 s1l=get_reg(i_regs->regmap,rs1[i]);
2438 s2l=get_reg(i_regs->regmap,rs2[i]);
2439 if(rs1[i]&&rs2[i]) {
2440 assert(s1l>=0);
2441 assert(s2l>=0);
2442 if(opcode2[i]==0x24) { // AND
2443 emit_and(s1l,s2l,tl);
2444 } else
2445 if(opcode2[i]==0x25) { // OR
2446 emit_or(s1l,s2l,tl);
2447 } else
2448 if(opcode2[i]==0x26) { // XOR
2449 emit_xor(s1l,s2l,tl);
2450 } else
2451 if(opcode2[i]==0x27) { // NOR
2452 emit_or(s1l,s2l,tl);
2453 emit_not(tl,tl);
2454 }
2455 }
2456 else
2457 {
2458 if(opcode2[i]==0x24) { // AND
2459 emit_zeroreg(tl);
2460 } else
2461 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2462 if(rs1[i]){
2463 if(s1l>=0) emit_mov(s1l,tl);
2464 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2465 }
2466 else
2467 if(rs2[i]){
2468 if(s2l>=0) emit_mov(s2l,tl);
2469 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2470 }
2471 else emit_zeroreg(tl);
2472 } else
2473 if(opcode2[i]==0x27) { // NOR
2474 if(rs1[i]){
2475 if(s1l>=0) emit_not(s1l,tl);
2476 else {
2477 emit_loadreg(rs1[i],tl);
2478 emit_not(tl,tl);
2479 }
2480 }
2481 else
2482 if(rs2[i]){
2483 if(s2l>=0) emit_not(s2l,tl);
2484 else {
2485 emit_loadreg(rs2[i],tl);
2486 emit_not(tl,tl);
2487 }
2488 }
2489 else emit_movimm(-1,tl);
2490 }
2491 }
2492 }
2493 }
2494 }
2495 }
2496}
2497
2498void imm16_assemble(int i,struct regstat *i_regs)
2499{
2500 if (opcode[i]==0x0f) { // LUI
2501 if(rt1[i]) {
2502 signed char t;
2503 t=get_reg(i_regs->regmap,rt1[i]);
2504 //assert(t>=0);
2505 if(t>=0) {
2506 if(!((i_regs->isconst>>t)&1))
2507 emit_movimm(imm[i]<<16,t);
2508 }
2509 }
2510 }
2511 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2512 if(rt1[i]) {
2513 signed char s,t;
2514 t=get_reg(i_regs->regmap,rt1[i]);
2515 s=get_reg(i_regs->regmap,rs1[i]);
2516 if(rs1[i]) {
2517 //assert(t>=0);
2518 //assert(s>=0);
2519 if(t>=0) {
2520 if(!((i_regs->isconst>>t)&1)) {
2521 if(s<0) {
2522 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2523 emit_addimm(t,imm[i],t);
2524 }else{
2525 if(!((i_regs->wasconst>>s)&1))
2526 emit_addimm(s,imm[i],t);
2527 else
2528 emit_movimm(constmap[i][s]+imm[i],t);
2529 }
2530 }
2531 }
2532 } else {
2533 if(t>=0) {
2534 if(!((i_regs->isconst>>t)&1))
2535 emit_movimm(imm[i],t);
2536 }
2537 }
2538 }
2539 }
2540 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2541 if(rt1[i]) {
2542 signed char sh,sl,th,tl;
2543 th=get_reg(i_regs->regmap,rt1[i]|64);
2544 tl=get_reg(i_regs->regmap,rt1[i]);
2545 sh=get_reg(i_regs->regmap,rs1[i]|64);
2546 sl=get_reg(i_regs->regmap,rs1[i]);
2547 if(tl>=0) {
2548 if(rs1[i]) {
2549 assert(sh>=0);
2550 assert(sl>=0);
2551 if(th>=0) {
2552 emit_addimm64_32(sh,sl,imm[i],th,tl);
2553 }
2554 else {
2555 emit_addimm(sl,imm[i],tl);
2556 }
2557 } else {
2558 emit_movimm(imm[i],tl);
2559 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2560 }
2561 }
2562 }
2563 }
2564 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2565 if(rt1[i]) {
2566 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2567 signed char sh,sl,t;
2568 t=get_reg(i_regs->regmap,rt1[i]);
2569 sh=get_reg(i_regs->regmap,rs1[i]|64);
2570 sl=get_reg(i_regs->regmap,rs1[i]);
2571 //assert(t>=0);
2572 if(t>=0) {
2573 if(rs1[i]>0) {
2574 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2575 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2576 if(opcode[i]==0x0a) { // SLTI
2577 if(sl<0) {
2578 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2579 emit_slti32(t,imm[i],t);
2580 }else{
2581 emit_slti32(sl,imm[i],t);
2582 }
2583 }
2584 else { // SLTIU
2585 if(sl<0) {
2586 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2587 emit_sltiu32(t,imm[i],t);
2588 }else{
2589 emit_sltiu32(sl,imm[i],t);
2590 }
2591 }
2592 }else{ // 64-bit
2593 assert(sl>=0);
2594 if(opcode[i]==0x0a) // SLTI
2595 emit_slti64_32(sh,sl,imm[i],t);
2596 else // SLTIU
2597 emit_sltiu64_32(sh,sl,imm[i],t);
2598 }
2599 }else{
2600 // SLTI(U) with r0 is just stupid,
2601 // nonetheless examples can be found
2602 if(opcode[i]==0x0a) // SLTI
2603 if(0<imm[i]) emit_movimm(1,t);
2604 else emit_zeroreg(t);
2605 else // SLTIU
2606 {
2607 if(imm[i]) emit_movimm(1,t);
2608 else emit_zeroreg(t);
2609 }
2610 }
2611 }
2612 }
2613 }
2614 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2615 if(rt1[i]) {
2616 signed char sh,sl,th,tl;
2617 th=get_reg(i_regs->regmap,rt1[i]|64);
2618 tl=get_reg(i_regs->regmap,rt1[i]);
2619 sh=get_reg(i_regs->regmap,rs1[i]|64);
2620 sl=get_reg(i_regs->regmap,rs1[i]);
2621 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2622 if(opcode[i]==0x0c) //ANDI
2623 {
2624 if(rs1[i]) {
2625 if(sl<0) {
2626 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2627 emit_andimm(tl,imm[i],tl);
2628 }else{
2629 if(!((i_regs->wasconst>>sl)&1))
2630 emit_andimm(sl,imm[i],tl);
2631 else
2632 emit_movimm(constmap[i][sl]&imm[i],tl);
2633 }
2634 }
2635 else
2636 emit_zeroreg(tl);
2637 if(th>=0) emit_zeroreg(th);
2638 }
2639 else
2640 {
2641 if(rs1[i]) {
2642 if(sl<0) {
2643 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2644 }
2645 if(th>=0) {
2646 if(sh<0) {
2647 emit_loadreg(rs1[i]|64,th);
2648 }else{
2649 emit_mov(sh,th);
2650 }
2651 }
2652 if(opcode[i]==0x0d) //ORI
2653 if(sl<0) {
2654 emit_orimm(tl,imm[i],tl);
2655 }else{
2656 if(!((i_regs->wasconst>>sl)&1))
2657 emit_orimm(sl,imm[i],tl);
2658 else
2659 emit_movimm(constmap[i][sl]|imm[i],tl);
2660 }
2661 if(opcode[i]==0x0e) //XORI
2662 if(sl<0) {
2663 emit_xorimm(tl,imm[i],tl);
2664 }else{
2665 if(!((i_regs->wasconst>>sl)&1))
2666 emit_xorimm(sl,imm[i],tl);
2667 else
2668 emit_movimm(constmap[i][sl]^imm[i],tl);
2669 }
2670 }
2671 else {
2672 emit_movimm(imm[i],tl);
2673 if(th>=0) emit_zeroreg(th);
2674 }
2675 }
2676 }
2677 }
2678 }
2679}
2680
2681void shiftimm_assemble(int i,struct regstat *i_regs)
2682{
2683 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2684 {
2685 if(rt1[i]) {
2686 signed char s,t;
2687 t=get_reg(i_regs->regmap,rt1[i]);
2688 s=get_reg(i_regs->regmap,rs1[i]);
2689 //assert(t>=0);
2690 if(t>=0){
2691 if(rs1[i]==0)
2692 {
2693 emit_zeroreg(t);
2694 }
2695 else
2696 {
2697 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2698 if(imm[i]) {
2699 if(opcode2[i]==0) // SLL
2700 {
2701 emit_shlimm(s<0?t:s,imm[i],t);
2702 }
2703 if(opcode2[i]==2) // SRL
2704 {
2705 emit_shrimm(s<0?t:s,imm[i],t);
2706 }
2707 if(opcode2[i]==3) // SRA
2708 {
2709 emit_sarimm(s<0?t:s,imm[i],t);
2710 }
2711 }else{
2712 // Shift by zero
2713 if(s>=0 && s!=t) emit_mov(s,t);
2714 }
2715 }
2716 }
2717 //emit_storereg(rt1[i],t); //DEBUG
2718 }
2719 }
2720 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2721 {
2722 if(rt1[i]) {
2723 signed char sh,sl,th,tl;
2724 th=get_reg(i_regs->regmap,rt1[i]|64);
2725 tl=get_reg(i_regs->regmap,rt1[i]);
2726 sh=get_reg(i_regs->regmap,rs1[i]|64);
2727 sl=get_reg(i_regs->regmap,rs1[i]);
2728 if(tl>=0) {
2729 if(rs1[i]==0)
2730 {
2731 emit_zeroreg(tl);
2732 if(th>=0) emit_zeroreg(th);
2733 }
2734 else
2735 {
2736 assert(sl>=0);
2737 assert(sh>=0);
2738 if(imm[i]) {
2739 if(opcode2[i]==0x38) // DSLL
2740 {
2741 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2742 emit_shlimm(sl,imm[i],tl);
2743 }
2744 if(opcode2[i]==0x3a) // DSRL
2745 {
2746 emit_shrdimm(sl,sh,imm[i],tl);
2747 if(th>=0) emit_shrimm(sh,imm[i],th);
2748 }
2749 if(opcode2[i]==0x3b) // DSRA
2750 {
2751 emit_shrdimm(sl,sh,imm[i],tl);
2752 if(th>=0) emit_sarimm(sh,imm[i],th);
2753 }
2754 }else{
2755 // Shift by zero
2756 if(sl!=tl) emit_mov(sl,tl);
2757 if(th>=0&&sh!=th) emit_mov(sh,th);
2758 }
2759 }
2760 }
2761 }
2762 }
2763 if(opcode2[i]==0x3c) // DSLL32
2764 {
2765 if(rt1[i]) {
2766 signed char sl,tl,th;
2767 tl=get_reg(i_regs->regmap,rt1[i]);
2768 th=get_reg(i_regs->regmap,rt1[i]|64);
2769 sl=get_reg(i_regs->regmap,rs1[i]);
2770 if(th>=0||tl>=0){
2771 assert(tl>=0);
2772 assert(th>=0);
2773 assert(sl>=0);
2774 emit_mov(sl,th);
2775 emit_zeroreg(tl);
2776 if(imm[i]>32)
2777 {
2778 emit_shlimm(th,imm[i]&31,th);
2779 }
2780 }
2781 }
2782 }
2783 if(opcode2[i]==0x3e) // DSRL32
2784 {
2785 if(rt1[i]) {
2786 signed char sh,tl,th;
2787 tl=get_reg(i_regs->regmap,rt1[i]);
2788 th=get_reg(i_regs->regmap,rt1[i]|64);
2789 sh=get_reg(i_regs->regmap,rs1[i]|64);
2790 if(tl>=0){
2791 assert(sh>=0);
2792 emit_mov(sh,tl);
2793 if(th>=0) emit_zeroreg(th);
2794 if(imm[i]>32)
2795 {
2796 emit_shrimm(tl,imm[i]&31,tl);
2797 }
2798 }
2799 }
2800 }
2801 if(opcode2[i]==0x3f) // DSRA32
2802 {
2803 if(rt1[i]) {
2804 signed char sh,tl;
2805 tl=get_reg(i_regs->regmap,rt1[i]);
2806 sh=get_reg(i_regs->regmap,rs1[i]|64);
2807 if(tl>=0){
2808 assert(sh>=0);
2809 emit_mov(sh,tl);
2810 if(imm[i]>32)
2811 {
2812 emit_sarimm(tl,imm[i]&31,tl);
2813 }
2814 }
2815 }
2816 }
2817}
2818
2819#ifndef shift_assemble
2820void shift_assemble(int i,struct regstat *i_regs)
2821{
2822 printf("Need shift_assemble for this architecture.\n");
2823 exit(1);
2824}
2825#endif
2826
2827void load_assemble(int i,struct regstat *i_regs)
2828{
2829 int s,th,tl,addr,map=-1;
2830 int offset;
2831 int jaddr=0;
5bf843dc 2832 int memtarget=0,c=0;
b1570849 2833 int fastload_reg_override=0;
57871462 2834 u_int hr,reglist=0;
2835 th=get_reg(i_regs->regmap,rt1[i]|64);
2836 tl=get_reg(i_regs->regmap,rt1[i]);
2837 s=get_reg(i_regs->regmap,rs1[i]);
2838 offset=imm[i];
2839 for(hr=0;hr<HOST_REGS;hr++) {
2840 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2841 }
2842 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2843 if(s>=0) {
2844 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2845 if (c) {
2846 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2847 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2848 }
57871462 2849 }
57871462 2850 //printf("load_assemble: c=%d\n",c);
2851 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2852 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2853#ifdef PCSX
f18c0f46 2854 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2855 ||rt1[i]==0) {
5bf843dc 2856 // could be FIFO, must perform the read
f18c0f46 2857 // ||dummy read
5bf843dc 2858 assem_debug("(forced read)\n");
2859 tl=get_reg(i_regs->regmap,-1);
2860 assert(tl>=0);
5bf843dc 2861 }
f18c0f46 2862#endif
5bf843dc 2863 if(offset||s<0||c) addr=tl;
2864 else addr=s;
535d208a 2865 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2866 if(tl>=0) {
2867 //printf("load_assemble: c=%d\n",c);
2868 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2869 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2870 reglist&=~(1<<tl);
2871 if(th>=0) reglist&=~(1<<th);
2872 if(!using_tlb) {
2873 if(!c) {
2874 #ifdef RAM_OFFSET
2875 map=get_reg(i_regs->regmap,ROREG);
2876 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2877 #endif
57871462 2878//#define R29_HACK 1
535d208a 2879 #ifdef R29_HACK
2880 // Strmnnrmn's speed hack
2881 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2882 #endif
2883 {
dadf55f2 2884 #ifdef PCSX
2885 if(sp_in_mirror&&rs1[i]==29) {
2886 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2887 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 2888 fastload_reg_override=HOST_TEMPREG;
dadf55f2 2889 }
2890 else
2891 #endif
535d208a 2892 emit_cmpimm(addr,RAM_SIZE);
2893 jaddr=(int)out;
2894 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2895 // Hint to branch predictor that the branch is unlikely to be taken
2896 if(rs1[i]>=28)
2897 emit_jno_unlikely(0);
2898 else
57871462 2899 #endif
535d208a 2900 emit_jno(0);
57871462 2901 }
535d208a 2902 }
2903 }else{ // using tlb
2904 int x=0;
2905 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2906 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2907 map=get_reg(i_regs->regmap,TLREG);
2908 assert(map>=0);
ea3d2e6e 2909 reglist&=~(1<<map);
535d208a 2910 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2911 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2912 }
2913 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2914 if (opcode[i]==0x20) { // LB
2915 if(!c||memtarget) {
2916 if(!dummy) {
57871462 2917 #ifdef HOST_IMM_ADDR32
2918 if(c)
2919 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2920 else
2921 #endif
2922 {
2923 //emit_xorimm(addr,3,tl);
2924 //gen_tlb_addr_r(tl,map);
2925 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2926 int x=0,a=tl;
2002a1db 2927#ifdef BIG_ENDIAN_MIPS
57871462 2928 if(!c) emit_xorimm(addr,3,tl);
2929 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2930#else
535d208a 2931 if(!c) a=addr;
dadf55f2 2932#endif
b1570849 2933 if(fastload_reg_override) a=fastload_reg_override;
2934
535d208a 2935 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2936 }
57871462 2937 }
535d208a 2938 if(jaddr)
2939 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2940 }
535d208a 2941 else
2942 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2943 }
2944 if (opcode[i]==0x21) { // LH
2945 if(!c||memtarget) {
2946 if(!dummy) {
57871462 2947 #ifdef HOST_IMM_ADDR32
2948 if(c)
2949 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2950 else
2951 #endif
2952 {
535d208a 2953 int x=0,a=tl;
2002a1db 2954#ifdef BIG_ENDIAN_MIPS
57871462 2955 if(!c) emit_xorimm(addr,2,tl);
2956 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2957#else
535d208a 2958 if(!c) a=addr;
dadf55f2 2959#endif
b1570849 2960 if(fastload_reg_override) a=fastload_reg_override;
57871462 2961 //#ifdef
2962 //emit_movswl_indexed_tlb(x,tl,map,tl);
2963 //else
2964 if(map>=0) {
535d208a 2965 gen_tlb_addr_r(a,map);
2966 emit_movswl_indexed(x,a,tl);
2967 }else{
2968 #ifdef RAM_OFFSET
2969 emit_movswl_indexed(x,a,tl);
2970 #else
2971 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2972 #endif
2973 }
57871462 2974 }
57871462 2975 }
535d208a 2976 if(jaddr)
2977 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2978 }
535d208a 2979 else
2980 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2981 }
2982 if (opcode[i]==0x23) { // LW
2983 if(!c||memtarget) {
2984 if(!dummy) {
dadf55f2 2985 int a=addr;
b1570849 2986 if(fastload_reg_override) a=fastload_reg_override;
57871462 2987 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2988 #ifdef HOST_IMM_ADDR32
2989 if(c)
2990 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2991 else
2992 #endif
dadf55f2 2993 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2994 }
535d208a 2995 if(jaddr)
2996 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2997 }
535d208a 2998 else
2999 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3000 }
3001 if (opcode[i]==0x24) { // LBU
3002 if(!c||memtarget) {
3003 if(!dummy) {
57871462 3004 #ifdef HOST_IMM_ADDR32
3005 if(c)
3006 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3007 else
3008 #endif
3009 {
3010 //emit_xorimm(addr,3,tl);
3011 //gen_tlb_addr_r(tl,map);
3012 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3013 int x=0,a=tl;
2002a1db 3014#ifdef BIG_ENDIAN_MIPS
57871462 3015 if(!c) emit_xorimm(addr,3,tl);
3016 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3017#else
535d208a 3018 if(!c) a=addr;
dadf55f2 3019#endif
b1570849 3020 if(fastload_reg_override) a=fastload_reg_override;
3021
535d208a 3022 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3023 }
57871462 3024 }
535d208a 3025 if(jaddr)
3026 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3027 }
535d208a 3028 else
3029 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3030 }
3031 if (opcode[i]==0x25) { // LHU
3032 if(!c||memtarget) {
3033 if(!dummy) {
57871462 3034 #ifdef HOST_IMM_ADDR32
3035 if(c)
3036 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3037 else
3038 #endif
3039 {
535d208a 3040 int x=0,a=tl;
2002a1db 3041#ifdef BIG_ENDIAN_MIPS
57871462 3042 if(!c) emit_xorimm(addr,2,tl);
3043 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3044#else
535d208a 3045 if(!c) a=addr;
dadf55f2 3046#endif
b1570849 3047 if(fastload_reg_override) a=fastload_reg_override;
57871462 3048 //#ifdef
3049 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3050 //#else
3051 if(map>=0) {
535d208a 3052 gen_tlb_addr_r(a,map);
3053 emit_movzwl_indexed(x,a,tl);
3054 }else{
3055 #ifdef RAM_OFFSET
3056 emit_movzwl_indexed(x,a,tl);
3057 #else
3058 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3059 #endif
3060 }
57871462 3061 }
3062 }
535d208a 3063 if(jaddr)
3064 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3065 }
535d208a 3066 else
3067 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3068 }
3069 if (opcode[i]==0x27) { // LWU
3070 assert(th>=0);
3071 if(!c||memtarget) {
3072 if(!dummy) {
dadf55f2 3073 int a=addr;
b1570849 3074 if(fastload_reg_override) a=fastload_reg_override;
57871462 3075 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3076 #ifdef HOST_IMM_ADDR32
3077 if(c)
3078 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3079 else
3080 #endif
dadf55f2 3081 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3082 }
535d208a 3083 if(jaddr)
3084 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3085 }
3086 else {
3087 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3088 }
535d208a 3089 emit_zeroreg(th);
3090 }
3091 if (opcode[i]==0x37) { // LD
3092 if(!c||memtarget) {
3093 if(!dummy) {
dadf55f2 3094 int a=addr;
b1570849 3095 if(fastload_reg_override) a=fastload_reg_override;
57871462 3096 //gen_tlb_addr_r(tl,map);
3097 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3098 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3099 #ifdef HOST_IMM_ADDR32
3100 if(c)
3101 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3102 else
3103 #endif
dadf55f2 3104 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3105 }
535d208a 3106 if(jaddr)
3107 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3108 }
535d208a 3109 else
3110 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3111 }
535d208a 3112 }
3113 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3114 //if(opcode[i]==0x23)
3115 //if(opcode[i]==0x24)
3116 //if(opcode[i]==0x23||opcode[i]==0x24)
3117 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3118 {
3119 //emit_pusha();
3120 save_regs(0x100f);
3121 emit_readword((int)&last_count,ECX);
3122 #ifdef __i386__
3123 if(get_reg(i_regs->regmap,CCREG)<0)
3124 emit_loadreg(CCREG,HOST_CCREG);
3125 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3126 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3127 emit_writeword(HOST_CCREG,(int)&Count);
3128 #endif
3129 #ifdef __arm__
3130 if(get_reg(i_regs->regmap,CCREG)<0)
3131 emit_loadreg(CCREG,0);
3132 else
3133 emit_mov(HOST_CCREG,0);
3134 emit_add(0,ECX,0);
3135 emit_addimm(0,2*ccadj[i],0);
3136 emit_writeword(0,(int)&Count);
3137 #endif
3138 emit_call((int)memdebug);
3139 //emit_popa();
3140 restore_regs(0x100f);
3141 }/**/
3142}
3143
3144#ifndef loadlr_assemble
3145void loadlr_assemble(int i,struct regstat *i_regs)
3146{
3147 printf("Need loadlr_assemble for this architecture.\n");
3148 exit(1);
3149}
3150#endif
3151
3152void store_assemble(int i,struct regstat *i_regs)
3153{
3154 int s,th,tl,map=-1;
3155 int addr,temp;
3156 int offset;
3157 int jaddr=0,jaddr2,type;
666a299d 3158 int memtarget=0,c=0;
57871462 3159 int agr=AGEN1+(i&1);
b1570849 3160 int faststore_reg_override=0;
57871462 3161 u_int hr,reglist=0;
3162 th=get_reg(i_regs->regmap,rs2[i]|64);
3163 tl=get_reg(i_regs->regmap,rs2[i]);
3164 s=get_reg(i_regs->regmap,rs1[i]);
3165 temp=get_reg(i_regs->regmap,agr);
3166 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3167 offset=imm[i];
3168 if(s>=0) {
3169 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3170 if(c) {
3171 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3172 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3173 }
57871462 3174 }
3175 assert(tl>=0);
3176 assert(temp>=0);
3177 for(hr=0;hr<HOST_REGS;hr++) {
3178 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3179 }
3180 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3181 if(offset||s<0||c) addr=temp;
3182 else addr=s;
3183 if(!using_tlb) {
3184 if(!c) {
dadf55f2 3185 #ifdef PCSX
3186 if(sp_in_mirror&&rs1[i]==29) {
3187 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3188 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 3189 faststore_reg_override=HOST_TEMPREG;
dadf55f2 3190 }
3191 else
3192 #endif
57871462 3193 #ifdef R29_HACK
3194 // Strmnnrmn's speed hack
4cb76aa4 3195 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3196 #endif
4cb76aa4 3197 emit_cmpimm(addr,RAM_SIZE);
57871462 3198 #ifdef DESTRUCTIVE_SHIFT
3199 if(s==addr) emit_mov(s,temp);
3200 #endif
3201 #ifdef R29_HACK
dadf55f2 3202 memtarget=1;
4cb76aa4 3203 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3204 #endif
3205 {
3206 jaddr=(int)out;
3207 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3208 // Hint to branch predictor that the branch is unlikely to be taken
3209 if(rs1[i]>=28)
3210 emit_jno_unlikely(0);
3211 else
3212 #endif
3213 emit_jno(0);
3214 }
3215 }
3216 }else{ // using tlb
3217 int x=0;
3218 if (opcode[i]==0x28) x=3; // SB
3219 if (opcode[i]==0x29) x=2; // SH
3220 map=get_reg(i_regs->regmap,TLREG);
3221 assert(map>=0);
ea3d2e6e 3222 reglist&=~(1<<map);
57871462 3223 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3224 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3225 }
3226
3227 if (opcode[i]==0x28) { // SB
3228 if(!c||memtarget) {
97a238a6 3229 int x=0,a=temp;
2002a1db 3230#ifdef BIG_ENDIAN_MIPS
57871462 3231 if(!c) emit_xorimm(addr,3,temp);
3232 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3233#else
97a238a6 3234 if(!c) a=addr;
dadf55f2 3235#endif
b1570849 3236 if(faststore_reg_override) a=faststore_reg_override;
57871462 3237 //gen_tlb_addr_w(temp,map);
3238 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3239 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3240 }
3241 type=STOREB_STUB;
3242 }
3243 if (opcode[i]==0x29) { // SH
3244 if(!c||memtarget) {
97a238a6 3245 int x=0,a=temp;
2002a1db 3246#ifdef BIG_ENDIAN_MIPS
57871462 3247 if(!c) emit_xorimm(addr,2,temp);
3248 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3249#else
97a238a6 3250 if(!c) a=addr;
dadf55f2 3251#endif
b1570849 3252 if(faststore_reg_override) a=faststore_reg_override;
57871462 3253 //#ifdef
3254 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3255 //#else
3256 if(map>=0) {
97a238a6 3257 gen_tlb_addr_w(a,map);
3258 emit_writehword_indexed(tl,x,a);
57871462 3259 }else
97a238a6 3260 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3261 }
3262 type=STOREH_STUB;
3263 }
3264 if (opcode[i]==0x2B) { // SW
dadf55f2 3265 if(!c||memtarget) {
3266 int a=addr;
b1570849 3267 if(faststore_reg_override) a=faststore_reg_override;
57871462 3268 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3269 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3270 }
57871462 3271 type=STOREW_STUB;
3272 }
3273 if (opcode[i]==0x3F) { // SD
3274 if(!c||memtarget) {
dadf55f2 3275 int a=addr;
b1570849 3276 if(faststore_reg_override) a=faststore_reg_override;
57871462 3277 if(rs2[i]) {
3278 assert(th>=0);
3279 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3280 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3281 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3282 }else{
3283 // Store zero
3284 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3285 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3286 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3287 }
3288 }
3289 type=STORED_STUB;
3290 }
57871462 3291 if(!using_tlb) {
3292 if(!c||memtarget) {
3293 #ifdef DESTRUCTIVE_SHIFT
3294 // The x86 shift operation is 'destructive'; it overwrites the
3295 // source register, so we need to make a copy first and use that.
3296 addr=temp;
3297 #endif
3298 #if defined(HOST_IMM8)
3299 int ir=get_reg(i_regs->regmap,INVCP);
3300 assert(ir>=0);
3301 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3302 #else
3303 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3304 #endif
0bbd1454 3305 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3306 emit_callne(invalidate_addr_reg[addr]);
3307 #else
57871462 3308 jaddr2=(int)out;
3309 emit_jne(0);
3310 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3311 #endif
57871462 3312 }
3313 }
3eaa7048 3314 if(jaddr) {
3315 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3316 } else if(c&&!memtarget) {
3317 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3318 }
57871462 3319 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3320 //if(opcode[i]==0x2B || opcode[i]==0x28)
3321 //if(opcode[i]==0x2B || opcode[i]==0x29)
3322 //if(opcode[i]==0x2B)
3323 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3324 {
28d74ee8 3325 #ifdef __i386__
3326 emit_pusha();
3327 #endif
3328 #ifdef __arm__
57871462 3329 save_regs(0x100f);
28d74ee8 3330 #endif
57871462 3331 emit_readword((int)&last_count,ECX);
3332 #ifdef __i386__
3333 if(get_reg(i_regs->regmap,CCREG)<0)
3334 emit_loadreg(CCREG,HOST_CCREG);
3335 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3336 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3337 emit_writeword(HOST_CCREG,(int)&Count);
3338 #endif
3339 #ifdef __arm__
3340 if(get_reg(i_regs->regmap,CCREG)<0)
3341 emit_loadreg(CCREG,0);
3342 else
3343 emit_mov(HOST_CCREG,0);
3344 emit_add(0,ECX,0);
3345 emit_addimm(0,2*ccadj[i],0);
3346 emit_writeword(0,(int)&Count);
3347 #endif
3348 emit_call((int)memdebug);
28d74ee8 3349 #ifdef __i386__
3350 emit_popa();
3351 #endif
3352 #ifdef __arm__
57871462 3353 restore_regs(0x100f);
28d74ee8 3354 #endif
57871462 3355 }/**/
3356}
3357
3358void storelr_assemble(int i,struct regstat *i_regs)
3359{
3360 int s,th,tl;
3361 int temp;
3362 int temp2;
3363 int offset;
3364 int jaddr=0,jaddr2;
3365 int case1,case2,case3;
3366 int done0,done1,done2;
af4ee1fe 3367 int memtarget=0,c=0;
fab5d06d 3368 int agr=AGEN1+(i&1);
57871462 3369 u_int hr,reglist=0;
3370 th=get_reg(i_regs->regmap,rs2[i]|64);
3371 tl=get_reg(i_regs->regmap,rs2[i]);
3372 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3373 temp=get_reg(i_regs->regmap,agr);
3374 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3375 offset=imm[i];
3376 if(s>=0) {
3377 c=(i_regs->isconst>>s)&1;
af4ee1fe 3378 if(c) {
3379 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3380 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3381 }
57871462 3382 }
3383 assert(tl>=0);
3384 for(hr=0;hr<HOST_REGS;hr++) {
3385 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3386 }
535d208a 3387 assert(temp>=0);
3388 if(!using_tlb) {
3389 if(!c) {
3390 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3391 if(!offset&&s!=temp) emit_mov(s,temp);
3392 jaddr=(int)out;
3393 emit_jno(0);
3394 }
3395 else
3396 {
3397 if(!memtarget||!rs1[i]) {
57871462 3398 jaddr=(int)out;
3399 emit_jmp(0);
3400 }
57871462 3401 }
535d208a 3402 #ifdef RAM_OFFSET
3403 int map=get_reg(i_regs->regmap,ROREG);
3404 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3405 gen_tlb_addr_w(temp,map);
3406 #else
3407 if((u_int)rdram!=0x80000000)
3408 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3409 #endif
3410 }else{ // using tlb
3411 int map=get_reg(i_regs->regmap,TLREG);
3412 assert(map>=0);
ea3d2e6e 3413 reglist&=~(1<<map);
535d208a 3414 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3415 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3416 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3417 if(!jaddr&&!memtarget) {
3418 jaddr=(int)out;
3419 emit_jmp(0);
57871462 3420 }
535d208a 3421 gen_tlb_addr_w(temp,map);
3422 }
3423
3424 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3425 temp2=get_reg(i_regs->regmap,FTEMP);
3426 if(!rs2[i]) temp2=th=tl;
3427 }
57871462 3428
2002a1db 3429#ifndef BIG_ENDIAN_MIPS
3430 emit_xorimm(temp,3,temp);
3431#endif
535d208a 3432 emit_testimm(temp,2);
3433 case2=(int)out;
3434 emit_jne(0);
3435 emit_testimm(temp,1);
3436 case1=(int)out;
3437 emit_jne(0);
3438 // 0
3439 if (opcode[i]==0x2A) { // SWL
3440 emit_writeword_indexed(tl,0,temp);
3441 }
3442 if (opcode[i]==0x2E) { // SWR
3443 emit_writebyte_indexed(tl,3,temp);
3444 }
3445 if (opcode[i]==0x2C) { // SDL
3446 emit_writeword_indexed(th,0,temp);
3447 if(rs2[i]) emit_mov(tl,temp2);
3448 }
3449 if (opcode[i]==0x2D) { // SDR
3450 emit_writebyte_indexed(tl,3,temp);
3451 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3452 }
3453 done0=(int)out;
3454 emit_jmp(0);
3455 // 1
3456 set_jump_target(case1,(int)out);
3457 if (opcode[i]==0x2A) { // SWL
3458 // Write 3 msb into three least significant bytes
3459 if(rs2[i]) emit_rorimm(tl,8,tl);
3460 emit_writehword_indexed(tl,-1,temp);
3461 if(rs2[i]) emit_rorimm(tl,16,tl);
3462 emit_writebyte_indexed(tl,1,temp);
3463 if(rs2[i]) emit_rorimm(tl,8,tl);
3464 }
3465 if (opcode[i]==0x2E) { // SWR
3466 // Write two lsb into two most significant bytes
3467 emit_writehword_indexed(tl,1,temp);
3468 }
3469 if (opcode[i]==0x2C) { // SDL
3470 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3471 // Write 3 msb into three least significant bytes
3472 if(rs2[i]) emit_rorimm(th,8,th);
3473 emit_writehword_indexed(th,-1,temp);
3474 if(rs2[i]) emit_rorimm(th,16,th);
3475 emit_writebyte_indexed(th,1,temp);
3476 if(rs2[i]) emit_rorimm(th,8,th);
3477 }
3478 if (opcode[i]==0x2D) { // SDR
3479 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3480 // Write two lsb into two most significant bytes
3481 emit_writehword_indexed(tl,1,temp);
3482 }
3483 done1=(int)out;
3484 emit_jmp(0);
3485 // 2
3486 set_jump_target(case2,(int)out);
3487 emit_testimm(temp,1);
3488 case3=(int)out;
3489 emit_jne(0);
3490 if (opcode[i]==0x2A) { // SWL
3491 // Write two msb into two least significant bytes
3492 if(rs2[i]) emit_rorimm(tl,16,tl);
3493 emit_writehword_indexed(tl,-2,temp);
3494 if(rs2[i]) emit_rorimm(tl,16,tl);
3495 }
3496 if (opcode[i]==0x2E) { // SWR
3497 // Write 3 lsb into three most significant bytes
3498 emit_writebyte_indexed(tl,-1,temp);
3499 if(rs2[i]) emit_rorimm(tl,8,tl);
3500 emit_writehword_indexed(tl,0,temp);
3501 if(rs2[i]) emit_rorimm(tl,24,tl);
3502 }
3503 if (opcode[i]==0x2C) { // SDL
3504 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3505 // Write two msb into two least significant bytes
3506 if(rs2[i]) emit_rorimm(th,16,th);
3507 emit_writehword_indexed(th,-2,temp);
3508 if(rs2[i]) emit_rorimm(th,16,th);
3509 }
3510 if (opcode[i]==0x2D) { // SDR
3511 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3512 // Write 3 lsb into three most significant bytes
3513 emit_writebyte_indexed(tl,-1,temp);
3514 if(rs2[i]) emit_rorimm(tl,8,tl);
3515 emit_writehword_indexed(tl,0,temp);
3516 if(rs2[i]) emit_rorimm(tl,24,tl);
3517 }
3518 done2=(int)out;
3519 emit_jmp(0);
3520 // 3
3521 set_jump_target(case3,(int)out);
3522 if (opcode[i]==0x2A) { // SWL
3523 // Write msb into least significant byte
3524 if(rs2[i]) emit_rorimm(tl,24,tl);
3525 emit_writebyte_indexed(tl,-3,temp);
3526 if(rs2[i]) emit_rorimm(tl,8,tl);
3527 }
3528 if (opcode[i]==0x2E) { // SWR
3529 // Write entire word
3530 emit_writeword_indexed(tl,-3,temp);
3531 }
3532 if (opcode[i]==0x2C) { // SDL
3533 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3534 // Write msb into least significant byte
3535 if(rs2[i]) emit_rorimm(th,24,th);
3536 emit_writebyte_indexed(th,-3,temp);
3537 if(rs2[i]) emit_rorimm(th,8,th);
3538 }
3539 if (opcode[i]==0x2D) { // SDR
3540 if(rs2[i]) emit_mov(th,temp2);
3541 // Write entire word
3542 emit_writeword_indexed(tl,-3,temp);
3543 }
3544 set_jump_target(done0,(int)out);
3545 set_jump_target(done1,(int)out);
3546 set_jump_target(done2,(int)out);
3547 if (opcode[i]==0x2C) { // SDL
3548 emit_testimm(temp,4);
57871462 3549 done0=(int)out;
57871462 3550 emit_jne(0);
535d208a 3551 emit_andimm(temp,~3,temp);
3552 emit_writeword_indexed(temp2,4,temp);
3553 set_jump_target(done0,(int)out);
3554 }
3555 if (opcode[i]==0x2D) { // SDR
3556 emit_testimm(temp,4);
3557 done0=(int)out;
3558 emit_jeq(0);
3559 emit_andimm(temp,~3,temp);
3560 emit_writeword_indexed(temp2,-4,temp);
57871462 3561 set_jump_target(done0,(int)out);
57871462 3562 }
535d208a 3563 if(!c||!memtarget)
3564 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3565 if(!using_tlb) {
535d208a 3566 #ifdef RAM_OFFSET
3567 int map=get_reg(i_regs->regmap,ROREG);
3568 if(map<0) map=HOST_TEMPREG;
3569 gen_orig_addr_w(temp,map);
3570 #else
57871462 3571 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3572 #endif
57871462 3573 #if defined(HOST_IMM8)
3574 int ir=get_reg(i_regs->regmap,INVCP);
3575 assert(ir>=0);
3576 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3577 #else
3578 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3579 #endif
535d208a 3580 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3581 emit_callne(invalidate_addr_reg[temp]);
3582 #else
57871462 3583 jaddr2=(int)out;
3584 emit_jne(0);
3585 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3586 #endif
57871462 3587 }
3588 /*
3589 emit_pusha();
3590 //save_regs(0x100f);
3591 emit_readword((int)&last_count,ECX);
3592 if(get_reg(i_regs->regmap,CCREG)<0)
3593 emit_loadreg(CCREG,HOST_CCREG);
3594 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3595 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3596 emit_writeword(HOST_CCREG,(int)&Count);
3597 emit_call((int)memdebug);
3598 emit_popa();
3599 //restore_regs(0x100f);
3600 /**/
3601}
3602
3603void c1ls_assemble(int i,struct regstat *i_regs)
3604{
3d624f89 3605#ifndef DISABLE_COP1
57871462 3606 int s,th,tl;
3607 int temp,ar;
3608 int map=-1;
3609 int offset;
3610 int c=0;
3611 int jaddr,jaddr2=0,jaddr3,type;
3612 int agr=AGEN1+(i&1);
3613 u_int hr,reglist=0;
3614 th=get_reg(i_regs->regmap,FTEMP|64);
3615 tl=get_reg(i_regs->regmap,FTEMP);
3616 s=get_reg(i_regs->regmap,rs1[i]);
3617 temp=get_reg(i_regs->regmap,agr);
3618 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3619 offset=imm[i];
3620 assert(tl>=0);
3621 assert(rs1[i]>0);
3622 assert(temp>=0);
3623 for(hr=0;hr<HOST_REGS;hr++) {
3624 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3625 }
3626 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3627 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3628 {
3629 // Loads use a temporary register which we need to save
3630 reglist|=1<<temp;
3631 }
3632 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3633 ar=temp;
3634 else // LWC1/LDC1
3635 ar=tl;
3636 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3637 //else c=(i_regs->wasconst>>s)&1;
3638 if(s>=0) c=(i_regs->wasconst>>s)&1;
3639 // Check cop1 unusable
3640 if(!cop1_usable) {
3641 signed char rs=get_reg(i_regs->regmap,CSREG);
3642 assert(rs>=0);
3643 emit_testimm(rs,0x20000000);
3644 jaddr=(int)out;
3645 emit_jeq(0);
3646 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3647 cop1_usable=1;
3648 }
3649 if (opcode[i]==0x39) { // SWC1 (get float address)
3650 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3651 }
3652 if (opcode[i]==0x3D) { // SDC1 (get double address)
3653 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3654 }
3655 // Generate address + offset
3656 if(!using_tlb) {
3657 if(!c)
4cb76aa4 3658 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3659 }
3660 else
3661 {
3662 map=get_reg(i_regs->regmap,TLREG);
3663 assert(map>=0);
ea3d2e6e 3664 reglist&=~(1<<map);
57871462 3665 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3666 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3667 }
3668 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3669 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3670 }
3671 }
3672 if (opcode[i]==0x39) { // SWC1 (read float)
3673 emit_readword_indexed(0,tl,tl);
3674 }
3675 if (opcode[i]==0x3D) { // SDC1 (read double)
3676 emit_readword_indexed(4,tl,th);
3677 emit_readword_indexed(0,tl,tl);
3678 }
3679 if (opcode[i]==0x31) { // LWC1 (get target address)
3680 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3681 }
3682 if (opcode[i]==0x35) { // LDC1 (get target address)
3683 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3684 }
3685 if(!using_tlb) {
3686 if(!c) {
3687 jaddr2=(int)out;
3688 emit_jno(0);
3689 }
4cb76aa4 3690 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3691 jaddr2=(int)out;
3692 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3693 }
3694 #ifdef DESTRUCTIVE_SHIFT
3695 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3696 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3697 }
3698 #endif
3699 }else{
3700 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3701 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3702 }
3703 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3704 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3705 }
3706 }
3707 if (opcode[i]==0x31) { // LWC1
3708 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3709 //gen_tlb_addr_r(ar,map);
3710 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3711 #ifdef HOST_IMM_ADDR32
3712 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3713 else
3714 #endif
3715 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3716 type=LOADW_STUB;
3717 }
3718 if (opcode[i]==0x35) { // LDC1
3719 assert(th>=0);
3720 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3721 //gen_tlb_addr_r(ar,map);
3722 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3723 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3724 #ifdef HOST_IMM_ADDR32
3725 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3726 else
3727 #endif
3728 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3729 type=LOADD_STUB;
3730 }
3731 if (opcode[i]==0x39) { // SWC1
3732 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3733 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3734 type=STOREW_STUB;
3735 }
3736 if (opcode[i]==0x3D) { // SDC1
3737 assert(th>=0);
3738 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3739 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3740 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3741 type=STORED_STUB;
3742 }
3743 if(!using_tlb) {
3744 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3745 #ifndef DESTRUCTIVE_SHIFT
3746 temp=offset||c||s<0?ar:s;
3747 #endif
3748 #if defined(HOST_IMM8)
3749 int ir=get_reg(i_regs->regmap,INVCP);
3750 assert(ir>=0);
3751 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3752 #else
3753 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3754 #endif
0bbd1454 3755 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3756 emit_callne(invalidate_addr_reg[temp]);
3757 #else
57871462 3758 jaddr3=(int)out;
3759 emit_jne(0);
3760 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3761 #endif
57871462 3762 }
3763 }
3764 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3765 if (opcode[i]==0x31) { // LWC1 (write float)
3766 emit_writeword_indexed(tl,0,temp);
3767 }
3768 if (opcode[i]==0x35) { // LDC1 (write double)
3769 emit_writeword_indexed(th,4,temp);
3770 emit_writeword_indexed(tl,0,temp);
3771 }
3772 //if(opcode[i]==0x39)
3773 /*if(opcode[i]==0x39||opcode[i]==0x31)
3774 {
3775 emit_pusha();
3776 emit_readword((int)&last_count,ECX);
3777 if(get_reg(i_regs->regmap,CCREG)<0)
3778 emit_loadreg(CCREG,HOST_CCREG);
3779 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3780 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3781 emit_writeword(HOST_CCREG,(int)&Count);
3782 emit_call((int)memdebug);
3783 emit_popa();
3784 }/**/
3d624f89 3785#else
3786 cop1_unusable(i, i_regs);
3787#endif
57871462 3788}
3789
b9b61529 3790void c2ls_assemble(int i,struct regstat *i_regs)
3791{
3792 int s,tl;
3793 int ar;
3794 int offset;
1fd1aceb 3795 int memtarget=0,c=0;
c2e3bd42 3796 int jaddr2=0,jaddr3,type;
b9b61529 3797 int agr=AGEN1+(i&1);
3798 u_int hr,reglist=0;
3799 u_int copr=(source[i]>>16)&0x1f;
3800 s=get_reg(i_regs->regmap,rs1[i]);
3801 tl=get_reg(i_regs->regmap,FTEMP);
3802 offset=imm[i];
3803 assert(rs1[i]>0);
3804 assert(tl>=0);
3805 assert(!using_tlb);
3806
3807 for(hr=0;hr<HOST_REGS;hr++) {
3808 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3809 }
3810 if(i_regs->regmap[HOST_CCREG]==CCREG)
3811 reglist&=~(1<<HOST_CCREG);
3812
3813 // get the address
3814 if (opcode[i]==0x3a) { // SWC2
3815 ar=get_reg(i_regs->regmap,agr);
3816 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3817 reglist|=1<<ar;
3818 } else { // LWC2
3819 ar=tl;
3820 }
1fd1aceb 3821 if(s>=0) c=(i_regs->wasconst>>s)&1;
3822 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3823 if (!offset&&!c&&s>=0) ar=s;
3824 assert(ar>=0);
3825
3826 if (opcode[i]==0x3a) { // SWC2
3827 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3828 type=STOREW_STUB;
b9b61529 3829 }
1fd1aceb 3830 else
b9b61529 3831 type=LOADW_STUB;
1fd1aceb 3832
3833 if(c&&!memtarget) {
3834 jaddr2=(int)out;
3835 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3836 }
1fd1aceb 3837 else {
3838 if(!c) {
3839 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3840 jaddr2=(int)out;
3841 emit_jno(0);
3842 }
3843 if (opcode[i]==0x32) { // LWC2
3844 #ifdef HOST_IMM_ADDR32
3845 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3846 else
3847 #endif
3848 emit_readword_indexed(0,ar,tl);
3849 }
3850 if (opcode[i]==0x3a) { // SWC2
3851 #ifdef DESTRUCTIVE_SHIFT
3852 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3853 #endif
3854 emit_writeword_indexed(tl,0,ar);
3855 }
b9b61529 3856 }
3857 if(jaddr2)
3858 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3859 if (opcode[i]==0x3a) { // SWC2
3860#if defined(HOST_IMM8)
3861 int ir=get_reg(i_regs->regmap,INVCP);
3862 assert(ir>=0);
3863 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3864#else
3865 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3866#endif
0bbd1454 3867 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3868 emit_callne(invalidate_addr_reg[ar]);
3869 #else
b9b61529 3870 jaddr3=(int)out;
3871 emit_jne(0);
3872 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3873 #endif
b9b61529 3874 }
3875 if (opcode[i]==0x32) { // LWC2
3876 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3877 }
3878}
3879
57871462 3880#ifndef multdiv_assemble
3881void multdiv_assemble(int i,struct regstat *i_regs)
3882{
3883 printf("Need multdiv_assemble for this architecture.\n");
3884 exit(1);
3885}
3886#endif
3887
3888void mov_assemble(int i,struct regstat *i_regs)
3889{
3890 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3891 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3892 if(rt1[i]) {
3893 signed char sh,sl,th,tl;
3894 th=get_reg(i_regs->regmap,rt1[i]|64);
3895 tl=get_reg(i_regs->regmap,rt1[i]);
3896 //assert(tl>=0);
3897 if(tl>=0) {
3898 sh=get_reg(i_regs->regmap,rs1[i]|64);
3899 sl=get_reg(i_regs->regmap,rs1[i]);
3900 if(sl>=0) emit_mov(sl,tl);
3901 else emit_loadreg(rs1[i],tl);
3902 if(th>=0) {
3903 if(sh>=0) emit_mov(sh,th);
3904 else emit_loadreg(rs1[i]|64,th);
3905 }
3906 }
3907 }
3908}
3909
3910#ifndef fconv_assemble
3911void fconv_assemble(int i,struct regstat *i_regs)
3912{
3913 printf("Need fconv_assemble for this architecture.\n");
3914 exit(1);
3915}
3916#endif
3917
3918#if 0
3919void float_assemble(int i,struct regstat *i_regs)
3920{
3921 printf("Need float_assemble for this architecture.\n");
3922 exit(1);
3923}
3924#endif
3925
3926void syscall_assemble(int i,struct regstat *i_regs)
3927{
3928 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3929 assert(ccreg==HOST_CCREG);
3930 assert(!is_delayslot);
3931 emit_movimm(start+i*4,EAX); // Get PC
3932 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3933 emit_jmp((int)jump_syscall_hle); // XXX
3934}
3935
3936void hlecall_assemble(int i,struct regstat *i_regs)
3937{
3938 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3939 assert(ccreg==HOST_CCREG);
3940 assert(!is_delayslot);
3941 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3942 emit_movimm((int)psxHLEt[source[i]&7],1);
7139f3c8 3943 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
67ba0fb4 3944 emit_jmp((int)jump_hlecall);
57871462 3945}
3946
1e973cb0 3947void intcall_assemble(int i,struct regstat *i_regs)
3948{
3949 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3950 assert(ccreg==HOST_CCREG);
3951 assert(!is_delayslot);
3952 emit_movimm(start+i*4,0); // Get PC
3953 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3954 emit_jmp((int)jump_intcall);
3955}
3956
57871462 3957void ds_assemble(int i,struct regstat *i_regs)
3958{
3959 is_delayslot=1;
3960 switch(itype[i]) {
3961 case ALU:
3962 alu_assemble(i,i_regs);break;
3963 case IMM16:
3964 imm16_assemble(i,i_regs);break;
3965 case SHIFT:
3966 shift_assemble(i,i_regs);break;
3967 case SHIFTIMM:
3968 shiftimm_assemble(i,i_regs);break;
3969 case LOAD:
3970 load_assemble(i,i_regs);break;
3971 case LOADLR:
3972 loadlr_assemble(i,i_regs);break;
3973 case STORE:
3974 store_assemble(i,i_regs);break;
3975 case STORELR:
3976 storelr_assemble(i,i_regs);break;
3977 case COP0:
3978 cop0_assemble(i,i_regs);break;
3979 case COP1:
3980 cop1_assemble(i,i_regs);break;
3981 case C1LS:
3982 c1ls_assemble(i,i_regs);break;
b9b61529 3983 case COP2:
3984 cop2_assemble(i,i_regs);break;
3985 case C2LS:
3986 c2ls_assemble(i,i_regs);break;
3987 case C2OP:
3988 c2op_assemble(i,i_regs);break;
57871462 3989 case FCONV:
3990 fconv_assemble(i,i_regs);break;
3991 case FLOAT:
3992 float_assemble(i,i_regs);break;
3993 case FCOMP:
3994 fcomp_assemble(i,i_regs);break;
3995 case MULTDIV:
3996 multdiv_assemble(i,i_regs);break;
3997 case MOV:
3998 mov_assemble(i,i_regs);break;
3999 case SYSCALL:
7139f3c8 4000 case HLECALL:
1e973cb0 4001 case INTCALL:
57871462 4002 case SPAN:
4003 case UJUMP:
4004 case RJUMP:
4005 case CJUMP:
4006 case SJUMP:
4007 case FJUMP:
4008 printf("Jump in the delay slot. This is probably a bug.\n");
4009 }
4010 is_delayslot=0;
4011}
4012
4013// Is the branch target a valid internal jump?
4014int internal_branch(uint64_t i_is32,int addr)
4015{
4016 if(addr&1) return 0; // Indirect (register) jump
4017 if(addr>=start && addr<start+slen*4-4)
4018 {
4019 int t=(addr-start)>>2;
4020 // Delay slots are not valid branch targets
4021 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4022 // 64 -> 32 bit transition requires a recompile
4023 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4024 {
4025 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4026 else printf("optimizable: yes\n");
4027 }*/
4028 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4029#ifndef FORCE32
57871462 4030 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4031 else
4032#endif
4033 return 1;
57871462 4034 }
4035 return 0;
4036}
4037
4038#ifndef wb_invalidate
4039void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4040 uint64_t u,uint64_t uu)
4041{
4042 int hr;
4043 for(hr=0;hr<HOST_REGS;hr++) {
4044 if(hr!=EXCLUDE_REG) {
4045 if(pre[hr]!=entry[hr]) {
4046 if(pre[hr]>=0) {
4047 if((dirty>>hr)&1) {
4048 if(get_reg(entry,pre[hr])<0) {
4049 if(pre[hr]<64) {
4050 if(!((u>>pre[hr])&1)) {
4051 emit_storereg(pre[hr],hr);
4052 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4053 emit_sarimm(hr,31,hr);
4054 emit_storereg(pre[hr]|64,hr);
4055 }
4056 }
4057 }else{
4058 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4059 emit_storereg(pre[hr],hr);
4060 }
4061 }
4062 }
4063 }
4064 }
4065 }
4066 }
4067 }
4068 // Move from one register to another (no writeback)
4069 for(hr=0;hr<HOST_REGS;hr++) {
4070 if(hr!=EXCLUDE_REG) {
4071 if(pre[hr]!=entry[hr]) {
4072 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4073 int nr;
4074 if((nr=get_reg(entry,pre[hr]))>=0) {
4075 emit_mov(hr,nr);
4076 }
4077 }
4078 }
4079 }
4080 }
4081}
4082#endif
4083
4084// Load the specified registers
4085// This only loads the registers given as arguments because
4086// we don't want to load things that will be overwritten
4087void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4088{
4089 int hr;
4090 // Load 32-bit regs
4091 for(hr=0;hr<HOST_REGS;hr++) {
4092 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4093 if(entry[hr]!=regmap[hr]) {
4094 if(regmap[hr]==rs1||regmap[hr]==rs2)
4095 {
4096 if(regmap[hr]==0) {
4097 emit_zeroreg(hr);
4098 }
4099 else
4100 {
4101 emit_loadreg(regmap[hr],hr);
4102 }
4103 }
4104 }
4105 }
4106 }
4107 //Load 64-bit regs
4108 for(hr=0;hr<HOST_REGS;hr++) {
4109 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4110 if(entry[hr]!=regmap[hr]) {
4111 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4112 {
4113 assert(regmap[hr]!=64);
4114 if((is32>>(regmap[hr]&63))&1) {
4115 int lr=get_reg(regmap,regmap[hr]-64);
4116 if(lr>=0)
4117 emit_sarimm(lr,31,hr);
4118 else
4119 emit_loadreg(regmap[hr],hr);
4120 }
4121 else
4122 {
4123 emit_loadreg(regmap[hr],hr);
4124 }
4125 }
4126 }
4127 }
4128 }
4129}
4130
4131// Load registers prior to the start of a loop
4132// so that they are not loaded within the loop
4133static void loop_preload(signed char pre[],signed char entry[])
4134{
4135 int hr;
4136 for(hr=0;hr<HOST_REGS;hr++) {
4137 if(hr!=EXCLUDE_REG) {
4138 if(pre[hr]!=entry[hr]) {
4139 if(entry[hr]>=0) {
4140 if(get_reg(pre,entry[hr])<0) {
4141 assem_debug("loop preload:\n");
4142 //printf("loop preload: %d\n",hr);
4143 if(entry[hr]==0) {
4144 emit_zeroreg(hr);
4145 }
4146 else if(entry[hr]<TEMPREG)
4147 {
4148 emit_loadreg(entry[hr],hr);
4149 }
4150 else if(entry[hr]-64<TEMPREG)
4151 {
4152 emit_loadreg(entry[hr],hr);
4153 }
4154 }
4155 }
4156 }
4157 }
4158 }
4159}
4160
4161// Generate address for load/store instruction
b9b61529 4162// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4163void address_generation(int i,struct regstat *i_regs,signed char entry[])
4164{
b9b61529 4165 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4166 int ra=-1;
57871462 4167 int agr=AGEN1+(i&1);
4168 int mgr=MGEN1+(i&1);
4169 if(itype[i]==LOAD) {
4170 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4171 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4172 assert(ra>=0);
57871462 4173 }
4174 if(itype[i]==LOADLR) {
4175 ra=get_reg(i_regs->regmap,FTEMP);
4176 }
4177 if(itype[i]==STORE||itype[i]==STORELR) {
4178 ra=get_reg(i_regs->regmap,agr);
4179 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4180 }
b9b61529 4181 if(itype[i]==C1LS||itype[i]==C2LS) {
4182 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4183 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4184 else { // SWC1/SDC1/SWC2/SDC2
57871462 4185 ra=get_reg(i_regs->regmap,agr);
4186 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4187 }
4188 }
4189 int rs=get_reg(i_regs->regmap,rs1[i]);
4190 int rm=get_reg(i_regs->regmap,TLREG);
4191 if(ra>=0) {
4192 int offset=imm[i];
4193 int c=(i_regs->wasconst>>rs)&1;
4194 if(rs1[i]==0) {
4195 // Using r0 as a base address
4196 /*if(rm>=0) {
4197 if(!entry||entry[rm]!=mgr) {
4198 generate_map_const(offset,rm);
4199 } // else did it in the previous cycle
4200 }*/
4201 if(!entry||entry[ra]!=agr) {
4202 if (opcode[i]==0x22||opcode[i]==0x26) {
4203 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4204 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4205 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4206 }else{
4207 emit_movimm(offset,ra);
4208 }
4209 } // else did it in the previous cycle
4210 }
4211 else if(rs<0) {
4212 if(!entry||entry[ra]!=rs1[i])
4213 emit_loadreg(rs1[i],ra);
4214 //if(!entry||entry[ra]!=rs1[i])
4215 // printf("poor load scheduling!\n");
4216 }
4217 else if(c) {
4218 if(rm>=0) {
4219 if(!entry||entry[rm]!=mgr) {
b9b61529 4220 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4221 // Stores to memory go thru the mapper to detect self-modifying
4222 // code, loads don't.
4223 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4224 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4225 generate_map_const(constmap[i][rs]+offset,rm);
4226 }else{
4227 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4228 generate_map_const(constmap[i][rs]+offset,rm);
4229 }
4230 }
4231 }
4232 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4233 if(!entry||entry[ra]!=agr) {
4234 if (opcode[i]==0x22||opcode[i]==0x26) {
4235 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4236 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4237 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4238 }else{
4239 #ifdef HOST_IMM_ADDR32
b9b61529 4240 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4241 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4242 #endif
4243 emit_movimm(constmap[i][rs]+offset,ra);
4244 }
4245 } // else did it in the previous cycle
4246 } // else load_consts already did it
4247 }
4248 if(offset&&!c&&rs1[i]) {
4249 if(rs>=0) {
4250 emit_addimm(rs,offset,ra);
4251 }else{
4252 emit_addimm(ra,offset,ra);
4253 }
4254 }
4255 }
4256 }
4257 // Preload constants for next instruction
b9b61529 4258 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4259 int agr,ra;
4260 #ifndef HOST_IMM_ADDR32
4261 // Mapper entry
4262 agr=MGEN1+((i+1)&1);
4263 ra=get_reg(i_regs->regmap,agr);
4264 if(ra>=0) {
4265 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4266 int offset=imm[i+1];
4267 int c=(regs[i+1].wasconst>>rs)&1;
4268 if(c) {
b9b61529 4269 if(itype[i+1]==STORE||itype[i+1]==STORELR
4270 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4271 // Stores to memory go thru the mapper to detect self-modifying
4272 // code, loads don't.
4273 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4274 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4275 generate_map_const(constmap[i+1][rs]+offset,ra);
4276 }else{
4277 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4278 generate_map_const(constmap[i+1][rs]+offset,ra);
4279 }
4280 }
4281 /*else if(rs1[i]==0) {
4282 generate_map_const(offset,ra);
4283 }*/
4284 }
4285 #endif
4286 // Actual address
4287 agr=AGEN1+((i+1)&1);
4288 ra=get_reg(i_regs->regmap,agr);
4289 if(ra>=0) {
4290 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4291 int offset=imm[i+1];
4292 int c=(regs[i+1].wasconst>>rs)&1;
4293 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4294 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4295 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4296 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4297 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4298 }else{
4299 #ifdef HOST_IMM_ADDR32
b9b61529 4300 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4301 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4302 #endif
4303 emit_movimm(constmap[i+1][rs]+offset,ra);
4304 }
4305 }
4306 else if(rs1[i+1]==0) {
4307 // Using r0 as a base address
4308 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4309 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4310 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4311 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4312 }else{
4313 emit_movimm(offset,ra);
4314 }
4315 }
4316 }
4317 }
4318}
4319
4320int get_final_value(int hr, int i, int *value)
4321{
4322 int reg=regs[i].regmap[hr];
4323 while(i<slen-1) {
4324 if(regs[i+1].regmap[hr]!=reg) break;
4325 if(!((regs[i+1].isconst>>hr)&1)) break;
4326 if(bt[i+1]) break;
4327 i++;
4328 }
4329 if(i<slen-1) {
4330 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4331 *value=constmap[i][hr];
4332 return 1;
4333 }
4334 if(!bt[i+1]) {
4335 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4336 // Load in delay slot, out-of-order execution
4337 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4338 {
4339 #ifdef HOST_IMM_ADDR32
4340 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4341 #endif
4342 // Precompute load address
4343 *value=constmap[i][hr]+imm[i+2];
4344 return 1;
4345 }
4346 }
4347 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4348 {
4349 #ifdef HOST_IMM_ADDR32
4350 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4351 #endif
4352 // Precompute load address
4353 *value=constmap[i][hr]+imm[i+1];
4354 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4355 return 1;
4356 }
4357 }
4358 }
4359 *value=constmap[i][hr];
4360 //printf("c=%x\n",(int)constmap[i][hr]);
4361 if(i==slen-1) return 1;
4362 if(reg<64) {
4363 return !((unneeded_reg[i+1]>>reg)&1);
4364 }else{
4365 return !((unneeded_reg_upper[i+1]>>reg)&1);
4366 }
4367}
4368
4369// Load registers with known constants
4370void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4371{
4372 int hr;
4373 // Load 32-bit regs
4374 for(hr=0;hr<HOST_REGS;hr++) {
4375 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4376 //if(entry[hr]!=regmap[hr]) {
4377 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4378 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4379 int value;
4380 if(get_final_value(hr,i,&value)) {
4381 if(value==0) {
4382 emit_zeroreg(hr);
4383 }
4384 else {
4385 emit_movimm(value,hr);
4386 }
4387 }
4388 }
4389 }
4390 }
4391 }
4392 // Load 64-bit regs
4393 for(hr=0;hr<HOST_REGS;hr++) {
4394 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4395 //if(entry[hr]!=regmap[hr]) {
4396 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4397 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4398 if((is32>>(regmap[hr]&63))&1) {
4399 int lr=get_reg(regmap,regmap[hr]-64);
4400 assert(lr>=0);
4401 emit_sarimm(lr,31,hr);
4402 }
4403 else
4404 {
4405 int value;
4406 if(get_final_value(hr,i,&value)) {
4407 if(value==0) {
4408 emit_zeroreg(hr);
4409 }
4410 else {
4411 emit_movimm(value,hr);
4412 }
4413 }
4414 }
4415 }
4416 }
4417 }
4418 }
4419}
4420void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4421{
4422 int hr;
4423 // Load 32-bit regs
4424 for(hr=0;hr<HOST_REGS;hr++) {
4425 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4426 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4427 int value=constmap[i][hr];
4428 if(value==0) {
4429 emit_zeroreg(hr);
4430 }
4431 else {
4432 emit_movimm(value,hr);
4433 }
4434 }
4435 }
4436 }
4437 // Load 64-bit regs
4438 for(hr=0;hr<HOST_REGS;hr++) {
4439 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4440 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4441 if((is32>>(regmap[hr]&63))&1) {
4442 int lr=get_reg(regmap,regmap[hr]-64);
4443 assert(lr>=0);
4444 emit_sarimm(lr,31,hr);
4445 }
4446 else
4447 {
4448 int value=constmap[i][hr];
4449 if(value==0) {
4450 emit_zeroreg(hr);
4451 }
4452 else {
4453 emit_movimm(value,hr);
4454 }
4455 }
4456 }
4457 }
4458 }
4459}
4460
4461// Write out all dirty registers (except cycle count)
4462void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4463{
4464 int hr;
4465 for(hr=0;hr<HOST_REGS;hr++) {
4466 if(hr!=EXCLUDE_REG) {
4467 if(i_regmap[hr]>0) {
4468 if(i_regmap[hr]!=CCREG) {
4469 if((i_dirty>>hr)&1) {
4470 if(i_regmap[hr]<64) {
4471 emit_storereg(i_regmap[hr],hr);
24385cae 4472#ifndef FORCE32
57871462 4473 if( ((i_is32>>i_regmap[hr])&1) ) {
4474 #ifdef DESTRUCTIVE_WRITEBACK
4475 emit_sarimm(hr,31,hr);
4476 emit_storereg(i_regmap[hr]|64,hr);
4477 #else
4478 emit_sarimm(hr,31,HOST_TEMPREG);
4479 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4480 #endif
4481 }
24385cae 4482#endif
57871462 4483 }else{
4484 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4485 emit_storereg(i_regmap[hr],hr);
4486 }
4487 }
4488 }
4489 }
4490 }
4491 }
4492 }
4493}
4494// Write out dirty registers that we need to reload (pair with load_needed_regs)
4495// This writes the registers not written by store_regs_bt
4496void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4497{
4498 int hr;
4499 int t=(addr-start)>>2;
4500 for(hr=0;hr<HOST_REGS;hr++) {
4501 if(hr!=EXCLUDE_REG) {
4502 if(i_regmap[hr]>0) {
4503 if(i_regmap[hr]!=CCREG) {
4504 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4505 if((i_dirty>>hr)&1) {
4506 if(i_regmap[hr]<64) {
4507 emit_storereg(i_regmap[hr],hr);
24385cae 4508#ifndef FORCE32
57871462 4509 if( ((i_is32>>i_regmap[hr])&1) ) {
4510 #ifdef DESTRUCTIVE_WRITEBACK
4511 emit_sarimm(hr,31,hr);
4512 emit_storereg(i_regmap[hr]|64,hr);
4513 #else
4514 emit_sarimm(hr,31,HOST_TEMPREG);
4515 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4516 #endif
4517 }
24385cae 4518#endif
57871462 4519 }else{
4520 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4521 emit_storereg(i_regmap[hr],hr);
4522 }
4523 }
4524 }
4525 }
4526 }
4527 }
4528 }
4529 }
4530}
4531
4532// Load all registers (except cycle count)
4533void load_all_regs(signed char i_regmap[])
4534{
4535 int hr;
4536 for(hr=0;hr<HOST_REGS;hr++) {
4537 if(hr!=EXCLUDE_REG) {
4538 if(i_regmap[hr]==0) {
4539 emit_zeroreg(hr);
4540 }
4541 else
ea3d2e6e 4542 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4543 {
4544 emit_loadreg(i_regmap[hr],hr);
4545 }
4546 }
4547 }
4548}
4549
4550// Load all current registers also needed by next instruction
4551void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4552{
4553 int hr;
4554 for(hr=0;hr<HOST_REGS;hr++) {
4555 if(hr!=EXCLUDE_REG) {
4556 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4557 if(i_regmap[hr]==0) {
4558 emit_zeroreg(hr);
4559 }
4560 else
ea3d2e6e 4561 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4562 {
4563 emit_loadreg(i_regmap[hr],hr);
4564 }
4565 }
4566 }
4567 }
4568}
4569
4570// Load all regs, storing cycle count if necessary
4571void load_regs_entry(int t)
4572{
4573 int hr;
4574 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4575 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4576 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4577 emit_storereg(CCREG,HOST_CCREG);
4578 }
4579 // Load 32-bit regs
4580 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4581 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4582 if(regs[t].regmap_entry[hr]==0) {
4583 emit_zeroreg(hr);
4584 }
4585 else if(regs[t].regmap_entry[hr]!=CCREG)
4586 {
4587 emit_loadreg(regs[t].regmap_entry[hr],hr);
4588 }
4589 }
4590 }
4591 // Load 64-bit regs
4592 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4593 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4594 assert(regs[t].regmap_entry[hr]!=64);
4595 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4596 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4597 if(lr<0) {
4598 emit_loadreg(regs[t].regmap_entry[hr],hr);
4599 }
4600 else
4601 {
4602 emit_sarimm(lr,31,hr);
4603 }
4604 }
4605 else
4606 {
4607 emit_loadreg(regs[t].regmap_entry[hr],hr);
4608 }
4609 }
4610 }
4611}
4612
4613// Store dirty registers prior to branch
4614void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4615{
4616 if(internal_branch(i_is32,addr))
4617 {
4618 int t=(addr-start)>>2;
4619 int hr;
4620 for(hr=0;hr<HOST_REGS;hr++) {
4621 if(hr!=EXCLUDE_REG) {
4622 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4623 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4624 if((i_dirty>>hr)&1) {
4625 if(i_regmap[hr]<64) {
4626 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4627 emit_storereg(i_regmap[hr],hr);
4628 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4629 #ifdef DESTRUCTIVE_WRITEBACK
4630 emit_sarimm(hr,31,hr);
4631 emit_storereg(i_regmap[hr]|64,hr);
4632 #else
4633 emit_sarimm(hr,31,HOST_TEMPREG);
4634 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4635 #endif
4636 }
4637 }
4638 }else{
4639 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4640 emit_storereg(i_regmap[hr],hr);
4641 }
4642 }
4643 }
4644 }
4645 }
4646 }
4647 }
4648 }
4649 else
4650 {
4651 // Branch out of this block, write out all dirty regs
4652 wb_dirtys(i_regmap,i_is32,i_dirty);
4653 }
4654}
4655
4656// Load all needed registers for branch target
4657void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4658{
4659 //if(addr>=start && addr<(start+slen*4))
4660 if(internal_branch(i_is32,addr))
4661 {
4662 int t=(addr-start)>>2;
4663 int hr;
4664 // Store the cycle count before loading something else
4665 if(i_regmap[HOST_CCREG]!=CCREG) {
4666 assert(i_regmap[HOST_CCREG]==-1);
4667 }
4668 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4669 emit_storereg(CCREG,HOST_CCREG);
4670 }
4671 // Load 32-bit regs
4672 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4673 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4674 #ifdef DESTRUCTIVE_WRITEBACK
4675 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4676 #else
4677 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4678 #endif
4679 if(regs[t].regmap_entry[hr]==0) {
4680 emit_zeroreg(hr);
4681 }
4682 else if(regs[t].regmap_entry[hr]!=CCREG)
4683 {
4684 emit_loadreg(regs[t].regmap_entry[hr],hr);
4685 }
4686 }
4687 }
4688 }
4689 //Load 64-bit regs
4690 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4691 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4692 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4693 assert(regs[t].regmap_entry[hr]!=64);
4694 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4695 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4696 if(lr<0) {
4697 emit_loadreg(regs[t].regmap_entry[hr],hr);
4698 }
4699 else
4700 {
4701 emit_sarimm(lr,31,hr);
4702 }
4703 }
4704 else
4705 {
4706 emit_loadreg(regs[t].regmap_entry[hr],hr);
4707 }
4708 }
4709 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4710 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4711 assert(lr>=0);
4712 emit_sarimm(lr,31,hr);
4713 }
4714 }
4715 }
4716 }
4717}
4718
4719int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4720{
4721 if(addr>=start && addr<start+slen*4-4)
4722 {
4723 int t=(addr-start)>>2;
4724 int hr;
4725 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4726 for(hr=0;hr<HOST_REGS;hr++)
4727 {
4728 if(hr!=EXCLUDE_REG)
4729 {
4730 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4731 {
ea3d2e6e 4732 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4733 {
4734 return 0;
4735 }
4736 else
4737 if((i_dirty>>hr)&1)
4738 {
ea3d2e6e 4739 if(i_regmap[hr]<TEMPREG)
57871462 4740 {
4741 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4742 return 0;
4743 }
ea3d2e6e 4744 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4745 {
4746 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4747 return 0;
4748 }
4749 }
4750 }
4751 else // Same register but is it 32-bit or dirty?
4752 if(i_regmap[hr]>=0)
4753 {
4754 if(!((regs[t].dirty>>hr)&1))
4755 {
4756 if((i_dirty>>hr)&1)
4757 {
4758 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4759 {
4760 //printf("%x: dirty no match\n",addr);
4761 return 0;
4762 }
4763 }
4764 }
4765 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4766 {
4767 //printf("%x: is32 no match\n",addr);
4768 return 0;
4769 }
4770 }
4771 }
4772 }
4773 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4774#ifndef FORCE32
57871462 4775 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4776#endif
57871462 4777 // Delay slots are not valid branch targets
4778 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4779 // Delay slots require additional processing, so do not match
4780 if(is_ds[t]) return 0;
4781 }
4782 else
4783 {
4784 int hr;
4785 for(hr=0;hr<HOST_REGS;hr++)
4786 {
4787 if(hr!=EXCLUDE_REG)
4788 {
4789 if(i_regmap[hr]>=0)
4790 {
4791 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4792 {
4793 if((i_dirty>>hr)&1)
4794 {
4795 return 0;
4796 }
4797 }
4798 }
4799 }
4800 }
4801 }
4802 return 1;
4803}
4804
4805// Used when a branch jumps into the delay slot of another branch
4806void ds_assemble_entry(int i)
4807{
4808 int t=(ba[i]-start)>>2;
4809 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4810 assem_debug("Assemble delay slot at %x\n",ba[i]);
4811 assem_debug("<->\n");
4812 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4813 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4814 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4815 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4816 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4817 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4818 cop1_usable=0;
4819 is_delayslot=0;
4820 switch(itype[t]) {
4821 case ALU:
4822 alu_assemble(t,&regs[t]);break;
4823 case IMM16:
4824 imm16_assemble(t,&regs[t]);break;
4825 case SHIFT:
4826 shift_assemble(t,&regs[t]);break;
4827 case SHIFTIMM:
4828 shiftimm_assemble(t,&regs[t]);break;
4829 case LOAD:
4830 load_assemble(t,&regs[t]);break;
4831 case LOADLR:
4832 loadlr_assemble(t,&regs[t]);break;
4833 case STORE:
4834 store_assemble(t,&regs[t]);break;
4835 case STORELR:
4836 storelr_assemble(t,&regs[t]);break;
4837 case COP0:
4838 cop0_assemble(t,&regs[t]);break;
4839 case COP1:
4840 cop1_assemble(t,&regs[t]);break;
4841 case C1LS:
4842 c1ls_assemble(t,&regs[t]);break;
b9b61529 4843 case COP2:
4844 cop2_assemble(t,&regs[t]);break;
4845 case C2LS:
4846 c2ls_assemble(t,&regs[t]);break;
4847 case C2OP:
4848 c2op_assemble(t,&regs[t]);break;
57871462 4849 case FCONV:
4850 fconv_assemble(t,&regs[t]);break;
4851 case FLOAT:
4852 float_assemble(t,&regs[t]);break;
4853 case FCOMP:
4854 fcomp_assemble(t,&regs[t]);break;
4855 case MULTDIV:
4856 multdiv_assemble(t,&regs[t]);break;
4857 case MOV:
4858 mov_assemble(t,&regs[t]);break;
4859 case SYSCALL:
7139f3c8 4860 case HLECALL:
1e973cb0 4861 case INTCALL:
57871462 4862 case SPAN:
4863 case UJUMP:
4864 case RJUMP:
4865 case CJUMP:
4866 case SJUMP:
4867 case FJUMP:
4868 printf("Jump in the delay slot. This is probably a bug.\n");
4869 }
4870 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4871 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4872 if(internal_branch(regs[t].is32,ba[i]+4))
4873 assem_debug("branch: internal\n");
4874 else
4875 assem_debug("branch: external\n");
4876 assert(internal_branch(regs[t].is32,ba[i]+4));
4877 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4878 emit_jmp(0);
4879}
4880
4881void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4882{
4883 int count;
4884 int jaddr;
4885 int idle=0;
4886 if(itype[i]==RJUMP)
4887 {
4888 *adj=0;
4889 }
4890 //if(ba[i]>=start && ba[i]<(start+slen*4))
4891 if(internal_branch(branch_regs[i].is32,ba[i]))
4892 {
4893 int t=(ba[i]-start)>>2;
4894 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4895 else *adj=ccadj[t];
4896 }
4897 else
4898 {
4899 *adj=0;
4900 }
4901 count=ccadj[i];
4902 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4903 // Idle loop
4904 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4905 idle=(int)out;
4906 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4907 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4908 jaddr=(int)out;
4909 emit_jmp(0);
4910 }
4911 else if(*adj==0||invert) {
4912 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4913 jaddr=(int)out;
4914 emit_jns(0);
4915 }
4916 else
4917 {
eeb1feeb 4918 emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
57871462 4919 jaddr=(int)out;
4920 emit_jns(0);
4921 }
4922 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4923}
4924
4925void do_ccstub(int n)
4926{
4927 literal_pool(256);
4928 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4929 set_jump_target(stubs[n][1],(int)out);
4930 int i=stubs[n][4];
4931 if(stubs[n][6]==NULLDS) {
4932 // Delay slot instruction is nullified ("likely" branch)
4933 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4934 }
4935 else if(stubs[n][6]!=TAKEN) {
4936 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4937 }
4938 else {
4939 if(internal_branch(branch_regs[i].is32,ba[i]))
4940 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4941 }
4942 if(stubs[n][5]!=-1)
4943 {
4944 // Save PC as return address
4945 emit_movimm(stubs[n][5],EAX);
4946 emit_writeword(EAX,(int)&pcaddr);
4947 }
4948 else
4949 {
4950 // Return address depends on which way the branch goes
4951 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4952 {
4953 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4954 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4955 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4956 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4957 if(rs1[i]==0)
4958 {
4959 s1l=s2l;s1h=s2h;
4960 s2l=s2h=-1;
4961 }
4962 else if(rs2[i]==0)
4963 {
4964 s2l=s2h=-1;
4965 }
4966 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4967 s1h=s2h=-1;
4968 }
4969 assert(s1l>=0);
4970 #ifdef DESTRUCTIVE_WRITEBACK
4971 if(rs1[i]) {
4972 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4973 emit_loadreg(rs1[i],s1l);
4974 }
4975 else {
4976 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4977 emit_loadreg(rs2[i],s1l);
4978 }
4979 if(s2l>=0)
4980 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4981 emit_loadreg(rs2[i],s2l);
4982 #endif
4983 int hr=0;
5194fb95 4984 int addr=-1,alt=-1,ntaddr=-1;
57871462 4985 while(hr<HOST_REGS)
4986 {
4987 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4988 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4989 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4990 {
4991 addr=hr++;break;
4992 }
4993 hr++;
4994 }
4995 while(hr<HOST_REGS)
4996 {
4997 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4998 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4999 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5000 {
5001 alt=hr++;break;
5002 }
5003 hr++;
5004 }
5005 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5006 {
5007 while(hr<HOST_REGS)
5008 {
5009 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5010 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5011 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5012 {
5013 ntaddr=hr;break;
5014 }
5015 hr++;
5016 }
5017 assert(hr<HOST_REGS);
5018 }
5019 if((opcode[i]&0x2f)==4) // BEQ
5020 {
5021 #ifdef HAVE_CMOV_IMM
5022 if(s1h<0) {
5023 if(s2l>=0) emit_cmp(s1l,s2l);
5024 else emit_test(s1l,s1l);
5025 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5026 }
5027 else
5028 #endif
5029 {
5030 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5031 if(s1h>=0) {
5032 if(s2h>=0) emit_cmp(s1h,s2h);
5033 else emit_test(s1h,s1h);
5034 emit_cmovne_reg(alt,addr);
5035 }
5036 if(s2l>=0) emit_cmp(s1l,s2l);
5037 else emit_test(s1l,s1l);
5038 emit_cmovne_reg(alt,addr);
5039 }
5040 }
5041 if((opcode[i]&0x2f)==5) // BNE
5042 {
5043 #ifdef HAVE_CMOV_IMM
5044 if(s1h<0) {
5045 if(s2l>=0) emit_cmp(s1l,s2l);
5046 else emit_test(s1l,s1l);
5047 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5048 }
5049 else
5050 #endif
5051 {
5052 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5053 if(s1h>=0) {
5054 if(s2h>=0) emit_cmp(s1h,s2h);
5055 else emit_test(s1h,s1h);
5056 emit_cmovne_reg(alt,addr);
5057 }
5058 if(s2l>=0) emit_cmp(s1l,s2l);
5059 else emit_test(s1l,s1l);
5060 emit_cmovne_reg(alt,addr);
5061 }
5062 }
5063 if((opcode[i]&0x2f)==6) // BLEZ
5064 {
5065 //emit_movimm(ba[i],alt);
5066 //emit_movimm(start+i*4+8,addr);
5067 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5068 emit_cmpimm(s1l,1);
5069 if(s1h>=0) emit_mov(addr,ntaddr);
5070 emit_cmovl_reg(alt,addr);
5071 if(s1h>=0) {
5072 emit_test(s1h,s1h);
5073 emit_cmovne_reg(ntaddr,addr);
5074 emit_cmovs_reg(alt,addr);
5075 }
5076 }
5077 if((opcode[i]&0x2f)==7) // BGTZ
5078 {
5079 //emit_movimm(ba[i],addr);
5080 //emit_movimm(start+i*4+8,ntaddr);
5081 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5082 emit_cmpimm(s1l,1);
5083 if(s1h>=0) emit_mov(addr,alt);
5084 emit_cmovl_reg(ntaddr,addr);
5085 if(s1h>=0) {
5086 emit_test(s1h,s1h);
5087 emit_cmovne_reg(alt,addr);
5088 emit_cmovs_reg(ntaddr,addr);
5089 }
5090 }
5091 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5092 {
5093 //emit_movimm(ba[i],alt);
5094 //emit_movimm(start+i*4+8,addr);
5095 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5096 if(s1h>=0) emit_test(s1h,s1h);
5097 else emit_test(s1l,s1l);
5098 emit_cmovs_reg(alt,addr);
5099 }
5100 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5101 {
5102 //emit_movimm(ba[i],addr);
5103 //emit_movimm(start+i*4+8,alt);
5104 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5105 if(s1h>=0) emit_test(s1h,s1h);
5106 else emit_test(s1l,s1l);
5107 emit_cmovs_reg(alt,addr);
5108 }
5109 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5110 if(source[i]&0x10000) // BC1T
5111 {
5112 //emit_movimm(ba[i],alt);
5113 //emit_movimm(start+i*4+8,addr);
5114 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5115 emit_testimm(s1l,0x800000);
5116 emit_cmovne_reg(alt,addr);
5117 }
5118 else // BC1F
5119 {
5120 //emit_movimm(ba[i],addr);
5121 //emit_movimm(start+i*4+8,alt);
5122 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5123 emit_testimm(s1l,0x800000);
5124 emit_cmovne_reg(alt,addr);
5125 }
5126 }
5127 emit_writeword(addr,(int)&pcaddr);
5128 }
5129 else
5130 if(itype[i]==RJUMP)
5131 {
5132 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5133 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5134 r=get_reg(branch_regs[i].regmap,RTEMP);
5135 }
5136 emit_writeword(r,(int)&pcaddr);
5137 }
5138 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5139 }
5140 // Update cycle count
5141 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5142 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5143 emit_call((int)cc_interrupt);
5144 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5145 if(stubs[n][6]==TAKEN) {
5146 if(internal_branch(branch_regs[i].is32,ba[i]))
5147 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5148 else if(itype[i]==RJUMP) {
5149 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5150 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5151 else
5152 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5153 }
5154 }else if(stubs[n][6]==NOTTAKEN) {
5155 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5156 else load_all_regs(branch_regs[i].regmap);
5157 }else if(stubs[n][6]==NULLDS) {
5158 // Delay slot instruction is nullified ("likely" branch)
5159 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5160 else load_all_regs(regs[i].regmap);
5161 }else{
5162 load_all_regs(branch_regs[i].regmap);
5163 }
5164 emit_jmp(stubs[n][2]); // return address
5165
5166 /* This works but uses a lot of memory...
5167 emit_readword((int)&last_count,ECX);
5168 emit_add(HOST_CCREG,ECX,EAX);
5169 emit_writeword(EAX,(int)&Count);
5170 emit_call((int)gen_interupt);
5171 emit_readword((int)&Count,HOST_CCREG);
5172 emit_readword((int)&next_interupt,EAX);
5173 emit_readword((int)&pending_exception,EBX);
5174 emit_writeword(EAX,(int)&last_count);
5175 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5176 emit_test(EBX,EBX);
5177 int jne_instr=(int)out;
5178 emit_jne(0);
5179 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5180 load_all_regs(branch_regs[i].regmap);
5181 emit_jmp(stubs[n][2]); // return address
5182 set_jump_target(jne_instr,(int)out);
5183 emit_readword((int)&pcaddr,EAX);
5184 // Call get_addr_ht instead of doing the hash table here.
5185 // This code is executed infrequently and takes up a lot of space
5186 // so smaller is better.
5187 emit_storereg(CCREG,HOST_CCREG);
5188 emit_pushreg(EAX);
5189 emit_call((int)get_addr_ht);
5190 emit_loadreg(CCREG,HOST_CCREG);
5191 emit_addimm(ESP,4,ESP);
5192 emit_jmpreg(EAX);*/
5193}
5194
5195add_to_linker(int addr,int target,int ext)
5196{
5197 link_addr[linkcount][0]=addr;
5198 link_addr[linkcount][1]=target;
5199 link_addr[linkcount][2]=ext;
5200 linkcount++;
5201}
5202
eba830cd 5203static void ujump_assemble_write_ra(int i)
5204{
5205 int rt;
5206 unsigned int return_address;
5207 rt=get_reg(branch_regs[i].regmap,31);
5208 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5209 //assert(rt>=0);
5210 return_address=start+i*4+8;
5211 if(rt>=0) {
5212 #ifdef USE_MINI_HT
5213 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5214 int temp=-1; // note: must be ds-safe
5215 #ifdef HOST_TEMPREG
5216 temp=HOST_TEMPREG;
5217 #endif
5218 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5219 else emit_movimm(return_address,rt);
5220 }
5221 else
5222 #endif
5223 {
5224 #ifdef REG_PREFETCH
5225 if(temp>=0)
5226 {
5227 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5228 }
5229 #endif
5230 emit_movimm(return_address,rt); // PC into link register
5231 #ifdef IMM_PREFETCH
5232 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5233 #endif
5234 }
5235 }
5236}
5237
57871462 5238void ujump_assemble(int i,struct regstat *i_regs)
5239{
5240 signed char *i_regmap=i_regs->regmap;
eba830cd 5241 int ra_done=0;
57871462 5242 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5243 address_generation(i+1,i_regs,regs[i].regmap_entry);
5244 #ifdef REG_PREFETCH
5245 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5246 if(rt1[i]==31&&temp>=0)
5247 {
5248 int return_address=start+i*4+8;
5249 if(get_reg(branch_regs[i].regmap,31)>0)
5250 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5251 }
5252 #endif
eba830cd 5253 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5254 ujump_assemble_write_ra(i); // writeback ra for DS
5255 ra_done=1;
57871462 5256 }
4ef8f67d 5257 ds_assemble(i+1,i_regs);
5258 uint64_t bc_unneeded=branch_regs[i].u;
5259 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5260 bc_unneeded|=1|(1LL<<rt1[i]);
5261 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5262 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5263 bc_unneeded,bc_unneeded_upper);
5264 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5265 if(!ra_done&&rt1[i]==31)
5266 ujump_assemble_write_ra(i);
57871462 5267 int cc,adj;
5268 cc=get_reg(branch_regs[i].regmap,CCREG);
5269 assert(cc==HOST_CCREG);
5270 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5271 #ifdef REG_PREFETCH
5272 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5273 #endif
5274 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5275 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5276 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5277 if(internal_branch(branch_regs[i].is32,ba[i]))
5278 assem_debug("branch: internal\n");
5279 else
5280 assem_debug("branch: external\n");
5281 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5282 ds_assemble_entry(i);
5283 }
5284 else {
5285 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5286 emit_jmp(0);
5287 }
5288}
5289
eba830cd 5290static void rjump_assemble_write_ra(int i)
5291{
5292 int rt,return_address;
5293 assert(rt1[i+1]!=rt1[i]);
5294 assert(rt2[i+1]!=rt1[i]);
5295 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5296 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5297 assert(rt>=0);
5298 return_address=start+i*4+8;
5299 #ifdef REG_PREFETCH
5300 if(temp>=0)
5301 {
5302 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5303 }
5304 #endif
5305 emit_movimm(return_address,rt); // PC into link register
5306 #ifdef IMM_PREFETCH
5307 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5308 #endif
5309}
5310
57871462 5311void rjump_assemble(int i,struct regstat *i_regs)
5312{
5313 signed char *i_regmap=i_regs->regmap;
5314 int temp;
5315 int rs,cc,adj;
eba830cd 5316 int ra_done=0;
57871462 5317 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5318 assert(rs>=0);
5319 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5320 // Delay slot abuse, make a copy of the branch address register
5321 temp=get_reg(branch_regs[i].regmap,RTEMP);
5322 assert(temp>=0);
5323 assert(regs[i].regmap[temp]==RTEMP);
5324 emit_mov(rs,temp);
5325 rs=temp;
5326 }
5327 address_generation(i+1,i_regs,regs[i].regmap_entry);
5328 #ifdef REG_PREFETCH
5329 if(rt1[i]==31)
5330 {
5331 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5332 int return_address=start+i*4+8;
5333 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5334 }
5335 }
5336 #endif
5337 #ifdef USE_MINI_HT
5338 if(rs1[i]==31) {
5339 int rh=get_reg(regs[i].regmap,RHASH);
5340 if(rh>=0) do_preload_rhash(rh);
5341 }
5342 #endif
eba830cd 5343 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5344 rjump_assemble_write_ra(i);
5345 ra_done=1;
57871462 5346 }
d5910d5d 5347 ds_assemble(i+1,i_regs);
5348 uint64_t bc_unneeded=branch_regs[i].u;
5349 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5350 bc_unneeded|=1|(1LL<<rt1[i]);
5351 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5352 bc_unneeded&=~(1LL<<rs1[i]);
5353 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5354 bc_unneeded,bc_unneeded_upper);
5355 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5356 if(!ra_done&&rt1[i]!=0)
5357 rjump_assemble_write_ra(i);
57871462 5358 cc=get_reg(branch_regs[i].regmap,CCREG);
5359 assert(cc==HOST_CCREG);
5360 #ifdef USE_MINI_HT
5361 int rh=get_reg(branch_regs[i].regmap,RHASH);
5362 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5363 if(rs1[i]==31) {
5364 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5365 do_preload_rhtbl(ht);
5366 do_rhash(rs,rh);
5367 }
5368 #endif
5369 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5370 #ifdef DESTRUCTIVE_WRITEBACK
5371 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5372 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5373 emit_loadreg(rs1[i],rs);
5374 }
5375 }
5376 #endif
5377 #ifdef REG_PREFETCH
5378 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5379 #endif
5380 #ifdef USE_MINI_HT
5381 if(rs1[i]==31) {
5382 do_miniht_load(ht,rh);
5383 }
5384 #endif
5385 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5386 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5387 //assert(adj==0);
5388 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5389 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5390 emit_jns(0);
5391 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5392 #ifdef USE_MINI_HT
5393 if(rs1[i]==31) {
5394 do_miniht_jump(rs,rh,ht);
5395 }
5396 else
5397 #endif
5398 {
5399 //if(rs!=EAX) emit_mov(rs,EAX);
5400 //emit_jmp((int)jump_vaddr_eax);
5401 emit_jmp(jump_vaddr_reg[rs]);
5402 }
5403 /* Check hash table
5404 temp=!rs;
5405 emit_mov(rs,temp);
5406 emit_shrimm(rs,16,rs);
5407 emit_xor(temp,rs,rs);
5408 emit_movzwl_reg(rs,rs);
5409 emit_shlimm(rs,4,rs);
5410 emit_cmpmem_indexed((int)hash_table,rs,temp);
5411 emit_jne((int)out+14);
5412 emit_readword_indexed((int)hash_table+4,rs,rs);
5413 emit_jmpreg(rs);
5414 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5415 emit_addimm_no_flags(8,rs);
5416 emit_jeq((int)out-17);
5417 // No hit on hash table, call compiler
5418 emit_pushreg(temp);
5419//DEBUG >
5420#ifdef DEBUG_CYCLE_COUNT
5421 emit_readword((int)&last_count,ECX);
5422 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5423 emit_readword((int)&next_interupt,ECX);
5424 emit_writeword(HOST_CCREG,(int)&Count);
5425 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5426 emit_writeword(ECX,(int)&last_count);
5427#endif
5428//DEBUG <
5429 emit_storereg(CCREG,HOST_CCREG);
5430 emit_call((int)get_addr);
5431 emit_loadreg(CCREG,HOST_CCREG);
5432 emit_addimm(ESP,4,ESP);
5433 emit_jmpreg(EAX);*/
5434 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5435 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5436 #endif
5437}
5438
5439void cjump_assemble(int i,struct regstat *i_regs)
5440{
5441 signed char *i_regmap=i_regs->regmap;
5442 int cc;
5443 int match;
5444 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5445 assem_debug("match=%d\n",match);
5446 int s1h,s1l,s2h,s2l;
5447 int prev_cop1_usable=cop1_usable;
5448 int unconditional=0,nop=0;
5449 int only32=0;
57871462 5450 int invert=0;
5451 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5452 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5453 if(!match) invert=1;
5454 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5455 if(i>(ba[i]-start)>>2) invert=1;
5456 #endif
e1190b87 5457
5458 if(ooo[i]) {
57871462 5459 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5460 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5461 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5462 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5463 }
5464 else {
5465 s1l=get_reg(i_regmap,rs1[i]);
5466 s1h=get_reg(i_regmap,rs1[i]|64);
5467 s2l=get_reg(i_regmap,rs2[i]);
5468 s2h=get_reg(i_regmap,rs2[i]|64);
5469 }
5470 if(rs1[i]==0&&rs2[i]==0)
5471 {
5472 if(opcode[i]&1) nop=1;
5473 else unconditional=1;
5474 //assert(opcode[i]!=5);
5475 //assert(opcode[i]!=7);
5476 //assert(opcode[i]!=0x15);
5477 //assert(opcode[i]!=0x17);
5478 }
5479 else if(rs1[i]==0)
5480 {
5481 s1l=s2l;s1h=s2h;
5482 s2l=s2h=-1;
5483 only32=(regs[i].was32>>rs2[i])&1;
5484 }
5485 else if(rs2[i]==0)
5486 {
5487 s2l=s2h=-1;
5488 only32=(regs[i].was32>>rs1[i])&1;
5489 }
5490 else {
5491 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5492 }
5493
e1190b87 5494 if(ooo[i]) {
57871462 5495 // Out of order execution (delay slot first)
5496 //printf("OOOE\n");
5497 address_generation(i+1,i_regs,regs[i].regmap_entry);
5498 ds_assemble(i+1,i_regs);
5499 int adj;
5500 uint64_t bc_unneeded=branch_regs[i].u;
5501 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5502 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5503 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5504 bc_unneeded|=1;
5505 bc_unneeded_upper|=1;
5506 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5507 bc_unneeded,bc_unneeded_upper);
5508 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5509 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5510 cc=get_reg(branch_regs[i].regmap,CCREG);
5511 assert(cc==HOST_CCREG);
5512 if(unconditional)
5513 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5514 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5515 //assem_debug("cycle count (adj)\n");
5516 if(unconditional) {
5517 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5518 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5519 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5520 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5521 if(internal)
5522 assem_debug("branch: internal\n");
5523 else
5524 assem_debug("branch: external\n");
5525 if(internal&&is_ds[(ba[i]-start)>>2]) {
5526 ds_assemble_entry(i);
5527 }
5528 else {
5529 add_to_linker((int)out,ba[i],internal);
5530 emit_jmp(0);
5531 }
5532 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5533 if(((u_int)out)&7) emit_addnop(0);
5534 #endif
5535 }
5536 }
5537 else if(nop) {
5538 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5539 int jaddr=(int)out;
5540 emit_jns(0);
5541 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5542 }
5543 else {
5544 int taken=0,nottaken=0,nottaken1=0;
5545 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5546 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5547 if(!only32)
5548 {
5549 assert(s1h>=0);
5550 if(opcode[i]==4) // BEQ
5551 {
5552 if(s2h>=0) emit_cmp(s1h,s2h);
5553 else emit_test(s1h,s1h);
5554 nottaken1=(int)out;
5555 emit_jne(1);
5556 }
5557 if(opcode[i]==5) // BNE
5558 {
5559 if(s2h>=0) emit_cmp(s1h,s2h);
5560 else emit_test(s1h,s1h);
5561 if(invert) taken=(int)out;
5562 else add_to_linker((int)out,ba[i],internal);
5563 emit_jne(0);
5564 }
5565 if(opcode[i]==6) // BLEZ
5566 {
5567 emit_test(s1h,s1h);
5568 if(invert) taken=(int)out;
5569 else add_to_linker((int)out,ba[i],internal);
5570 emit_js(0);
5571 nottaken1=(int)out;
5572 emit_jne(1);
5573 }
5574 if(opcode[i]==7) // BGTZ
5575 {
5576 emit_test(s1h,s1h);
5577 nottaken1=(int)out;
5578 emit_js(1);
5579 if(invert) taken=(int)out;
5580 else add_to_linker((int)out,ba[i],internal);
5581 emit_jne(0);
5582 }
5583 } // if(!only32)
5584
5585 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5586 assert(s1l>=0);
5587 if(opcode[i]==4) // BEQ
5588 {
5589 if(s2l>=0) emit_cmp(s1l,s2l);
5590 else emit_test(s1l,s1l);
5591 if(invert){
5592 nottaken=(int)out;
5593 emit_jne(1);
5594 }else{
5595 add_to_linker((int)out,ba[i],internal);
5596 emit_jeq(0);
5597 }
5598 }
5599 if(opcode[i]==5) // BNE
5600 {
5601 if(s2l>=0) emit_cmp(s1l,s2l);
5602 else emit_test(s1l,s1l);
5603 if(invert){
5604 nottaken=(int)out;
5605 emit_jeq(1);
5606 }else{
5607 add_to_linker((int)out,ba[i],internal);
5608 emit_jne(0);
5609 }
5610 }
5611 if(opcode[i]==6) // BLEZ
5612 {
5613 emit_cmpimm(s1l,1);
5614 if(invert){
5615 nottaken=(int)out;
5616 emit_jge(1);
5617 }else{
5618 add_to_linker((int)out,ba[i],internal);
5619 emit_jl(0);
5620 }
5621 }
5622 if(opcode[i]==7) // BGTZ
5623 {
5624 emit_cmpimm(s1l,1);
5625 if(invert){
5626 nottaken=(int)out;
5627 emit_jl(1);
5628 }else{
5629 add_to_linker((int)out,ba[i],internal);
5630 emit_jge(0);
5631 }
5632 }
5633 if(invert) {
5634 if(taken) set_jump_target(taken,(int)out);
5635 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5636 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5637 if(adj) {
5638 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5639 add_to_linker((int)out,ba[i],internal);
5640 }else{
5641 emit_addnop(13);
5642 add_to_linker((int)out,ba[i],internal*2);
5643 }
5644 emit_jmp(0);
5645 }else
5646 #endif
5647 {
5648 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5649 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5650 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5651 if(internal)
5652 assem_debug("branch: internal\n");
5653 else
5654 assem_debug("branch: external\n");
5655 if(internal&&is_ds[(ba[i]-start)>>2]) {
5656 ds_assemble_entry(i);
5657 }
5658 else {
5659 add_to_linker((int)out,ba[i],internal);
5660 emit_jmp(0);
5661 }
5662 }
5663 set_jump_target(nottaken,(int)out);
5664 }
5665
5666 if(nottaken1) set_jump_target(nottaken1,(int)out);
5667 if(adj) {
5668 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5669 }
5670 } // (!unconditional)
5671 } // if(ooo)
5672 else
5673 {
5674 // In-order execution (branch first)
5675 //if(likely[i]) printf("IOL\n");
5676 //else
5677 //printf("IOE\n");
5678 int taken=0,nottaken=0,nottaken1=0;
5679 if(!unconditional&&!nop) {
5680 if(!only32)
5681 {
5682 assert(s1h>=0);
5683 if((opcode[i]&0x2f)==4) // BEQ
5684 {
5685 if(s2h>=0) emit_cmp(s1h,s2h);
5686 else emit_test(s1h,s1h);
5687 nottaken1=(int)out;
5688 emit_jne(2);
5689 }
5690 if((opcode[i]&0x2f)==5) // BNE
5691 {
5692 if(s2h>=0) emit_cmp(s1h,s2h);
5693 else emit_test(s1h,s1h);
5694 taken=(int)out;
5695 emit_jne(1);
5696 }
5697 if((opcode[i]&0x2f)==6) // BLEZ
5698 {
5699 emit_test(s1h,s1h);
5700 taken=(int)out;
5701 emit_js(1);
5702 nottaken1=(int)out;
5703 emit_jne(2);
5704 }
5705 if((opcode[i]&0x2f)==7) // BGTZ
5706 {
5707 emit_test(s1h,s1h);
5708 nottaken1=(int)out;
5709 emit_js(2);
5710 taken=(int)out;
5711 emit_jne(1);
5712 }
5713 } // if(!only32)
5714
5715 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5716 assert(s1l>=0);
5717 if((opcode[i]&0x2f)==4) // BEQ
5718 {
5719 if(s2l>=0) emit_cmp(s1l,s2l);
5720 else emit_test(s1l,s1l);
5721 nottaken=(int)out;
5722 emit_jne(2);
5723 }
5724 if((opcode[i]&0x2f)==5) // BNE
5725 {
5726 if(s2l>=0) emit_cmp(s1l,s2l);
5727 else emit_test(s1l,s1l);
5728 nottaken=(int)out;
5729 emit_jeq(2);
5730 }
5731 if((opcode[i]&0x2f)==6) // BLEZ
5732 {
5733 emit_cmpimm(s1l,1);
5734 nottaken=(int)out;
5735 emit_jge(2);
5736 }
5737 if((opcode[i]&0x2f)==7) // BGTZ
5738 {
5739 emit_cmpimm(s1l,1);
5740 nottaken=(int)out;
5741 emit_jl(2);
5742 }
5743 } // if(!unconditional)
5744 int adj;
5745 uint64_t ds_unneeded=branch_regs[i].u;
5746 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5747 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5748 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5749 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5750 ds_unneeded|=1;
5751 ds_unneeded_upper|=1;
5752 // branch taken
5753 if(!nop) {
5754 if(taken) set_jump_target(taken,(int)out);
5755 assem_debug("1:\n");
5756 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5757 ds_unneeded,ds_unneeded_upper);
5758 // load regs
5759 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5760 address_generation(i+1,&branch_regs[i],0);
5761 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5762 ds_assemble(i+1,&branch_regs[i]);
5763 cc=get_reg(branch_regs[i].regmap,CCREG);
5764 if(cc==-1) {
5765 emit_loadreg(CCREG,cc=HOST_CCREG);
5766 // CHECK: Is the following instruction (fall thru) allocated ok?
5767 }
5768 assert(cc==HOST_CCREG);
5769 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5770 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5771 assem_debug("cycle count (adj)\n");
5772 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5773 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5774 if(internal)
5775 assem_debug("branch: internal\n");
5776 else
5777 assem_debug("branch: external\n");
5778 if(internal&&is_ds[(ba[i]-start)>>2]) {
5779 ds_assemble_entry(i);
5780 }
5781 else {
5782 add_to_linker((int)out,ba[i],internal);
5783 emit_jmp(0);
5784 }
5785 }
5786 // branch not taken
5787 cop1_usable=prev_cop1_usable;
5788 if(!unconditional) {
5789 if(nottaken1) set_jump_target(nottaken1,(int)out);
5790 set_jump_target(nottaken,(int)out);
5791 assem_debug("2:\n");
5792 if(!likely[i]) {
5793 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5794 ds_unneeded,ds_unneeded_upper);
5795 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5796 address_generation(i+1,&branch_regs[i],0);
5797 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5798 ds_assemble(i+1,&branch_regs[i]);
5799 }
5800 cc=get_reg(branch_regs[i].regmap,CCREG);
5801 if(cc==-1&&!likely[i]) {
5802 // Cycle count isn't in a register, temporarily load it then write it out
5803 emit_loadreg(CCREG,HOST_CCREG);
5804 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5805 int jaddr=(int)out;
5806 emit_jns(0);
5807 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5808 emit_storereg(CCREG,HOST_CCREG);
5809 }
5810 else{
5811 cc=get_reg(i_regmap,CCREG);
5812 assert(cc==HOST_CCREG);
5813 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5814 int jaddr=(int)out;
5815 emit_jns(0);
5816 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5817 }
5818 }
5819 }
5820}
5821
5822void sjump_assemble(int i,struct regstat *i_regs)
5823{
5824 signed char *i_regmap=i_regs->regmap;
5825 int cc;
5826 int match;
5827 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5828 assem_debug("smatch=%d\n",match);
5829 int s1h,s1l;
5830 int prev_cop1_usable=cop1_usable;
5831 int unconditional=0,nevertaken=0;
5832 int only32=0;
57871462 5833 int invert=0;
5834 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5835 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5836 if(!match) invert=1;
5837 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5838 if(i>(ba[i]-start)>>2) invert=1;
5839 #endif
5840
5841 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5842 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5843
e1190b87 5844 if(ooo[i]) {
57871462 5845 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5846 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5847 }
5848 else {
5849 s1l=get_reg(i_regmap,rs1[i]);
5850 s1h=get_reg(i_regmap,rs1[i]|64);
5851 }
5852 if(rs1[i]==0)
5853 {
5854 if(opcode2[i]&1) unconditional=1;
5855 else nevertaken=1;
5856 // These are never taken (r0 is never less than zero)
5857 //assert(opcode2[i]!=0);
5858 //assert(opcode2[i]!=2);
5859 //assert(opcode2[i]!=0x10);
5860 //assert(opcode2[i]!=0x12);
5861 }
5862 else {
5863 only32=(regs[i].was32>>rs1[i])&1;
5864 }
5865
e1190b87 5866 if(ooo[i]) {
57871462 5867 // Out of order execution (delay slot first)
5868 //printf("OOOE\n");
5869 address_generation(i+1,i_regs,regs[i].regmap_entry);
5870 ds_assemble(i+1,i_regs);
5871 int adj;
5872 uint64_t bc_unneeded=branch_regs[i].u;
5873 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5874 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5875 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5876 bc_unneeded|=1;
5877 bc_unneeded_upper|=1;
5878 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5879 bc_unneeded,bc_unneeded_upper);
5880 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5881 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5882 if(rt1[i]==31) {
5883 int rt,return_address;
57871462 5884 rt=get_reg(branch_regs[i].regmap,31);
5885 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5886 if(rt>=0) {
5887 // Save the PC even if the branch is not taken
5888 return_address=start+i*4+8;
5889 emit_movimm(return_address,rt); // PC into link register
5890 #ifdef IMM_PREFETCH
5891 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5892 #endif
5893 }
5894 }
5895 cc=get_reg(branch_regs[i].regmap,CCREG);
5896 assert(cc==HOST_CCREG);
5897 if(unconditional)
5898 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5899 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5900 assem_debug("cycle count (adj)\n");
5901 if(unconditional) {
5902 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5903 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5904 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5905 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5906 if(internal)
5907 assem_debug("branch: internal\n");
5908 else
5909 assem_debug("branch: external\n");
5910 if(internal&&is_ds[(ba[i]-start)>>2]) {
5911 ds_assemble_entry(i);
5912 }
5913 else {
5914 add_to_linker((int)out,ba[i],internal);
5915 emit_jmp(0);
5916 }
5917 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5918 if(((u_int)out)&7) emit_addnop(0);
5919 #endif
5920 }
5921 }
5922 else if(nevertaken) {
5923 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5924 int jaddr=(int)out;
5925 emit_jns(0);
5926 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5927 }
5928 else {
5929 int nottaken=0;
5930 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5931 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5932 if(!only32)
5933 {
5934 assert(s1h>=0);
df894a3a 5935 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5936 {
5937 emit_test(s1h,s1h);
5938 if(invert){
5939 nottaken=(int)out;
5940 emit_jns(1);
5941 }else{
5942 add_to_linker((int)out,ba[i],internal);
5943 emit_js(0);
5944 }
5945 }
df894a3a 5946 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5947 {
5948 emit_test(s1h,s1h);
5949 if(invert){
5950 nottaken=(int)out;
5951 emit_js(1);
5952 }else{
5953 add_to_linker((int)out,ba[i],internal);
5954 emit_jns(0);
5955 }
5956 }
5957 } // if(!only32)
5958 else
5959 {
5960 assert(s1l>=0);
df894a3a 5961 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5962 {
5963 emit_test(s1l,s1l);
5964 if(invert){
5965 nottaken=(int)out;
5966 emit_jns(1);
5967 }else{
5968 add_to_linker((int)out,ba[i],internal);
5969 emit_js(0);
5970 }
5971 }
df894a3a 5972 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5973 {
5974 emit_test(s1l,s1l);
5975 if(invert){
5976 nottaken=(int)out;
5977 emit_js(1);
5978 }else{
5979 add_to_linker((int)out,ba[i],internal);
5980 emit_jns(0);
5981 }
5982 }
5983 } // if(!only32)
5984
5985 if(invert) {
5986 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5987 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5988 if(adj) {
5989 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5990 add_to_linker((int)out,ba[i],internal);
5991 }else{
5992 emit_addnop(13);
5993 add_to_linker((int)out,ba[i],internal*2);
5994 }
5995 emit_jmp(0);
5996 }else
5997 #endif
5998 {
5999 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6000 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6001 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6002 if(internal)
6003 assem_debug("branch: internal\n");
6004 else
6005 assem_debug("branch: external\n");
6006 if(internal&&is_ds[(ba[i]-start)>>2]) {
6007 ds_assemble_entry(i);
6008 }
6009 else {
6010 add_to_linker((int)out,ba[i],internal);
6011 emit_jmp(0);
6012 }
6013 }
6014 set_jump_target(nottaken,(int)out);
6015 }
6016
6017 if(adj) {
6018 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6019 }
6020 } // (!unconditional)
6021 } // if(ooo)
6022 else
6023 {
6024 // In-order execution (branch first)
6025 //printf("IOE\n");
6026 int nottaken=0;
a6491170 6027 if(rt1[i]==31) {
6028 int rt,return_address;
a6491170 6029 rt=get_reg(branch_regs[i].regmap,31);
6030 if(rt>=0) {
6031 // Save the PC even if the branch is not taken
6032 return_address=start+i*4+8;
6033 emit_movimm(return_address,rt); // PC into link register
6034 #ifdef IMM_PREFETCH
6035 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6036 #endif
6037 }
6038 }
57871462 6039 if(!unconditional) {
6040 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6041 if(!only32)
6042 {
6043 assert(s1h>=0);
a6491170 6044 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6045 {
6046 emit_test(s1h,s1h);
6047 nottaken=(int)out;
6048 emit_jns(1);
6049 }
a6491170 6050 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6051 {
6052 emit_test(s1h,s1h);
6053 nottaken=(int)out;
6054 emit_js(1);
6055 }
6056 } // if(!only32)
6057 else
6058 {
6059 assert(s1l>=0);
a6491170 6060 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6061 {
6062 emit_test(s1l,s1l);
6063 nottaken=(int)out;
6064 emit_jns(1);
6065 }
a6491170 6066 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6067 {
6068 emit_test(s1l,s1l);
6069 nottaken=(int)out;
6070 emit_js(1);
6071 }
6072 }
6073 } // if(!unconditional)
6074 int adj;
6075 uint64_t ds_unneeded=branch_regs[i].u;
6076 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6077 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6078 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6079 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6080 ds_unneeded|=1;
6081 ds_unneeded_upper|=1;
6082 // branch taken
6083 if(!nevertaken) {
6084 //assem_debug("1:\n");
6085 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6086 ds_unneeded,ds_unneeded_upper);
6087 // load regs
6088 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6089 address_generation(i+1,&branch_regs[i],0);
6090 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6091 ds_assemble(i+1,&branch_regs[i]);
6092 cc=get_reg(branch_regs[i].regmap,CCREG);
6093 if(cc==-1) {
6094 emit_loadreg(CCREG,cc=HOST_CCREG);
6095 // CHECK: Is the following instruction (fall thru) allocated ok?
6096 }
6097 assert(cc==HOST_CCREG);
6098 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6099 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6100 assem_debug("cycle count (adj)\n");
6101 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6102 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6103 if(internal)
6104 assem_debug("branch: internal\n");
6105 else
6106 assem_debug("branch: external\n");
6107 if(internal&&is_ds[(ba[i]-start)>>2]) {
6108 ds_assemble_entry(i);
6109 }
6110 else {
6111 add_to_linker((int)out,ba[i],internal);
6112 emit_jmp(0);
6113 }
6114 }
6115 // branch not taken
6116 cop1_usable=prev_cop1_usable;
6117 if(!unconditional) {
6118 set_jump_target(nottaken,(int)out);
6119 assem_debug("1:\n");
6120 if(!likely[i]) {
6121 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6122 ds_unneeded,ds_unneeded_upper);
6123 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6124 address_generation(i+1,&branch_regs[i],0);
6125 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6126 ds_assemble(i+1,&branch_regs[i]);
6127 }
6128 cc=get_reg(branch_regs[i].regmap,CCREG);
6129 if(cc==-1&&!likely[i]) {
6130 // Cycle count isn't in a register, temporarily load it then write it out
6131 emit_loadreg(CCREG,HOST_CCREG);
6132 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6133 int jaddr=(int)out;
6134 emit_jns(0);
6135 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6136 emit_storereg(CCREG,HOST_CCREG);
6137 }
6138 else{
6139 cc=get_reg(i_regmap,CCREG);
6140 assert(cc==HOST_CCREG);
6141 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6142 int jaddr=(int)out;
6143 emit_jns(0);
6144 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6145 }
6146 }
6147 }
6148}
6149
6150void fjump_assemble(int i,struct regstat *i_regs)
6151{
6152 signed char *i_regmap=i_regs->regmap;
6153 int cc;
6154 int match;
6155 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6156 assem_debug("fmatch=%d\n",match);
6157 int fs,cs;
6158 int eaddr;
57871462 6159 int invert=0;
6160 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6161 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6162 if(!match) invert=1;
6163 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6164 if(i>(ba[i]-start)>>2) invert=1;
6165 #endif
6166
e1190b87 6167 if(ooo[i]) {
57871462 6168 fs=get_reg(branch_regs[i].regmap,FSREG);
6169 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6170 }
6171 else {
6172 fs=get_reg(i_regmap,FSREG);
6173 }
6174
6175 // Check cop1 unusable
6176 if(!cop1_usable) {
6177 cs=get_reg(i_regmap,CSREG);
6178 assert(cs>=0);
6179 emit_testimm(cs,0x20000000);
6180 eaddr=(int)out;
6181 emit_jeq(0);
6182 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6183 cop1_usable=1;
6184 }
6185
e1190b87 6186 if(ooo[i]) {
57871462 6187 // Out of order execution (delay slot first)
6188 //printf("OOOE\n");
6189 ds_assemble(i+1,i_regs);
6190 int adj;
6191 uint64_t bc_unneeded=branch_regs[i].u;
6192 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6193 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6194 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6195 bc_unneeded|=1;
6196 bc_unneeded_upper|=1;
6197 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6198 bc_unneeded,bc_unneeded_upper);
6199 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6200 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6201 cc=get_reg(branch_regs[i].regmap,CCREG);
6202 assert(cc==HOST_CCREG);
6203 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6204 assem_debug("cycle count (adj)\n");
6205 if(1) {
6206 int nottaken=0;
6207 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6208 if(1) {
6209 assert(fs>=0);
6210 emit_testimm(fs,0x800000);
6211 if(source[i]&0x10000) // BC1T
6212 {
6213 if(invert){
6214 nottaken=(int)out;
6215 emit_jeq(1);
6216 }else{
6217 add_to_linker((int)out,ba[i],internal);
6218 emit_jne(0);
6219 }
6220 }
6221 else // BC1F
6222 if(invert){
6223 nottaken=(int)out;
6224 emit_jne(1);
6225 }else{
6226 add_to_linker((int)out,ba[i],internal);
6227 emit_jeq(0);
6228 }
6229 {
6230 }
6231 } // if(!only32)
6232
6233 if(invert) {
6234 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6235 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6236 else if(match) emit_addnop(13);
6237 #endif
6238 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6239 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6240 if(internal)
6241 assem_debug("branch: internal\n");
6242 else
6243 assem_debug("branch: external\n");
6244 if(internal&&is_ds[(ba[i]-start)>>2]) {
6245 ds_assemble_entry(i);
6246 }
6247 else {
6248 add_to_linker((int)out,ba[i],internal);
6249 emit_jmp(0);
6250 }
6251 set_jump_target(nottaken,(int)out);
6252 }
6253
6254 if(adj) {
6255 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6256 }
6257 } // (!unconditional)
6258 } // if(ooo)
6259 else
6260 {
6261 // In-order execution (branch first)
6262 //printf("IOE\n");
6263 int nottaken=0;
6264 if(1) {
6265 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6266 if(1) {
6267 assert(fs>=0);
6268 emit_testimm(fs,0x800000);
6269 if(source[i]&0x10000) // BC1T
6270 {
6271 nottaken=(int)out;
6272 emit_jeq(1);
6273 }
6274 else // BC1F
6275 {
6276 nottaken=(int)out;
6277 emit_jne(1);
6278 }
6279 }
6280 } // if(!unconditional)
6281 int adj;
6282 uint64_t ds_unneeded=branch_regs[i].u;
6283 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6284 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6285 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6286 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6287 ds_unneeded|=1;
6288 ds_unneeded_upper|=1;
6289 // branch taken
6290 //assem_debug("1:\n");
6291 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6292 ds_unneeded,ds_unneeded_upper);
6293 // load regs
6294 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6295 address_generation(i+1,&branch_regs[i],0);
6296 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6297 ds_assemble(i+1,&branch_regs[i]);
6298 cc=get_reg(branch_regs[i].regmap,CCREG);
6299 if(cc==-1) {
6300 emit_loadreg(CCREG,cc=HOST_CCREG);
6301 // CHECK: Is the following instruction (fall thru) allocated ok?
6302 }
6303 assert(cc==HOST_CCREG);
6304 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6305 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6306 assem_debug("cycle count (adj)\n");
6307 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6308 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6309 if(internal)
6310 assem_debug("branch: internal\n");
6311 else
6312 assem_debug("branch: external\n");
6313 if(internal&&is_ds[(ba[i]-start)>>2]) {
6314 ds_assemble_entry(i);
6315 }
6316 else {
6317 add_to_linker((int)out,ba[i],internal);
6318 emit_jmp(0);
6319 }
6320
6321 // branch not taken
6322 if(1) { // <- FIXME (don't need this)
6323 set_jump_target(nottaken,(int)out);
6324 assem_debug("1:\n");
6325 if(!likely[i]) {
6326 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6327 ds_unneeded,ds_unneeded_upper);
6328 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6329 address_generation(i+1,&branch_regs[i],0);
6330 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6331 ds_assemble(i+1,&branch_regs[i]);
6332 }
6333 cc=get_reg(branch_regs[i].regmap,CCREG);
6334 if(cc==-1&&!likely[i]) {
6335 // Cycle count isn't in a register, temporarily load it then write it out
6336 emit_loadreg(CCREG,HOST_CCREG);
6337 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6338 int jaddr=(int)out;
6339 emit_jns(0);
6340 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6341 emit_storereg(CCREG,HOST_CCREG);
6342 }
6343 else{
6344 cc=get_reg(i_regmap,CCREG);
6345 assert(cc==HOST_CCREG);
6346 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6347 int jaddr=(int)out;
6348 emit_jns(0);
6349 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6350 }
6351 }
6352 }
6353}
6354
6355static void pagespan_assemble(int i,struct regstat *i_regs)
6356{
6357 int s1l=get_reg(i_regs->regmap,rs1[i]);
6358 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6359 int s2l=get_reg(i_regs->regmap,rs2[i]);
6360 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6361 void *nt_branch=NULL;
6362 int taken=0;
6363 int nottaken=0;
6364 int unconditional=0;
6365 if(rs1[i]==0)
6366 {
6367 s1l=s2l;s1h=s2h;
6368 s2l=s2h=-1;
6369 }
6370 else if(rs2[i]==0)
6371 {
6372 s2l=s2h=-1;
6373 }
6374 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6375 s1h=s2h=-1;
6376 }
6377 int hr=0;
6378 int addr,alt,ntaddr;
6379 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6380 else {
6381 while(hr<HOST_REGS)
6382 {
6383 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6384 (i_regs->regmap[hr]&63)!=rs1[i] &&
6385 (i_regs->regmap[hr]&63)!=rs2[i] )
6386 {
6387 addr=hr++;break;
6388 }
6389 hr++;
6390 }
6391 }
6392 while(hr<HOST_REGS)
6393 {
6394 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6395 (i_regs->regmap[hr]&63)!=rs1[i] &&
6396 (i_regs->regmap[hr]&63)!=rs2[i] )
6397 {
6398 alt=hr++;break;
6399 }
6400 hr++;
6401 }
6402 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6403 {
6404 while(hr<HOST_REGS)
6405 {
6406 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6407 (i_regs->regmap[hr]&63)!=rs1[i] &&
6408 (i_regs->regmap[hr]&63)!=rs2[i] )
6409 {
6410 ntaddr=hr;break;
6411 }
6412 hr++;
6413 }
6414 }
6415 assert(hr<HOST_REGS);
6416 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6417 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6418 }
6419 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6420 if(opcode[i]==2) // J
6421 {
6422 unconditional=1;
6423 }
6424 if(opcode[i]==3) // JAL
6425 {
6426 // TODO: mini_ht
6427 int rt=get_reg(i_regs->regmap,31);
6428 emit_movimm(start+i*4+8,rt);
6429 unconditional=1;
6430 }
6431 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6432 {
6433 emit_mov(s1l,addr);
6434 if(opcode2[i]==9) // JALR
6435 {
5067f341 6436 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6437 emit_movimm(start+i*4+8,rt);
6438 }
6439 }
6440 if((opcode[i]&0x3f)==4) // BEQ
6441 {
6442 if(rs1[i]==rs2[i])
6443 {
6444 unconditional=1;
6445 }
6446 else
6447 #ifdef HAVE_CMOV_IMM
6448 if(s1h<0) {
6449 if(s2l>=0) emit_cmp(s1l,s2l);
6450 else emit_test(s1l,s1l);
6451 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6452 }
6453 else
6454 #endif
6455 {
6456 assert(s1l>=0);
6457 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6458 if(s1h>=0) {
6459 if(s2h>=0) emit_cmp(s1h,s2h);
6460 else emit_test(s1h,s1h);
6461 emit_cmovne_reg(alt,addr);
6462 }
6463 if(s2l>=0) emit_cmp(s1l,s2l);
6464 else emit_test(s1l,s1l);
6465 emit_cmovne_reg(alt,addr);
6466 }
6467 }
6468 if((opcode[i]&0x3f)==5) // BNE
6469 {
6470 #ifdef HAVE_CMOV_IMM
6471 if(s1h<0) {
6472 if(s2l>=0) emit_cmp(s1l,s2l);
6473 else emit_test(s1l,s1l);
6474 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6475 }
6476 else
6477 #endif
6478 {
6479 assert(s1l>=0);
6480 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6481 if(s1h>=0) {
6482 if(s2h>=0) emit_cmp(s1h,s2h);
6483 else emit_test(s1h,s1h);
6484 emit_cmovne_reg(alt,addr);
6485 }
6486 if(s2l>=0) emit_cmp(s1l,s2l);
6487 else emit_test(s1l,s1l);
6488 emit_cmovne_reg(alt,addr);
6489 }
6490 }
6491 if((opcode[i]&0x3f)==0x14) // BEQL
6492 {
6493 if(s1h>=0) {
6494 if(s2h>=0) emit_cmp(s1h,s2h);
6495 else emit_test(s1h,s1h);
6496 nottaken=(int)out;
6497 emit_jne(0);
6498 }
6499 if(s2l>=0) emit_cmp(s1l,s2l);
6500 else emit_test(s1l,s1l);
6501 if(nottaken) set_jump_target(nottaken,(int)out);
6502 nottaken=(int)out;
6503 emit_jne(0);
6504 }
6505 if((opcode[i]&0x3f)==0x15) // BNEL
6506 {
6507 if(s1h>=0) {
6508 if(s2h>=0) emit_cmp(s1h,s2h);
6509 else emit_test(s1h,s1h);
6510 taken=(int)out;
6511 emit_jne(0);
6512 }
6513 if(s2l>=0) emit_cmp(s1l,s2l);
6514 else emit_test(s1l,s1l);
6515 nottaken=(int)out;
6516 emit_jeq(0);
6517 if(taken) set_jump_target(taken,(int)out);
6518 }
6519 if((opcode[i]&0x3f)==6) // BLEZ
6520 {
6521 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6522 emit_cmpimm(s1l,1);
6523 if(s1h>=0) emit_mov(addr,ntaddr);
6524 emit_cmovl_reg(alt,addr);
6525 if(s1h>=0) {
6526 emit_test(s1h,s1h);
6527 emit_cmovne_reg(ntaddr,addr);
6528 emit_cmovs_reg(alt,addr);
6529 }
6530 }
6531 if((opcode[i]&0x3f)==7) // BGTZ
6532 {
6533 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6534 emit_cmpimm(s1l,1);
6535 if(s1h>=0) emit_mov(addr,alt);
6536 emit_cmovl_reg(ntaddr,addr);
6537 if(s1h>=0) {
6538 emit_test(s1h,s1h);
6539 emit_cmovne_reg(alt,addr);
6540 emit_cmovs_reg(ntaddr,addr);
6541 }
6542 }
6543 if((opcode[i]&0x3f)==0x16) // BLEZL
6544 {
6545 assert((opcode[i]&0x3f)!=0x16);
6546 }
6547 if((opcode[i]&0x3f)==0x17) // BGTZL
6548 {
6549 assert((opcode[i]&0x3f)!=0x17);
6550 }
6551 assert(opcode[i]!=1); // BLTZ/BGEZ
6552
6553 //FIXME: Check CSREG
6554 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6555 if((source[i]&0x30000)==0) // BC1F
6556 {
6557 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6558 emit_testimm(s1l,0x800000);
6559 emit_cmovne_reg(alt,addr);
6560 }
6561 if((source[i]&0x30000)==0x10000) // BC1T
6562 {
6563 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6564 emit_testimm(s1l,0x800000);
6565 emit_cmovne_reg(alt,addr);
6566 }
6567 if((source[i]&0x30000)==0x20000) // BC1FL
6568 {
6569 emit_testimm(s1l,0x800000);
6570 nottaken=(int)out;
6571 emit_jne(0);
6572 }
6573 if((source[i]&0x30000)==0x30000) // BC1TL
6574 {
6575 emit_testimm(s1l,0x800000);
6576 nottaken=(int)out;
6577 emit_jeq(0);
6578 }
6579 }
6580
6581 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6582 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6583 if(likely[i]||unconditional)
6584 {
6585 emit_movimm(ba[i],HOST_BTREG);
6586 }
6587 else if(addr!=HOST_BTREG)
6588 {
6589 emit_mov(addr,HOST_BTREG);
6590 }
6591 void *branch_addr=out;
6592 emit_jmp(0);
6593 int target_addr=start+i*4+5;
6594 void *stub=out;
6595 void *compiled_target_addr=check_addr(target_addr);
6596 emit_extjump_ds((int)branch_addr,target_addr);
6597 if(compiled_target_addr) {
6598 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6599 add_link(target_addr,stub);
6600 }
6601 else set_jump_target((int)branch_addr,(int)stub);
6602 if(likely[i]) {
6603 // Not-taken path
6604 set_jump_target((int)nottaken,(int)out);
6605 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6606 void *branch_addr=out;
6607 emit_jmp(0);
6608 int target_addr=start+i*4+8;
6609 void *stub=out;
6610 void *compiled_target_addr=check_addr(target_addr);
6611 emit_extjump_ds((int)branch_addr,target_addr);
6612 if(compiled_target_addr) {
6613 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6614 add_link(target_addr,stub);
6615 }
6616 else set_jump_target((int)branch_addr,(int)stub);
6617 }
6618}
6619
6620// Assemble the delay slot for the above
6621static void pagespan_ds()
6622{
6623 assem_debug("initial delay slot:\n");
6624 u_int vaddr=start+1;
94d23bb9 6625 u_int page=get_page(vaddr);
6626 u_int vpage=get_vpage(vaddr);
57871462 6627 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6628 do_dirty_stub_ds();
6629 ll_add(jump_in+page,vaddr,(void *)out);
6630 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6631 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6632 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6633 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6634 emit_writeword(HOST_BTREG,(int)&branch_target);
6635 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6636 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6637 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6638 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6639 cop1_usable=0;
6640 is_delayslot=0;
6641 switch(itype[0]) {
6642 case ALU:
6643 alu_assemble(0,&regs[0]);break;
6644 case IMM16:
6645 imm16_assemble(0,&regs[0]);break;
6646 case SHIFT:
6647 shift_assemble(0,&regs[0]);break;
6648 case SHIFTIMM:
6649 shiftimm_assemble(0,&regs[0]);break;
6650 case LOAD:
6651 load_assemble(0,&regs[0]);break;
6652 case LOADLR:
6653 loadlr_assemble(0,&regs[0]);break;
6654 case STORE:
6655 store_assemble(0,&regs[0]);break;
6656 case STORELR:
6657 storelr_assemble(0,&regs[0]);break;
6658 case COP0:
6659 cop0_assemble(0,&regs[0]);break;
6660 case COP1:
6661 cop1_assemble(0,&regs[0]);break;
6662 case C1LS:
6663 c1ls_assemble(0,&regs[0]);break;
b9b61529 6664 case COP2:
6665 cop2_assemble(0,&regs[0]);break;
6666 case C2LS:
6667 c2ls_assemble(0,&regs[0]);break;
6668 case C2OP:
6669 c2op_assemble(0,&regs[0]);break;
57871462 6670 case FCONV:
6671 fconv_assemble(0,&regs[0]);break;
6672 case FLOAT:
6673 float_assemble(0,&regs[0]);break;
6674 case FCOMP:
6675 fcomp_assemble(0,&regs[0]);break;
6676 case MULTDIV:
6677 multdiv_assemble(0,&regs[0]);break;
6678 case MOV:
6679 mov_assemble(0,&regs[0]);break;
6680 case SYSCALL:
7139f3c8 6681 case HLECALL:
1e973cb0 6682 case INTCALL:
57871462 6683 case SPAN:
6684 case UJUMP:
6685 case RJUMP:
6686 case CJUMP:
6687 case SJUMP:
6688 case FJUMP:
6689 printf("Jump in the delay slot. This is probably a bug.\n");
6690 }
6691 int btaddr=get_reg(regs[0].regmap,BTREG);
6692 if(btaddr<0) {
6693 btaddr=get_reg(regs[0].regmap,-1);
6694 emit_readword((int)&branch_target,btaddr);
6695 }
6696 assert(btaddr!=HOST_CCREG);
6697 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6698#ifdef HOST_IMM8
6699 emit_movimm(start+4,HOST_TEMPREG);
6700 emit_cmp(btaddr,HOST_TEMPREG);
6701#else
6702 emit_cmpimm(btaddr,start+4);
6703#endif
6704 int branch=(int)out;
6705 emit_jeq(0);
6706 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6707 emit_jmp(jump_vaddr_reg[btaddr]);
6708 set_jump_target(branch,(int)out);
6709 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6710 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6711}
6712
6713// Basic liveness analysis for MIPS registers
6714void unneeded_registers(int istart,int iend,int r)
6715{
6716 int i;
bedfea38 6717 uint64_t u,uu,gte_u,b,bu,gte_bu;
6718 uint64_t temp_u,temp_uu,temp_gte_u;
57871462 6719 uint64_t tdep;
6720 if(iend==slen-1) {
6721 u=1;uu=1;
6722 }else{
6723 u=unneeded_reg[iend+1];
6724 uu=unneeded_reg_upper[iend+1];
6725 u=1;uu=1;
6726 }
bedfea38 6727 gte_u=temp_gte_u=0;
6728
57871462 6729 for (i=iend;i>=istart;i--)
6730 {
6731 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6732 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6733 {
6734 // If subroutine call, flag return address as a possible branch target
6735 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6736
6737 if(ba[i]<start || ba[i]>=(start+slen*4))
6738 {
6739 // Branch out of this block, flush all regs
6740 u=1;
6741 uu=1;
bedfea38 6742 gte_u=0;
57871462 6743 /* Hexagon hack
6744 if(itype[i]==UJUMP&&rt1[i]==31)
6745 {
6746 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6747 }
6748 if(itype[i]==RJUMP&&rs1[i]==31)
6749 {
6750 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6751 }
4cb76aa4 6752 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6753 if(itype[i]==UJUMP&&rt1[i]==31)
6754 {
6755 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6756 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6757 }
6758 if(itype[i]==RJUMP&&rs1[i]==31)
6759 {
6760 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6761 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6762 }
6763 }*/
6764 branch_unneeded_reg[i]=u;
6765 branch_unneeded_reg_upper[i]=uu;
6766 // Merge in delay slot
6767 tdep=(~uu>>rt1[i+1])&1;
6768 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6769 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6770 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6771 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6772 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6773 u|=1;uu|=1;
bedfea38 6774 gte_u|=gte_rt[i+1];
6775 gte_u&=~gte_rs[i+1];
57871462 6776 // If branch is "likely" (and conditional)
6777 // then we skip the delay slot on the fall-thru path
6778 if(likely[i]) {
6779 if(i<slen-1) {
6780 u&=unneeded_reg[i+2];
6781 uu&=unneeded_reg_upper[i+2];
bedfea38 6782 gte_u&=gte_unneeded[i+2];
57871462 6783 }
6784 else
6785 {
6786 u=1;
6787 uu=1;
bedfea38 6788 gte_u=0;
57871462 6789 }
6790 }
6791 }
6792 else
6793 {
6794 // Internal branch, flag target
6795 bt[(ba[i]-start)>>2]=1;
6796 if(ba[i]<=start+i*4) {
6797 // Backward branch
6798 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6799 {
6800 // Unconditional branch
6801 temp_u=1;temp_uu=1;
bedfea38 6802 temp_gte_u=0;
57871462 6803 } else {
6804 // Conditional branch (not taken case)
6805 temp_u=unneeded_reg[i+2];
6806 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6807 temp_gte_u&=gte_unneeded[i+2];
57871462 6808 }
6809 // Merge in delay slot
6810 tdep=(~temp_uu>>rt1[i+1])&1;
6811 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6812 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6813 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6814 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6815 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6816 temp_u|=1;temp_uu|=1;
bedfea38 6817 temp_gte_u|=gte_rt[i+1];
6818 temp_gte_u&=~gte_rs[i+1];
57871462 6819 // If branch is "likely" (and conditional)
6820 // then we skip the delay slot on the fall-thru path
6821 if(likely[i]) {
6822 if(i<slen-1) {
6823 temp_u&=unneeded_reg[i+2];
6824 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6825 temp_gte_u&=gte_unneeded[i+2];
57871462 6826 }
6827 else
6828 {
6829 temp_u=1;
6830 temp_uu=1;
bedfea38 6831 temp_gte_u=0;
57871462 6832 }
6833 }
6834 tdep=(~temp_uu>>rt1[i])&1;
6835 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6836 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6837 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6838 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6839 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6840 temp_u|=1;temp_uu|=1;
bedfea38 6841 temp_gte_u|=gte_rt[i];
6842 temp_gte_u&=~gte_rs[i];
57871462 6843 unneeded_reg[i]=temp_u;
6844 unneeded_reg_upper[i]=temp_uu;
bedfea38 6845 gte_unneeded[i]=temp_gte_u;
57871462 6846 // Only go three levels deep. This recursion can take an
6847 // excessive amount of time if there are a lot of nested loops.
6848 if(r<2) {
6849 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6850 }else{
6851 unneeded_reg[(ba[i]-start)>>2]=1;
6852 unneeded_reg_upper[(ba[i]-start)>>2]=1;
bedfea38 6853 gte_unneeded[(ba[i]-start)>>2]=0;
57871462 6854 }
6855 } /*else*/ if(1) {
6856 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6857 {
6858 // Unconditional branch
6859 u=unneeded_reg[(ba[i]-start)>>2];
6860 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6861 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6862 branch_unneeded_reg[i]=u;
6863 branch_unneeded_reg_upper[i]=uu;
6864 //u=1;
6865 //uu=1;
6866 //branch_unneeded_reg[i]=u;
6867 //branch_unneeded_reg_upper[i]=uu;
6868 // Merge in delay slot
6869 tdep=(~uu>>rt1[i+1])&1;
6870 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6871 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6872 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6873 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6874 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6875 u|=1;uu|=1;
bedfea38 6876 gte_u|=gte_rt[i+1];
6877 gte_u&=~gte_rs[i+1];
57871462 6878 } else {
6879 // Conditional branch
6880 b=unneeded_reg[(ba[i]-start)>>2];
6881 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6882 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6883 branch_unneeded_reg[i]=b;
6884 branch_unneeded_reg_upper[i]=bu;
6885 //b=1;
6886 //bu=1;
6887 //branch_unneeded_reg[i]=b;
6888 //branch_unneeded_reg_upper[i]=bu;
6889 // Branch delay slot
6890 tdep=(~uu>>rt1[i+1])&1;
6891 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6892 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6893 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6894 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6895 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6896 b|=1;bu|=1;
bedfea38 6897 gte_bu|=gte_rt[i+1];
6898 gte_bu&=~gte_rs[i+1];
57871462 6899 // If branch is "likely" then we skip the
6900 // delay slot on the fall-thru path
6901 if(likely[i]) {
6902 u=b;
6903 uu=bu;
bedfea38 6904 gte_u=gte_bu;
57871462 6905 if(i<slen-1) {
6906 u&=unneeded_reg[i+2];
6907 uu&=unneeded_reg_upper[i+2];
bedfea38 6908 gte_u&=gte_unneeded[i+2];
57871462 6909 //u=1;
6910 //uu=1;
6911 }
6912 } else {
6913 u&=b;
6914 uu&=bu;
bedfea38 6915 gte_u&=gte_bu;
57871462 6916 //u=1;
6917 //uu=1;
6918 }
6919 if(i<slen-1) {
6920 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6921 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6922 //branch_unneeded_reg[i]=1;
6923 //branch_unneeded_reg_upper[i]=1;
6924 } else {
6925 branch_unneeded_reg[i]=1;
6926 branch_unneeded_reg_upper[i]=1;
6927 }
6928 }
6929 }
6930 }
6931 }
1e973cb0 6932 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6933 {
6934 // SYSCALL instruction (software interrupt)
6935 u=1;
6936 uu=1;
6937 }
6938 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6939 {
6940 // ERET instruction (return from interrupt)
6941 u=1;
6942 uu=1;
6943 }
6944 //u=uu=1; // DEBUG
6945 tdep=(~uu>>rt1[i])&1;
6946 // Written registers are unneeded
6947 u|=1LL<<rt1[i];
6948 u|=1LL<<rt2[i];
6949 uu|=1LL<<rt1[i];
6950 uu|=1LL<<rt2[i];
bedfea38 6951 gte_u|=gte_rt[i];
57871462 6952 // Accessed registers are needed
6953 u&=~(1LL<<rs1[i]);
6954 u&=~(1LL<<rs2[i]);
6955 uu&=~(1LL<<us1[i]);
6956 uu&=~(1LL<<us2[i]);
bedfea38 6957 gte_u&=~gte_rs[i];
57871462 6958 // Source-target dependencies
6959 uu&=~(tdep<<dep1[i]);
6960 uu&=~(tdep<<dep2[i]);
6961 // R0 is always unneeded
6962 u|=1;uu|=1;
6963 // Save it
6964 unneeded_reg[i]=u;
6965 unneeded_reg_upper[i]=uu;
bedfea38 6966 gte_unneeded[i]=gte_u;
57871462 6967 /*
6968 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6969 printf("U:");
6970 int r;
6971 for(r=1;r<=CCREG;r++) {
6972 if((unneeded_reg[i]>>r)&1) {
6973 if(r==HIREG) printf(" HI");
6974 else if(r==LOREG) printf(" LO");
6975 else printf(" r%d",r);
6976 }
6977 }
6978 printf(" UU:");
6979 for(r=1;r<=CCREG;r++) {
6980 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6981 if(r==HIREG) printf(" HI");
6982 else if(r==LOREG) printf(" LO");
6983 else printf(" r%d",r);
6984 }
6985 }
6986 printf("\n");*/
6987 }
252c20fc 6988#ifdef FORCE32
6989 for (i=iend;i>=istart;i--)
6990 {
6991 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6992 }
6993#endif
57871462 6994}
6995
6996// Identify registers which are likely to contain 32-bit values
6997// This is used to predict whether any branches will jump to a
6998// location with 64-bit values in registers.
6999static void provisional_32bit()
7000{
7001 int i,j;
7002 uint64_t is32=1;
7003 uint64_t lastbranch=1;
7004
7005 for(i=0;i<slen;i++)
7006 {
7007 if(i>0) {
7008 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7009 if(i>1) is32=lastbranch;
7010 else is32=1;
7011 }
7012 }
7013 if(i>1)
7014 {
7015 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7016 if(likely[i-2]) {
7017 if(i>2) is32=lastbranch;
7018 else is32=1;
7019 }
7020 }
7021 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7022 {
7023 if(rs1[i-2]==0||rs2[i-2]==0)
7024 {
7025 if(rs1[i-2]) {
7026 is32|=1LL<<rs1[i-2];
7027 }
7028 if(rs2[i-2]) {
7029 is32|=1LL<<rs2[i-2];
7030 }
7031 }
7032 }
7033 }
7034 // If something jumps here with 64-bit values
7035 // then promote those registers to 64 bits
7036 if(bt[i])
7037 {
7038 uint64_t temp_is32=is32;
7039 for(j=i-1;j>=0;j--)
7040 {
7041 if(ba[j]==start+i*4)
7042 //temp_is32&=branch_regs[j].is32;
7043 temp_is32&=p32[j];
7044 }
7045 for(j=i;j<slen;j++)
7046 {
7047 if(ba[j]==start+i*4)
7048 temp_is32=1;
7049 }
7050 is32=temp_is32;
7051 }
7052 int type=itype[i];
7053 int op=opcode[i];
7054 int op2=opcode2[i];
7055 int rt=rt1[i];
7056 int s1=rs1[i];
7057 int s2=rs2[i];
7058 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7059 // Branches don't write registers, consider the delay slot instead.
7060 type=itype[i+1];
7061 op=opcode[i+1];
7062 op2=opcode2[i+1];
7063 rt=rt1[i+1];
7064 s1=rs1[i+1];
7065 s2=rs2[i+1];
7066 lastbranch=is32;
7067 }
7068 switch(type) {
7069 case LOAD:
7070 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7071 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7072 is32&=~(1LL<<rt);
7073 else
7074 is32|=1LL<<rt;
7075 break;
7076 case STORE:
7077 case STORELR:
7078 break;
7079 case LOADLR:
7080 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7081 if(op==0x22) is32|=1LL<<rt; // LWL
7082 break;
7083 case IMM16:
7084 if (op==0x08||op==0x09|| // ADDI/ADDIU
7085 op==0x0a||op==0x0b|| // SLTI/SLTIU
7086 op==0x0c|| // ANDI
7087 op==0x0f) // LUI
7088 {
7089 is32|=1LL<<rt;
7090 }
7091 if(op==0x18||op==0x19) { // DADDI/DADDIU
7092 is32&=~(1LL<<rt);
7093 //if(imm[i]==0)
7094 // is32|=((is32>>s1)&1LL)<<rt;
7095 }
7096 if(op==0x0d||op==0x0e) { // ORI/XORI
7097 uint64_t sr=((is32>>s1)&1LL);
7098 is32&=~(1LL<<rt);
7099 is32|=sr<<rt;
7100 }
7101 break;
7102 case UJUMP:
7103 break;
7104 case RJUMP:
7105 break;
7106 case CJUMP:
7107 break;
7108 case SJUMP:
7109 break;
7110 case FJUMP:
7111 break;
7112 case ALU:
7113 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7114 is32|=1LL<<rt;
7115 }
7116 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7117 is32|=1LL<<rt;
7118 }
7119 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7120 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7121 is32&=~(1LL<<rt);
7122 is32|=sr<<rt;
7123 }
7124 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7125 if(s1==0&&s2==0) {
7126 is32|=1LL<<rt;
7127 }
7128 else if(s2==0) {
7129 uint64_t sr=((is32>>s1)&1LL);
7130 is32&=~(1LL<<rt);
7131 is32|=sr<<rt;
7132 }
7133 else if(s1==0) {
7134 uint64_t sr=((is32>>s2)&1LL);
7135 is32&=~(1LL<<rt);
7136 is32|=sr<<rt;
7137 }
7138 else {
7139 is32&=~(1LL<<rt);
7140 }
7141 }
7142 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7143 if(s1==0&&s2==0) {
7144 is32|=1LL<<rt;
7145 }
7146 else if(s2==0) {
7147 uint64_t sr=((is32>>s1)&1LL);
7148 is32&=~(1LL<<rt);
7149 is32|=sr<<rt;
7150 }
7151 else {
7152 is32&=~(1LL<<rt);
7153 }
7154 }
7155 break;
7156 case MULTDIV:
7157 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7158 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7159 }
7160 else {
7161 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7162 }
7163 break;
7164 case MOV:
7165 {
7166 uint64_t sr=((is32>>s1)&1LL);
7167 is32&=~(1LL<<rt);
7168 is32|=sr<<rt;
7169 }
7170 break;
7171 case SHIFT:
7172 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7173 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7174 break;
7175 case SHIFTIMM:
7176 is32|=1LL<<rt;
7177 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7178 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7179 break;
7180 case COP0:
7181 if(op2==0) is32|=1LL<<rt; // MFC0
7182 break;
7183 case COP1:
b9b61529 7184 case COP2:
57871462 7185 if(op2==0) is32|=1LL<<rt; // MFC1
7186 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7187 if(op2==2) is32|=1LL<<rt; // CFC1
7188 break;
7189 case C1LS:
b9b61529 7190 case C2LS:
57871462 7191 break;
7192 case FLOAT:
7193 case FCONV:
7194 break;
7195 case FCOMP:
7196 break;
b9b61529 7197 case C2OP:
57871462 7198 case SYSCALL:
7139f3c8 7199 case HLECALL:
57871462 7200 break;
7201 default:
7202 break;
7203 }
7204 is32|=1;
7205 p32[i]=is32;
7206
7207 if(i>0)
7208 {
7209 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7210 {
7211 if(rt1[i-1]==31) // JAL/JALR
7212 {
7213 // Subroutine call will return here, don't alloc any registers
7214 is32=1;
7215 }
7216 else if(i+1<slen)
7217 {
7218 // Internal branch will jump here, match registers to caller
7219 is32=0x3FFFFFFFFLL;
7220 }
7221 }
7222 }
7223 }
7224}
7225
7226// Identify registers which may be assumed to contain 32-bit values
7227// and where optimizations will rely on this.
7228// This is used to determine whether backward branches can safely
7229// jump to a location with 64-bit values in registers.
7230static void provisional_r32()
7231{
7232 u_int r32=0;
7233 int i;
7234
7235 for (i=slen-1;i>=0;i--)
7236 {
7237 int hr;
7238 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7239 {
7240 if(ba[i]<start || ba[i]>=(start+slen*4))
7241 {
7242 // Branch out of this block, don't need anything
7243 r32=0;
7244 }
7245 else
7246 {
7247 // Internal branch
7248 // Need whatever matches the target
7249 // (and doesn't get overwritten by the delay slot instruction)
7250 r32=0;
7251 int t=(ba[i]-start)>>2;
7252 if(ba[i]>start+i*4) {
7253 // Forward branch
7254 //if(!(requires_32bit[t]&~regs[i].was32))
7255 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7256 if(!(pr32[t]&~regs[i].was32))
7257 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7258 }else{
7259 // Backward branch
7260 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7261 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7262 }
7263 }
7264 // Conditional branch may need registers for following instructions
7265 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7266 {
7267 if(i<slen-2) {
7268 //r32|=requires_32bit[i+2];
7269 r32|=pr32[i+2];
7270 r32&=regs[i].was32;
7271 // Mark this address as a branch target since it may be called
7272 // upon return from interrupt
7273 //bt[i+2]=1;
7274 }
7275 }
7276 // Merge in delay slot
7277 if(!likely[i]) {
7278 // These are overwritten unless the branch is "likely"
7279 // and the delay slot is nullified if not taken
7280 r32&=~(1LL<<rt1[i+1]);
7281 r32&=~(1LL<<rt2[i+1]);
7282 }
7283 // Assume these are needed (delay slot)
7284 if(us1[i+1]>0)
7285 {
7286 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7287 }
7288 if(us2[i+1]>0)
7289 {
7290 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7291 }
7292 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7293 {
7294 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7295 }
7296 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7297 {
7298 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7299 }
7300 }
1e973cb0 7301 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7302 {
7303 // SYSCALL instruction (software interrupt)
7304 r32=0;
7305 }
7306 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7307 {
7308 // ERET instruction (return from interrupt)
7309 r32=0;
7310 }
7311 // Check 32 bits
7312 r32&=~(1LL<<rt1[i]);
7313 r32&=~(1LL<<rt2[i]);
7314 if(us1[i]>0)
7315 {
7316 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7317 }
7318 if(us2[i]>0)
7319 {
7320 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7321 }
7322 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7323 {
7324 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7325 }
7326 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7327 {
7328 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7329 }
7330 //requires_32bit[i]=r32;
7331 pr32[i]=r32;
7332
7333 // Dirty registers which are 32-bit, require 32-bit input
7334 // as they will be written as 32-bit values
7335 for(hr=0;hr<HOST_REGS;hr++)
7336 {
7337 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7338 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7339 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7340 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7341 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7342 }
7343 }
7344 }
7345 }
7346}
7347
7348// Write back dirty registers as soon as we will no longer modify them,
7349// so that we don't end up with lots of writes at the branches.
7350void clean_registers(int istart,int iend,int wr)
7351{
7352 int i;
7353 int r;
7354 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7355 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7356 if(iend==slen-1) {
7357 will_dirty_i=will_dirty_next=0;
7358 wont_dirty_i=wont_dirty_next=0;
7359 }else{
7360 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7361 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7362 }
7363 for (i=iend;i>=istart;i--)
7364 {
7365 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7366 {
7367 if(ba[i]<start || ba[i]>=(start+slen*4))
7368 {
7369 // Branch out of this block, flush all regs
7370 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7371 {
7372 // Unconditional branch
7373 will_dirty_i=0;
7374 wont_dirty_i=0;
7375 // Merge in delay slot (will dirty)
7376 for(r=0;r<HOST_REGS;r++) {
7377 if(r!=EXCLUDE_REG) {
7378 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7379 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7380 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7381 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7382 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7383 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7384 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7385 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7386 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7387 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7388 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7389 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7390 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7391 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7392 }
7393 }
7394 }
7395 else
7396 {
7397 // Conditional branch
7398 will_dirty_i=0;
7399 wont_dirty_i=wont_dirty_next;
7400 // Merge in delay slot (will dirty)
7401 for(r=0;r<HOST_REGS;r++) {
7402 if(r!=EXCLUDE_REG) {
7403 if(!likely[i]) {
7404 // Might not dirty if likely branch is not taken
7405 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7406 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7407 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7408 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7409 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7410 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7411 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7412 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7413 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7414 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7415 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7416 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7417 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7418 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7419 }
7420 }
7421 }
7422 }
7423 // Merge in delay slot (wont dirty)
7424 for(r=0;r<HOST_REGS;r++) {
7425 if(r!=EXCLUDE_REG) {
7426 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7427 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7428 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7429 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7430 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7431 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7432 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7433 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7434 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7435 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7436 }
7437 }
7438 if(wr) {
7439 #ifndef DESTRUCTIVE_WRITEBACK
7440 branch_regs[i].dirty&=wont_dirty_i;
7441 #endif
7442 branch_regs[i].dirty|=will_dirty_i;
7443 }
7444 }
7445 else
7446 {
7447 // Internal branch
7448 if(ba[i]<=start+i*4) {
7449 // Backward branch
7450 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7451 {
7452 // Unconditional branch
7453 temp_will_dirty=0;
7454 temp_wont_dirty=0;
7455 // Merge in delay slot (will dirty)
7456 for(r=0;r<HOST_REGS;r++) {
7457 if(r!=EXCLUDE_REG) {
7458 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7459 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7460 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7461 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7462 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7463 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7464 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7465 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7466 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7467 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7468 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7469 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7470 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7471 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7472 }
7473 }
7474 } else {
7475 // Conditional branch (not taken case)
7476 temp_will_dirty=will_dirty_next;
7477 temp_wont_dirty=wont_dirty_next;
7478 // Merge in delay slot (will dirty)
7479 for(r=0;r<HOST_REGS;r++) {
7480 if(r!=EXCLUDE_REG) {
7481 if(!likely[i]) {
7482 // Will not dirty if likely branch is not taken
7483 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7484 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7485 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7486 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7487 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7488 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7489 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7490 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7491 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7492 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7493 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7494 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7495 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7496 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7497 }
7498 }
7499 }
7500 }
7501 // Merge in delay slot (wont dirty)
7502 for(r=0;r<HOST_REGS;r++) {
7503 if(r!=EXCLUDE_REG) {
7504 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7505 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7506 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7507 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7508 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7509 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7510 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7511 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7512 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7513 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7514 }
7515 }
7516 // Deal with changed mappings
7517 if(i<iend) {
7518 for(r=0;r<HOST_REGS;r++) {
7519 if(r!=EXCLUDE_REG) {
7520 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7521 temp_will_dirty&=~(1<<r);
7522 temp_wont_dirty&=~(1<<r);
7523 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7524 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7525 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7526 } else {
7527 temp_will_dirty|=1<<r;
7528 temp_wont_dirty|=1<<r;
7529 }
7530 }
7531 }
7532 }
7533 }
7534 if(wr) {
7535 will_dirty[i]=temp_will_dirty;
7536 wont_dirty[i]=temp_wont_dirty;
7537 clean_registers((ba[i]-start)>>2,i-1,0);
7538 }else{
7539 // Limit recursion. It can take an excessive amount
7540 // of time if there are a lot of nested loops.
7541 will_dirty[(ba[i]-start)>>2]=0;
7542 wont_dirty[(ba[i]-start)>>2]=-1;
7543 }
7544 }
7545 /*else*/ if(1)
7546 {
7547 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7548 {
7549 // Unconditional branch
7550 will_dirty_i=0;
7551 wont_dirty_i=0;
7552 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7553 for(r=0;r<HOST_REGS;r++) {
7554 if(r!=EXCLUDE_REG) {
7555 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7556 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7557 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7558 }
e3234ecf 7559 if(branch_regs[i].regmap[r]>=0) {
7560 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7561 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7562 }
57871462 7563 }
7564 }
7565 //}
7566 // Merge in delay slot
7567 for(r=0;r<HOST_REGS;r++) {
7568 if(r!=EXCLUDE_REG) {
7569 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7570 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7571 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7572 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7573 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7574 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7575 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7576 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7577 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7578 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7579 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7580 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7581 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7582 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7583 }
7584 }
7585 } else {
7586 // Conditional branch
7587 will_dirty_i=will_dirty_next;
7588 wont_dirty_i=wont_dirty_next;
7589 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7590 for(r=0;r<HOST_REGS;r++) {
7591 if(r!=EXCLUDE_REG) {
e3234ecf 7592 signed char target_reg=branch_regs[i].regmap[r];
7593 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7594 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7595 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7596 }
e3234ecf 7597 else if(target_reg>=0) {
7598 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7599 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7600 }
7601 // Treat delay slot as part of branch too
7602 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7603 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7604 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7605 }
7606 else
7607 {
7608 will_dirty[i+1]&=~(1<<r);
7609 }*/
7610 }
7611 }
7612 //}
7613 // Merge in delay slot
7614 for(r=0;r<HOST_REGS;r++) {
7615 if(r!=EXCLUDE_REG) {
7616 if(!likely[i]) {
7617 // Might not dirty if likely branch is not taken
7618 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7619 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7620 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7621 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7622 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7623 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7624 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7625 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7626 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7627 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7628 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7629 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7630 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7631 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7632 }
7633 }
7634 }
7635 }
e3234ecf 7636 // Merge in delay slot (won't dirty)
57871462 7637 for(r=0;r<HOST_REGS;r++) {
7638 if(r!=EXCLUDE_REG) {
7639 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7640 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7641 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7642 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7643 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7644 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7645 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7646 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7647 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7648 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7649 }
7650 }
7651 if(wr) {
7652 #ifndef DESTRUCTIVE_WRITEBACK
7653 branch_regs[i].dirty&=wont_dirty_i;
7654 #endif
7655 branch_regs[i].dirty|=will_dirty_i;
7656 }
7657 }
7658 }
7659 }
1e973cb0 7660 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7661 {
7662 // SYSCALL instruction (software interrupt)
7663 will_dirty_i=0;
7664 wont_dirty_i=0;
7665 }
7666 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7667 {
7668 // ERET instruction (return from interrupt)
7669 will_dirty_i=0;
7670 wont_dirty_i=0;
7671 }
7672 will_dirty_next=will_dirty_i;
7673 wont_dirty_next=wont_dirty_i;
7674 for(r=0;r<HOST_REGS;r++) {
7675 if(r!=EXCLUDE_REG) {
7676 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7677 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7678 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7679 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7680 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7681 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7682 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7683 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7684 if(i>istart) {
7685 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7686 {
7687 // Don't store a register immediately after writing it,
7688 // may prevent dual-issue.
7689 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7690 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7691 }
7692 }
7693 }
7694 }
7695 // Save it
7696 will_dirty[i]=will_dirty_i;
7697 wont_dirty[i]=wont_dirty_i;
7698 // Mark registers that won't be dirtied as not dirty
7699 if(wr) {
7700 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7701 for(r=0;r<HOST_REGS;r++) {
7702 if((will_dirty_i>>r)&1) {
7703 printf(" r%d",r);
7704 }
7705 }
7706 printf("\n");*/
7707
7708 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7709 regs[i].dirty|=will_dirty_i;
7710 #ifndef DESTRUCTIVE_WRITEBACK
7711 regs[i].dirty&=wont_dirty_i;
7712 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7713 {
7714 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7715 for(r=0;r<HOST_REGS;r++) {
7716 if(r!=EXCLUDE_REG) {
7717 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7718 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7719 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7720 }
7721 }
7722 }
7723 }
7724 else
7725 {
7726 if(i<iend) {
7727 for(r=0;r<HOST_REGS;r++) {
7728 if(r!=EXCLUDE_REG) {
7729 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7730 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7731 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7732 }
7733 }
7734 }
7735 }
7736 #endif
7737 //}
7738 }
7739 // Deal with changed mappings
7740 temp_will_dirty=will_dirty_i;
7741 temp_wont_dirty=wont_dirty_i;
7742 for(r=0;r<HOST_REGS;r++) {
7743 if(r!=EXCLUDE_REG) {
7744 int nr;
7745 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7746 if(wr) {
7747 #ifndef DESTRUCTIVE_WRITEBACK
7748 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7749 #endif
7750 regs[i].wasdirty|=will_dirty_i&(1<<r);
7751 }
7752 }
f776eb14 7753 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7754 // Register moved to a different register
7755 will_dirty_i&=~(1<<r);
7756 wont_dirty_i&=~(1<<r);
7757 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7758 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7759 if(wr) {
7760 #ifndef DESTRUCTIVE_WRITEBACK
7761 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7762 #endif
7763 regs[i].wasdirty|=will_dirty_i&(1<<r);
7764 }
7765 }
7766 else {
7767 will_dirty_i&=~(1<<r);
7768 wont_dirty_i&=~(1<<r);
7769 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7770 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7771 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7772 } else {
7773 wont_dirty_i|=1<<r;
7774 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7775 }
7776 }
7777 }
7778 }
7779 }
7780}
7781
7782 /* disassembly */
7783void disassemble_inst(int i)
7784{
7785 if (bt[i]) printf("*"); else printf(" ");
7786 switch(itype[i]) {
7787 case UJUMP:
7788 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7789 case CJUMP:
7790 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7791 case SJUMP:
7792 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7793 case FJUMP:
7794 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7795 case RJUMP:
74426039 7796 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7797 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7798 else
7799 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7800 break;
57871462 7801 case SPAN:
7802 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7803 case IMM16:
7804 if(opcode[i]==0xf) //LUI
7805 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7806 else
7807 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7808 break;
7809 case LOAD:
7810 case LOADLR:
7811 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7812 break;
7813 case STORE:
7814 case STORELR:
7815 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7816 break;
7817 case ALU:
7818 case SHIFT:
7819 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7820 break;
7821 case MULTDIV:
7822 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7823 break;
7824 case SHIFTIMM:
7825 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7826 break;
7827 case MOV:
7828 if((opcode2[i]&0x1d)==0x10)
7829 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7830 else if((opcode2[i]&0x1d)==0x11)
7831 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7832 else
7833 printf (" %x: %s\n",start+i*4,insn[i]);
7834 break;
7835 case COP0:
7836 if(opcode2[i]==0)
7837 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7838 else if(opcode2[i]==4)
7839 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7840 else printf (" %x: %s\n",start+i*4,insn[i]);
7841 break;
7842 case COP1:
7843 if(opcode2[i]<3)
7844 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7845 else if(opcode2[i]>3)
7846 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7847 else printf (" %x: %s\n",start+i*4,insn[i]);
7848 break;
b9b61529 7849 case COP2:
7850 if(opcode2[i]<3)
7851 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7852 else if(opcode2[i]>3)
7853 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7854 else printf (" %x: %s\n",start+i*4,insn[i]);
7855 break;
57871462 7856 case C1LS:
7857 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7858 break;
b9b61529 7859 case C2LS:
7860 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7861 break;
1e973cb0 7862 case INTCALL:
7863 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7864 break;
57871462 7865 default:
7866 //printf (" %s %8x\n",insn[i],source[i]);
7867 printf (" %x: %s\n",start+i*4,insn[i]);
7868 }
7869}
7870
dc990066 7871// clear the state completely, instead of just marking
7872// things invalid like invalidate_all_pages() does
7873void new_dynarec_clear_full()
57871462 7874{
57871462 7875 int n;
35775df7 7876 out=(u_char *)BASE_ADDR;
7877 memset(invalid_code,1,sizeof(invalid_code));
7878 memset(hash_table,0xff,sizeof(hash_table));
57871462 7879 memset(mini_ht,-1,sizeof(mini_ht));
7880 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7881 memset(shadow,0,sizeof(shadow));
57871462 7882 copy=shadow;
7883 expirep=16384; // Expiry pointer, +2 blocks
7884 pending_exception=0;
7885 literalcount=0;
57871462 7886 stop_after_jal=0;
9be4ba64 7887 inv_code_start=inv_code_end=~0;
bedfea38 7888 gte_reads_flags=0;
57871462 7889 // TLB
af4ee1fe 7890#ifndef DISABLE_TLB
57871462 7891 using_tlb=0;
af4ee1fe 7892#endif
dadf55f2 7893 sp_in_mirror=0;
57871462 7894 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7895 memory_map[n]=-1;
7896 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7897 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7898 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7899 memory_map[n]=-1;
dc990066 7900 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7901 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7902 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7903}
7904
7905void new_dynarec_init()
7906{
7907 printf("Init new dynarec\n");
7908 out=(u_char *)BASE_ADDR;
7909 if (mmap (out, 1<<TARGET_SIZE_2,
7910 PROT_READ | PROT_WRITE | PROT_EXEC,
7911 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7912 -1, 0) <= 0) {printf("mmap() failed\n");}
7913#ifdef MUPEN64
7914 rdword=&readmem_dword;
7915 fake_pc.f.r.rs=&readmem_dword;
7916 fake_pc.f.r.rt=&readmem_dword;
7917 fake_pc.f.r.rd=&readmem_dword;
7918#endif
7919 int n;
7920 new_dynarec_clear_full();
7921#ifdef HOST_IMM8
7922 // Copy this into local area so we don't have to put it in every literal pool
7923 invc_ptr=invalid_code;
7924#endif
24385cae 7925#ifdef MUPEN64
57871462 7926 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7927 writemem[n] = write_nomem_new;
7928 writememb[n] = write_nomemb_new;
7929 writememh[n] = write_nomemh_new;
24385cae 7930#ifndef FORCE32
57871462 7931 writememd[n] = write_nomemd_new;
24385cae 7932#endif
57871462 7933 readmem[n] = read_nomem_new;
7934 readmemb[n] = read_nomemb_new;
7935 readmemh[n] = read_nomemh_new;
24385cae 7936#ifndef FORCE32
57871462 7937 readmemd[n] = read_nomemd_new;
24385cae 7938#endif
57871462 7939 }
7940 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7941 writemem[n] = write_rdram_new;
7942 writememb[n] = write_rdramb_new;
7943 writememh[n] = write_rdramh_new;
24385cae 7944#ifndef FORCE32
57871462 7945 writememd[n] = write_rdramd_new;
24385cae 7946#endif
57871462 7947 }
7948 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7949 writemem[n] = write_nomem_new;
7950 writememb[n] = write_nomemb_new;
7951 writememh[n] = write_nomemh_new;
24385cae 7952#ifndef FORCE32
57871462 7953 writememd[n] = write_nomemd_new;
24385cae 7954#endif
57871462 7955 readmem[n] = read_nomem_new;
7956 readmemb[n] = read_nomemb_new;
7957 readmemh[n] = read_nomemh_new;
24385cae 7958#ifndef FORCE32
57871462 7959 readmemd[n] = read_nomemd_new;
24385cae 7960#endif
57871462 7961 }
24385cae 7962#endif
57871462 7963 tlb_hacks();
7964 arch_init();
7965}
7966
7967void new_dynarec_cleanup()
7968{
7969 int n;
7970 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7971 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7972 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7973 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7974 #ifdef ROM_COPY
7975 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7976 #endif
7977}
7978
7979int new_recompile_block(int addr)
7980{
7981/*
7982 if(addr==0x800cd050) {
7983 int block;
7984 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7985 int n;
7986 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7987 }
7988*/
7989 //if(Count==365117028) tracedebug=1;
7990 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7991 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7992 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7993 //if(debug)
7994 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7995 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7996 /*if(Count>=312978186) {
7997 rlist();
7998 }*/
7999 //rlist();
8000 start = (u_int)addr&~3;
8001 //assert(((u_int)addr&1)==0);
7139f3c8 8002#ifdef PCSX
dadf55f2 8003 if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
8004 0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
c2e3bd42 8005 printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
dadf55f2 8006 sp_in_mirror=1;
8007 }
9ad4d757 8008 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8009 {
7139f3c8 8010 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8011 u_int beginning=(u_int)out;
7139f3c8 8012 u_int page=get_page(start);
7139f3c8 8013 invalid_code[start>>12]=0;
8014 emit_movimm(start,0);
8015 emit_writeword(0,(int)&pcaddr);
bb5285ef 8016 emit_jmp((int)new_dyna_leave);
15776b68 8017 literal_pool(0);
bb5285ef 8018#ifdef __arm__
8019 __clear_cache((void *)beginning,out);
8020#endif
9ad4d757 8021 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8022 return 0;
8023 }
560e4a12 8024 else if ((u_int)addr < 0x00200000 ||
8025 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8026 // used for BIOS calls mostly?
560e4a12 8027 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8028 pagelimit = (addr&0xa0000000)|0x00200000;
8029 }
8030 else if (!Config.HLE && (
8031/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8032 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8033 // BIOS
8034 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8035 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8036 }
8037 else
8038#endif
3d624f89 8039#ifdef MUPEN64
57871462 8040 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8041 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8042 pagelimit = 0xa4001000;
8043 }
3d624f89 8044 else
8045#endif
4cb76aa4 8046 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8047 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8048 pagelimit = 0x80000000+RAM_SIZE;
57871462 8049 }
90ae6d4e 8050#ifndef DISABLE_TLB
57871462 8051 else if ((signed int)addr >= (signed int)0xC0000000) {
8052 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8053 //if(tlb_LUT_r[start>>12])
8054 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8055 if((signed int)memory_map[start>>12]>=0) {
8056 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8057 pagelimit=(start+4096)&0xFFFFF000;
8058 int map=memory_map[start>>12];
8059 int i;
8060 for(i=0;i<5;i++) {
8061 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8062 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8063 }
8064 assem_debug("pagelimit=%x\n",pagelimit);
8065 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8066 }
8067 else {
8068 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8069 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8070 return -1; // Caller will invoke exception handler
57871462 8071 }
8072 //printf("source= %x\n",(int)source);
8073 }
90ae6d4e 8074#endif
57871462 8075 else {
8076 printf("Compile at bogus memory address: %x \n", (int)addr);
8077 exit(1);
8078 }
8079
8080 /* Pass 1: disassemble */
8081 /* Pass 2: register dependencies, branch targets */
8082 /* Pass 3: register allocation */
8083 /* Pass 4: branch dependencies */
8084 /* Pass 5: pre-alloc */
8085 /* Pass 6: optimize clean/dirty state */
8086 /* Pass 7: flag 32-bit registers */
8087 /* Pass 8: assembly */
8088 /* Pass 9: linker */
8089 /* Pass 10: garbage collection / free memory */
8090
8091 int i,j;
8092 int done=0;
8093 unsigned int type,op,op2;
8094
8095 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8096
8097 /* Pass 1 disassembly */
8098
8099 for(i=0;!done;i++) {
e1190b87 8100 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8101 minimum_free_regs[i]=0;
57871462 8102 opcode[i]=op=source[i]>>26;
8103 switch(op)
8104 {
8105 case 0x00: strcpy(insn[i],"special"); type=NI;
8106 op2=source[i]&0x3f;
8107 switch(op2)
8108 {
8109 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8110 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8111 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8112 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8113 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8114 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8115 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8116 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8117 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8118 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8119 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8120 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8121 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8122 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8123 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8124 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8125 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8126 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8127 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8128 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8129 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8130 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8131 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8132 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8133 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8134 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8135 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8136 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8137 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8138 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8139 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8140 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8141 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8142 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8143 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8144#ifndef FORCE32
8145 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8146 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8147 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8148 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8149 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8150 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8151 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8152 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8153 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8154 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8155 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8156 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8157 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8158 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8159 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8160 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8161 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8162#endif
57871462 8163 }
8164 break;
8165 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8166 op2=(source[i]>>16)&0x1f;
8167 switch(op2)
8168 {
8169 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8170 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8171 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8172 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8173 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8174 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8175 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8176 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8177 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8178 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8179 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8180 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8181 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8182 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8183 }
8184 break;
8185 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8186 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8187 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8188 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8189 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8190 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8191 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8192 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8193 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8194 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8195 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8196 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8197 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8198 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8199 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8200 op2=(source[i]>>21)&0x1f;
8201 switch(op2)
8202 {
8203 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8204 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8205 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8206 switch(source[i]&0x3f)
8207 {
8208 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8209 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8210 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8211 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8212#ifdef PCSX
8213 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8214#else
57871462 8215 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8216#endif
57871462 8217 }
8218 }
8219 break;
8220 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8221 op2=(source[i]>>21)&0x1f;
8222 switch(op2)
8223 {
8224 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8225 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8226 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8227 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8228 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8229 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8230 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8231 switch((source[i]>>16)&0x3)
8232 {
8233 case 0x00: strcpy(insn[i],"BC1F"); break;
8234 case 0x01: strcpy(insn[i],"BC1T"); break;
8235 case 0x02: strcpy(insn[i],"BC1FL"); break;
8236 case 0x03: strcpy(insn[i],"BC1TL"); break;
8237 }
8238 break;
8239 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8240 switch(source[i]&0x3f)
8241 {
8242 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8243 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8244 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8245 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8246 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8247 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8248 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8249 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8250 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8251 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8252 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8253 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8254 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8255 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8256 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8257 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8258 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8259 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8260 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8261 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8262 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8263 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8264 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8265 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8266 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8267 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8268 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8269 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8270 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8271 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8272 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8273 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8274 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8275 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8276 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8277 }
8278 break;
8279 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8280 switch(source[i]&0x3f)
8281 {
8282 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8283 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8284 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8285 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8286 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8287 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8288 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8289 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8290 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8291 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8292 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8293 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8294 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8295 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8296 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8297 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8298 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8299 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8300 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8301 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8302 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8303 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8304 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8305 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8306 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8307 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8308 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8309 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8310 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8311 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8312 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8313 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8314 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8315 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8316 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8317 }
8318 break;
8319 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8320 switch(source[i]&0x3f)
8321 {
8322 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8323 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8324 }
8325 break;
8326 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8327 switch(source[i]&0x3f)
8328 {
8329 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8330 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8331 }
8332 break;
8333 }
8334 break;
909168d6 8335#ifndef FORCE32
57871462 8336 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8337 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8338 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8339 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8340 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8341 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8342 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8343 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8344#endif
57871462 8345 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8346 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8347 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8348 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8349 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8350 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8351 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8352#ifndef FORCE32
57871462 8353 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8354#endif
57871462 8355 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8356 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8357 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8358 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8359#ifndef FORCE32
57871462 8360 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8361 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8362#endif
57871462 8363 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8364 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8365 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8366 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8367#ifndef FORCE32
57871462 8368 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8369 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8370 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8371#endif
57871462 8372 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8373 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8374#ifndef FORCE32
57871462 8375 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8376 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8377 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8378#endif
b9b61529 8379#ifdef PCSX
8380 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8381 op2=(source[i]>>21)&0x1f;
bedfea38 8382 //if (op2 & 0x10) {
8383 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8384 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8385 if (gte_regnames[source[i]&0x3f]!=NULL)
8386 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8387 else
8388 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8389 type=C2OP;
8390 }
8391 }
8392 else switch(op2)
b9b61529 8393 {
8394 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8395 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8396 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8397 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8398 }
8399 break;
8400 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8401 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8402 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8403#endif
90ae6d4e 8404 default: strcpy(insn[i],"???"); type=NI;
75dec299 8405 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8406 break;
57871462 8407 }
8408 itype[i]=type;
8409 opcode2[i]=op2;
8410 /* Get registers/immediates */
8411 lt1[i]=0;
8412 us1[i]=0;
8413 us2[i]=0;
8414 dep1[i]=0;
8415 dep2[i]=0;
bedfea38 8416 gte_rs[i]=gte_rt[i]=0;
57871462 8417 switch(type) {
8418 case LOAD:
8419 rs1[i]=(source[i]>>21)&0x1f;
8420 rs2[i]=0;
8421 rt1[i]=(source[i]>>16)&0x1f;
8422 rt2[i]=0;
8423 imm[i]=(short)source[i];
8424 break;
8425 case STORE:
8426 case STORELR:
8427 rs1[i]=(source[i]>>21)&0x1f;
8428 rs2[i]=(source[i]>>16)&0x1f;
8429 rt1[i]=0;
8430 rt2[i]=0;
8431 imm[i]=(short)source[i];
8432 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8433 break;
8434 case LOADLR:
8435 // LWL/LWR only load part of the register,
8436 // therefore the target register must be treated as a source too
8437 rs1[i]=(source[i]>>21)&0x1f;
8438 rs2[i]=(source[i]>>16)&0x1f;
8439 rt1[i]=(source[i]>>16)&0x1f;
8440 rt2[i]=0;
8441 imm[i]=(short)source[i];
8442 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8443 if(op==0x26) dep1[i]=rt1[i]; // LWR
8444 break;
8445 case IMM16:
8446 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8447 else rs1[i]=(source[i]>>21)&0x1f;
8448 rs2[i]=0;
8449 rt1[i]=(source[i]>>16)&0x1f;
8450 rt2[i]=0;
8451 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8452 imm[i]=(unsigned short)source[i];
8453 }else{
8454 imm[i]=(short)source[i];
8455 }
8456 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8457 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8458 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8459 break;
8460 case UJUMP:
8461 rs1[i]=0;
8462 rs2[i]=0;
8463 rt1[i]=0;
8464 rt2[i]=0;
8465 // The JAL instruction writes to r31.
8466 if (op&1) {
8467 rt1[i]=31;
8468 }
8469 rs2[i]=CCREG;
8470 break;
8471 case RJUMP:
8472 rs1[i]=(source[i]>>21)&0x1f;
8473 rs2[i]=0;
8474 rt1[i]=0;
8475 rt2[i]=0;
5067f341 8476 // The JALR instruction writes to rd.
57871462 8477 if (op2&1) {
5067f341 8478 rt1[i]=(source[i]>>11)&0x1f;
57871462 8479 }
8480 rs2[i]=CCREG;
8481 break;
8482 case CJUMP:
8483 rs1[i]=(source[i]>>21)&0x1f;
8484 rs2[i]=(source[i]>>16)&0x1f;
8485 rt1[i]=0;
8486 rt2[i]=0;
8487 if(op&2) { // BGTZ/BLEZ
8488 rs2[i]=0;
8489 }
8490 us1[i]=rs1[i];
8491 us2[i]=rs2[i];
8492 likely[i]=op>>4;
8493 break;
8494 case SJUMP:
8495 rs1[i]=(source[i]>>21)&0x1f;
8496 rs2[i]=CCREG;
8497 rt1[i]=0;
8498 rt2[i]=0;
8499 us1[i]=rs1[i];
8500 if(op2&0x10) { // BxxAL
8501 rt1[i]=31;
8502 // NOTE: If the branch is not taken, r31 is still overwritten
8503 }
8504 likely[i]=(op2&2)>>1;
8505 break;
8506 case FJUMP:
8507 rs1[i]=FSREG;
8508 rs2[i]=CSREG;
8509 rt1[i]=0;
8510 rt2[i]=0;
8511 likely[i]=((source[i])>>17)&1;
8512 break;
8513 case ALU:
8514 rs1[i]=(source[i]>>21)&0x1f; // source
8515 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8516 rt1[i]=(source[i]>>11)&0x1f; // destination
8517 rt2[i]=0;
8518 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8519 us1[i]=rs1[i];us2[i]=rs2[i];
8520 }
8521 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8522 dep1[i]=rs1[i];dep2[i]=rs2[i];
8523 }
8524 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8525 dep1[i]=rs1[i];dep2[i]=rs2[i];
8526 }
8527 break;
8528 case MULTDIV:
8529 rs1[i]=(source[i]>>21)&0x1f; // source
8530 rs2[i]=(source[i]>>16)&0x1f; // divisor
8531 rt1[i]=HIREG;
8532 rt2[i]=LOREG;
8533 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8534 us1[i]=rs1[i];us2[i]=rs2[i];
8535 }
8536 break;
8537 case MOV:
8538 rs1[i]=0;
8539 rs2[i]=0;
8540 rt1[i]=0;
8541 rt2[i]=0;
8542 if(op2==0x10) rs1[i]=HIREG; // MFHI
8543 if(op2==0x11) rt1[i]=HIREG; // MTHI
8544 if(op2==0x12) rs1[i]=LOREG; // MFLO
8545 if(op2==0x13) rt1[i]=LOREG; // MTLO
8546 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8547 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8548 dep1[i]=rs1[i];
8549 break;
8550 case SHIFT:
8551 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8552 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8553 rt1[i]=(source[i]>>11)&0x1f; // destination
8554 rt2[i]=0;
8555 // DSLLV/DSRLV/DSRAV are 64-bit
8556 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8557 break;
8558 case SHIFTIMM:
8559 rs1[i]=(source[i]>>16)&0x1f;
8560 rs2[i]=0;
8561 rt1[i]=(source[i]>>11)&0x1f;
8562 rt2[i]=0;
8563 imm[i]=(source[i]>>6)&0x1f;
8564 // DSxx32 instructions
8565 if(op2>=0x3c) imm[i]|=0x20;
8566 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8567 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8568 break;
8569 case COP0:
8570 rs1[i]=0;
8571 rs2[i]=0;
8572 rt1[i]=0;
8573 rt2[i]=0;
8574 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8575 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8576 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8577 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8578 break;
8579 case COP1:
8580 rs1[i]=0;
8581 rs2[i]=0;
8582 rt1[i]=0;
8583 rt2[i]=0;
8584 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8585 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8586 if(op2==5) us1[i]=rs1[i]; // DMTC1
8587 rs2[i]=CSREG;
8588 break;
bedfea38 8589 case COP2:
8590 rs1[i]=0;
8591 rs2[i]=0;
8592 rt1[i]=0;
8593 rt2[i]=0;
8594 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8595 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8596 rs2[i]=CSREG;
8597 int gr=(source[i]>>11)&0x1F;
8598 switch(op2)
8599 {
8600 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8601 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8602 case 0x02: gte_rs[i]=1ll<<(gr+32); // CFC2
8603 if(gr==31&&!gte_reads_flags) {
d3f3bf09 8604 assem_debug("gte flag read encountered @%08x\n",addr + i*4);
bedfea38 8605 gte_reads_flags=1;
8606 }
8607 break;
8608 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8609 }
8610 break;
57871462 8611 case C1LS:
8612 rs1[i]=(source[i]>>21)&0x1F;
8613 rs2[i]=CSREG;
8614 rt1[i]=0;
8615 rt2[i]=0;
8616 imm[i]=(short)source[i];
8617 break;
b9b61529 8618 case C2LS:
8619 rs1[i]=(source[i]>>21)&0x1F;
8620 rs2[i]=0;
8621 rt1[i]=0;
8622 rt2[i]=0;
8623 imm[i]=(short)source[i];
bedfea38 8624 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8625 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8626 break;
8627 case C2OP:
8628 rs1[i]=0;
8629 rs2[i]=0;
8630 rt1[i]=0;
8631 rt2[i]=0;
8632 gte_rt[i]=1ll<<63; // every op changes flags
8633 // TODO: other regs?
b9b61529 8634 break;
57871462 8635 case FLOAT:
8636 case FCONV:
8637 rs1[i]=0;
8638 rs2[i]=CSREG;
8639 rt1[i]=0;
8640 rt2[i]=0;
8641 break;
8642 case FCOMP:
8643 rs1[i]=FSREG;
8644 rs2[i]=CSREG;
8645 rt1[i]=FSREG;
8646 rt2[i]=0;
8647 break;
8648 case SYSCALL:
7139f3c8 8649 case HLECALL:
1e973cb0 8650 case INTCALL:
57871462 8651 rs1[i]=CCREG;
8652 rs2[i]=0;
8653 rt1[i]=0;
8654 rt2[i]=0;
8655 break;
8656 default:
8657 rs1[i]=0;
8658 rs2[i]=0;
8659 rt1[i]=0;
8660 rt2[i]=0;
8661 }
8662 /* Calculate branch target addresses */
8663 if(type==UJUMP)
8664 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8665 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8666 ba[i]=start+i*4+8; // Ignore never taken branch
8667 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8668 ba[i]=start+i*4+8; // Ignore never taken branch
8669 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8670 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8671 else ba[i]=-1;
26869094 8672#ifdef PCSX
3e535354 8673 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8674 int do_in_intrp=0;
8675 // branch in delay slot?
8676 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8677 // don't handle first branch and call interpreter if it's hit
8678 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8679 do_in_intrp=1;
8680 }
8681 // basic load delay detection
8682 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8683 int t=(ba[i-1]-start)/4;
8684 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8685 // jump target wants DS result - potential load delay effect
8686 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8687 do_in_intrp=1;
8688 bt[t+1]=1; // expected return from interpreter
8689 }
8690 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8691 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8692 // v0 overwrite like this is a sign of trouble, bail out
8693 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8694 do_in_intrp=1;
8695 }
8696 }
3e535354 8697 if(do_in_intrp) {
8698 rs1[i-1]=CCREG;
8699 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8700 ba[i-1]=-1;
8701 itype[i-1]=INTCALL;
8702 done=2;
3e535354 8703 i--; // don't compile the DS
26869094 8704 }
3e535354 8705 }
26869094 8706#endif
3e535354 8707 /* Is this the end of the block? */
8708 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8709 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8710 done=2;
57871462 8711 }
8712 else {
8713 if(stop_after_jal) done=1;
8714 // Stop on BREAK
8715 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8716 }
8717 // Don't recompile stuff that's already compiled
8718 if(check_addr(start+i*4+4)) done=1;
8719 // Don't get too close to the limit
8720 if(i>MAXBLOCK/2) done=1;
8721 }
75dec299 8722 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8723 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8724 if(done==2) {
8725 // Does the block continue due to a branch?
8726 for(j=i-1;j>=0;j--)
8727 {
2a706964 8728 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8729 if(ba[j]==start+i*4+4) done=j=0;
8730 if(ba[j]==start+i*4+8) done=j=0;
8731 }
8732 }
75dec299 8733 //assert(i<MAXBLOCK-1);
57871462 8734 if(start+i*4==pagelimit-4) done=1;
8735 assert(start+i*4<pagelimit);
8736 if (i==MAXBLOCK-1) done=1;
8737 // Stop if we're compiling junk
8738 if(itype[i]==NI&&opcode[i]==0x11) {
8739 done=stop_after_jal=1;
8740 printf("Disabled speculative precompilation\n");
8741 }
8742 }
8743 slen=i;
8744 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8745 if(start+i*4==pagelimit) {
8746 itype[i-1]=SPAN;
8747 }
8748 }
8749 assert(slen>0);
8750
8751 /* Pass 2 - Register dependencies and branch targets */
8752
8753 unneeded_registers(0,slen-1,0);
8754
8755 /* Pass 3 - Register allocation */
8756
8757 struct regstat current; // Current register allocations/status
8758 current.is32=1;
8759 current.dirty=0;
8760 current.u=unneeded_reg[0];
8761 current.uu=unneeded_reg_upper[0];
8762 clear_all_regs(current.regmap);
8763 alloc_reg(&current,0,CCREG);
8764 dirty_reg(&current,CCREG);
8765 current.isconst=0;
8766 current.wasconst=0;
8767 int ds=0;
8768 int cc=0;
5194fb95 8769 int hr=-1;
6ebf4adf 8770
8771#ifndef FORCE32
57871462 8772 provisional_32bit();
6ebf4adf 8773#endif
57871462 8774 if((u_int)addr&1) {
8775 // First instruction is delay slot
8776 cc=-1;
8777 bt[1]=1;
8778 ds=1;
8779 unneeded_reg[0]=1;
8780 unneeded_reg_upper[0]=1;
8781 current.regmap[HOST_BTREG]=BTREG;
8782 }
8783
8784 for(i=0;i<slen;i++)
8785 {
8786 if(bt[i])
8787 {
8788 int hr;
8789 for(hr=0;hr<HOST_REGS;hr++)
8790 {
8791 // Is this really necessary?
8792 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8793 }
8794 current.isconst=0;
8795 }
8796 if(i>1)
8797 {
8798 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8799 {
8800 if(rs1[i-2]==0||rs2[i-2]==0)
8801 {
8802 if(rs1[i-2]) {
8803 current.is32|=1LL<<rs1[i-2];
8804 int hr=get_reg(current.regmap,rs1[i-2]|64);
8805 if(hr>=0) current.regmap[hr]=-1;
8806 }
8807 if(rs2[i-2]) {
8808 current.is32|=1LL<<rs2[i-2];
8809 int hr=get_reg(current.regmap,rs2[i-2]|64);
8810 if(hr>=0) current.regmap[hr]=-1;
8811 }
8812 }
8813 }
8814 }
6ebf4adf 8815#ifndef FORCE32
57871462 8816 // If something jumps here with 64-bit values
8817 // then promote those registers to 64 bits
8818 if(bt[i])
8819 {
8820 uint64_t temp_is32=current.is32;
8821 for(j=i-1;j>=0;j--)
8822 {
8823 if(ba[j]==start+i*4)
8824 temp_is32&=branch_regs[j].is32;
8825 }
8826 for(j=i;j<slen;j++)
8827 {
8828 if(ba[j]==start+i*4)
8829 //temp_is32=1;
8830 temp_is32&=p32[j];
8831 }
8832 if(temp_is32!=current.is32) {
8833 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8834 #ifndef DESTRUCTIVE_WRITEBACK
8835 if(ds)
8836 #endif
57871462 8837 for(hr=0;hr<HOST_REGS;hr++)
8838 {
8839 int r=current.regmap[hr];
8840 if(r>0&&r<64)
8841 {
8842 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8843 temp_is32|=1LL<<r;
8844 //printf("restore %d\n",r);
8845 }
8846 }
8847 }
57871462 8848 current.is32=temp_is32;
8849 }
8850 }
6ebf4adf 8851#else
24385cae 8852 current.is32=-1LL;
8853#endif
8854
57871462 8855 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8856 regs[i].wasconst=current.isconst;
8857 regs[i].was32=current.is32;
8858 regs[i].wasdirty=current.dirty;
6ebf4adf 8859 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8860 // To change a dirty register from 32 to 64 bits, we must write
8861 // it out during the previous cycle (for branches, 2 cycles)
8862 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8863 {
8864 uint64_t temp_is32=current.is32;
8865 for(j=i-1;j>=0;j--)
8866 {
8867 if(ba[j]==start+i*4+4)
8868 temp_is32&=branch_regs[j].is32;
8869 }
8870 for(j=i;j<slen;j++)
8871 {
8872 if(ba[j]==start+i*4+4)
8873 //temp_is32=1;
8874 temp_is32&=p32[j];
8875 }
8876 if(temp_is32!=current.is32) {
8877 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8878 for(hr=0;hr<HOST_REGS;hr++)
8879 {
8880 int r=current.regmap[hr];
8881 if(r>0)
8882 {
8883 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8884 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8885 {
8886 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8887 {
8888 //printf("dump %d/r%d\n",hr,r);
8889 current.regmap[hr]=-1;
8890 if(get_reg(current.regmap,r|64)>=0)
8891 current.regmap[get_reg(current.regmap,r|64)]=-1;
8892 }
8893 }
8894 }
8895 }
8896 }
8897 }
8898 }
8899 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8900 {
8901 uint64_t temp_is32=current.is32;
8902 for(j=i-1;j>=0;j--)
8903 {
8904 if(ba[j]==start+i*4+8)
8905 temp_is32&=branch_regs[j].is32;
8906 }
8907 for(j=i;j<slen;j++)
8908 {
8909 if(ba[j]==start+i*4+8)
8910 //temp_is32=1;
8911 temp_is32&=p32[j];
8912 }
8913 if(temp_is32!=current.is32) {
8914 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8915 for(hr=0;hr<HOST_REGS;hr++)
8916 {
8917 int r=current.regmap[hr];
8918 if(r>0)
8919 {
8920 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8921 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8922 {
8923 //printf("dump %d/r%d\n",hr,r);
8924 current.regmap[hr]=-1;
8925 if(get_reg(current.regmap,r|64)>=0)
8926 current.regmap[get_reg(current.regmap,r|64)]=-1;
8927 }
8928 }
8929 }
8930 }
8931 }
8932 }
8933 #endif
8934 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8935 if(i+1<slen) {
8936 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8937 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8938 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8939 current.u|=1;
8940 current.uu|=1;
8941 } else {
8942 current.u=1;
8943 current.uu=1;
8944 }
8945 } else {
8946 if(i+1<slen) {
8947 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8948 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8949 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8950 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8951 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8952 current.u|=1;
8953 current.uu|=1;
8954 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8955 }
8956 is_ds[i]=ds;
8957 if(ds) {
8958 ds=0; // Skip delay slot, already allocated as part of branch
8959 // ...but we need to alloc it in case something jumps here
8960 if(i+1<slen) {
8961 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8962 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8963 }else{
8964 current.u=branch_unneeded_reg[i-1];
8965 current.uu=branch_unneeded_reg_upper[i-1];
8966 }
8967 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8968 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8969 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8970 current.u|=1;
8971 current.uu|=1;
8972 struct regstat temp;
8973 memcpy(&temp,&current,sizeof(current));
8974 temp.wasdirty=temp.dirty;
8975 temp.was32=temp.is32;
8976 // TODO: Take into account unconditional branches, as below
8977 delayslot_alloc(&temp,i);
8978 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8979 regs[i].wasdirty=temp.wasdirty;
8980 regs[i].was32=temp.was32;
8981 regs[i].dirty=temp.dirty;
8982 regs[i].is32=temp.is32;
8983 regs[i].isconst=0;
8984 regs[i].wasconst=0;
8985 current.isconst=0;
8986 // Create entry (branch target) regmap
8987 for(hr=0;hr<HOST_REGS;hr++)
8988 {
8989 int r=temp.regmap[hr];
8990 if(r>=0) {
8991 if(r!=regmap_pre[i][hr]) {
8992 regs[i].regmap_entry[hr]=-1;
8993 }
8994 else
8995 {
8996 if(r<64){
8997 if((current.u>>r)&1) {
8998 regs[i].regmap_entry[hr]=-1;
8999 regs[i].regmap[hr]=-1;
9000 //Don't clear regs in the delay slot as the branch might need them
9001 //current.regmap[hr]=-1;
9002 }else
9003 regs[i].regmap_entry[hr]=r;
9004 }
9005 else {
9006 if((current.uu>>(r&63))&1) {
9007 regs[i].regmap_entry[hr]=-1;
9008 regs[i].regmap[hr]=-1;
9009 //Don't clear regs in the delay slot as the branch might need them
9010 //current.regmap[hr]=-1;
9011 }else
9012 regs[i].regmap_entry[hr]=r;
9013 }
9014 }
9015 } else {
9016 // First instruction expects CCREG to be allocated
9017 if(i==0&&hr==HOST_CCREG)
9018 regs[i].regmap_entry[hr]=CCREG;
9019 else
9020 regs[i].regmap_entry[hr]=-1;
9021 }
9022 }
9023 }
9024 else { // Not delay slot
9025 switch(itype[i]) {
9026 case UJUMP:
9027 //current.isconst=0; // DEBUG
9028 //current.wasconst=0; // DEBUG
9029 //regs[i].wasconst=0; // DEBUG
9030 clear_const(&current,rt1[i]);
9031 alloc_cc(&current,i);
9032 dirty_reg(&current,CCREG);
9033 if (rt1[i]==31) {
9034 alloc_reg(&current,i,31);
9035 dirty_reg(&current,31);
4ef8f67d 9036 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9037 //assert(rt1[i+1]!=rt1[i]);
57871462 9038 #ifdef REG_PREFETCH
9039 alloc_reg(&current,i,PTEMP);
9040 #endif
9041 //current.is32|=1LL<<rt1[i];
9042 }
269bb29a 9043 ooo[i]=1;
9044 delayslot_alloc(&current,i+1);
57871462 9045 //current.isconst=0; // DEBUG
9046 ds=1;
9047 //printf("i=%d, isconst=%x\n",i,current.isconst);
9048 break;
9049 case RJUMP:
9050 //current.isconst=0;
9051 //current.wasconst=0;
9052 //regs[i].wasconst=0;
9053 clear_const(&current,rs1[i]);
9054 clear_const(&current,rt1[i]);
9055 alloc_cc(&current,i);
9056 dirty_reg(&current,CCREG);
9057 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9058 alloc_reg(&current,i,rs1[i]);
5067f341 9059 if (rt1[i]!=0) {
9060 alloc_reg(&current,i,rt1[i]);
9061 dirty_reg(&current,rt1[i]);
68b3faee 9062 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9063 assert(rt1[i+1]!=rt1[i]);
57871462 9064 #ifdef REG_PREFETCH
9065 alloc_reg(&current,i,PTEMP);
9066 #endif
9067 }
9068 #ifdef USE_MINI_HT
9069 if(rs1[i]==31) { // JALR
9070 alloc_reg(&current,i,RHASH);
9071 #ifndef HOST_IMM_ADDR32
9072 alloc_reg(&current,i,RHTBL);
9073 #endif
9074 }
9075 #endif
9076 delayslot_alloc(&current,i+1);
9077 } else {
9078 // The delay slot overwrites our source register,
9079 // allocate a temporary register to hold the old value.
9080 current.isconst=0;
9081 current.wasconst=0;
9082 regs[i].wasconst=0;
9083 delayslot_alloc(&current,i+1);
9084 current.isconst=0;
9085 alloc_reg(&current,i,RTEMP);
9086 }
9087 //current.isconst=0; // DEBUG
e1190b87 9088 ooo[i]=1;
57871462 9089 ds=1;
9090 break;
9091 case CJUMP:
9092 //current.isconst=0;
9093 //current.wasconst=0;
9094 //regs[i].wasconst=0;
9095 clear_const(&current,rs1[i]);
9096 clear_const(&current,rs2[i]);
9097 if((opcode[i]&0x3E)==4) // BEQ/BNE
9098 {
9099 alloc_cc(&current,i);
9100 dirty_reg(&current,CCREG);
9101 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9102 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9103 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9104 {
9105 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9106 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9107 }
9108 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9109 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9110 // The delay slot overwrites one of our conditions.
9111 // Allocate the branch condition registers instead.
57871462 9112 current.isconst=0;
9113 current.wasconst=0;
9114 regs[i].wasconst=0;
9115 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9116 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9117 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9118 {
9119 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9120 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9121 }
9122 }
e1190b87 9123 else
9124 {
9125 ooo[i]=1;
9126 delayslot_alloc(&current,i+1);
9127 }
57871462 9128 }
9129 else
9130 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9131 {
9132 alloc_cc(&current,i);
9133 dirty_reg(&current,CCREG);
9134 alloc_reg(&current,i,rs1[i]);
9135 if(!(current.is32>>rs1[i]&1))
9136 {
9137 alloc_reg64(&current,i,rs1[i]);
9138 }
9139 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9140 // The delay slot overwrites one of our conditions.
9141 // Allocate the branch condition registers instead.
57871462 9142 current.isconst=0;
9143 current.wasconst=0;
9144 regs[i].wasconst=0;
9145 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9146 if(!((current.is32>>rs1[i])&1))
9147 {
9148 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9149 }
9150 }
e1190b87 9151 else
9152 {
9153 ooo[i]=1;
9154 delayslot_alloc(&current,i+1);
9155 }
57871462 9156 }
9157 else
9158 // Don't alloc the delay slot yet because we might not execute it
9159 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9160 {
9161 current.isconst=0;
9162 current.wasconst=0;
9163 regs[i].wasconst=0;
9164 alloc_cc(&current,i);
9165 dirty_reg(&current,CCREG);
9166 alloc_reg(&current,i,rs1[i]);
9167 alloc_reg(&current,i,rs2[i]);
9168 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9169 {
9170 alloc_reg64(&current,i,rs1[i]);
9171 alloc_reg64(&current,i,rs2[i]);
9172 }
9173 }
9174 else
9175 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9176 {
9177 current.isconst=0;
9178 current.wasconst=0;
9179 regs[i].wasconst=0;
9180 alloc_cc(&current,i);
9181 dirty_reg(&current,CCREG);
9182 alloc_reg(&current,i,rs1[i]);
9183 if(!(current.is32>>rs1[i]&1))
9184 {
9185 alloc_reg64(&current,i,rs1[i]);
9186 }
9187 }
9188 ds=1;
9189 //current.isconst=0;
9190 break;
9191 case SJUMP:
9192 //current.isconst=0;
9193 //current.wasconst=0;
9194 //regs[i].wasconst=0;
9195 clear_const(&current,rs1[i]);
9196 clear_const(&current,rt1[i]);
9197 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9198 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9199 {
9200 alloc_cc(&current,i);
9201 dirty_reg(&current,CCREG);
9202 alloc_reg(&current,i,rs1[i]);
9203 if(!(current.is32>>rs1[i]&1))
9204 {
9205 alloc_reg64(&current,i,rs1[i]);
9206 }
9207 if (rt1[i]==31) { // BLTZAL/BGEZAL
9208 alloc_reg(&current,i,31);
9209 dirty_reg(&current,31);
57871462 9210 //#ifdef REG_PREFETCH
9211 //alloc_reg(&current,i,PTEMP);
9212 //#endif
9213 //current.is32|=1LL<<rt1[i];
9214 }
e1190b87 9215 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9216 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9217 // Allocate the branch condition registers instead.
57871462 9218 current.isconst=0;
9219 current.wasconst=0;
9220 regs[i].wasconst=0;
9221 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9222 if(!((current.is32>>rs1[i])&1))
9223 {
9224 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9225 }
9226 }
e1190b87 9227 else
9228 {
9229 ooo[i]=1;
9230 delayslot_alloc(&current,i+1);
9231 }
57871462 9232 }
9233 else
9234 // Don't alloc the delay slot yet because we might not execute it
9235 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9236 {
9237 current.isconst=0;
9238 current.wasconst=0;
9239 regs[i].wasconst=0;
9240 alloc_cc(&current,i);
9241 dirty_reg(&current,CCREG);
9242 alloc_reg(&current,i,rs1[i]);
9243 if(!(current.is32>>rs1[i]&1))
9244 {
9245 alloc_reg64(&current,i,rs1[i]);
9246 }
9247 }
9248 ds=1;
9249 //current.isconst=0;
9250 break;
9251 case FJUMP:
9252 current.isconst=0;
9253 current.wasconst=0;
9254 regs[i].wasconst=0;
9255 if(likely[i]==0) // BC1F/BC1T
9256 {
9257 // TODO: Theoretically we can run out of registers here on x86.
9258 // The delay slot can allocate up to six, and we need to check
9259 // CSREG before executing the delay slot. Possibly we can drop
9260 // the cycle count and then reload it after checking that the
9261 // FPU is in a usable state, or don't do out-of-order execution.
9262 alloc_cc(&current,i);
9263 dirty_reg(&current,CCREG);
9264 alloc_reg(&current,i,FSREG);
9265 alloc_reg(&current,i,CSREG);
9266 if(itype[i+1]==FCOMP) {
9267 // The delay slot overwrites the branch condition.
9268 // Allocate the branch condition registers instead.
57871462 9269 alloc_cc(&current,i);
9270 dirty_reg(&current,CCREG);
9271 alloc_reg(&current,i,CSREG);
9272 alloc_reg(&current,i,FSREG);
9273 }
9274 else {
e1190b87 9275 ooo[i]=1;
57871462 9276 delayslot_alloc(&current,i+1);
9277 alloc_reg(&current,i+1,CSREG);
9278 }
9279 }
9280 else
9281 // Don't alloc the delay slot yet because we might not execute it
9282 if(likely[i]) // BC1FL/BC1TL
9283 {
9284 alloc_cc(&current,i);
9285 dirty_reg(&current,CCREG);
9286 alloc_reg(&current,i,CSREG);
9287 alloc_reg(&current,i,FSREG);
9288 }
9289 ds=1;
9290 current.isconst=0;
9291 break;
9292 case IMM16:
9293 imm16_alloc(&current,i);
9294 break;
9295 case LOAD:
9296 case LOADLR:
9297 load_alloc(&current,i);
9298 break;
9299 case STORE:
9300 case STORELR:
9301 store_alloc(&current,i);
9302 break;
9303 case ALU:
9304 alu_alloc(&current,i);
9305 break;
9306 case SHIFT:
9307 shift_alloc(&current,i);
9308 break;
9309 case MULTDIV:
9310 multdiv_alloc(&current,i);
9311 break;
9312 case SHIFTIMM:
9313 shiftimm_alloc(&current,i);
9314 break;
9315 case MOV:
9316 mov_alloc(&current,i);
9317 break;
9318 case COP0:
9319 cop0_alloc(&current,i);
9320 break;
9321 case COP1:
b9b61529 9322 case COP2:
57871462 9323 cop1_alloc(&current,i);
9324 break;
9325 case C1LS:
9326 c1ls_alloc(&current,i);
9327 break;
b9b61529 9328 case C2LS:
9329 c2ls_alloc(&current,i);
9330 break;
9331 case C2OP:
9332 c2op_alloc(&current,i);
9333 break;
57871462 9334 case FCONV:
9335 fconv_alloc(&current,i);
9336 break;
9337 case FLOAT:
9338 float_alloc(&current,i);
9339 break;
9340 case FCOMP:
9341 fcomp_alloc(&current,i);
9342 break;
9343 case SYSCALL:
7139f3c8 9344 case HLECALL:
1e973cb0 9345 case INTCALL:
57871462 9346 syscall_alloc(&current,i);
9347 break;
9348 case SPAN:
9349 pagespan_alloc(&current,i);
9350 break;
9351 }
9352
9353 // Drop the upper half of registers that have become 32-bit
9354 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9355 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9356 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9357 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9358 current.uu|=1;
9359 } else {
9360 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9361 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9362 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9363 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9364 current.uu|=1;
9365 }
9366
9367 // Create entry (branch target) regmap
9368 for(hr=0;hr<HOST_REGS;hr++)
9369 {
9370 int r,or,er;
9371 r=current.regmap[hr];
9372 if(r>=0) {
9373 if(r!=regmap_pre[i][hr]) {
9374 // TODO: delay slot (?)
9375 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9376 if(or<0||(r&63)>=TEMPREG){
9377 regs[i].regmap_entry[hr]=-1;
9378 }
9379 else
9380 {
9381 // Just move it to a different register
9382 regs[i].regmap_entry[hr]=r;
9383 // If it was dirty before, it's still dirty
9384 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9385 }
9386 }
9387 else
9388 {
9389 // Unneeded
9390 if(r==0){
9391 regs[i].regmap_entry[hr]=0;
9392 }
9393 else
9394 if(r<64){
9395 if((current.u>>r)&1) {
9396 regs[i].regmap_entry[hr]=-1;
9397 //regs[i].regmap[hr]=-1;
9398 current.regmap[hr]=-1;
9399 }else
9400 regs[i].regmap_entry[hr]=r;
9401 }
9402 else {
9403 if((current.uu>>(r&63))&1) {
9404 regs[i].regmap_entry[hr]=-1;
9405 //regs[i].regmap[hr]=-1;
9406 current.regmap[hr]=-1;
9407 }else
9408 regs[i].regmap_entry[hr]=r;
9409 }
9410 }
9411 } else {
9412 // Branches expect CCREG to be allocated at the target
9413 if(regmap_pre[i][hr]==CCREG)
9414 regs[i].regmap_entry[hr]=CCREG;
9415 else
9416 regs[i].regmap_entry[hr]=-1;
9417 }
9418 }
9419 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9420 }
9421 /* Branch post-alloc */
9422 if(i>0)
9423 {
9424 current.was32=current.is32;
9425 current.wasdirty=current.dirty;
9426 switch(itype[i-1]) {
9427 case UJUMP:
9428 memcpy(&branch_regs[i-1],&current,sizeof(current));
9429 branch_regs[i-1].isconst=0;
9430 branch_regs[i-1].wasconst=0;
9431 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9432 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9433 alloc_cc(&branch_regs[i-1],i-1);
9434 dirty_reg(&branch_regs[i-1],CCREG);
9435 if(rt1[i-1]==31) { // JAL
9436 alloc_reg(&branch_regs[i-1],i-1,31);
9437 dirty_reg(&branch_regs[i-1],31);
9438 branch_regs[i-1].is32|=1LL<<31;
9439 }
9440 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9441 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9442 break;
9443 case RJUMP:
9444 memcpy(&branch_regs[i-1],&current,sizeof(current));
9445 branch_regs[i-1].isconst=0;
9446 branch_regs[i-1].wasconst=0;
9447 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9448 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9449 alloc_cc(&branch_regs[i-1],i-1);
9450 dirty_reg(&branch_regs[i-1],CCREG);
9451 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9452 if(rt1[i-1]!=0) { // JALR
9453 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9454 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9455 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9456 }
9457 #ifdef USE_MINI_HT
9458 if(rs1[i-1]==31) { // JALR
9459 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9460 #ifndef HOST_IMM_ADDR32
9461 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9462 #endif
9463 }
9464 #endif
9465 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9466 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9467 break;
9468 case CJUMP:
9469 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9470 {
9471 alloc_cc(&current,i-1);
9472 dirty_reg(&current,CCREG);
9473 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9474 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9475 // The delay slot overwrote one of our conditions
9476 // Delay slot goes after the test (in order)
9477 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9478 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9479 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9480 current.u|=1;
9481 current.uu|=1;
9482 delayslot_alloc(&current,i);
9483 current.isconst=0;
9484 }
9485 else
9486 {
9487 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9488 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9489 // Alloc the branch condition registers
9490 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9491 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9492 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9493 {
9494 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9495 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9496 }
9497 }
9498 memcpy(&branch_regs[i-1],&current,sizeof(current));
9499 branch_regs[i-1].isconst=0;
9500 branch_regs[i-1].wasconst=0;
9501 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9502 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9503 }
9504 else
9505 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9506 {
9507 alloc_cc(&current,i-1);
9508 dirty_reg(&current,CCREG);
9509 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9510 // The delay slot overwrote the branch condition
9511 // Delay slot goes after the test (in order)
9512 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9513 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9514 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9515 current.u|=1;
9516 current.uu|=1;
9517 delayslot_alloc(&current,i);
9518 current.isconst=0;
9519 }
9520 else
9521 {
9522 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9523 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9524 // Alloc the branch condition register
9525 alloc_reg(&current,i-1,rs1[i-1]);
9526 if(!(current.is32>>rs1[i-1]&1))
9527 {
9528 alloc_reg64(&current,i-1,rs1[i-1]);
9529 }
9530 }
9531 memcpy(&branch_regs[i-1],&current,sizeof(current));
9532 branch_regs[i-1].isconst=0;
9533 branch_regs[i-1].wasconst=0;
9534 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9535 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9536 }
9537 else
9538 // Alloc the delay slot in case the branch is taken
9539 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9540 {
9541 memcpy(&branch_regs[i-1],&current,sizeof(current));
9542 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9543 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9544 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9545 alloc_cc(&branch_regs[i-1],i);
9546 dirty_reg(&branch_regs[i-1],CCREG);
9547 delayslot_alloc(&branch_regs[i-1],i);
9548 branch_regs[i-1].isconst=0;
9549 alloc_reg(&current,i,CCREG); // Not taken path
9550 dirty_reg(&current,CCREG);
9551 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9552 }
9553 else
9554 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9555 {
9556 memcpy(&branch_regs[i-1],&current,sizeof(current));
9557 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9558 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9559 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9560 alloc_cc(&branch_regs[i-1],i);
9561 dirty_reg(&branch_regs[i-1],CCREG);
9562 delayslot_alloc(&branch_regs[i-1],i);
9563 branch_regs[i-1].isconst=0;
9564 alloc_reg(&current,i,CCREG); // Not taken path
9565 dirty_reg(&current,CCREG);
9566 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9567 }
9568 break;
9569 case SJUMP:
9570 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9571 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9572 {
9573 alloc_cc(&current,i-1);
9574 dirty_reg(&current,CCREG);
9575 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9576 // The delay slot overwrote the branch condition
9577 // Delay slot goes after the test (in order)
9578 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9579 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9580 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9581 current.u|=1;
9582 current.uu|=1;
9583 delayslot_alloc(&current,i);
9584 current.isconst=0;
9585 }
9586 else
9587 {
9588 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9589 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9590 // Alloc the branch condition register
9591 alloc_reg(&current,i-1,rs1[i-1]);
9592 if(!(current.is32>>rs1[i-1]&1))
9593 {
9594 alloc_reg64(&current,i-1,rs1[i-1]);
9595 }
9596 }
9597 memcpy(&branch_regs[i-1],&current,sizeof(current));
9598 branch_regs[i-1].isconst=0;
9599 branch_regs[i-1].wasconst=0;
9600 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9601 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9602 }
9603 else
9604 // Alloc the delay slot in case the branch is taken
9605 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9606 {
9607 memcpy(&branch_regs[i-1],&current,sizeof(current));
9608 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9609 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9610 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9611 alloc_cc(&branch_regs[i-1],i);
9612 dirty_reg(&branch_regs[i-1],CCREG);
9613 delayslot_alloc(&branch_regs[i-1],i);
9614 branch_regs[i-1].isconst=0;
9615 alloc_reg(&current,i,CCREG); // Not taken path
9616 dirty_reg(&current,CCREG);
9617 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9618 }
9619 // FIXME: BLTZAL/BGEZAL
9620 if(opcode2[i-1]&0x10) { // BxxZAL
9621 alloc_reg(&branch_regs[i-1],i-1,31);
9622 dirty_reg(&branch_regs[i-1],31);
9623 branch_regs[i-1].is32|=1LL<<31;
9624 }
9625 break;
9626 case FJUMP:
9627 if(likely[i-1]==0) // BC1F/BC1T
9628 {
9629 alloc_cc(&current,i-1);
9630 dirty_reg(&current,CCREG);
9631 if(itype[i]==FCOMP) {
9632 // The delay slot overwrote the branch condition
9633 // Delay slot goes after the test (in order)
9634 delayslot_alloc(&current,i);
9635 current.isconst=0;
9636 }
9637 else
9638 {
9639 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9640 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9641 // Alloc the branch condition register
9642 alloc_reg(&current,i-1,FSREG);
9643 }
9644 memcpy(&branch_regs[i-1],&current,sizeof(current));
9645 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9646 }
9647 else // BC1FL/BC1TL
9648 {
9649 // Alloc the delay slot in case the branch is taken
9650 memcpy(&branch_regs[i-1],&current,sizeof(current));
9651 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9652 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9653 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9654 alloc_cc(&branch_regs[i-1],i);
9655 dirty_reg(&branch_regs[i-1],CCREG);
9656 delayslot_alloc(&branch_regs[i-1],i);
9657 branch_regs[i-1].isconst=0;
9658 alloc_reg(&current,i,CCREG); // Not taken path
9659 dirty_reg(&current,CCREG);
9660 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9661 }
9662 break;
9663 }
9664
9665 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9666 {
9667 if(rt1[i-1]==31) // JAL/JALR
9668 {
9669 // Subroutine call will return here, don't alloc any registers
9670 current.is32=1;
9671 current.dirty=0;
9672 clear_all_regs(current.regmap);
9673 alloc_reg(&current,i,CCREG);
9674 dirty_reg(&current,CCREG);
9675 }
9676 else if(i+1<slen)
9677 {
9678 // Internal branch will jump here, match registers to caller
9679 current.is32=0x3FFFFFFFFLL;
9680 current.dirty=0;
9681 clear_all_regs(current.regmap);
9682 alloc_reg(&current,i,CCREG);
9683 dirty_reg(&current,CCREG);
9684 for(j=i-1;j>=0;j--)
9685 {
9686 if(ba[j]==start+i*4+4) {
9687 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9688 current.is32=branch_regs[j].is32;
9689 current.dirty=branch_regs[j].dirty;
9690 break;
9691 }
9692 }
9693 while(j>=0) {
9694 if(ba[j]==start+i*4+4) {
9695 for(hr=0;hr<HOST_REGS;hr++) {
9696 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9697 current.regmap[hr]=-1;
9698 }
9699 current.is32&=branch_regs[j].is32;
9700 current.dirty&=branch_regs[j].dirty;
9701 }
9702 }
9703 j--;
9704 }
9705 }
9706 }
9707 }
9708
9709 // Count cycles in between branches
9710 ccadj[i]=cc;
7139f3c8 9711 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9712 {
9713 cc=0;
9714 }
fb407447 9715#ifdef PCSX
9716 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9717 {
9718 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9719 }
9720 else if(itype[i]==C2LS)
9721 {
9722 cc+=4;
9723 }
9724#endif
57871462 9725 else
9726 {
9727 cc++;
9728 }
9729
9730 flush_dirty_uppers(&current);
9731 if(!is_ds[i]) {
9732 regs[i].is32=current.is32;
9733 regs[i].dirty=current.dirty;
9734 regs[i].isconst=current.isconst;
9735 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9736 }
9737 for(hr=0;hr<HOST_REGS;hr++) {
9738 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9739 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9740 regs[i].wasconst&=~(1<<hr);
9741 }
9742 }
9743 }
9744 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9745 }
9746
9747 /* Pass 4 - Cull unused host registers */
9748
9749 uint64_t nr=0;
9750
9751 for (i=slen-1;i>=0;i--)
9752 {
9753 int hr;
9754 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9755 {
9756 if(ba[i]<start || ba[i]>=(start+slen*4))
9757 {
9758 // Branch out of this block, don't need anything
9759 nr=0;
9760 }
9761 else
9762 {
9763 // Internal branch
9764 // Need whatever matches the target
9765 nr=0;
9766 int t=(ba[i]-start)>>2;
9767 for(hr=0;hr<HOST_REGS;hr++)
9768 {
9769 if(regs[i].regmap_entry[hr]>=0) {
9770 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9771 }
9772 }
9773 }
9774 // Conditional branch may need registers for following instructions
9775 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9776 {
9777 if(i<slen-2) {
9778 nr|=needed_reg[i+2];
9779 for(hr=0;hr<HOST_REGS;hr++)
9780 {
9781 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9782 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9783 }
9784 }
9785 }
9786 // Don't need stuff which is overwritten
f5955059 9787 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9788 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9789 // Merge in delay slot
9790 for(hr=0;hr<HOST_REGS;hr++)
9791 {
9792 if(!likely[i]) {
9793 // These are overwritten unless the branch is "likely"
9794 // and the delay slot is nullified if not taken
9795 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9796 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9797 }
9798 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9799 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9800 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9801 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9802 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9803 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9804 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9805 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9806 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9807 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9808 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9809 }
9810 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9811 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9812 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9813 }
b9b61529 9814 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9815 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9816 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9817 }
9818 }
9819 }
1e973cb0 9820 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9821 {
9822 // SYSCALL instruction (software interrupt)
9823 nr=0;
9824 }
9825 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9826 {
9827 // ERET instruction (return from interrupt)
9828 nr=0;
9829 }
9830 else // Non-branch
9831 {
9832 if(i<slen-1) {
9833 for(hr=0;hr<HOST_REGS;hr++) {
9834 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9835 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9836 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9837 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9838 }
9839 }
9840 }
9841 for(hr=0;hr<HOST_REGS;hr++)
9842 {
9843 // Overwritten registers are not needed
9844 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9845 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9846 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9847 // Source registers are needed
9848 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9849 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9850 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9851 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9852 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9853 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9854 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9855 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9856 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9857 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9858 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9859 }
9860 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9861 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9862 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9863 }
b9b61529 9864 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9865 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9866 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9867 }
9868 // Don't store a register immediately after writing it,
9869 // may prevent dual-issue.
9870 // But do so if this is a branch target, otherwise we
9871 // might have to load the register before the branch.
9872 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9873 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9874 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9875 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9876 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9877 }
9878 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9879 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9880 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9881 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9882 }
9883 }
9884 }
9885 // Cycle count is needed at branches. Assume it is needed at the target too.
9886 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9887 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9888 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9889 }
9890 // Save it
9891 needed_reg[i]=nr;
9892
9893 // Deallocate unneeded registers
9894 for(hr=0;hr<HOST_REGS;hr++)
9895 {
9896 if(!((nr>>hr)&1)) {
9897 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9898 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9899 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9900 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9901 {
9902 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9903 {
9904 if(likely[i]) {
9905 regs[i].regmap[hr]=-1;
9906 regs[i].isconst&=~(1<<hr);
79c75f1b 9907 if(i<slen-2) {
9908 regmap_pre[i+2][hr]=-1;
9909 regs[i+2].wasconst&=~(1<<hr);
9910 }
57871462 9911 }
9912 }
9913 }
9914 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9915 {
9916 int d1=0,d2=0,map=0,temp=0;
9917 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9918 {
9919 d1=dep1[i+1];
9920 d2=dep2[i+1];
9921 }
9922 if(using_tlb) {
9923 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9924 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 9925 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9926 map=TLREG;
9927 } else
b9b61529 9928 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9929 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9930 map=INVCP;
9931 }
9932 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 9933 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9934 temp=FTEMP;
9935 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9936 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9937 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9938 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9939 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9940 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9941 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9942 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9943 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9944 regs[i].regmap[hr]!=map )
9945 {
9946 regs[i].regmap[hr]=-1;
9947 regs[i].isconst&=~(1<<hr);
9948 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9949 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9950 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9951 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9952 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9953 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9954 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9955 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9956 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9957 branch_regs[i].regmap[hr]!=map)
9958 {
9959 branch_regs[i].regmap[hr]=-1;
9960 branch_regs[i].regmap_entry[hr]=-1;
9961 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9962 {
9963 if(!likely[i]&&i<slen-2) {
9964 regmap_pre[i+2][hr]=-1;
79c75f1b 9965 regs[i+2].wasconst&=~(1<<hr);
57871462 9966 }
9967 }
9968 }
9969 }
9970 }
9971 else
9972 {
9973 // Non-branch
9974 if(i>0)
9975 {
9976 int d1=0,d2=0,map=-1,temp=-1;
9977 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9978 {
9979 d1=dep1[i];
9980 d2=dep2[i];
9981 }
9982 if(using_tlb) {
9983 if(itype[i]==LOAD || itype[i]==LOADLR ||
9984 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 9985 itype[i]==C1LS || itype[i]==C2LS)
57871462 9986 map=TLREG;
b9b61529 9987 } else if(itype[i]==STORE || itype[i]==STORELR ||
9988 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9989 map=INVCP;
9990 }
9991 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 9992 itype[i]==C1LS || itype[i]==C2LS)
57871462 9993 temp=FTEMP;
9994 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9995 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9996 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9997 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9998 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9999 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10000 {
10001 if(i<slen-1&&!is_ds[i]) {
10002 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10003 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10004 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10005 {
10006 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10007 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10008 }
10009 regmap_pre[i+1][hr]=-1;
10010 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10011 regs[i+1].wasconst&=~(1<<hr);
57871462 10012 }
10013 regs[i].regmap[hr]=-1;
10014 regs[i].isconst&=~(1<<hr);
10015 }
10016 }
10017 }
10018 }
10019 }
10020 }
10021
10022 /* Pass 5 - Pre-allocate registers */
10023
10024 // If a register is allocated during a loop, try to allocate it for the
10025 // entire loop, if possible. This avoids loading/storing registers
10026 // inside of the loop.
198df76f 10027
57871462 10028 signed char f_regmap[HOST_REGS];
10029 clear_all_regs(f_regmap);
10030 for(i=0;i<slen-1;i++)
10031 {
10032 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10033 {
10034 if(ba[i]>=start && ba[i]<(start+i*4))
10035 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10036 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10037 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10038 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10039 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10040 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10041 {
10042 int t=(ba[i]-start)>>2;
10043 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10044 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10045 for(hr=0;hr<HOST_REGS;hr++)
10046 {
10047 if(regs[i].regmap[hr]>64) {
10048 if(!((regs[i].dirty>>hr)&1))
10049 f_regmap[hr]=regs[i].regmap[hr];
10050 else f_regmap[hr]=-1;
10051 }
b372a952 10052 else if(regs[i].regmap[hr]>=0) {
10053 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10054 // dealloc old register
10055 int n;
10056 for(n=0;n<HOST_REGS;n++)
10057 {
10058 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10059 }
10060 // and alloc new one
10061 f_regmap[hr]=regs[i].regmap[hr];
10062 }
10063 }
57871462 10064 if(branch_regs[i].regmap[hr]>64) {
10065 if(!((branch_regs[i].dirty>>hr)&1))
10066 f_regmap[hr]=branch_regs[i].regmap[hr];
10067 else f_regmap[hr]=-1;
10068 }
b372a952 10069 else if(branch_regs[i].regmap[hr]>=0) {
10070 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10071 // dealloc old register
10072 int n;
10073 for(n=0;n<HOST_REGS;n++)
10074 {
10075 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10076 }
10077 // and alloc new one
10078 f_regmap[hr]=branch_regs[i].regmap[hr];
10079 }
10080 }
e1190b87 10081 if(ooo[i]) {
10082 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10083 f_regmap[hr]=branch_regs[i].regmap[hr];
10084 }else{
10085 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10086 f_regmap[hr]=branch_regs[i].regmap[hr];
10087 }
10088 // Avoid dirty->clean transition
e1190b87 10089 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10090 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10091 #endif
10092 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10093 // case above, however it's always a good idea. We can't hoist the
10094 // load if the register was already allocated, so there's no point
10095 // wasting time analyzing most of these cases. It only "succeeds"
10096 // when the mapping was different and the load can be replaced with
10097 // a mov, which is of negligible benefit. So such cases are
10098 // skipped below.
57871462 10099 if(f_regmap[hr]>0) {
198df76f 10100 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10101 int r=f_regmap[hr];
10102 for(j=t;j<=i;j++)
10103 {
10104 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10105 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10106 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10107 if(r>63) {
10108 // NB This can exclude the case where the upper-half
10109 // register is lower numbered than the lower-half
10110 // register. Not sure if it's worth fixing...
10111 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10112 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10113 if(regs[j].is32&(1LL<<(r&63))) break;
10114 }
10115 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10116 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10117 int k;
10118 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10119 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10120 if(r>63) {
10121 if(get_reg(regs[i].regmap,r&63)<0) break;
10122 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10123 }
10124 k=i;
10125 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10126 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10127 //printf("no free regs for store %x\n",start+(k-1)*4);
10128 break;
57871462 10129 }
57871462 10130 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10131 //printf("no-match due to different register\n");
10132 break;
10133 }
10134 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10135 //printf("no-match due to branch\n");
10136 break;
10137 }
10138 // call/ret fast path assumes no registers allocated
198df76f 10139 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10140 break;
10141 }
10142 if(r>63) {
10143 // NB This can exclude the case where the upper-half
10144 // register is lower numbered than the lower-half
10145 // register. Not sure if it's worth fixing...
10146 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10147 if(regs[k-1].is32&(1LL<<(r&63))) break;
10148 }
10149 k--;
10150 }
10151 if(i<slen-1) {
10152 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10153 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10154 //printf("bad match after branch\n");
10155 break;
10156 }
10157 }
10158 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10159 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10160 while(k<i) {
10161 regs[k].regmap_entry[hr]=f_regmap[hr];
10162 regs[k].regmap[hr]=f_regmap[hr];
10163 regmap_pre[k+1][hr]=f_regmap[hr];
10164 regs[k].wasdirty&=~(1<<hr);
10165 regs[k].dirty&=~(1<<hr);
10166 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10167 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10168 regs[k].wasconst&=~(1<<hr);
10169 regs[k].isconst&=~(1<<hr);
10170 k++;
10171 }
10172 }
10173 else {
10174 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10175 break;
10176 }
10177 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10178 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10179 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10180 regs[i].regmap_entry[hr]=f_regmap[hr];
10181 regs[i].regmap[hr]=f_regmap[hr];
10182 regs[i].wasdirty&=~(1<<hr);
10183 regs[i].dirty&=~(1<<hr);
10184 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10185 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10186 regs[i].wasconst&=~(1<<hr);
10187 regs[i].isconst&=~(1<<hr);
10188 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10189 branch_regs[i].wasdirty&=~(1<<hr);
10190 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10191 branch_regs[i].regmap[hr]=f_regmap[hr];
10192 branch_regs[i].dirty&=~(1<<hr);
10193 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10194 branch_regs[i].wasconst&=~(1<<hr);
10195 branch_regs[i].isconst&=~(1<<hr);
10196 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10197 regmap_pre[i+2][hr]=f_regmap[hr];
10198 regs[i+2].wasdirty&=~(1<<hr);
10199 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10200 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10201 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10202 }
10203 }
10204 }
10205 for(k=t;k<j;k++) {
e1190b87 10206 // Alloc register clean at beginning of loop,
10207 // but may dirty it in pass 6
57871462 10208 regs[k].regmap_entry[hr]=f_regmap[hr];
10209 regs[k].regmap[hr]=f_regmap[hr];
57871462 10210 regs[k].dirty&=~(1<<hr);
10211 regs[k].wasconst&=~(1<<hr);
10212 regs[k].isconst&=~(1<<hr);
e1190b87 10213 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10214 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10215 branch_regs[k].regmap[hr]=f_regmap[hr];
10216 branch_regs[k].dirty&=~(1<<hr);
10217 branch_regs[k].wasconst&=~(1<<hr);
10218 branch_regs[k].isconst&=~(1<<hr);
10219 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10220 regmap_pre[k+2][hr]=f_regmap[hr];
10221 regs[k+2].wasdirty&=~(1<<hr);
10222 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10223 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10224 }
10225 }
10226 else
10227 {
10228 regmap_pre[k+1][hr]=f_regmap[hr];
10229 regs[k+1].wasdirty&=~(1<<hr);
10230 }
57871462 10231 }
10232 if(regs[j].regmap[hr]==f_regmap[hr])
10233 regs[j].regmap_entry[hr]=f_regmap[hr];
10234 break;
10235 }
10236 if(j==i) break;
10237 if(regs[j].regmap[hr]>=0)
10238 break;
10239 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10240 //printf("no-match due to different register\n");
10241 break;
10242 }
10243 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10244 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10245 break;
10246 }
e1190b87 10247 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10248 {
10249 // Stop on unconditional branch
10250 break;
10251 }
10252 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10253 {
10254 if(ooo[j]) {
10255 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10256 break;
10257 }else{
10258 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10259 break;
10260 }
10261 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10262 //printf("no-match due to different register (branch)\n");
57871462 10263 break;
10264 }
10265 }
e1190b87 10266 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10267 //printf("No free regs for store %x\n",start+j*4);
10268 break;
10269 }
57871462 10270 if(f_regmap[hr]>=64) {
10271 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10272 break;
10273 }
10274 else
10275 {
10276 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10277 break;
10278 }
10279 }
10280 }
10281 }
10282 }
10283 }
10284 }
10285 }
10286 }else{
198df76f 10287 // Non branch or undetermined branch target
57871462 10288 for(hr=0;hr<HOST_REGS;hr++)
10289 {
10290 if(hr!=EXCLUDE_REG) {
10291 if(regs[i].regmap[hr]>64) {
10292 if(!((regs[i].dirty>>hr)&1))
10293 f_regmap[hr]=regs[i].regmap[hr];
10294 }
b372a952 10295 else if(regs[i].regmap[hr]>=0) {
10296 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10297 // dealloc old register
10298 int n;
10299 for(n=0;n<HOST_REGS;n++)
10300 {
10301 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10302 }
10303 // and alloc new one
10304 f_regmap[hr]=regs[i].regmap[hr];
10305 }
10306 }
57871462 10307 }
10308 }
10309 // Try to restore cycle count at branch targets
10310 if(bt[i]) {
10311 for(j=i;j<slen-1;j++) {
10312 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10313 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10314 //printf("no free regs for store %x\n",start+j*4);
10315 break;
57871462 10316 }
57871462 10317 }
10318 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10319 int k=i;
10320 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10321 while(k<j) {
10322 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10323 regs[k].regmap[HOST_CCREG]=CCREG;
10324 regmap_pre[k+1][HOST_CCREG]=CCREG;
10325 regs[k+1].wasdirty|=1<<HOST_CCREG;
10326 regs[k].dirty|=1<<HOST_CCREG;
10327 regs[k].wasconst&=~(1<<HOST_CCREG);
10328 regs[k].isconst&=~(1<<HOST_CCREG);
10329 k++;
10330 }
10331 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10332 }
10333 // Work backwards from the branch target
10334 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10335 {
10336 //printf("Extend backwards\n");
10337 int k;
10338 k=i;
10339 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10340 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10341 //printf("no free regs for store %x\n",start+(k-1)*4);
10342 break;
57871462 10343 }
57871462 10344 k--;
10345 }
10346 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10347 //printf("Extend CC, %x ->\n",start+k*4);
10348 while(k<=i) {
10349 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10350 regs[k].regmap[HOST_CCREG]=CCREG;
10351 regmap_pre[k+1][HOST_CCREG]=CCREG;
10352 regs[k+1].wasdirty|=1<<HOST_CCREG;
10353 regs[k].dirty|=1<<HOST_CCREG;
10354 regs[k].wasconst&=~(1<<HOST_CCREG);
10355 regs[k].isconst&=~(1<<HOST_CCREG);
10356 k++;
10357 }
10358 }
10359 else {
10360 //printf("Fail Extend CC, %x ->\n",start+k*4);
10361 }
10362 }
10363 }
10364 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10365 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10366 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10367 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10368 {
10369 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10370 }
10371 }
10372 }
10373
d61de97e 10374 // Cache memory offset or tlb map pointer if a register is available
10375 #ifndef HOST_IMM_ADDR32
10376 #ifndef RAM_OFFSET
10377 if(using_tlb)
10378 #endif
10379 {
10380 int earliest_available[HOST_REGS];
10381 int loop_start[HOST_REGS];
10382 int score[HOST_REGS];
10383 int end[HOST_REGS];
10384 int reg=using_tlb?MMREG:ROREG;
10385
10386 // Init
10387 for(hr=0;hr<HOST_REGS;hr++) {
10388 score[hr]=0;earliest_available[hr]=0;
10389 loop_start[hr]=MAXBLOCK;
10390 }
10391 for(i=0;i<slen-1;i++)
10392 {
10393 // Can't do anything if no registers are available
10394 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10395 for(hr=0;hr<HOST_REGS;hr++) {
10396 score[hr]=0;earliest_available[hr]=i+1;
10397 loop_start[hr]=MAXBLOCK;
10398 }
10399 }
10400 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10401 if(!ooo[i]) {
10402 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10403 for(hr=0;hr<HOST_REGS;hr++) {
10404 score[hr]=0;earliest_available[hr]=i+1;
10405 loop_start[hr]=MAXBLOCK;
10406 }
10407 }
198df76f 10408 }else{
10409 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10410 for(hr=0;hr<HOST_REGS;hr++) {
10411 score[hr]=0;earliest_available[hr]=i+1;
10412 loop_start[hr]=MAXBLOCK;
10413 }
10414 }
d61de97e 10415 }
10416 }
10417 // Mark unavailable registers
10418 for(hr=0;hr<HOST_REGS;hr++) {
10419 if(regs[i].regmap[hr]>=0) {
10420 score[hr]=0;earliest_available[hr]=i+1;
10421 loop_start[hr]=MAXBLOCK;
10422 }
10423 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10424 if(branch_regs[i].regmap[hr]>=0) {
10425 score[hr]=0;earliest_available[hr]=i+2;
10426 loop_start[hr]=MAXBLOCK;
10427 }
10428 }
10429 }
10430 // No register allocations after unconditional jumps
10431 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10432 {
10433 for(hr=0;hr<HOST_REGS;hr++) {
10434 score[hr]=0;earliest_available[hr]=i+2;
10435 loop_start[hr]=MAXBLOCK;
10436 }
10437 i++; // Skip delay slot too
10438 //printf("skip delay slot: %x\n",start+i*4);
10439 }
10440 else
10441 // Possible match
10442 if(itype[i]==LOAD||itype[i]==LOADLR||
10443 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10444 for(hr=0;hr<HOST_REGS;hr++) {
10445 if(hr!=EXCLUDE_REG) {
10446 end[hr]=i-1;
10447 for(j=i;j<slen-1;j++) {
10448 if(regs[j].regmap[hr]>=0) break;
10449 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10450 if(branch_regs[j].regmap[hr]>=0) break;
10451 if(ooo[j]) {
10452 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10453 }else{
10454 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10455 }
10456 }
10457 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10458 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10459 int t=(ba[j]-start)>>2;
10460 if(t<j&&t>=earliest_available[hr]) {
198df76f 10461 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10462 // Score a point for hoisting loop invariant
10463 if(t<loop_start[hr]) loop_start[hr]=t;
10464 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10465 score[hr]++;
10466 end[hr]=j;
10467 }
d61de97e 10468 }
10469 else if(t<j) {
10470 if(regs[t].regmap[hr]==reg) {
10471 // Score a point if the branch target matches this register
10472 score[hr]++;
10473 end[hr]=j;
10474 }
10475 }
10476 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10477 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10478 score[hr]++;
10479 end[hr]=j;
10480 }
10481 }
10482 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10483 {
10484 // Stop on unconditional branch
10485 break;
10486 }
10487 else
10488 if(itype[j]==LOAD||itype[j]==LOADLR||
10489 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10490 score[hr]++;
10491 end[hr]=j;
10492 }
10493 }
10494 }
10495 }
10496 // Find highest score and allocate that register
10497 int maxscore=0;
10498 for(hr=0;hr<HOST_REGS;hr++) {
10499 if(hr!=EXCLUDE_REG) {
10500 if(score[hr]>score[maxscore]) {
10501 maxscore=hr;
10502 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10503 }
10504 }
10505 }
10506 if(score[maxscore]>1)
10507 {
10508 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10509 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10510 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10511 assert(regs[j].regmap[maxscore]<0);
10512 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10513 regs[j].regmap[maxscore]=reg;
10514 regs[j].dirty&=~(1<<maxscore);
10515 regs[j].wasconst&=~(1<<maxscore);
10516 regs[j].isconst&=~(1<<maxscore);
10517 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10518 branch_regs[j].regmap[maxscore]=reg;
10519 branch_regs[j].wasdirty&=~(1<<maxscore);
10520 branch_regs[j].dirty&=~(1<<maxscore);
10521 branch_regs[j].wasconst&=~(1<<maxscore);
10522 branch_regs[j].isconst&=~(1<<maxscore);
10523 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10524 regmap_pre[j+2][maxscore]=reg;
10525 regs[j+2].wasdirty&=~(1<<maxscore);
10526 }
10527 // loop optimization (loop_preload)
10528 int t=(ba[j]-start)>>2;
198df76f 10529 if(t==loop_start[maxscore]) {
10530 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10531 regs[t].regmap_entry[maxscore]=reg;
10532 }
d61de97e 10533 }
10534 else
10535 {
10536 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10537 regmap_pre[j+1][maxscore]=reg;
10538 regs[j+1].wasdirty&=~(1<<maxscore);
10539 }
10540 }
10541 }
10542 i=j-1;
10543 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10544 for(hr=0;hr<HOST_REGS;hr++) {
10545 score[hr]=0;earliest_available[hr]=i+i;
10546 loop_start[hr]=MAXBLOCK;
10547 }
10548 }
10549 }
10550 }
10551 }
10552 #endif
10553
57871462 10554 // This allocates registers (if possible) one instruction prior
10555 // to use, which can avoid a load-use penalty on certain CPUs.
10556 for(i=0;i<slen-1;i++)
10557 {
10558 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10559 {
10560 if(!bt[i+1])
10561 {
b9b61529 10562 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10563 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10564 {
10565 if(rs1[i+1]) {
10566 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10567 {
10568 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10569 {
10570 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10571 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10572 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10573 regs[i].isconst&=~(1<<hr);
10574 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10575 constmap[i][hr]=constmap[i+1][hr];
10576 regs[i+1].wasdirty&=~(1<<hr);
10577 regs[i].dirty&=~(1<<hr);
10578 }
10579 }
10580 }
10581 if(rs2[i+1]) {
10582 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10583 {
10584 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10585 {
10586 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10587 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10588 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10589 regs[i].isconst&=~(1<<hr);
10590 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10591 constmap[i][hr]=constmap[i+1][hr];
10592 regs[i+1].wasdirty&=~(1<<hr);
10593 regs[i].dirty&=~(1<<hr);
10594 }
10595 }
10596 }
198df76f 10597 // Preload target address for load instruction (non-constant)
57871462 10598 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10599 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10600 {
10601 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10602 {
10603 regs[i].regmap[hr]=rs1[i+1];
10604 regmap_pre[i+1][hr]=rs1[i+1];
10605 regs[i+1].regmap_entry[hr]=rs1[i+1];
10606 regs[i].isconst&=~(1<<hr);
10607 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10608 constmap[i][hr]=constmap[i+1][hr];
10609 regs[i+1].wasdirty&=~(1<<hr);
10610 regs[i].dirty&=~(1<<hr);
10611 }
10612 }
10613 }
198df76f 10614 // Load source into target register
57871462 10615 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10616 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10617 {
10618 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10619 {
10620 regs[i].regmap[hr]=rs1[i+1];
10621 regmap_pre[i+1][hr]=rs1[i+1];
10622 regs[i+1].regmap_entry[hr]=rs1[i+1];
10623 regs[i].isconst&=~(1<<hr);
10624 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10625 constmap[i][hr]=constmap[i+1][hr];
10626 regs[i+1].wasdirty&=~(1<<hr);
10627 regs[i].dirty&=~(1<<hr);
10628 }
10629 }
10630 }
198df76f 10631 // Preload map address
57871462 10632 #ifndef HOST_IMM_ADDR32
b9b61529 10633 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10634 hr=get_reg(regs[i+1].regmap,TLREG);
10635 if(hr>=0) {
10636 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10637 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10638 int nr;
10639 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10640 {
10641 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10642 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10643 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10644 regs[i].isconst&=~(1<<hr);
10645 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10646 constmap[i][hr]=constmap[i+1][hr];
10647 regs[i+1].wasdirty&=~(1<<hr);
10648 regs[i].dirty&=~(1<<hr);
10649 }
10650 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10651 {
10652 // move it to another register
10653 regs[i+1].regmap[hr]=-1;
10654 regmap_pre[i+2][hr]=-1;
10655 regs[i+1].regmap[nr]=TLREG;
10656 regmap_pre[i+2][nr]=TLREG;
10657 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10658 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10659 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10660 regs[i].isconst&=~(1<<nr);
10661 regs[i+1].isconst&=~(1<<nr);
10662 regs[i].dirty&=~(1<<nr);
10663 regs[i+1].wasdirty&=~(1<<nr);
10664 regs[i+1].dirty&=~(1<<nr);
10665 regs[i+2].wasdirty&=~(1<<nr);
10666 }
10667 }
10668 }
10669 }
10670 #endif
198df76f 10671 // Address for store instruction (non-constant)
b9b61529 10672 if(itype[i+1]==STORE||itype[i+1]==STORELR
10673 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10674 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10675 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10676 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10677 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10678 assert(hr>=0);
10679 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10680 {
10681 regs[i].regmap[hr]=rs1[i+1];
10682 regmap_pre[i+1][hr]=rs1[i+1];
10683 regs[i+1].regmap_entry[hr]=rs1[i+1];
10684 regs[i].isconst&=~(1<<hr);
10685 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10686 constmap[i][hr]=constmap[i+1][hr];
10687 regs[i+1].wasdirty&=~(1<<hr);
10688 regs[i].dirty&=~(1<<hr);
10689 }
10690 }
10691 }
b9b61529 10692 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10693 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10694 int nr;
10695 hr=get_reg(regs[i+1].regmap,FTEMP);
10696 assert(hr>=0);
10697 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10698 {
10699 regs[i].regmap[hr]=rs1[i+1];
10700 regmap_pre[i+1][hr]=rs1[i+1];
10701 regs[i+1].regmap_entry[hr]=rs1[i+1];
10702 regs[i].isconst&=~(1<<hr);
10703 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10704 constmap[i][hr]=constmap[i+1][hr];
10705 regs[i+1].wasdirty&=~(1<<hr);
10706 regs[i].dirty&=~(1<<hr);
10707 }
10708 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10709 {
10710 // move it to another register
10711 regs[i+1].regmap[hr]=-1;
10712 regmap_pre[i+2][hr]=-1;
10713 regs[i+1].regmap[nr]=FTEMP;
10714 regmap_pre[i+2][nr]=FTEMP;
10715 regs[i].regmap[nr]=rs1[i+1];
10716 regmap_pre[i+1][nr]=rs1[i+1];
10717 regs[i+1].regmap_entry[nr]=rs1[i+1];
10718 regs[i].isconst&=~(1<<nr);
10719 regs[i+1].isconst&=~(1<<nr);
10720 regs[i].dirty&=~(1<<nr);
10721 regs[i+1].wasdirty&=~(1<<nr);
10722 regs[i+1].dirty&=~(1<<nr);
10723 regs[i+2].wasdirty&=~(1<<nr);
10724 }
10725 }
10726 }
b9b61529 10727 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10728 if(itype[i+1]==LOAD)
10729 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10730 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10731 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10732 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10733 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10734 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10735 }
10736 if(hr>=0&&regs[i].regmap[hr]<0) {
10737 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10738 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10739 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10740 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10741 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10742 regs[i].isconst&=~(1<<hr);
10743 regs[i+1].wasdirty&=~(1<<hr);
10744 regs[i].dirty&=~(1<<hr);
10745 }
10746 }
10747 }
10748 }
10749 }
10750 }
10751 }
10752
10753 /* Pass 6 - Optimize clean/dirty state */
10754 clean_registers(0,slen-1,1);
10755
10756 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10757#ifndef FORCE32
57871462 10758 provisional_r32();
10759
10760 u_int r32=0;
10761
10762 for (i=slen-1;i>=0;i--)
10763 {
10764 int hr;
10765 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10766 {
10767 if(ba[i]<start || ba[i]>=(start+slen*4))
10768 {
10769 // Branch out of this block, don't need anything
10770 r32=0;
10771 }
10772 else
10773 {
10774 // Internal branch
10775 // Need whatever matches the target
10776 // (and doesn't get overwritten by the delay slot instruction)
10777 r32=0;
10778 int t=(ba[i]-start)>>2;
10779 if(ba[i]>start+i*4) {
10780 // Forward branch
10781 if(!(requires_32bit[t]&~regs[i].was32))
10782 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10783 }else{
10784 // Backward branch
10785 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10786 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10787 if(!(pr32[t]&~regs[i].was32))
10788 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10789 }
10790 }
10791 // Conditional branch may need registers for following instructions
10792 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10793 {
10794 if(i<slen-2) {
10795 r32|=requires_32bit[i+2];
10796 r32&=regs[i].was32;
10797 // Mark this address as a branch target since it may be called
10798 // upon return from interrupt
10799 bt[i+2]=1;
10800 }
10801 }
10802 // Merge in delay slot
10803 if(!likely[i]) {
10804 // These are overwritten unless the branch is "likely"
10805 // and the delay slot is nullified if not taken
10806 r32&=~(1LL<<rt1[i+1]);
10807 r32&=~(1LL<<rt2[i+1]);
10808 }
10809 // Assume these are needed (delay slot)
10810 if(us1[i+1]>0)
10811 {
10812 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10813 }
10814 if(us2[i+1]>0)
10815 {
10816 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10817 }
10818 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10819 {
10820 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10821 }
10822 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10823 {
10824 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10825 }
10826 }
1e973cb0 10827 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10828 {
10829 // SYSCALL instruction (software interrupt)
10830 r32=0;
10831 }
10832 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10833 {
10834 // ERET instruction (return from interrupt)
10835 r32=0;
10836 }
10837 // Check 32 bits
10838 r32&=~(1LL<<rt1[i]);
10839 r32&=~(1LL<<rt2[i]);
10840 if(us1[i]>0)
10841 {
10842 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10843 }
10844 if(us2[i]>0)
10845 {
10846 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10847 }
10848 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10849 {
10850 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10851 }
10852 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10853 {
10854 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10855 }
10856 requires_32bit[i]=r32;
10857
10858 // Dirty registers which are 32-bit, require 32-bit input
10859 // as they will be written as 32-bit values
10860 for(hr=0;hr<HOST_REGS;hr++)
10861 {
10862 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10863 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10864 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10865 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10866 }
10867 }
10868 }
10869 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10870 }
04fd948a 10871#else
10872 for (i=slen-1;i>=0;i--)
10873 {
10874 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10875 {
10876 // Conditional branch
10877 if((source[i]>>16)!=0x1000&&i<slen-2) {
10878 // Mark this address as a branch target since it may be called
10879 // upon return from interrupt
10880 bt[i+2]=1;
10881 }
10882 }
10883 }
a28c6ce8 10884#endif
57871462 10885
10886 if(itype[slen-1]==SPAN) {
10887 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10888 }
10889
10890 /* Debug/disassembly */
10891 if((void*)assem_debug==(void*)printf)
10892 for(i=0;i<slen;i++)
10893 {
10894 printf("U:");
10895 int r;
10896 for(r=1;r<=CCREG;r++) {
10897 if((unneeded_reg[i]>>r)&1) {
10898 if(r==HIREG) printf(" HI");
10899 else if(r==LOREG) printf(" LO");
10900 else printf(" r%d",r);
10901 }
10902 }
90ae6d4e 10903#ifndef FORCE32
57871462 10904 printf(" UU:");
10905 for(r=1;r<=CCREG;r++) {
10906 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10907 if(r==HIREG) printf(" HI");
10908 else if(r==LOREG) printf(" LO");
10909 else printf(" r%d",r);
10910 }
10911 }
10912 printf(" 32:");
10913 for(r=0;r<=CCREG;r++) {
10914 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10915 if((regs[i].was32>>r)&1) {
10916 if(r==CCREG) printf(" CC");
10917 else if(r==HIREG) printf(" HI");
10918 else if(r==LOREG) printf(" LO");
10919 else printf(" r%d",r);
10920 }
10921 }
90ae6d4e 10922#endif
57871462 10923 printf("\n");
10924 #if defined(__i386__) || defined(__x86_64__)
10925 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10926 #endif
10927 #ifdef __arm__
10928 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10929 #endif
10930 printf("needs: ");
10931 if(needed_reg[i]&1) printf("eax ");
10932 if((needed_reg[i]>>1)&1) printf("ecx ");
10933 if((needed_reg[i]>>2)&1) printf("edx ");
10934 if((needed_reg[i]>>3)&1) printf("ebx ");
10935 if((needed_reg[i]>>5)&1) printf("ebp ");
10936 if((needed_reg[i]>>6)&1) printf("esi ");
10937 if((needed_reg[i]>>7)&1) printf("edi ");
10938 printf("r:");
10939 for(r=0;r<=CCREG;r++) {
10940 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10941 if((requires_32bit[i]>>r)&1) {
10942 if(r==CCREG) printf(" CC");
10943 else if(r==HIREG) printf(" HI");
10944 else if(r==LOREG) printf(" LO");
10945 else printf(" r%d",r);
10946 }
10947 }
10948 printf("\n");
10949 /*printf("pr:");
10950 for(r=0;r<=CCREG;r++) {
10951 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10952 if((pr32[i]>>r)&1) {
10953 if(r==CCREG) printf(" CC");
10954 else if(r==HIREG) printf(" HI");
10955 else if(r==LOREG) printf(" LO");
10956 else printf(" r%d",r);
10957 }
10958 }
10959 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10960 printf("\n");*/
10961 #if defined(__i386__) || defined(__x86_64__)
10962 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10963 printf("dirty: ");
10964 if(regs[i].wasdirty&1) printf("eax ");
10965 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10966 if((regs[i].wasdirty>>2)&1) printf("edx ");
10967 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10968 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10969 if((regs[i].wasdirty>>6)&1) printf("esi ");
10970 if((regs[i].wasdirty>>7)&1) printf("edi ");
10971 #endif
10972 #ifdef __arm__
10973 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10974 printf("dirty: ");
10975 if(regs[i].wasdirty&1) printf("r0 ");
10976 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10977 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10978 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10979 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10980 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10981 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10982 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10983 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10984 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10985 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10986 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10987 #endif
10988 printf("\n");
10989 disassemble_inst(i);
10990 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10991 #if defined(__i386__) || defined(__x86_64__)
10992 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10993 if(regs[i].dirty&1) printf("eax ");
10994 if((regs[i].dirty>>1)&1) printf("ecx ");
10995 if((regs[i].dirty>>2)&1) printf("edx ");
10996 if((regs[i].dirty>>3)&1) printf("ebx ");
10997 if((regs[i].dirty>>5)&1) printf("ebp ");
10998 if((regs[i].dirty>>6)&1) printf("esi ");
10999 if((regs[i].dirty>>7)&1) printf("edi ");
11000 #endif
11001 #ifdef __arm__
11002 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11003 if(regs[i].dirty&1) printf("r0 ");
11004 if((regs[i].dirty>>1)&1) printf("r1 ");
11005 if((regs[i].dirty>>2)&1) printf("r2 ");
11006 if((regs[i].dirty>>3)&1) printf("r3 ");
11007 if((regs[i].dirty>>4)&1) printf("r4 ");
11008 if((regs[i].dirty>>5)&1) printf("r5 ");
11009 if((regs[i].dirty>>6)&1) printf("r6 ");
11010 if((regs[i].dirty>>7)&1) printf("r7 ");
11011 if((regs[i].dirty>>8)&1) printf("r8 ");
11012 if((regs[i].dirty>>9)&1) printf("r9 ");
11013 if((regs[i].dirty>>10)&1) printf("r10 ");
11014 if((regs[i].dirty>>12)&1) printf("r12 ");
11015 #endif
11016 printf("\n");
11017 if(regs[i].isconst) {
11018 printf("constants: ");
11019 #if defined(__i386__) || defined(__x86_64__)
11020 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11021 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11022 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11023 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11024 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11025 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11026 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11027 #endif
11028 #ifdef __arm__
11029 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11030 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11031 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11032 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11033 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11034 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11035 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11036 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11037 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11038 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11039 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11040 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11041 #endif
11042 printf("\n");
11043 }
90ae6d4e 11044#ifndef FORCE32
57871462 11045 printf(" 32:");
11046 for(r=0;r<=CCREG;r++) {
11047 if((regs[i].is32>>r)&1) {
11048 if(r==CCREG) printf(" CC");
11049 else if(r==HIREG) printf(" HI");
11050 else if(r==LOREG) printf(" LO");
11051 else printf(" r%d",r);
11052 }
11053 }
11054 printf("\n");
90ae6d4e 11055#endif
57871462 11056 /*printf(" p32:");
11057 for(r=0;r<=CCREG;r++) {
11058 if((p32[i]>>r)&1) {
11059 if(r==CCREG) printf(" CC");
11060 else if(r==HIREG) printf(" HI");
11061 else if(r==LOREG) printf(" LO");
11062 else printf(" r%d",r);
11063 }
11064 }
11065 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11066 else printf("\n");*/
11067 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11068 #if defined(__i386__) || defined(__x86_64__)
11069 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11070 if(branch_regs[i].dirty&1) printf("eax ");
11071 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11072 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11073 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11074 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11075 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11076 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11077 #endif
11078 #ifdef __arm__
11079 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11080 if(branch_regs[i].dirty&1) printf("r0 ");
11081 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11082 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11083 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11084 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11085 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11086 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11087 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11088 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11089 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11090 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11091 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11092 #endif
90ae6d4e 11093#ifndef FORCE32
57871462 11094 printf(" 32:");
11095 for(r=0;r<=CCREG;r++) {
11096 if((branch_regs[i].is32>>r)&1) {
11097 if(r==CCREG) printf(" CC");
11098 else if(r==HIREG) printf(" HI");
11099 else if(r==LOREG) printf(" LO");
11100 else printf(" r%d",r);
11101 }
11102 }
11103 printf("\n");
90ae6d4e 11104#endif
57871462 11105 }
11106 }
11107
11108 /* Pass 8 - Assembly */
11109 linkcount=0;stubcount=0;
11110 ds=0;is_delayslot=0;
11111 cop1_usable=0;
11112 uint64_t is32_pre=0;
11113 u_int dirty_pre=0;
11114 u_int beginning=(u_int)out;
11115 if((u_int)addr&1) {
11116 ds=1;
11117 pagespan_ds();
11118 }
9ad4d757 11119 u_int instr_addr0_override=0;
11120
11121#ifdef PCSX
11122 if (start == 0x80030000) {
11123 // nasty hack for fastbios thing
96186eba 11124 // override block entry to this code
9ad4d757 11125 instr_addr0_override=(u_int)out;
11126 emit_movimm(start,0);
96186eba 11127 // abuse io address var as a flag that we
11128 // have already returned here once
11129 emit_readword((int)&address,1);
9ad4d757 11130 emit_writeword(0,(int)&pcaddr);
96186eba 11131 emit_writeword(0,(int)&address);
9ad4d757 11132 emit_cmp(0,1);
11133 emit_jne((int)new_dyna_leave);
11134 }
11135#endif
57871462 11136 for(i=0;i<slen;i++)
11137 {
11138 //if(ds) printf("ds: ");
11139 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
11140 if(ds) {
11141 ds=0; // Skip delay slot
11142 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11143 instr_addr[i]=0;
11144 } else {
11145 #ifndef DESTRUCTIVE_WRITEBACK
11146 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11147 {
11148 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11149 unneeded_reg[i],unneeded_reg_upper[i]);
11150 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11151 unneeded_reg[i],unneeded_reg_upper[i]);
11152 }
f776eb14 11153 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11154 is32_pre=branch_regs[i].is32;
11155 dirty_pre=branch_regs[i].dirty;
11156 }else{
11157 is32_pre=regs[i].is32;
11158 dirty_pre=regs[i].dirty;
11159 }
57871462 11160 #endif
11161 // write back
11162 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11163 {
11164 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11165 unneeded_reg[i],unneeded_reg_upper[i]);
11166 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11167 }
11168 // branch target entry point
11169 instr_addr[i]=(u_int)out;
11170 assem_debug("<->\n");
11171 // load regs
11172 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11173 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11174 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11175 address_generation(i,&regs[i],regs[i].regmap_entry);
11176 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11177 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11178 {
11179 // Load the delay slot registers if necessary
4ef8f67d 11180 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11181 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11182 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11183 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11184 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11185 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11186 }
11187 else if(i+1<slen)
11188 {
11189 // Preload registers for following instruction
11190 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11191 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11192 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11193 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11194 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11195 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11196 }
11197 // TODO: if(is_ooo(i)) address_generation(i+1);
11198 if(itype[i]==CJUMP||itype[i]==FJUMP)
11199 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11200 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11201 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11202 if(bt[i]) cop1_usable=0;
11203 // assemble
11204 switch(itype[i]) {
11205 case ALU:
11206 alu_assemble(i,&regs[i]);break;
11207 case IMM16:
11208 imm16_assemble(i,&regs[i]);break;
11209 case SHIFT:
11210 shift_assemble(i,&regs[i]);break;
11211 case SHIFTIMM:
11212 shiftimm_assemble(i,&regs[i]);break;
11213 case LOAD:
11214 load_assemble(i,&regs[i]);break;
11215 case LOADLR:
11216 loadlr_assemble(i,&regs[i]);break;
11217 case STORE:
11218 store_assemble(i,&regs[i]);break;
11219 case STORELR:
11220 storelr_assemble(i,&regs[i]);break;
11221 case COP0:
11222 cop0_assemble(i,&regs[i]);break;
11223 case COP1:
11224 cop1_assemble(i,&regs[i]);break;
11225 case C1LS:
11226 c1ls_assemble(i,&regs[i]);break;
b9b61529 11227 case COP2:
11228 cop2_assemble(i,&regs[i]);break;
11229 case C2LS:
11230 c2ls_assemble(i,&regs[i]);break;
11231 case C2OP:
11232 c2op_assemble(i,&regs[i]);break;
57871462 11233 case FCONV:
11234 fconv_assemble(i,&regs[i]);break;
11235 case FLOAT:
11236 float_assemble(i,&regs[i]);break;
11237 case FCOMP:
11238 fcomp_assemble(i,&regs[i]);break;
11239 case MULTDIV:
11240 multdiv_assemble(i,&regs[i]);break;
11241 case MOV:
11242 mov_assemble(i,&regs[i]);break;
11243 case SYSCALL:
11244 syscall_assemble(i,&regs[i]);break;
7139f3c8 11245 case HLECALL:
11246 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11247 case INTCALL:
11248 intcall_assemble(i,&regs[i]);break;
57871462 11249 case UJUMP:
11250 ujump_assemble(i,&regs[i]);ds=1;break;
11251 case RJUMP:
11252 rjump_assemble(i,&regs[i]);ds=1;break;
11253 case CJUMP:
11254 cjump_assemble(i,&regs[i]);ds=1;break;
11255 case SJUMP:
11256 sjump_assemble(i,&regs[i]);ds=1;break;
11257 case FJUMP:
11258 fjump_assemble(i,&regs[i]);ds=1;break;
11259 case SPAN:
11260 pagespan_assemble(i,&regs[i]);break;
11261 }
11262 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11263 literal_pool(1024);
11264 else
11265 literal_pool_jumpover(256);
11266 }
11267 }
11268 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11269 // If the block did not end with an unconditional branch,
11270 // add a jump to the next instruction.
11271 if(i>1) {
11272 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11273 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11274 assert(i==slen);
11275 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11276 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11277 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11278 emit_loadreg(CCREG,HOST_CCREG);
11279 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11280 }
11281 else if(!likely[i-2])
11282 {
11283 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11284 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11285 }
11286 else
11287 {
11288 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11289 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11290 }
11291 add_to_linker((int)out,start+i*4,0);
11292 emit_jmp(0);
11293 }
11294 }
11295 else
11296 {
11297 assert(i>0);
11298 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11299 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11300 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11301 emit_loadreg(CCREG,HOST_CCREG);
11302 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11303 add_to_linker((int)out,start+i*4,0);
11304 emit_jmp(0);
11305 }
11306
11307 // TODO: delay slot stubs?
11308 // Stubs
11309 for(i=0;i<stubcount;i++)
11310 {
11311 switch(stubs[i][0])
11312 {
11313 case LOADB_STUB:
11314 case LOADH_STUB:
11315 case LOADW_STUB:
11316 case LOADD_STUB:
11317 case LOADBU_STUB:
11318 case LOADHU_STUB:
11319 do_readstub(i);break;
11320 case STOREB_STUB:
11321 case STOREH_STUB:
11322 case STOREW_STUB:
11323 case STORED_STUB:
11324 do_writestub(i);break;
11325 case CC_STUB:
11326 do_ccstub(i);break;
11327 case INVCODE_STUB:
11328 do_invstub(i);break;
11329 case FP_STUB:
11330 do_cop1stub(i);break;
11331 case STORELR_STUB:
11332 do_unalignedwritestub(i);break;
11333 }
11334 }
11335
9ad4d757 11336 if (instr_addr0_override)
11337 instr_addr[0] = instr_addr0_override;
11338
57871462 11339 /* Pass 9 - Linker */
11340 for(i=0;i<linkcount;i++)
11341 {
11342 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11343 literal_pool(64);
11344 if(!link_addr[i][2])
11345 {
11346 void *stub=out;
11347 void *addr=check_addr(link_addr[i][1]);
11348 emit_extjump(link_addr[i][0],link_addr[i][1]);
11349 if(addr) {
11350 set_jump_target(link_addr[i][0],(int)addr);
11351 add_link(link_addr[i][1],stub);
11352 }
11353 else set_jump_target(link_addr[i][0],(int)stub);
11354 }
11355 else
11356 {
11357 // Internal branch
11358 int target=(link_addr[i][1]-start)>>2;
11359 assert(target>=0&&target<slen);
11360 assert(instr_addr[target]);
11361 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11362 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11363 //#else
11364 set_jump_target(link_addr[i][0],instr_addr[target]);
11365 //#endif
11366 }
11367 }
11368 // External Branch Targets (jump_in)
11369 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11370 for(i=0;i<slen;i++)
11371 {
11372 if(bt[i]||i==0)
11373 {
11374 if(instr_addr[i]) // TODO - delay slots (=null)
11375 {
11376 u_int vaddr=start+i*4;
94d23bb9 11377 u_int page=get_page(vaddr);
11378 u_int vpage=get_vpage(vaddr);
57871462 11379 literal_pool(256);
11380 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11381#ifndef FORCE32
57871462 11382 if(!requires_32bit[i])
a28c6ce8 11383#else
11384 if(1)
11385#endif
57871462 11386 {
11387 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11388 assem_debug("jump_in: %x\n",start+i*4);
11389 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11390 int entry_point=do_dirty_stub(i);
11391 ll_add(jump_in+page,vaddr,(void *)entry_point);
11392 // If there was an existing entry in the hash table,
11393 // replace it with the new address.
11394 // Don't add new entries. We'll insert the
11395 // ones that actually get used in check_addr().
11396 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11397 if(ht_bin[0]==vaddr) {
11398 ht_bin[1]=entry_point;
11399 }
11400 if(ht_bin[2]==vaddr) {
11401 ht_bin[3]=entry_point;
11402 }
11403 }
11404 else
11405 {
11406 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11407 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11408 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11409 //int entry_point=(int)out;
11410 ////assem_debug("entry_point: %x\n",entry_point);
11411 //load_regs_entry(i);
11412 //if(entry_point==(int)out)
11413 // entry_point=instr_addr[i];
11414 //else
11415 // emit_jmp(instr_addr[i]);
11416 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11417 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11418 int entry_point=do_dirty_stub(i);
11419 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11420 }
11421 }
11422 }
11423 }
11424 // Write out the literal pool if necessary
11425 literal_pool(0);
11426 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11427 // Align code
11428 if(((u_int)out)&7) emit_addnop(13);
11429 #endif
11430 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11431 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11432 memcpy(copy,source,slen*4);
11433 copy+=slen*4;
11434
11435 #ifdef __arm__
11436 __clear_cache((void *)beginning,out);
11437 #endif
11438
11439 // If we're within 256K of the end of the buffer,
11440 // start over from the beginning. (Is 256K enough?)
11441 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11442
11443 // Trap writes to any of the pages we compiled
11444 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11445 invalid_code[i]=0;
90ae6d4e 11446#ifndef DISABLE_TLB
57871462 11447 memory_map[i]|=0x40000000;
11448 if((signed int)start>=(signed int)0xC0000000) {
11449 assert(using_tlb);
11450 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11451 invalid_code[j]=0;
11452 memory_map[j]|=0x40000000;
11453 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11454 }
90ae6d4e 11455#endif
57871462 11456 }
9be4ba64 11457 inv_code_start=inv_code_end=~0;
b12c9fb8 11458#ifdef PCSX
11459 // PCSX maps all RAM mirror invalid_code tests to 0x80000000..0x80000000+RAM_SIZE
11460 if(get_page(start)<(RAM_SIZE>>12))
11461 for(i=start>>12;i<=(start+slen*4)>>12;i++)
11462 invalid_code[((u_int)0x80000000>>12)|i]=0;
11463#endif
57871462 11464
11465 /* Pass 10 - Free memory by expiring oldest blocks */
11466
11467 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11468 while(expirep!=end)
11469 {
11470 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11471 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11472 inv_debug("EXP: Phase %d\n",expirep);
11473 switch((expirep>>11)&3)
11474 {
11475 case 0:
11476 // Clear jump_in and jump_dirty
11477 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11478 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11479 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11480 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11481 break;
11482 case 1:
11483 // Clear pointers
11484 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11485 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11486 break;
11487 case 2:
11488 // Clear hash table
11489 for(i=0;i<32;i++) {
11490 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11491 if((ht_bin[3]>>shift)==(base>>shift) ||
11492 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11493 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11494 ht_bin[2]=ht_bin[3]=-1;
11495 }
11496 if((ht_bin[1]>>shift)==(base>>shift) ||
11497 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11498 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11499 ht_bin[0]=ht_bin[2];
11500 ht_bin[1]=ht_bin[3];
11501 ht_bin[2]=ht_bin[3]=-1;
11502 }
11503 }
11504 break;
11505 case 3:
11506 // Clear jump_out
dd3a91a1 11507 #ifdef __arm__
11508 if((expirep&2047)==0)
11509 do_clear_cache();
11510 #endif
57871462 11511 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11512 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11513 break;
11514 }
11515 expirep=(expirep+1)&65535;
11516 }
11517 return 0;
11518}
b9b61529 11519
11520// vim:shiftwidth=2:expandtab