drc: fix cycle multiplier code
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 46
57871462 47struct regstat
48{
49 signed char regmap_entry[HOST_REGS];
50 signed char regmap[HOST_REGS];
51 uint64_t was32;
52 uint64_t is32;
53 uint64_t wasdirty;
54 uint64_t dirty;
55 uint64_t u;
56 uint64_t uu;
57 u_int wasconst;
58 u_int isconst;
8575a877 59 u_int loadedconst; // host regs that have constants loaded
60 u_int waswritten; // MIPS regs that were used as store base before
57871462 61 uint64_t constmap[HOST_REGS];
62};
63
64struct ll_entry
65{
66 u_int vaddr;
67 u_int reg32;
68 void *addr;
69 struct ll_entry *next;
70};
71
72 u_int start;
73 u_int *source;
74 u_int pagelimit;
75 char insn[MAXBLOCK][10];
76 u_char itype[MAXBLOCK];
77 u_char opcode[MAXBLOCK];
78 u_char opcode2[MAXBLOCK];
79 u_char bt[MAXBLOCK];
80 u_char rs1[MAXBLOCK];
81 u_char rs2[MAXBLOCK];
82 u_char rt1[MAXBLOCK];
83 u_char rt2[MAXBLOCK];
84 u_char us1[MAXBLOCK];
85 u_char us2[MAXBLOCK];
86 u_char dep1[MAXBLOCK];
87 u_char dep2[MAXBLOCK];
88 u_char lt1[MAXBLOCK];
bedfea38 89 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
90 static uint64_t gte_rt[MAXBLOCK];
91 static uint64_t gte_unneeded[MAXBLOCK];
ffb0b9e0 92 static u_int smrv[32]; // speculated MIPS register values
93 static u_int smrv_strong; // mask or regs that are likely to have correct values
94 static u_int smrv_weak; // same, but somewhat less likely
95 static u_int smrv_strong_next; // same, but after current insn executes
96 static u_int smrv_weak_next;
57871462 97 int imm[MAXBLOCK];
98 u_int ba[MAXBLOCK];
99 char likely[MAXBLOCK];
100 char is_ds[MAXBLOCK];
e1190b87 101 char ooo[MAXBLOCK];
57871462 102 uint64_t unneeded_reg[MAXBLOCK];
103 uint64_t unneeded_reg_upper[MAXBLOCK];
104 uint64_t branch_unneeded_reg[MAXBLOCK];
105 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
106 uint64_t p32[MAXBLOCK];
107 uint64_t pr32[MAXBLOCK];
108 signed char regmap_pre[MAXBLOCK][HOST_REGS];
109 signed char regmap[MAXBLOCK][HOST_REGS];
110 signed char regmap_entry[MAXBLOCK][HOST_REGS];
111 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 112 struct regstat regs[MAXBLOCK];
113 struct regstat branch_regs[MAXBLOCK];
e1190b87 114 signed char minimum_free_regs[MAXBLOCK];
57871462 115 u_int needed_reg[MAXBLOCK];
116 uint64_t requires_32bit[MAXBLOCK];
117 u_int wont_dirty[MAXBLOCK];
118 u_int will_dirty[MAXBLOCK];
119 int ccadj[MAXBLOCK];
120 int slen;
121 u_int instr_addr[MAXBLOCK];
122 u_int link_addr[MAXBLOCK][3];
123 int linkcount;
124 u_int stubs[MAXBLOCK*3][8];
125 int stubcount;
126 u_int literals[1024][2];
127 int literalcount;
128 int is_delayslot;
129 int cop1_usable;
130 u_char *out;
131 struct ll_entry *jump_in[4096];
132 struct ll_entry *jump_out[4096];
133 struct ll_entry *jump_dirty[4096];
134 u_int hash_table[65536][4] __attribute__((aligned(16)));
135 char shadow[1048576] __attribute__((aligned(16)));
136 void *copy;
137 int expirep;
af4ee1fe 138#ifndef PCSX
57871462 139 u_int using_tlb;
af4ee1fe 140#else
141 static const u_int using_tlb=0;
142#endif
2f546f9a 143 int new_dynarec_did_compile;
0ff8c62c 144 int new_dynarec_hacks;
57871462 145 u_int stop_after_jal;
146 extern u_char restore_candidate[512];
147 extern int cycle_count;
148
149 /* registers that may be allocated */
150 /* 1-31 gpr */
151#define HIREG 32 // hi
152#define LOREG 33 // lo
153#define FSREG 34 // FPU status (FCSR)
154#define CSREG 35 // Coprocessor status
155#define CCREG 36 // Cycle count
156#define INVCP 37 // Pointer to invalid_code
619e5ded 157#define MMREG 38 // Pointer to memory_map
158#define ROREG 39 // ram offset (if rdram!=0x80000000)
159#define TEMPREG 40
160#define FTEMP 40 // FPU temporary register
161#define PTEMP 41 // Prefetch temporary register
162#define TLREG 42 // TLB mapping offset
163#define RHASH 43 // Return address hash
164#define RHTBL 44 // Return address hash table address
165#define RTEMP 45 // JR/JALR address register
166#define MAXREG 45
167#define AGEN1 46 // Address generation temporary register
168#define AGEN2 47 // Address generation temporary register
169#define MGEN1 48 // Maptable address generation temporary register
170#define MGEN2 49 // Maptable address generation temporary register
171#define BTREG 50 // Branch target temporary register
57871462 172
173 /* instruction types */
174#define NOP 0 // No operation
175#define LOAD 1 // Load
176#define STORE 2 // Store
177#define LOADLR 3 // Unaligned load
178#define STORELR 4 // Unaligned store
179#define MOV 5 // Move
180#define ALU 6 // Arithmetic/logic
181#define MULTDIV 7 // Multiply/divide
182#define SHIFT 8 // Shift by register
183#define SHIFTIMM 9// Shift by immediate
184#define IMM16 10 // 16-bit immediate
185#define RJUMP 11 // Unconditional jump to register
186#define UJUMP 12 // Unconditional jump
187#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
188#define SJUMP 14 // Conditional branch (regimm format)
189#define COP0 15 // Coprocessor 0
190#define COP1 16 // Coprocessor 1
191#define C1LS 17 // Coprocessor 1 load/store
192#define FJUMP 18 // Conditional branch (floating point)
193#define FLOAT 19 // Floating point unit
194#define FCONV 20 // Convert integer to float
195#define FCOMP 21 // Floating point compare (sets FSREG)
196#define SYSCALL 22// SYSCALL
197#define OTHER 23 // Other
198#define SPAN 24 // Branch/delay slot spans 2 pages
199#define NI 25 // Not implemented
7139f3c8 200#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 201#define COP2 27 // Coprocessor 2 move
202#define C2LS 28 // Coprocessor 2 load/store
203#define C2OP 29 // Coprocessor 2 operation
1e973cb0 204#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 205
206 /* stubs */
207#define CC_STUB 1
208#define FP_STUB 2
209#define LOADB_STUB 3
210#define LOADH_STUB 4
211#define LOADW_STUB 5
212#define LOADD_STUB 6
213#define LOADBU_STUB 7
214#define LOADHU_STUB 8
215#define STOREB_STUB 9
216#define STOREH_STUB 10
217#define STOREW_STUB 11
218#define STORED_STUB 12
219#define STORELR_STUB 13
220#define INVCODE_STUB 14
221
222 /* branch codes */
223#define TAKEN 1
224#define NOTTAKEN 2
225#define NULLDS 3
226
227// asm linkage
228int new_recompile_block(int addr);
229void *get_addr_ht(u_int vaddr);
230void invalidate_block(u_int block);
231void invalidate_addr(u_int addr);
232void remove_hash(int vaddr);
233void jump_vaddr();
234void dyna_linker();
235void dyna_linker_ds();
236void verify_code();
237void verify_code_vm();
238void verify_code_ds();
239void cc_interrupt();
240void fp_exception();
241void fp_exception_ds();
242void jump_syscall();
7139f3c8 243void jump_syscall_hle();
57871462 244void jump_eret();
7139f3c8 245void jump_hlecall();
1e973cb0 246void jump_intcall();
7139f3c8 247void new_dyna_leave();
57871462 248
249// TLB
250void TLBWI_new();
251void TLBWR_new();
252void read_nomem_new();
253void read_nomemb_new();
254void read_nomemh_new();
255void read_nomemd_new();
256void write_nomem_new();
257void write_nomemb_new();
258void write_nomemh_new();
259void write_nomemd_new();
260void write_rdram_new();
261void write_rdramb_new();
262void write_rdramh_new();
263void write_rdramd_new();
264extern u_int memory_map[1048576];
265
266// Needed by assembler
267void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
268void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
269void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
270void load_all_regs(signed char i_regmap[]);
271void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
272void load_regs_entry(int t);
273void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
274
275int tracedebug=0;
276
277//#define DEBUG_CYCLE_COUNT 1
278
4e9dcd7f 279int cycle_multiplier; // 100 for 1.0
280
281static int CLOCK_ADJUST(int x)
282{
283 int s=(x>>31)|1;
284 return (x * cycle_multiplier + s * 50) / 100;
285}
286
94d23bb9 287static void tlb_hacks()
57871462 288{
94d23bb9 289#ifndef DISABLE_TLB
57871462 290 // Goldeneye hack
291 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
292 {
293 u_int addr;
294 int n;
295 switch (ROM_HEADER->Country_code&0xFF)
296 {
297 case 0x45: // U
298 addr=0x34b30;
299 break;
300 case 0x4A: // J
301 addr=0x34b70;
302 break;
303 case 0x50: // E
304 addr=0x329f0;
305 break;
306 default:
307 // Unknown country code
308 addr=0;
309 break;
310 }
311 u_int rom_addr=(u_int)rom;
312 #ifdef ROM_COPY
313 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
314 // in the lower 4G of memory to use this hack. Copy it if necessary.
315 if((void *)rom>(void *)0xffffffff) {
316 munmap(ROM_COPY, 67108864);
317 if(mmap(ROM_COPY, 12582912,
318 PROT_READ | PROT_WRITE,
319 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
320 -1, 0) <= 0) {printf("mmap() failed\n");}
321 memcpy(ROM_COPY,rom,12582912);
322 rom_addr=(u_int)ROM_COPY;
323 }
324 #endif
325 if(addr) {
326 for(n=0x7F000;n<0x80000;n++) {
327 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
328 }
329 }
330 }
94d23bb9 331#endif
57871462 332}
333
94d23bb9 334static u_int get_page(u_int vaddr)
57871462 335{
0ce47d46 336#ifndef PCSX
57871462 337 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 338#else
339 u_int page=vaddr&~0xe0000000;
340 if (page < 0x1000000)
341 page &= ~0x0e00000; // RAM mirrors
342 page>>=12;
343#endif
94d23bb9 344#ifndef DISABLE_TLB
57871462 345 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 346#endif
57871462 347 if(page>2048) page=2048+(page&2047);
94d23bb9 348 return page;
349}
350
d25604ca 351#ifndef PCSX
94d23bb9 352static u_int get_vpage(u_int vaddr)
353{
354 u_int vpage=(vaddr^0x80000000)>>12;
355#ifndef DISABLE_TLB
57871462 356 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 357#endif
57871462 358 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 359 return vpage;
360}
d25604ca 361#else
362// no virtual mem in PCSX
363static u_int get_vpage(u_int vaddr)
364{
365 return get_page(vaddr);
366}
367#endif
94d23bb9 368
369// Get address from virtual address
370// This is called from the recompiled JR/JALR instructions
371void *get_addr(u_int vaddr)
372{
373 u_int page=get_page(vaddr);
374 u_int vpage=get_vpage(vaddr);
57871462 375 struct ll_entry *head;
376 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
377 head=jump_in[page];
378 while(head!=NULL) {
379 if(head->vaddr==vaddr&&head->reg32==0) {
380 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
381 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
382 ht_bin[3]=ht_bin[1];
383 ht_bin[2]=ht_bin[0];
384 ht_bin[1]=(int)head->addr;
385 ht_bin[0]=vaddr;
386 return head->addr;
387 }
388 head=head->next;
389 }
390 head=jump_dirty[vpage];
391 while(head!=NULL) {
392 if(head->vaddr==vaddr&&head->reg32==0) {
393 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
394 // Don't restore blocks which are about to expire from the cache
395 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
396 if(verify_dirty(head->addr)) {
397 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
398 invalid_code[vaddr>>12]=0;
9be4ba64 399 inv_code_start=inv_code_end=~0;
63cb0298 400#ifndef DISABLE_TLB
57871462 401 memory_map[vaddr>>12]|=0x40000000;
63cb0298 402#endif
57871462 403 if(vpage<2048) {
94d23bb9 404#ifndef DISABLE_TLB
57871462 405 if(tlb_LUT_r[vaddr>>12]) {
406 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
407 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
408 }
94d23bb9 409#endif
57871462 410 restore_candidate[vpage>>3]|=1<<(vpage&7);
411 }
412 else restore_candidate[page>>3]|=1<<(page&7);
413 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
414 if(ht_bin[0]==vaddr) {
415 ht_bin[1]=(int)head->addr; // Replace existing entry
416 }
417 else
418 {
419 ht_bin[3]=ht_bin[1];
420 ht_bin[2]=ht_bin[0];
421 ht_bin[1]=(int)head->addr;
422 ht_bin[0]=vaddr;
423 }
424 return head->addr;
425 }
426 }
427 head=head->next;
428 }
429 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
430 int r=new_recompile_block(vaddr);
431 if(r==0) return get_addr(vaddr);
432 // Execute in unmapped page, generate pagefault execption
433 Status|=2;
434 Cause=(vaddr<<31)|0x8;
435 EPC=(vaddr&1)?vaddr-5:vaddr;
436 BadVAddr=(vaddr&~1);
437 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
438 EntryHi=BadVAddr&0xFFFFE000;
439 return get_addr_ht(0x80000000);
440}
441// Look up address in hash table first
442void *get_addr_ht(u_int vaddr)
443{
444 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
445 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
446 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
447 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
448 return get_addr(vaddr);
449}
450
451void *get_addr_32(u_int vaddr,u_int flags)
452{
7139f3c8 453#ifdef FORCE32
454 return get_addr(vaddr);
560e4a12 455#else
57871462 456 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
457 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
458 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
459 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 460 u_int page=get_page(vaddr);
461 u_int vpage=get_vpage(vaddr);
57871462 462 struct ll_entry *head;
463 head=jump_in[page];
464 while(head!=NULL) {
465 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
466 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
467 if(head->reg32==0) {
468 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
469 if(ht_bin[0]==-1) {
470 ht_bin[1]=(int)head->addr;
471 ht_bin[0]=vaddr;
472 }else if(ht_bin[2]==-1) {
473 ht_bin[3]=(int)head->addr;
474 ht_bin[2]=vaddr;
475 }
476 //ht_bin[3]=ht_bin[1];
477 //ht_bin[2]=ht_bin[0];
478 //ht_bin[1]=(int)head->addr;
479 //ht_bin[0]=vaddr;
480 }
481 return head->addr;
482 }
483 head=head->next;
484 }
485 head=jump_dirty[vpage];
486 while(head!=NULL) {
487 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
488 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
489 // Don't restore blocks which are about to expire from the cache
490 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
491 if(verify_dirty(head->addr)) {
492 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
493 invalid_code[vaddr>>12]=0;
9be4ba64 494 inv_code_start=inv_code_end=~0;
57871462 495 memory_map[vaddr>>12]|=0x40000000;
496 if(vpage<2048) {
94d23bb9 497#ifndef DISABLE_TLB
57871462 498 if(tlb_LUT_r[vaddr>>12]) {
499 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
500 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
501 }
94d23bb9 502#endif
57871462 503 restore_candidate[vpage>>3]|=1<<(vpage&7);
504 }
505 else restore_candidate[page>>3]|=1<<(page&7);
506 if(head->reg32==0) {
507 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
508 if(ht_bin[0]==-1) {
509 ht_bin[1]=(int)head->addr;
510 ht_bin[0]=vaddr;
511 }else if(ht_bin[2]==-1) {
512 ht_bin[3]=(int)head->addr;
513 ht_bin[2]=vaddr;
514 }
515 //ht_bin[3]=ht_bin[1];
516 //ht_bin[2]=ht_bin[0];
517 //ht_bin[1]=(int)head->addr;
518 //ht_bin[0]=vaddr;
519 }
520 return head->addr;
521 }
522 }
523 head=head->next;
524 }
525 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
526 int r=new_recompile_block(vaddr);
527 if(r==0) return get_addr(vaddr);
528 // Execute in unmapped page, generate pagefault execption
529 Status|=2;
530 Cause=(vaddr<<31)|0x8;
531 EPC=(vaddr&1)?vaddr-5:vaddr;
532 BadVAddr=(vaddr&~1);
533 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
534 EntryHi=BadVAddr&0xFFFFE000;
535 return get_addr_ht(0x80000000);
560e4a12 536#endif
57871462 537}
538
539void clear_all_regs(signed char regmap[])
540{
541 int hr;
542 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
543}
544
545signed char get_reg(signed char regmap[],int r)
546{
547 int hr;
548 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
549 return -1;
550}
551
552// Find a register that is available for two consecutive cycles
553signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
554{
555 int hr;
556 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
557 return -1;
558}
559
560int count_free_regs(signed char regmap[])
561{
562 int count=0;
563 int hr;
564 for(hr=0;hr<HOST_REGS;hr++)
565 {
566 if(hr!=EXCLUDE_REG) {
567 if(regmap[hr]<0) count++;
568 }
569 }
570 return count;
571}
572
573void dirty_reg(struct regstat *cur,signed char reg)
574{
575 int hr;
576 if(!reg) return;
577 for (hr=0;hr<HOST_REGS;hr++) {
578 if((cur->regmap[hr]&63)==reg) {
579 cur->dirty|=1<<hr;
580 }
581 }
582}
583
584// If we dirty the lower half of a 64 bit register which is now being
585// sign-extended, we need to dump the upper half.
586// Note: Do this only after completion of the instruction, because
587// some instructions may need to read the full 64-bit value even if
588// overwriting it (eg SLTI, DSRA32).
589static void flush_dirty_uppers(struct regstat *cur)
590{
591 int hr,reg;
592 for (hr=0;hr<HOST_REGS;hr++) {
593 if((cur->dirty>>hr)&1) {
594 reg=cur->regmap[hr];
595 if(reg>=64)
596 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
597 }
598 }
599}
600
601void set_const(struct regstat *cur,signed char reg,uint64_t value)
602{
603 int hr;
604 if(!reg) return;
605 for (hr=0;hr<HOST_REGS;hr++) {
606 if(cur->regmap[hr]==reg) {
607 cur->isconst|=1<<hr;
608 cur->constmap[hr]=value;
609 }
610 else if((cur->regmap[hr]^64)==reg) {
611 cur->isconst|=1<<hr;
612 cur->constmap[hr]=value>>32;
613 }
614 }
615}
616
617void clear_const(struct regstat *cur,signed char reg)
618{
619 int hr;
620 if(!reg) return;
621 for (hr=0;hr<HOST_REGS;hr++) {
622 if((cur->regmap[hr]&63)==reg) {
623 cur->isconst&=~(1<<hr);
624 }
625 }
626}
627
628int is_const(struct regstat *cur,signed char reg)
629{
630 int hr;
79c75f1b 631 if(reg<0) return 0;
57871462 632 if(!reg) return 1;
633 for (hr=0;hr<HOST_REGS;hr++) {
634 if((cur->regmap[hr]&63)==reg) {
635 return (cur->isconst>>hr)&1;
636 }
637 }
638 return 0;
639}
640uint64_t get_const(struct regstat *cur,signed char reg)
641{
642 int hr;
643 if(!reg) return 0;
644 for (hr=0;hr<HOST_REGS;hr++) {
645 if(cur->regmap[hr]==reg) {
646 return cur->constmap[hr];
647 }
648 }
649 printf("Unknown constant in r%d\n",reg);
650 exit(1);
651}
652
653// Least soon needed registers
654// Look at the next ten instructions and see which registers
655// will be used. Try not to reallocate these.
656void lsn(u_char hsn[], int i, int *preferred_reg)
657{
658 int j;
659 int b=-1;
660 for(j=0;j<9;j++)
661 {
662 if(i+j>=slen) {
663 j=slen-i-1;
664 break;
665 }
666 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
667 {
668 // Don't go past an unconditonal jump
669 j++;
670 break;
671 }
672 }
673 for(;j>=0;j--)
674 {
675 if(rs1[i+j]) hsn[rs1[i+j]]=j;
676 if(rs2[i+j]) hsn[rs2[i+j]]=j;
677 if(rt1[i+j]) hsn[rt1[i+j]]=j;
678 if(rt2[i+j]) hsn[rt2[i+j]]=j;
679 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
680 // Stores can allocate zero
681 hsn[rs1[i+j]]=j;
682 hsn[rs2[i+j]]=j;
683 }
684 // On some architectures stores need invc_ptr
685 #if defined(HOST_IMM8)
b9b61529 686 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 687 hsn[INVCP]=j;
688 }
689 #endif
690 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
691 {
692 hsn[CCREG]=j;
693 b=j;
694 }
695 }
696 if(b>=0)
697 {
698 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
699 {
700 // Follow first branch
701 int t=(ba[i+b]-start)>>2;
702 j=7-b;if(t+j>=slen) j=slen-t-1;
703 for(;j>=0;j--)
704 {
705 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
706 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
707 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
708 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
709 }
710 }
711 // TODO: preferred register based on backward branch
712 }
713 // Delay slot should preferably not overwrite branch conditions or cycle count
714 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
715 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
716 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
717 hsn[CCREG]=1;
718 // ...or hash tables
719 hsn[RHASH]=1;
720 hsn[RHTBL]=1;
721 }
722 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 723 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 724 hsn[FTEMP]=0;
725 }
726 // Load L/R also uses FTEMP as a temporary register
727 if(itype[i]==LOADLR) {
728 hsn[FTEMP]=0;
729 }
b7918751 730 // Also SWL/SWR/SDL/SDR
731 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 732 hsn[FTEMP]=0;
733 }
734 // Don't remove the TLB registers either
b9b61529 735 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 736 hsn[TLREG]=0;
737 }
738 // Don't remove the miniht registers
739 if(itype[i]==UJUMP||itype[i]==RJUMP)
740 {
741 hsn[RHASH]=0;
742 hsn[RHTBL]=0;
743 }
744}
745
746// We only want to allocate registers if we're going to use them again soon
747int needed_again(int r, int i)
748{
749 int j;
750 int b=-1;
751 int rn=10;
57871462 752
753 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
754 {
755 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
756 return 0; // Don't need any registers if exiting the block
757 }
758 for(j=0;j<9;j++)
759 {
760 if(i+j>=slen) {
761 j=slen-i-1;
762 break;
763 }
764 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
765 {
766 // Don't go past an unconditonal jump
767 j++;
768 break;
769 }
1e973cb0 770 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 771 {
772 break;
773 }
774 }
775 for(;j>=1;j--)
776 {
777 if(rs1[i+j]==r) rn=j;
778 if(rs2[i+j]==r) rn=j;
779 if((unneeded_reg[i+j]>>r)&1) rn=10;
780 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
781 {
782 b=j;
783 }
784 }
785 /*
786 if(b>=0)
787 {
788 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
789 {
790 // Follow first branch
791 int o=rn;
792 int t=(ba[i+b]-start)>>2;
793 j=7-b;if(t+j>=slen) j=slen-t-1;
794 for(;j>=0;j--)
795 {
796 if(!((unneeded_reg[t+j]>>r)&1)) {
797 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
798 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
799 }
800 else rn=o;
801 }
802 }
803 }*/
b7217e13 804 if(rn<10) return 1;
57871462 805 return 0;
806}
807
808// Try to match register allocations at the end of a loop with those
809// at the beginning
810int loop_reg(int i, int r, int hr)
811{
812 int j,k;
813 for(j=0;j<9;j++)
814 {
815 if(i+j>=slen) {
816 j=slen-i-1;
817 break;
818 }
819 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
820 {
821 // Don't go past an unconditonal jump
822 j++;
823 break;
824 }
825 }
826 k=0;
827 if(i>0){
828 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
829 k--;
830 }
831 for(;k<j;k++)
832 {
833 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
834 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
835 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
836 {
837 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
838 {
839 int t=(ba[i+k]-start)>>2;
840 int reg=get_reg(regs[t].regmap_entry,r);
841 if(reg>=0) return reg;
842 //reg=get_reg(regs[t+1].regmap_entry,r);
843 //if(reg>=0) return reg;
844 }
845 }
846 }
847 return hr;
848}
849
850
851// Allocate every register, preserving source/target regs
852void alloc_all(struct regstat *cur,int i)
853{
854 int hr;
855
856 for(hr=0;hr<HOST_REGS;hr++) {
857 if(hr!=EXCLUDE_REG) {
858 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
859 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
860 {
861 cur->regmap[hr]=-1;
862 cur->dirty&=~(1<<hr);
863 }
864 // Don't need zeros
865 if((cur->regmap[hr]&63)==0)
866 {
867 cur->regmap[hr]=-1;
868 cur->dirty&=~(1<<hr);
869 }
870 }
871 }
872}
873
4600ba03 874#ifndef FORCE32
57871462 875void div64(int64_t dividend,int64_t divisor)
876{
877 lo=dividend/divisor;
878 hi=dividend%divisor;
879 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
880 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
881}
882void divu64(uint64_t dividend,uint64_t divisor)
883{
884 lo=dividend/divisor;
885 hi=dividend%divisor;
886 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
887 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
888}
889
890void mult64(uint64_t m1,uint64_t m2)
891{
892 unsigned long long int op1, op2, op3, op4;
893 unsigned long long int result1, result2, result3, result4;
894 unsigned long long int temp1, temp2, temp3, temp4;
895 int sign = 0;
896
897 if (m1 < 0)
898 {
899 op2 = -m1;
900 sign = 1 - sign;
901 }
902 else op2 = m1;
903 if (m2 < 0)
904 {
905 op4 = -m2;
906 sign = 1 - sign;
907 }
908 else op4 = m2;
909
910 op1 = op2 & 0xFFFFFFFF;
911 op2 = (op2 >> 32) & 0xFFFFFFFF;
912 op3 = op4 & 0xFFFFFFFF;
913 op4 = (op4 >> 32) & 0xFFFFFFFF;
914
915 temp1 = op1 * op3;
916 temp2 = (temp1 >> 32) + op1 * op4;
917 temp3 = op2 * op3;
918 temp4 = (temp3 >> 32) + op2 * op4;
919
920 result1 = temp1 & 0xFFFFFFFF;
921 result2 = temp2 + (temp3 & 0xFFFFFFFF);
922 result3 = (result2 >> 32) + temp4;
923 result4 = (result3 >> 32);
924
925 lo = result1 | (result2 << 32);
926 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
927 if (sign)
928 {
929 hi = ~hi;
930 if (!lo) hi++;
931 else lo = ~lo + 1;
932 }
933}
934
935void multu64(uint64_t m1,uint64_t m2)
936{
937 unsigned long long int op1, op2, op3, op4;
938 unsigned long long int result1, result2, result3, result4;
939 unsigned long long int temp1, temp2, temp3, temp4;
940
941 op1 = m1 & 0xFFFFFFFF;
942 op2 = (m1 >> 32) & 0xFFFFFFFF;
943 op3 = m2 & 0xFFFFFFFF;
944 op4 = (m2 >> 32) & 0xFFFFFFFF;
945
946 temp1 = op1 * op3;
947 temp2 = (temp1 >> 32) + op1 * op4;
948 temp3 = op2 * op3;
949 temp4 = (temp3 >> 32) + op2 * op4;
950
951 result1 = temp1 & 0xFFFFFFFF;
952 result2 = temp2 + (temp3 & 0xFFFFFFFF);
953 result3 = (result2 >> 32) + temp4;
954 result4 = (result3 >> 32);
955
956 lo = result1 | (result2 << 32);
957 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
958
959 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
960 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
961}
962
963uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
964{
965 if(bits) {
966 original<<=64-bits;
967 original>>=64-bits;
968 loaded<<=bits;
969 original|=loaded;
970 }
971 else original=loaded;
972 return original;
973}
974uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
975{
976 if(bits^56) {
977 original>>=64-(bits^56);
978 original<<=64-(bits^56);
979 loaded>>=bits^56;
980 original|=loaded;
981 }
982 else original=loaded;
983 return original;
984}
4600ba03 985#endif
57871462 986
987#ifdef __i386__
988#include "assem_x86.c"
989#endif
990#ifdef __x86_64__
991#include "assem_x64.c"
992#endif
993#ifdef __arm__
994#include "assem_arm.c"
995#endif
996
997// Add virtual address mapping to linked list
998void ll_add(struct ll_entry **head,int vaddr,void *addr)
999{
1000 struct ll_entry *new_entry;
1001 new_entry=malloc(sizeof(struct ll_entry));
1002 assert(new_entry!=NULL);
1003 new_entry->vaddr=vaddr;
1004 new_entry->reg32=0;
1005 new_entry->addr=addr;
1006 new_entry->next=*head;
1007 *head=new_entry;
1008}
1009
1010// Add virtual address mapping for 32-bit compiled block
1011void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1012{
7139f3c8 1013 ll_add(head,vaddr,addr);
1014#ifndef FORCE32
1015 (*head)->reg32=reg32;
1016#endif
57871462 1017}
1018
1019// Check if an address is already compiled
1020// but don't return addresses which are about to expire from the cache
1021void *check_addr(u_int vaddr)
1022{
1023 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1024 if(ht_bin[0]==vaddr) {
1025 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1026 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1027 }
1028 if(ht_bin[2]==vaddr) {
1029 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1030 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1031 }
94d23bb9 1032 u_int page=get_page(vaddr);
57871462 1033 struct ll_entry *head;
1034 head=jump_in[page];
1035 while(head!=NULL) {
1036 if(head->vaddr==vaddr&&head->reg32==0) {
1037 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1038 // Update existing entry with current address
1039 if(ht_bin[0]==vaddr) {
1040 ht_bin[1]=(int)head->addr;
1041 return head->addr;
1042 }
1043 if(ht_bin[2]==vaddr) {
1044 ht_bin[3]=(int)head->addr;
1045 return head->addr;
1046 }
1047 // Insert into hash table with low priority.
1048 // Don't evict existing entries, as they are probably
1049 // addresses that are being accessed frequently.
1050 if(ht_bin[0]==-1) {
1051 ht_bin[1]=(int)head->addr;
1052 ht_bin[0]=vaddr;
1053 }else if(ht_bin[2]==-1) {
1054 ht_bin[3]=(int)head->addr;
1055 ht_bin[2]=vaddr;
1056 }
1057 return head->addr;
1058 }
1059 }
1060 head=head->next;
1061 }
1062 return 0;
1063}
1064
1065void remove_hash(int vaddr)
1066{
1067 //printf("remove hash: %x\n",vaddr);
1068 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1069 if(ht_bin[2]==vaddr) {
1070 ht_bin[2]=ht_bin[3]=-1;
1071 }
1072 if(ht_bin[0]==vaddr) {
1073 ht_bin[0]=ht_bin[2];
1074 ht_bin[1]=ht_bin[3];
1075 ht_bin[2]=ht_bin[3]=-1;
1076 }
1077}
1078
1079void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1080{
1081 struct ll_entry *next;
1082 while(*head) {
1083 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1084 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1085 {
1086 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1087 remove_hash((*head)->vaddr);
1088 next=(*head)->next;
1089 free(*head);
1090 *head=next;
1091 }
1092 else
1093 {
1094 head=&((*head)->next);
1095 }
1096 }
1097}
1098
1099// Remove all entries from linked list
1100void ll_clear(struct ll_entry **head)
1101{
1102 struct ll_entry *cur;
1103 struct ll_entry *next;
1104 if(cur=*head) {
1105 *head=0;
1106 while(cur) {
1107 next=cur->next;
1108 free(cur);
1109 cur=next;
1110 }
1111 }
1112}
1113
1114// Dereference the pointers and remove if it matches
1115void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1116{
1117 while(head) {
1118 int ptr=get_pointer(head->addr);
1119 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1120 if(((ptr>>shift)==(addr>>shift)) ||
1121 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1122 {
5088bb70 1123 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1124 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1125 #ifdef __arm__
1126 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1127 #endif
57871462 1128 }
1129 head=head->next;
1130 }
1131}
1132
1133// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1134void invalidate_page(u_int page)
57871462 1135{
57871462 1136 struct ll_entry *head;
1137 struct ll_entry *next;
1138 head=jump_in[page];
1139 jump_in[page]=0;
1140 while(head!=NULL) {
1141 inv_debug("INVALIDATE: %x\n",head->vaddr);
1142 remove_hash(head->vaddr);
1143 next=head->next;
1144 free(head);
1145 head=next;
1146 }
1147 head=jump_out[page];
1148 jump_out[page]=0;
1149 while(head!=NULL) {
1150 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1151 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1152 #ifdef __arm__
1153 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1154 #endif
57871462 1155 next=head->next;
1156 free(head);
1157 head=next;
1158 }
57871462 1159}
9be4ba64 1160
1161static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1162{
94d23bb9 1163 u_int page=get_page(block<<12);
57871462 1164 //printf("first=%d last=%d\n",first,last);
f76eeef9 1165 invalidate_page(page);
57871462 1166 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1167 assert(last<page+5);
1168 // Invalidate the adjacent pages if a block crosses a 4K boundary
1169 while(first<page) {
1170 invalidate_page(first);
1171 first++;
1172 }
1173 for(first=page+1;first<last;first++) {
1174 invalidate_page(first);
1175 }
dd3a91a1 1176 #ifdef __arm__
1177 do_clear_cache();
1178 #endif
57871462 1179
1180 // Don't trap writes
1181 invalid_code[block]=1;
94d23bb9 1182#ifndef DISABLE_TLB
57871462 1183 // If there is a valid TLB entry for this page, remove write protect
1184 if(tlb_LUT_w[block]) {
1185 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1186 // CHECK: Is this right?
1187 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1188 u_int real_block=tlb_LUT_w[block]>>12;
1189 invalid_code[real_block]=1;
1190 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1191 }
1192 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1193#endif
f76eeef9 1194
57871462 1195 #ifdef USE_MINI_HT
1196 memset(mini_ht,-1,sizeof(mini_ht));
1197 #endif
1198}
9be4ba64 1199
1200void invalidate_block(u_int block)
1201{
1202 u_int page=get_page(block<<12);
1203 u_int vpage=get_vpage(block<<12);
1204 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1205 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1206 u_int first,last;
1207 first=last=page;
1208 struct ll_entry *head;
1209 head=jump_dirty[vpage];
1210 //printf("page=%d vpage=%d\n",page,vpage);
1211 while(head!=NULL) {
1212 u_int start,end;
1213 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1214 get_bounds((int)head->addr,&start,&end);
1215 //printf("start: %x end: %x\n",start,end);
1216 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1217 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1218 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1219 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1220 }
1221 }
1222#ifndef DISABLE_TLB
1223 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1224 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1225 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1226 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1227 }
1228 }
1229#endif
1230 }
1231 head=head->next;
1232 }
1233 invalidate_block_range(block,first,last);
1234}
1235
57871462 1236void invalidate_addr(u_int addr)
1237{
9be4ba64 1238#ifdef PCSX
1239 //static int rhits;
1240 // this check is done by the caller
1241 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
d25604ca 1242 u_int page=get_vpage(addr);
9be4ba64 1243 if(page<2048) { // RAM
1244 struct ll_entry *head;
1245 u_int addr_min=~0, addr_max=0;
1246 int mask=RAM_SIZE-1;
1247 int pg1;
1248 inv_code_start=addr&~0xfff;
1249 inv_code_end=addr|0xfff;
1250 pg1=page;
1251 if (pg1>0) {
1252 // must check previous page too because of spans..
1253 pg1--;
1254 inv_code_start-=0x1000;
1255 }
1256 for(;pg1<=page;pg1++) {
1257 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1258 u_int start,end;
1259 get_bounds((int)head->addr,&start,&end);
1260 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1261 if(start<addr_min) addr_min=start;
1262 if(end>addr_max) addr_max=end;
1263 }
1264 else if(addr<start) {
1265 if(start<inv_code_end)
1266 inv_code_end=start-1;
1267 }
1268 else {
1269 if(end>inv_code_start)
1270 inv_code_start=end;
1271 }
1272 }
1273 }
1274 if (addr_min!=~0) {
1275 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1276 inv_code_start=inv_code_end=~0;
1277 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1278 return;
1279 }
1280 else {
d25604ca 1281 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
9be4ba64 1282 return;
d25604ca 1283 }
9be4ba64 1284 }
1285#endif
57871462 1286 invalidate_block(addr>>12);
1287}
9be4ba64 1288
dd3a91a1 1289// This is called when loading a save state.
1290// Anything could have changed, so invalidate everything.
57871462 1291void invalidate_all_pages()
1292{
1293 u_int page,n;
1294 for(page=0;page<4096;page++)
1295 invalidate_page(page);
1296 for(page=0;page<1048576;page++)
1297 if(!invalid_code[page]) {
1298 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1299 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1300 }
1301 #ifdef __arm__
1302 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1303 #endif
1304 #ifdef USE_MINI_HT
1305 memset(mini_ht,-1,sizeof(mini_ht));
1306 #endif
94d23bb9 1307 #ifndef DISABLE_TLB
57871462 1308 // TLB
1309 for(page=0;page<0x100000;page++) {
1310 if(tlb_LUT_r[page]) {
1311 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1312 if(!tlb_LUT_w[page]||!invalid_code[page])
1313 memory_map[page]|=0x40000000; // Write protect
1314 }
1315 else memory_map[page]=-1;
1316 if(page==0x80000) page=0xC0000;
1317 }
1318 tlb_hacks();
94d23bb9 1319 #endif
57871462 1320}
1321
1322// Add an entry to jump_out after making a link
1323void add_link(u_int vaddr,void *src)
1324{
94d23bb9 1325 u_int page=get_page(vaddr);
57871462 1326 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1327 int *ptr=(int *)(src+4);
1328 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1329 ll_add(jump_out+page,vaddr,src);
1330 //int ptr=get_pointer(src);
1331 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1332}
1333
1334// If a code block was found to be unmodified (bit was set in
1335// restore_candidate) and it remains unmodified (bit is clear
1336// in invalid_code) then move the entries for that 4K page from
1337// the dirty list to the clean list.
1338void clean_blocks(u_int page)
1339{
1340 struct ll_entry *head;
1341 inv_debug("INV: clean_blocks page=%d\n",page);
1342 head=jump_dirty[page];
1343 while(head!=NULL) {
1344 if(!invalid_code[head->vaddr>>12]) {
1345 // Don't restore blocks which are about to expire from the cache
1346 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1347 u_int start,end;
1348 if(verify_dirty((int)head->addr)) {
1349 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1350 u_int i;
1351 u_int inv=0;
1352 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1353 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1354 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1355 inv|=invalid_code[i];
1356 }
1357 }
63cb0298 1358#ifndef DISABLE_TLB
57871462 1359 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1360 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1361 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1362 if(addr<start||addr>=end) inv=1;
1363 }
63cb0298 1364#endif
4cb76aa4 1365 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1366 inv=1;
1367 }
1368 if(!inv) {
1369 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1370 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1371 u_int ppage=page;
94d23bb9 1372#ifndef DISABLE_TLB
57871462 1373 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1374#endif
57871462 1375 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1376 //printf("page=%x, addr=%x\n",page,head->vaddr);
1377 //assert(head->vaddr>>12==(page|0x80000));
1378 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1379 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1380 if(!head->reg32) {
1381 if(ht_bin[0]==head->vaddr) {
1382 ht_bin[1]=(int)clean_addr; // Replace existing entry
1383 }
1384 if(ht_bin[2]==head->vaddr) {
1385 ht_bin[3]=(int)clean_addr; // Replace existing entry
1386 }
1387 }
1388 }
1389 }
1390 }
1391 }
1392 }
1393 head=head->next;
1394 }
1395}
1396
1397
1398void mov_alloc(struct regstat *current,int i)
1399{
1400 // Note: Don't need to actually alloc the source registers
1401 if((~current->is32>>rs1[i])&1) {
1402 //alloc_reg64(current,i,rs1[i]);
1403 alloc_reg64(current,i,rt1[i]);
1404 current->is32&=~(1LL<<rt1[i]);
1405 } else {
1406 //alloc_reg(current,i,rs1[i]);
1407 alloc_reg(current,i,rt1[i]);
1408 current->is32|=(1LL<<rt1[i]);
1409 }
1410 clear_const(current,rs1[i]);
1411 clear_const(current,rt1[i]);
1412 dirty_reg(current,rt1[i]);
1413}
1414
1415void shiftimm_alloc(struct regstat *current,int i)
1416{
57871462 1417 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1418 {
1419 if(rt1[i]) {
1420 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1421 else lt1[i]=rs1[i];
1422 alloc_reg(current,i,rt1[i]);
1423 current->is32|=1LL<<rt1[i];
1424 dirty_reg(current,rt1[i]);
dc49e339 1425 if(is_const(current,rs1[i])) {
1426 int v=get_const(current,rs1[i]);
1427 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1428 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1429 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1430 }
1431 else clear_const(current,rt1[i]);
57871462 1432 }
1433 }
dc49e339 1434 else
1435 {
1436 clear_const(current,rs1[i]);
1437 clear_const(current,rt1[i]);
1438 }
1439
57871462 1440 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1441 {
1442 if(rt1[i]) {
1443 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1444 alloc_reg64(current,i,rt1[i]);
1445 current->is32&=~(1LL<<rt1[i]);
1446 dirty_reg(current,rt1[i]);
1447 }
1448 }
1449 if(opcode2[i]==0x3c) // DSLL32
1450 {
1451 if(rt1[i]) {
1452 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1453 alloc_reg64(current,i,rt1[i]);
1454 current->is32&=~(1LL<<rt1[i]);
1455 dirty_reg(current,rt1[i]);
1456 }
1457 }
1458 if(opcode2[i]==0x3e) // DSRL32
1459 {
1460 if(rt1[i]) {
1461 alloc_reg64(current,i,rs1[i]);
1462 if(imm[i]==32) {
1463 alloc_reg64(current,i,rt1[i]);
1464 current->is32&=~(1LL<<rt1[i]);
1465 } else {
1466 alloc_reg(current,i,rt1[i]);
1467 current->is32|=1LL<<rt1[i];
1468 }
1469 dirty_reg(current,rt1[i]);
1470 }
1471 }
1472 if(opcode2[i]==0x3f) // DSRA32
1473 {
1474 if(rt1[i]) {
1475 alloc_reg64(current,i,rs1[i]);
1476 alloc_reg(current,i,rt1[i]);
1477 current->is32|=1LL<<rt1[i];
1478 dirty_reg(current,rt1[i]);
1479 }
1480 }
1481}
1482
1483void shift_alloc(struct regstat *current,int i)
1484{
1485 if(rt1[i]) {
1486 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1487 {
1488 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1489 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1490 alloc_reg(current,i,rt1[i]);
e1190b87 1491 if(rt1[i]==rs2[i]) {
1492 alloc_reg_temp(current,i,-1);
1493 minimum_free_regs[i]=1;
1494 }
57871462 1495 current->is32|=1LL<<rt1[i];
1496 } else { // DSLLV/DSRLV/DSRAV
1497 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1498 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1499 alloc_reg64(current,i,rt1[i]);
1500 current->is32&=~(1LL<<rt1[i]);
1501 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1502 {
57871462 1503 alloc_reg_temp(current,i,-1);
e1190b87 1504 minimum_free_regs[i]=1;
1505 }
57871462 1506 }
1507 clear_const(current,rs1[i]);
1508 clear_const(current,rs2[i]);
1509 clear_const(current,rt1[i]);
1510 dirty_reg(current,rt1[i]);
1511 }
1512}
1513
1514void alu_alloc(struct regstat *current,int i)
1515{
1516 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1517 if(rt1[i]) {
1518 if(rs1[i]&&rs2[i]) {
1519 alloc_reg(current,i,rs1[i]);
1520 alloc_reg(current,i,rs2[i]);
1521 }
1522 else {
1523 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1524 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1525 }
1526 alloc_reg(current,i,rt1[i]);
1527 }
1528 current->is32|=1LL<<rt1[i];
1529 }
1530 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1531 if(rt1[i]) {
1532 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1533 {
1534 alloc_reg64(current,i,rs1[i]);
1535 alloc_reg64(current,i,rs2[i]);
1536 alloc_reg(current,i,rt1[i]);
1537 } else {
1538 alloc_reg(current,i,rs1[i]);
1539 alloc_reg(current,i,rs2[i]);
1540 alloc_reg(current,i,rt1[i]);
1541 }
1542 }
1543 current->is32|=1LL<<rt1[i];
1544 }
1545 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1546 if(rt1[i]) {
1547 if(rs1[i]&&rs2[i]) {
1548 alloc_reg(current,i,rs1[i]);
1549 alloc_reg(current,i,rs2[i]);
1550 }
1551 else
1552 {
1553 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1554 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1555 }
1556 alloc_reg(current,i,rt1[i]);
1557 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1558 {
1559 if(!((current->uu>>rt1[i])&1)) {
1560 alloc_reg64(current,i,rt1[i]);
1561 }
1562 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1563 if(rs1[i]&&rs2[i]) {
1564 alloc_reg64(current,i,rs1[i]);
1565 alloc_reg64(current,i,rs2[i]);
1566 }
1567 else
1568 {
1569 // Is is really worth it to keep 64-bit values in registers?
1570 #ifdef NATIVE_64BIT
1571 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1572 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1573 #endif
1574 }
1575 }
1576 current->is32&=~(1LL<<rt1[i]);
1577 } else {
1578 current->is32|=1LL<<rt1[i];
1579 }
1580 }
1581 }
1582 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1583 if(rt1[i]) {
1584 if(rs1[i]&&rs2[i]) {
1585 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1586 alloc_reg64(current,i,rs1[i]);
1587 alloc_reg64(current,i,rs2[i]);
1588 alloc_reg64(current,i,rt1[i]);
1589 } else {
1590 alloc_reg(current,i,rs1[i]);
1591 alloc_reg(current,i,rs2[i]);
1592 alloc_reg(current,i,rt1[i]);
1593 }
1594 }
1595 else {
1596 alloc_reg(current,i,rt1[i]);
1597 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1598 // DADD used as move, or zeroing
1599 // If we have a 64-bit source, then make the target 64 bits too
1600 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1601 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1602 alloc_reg64(current,i,rt1[i]);
1603 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1604 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1605 alloc_reg64(current,i,rt1[i]);
1606 }
1607 if(opcode2[i]>=0x2e&&rs2[i]) {
1608 // DSUB used as negation - 64-bit result
1609 // If we have a 32-bit register, extend it to 64 bits
1610 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1611 alloc_reg64(current,i,rt1[i]);
1612 }
1613 }
1614 }
1615 if(rs1[i]&&rs2[i]) {
1616 current->is32&=~(1LL<<rt1[i]);
1617 } else if(rs1[i]) {
1618 current->is32&=~(1LL<<rt1[i]);
1619 if((current->is32>>rs1[i])&1)
1620 current->is32|=1LL<<rt1[i];
1621 } else if(rs2[i]) {
1622 current->is32&=~(1LL<<rt1[i]);
1623 if((current->is32>>rs2[i])&1)
1624 current->is32|=1LL<<rt1[i];
1625 } else {
1626 current->is32|=1LL<<rt1[i];
1627 }
1628 }
1629 }
1630 clear_const(current,rs1[i]);
1631 clear_const(current,rs2[i]);
1632 clear_const(current,rt1[i]);
1633 dirty_reg(current,rt1[i]);
1634}
1635
1636void imm16_alloc(struct regstat *current,int i)
1637{
1638 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1639 else lt1[i]=rs1[i];
1640 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1641 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1642 current->is32&=~(1LL<<rt1[i]);
1643 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1644 // TODO: Could preserve the 32-bit flag if the immediate is zero
1645 alloc_reg64(current,i,rt1[i]);
1646 alloc_reg64(current,i,rs1[i]);
1647 }
1648 clear_const(current,rs1[i]);
1649 clear_const(current,rt1[i]);
1650 }
1651 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1652 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1653 current->is32|=1LL<<rt1[i];
1654 clear_const(current,rs1[i]);
1655 clear_const(current,rt1[i]);
1656 }
1657 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1658 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1659 if(rs1[i]!=rt1[i]) {
1660 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1661 alloc_reg64(current,i,rt1[i]);
1662 current->is32&=~(1LL<<rt1[i]);
1663 }
1664 }
1665 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1666 if(is_const(current,rs1[i])) {
1667 int v=get_const(current,rs1[i]);
1668 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1669 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1670 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1671 }
1672 else clear_const(current,rt1[i]);
1673 }
1674 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1675 if(is_const(current,rs1[i])) {
1676 int v=get_const(current,rs1[i]);
1677 set_const(current,rt1[i],v+imm[i]);
1678 }
1679 else clear_const(current,rt1[i]);
1680 current->is32|=1LL<<rt1[i];
1681 }
1682 else {
1683 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1684 current->is32|=1LL<<rt1[i];
1685 }
1686 dirty_reg(current,rt1[i]);
1687}
1688
1689void load_alloc(struct regstat *current,int i)
1690{
1691 clear_const(current,rt1[i]);
1692 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1693 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1694 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1695 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1696 alloc_reg(current,i,rt1[i]);
373d1d07 1697 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1698 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1699 {
1700 current->is32&=~(1LL<<rt1[i]);
1701 alloc_reg64(current,i,rt1[i]);
1702 }
1703 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1704 {
1705 current->is32&=~(1LL<<rt1[i]);
1706 alloc_reg64(current,i,rt1[i]);
1707 alloc_all(current,i);
1708 alloc_reg64(current,i,FTEMP);
e1190b87 1709 minimum_free_regs[i]=HOST_REGS;
57871462 1710 }
1711 else current->is32|=1LL<<rt1[i];
1712 dirty_reg(current,rt1[i]);
1713 // If using TLB, need a register for pointer to the mapping table
1714 if(using_tlb) alloc_reg(current,i,TLREG);
1715 // LWL/LWR need a temporary register for the old value
1716 if(opcode[i]==0x22||opcode[i]==0x26)
1717 {
1718 alloc_reg(current,i,FTEMP);
1719 alloc_reg_temp(current,i,-1);
e1190b87 1720 minimum_free_regs[i]=1;
57871462 1721 }
1722 }
1723 else
1724 {
373d1d07 1725 // Load to r0 or unneeded register (dummy load)
57871462 1726 // but we still need a register to calculate the address
535d208a 1727 if(opcode[i]==0x22||opcode[i]==0x26)
1728 {
1729 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1730 }
373d1d07 1731 // If using TLB, need a register for pointer to the mapping table
1732 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1733 alloc_reg_temp(current,i,-1);
e1190b87 1734 minimum_free_regs[i]=1;
535d208a 1735 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1736 {
1737 alloc_all(current,i);
1738 alloc_reg64(current,i,FTEMP);
e1190b87 1739 minimum_free_regs[i]=HOST_REGS;
535d208a 1740 }
57871462 1741 }
1742}
1743
1744void store_alloc(struct regstat *current,int i)
1745{
1746 clear_const(current,rs2[i]);
1747 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1748 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1749 alloc_reg(current,i,rs2[i]);
1750 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1751 alloc_reg64(current,i,rs2[i]);
1752 if(rs2[i]) alloc_reg(current,i,FTEMP);
1753 }
1754 // If using TLB, need a register for pointer to the mapping table
1755 if(using_tlb) alloc_reg(current,i,TLREG);
1756 #if defined(HOST_IMM8)
1757 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1758 else alloc_reg(current,i,INVCP);
1759 #endif
b7918751 1760 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1761 alloc_reg(current,i,FTEMP);
1762 }
1763 // We need a temporary register for address generation
1764 alloc_reg_temp(current,i,-1);
e1190b87 1765 minimum_free_regs[i]=1;
57871462 1766}
1767
1768void c1ls_alloc(struct regstat *current,int i)
1769{
1770 //clear_const(current,rs1[i]); // FIXME
1771 clear_const(current,rt1[i]);
1772 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1773 alloc_reg(current,i,CSREG); // Status
1774 alloc_reg(current,i,FTEMP);
1775 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1776 alloc_reg64(current,i,FTEMP);
1777 }
1778 // If using TLB, need a register for pointer to the mapping table
1779 if(using_tlb) alloc_reg(current,i,TLREG);
1780 #if defined(HOST_IMM8)
1781 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1782 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1783 alloc_reg(current,i,INVCP);
1784 #endif
1785 // We need a temporary register for address generation
1786 alloc_reg_temp(current,i,-1);
1787}
1788
b9b61529 1789void c2ls_alloc(struct regstat *current,int i)
1790{
1791 clear_const(current,rt1[i]);
1792 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1793 alloc_reg(current,i,FTEMP);
1794 // If using TLB, need a register for pointer to the mapping table
1795 if(using_tlb) alloc_reg(current,i,TLREG);
1796 #if defined(HOST_IMM8)
1797 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1798 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1799 alloc_reg(current,i,INVCP);
1800 #endif
1801 // We need a temporary register for address generation
1802 alloc_reg_temp(current,i,-1);
e1190b87 1803 minimum_free_regs[i]=1;
b9b61529 1804}
1805
57871462 1806#ifndef multdiv_alloc
1807void multdiv_alloc(struct regstat *current,int i)
1808{
1809 // case 0x18: MULT
1810 // case 0x19: MULTU
1811 // case 0x1A: DIV
1812 // case 0x1B: DIVU
1813 // case 0x1C: DMULT
1814 // case 0x1D: DMULTU
1815 // case 0x1E: DDIV
1816 // case 0x1F: DDIVU
1817 clear_const(current,rs1[i]);
1818 clear_const(current,rs2[i]);
1819 if(rs1[i]&&rs2[i])
1820 {
1821 if((opcode2[i]&4)==0) // 32-bit
1822 {
1823 current->u&=~(1LL<<HIREG);
1824 current->u&=~(1LL<<LOREG);
1825 alloc_reg(current,i,HIREG);
1826 alloc_reg(current,i,LOREG);
1827 alloc_reg(current,i,rs1[i]);
1828 alloc_reg(current,i,rs2[i]);
1829 current->is32|=1LL<<HIREG;
1830 current->is32|=1LL<<LOREG;
1831 dirty_reg(current,HIREG);
1832 dirty_reg(current,LOREG);
1833 }
1834 else // 64-bit
1835 {
1836 current->u&=~(1LL<<HIREG);
1837 current->u&=~(1LL<<LOREG);
1838 current->uu&=~(1LL<<HIREG);
1839 current->uu&=~(1LL<<LOREG);
1840 alloc_reg64(current,i,HIREG);
1841 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1842 alloc_reg64(current,i,rs1[i]);
1843 alloc_reg64(current,i,rs2[i]);
1844 alloc_all(current,i);
1845 current->is32&=~(1LL<<HIREG);
1846 current->is32&=~(1LL<<LOREG);
1847 dirty_reg(current,HIREG);
1848 dirty_reg(current,LOREG);
e1190b87 1849 minimum_free_regs[i]=HOST_REGS;
57871462 1850 }
1851 }
1852 else
1853 {
1854 // Multiply by zero is zero.
1855 // MIPS does not have a divide by zero exception.
1856 // The result is undefined, we return zero.
1857 alloc_reg(current,i,HIREG);
1858 alloc_reg(current,i,LOREG);
1859 current->is32|=1LL<<HIREG;
1860 current->is32|=1LL<<LOREG;
1861 dirty_reg(current,HIREG);
1862 dirty_reg(current,LOREG);
1863 }
1864}
1865#endif
1866
1867void cop0_alloc(struct regstat *current,int i)
1868{
1869 if(opcode2[i]==0) // MFC0
1870 {
1871 if(rt1[i]) {
1872 clear_const(current,rt1[i]);
1873 alloc_all(current,i);
1874 alloc_reg(current,i,rt1[i]);
1875 current->is32|=1LL<<rt1[i];
1876 dirty_reg(current,rt1[i]);
1877 }
1878 }
1879 else if(opcode2[i]==4) // MTC0
1880 {
1881 if(rs1[i]){
1882 clear_const(current,rs1[i]);
1883 alloc_reg(current,i,rs1[i]);
1884 alloc_all(current,i);
1885 }
1886 else {
1887 alloc_all(current,i); // FIXME: Keep r0
1888 current->u&=~1LL;
1889 alloc_reg(current,i,0);
1890 }
1891 }
1892 else
1893 {
1894 // TLBR/TLBWI/TLBWR/TLBP/ERET
1895 assert(opcode2[i]==0x10);
1896 alloc_all(current,i);
1897 }
e1190b87 1898 minimum_free_regs[i]=HOST_REGS;
57871462 1899}
1900
1901void cop1_alloc(struct regstat *current,int i)
1902{
1903 alloc_reg(current,i,CSREG); // Load status
1904 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1905 {
7de557a6 1906 if(rt1[i]){
1907 clear_const(current,rt1[i]);
1908 if(opcode2[i]==1) {
1909 alloc_reg64(current,i,rt1[i]); // DMFC1
1910 current->is32&=~(1LL<<rt1[i]);
1911 }else{
1912 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1913 current->is32|=1LL<<rt1[i];
1914 }
1915 dirty_reg(current,rt1[i]);
57871462 1916 }
57871462 1917 alloc_reg_temp(current,i,-1);
1918 }
1919 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1920 {
1921 if(rs1[i]){
1922 clear_const(current,rs1[i]);
1923 if(opcode2[i]==5)
1924 alloc_reg64(current,i,rs1[i]); // DMTC1
1925 else
1926 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1927 alloc_reg_temp(current,i,-1);
1928 }
1929 else {
1930 current->u&=~1LL;
1931 alloc_reg(current,i,0);
1932 alloc_reg_temp(current,i,-1);
1933 }
1934 }
e1190b87 1935 minimum_free_regs[i]=1;
57871462 1936}
1937void fconv_alloc(struct regstat *current,int i)
1938{
1939 alloc_reg(current,i,CSREG); // Load status
1940 alloc_reg_temp(current,i,-1);
e1190b87 1941 minimum_free_regs[i]=1;
57871462 1942}
1943void float_alloc(struct regstat *current,int i)
1944{
1945 alloc_reg(current,i,CSREG); // Load status
1946 alloc_reg_temp(current,i,-1);
e1190b87 1947 minimum_free_regs[i]=1;
57871462 1948}
b9b61529 1949void c2op_alloc(struct regstat *current,int i)
1950{
1951 alloc_reg_temp(current,i,-1);
1952}
57871462 1953void fcomp_alloc(struct regstat *current,int i)
1954{
1955 alloc_reg(current,i,CSREG); // Load status
1956 alloc_reg(current,i,FSREG); // Load flags
1957 dirty_reg(current,FSREG); // Flag will be modified
1958 alloc_reg_temp(current,i,-1);
e1190b87 1959 minimum_free_regs[i]=1;
57871462 1960}
1961
1962void syscall_alloc(struct regstat *current,int i)
1963{
1964 alloc_cc(current,i);
1965 dirty_reg(current,CCREG);
1966 alloc_all(current,i);
e1190b87 1967 minimum_free_regs[i]=HOST_REGS;
57871462 1968 current->isconst=0;
1969}
1970
1971void delayslot_alloc(struct regstat *current,int i)
1972{
1973 switch(itype[i]) {
1974 case UJUMP:
1975 case CJUMP:
1976 case SJUMP:
1977 case RJUMP:
1978 case FJUMP:
1979 case SYSCALL:
7139f3c8 1980 case HLECALL:
57871462 1981 case SPAN:
1982 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1983 printf("Disabled speculative precompilation\n");
1984 stop_after_jal=1;
1985 break;
1986 case IMM16:
1987 imm16_alloc(current,i);
1988 break;
1989 case LOAD:
1990 case LOADLR:
1991 load_alloc(current,i);
1992 break;
1993 case STORE:
1994 case STORELR:
1995 store_alloc(current,i);
1996 break;
1997 case ALU:
1998 alu_alloc(current,i);
1999 break;
2000 case SHIFT:
2001 shift_alloc(current,i);
2002 break;
2003 case MULTDIV:
2004 multdiv_alloc(current,i);
2005 break;
2006 case SHIFTIMM:
2007 shiftimm_alloc(current,i);
2008 break;
2009 case MOV:
2010 mov_alloc(current,i);
2011 break;
2012 case COP0:
2013 cop0_alloc(current,i);
2014 break;
2015 case COP1:
b9b61529 2016 case COP2:
57871462 2017 cop1_alloc(current,i);
2018 break;
2019 case C1LS:
2020 c1ls_alloc(current,i);
2021 break;
b9b61529 2022 case C2LS:
2023 c2ls_alloc(current,i);
2024 break;
57871462 2025 case FCONV:
2026 fconv_alloc(current,i);
2027 break;
2028 case FLOAT:
2029 float_alloc(current,i);
2030 break;
2031 case FCOMP:
2032 fcomp_alloc(current,i);
2033 break;
b9b61529 2034 case C2OP:
2035 c2op_alloc(current,i);
2036 break;
57871462 2037 }
2038}
2039
2040// Special case where a branch and delay slot span two pages in virtual memory
2041static void pagespan_alloc(struct regstat *current,int i)
2042{
2043 current->isconst=0;
2044 current->wasconst=0;
2045 regs[i].wasconst=0;
e1190b87 2046 minimum_free_regs[i]=HOST_REGS;
57871462 2047 alloc_all(current,i);
2048 alloc_cc(current,i);
2049 dirty_reg(current,CCREG);
2050 if(opcode[i]==3) // JAL
2051 {
2052 alloc_reg(current,i,31);
2053 dirty_reg(current,31);
2054 }
2055 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2056 {
2057 alloc_reg(current,i,rs1[i]);
5067f341 2058 if (rt1[i]!=0) {
2059 alloc_reg(current,i,rt1[i]);
2060 dirty_reg(current,rt1[i]);
57871462 2061 }
2062 }
2063 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2064 {
2065 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2066 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2067 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2068 {
2069 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2070 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2071 }
2072 }
2073 else
2074 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2075 {
2076 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2077 if(!((current->is32>>rs1[i])&1))
2078 {
2079 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2080 }
2081 }
2082 else
2083 if(opcode[i]==0x11) // BC1
2084 {
2085 alloc_reg(current,i,FSREG);
2086 alloc_reg(current,i,CSREG);
2087 }
2088 //else ...
2089}
2090
2091add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2092{
2093 stubs[stubcount][0]=type;
2094 stubs[stubcount][1]=addr;
2095 stubs[stubcount][2]=retaddr;
2096 stubs[stubcount][3]=a;
2097 stubs[stubcount][4]=b;
2098 stubs[stubcount][5]=c;
2099 stubs[stubcount][6]=d;
2100 stubs[stubcount][7]=e;
2101 stubcount++;
2102}
2103
2104// Write out a single register
2105void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2106{
2107 int hr;
2108 for(hr=0;hr<HOST_REGS;hr++) {
2109 if(hr!=EXCLUDE_REG) {
2110 if((regmap[hr]&63)==r) {
2111 if((dirty>>hr)&1) {
2112 if(regmap[hr]<64) {
2113 emit_storereg(r,hr);
24385cae 2114#ifndef FORCE32
57871462 2115 if((is32>>regmap[hr])&1) {
2116 emit_sarimm(hr,31,hr);
2117 emit_storereg(r|64,hr);
2118 }
24385cae 2119#endif
57871462 2120 }else{
2121 emit_storereg(r|64,hr);
2122 }
2123 }
2124 }
2125 }
2126 }
2127}
2128
2129int mchecksum()
2130{
2131 //if(!tracedebug) return 0;
2132 int i;
2133 int sum=0;
2134 for(i=0;i<2097152;i++) {
2135 unsigned int temp=sum;
2136 sum<<=1;
2137 sum|=(~temp)>>31;
2138 sum^=((u_int *)rdram)[i];
2139 }
2140 return sum;
2141}
2142int rchecksum()
2143{
2144 int i;
2145 int sum=0;
2146 for(i=0;i<64;i++)
2147 sum^=((u_int *)reg)[i];
2148 return sum;
2149}
57871462 2150void rlist()
2151{
2152 int i;
2153 printf("TRACE: ");
2154 for(i=0;i<32;i++)
2155 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2156 printf("\n");
3d624f89 2157#ifndef DISABLE_COP1
57871462 2158 printf("TRACE: ");
2159 for(i=0;i<32;i++)
2160 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2161 printf("\n");
3d624f89 2162#endif
57871462 2163}
2164
2165void enabletrace()
2166{
2167 tracedebug=1;
2168}
2169
2170void memdebug(int i)
2171{
2172 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2173 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2174 //rlist();
2175 //if(tracedebug) {
2176 //if(Count>=-2084597794) {
2177 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2178 //if(0) {
2179 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2180 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2181 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2182 rlist();
2183 #ifdef __i386__
2184 printf("TRACE: %x\n",(&i)[-1]);
2185 #endif
2186 #ifdef __arm__
2187 int j;
2188 printf("TRACE: %x \n",(&j)[10]);
2189 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2190 #endif
2191 //fflush(stdout);
2192 }
2193 //printf("TRACE: %x\n",(&i)[-1]);
2194}
2195
2196void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2197{
2198 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2199}
2200
2201void alu_assemble(int i,struct regstat *i_regs)
2202{
2203 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2204 if(rt1[i]) {
2205 signed char s1,s2,t;
2206 t=get_reg(i_regs->regmap,rt1[i]);
2207 if(t>=0) {
2208 s1=get_reg(i_regs->regmap,rs1[i]);
2209 s2=get_reg(i_regs->regmap,rs2[i]);
2210 if(rs1[i]&&rs2[i]) {
2211 assert(s1>=0);
2212 assert(s2>=0);
2213 if(opcode2[i]&2) emit_sub(s1,s2,t);
2214 else emit_add(s1,s2,t);
2215 }
2216 else if(rs1[i]) {
2217 if(s1>=0) emit_mov(s1,t);
2218 else emit_loadreg(rs1[i],t);
2219 }
2220 else if(rs2[i]) {
2221 if(s2>=0) {
2222 if(opcode2[i]&2) emit_neg(s2,t);
2223 else emit_mov(s2,t);
2224 }
2225 else {
2226 emit_loadreg(rs2[i],t);
2227 if(opcode2[i]&2) emit_neg(t,t);
2228 }
2229 }
2230 else emit_zeroreg(t);
2231 }
2232 }
2233 }
2234 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2235 if(rt1[i]) {
2236 signed char s1l,s2l,s1h,s2h,tl,th;
2237 tl=get_reg(i_regs->regmap,rt1[i]);
2238 th=get_reg(i_regs->regmap,rt1[i]|64);
2239 if(tl>=0) {
2240 s1l=get_reg(i_regs->regmap,rs1[i]);
2241 s2l=get_reg(i_regs->regmap,rs2[i]);
2242 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2243 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2244 if(rs1[i]&&rs2[i]) {
2245 assert(s1l>=0);
2246 assert(s2l>=0);
2247 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2248 else emit_adds(s1l,s2l,tl);
2249 if(th>=0) {
2250 #ifdef INVERTED_CARRY
2251 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2252 #else
2253 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2254 #endif
2255 else emit_add(s1h,s2h,th);
2256 }
2257 }
2258 else if(rs1[i]) {
2259 if(s1l>=0) emit_mov(s1l,tl);
2260 else emit_loadreg(rs1[i],tl);
2261 if(th>=0) {
2262 if(s1h>=0) emit_mov(s1h,th);
2263 else emit_loadreg(rs1[i]|64,th);
2264 }
2265 }
2266 else if(rs2[i]) {
2267 if(s2l>=0) {
2268 if(opcode2[i]&2) emit_negs(s2l,tl);
2269 else emit_mov(s2l,tl);
2270 }
2271 else {
2272 emit_loadreg(rs2[i],tl);
2273 if(opcode2[i]&2) emit_negs(tl,tl);
2274 }
2275 if(th>=0) {
2276 #ifdef INVERTED_CARRY
2277 if(s2h>=0) emit_mov(s2h,th);
2278 else emit_loadreg(rs2[i]|64,th);
2279 if(opcode2[i]&2) {
2280 emit_adcimm(-1,th); // x86 has inverted carry flag
2281 emit_not(th,th);
2282 }
2283 #else
2284 if(opcode2[i]&2) {
2285 if(s2h>=0) emit_rscimm(s2h,0,th);
2286 else {
2287 emit_loadreg(rs2[i]|64,th);
2288 emit_rscimm(th,0,th);
2289 }
2290 }else{
2291 if(s2h>=0) emit_mov(s2h,th);
2292 else emit_loadreg(rs2[i]|64,th);
2293 }
2294 #endif
2295 }
2296 }
2297 else {
2298 emit_zeroreg(tl);
2299 if(th>=0) emit_zeroreg(th);
2300 }
2301 }
2302 }
2303 }
2304 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2305 if(rt1[i]) {
2306 signed char s1l,s1h,s2l,s2h,t;
2307 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2308 {
2309 t=get_reg(i_regs->regmap,rt1[i]);
2310 //assert(t>=0);
2311 if(t>=0) {
2312 s1l=get_reg(i_regs->regmap,rs1[i]);
2313 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2314 s2l=get_reg(i_regs->regmap,rs2[i]);
2315 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2316 if(rs2[i]==0) // rx<r0
2317 {
2318 assert(s1h>=0);
2319 if(opcode2[i]==0x2a) // SLT
2320 emit_shrimm(s1h,31,t);
2321 else // SLTU (unsigned can not be less than zero)
2322 emit_zeroreg(t);
2323 }
2324 else if(rs1[i]==0) // r0<rx
2325 {
2326 assert(s2h>=0);
2327 if(opcode2[i]==0x2a) // SLT
2328 emit_set_gz64_32(s2h,s2l,t);
2329 else // SLTU (set if not zero)
2330 emit_set_nz64_32(s2h,s2l,t);
2331 }
2332 else {
2333 assert(s1l>=0);assert(s1h>=0);
2334 assert(s2l>=0);assert(s2h>=0);
2335 if(opcode2[i]==0x2a) // SLT
2336 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2337 else // SLTU
2338 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2339 }
2340 }
2341 } else {
2342 t=get_reg(i_regs->regmap,rt1[i]);
2343 //assert(t>=0);
2344 if(t>=0) {
2345 s1l=get_reg(i_regs->regmap,rs1[i]);
2346 s2l=get_reg(i_regs->regmap,rs2[i]);
2347 if(rs2[i]==0) // rx<r0
2348 {
2349 assert(s1l>=0);
2350 if(opcode2[i]==0x2a) // SLT
2351 emit_shrimm(s1l,31,t);
2352 else // SLTU (unsigned can not be less than zero)
2353 emit_zeroreg(t);
2354 }
2355 else if(rs1[i]==0) // r0<rx
2356 {
2357 assert(s2l>=0);
2358 if(opcode2[i]==0x2a) // SLT
2359 emit_set_gz32(s2l,t);
2360 else // SLTU (set if not zero)
2361 emit_set_nz32(s2l,t);
2362 }
2363 else{
2364 assert(s1l>=0);assert(s2l>=0);
2365 if(opcode2[i]==0x2a) // SLT
2366 emit_set_if_less32(s1l,s2l,t);
2367 else // SLTU
2368 emit_set_if_carry32(s1l,s2l,t);
2369 }
2370 }
2371 }
2372 }
2373 }
2374 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2375 if(rt1[i]) {
2376 signed char s1l,s1h,s2l,s2h,th,tl;
2377 tl=get_reg(i_regs->regmap,rt1[i]);
2378 th=get_reg(i_regs->regmap,rt1[i]|64);
2379 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2380 {
2381 assert(tl>=0);
2382 if(tl>=0) {
2383 s1l=get_reg(i_regs->regmap,rs1[i]);
2384 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2385 s2l=get_reg(i_regs->regmap,rs2[i]);
2386 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2387 if(rs1[i]&&rs2[i]) {
2388 assert(s1l>=0);assert(s1h>=0);
2389 assert(s2l>=0);assert(s2h>=0);
2390 if(opcode2[i]==0x24) { // AND
2391 emit_and(s1l,s2l,tl);
2392 emit_and(s1h,s2h,th);
2393 } else
2394 if(opcode2[i]==0x25) { // OR
2395 emit_or(s1l,s2l,tl);
2396 emit_or(s1h,s2h,th);
2397 } else
2398 if(opcode2[i]==0x26) { // XOR
2399 emit_xor(s1l,s2l,tl);
2400 emit_xor(s1h,s2h,th);
2401 } else
2402 if(opcode2[i]==0x27) { // NOR
2403 emit_or(s1l,s2l,tl);
2404 emit_or(s1h,s2h,th);
2405 emit_not(tl,tl);
2406 emit_not(th,th);
2407 }
2408 }
2409 else
2410 {
2411 if(opcode2[i]==0x24) { // AND
2412 emit_zeroreg(tl);
2413 emit_zeroreg(th);
2414 } else
2415 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2416 if(rs1[i]){
2417 if(s1l>=0) emit_mov(s1l,tl);
2418 else emit_loadreg(rs1[i],tl);
2419 if(s1h>=0) emit_mov(s1h,th);
2420 else emit_loadreg(rs1[i]|64,th);
2421 }
2422 else
2423 if(rs2[i]){
2424 if(s2l>=0) emit_mov(s2l,tl);
2425 else emit_loadreg(rs2[i],tl);
2426 if(s2h>=0) emit_mov(s2h,th);
2427 else emit_loadreg(rs2[i]|64,th);
2428 }
2429 else{
2430 emit_zeroreg(tl);
2431 emit_zeroreg(th);
2432 }
2433 } else
2434 if(opcode2[i]==0x27) { // NOR
2435 if(rs1[i]){
2436 if(s1l>=0) emit_not(s1l,tl);
2437 else{
2438 emit_loadreg(rs1[i],tl);
2439 emit_not(tl,tl);
2440 }
2441 if(s1h>=0) emit_not(s1h,th);
2442 else{
2443 emit_loadreg(rs1[i]|64,th);
2444 emit_not(th,th);
2445 }
2446 }
2447 else
2448 if(rs2[i]){
2449 if(s2l>=0) emit_not(s2l,tl);
2450 else{
2451 emit_loadreg(rs2[i],tl);
2452 emit_not(tl,tl);
2453 }
2454 if(s2h>=0) emit_not(s2h,th);
2455 else{
2456 emit_loadreg(rs2[i]|64,th);
2457 emit_not(th,th);
2458 }
2459 }
2460 else {
2461 emit_movimm(-1,tl);
2462 emit_movimm(-1,th);
2463 }
2464 }
2465 }
2466 }
2467 }
2468 else
2469 {
2470 // 32 bit
2471 if(tl>=0) {
2472 s1l=get_reg(i_regs->regmap,rs1[i]);
2473 s2l=get_reg(i_regs->regmap,rs2[i]);
2474 if(rs1[i]&&rs2[i]) {
2475 assert(s1l>=0);
2476 assert(s2l>=0);
2477 if(opcode2[i]==0x24) { // AND
2478 emit_and(s1l,s2l,tl);
2479 } else
2480 if(opcode2[i]==0x25) { // OR
2481 emit_or(s1l,s2l,tl);
2482 } else
2483 if(opcode2[i]==0x26) { // XOR
2484 emit_xor(s1l,s2l,tl);
2485 } else
2486 if(opcode2[i]==0x27) { // NOR
2487 emit_or(s1l,s2l,tl);
2488 emit_not(tl,tl);
2489 }
2490 }
2491 else
2492 {
2493 if(opcode2[i]==0x24) { // AND
2494 emit_zeroreg(tl);
2495 } else
2496 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2497 if(rs1[i]){
2498 if(s1l>=0) emit_mov(s1l,tl);
2499 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2500 }
2501 else
2502 if(rs2[i]){
2503 if(s2l>=0) emit_mov(s2l,tl);
2504 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2505 }
2506 else emit_zeroreg(tl);
2507 } else
2508 if(opcode2[i]==0x27) { // NOR
2509 if(rs1[i]){
2510 if(s1l>=0) emit_not(s1l,tl);
2511 else {
2512 emit_loadreg(rs1[i],tl);
2513 emit_not(tl,tl);
2514 }
2515 }
2516 else
2517 if(rs2[i]){
2518 if(s2l>=0) emit_not(s2l,tl);
2519 else {
2520 emit_loadreg(rs2[i],tl);
2521 emit_not(tl,tl);
2522 }
2523 }
2524 else emit_movimm(-1,tl);
2525 }
2526 }
2527 }
2528 }
2529 }
2530 }
2531}
2532
2533void imm16_assemble(int i,struct regstat *i_regs)
2534{
2535 if (opcode[i]==0x0f) { // LUI
2536 if(rt1[i]) {
2537 signed char t;
2538 t=get_reg(i_regs->regmap,rt1[i]);
2539 //assert(t>=0);
2540 if(t>=0) {
2541 if(!((i_regs->isconst>>t)&1))
2542 emit_movimm(imm[i]<<16,t);
2543 }
2544 }
2545 }
2546 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2547 if(rt1[i]) {
2548 signed char s,t;
2549 t=get_reg(i_regs->regmap,rt1[i]);
2550 s=get_reg(i_regs->regmap,rs1[i]);
2551 if(rs1[i]) {
2552 //assert(t>=0);
2553 //assert(s>=0);
2554 if(t>=0) {
2555 if(!((i_regs->isconst>>t)&1)) {
2556 if(s<0) {
2557 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2558 emit_addimm(t,imm[i],t);
2559 }else{
2560 if(!((i_regs->wasconst>>s)&1))
2561 emit_addimm(s,imm[i],t);
2562 else
2563 emit_movimm(constmap[i][s]+imm[i],t);
2564 }
2565 }
2566 }
2567 } else {
2568 if(t>=0) {
2569 if(!((i_regs->isconst>>t)&1))
2570 emit_movimm(imm[i],t);
2571 }
2572 }
2573 }
2574 }
2575 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2576 if(rt1[i]) {
2577 signed char sh,sl,th,tl;
2578 th=get_reg(i_regs->regmap,rt1[i]|64);
2579 tl=get_reg(i_regs->regmap,rt1[i]);
2580 sh=get_reg(i_regs->regmap,rs1[i]|64);
2581 sl=get_reg(i_regs->regmap,rs1[i]);
2582 if(tl>=0) {
2583 if(rs1[i]) {
2584 assert(sh>=0);
2585 assert(sl>=0);
2586 if(th>=0) {
2587 emit_addimm64_32(sh,sl,imm[i],th,tl);
2588 }
2589 else {
2590 emit_addimm(sl,imm[i],tl);
2591 }
2592 } else {
2593 emit_movimm(imm[i],tl);
2594 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2595 }
2596 }
2597 }
2598 }
2599 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2600 if(rt1[i]) {
2601 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2602 signed char sh,sl,t;
2603 t=get_reg(i_regs->regmap,rt1[i]);
2604 sh=get_reg(i_regs->regmap,rs1[i]|64);
2605 sl=get_reg(i_regs->regmap,rs1[i]);
2606 //assert(t>=0);
2607 if(t>=0) {
2608 if(rs1[i]>0) {
2609 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2610 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2611 if(opcode[i]==0x0a) { // SLTI
2612 if(sl<0) {
2613 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2614 emit_slti32(t,imm[i],t);
2615 }else{
2616 emit_slti32(sl,imm[i],t);
2617 }
2618 }
2619 else { // SLTIU
2620 if(sl<0) {
2621 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2622 emit_sltiu32(t,imm[i],t);
2623 }else{
2624 emit_sltiu32(sl,imm[i],t);
2625 }
2626 }
2627 }else{ // 64-bit
2628 assert(sl>=0);
2629 if(opcode[i]==0x0a) // SLTI
2630 emit_slti64_32(sh,sl,imm[i],t);
2631 else // SLTIU
2632 emit_sltiu64_32(sh,sl,imm[i],t);
2633 }
2634 }else{
2635 // SLTI(U) with r0 is just stupid,
2636 // nonetheless examples can be found
2637 if(opcode[i]==0x0a) // SLTI
2638 if(0<imm[i]) emit_movimm(1,t);
2639 else emit_zeroreg(t);
2640 else // SLTIU
2641 {
2642 if(imm[i]) emit_movimm(1,t);
2643 else emit_zeroreg(t);
2644 }
2645 }
2646 }
2647 }
2648 }
2649 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2650 if(rt1[i]) {
2651 signed char sh,sl,th,tl;
2652 th=get_reg(i_regs->regmap,rt1[i]|64);
2653 tl=get_reg(i_regs->regmap,rt1[i]);
2654 sh=get_reg(i_regs->regmap,rs1[i]|64);
2655 sl=get_reg(i_regs->regmap,rs1[i]);
2656 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2657 if(opcode[i]==0x0c) //ANDI
2658 {
2659 if(rs1[i]) {
2660 if(sl<0) {
2661 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2662 emit_andimm(tl,imm[i],tl);
2663 }else{
2664 if(!((i_regs->wasconst>>sl)&1))
2665 emit_andimm(sl,imm[i],tl);
2666 else
2667 emit_movimm(constmap[i][sl]&imm[i],tl);
2668 }
2669 }
2670 else
2671 emit_zeroreg(tl);
2672 if(th>=0) emit_zeroreg(th);
2673 }
2674 else
2675 {
2676 if(rs1[i]) {
2677 if(sl<0) {
2678 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2679 }
2680 if(th>=0) {
2681 if(sh<0) {
2682 emit_loadreg(rs1[i]|64,th);
2683 }else{
2684 emit_mov(sh,th);
2685 }
2686 }
2687 if(opcode[i]==0x0d) //ORI
2688 if(sl<0) {
2689 emit_orimm(tl,imm[i],tl);
2690 }else{
2691 if(!((i_regs->wasconst>>sl)&1))
2692 emit_orimm(sl,imm[i],tl);
2693 else
2694 emit_movimm(constmap[i][sl]|imm[i],tl);
2695 }
2696 if(opcode[i]==0x0e) //XORI
2697 if(sl<0) {
2698 emit_xorimm(tl,imm[i],tl);
2699 }else{
2700 if(!((i_regs->wasconst>>sl)&1))
2701 emit_xorimm(sl,imm[i],tl);
2702 else
2703 emit_movimm(constmap[i][sl]^imm[i],tl);
2704 }
2705 }
2706 else {
2707 emit_movimm(imm[i],tl);
2708 if(th>=0) emit_zeroreg(th);
2709 }
2710 }
2711 }
2712 }
2713 }
2714}
2715
2716void shiftimm_assemble(int i,struct regstat *i_regs)
2717{
2718 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2719 {
2720 if(rt1[i]) {
2721 signed char s,t;
2722 t=get_reg(i_regs->regmap,rt1[i]);
2723 s=get_reg(i_regs->regmap,rs1[i]);
2724 //assert(t>=0);
dc49e339 2725 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2726 if(rs1[i]==0)
2727 {
2728 emit_zeroreg(t);
2729 }
2730 else
2731 {
2732 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2733 if(imm[i]) {
2734 if(opcode2[i]==0) // SLL
2735 {
2736 emit_shlimm(s<0?t:s,imm[i],t);
2737 }
2738 if(opcode2[i]==2) // SRL
2739 {
2740 emit_shrimm(s<0?t:s,imm[i],t);
2741 }
2742 if(opcode2[i]==3) // SRA
2743 {
2744 emit_sarimm(s<0?t:s,imm[i],t);
2745 }
2746 }else{
2747 // Shift by zero
2748 if(s>=0 && s!=t) emit_mov(s,t);
2749 }
2750 }
2751 }
2752 //emit_storereg(rt1[i],t); //DEBUG
2753 }
2754 }
2755 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2756 {
2757 if(rt1[i]) {
2758 signed char sh,sl,th,tl;
2759 th=get_reg(i_regs->regmap,rt1[i]|64);
2760 tl=get_reg(i_regs->regmap,rt1[i]);
2761 sh=get_reg(i_regs->regmap,rs1[i]|64);
2762 sl=get_reg(i_regs->regmap,rs1[i]);
2763 if(tl>=0) {
2764 if(rs1[i]==0)
2765 {
2766 emit_zeroreg(tl);
2767 if(th>=0) emit_zeroreg(th);
2768 }
2769 else
2770 {
2771 assert(sl>=0);
2772 assert(sh>=0);
2773 if(imm[i]) {
2774 if(opcode2[i]==0x38) // DSLL
2775 {
2776 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2777 emit_shlimm(sl,imm[i],tl);
2778 }
2779 if(opcode2[i]==0x3a) // DSRL
2780 {
2781 emit_shrdimm(sl,sh,imm[i],tl);
2782 if(th>=0) emit_shrimm(sh,imm[i],th);
2783 }
2784 if(opcode2[i]==0x3b) // DSRA
2785 {
2786 emit_shrdimm(sl,sh,imm[i],tl);
2787 if(th>=0) emit_sarimm(sh,imm[i],th);
2788 }
2789 }else{
2790 // Shift by zero
2791 if(sl!=tl) emit_mov(sl,tl);
2792 if(th>=0&&sh!=th) emit_mov(sh,th);
2793 }
2794 }
2795 }
2796 }
2797 }
2798 if(opcode2[i]==0x3c) // DSLL32
2799 {
2800 if(rt1[i]) {
2801 signed char sl,tl,th;
2802 tl=get_reg(i_regs->regmap,rt1[i]);
2803 th=get_reg(i_regs->regmap,rt1[i]|64);
2804 sl=get_reg(i_regs->regmap,rs1[i]);
2805 if(th>=0||tl>=0){
2806 assert(tl>=0);
2807 assert(th>=0);
2808 assert(sl>=0);
2809 emit_mov(sl,th);
2810 emit_zeroreg(tl);
2811 if(imm[i]>32)
2812 {
2813 emit_shlimm(th,imm[i]&31,th);
2814 }
2815 }
2816 }
2817 }
2818 if(opcode2[i]==0x3e) // DSRL32
2819 {
2820 if(rt1[i]) {
2821 signed char sh,tl,th;
2822 tl=get_reg(i_regs->regmap,rt1[i]);
2823 th=get_reg(i_regs->regmap,rt1[i]|64);
2824 sh=get_reg(i_regs->regmap,rs1[i]|64);
2825 if(tl>=0){
2826 assert(sh>=0);
2827 emit_mov(sh,tl);
2828 if(th>=0) emit_zeroreg(th);
2829 if(imm[i]>32)
2830 {
2831 emit_shrimm(tl,imm[i]&31,tl);
2832 }
2833 }
2834 }
2835 }
2836 if(opcode2[i]==0x3f) // DSRA32
2837 {
2838 if(rt1[i]) {
2839 signed char sh,tl;
2840 tl=get_reg(i_regs->regmap,rt1[i]);
2841 sh=get_reg(i_regs->regmap,rs1[i]|64);
2842 if(tl>=0){
2843 assert(sh>=0);
2844 emit_mov(sh,tl);
2845 if(imm[i]>32)
2846 {
2847 emit_sarimm(tl,imm[i]&31,tl);
2848 }
2849 }
2850 }
2851 }
2852}
2853
2854#ifndef shift_assemble
2855void shift_assemble(int i,struct regstat *i_regs)
2856{
2857 printf("Need shift_assemble for this architecture.\n");
2858 exit(1);
2859}
2860#endif
2861
2862void load_assemble(int i,struct regstat *i_regs)
2863{
2864 int s,th,tl,addr,map=-1;
2865 int offset;
2866 int jaddr=0;
5bf843dc 2867 int memtarget=0,c=0;
b1570849 2868 int fastload_reg_override=0;
57871462 2869 u_int hr,reglist=0;
2870 th=get_reg(i_regs->regmap,rt1[i]|64);
2871 tl=get_reg(i_regs->regmap,rt1[i]);
2872 s=get_reg(i_regs->regmap,rs1[i]);
2873 offset=imm[i];
2874 for(hr=0;hr<HOST_REGS;hr++) {
2875 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2876 }
2877 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2878 if(s>=0) {
2879 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2880 if (c) {
2881 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2882 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2883 }
57871462 2884 }
57871462 2885 //printf("load_assemble: c=%d\n",c);
2886 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2887 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2888#ifdef PCSX
f18c0f46 2889 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2890 ||rt1[i]==0) {
5bf843dc 2891 // could be FIFO, must perform the read
f18c0f46 2892 // ||dummy read
5bf843dc 2893 assem_debug("(forced read)\n");
2894 tl=get_reg(i_regs->regmap,-1);
2895 assert(tl>=0);
5bf843dc 2896 }
f18c0f46 2897#endif
5bf843dc 2898 if(offset||s<0||c) addr=tl;
2899 else addr=s;
535d208a 2900 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2901 if(tl>=0) {
2902 //printf("load_assemble: c=%d\n",c);
2903 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2904 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2905 reglist&=~(1<<tl);
2906 if(th>=0) reglist&=~(1<<th);
2907 if(!using_tlb) {
2908 if(!c) {
2909 #ifdef RAM_OFFSET
2910 map=get_reg(i_regs->regmap,ROREG);
2911 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2912 #endif
57871462 2913//#define R29_HACK 1
535d208a 2914 #ifdef R29_HACK
2915 // Strmnnrmn's speed hack
2916 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2917 #endif
2918 {
ffb0b9e0 2919 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
57871462 2920 }
535d208a 2921 }
2922 }else{ // using tlb
2923 int x=0;
2924 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2925 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2926 map=get_reg(i_regs->regmap,TLREG);
2927 assert(map>=0);
ea3d2e6e 2928 reglist&=~(1<<map);
535d208a 2929 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2930 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2931 }
2932 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2933 if (opcode[i]==0x20) { // LB
2934 if(!c||memtarget) {
2935 if(!dummy) {
57871462 2936 #ifdef HOST_IMM_ADDR32
2937 if(c)
2938 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2939 else
2940 #endif
2941 {
2942 //emit_xorimm(addr,3,tl);
2943 //gen_tlb_addr_r(tl,map);
2944 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2945 int x=0,a=tl;
2002a1db 2946#ifdef BIG_ENDIAN_MIPS
57871462 2947 if(!c) emit_xorimm(addr,3,tl);
2948 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2949#else
535d208a 2950 if(!c) a=addr;
dadf55f2 2951#endif
b1570849 2952 if(fastload_reg_override) a=fastload_reg_override;
2953
535d208a 2954 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2955 }
57871462 2956 }
535d208a 2957 if(jaddr)
2958 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2959 }
535d208a 2960 else
2961 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2962 }
2963 if (opcode[i]==0x21) { // LH
2964 if(!c||memtarget) {
2965 if(!dummy) {
57871462 2966 #ifdef HOST_IMM_ADDR32
2967 if(c)
2968 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2969 else
2970 #endif
2971 {
535d208a 2972 int x=0,a=tl;
2002a1db 2973#ifdef BIG_ENDIAN_MIPS
57871462 2974 if(!c) emit_xorimm(addr,2,tl);
2975 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2976#else
535d208a 2977 if(!c) a=addr;
dadf55f2 2978#endif
b1570849 2979 if(fastload_reg_override) a=fastload_reg_override;
57871462 2980 //#ifdef
2981 //emit_movswl_indexed_tlb(x,tl,map,tl);
2982 //else
2983 if(map>=0) {
535d208a 2984 gen_tlb_addr_r(a,map);
2985 emit_movswl_indexed(x,a,tl);
2986 }else{
2987 #ifdef RAM_OFFSET
2988 emit_movswl_indexed(x,a,tl);
2989 #else
2990 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2991 #endif
2992 }
57871462 2993 }
57871462 2994 }
535d208a 2995 if(jaddr)
2996 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2997 }
535d208a 2998 else
2999 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3000 }
3001 if (opcode[i]==0x23) { // LW
3002 if(!c||memtarget) {
3003 if(!dummy) {
dadf55f2 3004 int a=addr;
b1570849 3005 if(fastload_reg_override) a=fastload_reg_override;
57871462 3006 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3007 #ifdef HOST_IMM_ADDR32
3008 if(c)
3009 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3010 else
3011 #endif
dadf55f2 3012 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3013 }
535d208a 3014 if(jaddr)
3015 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3016 }
535d208a 3017 else
3018 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3019 }
3020 if (opcode[i]==0x24) { // LBU
3021 if(!c||memtarget) {
3022 if(!dummy) {
57871462 3023 #ifdef HOST_IMM_ADDR32
3024 if(c)
3025 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3026 else
3027 #endif
3028 {
3029 //emit_xorimm(addr,3,tl);
3030 //gen_tlb_addr_r(tl,map);
3031 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3032 int x=0,a=tl;
2002a1db 3033#ifdef BIG_ENDIAN_MIPS
57871462 3034 if(!c) emit_xorimm(addr,3,tl);
3035 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3036#else
535d208a 3037 if(!c) a=addr;
dadf55f2 3038#endif
b1570849 3039 if(fastload_reg_override) a=fastload_reg_override;
3040
535d208a 3041 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3042 }
57871462 3043 }
535d208a 3044 if(jaddr)
3045 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3046 }
535d208a 3047 else
3048 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3049 }
3050 if (opcode[i]==0x25) { // LHU
3051 if(!c||memtarget) {
3052 if(!dummy) {
57871462 3053 #ifdef HOST_IMM_ADDR32
3054 if(c)
3055 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3056 else
3057 #endif
3058 {
535d208a 3059 int x=0,a=tl;
2002a1db 3060#ifdef BIG_ENDIAN_MIPS
57871462 3061 if(!c) emit_xorimm(addr,2,tl);
3062 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3063#else
535d208a 3064 if(!c) a=addr;
dadf55f2 3065#endif
b1570849 3066 if(fastload_reg_override) a=fastload_reg_override;
57871462 3067 //#ifdef
3068 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3069 //#else
3070 if(map>=0) {
535d208a 3071 gen_tlb_addr_r(a,map);
3072 emit_movzwl_indexed(x,a,tl);
3073 }else{
3074 #ifdef RAM_OFFSET
3075 emit_movzwl_indexed(x,a,tl);
3076 #else
3077 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3078 #endif
3079 }
57871462 3080 }
3081 }
535d208a 3082 if(jaddr)
3083 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3084 }
535d208a 3085 else
3086 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3087 }
3088 if (opcode[i]==0x27) { // LWU
3089 assert(th>=0);
3090 if(!c||memtarget) {
3091 if(!dummy) {
dadf55f2 3092 int a=addr;
b1570849 3093 if(fastload_reg_override) a=fastload_reg_override;
57871462 3094 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3095 #ifdef HOST_IMM_ADDR32
3096 if(c)
3097 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3098 else
3099 #endif
dadf55f2 3100 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3101 }
535d208a 3102 if(jaddr)
3103 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3104 }
3105 else {
3106 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3107 }
535d208a 3108 emit_zeroreg(th);
3109 }
3110 if (opcode[i]==0x37) { // LD
3111 if(!c||memtarget) {
3112 if(!dummy) {
dadf55f2 3113 int a=addr;
b1570849 3114 if(fastload_reg_override) a=fastload_reg_override;
57871462 3115 //gen_tlb_addr_r(tl,map);
3116 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3117 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3118 #ifdef HOST_IMM_ADDR32
3119 if(c)
3120 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3121 else
3122 #endif
dadf55f2 3123 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3124 }
535d208a 3125 if(jaddr)
3126 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3127 }
535d208a 3128 else
3129 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3130 }
535d208a 3131 }
3132 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3133 //if(opcode[i]==0x23)
3134 //if(opcode[i]==0x24)
3135 //if(opcode[i]==0x23||opcode[i]==0x24)
3136 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3137 {
3138 //emit_pusha();
3139 save_regs(0x100f);
3140 emit_readword((int)&last_count,ECX);
3141 #ifdef __i386__
3142 if(get_reg(i_regs->regmap,CCREG)<0)
3143 emit_loadreg(CCREG,HOST_CCREG);
3144 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3145 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3146 emit_writeword(HOST_CCREG,(int)&Count);
3147 #endif
3148 #ifdef __arm__
3149 if(get_reg(i_regs->regmap,CCREG)<0)
3150 emit_loadreg(CCREG,0);
3151 else
3152 emit_mov(HOST_CCREG,0);
3153 emit_add(0,ECX,0);
3154 emit_addimm(0,2*ccadj[i],0);
3155 emit_writeword(0,(int)&Count);
3156 #endif
3157 emit_call((int)memdebug);
3158 //emit_popa();
3159 restore_regs(0x100f);
3160 }/**/
3161}
3162
3163#ifndef loadlr_assemble
3164void loadlr_assemble(int i,struct regstat *i_regs)
3165{
3166 printf("Need loadlr_assemble for this architecture.\n");
3167 exit(1);
3168}
3169#endif
3170
3171void store_assemble(int i,struct regstat *i_regs)
3172{
3173 int s,th,tl,map=-1;
3174 int addr,temp;
3175 int offset;
3176 int jaddr=0,jaddr2,type;
666a299d 3177 int memtarget=0,c=0;
57871462 3178 int agr=AGEN1+(i&1);
b1570849 3179 int faststore_reg_override=0;
57871462 3180 u_int hr,reglist=0;
3181 th=get_reg(i_regs->regmap,rs2[i]|64);
3182 tl=get_reg(i_regs->regmap,rs2[i]);
3183 s=get_reg(i_regs->regmap,rs1[i]);
3184 temp=get_reg(i_regs->regmap,agr);
3185 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3186 offset=imm[i];
3187 if(s>=0) {
3188 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3189 if(c) {
3190 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3191 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3192 }
57871462 3193 }
3194 assert(tl>=0);
3195 assert(temp>=0);
3196 for(hr=0;hr<HOST_REGS;hr++) {
3197 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3198 }
3199 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3200 if(offset||s<0||c) addr=temp;
3201 else addr=s;
3202 if(!using_tlb) {
3203 if(!c) {
ffb0b9e0 3204 #ifndef PCSX
57871462 3205 #ifdef R29_HACK
3206 // Strmnnrmn's speed hack
4cb76aa4 3207 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3208 #endif
4cb76aa4 3209 emit_cmpimm(addr,RAM_SIZE);
57871462 3210 #ifdef DESTRUCTIVE_SHIFT
3211 if(s==addr) emit_mov(s,temp);
3212 #endif
3213 #ifdef R29_HACK
dadf55f2 3214 memtarget=1;
4cb76aa4 3215 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3216 #endif
3217 {
3218 jaddr=(int)out;
3219 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3220 // Hint to branch predictor that the branch is unlikely to be taken
3221 if(rs1[i]>=28)
3222 emit_jno_unlikely(0);
3223 else
3224 #endif
3225 emit_jno(0);
3226 }
ffb0b9e0 3227 #else
3228 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3229 #endif
57871462 3230 }
3231 }else{ // using tlb
3232 int x=0;
3233 if (opcode[i]==0x28) x=3; // SB
3234 if (opcode[i]==0x29) x=2; // SH
3235 map=get_reg(i_regs->regmap,TLREG);
3236 assert(map>=0);
ea3d2e6e 3237 reglist&=~(1<<map);
57871462 3238 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3239 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3240 }
3241
3242 if (opcode[i]==0x28) { // SB
3243 if(!c||memtarget) {
97a238a6 3244 int x=0,a=temp;
2002a1db 3245#ifdef BIG_ENDIAN_MIPS
57871462 3246 if(!c) emit_xorimm(addr,3,temp);
3247 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3248#else
97a238a6 3249 if(!c) a=addr;
dadf55f2 3250#endif
b1570849 3251 if(faststore_reg_override) a=faststore_reg_override;
57871462 3252 //gen_tlb_addr_w(temp,map);
3253 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3254 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3255 }
3256 type=STOREB_STUB;
3257 }
3258 if (opcode[i]==0x29) { // SH
3259 if(!c||memtarget) {
97a238a6 3260 int x=0,a=temp;
2002a1db 3261#ifdef BIG_ENDIAN_MIPS
57871462 3262 if(!c) emit_xorimm(addr,2,temp);
3263 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3264#else
97a238a6 3265 if(!c) a=addr;
dadf55f2 3266#endif
b1570849 3267 if(faststore_reg_override) a=faststore_reg_override;
57871462 3268 //#ifdef
3269 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3270 //#else
3271 if(map>=0) {
97a238a6 3272 gen_tlb_addr_w(a,map);
3273 emit_writehword_indexed(tl,x,a);
57871462 3274 }else
97a238a6 3275 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3276 }
3277 type=STOREH_STUB;
3278 }
3279 if (opcode[i]==0x2B) { // SW
dadf55f2 3280 if(!c||memtarget) {
3281 int a=addr;
b1570849 3282 if(faststore_reg_override) a=faststore_reg_override;
57871462 3283 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3284 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3285 }
57871462 3286 type=STOREW_STUB;
3287 }
3288 if (opcode[i]==0x3F) { // SD
3289 if(!c||memtarget) {
dadf55f2 3290 int a=addr;
b1570849 3291 if(faststore_reg_override) a=faststore_reg_override;
57871462 3292 if(rs2[i]) {
3293 assert(th>=0);
3294 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3295 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3296 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3297 }else{
3298 // Store zero
3299 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3300 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3301 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3302 }
3303 }
3304 type=STORED_STUB;
3305 }
b96d3df7 3306#ifdef PCSX
3307 if(jaddr) {
3308 // PCSX store handlers don't check invcode again
3309 reglist|=1<<addr;
3310 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3311 jaddr=0;
3312 }
3313#endif
0ff8c62c 3314 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3315 if(!c||memtarget) {
3316 #ifdef DESTRUCTIVE_SHIFT
3317 // The x86 shift operation is 'destructive'; it overwrites the
3318 // source register, so we need to make a copy first and use that.
3319 addr=temp;
3320 #endif
3321 #if defined(HOST_IMM8)
3322 int ir=get_reg(i_regs->regmap,INVCP);
3323 assert(ir>=0);
3324 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3325 #else
3326 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3327 #endif
0bbd1454 3328 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3329 emit_callne(invalidate_addr_reg[addr]);
3330 #else
57871462 3331 jaddr2=(int)out;
3332 emit_jne(0);
3333 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3334 #endif
57871462 3335 }
3336 }
3eaa7048 3337 if(jaddr) {
3338 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3339 } else if(c&&!memtarget) {
3340 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3341 }
57871462 3342 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3343 //if(opcode[i]==0x2B || opcode[i]==0x28)
3344 //if(opcode[i]==0x2B || opcode[i]==0x29)
3345 //if(opcode[i]==0x2B)
3346 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3347 {
28d74ee8 3348 #ifdef __i386__
3349 emit_pusha();
3350 #endif
3351 #ifdef __arm__
57871462 3352 save_regs(0x100f);
28d74ee8 3353 #endif
57871462 3354 emit_readword((int)&last_count,ECX);
3355 #ifdef __i386__
3356 if(get_reg(i_regs->regmap,CCREG)<0)
3357 emit_loadreg(CCREG,HOST_CCREG);
3358 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3359 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3360 emit_writeword(HOST_CCREG,(int)&Count);
3361 #endif
3362 #ifdef __arm__
3363 if(get_reg(i_regs->regmap,CCREG)<0)
3364 emit_loadreg(CCREG,0);
3365 else
3366 emit_mov(HOST_CCREG,0);
3367 emit_add(0,ECX,0);
3368 emit_addimm(0,2*ccadj[i],0);
3369 emit_writeword(0,(int)&Count);
3370 #endif
3371 emit_call((int)memdebug);
28d74ee8 3372 #ifdef __i386__
3373 emit_popa();
3374 #endif
3375 #ifdef __arm__
57871462 3376 restore_regs(0x100f);
28d74ee8 3377 #endif
57871462 3378 }/**/
3379}
3380
3381void storelr_assemble(int i,struct regstat *i_regs)
3382{
3383 int s,th,tl;
3384 int temp;
3385 int temp2;
3386 int offset;
3387 int jaddr=0,jaddr2;
3388 int case1,case2,case3;
3389 int done0,done1,done2;
af4ee1fe 3390 int memtarget=0,c=0;
fab5d06d 3391 int agr=AGEN1+(i&1);
57871462 3392 u_int hr,reglist=0;
3393 th=get_reg(i_regs->regmap,rs2[i]|64);
3394 tl=get_reg(i_regs->regmap,rs2[i]);
3395 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3396 temp=get_reg(i_regs->regmap,agr);
3397 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3398 offset=imm[i];
3399 if(s>=0) {
3400 c=(i_regs->isconst>>s)&1;
af4ee1fe 3401 if(c) {
3402 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3403 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3404 }
57871462 3405 }
3406 assert(tl>=0);
3407 for(hr=0;hr<HOST_REGS;hr++) {
3408 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3409 }
535d208a 3410 assert(temp>=0);
3411 if(!using_tlb) {
3412 if(!c) {
3413 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3414 if(!offset&&s!=temp) emit_mov(s,temp);
3415 jaddr=(int)out;
3416 emit_jno(0);
3417 }
3418 else
3419 {
3420 if(!memtarget||!rs1[i]) {
57871462 3421 jaddr=(int)out;
3422 emit_jmp(0);
3423 }
57871462 3424 }
535d208a 3425 #ifdef RAM_OFFSET
3426 int map=get_reg(i_regs->regmap,ROREG);
3427 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3428 gen_tlb_addr_w(temp,map);
3429 #else
3430 if((u_int)rdram!=0x80000000)
3431 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3432 #endif
3433 }else{ // using tlb
3434 int map=get_reg(i_regs->regmap,TLREG);
3435 assert(map>=0);
ea3d2e6e 3436 reglist&=~(1<<map);
535d208a 3437 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3438 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3439 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3440 if(!jaddr&&!memtarget) {
3441 jaddr=(int)out;
3442 emit_jmp(0);
57871462 3443 }
535d208a 3444 gen_tlb_addr_w(temp,map);
3445 }
3446
3447 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3448 temp2=get_reg(i_regs->regmap,FTEMP);
3449 if(!rs2[i]) temp2=th=tl;
3450 }
57871462 3451
2002a1db 3452#ifndef BIG_ENDIAN_MIPS
3453 emit_xorimm(temp,3,temp);
3454#endif
535d208a 3455 emit_testimm(temp,2);
3456 case2=(int)out;
3457 emit_jne(0);
3458 emit_testimm(temp,1);
3459 case1=(int)out;
3460 emit_jne(0);
3461 // 0
3462 if (opcode[i]==0x2A) { // SWL
3463 emit_writeword_indexed(tl,0,temp);
3464 }
3465 if (opcode[i]==0x2E) { // SWR
3466 emit_writebyte_indexed(tl,3,temp);
3467 }
3468 if (opcode[i]==0x2C) { // SDL
3469 emit_writeword_indexed(th,0,temp);
3470 if(rs2[i]) emit_mov(tl,temp2);
3471 }
3472 if (opcode[i]==0x2D) { // SDR
3473 emit_writebyte_indexed(tl,3,temp);
3474 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3475 }
3476 done0=(int)out;
3477 emit_jmp(0);
3478 // 1
3479 set_jump_target(case1,(int)out);
3480 if (opcode[i]==0x2A) { // SWL
3481 // Write 3 msb into three least significant bytes
3482 if(rs2[i]) emit_rorimm(tl,8,tl);
3483 emit_writehword_indexed(tl,-1,temp);
3484 if(rs2[i]) emit_rorimm(tl,16,tl);
3485 emit_writebyte_indexed(tl,1,temp);
3486 if(rs2[i]) emit_rorimm(tl,8,tl);
3487 }
3488 if (opcode[i]==0x2E) { // SWR
3489 // Write two lsb into two most significant bytes
3490 emit_writehword_indexed(tl,1,temp);
3491 }
3492 if (opcode[i]==0x2C) { // SDL
3493 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3494 // Write 3 msb into three least significant bytes
3495 if(rs2[i]) emit_rorimm(th,8,th);
3496 emit_writehword_indexed(th,-1,temp);
3497 if(rs2[i]) emit_rorimm(th,16,th);
3498 emit_writebyte_indexed(th,1,temp);
3499 if(rs2[i]) emit_rorimm(th,8,th);
3500 }
3501 if (opcode[i]==0x2D) { // SDR
3502 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3503 // Write two lsb into two most significant bytes
3504 emit_writehword_indexed(tl,1,temp);
3505 }
3506 done1=(int)out;
3507 emit_jmp(0);
3508 // 2
3509 set_jump_target(case2,(int)out);
3510 emit_testimm(temp,1);
3511 case3=(int)out;
3512 emit_jne(0);
3513 if (opcode[i]==0x2A) { // SWL
3514 // Write two msb into two least significant bytes
3515 if(rs2[i]) emit_rorimm(tl,16,tl);
3516 emit_writehword_indexed(tl,-2,temp);
3517 if(rs2[i]) emit_rorimm(tl,16,tl);
3518 }
3519 if (opcode[i]==0x2E) { // SWR
3520 // Write 3 lsb into three most significant bytes
3521 emit_writebyte_indexed(tl,-1,temp);
3522 if(rs2[i]) emit_rorimm(tl,8,tl);
3523 emit_writehword_indexed(tl,0,temp);
3524 if(rs2[i]) emit_rorimm(tl,24,tl);
3525 }
3526 if (opcode[i]==0x2C) { // SDL
3527 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3528 // Write two msb into two least significant bytes
3529 if(rs2[i]) emit_rorimm(th,16,th);
3530 emit_writehword_indexed(th,-2,temp);
3531 if(rs2[i]) emit_rorimm(th,16,th);
3532 }
3533 if (opcode[i]==0x2D) { // SDR
3534 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3535 // Write 3 lsb into three most significant bytes
3536 emit_writebyte_indexed(tl,-1,temp);
3537 if(rs2[i]) emit_rorimm(tl,8,tl);
3538 emit_writehword_indexed(tl,0,temp);
3539 if(rs2[i]) emit_rorimm(tl,24,tl);
3540 }
3541 done2=(int)out;
3542 emit_jmp(0);
3543 // 3
3544 set_jump_target(case3,(int)out);
3545 if (opcode[i]==0x2A) { // SWL
3546 // Write msb into least significant byte
3547 if(rs2[i]) emit_rorimm(tl,24,tl);
3548 emit_writebyte_indexed(tl,-3,temp);
3549 if(rs2[i]) emit_rorimm(tl,8,tl);
3550 }
3551 if (opcode[i]==0x2E) { // SWR
3552 // Write entire word
3553 emit_writeword_indexed(tl,-3,temp);
3554 }
3555 if (opcode[i]==0x2C) { // SDL
3556 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3557 // Write msb into least significant byte
3558 if(rs2[i]) emit_rorimm(th,24,th);
3559 emit_writebyte_indexed(th,-3,temp);
3560 if(rs2[i]) emit_rorimm(th,8,th);
3561 }
3562 if (opcode[i]==0x2D) { // SDR
3563 if(rs2[i]) emit_mov(th,temp2);
3564 // Write entire word
3565 emit_writeword_indexed(tl,-3,temp);
3566 }
3567 set_jump_target(done0,(int)out);
3568 set_jump_target(done1,(int)out);
3569 set_jump_target(done2,(int)out);
3570 if (opcode[i]==0x2C) { // SDL
3571 emit_testimm(temp,4);
57871462 3572 done0=(int)out;
57871462 3573 emit_jne(0);
535d208a 3574 emit_andimm(temp,~3,temp);
3575 emit_writeword_indexed(temp2,4,temp);
3576 set_jump_target(done0,(int)out);
3577 }
3578 if (opcode[i]==0x2D) { // SDR
3579 emit_testimm(temp,4);
3580 done0=(int)out;
3581 emit_jeq(0);
3582 emit_andimm(temp,~3,temp);
3583 emit_writeword_indexed(temp2,-4,temp);
57871462 3584 set_jump_target(done0,(int)out);
57871462 3585 }
535d208a 3586 if(!c||!memtarget)
3587 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
0ff8c62c 3588 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
535d208a 3589 #ifdef RAM_OFFSET
3590 int map=get_reg(i_regs->regmap,ROREG);
3591 if(map<0) map=HOST_TEMPREG;
3592 gen_orig_addr_w(temp,map);
3593 #else
57871462 3594 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3595 #endif
57871462 3596 #if defined(HOST_IMM8)
3597 int ir=get_reg(i_regs->regmap,INVCP);
3598 assert(ir>=0);
3599 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3600 #else
3601 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3602 #endif
535d208a 3603 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3604 emit_callne(invalidate_addr_reg[temp]);
3605 #else
57871462 3606 jaddr2=(int)out;
3607 emit_jne(0);
3608 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3609 #endif
57871462 3610 }
3611 /*
3612 emit_pusha();
3613 //save_regs(0x100f);
3614 emit_readword((int)&last_count,ECX);
3615 if(get_reg(i_regs->regmap,CCREG)<0)
3616 emit_loadreg(CCREG,HOST_CCREG);
3617 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3618 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3619 emit_writeword(HOST_CCREG,(int)&Count);
3620 emit_call((int)memdebug);
3621 emit_popa();
3622 //restore_regs(0x100f);
3623 /**/
3624}
3625
3626void c1ls_assemble(int i,struct regstat *i_regs)
3627{
3d624f89 3628#ifndef DISABLE_COP1
57871462 3629 int s,th,tl;
3630 int temp,ar;
3631 int map=-1;
3632 int offset;
3633 int c=0;
3634 int jaddr,jaddr2=0,jaddr3,type;
3635 int agr=AGEN1+(i&1);
3636 u_int hr,reglist=0;
3637 th=get_reg(i_regs->regmap,FTEMP|64);
3638 tl=get_reg(i_regs->regmap,FTEMP);
3639 s=get_reg(i_regs->regmap,rs1[i]);
3640 temp=get_reg(i_regs->regmap,agr);
3641 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3642 offset=imm[i];
3643 assert(tl>=0);
3644 assert(rs1[i]>0);
3645 assert(temp>=0);
3646 for(hr=0;hr<HOST_REGS;hr++) {
3647 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3648 }
3649 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3650 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3651 {
3652 // Loads use a temporary register which we need to save
3653 reglist|=1<<temp;
3654 }
3655 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3656 ar=temp;
3657 else // LWC1/LDC1
3658 ar=tl;
3659 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3660 //else c=(i_regs->wasconst>>s)&1;
3661 if(s>=0) c=(i_regs->wasconst>>s)&1;
3662 // Check cop1 unusable
3663 if(!cop1_usable) {
3664 signed char rs=get_reg(i_regs->regmap,CSREG);
3665 assert(rs>=0);
3666 emit_testimm(rs,0x20000000);
3667 jaddr=(int)out;
3668 emit_jeq(0);
3669 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3670 cop1_usable=1;
3671 }
3672 if (opcode[i]==0x39) { // SWC1 (get float address)
3673 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3674 }
3675 if (opcode[i]==0x3D) { // SDC1 (get double address)
3676 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3677 }
3678 // Generate address + offset
3679 if(!using_tlb) {
3680 if(!c)
4cb76aa4 3681 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3682 }
3683 else
3684 {
3685 map=get_reg(i_regs->regmap,TLREG);
3686 assert(map>=0);
ea3d2e6e 3687 reglist&=~(1<<map);
57871462 3688 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3689 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3690 }
3691 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3692 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3693 }
3694 }
3695 if (opcode[i]==0x39) { // SWC1 (read float)
3696 emit_readword_indexed(0,tl,tl);
3697 }
3698 if (opcode[i]==0x3D) { // SDC1 (read double)
3699 emit_readword_indexed(4,tl,th);
3700 emit_readword_indexed(0,tl,tl);
3701 }
3702 if (opcode[i]==0x31) { // LWC1 (get target address)
3703 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3704 }
3705 if (opcode[i]==0x35) { // LDC1 (get target address)
3706 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3707 }
3708 if(!using_tlb) {
3709 if(!c) {
3710 jaddr2=(int)out;
3711 emit_jno(0);
3712 }
4cb76aa4 3713 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3714 jaddr2=(int)out;
3715 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3716 }
3717 #ifdef DESTRUCTIVE_SHIFT
3718 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3719 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3720 }
3721 #endif
3722 }else{
3723 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3724 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3725 }
3726 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3727 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3728 }
3729 }
3730 if (opcode[i]==0x31) { // LWC1
3731 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3732 //gen_tlb_addr_r(ar,map);
3733 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3734 #ifdef HOST_IMM_ADDR32
3735 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3736 else
3737 #endif
3738 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3739 type=LOADW_STUB;
3740 }
3741 if (opcode[i]==0x35) { // LDC1
3742 assert(th>=0);
3743 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3744 //gen_tlb_addr_r(ar,map);
3745 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3746 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3747 #ifdef HOST_IMM_ADDR32
3748 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3749 else
3750 #endif
3751 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3752 type=LOADD_STUB;
3753 }
3754 if (opcode[i]==0x39) { // SWC1
3755 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3756 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3757 type=STOREW_STUB;
3758 }
3759 if (opcode[i]==0x3D) { // SDC1
3760 assert(th>=0);
3761 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3762 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3763 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3764 type=STORED_STUB;
3765 }
0ff8c62c 3766 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3767 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3768 #ifndef DESTRUCTIVE_SHIFT
3769 temp=offset||c||s<0?ar:s;
3770 #endif
3771 #if defined(HOST_IMM8)
3772 int ir=get_reg(i_regs->regmap,INVCP);
3773 assert(ir>=0);
3774 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3775 #else
3776 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3777 #endif
0bbd1454 3778 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3779 emit_callne(invalidate_addr_reg[temp]);
3780 #else
57871462 3781 jaddr3=(int)out;
3782 emit_jne(0);
3783 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3784 #endif
57871462 3785 }
3786 }
3787 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3788 if (opcode[i]==0x31) { // LWC1 (write float)
3789 emit_writeword_indexed(tl,0,temp);
3790 }
3791 if (opcode[i]==0x35) { // LDC1 (write double)
3792 emit_writeword_indexed(th,4,temp);
3793 emit_writeword_indexed(tl,0,temp);
3794 }
3795 //if(opcode[i]==0x39)
3796 /*if(opcode[i]==0x39||opcode[i]==0x31)
3797 {
3798 emit_pusha();
3799 emit_readword((int)&last_count,ECX);
3800 if(get_reg(i_regs->regmap,CCREG)<0)
3801 emit_loadreg(CCREG,HOST_CCREG);
3802 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3803 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3804 emit_writeword(HOST_CCREG,(int)&Count);
3805 emit_call((int)memdebug);
3806 emit_popa();
3807 }/**/
3d624f89 3808#else
3809 cop1_unusable(i, i_regs);
3810#endif
57871462 3811}
3812
b9b61529 3813void c2ls_assemble(int i,struct regstat *i_regs)
3814{
3815 int s,tl;
3816 int ar;
3817 int offset;
1fd1aceb 3818 int memtarget=0,c=0;
c2e3bd42 3819 int jaddr2=0,jaddr3,type;
b9b61529 3820 int agr=AGEN1+(i&1);
ffb0b9e0 3821 int fastio_reg_override=0;
b9b61529 3822 u_int hr,reglist=0;
3823 u_int copr=(source[i]>>16)&0x1f;
3824 s=get_reg(i_regs->regmap,rs1[i]);
3825 tl=get_reg(i_regs->regmap,FTEMP);
3826 offset=imm[i];
3827 assert(rs1[i]>0);
3828 assert(tl>=0);
3829 assert(!using_tlb);
3830
3831 for(hr=0;hr<HOST_REGS;hr++) {
3832 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3833 }
3834 if(i_regs->regmap[HOST_CCREG]==CCREG)
3835 reglist&=~(1<<HOST_CCREG);
3836
3837 // get the address
3838 if (opcode[i]==0x3a) { // SWC2
3839 ar=get_reg(i_regs->regmap,agr);
3840 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3841 reglist|=1<<ar;
3842 } else { // LWC2
3843 ar=tl;
3844 }
1fd1aceb 3845 if(s>=0) c=(i_regs->wasconst>>s)&1;
3846 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3847 if (!offset&&!c&&s>=0) ar=s;
3848 assert(ar>=0);
3849
3850 if (opcode[i]==0x3a) { // SWC2
3851 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3852 type=STOREW_STUB;
b9b61529 3853 }
1fd1aceb 3854 else
b9b61529 3855 type=LOADW_STUB;
1fd1aceb 3856
3857 if(c&&!memtarget) {
3858 jaddr2=(int)out;
3859 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3860 }
1fd1aceb 3861 else {
3862 if(!c) {
ffb0b9e0 3863 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3864 }
3865 if (opcode[i]==0x32) { // LWC2
3866 #ifdef HOST_IMM_ADDR32
3867 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3868 else
3869 #endif
ffb0b9e0 3870 int a=ar;
3871 if(fastio_reg_override) a=fastio_reg_override;
3872 emit_readword_indexed(0,a,tl);
1fd1aceb 3873 }
3874 if (opcode[i]==0x3a) { // SWC2
3875 #ifdef DESTRUCTIVE_SHIFT
3876 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3877 #endif
ffb0b9e0 3878 int a=ar;
3879 if(fastio_reg_override) a=fastio_reg_override;
3880 emit_writeword_indexed(tl,0,a);
1fd1aceb 3881 }
b9b61529 3882 }
3883 if(jaddr2)
3884 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
0ff8c62c 3885 if(opcode[i]==0x3a) // SWC2
3886 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
b9b61529 3887#if defined(HOST_IMM8)
3888 int ir=get_reg(i_regs->regmap,INVCP);
3889 assert(ir>=0);
3890 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3891#else
3892 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3893#endif
0bbd1454 3894 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3895 emit_callne(invalidate_addr_reg[ar]);
3896 #else
b9b61529 3897 jaddr3=(int)out;
3898 emit_jne(0);
3899 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3900 #endif
b9b61529 3901 }
3902 if (opcode[i]==0x32) { // LWC2
3903 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3904 }
3905}
3906
57871462 3907#ifndef multdiv_assemble
3908void multdiv_assemble(int i,struct regstat *i_regs)
3909{
3910 printf("Need multdiv_assemble for this architecture.\n");
3911 exit(1);
3912}
3913#endif
3914
3915void mov_assemble(int i,struct regstat *i_regs)
3916{
3917 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3918 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3919 if(rt1[i]) {
3920 signed char sh,sl,th,tl;
3921 th=get_reg(i_regs->regmap,rt1[i]|64);
3922 tl=get_reg(i_regs->regmap,rt1[i]);
3923 //assert(tl>=0);
3924 if(tl>=0) {
3925 sh=get_reg(i_regs->regmap,rs1[i]|64);
3926 sl=get_reg(i_regs->regmap,rs1[i]);
3927 if(sl>=0) emit_mov(sl,tl);
3928 else emit_loadreg(rs1[i],tl);
3929 if(th>=0) {
3930 if(sh>=0) emit_mov(sh,th);
3931 else emit_loadreg(rs1[i]|64,th);
3932 }
3933 }
3934 }
3935}
3936
3937#ifndef fconv_assemble
3938void fconv_assemble(int i,struct regstat *i_regs)
3939{
3940 printf("Need fconv_assemble for this architecture.\n");
3941 exit(1);
3942}
3943#endif
3944
3945#if 0
3946void float_assemble(int i,struct regstat *i_regs)
3947{
3948 printf("Need float_assemble for this architecture.\n");
3949 exit(1);
3950}
3951#endif
3952
3953void syscall_assemble(int i,struct regstat *i_regs)
3954{
3955 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3956 assert(ccreg==HOST_CCREG);
3957 assert(!is_delayslot);
3958 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3959 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3960 emit_jmp((int)jump_syscall_hle); // XXX
3961}
3962
3963void hlecall_assemble(int i,struct regstat *i_regs)
3964{
3965 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3966 assert(ccreg==HOST_CCREG);
3967 assert(!is_delayslot);
3968 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3969 emit_movimm((int)psxHLEt[source[i]&7],1);
2573466a 3970 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
67ba0fb4 3971 emit_jmp((int)jump_hlecall);
57871462 3972}
3973
1e973cb0 3974void intcall_assemble(int i,struct regstat *i_regs)
3975{
3976 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3977 assert(ccreg==HOST_CCREG);
3978 assert(!is_delayslot);
3979 emit_movimm(start+i*4,0); // Get PC
2573466a 3980 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
1e973cb0 3981 emit_jmp((int)jump_intcall);
3982}
3983
57871462 3984void ds_assemble(int i,struct regstat *i_regs)
3985{
ffb0b9e0 3986 speculate_register_values(i);
57871462 3987 is_delayslot=1;
3988 switch(itype[i]) {
3989 case ALU:
3990 alu_assemble(i,i_regs);break;
3991 case IMM16:
3992 imm16_assemble(i,i_regs);break;
3993 case SHIFT:
3994 shift_assemble(i,i_regs);break;
3995 case SHIFTIMM:
3996 shiftimm_assemble(i,i_regs);break;
3997 case LOAD:
3998 load_assemble(i,i_regs);break;
3999 case LOADLR:
4000 loadlr_assemble(i,i_regs);break;
4001 case STORE:
4002 store_assemble(i,i_regs);break;
4003 case STORELR:
4004 storelr_assemble(i,i_regs);break;
4005 case COP0:
4006 cop0_assemble(i,i_regs);break;
4007 case COP1:
4008 cop1_assemble(i,i_regs);break;
4009 case C1LS:
4010 c1ls_assemble(i,i_regs);break;
b9b61529 4011 case COP2:
4012 cop2_assemble(i,i_regs);break;
4013 case C2LS:
4014 c2ls_assemble(i,i_regs);break;
4015 case C2OP:
4016 c2op_assemble(i,i_regs);break;
57871462 4017 case FCONV:
4018 fconv_assemble(i,i_regs);break;
4019 case FLOAT:
4020 float_assemble(i,i_regs);break;
4021 case FCOMP:
4022 fcomp_assemble(i,i_regs);break;
4023 case MULTDIV:
4024 multdiv_assemble(i,i_regs);break;
4025 case MOV:
4026 mov_assemble(i,i_regs);break;
4027 case SYSCALL:
7139f3c8 4028 case HLECALL:
1e973cb0 4029 case INTCALL:
57871462 4030 case SPAN:
4031 case UJUMP:
4032 case RJUMP:
4033 case CJUMP:
4034 case SJUMP:
4035 case FJUMP:
4036 printf("Jump in the delay slot. This is probably a bug.\n");
4037 }
4038 is_delayslot=0;
4039}
4040
4041// Is the branch target a valid internal jump?
4042int internal_branch(uint64_t i_is32,int addr)
4043{
4044 if(addr&1) return 0; // Indirect (register) jump
4045 if(addr>=start && addr<start+slen*4-4)
4046 {
4047 int t=(addr-start)>>2;
4048 // Delay slots are not valid branch targets
4049 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4050 // 64 -> 32 bit transition requires a recompile
4051 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4052 {
4053 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4054 else printf("optimizable: yes\n");
4055 }*/
4056 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4057#ifndef FORCE32
57871462 4058 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4059 else
4060#endif
4061 return 1;
57871462 4062 }
4063 return 0;
4064}
4065
4066#ifndef wb_invalidate
4067void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4068 uint64_t u,uint64_t uu)
4069{
4070 int hr;
4071 for(hr=0;hr<HOST_REGS;hr++) {
4072 if(hr!=EXCLUDE_REG) {
4073 if(pre[hr]!=entry[hr]) {
4074 if(pre[hr]>=0) {
4075 if((dirty>>hr)&1) {
4076 if(get_reg(entry,pre[hr])<0) {
4077 if(pre[hr]<64) {
4078 if(!((u>>pre[hr])&1)) {
4079 emit_storereg(pre[hr],hr);
4080 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4081 emit_sarimm(hr,31,hr);
4082 emit_storereg(pre[hr]|64,hr);
4083 }
4084 }
4085 }else{
4086 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4087 emit_storereg(pre[hr],hr);
4088 }
4089 }
4090 }
4091 }
4092 }
4093 }
4094 }
4095 }
4096 // Move from one register to another (no writeback)
4097 for(hr=0;hr<HOST_REGS;hr++) {
4098 if(hr!=EXCLUDE_REG) {
4099 if(pre[hr]!=entry[hr]) {
4100 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4101 int nr;
4102 if((nr=get_reg(entry,pre[hr]))>=0) {
4103 emit_mov(hr,nr);
4104 }
4105 }
4106 }
4107 }
4108 }
4109}
4110#endif
4111
4112// Load the specified registers
4113// This only loads the registers given as arguments because
4114// we don't want to load things that will be overwritten
4115void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4116{
4117 int hr;
4118 // Load 32-bit regs
4119 for(hr=0;hr<HOST_REGS;hr++) {
4120 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4121 if(entry[hr]!=regmap[hr]) {
4122 if(regmap[hr]==rs1||regmap[hr]==rs2)
4123 {
4124 if(regmap[hr]==0) {
4125 emit_zeroreg(hr);
4126 }
4127 else
4128 {
4129 emit_loadreg(regmap[hr],hr);
4130 }
4131 }
4132 }
4133 }
4134 }
4135 //Load 64-bit regs
4136 for(hr=0;hr<HOST_REGS;hr++) {
4137 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4138 if(entry[hr]!=regmap[hr]) {
4139 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4140 {
4141 assert(regmap[hr]!=64);
4142 if((is32>>(regmap[hr]&63))&1) {
4143 int lr=get_reg(regmap,regmap[hr]-64);
4144 if(lr>=0)
4145 emit_sarimm(lr,31,hr);
4146 else
4147 emit_loadreg(regmap[hr],hr);
4148 }
4149 else
4150 {
4151 emit_loadreg(regmap[hr],hr);
4152 }
4153 }
4154 }
4155 }
4156 }
4157}
4158
4159// Load registers prior to the start of a loop
4160// so that they are not loaded within the loop
4161static void loop_preload(signed char pre[],signed char entry[])
4162{
4163 int hr;
4164 for(hr=0;hr<HOST_REGS;hr++) {
4165 if(hr!=EXCLUDE_REG) {
4166 if(pre[hr]!=entry[hr]) {
4167 if(entry[hr]>=0) {
4168 if(get_reg(pre,entry[hr])<0) {
4169 assem_debug("loop preload:\n");
4170 //printf("loop preload: %d\n",hr);
4171 if(entry[hr]==0) {
4172 emit_zeroreg(hr);
4173 }
4174 else if(entry[hr]<TEMPREG)
4175 {
4176 emit_loadreg(entry[hr],hr);
4177 }
4178 else if(entry[hr]-64<TEMPREG)
4179 {
4180 emit_loadreg(entry[hr],hr);
4181 }
4182 }
4183 }
4184 }
4185 }
4186 }
4187}
4188
4189// Generate address for load/store instruction
b9b61529 4190// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4191void address_generation(int i,struct regstat *i_regs,signed char entry[])
4192{
b9b61529 4193 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4194 int ra=-1;
57871462 4195 int agr=AGEN1+(i&1);
4196 int mgr=MGEN1+(i&1);
4197 if(itype[i]==LOAD) {
4198 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4199 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4200 assert(ra>=0);
57871462 4201 }
4202 if(itype[i]==LOADLR) {
4203 ra=get_reg(i_regs->regmap,FTEMP);
4204 }
4205 if(itype[i]==STORE||itype[i]==STORELR) {
4206 ra=get_reg(i_regs->regmap,agr);
4207 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4208 }
b9b61529 4209 if(itype[i]==C1LS||itype[i]==C2LS) {
4210 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4211 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4212 else { // SWC1/SDC1/SWC2/SDC2
57871462 4213 ra=get_reg(i_regs->regmap,agr);
4214 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4215 }
4216 }
4217 int rs=get_reg(i_regs->regmap,rs1[i]);
4218 int rm=get_reg(i_regs->regmap,TLREG);
4219 if(ra>=0) {
4220 int offset=imm[i];
4221 int c=(i_regs->wasconst>>rs)&1;
4222 if(rs1[i]==0) {
4223 // Using r0 as a base address
4224 /*if(rm>=0) {
4225 if(!entry||entry[rm]!=mgr) {
4226 generate_map_const(offset,rm);
4227 } // else did it in the previous cycle
4228 }*/
4229 if(!entry||entry[ra]!=agr) {
4230 if (opcode[i]==0x22||opcode[i]==0x26) {
4231 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4232 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4233 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4234 }else{
4235 emit_movimm(offset,ra);
4236 }
4237 } // else did it in the previous cycle
4238 }
4239 else if(rs<0) {
4240 if(!entry||entry[ra]!=rs1[i])
4241 emit_loadreg(rs1[i],ra);
4242 //if(!entry||entry[ra]!=rs1[i])
4243 // printf("poor load scheduling!\n");
4244 }
4245 else if(c) {
63cb0298 4246#ifndef DISABLE_TLB
57871462 4247 if(rm>=0) {
4248 if(!entry||entry[rm]!=mgr) {
b9b61529 4249 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4250 // Stores to memory go thru the mapper to detect self-modifying
4251 // code, loads don't.
4252 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4253 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4254 generate_map_const(constmap[i][rs]+offset,rm);
4255 }else{
4256 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4257 generate_map_const(constmap[i][rs]+offset,rm);
4258 }
4259 }
4260 }
63cb0298 4261#endif
57871462 4262 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4263 if(!entry||entry[ra]!=agr) {
4264 if (opcode[i]==0x22||opcode[i]==0x26) {
4265 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4266 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4267 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4268 }else{
4269 #ifdef HOST_IMM_ADDR32
b9b61529 4270 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4271 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4272 #endif
4273 emit_movimm(constmap[i][rs]+offset,ra);
8575a877 4274 regs[i].loadedconst|=1<<ra;
57871462 4275 }
4276 } // else did it in the previous cycle
4277 } // else load_consts already did it
4278 }
4279 if(offset&&!c&&rs1[i]) {
4280 if(rs>=0) {
4281 emit_addimm(rs,offset,ra);
4282 }else{
4283 emit_addimm(ra,offset,ra);
4284 }
4285 }
4286 }
4287 }
4288 // Preload constants for next instruction
b9b61529 4289 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4290 int agr,ra;
63cb0298 4291 #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
57871462 4292 // Mapper entry
4293 agr=MGEN1+((i+1)&1);
4294 ra=get_reg(i_regs->regmap,agr);
4295 if(ra>=0) {
4296 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4297 int offset=imm[i+1];
4298 int c=(regs[i+1].wasconst>>rs)&1;
4299 if(c) {
b9b61529 4300 if(itype[i+1]==STORE||itype[i+1]==STORELR
4301 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4302 // Stores to memory go thru the mapper to detect self-modifying
4303 // code, loads don't.
4304 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4305 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4306 generate_map_const(constmap[i+1][rs]+offset,ra);
4307 }else{
4308 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4309 generate_map_const(constmap[i+1][rs]+offset,ra);
4310 }
4311 }
4312 /*else if(rs1[i]==0) {
4313 generate_map_const(offset,ra);
4314 }*/
4315 }
4316 #endif
4317 // Actual address
4318 agr=AGEN1+((i+1)&1);
4319 ra=get_reg(i_regs->regmap,agr);
4320 if(ra>=0) {
4321 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4322 int offset=imm[i+1];
4323 int c=(regs[i+1].wasconst>>rs)&1;
4324 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4325 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4326 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4327 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4328 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4329 }else{
4330 #ifdef HOST_IMM_ADDR32
b9b61529 4331 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4332 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4333 #endif
4334 emit_movimm(constmap[i+1][rs]+offset,ra);
8575a877 4335 regs[i+1].loadedconst|=1<<ra;
57871462 4336 }
4337 }
4338 else if(rs1[i+1]==0) {
4339 // Using r0 as a base address
4340 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4341 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4342 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4343 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4344 }else{
4345 emit_movimm(offset,ra);
4346 }
4347 }
4348 }
4349 }
4350}
4351
4352int get_final_value(int hr, int i, int *value)
4353{
4354 int reg=regs[i].regmap[hr];
4355 while(i<slen-1) {
4356 if(regs[i+1].regmap[hr]!=reg) break;
4357 if(!((regs[i+1].isconst>>hr)&1)) break;
4358 if(bt[i+1]) break;
4359 i++;
4360 }
4361 if(i<slen-1) {
4362 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4363 *value=constmap[i][hr];
4364 return 1;
4365 }
4366 if(!bt[i+1]) {
4367 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4368 // Load in delay slot, out-of-order execution
4369 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4370 {
4371 #ifdef HOST_IMM_ADDR32
4372 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4373 #endif
4374 // Precompute load address
4375 *value=constmap[i][hr]+imm[i+2];
4376 return 1;
4377 }
4378 }
4379 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4380 {
4381 #ifdef HOST_IMM_ADDR32
4382 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4383 #endif
4384 // Precompute load address
4385 *value=constmap[i][hr]+imm[i+1];
4386 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4387 return 1;
4388 }
4389 }
4390 }
4391 *value=constmap[i][hr];
4392 //printf("c=%x\n",(int)constmap[i][hr]);
4393 if(i==slen-1) return 1;
4394 if(reg<64) {
4395 return !((unneeded_reg[i+1]>>reg)&1);
4396 }else{
4397 return !((unneeded_reg_upper[i+1]>>reg)&1);
4398 }
4399}
4400
4401// Load registers with known constants
4402void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4403{
8575a877 4404 int hr,hr2;
4405 // propagate loaded constant flags
4406 if(i==0||bt[i])
4407 regs[i].loadedconst=0;
4408 else {
4409 for(hr=0;hr<HOST_REGS;hr++) {
4410 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4411 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4412 {
4413 regs[i].loadedconst|=1<<hr;
4414 }
4415 }
4416 }
57871462 4417 // Load 32-bit regs
4418 for(hr=0;hr<HOST_REGS;hr++) {
4419 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4420 //if(entry[hr]!=regmap[hr]) {
8575a877 4421 if(!((regs[i].loadedconst>>hr)&1)) {
57871462 4422 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
8575a877 4423 int value,similar=0;
57871462 4424 if(get_final_value(hr,i,&value)) {
8575a877 4425 // see if some other register has similar value
4426 for(hr2=0;hr2<HOST_REGS;hr2++) {
4427 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4428 if(is_similar_value(value,constmap[i][hr2])) {
4429 similar=1;
4430 break;
4431 }
4432 }
4433 }
4434 if(similar) {
4435 int value2;
4436 if(get_final_value(hr2,i,&value2)) // is this needed?
4437 emit_movimm_from(value2,hr2,value,hr);
4438 else
4439 emit_movimm(value,hr);
4440 }
4441 else if(value==0) {
57871462 4442 emit_zeroreg(hr);
4443 }
4444 else {
4445 emit_movimm(value,hr);
4446 }
4447 }
8575a877 4448 regs[i].loadedconst|=1<<hr;
57871462 4449 }
4450 }
4451 }
4452 }
4453 // Load 64-bit regs
4454 for(hr=0;hr<HOST_REGS;hr++) {
4455 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4456 //if(entry[hr]!=regmap[hr]) {
4457 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4458 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4459 if((is32>>(regmap[hr]&63))&1) {
4460 int lr=get_reg(regmap,regmap[hr]-64);
4461 assert(lr>=0);
4462 emit_sarimm(lr,31,hr);
4463 }
4464 else
4465 {
4466 int value;
4467 if(get_final_value(hr,i,&value)) {
4468 if(value==0) {
4469 emit_zeroreg(hr);
4470 }
4471 else {
4472 emit_movimm(value,hr);
4473 }
4474 }
4475 }
4476 }
4477 }
4478 }
4479 }
4480}
4481void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4482{
4483 int hr;
4484 // Load 32-bit regs
4485 for(hr=0;hr<HOST_REGS;hr++) {
4486 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4487 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4488 int value=constmap[i][hr];
4489 if(value==0) {
4490 emit_zeroreg(hr);
4491 }
4492 else {
4493 emit_movimm(value,hr);
4494 }
4495 }
4496 }
4497 }
4498 // Load 64-bit regs
4499 for(hr=0;hr<HOST_REGS;hr++) {
4500 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4501 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4502 if((is32>>(regmap[hr]&63))&1) {
4503 int lr=get_reg(regmap,regmap[hr]-64);
4504 assert(lr>=0);
4505 emit_sarimm(lr,31,hr);
4506 }
4507 else
4508 {
4509 int value=constmap[i][hr];
4510 if(value==0) {
4511 emit_zeroreg(hr);
4512 }
4513 else {
4514 emit_movimm(value,hr);
4515 }
4516 }
4517 }
4518 }
4519 }
4520}
4521
4522// Write out all dirty registers (except cycle count)
4523void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4524{
4525 int hr;
4526 for(hr=0;hr<HOST_REGS;hr++) {
4527 if(hr!=EXCLUDE_REG) {
4528 if(i_regmap[hr]>0) {
4529 if(i_regmap[hr]!=CCREG) {
4530 if((i_dirty>>hr)&1) {
4531 if(i_regmap[hr]<64) {
4532 emit_storereg(i_regmap[hr],hr);
24385cae 4533#ifndef FORCE32
57871462 4534 if( ((i_is32>>i_regmap[hr])&1) ) {
4535 #ifdef DESTRUCTIVE_WRITEBACK
4536 emit_sarimm(hr,31,hr);
4537 emit_storereg(i_regmap[hr]|64,hr);
4538 #else
4539 emit_sarimm(hr,31,HOST_TEMPREG);
4540 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4541 #endif
4542 }
24385cae 4543#endif
57871462 4544 }else{
4545 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4546 emit_storereg(i_regmap[hr],hr);
4547 }
4548 }
4549 }
4550 }
4551 }
4552 }
4553 }
4554}
4555// Write out dirty registers that we need to reload (pair with load_needed_regs)
4556// This writes the registers not written by store_regs_bt
4557void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4558{
4559 int hr;
4560 int t=(addr-start)>>2;
4561 for(hr=0;hr<HOST_REGS;hr++) {
4562 if(hr!=EXCLUDE_REG) {
4563 if(i_regmap[hr]>0) {
4564 if(i_regmap[hr]!=CCREG) {
4565 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4566 if((i_dirty>>hr)&1) {
4567 if(i_regmap[hr]<64) {
4568 emit_storereg(i_regmap[hr],hr);
24385cae 4569#ifndef FORCE32
57871462 4570 if( ((i_is32>>i_regmap[hr])&1) ) {
4571 #ifdef DESTRUCTIVE_WRITEBACK
4572 emit_sarimm(hr,31,hr);
4573 emit_storereg(i_regmap[hr]|64,hr);
4574 #else
4575 emit_sarimm(hr,31,HOST_TEMPREG);
4576 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4577 #endif
4578 }
24385cae 4579#endif
57871462 4580 }else{
4581 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4582 emit_storereg(i_regmap[hr],hr);
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589 }
4590 }
4591}
4592
4593// Load all registers (except cycle count)
4594void load_all_regs(signed char i_regmap[])
4595{
4596 int hr;
4597 for(hr=0;hr<HOST_REGS;hr++) {
4598 if(hr!=EXCLUDE_REG) {
4599 if(i_regmap[hr]==0) {
4600 emit_zeroreg(hr);
4601 }
4602 else
ea3d2e6e 4603 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4604 {
4605 emit_loadreg(i_regmap[hr],hr);
4606 }
4607 }
4608 }
4609}
4610
4611// Load all current registers also needed by next instruction
4612void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4613{
4614 int hr;
4615 for(hr=0;hr<HOST_REGS;hr++) {
4616 if(hr!=EXCLUDE_REG) {
4617 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4618 if(i_regmap[hr]==0) {
4619 emit_zeroreg(hr);
4620 }
4621 else
ea3d2e6e 4622 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4623 {
4624 emit_loadreg(i_regmap[hr],hr);
4625 }
4626 }
4627 }
4628 }
4629}
4630
4631// Load all regs, storing cycle count if necessary
4632void load_regs_entry(int t)
4633{
4634 int hr;
2573466a 4635 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4636 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 4637 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4638 emit_storereg(CCREG,HOST_CCREG);
4639 }
4640 // Load 32-bit regs
4641 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4642 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4643 if(regs[t].regmap_entry[hr]==0) {
4644 emit_zeroreg(hr);
4645 }
4646 else if(regs[t].regmap_entry[hr]!=CCREG)
4647 {
4648 emit_loadreg(regs[t].regmap_entry[hr],hr);
4649 }
4650 }
4651 }
4652 // Load 64-bit regs
4653 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4654 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4655 assert(regs[t].regmap_entry[hr]!=64);
4656 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4657 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4658 if(lr<0) {
4659 emit_loadreg(regs[t].regmap_entry[hr],hr);
4660 }
4661 else
4662 {
4663 emit_sarimm(lr,31,hr);
4664 }
4665 }
4666 else
4667 {
4668 emit_loadreg(regs[t].regmap_entry[hr],hr);
4669 }
4670 }
4671 }
4672}
4673
4674// Store dirty registers prior to branch
4675void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4676{
4677 if(internal_branch(i_is32,addr))
4678 {
4679 int t=(addr-start)>>2;
4680 int hr;
4681 for(hr=0;hr<HOST_REGS;hr++) {
4682 if(hr!=EXCLUDE_REG) {
4683 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4684 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4685 if((i_dirty>>hr)&1) {
4686 if(i_regmap[hr]<64) {
4687 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4688 emit_storereg(i_regmap[hr],hr);
4689 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4690 #ifdef DESTRUCTIVE_WRITEBACK
4691 emit_sarimm(hr,31,hr);
4692 emit_storereg(i_regmap[hr]|64,hr);
4693 #else
4694 emit_sarimm(hr,31,HOST_TEMPREG);
4695 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4696 #endif
4697 }
4698 }
4699 }else{
4700 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4701 emit_storereg(i_regmap[hr],hr);
4702 }
4703 }
4704 }
4705 }
4706 }
4707 }
4708 }
4709 }
4710 else
4711 {
4712 // Branch out of this block, write out all dirty regs
4713 wb_dirtys(i_regmap,i_is32,i_dirty);
4714 }
4715}
4716
4717// Load all needed registers for branch target
4718void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4719{
4720 //if(addr>=start && addr<(start+slen*4))
4721 if(internal_branch(i_is32,addr))
4722 {
4723 int t=(addr-start)>>2;
4724 int hr;
4725 // Store the cycle count before loading something else
4726 if(i_regmap[HOST_CCREG]!=CCREG) {
4727 assert(i_regmap[HOST_CCREG]==-1);
4728 }
4729 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4730 emit_storereg(CCREG,HOST_CCREG);
4731 }
4732 // Load 32-bit regs
4733 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4734 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4735 #ifdef DESTRUCTIVE_WRITEBACK
4736 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4737 #else
4738 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4739 #endif
4740 if(regs[t].regmap_entry[hr]==0) {
4741 emit_zeroreg(hr);
4742 }
4743 else if(regs[t].regmap_entry[hr]!=CCREG)
4744 {
4745 emit_loadreg(regs[t].regmap_entry[hr],hr);
4746 }
4747 }
4748 }
4749 }
4750 //Load 64-bit regs
4751 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4752 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4753 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4754 assert(regs[t].regmap_entry[hr]!=64);
4755 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4756 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4757 if(lr<0) {
4758 emit_loadreg(regs[t].regmap_entry[hr],hr);
4759 }
4760 else
4761 {
4762 emit_sarimm(lr,31,hr);
4763 }
4764 }
4765 else
4766 {
4767 emit_loadreg(regs[t].regmap_entry[hr],hr);
4768 }
4769 }
4770 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4771 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4772 assert(lr>=0);
4773 emit_sarimm(lr,31,hr);
4774 }
4775 }
4776 }
4777 }
4778}
4779
4780int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4781{
4782 if(addr>=start && addr<start+slen*4-4)
4783 {
4784 int t=(addr-start)>>2;
4785 int hr;
4786 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4787 for(hr=0;hr<HOST_REGS;hr++)
4788 {
4789 if(hr!=EXCLUDE_REG)
4790 {
4791 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4792 {
ea3d2e6e 4793 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4794 {
4795 return 0;
4796 }
4797 else
4798 if((i_dirty>>hr)&1)
4799 {
ea3d2e6e 4800 if(i_regmap[hr]<TEMPREG)
57871462 4801 {
4802 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4803 return 0;
4804 }
ea3d2e6e 4805 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4806 {
4807 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4808 return 0;
4809 }
4810 }
4811 }
4812 else // Same register but is it 32-bit or dirty?
4813 if(i_regmap[hr]>=0)
4814 {
4815 if(!((regs[t].dirty>>hr)&1))
4816 {
4817 if((i_dirty>>hr)&1)
4818 {
4819 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4820 {
4821 //printf("%x: dirty no match\n",addr);
4822 return 0;
4823 }
4824 }
4825 }
4826 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4827 {
4828 //printf("%x: is32 no match\n",addr);
4829 return 0;
4830 }
4831 }
4832 }
4833 }
4834 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4835#ifndef FORCE32
57871462 4836 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4837#endif
57871462 4838 // Delay slots are not valid branch targets
4839 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4840 // Delay slots require additional processing, so do not match
4841 if(is_ds[t]) return 0;
4842 }
4843 else
4844 {
4845 int hr;
4846 for(hr=0;hr<HOST_REGS;hr++)
4847 {
4848 if(hr!=EXCLUDE_REG)
4849 {
4850 if(i_regmap[hr]>=0)
4851 {
4852 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4853 {
4854 if((i_dirty>>hr)&1)
4855 {
4856 return 0;
4857 }
4858 }
4859 }
4860 }
4861 }
4862 }
4863 return 1;
4864}
4865
4866// Used when a branch jumps into the delay slot of another branch
4867void ds_assemble_entry(int i)
4868{
4869 int t=(ba[i]-start)>>2;
4870 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4871 assem_debug("Assemble delay slot at %x\n",ba[i]);
4872 assem_debug("<->\n");
4873 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4874 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4875 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4876 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4877 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4878 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4879 cop1_usable=0;
4880 is_delayslot=0;
4881 switch(itype[t]) {
4882 case ALU:
4883 alu_assemble(t,&regs[t]);break;
4884 case IMM16:
4885 imm16_assemble(t,&regs[t]);break;
4886 case SHIFT:
4887 shift_assemble(t,&regs[t]);break;
4888 case SHIFTIMM:
4889 shiftimm_assemble(t,&regs[t]);break;
4890 case LOAD:
4891 load_assemble(t,&regs[t]);break;
4892 case LOADLR:
4893 loadlr_assemble(t,&regs[t]);break;
4894 case STORE:
4895 store_assemble(t,&regs[t]);break;
4896 case STORELR:
4897 storelr_assemble(t,&regs[t]);break;
4898 case COP0:
4899 cop0_assemble(t,&regs[t]);break;
4900 case COP1:
4901 cop1_assemble(t,&regs[t]);break;
4902 case C1LS:
4903 c1ls_assemble(t,&regs[t]);break;
b9b61529 4904 case COP2:
4905 cop2_assemble(t,&regs[t]);break;
4906 case C2LS:
4907 c2ls_assemble(t,&regs[t]);break;
4908 case C2OP:
4909 c2op_assemble(t,&regs[t]);break;
57871462 4910 case FCONV:
4911 fconv_assemble(t,&regs[t]);break;
4912 case FLOAT:
4913 float_assemble(t,&regs[t]);break;
4914 case FCOMP:
4915 fcomp_assemble(t,&regs[t]);break;
4916 case MULTDIV:
4917 multdiv_assemble(t,&regs[t]);break;
4918 case MOV:
4919 mov_assemble(t,&regs[t]);break;
4920 case SYSCALL:
7139f3c8 4921 case HLECALL:
1e973cb0 4922 case INTCALL:
57871462 4923 case SPAN:
4924 case UJUMP:
4925 case RJUMP:
4926 case CJUMP:
4927 case SJUMP:
4928 case FJUMP:
4929 printf("Jump in the delay slot. This is probably a bug.\n");
4930 }
4931 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4932 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4933 if(internal_branch(regs[t].is32,ba[i]+4))
4934 assem_debug("branch: internal\n");
4935 else
4936 assem_debug("branch: external\n");
4937 assert(internal_branch(regs[t].is32,ba[i]+4));
4938 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4939 emit_jmp(0);
4940}
4941
4942void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4943{
4944 int count;
4945 int jaddr;
4946 int idle=0;
4947 if(itype[i]==RJUMP)
4948 {
4949 *adj=0;
4950 }
4951 //if(ba[i]>=start && ba[i]<(start+slen*4))
4952 if(internal_branch(branch_regs[i].is32,ba[i]))
4953 {
4954 int t=(ba[i]-start)>>2;
4955 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4956 else *adj=ccadj[t];
4957 }
4958 else
4959 {
4960 *adj=0;
4961 }
4962 count=ccadj[i];
4963 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4964 // Idle loop
4965 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4966 idle=(int)out;
4967 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4968 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4969 jaddr=(int)out;
4970 emit_jmp(0);
4971 }
4972 else if(*adj==0||invert) {
2573466a 4973 emit_addimm_and_set_flags(CLOCK_ADJUST(count+2),HOST_CCREG);
57871462 4974 jaddr=(int)out;
4975 emit_jns(0);
4976 }
4977 else
4978 {
2573466a 4979 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
57871462 4980 jaddr=(int)out;
4981 emit_jns(0);
4982 }
4983 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4984}
4985
4986void do_ccstub(int n)
4987{
4988 literal_pool(256);
4989 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4990 set_jump_target(stubs[n][1],(int)out);
4991 int i=stubs[n][4];
4992 if(stubs[n][6]==NULLDS) {
4993 // Delay slot instruction is nullified ("likely" branch)
4994 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4995 }
4996 else if(stubs[n][6]!=TAKEN) {
4997 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4998 }
4999 else {
5000 if(internal_branch(branch_regs[i].is32,ba[i]))
5001 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5002 }
5003 if(stubs[n][5]!=-1)
5004 {
5005 // Save PC as return address
5006 emit_movimm(stubs[n][5],EAX);
5007 emit_writeword(EAX,(int)&pcaddr);
5008 }
5009 else
5010 {
5011 // Return address depends on which way the branch goes
5012 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5013 {
5014 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5015 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5016 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5017 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5018 if(rs1[i]==0)
5019 {
5020 s1l=s2l;s1h=s2h;
5021 s2l=s2h=-1;
5022 }
5023 else if(rs2[i]==0)
5024 {
5025 s2l=s2h=-1;
5026 }
5027 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5028 s1h=s2h=-1;
5029 }
5030 assert(s1l>=0);
5031 #ifdef DESTRUCTIVE_WRITEBACK
5032 if(rs1[i]) {
5033 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5034 emit_loadreg(rs1[i],s1l);
5035 }
5036 else {
5037 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5038 emit_loadreg(rs2[i],s1l);
5039 }
5040 if(s2l>=0)
5041 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5042 emit_loadreg(rs2[i],s2l);
5043 #endif
5044 int hr=0;
5194fb95 5045 int addr=-1,alt=-1,ntaddr=-1;
57871462 5046 while(hr<HOST_REGS)
5047 {
5048 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5049 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5050 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5051 {
5052 addr=hr++;break;
5053 }
5054 hr++;
5055 }
5056 while(hr<HOST_REGS)
5057 {
5058 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5059 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5060 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5061 {
5062 alt=hr++;break;
5063 }
5064 hr++;
5065 }
5066 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5067 {
5068 while(hr<HOST_REGS)
5069 {
5070 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5071 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5072 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5073 {
5074 ntaddr=hr;break;
5075 }
5076 hr++;
5077 }
5078 assert(hr<HOST_REGS);
5079 }
5080 if((opcode[i]&0x2f)==4) // BEQ
5081 {
5082 #ifdef HAVE_CMOV_IMM
5083 if(s1h<0) {
5084 if(s2l>=0) emit_cmp(s1l,s2l);
5085 else emit_test(s1l,s1l);
5086 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5087 }
5088 else
5089 #endif
5090 {
5091 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5092 if(s1h>=0) {
5093 if(s2h>=0) emit_cmp(s1h,s2h);
5094 else emit_test(s1h,s1h);
5095 emit_cmovne_reg(alt,addr);
5096 }
5097 if(s2l>=0) emit_cmp(s1l,s2l);
5098 else emit_test(s1l,s1l);
5099 emit_cmovne_reg(alt,addr);
5100 }
5101 }
5102 if((opcode[i]&0x2f)==5) // BNE
5103 {
5104 #ifdef HAVE_CMOV_IMM
5105 if(s1h<0) {
5106 if(s2l>=0) emit_cmp(s1l,s2l);
5107 else emit_test(s1l,s1l);
5108 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5109 }
5110 else
5111 #endif
5112 {
5113 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5114 if(s1h>=0) {
5115 if(s2h>=0) emit_cmp(s1h,s2h);
5116 else emit_test(s1h,s1h);
5117 emit_cmovne_reg(alt,addr);
5118 }
5119 if(s2l>=0) emit_cmp(s1l,s2l);
5120 else emit_test(s1l,s1l);
5121 emit_cmovne_reg(alt,addr);
5122 }
5123 }
5124 if((opcode[i]&0x2f)==6) // BLEZ
5125 {
5126 //emit_movimm(ba[i],alt);
5127 //emit_movimm(start+i*4+8,addr);
5128 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5129 emit_cmpimm(s1l,1);
5130 if(s1h>=0) emit_mov(addr,ntaddr);
5131 emit_cmovl_reg(alt,addr);
5132 if(s1h>=0) {
5133 emit_test(s1h,s1h);
5134 emit_cmovne_reg(ntaddr,addr);
5135 emit_cmovs_reg(alt,addr);
5136 }
5137 }
5138 if((opcode[i]&0x2f)==7) // BGTZ
5139 {
5140 //emit_movimm(ba[i],addr);
5141 //emit_movimm(start+i*4+8,ntaddr);
5142 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5143 emit_cmpimm(s1l,1);
5144 if(s1h>=0) emit_mov(addr,alt);
5145 emit_cmovl_reg(ntaddr,addr);
5146 if(s1h>=0) {
5147 emit_test(s1h,s1h);
5148 emit_cmovne_reg(alt,addr);
5149 emit_cmovs_reg(ntaddr,addr);
5150 }
5151 }
5152 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5153 {
5154 //emit_movimm(ba[i],alt);
5155 //emit_movimm(start+i*4+8,addr);
5156 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5157 if(s1h>=0) emit_test(s1h,s1h);
5158 else emit_test(s1l,s1l);
5159 emit_cmovs_reg(alt,addr);
5160 }
5161 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5162 {
5163 //emit_movimm(ba[i],addr);
5164 //emit_movimm(start+i*4+8,alt);
5165 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5166 if(s1h>=0) emit_test(s1h,s1h);
5167 else emit_test(s1l,s1l);
5168 emit_cmovs_reg(alt,addr);
5169 }
5170 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5171 if(source[i]&0x10000) // BC1T
5172 {
5173 //emit_movimm(ba[i],alt);
5174 //emit_movimm(start+i*4+8,addr);
5175 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5176 emit_testimm(s1l,0x800000);
5177 emit_cmovne_reg(alt,addr);
5178 }
5179 else // BC1F
5180 {
5181 //emit_movimm(ba[i],addr);
5182 //emit_movimm(start+i*4+8,alt);
5183 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5184 emit_testimm(s1l,0x800000);
5185 emit_cmovne_reg(alt,addr);
5186 }
5187 }
5188 emit_writeword(addr,(int)&pcaddr);
5189 }
5190 else
5191 if(itype[i]==RJUMP)
5192 {
5193 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5194 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5195 r=get_reg(branch_regs[i].regmap,RTEMP);
5196 }
5197 emit_writeword(r,(int)&pcaddr);
5198 }
5199 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5200 }
5201 // Update cycle count
5202 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
2573466a 5203 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5204 emit_call((int)cc_interrupt);
2573466a 5205 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5206 if(stubs[n][6]==TAKEN) {
5207 if(internal_branch(branch_regs[i].is32,ba[i]))
5208 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5209 else if(itype[i]==RJUMP) {
5210 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5211 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5212 else
5213 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5214 }
5215 }else if(stubs[n][6]==NOTTAKEN) {
5216 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5217 else load_all_regs(branch_regs[i].regmap);
5218 }else if(stubs[n][6]==NULLDS) {
5219 // Delay slot instruction is nullified ("likely" branch)
5220 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5221 else load_all_regs(regs[i].regmap);
5222 }else{
5223 load_all_regs(branch_regs[i].regmap);
5224 }
5225 emit_jmp(stubs[n][2]); // return address
5226
5227 /* This works but uses a lot of memory...
5228 emit_readword((int)&last_count,ECX);
5229 emit_add(HOST_CCREG,ECX,EAX);
5230 emit_writeword(EAX,(int)&Count);
5231 emit_call((int)gen_interupt);
5232 emit_readword((int)&Count,HOST_CCREG);
5233 emit_readword((int)&next_interupt,EAX);
5234 emit_readword((int)&pending_exception,EBX);
5235 emit_writeword(EAX,(int)&last_count);
5236 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5237 emit_test(EBX,EBX);
5238 int jne_instr=(int)out;
5239 emit_jne(0);
5240 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5241 load_all_regs(branch_regs[i].regmap);
5242 emit_jmp(stubs[n][2]); // return address
5243 set_jump_target(jne_instr,(int)out);
5244 emit_readword((int)&pcaddr,EAX);
5245 // Call get_addr_ht instead of doing the hash table here.
5246 // This code is executed infrequently and takes up a lot of space
5247 // so smaller is better.
5248 emit_storereg(CCREG,HOST_CCREG);
5249 emit_pushreg(EAX);
5250 emit_call((int)get_addr_ht);
5251 emit_loadreg(CCREG,HOST_CCREG);
5252 emit_addimm(ESP,4,ESP);
5253 emit_jmpreg(EAX);*/
5254}
5255
5256add_to_linker(int addr,int target,int ext)
5257{
5258 link_addr[linkcount][0]=addr;
5259 link_addr[linkcount][1]=target;
5260 link_addr[linkcount][2]=ext;
5261 linkcount++;
5262}
5263
eba830cd 5264static void ujump_assemble_write_ra(int i)
5265{
5266 int rt;
5267 unsigned int return_address;
5268 rt=get_reg(branch_regs[i].regmap,31);
5269 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5270 //assert(rt>=0);
5271 return_address=start+i*4+8;
5272 if(rt>=0) {
5273 #ifdef USE_MINI_HT
5274 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5275 int temp=-1; // note: must be ds-safe
5276 #ifdef HOST_TEMPREG
5277 temp=HOST_TEMPREG;
5278 #endif
5279 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5280 else emit_movimm(return_address,rt);
5281 }
5282 else
5283 #endif
5284 {
5285 #ifdef REG_PREFETCH
5286 if(temp>=0)
5287 {
5288 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5289 }
5290 #endif
5291 emit_movimm(return_address,rt); // PC into link register
5292 #ifdef IMM_PREFETCH
5293 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5294 #endif
5295 }
5296 }
5297}
5298
57871462 5299void ujump_assemble(int i,struct regstat *i_regs)
5300{
5301 signed char *i_regmap=i_regs->regmap;
eba830cd 5302 int ra_done=0;
57871462 5303 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5304 address_generation(i+1,i_regs,regs[i].regmap_entry);
5305 #ifdef REG_PREFETCH
5306 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5307 if(rt1[i]==31&&temp>=0)
5308 {
5309 int return_address=start+i*4+8;
5310 if(get_reg(branch_regs[i].regmap,31)>0)
5311 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5312 }
5313 #endif
eba830cd 5314 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5315 ujump_assemble_write_ra(i); // writeback ra for DS
5316 ra_done=1;
57871462 5317 }
4ef8f67d 5318 ds_assemble(i+1,i_regs);
5319 uint64_t bc_unneeded=branch_regs[i].u;
5320 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5321 bc_unneeded|=1|(1LL<<rt1[i]);
5322 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5323 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5324 bc_unneeded,bc_unneeded_upper);
5325 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5326 if(!ra_done&&rt1[i]==31)
5327 ujump_assemble_write_ra(i);
57871462 5328 int cc,adj;
5329 cc=get_reg(branch_regs[i].regmap,CCREG);
5330 assert(cc==HOST_CCREG);
5331 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5332 #ifdef REG_PREFETCH
5333 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5334 #endif
5335 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 5336 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5337 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5338 if(internal_branch(branch_regs[i].is32,ba[i]))
5339 assem_debug("branch: internal\n");
5340 else
5341 assem_debug("branch: external\n");
5342 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5343 ds_assemble_entry(i);
5344 }
5345 else {
5346 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5347 emit_jmp(0);
5348 }
5349}
5350
eba830cd 5351static void rjump_assemble_write_ra(int i)
5352{
5353 int rt,return_address;
5354 assert(rt1[i+1]!=rt1[i]);
5355 assert(rt2[i+1]!=rt1[i]);
5356 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5357 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5358 assert(rt>=0);
5359 return_address=start+i*4+8;
5360 #ifdef REG_PREFETCH
5361 if(temp>=0)
5362 {
5363 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5364 }
5365 #endif
5366 emit_movimm(return_address,rt); // PC into link register
5367 #ifdef IMM_PREFETCH
5368 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5369 #endif
5370}
5371
57871462 5372void rjump_assemble(int i,struct regstat *i_regs)
5373{
5374 signed char *i_regmap=i_regs->regmap;
5375 int temp;
5376 int rs,cc,adj;
eba830cd 5377 int ra_done=0;
57871462 5378 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5379 assert(rs>=0);
5380 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5381 // Delay slot abuse, make a copy of the branch address register
5382 temp=get_reg(branch_regs[i].regmap,RTEMP);
5383 assert(temp>=0);
5384 assert(regs[i].regmap[temp]==RTEMP);
5385 emit_mov(rs,temp);
5386 rs=temp;
5387 }
5388 address_generation(i+1,i_regs,regs[i].regmap_entry);
5389 #ifdef REG_PREFETCH
5390 if(rt1[i]==31)
5391 {
5392 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5393 int return_address=start+i*4+8;
5394 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5395 }
5396 }
5397 #endif
5398 #ifdef USE_MINI_HT
5399 if(rs1[i]==31) {
5400 int rh=get_reg(regs[i].regmap,RHASH);
5401 if(rh>=0) do_preload_rhash(rh);
5402 }
5403 #endif
eba830cd 5404 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5405 rjump_assemble_write_ra(i);
5406 ra_done=1;
57871462 5407 }
d5910d5d 5408 ds_assemble(i+1,i_regs);
5409 uint64_t bc_unneeded=branch_regs[i].u;
5410 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5411 bc_unneeded|=1|(1LL<<rt1[i]);
5412 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5413 bc_unneeded&=~(1LL<<rs1[i]);
5414 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5415 bc_unneeded,bc_unneeded_upper);
5416 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5417 if(!ra_done&&rt1[i]!=0)
5418 rjump_assemble_write_ra(i);
57871462 5419 cc=get_reg(branch_regs[i].regmap,CCREG);
5420 assert(cc==HOST_CCREG);
5421 #ifdef USE_MINI_HT
5422 int rh=get_reg(branch_regs[i].regmap,RHASH);
5423 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5424 if(rs1[i]==31) {
5425 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5426 do_preload_rhtbl(ht);
5427 do_rhash(rs,rh);
5428 }
5429 #endif
5430 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5431 #ifdef DESTRUCTIVE_WRITEBACK
5432 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5433 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5434 emit_loadreg(rs1[i],rs);
5435 }
5436 }
5437 #endif
5438 #ifdef REG_PREFETCH
5439 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5440 #endif
5441 #ifdef USE_MINI_HT
5442 if(rs1[i]==31) {
5443 do_miniht_load(ht,rh);
5444 }
5445 #endif
5446 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5447 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5448 //assert(adj==0);
2573466a 5449 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5450 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
911f2d55 5451#ifdef PCSX
5452 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5453 // special case for RFE
5454 emit_jmp(0);
5455 else
5456#endif
57871462 5457 emit_jns(0);
5458 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5459 #ifdef USE_MINI_HT
5460 if(rs1[i]==31) {
5461 do_miniht_jump(rs,rh,ht);
5462 }
5463 else
5464 #endif
5465 {
5466 //if(rs!=EAX) emit_mov(rs,EAX);
5467 //emit_jmp((int)jump_vaddr_eax);
5468 emit_jmp(jump_vaddr_reg[rs]);
5469 }
5470 /* Check hash table
5471 temp=!rs;
5472 emit_mov(rs,temp);
5473 emit_shrimm(rs,16,rs);
5474 emit_xor(temp,rs,rs);
5475 emit_movzwl_reg(rs,rs);
5476 emit_shlimm(rs,4,rs);
5477 emit_cmpmem_indexed((int)hash_table,rs,temp);
5478 emit_jne((int)out+14);
5479 emit_readword_indexed((int)hash_table+4,rs,rs);
5480 emit_jmpreg(rs);
5481 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5482 emit_addimm_no_flags(8,rs);
5483 emit_jeq((int)out-17);
5484 // No hit on hash table, call compiler
5485 emit_pushreg(temp);
5486//DEBUG >
5487#ifdef DEBUG_CYCLE_COUNT
5488 emit_readword((int)&last_count,ECX);
5489 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5490 emit_readword((int)&next_interupt,ECX);
5491 emit_writeword(HOST_CCREG,(int)&Count);
5492 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5493 emit_writeword(ECX,(int)&last_count);
5494#endif
5495//DEBUG <
5496 emit_storereg(CCREG,HOST_CCREG);
5497 emit_call((int)get_addr);
5498 emit_loadreg(CCREG,HOST_CCREG);
5499 emit_addimm(ESP,4,ESP);
5500 emit_jmpreg(EAX);*/
5501 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5502 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5503 #endif
5504}
5505
5506void cjump_assemble(int i,struct regstat *i_regs)
5507{
5508 signed char *i_regmap=i_regs->regmap;
5509 int cc;
5510 int match;
5511 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5512 assem_debug("match=%d\n",match);
5513 int s1h,s1l,s2h,s2l;
5514 int prev_cop1_usable=cop1_usable;
5515 int unconditional=0,nop=0;
5516 int only32=0;
57871462 5517 int invert=0;
5518 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5519 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5520 if(!match) invert=1;
5521 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5522 if(i>(ba[i]-start)>>2) invert=1;
5523 #endif
e1190b87 5524
5525 if(ooo[i]) {
57871462 5526 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5527 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5528 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5529 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5530 }
5531 else {
5532 s1l=get_reg(i_regmap,rs1[i]);
5533 s1h=get_reg(i_regmap,rs1[i]|64);
5534 s2l=get_reg(i_regmap,rs2[i]);
5535 s2h=get_reg(i_regmap,rs2[i]|64);
5536 }
5537 if(rs1[i]==0&&rs2[i]==0)
5538 {
5539 if(opcode[i]&1) nop=1;
5540 else unconditional=1;
5541 //assert(opcode[i]!=5);
5542 //assert(opcode[i]!=7);
5543 //assert(opcode[i]!=0x15);
5544 //assert(opcode[i]!=0x17);
5545 }
5546 else if(rs1[i]==0)
5547 {
5548 s1l=s2l;s1h=s2h;
5549 s2l=s2h=-1;
5550 only32=(regs[i].was32>>rs2[i])&1;
5551 }
5552 else if(rs2[i]==0)
5553 {
5554 s2l=s2h=-1;
5555 only32=(regs[i].was32>>rs1[i])&1;
5556 }
5557 else {
5558 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5559 }
5560
e1190b87 5561 if(ooo[i]) {
57871462 5562 // Out of order execution (delay slot first)
5563 //printf("OOOE\n");
5564 address_generation(i+1,i_regs,regs[i].regmap_entry);
5565 ds_assemble(i+1,i_regs);
5566 int adj;
5567 uint64_t bc_unneeded=branch_regs[i].u;
5568 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5569 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5570 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5571 bc_unneeded|=1;
5572 bc_unneeded_upper|=1;
5573 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5574 bc_unneeded,bc_unneeded_upper);
5575 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5576 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5577 cc=get_reg(branch_regs[i].regmap,CCREG);
5578 assert(cc==HOST_CCREG);
5579 if(unconditional)
5580 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5581 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5582 //assem_debug("cycle count (adj)\n");
5583 if(unconditional) {
5584 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5585 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5586 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5587 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5588 if(internal)
5589 assem_debug("branch: internal\n");
5590 else
5591 assem_debug("branch: external\n");
5592 if(internal&&is_ds[(ba[i]-start)>>2]) {
5593 ds_assemble_entry(i);
5594 }
5595 else {
5596 add_to_linker((int)out,ba[i],internal);
5597 emit_jmp(0);
5598 }
5599 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5600 if(((u_int)out)&7) emit_addnop(0);
5601 #endif
5602 }
5603 }
5604 else if(nop) {
2573466a 5605 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5606 int jaddr=(int)out;
5607 emit_jns(0);
5608 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5609 }
5610 else {
5611 int taken=0,nottaken=0,nottaken1=0;
5612 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5613 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5614 if(!only32)
5615 {
5616 assert(s1h>=0);
5617 if(opcode[i]==4) // BEQ
5618 {
5619 if(s2h>=0) emit_cmp(s1h,s2h);
5620 else emit_test(s1h,s1h);
5621 nottaken1=(int)out;
5622 emit_jne(1);
5623 }
5624 if(opcode[i]==5) // BNE
5625 {
5626 if(s2h>=0) emit_cmp(s1h,s2h);
5627 else emit_test(s1h,s1h);
5628 if(invert) taken=(int)out;
5629 else add_to_linker((int)out,ba[i],internal);
5630 emit_jne(0);
5631 }
5632 if(opcode[i]==6) // BLEZ
5633 {
5634 emit_test(s1h,s1h);
5635 if(invert) taken=(int)out;
5636 else add_to_linker((int)out,ba[i],internal);
5637 emit_js(0);
5638 nottaken1=(int)out;
5639 emit_jne(1);
5640 }
5641 if(opcode[i]==7) // BGTZ
5642 {
5643 emit_test(s1h,s1h);
5644 nottaken1=(int)out;
5645 emit_js(1);
5646 if(invert) taken=(int)out;
5647 else add_to_linker((int)out,ba[i],internal);
5648 emit_jne(0);
5649 }
5650 } // if(!only32)
5651
5652 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5653 assert(s1l>=0);
5654 if(opcode[i]==4) // BEQ
5655 {
5656 if(s2l>=0) emit_cmp(s1l,s2l);
5657 else emit_test(s1l,s1l);
5658 if(invert){
5659 nottaken=(int)out;
5660 emit_jne(1);
5661 }else{
5662 add_to_linker((int)out,ba[i],internal);
5663 emit_jeq(0);
5664 }
5665 }
5666 if(opcode[i]==5) // BNE
5667 {
5668 if(s2l>=0) emit_cmp(s1l,s2l);
5669 else emit_test(s1l,s1l);
5670 if(invert){
5671 nottaken=(int)out;
5672 emit_jeq(1);
5673 }else{
5674 add_to_linker((int)out,ba[i],internal);
5675 emit_jne(0);
5676 }
5677 }
5678 if(opcode[i]==6) // BLEZ
5679 {
5680 emit_cmpimm(s1l,1);
5681 if(invert){
5682 nottaken=(int)out;
5683 emit_jge(1);
5684 }else{
5685 add_to_linker((int)out,ba[i],internal);
5686 emit_jl(0);
5687 }
5688 }
5689 if(opcode[i]==7) // BGTZ
5690 {
5691 emit_cmpimm(s1l,1);
5692 if(invert){
5693 nottaken=(int)out;
5694 emit_jl(1);
5695 }else{
5696 add_to_linker((int)out,ba[i],internal);
5697 emit_jge(0);
5698 }
5699 }
5700 if(invert) {
5701 if(taken) set_jump_target(taken,(int)out);
5702 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5703 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5704 if(adj) {
2573466a 5705 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5706 add_to_linker((int)out,ba[i],internal);
5707 }else{
5708 emit_addnop(13);
5709 add_to_linker((int)out,ba[i],internal*2);
5710 }
5711 emit_jmp(0);
5712 }else
5713 #endif
5714 {
2573466a 5715 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5716 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5717 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5718 if(internal)
5719 assem_debug("branch: internal\n");
5720 else
5721 assem_debug("branch: external\n");
5722 if(internal&&is_ds[(ba[i]-start)>>2]) {
5723 ds_assemble_entry(i);
5724 }
5725 else {
5726 add_to_linker((int)out,ba[i],internal);
5727 emit_jmp(0);
5728 }
5729 }
5730 set_jump_target(nottaken,(int)out);
5731 }
5732
5733 if(nottaken1) set_jump_target(nottaken1,(int)out);
5734 if(adj) {
2573466a 5735 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5736 }
5737 } // (!unconditional)
5738 } // if(ooo)
5739 else
5740 {
5741 // In-order execution (branch first)
5742 //if(likely[i]) printf("IOL\n");
5743 //else
5744 //printf("IOE\n");
5745 int taken=0,nottaken=0,nottaken1=0;
5746 if(!unconditional&&!nop) {
5747 if(!only32)
5748 {
5749 assert(s1h>=0);
5750 if((opcode[i]&0x2f)==4) // BEQ
5751 {
5752 if(s2h>=0) emit_cmp(s1h,s2h);
5753 else emit_test(s1h,s1h);
5754 nottaken1=(int)out;
5755 emit_jne(2);
5756 }
5757 if((opcode[i]&0x2f)==5) // BNE
5758 {
5759 if(s2h>=0) emit_cmp(s1h,s2h);
5760 else emit_test(s1h,s1h);
5761 taken=(int)out;
5762 emit_jne(1);
5763 }
5764 if((opcode[i]&0x2f)==6) // BLEZ
5765 {
5766 emit_test(s1h,s1h);
5767 taken=(int)out;
5768 emit_js(1);
5769 nottaken1=(int)out;
5770 emit_jne(2);
5771 }
5772 if((opcode[i]&0x2f)==7) // BGTZ
5773 {
5774 emit_test(s1h,s1h);
5775 nottaken1=(int)out;
5776 emit_js(2);
5777 taken=(int)out;
5778 emit_jne(1);
5779 }
5780 } // if(!only32)
5781
5782 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5783 assert(s1l>=0);
5784 if((opcode[i]&0x2f)==4) // BEQ
5785 {
5786 if(s2l>=0) emit_cmp(s1l,s2l);
5787 else emit_test(s1l,s1l);
5788 nottaken=(int)out;
5789 emit_jne(2);
5790 }
5791 if((opcode[i]&0x2f)==5) // BNE
5792 {
5793 if(s2l>=0) emit_cmp(s1l,s2l);
5794 else emit_test(s1l,s1l);
5795 nottaken=(int)out;
5796 emit_jeq(2);
5797 }
5798 if((opcode[i]&0x2f)==6) // BLEZ
5799 {
5800 emit_cmpimm(s1l,1);
5801 nottaken=(int)out;
5802 emit_jge(2);
5803 }
5804 if((opcode[i]&0x2f)==7) // BGTZ
5805 {
5806 emit_cmpimm(s1l,1);
5807 nottaken=(int)out;
5808 emit_jl(2);
5809 }
5810 } // if(!unconditional)
5811 int adj;
5812 uint64_t ds_unneeded=branch_regs[i].u;
5813 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5814 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5815 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5816 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5817 ds_unneeded|=1;
5818 ds_unneeded_upper|=1;
5819 // branch taken
5820 if(!nop) {
5821 if(taken) set_jump_target(taken,(int)out);
5822 assem_debug("1:\n");
5823 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5824 ds_unneeded,ds_unneeded_upper);
5825 // load regs
5826 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5827 address_generation(i+1,&branch_regs[i],0);
5828 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5829 ds_assemble(i+1,&branch_regs[i]);
5830 cc=get_reg(branch_regs[i].regmap,CCREG);
5831 if(cc==-1) {
5832 emit_loadreg(CCREG,cc=HOST_CCREG);
5833 // CHECK: Is the following instruction (fall thru) allocated ok?
5834 }
5835 assert(cc==HOST_CCREG);
5836 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5837 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5838 assem_debug("cycle count (adj)\n");
2573466a 5839 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5840 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5841 if(internal)
5842 assem_debug("branch: internal\n");
5843 else
5844 assem_debug("branch: external\n");
5845 if(internal&&is_ds[(ba[i]-start)>>2]) {
5846 ds_assemble_entry(i);
5847 }
5848 else {
5849 add_to_linker((int)out,ba[i],internal);
5850 emit_jmp(0);
5851 }
5852 }
5853 // branch not taken
5854 cop1_usable=prev_cop1_usable;
5855 if(!unconditional) {
5856 if(nottaken1) set_jump_target(nottaken1,(int)out);
5857 set_jump_target(nottaken,(int)out);
5858 assem_debug("2:\n");
5859 if(!likely[i]) {
5860 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5861 ds_unneeded,ds_unneeded_upper);
5862 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5863 address_generation(i+1,&branch_regs[i],0);
5864 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5865 ds_assemble(i+1,&branch_regs[i]);
5866 }
5867 cc=get_reg(branch_regs[i].regmap,CCREG);
5868 if(cc==-1&&!likely[i]) {
5869 // Cycle count isn't in a register, temporarily load it then write it out
5870 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5871 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5872 int jaddr=(int)out;
5873 emit_jns(0);
5874 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5875 emit_storereg(CCREG,HOST_CCREG);
5876 }
5877 else{
5878 cc=get_reg(i_regmap,CCREG);
5879 assert(cc==HOST_CCREG);
2573466a 5880 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5881 int jaddr=(int)out;
5882 emit_jns(0);
5883 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5884 }
5885 }
5886 }
5887}
5888
5889void sjump_assemble(int i,struct regstat *i_regs)
5890{
5891 signed char *i_regmap=i_regs->regmap;
5892 int cc;
5893 int match;
5894 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5895 assem_debug("smatch=%d\n",match);
5896 int s1h,s1l;
5897 int prev_cop1_usable=cop1_usable;
5898 int unconditional=0,nevertaken=0;
5899 int only32=0;
57871462 5900 int invert=0;
5901 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5902 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5903 if(!match) invert=1;
5904 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5905 if(i>(ba[i]-start)>>2) invert=1;
5906 #endif
5907
5908 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5909 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5910
e1190b87 5911 if(ooo[i]) {
57871462 5912 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5913 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5914 }
5915 else {
5916 s1l=get_reg(i_regmap,rs1[i]);
5917 s1h=get_reg(i_regmap,rs1[i]|64);
5918 }
5919 if(rs1[i]==0)
5920 {
5921 if(opcode2[i]&1) unconditional=1;
5922 else nevertaken=1;
5923 // These are never taken (r0 is never less than zero)
5924 //assert(opcode2[i]!=0);
5925 //assert(opcode2[i]!=2);
5926 //assert(opcode2[i]!=0x10);
5927 //assert(opcode2[i]!=0x12);
5928 }
5929 else {
5930 only32=(regs[i].was32>>rs1[i])&1;
5931 }
5932
e1190b87 5933 if(ooo[i]) {
57871462 5934 // Out of order execution (delay slot first)
5935 //printf("OOOE\n");
5936 address_generation(i+1,i_regs,regs[i].regmap_entry);
5937 ds_assemble(i+1,i_regs);
5938 int adj;
5939 uint64_t bc_unneeded=branch_regs[i].u;
5940 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5941 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5942 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5943 bc_unneeded|=1;
5944 bc_unneeded_upper|=1;
5945 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5946 bc_unneeded,bc_unneeded_upper);
5947 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5948 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5949 if(rt1[i]==31) {
5950 int rt,return_address;
57871462 5951 rt=get_reg(branch_regs[i].regmap,31);
5952 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5953 if(rt>=0) {
5954 // Save the PC even if the branch is not taken
5955 return_address=start+i*4+8;
5956 emit_movimm(return_address,rt); // PC into link register
5957 #ifdef IMM_PREFETCH
5958 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5959 #endif
5960 }
5961 }
5962 cc=get_reg(branch_regs[i].regmap,CCREG);
5963 assert(cc==HOST_CCREG);
5964 if(unconditional)
5965 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5966 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5967 assem_debug("cycle count (adj)\n");
5968 if(unconditional) {
5969 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5970 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5971 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5972 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5973 if(internal)
5974 assem_debug("branch: internal\n");
5975 else
5976 assem_debug("branch: external\n");
5977 if(internal&&is_ds[(ba[i]-start)>>2]) {
5978 ds_assemble_entry(i);
5979 }
5980 else {
5981 add_to_linker((int)out,ba[i],internal);
5982 emit_jmp(0);
5983 }
5984 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5985 if(((u_int)out)&7) emit_addnop(0);
5986 #endif
5987 }
5988 }
5989 else if(nevertaken) {
2573466a 5990 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5991 int jaddr=(int)out;
5992 emit_jns(0);
5993 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5994 }
5995 else {
5996 int nottaken=0;
5997 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5998 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5999 if(!only32)
6000 {
6001 assert(s1h>=0);
df894a3a 6002 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6003 {
6004 emit_test(s1h,s1h);
6005 if(invert){
6006 nottaken=(int)out;
6007 emit_jns(1);
6008 }else{
6009 add_to_linker((int)out,ba[i],internal);
6010 emit_js(0);
6011 }
6012 }
df894a3a 6013 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6014 {
6015 emit_test(s1h,s1h);
6016 if(invert){
6017 nottaken=(int)out;
6018 emit_js(1);
6019 }else{
6020 add_to_linker((int)out,ba[i],internal);
6021 emit_jns(0);
6022 }
6023 }
6024 } // if(!only32)
6025 else
6026 {
6027 assert(s1l>=0);
df894a3a 6028 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6029 {
6030 emit_test(s1l,s1l);
6031 if(invert){
6032 nottaken=(int)out;
6033 emit_jns(1);
6034 }else{
6035 add_to_linker((int)out,ba[i],internal);
6036 emit_js(0);
6037 }
6038 }
df894a3a 6039 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6040 {
6041 emit_test(s1l,s1l);
6042 if(invert){
6043 nottaken=(int)out;
6044 emit_js(1);
6045 }else{
6046 add_to_linker((int)out,ba[i],internal);
6047 emit_jns(0);
6048 }
6049 }
6050 } // if(!only32)
6051
6052 if(invert) {
6053 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6054 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6055 if(adj) {
2573466a 6056 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6057 add_to_linker((int)out,ba[i],internal);
6058 }else{
6059 emit_addnop(13);
6060 add_to_linker((int)out,ba[i],internal*2);
6061 }
6062 emit_jmp(0);
6063 }else
6064 #endif
6065 {
2573466a 6066 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6067 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6068 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6069 if(internal)
6070 assem_debug("branch: internal\n");
6071 else
6072 assem_debug("branch: external\n");
6073 if(internal&&is_ds[(ba[i]-start)>>2]) {
6074 ds_assemble_entry(i);
6075 }
6076 else {
6077 add_to_linker((int)out,ba[i],internal);
6078 emit_jmp(0);
6079 }
6080 }
6081 set_jump_target(nottaken,(int)out);
6082 }
6083
6084 if(adj) {
2573466a 6085 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6086 }
6087 } // (!unconditional)
6088 } // if(ooo)
6089 else
6090 {
6091 // In-order execution (branch first)
6092 //printf("IOE\n");
6093 int nottaken=0;
a6491170 6094 if(rt1[i]==31) {
6095 int rt,return_address;
a6491170 6096 rt=get_reg(branch_regs[i].regmap,31);
6097 if(rt>=0) {
6098 // Save the PC even if the branch is not taken
6099 return_address=start+i*4+8;
6100 emit_movimm(return_address,rt); // PC into link register
6101 #ifdef IMM_PREFETCH
6102 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6103 #endif
6104 }
6105 }
57871462 6106 if(!unconditional) {
6107 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6108 if(!only32)
6109 {
6110 assert(s1h>=0);
a6491170 6111 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6112 {
6113 emit_test(s1h,s1h);
6114 nottaken=(int)out;
6115 emit_jns(1);
6116 }
a6491170 6117 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6118 {
6119 emit_test(s1h,s1h);
6120 nottaken=(int)out;
6121 emit_js(1);
6122 }
6123 } // if(!only32)
6124 else
6125 {
6126 assert(s1l>=0);
a6491170 6127 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6128 {
6129 emit_test(s1l,s1l);
6130 nottaken=(int)out;
6131 emit_jns(1);
6132 }
a6491170 6133 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6134 {
6135 emit_test(s1l,s1l);
6136 nottaken=(int)out;
6137 emit_js(1);
6138 }
6139 }
6140 } // if(!unconditional)
6141 int adj;
6142 uint64_t ds_unneeded=branch_regs[i].u;
6143 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6144 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6145 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6146 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6147 ds_unneeded|=1;
6148 ds_unneeded_upper|=1;
6149 // branch taken
6150 if(!nevertaken) {
6151 //assem_debug("1:\n");
6152 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6153 ds_unneeded,ds_unneeded_upper);
6154 // load regs
6155 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6156 address_generation(i+1,&branch_regs[i],0);
6157 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6158 ds_assemble(i+1,&branch_regs[i]);
6159 cc=get_reg(branch_regs[i].regmap,CCREG);
6160 if(cc==-1) {
6161 emit_loadreg(CCREG,cc=HOST_CCREG);
6162 // CHECK: Is the following instruction (fall thru) allocated ok?
6163 }
6164 assert(cc==HOST_CCREG);
6165 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6166 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6167 assem_debug("cycle count (adj)\n");
2573466a 6168 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6169 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6170 if(internal)
6171 assem_debug("branch: internal\n");
6172 else
6173 assem_debug("branch: external\n");
6174 if(internal&&is_ds[(ba[i]-start)>>2]) {
6175 ds_assemble_entry(i);
6176 }
6177 else {
6178 add_to_linker((int)out,ba[i],internal);
6179 emit_jmp(0);
6180 }
6181 }
6182 // branch not taken
6183 cop1_usable=prev_cop1_usable;
6184 if(!unconditional) {
6185 set_jump_target(nottaken,(int)out);
6186 assem_debug("1:\n");
6187 if(!likely[i]) {
6188 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6189 ds_unneeded,ds_unneeded_upper);
6190 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6191 address_generation(i+1,&branch_regs[i],0);
6192 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6193 ds_assemble(i+1,&branch_regs[i]);
6194 }
6195 cc=get_reg(branch_regs[i].regmap,CCREG);
6196 if(cc==-1&&!likely[i]) {
6197 // Cycle count isn't in a register, temporarily load it then write it out
6198 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6199 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6200 int jaddr=(int)out;
6201 emit_jns(0);
6202 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6203 emit_storereg(CCREG,HOST_CCREG);
6204 }
6205 else{
6206 cc=get_reg(i_regmap,CCREG);
6207 assert(cc==HOST_CCREG);
2573466a 6208 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6209 int jaddr=(int)out;
6210 emit_jns(0);
6211 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6212 }
6213 }
6214 }
6215}
6216
6217void fjump_assemble(int i,struct regstat *i_regs)
6218{
6219 signed char *i_regmap=i_regs->regmap;
6220 int cc;
6221 int match;
6222 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6223 assem_debug("fmatch=%d\n",match);
6224 int fs,cs;
6225 int eaddr;
57871462 6226 int invert=0;
6227 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6228 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6229 if(!match) invert=1;
6230 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6231 if(i>(ba[i]-start)>>2) invert=1;
6232 #endif
6233
e1190b87 6234 if(ooo[i]) {
57871462 6235 fs=get_reg(branch_regs[i].regmap,FSREG);
6236 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6237 }
6238 else {
6239 fs=get_reg(i_regmap,FSREG);
6240 }
6241
6242 // Check cop1 unusable
6243 if(!cop1_usable) {
6244 cs=get_reg(i_regmap,CSREG);
6245 assert(cs>=0);
6246 emit_testimm(cs,0x20000000);
6247 eaddr=(int)out;
6248 emit_jeq(0);
6249 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6250 cop1_usable=1;
6251 }
6252
e1190b87 6253 if(ooo[i]) {
57871462 6254 // Out of order execution (delay slot first)
6255 //printf("OOOE\n");
6256 ds_assemble(i+1,i_regs);
6257 int adj;
6258 uint64_t bc_unneeded=branch_regs[i].u;
6259 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6260 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6261 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6262 bc_unneeded|=1;
6263 bc_unneeded_upper|=1;
6264 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6265 bc_unneeded,bc_unneeded_upper);
6266 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6267 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6268 cc=get_reg(branch_regs[i].regmap,CCREG);
6269 assert(cc==HOST_CCREG);
6270 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6271 assem_debug("cycle count (adj)\n");
6272 if(1) {
6273 int nottaken=0;
2573466a 6274 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6275 if(1) {
6276 assert(fs>=0);
6277 emit_testimm(fs,0x800000);
6278 if(source[i]&0x10000) // BC1T
6279 {
6280 if(invert){
6281 nottaken=(int)out;
6282 emit_jeq(1);
6283 }else{
6284 add_to_linker((int)out,ba[i],internal);
6285 emit_jne(0);
6286 }
6287 }
6288 else // BC1F
6289 if(invert){
6290 nottaken=(int)out;
6291 emit_jne(1);
6292 }else{
6293 add_to_linker((int)out,ba[i],internal);
6294 emit_jeq(0);
6295 }
6296 {
6297 }
6298 } // if(!only32)
6299
6300 if(invert) {
2573466a 6301 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6302 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6303 else if(match) emit_addnop(13);
6304 #endif
6305 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6306 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6307 if(internal)
6308 assem_debug("branch: internal\n");
6309 else
6310 assem_debug("branch: external\n");
6311 if(internal&&is_ds[(ba[i]-start)>>2]) {
6312 ds_assemble_entry(i);
6313 }
6314 else {
6315 add_to_linker((int)out,ba[i],internal);
6316 emit_jmp(0);
6317 }
6318 set_jump_target(nottaken,(int)out);
6319 }
6320
6321 if(adj) {
2573466a 6322 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6323 }
6324 } // (!unconditional)
6325 } // if(ooo)
6326 else
6327 {
6328 // In-order execution (branch first)
6329 //printf("IOE\n");
6330 int nottaken=0;
6331 if(1) {
6332 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6333 if(1) {
6334 assert(fs>=0);
6335 emit_testimm(fs,0x800000);
6336 if(source[i]&0x10000) // BC1T
6337 {
6338 nottaken=(int)out;
6339 emit_jeq(1);
6340 }
6341 else // BC1F
6342 {
6343 nottaken=(int)out;
6344 emit_jne(1);
6345 }
6346 }
6347 } // if(!unconditional)
6348 int adj;
6349 uint64_t ds_unneeded=branch_regs[i].u;
6350 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6351 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6352 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6353 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6354 ds_unneeded|=1;
6355 ds_unneeded_upper|=1;
6356 // branch taken
6357 //assem_debug("1:\n");
6358 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6359 ds_unneeded,ds_unneeded_upper);
6360 // load regs
6361 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6362 address_generation(i+1,&branch_regs[i],0);
6363 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6364 ds_assemble(i+1,&branch_regs[i]);
6365 cc=get_reg(branch_regs[i].regmap,CCREG);
6366 if(cc==-1) {
6367 emit_loadreg(CCREG,cc=HOST_CCREG);
6368 // CHECK: Is the following instruction (fall thru) allocated ok?
6369 }
6370 assert(cc==HOST_CCREG);
6371 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6372 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6373 assem_debug("cycle count (adj)\n");
2573466a 6374 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6375 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6376 if(internal)
6377 assem_debug("branch: internal\n");
6378 else
6379 assem_debug("branch: external\n");
6380 if(internal&&is_ds[(ba[i]-start)>>2]) {
6381 ds_assemble_entry(i);
6382 }
6383 else {
6384 add_to_linker((int)out,ba[i],internal);
6385 emit_jmp(0);
6386 }
6387
6388 // branch not taken
6389 if(1) { // <- FIXME (don't need this)
6390 set_jump_target(nottaken,(int)out);
6391 assem_debug("1:\n");
6392 if(!likely[i]) {
6393 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6394 ds_unneeded,ds_unneeded_upper);
6395 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6396 address_generation(i+1,&branch_regs[i],0);
6397 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6398 ds_assemble(i+1,&branch_regs[i]);
6399 }
6400 cc=get_reg(branch_regs[i].regmap,CCREG);
6401 if(cc==-1&&!likely[i]) {
6402 // Cycle count isn't in a register, temporarily load it then write it out
6403 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6404 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6405 int jaddr=(int)out;
6406 emit_jns(0);
6407 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6408 emit_storereg(CCREG,HOST_CCREG);
6409 }
6410 else{
6411 cc=get_reg(i_regmap,CCREG);
6412 assert(cc==HOST_CCREG);
2573466a 6413 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6414 int jaddr=(int)out;
6415 emit_jns(0);
6416 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6417 }
6418 }
6419 }
6420}
6421
6422static void pagespan_assemble(int i,struct regstat *i_regs)
6423{
6424 int s1l=get_reg(i_regs->regmap,rs1[i]);
6425 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6426 int s2l=get_reg(i_regs->regmap,rs2[i]);
6427 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6428 void *nt_branch=NULL;
6429 int taken=0;
6430 int nottaken=0;
6431 int unconditional=0;
6432 if(rs1[i]==0)
6433 {
6434 s1l=s2l;s1h=s2h;
6435 s2l=s2h=-1;
6436 }
6437 else if(rs2[i]==0)
6438 {
6439 s2l=s2h=-1;
6440 }
6441 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6442 s1h=s2h=-1;
6443 }
6444 int hr=0;
6445 int addr,alt,ntaddr;
6446 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6447 else {
6448 while(hr<HOST_REGS)
6449 {
6450 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6451 (i_regs->regmap[hr]&63)!=rs1[i] &&
6452 (i_regs->regmap[hr]&63)!=rs2[i] )
6453 {
6454 addr=hr++;break;
6455 }
6456 hr++;
6457 }
6458 }
6459 while(hr<HOST_REGS)
6460 {
6461 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6462 (i_regs->regmap[hr]&63)!=rs1[i] &&
6463 (i_regs->regmap[hr]&63)!=rs2[i] )
6464 {
6465 alt=hr++;break;
6466 }
6467 hr++;
6468 }
6469 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6470 {
6471 while(hr<HOST_REGS)
6472 {
6473 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6474 (i_regs->regmap[hr]&63)!=rs1[i] &&
6475 (i_regs->regmap[hr]&63)!=rs2[i] )
6476 {
6477 ntaddr=hr;break;
6478 }
6479 hr++;
6480 }
6481 }
6482 assert(hr<HOST_REGS);
6483 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6484 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6485 }
2573466a 6486 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6487 if(opcode[i]==2) // J
6488 {
6489 unconditional=1;
6490 }
6491 if(opcode[i]==3) // JAL
6492 {
6493 // TODO: mini_ht
6494 int rt=get_reg(i_regs->regmap,31);
6495 emit_movimm(start+i*4+8,rt);
6496 unconditional=1;
6497 }
6498 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6499 {
6500 emit_mov(s1l,addr);
6501 if(opcode2[i]==9) // JALR
6502 {
5067f341 6503 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6504 emit_movimm(start+i*4+8,rt);
6505 }
6506 }
6507 if((opcode[i]&0x3f)==4) // BEQ
6508 {
6509 if(rs1[i]==rs2[i])
6510 {
6511 unconditional=1;
6512 }
6513 else
6514 #ifdef HAVE_CMOV_IMM
6515 if(s1h<0) {
6516 if(s2l>=0) emit_cmp(s1l,s2l);
6517 else emit_test(s1l,s1l);
6518 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6519 }
6520 else
6521 #endif
6522 {
6523 assert(s1l>=0);
6524 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6525 if(s1h>=0) {
6526 if(s2h>=0) emit_cmp(s1h,s2h);
6527 else emit_test(s1h,s1h);
6528 emit_cmovne_reg(alt,addr);
6529 }
6530 if(s2l>=0) emit_cmp(s1l,s2l);
6531 else emit_test(s1l,s1l);
6532 emit_cmovne_reg(alt,addr);
6533 }
6534 }
6535 if((opcode[i]&0x3f)==5) // BNE
6536 {
6537 #ifdef HAVE_CMOV_IMM
6538 if(s1h<0) {
6539 if(s2l>=0) emit_cmp(s1l,s2l);
6540 else emit_test(s1l,s1l);
6541 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6542 }
6543 else
6544 #endif
6545 {
6546 assert(s1l>=0);
6547 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6548 if(s1h>=0) {
6549 if(s2h>=0) emit_cmp(s1h,s2h);
6550 else emit_test(s1h,s1h);
6551 emit_cmovne_reg(alt,addr);
6552 }
6553 if(s2l>=0) emit_cmp(s1l,s2l);
6554 else emit_test(s1l,s1l);
6555 emit_cmovne_reg(alt,addr);
6556 }
6557 }
6558 if((opcode[i]&0x3f)==0x14) // BEQL
6559 {
6560 if(s1h>=0) {
6561 if(s2h>=0) emit_cmp(s1h,s2h);
6562 else emit_test(s1h,s1h);
6563 nottaken=(int)out;
6564 emit_jne(0);
6565 }
6566 if(s2l>=0) emit_cmp(s1l,s2l);
6567 else emit_test(s1l,s1l);
6568 if(nottaken) set_jump_target(nottaken,(int)out);
6569 nottaken=(int)out;
6570 emit_jne(0);
6571 }
6572 if((opcode[i]&0x3f)==0x15) // BNEL
6573 {
6574 if(s1h>=0) {
6575 if(s2h>=0) emit_cmp(s1h,s2h);
6576 else emit_test(s1h,s1h);
6577 taken=(int)out;
6578 emit_jne(0);
6579 }
6580 if(s2l>=0) emit_cmp(s1l,s2l);
6581 else emit_test(s1l,s1l);
6582 nottaken=(int)out;
6583 emit_jeq(0);
6584 if(taken) set_jump_target(taken,(int)out);
6585 }
6586 if((opcode[i]&0x3f)==6) // BLEZ
6587 {
6588 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6589 emit_cmpimm(s1l,1);
6590 if(s1h>=0) emit_mov(addr,ntaddr);
6591 emit_cmovl_reg(alt,addr);
6592 if(s1h>=0) {
6593 emit_test(s1h,s1h);
6594 emit_cmovne_reg(ntaddr,addr);
6595 emit_cmovs_reg(alt,addr);
6596 }
6597 }
6598 if((opcode[i]&0x3f)==7) // BGTZ
6599 {
6600 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6601 emit_cmpimm(s1l,1);
6602 if(s1h>=0) emit_mov(addr,alt);
6603 emit_cmovl_reg(ntaddr,addr);
6604 if(s1h>=0) {
6605 emit_test(s1h,s1h);
6606 emit_cmovne_reg(alt,addr);
6607 emit_cmovs_reg(ntaddr,addr);
6608 }
6609 }
6610 if((opcode[i]&0x3f)==0x16) // BLEZL
6611 {
6612 assert((opcode[i]&0x3f)!=0x16);
6613 }
6614 if((opcode[i]&0x3f)==0x17) // BGTZL
6615 {
6616 assert((opcode[i]&0x3f)!=0x17);
6617 }
6618 assert(opcode[i]!=1); // BLTZ/BGEZ
6619
6620 //FIXME: Check CSREG
6621 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6622 if((source[i]&0x30000)==0) // BC1F
6623 {
6624 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6625 emit_testimm(s1l,0x800000);
6626 emit_cmovne_reg(alt,addr);
6627 }
6628 if((source[i]&0x30000)==0x10000) // BC1T
6629 {
6630 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6631 emit_testimm(s1l,0x800000);
6632 emit_cmovne_reg(alt,addr);
6633 }
6634 if((source[i]&0x30000)==0x20000) // BC1FL
6635 {
6636 emit_testimm(s1l,0x800000);
6637 nottaken=(int)out;
6638 emit_jne(0);
6639 }
6640 if((source[i]&0x30000)==0x30000) // BC1TL
6641 {
6642 emit_testimm(s1l,0x800000);
6643 nottaken=(int)out;
6644 emit_jeq(0);
6645 }
6646 }
6647
6648 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6649 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6650 if(likely[i]||unconditional)
6651 {
6652 emit_movimm(ba[i],HOST_BTREG);
6653 }
6654 else if(addr!=HOST_BTREG)
6655 {
6656 emit_mov(addr,HOST_BTREG);
6657 }
6658 void *branch_addr=out;
6659 emit_jmp(0);
6660 int target_addr=start+i*4+5;
6661 void *stub=out;
6662 void *compiled_target_addr=check_addr(target_addr);
6663 emit_extjump_ds((int)branch_addr,target_addr);
6664 if(compiled_target_addr) {
6665 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6666 add_link(target_addr,stub);
6667 }
6668 else set_jump_target((int)branch_addr,(int)stub);
6669 if(likely[i]) {
6670 // Not-taken path
6671 set_jump_target((int)nottaken,(int)out);
6672 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6673 void *branch_addr=out;
6674 emit_jmp(0);
6675 int target_addr=start+i*4+8;
6676 void *stub=out;
6677 void *compiled_target_addr=check_addr(target_addr);
6678 emit_extjump_ds((int)branch_addr,target_addr);
6679 if(compiled_target_addr) {
6680 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6681 add_link(target_addr,stub);
6682 }
6683 else set_jump_target((int)branch_addr,(int)stub);
6684 }
6685}
6686
6687// Assemble the delay slot for the above
6688static void pagespan_ds()
6689{
6690 assem_debug("initial delay slot:\n");
6691 u_int vaddr=start+1;
94d23bb9 6692 u_int page=get_page(vaddr);
6693 u_int vpage=get_vpage(vaddr);
57871462 6694 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6695 do_dirty_stub_ds();
6696 ll_add(jump_in+page,vaddr,(void *)out);
6697 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6698 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6699 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6700 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6701 emit_writeword(HOST_BTREG,(int)&branch_target);
6702 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6703 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6704 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6705 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6706 cop1_usable=0;
6707 is_delayslot=0;
6708 switch(itype[0]) {
6709 case ALU:
6710 alu_assemble(0,&regs[0]);break;
6711 case IMM16:
6712 imm16_assemble(0,&regs[0]);break;
6713 case SHIFT:
6714 shift_assemble(0,&regs[0]);break;
6715 case SHIFTIMM:
6716 shiftimm_assemble(0,&regs[0]);break;
6717 case LOAD:
6718 load_assemble(0,&regs[0]);break;
6719 case LOADLR:
6720 loadlr_assemble(0,&regs[0]);break;
6721 case STORE:
6722 store_assemble(0,&regs[0]);break;
6723 case STORELR:
6724 storelr_assemble(0,&regs[0]);break;
6725 case COP0:
6726 cop0_assemble(0,&regs[0]);break;
6727 case COP1:
6728 cop1_assemble(0,&regs[0]);break;
6729 case C1LS:
6730 c1ls_assemble(0,&regs[0]);break;
b9b61529 6731 case COP2:
6732 cop2_assemble(0,&regs[0]);break;
6733 case C2LS:
6734 c2ls_assemble(0,&regs[0]);break;
6735 case C2OP:
6736 c2op_assemble(0,&regs[0]);break;
57871462 6737 case FCONV:
6738 fconv_assemble(0,&regs[0]);break;
6739 case FLOAT:
6740 float_assemble(0,&regs[0]);break;
6741 case FCOMP:
6742 fcomp_assemble(0,&regs[0]);break;
6743 case MULTDIV:
6744 multdiv_assemble(0,&regs[0]);break;
6745 case MOV:
6746 mov_assemble(0,&regs[0]);break;
6747 case SYSCALL:
7139f3c8 6748 case HLECALL:
1e973cb0 6749 case INTCALL:
57871462 6750 case SPAN:
6751 case UJUMP:
6752 case RJUMP:
6753 case CJUMP:
6754 case SJUMP:
6755 case FJUMP:
6756 printf("Jump in the delay slot. This is probably a bug.\n");
6757 }
6758 int btaddr=get_reg(regs[0].regmap,BTREG);
6759 if(btaddr<0) {
6760 btaddr=get_reg(regs[0].regmap,-1);
6761 emit_readword((int)&branch_target,btaddr);
6762 }
6763 assert(btaddr!=HOST_CCREG);
6764 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6765#ifdef HOST_IMM8
6766 emit_movimm(start+4,HOST_TEMPREG);
6767 emit_cmp(btaddr,HOST_TEMPREG);
6768#else
6769 emit_cmpimm(btaddr,start+4);
6770#endif
6771 int branch=(int)out;
6772 emit_jeq(0);
6773 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6774 emit_jmp(jump_vaddr_reg[btaddr]);
6775 set_jump_target(branch,(int)out);
6776 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6777 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6778}
6779
6780// Basic liveness analysis for MIPS registers
6781void unneeded_registers(int istart,int iend,int r)
6782{
6783 int i;
bedfea38 6784 uint64_t u,uu,gte_u,b,bu,gte_bu;
0ff8c62c 6785 uint64_t temp_u,temp_uu,temp_gte_u=0;
57871462 6786 uint64_t tdep;
0ff8c62c 6787 uint64_t gte_u_unknown=0;
6788 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6789 gte_u_unknown=~0ll;
57871462 6790 if(iend==slen-1) {
6791 u=1;uu=1;
0ff8c62c 6792 gte_u=gte_u_unknown;
57871462 6793 }else{
6794 u=unneeded_reg[iend+1];
6795 uu=unneeded_reg_upper[iend+1];
6796 u=1;uu=1;
0ff8c62c 6797 gte_u=gte_unneeded[iend+1];
57871462 6798 }
bedfea38 6799
57871462 6800 for (i=iend;i>=istart;i--)
6801 {
6802 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6803 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6804 {
6805 // If subroutine call, flag return address as a possible branch target
6806 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6807
6808 if(ba[i]<start || ba[i]>=(start+slen*4))
6809 {
6810 // Branch out of this block, flush all regs
6811 u=1;
6812 uu=1;
0ff8c62c 6813 gte_u=gte_u_unknown;
57871462 6814 /* Hexagon hack
6815 if(itype[i]==UJUMP&&rt1[i]==31)
6816 {
6817 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6818 }
6819 if(itype[i]==RJUMP&&rs1[i]==31)
6820 {
6821 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6822 }
4cb76aa4 6823 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6824 if(itype[i]==UJUMP&&rt1[i]==31)
6825 {
6826 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6827 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6828 }
6829 if(itype[i]==RJUMP&&rs1[i]==31)
6830 {
6831 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6832 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6833 }
6834 }*/
6835 branch_unneeded_reg[i]=u;
6836 branch_unneeded_reg_upper[i]=uu;
6837 // Merge in delay slot
6838 tdep=(~uu>>rt1[i+1])&1;
6839 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6840 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6841 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6842 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6843 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6844 u|=1;uu|=1;
bedfea38 6845 gte_u|=gte_rt[i+1];
6846 gte_u&=~gte_rs[i+1];
57871462 6847 // If branch is "likely" (and conditional)
6848 // then we skip the delay slot on the fall-thru path
6849 if(likely[i]) {
6850 if(i<slen-1) {
6851 u&=unneeded_reg[i+2];
6852 uu&=unneeded_reg_upper[i+2];
bedfea38 6853 gte_u&=gte_unneeded[i+2];
57871462 6854 }
6855 else
6856 {
6857 u=1;
6858 uu=1;
0ff8c62c 6859 gte_u=gte_u_unknown;
57871462 6860 }
6861 }
6862 }
6863 else
6864 {
6865 // Internal branch, flag target
6866 bt[(ba[i]-start)>>2]=1;
6867 if(ba[i]<=start+i*4) {
6868 // Backward branch
6869 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6870 {
6871 // Unconditional branch
6872 temp_u=1;temp_uu=1;
bedfea38 6873 temp_gte_u=0;
57871462 6874 } else {
6875 // Conditional branch (not taken case)
6876 temp_u=unneeded_reg[i+2];
6877 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6878 temp_gte_u&=gte_unneeded[i+2];
57871462 6879 }
6880 // Merge in delay slot
6881 tdep=(~temp_uu>>rt1[i+1])&1;
6882 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6883 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6884 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6885 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6886 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6887 temp_u|=1;temp_uu|=1;
bedfea38 6888 temp_gte_u|=gte_rt[i+1];
6889 temp_gte_u&=~gte_rs[i+1];
57871462 6890 // If branch is "likely" (and conditional)
6891 // then we skip the delay slot on the fall-thru path
6892 if(likely[i]) {
6893 if(i<slen-1) {
6894 temp_u&=unneeded_reg[i+2];
6895 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6896 temp_gte_u&=gte_unneeded[i+2];
57871462 6897 }
6898 else
6899 {
6900 temp_u=1;
6901 temp_uu=1;
0ff8c62c 6902 temp_gte_u=gte_u_unknown;
57871462 6903 }
6904 }
6905 tdep=(~temp_uu>>rt1[i])&1;
6906 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6907 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6908 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6909 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6910 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6911 temp_u|=1;temp_uu|=1;
bedfea38 6912 temp_gte_u|=gte_rt[i];
6913 temp_gte_u&=~gte_rs[i];
57871462 6914 unneeded_reg[i]=temp_u;
6915 unneeded_reg_upper[i]=temp_uu;
bedfea38 6916 gte_unneeded[i]=temp_gte_u;
57871462 6917 // Only go three levels deep. This recursion can take an
6918 // excessive amount of time if there are a lot of nested loops.
6919 if(r<2) {
6920 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6921 }else{
6922 unneeded_reg[(ba[i]-start)>>2]=1;
6923 unneeded_reg_upper[(ba[i]-start)>>2]=1;
0ff8c62c 6924 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
57871462 6925 }
6926 } /*else*/ if(1) {
6927 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6928 {
6929 // Unconditional branch
6930 u=unneeded_reg[(ba[i]-start)>>2];
6931 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6932 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6933 branch_unneeded_reg[i]=u;
6934 branch_unneeded_reg_upper[i]=uu;
6935 //u=1;
6936 //uu=1;
6937 //branch_unneeded_reg[i]=u;
6938 //branch_unneeded_reg_upper[i]=uu;
6939 // Merge in delay slot
6940 tdep=(~uu>>rt1[i+1])&1;
6941 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6942 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6943 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6944 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6945 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6946 u|=1;uu|=1;
bedfea38 6947 gte_u|=gte_rt[i+1];
6948 gte_u&=~gte_rs[i+1];
57871462 6949 } else {
6950 // Conditional branch
6951 b=unneeded_reg[(ba[i]-start)>>2];
6952 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6953 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6954 branch_unneeded_reg[i]=b;
6955 branch_unneeded_reg_upper[i]=bu;
6956 //b=1;
6957 //bu=1;
6958 //branch_unneeded_reg[i]=b;
6959 //branch_unneeded_reg_upper[i]=bu;
6960 // Branch delay slot
6961 tdep=(~uu>>rt1[i+1])&1;
6962 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6963 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6964 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6965 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6966 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6967 b|=1;bu|=1;
bedfea38 6968 gte_bu|=gte_rt[i+1];
6969 gte_bu&=~gte_rs[i+1];
57871462 6970 // If branch is "likely" then we skip the
6971 // delay slot on the fall-thru path
6972 if(likely[i]) {
6973 u=b;
6974 uu=bu;
bedfea38 6975 gte_u=gte_bu;
57871462 6976 if(i<slen-1) {
6977 u&=unneeded_reg[i+2];
6978 uu&=unneeded_reg_upper[i+2];
bedfea38 6979 gte_u&=gte_unneeded[i+2];
57871462 6980 //u=1;
6981 //uu=1;
6982 }
6983 } else {
6984 u&=b;
6985 uu&=bu;
bedfea38 6986 gte_u&=gte_bu;
57871462 6987 //u=1;
6988 //uu=1;
6989 }
6990 if(i<slen-1) {
6991 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6992 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6993 //branch_unneeded_reg[i]=1;
6994 //branch_unneeded_reg_upper[i]=1;
6995 } else {
6996 branch_unneeded_reg[i]=1;
6997 branch_unneeded_reg_upper[i]=1;
6998 }
6999 }
7000 }
7001 }
7002 }
1e973cb0 7003 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7004 {
7005 // SYSCALL instruction (software interrupt)
7006 u=1;
7007 uu=1;
7008 }
7009 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7010 {
7011 // ERET instruction (return from interrupt)
7012 u=1;
7013 uu=1;
7014 }
7015 //u=uu=1; // DEBUG
7016 tdep=(~uu>>rt1[i])&1;
7017 // Written registers are unneeded
7018 u|=1LL<<rt1[i];
7019 u|=1LL<<rt2[i];
7020 uu|=1LL<<rt1[i];
7021 uu|=1LL<<rt2[i];
bedfea38 7022 gte_u|=gte_rt[i];
57871462 7023 // Accessed registers are needed
7024 u&=~(1LL<<rs1[i]);
7025 u&=~(1LL<<rs2[i]);
7026 uu&=~(1LL<<us1[i]);
7027 uu&=~(1LL<<us2[i]);
bedfea38 7028 gte_u&=~gte_rs[i];
eaa11918 7029 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
7030 gte_u|=gte_rs[i]; // MFC2/CFC2 to dead register, unneeded
57871462 7031 // Source-target dependencies
7032 uu&=~(tdep<<dep1[i]);
7033 uu&=~(tdep<<dep2[i]);
7034 // R0 is always unneeded
7035 u|=1;uu|=1;
7036 // Save it
7037 unneeded_reg[i]=u;
7038 unneeded_reg_upper[i]=uu;
bedfea38 7039 gte_unneeded[i]=gte_u;
57871462 7040 /*
7041 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7042 printf("U:");
7043 int r;
7044 for(r=1;r<=CCREG;r++) {
7045 if((unneeded_reg[i]>>r)&1) {
7046 if(r==HIREG) printf(" HI");
7047 else if(r==LOREG) printf(" LO");
7048 else printf(" r%d",r);
7049 }
7050 }
7051 printf(" UU:");
7052 for(r=1;r<=CCREG;r++) {
7053 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7054 if(r==HIREG) printf(" HI");
7055 else if(r==LOREG) printf(" LO");
7056 else printf(" r%d",r);
7057 }
7058 }
7059 printf("\n");*/
7060 }
252c20fc 7061#ifdef FORCE32
7062 for (i=iend;i>=istart;i--)
7063 {
7064 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7065 }
7066#endif
57871462 7067}
7068
7069// Identify registers which are likely to contain 32-bit values
7070// This is used to predict whether any branches will jump to a
7071// location with 64-bit values in registers.
7072static void provisional_32bit()
7073{
7074 int i,j;
7075 uint64_t is32=1;
7076 uint64_t lastbranch=1;
7077
7078 for(i=0;i<slen;i++)
7079 {
7080 if(i>0) {
7081 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7082 if(i>1) is32=lastbranch;
7083 else is32=1;
7084 }
7085 }
7086 if(i>1)
7087 {
7088 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7089 if(likely[i-2]) {
7090 if(i>2) is32=lastbranch;
7091 else is32=1;
7092 }
7093 }
7094 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7095 {
7096 if(rs1[i-2]==0||rs2[i-2]==0)
7097 {
7098 if(rs1[i-2]) {
7099 is32|=1LL<<rs1[i-2];
7100 }
7101 if(rs2[i-2]) {
7102 is32|=1LL<<rs2[i-2];
7103 }
7104 }
7105 }
7106 }
7107 // If something jumps here with 64-bit values
7108 // then promote those registers to 64 bits
7109 if(bt[i])
7110 {
7111 uint64_t temp_is32=is32;
7112 for(j=i-1;j>=0;j--)
7113 {
7114 if(ba[j]==start+i*4)
7115 //temp_is32&=branch_regs[j].is32;
7116 temp_is32&=p32[j];
7117 }
7118 for(j=i;j<slen;j++)
7119 {
7120 if(ba[j]==start+i*4)
7121 temp_is32=1;
7122 }
7123 is32=temp_is32;
7124 }
7125 int type=itype[i];
7126 int op=opcode[i];
7127 int op2=opcode2[i];
7128 int rt=rt1[i];
7129 int s1=rs1[i];
7130 int s2=rs2[i];
7131 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7132 // Branches don't write registers, consider the delay slot instead.
7133 type=itype[i+1];
7134 op=opcode[i+1];
7135 op2=opcode2[i+1];
7136 rt=rt1[i+1];
7137 s1=rs1[i+1];
7138 s2=rs2[i+1];
7139 lastbranch=is32;
7140 }
7141 switch(type) {
7142 case LOAD:
7143 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7144 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7145 is32&=~(1LL<<rt);
7146 else
7147 is32|=1LL<<rt;
7148 break;
7149 case STORE:
7150 case STORELR:
7151 break;
7152 case LOADLR:
7153 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7154 if(op==0x22) is32|=1LL<<rt; // LWL
7155 break;
7156 case IMM16:
7157 if (op==0x08||op==0x09|| // ADDI/ADDIU
7158 op==0x0a||op==0x0b|| // SLTI/SLTIU
7159 op==0x0c|| // ANDI
7160 op==0x0f) // LUI
7161 {
7162 is32|=1LL<<rt;
7163 }
7164 if(op==0x18||op==0x19) { // DADDI/DADDIU
7165 is32&=~(1LL<<rt);
7166 //if(imm[i]==0)
7167 // is32|=((is32>>s1)&1LL)<<rt;
7168 }
7169 if(op==0x0d||op==0x0e) { // ORI/XORI
7170 uint64_t sr=((is32>>s1)&1LL);
7171 is32&=~(1LL<<rt);
7172 is32|=sr<<rt;
7173 }
7174 break;
7175 case UJUMP:
7176 break;
7177 case RJUMP:
7178 break;
7179 case CJUMP:
7180 break;
7181 case SJUMP:
7182 break;
7183 case FJUMP:
7184 break;
7185 case ALU:
7186 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7187 is32|=1LL<<rt;
7188 }
7189 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7190 is32|=1LL<<rt;
7191 }
7192 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7193 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7194 is32&=~(1LL<<rt);
7195 is32|=sr<<rt;
7196 }
7197 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7198 if(s1==0&&s2==0) {
7199 is32|=1LL<<rt;
7200 }
7201 else if(s2==0) {
7202 uint64_t sr=((is32>>s1)&1LL);
7203 is32&=~(1LL<<rt);
7204 is32|=sr<<rt;
7205 }
7206 else if(s1==0) {
7207 uint64_t sr=((is32>>s2)&1LL);
7208 is32&=~(1LL<<rt);
7209 is32|=sr<<rt;
7210 }
7211 else {
7212 is32&=~(1LL<<rt);
7213 }
7214 }
7215 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7216 if(s1==0&&s2==0) {
7217 is32|=1LL<<rt;
7218 }
7219 else if(s2==0) {
7220 uint64_t sr=((is32>>s1)&1LL);
7221 is32&=~(1LL<<rt);
7222 is32|=sr<<rt;
7223 }
7224 else {
7225 is32&=~(1LL<<rt);
7226 }
7227 }
7228 break;
7229 case MULTDIV:
7230 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7231 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7232 }
7233 else {
7234 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7235 }
7236 break;
7237 case MOV:
7238 {
7239 uint64_t sr=((is32>>s1)&1LL);
7240 is32&=~(1LL<<rt);
7241 is32|=sr<<rt;
7242 }
7243 break;
7244 case SHIFT:
7245 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7246 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7247 break;
7248 case SHIFTIMM:
7249 is32|=1LL<<rt;
7250 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7251 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7252 break;
7253 case COP0:
7254 if(op2==0) is32|=1LL<<rt; // MFC0
7255 break;
7256 case COP1:
b9b61529 7257 case COP2:
57871462 7258 if(op2==0) is32|=1LL<<rt; // MFC1
7259 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7260 if(op2==2) is32|=1LL<<rt; // CFC1
7261 break;
7262 case C1LS:
b9b61529 7263 case C2LS:
57871462 7264 break;
7265 case FLOAT:
7266 case FCONV:
7267 break;
7268 case FCOMP:
7269 break;
b9b61529 7270 case C2OP:
57871462 7271 case SYSCALL:
7139f3c8 7272 case HLECALL:
57871462 7273 break;
7274 default:
7275 break;
7276 }
7277 is32|=1;
7278 p32[i]=is32;
7279
7280 if(i>0)
7281 {
7282 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7283 {
7284 if(rt1[i-1]==31) // JAL/JALR
7285 {
7286 // Subroutine call will return here, don't alloc any registers
7287 is32=1;
7288 }
7289 else if(i+1<slen)
7290 {
7291 // Internal branch will jump here, match registers to caller
7292 is32=0x3FFFFFFFFLL;
7293 }
7294 }
7295 }
7296 }
7297}
7298
7299// Identify registers which may be assumed to contain 32-bit values
7300// and where optimizations will rely on this.
7301// This is used to determine whether backward branches can safely
7302// jump to a location with 64-bit values in registers.
7303static void provisional_r32()
7304{
7305 u_int r32=0;
7306 int i;
7307
7308 for (i=slen-1;i>=0;i--)
7309 {
7310 int hr;
7311 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7312 {
7313 if(ba[i]<start || ba[i]>=(start+slen*4))
7314 {
7315 // Branch out of this block, don't need anything
7316 r32=0;
7317 }
7318 else
7319 {
7320 // Internal branch
7321 // Need whatever matches the target
7322 // (and doesn't get overwritten by the delay slot instruction)
7323 r32=0;
7324 int t=(ba[i]-start)>>2;
7325 if(ba[i]>start+i*4) {
7326 // Forward branch
7327 //if(!(requires_32bit[t]&~regs[i].was32))
7328 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7329 if(!(pr32[t]&~regs[i].was32))
7330 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7331 }else{
7332 // Backward branch
7333 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7334 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7335 }
7336 }
7337 // Conditional branch may need registers for following instructions
7338 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7339 {
7340 if(i<slen-2) {
7341 //r32|=requires_32bit[i+2];
7342 r32|=pr32[i+2];
7343 r32&=regs[i].was32;
7344 // Mark this address as a branch target since it may be called
7345 // upon return from interrupt
7346 //bt[i+2]=1;
7347 }
7348 }
7349 // Merge in delay slot
7350 if(!likely[i]) {
7351 // These are overwritten unless the branch is "likely"
7352 // and the delay slot is nullified if not taken
7353 r32&=~(1LL<<rt1[i+1]);
7354 r32&=~(1LL<<rt2[i+1]);
7355 }
7356 // Assume these are needed (delay slot)
7357 if(us1[i+1]>0)
7358 {
7359 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7360 }
7361 if(us2[i+1]>0)
7362 {
7363 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7364 }
7365 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7366 {
7367 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7368 }
7369 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7370 {
7371 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7372 }
7373 }
1e973cb0 7374 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7375 {
7376 // SYSCALL instruction (software interrupt)
7377 r32=0;
7378 }
7379 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7380 {
7381 // ERET instruction (return from interrupt)
7382 r32=0;
7383 }
7384 // Check 32 bits
7385 r32&=~(1LL<<rt1[i]);
7386 r32&=~(1LL<<rt2[i]);
7387 if(us1[i]>0)
7388 {
7389 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7390 }
7391 if(us2[i]>0)
7392 {
7393 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7394 }
7395 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7396 {
7397 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7398 }
7399 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7400 {
7401 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7402 }
7403 //requires_32bit[i]=r32;
7404 pr32[i]=r32;
7405
7406 // Dirty registers which are 32-bit, require 32-bit input
7407 // as they will be written as 32-bit values
7408 for(hr=0;hr<HOST_REGS;hr++)
7409 {
7410 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7411 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7412 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7413 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7414 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7415 }
7416 }
7417 }
7418 }
7419}
7420
7421// Write back dirty registers as soon as we will no longer modify them,
7422// so that we don't end up with lots of writes at the branches.
7423void clean_registers(int istart,int iend,int wr)
7424{
7425 int i;
7426 int r;
7427 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7428 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7429 if(iend==slen-1) {
7430 will_dirty_i=will_dirty_next=0;
7431 wont_dirty_i=wont_dirty_next=0;
7432 }else{
7433 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7434 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7435 }
7436 for (i=iend;i>=istart;i--)
7437 {
7438 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7439 {
7440 if(ba[i]<start || ba[i]>=(start+slen*4))
7441 {
7442 // Branch out of this block, flush all regs
7443 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7444 {
7445 // Unconditional branch
7446 will_dirty_i=0;
7447 wont_dirty_i=0;
7448 // Merge in delay slot (will dirty)
7449 for(r=0;r<HOST_REGS;r++) {
7450 if(r!=EXCLUDE_REG) {
7451 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7452 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7453 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7454 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7455 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7456 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7457 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7458 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7459 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7460 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7461 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7462 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7463 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7464 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7465 }
7466 }
7467 }
7468 else
7469 {
7470 // Conditional branch
7471 will_dirty_i=0;
7472 wont_dirty_i=wont_dirty_next;
7473 // Merge in delay slot (will dirty)
7474 for(r=0;r<HOST_REGS;r++) {
7475 if(r!=EXCLUDE_REG) {
7476 if(!likely[i]) {
7477 // Might not dirty if likely branch is not taken
7478 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7479 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7480 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7481 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7482 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7483 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7484 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7485 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7486 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7487 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7488 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7489 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7490 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7491 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7492 }
7493 }
7494 }
7495 }
7496 // Merge in delay slot (wont dirty)
7497 for(r=0;r<HOST_REGS;r++) {
7498 if(r!=EXCLUDE_REG) {
7499 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7500 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7501 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7502 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7503 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7504 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7505 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7506 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7507 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7508 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7509 }
7510 }
7511 if(wr) {
7512 #ifndef DESTRUCTIVE_WRITEBACK
7513 branch_regs[i].dirty&=wont_dirty_i;
7514 #endif
7515 branch_regs[i].dirty|=will_dirty_i;
7516 }
7517 }
7518 else
7519 {
7520 // Internal branch
7521 if(ba[i]<=start+i*4) {
7522 // Backward branch
7523 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7524 {
7525 // Unconditional branch
7526 temp_will_dirty=0;
7527 temp_wont_dirty=0;
7528 // Merge in delay slot (will dirty)
7529 for(r=0;r<HOST_REGS;r++) {
7530 if(r!=EXCLUDE_REG) {
7531 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7532 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7533 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7534 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7535 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7536 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7537 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7538 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7539 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7540 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7541 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7542 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7543 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7544 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7545 }
7546 }
7547 } else {
7548 // Conditional branch (not taken case)
7549 temp_will_dirty=will_dirty_next;
7550 temp_wont_dirty=wont_dirty_next;
7551 // Merge in delay slot (will dirty)
7552 for(r=0;r<HOST_REGS;r++) {
7553 if(r!=EXCLUDE_REG) {
7554 if(!likely[i]) {
7555 // Will not dirty if likely branch is not taken
7556 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7557 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7558 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7559 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7560 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7561 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7562 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7563 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7564 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7565 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7566 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7567 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7568 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7569 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7570 }
7571 }
7572 }
7573 }
7574 // Merge in delay slot (wont dirty)
7575 for(r=0;r<HOST_REGS;r++) {
7576 if(r!=EXCLUDE_REG) {
7577 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7578 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7579 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7580 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7581 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7582 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7583 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7584 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7585 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7586 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7587 }
7588 }
7589 // Deal with changed mappings
7590 if(i<iend) {
7591 for(r=0;r<HOST_REGS;r++) {
7592 if(r!=EXCLUDE_REG) {
7593 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7594 temp_will_dirty&=~(1<<r);
7595 temp_wont_dirty&=~(1<<r);
7596 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7597 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7598 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7599 } else {
7600 temp_will_dirty|=1<<r;
7601 temp_wont_dirty|=1<<r;
7602 }
7603 }
7604 }
7605 }
7606 }
7607 if(wr) {
7608 will_dirty[i]=temp_will_dirty;
7609 wont_dirty[i]=temp_wont_dirty;
7610 clean_registers((ba[i]-start)>>2,i-1,0);
7611 }else{
7612 // Limit recursion. It can take an excessive amount
7613 // of time if there are a lot of nested loops.
7614 will_dirty[(ba[i]-start)>>2]=0;
7615 wont_dirty[(ba[i]-start)>>2]=-1;
7616 }
7617 }
7618 /*else*/ if(1)
7619 {
7620 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7621 {
7622 // Unconditional branch
7623 will_dirty_i=0;
7624 wont_dirty_i=0;
7625 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7626 for(r=0;r<HOST_REGS;r++) {
7627 if(r!=EXCLUDE_REG) {
7628 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7629 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7630 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7631 }
e3234ecf 7632 if(branch_regs[i].regmap[r]>=0) {
7633 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7634 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7635 }
57871462 7636 }
7637 }
7638 //}
7639 // Merge in delay slot
7640 for(r=0;r<HOST_REGS;r++) {
7641 if(r!=EXCLUDE_REG) {
7642 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7643 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7644 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7645 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7646 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7647 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7648 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7649 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7650 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7651 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7652 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7653 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7654 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7655 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7656 }
7657 }
7658 } else {
7659 // Conditional branch
7660 will_dirty_i=will_dirty_next;
7661 wont_dirty_i=wont_dirty_next;
7662 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7663 for(r=0;r<HOST_REGS;r++) {
7664 if(r!=EXCLUDE_REG) {
e3234ecf 7665 signed char target_reg=branch_regs[i].regmap[r];
7666 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7667 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7668 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7669 }
e3234ecf 7670 else if(target_reg>=0) {
7671 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7672 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7673 }
7674 // Treat delay slot as part of branch too
7675 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7676 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7677 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7678 }
7679 else
7680 {
7681 will_dirty[i+1]&=~(1<<r);
7682 }*/
7683 }
7684 }
7685 //}
7686 // Merge in delay slot
7687 for(r=0;r<HOST_REGS;r++) {
7688 if(r!=EXCLUDE_REG) {
7689 if(!likely[i]) {
7690 // Might not dirty if likely branch is not taken
7691 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7692 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7693 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7694 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7695 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7696 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7697 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7698 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7699 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7700 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7701 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7702 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7703 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7704 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7705 }
7706 }
7707 }
7708 }
e3234ecf 7709 // Merge in delay slot (won't dirty)
57871462 7710 for(r=0;r<HOST_REGS;r++) {
7711 if(r!=EXCLUDE_REG) {
7712 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7713 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7714 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7715 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7716 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7717 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7718 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7719 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7720 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7721 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7722 }
7723 }
7724 if(wr) {
7725 #ifndef DESTRUCTIVE_WRITEBACK
7726 branch_regs[i].dirty&=wont_dirty_i;
7727 #endif
7728 branch_regs[i].dirty|=will_dirty_i;
7729 }
7730 }
7731 }
7732 }
1e973cb0 7733 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7734 {
7735 // SYSCALL instruction (software interrupt)
7736 will_dirty_i=0;
7737 wont_dirty_i=0;
7738 }
7739 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7740 {
7741 // ERET instruction (return from interrupt)
7742 will_dirty_i=0;
7743 wont_dirty_i=0;
7744 }
7745 will_dirty_next=will_dirty_i;
7746 wont_dirty_next=wont_dirty_i;
7747 for(r=0;r<HOST_REGS;r++) {
7748 if(r!=EXCLUDE_REG) {
7749 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7750 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7751 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7752 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7753 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7754 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7755 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7756 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7757 if(i>istart) {
7758 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7759 {
7760 // Don't store a register immediately after writing it,
7761 // may prevent dual-issue.
7762 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7763 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7764 }
7765 }
7766 }
7767 }
7768 // Save it
7769 will_dirty[i]=will_dirty_i;
7770 wont_dirty[i]=wont_dirty_i;
7771 // Mark registers that won't be dirtied as not dirty
7772 if(wr) {
7773 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7774 for(r=0;r<HOST_REGS;r++) {
7775 if((will_dirty_i>>r)&1) {
7776 printf(" r%d",r);
7777 }
7778 }
7779 printf("\n");*/
7780
7781 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7782 regs[i].dirty|=will_dirty_i;
7783 #ifndef DESTRUCTIVE_WRITEBACK
7784 regs[i].dirty&=wont_dirty_i;
7785 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7786 {
7787 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7788 for(r=0;r<HOST_REGS;r++) {
7789 if(r!=EXCLUDE_REG) {
7790 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7791 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7792 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7793 }
7794 }
7795 }
7796 }
7797 else
7798 {
7799 if(i<iend) {
7800 for(r=0;r<HOST_REGS;r++) {
7801 if(r!=EXCLUDE_REG) {
7802 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7803 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7804 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7805 }
7806 }
7807 }
7808 }
7809 #endif
7810 //}
7811 }
7812 // Deal with changed mappings
7813 temp_will_dirty=will_dirty_i;
7814 temp_wont_dirty=wont_dirty_i;
7815 for(r=0;r<HOST_REGS;r++) {
7816 if(r!=EXCLUDE_REG) {
7817 int nr;
7818 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7819 if(wr) {
7820 #ifndef DESTRUCTIVE_WRITEBACK
7821 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7822 #endif
7823 regs[i].wasdirty|=will_dirty_i&(1<<r);
7824 }
7825 }
f776eb14 7826 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7827 // Register moved to a different register
7828 will_dirty_i&=~(1<<r);
7829 wont_dirty_i&=~(1<<r);
7830 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7831 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7832 if(wr) {
7833 #ifndef DESTRUCTIVE_WRITEBACK
7834 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7835 #endif
7836 regs[i].wasdirty|=will_dirty_i&(1<<r);
7837 }
7838 }
7839 else {
7840 will_dirty_i&=~(1<<r);
7841 wont_dirty_i&=~(1<<r);
7842 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7843 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7844 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7845 } else {
7846 wont_dirty_i|=1<<r;
7847 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7848 }
7849 }
7850 }
7851 }
7852 }
7853}
7854
4600ba03 7855#ifdef DISASM
57871462 7856 /* disassembly */
7857void disassemble_inst(int i)
7858{
7859 if (bt[i]) printf("*"); else printf(" ");
7860 switch(itype[i]) {
7861 case UJUMP:
7862 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7863 case CJUMP:
7864 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7865 case SJUMP:
7866 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7867 case FJUMP:
7868 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7869 case RJUMP:
74426039 7870 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7871 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7872 else
7873 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7874 break;
57871462 7875 case SPAN:
7876 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7877 case IMM16:
7878 if(opcode[i]==0xf) //LUI
7879 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7880 else
7881 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7882 break;
7883 case LOAD:
7884 case LOADLR:
7885 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7886 break;
7887 case STORE:
7888 case STORELR:
7889 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7890 break;
7891 case ALU:
7892 case SHIFT:
7893 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7894 break;
7895 case MULTDIV:
7896 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7897 break;
7898 case SHIFTIMM:
7899 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7900 break;
7901 case MOV:
7902 if((opcode2[i]&0x1d)==0x10)
7903 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7904 else if((opcode2[i]&0x1d)==0x11)
7905 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7906 else
7907 printf (" %x: %s\n",start+i*4,insn[i]);
7908 break;
7909 case COP0:
7910 if(opcode2[i]==0)
7911 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7912 else if(opcode2[i]==4)
7913 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7914 else printf (" %x: %s\n",start+i*4,insn[i]);
7915 break;
7916 case COP1:
7917 if(opcode2[i]<3)
7918 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7919 else if(opcode2[i]>3)
7920 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7921 else printf (" %x: %s\n",start+i*4,insn[i]);
7922 break;
b9b61529 7923 case COP2:
7924 if(opcode2[i]<3)
7925 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7926 else if(opcode2[i]>3)
7927 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7928 else printf (" %x: %s\n",start+i*4,insn[i]);
7929 break;
57871462 7930 case C1LS:
7931 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7932 break;
b9b61529 7933 case C2LS:
7934 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7935 break;
1e973cb0 7936 case INTCALL:
7937 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7938 break;
57871462 7939 default:
7940 //printf (" %s %8x\n",insn[i],source[i]);
7941 printf (" %x: %s\n",start+i*4,insn[i]);
7942 }
7943}
4600ba03 7944#else
7945static void disassemble_inst(int i) {}
7946#endif // DISASM
57871462 7947
dc990066 7948// clear the state completely, instead of just marking
7949// things invalid like invalidate_all_pages() does
7950void new_dynarec_clear_full()
57871462 7951{
57871462 7952 int n;
35775df7 7953 out=(u_char *)BASE_ADDR;
7954 memset(invalid_code,1,sizeof(invalid_code));
7955 memset(hash_table,0xff,sizeof(hash_table));
57871462 7956 memset(mini_ht,-1,sizeof(mini_ht));
7957 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7958 memset(shadow,0,sizeof(shadow));
57871462 7959 copy=shadow;
7960 expirep=16384; // Expiry pointer, +2 blocks
7961 pending_exception=0;
7962 literalcount=0;
57871462 7963 stop_after_jal=0;
9be4ba64 7964 inv_code_start=inv_code_end=~0;
57871462 7965 // TLB
af4ee1fe 7966#ifndef DISABLE_TLB
57871462 7967 using_tlb=0;
7968 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7969 memory_map[n]=-1;
7970 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7971 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7972 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7973 memory_map[n]=-1;
63cb0298 7974#endif
dc990066 7975 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7976 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7977 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7978}
7979
7980void new_dynarec_init()
7981{
7982 printf("Init new dynarec\n");
7983 out=(u_char *)BASE_ADDR;
7984 if (mmap (out, 1<<TARGET_SIZE_2,
7985 PROT_READ | PROT_WRITE | PROT_EXEC,
7986 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7987 -1, 0) <= 0) {printf("mmap() failed\n");}
7988#ifdef MUPEN64
7989 rdword=&readmem_dword;
7990 fake_pc.f.r.rs=&readmem_dword;
7991 fake_pc.f.r.rt=&readmem_dword;
7992 fake_pc.f.r.rd=&readmem_dword;
7993#endif
7994 int n;
2573466a 7995 cycle_multiplier=200;
dc990066 7996 new_dynarec_clear_full();
7997#ifdef HOST_IMM8
7998 // Copy this into local area so we don't have to put it in every literal pool
7999 invc_ptr=invalid_code;
8000#endif
24385cae 8001#ifdef MUPEN64
57871462 8002 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8003 writemem[n] = write_nomem_new;
8004 writememb[n] = write_nomemb_new;
8005 writememh[n] = write_nomemh_new;
24385cae 8006#ifndef FORCE32
57871462 8007 writememd[n] = write_nomemd_new;
24385cae 8008#endif
57871462 8009 readmem[n] = read_nomem_new;
8010 readmemb[n] = read_nomemb_new;
8011 readmemh[n] = read_nomemh_new;
24385cae 8012#ifndef FORCE32
57871462 8013 readmemd[n] = read_nomemd_new;
24385cae 8014#endif
57871462 8015 }
8016 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8017 writemem[n] = write_rdram_new;
8018 writememb[n] = write_rdramb_new;
8019 writememh[n] = write_rdramh_new;
24385cae 8020#ifndef FORCE32
57871462 8021 writememd[n] = write_rdramd_new;
24385cae 8022#endif
57871462 8023 }
8024 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8025 writemem[n] = write_nomem_new;
8026 writememb[n] = write_nomemb_new;
8027 writememh[n] = write_nomemh_new;
24385cae 8028#ifndef FORCE32
57871462 8029 writememd[n] = write_nomemd_new;
24385cae 8030#endif
57871462 8031 readmem[n] = read_nomem_new;
8032 readmemb[n] = read_nomemb_new;
8033 readmemh[n] = read_nomemh_new;
24385cae 8034#ifndef FORCE32
57871462 8035 readmemd[n] = read_nomemd_new;
24385cae 8036#endif
57871462 8037 }
24385cae 8038#endif
57871462 8039 tlb_hacks();
8040 arch_init();
8041}
8042
8043void new_dynarec_cleanup()
8044{
8045 int n;
8046 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
8047 for(n=0;n<4096;n++) ll_clear(jump_in+n);
8048 for(n=0;n<4096;n++) ll_clear(jump_out+n);
8049 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8050 #ifdef ROM_COPY
8051 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
8052 #endif
8053}
8054
8055int new_recompile_block(int addr)
8056{
8057/*
8058 if(addr==0x800cd050) {
8059 int block;
8060 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8061 int n;
8062 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8063 }
8064*/
8065 //if(Count==365117028) tracedebug=1;
8066 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8067 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8068 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8069 //if(debug)
8070 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8071 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8072 /*if(Count>=312978186) {
8073 rlist();
8074 }*/
8075 //rlist();
8076 start = (u_int)addr&~3;
8077 //assert(((u_int)addr&1)==0);
2f546f9a 8078 new_dynarec_did_compile=1;
7139f3c8 8079#ifdef PCSX
9ad4d757 8080 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8081 {
7139f3c8 8082 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8083 u_int beginning=(u_int)out;
7139f3c8 8084 u_int page=get_page(start);
7139f3c8 8085 invalid_code[start>>12]=0;
8086 emit_movimm(start,0);
8087 emit_writeword(0,(int)&pcaddr);
bb5285ef 8088 emit_jmp((int)new_dyna_leave);
15776b68 8089 literal_pool(0);
bb5285ef 8090#ifdef __arm__
8091 __clear_cache((void *)beginning,out);
8092#endif
9ad4d757 8093 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8094 return 0;
8095 }
560e4a12 8096 else if ((u_int)addr < 0x00200000 ||
8097 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8098 // used for BIOS calls mostly?
560e4a12 8099 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8100 pagelimit = (addr&0xa0000000)|0x00200000;
8101 }
8102 else if (!Config.HLE && (
8103/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8104 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8105 // BIOS
8106 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8107 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8108 }
8109 else
8110#endif
3d624f89 8111#ifdef MUPEN64
57871462 8112 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8113 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8114 pagelimit = 0xa4001000;
8115 }
3d624f89 8116 else
8117#endif
4cb76aa4 8118 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8119 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8120 pagelimit = 0x80000000+RAM_SIZE;
57871462 8121 }
90ae6d4e 8122#ifndef DISABLE_TLB
57871462 8123 else if ((signed int)addr >= (signed int)0xC0000000) {
8124 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8125 //if(tlb_LUT_r[start>>12])
8126 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8127 if((signed int)memory_map[start>>12]>=0) {
8128 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8129 pagelimit=(start+4096)&0xFFFFF000;
8130 int map=memory_map[start>>12];
8131 int i;
8132 for(i=0;i<5;i++) {
8133 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8134 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8135 }
8136 assem_debug("pagelimit=%x\n",pagelimit);
8137 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8138 }
8139 else {
8140 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8141 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8142 return -1; // Caller will invoke exception handler
57871462 8143 }
8144 //printf("source= %x\n",(int)source);
8145 }
90ae6d4e 8146#endif
57871462 8147 else {
8148 printf("Compile at bogus memory address: %x \n", (int)addr);
8149 exit(1);
8150 }
8151
8152 /* Pass 1: disassemble */
8153 /* Pass 2: register dependencies, branch targets */
8154 /* Pass 3: register allocation */
8155 /* Pass 4: branch dependencies */
8156 /* Pass 5: pre-alloc */
8157 /* Pass 6: optimize clean/dirty state */
8158 /* Pass 7: flag 32-bit registers */
8159 /* Pass 8: assembly */
8160 /* Pass 9: linker */
8161 /* Pass 10: garbage collection / free memory */
8162
8163 int i,j;
8164 int done=0;
8165 unsigned int type,op,op2;
8166
8167 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8168
8169 /* Pass 1 disassembly */
8170
8171 for(i=0;!done;i++) {
e1190b87 8172 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8173 minimum_free_regs[i]=0;
57871462 8174 opcode[i]=op=source[i]>>26;
8175 switch(op)
8176 {
8177 case 0x00: strcpy(insn[i],"special"); type=NI;
8178 op2=source[i]&0x3f;
8179 switch(op2)
8180 {
8181 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8182 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8183 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8184 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8185 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8186 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8187 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8188 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8189 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8190 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8191 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8192 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8193 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8194 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8195 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8196 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8197 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8198 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8199 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8200 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8201 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8202 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8203 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8204 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8205 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8206 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8207 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8208 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8209 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8210 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8211 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8212 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8213 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8214 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8215 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8216#ifndef FORCE32
8217 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8218 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8219 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8220 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8221 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8222 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8223 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8224 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8225 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8226 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8227 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8228 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8229 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8230 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8231 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8232 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8233 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8234#endif
57871462 8235 }
8236 break;
8237 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8238 op2=(source[i]>>16)&0x1f;
8239 switch(op2)
8240 {
8241 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8242 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8243 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8244 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8245 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8246 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8247 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8248 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8249 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8250 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8251 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8252 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8253 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8254 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8255 }
8256 break;
8257 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8258 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8259 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8260 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8261 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8262 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8263 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8264 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8265 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8266 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8267 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8268 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8269 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8270 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8271 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8272 op2=(source[i]>>21)&0x1f;
8273 switch(op2)
8274 {
8275 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8276 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8277 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8278 switch(source[i]&0x3f)
8279 {
8280 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8281 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8282 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8283 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8284#ifdef PCSX
8285 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8286#else
57871462 8287 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8288#endif
57871462 8289 }
8290 }
8291 break;
8292 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8293 op2=(source[i]>>21)&0x1f;
8294 switch(op2)
8295 {
8296 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8297 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8298 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8299 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8300 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8301 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8302 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8303 switch((source[i]>>16)&0x3)
8304 {
8305 case 0x00: strcpy(insn[i],"BC1F"); break;
8306 case 0x01: strcpy(insn[i],"BC1T"); break;
8307 case 0x02: strcpy(insn[i],"BC1FL"); break;
8308 case 0x03: strcpy(insn[i],"BC1TL"); break;
8309 }
8310 break;
8311 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8312 switch(source[i]&0x3f)
8313 {
8314 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8315 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8316 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8317 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8318 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8319 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8320 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8321 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8322 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8323 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8324 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8325 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8326 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8327 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8328 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8329 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8330 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8331 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8332 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8333 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8334 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8335 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8336 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8337 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8338 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8339 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8340 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8341 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8342 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8343 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8344 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8345 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8346 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8347 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8348 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8349 }
8350 break;
8351 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8352 switch(source[i]&0x3f)
8353 {
8354 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8355 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8356 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8357 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8358 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8359 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8360 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8361 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8362 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8363 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8364 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8365 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8366 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8367 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8368 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8369 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8370 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8371 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8372 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8373 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8374 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8375 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8376 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8377 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8378 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8379 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8380 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8381 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8382 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8383 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8384 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8385 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8386 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8387 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8388 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8389 }
8390 break;
8391 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8392 switch(source[i]&0x3f)
8393 {
8394 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8395 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8396 }
8397 break;
8398 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8399 switch(source[i]&0x3f)
8400 {
8401 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8402 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8403 }
8404 break;
8405 }
8406 break;
909168d6 8407#ifndef FORCE32
57871462 8408 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8409 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8410 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8411 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8412 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8413 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8414 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8415 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8416#endif
57871462 8417 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8418 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8419 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8420 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8421 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8422 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8423 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8424#ifndef FORCE32
57871462 8425 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8426#endif
57871462 8427 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8428 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8429 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8430 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8431#ifndef FORCE32
57871462 8432 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8433 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8434#endif
57871462 8435 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8436 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8437 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8438 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8439#ifndef FORCE32
57871462 8440 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8441 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8442 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8443#endif
57871462 8444 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8445 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8446#ifndef FORCE32
57871462 8447 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8448 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8449 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8450#endif
b9b61529 8451#ifdef PCSX
8452 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8453 op2=(source[i]>>21)&0x1f;
bedfea38 8454 //if (op2 & 0x10) {
8455 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8456 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8457 if (gte_regnames[source[i]&0x3f]!=NULL)
8458 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8459 else
8460 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8461 type=C2OP;
8462 }
8463 }
8464 else switch(op2)
b9b61529 8465 {
8466 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8467 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8468 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8469 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8470 }
8471 break;
8472 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8473 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8474 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8475#endif
90ae6d4e 8476 default: strcpy(insn[i],"???"); type=NI;
75dec299 8477 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8478 break;
57871462 8479 }
8480 itype[i]=type;
8481 opcode2[i]=op2;
8482 /* Get registers/immediates */
8483 lt1[i]=0;
8484 us1[i]=0;
8485 us2[i]=0;
8486 dep1[i]=0;
8487 dep2[i]=0;
bedfea38 8488 gte_rs[i]=gte_rt[i]=0;
57871462 8489 switch(type) {
8490 case LOAD:
8491 rs1[i]=(source[i]>>21)&0x1f;
8492 rs2[i]=0;
8493 rt1[i]=(source[i]>>16)&0x1f;
8494 rt2[i]=0;
8495 imm[i]=(short)source[i];
8496 break;
8497 case STORE:
8498 case STORELR:
8499 rs1[i]=(source[i]>>21)&0x1f;
8500 rs2[i]=(source[i]>>16)&0x1f;
8501 rt1[i]=0;
8502 rt2[i]=0;
8503 imm[i]=(short)source[i];
8504 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8505 break;
8506 case LOADLR:
8507 // LWL/LWR only load part of the register,
8508 // therefore the target register must be treated as a source too
8509 rs1[i]=(source[i]>>21)&0x1f;
8510 rs2[i]=(source[i]>>16)&0x1f;
8511 rt1[i]=(source[i]>>16)&0x1f;
8512 rt2[i]=0;
8513 imm[i]=(short)source[i];
8514 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8515 if(op==0x26) dep1[i]=rt1[i]; // LWR
8516 break;
8517 case IMM16:
8518 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8519 else rs1[i]=(source[i]>>21)&0x1f;
8520 rs2[i]=0;
8521 rt1[i]=(source[i]>>16)&0x1f;
8522 rt2[i]=0;
8523 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8524 imm[i]=(unsigned short)source[i];
8525 }else{
8526 imm[i]=(short)source[i];
8527 }
8528 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8529 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8530 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8531 break;
8532 case UJUMP:
8533 rs1[i]=0;
8534 rs2[i]=0;
8535 rt1[i]=0;
8536 rt2[i]=0;
8537 // The JAL instruction writes to r31.
8538 if (op&1) {
8539 rt1[i]=31;
8540 }
8541 rs2[i]=CCREG;
8542 break;
8543 case RJUMP:
8544 rs1[i]=(source[i]>>21)&0x1f;
8545 rs2[i]=0;
8546 rt1[i]=0;
8547 rt2[i]=0;
5067f341 8548 // The JALR instruction writes to rd.
57871462 8549 if (op2&1) {
5067f341 8550 rt1[i]=(source[i]>>11)&0x1f;
57871462 8551 }
8552 rs2[i]=CCREG;
8553 break;
8554 case CJUMP:
8555 rs1[i]=(source[i]>>21)&0x1f;
8556 rs2[i]=(source[i]>>16)&0x1f;
8557 rt1[i]=0;
8558 rt2[i]=0;
8559 if(op&2) { // BGTZ/BLEZ
8560 rs2[i]=0;
8561 }
8562 us1[i]=rs1[i];
8563 us2[i]=rs2[i];
8564 likely[i]=op>>4;
8565 break;
8566 case SJUMP:
8567 rs1[i]=(source[i]>>21)&0x1f;
8568 rs2[i]=CCREG;
8569 rt1[i]=0;
8570 rt2[i]=0;
8571 us1[i]=rs1[i];
8572 if(op2&0x10) { // BxxAL
8573 rt1[i]=31;
8574 // NOTE: If the branch is not taken, r31 is still overwritten
8575 }
8576 likely[i]=(op2&2)>>1;
8577 break;
8578 case FJUMP:
8579 rs1[i]=FSREG;
8580 rs2[i]=CSREG;
8581 rt1[i]=0;
8582 rt2[i]=0;
8583 likely[i]=((source[i])>>17)&1;
8584 break;
8585 case ALU:
8586 rs1[i]=(source[i]>>21)&0x1f; // source
8587 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8588 rt1[i]=(source[i]>>11)&0x1f; // destination
8589 rt2[i]=0;
8590 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8591 us1[i]=rs1[i];us2[i]=rs2[i];
8592 }
8593 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8594 dep1[i]=rs1[i];dep2[i]=rs2[i];
8595 }
8596 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8597 dep1[i]=rs1[i];dep2[i]=rs2[i];
8598 }
8599 break;
8600 case MULTDIV:
8601 rs1[i]=(source[i]>>21)&0x1f; // source
8602 rs2[i]=(source[i]>>16)&0x1f; // divisor
8603 rt1[i]=HIREG;
8604 rt2[i]=LOREG;
8605 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8606 us1[i]=rs1[i];us2[i]=rs2[i];
8607 }
8608 break;
8609 case MOV:
8610 rs1[i]=0;
8611 rs2[i]=0;
8612 rt1[i]=0;
8613 rt2[i]=0;
8614 if(op2==0x10) rs1[i]=HIREG; // MFHI
8615 if(op2==0x11) rt1[i]=HIREG; // MTHI
8616 if(op2==0x12) rs1[i]=LOREG; // MFLO
8617 if(op2==0x13) rt1[i]=LOREG; // MTLO
8618 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8619 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8620 dep1[i]=rs1[i];
8621 break;
8622 case SHIFT:
8623 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8624 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8625 rt1[i]=(source[i]>>11)&0x1f; // destination
8626 rt2[i]=0;
8627 // DSLLV/DSRLV/DSRAV are 64-bit
8628 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8629 break;
8630 case SHIFTIMM:
8631 rs1[i]=(source[i]>>16)&0x1f;
8632 rs2[i]=0;
8633 rt1[i]=(source[i]>>11)&0x1f;
8634 rt2[i]=0;
8635 imm[i]=(source[i]>>6)&0x1f;
8636 // DSxx32 instructions
8637 if(op2>=0x3c) imm[i]|=0x20;
8638 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8639 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8640 break;
8641 case COP0:
8642 rs1[i]=0;
8643 rs2[i]=0;
8644 rt1[i]=0;
8645 rt2[i]=0;
8646 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8647 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8648 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8649 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8650 break;
8651 case COP1:
8652 rs1[i]=0;
8653 rs2[i]=0;
8654 rt1[i]=0;
8655 rt2[i]=0;
8656 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8657 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8658 if(op2==5) us1[i]=rs1[i]; // DMTC1
8659 rs2[i]=CSREG;
8660 break;
bedfea38 8661 case COP2:
8662 rs1[i]=0;
8663 rs2[i]=0;
8664 rt1[i]=0;
8665 rt2[i]=0;
8666 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8667 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8668 rs2[i]=CSREG;
8669 int gr=(source[i]>>11)&0x1F;
8670 switch(op2)
8671 {
8672 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8673 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
0ff8c62c 8674 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
bedfea38 8675 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8676 }
8677 break;
57871462 8678 case C1LS:
8679 rs1[i]=(source[i]>>21)&0x1F;
8680 rs2[i]=CSREG;
8681 rt1[i]=0;
8682 rt2[i]=0;
8683 imm[i]=(short)source[i];
8684 break;
b9b61529 8685 case C2LS:
8686 rs1[i]=(source[i]>>21)&0x1F;
8687 rs2[i]=0;
8688 rt1[i]=0;
8689 rt2[i]=0;
8690 imm[i]=(short)source[i];
bedfea38 8691 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8692 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8693 break;
8694 case C2OP:
8695 rs1[i]=0;
8696 rs2[i]=0;
8697 rt1[i]=0;
8698 rt2[i]=0;
2167bef6 8699 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8700 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8701 gte_rt[i]|=1ll<<63; // every op changes flags
b9b61529 8702 break;
57871462 8703 case FLOAT:
8704 case FCONV:
8705 rs1[i]=0;
8706 rs2[i]=CSREG;
8707 rt1[i]=0;
8708 rt2[i]=0;
8709 break;
8710 case FCOMP:
8711 rs1[i]=FSREG;
8712 rs2[i]=CSREG;
8713 rt1[i]=FSREG;
8714 rt2[i]=0;
8715 break;
8716 case SYSCALL:
7139f3c8 8717 case HLECALL:
1e973cb0 8718 case INTCALL:
57871462 8719 rs1[i]=CCREG;
8720 rs2[i]=0;
8721 rt1[i]=0;
8722 rt2[i]=0;
8723 break;
8724 default:
8725 rs1[i]=0;
8726 rs2[i]=0;
8727 rt1[i]=0;
8728 rt2[i]=0;
8729 }
8730 /* Calculate branch target addresses */
8731 if(type==UJUMP)
8732 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8733 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8734 ba[i]=start+i*4+8; // Ignore never taken branch
8735 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8736 ba[i]=start+i*4+8; // Ignore never taken branch
8737 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8738 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8739 else ba[i]=-1;
26869094 8740#ifdef PCSX
3e535354 8741 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8742 int do_in_intrp=0;
8743 // branch in delay slot?
8744 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8745 // don't handle first branch and call interpreter if it's hit
8746 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8747 do_in_intrp=1;
8748 }
8749 // basic load delay detection
8750 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8751 int t=(ba[i-1]-start)/4;
8752 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8753 // jump target wants DS result - potential load delay effect
8754 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8755 do_in_intrp=1;
8756 bt[t+1]=1; // expected return from interpreter
8757 }
8758 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8759 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8760 // v0 overwrite like this is a sign of trouble, bail out
8761 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8762 do_in_intrp=1;
8763 }
8764 }
3e535354 8765 if(do_in_intrp) {
8766 rs1[i-1]=CCREG;
8767 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8768 ba[i-1]=-1;
8769 itype[i-1]=INTCALL;
8770 done=2;
3e535354 8771 i--; // don't compile the DS
26869094 8772 }
3e535354 8773 }
26869094 8774#endif
3e535354 8775 /* Is this the end of the block? */
8776 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8777 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8778 done=2;
57871462 8779 }
8780 else {
8781 if(stop_after_jal) done=1;
8782 // Stop on BREAK
8783 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8784 }
8785 // Don't recompile stuff that's already compiled
8786 if(check_addr(start+i*4+4)) done=1;
8787 // Don't get too close to the limit
8788 if(i>MAXBLOCK/2) done=1;
8789 }
75dec299 8790 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8791 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8792 if(done==2) {
8793 // Does the block continue due to a branch?
8794 for(j=i-1;j>=0;j--)
8795 {
2a706964 8796 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8797 if(ba[j]==start+i*4+4) done=j=0;
8798 if(ba[j]==start+i*4+8) done=j=0;
8799 }
8800 }
75dec299 8801 //assert(i<MAXBLOCK-1);
57871462 8802 if(start+i*4==pagelimit-4) done=1;
8803 assert(start+i*4<pagelimit);
8804 if (i==MAXBLOCK-1) done=1;
8805 // Stop if we're compiling junk
8806 if(itype[i]==NI&&opcode[i]==0x11) {
8807 done=stop_after_jal=1;
8808 printf("Disabled speculative precompilation\n");
8809 }
8810 }
8811 slen=i;
8812 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8813 if(start+i*4==pagelimit) {
8814 itype[i-1]=SPAN;
8815 }
8816 }
8817 assert(slen>0);
8818
8819 /* Pass 2 - Register dependencies and branch targets */
8820
8821 unneeded_registers(0,slen-1,0);
8822
8823 /* Pass 3 - Register allocation */
8824
8825 struct regstat current; // Current register allocations/status
8826 current.is32=1;
8827 current.dirty=0;
8828 current.u=unneeded_reg[0];
8829 current.uu=unneeded_reg_upper[0];
8830 clear_all_regs(current.regmap);
8831 alloc_reg(&current,0,CCREG);
8832 dirty_reg(&current,CCREG);
8833 current.isconst=0;
8834 current.wasconst=0;
27727b63 8835 current.waswritten=0;
57871462 8836 int ds=0;
8837 int cc=0;
5194fb95 8838 int hr=-1;
6ebf4adf 8839
8840#ifndef FORCE32
57871462 8841 provisional_32bit();
6ebf4adf 8842#endif
57871462 8843 if((u_int)addr&1) {
8844 // First instruction is delay slot
8845 cc=-1;
8846 bt[1]=1;
8847 ds=1;
8848 unneeded_reg[0]=1;
8849 unneeded_reg_upper[0]=1;
8850 current.regmap[HOST_BTREG]=BTREG;
8851 }
8852
8853 for(i=0;i<slen;i++)
8854 {
8855 if(bt[i])
8856 {
8857 int hr;
8858 for(hr=0;hr<HOST_REGS;hr++)
8859 {
8860 // Is this really necessary?
8861 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8862 }
8863 current.isconst=0;
27727b63 8864 current.waswritten=0;
57871462 8865 }
8866 if(i>1)
8867 {
8868 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8869 {
8870 if(rs1[i-2]==0||rs2[i-2]==0)
8871 {
8872 if(rs1[i-2]) {
8873 current.is32|=1LL<<rs1[i-2];
8874 int hr=get_reg(current.regmap,rs1[i-2]|64);
8875 if(hr>=0) current.regmap[hr]=-1;
8876 }
8877 if(rs2[i-2]) {
8878 current.is32|=1LL<<rs2[i-2];
8879 int hr=get_reg(current.regmap,rs2[i-2]|64);
8880 if(hr>=0) current.regmap[hr]=-1;
8881 }
8882 }
8883 }
8884 }
6ebf4adf 8885#ifndef FORCE32
57871462 8886 // If something jumps here with 64-bit values
8887 // then promote those registers to 64 bits
8888 if(bt[i])
8889 {
8890 uint64_t temp_is32=current.is32;
8891 for(j=i-1;j>=0;j--)
8892 {
8893 if(ba[j]==start+i*4)
8894 temp_is32&=branch_regs[j].is32;
8895 }
8896 for(j=i;j<slen;j++)
8897 {
8898 if(ba[j]==start+i*4)
8899 //temp_is32=1;
8900 temp_is32&=p32[j];
8901 }
8902 if(temp_is32!=current.is32) {
8903 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8904 #ifndef DESTRUCTIVE_WRITEBACK
8905 if(ds)
8906 #endif
57871462 8907 for(hr=0;hr<HOST_REGS;hr++)
8908 {
8909 int r=current.regmap[hr];
8910 if(r>0&&r<64)
8911 {
8912 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8913 temp_is32|=1LL<<r;
8914 //printf("restore %d\n",r);
8915 }
8916 }
8917 }
57871462 8918 current.is32=temp_is32;
8919 }
8920 }
6ebf4adf 8921#else
24385cae 8922 current.is32=-1LL;
8923#endif
8924
57871462 8925 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8926 regs[i].wasconst=current.isconst;
8927 regs[i].was32=current.is32;
8928 regs[i].wasdirty=current.dirty;
8575a877 8929 regs[i].loadedconst=0;
6ebf4adf 8930 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8931 // To change a dirty register from 32 to 64 bits, we must write
8932 // it out during the previous cycle (for branches, 2 cycles)
8933 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8934 {
8935 uint64_t temp_is32=current.is32;
8936 for(j=i-1;j>=0;j--)
8937 {
8938 if(ba[j]==start+i*4+4)
8939 temp_is32&=branch_regs[j].is32;
8940 }
8941 for(j=i;j<slen;j++)
8942 {
8943 if(ba[j]==start+i*4+4)
8944 //temp_is32=1;
8945 temp_is32&=p32[j];
8946 }
8947 if(temp_is32!=current.is32) {
8948 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8949 for(hr=0;hr<HOST_REGS;hr++)
8950 {
8951 int r=current.regmap[hr];
8952 if(r>0)
8953 {
8954 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8955 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8956 {
8957 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8958 {
8959 //printf("dump %d/r%d\n",hr,r);
8960 current.regmap[hr]=-1;
8961 if(get_reg(current.regmap,r|64)>=0)
8962 current.regmap[get_reg(current.regmap,r|64)]=-1;
8963 }
8964 }
8965 }
8966 }
8967 }
8968 }
8969 }
8970 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8971 {
8972 uint64_t temp_is32=current.is32;
8973 for(j=i-1;j>=0;j--)
8974 {
8975 if(ba[j]==start+i*4+8)
8976 temp_is32&=branch_regs[j].is32;
8977 }
8978 for(j=i;j<slen;j++)
8979 {
8980 if(ba[j]==start+i*4+8)
8981 //temp_is32=1;
8982 temp_is32&=p32[j];
8983 }
8984 if(temp_is32!=current.is32) {
8985 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8986 for(hr=0;hr<HOST_REGS;hr++)
8987 {
8988 int r=current.regmap[hr];
8989 if(r>0)
8990 {
8991 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8992 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8993 {
8994 //printf("dump %d/r%d\n",hr,r);
8995 current.regmap[hr]=-1;
8996 if(get_reg(current.regmap,r|64)>=0)
8997 current.regmap[get_reg(current.regmap,r|64)]=-1;
8998 }
8999 }
9000 }
9001 }
9002 }
9003 }
9004 #endif
9005 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9006 if(i+1<slen) {
9007 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9008 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9009 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9010 current.u|=1;
9011 current.uu|=1;
9012 } else {
9013 current.u=1;
9014 current.uu=1;
9015 }
9016 } else {
9017 if(i+1<slen) {
9018 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9019 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9020 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9021 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9022 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9023 current.u|=1;
9024 current.uu|=1;
9025 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
9026 }
9027 is_ds[i]=ds;
9028 if(ds) {
9029 ds=0; // Skip delay slot, already allocated as part of branch
9030 // ...but we need to alloc it in case something jumps here
9031 if(i+1<slen) {
9032 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9033 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9034 }else{
9035 current.u=branch_unneeded_reg[i-1];
9036 current.uu=branch_unneeded_reg_upper[i-1];
9037 }
9038 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9039 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9040 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9041 current.u|=1;
9042 current.uu|=1;
9043 struct regstat temp;
9044 memcpy(&temp,&current,sizeof(current));
9045 temp.wasdirty=temp.dirty;
9046 temp.was32=temp.is32;
9047 // TODO: Take into account unconditional branches, as below
9048 delayslot_alloc(&temp,i);
9049 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9050 regs[i].wasdirty=temp.wasdirty;
9051 regs[i].was32=temp.was32;
9052 regs[i].dirty=temp.dirty;
9053 regs[i].is32=temp.is32;
9054 regs[i].isconst=0;
9055 regs[i].wasconst=0;
9056 current.isconst=0;
9057 // Create entry (branch target) regmap
9058 for(hr=0;hr<HOST_REGS;hr++)
9059 {
9060 int r=temp.regmap[hr];
9061 if(r>=0) {
9062 if(r!=regmap_pre[i][hr]) {
9063 regs[i].regmap_entry[hr]=-1;
9064 }
9065 else
9066 {
9067 if(r<64){
9068 if((current.u>>r)&1) {
9069 regs[i].regmap_entry[hr]=-1;
9070 regs[i].regmap[hr]=-1;
9071 //Don't clear regs in the delay slot as the branch might need them
9072 //current.regmap[hr]=-1;
9073 }else
9074 regs[i].regmap_entry[hr]=r;
9075 }
9076 else {
9077 if((current.uu>>(r&63))&1) {
9078 regs[i].regmap_entry[hr]=-1;
9079 regs[i].regmap[hr]=-1;
9080 //Don't clear regs in the delay slot as the branch might need them
9081 //current.regmap[hr]=-1;
9082 }else
9083 regs[i].regmap_entry[hr]=r;
9084 }
9085 }
9086 } else {
9087 // First instruction expects CCREG to be allocated
9088 if(i==0&&hr==HOST_CCREG)
9089 regs[i].regmap_entry[hr]=CCREG;
9090 else
9091 regs[i].regmap_entry[hr]=-1;
9092 }
9093 }
9094 }
9095 else { // Not delay slot
9096 switch(itype[i]) {
9097 case UJUMP:
9098 //current.isconst=0; // DEBUG
9099 //current.wasconst=0; // DEBUG
9100 //regs[i].wasconst=0; // DEBUG
9101 clear_const(&current,rt1[i]);
9102 alloc_cc(&current,i);
9103 dirty_reg(&current,CCREG);
9104 if (rt1[i]==31) {
9105 alloc_reg(&current,i,31);
9106 dirty_reg(&current,31);
4ef8f67d 9107 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9108 //assert(rt1[i+1]!=rt1[i]);
57871462 9109 #ifdef REG_PREFETCH
9110 alloc_reg(&current,i,PTEMP);
9111 #endif
9112 //current.is32|=1LL<<rt1[i];
9113 }
269bb29a 9114 ooo[i]=1;
9115 delayslot_alloc(&current,i+1);
57871462 9116 //current.isconst=0; // DEBUG
9117 ds=1;
9118 //printf("i=%d, isconst=%x\n",i,current.isconst);
9119 break;
9120 case RJUMP:
9121 //current.isconst=0;
9122 //current.wasconst=0;
9123 //regs[i].wasconst=0;
9124 clear_const(&current,rs1[i]);
9125 clear_const(&current,rt1[i]);
9126 alloc_cc(&current,i);
9127 dirty_reg(&current,CCREG);
9128 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9129 alloc_reg(&current,i,rs1[i]);
5067f341 9130 if (rt1[i]!=0) {
9131 alloc_reg(&current,i,rt1[i]);
9132 dirty_reg(&current,rt1[i]);
68b3faee 9133 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9134 assert(rt1[i+1]!=rt1[i]);
57871462 9135 #ifdef REG_PREFETCH
9136 alloc_reg(&current,i,PTEMP);
9137 #endif
9138 }
9139 #ifdef USE_MINI_HT
9140 if(rs1[i]==31) { // JALR
9141 alloc_reg(&current,i,RHASH);
9142 #ifndef HOST_IMM_ADDR32
9143 alloc_reg(&current,i,RHTBL);
9144 #endif
9145 }
9146 #endif
9147 delayslot_alloc(&current,i+1);
9148 } else {
9149 // The delay slot overwrites our source register,
9150 // allocate a temporary register to hold the old value.
9151 current.isconst=0;
9152 current.wasconst=0;
9153 regs[i].wasconst=0;
9154 delayslot_alloc(&current,i+1);
9155 current.isconst=0;
9156 alloc_reg(&current,i,RTEMP);
9157 }
9158 //current.isconst=0; // DEBUG
e1190b87 9159 ooo[i]=1;
57871462 9160 ds=1;
9161 break;
9162 case CJUMP:
9163 //current.isconst=0;
9164 //current.wasconst=0;
9165 //regs[i].wasconst=0;
9166 clear_const(&current,rs1[i]);
9167 clear_const(&current,rs2[i]);
9168 if((opcode[i]&0x3E)==4) // BEQ/BNE
9169 {
9170 alloc_cc(&current,i);
9171 dirty_reg(&current,CCREG);
9172 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9173 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9174 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9175 {
9176 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9177 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9178 }
9179 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9180 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9181 // The delay slot overwrites one of our conditions.
9182 // Allocate the branch condition registers instead.
57871462 9183 current.isconst=0;
9184 current.wasconst=0;
9185 regs[i].wasconst=0;
9186 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9187 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9188 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9189 {
9190 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9191 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9192 }
9193 }
e1190b87 9194 else
9195 {
9196 ooo[i]=1;
9197 delayslot_alloc(&current,i+1);
9198 }
57871462 9199 }
9200 else
9201 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9202 {
9203 alloc_cc(&current,i);
9204 dirty_reg(&current,CCREG);
9205 alloc_reg(&current,i,rs1[i]);
9206 if(!(current.is32>>rs1[i]&1))
9207 {
9208 alloc_reg64(&current,i,rs1[i]);
9209 }
9210 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9211 // The delay slot overwrites one of our conditions.
9212 // Allocate the branch condition registers instead.
57871462 9213 current.isconst=0;
9214 current.wasconst=0;
9215 regs[i].wasconst=0;
9216 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9217 if(!((current.is32>>rs1[i])&1))
9218 {
9219 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9220 }
9221 }
e1190b87 9222 else
9223 {
9224 ooo[i]=1;
9225 delayslot_alloc(&current,i+1);
9226 }
57871462 9227 }
9228 else
9229 // Don't alloc the delay slot yet because we might not execute it
9230 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9231 {
9232 current.isconst=0;
9233 current.wasconst=0;
9234 regs[i].wasconst=0;
9235 alloc_cc(&current,i);
9236 dirty_reg(&current,CCREG);
9237 alloc_reg(&current,i,rs1[i]);
9238 alloc_reg(&current,i,rs2[i]);
9239 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9240 {
9241 alloc_reg64(&current,i,rs1[i]);
9242 alloc_reg64(&current,i,rs2[i]);
9243 }
9244 }
9245 else
9246 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9247 {
9248 current.isconst=0;
9249 current.wasconst=0;
9250 regs[i].wasconst=0;
9251 alloc_cc(&current,i);
9252 dirty_reg(&current,CCREG);
9253 alloc_reg(&current,i,rs1[i]);
9254 if(!(current.is32>>rs1[i]&1))
9255 {
9256 alloc_reg64(&current,i,rs1[i]);
9257 }
9258 }
9259 ds=1;
9260 //current.isconst=0;
9261 break;
9262 case SJUMP:
9263 //current.isconst=0;
9264 //current.wasconst=0;
9265 //regs[i].wasconst=0;
9266 clear_const(&current,rs1[i]);
9267 clear_const(&current,rt1[i]);
9268 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9269 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9270 {
9271 alloc_cc(&current,i);
9272 dirty_reg(&current,CCREG);
9273 alloc_reg(&current,i,rs1[i]);
9274 if(!(current.is32>>rs1[i]&1))
9275 {
9276 alloc_reg64(&current,i,rs1[i]);
9277 }
9278 if (rt1[i]==31) { // BLTZAL/BGEZAL
9279 alloc_reg(&current,i,31);
9280 dirty_reg(&current,31);
57871462 9281 //#ifdef REG_PREFETCH
9282 //alloc_reg(&current,i,PTEMP);
9283 //#endif
9284 //current.is32|=1LL<<rt1[i];
9285 }
e1190b87 9286 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9287 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9288 // Allocate the branch condition registers instead.
57871462 9289 current.isconst=0;
9290 current.wasconst=0;
9291 regs[i].wasconst=0;
9292 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9293 if(!((current.is32>>rs1[i])&1))
9294 {
9295 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9296 }
9297 }
e1190b87 9298 else
9299 {
9300 ooo[i]=1;
9301 delayslot_alloc(&current,i+1);
9302 }
57871462 9303 }
9304 else
9305 // Don't alloc the delay slot yet because we might not execute it
9306 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9307 {
9308 current.isconst=0;
9309 current.wasconst=0;
9310 regs[i].wasconst=0;
9311 alloc_cc(&current,i);
9312 dirty_reg(&current,CCREG);
9313 alloc_reg(&current,i,rs1[i]);
9314 if(!(current.is32>>rs1[i]&1))
9315 {
9316 alloc_reg64(&current,i,rs1[i]);
9317 }
9318 }
9319 ds=1;
9320 //current.isconst=0;
9321 break;
9322 case FJUMP:
9323 current.isconst=0;
9324 current.wasconst=0;
9325 regs[i].wasconst=0;
9326 if(likely[i]==0) // BC1F/BC1T
9327 {
9328 // TODO: Theoretically we can run out of registers here on x86.
9329 // The delay slot can allocate up to six, and we need to check
9330 // CSREG before executing the delay slot. Possibly we can drop
9331 // the cycle count and then reload it after checking that the
9332 // FPU is in a usable state, or don't do out-of-order execution.
9333 alloc_cc(&current,i);
9334 dirty_reg(&current,CCREG);
9335 alloc_reg(&current,i,FSREG);
9336 alloc_reg(&current,i,CSREG);
9337 if(itype[i+1]==FCOMP) {
9338 // The delay slot overwrites the branch condition.
9339 // Allocate the branch condition registers instead.
57871462 9340 alloc_cc(&current,i);
9341 dirty_reg(&current,CCREG);
9342 alloc_reg(&current,i,CSREG);
9343 alloc_reg(&current,i,FSREG);
9344 }
9345 else {
e1190b87 9346 ooo[i]=1;
57871462 9347 delayslot_alloc(&current,i+1);
9348 alloc_reg(&current,i+1,CSREG);
9349 }
9350 }
9351 else
9352 // Don't alloc the delay slot yet because we might not execute it
9353 if(likely[i]) // BC1FL/BC1TL
9354 {
9355 alloc_cc(&current,i);
9356 dirty_reg(&current,CCREG);
9357 alloc_reg(&current,i,CSREG);
9358 alloc_reg(&current,i,FSREG);
9359 }
9360 ds=1;
9361 current.isconst=0;
9362 break;
9363 case IMM16:
9364 imm16_alloc(&current,i);
9365 break;
9366 case LOAD:
9367 case LOADLR:
9368 load_alloc(&current,i);
9369 break;
9370 case STORE:
9371 case STORELR:
9372 store_alloc(&current,i);
9373 break;
9374 case ALU:
9375 alu_alloc(&current,i);
9376 break;
9377 case SHIFT:
9378 shift_alloc(&current,i);
9379 break;
9380 case MULTDIV:
9381 multdiv_alloc(&current,i);
9382 break;
9383 case SHIFTIMM:
9384 shiftimm_alloc(&current,i);
9385 break;
9386 case MOV:
9387 mov_alloc(&current,i);
9388 break;
9389 case COP0:
9390 cop0_alloc(&current,i);
9391 break;
9392 case COP1:
b9b61529 9393 case COP2:
57871462 9394 cop1_alloc(&current,i);
9395 break;
9396 case C1LS:
9397 c1ls_alloc(&current,i);
9398 break;
b9b61529 9399 case C2LS:
9400 c2ls_alloc(&current,i);
9401 break;
9402 case C2OP:
9403 c2op_alloc(&current,i);
9404 break;
57871462 9405 case FCONV:
9406 fconv_alloc(&current,i);
9407 break;
9408 case FLOAT:
9409 float_alloc(&current,i);
9410 break;
9411 case FCOMP:
9412 fcomp_alloc(&current,i);
9413 break;
9414 case SYSCALL:
7139f3c8 9415 case HLECALL:
1e973cb0 9416 case INTCALL:
57871462 9417 syscall_alloc(&current,i);
9418 break;
9419 case SPAN:
9420 pagespan_alloc(&current,i);
9421 break;
9422 }
9423
9424 // Drop the upper half of registers that have become 32-bit
9425 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9426 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9427 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9428 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9429 current.uu|=1;
9430 } else {
9431 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9432 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9433 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9434 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9435 current.uu|=1;
9436 }
9437
9438 // Create entry (branch target) regmap
9439 for(hr=0;hr<HOST_REGS;hr++)
9440 {
9441 int r,or,er;
9442 r=current.regmap[hr];
9443 if(r>=0) {
9444 if(r!=regmap_pre[i][hr]) {
9445 // TODO: delay slot (?)
9446 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9447 if(or<0||(r&63)>=TEMPREG){
9448 regs[i].regmap_entry[hr]=-1;
9449 }
9450 else
9451 {
9452 // Just move it to a different register
9453 regs[i].regmap_entry[hr]=r;
9454 // If it was dirty before, it's still dirty
9455 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9456 }
9457 }
9458 else
9459 {
9460 // Unneeded
9461 if(r==0){
9462 regs[i].regmap_entry[hr]=0;
9463 }
9464 else
9465 if(r<64){
9466 if((current.u>>r)&1) {
9467 regs[i].regmap_entry[hr]=-1;
9468 //regs[i].regmap[hr]=-1;
9469 current.regmap[hr]=-1;
9470 }else
9471 regs[i].regmap_entry[hr]=r;
9472 }
9473 else {
9474 if((current.uu>>(r&63))&1) {
9475 regs[i].regmap_entry[hr]=-1;
9476 //regs[i].regmap[hr]=-1;
9477 current.regmap[hr]=-1;
9478 }else
9479 regs[i].regmap_entry[hr]=r;
9480 }
9481 }
9482 } else {
9483 // Branches expect CCREG to be allocated at the target
9484 if(regmap_pre[i][hr]==CCREG)
9485 regs[i].regmap_entry[hr]=CCREG;
9486 else
9487 regs[i].regmap_entry[hr]=-1;
9488 }
9489 }
9490 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9491 }
27727b63 9492
9493 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9494 current.waswritten|=1<<rs1[i-1];
9495 current.waswritten&=~(1<<rt1[i]);
9496 current.waswritten&=~(1<<rt2[i]);
9497 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9498 current.waswritten&=~(1<<rs1[i]);
9499
57871462 9500 /* Branch post-alloc */
9501 if(i>0)
9502 {
9503 current.was32=current.is32;
9504 current.wasdirty=current.dirty;
9505 switch(itype[i-1]) {
9506 case UJUMP:
9507 memcpy(&branch_regs[i-1],&current,sizeof(current));
9508 branch_regs[i-1].isconst=0;
9509 branch_regs[i-1].wasconst=0;
9510 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9511 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9512 alloc_cc(&branch_regs[i-1],i-1);
9513 dirty_reg(&branch_regs[i-1],CCREG);
9514 if(rt1[i-1]==31) { // JAL
9515 alloc_reg(&branch_regs[i-1],i-1,31);
9516 dirty_reg(&branch_regs[i-1],31);
9517 branch_regs[i-1].is32|=1LL<<31;
9518 }
9519 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9520 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9521 break;
9522 case RJUMP:
9523 memcpy(&branch_regs[i-1],&current,sizeof(current));
9524 branch_regs[i-1].isconst=0;
9525 branch_regs[i-1].wasconst=0;
9526 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9527 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9528 alloc_cc(&branch_regs[i-1],i-1);
9529 dirty_reg(&branch_regs[i-1],CCREG);
9530 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9531 if(rt1[i-1]!=0) { // JALR
9532 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9533 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9534 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9535 }
9536 #ifdef USE_MINI_HT
9537 if(rs1[i-1]==31) { // JALR
9538 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9539 #ifndef HOST_IMM_ADDR32
9540 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9541 #endif
9542 }
9543 #endif
9544 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9545 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9546 break;
9547 case CJUMP:
9548 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9549 {
9550 alloc_cc(&current,i-1);
9551 dirty_reg(&current,CCREG);
9552 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9553 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9554 // The delay slot overwrote one of our conditions
9555 // Delay slot goes after the test (in order)
9556 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9557 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9558 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9559 current.u|=1;
9560 current.uu|=1;
9561 delayslot_alloc(&current,i);
9562 current.isconst=0;
9563 }
9564 else
9565 {
9566 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9567 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9568 // Alloc the branch condition registers
9569 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9570 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9571 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9572 {
9573 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9574 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9575 }
9576 }
9577 memcpy(&branch_regs[i-1],&current,sizeof(current));
9578 branch_regs[i-1].isconst=0;
9579 branch_regs[i-1].wasconst=0;
9580 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9581 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9582 }
9583 else
9584 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9585 {
9586 alloc_cc(&current,i-1);
9587 dirty_reg(&current,CCREG);
9588 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9589 // The delay slot overwrote the branch condition
9590 // Delay slot goes after the test (in order)
9591 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9592 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9593 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9594 current.u|=1;
9595 current.uu|=1;
9596 delayslot_alloc(&current,i);
9597 current.isconst=0;
9598 }
9599 else
9600 {
9601 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9602 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9603 // Alloc the branch condition register
9604 alloc_reg(&current,i-1,rs1[i-1]);
9605 if(!(current.is32>>rs1[i-1]&1))
9606 {
9607 alloc_reg64(&current,i-1,rs1[i-1]);
9608 }
9609 }
9610 memcpy(&branch_regs[i-1],&current,sizeof(current));
9611 branch_regs[i-1].isconst=0;
9612 branch_regs[i-1].wasconst=0;
9613 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9614 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9615 }
9616 else
9617 // Alloc the delay slot in case the branch is taken
9618 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9619 {
9620 memcpy(&branch_regs[i-1],&current,sizeof(current));
9621 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9622 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9623 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9624 alloc_cc(&branch_regs[i-1],i);
9625 dirty_reg(&branch_regs[i-1],CCREG);
9626 delayslot_alloc(&branch_regs[i-1],i);
9627 branch_regs[i-1].isconst=0;
9628 alloc_reg(&current,i,CCREG); // Not taken path
9629 dirty_reg(&current,CCREG);
9630 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9631 }
9632 else
9633 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9634 {
9635 memcpy(&branch_regs[i-1],&current,sizeof(current));
9636 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9637 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9638 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9639 alloc_cc(&branch_regs[i-1],i);
9640 dirty_reg(&branch_regs[i-1],CCREG);
9641 delayslot_alloc(&branch_regs[i-1],i);
9642 branch_regs[i-1].isconst=0;
9643 alloc_reg(&current,i,CCREG); // Not taken path
9644 dirty_reg(&current,CCREG);
9645 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9646 }
9647 break;
9648 case SJUMP:
9649 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9650 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9651 {
9652 alloc_cc(&current,i-1);
9653 dirty_reg(&current,CCREG);
9654 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9655 // The delay slot overwrote the branch condition
9656 // Delay slot goes after the test (in order)
9657 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9658 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9659 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9660 current.u|=1;
9661 current.uu|=1;
9662 delayslot_alloc(&current,i);
9663 current.isconst=0;
9664 }
9665 else
9666 {
9667 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9668 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9669 // Alloc the branch condition register
9670 alloc_reg(&current,i-1,rs1[i-1]);
9671 if(!(current.is32>>rs1[i-1]&1))
9672 {
9673 alloc_reg64(&current,i-1,rs1[i-1]);
9674 }
9675 }
9676 memcpy(&branch_regs[i-1],&current,sizeof(current));
9677 branch_regs[i-1].isconst=0;
9678 branch_regs[i-1].wasconst=0;
9679 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9680 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9681 }
9682 else
9683 // Alloc the delay slot in case the branch is taken
9684 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9685 {
9686 memcpy(&branch_regs[i-1],&current,sizeof(current));
9687 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9688 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9689 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9690 alloc_cc(&branch_regs[i-1],i);
9691 dirty_reg(&branch_regs[i-1],CCREG);
9692 delayslot_alloc(&branch_regs[i-1],i);
9693 branch_regs[i-1].isconst=0;
9694 alloc_reg(&current,i,CCREG); // Not taken path
9695 dirty_reg(&current,CCREG);
9696 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9697 }
9698 // FIXME: BLTZAL/BGEZAL
9699 if(opcode2[i-1]&0x10) { // BxxZAL
9700 alloc_reg(&branch_regs[i-1],i-1,31);
9701 dirty_reg(&branch_regs[i-1],31);
9702 branch_regs[i-1].is32|=1LL<<31;
9703 }
9704 break;
9705 case FJUMP:
9706 if(likely[i-1]==0) // BC1F/BC1T
9707 {
9708 alloc_cc(&current,i-1);
9709 dirty_reg(&current,CCREG);
9710 if(itype[i]==FCOMP) {
9711 // The delay slot overwrote the branch condition
9712 // Delay slot goes after the test (in order)
9713 delayslot_alloc(&current,i);
9714 current.isconst=0;
9715 }
9716 else
9717 {
9718 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9719 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9720 // Alloc the branch condition register
9721 alloc_reg(&current,i-1,FSREG);
9722 }
9723 memcpy(&branch_regs[i-1],&current,sizeof(current));
9724 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9725 }
9726 else // BC1FL/BC1TL
9727 {
9728 // Alloc the delay slot in case the branch is taken
9729 memcpy(&branch_regs[i-1],&current,sizeof(current));
9730 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9731 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9732 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9733 alloc_cc(&branch_regs[i-1],i);
9734 dirty_reg(&branch_regs[i-1],CCREG);
9735 delayslot_alloc(&branch_regs[i-1],i);
9736 branch_regs[i-1].isconst=0;
9737 alloc_reg(&current,i,CCREG); // Not taken path
9738 dirty_reg(&current,CCREG);
9739 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9740 }
9741 break;
9742 }
9743
9744 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9745 {
9746 if(rt1[i-1]==31) // JAL/JALR
9747 {
9748 // Subroutine call will return here, don't alloc any registers
9749 current.is32=1;
9750 current.dirty=0;
9751 clear_all_regs(current.regmap);
9752 alloc_reg(&current,i,CCREG);
9753 dirty_reg(&current,CCREG);
9754 }
9755 else if(i+1<slen)
9756 {
9757 // Internal branch will jump here, match registers to caller
9758 current.is32=0x3FFFFFFFFLL;
9759 current.dirty=0;
9760 clear_all_regs(current.regmap);
9761 alloc_reg(&current,i,CCREG);
9762 dirty_reg(&current,CCREG);
9763 for(j=i-1;j>=0;j--)
9764 {
9765 if(ba[j]==start+i*4+4) {
9766 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9767 current.is32=branch_regs[j].is32;
9768 current.dirty=branch_regs[j].dirty;
9769 break;
9770 }
9771 }
9772 while(j>=0) {
9773 if(ba[j]==start+i*4+4) {
9774 for(hr=0;hr<HOST_REGS;hr++) {
9775 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9776 current.regmap[hr]=-1;
9777 }
9778 current.is32&=branch_regs[j].is32;
9779 current.dirty&=branch_regs[j].dirty;
9780 }
9781 }
9782 j--;
9783 }
9784 }
9785 }
9786 }
9787
9788 // Count cycles in between branches
9789 ccadj[i]=cc;
7139f3c8 9790 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9791 {
9792 cc=0;
9793 }
19776aef 9794#if defined(PCSX) && !defined(DRC_DBG)
054175e9 9795 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9796 {
9797 // GTE runs in parallel until accessed, divide by 2 for a rough guess
9798 cc+=gte_cycletab[source[i]&0x3f]/2;
9799 }
fb407447 9800 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9801 {
9802 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9803 }
9804 else if(itype[i]==C2LS)
9805 {
9806 cc+=4;
9807 }
9808#endif
57871462 9809 else
9810 {
9811 cc++;
9812 }
9813
9814 flush_dirty_uppers(&current);
9815 if(!is_ds[i]) {
9816 regs[i].is32=current.is32;
9817 regs[i].dirty=current.dirty;
9818 regs[i].isconst=current.isconst;
9819 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9820 }
9821 for(hr=0;hr<HOST_REGS;hr++) {
9822 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9823 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9824 regs[i].wasconst&=~(1<<hr);
9825 }
9826 }
9827 }
9828 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
27727b63 9829 regs[i].waswritten=current.waswritten;
57871462 9830 }
9831
9832 /* Pass 4 - Cull unused host registers */
9833
9834 uint64_t nr=0;
9835
9836 for (i=slen-1;i>=0;i--)
9837 {
9838 int hr;
9839 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9840 {
9841 if(ba[i]<start || ba[i]>=(start+slen*4))
9842 {
9843 // Branch out of this block, don't need anything
9844 nr=0;
9845 }
9846 else
9847 {
9848 // Internal branch
9849 // Need whatever matches the target
9850 nr=0;
9851 int t=(ba[i]-start)>>2;
9852 for(hr=0;hr<HOST_REGS;hr++)
9853 {
9854 if(regs[i].regmap_entry[hr]>=0) {
9855 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9856 }
9857 }
9858 }
9859 // Conditional branch may need registers for following instructions
9860 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9861 {
9862 if(i<slen-2) {
9863 nr|=needed_reg[i+2];
9864 for(hr=0;hr<HOST_REGS;hr++)
9865 {
9866 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9867 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9868 }
9869 }
9870 }
9871 // Don't need stuff which is overwritten
f5955059 9872 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9873 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9874 // Merge in delay slot
9875 for(hr=0;hr<HOST_REGS;hr++)
9876 {
9877 if(!likely[i]) {
9878 // These are overwritten unless the branch is "likely"
9879 // and the delay slot is nullified if not taken
9880 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9881 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9882 }
9883 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9884 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9885 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9886 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9887 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9888 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9889 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9890 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9891 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9892 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9893 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9894 }
9895 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9896 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9897 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9898 }
b9b61529 9899 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9900 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9901 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9902 }
9903 }
9904 }
1e973cb0 9905 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9906 {
9907 // SYSCALL instruction (software interrupt)
9908 nr=0;
9909 }
9910 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9911 {
9912 // ERET instruction (return from interrupt)
9913 nr=0;
9914 }
9915 else // Non-branch
9916 {
9917 if(i<slen-1) {
9918 for(hr=0;hr<HOST_REGS;hr++) {
9919 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9920 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9921 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9922 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9923 }
9924 }
9925 }
9926 for(hr=0;hr<HOST_REGS;hr++)
9927 {
9928 // Overwritten registers are not needed
9929 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9930 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9931 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9932 // Source registers are needed
9933 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9934 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9935 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9936 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9937 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9938 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9939 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9940 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9941 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9942 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9943 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9944 }
9945 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9946 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9947 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9948 }
b9b61529 9949 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9950 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9951 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9952 }
9953 // Don't store a register immediately after writing it,
9954 // may prevent dual-issue.
9955 // But do so if this is a branch target, otherwise we
9956 // might have to load the register before the branch.
9957 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9958 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9959 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9960 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9961 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9962 }
9963 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9964 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9965 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9966 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9967 }
9968 }
9969 }
9970 // Cycle count is needed at branches. Assume it is needed at the target too.
9971 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9972 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9973 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9974 }
9975 // Save it
9976 needed_reg[i]=nr;
9977
9978 // Deallocate unneeded registers
9979 for(hr=0;hr<HOST_REGS;hr++)
9980 {
9981 if(!((nr>>hr)&1)) {
9982 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9983 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9984 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9985 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9986 {
9987 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9988 {
9989 if(likely[i]) {
9990 regs[i].regmap[hr]=-1;
9991 regs[i].isconst&=~(1<<hr);
79c75f1b 9992 if(i<slen-2) {
9993 regmap_pre[i+2][hr]=-1;
9994 regs[i+2].wasconst&=~(1<<hr);
9995 }
57871462 9996 }
9997 }
9998 }
9999 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10000 {
10001 int d1=0,d2=0,map=0,temp=0;
10002 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10003 {
10004 d1=dep1[i+1];
10005 d2=dep2[i+1];
10006 }
10007 if(using_tlb) {
10008 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10009 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 10010 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10011 map=TLREG;
10012 } else
b9b61529 10013 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10014 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10015 map=INVCP;
10016 }
10017 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 10018 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10019 temp=FTEMP;
10020 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10021 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10022 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10023 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10024 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10025 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10026 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10027 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10028 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10029 regs[i].regmap[hr]!=map )
10030 {
10031 regs[i].regmap[hr]=-1;
10032 regs[i].isconst&=~(1<<hr);
10033 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10034 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10035 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10036 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10037 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10038 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10039 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10040 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10041 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10042 branch_regs[i].regmap[hr]!=map)
10043 {
10044 branch_regs[i].regmap[hr]=-1;
10045 branch_regs[i].regmap_entry[hr]=-1;
10046 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10047 {
10048 if(!likely[i]&&i<slen-2) {
10049 regmap_pre[i+2][hr]=-1;
79c75f1b 10050 regs[i+2].wasconst&=~(1<<hr);
57871462 10051 }
10052 }
10053 }
10054 }
10055 }
10056 else
10057 {
10058 // Non-branch
10059 if(i>0)
10060 {
10061 int d1=0,d2=0,map=-1,temp=-1;
10062 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10063 {
10064 d1=dep1[i];
10065 d2=dep2[i];
10066 }
10067 if(using_tlb) {
10068 if(itype[i]==LOAD || itype[i]==LOADLR ||
10069 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 10070 itype[i]==C1LS || itype[i]==C2LS)
57871462 10071 map=TLREG;
b9b61529 10072 } else if(itype[i]==STORE || itype[i]==STORELR ||
10073 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10074 map=INVCP;
10075 }
10076 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10077 itype[i]==C1LS || itype[i]==C2LS)
57871462 10078 temp=FTEMP;
10079 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10080 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10081 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10082 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10083 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10084 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10085 {
10086 if(i<slen-1&&!is_ds[i]) {
10087 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10088 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10089 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10090 {
10091 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10092 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10093 }
10094 regmap_pre[i+1][hr]=-1;
10095 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10096 regs[i+1].wasconst&=~(1<<hr);
57871462 10097 }
10098 regs[i].regmap[hr]=-1;
10099 regs[i].isconst&=~(1<<hr);
10100 }
10101 }
10102 }
10103 }
10104 }
10105 }
10106
10107 /* Pass 5 - Pre-allocate registers */
10108
10109 // If a register is allocated during a loop, try to allocate it for the
10110 // entire loop, if possible. This avoids loading/storing registers
10111 // inside of the loop.
198df76f 10112
57871462 10113 signed char f_regmap[HOST_REGS];
10114 clear_all_regs(f_regmap);
10115 for(i=0;i<slen-1;i++)
10116 {
10117 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10118 {
10119 if(ba[i]>=start && ba[i]<(start+i*4))
10120 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10121 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10122 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10123 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10124 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10125 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10126 {
10127 int t=(ba[i]-start)>>2;
10128 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10129 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10130 for(hr=0;hr<HOST_REGS;hr++)
10131 {
10132 if(regs[i].regmap[hr]>64) {
10133 if(!((regs[i].dirty>>hr)&1))
10134 f_regmap[hr]=regs[i].regmap[hr];
10135 else f_regmap[hr]=-1;
10136 }
b372a952 10137 else if(regs[i].regmap[hr]>=0) {
10138 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10139 // dealloc old register
10140 int n;
10141 for(n=0;n<HOST_REGS;n++)
10142 {
10143 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10144 }
10145 // and alloc new one
10146 f_regmap[hr]=regs[i].regmap[hr];
10147 }
10148 }
57871462 10149 if(branch_regs[i].regmap[hr]>64) {
10150 if(!((branch_regs[i].dirty>>hr)&1))
10151 f_regmap[hr]=branch_regs[i].regmap[hr];
10152 else f_regmap[hr]=-1;
10153 }
b372a952 10154 else if(branch_regs[i].regmap[hr]>=0) {
10155 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10156 // dealloc old register
10157 int n;
10158 for(n=0;n<HOST_REGS;n++)
10159 {
10160 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10161 }
10162 // and alloc new one
10163 f_regmap[hr]=branch_regs[i].regmap[hr];
10164 }
10165 }
e1190b87 10166 if(ooo[i]) {
10167 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10168 f_regmap[hr]=branch_regs[i].regmap[hr];
10169 }else{
10170 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10171 f_regmap[hr]=branch_regs[i].regmap[hr];
10172 }
10173 // Avoid dirty->clean transition
e1190b87 10174 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10175 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10176 #endif
10177 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10178 // case above, however it's always a good idea. We can't hoist the
10179 // load if the register was already allocated, so there's no point
10180 // wasting time analyzing most of these cases. It only "succeeds"
10181 // when the mapping was different and the load can be replaced with
10182 // a mov, which is of negligible benefit. So such cases are
10183 // skipped below.
57871462 10184 if(f_regmap[hr]>0) {
198df76f 10185 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10186 int r=f_regmap[hr];
10187 for(j=t;j<=i;j++)
10188 {
10189 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10190 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10191 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10192 if(r>63) {
10193 // NB This can exclude the case where the upper-half
10194 // register is lower numbered than the lower-half
10195 // register. Not sure if it's worth fixing...
10196 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10197 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10198 if(regs[j].is32&(1LL<<(r&63))) break;
10199 }
10200 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10201 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10202 int k;
10203 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10204 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10205 if(r>63) {
10206 if(get_reg(regs[i].regmap,r&63)<0) break;
10207 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10208 }
10209 k=i;
10210 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10211 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10212 //printf("no free regs for store %x\n",start+(k-1)*4);
10213 break;
57871462 10214 }
57871462 10215 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10216 //printf("no-match due to different register\n");
10217 break;
10218 }
10219 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10220 //printf("no-match due to branch\n");
10221 break;
10222 }
10223 // call/ret fast path assumes no registers allocated
198df76f 10224 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10225 break;
10226 }
10227 if(r>63) {
10228 // NB This can exclude the case where the upper-half
10229 // register is lower numbered than the lower-half
10230 // register. Not sure if it's worth fixing...
10231 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10232 if(regs[k-1].is32&(1LL<<(r&63))) break;
10233 }
10234 k--;
10235 }
10236 if(i<slen-1) {
10237 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10238 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10239 //printf("bad match after branch\n");
10240 break;
10241 }
10242 }
10243 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10244 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10245 while(k<i) {
10246 regs[k].regmap_entry[hr]=f_regmap[hr];
10247 regs[k].regmap[hr]=f_regmap[hr];
10248 regmap_pre[k+1][hr]=f_regmap[hr];
10249 regs[k].wasdirty&=~(1<<hr);
10250 regs[k].dirty&=~(1<<hr);
10251 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10252 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10253 regs[k].wasconst&=~(1<<hr);
10254 regs[k].isconst&=~(1<<hr);
10255 k++;
10256 }
10257 }
10258 else {
10259 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10260 break;
10261 }
10262 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10263 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10264 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10265 regs[i].regmap_entry[hr]=f_regmap[hr];
10266 regs[i].regmap[hr]=f_regmap[hr];
10267 regs[i].wasdirty&=~(1<<hr);
10268 regs[i].dirty&=~(1<<hr);
10269 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10270 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10271 regs[i].wasconst&=~(1<<hr);
10272 regs[i].isconst&=~(1<<hr);
10273 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10274 branch_regs[i].wasdirty&=~(1<<hr);
10275 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10276 branch_regs[i].regmap[hr]=f_regmap[hr];
10277 branch_regs[i].dirty&=~(1<<hr);
10278 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10279 branch_regs[i].wasconst&=~(1<<hr);
10280 branch_regs[i].isconst&=~(1<<hr);
10281 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10282 regmap_pre[i+2][hr]=f_regmap[hr];
10283 regs[i+2].wasdirty&=~(1<<hr);
10284 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10285 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10286 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10287 }
10288 }
10289 }
10290 for(k=t;k<j;k++) {
e1190b87 10291 // Alloc register clean at beginning of loop,
10292 // but may dirty it in pass 6
57871462 10293 regs[k].regmap_entry[hr]=f_regmap[hr];
10294 regs[k].regmap[hr]=f_regmap[hr];
57871462 10295 regs[k].dirty&=~(1<<hr);
10296 regs[k].wasconst&=~(1<<hr);
10297 regs[k].isconst&=~(1<<hr);
e1190b87 10298 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10299 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10300 branch_regs[k].regmap[hr]=f_regmap[hr];
10301 branch_regs[k].dirty&=~(1<<hr);
10302 branch_regs[k].wasconst&=~(1<<hr);
10303 branch_regs[k].isconst&=~(1<<hr);
10304 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10305 regmap_pre[k+2][hr]=f_regmap[hr];
10306 regs[k+2].wasdirty&=~(1<<hr);
10307 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10308 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10309 }
10310 }
10311 else
10312 {
10313 regmap_pre[k+1][hr]=f_regmap[hr];
10314 regs[k+1].wasdirty&=~(1<<hr);
10315 }
57871462 10316 }
10317 if(regs[j].regmap[hr]==f_regmap[hr])
10318 regs[j].regmap_entry[hr]=f_regmap[hr];
10319 break;
10320 }
10321 if(j==i) break;
10322 if(regs[j].regmap[hr]>=0)
10323 break;
10324 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10325 //printf("no-match due to different register\n");
10326 break;
10327 }
10328 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10329 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10330 break;
10331 }
e1190b87 10332 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10333 {
10334 // Stop on unconditional branch
10335 break;
10336 }
10337 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10338 {
10339 if(ooo[j]) {
10340 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10341 break;
10342 }else{
10343 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10344 break;
10345 }
10346 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10347 //printf("no-match due to different register (branch)\n");
57871462 10348 break;
10349 }
10350 }
e1190b87 10351 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10352 //printf("No free regs for store %x\n",start+j*4);
10353 break;
10354 }
57871462 10355 if(f_regmap[hr]>=64) {
10356 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10357 break;
10358 }
10359 else
10360 {
10361 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10362 break;
10363 }
10364 }
10365 }
10366 }
10367 }
10368 }
10369 }
10370 }
10371 }else{
198df76f 10372 // Non branch or undetermined branch target
57871462 10373 for(hr=0;hr<HOST_REGS;hr++)
10374 {
10375 if(hr!=EXCLUDE_REG) {
10376 if(regs[i].regmap[hr]>64) {
10377 if(!((regs[i].dirty>>hr)&1))
10378 f_regmap[hr]=regs[i].regmap[hr];
10379 }
b372a952 10380 else if(regs[i].regmap[hr]>=0) {
10381 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10382 // dealloc old register
10383 int n;
10384 for(n=0;n<HOST_REGS;n++)
10385 {
10386 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10387 }
10388 // and alloc new one
10389 f_regmap[hr]=regs[i].regmap[hr];
10390 }
10391 }
57871462 10392 }
10393 }
10394 // Try to restore cycle count at branch targets
10395 if(bt[i]) {
10396 for(j=i;j<slen-1;j++) {
10397 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10398 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10399 //printf("no free regs for store %x\n",start+j*4);
10400 break;
57871462 10401 }
57871462 10402 }
10403 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10404 int k=i;
10405 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10406 while(k<j) {
10407 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10408 regs[k].regmap[HOST_CCREG]=CCREG;
10409 regmap_pre[k+1][HOST_CCREG]=CCREG;
10410 regs[k+1].wasdirty|=1<<HOST_CCREG;
10411 regs[k].dirty|=1<<HOST_CCREG;
10412 regs[k].wasconst&=~(1<<HOST_CCREG);
10413 regs[k].isconst&=~(1<<HOST_CCREG);
10414 k++;
10415 }
10416 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10417 }
10418 // Work backwards from the branch target
10419 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10420 {
10421 //printf("Extend backwards\n");
10422 int k;
10423 k=i;
10424 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10425 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10426 //printf("no free regs for store %x\n",start+(k-1)*4);
10427 break;
57871462 10428 }
57871462 10429 k--;
10430 }
10431 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10432 //printf("Extend CC, %x ->\n",start+k*4);
10433 while(k<=i) {
10434 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10435 regs[k].regmap[HOST_CCREG]=CCREG;
10436 regmap_pre[k+1][HOST_CCREG]=CCREG;
10437 regs[k+1].wasdirty|=1<<HOST_CCREG;
10438 regs[k].dirty|=1<<HOST_CCREG;
10439 regs[k].wasconst&=~(1<<HOST_CCREG);
10440 regs[k].isconst&=~(1<<HOST_CCREG);
10441 k++;
10442 }
10443 }
10444 else {
10445 //printf("Fail Extend CC, %x ->\n",start+k*4);
10446 }
10447 }
10448 }
10449 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10450 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10451 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10452 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10453 {
10454 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10455 }
10456 }
10457 }
10458
d61de97e 10459 // Cache memory offset or tlb map pointer if a register is available
10460 #ifndef HOST_IMM_ADDR32
10461 #ifndef RAM_OFFSET
10462 if(using_tlb)
10463 #endif
10464 {
10465 int earliest_available[HOST_REGS];
10466 int loop_start[HOST_REGS];
10467 int score[HOST_REGS];
10468 int end[HOST_REGS];
10469 int reg=using_tlb?MMREG:ROREG;
10470
10471 // Init
10472 for(hr=0;hr<HOST_REGS;hr++) {
10473 score[hr]=0;earliest_available[hr]=0;
10474 loop_start[hr]=MAXBLOCK;
10475 }
10476 for(i=0;i<slen-1;i++)
10477 {
10478 // Can't do anything if no registers are available
10479 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10480 for(hr=0;hr<HOST_REGS;hr++) {
10481 score[hr]=0;earliest_available[hr]=i+1;
10482 loop_start[hr]=MAXBLOCK;
10483 }
10484 }
10485 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10486 if(!ooo[i]) {
10487 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10488 for(hr=0;hr<HOST_REGS;hr++) {
10489 score[hr]=0;earliest_available[hr]=i+1;
10490 loop_start[hr]=MAXBLOCK;
10491 }
10492 }
198df76f 10493 }else{
10494 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10495 for(hr=0;hr<HOST_REGS;hr++) {
10496 score[hr]=0;earliest_available[hr]=i+1;
10497 loop_start[hr]=MAXBLOCK;
10498 }
10499 }
d61de97e 10500 }
10501 }
10502 // Mark unavailable registers
10503 for(hr=0;hr<HOST_REGS;hr++) {
10504 if(regs[i].regmap[hr]>=0) {
10505 score[hr]=0;earliest_available[hr]=i+1;
10506 loop_start[hr]=MAXBLOCK;
10507 }
10508 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10509 if(branch_regs[i].regmap[hr]>=0) {
10510 score[hr]=0;earliest_available[hr]=i+2;
10511 loop_start[hr]=MAXBLOCK;
10512 }
10513 }
10514 }
10515 // No register allocations after unconditional jumps
10516 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10517 {
10518 for(hr=0;hr<HOST_REGS;hr++) {
10519 score[hr]=0;earliest_available[hr]=i+2;
10520 loop_start[hr]=MAXBLOCK;
10521 }
10522 i++; // Skip delay slot too
10523 //printf("skip delay slot: %x\n",start+i*4);
10524 }
10525 else
10526 // Possible match
10527 if(itype[i]==LOAD||itype[i]==LOADLR||
10528 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10529 for(hr=0;hr<HOST_REGS;hr++) {
10530 if(hr!=EXCLUDE_REG) {
10531 end[hr]=i-1;
10532 for(j=i;j<slen-1;j++) {
10533 if(regs[j].regmap[hr]>=0) break;
10534 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10535 if(branch_regs[j].regmap[hr]>=0) break;
10536 if(ooo[j]) {
10537 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10538 }else{
10539 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10540 }
10541 }
10542 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10543 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10544 int t=(ba[j]-start)>>2;
10545 if(t<j&&t>=earliest_available[hr]) {
198df76f 10546 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10547 // Score a point for hoisting loop invariant
10548 if(t<loop_start[hr]) loop_start[hr]=t;
10549 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10550 score[hr]++;
10551 end[hr]=j;
10552 }
d61de97e 10553 }
10554 else if(t<j) {
10555 if(regs[t].regmap[hr]==reg) {
10556 // Score a point if the branch target matches this register
10557 score[hr]++;
10558 end[hr]=j;
10559 }
10560 }
10561 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10562 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10563 score[hr]++;
10564 end[hr]=j;
10565 }
10566 }
10567 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10568 {
10569 // Stop on unconditional branch
10570 break;
10571 }
10572 else
10573 if(itype[j]==LOAD||itype[j]==LOADLR||
10574 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10575 score[hr]++;
10576 end[hr]=j;
10577 }
10578 }
10579 }
10580 }
10581 // Find highest score and allocate that register
10582 int maxscore=0;
10583 for(hr=0;hr<HOST_REGS;hr++) {
10584 if(hr!=EXCLUDE_REG) {
10585 if(score[hr]>score[maxscore]) {
10586 maxscore=hr;
10587 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10588 }
10589 }
10590 }
10591 if(score[maxscore]>1)
10592 {
10593 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10594 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10595 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10596 assert(regs[j].regmap[maxscore]<0);
10597 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10598 regs[j].regmap[maxscore]=reg;
10599 regs[j].dirty&=~(1<<maxscore);
10600 regs[j].wasconst&=~(1<<maxscore);
10601 regs[j].isconst&=~(1<<maxscore);
10602 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10603 branch_regs[j].regmap[maxscore]=reg;
10604 branch_regs[j].wasdirty&=~(1<<maxscore);
10605 branch_regs[j].dirty&=~(1<<maxscore);
10606 branch_regs[j].wasconst&=~(1<<maxscore);
10607 branch_regs[j].isconst&=~(1<<maxscore);
10608 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10609 regmap_pre[j+2][maxscore]=reg;
10610 regs[j+2].wasdirty&=~(1<<maxscore);
10611 }
10612 // loop optimization (loop_preload)
10613 int t=(ba[j]-start)>>2;
198df76f 10614 if(t==loop_start[maxscore]) {
10615 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10616 regs[t].regmap_entry[maxscore]=reg;
10617 }
d61de97e 10618 }
10619 else
10620 {
10621 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10622 regmap_pre[j+1][maxscore]=reg;
10623 regs[j+1].wasdirty&=~(1<<maxscore);
10624 }
10625 }
10626 }
10627 i=j-1;
10628 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10629 for(hr=0;hr<HOST_REGS;hr++) {
10630 score[hr]=0;earliest_available[hr]=i+i;
10631 loop_start[hr]=MAXBLOCK;
10632 }
10633 }
10634 }
10635 }
10636 }
10637 #endif
10638
57871462 10639 // This allocates registers (if possible) one instruction prior
10640 // to use, which can avoid a load-use penalty on certain CPUs.
10641 for(i=0;i<slen-1;i++)
10642 {
10643 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10644 {
10645 if(!bt[i+1])
10646 {
b9b61529 10647 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10648 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10649 {
10650 if(rs1[i+1]) {
10651 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10652 {
10653 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10654 {
10655 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10656 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10657 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10658 regs[i].isconst&=~(1<<hr);
10659 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10660 constmap[i][hr]=constmap[i+1][hr];
10661 regs[i+1].wasdirty&=~(1<<hr);
10662 regs[i].dirty&=~(1<<hr);
10663 }
10664 }
10665 }
10666 if(rs2[i+1]) {
10667 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10668 {
10669 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10670 {
10671 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10672 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10673 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10674 regs[i].isconst&=~(1<<hr);
10675 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10676 constmap[i][hr]=constmap[i+1][hr];
10677 regs[i+1].wasdirty&=~(1<<hr);
10678 regs[i].dirty&=~(1<<hr);
10679 }
10680 }
10681 }
198df76f 10682 // Preload target address for load instruction (non-constant)
57871462 10683 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10684 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10685 {
10686 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10687 {
10688 regs[i].regmap[hr]=rs1[i+1];
10689 regmap_pre[i+1][hr]=rs1[i+1];
10690 regs[i+1].regmap_entry[hr]=rs1[i+1];
10691 regs[i].isconst&=~(1<<hr);
10692 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10693 constmap[i][hr]=constmap[i+1][hr];
10694 regs[i+1].wasdirty&=~(1<<hr);
10695 regs[i].dirty&=~(1<<hr);
10696 }
10697 }
10698 }
198df76f 10699 // Load source into target register
57871462 10700 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10701 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10702 {
10703 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10704 {
10705 regs[i].regmap[hr]=rs1[i+1];
10706 regmap_pre[i+1][hr]=rs1[i+1];
10707 regs[i+1].regmap_entry[hr]=rs1[i+1];
10708 regs[i].isconst&=~(1<<hr);
10709 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10710 constmap[i][hr]=constmap[i+1][hr];
10711 regs[i+1].wasdirty&=~(1<<hr);
10712 regs[i].dirty&=~(1<<hr);
10713 }
10714 }
10715 }
198df76f 10716 // Preload map address
57871462 10717 #ifndef HOST_IMM_ADDR32
b9b61529 10718 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10719 hr=get_reg(regs[i+1].regmap,TLREG);
10720 if(hr>=0) {
10721 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10722 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10723 int nr;
10724 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10725 {
10726 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10727 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10728 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10729 regs[i].isconst&=~(1<<hr);
10730 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10731 constmap[i][hr]=constmap[i+1][hr];
10732 regs[i+1].wasdirty&=~(1<<hr);
10733 regs[i].dirty&=~(1<<hr);
10734 }
10735 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10736 {
10737 // move it to another register
10738 regs[i+1].regmap[hr]=-1;
10739 regmap_pre[i+2][hr]=-1;
10740 regs[i+1].regmap[nr]=TLREG;
10741 regmap_pre[i+2][nr]=TLREG;
10742 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10743 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10744 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10745 regs[i].isconst&=~(1<<nr);
10746 regs[i+1].isconst&=~(1<<nr);
10747 regs[i].dirty&=~(1<<nr);
10748 regs[i+1].wasdirty&=~(1<<nr);
10749 regs[i+1].dirty&=~(1<<nr);
10750 regs[i+2].wasdirty&=~(1<<nr);
10751 }
10752 }
10753 }
10754 }
10755 #endif
198df76f 10756 // Address for store instruction (non-constant)
b9b61529 10757 if(itype[i+1]==STORE||itype[i+1]==STORELR
10758 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10759 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10760 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10761 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10762 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10763 assert(hr>=0);
10764 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10765 {
10766 regs[i].regmap[hr]=rs1[i+1];
10767 regmap_pre[i+1][hr]=rs1[i+1];
10768 regs[i+1].regmap_entry[hr]=rs1[i+1];
10769 regs[i].isconst&=~(1<<hr);
10770 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10771 constmap[i][hr]=constmap[i+1][hr];
10772 regs[i+1].wasdirty&=~(1<<hr);
10773 regs[i].dirty&=~(1<<hr);
10774 }
10775 }
10776 }
b9b61529 10777 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10778 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10779 int nr;
10780 hr=get_reg(regs[i+1].regmap,FTEMP);
10781 assert(hr>=0);
10782 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10783 {
10784 regs[i].regmap[hr]=rs1[i+1];
10785 regmap_pre[i+1][hr]=rs1[i+1];
10786 regs[i+1].regmap_entry[hr]=rs1[i+1];
10787 regs[i].isconst&=~(1<<hr);
10788 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10789 constmap[i][hr]=constmap[i+1][hr];
10790 regs[i+1].wasdirty&=~(1<<hr);
10791 regs[i].dirty&=~(1<<hr);
10792 }
10793 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10794 {
10795 // move it to another register
10796 regs[i+1].regmap[hr]=-1;
10797 regmap_pre[i+2][hr]=-1;
10798 regs[i+1].regmap[nr]=FTEMP;
10799 regmap_pre[i+2][nr]=FTEMP;
10800 regs[i].regmap[nr]=rs1[i+1];
10801 regmap_pre[i+1][nr]=rs1[i+1];
10802 regs[i+1].regmap_entry[nr]=rs1[i+1];
10803 regs[i].isconst&=~(1<<nr);
10804 regs[i+1].isconst&=~(1<<nr);
10805 regs[i].dirty&=~(1<<nr);
10806 regs[i+1].wasdirty&=~(1<<nr);
10807 regs[i+1].dirty&=~(1<<nr);
10808 regs[i+2].wasdirty&=~(1<<nr);
10809 }
10810 }
10811 }
b9b61529 10812 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10813 if(itype[i+1]==LOAD)
10814 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10815 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10816 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10817 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10818 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10819 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10820 }
10821 if(hr>=0&&regs[i].regmap[hr]<0) {
10822 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10823 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10824 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10825 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10826 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10827 regs[i].isconst&=~(1<<hr);
10828 regs[i+1].wasdirty&=~(1<<hr);
10829 regs[i].dirty&=~(1<<hr);
10830 }
10831 }
10832 }
10833 }
10834 }
10835 }
10836 }
10837
10838 /* Pass 6 - Optimize clean/dirty state */
10839 clean_registers(0,slen-1,1);
10840
10841 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10842#ifndef FORCE32
57871462 10843 provisional_r32();
10844
10845 u_int r32=0;
10846
10847 for (i=slen-1;i>=0;i--)
10848 {
10849 int hr;
10850 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10851 {
10852 if(ba[i]<start || ba[i]>=(start+slen*4))
10853 {
10854 // Branch out of this block, don't need anything
10855 r32=0;
10856 }
10857 else
10858 {
10859 // Internal branch
10860 // Need whatever matches the target
10861 // (and doesn't get overwritten by the delay slot instruction)
10862 r32=0;
10863 int t=(ba[i]-start)>>2;
10864 if(ba[i]>start+i*4) {
10865 // Forward branch
10866 if(!(requires_32bit[t]&~regs[i].was32))
10867 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10868 }else{
10869 // Backward branch
10870 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10871 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10872 if(!(pr32[t]&~regs[i].was32))
10873 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10874 }
10875 }
10876 // Conditional branch may need registers for following instructions
10877 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10878 {
10879 if(i<slen-2) {
10880 r32|=requires_32bit[i+2];
10881 r32&=regs[i].was32;
10882 // Mark this address as a branch target since it may be called
10883 // upon return from interrupt
10884 bt[i+2]=1;
10885 }
10886 }
10887 // Merge in delay slot
10888 if(!likely[i]) {
10889 // These are overwritten unless the branch is "likely"
10890 // and the delay slot is nullified if not taken
10891 r32&=~(1LL<<rt1[i+1]);
10892 r32&=~(1LL<<rt2[i+1]);
10893 }
10894 // Assume these are needed (delay slot)
10895 if(us1[i+1]>0)
10896 {
10897 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10898 }
10899 if(us2[i+1]>0)
10900 {
10901 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10902 }
10903 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10904 {
10905 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10906 }
10907 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10908 {
10909 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10910 }
10911 }
1e973cb0 10912 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10913 {
10914 // SYSCALL instruction (software interrupt)
10915 r32=0;
10916 }
10917 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10918 {
10919 // ERET instruction (return from interrupt)
10920 r32=0;
10921 }
10922 // Check 32 bits
10923 r32&=~(1LL<<rt1[i]);
10924 r32&=~(1LL<<rt2[i]);
10925 if(us1[i]>0)
10926 {
10927 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10928 }
10929 if(us2[i]>0)
10930 {
10931 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10932 }
10933 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10934 {
10935 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10936 }
10937 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10938 {
10939 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10940 }
10941 requires_32bit[i]=r32;
10942
10943 // Dirty registers which are 32-bit, require 32-bit input
10944 // as they will be written as 32-bit values
10945 for(hr=0;hr<HOST_REGS;hr++)
10946 {
10947 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10948 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10949 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10950 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10951 }
10952 }
10953 }
10954 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10955 }
04fd948a 10956#else
10957 for (i=slen-1;i>=0;i--)
10958 {
10959 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10960 {
10961 // Conditional branch
10962 if((source[i]>>16)!=0x1000&&i<slen-2) {
10963 // Mark this address as a branch target since it may be called
10964 // upon return from interrupt
10965 bt[i+2]=1;
10966 }
10967 }
10968 }
a28c6ce8 10969#endif
57871462 10970
10971 if(itype[slen-1]==SPAN) {
10972 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10973 }
4600ba03 10974
10975#ifdef DISASM
57871462 10976 /* Debug/disassembly */
57871462 10977 for(i=0;i<slen;i++)
10978 {
10979 printf("U:");
10980 int r;
10981 for(r=1;r<=CCREG;r++) {
10982 if((unneeded_reg[i]>>r)&1) {
10983 if(r==HIREG) printf(" HI");
10984 else if(r==LOREG) printf(" LO");
10985 else printf(" r%d",r);
10986 }
10987 }
90ae6d4e 10988#ifndef FORCE32
57871462 10989 printf(" UU:");
10990 for(r=1;r<=CCREG;r++) {
10991 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10992 if(r==HIREG) printf(" HI");
10993 else if(r==LOREG) printf(" LO");
10994 else printf(" r%d",r);
10995 }
10996 }
10997 printf(" 32:");
10998 for(r=0;r<=CCREG;r++) {
10999 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11000 if((regs[i].was32>>r)&1) {
11001 if(r==CCREG) printf(" CC");
11002 else if(r==HIREG) printf(" HI");
11003 else if(r==LOREG) printf(" LO");
11004 else printf(" r%d",r);
11005 }
11006 }
90ae6d4e 11007#endif
57871462 11008 printf("\n");
11009 #if defined(__i386__) || defined(__x86_64__)
11010 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11011 #endif
11012 #ifdef __arm__
11013 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11014 #endif
11015 printf("needs: ");
11016 if(needed_reg[i]&1) printf("eax ");
11017 if((needed_reg[i]>>1)&1) printf("ecx ");
11018 if((needed_reg[i]>>2)&1) printf("edx ");
11019 if((needed_reg[i]>>3)&1) printf("ebx ");
11020 if((needed_reg[i]>>5)&1) printf("ebp ");
11021 if((needed_reg[i]>>6)&1) printf("esi ");
11022 if((needed_reg[i]>>7)&1) printf("edi ");
11023 printf("r:");
11024 for(r=0;r<=CCREG;r++) {
11025 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11026 if((requires_32bit[i]>>r)&1) {
11027 if(r==CCREG) printf(" CC");
11028 else if(r==HIREG) printf(" HI");
11029 else if(r==LOREG) printf(" LO");
11030 else printf(" r%d",r);
11031 }
11032 }
11033 printf("\n");
11034 /*printf("pr:");
11035 for(r=0;r<=CCREG;r++) {
11036 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11037 if((pr32[i]>>r)&1) {
11038 if(r==CCREG) printf(" CC");
11039 else if(r==HIREG) printf(" HI");
11040 else if(r==LOREG) printf(" LO");
11041 else printf(" r%d",r);
11042 }
11043 }
11044 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11045 printf("\n");*/
11046 #if defined(__i386__) || defined(__x86_64__)
11047 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11048 printf("dirty: ");
11049 if(regs[i].wasdirty&1) printf("eax ");
11050 if((regs[i].wasdirty>>1)&1) printf("ecx ");
11051 if((regs[i].wasdirty>>2)&1) printf("edx ");
11052 if((regs[i].wasdirty>>3)&1) printf("ebx ");
11053 if((regs[i].wasdirty>>5)&1) printf("ebp ");
11054 if((regs[i].wasdirty>>6)&1) printf("esi ");
11055 if((regs[i].wasdirty>>7)&1) printf("edi ");
11056 #endif
11057 #ifdef __arm__
11058 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11059 printf("dirty: ");
11060 if(regs[i].wasdirty&1) printf("r0 ");
11061 if((regs[i].wasdirty>>1)&1) printf("r1 ");
11062 if((regs[i].wasdirty>>2)&1) printf("r2 ");
11063 if((regs[i].wasdirty>>3)&1) printf("r3 ");
11064 if((regs[i].wasdirty>>4)&1) printf("r4 ");
11065 if((regs[i].wasdirty>>5)&1) printf("r5 ");
11066 if((regs[i].wasdirty>>6)&1) printf("r6 ");
11067 if((regs[i].wasdirty>>7)&1) printf("r7 ");
11068 if((regs[i].wasdirty>>8)&1) printf("r8 ");
11069 if((regs[i].wasdirty>>9)&1) printf("r9 ");
11070 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11071 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11072 #endif
11073 printf("\n");
11074 disassemble_inst(i);
11075 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11076 #if defined(__i386__) || defined(__x86_64__)
11077 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11078 if(regs[i].dirty&1) printf("eax ");
11079 if((regs[i].dirty>>1)&1) printf("ecx ");
11080 if((regs[i].dirty>>2)&1) printf("edx ");
11081 if((regs[i].dirty>>3)&1) printf("ebx ");
11082 if((regs[i].dirty>>5)&1) printf("ebp ");
11083 if((regs[i].dirty>>6)&1) printf("esi ");
11084 if((regs[i].dirty>>7)&1) printf("edi ");
11085 #endif
11086 #ifdef __arm__
11087 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11088 if(regs[i].dirty&1) printf("r0 ");
11089 if((regs[i].dirty>>1)&1) printf("r1 ");
11090 if((regs[i].dirty>>2)&1) printf("r2 ");
11091 if((regs[i].dirty>>3)&1) printf("r3 ");
11092 if((regs[i].dirty>>4)&1) printf("r4 ");
11093 if((regs[i].dirty>>5)&1) printf("r5 ");
11094 if((regs[i].dirty>>6)&1) printf("r6 ");
11095 if((regs[i].dirty>>7)&1) printf("r7 ");
11096 if((regs[i].dirty>>8)&1) printf("r8 ");
11097 if((regs[i].dirty>>9)&1) printf("r9 ");
11098 if((regs[i].dirty>>10)&1) printf("r10 ");
11099 if((regs[i].dirty>>12)&1) printf("r12 ");
11100 #endif
11101 printf("\n");
11102 if(regs[i].isconst) {
11103 printf("constants: ");
11104 #if defined(__i386__) || defined(__x86_64__)
11105 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11106 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11107 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11108 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11109 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11110 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11111 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11112 #endif
11113 #ifdef __arm__
11114 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11115 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11116 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11117 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11118 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11119 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11120 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11121 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11122 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11123 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11124 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11125 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11126 #endif
11127 printf("\n");
11128 }
90ae6d4e 11129#ifndef FORCE32
57871462 11130 printf(" 32:");
11131 for(r=0;r<=CCREG;r++) {
11132 if((regs[i].is32>>r)&1) {
11133 if(r==CCREG) printf(" CC");
11134 else if(r==HIREG) printf(" HI");
11135 else if(r==LOREG) printf(" LO");
11136 else printf(" r%d",r);
11137 }
11138 }
11139 printf("\n");
90ae6d4e 11140#endif
57871462 11141 /*printf(" p32:");
11142 for(r=0;r<=CCREG;r++) {
11143 if((p32[i]>>r)&1) {
11144 if(r==CCREG) printf(" CC");
11145 else if(r==HIREG) printf(" HI");
11146 else if(r==LOREG) printf(" LO");
11147 else printf(" r%d",r);
11148 }
11149 }
11150 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11151 else printf("\n");*/
11152 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11153 #if defined(__i386__) || defined(__x86_64__)
11154 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11155 if(branch_regs[i].dirty&1) printf("eax ");
11156 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11157 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11158 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11159 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11160 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11161 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11162 #endif
11163 #ifdef __arm__
11164 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11165 if(branch_regs[i].dirty&1) printf("r0 ");
11166 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11167 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11168 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11169 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11170 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11171 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11172 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11173 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11174 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11175 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11176 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11177 #endif
90ae6d4e 11178#ifndef FORCE32
57871462 11179 printf(" 32:");
11180 for(r=0;r<=CCREG;r++) {
11181 if((branch_regs[i].is32>>r)&1) {
11182 if(r==CCREG) printf(" CC");
11183 else if(r==HIREG) printf(" HI");
11184 else if(r==LOREG) printf(" LO");
11185 else printf(" r%d",r);
11186 }
11187 }
11188 printf("\n");
90ae6d4e 11189#endif
57871462 11190 }
11191 }
4600ba03 11192#endif // DISASM
57871462 11193
11194 /* Pass 8 - Assembly */
11195 linkcount=0;stubcount=0;
11196 ds=0;is_delayslot=0;
11197 cop1_usable=0;
11198 uint64_t is32_pre=0;
11199 u_int dirty_pre=0;
11200 u_int beginning=(u_int)out;
11201 if((u_int)addr&1) {
11202 ds=1;
11203 pagespan_ds();
11204 }
9ad4d757 11205 u_int instr_addr0_override=0;
11206
11207#ifdef PCSX
11208 if (start == 0x80030000) {
11209 // nasty hack for fastbios thing
96186eba 11210 // override block entry to this code
9ad4d757 11211 instr_addr0_override=(u_int)out;
11212 emit_movimm(start,0);
96186eba 11213 // abuse io address var as a flag that we
11214 // have already returned here once
11215 emit_readword((int)&address,1);
9ad4d757 11216 emit_writeword(0,(int)&pcaddr);
96186eba 11217 emit_writeword(0,(int)&address);
9ad4d757 11218 emit_cmp(0,1);
11219 emit_jne((int)new_dyna_leave);
11220 }
11221#endif
57871462 11222 for(i=0;i<slen;i++)
11223 {
11224 //if(ds) printf("ds: ");
4600ba03 11225 disassemble_inst(i);
57871462 11226 if(ds) {
11227 ds=0; // Skip delay slot
11228 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11229 instr_addr[i]=0;
11230 } else {
ffb0b9e0 11231 speculate_register_values(i);
57871462 11232 #ifndef DESTRUCTIVE_WRITEBACK
11233 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11234 {
11235 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11236 unneeded_reg[i],unneeded_reg_upper[i]);
11237 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11238 unneeded_reg[i],unneeded_reg_upper[i]);
11239 }
f776eb14 11240 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11241 is32_pre=branch_regs[i].is32;
11242 dirty_pre=branch_regs[i].dirty;
11243 }else{
11244 is32_pre=regs[i].is32;
11245 dirty_pre=regs[i].dirty;
11246 }
57871462 11247 #endif
11248 // write back
11249 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11250 {
11251 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11252 unneeded_reg[i],unneeded_reg_upper[i]);
11253 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11254 }
11255 // branch target entry point
11256 instr_addr[i]=(u_int)out;
11257 assem_debug("<->\n");
11258 // load regs
11259 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11260 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11261 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11262 address_generation(i,&regs[i],regs[i].regmap_entry);
11263 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11264 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11265 {
11266 // Load the delay slot registers if necessary
4ef8f67d 11267 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11268 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11269 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11270 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11271 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11272 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11273 }
11274 else if(i+1<slen)
11275 {
11276 // Preload registers for following instruction
11277 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11278 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11279 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11280 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11281 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11282 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11283 }
11284 // TODO: if(is_ooo(i)) address_generation(i+1);
11285 if(itype[i]==CJUMP||itype[i]==FJUMP)
11286 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11287 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11288 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11289 if(bt[i]) cop1_usable=0;
11290 // assemble
11291 switch(itype[i]) {
11292 case ALU:
11293 alu_assemble(i,&regs[i]);break;
11294 case IMM16:
11295 imm16_assemble(i,&regs[i]);break;
11296 case SHIFT:
11297 shift_assemble(i,&regs[i]);break;
11298 case SHIFTIMM:
11299 shiftimm_assemble(i,&regs[i]);break;
11300 case LOAD:
11301 load_assemble(i,&regs[i]);break;
11302 case LOADLR:
11303 loadlr_assemble(i,&regs[i]);break;
11304 case STORE:
11305 store_assemble(i,&regs[i]);break;
11306 case STORELR:
11307 storelr_assemble(i,&regs[i]);break;
11308 case COP0:
11309 cop0_assemble(i,&regs[i]);break;
11310 case COP1:
11311 cop1_assemble(i,&regs[i]);break;
11312 case C1LS:
11313 c1ls_assemble(i,&regs[i]);break;
b9b61529 11314 case COP2:
11315 cop2_assemble(i,&regs[i]);break;
11316 case C2LS:
11317 c2ls_assemble(i,&regs[i]);break;
11318 case C2OP:
11319 c2op_assemble(i,&regs[i]);break;
57871462 11320 case FCONV:
11321 fconv_assemble(i,&regs[i]);break;
11322 case FLOAT:
11323 float_assemble(i,&regs[i]);break;
11324 case FCOMP:
11325 fcomp_assemble(i,&regs[i]);break;
11326 case MULTDIV:
11327 multdiv_assemble(i,&regs[i]);break;
11328 case MOV:
11329 mov_assemble(i,&regs[i]);break;
11330 case SYSCALL:
11331 syscall_assemble(i,&regs[i]);break;
7139f3c8 11332 case HLECALL:
11333 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11334 case INTCALL:
11335 intcall_assemble(i,&regs[i]);break;
57871462 11336 case UJUMP:
11337 ujump_assemble(i,&regs[i]);ds=1;break;
11338 case RJUMP:
11339 rjump_assemble(i,&regs[i]);ds=1;break;
11340 case CJUMP:
11341 cjump_assemble(i,&regs[i]);ds=1;break;
11342 case SJUMP:
11343 sjump_assemble(i,&regs[i]);ds=1;break;
11344 case FJUMP:
11345 fjump_assemble(i,&regs[i]);ds=1;break;
11346 case SPAN:
11347 pagespan_assemble(i,&regs[i]);break;
11348 }
11349 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11350 literal_pool(1024);
11351 else
11352 literal_pool_jumpover(256);
11353 }
11354 }
11355 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11356 // If the block did not end with an unconditional branch,
11357 // add a jump to the next instruction.
11358 if(i>1) {
11359 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11360 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11361 assert(i==slen);
11362 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11363 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11364 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11365 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11366 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11367 }
11368 else if(!likely[i-2])
11369 {
11370 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11371 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11372 }
11373 else
11374 {
11375 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11376 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11377 }
11378 add_to_linker((int)out,start+i*4,0);
11379 emit_jmp(0);
11380 }
11381 }
11382 else
11383 {
11384 assert(i>0);
11385 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11386 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11387 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11388 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11389 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11390 add_to_linker((int)out,start+i*4,0);
11391 emit_jmp(0);
11392 }
11393
11394 // TODO: delay slot stubs?
11395 // Stubs
11396 for(i=0;i<stubcount;i++)
11397 {
11398 switch(stubs[i][0])
11399 {
11400 case LOADB_STUB:
11401 case LOADH_STUB:
11402 case LOADW_STUB:
11403 case LOADD_STUB:
11404 case LOADBU_STUB:
11405 case LOADHU_STUB:
11406 do_readstub(i);break;
11407 case STOREB_STUB:
11408 case STOREH_STUB:
11409 case STOREW_STUB:
11410 case STORED_STUB:
11411 do_writestub(i);break;
11412 case CC_STUB:
11413 do_ccstub(i);break;
11414 case INVCODE_STUB:
11415 do_invstub(i);break;
11416 case FP_STUB:
11417 do_cop1stub(i);break;
11418 case STORELR_STUB:
11419 do_unalignedwritestub(i);break;
11420 }
11421 }
11422
9ad4d757 11423 if (instr_addr0_override)
11424 instr_addr[0] = instr_addr0_override;
11425
57871462 11426 /* Pass 9 - Linker */
11427 for(i=0;i<linkcount;i++)
11428 {
11429 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11430 literal_pool(64);
11431 if(!link_addr[i][2])
11432 {
11433 void *stub=out;
11434 void *addr=check_addr(link_addr[i][1]);
11435 emit_extjump(link_addr[i][0],link_addr[i][1]);
11436 if(addr) {
11437 set_jump_target(link_addr[i][0],(int)addr);
11438 add_link(link_addr[i][1],stub);
11439 }
11440 else set_jump_target(link_addr[i][0],(int)stub);
11441 }
11442 else
11443 {
11444 // Internal branch
11445 int target=(link_addr[i][1]-start)>>2;
11446 assert(target>=0&&target<slen);
11447 assert(instr_addr[target]);
11448 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11449 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11450 //#else
11451 set_jump_target(link_addr[i][0],instr_addr[target]);
11452 //#endif
11453 }
11454 }
11455 // External Branch Targets (jump_in)
11456 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11457 for(i=0;i<slen;i++)
11458 {
11459 if(bt[i]||i==0)
11460 {
11461 if(instr_addr[i]) // TODO - delay slots (=null)
11462 {
11463 u_int vaddr=start+i*4;
94d23bb9 11464 u_int page=get_page(vaddr);
11465 u_int vpage=get_vpage(vaddr);
57871462 11466 literal_pool(256);
11467 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11468#ifndef FORCE32
57871462 11469 if(!requires_32bit[i])
a28c6ce8 11470#else
11471 if(1)
11472#endif
57871462 11473 {
11474 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11475 assem_debug("jump_in: %x\n",start+i*4);
11476 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11477 int entry_point=do_dirty_stub(i);
11478 ll_add(jump_in+page,vaddr,(void *)entry_point);
11479 // If there was an existing entry in the hash table,
11480 // replace it with the new address.
11481 // Don't add new entries. We'll insert the
11482 // ones that actually get used in check_addr().
11483 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11484 if(ht_bin[0]==vaddr) {
11485 ht_bin[1]=entry_point;
11486 }
11487 if(ht_bin[2]==vaddr) {
11488 ht_bin[3]=entry_point;
11489 }
11490 }
11491 else
11492 {
11493 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11494 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11495 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11496 //int entry_point=(int)out;
11497 ////assem_debug("entry_point: %x\n",entry_point);
11498 //load_regs_entry(i);
11499 //if(entry_point==(int)out)
11500 // entry_point=instr_addr[i];
11501 //else
11502 // emit_jmp(instr_addr[i]);
11503 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11504 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11505 int entry_point=do_dirty_stub(i);
11506 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11507 }
11508 }
11509 }
11510 }
11511 // Write out the literal pool if necessary
11512 literal_pool(0);
11513 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11514 // Align code
11515 if(((u_int)out)&7) emit_addnop(13);
11516 #endif
11517 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11518 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11519 memcpy(copy,source,slen*4);
11520 copy+=slen*4;
11521
11522 #ifdef __arm__
11523 __clear_cache((void *)beginning,out);
11524 #endif
11525
11526 // If we're within 256K of the end of the buffer,
11527 // start over from the beginning. (Is 256K enough?)
11528 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11529
11530 // Trap writes to any of the pages we compiled
11531 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11532 invalid_code[i]=0;
90ae6d4e 11533#ifndef DISABLE_TLB
57871462 11534 memory_map[i]|=0x40000000;
11535 if((signed int)start>=(signed int)0xC0000000) {
11536 assert(using_tlb);
11537 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11538 invalid_code[j]=0;
11539 memory_map[j]|=0x40000000;
11540 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11541 }
90ae6d4e 11542#endif
57871462 11543 }
9be4ba64 11544 inv_code_start=inv_code_end=~0;
b12c9fb8 11545#ifdef PCSX
b96d3df7 11546 // for PCSX we need to mark all mirrors too
b12c9fb8 11547 if(get_page(start)<(RAM_SIZE>>12))
11548 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11549 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11550 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11551 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11552#endif
57871462 11553
11554 /* Pass 10 - Free memory by expiring oldest blocks */
11555
11556 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11557 while(expirep!=end)
11558 {
11559 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11560 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11561 inv_debug("EXP: Phase %d\n",expirep);
11562 switch((expirep>>11)&3)
11563 {
11564 case 0:
11565 // Clear jump_in and jump_dirty
11566 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11567 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11568 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11569 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11570 break;
11571 case 1:
11572 // Clear pointers
11573 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11574 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11575 break;
11576 case 2:
11577 // Clear hash table
11578 for(i=0;i<32;i++) {
11579 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11580 if((ht_bin[3]>>shift)==(base>>shift) ||
11581 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11582 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11583 ht_bin[2]=ht_bin[3]=-1;
11584 }
11585 if((ht_bin[1]>>shift)==(base>>shift) ||
11586 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11587 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11588 ht_bin[0]=ht_bin[2];
11589 ht_bin[1]=ht_bin[3];
11590 ht_bin[2]=ht_bin[3]=-1;
11591 }
11592 }
11593 break;
11594 case 3:
11595 // Clear jump_out
dd3a91a1 11596 #ifdef __arm__
11597 if((expirep&2047)==0)
11598 do_clear_cache();
11599 #endif
57871462 11600 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11601 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11602 break;
11603 }
11604 expirep=(expirep+1)&65535;
11605 }
11606 return 0;
11607}
b9b61529 11608
11609// vim:shiftwidth=2:expandtab