spu: change sync again
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 46
57871462 47struct regstat
48{
49 signed char regmap_entry[HOST_REGS];
50 signed char regmap[HOST_REGS];
51 uint64_t was32;
52 uint64_t is32;
53 uint64_t wasdirty;
54 uint64_t dirty;
55 uint64_t u;
56 uint64_t uu;
57 u_int wasconst;
58 u_int isconst;
8575a877 59 u_int loadedconst; // host regs that have constants loaded
60 u_int waswritten; // MIPS regs that were used as store base before
57871462 61};
62
63struct ll_entry
64{
65 u_int vaddr;
66 u_int reg32;
67 void *addr;
68 struct ll_entry *next;
69};
70
71 u_int start;
72 u_int *source;
73 u_int pagelimit;
74 char insn[MAXBLOCK][10];
75 u_char itype[MAXBLOCK];
76 u_char opcode[MAXBLOCK];
77 u_char opcode2[MAXBLOCK];
78 u_char bt[MAXBLOCK];
79 u_char rs1[MAXBLOCK];
80 u_char rs2[MAXBLOCK];
81 u_char rt1[MAXBLOCK];
82 u_char rt2[MAXBLOCK];
83 u_char us1[MAXBLOCK];
84 u_char us2[MAXBLOCK];
85 u_char dep1[MAXBLOCK];
86 u_char dep2[MAXBLOCK];
87 u_char lt1[MAXBLOCK];
bedfea38 88 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
89 static uint64_t gte_rt[MAXBLOCK];
90 static uint64_t gte_unneeded[MAXBLOCK];
ffb0b9e0 91 static u_int smrv[32]; // speculated MIPS register values
92 static u_int smrv_strong; // mask or regs that are likely to have correct values
93 static u_int smrv_weak; // same, but somewhat less likely
94 static u_int smrv_strong_next; // same, but after current insn executes
95 static u_int smrv_weak_next;
57871462 96 int imm[MAXBLOCK];
97 u_int ba[MAXBLOCK];
98 char likely[MAXBLOCK];
99 char is_ds[MAXBLOCK];
e1190b87 100 char ooo[MAXBLOCK];
57871462 101 uint64_t unneeded_reg[MAXBLOCK];
102 uint64_t unneeded_reg_upper[MAXBLOCK];
103 uint64_t branch_unneeded_reg[MAXBLOCK];
104 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105 uint64_t p32[MAXBLOCK];
106 uint64_t pr32[MAXBLOCK];
107 signed char regmap_pre[MAXBLOCK][HOST_REGS];
956f3129 108 static uint64_t current_constmap[HOST_REGS];
109 static uint64_t constmap[MAXBLOCK][HOST_REGS];
110 static struct regstat regs[MAXBLOCK];
111 static struct regstat branch_regs[MAXBLOCK];
e1190b87 112 signed char minimum_free_regs[MAXBLOCK];
57871462 113 u_int needed_reg[MAXBLOCK];
114 uint64_t requires_32bit[MAXBLOCK];
115 u_int wont_dirty[MAXBLOCK];
116 u_int will_dirty[MAXBLOCK];
117 int ccadj[MAXBLOCK];
118 int slen;
119 u_int instr_addr[MAXBLOCK];
120 u_int link_addr[MAXBLOCK][3];
121 int linkcount;
122 u_int stubs[MAXBLOCK*3][8];
123 int stubcount;
124 u_int literals[1024][2];
125 int literalcount;
126 int is_delayslot;
127 int cop1_usable;
128 u_char *out;
129 struct ll_entry *jump_in[4096];
130 struct ll_entry *jump_out[4096];
131 struct ll_entry *jump_dirty[4096];
132 u_int hash_table[65536][4] __attribute__((aligned(16)));
133 char shadow[1048576] __attribute__((aligned(16)));
134 void *copy;
135 int expirep;
af4ee1fe 136#ifndef PCSX
57871462 137 u_int using_tlb;
af4ee1fe 138#else
139 static const u_int using_tlb=0;
140#endif
2f546f9a 141 int new_dynarec_did_compile;
0ff8c62c 142 int new_dynarec_hacks;
57871462 143 u_int stop_after_jal;
a327ad27 144#ifndef RAM_FIXED
145 static u_int ram_offset;
146#else
147 static const u_int ram_offset=0;
148#endif
57871462 149 extern u_char restore_candidate[512];
150 extern int cycle_count;
151
152 /* registers that may be allocated */
153 /* 1-31 gpr */
154#define HIREG 32 // hi
155#define LOREG 33 // lo
156#define FSREG 34 // FPU status (FCSR)
157#define CSREG 35 // Coprocessor status
158#define CCREG 36 // Cycle count
159#define INVCP 37 // Pointer to invalid_code
619e5ded 160#define MMREG 38 // Pointer to memory_map
161#define ROREG 39 // ram offset (if rdram!=0x80000000)
162#define TEMPREG 40
163#define FTEMP 40 // FPU temporary register
164#define PTEMP 41 // Prefetch temporary register
165#define TLREG 42 // TLB mapping offset
166#define RHASH 43 // Return address hash
167#define RHTBL 44 // Return address hash table address
168#define RTEMP 45 // JR/JALR address register
169#define MAXREG 45
170#define AGEN1 46 // Address generation temporary register
171#define AGEN2 47 // Address generation temporary register
172#define MGEN1 48 // Maptable address generation temporary register
173#define MGEN2 49 // Maptable address generation temporary register
174#define BTREG 50 // Branch target temporary register
57871462 175
176 /* instruction types */
177#define NOP 0 // No operation
178#define LOAD 1 // Load
179#define STORE 2 // Store
180#define LOADLR 3 // Unaligned load
181#define STORELR 4 // Unaligned store
182#define MOV 5 // Move
183#define ALU 6 // Arithmetic/logic
184#define MULTDIV 7 // Multiply/divide
185#define SHIFT 8 // Shift by register
186#define SHIFTIMM 9// Shift by immediate
187#define IMM16 10 // 16-bit immediate
188#define RJUMP 11 // Unconditional jump to register
189#define UJUMP 12 // Unconditional jump
190#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
191#define SJUMP 14 // Conditional branch (regimm format)
192#define COP0 15 // Coprocessor 0
193#define COP1 16 // Coprocessor 1
194#define C1LS 17 // Coprocessor 1 load/store
195#define FJUMP 18 // Conditional branch (floating point)
196#define FLOAT 19 // Floating point unit
197#define FCONV 20 // Convert integer to float
198#define FCOMP 21 // Floating point compare (sets FSREG)
199#define SYSCALL 22// SYSCALL
200#define OTHER 23 // Other
201#define SPAN 24 // Branch/delay slot spans 2 pages
202#define NI 25 // Not implemented
7139f3c8 203#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 204#define COP2 27 // Coprocessor 2 move
205#define C2LS 28 // Coprocessor 2 load/store
206#define C2OP 29 // Coprocessor 2 operation
1e973cb0 207#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 208
209 /* stubs */
210#define CC_STUB 1
211#define FP_STUB 2
212#define LOADB_STUB 3
213#define LOADH_STUB 4
214#define LOADW_STUB 5
215#define LOADD_STUB 6
216#define LOADBU_STUB 7
217#define LOADHU_STUB 8
218#define STOREB_STUB 9
219#define STOREH_STUB 10
220#define STOREW_STUB 11
221#define STORED_STUB 12
222#define STORELR_STUB 13
223#define INVCODE_STUB 14
224
225 /* branch codes */
226#define TAKEN 1
227#define NOTTAKEN 2
228#define NULLDS 3
229
230// asm linkage
231int new_recompile_block(int addr);
232void *get_addr_ht(u_int vaddr);
233void invalidate_block(u_int block);
234void invalidate_addr(u_int addr);
235void remove_hash(int vaddr);
236void jump_vaddr();
237void dyna_linker();
238void dyna_linker_ds();
239void verify_code();
240void verify_code_vm();
241void verify_code_ds();
242void cc_interrupt();
243void fp_exception();
244void fp_exception_ds();
245void jump_syscall();
7139f3c8 246void jump_syscall_hle();
57871462 247void jump_eret();
7139f3c8 248void jump_hlecall();
1e973cb0 249void jump_intcall();
7139f3c8 250void new_dyna_leave();
57871462 251
252// TLB
253void TLBWI_new();
254void TLBWR_new();
255void read_nomem_new();
256void read_nomemb_new();
257void read_nomemh_new();
258void read_nomemd_new();
259void write_nomem_new();
260void write_nomemb_new();
261void write_nomemh_new();
262void write_nomemd_new();
263void write_rdram_new();
264void write_rdramb_new();
265void write_rdramh_new();
266void write_rdramd_new();
267extern u_int memory_map[1048576];
268
269// Needed by assembler
270void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
271void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
272void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
273void load_all_regs(signed char i_regmap[]);
274void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
275void load_regs_entry(int t);
276void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
277
278int tracedebug=0;
279
280//#define DEBUG_CYCLE_COUNT 1
281
4e9dcd7f 282int cycle_multiplier; // 100 for 1.0
283
284static int CLOCK_ADJUST(int x)
285{
286 int s=(x>>31)|1;
287 return (x * cycle_multiplier + s * 50) / 100;
288}
289
94d23bb9 290static void tlb_hacks()
57871462 291{
94d23bb9 292#ifndef DISABLE_TLB
57871462 293 // Goldeneye hack
294 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
295 {
296 u_int addr;
297 int n;
298 switch (ROM_HEADER->Country_code&0xFF)
299 {
300 case 0x45: // U
301 addr=0x34b30;
302 break;
303 case 0x4A: // J
304 addr=0x34b70;
305 break;
306 case 0x50: // E
307 addr=0x329f0;
308 break;
309 default:
310 // Unknown country code
311 addr=0;
312 break;
313 }
314 u_int rom_addr=(u_int)rom;
315 #ifdef ROM_COPY
316 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
317 // in the lower 4G of memory to use this hack. Copy it if necessary.
318 if((void *)rom>(void *)0xffffffff) {
319 munmap(ROM_COPY, 67108864);
320 if(mmap(ROM_COPY, 12582912,
321 PROT_READ | PROT_WRITE,
322 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
323 -1, 0) <= 0) {printf("mmap() failed\n");}
324 memcpy(ROM_COPY,rom,12582912);
325 rom_addr=(u_int)ROM_COPY;
326 }
327 #endif
328 if(addr) {
329 for(n=0x7F000;n<0x80000;n++) {
330 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
331 }
332 }
333 }
94d23bb9 334#endif
57871462 335}
336
94d23bb9 337static u_int get_page(u_int vaddr)
57871462 338{
0ce47d46 339#ifndef PCSX
57871462 340 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 341#else
342 u_int page=vaddr&~0xe0000000;
343 if (page < 0x1000000)
344 page &= ~0x0e00000; // RAM mirrors
345 page>>=12;
346#endif
94d23bb9 347#ifndef DISABLE_TLB
57871462 348 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 349#endif
57871462 350 if(page>2048) page=2048+(page&2047);
94d23bb9 351 return page;
352}
353
d25604ca 354#ifndef PCSX
94d23bb9 355static u_int get_vpage(u_int vaddr)
356{
357 u_int vpage=(vaddr^0x80000000)>>12;
358#ifndef DISABLE_TLB
57871462 359 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 360#endif
57871462 361 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 362 return vpage;
363}
d25604ca 364#else
365// no virtual mem in PCSX
366static u_int get_vpage(u_int vaddr)
367{
368 return get_page(vaddr);
369}
370#endif
94d23bb9 371
372// Get address from virtual address
373// This is called from the recompiled JR/JALR instructions
374void *get_addr(u_int vaddr)
375{
376 u_int page=get_page(vaddr);
377 u_int vpage=get_vpage(vaddr);
57871462 378 struct ll_entry *head;
379 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
380 head=jump_in[page];
381 while(head!=NULL) {
382 if(head->vaddr==vaddr&&head->reg32==0) {
383 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
384 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
385 ht_bin[3]=ht_bin[1];
386 ht_bin[2]=ht_bin[0];
387 ht_bin[1]=(int)head->addr;
388 ht_bin[0]=vaddr;
389 return head->addr;
390 }
391 head=head->next;
392 }
393 head=jump_dirty[vpage];
394 while(head!=NULL) {
395 if(head->vaddr==vaddr&&head->reg32==0) {
396 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
397 // Don't restore blocks which are about to expire from the cache
398 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
399 if(verify_dirty(head->addr)) {
400 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
401 invalid_code[vaddr>>12]=0;
9be4ba64 402 inv_code_start=inv_code_end=~0;
63cb0298 403#ifndef DISABLE_TLB
57871462 404 memory_map[vaddr>>12]|=0x40000000;
63cb0298 405#endif
57871462 406 if(vpage<2048) {
94d23bb9 407#ifndef DISABLE_TLB
57871462 408 if(tlb_LUT_r[vaddr>>12]) {
409 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
410 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
411 }
94d23bb9 412#endif
57871462 413 restore_candidate[vpage>>3]|=1<<(vpage&7);
414 }
415 else restore_candidate[page>>3]|=1<<(page&7);
416 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
417 if(ht_bin[0]==vaddr) {
418 ht_bin[1]=(int)head->addr; // Replace existing entry
419 }
420 else
421 {
422 ht_bin[3]=ht_bin[1];
423 ht_bin[2]=ht_bin[0];
424 ht_bin[1]=(int)head->addr;
425 ht_bin[0]=vaddr;
426 }
427 return head->addr;
428 }
429 }
430 head=head->next;
431 }
432 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
433 int r=new_recompile_block(vaddr);
434 if(r==0) return get_addr(vaddr);
435 // Execute in unmapped page, generate pagefault execption
436 Status|=2;
437 Cause=(vaddr<<31)|0x8;
438 EPC=(vaddr&1)?vaddr-5:vaddr;
439 BadVAddr=(vaddr&~1);
440 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
441 EntryHi=BadVAddr&0xFFFFE000;
442 return get_addr_ht(0x80000000);
443}
444// Look up address in hash table first
445void *get_addr_ht(u_int vaddr)
446{
447 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
448 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
449 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
450 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
451 return get_addr(vaddr);
452}
453
454void *get_addr_32(u_int vaddr,u_int flags)
455{
7139f3c8 456#ifdef FORCE32
457 return get_addr(vaddr);
560e4a12 458#else
57871462 459 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
460 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
461 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
462 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 463 u_int page=get_page(vaddr);
464 u_int vpage=get_vpage(vaddr);
57871462 465 struct ll_entry *head;
466 head=jump_in[page];
467 while(head!=NULL) {
468 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
469 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
470 if(head->reg32==0) {
471 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472 if(ht_bin[0]==-1) {
473 ht_bin[1]=(int)head->addr;
474 ht_bin[0]=vaddr;
475 }else if(ht_bin[2]==-1) {
476 ht_bin[3]=(int)head->addr;
477 ht_bin[2]=vaddr;
478 }
479 //ht_bin[3]=ht_bin[1];
480 //ht_bin[2]=ht_bin[0];
481 //ht_bin[1]=(int)head->addr;
482 //ht_bin[0]=vaddr;
483 }
484 return head->addr;
485 }
486 head=head->next;
487 }
488 head=jump_dirty[vpage];
489 while(head!=NULL) {
490 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
491 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
492 // Don't restore blocks which are about to expire from the cache
493 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
494 if(verify_dirty(head->addr)) {
495 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
496 invalid_code[vaddr>>12]=0;
9be4ba64 497 inv_code_start=inv_code_end=~0;
57871462 498 memory_map[vaddr>>12]|=0x40000000;
499 if(vpage<2048) {
94d23bb9 500#ifndef DISABLE_TLB
57871462 501 if(tlb_LUT_r[vaddr>>12]) {
502 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
503 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
504 }
94d23bb9 505#endif
57871462 506 restore_candidate[vpage>>3]|=1<<(vpage&7);
507 }
508 else restore_candidate[page>>3]|=1<<(page&7);
509 if(head->reg32==0) {
510 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
511 if(ht_bin[0]==-1) {
512 ht_bin[1]=(int)head->addr;
513 ht_bin[0]=vaddr;
514 }else if(ht_bin[2]==-1) {
515 ht_bin[3]=(int)head->addr;
516 ht_bin[2]=vaddr;
517 }
518 //ht_bin[3]=ht_bin[1];
519 //ht_bin[2]=ht_bin[0];
520 //ht_bin[1]=(int)head->addr;
521 //ht_bin[0]=vaddr;
522 }
523 return head->addr;
524 }
525 }
526 head=head->next;
527 }
528 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
529 int r=new_recompile_block(vaddr);
530 if(r==0) return get_addr(vaddr);
531 // Execute in unmapped page, generate pagefault execption
532 Status|=2;
533 Cause=(vaddr<<31)|0x8;
534 EPC=(vaddr&1)?vaddr-5:vaddr;
535 BadVAddr=(vaddr&~1);
536 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
537 EntryHi=BadVAddr&0xFFFFE000;
538 return get_addr_ht(0x80000000);
560e4a12 539#endif
57871462 540}
541
542void clear_all_regs(signed char regmap[])
543{
544 int hr;
545 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
546}
547
548signed char get_reg(signed char regmap[],int r)
549{
550 int hr;
551 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
552 return -1;
553}
554
555// Find a register that is available for two consecutive cycles
556signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
557{
558 int hr;
559 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
560 return -1;
561}
562
563int count_free_regs(signed char regmap[])
564{
565 int count=0;
566 int hr;
567 for(hr=0;hr<HOST_REGS;hr++)
568 {
569 if(hr!=EXCLUDE_REG) {
570 if(regmap[hr]<0) count++;
571 }
572 }
573 return count;
574}
575
576void dirty_reg(struct regstat *cur,signed char reg)
577{
578 int hr;
579 if(!reg) return;
580 for (hr=0;hr<HOST_REGS;hr++) {
581 if((cur->regmap[hr]&63)==reg) {
582 cur->dirty|=1<<hr;
583 }
584 }
585}
586
587// If we dirty the lower half of a 64 bit register which is now being
588// sign-extended, we need to dump the upper half.
589// Note: Do this only after completion of the instruction, because
590// some instructions may need to read the full 64-bit value even if
591// overwriting it (eg SLTI, DSRA32).
592static void flush_dirty_uppers(struct regstat *cur)
593{
594 int hr,reg;
595 for (hr=0;hr<HOST_REGS;hr++) {
596 if((cur->dirty>>hr)&1) {
597 reg=cur->regmap[hr];
598 if(reg>=64)
599 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
600 }
601 }
602}
603
604void set_const(struct regstat *cur,signed char reg,uint64_t value)
605{
606 int hr;
607 if(!reg) return;
608 for (hr=0;hr<HOST_REGS;hr++) {
609 if(cur->regmap[hr]==reg) {
610 cur->isconst|=1<<hr;
956f3129 611 current_constmap[hr]=value;
57871462 612 }
613 else if((cur->regmap[hr]^64)==reg) {
614 cur->isconst|=1<<hr;
956f3129 615 current_constmap[hr]=value>>32;
57871462 616 }
617 }
618}
619
620void clear_const(struct regstat *cur,signed char reg)
621{
622 int hr;
623 if(!reg) return;
624 for (hr=0;hr<HOST_REGS;hr++) {
625 if((cur->regmap[hr]&63)==reg) {
626 cur->isconst&=~(1<<hr);
627 }
628 }
629}
630
631int is_const(struct regstat *cur,signed char reg)
632{
633 int hr;
79c75f1b 634 if(reg<0) return 0;
57871462 635 if(!reg) return 1;
636 for (hr=0;hr<HOST_REGS;hr++) {
637 if((cur->regmap[hr]&63)==reg) {
638 return (cur->isconst>>hr)&1;
639 }
640 }
641 return 0;
642}
643uint64_t get_const(struct regstat *cur,signed char reg)
644{
645 int hr;
646 if(!reg) return 0;
647 for (hr=0;hr<HOST_REGS;hr++) {
648 if(cur->regmap[hr]==reg) {
956f3129 649 return current_constmap[hr];
57871462 650 }
651 }
652 printf("Unknown constant in r%d\n",reg);
653 exit(1);
654}
655
656// Least soon needed registers
657// Look at the next ten instructions and see which registers
658// will be used. Try not to reallocate these.
659void lsn(u_char hsn[], int i, int *preferred_reg)
660{
661 int j;
662 int b=-1;
663 for(j=0;j<9;j++)
664 {
665 if(i+j>=slen) {
666 j=slen-i-1;
667 break;
668 }
669 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
670 {
671 // Don't go past an unconditonal jump
672 j++;
673 break;
674 }
675 }
676 for(;j>=0;j--)
677 {
678 if(rs1[i+j]) hsn[rs1[i+j]]=j;
679 if(rs2[i+j]) hsn[rs2[i+j]]=j;
680 if(rt1[i+j]) hsn[rt1[i+j]]=j;
681 if(rt2[i+j]) hsn[rt2[i+j]]=j;
682 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
683 // Stores can allocate zero
684 hsn[rs1[i+j]]=j;
685 hsn[rs2[i+j]]=j;
686 }
687 // On some architectures stores need invc_ptr
688 #if defined(HOST_IMM8)
b9b61529 689 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 690 hsn[INVCP]=j;
691 }
692 #endif
693 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
694 {
695 hsn[CCREG]=j;
696 b=j;
697 }
698 }
699 if(b>=0)
700 {
701 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
702 {
703 // Follow first branch
704 int t=(ba[i+b]-start)>>2;
705 j=7-b;if(t+j>=slen) j=slen-t-1;
706 for(;j>=0;j--)
707 {
708 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
709 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
710 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
711 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
712 }
713 }
714 // TODO: preferred register based on backward branch
715 }
716 // Delay slot should preferably not overwrite branch conditions or cycle count
717 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
718 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
719 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
720 hsn[CCREG]=1;
721 // ...or hash tables
722 hsn[RHASH]=1;
723 hsn[RHTBL]=1;
724 }
725 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 726 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 727 hsn[FTEMP]=0;
728 }
729 // Load L/R also uses FTEMP as a temporary register
730 if(itype[i]==LOADLR) {
731 hsn[FTEMP]=0;
732 }
b7918751 733 // Also SWL/SWR/SDL/SDR
734 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 735 hsn[FTEMP]=0;
736 }
737 // Don't remove the TLB registers either
b9b61529 738 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 739 hsn[TLREG]=0;
740 }
741 // Don't remove the miniht registers
742 if(itype[i]==UJUMP||itype[i]==RJUMP)
743 {
744 hsn[RHASH]=0;
745 hsn[RHTBL]=0;
746 }
747}
748
749// We only want to allocate registers if we're going to use them again soon
750int needed_again(int r, int i)
751{
752 int j;
753 int b=-1;
754 int rn=10;
57871462 755
756 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
757 {
758 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
759 return 0; // Don't need any registers if exiting the block
760 }
761 for(j=0;j<9;j++)
762 {
763 if(i+j>=slen) {
764 j=slen-i-1;
765 break;
766 }
767 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
768 {
769 // Don't go past an unconditonal jump
770 j++;
771 break;
772 }
1e973cb0 773 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 774 {
775 break;
776 }
777 }
778 for(;j>=1;j--)
779 {
780 if(rs1[i+j]==r) rn=j;
781 if(rs2[i+j]==r) rn=j;
782 if((unneeded_reg[i+j]>>r)&1) rn=10;
783 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
784 {
785 b=j;
786 }
787 }
788 /*
789 if(b>=0)
790 {
791 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
792 {
793 // Follow first branch
794 int o=rn;
795 int t=(ba[i+b]-start)>>2;
796 j=7-b;if(t+j>=slen) j=slen-t-1;
797 for(;j>=0;j--)
798 {
799 if(!((unneeded_reg[t+j]>>r)&1)) {
800 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
801 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
802 }
803 else rn=o;
804 }
805 }
806 }*/
b7217e13 807 if(rn<10) return 1;
57871462 808 return 0;
809}
810
811// Try to match register allocations at the end of a loop with those
812// at the beginning
813int loop_reg(int i, int r, int hr)
814{
815 int j,k;
816 for(j=0;j<9;j++)
817 {
818 if(i+j>=slen) {
819 j=slen-i-1;
820 break;
821 }
822 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
823 {
824 // Don't go past an unconditonal jump
825 j++;
826 break;
827 }
828 }
829 k=0;
830 if(i>0){
831 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
832 k--;
833 }
834 for(;k<j;k++)
835 {
836 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
837 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
838 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
839 {
840 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
841 {
842 int t=(ba[i+k]-start)>>2;
843 int reg=get_reg(regs[t].regmap_entry,r);
844 if(reg>=0) return reg;
845 //reg=get_reg(regs[t+1].regmap_entry,r);
846 //if(reg>=0) return reg;
847 }
848 }
849 }
850 return hr;
851}
852
853
854// Allocate every register, preserving source/target regs
855void alloc_all(struct regstat *cur,int i)
856{
857 int hr;
858
859 for(hr=0;hr<HOST_REGS;hr++) {
860 if(hr!=EXCLUDE_REG) {
861 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
862 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
863 {
864 cur->regmap[hr]=-1;
865 cur->dirty&=~(1<<hr);
866 }
867 // Don't need zeros
868 if((cur->regmap[hr]&63)==0)
869 {
870 cur->regmap[hr]=-1;
871 cur->dirty&=~(1<<hr);
872 }
873 }
874 }
875}
876
4600ba03 877#ifndef FORCE32
57871462 878void div64(int64_t dividend,int64_t divisor)
879{
880 lo=dividend/divisor;
881 hi=dividend%divisor;
882 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
883 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
884}
885void divu64(uint64_t dividend,uint64_t divisor)
886{
887 lo=dividend/divisor;
888 hi=dividend%divisor;
889 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
890 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
891}
892
893void mult64(uint64_t m1,uint64_t m2)
894{
895 unsigned long long int op1, op2, op3, op4;
896 unsigned long long int result1, result2, result3, result4;
897 unsigned long long int temp1, temp2, temp3, temp4;
898 int sign = 0;
899
900 if (m1 < 0)
901 {
902 op2 = -m1;
903 sign = 1 - sign;
904 }
905 else op2 = m1;
906 if (m2 < 0)
907 {
908 op4 = -m2;
909 sign = 1 - sign;
910 }
911 else op4 = m2;
912
913 op1 = op2 & 0xFFFFFFFF;
914 op2 = (op2 >> 32) & 0xFFFFFFFF;
915 op3 = op4 & 0xFFFFFFFF;
916 op4 = (op4 >> 32) & 0xFFFFFFFF;
917
918 temp1 = op1 * op3;
919 temp2 = (temp1 >> 32) + op1 * op4;
920 temp3 = op2 * op3;
921 temp4 = (temp3 >> 32) + op2 * op4;
922
923 result1 = temp1 & 0xFFFFFFFF;
924 result2 = temp2 + (temp3 & 0xFFFFFFFF);
925 result3 = (result2 >> 32) + temp4;
926 result4 = (result3 >> 32);
927
928 lo = result1 | (result2 << 32);
929 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
930 if (sign)
931 {
932 hi = ~hi;
933 if (!lo) hi++;
934 else lo = ~lo + 1;
935 }
936}
937
938void multu64(uint64_t m1,uint64_t m2)
939{
940 unsigned long long int op1, op2, op3, op4;
941 unsigned long long int result1, result2, result3, result4;
942 unsigned long long int temp1, temp2, temp3, temp4;
943
944 op1 = m1 & 0xFFFFFFFF;
945 op2 = (m1 >> 32) & 0xFFFFFFFF;
946 op3 = m2 & 0xFFFFFFFF;
947 op4 = (m2 >> 32) & 0xFFFFFFFF;
948
949 temp1 = op1 * op3;
950 temp2 = (temp1 >> 32) + op1 * op4;
951 temp3 = op2 * op3;
952 temp4 = (temp3 >> 32) + op2 * op4;
953
954 result1 = temp1 & 0xFFFFFFFF;
955 result2 = temp2 + (temp3 & 0xFFFFFFFF);
956 result3 = (result2 >> 32) + temp4;
957 result4 = (result3 >> 32);
958
959 lo = result1 | (result2 << 32);
960 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
961
962 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
963 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
964}
965
966uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
967{
968 if(bits) {
969 original<<=64-bits;
970 original>>=64-bits;
971 loaded<<=bits;
972 original|=loaded;
973 }
974 else original=loaded;
975 return original;
976}
977uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
978{
979 if(bits^56) {
980 original>>=64-(bits^56);
981 original<<=64-(bits^56);
982 loaded>>=bits^56;
983 original|=loaded;
984 }
985 else original=loaded;
986 return original;
987}
4600ba03 988#endif
57871462 989
990#ifdef __i386__
991#include "assem_x86.c"
992#endif
993#ifdef __x86_64__
994#include "assem_x64.c"
995#endif
996#ifdef __arm__
997#include "assem_arm.c"
998#endif
999
1000// Add virtual address mapping to linked list
1001void ll_add(struct ll_entry **head,int vaddr,void *addr)
1002{
1003 struct ll_entry *new_entry;
1004 new_entry=malloc(sizeof(struct ll_entry));
1005 assert(new_entry!=NULL);
1006 new_entry->vaddr=vaddr;
1007 new_entry->reg32=0;
1008 new_entry->addr=addr;
1009 new_entry->next=*head;
1010 *head=new_entry;
1011}
1012
1013// Add virtual address mapping for 32-bit compiled block
1014void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1015{
7139f3c8 1016 ll_add(head,vaddr,addr);
1017#ifndef FORCE32
1018 (*head)->reg32=reg32;
1019#endif
57871462 1020}
1021
1022// Check if an address is already compiled
1023// but don't return addresses which are about to expire from the cache
1024void *check_addr(u_int vaddr)
1025{
1026 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1027 if(ht_bin[0]==vaddr) {
1028 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1029 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1030 }
1031 if(ht_bin[2]==vaddr) {
1032 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1033 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1034 }
94d23bb9 1035 u_int page=get_page(vaddr);
57871462 1036 struct ll_entry *head;
1037 head=jump_in[page];
1038 while(head!=NULL) {
1039 if(head->vaddr==vaddr&&head->reg32==0) {
1040 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1041 // Update existing entry with current address
1042 if(ht_bin[0]==vaddr) {
1043 ht_bin[1]=(int)head->addr;
1044 return head->addr;
1045 }
1046 if(ht_bin[2]==vaddr) {
1047 ht_bin[3]=(int)head->addr;
1048 return head->addr;
1049 }
1050 // Insert into hash table with low priority.
1051 // Don't evict existing entries, as they are probably
1052 // addresses that are being accessed frequently.
1053 if(ht_bin[0]==-1) {
1054 ht_bin[1]=(int)head->addr;
1055 ht_bin[0]=vaddr;
1056 }else if(ht_bin[2]==-1) {
1057 ht_bin[3]=(int)head->addr;
1058 ht_bin[2]=vaddr;
1059 }
1060 return head->addr;
1061 }
1062 }
1063 head=head->next;
1064 }
1065 return 0;
1066}
1067
1068void remove_hash(int vaddr)
1069{
1070 //printf("remove hash: %x\n",vaddr);
1071 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1072 if(ht_bin[2]==vaddr) {
1073 ht_bin[2]=ht_bin[3]=-1;
1074 }
1075 if(ht_bin[0]==vaddr) {
1076 ht_bin[0]=ht_bin[2];
1077 ht_bin[1]=ht_bin[3];
1078 ht_bin[2]=ht_bin[3]=-1;
1079 }
1080}
1081
1082void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1083{
1084 struct ll_entry *next;
1085 while(*head) {
1086 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1087 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1088 {
1089 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1090 remove_hash((*head)->vaddr);
1091 next=(*head)->next;
1092 free(*head);
1093 *head=next;
1094 }
1095 else
1096 {
1097 head=&((*head)->next);
1098 }
1099 }
1100}
1101
1102// Remove all entries from linked list
1103void ll_clear(struct ll_entry **head)
1104{
1105 struct ll_entry *cur;
1106 struct ll_entry *next;
1107 if(cur=*head) {
1108 *head=0;
1109 while(cur) {
1110 next=cur->next;
1111 free(cur);
1112 cur=next;
1113 }
1114 }
1115}
1116
1117// Dereference the pointers and remove if it matches
1118void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1119{
1120 while(head) {
1121 int ptr=get_pointer(head->addr);
1122 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1123 if(((ptr>>shift)==(addr>>shift)) ||
1124 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1125 {
5088bb70 1126 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1127 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1128 #ifdef __arm__
1129 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1130 #endif
57871462 1131 }
1132 head=head->next;
1133 }
1134}
1135
1136// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1137void invalidate_page(u_int page)
57871462 1138{
57871462 1139 struct ll_entry *head;
1140 struct ll_entry *next;
1141 head=jump_in[page];
1142 jump_in[page]=0;
1143 while(head!=NULL) {
1144 inv_debug("INVALIDATE: %x\n",head->vaddr);
1145 remove_hash(head->vaddr);
1146 next=head->next;
1147 free(head);
1148 head=next;
1149 }
1150 head=jump_out[page];
1151 jump_out[page]=0;
1152 while(head!=NULL) {
1153 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1154 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1155 #ifdef __arm__
1156 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1157 #endif
57871462 1158 next=head->next;
1159 free(head);
1160 head=next;
1161 }
57871462 1162}
9be4ba64 1163
1164static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1165{
94d23bb9 1166 u_int page=get_page(block<<12);
57871462 1167 //printf("first=%d last=%d\n",first,last);
f76eeef9 1168 invalidate_page(page);
57871462 1169 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1170 assert(last<page+5);
1171 // Invalidate the adjacent pages if a block crosses a 4K boundary
1172 while(first<page) {
1173 invalidate_page(first);
1174 first++;
1175 }
1176 for(first=page+1;first<last;first++) {
1177 invalidate_page(first);
1178 }
dd3a91a1 1179 #ifdef __arm__
1180 do_clear_cache();
1181 #endif
57871462 1182
1183 // Don't trap writes
1184 invalid_code[block]=1;
94d23bb9 1185#ifndef DISABLE_TLB
57871462 1186 // If there is a valid TLB entry for this page, remove write protect
1187 if(tlb_LUT_w[block]) {
1188 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1189 // CHECK: Is this right?
1190 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1191 u_int real_block=tlb_LUT_w[block]>>12;
1192 invalid_code[real_block]=1;
1193 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1194 }
1195 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1196#endif
f76eeef9 1197
57871462 1198 #ifdef USE_MINI_HT
1199 memset(mini_ht,-1,sizeof(mini_ht));
1200 #endif
1201}
9be4ba64 1202
1203void invalidate_block(u_int block)
1204{
1205 u_int page=get_page(block<<12);
1206 u_int vpage=get_vpage(block<<12);
1207 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1208 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1209 u_int first,last;
1210 first=last=page;
1211 struct ll_entry *head;
1212 head=jump_dirty[vpage];
1213 //printf("page=%d vpage=%d\n",page,vpage);
1214 while(head!=NULL) {
1215 u_int start,end;
1216 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1217 get_bounds((int)head->addr,&start,&end);
1218 //printf("start: %x end: %x\n",start,end);
4a35de07 1219 if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
9be4ba64 1220 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1221 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1222 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1223 }
1224 }
1225#ifndef DISABLE_TLB
1226 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1227 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1228 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1229 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1230 }
1231 }
1232#endif
1233 }
1234 head=head->next;
1235 }
1236 invalidate_block_range(block,first,last);
1237}
1238
57871462 1239void invalidate_addr(u_int addr)
1240{
9be4ba64 1241#ifdef PCSX
1242 //static int rhits;
1243 // this check is done by the caller
1244 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
d25604ca 1245 u_int page=get_vpage(addr);
9be4ba64 1246 if(page<2048) { // RAM
1247 struct ll_entry *head;
1248 u_int addr_min=~0, addr_max=0;
4a35de07 1249 u_int mask=RAM_SIZE-1;
1250 u_int addr_main=0x80000000|(addr&mask);
9be4ba64 1251 int pg1;
4a35de07 1252 inv_code_start=addr_main&~0xfff;
1253 inv_code_end=addr_main|0xfff;
9be4ba64 1254 pg1=page;
1255 if (pg1>0) {
1256 // must check previous page too because of spans..
1257 pg1--;
1258 inv_code_start-=0x1000;
1259 }
1260 for(;pg1<=page;pg1++) {
1261 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1262 u_int start,end;
1263 get_bounds((int)head->addr,&start,&end);
4a35de07 1264 if(ram_offset) {
1265 start-=ram_offset;
1266 end-=ram_offset;
1267 }
1268 if(start<=addr_main&&addr_main<end) {
9be4ba64 1269 if(start<addr_min) addr_min=start;
1270 if(end>addr_max) addr_max=end;
1271 }
4a35de07 1272 else if(addr_main<start) {
9be4ba64 1273 if(start<inv_code_end)
1274 inv_code_end=start-1;
1275 }
1276 else {
1277 if(end>inv_code_start)
1278 inv_code_start=end;
1279 }
1280 }
1281 }
1282 if (addr_min!=~0) {
1283 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1284 inv_code_start=inv_code_end=~0;
1285 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1286 return;
1287 }
1288 else {
4a35de07 1289 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1290 inv_code_end=(addr&~mask)|(inv_code_end&mask);
d25604ca 1291 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
9be4ba64 1292 return;
d25604ca 1293 }
9be4ba64 1294 }
1295#endif
57871462 1296 invalidate_block(addr>>12);
1297}
9be4ba64 1298
dd3a91a1 1299// This is called when loading a save state.
1300// Anything could have changed, so invalidate everything.
57871462 1301void invalidate_all_pages()
1302{
1303 u_int page,n;
1304 for(page=0;page<4096;page++)
1305 invalidate_page(page);
1306 for(page=0;page<1048576;page++)
1307 if(!invalid_code[page]) {
1308 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1309 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1310 }
1311 #ifdef __arm__
1312 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1313 #endif
1314 #ifdef USE_MINI_HT
1315 memset(mini_ht,-1,sizeof(mini_ht));
1316 #endif
94d23bb9 1317 #ifndef DISABLE_TLB
57871462 1318 // TLB
1319 for(page=0;page<0x100000;page++) {
1320 if(tlb_LUT_r[page]) {
1321 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1322 if(!tlb_LUT_w[page]||!invalid_code[page])
1323 memory_map[page]|=0x40000000; // Write protect
1324 }
1325 else memory_map[page]=-1;
1326 if(page==0x80000) page=0xC0000;
1327 }
1328 tlb_hacks();
94d23bb9 1329 #endif
57871462 1330}
1331
1332// Add an entry to jump_out after making a link
1333void add_link(u_int vaddr,void *src)
1334{
94d23bb9 1335 u_int page=get_page(vaddr);
57871462 1336 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1337 int *ptr=(int *)(src+4);
1338 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1339 ll_add(jump_out+page,vaddr,src);
1340 //int ptr=get_pointer(src);
1341 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1342}
1343
1344// If a code block was found to be unmodified (bit was set in
1345// restore_candidate) and it remains unmodified (bit is clear
1346// in invalid_code) then move the entries for that 4K page from
1347// the dirty list to the clean list.
1348void clean_blocks(u_int page)
1349{
1350 struct ll_entry *head;
1351 inv_debug("INV: clean_blocks page=%d\n",page);
1352 head=jump_dirty[page];
1353 while(head!=NULL) {
1354 if(!invalid_code[head->vaddr>>12]) {
1355 // Don't restore blocks which are about to expire from the cache
1356 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1357 u_int start,end;
1358 if(verify_dirty((int)head->addr)) {
1359 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1360 u_int i;
1361 u_int inv=0;
1362 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1363 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1364 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1365 inv|=invalid_code[i];
1366 }
1367 }
63cb0298 1368#ifndef DISABLE_TLB
57871462 1369 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1370 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1371 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1372 if(addr<start||addr>=end) inv=1;
1373 }
63cb0298 1374#endif
4cb76aa4 1375 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1376 inv=1;
1377 }
1378 if(!inv) {
1379 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1380 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1381 u_int ppage=page;
94d23bb9 1382#ifndef DISABLE_TLB
57871462 1383 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1384#endif
57871462 1385 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1386 //printf("page=%x, addr=%x\n",page,head->vaddr);
1387 //assert(head->vaddr>>12==(page|0x80000));
1388 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1389 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1390 if(!head->reg32) {
1391 if(ht_bin[0]==head->vaddr) {
1392 ht_bin[1]=(int)clean_addr; // Replace existing entry
1393 }
1394 if(ht_bin[2]==head->vaddr) {
1395 ht_bin[3]=(int)clean_addr; // Replace existing entry
1396 }
1397 }
1398 }
1399 }
1400 }
1401 }
1402 }
1403 head=head->next;
1404 }
1405}
1406
1407
1408void mov_alloc(struct regstat *current,int i)
1409{
1410 // Note: Don't need to actually alloc the source registers
1411 if((~current->is32>>rs1[i])&1) {
1412 //alloc_reg64(current,i,rs1[i]);
1413 alloc_reg64(current,i,rt1[i]);
1414 current->is32&=~(1LL<<rt1[i]);
1415 } else {
1416 //alloc_reg(current,i,rs1[i]);
1417 alloc_reg(current,i,rt1[i]);
1418 current->is32|=(1LL<<rt1[i]);
1419 }
1420 clear_const(current,rs1[i]);
1421 clear_const(current,rt1[i]);
1422 dirty_reg(current,rt1[i]);
1423}
1424
1425void shiftimm_alloc(struct regstat *current,int i)
1426{
57871462 1427 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1428 {
1429 if(rt1[i]) {
1430 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1431 else lt1[i]=rs1[i];
1432 alloc_reg(current,i,rt1[i]);
1433 current->is32|=1LL<<rt1[i];
1434 dirty_reg(current,rt1[i]);
dc49e339 1435 if(is_const(current,rs1[i])) {
1436 int v=get_const(current,rs1[i]);
1437 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1438 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1439 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1440 }
1441 else clear_const(current,rt1[i]);
57871462 1442 }
1443 }
dc49e339 1444 else
1445 {
1446 clear_const(current,rs1[i]);
1447 clear_const(current,rt1[i]);
1448 }
1449
57871462 1450 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1451 {
1452 if(rt1[i]) {
1453 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1454 alloc_reg64(current,i,rt1[i]);
1455 current->is32&=~(1LL<<rt1[i]);
1456 dirty_reg(current,rt1[i]);
1457 }
1458 }
1459 if(opcode2[i]==0x3c) // DSLL32
1460 {
1461 if(rt1[i]) {
1462 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1463 alloc_reg64(current,i,rt1[i]);
1464 current->is32&=~(1LL<<rt1[i]);
1465 dirty_reg(current,rt1[i]);
1466 }
1467 }
1468 if(opcode2[i]==0x3e) // DSRL32
1469 {
1470 if(rt1[i]) {
1471 alloc_reg64(current,i,rs1[i]);
1472 if(imm[i]==32) {
1473 alloc_reg64(current,i,rt1[i]);
1474 current->is32&=~(1LL<<rt1[i]);
1475 } else {
1476 alloc_reg(current,i,rt1[i]);
1477 current->is32|=1LL<<rt1[i];
1478 }
1479 dirty_reg(current,rt1[i]);
1480 }
1481 }
1482 if(opcode2[i]==0x3f) // DSRA32
1483 {
1484 if(rt1[i]) {
1485 alloc_reg64(current,i,rs1[i]);
1486 alloc_reg(current,i,rt1[i]);
1487 current->is32|=1LL<<rt1[i];
1488 dirty_reg(current,rt1[i]);
1489 }
1490 }
1491}
1492
1493void shift_alloc(struct regstat *current,int i)
1494{
1495 if(rt1[i]) {
1496 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1497 {
1498 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1499 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1500 alloc_reg(current,i,rt1[i]);
e1190b87 1501 if(rt1[i]==rs2[i]) {
1502 alloc_reg_temp(current,i,-1);
1503 minimum_free_regs[i]=1;
1504 }
57871462 1505 current->is32|=1LL<<rt1[i];
1506 } else { // DSLLV/DSRLV/DSRAV
1507 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1508 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1509 alloc_reg64(current,i,rt1[i]);
1510 current->is32&=~(1LL<<rt1[i]);
1511 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1512 {
57871462 1513 alloc_reg_temp(current,i,-1);
e1190b87 1514 minimum_free_regs[i]=1;
1515 }
57871462 1516 }
1517 clear_const(current,rs1[i]);
1518 clear_const(current,rs2[i]);
1519 clear_const(current,rt1[i]);
1520 dirty_reg(current,rt1[i]);
1521 }
1522}
1523
1524void alu_alloc(struct regstat *current,int i)
1525{
1526 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1527 if(rt1[i]) {
1528 if(rs1[i]&&rs2[i]) {
1529 alloc_reg(current,i,rs1[i]);
1530 alloc_reg(current,i,rs2[i]);
1531 }
1532 else {
1533 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1534 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1535 }
1536 alloc_reg(current,i,rt1[i]);
1537 }
1538 current->is32|=1LL<<rt1[i];
1539 }
1540 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1541 if(rt1[i]) {
1542 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1543 {
1544 alloc_reg64(current,i,rs1[i]);
1545 alloc_reg64(current,i,rs2[i]);
1546 alloc_reg(current,i,rt1[i]);
1547 } else {
1548 alloc_reg(current,i,rs1[i]);
1549 alloc_reg(current,i,rs2[i]);
1550 alloc_reg(current,i,rt1[i]);
1551 }
1552 }
1553 current->is32|=1LL<<rt1[i];
1554 }
1555 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1556 if(rt1[i]) {
1557 if(rs1[i]&&rs2[i]) {
1558 alloc_reg(current,i,rs1[i]);
1559 alloc_reg(current,i,rs2[i]);
1560 }
1561 else
1562 {
1563 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1564 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1565 }
1566 alloc_reg(current,i,rt1[i]);
1567 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1568 {
1569 if(!((current->uu>>rt1[i])&1)) {
1570 alloc_reg64(current,i,rt1[i]);
1571 }
1572 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1573 if(rs1[i]&&rs2[i]) {
1574 alloc_reg64(current,i,rs1[i]);
1575 alloc_reg64(current,i,rs2[i]);
1576 }
1577 else
1578 {
1579 // Is is really worth it to keep 64-bit values in registers?
1580 #ifdef NATIVE_64BIT
1581 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1582 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1583 #endif
1584 }
1585 }
1586 current->is32&=~(1LL<<rt1[i]);
1587 } else {
1588 current->is32|=1LL<<rt1[i];
1589 }
1590 }
1591 }
1592 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1593 if(rt1[i]) {
1594 if(rs1[i]&&rs2[i]) {
1595 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1596 alloc_reg64(current,i,rs1[i]);
1597 alloc_reg64(current,i,rs2[i]);
1598 alloc_reg64(current,i,rt1[i]);
1599 } else {
1600 alloc_reg(current,i,rs1[i]);
1601 alloc_reg(current,i,rs2[i]);
1602 alloc_reg(current,i,rt1[i]);
1603 }
1604 }
1605 else {
1606 alloc_reg(current,i,rt1[i]);
1607 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1608 // DADD used as move, or zeroing
1609 // If we have a 64-bit source, then make the target 64 bits too
1610 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1611 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1612 alloc_reg64(current,i,rt1[i]);
1613 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1614 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1615 alloc_reg64(current,i,rt1[i]);
1616 }
1617 if(opcode2[i]>=0x2e&&rs2[i]) {
1618 // DSUB used as negation - 64-bit result
1619 // If we have a 32-bit register, extend it to 64 bits
1620 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1621 alloc_reg64(current,i,rt1[i]);
1622 }
1623 }
1624 }
1625 if(rs1[i]&&rs2[i]) {
1626 current->is32&=~(1LL<<rt1[i]);
1627 } else if(rs1[i]) {
1628 current->is32&=~(1LL<<rt1[i]);
1629 if((current->is32>>rs1[i])&1)
1630 current->is32|=1LL<<rt1[i];
1631 } else if(rs2[i]) {
1632 current->is32&=~(1LL<<rt1[i]);
1633 if((current->is32>>rs2[i])&1)
1634 current->is32|=1LL<<rt1[i];
1635 } else {
1636 current->is32|=1LL<<rt1[i];
1637 }
1638 }
1639 }
1640 clear_const(current,rs1[i]);
1641 clear_const(current,rs2[i]);
1642 clear_const(current,rt1[i]);
1643 dirty_reg(current,rt1[i]);
1644}
1645
1646void imm16_alloc(struct regstat *current,int i)
1647{
1648 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1649 else lt1[i]=rs1[i];
1650 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1651 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1652 current->is32&=~(1LL<<rt1[i]);
1653 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1654 // TODO: Could preserve the 32-bit flag if the immediate is zero
1655 alloc_reg64(current,i,rt1[i]);
1656 alloc_reg64(current,i,rs1[i]);
1657 }
1658 clear_const(current,rs1[i]);
1659 clear_const(current,rt1[i]);
1660 }
1661 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1662 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1663 current->is32|=1LL<<rt1[i];
1664 clear_const(current,rs1[i]);
1665 clear_const(current,rt1[i]);
1666 }
1667 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1668 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1669 if(rs1[i]!=rt1[i]) {
1670 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1671 alloc_reg64(current,i,rt1[i]);
1672 current->is32&=~(1LL<<rt1[i]);
1673 }
1674 }
1675 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1676 if(is_const(current,rs1[i])) {
1677 int v=get_const(current,rs1[i]);
1678 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1679 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1680 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1681 }
1682 else clear_const(current,rt1[i]);
1683 }
1684 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1685 if(is_const(current,rs1[i])) {
1686 int v=get_const(current,rs1[i]);
1687 set_const(current,rt1[i],v+imm[i]);
1688 }
1689 else clear_const(current,rt1[i]);
1690 current->is32|=1LL<<rt1[i];
1691 }
1692 else {
1693 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1694 current->is32|=1LL<<rt1[i];
1695 }
1696 dirty_reg(current,rt1[i]);
1697}
1698
1699void load_alloc(struct regstat *current,int i)
1700{
1701 clear_const(current,rt1[i]);
1702 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1703 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1704 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1705 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1706 alloc_reg(current,i,rt1[i]);
373d1d07 1707 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1708 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1709 {
1710 current->is32&=~(1LL<<rt1[i]);
1711 alloc_reg64(current,i,rt1[i]);
1712 }
1713 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1714 {
1715 current->is32&=~(1LL<<rt1[i]);
1716 alloc_reg64(current,i,rt1[i]);
1717 alloc_all(current,i);
1718 alloc_reg64(current,i,FTEMP);
e1190b87 1719 minimum_free_regs[i]=HOST_REGS;
57871462 1720 }
1721 else current->is32|=1LL<<rt1[i];
1722 dirty_reg(current,rt1[i]);
1723 // If using TLB, need a register for pointer to the mapping table
1724 if(using_tlb) alloc_reg(current,i,TLREG);
1725 // LWL/LWR need a temporary register for the old value
1726 if(opcode[i]==0x22||opcode[i]==0x26)
1727 {
1728 alloc_reg(current,i,FTEMP);
1729 alloc_reg_temp(current,i,-1);
e1190b87 1730 minimum_free_regs[i]=1;
57871462 1731 }
1732 }
1733 else
1734 {
373d1d07 1735 // Load to r0 or unneeded register (dummy load)
57871462 1736 // but we still need a register to calculate the address
535d208a 1737 if(opcode[i]==0x22||opcode[i]==0x26)
1738 {
1739 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1740 }
373d1d07 1741 // If using TLB, need a register for pointer to the mapping table
1742 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1743 alloc_reg_temp(current,i,-1);
e1190b87 1744 minimum_free_regs[i]=1;
535d208a 1745 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1746 {
1747 alloc_all(current,i);
1748 alloc_reg64(current,i,FTEMP);
e1190b87 1749 minimum_free_regs[i]=HOST_REGS;
535d208a 1750 }
57871462 1751 }
1752}
1753
1754void store_alloc(struct regstat *current,int i)
1755{
1756 clear_const(current,rs2[i]);
1757 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1758 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1759 alloc_reg(current,i,rs2[i]);
1760 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1761 alloc_reg64(current,i,rs2[i]);
1762 if(rs2[i]) alloc_reg(current,i,FTEMP);
1763 }
1764 // If using TLB, need a register for pointer to the mapping table
1765 if(using_tlb) alloc_reg(current,i,TLREG);
1766 #if defined(HOST_IMM8)
1767 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1768 else alloc_reg(current,i,INVCP);
1769 #endif
b7918751 1770 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1771 alloc_reg(current,i,FTEMP);
1772 }
1773 // We need a temporary register for address generation
1774 alloc_reg_temp(current,i,-1);
e1190b87 1775 minimum_free_regs[i]=1;
57871462 1776}
1777
1778void c1ls_alloc(struct regstat *current,int i)
1779{
1780 //clear_const(current,rs1[i]); // FIXME
1781 clear_const(current,rt1[i]);
1782 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1783 alloc_reg(current,i,CSREG); // Status
1784 alloc_reg(current,i,FTEMP);
1785 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1786 alloc_reg64(current,i,FTEMP);
1787 }
1788 // If using TLB, need a register for pointer to the mapping table
1789 if(using_tlb) alloc_reg(current,i,TLREG);
1790 #if defined(HOST_IMM8)
1791 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1792 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1793 alloc_reg(current,i,INVCP);
1794 #endif
1795 // We need a temporary register for address generation
1796 alloc_reg_temp(current,i,-1);
1797}
1798
b9b61529 1799void c2ls_alloc(struct regstat *current,int i)
1800{
1801 clear_const(current,rt1[i]);
1802 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1803 alloc_reg(current,i,FTEMP);
1804 // If using TLB, need a register for pointer to the mapping table
1805 if(using_tlb) alloc_reg(current,i,TLREG);
1806 #if defined(HOST_IMM8)
1807 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1808 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1809 alloc_reg(current,i,INVCP);
1810 #endif
1811 // We need a temporary register for address generation
1812 alloc_reg_temp(current,i,-1);
e1190b87 1813 minimum_free_regs[i]=1;
b9b61529 1814}
1815
57871462 1816#ifndef multdiv_alloc
1817void multdiv_alloc(struct regstat *current,int i)
1818{
1819 // case 0x18: MULT
1820 // case 0x19: MULTU
1821 // case 0x1A: DIV
1822 // case 0x1B: DIVU
1823 // case 0x1C: DMULT
1824 // case 0x1D: DMULTU
1825 // case 0x1E: DDIV
1826 // case 0x1F: DDIVU
1827 clear_const(current,rs1[i]);
1828 clear_const(current,rs2[i]);
1829 if(rs1[i]&&rs2[i])
1830 {
1831 if((opcode2[i]&4)==0) // 32-bit
1832 {
1833 current->u&=~(1LL<<HIREG);
1834 current->u&=~(1LL<<LOREG);
1835 alloc_reg(current,i,HIREG);
1836 alloc_reg(current,i,LOREG);
1837 alloc_reg(current,i,rs1[i]);
1838 alloc_reg(current,i,rs2[i]);
1839 current->is32|=1LL<<HIREG;
1840 current->is32|=1LL<<LOREG;
1841 dirty_reg(current,HIREG);
1842 dirty_reg(current,LOREG);
1843 }
1844 else // 64-bit
1845 {
1846 current->u&=~(1LL<<HIREG);
1847 current->u&=~(1LL<<LOREG);
1848 current->uu&=~(1LL<<HIREG);
1849 current->uu&=~(1LL<<LOREG);
1850 alloc_reg64(current,i,HIREG);
1851 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1852 alloc_reg64(current,i,rs1[i]);
1853 alloc_reg64(current,i,rs2[i]);
1854 alloc_all(current,i);
1855 current->is32&=~(1LL<<HIREG);
1856 current->is32&=~(1LL<<LOREG);
1857 dirty_reg(current,HIREG);
1858 dirty_reg(current,LOREG);
e1190b87 1859 minimum_free_regs[i]=HOST_REGS;
57871462 1860 }
1861 }
1862 else
1863 {
1864 // Multiply by zero is zero.
1865 // MIPS does not have a divide by zero exception.
1866 // The result is undefined, we return zero.
1867 alloc_reg(current,i,HIREG);
1868 alloc_reg(current,i,LOREG);
1869 current->is32|=1LL<<HIREG;
1870 current->is32|=1LL<<LOREG;
1871 dirty_reg(current,HIREG);
1872 dirty_reg(current,LOREG);
1873 }
1874}
1875#endif
1876
1877void cop0_alloc(struct regstat *current,int i)
1878{
1879 if(opcode2[i]==0) // MFC0
1880 {
1881 if(rt1[i]) {
1882 clear_const(current,rt1[i]);
1883 alloc_all(current,i);
1884 alloc_reg(current,i,rt1[i]);
1885 current->is32|=1LL<<rt1[i];
1886 dirty_reg(current,rt1[i]);
1887 }
1888 }
1889 else if(opcode2[i]==4) // MTC0
1890 {
1891 if(rs1[i]){
1892 clear_const(current,rs1[i]);
1893 alloc_reg(current,i,rs1[i]);
1894 alloc_all(current,i);
1895 }
1896 else {
1897 alloc_all(current,i); // FIXME: Keep r0
1898 current->u&=~1LL;
1899 alloc_reg(current,i,0);
1900 }
1901 }
1902 else
1903 {
1904 // TLBR/TLBWI/TLBWR/TLBP/ERET
1905 assert(opcode2[i]==0x10);
1906 alloc_all(current,i);
1907 }
e1190b87 1908 minimum_free_regs[i]=HOST_REGS;
57871462 1909}
1910
1911void cop1_alloc(struct regstat *current,int i)
1912{
1913 alloc_reg(current,i,CSREG); // Load status
1914 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1915 {
7de557a6 1916 if(rt1[i]){
1917 clear_const(current,rt1[i]);
1918 if(opcode2[i]==1) {
1919 alloc_reg64(current,i,rt1[i]); // DMFC1
1920 current->is32&=~(1LL<<rt1[i]);
1921 }else{
1922 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1923 current->is32|=1LL<<rt1[i];
1924 }
1925 dirty_reg(current,rt1[i]);
57871462 1926 }
57871462 1927 alloc_reg_temp(current,i,-1);
1928 }
1929 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1930 {
1931 if(rs1[i]){
1932 clear_const(current,rs1[i]);
1933 if(opcode2[i]==5)
1934 alloc_reg64(current,i,rs1[i]); // DMTC1
1935 else
1936 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1937 alloc_reg_temp(current,i,-1);
1938 }
1939 else {
1940 current->u&=~1LL;
1941 alloc_reg(current,i,0);
1942 alloc_reg_temp(current,i,-1);
1943 }
1944 }
e1190b87 1945 minimum_free_regs[i]=1;
57871462 1946}
1947void fconv_alloc(struct regstat *current,int i)
1948{
1949 alloc_reg(current,i,CSREG); // Load status
1950 alloc_reg_temp(current,i,-1);
e1190b87 1951 minimum_free_regs[i]=1;
57871462 1952}
1953void float_alloc(struct regstat *current,int i)
1954{
1955 alloc_reg(current,i,CSREG); // Load status
1956 alloc_reg_temp(current,i,-1);
e1190b87 1957 minimum_free_regs[i]=1;
57871462 1958}
b9b61529 1959void c2op_alloc(struct regstat *current,int i)
1960{
1961 alloc_reg_temp(current,i,-1);
1962}
57871462 1963void fcomp_alloc(struct regstat *current,int i)
1964{
1965 alloc_reg(current,i,CSREG); // Load status
1966 alloc_reg(current,i,FSREG); // Load flags
1967 dirty_reg(current,FSREG); // Flag will be modified
1968 alloc_reg_temp(current,i,-1);
e1190b87 1969 minimum_free_regs[i]=1;
57871462 1970}
1971
1972void syscall_alloc(struct regstat *current,int i)
1973{
1974 alloc_cc(current,i);
1975 dirty_reg(current,CCREG);
1976 alloc_all(current,i);
e1190b87 1977 minimum_free_regs[i]=HOST_REGS;
57871462 1978 current->isconst=0;
1979}
1980
1981void delayslot_alloc(struct regstat *current,int i)
1982{
1983 switch(itype[i]) {
1984 case UJUMP:
1985 case CJUMP:
1986 case SJUMP:
1987 case RJUMP:
1988 case FJUMP:
1989 case SYSCALL:
7139f3c8 1990 case HLECALL:
57871462 1991 case SPAN:
1992 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1993 printf("Disabled speculative precompilation\n");
1994 stop_after_jal=1;
1995 break;
1996 case IMM16:
1997 imm16_alloc(current,i);
1998 break;
1999 case LOAD:
2000 case LOADLR:
2001 load_alloc(current,i);
2002 break;
2003 case STORE:
2004 case STORELR:
2005 store_alloc(current,i);
2006 break;
2007 case ALU:
2008 alu_alloc(current,i);
2009 break;
2010 case SHIFT:
2011 shift_alloc(current,i);
2012 break;
2013 case MULTDIV:
2014 multdiv_alloc(current,i);
2015 break;
2016 case SHIFTIMM:
2017 shiftimm_alloc(current,i);
2018 break;
2019 case MOV:
2020 mov_alloc(current,i);
2021 break;
2022 case COP0:
2023 cop0_alloc(current,i);
2024 break;
2025 case COP1:
b9b61529 2026 case COP2:
57871462 2027 cop1_alloc(current,i);
2028 break;
2029 case C1LS:
2030 c1ls_alloc(current,i);
2031 break;
b9b61529 2032 case C2LS:
2033 c2ls_alloc(current,i);
2034 break;
57871462 2035 case FCONV:
2036 fconv_alloc(current,i);
2037 break;
2038 case FLOAT:
2039 float_alloc(current,i);
2040 break;
2041 case FCOMP:
2042 fcomp_alloc(current,i);
2043 break;
b9b61529 2044 case C2OP:
2045 c2op_alloc(current,i);
2046 break;
57871462 2047 }
2048}
2049
2050// Special case where a branch and delay slot span two pages in virtual memory
2051static void pagespan_alloc(struct regstat *current,int i)
2052{
2053 current->isconst=0;
2054 current->wasconst=0;
2055 regs[i].wasconst=0;
e1190b87 2056 minimum_free_regs[i]=HOST_REGS;
57871462 2057 alloc_all(current,i);
2058 alloc_cc(current,i);
2059 dirty_reg(current,CCREG);
2060 if(opcode[i]==3) // JAL
2061 {
2062 alloc_reg(current,i,31);
2063 dirty_reg(current,31);
2064 }
2065 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2066 {
2067 alloc_reg(current,i,rs1[i]);
5067f341 2068 if (rt1[i]!=0) {
2069 alloc_reg(current,i,rt1[i]);
2070 dirty_reg(current,rt1[i]);
57871462 2071 }
2072 }
2073 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2074 {
2075 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2076 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2077 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2078 {
2079 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2080 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2081 }
2082 }
2083 else
2084 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2085 {
2086 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2087 if(!((current->is32>>rs1[i])&1))
2088 {
2089 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2090 }
2091 }
2092 else
2093 if(opcode[i]==0x11) // BC1
2094 {
2095 alloc_reg(current,i,FSREG);
2096 alloc_reg(current,i,CSREG);
2097 }
2098 //else ...
2099}
2100
2101add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2102{
2103 stubs[stubcount][0]=type;
2104 stubs[stubcount][1]=addr;
2105 stubs[stubcount][2]=retaddr;
2106 stubs[stubcount][3]=a;
2107 stubs[stubcount][4]=b;
2108 stubs[stubcount][5]=c;
2109 stubs[stubcount][6]=d;
2110 stubs[stubcount][7]=e;
2111 stubcount++;
2112}
2113
2114// Write out a single register
2115void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2116{
2117 int hr;
2118 for(hr=0;hr<HOST_REGS;hr++) {
2119 if(hr!=EXCLUDE_REG) {
2120 if((regmap[hr]&63)==r) {
2121 if((dirty>>hr)&1) {
2122 if(regmap[hr]<64) {
2123 emit_storereg(r,hr);
24385cae 2124#ifndef FORCE32
57871462 2125 if((is32>>regmap[hr])&1) {
2126 emit_sarimm(hr,31,hr);
2127 emit_storereg(r|64,hr);
2128 }
24385cae 2129#endif
57871462 2130 }else{
2131 emit_storereg(r|64,hr);
2132 }
2133 }
2134 }
2135 }
2136 }
2137}
2138
2139int mchecksum()
2140{
2141 //if(!tracedebug) return 0;
2142 int i;
2143 int sum=0;
2144 for(i=0;i<2097152;i++) {
2145 unsigned int temp=sum;
2146 sum<<=1;
2147 sum|=(~temp)>>31;
2148 sum^=((u_int *)rdram)[i];
2149 }
2150 return sum;
2151}
2152int rchecksum()
2153{
2154 int i;
2155 int sum=0;
2156 for(i=0;i<64;i++)
2157 sum^=((u_int *)reg)[i];
2158 return sum;
2159}
57871462 2160void rlist()
2161{
2162 int i;
2163 printf("TRACE: ");
2164 for(i=0;i<32;i++)
2165 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2166 printf("\n");
3d624f89 2167#ifndef DISABLE_COP1
57871462 2168 printf("TRACE: ");
2169 for(i=0;i<32;i++)
2170 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2171 printf("\n");
3d624f89 2172#endif
57871462 2173}
2174
2175void enabletrace()
2176{
2177 tracedebug=1;
2178}
2179
2180void memdebug(int i)
2181{
2182 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2183 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2184 //rlist();
2185 //if(tracedebug) {
2186 //if(Count>=-2084597794) {
2187 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2188 //if(0) {
2189 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2190 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2191 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2192 rlist();
2193 #ifdef __i386__
2194 printf("TRACE: %x\n",(&i)[-1]);
2195 #endif
2196 #ifdef __arm__
2197 int j;
2198 printf("TRACE: %x \n",(&j)[10]);
2199 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2200 #endif
2201 //fflush(stdout);
2202 }
2203 //printf("TRACE: %x\n",(&i)[-1]);
2204}
2205
2206void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2207{
2208 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2209}
2210
2211void alu_assemble(int i,struct regstat *i_regs)
2212{
2213 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2214 if(rt1[i]) {
2215 signed char s1,s2,t;
2216 t=get_reg(i_regs->regmap,rt1[i]);
2217 if(t>=0) {
2218 s1=get_reg(i_regs->regmap,rs1[i]);
2219 s2=get_reg(i_regs->regmap,rs2[i]);
2220 if(rs1[i]&&rs2[i]) {
2221 assert(s1>=0);
2222 assert(s2>=0);
2223 if(opcode2[i]&2) emit_sub(s1,s2,t);
2224 else emit_add(s1,s2,t);
2225 }
2226 else if(rs1[i]) {
2227 if(s1>=0) emit_mov(s1,t);
2228 else emit_loadreg(rs1[i],t);
2229 }
2230 else if(rs2[i]) {
2231 if(s2>=0) {
2232 if(opcode2[i]&2) emit_neg(s2,t);
2233 else emit_mov(s2,t);
2234 }
2235 else {
2236 emit_loadreg(rs2[i],t);
2237 if(opcode2[i]&2) emit_neg(t,t);
2238 }
2239 }
2240 else emit_zeroreg(t);
2241 }
2242 }
2243 }
2244 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2245 if(rt1[i]) {
2246 signed char s1l,s2l,s1h,s2h,tl,th;
2247 tl=get_reg(i_regs->regmap,rt1[i]);
2248 th=get_reg(i_regs->regmap,rt1[i]|64);
2249 if(tl>=0) {
2250 s1l=get_reg(i_regs->regmap,rs1[i]);
2251 s2l=get_reg(i_regs->regmap,rs2[i]);
2252 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2253 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2254 if(rs1[i]&&rs2[i]) {
2255 assert(s1l>=0);
2256 assert(s2l>=0);
2257 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2258 else emit_adds(s1l,s2l,tl);
2259 if(th>=0) {
2260 #ifdef INVERTED_CARRY
2261 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2262 #else
2263 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2264 #endif
2265 else emit_add(s1h,s2h,th);
2266 }
2267 }
2268 else if(rs1[i]) {
2269 if(s1l>=0) emit_mov(s1l,tl);
2270 else emit_loadreg(rs1[i],tl);
2271 if(th>=0) {
2272 if(s1h>=0) emit_mov(s1h,th);
2273 else emit_loadreg(rs1[i]|64,th);
2274 }
2275 }
2276 else if(rs2[i]) {
2277 if(s2l>=0) {
2278 if(opcode2[i]&2) emit_negs(s2l,tl);
2279 else emit_mov(s2l,tl);
2280 }
2281 else {
2282 emit_loadreg(rs2[i],tl);
2283 if(opcode2[i]&2) emit_negs(tl,tl);
2284 }
2285 if(th>=0) {
2286 #ifdef INVERTED_CARRY
2287 if(s2h>=0) emit_mov(s2h,th);
2288 else emit_loadreg(rs2[i]|64,th);
2289 if(opcode2[i]&2) {
2290 emit_adcimm(-1,th); // x86 has inverted carry flag
2291 emit_not(th,th);
2292 }
2293 #else
2294 if(opcode2[i]&2) {
2295 if(s2h>=0) emit_rscimm(s2h,0,th);
2296 else {
2297 emit_loadreg(rs2[i]|64,th);
2298 emit_rscimm(th,0,th);
2299 }
2300 }else{
2301 if(s2h>=0) emit_mov(s2h,th);
2302 else emit_loadreg(rs2[i]|64,th);
2303 }
2304 #endif
2305 }
2306 }
2307 else {
2308 emit_zeroreg(tl);
2309 if(th>=0) emit_zeroreg(th);
2310 }
2311 }
2312 }
2313 }
2314 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2315 if(rt1[i]) {
2316 signed char s1l,s1h,s2l,s2h,t;
2317 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2318 {
2319 t=get_reg(i_regs->regmap,rt1[i]);
2320 //assert(t>=0);
2321 if(t>=0) {
2322 s1l=get_reg(i_regs->regmap,rs1[i]);
2323 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2324 s2l=get_reg(i_regs->regmap,rs2[i]);
2325 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2326 if(rs2[i]==0) // rx<r0
2327 {
2328 assert(s1h>=0);
2329 if(opcode2[i]==0x2a) // SLT
2330 emit_shrimm(s1h,31,t);
2331 else // SLTU (unsigned can not be less than zero)
2332 emit_zeroreg(t);
2333 }
2334 else if(rs1[i]==0) // r0<rx
2335 {
2336 assert(s2h>=0);
2337 if(opcode2[i]==0x2a) // SLT
2338 emit_set_gz64_32(s2h,s2l,t);
2339 else // SLTU (set if not zero)
2340 emit_set_nz64_32(s2h,s2l,t);
2341 }
2342 else {
2343 assert(s1l>=0);assert(s1h>=0);
2344 assert(s2l>=0);assert(s2h>=0);
2345 if(opcode2[i]==0x2a) // SLT
2346 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2347 else // SLTU
2348 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2349 }
2350 }
2351 } else {
2352 t=get_reg(i_regs->regmap,rt1[i]);
2353 //assert(t>=0);
2354 if(t>=0) {
2355 s1l=get_reg(i_regs->regmap,rs1[i]);
2356 s2l=get_reg(i_regs->regmap,rs2[i]);
2357 if(rs2[i]==0) // rx<r0
2358 {
2359 assert(s1l>=0);
2360 if(opcode2[i]==0x2a) // SLT
2361 emit_shrimm(s1l,31,t);
2362 else // SLTU (unsigned can not be less than zero)
2363 emit_zeroreg(t);
2364 }
2365 else if(rs1[i]==0) // r0<rx
2366 {
2367 assert(s2l>=0);
2368 if(opcode2[i]==0x2a) // SLT
2369 emit_set_gz32(s2l,t);
2370 else // SLTU (set if not zero)
2371 emit_set_nz32(s2l,t);
2372 }
2373 else{
2374 assert(s1l>=0);assert(s2l>=0);
2375 if(opcode2[i]==0x2a) // SLT
2376 emit_set_if_less32(s1l,s2l,t);
2377 else // SLTU
2378 emit_set_if_carry32(s1l,s2l,t);
2379 }
2380 }
2381 }
2382 }
2383 }
2384 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2385 if(rt1[i]) {
2386 signed char s1l,s1h,s2l,s2h,th,tl;
2387 tl=get_reg(i_regs->regmap,rt1[i]);
2388 th=get_reg(i_regs->regmap,rt1[i]|64);
2389 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2390 {
2391 assert(tl>=0);
2392 if(tl>=0) {
2393 s1l=get_reg(i_regs->regmap,rs1[i]);
2394 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2395 s2l=get_reg(i_regs->regmap,rs2[i]);
2396 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2397 if(rs1[i]&&rs2[i]) {
2398 assert(s1l>=0);assert(s1h>=0);
2399 assert(s2l>=0);assert(s2h>=0);
2400 if(opcode2[i]==0x24) { // AND
2401 emit_and(s1l,s2l,tl);
2402 emit_and(s1h,s2h,th);
2403 } else
2404 if(opcode2[i]==0x25) { // OR
2405 emit_or(s1l,s2l,tl);
2406 emit_or(s1h,s2h,th);
2407 } else
2408 if(opcode2[i]==0x26) { // XOR
2409 emit_xor(s1l,s2l,tl);
2410 emit_xor(s1h,s2h,th);
2411 } else
2412 if(opcode2[i]==0x27) { // NOR
2413 emit_or(s1l,s2l,tl);
2414 emit_or(s1h,s2h,th);
2415 emit_not(tl,tl);
2416 emit_not(th,th);
2417 }
2418 }
2419 else
2420 {
2421 if(opcode2[i]==0x24) { // AND
2422 emit_zeroreg(tl);
2423 emit_zeroreg(th);
2424 } else
2425 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2426 if(rs1[i]){
2427 if(s1l>=0) emit_mov(s1l,tl);
2428 else emit_loadreg(rs1[i],tl);
2429 if(s1h>=0) emit_mov(s1h,th);
2430 else emit_loadreg(rs1[i]|64,th);
2431 }
2432 else
2433 if(rs2[i]){
2434 if(s2l>=0) emit_mov(s2l,tl);
2435 else emit_loadreg(rs2[i],tl);
2436 if(s2h>=0) emit_mov(s2h,th);
2437 else emit_loadreg(rs2[i]|64,th);
2438 }
2439 else{
2440 emit_zeroreg(tl);
2441 emit_zeroreg(th);
2442 }
2443 } else
2444 if(opcode2[i]==0x27) { // NOR
2445 if(rs1[i]){
2446 if(s1l>=0) emit_not(s1l,tl);
2447 else{
2448 emit_loadreg(rs1[i],tl);
2449 emit_not(tl,tl);
2450 }
2451 if(s1h>=0) emit_not(s1h,th);
2452 else{
2453 emit_loadreg(rs1[i]|64,th);
2454 emit_not(th,th);
2455 }
2456 }
2457 else
2458 if(rs2[i]){
2459 if(s2l>=0) emit_not(s2l,tl);
2460 else{
2461 emit_loadreg(rs2[i],tl);
2462 emit_not(tl,tl);
2463 }
2464 if(s2h>=0) emit_not(s2h,th);
2465 else{
2466 emit_loadreg(rs2[i]|64,th);
2467 emit_not(th,th);
2468 }
2469 }
2470 else {
2471 emit_movimm(-1,tl);
2472 emit_movimm(-1,th);
2473 }
2474 }
2475 }
2476 }
2477 }
2478 else
2479 {
2480 // 32 bit
2481 if(tl>=0) {
2482 s1l=get_reg(i_regs->regmap,rs1[i]);
2483 s2l=get_reg(i_regs->regmap,rs2[i]);
2484 if(rs1[i]&&rs2[i]) {
2485 assert(s1l>=0);
2486 assert(s2l>=0);
2487 if(opcode2[i]==0x24) { // AND
2488 emit_and(s1l,s2l,tl);
2489 } else
2490 if(opcode2[i]==0x25) { // OR
2491 emit_or(s1l,s2l,tl);
2492 } else
2493 if(opcode2[i]==0x26) { // XOR
2494 emit_xor(s1l,s2l,tl);
2495 } else
2496 if(opcode2[i]==0x27) { // NOR
2497 emit_or(s1l,s2l,tl);
2498 emit_not(tl,tl);
2499 }
2500 }
2501 else
2502 {
2503 if(opcode2[i]==0x24) { // AND
2504 emit_zeroreg(tl);
2505 } else
2506 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2507 if(rs1[i]){
2508 if(s1l>=0) emit_mov(s1l,tl);
2509 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2510 }
2511 else
2512 if(rs2[i]){
2513 if(s2l>=0) emit_mov(s2l,tl);
2514 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2515 }
2516 else emit_zeroreg(tl);
2517 } else
2518 if(opcode2[i]==0x27) { // NOR
2519 if(rs1[i]){
2520 if(s1l>=0) emit_not(s1l,tl);
2521 else {
2522 emit_loadreg(rs1[i],tl);
2523 emit_not(tl,tl);
2524 }
2525 }
2526 else
2527 if(rs2[i]){
2528 if(s2l>=0) emit_not(s2l,tl);
2529 else {
2530 emit_loadreg(rs2[i],tl);
2531 emit_not(tl,tl);
2532 }
2533 }
2534 else emit_movimm(-1,tl);
2535 }
2536 }
2537 }
2538 }
2539 }
2540 }
2541}
2542
2543void imm16_assemble(int i,struct regstat *i_regs)
2544{
2545 if (opcode[i]==0x0f) { // LUI
2546 if(rt1[i]) {
2547 signed char t;
2548 t=get_reg(i_regs->regmap,rt1[i]);
2549 //assert(t>=0);
2550 if(t>=0) {
2551 if(!((i_regs->isconst>>t)&1))
2552 emit_movimm(imm[i]<<16,t);
2553 }
2554 }
2555 }
2556 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2557 if(rt1[i]) {
2558 signed char s,t;
2559 t=get_reg(i_regs->regmap,rt1[i]);
2560 s=get_reg(i_regs->regmap,rs1[i]);
2561 if(rs1[i]) {
2562 //assert(t>=0);
2563 //assert(s>=0);
2564 if(t>=0) {
2565 if(!((i_regs->isconst>>t)&1)) {
2566 if(s<0) {
2567 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2568 emit_addimm(t,imm[i],t);
2569 }else{
2570 if(!((i_regs->wasconst>>s)&1))
2571 emit_addimm(s,imm[i],t);
2572 else
2573 emit_movimm(constmap[i][s]+imm[i],t);
2574 }
2575 }
2576 }
2577 } else {
2578 if(t>=0) {
2579 if(!((i_regs->isconst>>t)&1))
2580 emit_movimm(imm[i],t);
2581 }
2582 }
2583 }
2584 }
2585 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2586 if(rt1[i]) {
2587 signed char sh,sl,th,tl;
2588 th=get_reg(i_regs->regmap,rt1[i]|64);
2589 tl=get_reg(i_regs->regmap,rt1[i]);
2590 sh=get_reg(i_regs->regmap,rs1[i]|64);
2591 sl=get_reg(i_regs->regmap,rs1[i]);
2592 if(tl>=0) {
2593 if(rs1[i]) {
2594 assert(sh>=0);
2595 assert(sl>=0);
2596 if(th>=0) {
2597 emit_addimm64_32(sh,sl,imm[i],th,tl);
2598 }
2599 else {
2600 emit_addimm(sl,imm[i],tl);
2601 }
2602 } else {
2603 emit_movimm(imm[i],tl);
2604 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2605 }
2606 }
2607 }
2608 }
2609 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2610 if(rt1[i]) {
2611 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2612 signed char sh,sl,t;
2613 t=get_reg(i_regs->regmap,rt1[i]);
2614 sh=get_reg(i_regs->regmap,rs1[i]|64);
2615 sl=get_reg(i_regs->regmap,rs1[i]);
2616 //assert(t>=0);
2617 if(t>=0) {
2618 if(rs1[i]>0) {
2619 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2620 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2621 if(opcode[i]==0x0a) { // SLTI
2622 if(sl<0) {
2623 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2624 emit_slti32(t,imm[i],t);
2625 }else{
2626 emit_slti32(sl,imm[i],t);
2627 }
2628 }
2629 else { // SLTIU
2630 if(sl<0) {
2631 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2632 emit_sltiu32(t,imm[i],t);
2633 }else{
2634 emit_sltiu32(sl,imm[i],t);
2635 }
2636 }
2637 }else{ // 64-bit
2638 assert(sl>=0);
2639 if(opcode[i]==0x0a) // SLTI
2640 emit_slti64_32(sh,sl,imm[i],t);
2641 else // SLTIU
2642 emit_sltiu64_32(sh,sl,imm[i],t);
2643 }
2644 }else{
2645 // SLTI(U) with r0 is just stupid,
2646 // nonetheless examples can be found
2647 if(opcode[i]==0x0a) // SLTI
2648 if(0<imm[i]) emit_movimm(1,t);
2649 else emit_zeroreg(t);
2650 else // SLTIU
2651 {
2652 if(imm[i]) emit_movimm(1,t);
2653 else emit_zeroreg(t);
2654 }
2655 }
2656 }
2657 }
2658 }
2659 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2660 if(rt1[i]) {
2661 signed char sh,sl,th,tl;
2662 th=get_reg(i_regs->regmap,rt1[i]|64);
2663 tl=get_reg(i_regs->regmap,rt1[i]);
2664 sh=get_reg(i_regs->regmap,rs1[i]|64);
2665 sl=get_reg(i_regs->regmap,rs1[i]);
2666 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2667 if(opcode[i]==0x0c) //ANDI
2668 {
2669 if(rs1[i]) {
2670 if(sl<0) {
2671 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2672 emit_andimm(tl,imm[i],tl);
2673 }else{
2674 if(!((i_regs->wasconst>>sl)&1))
2675 emit_andimm(sl,imm[i],tl);
2676 else
2677 emit_movimm(constmap[i][sl]&imm[i],tl);
2678 }
2679 }
2680 else
2681 emit_zeroreg(tl);
2682 if(th>=0) emit_zeroreg(th);
2683 }
2684 else
2685 {
2686 if(rs1[i]) {
2687 if(sl<0) {
2688 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2689 }
2690 if(th>=0) {
2691 if(sh<0) {
2692 emit_loadreg(rs1[i]|64,th);
2693 }else{
2694 emit_mov(sh,th);
2695 }
2696 }
2697 if(opcode[i]==0x0d) //ORI
2698 if(sl<0) {
2699 emit_orimm(tl,imm[i],tl);
2700 }else{
2701 if(!((i_regs->wasconst>>sl)&1))
2702 emit_orimm(sl,imm[i],tl);
2703 else
2704 emit_movimm(constmap[i][sl]|imm[i],tl);
2705 }
2706 if(opcode[i]==0x0e) //XORI
2707 if(sl<0) {
2708 emit_xorimm(tl,imm[i],tl);
2709 }else{
2710 if(!((i_regs->wasconst>>sl)&1))
2711 emit_xorimm(sl,imm[i],tl);
2712 else
2713 emit_movimm(constmap[i][sl]^imm[i],tl);
2714 }
2715 }
2716 else {
2717 emit_movimm(imm[i],tl);
2718 if(th>=0) emit_zeroreg(th);
2719 }
2720 }
2721 }
2722 }
2723 }
2724}
2725
2726void shiftimm_assemble(int i,struct regstat *i_regs)
2727{
2728 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2729 {
2730 if(rt1[i]) {
2731 signed char s,t;
2732 t=get_reg(i_regs->regmap,rt1[i]);
2733 s=get_reg(i_regs->regmap,rs1[i]);
2734 //assert(t>=0);
dc49e339 2735 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2736 if(rs1[i]==0)
2737 {
2738 emit_zeroreg(t);
2739 }
2740 else
2741 {
2742 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2743 if(imm[i]) {
2744 if(opcode2[i]==0) // SLL
2745 {
2746 emit_shlimm(s<0?t:s,imm[i],t);
2747 }
2748 if(opcode2[i]==2) // SRL
2749 {
2750 emit_shrimm(s<0?t:s,imm[i],t);
2751 }
2752 if(opcode2[i]==3) // SRA
2753 {
2754 emit_sarimm(s<0?t:s,imm[i],t);
2755 }
2756 }else{
2757 // Shift by zero
2758 if(s>=0 && s!=t) emit_mov(s,t);
2759 }
2760 }
2761 }
2762 //emit_storereg(rt1[i],t); //DEBUG
2763 }
2764 }
2765 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2766 {
2767 if(rt1[i]) {
2768 signed char sh,sl,th,tl;
2769 th=get_reg(i_regs->regmap,rt1[i]|64);
2770 tl=get_reg(i_regs->regmap,rt1[i]);
2771 sh=get_reg(i_regs->regmap,rs1[i]|64);
2772 sl=get_reg(i_regs->regmap,rs1[i]);
2773 if(tl>=0) {
2774 if(rs1[i]==0)
2775 {
2776 emit_zeroreg(tl);
2777 if(th>=0) emit_zeroreg(th);
2778 }
2779 else
2780 {
2781 assert(sl>=0);
2782 assert(sh>=0);
2783 if(imm[i]) {
2784 if(opcode2[i]==0x38) // DSLL
2785 {
2786 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2787 emit_shlimm(sl,imm[i],tl);
2788 }
2789 if(opcode2[i]==0x3a) // DSRL
2790 {
2791 emit_shrdimm(sl,sh,imm[i],tl);
2792 if(th>=0) emit_shrimm(sh,imm[i],th);
2793 }
2794 if(opcode2[i]==0x3b) // DSRA
2795 {
2796 emit_shrdimm(sl,sh,imm[i],tl);
2797 if(th>=0) emit_sarimm(sh,imm[i],th);
2798 }
2799 }else{
2800 // Shift by zero
2801 if(sl!=tl) emit_mov(sl,tl);
2802 if(th>=0&&sh!=th) emit_mov(sh,th);
2803 }
2804 }
2805 }
2806 }
2807 }
2808 if(opcode2[i]==0x3c) // DSLL32
2809 {
2810 if(rt1[i]) {
2811 signed char sl,tl,th;
2812 tl=get_reg(i_regs->regmap,rt1[i]);
2813 th=get_reg(i_regs->regmap,rt1[i]|64);
2814 sl=get_reg(i_regs->regmap,rs1[i]);
2815 if(th>=0||tl>=0){
2816 assert(tl>=0);
2817 assert(th>=0);
2818 assert(sl>=0);
2819 emit_mov(sl,th);
2820 emit_zeroreg(tl);
2821 if(imm[i]>32)
2822 {
2823 emit_shlimm(th,imm[i]&31,th);
2824 }
2825 }
2826 }
2827 }
2828 if(opcode2[i]==0x3e) // DSRL32
2829 {
2830 if(rt1[i]) {
2831 signed char sh,tl,th;
2832 tl=get_reg(i_regs->regmap,rt1[i]);
2833 th=get_reg(i_regs->regmap,rt1[i]|64);
2834 sh=get_reg(i_regs->regmap,rs1[i]|64);
2835 if(tl>=0){
2836 assert(sh>=0);
2837 emit_mov(sh,tl);
2838 if(th>=0) emit_zeroreg(th);
2839 if(imm[i]>32)
2840 {
2841 emit_shrimm(tl,imm[i]&31,tl);
2842 }
2843 }
2844 }
2845 }
2846 if(opcode2[i]==0x3f) // DSRA32
2847 {
2848 if(rt1[i]) {
2849 signed char sh,tl;
2850 tl=get_reg(i_regs->regmap,rt1[i]);
2851 sh=get_reg(i_regs->regmap,rs1[i]|64);
2852 if(tl>=0){
2853 assert(sh>=0);
2854 emit_mov(sh,tl);
2855 if(imm[i]>32)
2856 {
2857 emit_sarimm(tl,imm[i]&31,tl);
2858 }
2859 }
2860 }
2861 }
2862}
2863
2864#ifndef shift_assemble
2865void shift_assemble(int i,struct regstat *i_regs)
2866{
2867 printf("Need shift_assemble for this architecture.\n");
2868 exit(1);
2869}
2870#endif
2871
2872void load_assemble(int i,struct regstat *i_regs)
2873{
2874 int s,th,tl,addr,map=-1;
2875 int offset;
2876 int jaddr=0;
5bf843dc 2877 int memtarget=0,c=0;
b1570849 2878 int fastload_reg_override=0;
57871462 2879 u_int hr,reglist=0;
2880 th=get_reg(i_regs->regmap,rt1[i]|64);
2881 tl=get_reg(i_regs->regmap,rt1[i]);
2882 s=get_reg(i_regs->regmap,rs1[i]);
2883 offset=imm[i];
2884 for(hr=0;hr<HOST_REGS;hr++) {
2885 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2886 }
2887 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2888 if(s>=0) {
2889 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2890 if (c) {
2891 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2892 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2893 }
57871462 2894 }
57871462 2895 //printf("load_assemble: c=%d\n",c);
2896 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2897 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2898#ifdef PCSX
f18c0f46 2899 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2900 ||rt1[i]==0) {
5bf843dc 2901 // could be FIFO, must perform the read
f18c0f46 2902 // ||dummy read
5bf843dc 2903 assem_debug("(forced read)\n");
2904 tl=get_reg(i_regs->regmap,-1);
2905 assert(tl>=0);
5bf843dc 2906 }
f18c0f46 2907#endif
5bf843dc 2908 if(offset||s<0||c) addr=tl;
2909 else addr=s;
535d208a 2910 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2911 if(tl>=0) {
2912 //printf("load_assemble: c=%d\n",c);
2913 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2914 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2915 reglist&=~(1<<tl);
2916 if(th>=0) reglist&=~(1<<th);
2917 if(!using_tlb) {
2918 if(!c) {
2919 #ifdef RAM_OFFSET
2920 map=get_reg(i_regs->regmap,ROREG);
2921 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2922 #endif
57871462 2923//#define R29_HACK 1
535d208a 2924 #ifdef R29_HACK
2925 // Strmnnrmn's speed hack
2926 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2927 #endif
2928 {
ffb0b9e0 2929 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
57871462 2930 }
535d208a 2931 }
a327ad27 2932 else if(ram_offset&&memtarget) {
2933 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2934 fastload_reg_override=HOST_TEMPREG;
2935 }
535d208a 2936 }else{ // using tlb
2937 int x=0;
2938 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2939 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2940 map=get_reg(i_regs->regmap,TLREG);
2941 assert(map>=0);
ea3d2e6e 2942 reglist&=~(1<<map);
535d208a 2943 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2944 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2945 }
2946 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2947 if (opcode[i]==0x20) { // LB
2948 if(!c||memtarget) {
2949 if(!dummy) {
57871462 2950 #ifdef HOST_IMM_ADDR32
2951 if(c)
2952 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2953 else
2954 #endif
2955 {
2956 //emit_xorimm(addr,3,tl);
2957 //gen_tlb_addr_r(tl,map);
2958 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2959 int x=0,a=tl;
2002a1db 2960#ifdef BIG_ENDIAN_MIPS
57871462 2961 if(!c) emit_xorimm(addr,3,tl);
2962 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2963#else
535d208a 2964 if(!c) a=addr;
dadf55f2 2965#endif
b1570849 2966 if(fastload_reg_override) a=fastload_reg_override;
2967
535d208a 2968 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2969 }
57871462 2970 }
535d208a 2971 if(jaddr)
2972 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2973 }
535d208a 2974 else
2975 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2976 }
2977 if (opcode[i]==0x21) { // LH
2978 if(!c||memtarget) {
2979 if(!dummy) {
57871462 2980 #ifdef HOST_IMM_ADDR32
2981 if(c)
2982 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2983 else
2984 #endif
2985 {
535d208a 2986 int x=0,a=tl;
2002a1db 2987#ifdef BIG_ENDIAN_MIPS
57871462 2988 if(!c) emit_xorimm(addr,2,tl);
2989 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2990#else
535d208a 2991 if(!c) a=addr;
dadf55f2 2992#endif
b1570849 2993 if(fastload_reg_override) a=fastload_reg_override;
57871462 2994 //#ifdef
2995 //emit_movswl_indexed_tlb(x,tl,map,tl);
2996 //else
2997 if(map>=0) {
535d208a 2998 gen_tlb_addr_r(a,map);
2999 emit_movswl_indexed(x,a,tl);
3000 }else{
a327ad27 3001 #if 1 //def RAM_OFFSET
535d208a 3002 emit_movswl_indexed(x,a,tl);
3003 #else
3004 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
3005 #endif
3006 }
57871462 3007 }
57871462 3008 }
535d208a 3009 if(jaddr)
3010 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3011 }
535d208a 3012 else
3013 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3014 }
3015 if (opcode[i]==0x23) { // LW
3016 if(!c||memtarget) {
3017 if(!dummy) {
dadf55f2 3018 int a=addr;
b1570849 3019 if(fastload_reg_override) a=fastload_reg_override;
57871462 3020 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3021 #ifdef HOST_IMM_ADDR32
3022 if(c)
3023 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3024 else
3025 #endif
dadf55f2 3026 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3027 }
535d208a 3028 if(jaddr)
3029 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3030 }
535d208a 3031 else
3032 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3033 }
3034 if (opcode[i]==0x24) { // LBU
3035 if(!c||memtarget) {
3036 if(!dummy) {
57871462 3037 #ifdef HOST_IMM_ADDR32
3038 if(c)
3039 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3040 else
3041 #endif
3042 {
3043 //emit_xorimm(addr,3,tl);
3044 //gen_tlb_addr_r(tl,map);
3045 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3046 int x=0,a=tl;
2002a1db 3047#ifdef BIG_ENDIAN_MIPS
57871462 3048 if(!c) emit_xorimm(addr,3,tl);
3049 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3050#else
535d208a 3051 if(!c) a=addr;
dadf55f2 3052#endif
b1570849 3053 if(fastload_reg_override) a=fastload_reg_override;
3054
535d208a 3055 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3056 }
57871462 3057 }
535d208a 3058 if(jaddr)
3059 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3060 }
535d208a 3061 else
3062 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3063 }
3064 if (opcode[i]==0x25) { // LHU
3065 if(!c||memtarget) {
3066 if(!dummy) {
57871462 3067 #ifdef HOST_IMM_ADDR32
3068 if(c)
3069 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3070 else
3071 #endif
3072 {
535d208a 3073 int x=0,a=tl;
2002a1db 3074#ifdef BIG_ENDIAN_MIPS
57871462 3075 if(!c) emit_xorimm(addr,2,tl);
3076 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3077#else
535d208a 3078 if(!c) a=addr;
dadf55f2 3079#endif
b1570849 3080 if(fastload_reg_override) a=fastload_reg_override;
57871462 3081 //#ifdef
3082 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3083 //#else
3084 if(map>=0) {
535d208a 3085 gen_tlb_addr_r(a,map);
3086 emit_movzwl_indexed(x,a,tl);
3087 }else{
a327ad27 3088 #if 1 //def RAM_OFFSET
535d208a 3089 emit_movzwl_indexed(x,a,tl);
3090 #else
3091 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3092 #endif
3093 }
57871462 3094 }
3095 }
535d208a 3096 if(jaddr)
3097 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3098 }
535d208a 3099 else
3100 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3101 }
3102 if (opcode[i]==0x27) { // LWU
3103 assert(th>=0);
3104 if(!c||memtarget) {
3105 if(!dummy) {
dadf55f2 3106 int a=addr;
b1570849 3107 if(fastload_reg_override) a=fastload_reg_override;
57871462 3108 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3109 #ifdef HOST_IMM_ADDR32
3110 if(c)
3111 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3112 else
3113 #endif
dadf55f2 3114 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3115 }
535d208a 3116 if(jaddr)
3117 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3118 }
3119 else {
3120 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3121 }
535d208a 3122 emit_zeroreg(th);
3123 }
3124 if (opcode[i]==0x37) { // LD
3125 if(!c||memtarget) {
3126 if(!dummy) {
dadf55f2 3127 int a=addr;
b1570849 3128 if(fastload_reg_override) a=fastload_reg_override;
57871462 3129 //gen_tlb_addr_r(tl,map);
3130 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3131 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3132 #ifdef HOST_IMM_ADDR32
3133 if(c)
3134 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3135 else
3136 #endif
dadf55f2 3137 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3138 }
535d208a 3139 if(jaddr)
3140 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3141 }
535d208a 3142 else
3143 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3144 }
535d208a 3145 }
3146 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3147 //if(opcode[i]==0x23)
3148 //if(opcode[i]==0x24)
3149 //if(opcode[i]==0x23||opcode[i]==0x24)
3150 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3151 {
3152 //emit_pusha();
3153 save_regs(0x100f);
3154 emit_readword((int)&last_count,ECX);
3155 #ifdef __i386__
3156 if(get_reg(i_regs->regmap,CCREG)<0)
3157 emit_loadreg(CCREG,HOST_CCREG);
3158 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3159 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3160 emit_writeword(HOST_CCREG,(int)&Count);
3161 #endif
3162 #ifdef __arm__
3163 if(get_reg(i_regs->regmap,CCREG)<0)
3164 emit_loadreg(CCREG,0);
3165 else
3166 emit_mov(HOST_CCREG,0);
3167 emit_add(0,ECX,0);
3168 emit_addimm(0,2*ccadj[i],0);
3169 emit_writeword(0,(int)&Count);
3170 #endif
3171 emit_call((int)memdebug);
3172 //emit_popa();
3173 restore_regs(0x100f);
3174 }/**/
3175}
3176
3177#ifndef loadlr_assemble
3178void loadlr_assemble(int i,struct regstat *i_regs)
3179{
3180 printf("Need loadlr_assemble for this architecture.\n");
3181 exit(1);
3182}
3183#endif
3184
3185void store_assemble(int i,struct regstat *i_regs)
3186{
3187 int s,th,tl,map=-1;
3188 int addr,temp;
3189 int offset;
3190 int jaddr=0,jaddr2,type;
666a299d 3191 int memtarget=0,c=0;
57871462 3192 int agr=AGEN1+(i&1);
b1570849 3193 int faststore_reg_override=0;
57871462 3194 u_int hr,reglist=0;
3195 th=get_reg(i_regs->regmap,rs2[i]|64);
3196 tl=get_reg(i_regs->regmap,rs2[i]);
3197 s=get_reg(i_regs->regmap,rs1[i]);
3198 temp=get_reg(i_regs->regmap,agr);
3199 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3200 offset=imm[i];
3201 if(s>=0) {
3202 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3203 if(c) {
3204 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3205 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3206 }
57871462 3207 }
3208 assert(tl>=0);
3209 assert(temp>=0);
3210 for(hr=0;hr<HOST_REGS;hr++) {
3211 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3212 }
3213 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3214 if(offset||s<0||c) addr=temp;
3215 else addr=s;
3216 if(!using_tlb) {
3217 if(!c) {
ffb0b9e0 3218 #ifndef PCSX
57871462 3219 #ifdef R29_HACK
3220 // Strmnnrmn's speed hack
4cb76aa4 3221 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3222 #endif
4cb76aa4 3223 emit_cmpimm(addr,RAM_SIZE);
57871462 3224 #ifdef DESTRUCTIVE_SHIFT
3225 if(s==addr) emit_mov(s,temp);
3226 #endif
3227 #ifdef R29_HACK
dadf55f2 3228 memtarget=1;
4cb76aa4 3229 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3230 #endif
3231 {
3232 jaddr=(int)out;
3233 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3234 // Hint to branch predictor that the branch is unlikely to be taken
3235 if(rs1[i]>=28)
3236 emit_jno_unlikely(0);
3237 else
3238 #endif
3239 emit_jno(0);
3240 }
ffb0b9e0 3241 #else
3242 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3243 #endif
57871462 3244 }
a327ad27 3245 else if(ram_offset&&memtarget) {
3246 emit_addimm(addr,ram_offset,HOST_TEMPREG);
3247 faststore_reg_override=HOST_TEMPREG;
3248 }
57871462 3249 }else{ // using tlb
3250 int x=0;
3251 if (opcode[i]==0x28) x=3; // SB
3252 if (opcode[i]==0x29) x=2; // SH
3253 map=get_reg(i_regs->regmap,TLREG);
3254 assert(map>=0);
ea3d2e6e 3255 reglist&=~(1<<map);
57871462 3256 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3257 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3258 }
3259
3260 if (opcode[i]==0x28) { // SB
3261 if(!c||memtarget) {
97a238a6 3262 int x=0,a=temp;
2002a1db 3263#ifdef BIG_ENDIAN_MIPS
57871462 3264 if(!c) emit_xorimm(addr,3,temp);
3265 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3266#else
97a238a6 3267 if(!c) a=addr;
dadf55f2 3268#endif
b1570849 3269 if(faststore_reg_override) a=faststore_reg_override;
57871462 3270 //gen_tlb_addr_w(temp,map);
3271 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3272 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3273 }
3274 type=STOREB_STUB;
3275 }
3276 if (opcode[i]==0x29) { // SH
3277 if(!c||memtarget) {
97a238a6 3278 int x=0,a=temp;
2002a1db 3279#ifdef BIG_ENDIAN_MIPS
57871462 3280 if(!c) emit_xorimm(addr,2,temp);
3281 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3282#else
97a238a6 3283 if(!c) a=addr;
dadf55f2 3284#endif
b1570849 3285 if(faststore_reg_override) a=faststore_reg_override;
57871462 3286 //#ifdef
3287 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3288 //#else
3289 if(map>=0) {
97a238a6 3290 gen_tlb_addr_w(a,map);
3291 emit_writehword_indexed(tl,x,a);
57871462 3292 }else
a327ad27 3293 //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3294 emit_writehword_indexed(tl,x,a);
57871462 3295 }
3296 type=STOREH_STUB;
3297 }
3298 if (opcode[i]==0x2B) { // SW
dadf55f2 3299 if(!c||memtarget) {
3300 int a=addr;
b1570849 3301 if(faststore_reg_override) a=faststore_reg_override;
57871462 3302 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3303 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3304 }
57871462 3305 type=STOREW_STUB;
3306 }
3307 if (opcode[i]==0x3F) { // SD
3308 if(!c||memtarget) {
dadf55f2 3309 int a=addr;
b1570849 3310 if(faststore_reg_override) a=faststore_reg_override;
57871462 3311 if(rs2[i]) {
3312 assert(th>=0);
3313 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3314 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3315 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3316 }else{
3317 // Store zero
3318 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3319 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3320 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3321 }
3322 }
3323 type=STORED_STUB;
3324 }
b96d3df7 3325#ifdef PCSX
3326 if(jaddr) {
3327 // PCSX store handlers don't check invcode again
3328 reglist|=1<<addr;
3329 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3330 jaddr=0;
3331 }
3332#endif
0ff8c62c 3333 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3334 if(!c||memtarget) {
3335 #ifdef DESTRUCTIVE_SHIFT
3336 // The x86 shift operation is 'destructive'; it overwrites the
3337 // source register, so we need to make a copy first and use that.
3338 addr=temp;
3339 #endif
3340 #if defined(HOST_IMM8)
3341 int ir=get_reg(i_regs->regmap,INVCP);
3342 assert(ir>=0);
3343 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3344 #else
3345 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3346 #endif
0bbd1454 3347 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3348 emit_callne(invalidate_addr_reg[addr]);
3349 #else
57871462 3350 jaddr2=(int)out;
3351 emit_jne(0);
3352 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3353 #endif
57871462 3354 }
3355 }
7a518516 3356 u_int addr_val=constmap[i][s]+offset;
3eaa7048 3357 if(jaddr) {
3358 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3359 } else if(c&&!memtarget) {
7a518516 3360 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3361 }
3362 // basic current block modification detection..
3363 // not looking back as that should be in mips cache already
3364 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3365 printf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3366 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3367 if(i_regs->regmap==regs[i].regmap) {
3368 load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3369 wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3370 emit_movimm(start+i*4+4,0);
3371 emit_writeword(0,(int)&pcaddr);
3372 emit_jmp((int)do_interrupt);
3373 }
3eaa7048 3374 }
57871462 3375 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3376 //if(opcode[i]==0x2B || opcode[i]==0x28)
3377 //if(opcode[i]==0x2B || opcode[i]==0x29)
3378 //if(opcode[i]==0x2B)
3379 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3380 {
28d74ee8 3381 #ifdef __i386__
3382 emit_pusha();
3383 #endif
3384 #ifdef __arm__
57871462 3385 save_regs(0x100f);
28d74ee8 3386 #endif
57871462 3387 emit_readword((int)&last_count,ECX);
3388 #ifdef __i386__
3389 if(get_reg(i_regs->regmap,CCREG)<0)
3390 emit_loadreg(CCREG,HOST_CCREG);
3391 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3392 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3393 emit_writeword(HOST_CCREG,(int)&Count);
3394 #endif
3395 #ifdef __arm__
3396 if(get_reg(i_regs->regmap,CCREG)<0)
3397 emit_loadreg(CCREG,0);
3398 else
3399 emit_mov(HOST_CCREG,0);
3400 emit_add(0,ECX,0);
3401 emit_addimm(0,2*ccadj[i],0);
3402 emit_writeword(0,(int)&Count);
3403 #endif
3404 emit_call((int)memdebug);
28d74ee8 3405 #ifdef __i386__
3406 emit_popa();
3407 #endif
3408 #ifdef __arm__
57871462 3409 restore_regs(0x100f);
28d74ee8 3410 #endif
57871462 3411 }/**/
3412}
3413
3414void storelr_assemble(int i,struct regstat *i_regs)
3415{
3416 int s,th,tl;
3417 int temp;
3418 int temp2;
3419 int offset;
3420 int jaddr=0,jaddr2;
3421 int case1,case2,case3;
3422 int done0,done1,done2;
af4ee1fe 3423 int memtarget=0,c=0;
fab5d06d 3424 int agr=AGEN1+(i&1);
57871462 3425 u_int hr,reglist=0;
3426 th=get_reg(i_regs->regmap,rs2[i]|64);
3427 tl=get_reg(i_regs->regmap,rs2[i]);
3428 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3429 temp=get_reg(i_regs->regmap,agr);
3430 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3431 offset=imm[i];
3432 if(s>=0) {
3433 c=(i_regs->isconst>>s)&1;
af4ee1fe 3434 if(c) {
3435 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3436 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3437 }
57871462 3438 }
3439 assert(tl>=0);
3440 for(hr=0;hr<HOST_REGS;hr++) {
3441 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3442 }
535d208a 3443 assert(temp>=0);
3444 if(!using_tlb) {
3445 if(!c) {
3446 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3447 if(!offset&&s!=temp) emit_mov(s,temp);
3448 jaddr=(int)out;
3449 emit_jno(0);
3450 }
3451 else
3452 {
3453 if(!memtarget||!rs1[i]) {
57871462 3454 jaddr=(int)out;
3455 emit_jmp(0);
3456 }
57871462 3457 }
535d208a 3458 #ifdef RAM_OFFSET
3459 int map=get_reg(i_regs->regmap,ROREG);
3460 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3461 gen_tlb_addr_w(temp,map);
3462 #else
3463 if((u_int)rdram!=0x80000000)
3464 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3465 #endif
3466 }else{ // using tlb
3467 int map=get_reg(i_regs->regmap,TLREG);
3468 assert(map>=0);
ea3d2e6e 3469 reglist&=~(1<<map);
535d208a 3470 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3471 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3472 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3473 if(!jaddr&&!memtarget) {
3474 jaddr=(int)out;
3475 emit_jmp(0);
57871462 3476 }
535d208a 3477 gen_tlb_addr_w(temp,map);
3478 }
3479
3480 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3481 temp2=get_reg(i_regs->regmap,FTEMP);
3482 if(!rs2[i]) temp2=th=tl;
3483 }
57871462 3484
2002a1db 3485#ifndef BIG_ENDIAN_MIPS
3486 emit_xorimm(temp,3,temp);
3487#endif
535d208a 3488 emit_testimm(temp,2);
3489 case2=(int)out;
3490 emit_jne(0);
3491 emit_testimm(temp,1);
3492 case1=(int)out;
3493 emit_jne(0);
3494 // 0
3495 if (opcode[i]==0x2A) { // SWL
3496 emit_writeword_indexed(tl,0,temp);
3497 }
3498 if (opcode[i]==0x2E) { // SWR
3499 emit_writebyte_indexed(tl,3,temp);
3500 }
3501 if (opcode[i]==0x2C) { // SDL
3502 emit_writeword_indexed(th,0,temp);
3503 if(rs2[i]) emit_mov(tl,temp2);
3504 }
3505 if (opcode[i]==0x2D) { // SDR
3506 emit_writebyte_indexed(tl,3,temp);
3507 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3508 }
3509 done0=(int)out;
3510 emit_jmp(0);
3511 // 1
3512 set_jump_target(case1,(int)out);
3513 if (opcode[i]==0x2A) { // SWL
3514 // Write 3 msb into three least significant bytes
3515 if(rs2[i]) emit_rorimm(tl,8,tl);
3516 emit_writehword_indexed(tl,-1,temp);
3517 if(rs2[i]) emit_rorimm(tl,16,tl);
3518 emit_writebyte_indexed(tl,1,temp);
3519 if(rs2[i]) emit_rorimm(tl,8,tl);
3520 }
3521 if (opcode[i]==0x2E) { // SWR
3522 // Write two lsb into two most significant bytes
3523 emit_writehword_indexed(tl,1,temp);
3524 }
3525 if (opcode[i]==0x2C) { // SDL
3526 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3527 // Write 3 msb into three least significant bytes
3528 if(rs2[i]) emit_rorimm(th,8,th);
3529 emit_writehword_indexed(th,-1,temp);
3530 if(rs2[i]) emit_rorimm(th,16,th);
3531 emit_writebyte_indexed(th,1,temp);
3532 if(rs2[i]) emit_rorimm(th,8,th);
3533 }
3534 if (opcode[i]==0x2D) { // SDR
3535 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3536 // Write two lsb into two most significant bytes
3537 emit_writehword_indexed(tl,1,temp);
3538 }
3539 done1=(int)out;
3540 emit_jmp(0);
3541 // 2
3542 set_jump_target(case2,(int)out);
3543 emit_testimm(temp,1);
3544 case3=(int)out;
3545 emit_jne(0);
3546 if (opcode[i]==0x2A) { // SWL
3547 // Write two msb into two least significant bytes
3548 if(rs2[i]) emit_rorimm(tl,16,tl);
3549 emit_writehword_indexed(tl,-2,temp);
3550 if(rs2[i]) emit_rorimm(tl,16,tl);
3551 }
3552 if (opcode[i]==0x2E) { // SWR
3553 // Write 3 lsb into three most significant bytes
3554 emit_writebyte_indexed(tl,-1,temp);
3555 if(rs2[i]) emit_rorimm(tl,8,tl);
3556 emit_writehword_indexed(tl,0,temp);
3557 if(rs2[i]) emit_rorimm(tl,24,tl);
3558 }
3559 if (opcode[i]==0x2C) { // SDL
3560 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3561 // Write two msb into two least significant bytes
3562 if(rs2[i]) emit_rorimm(th,16,th);
3563 emit_writehword_indexed(th,-2,temp);
3564 if(rs2[i]) emit_rorimm(th,16,th);
3565 }
3566 if (opcode[i]==0x2D) { // SDR
3567 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3568 // Write 3 lsb into three most significant bytes
3569 emit_writebyte_indexed(tl,-1,temp);
3570 if(rs2[i]) emit_rorimm(tl,8,tl);
3571 emit_writehword_indexed(tl,0,temp);
3572 if(rs2[i]) emit_rorimm(tl,24,tl);
3573 }
3574 done2=(int)out;
3575 emit_jmp(0);
3576 // 3
3577 set_jump_target(case3,(int)out);
3578 if (opcode[i]==0x2A) { // SWL
3579 // Write msb into least significant byte
3580 if(rs2[i]) emit_rorimm(tl,24,tl);
3581 emit_writebyte_indexed(tl,-3,temp);
3582 if(rs2[i]) emit_rorimm(tl,8,tl);
3583 }
3584 if (opcode[i]==0x2E) { // SWR
3585 // Write entire word
3586 emit_writeword_indexed(tl,-3,temp);
3587 }
3588 if (opcode[i]==0x2C) { // SDL
3589 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3590 // Write msb into least significant byte
3591 if(rs2[i]) emit_rorimm(th,24,th);
3592 emit_writebyte_indexed(th,-3,temp);
3593 if(rs2[i]) emit_rorimm(th,8,th);
3594 }
3595 if (opcode[i]==0x2D) { // SDR
3596 if(rs2[i]) emit_mov(th,temp2);
3597 // Write entire word
3598 emit_writeword_indexed(tl,-3,temp);
3599 }
3600 set_jump_target(done0,(int)out);
3601 set_jump_target(done1,(int)out);
3602 set_jump_target(done2,(int)out);
3603 if (opcode[i]==0x2C) { // SDL
3604 emit_testimm(temp,4);
57871462 3605 done0=(int)out;
57871462 3606 emit_jne(0);
535d208a 3607 emit_andimm(temp,~3,temp);
3608 emit_writeword_indexed(temp2,4,temp);
3609 set_jump_target(done0,(int)out);
3610 }
3611 if (opcode[i]==0x2D) { // SDR
3612 emit_testimm(temp,4);
3613 done0=(int)out;
3614 emit_jeq(0);
3615 emit_andimm(temp,~3,temp);
3616 emit_writeword_indexed(temp2,-4,temp);
57871462 3617 set_jump_target(done0,(int)out);
57871462 3618 }
535d208a 3619 if(!c||!memtarget)
3620 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
0ff8c62c 3621 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
535d208a 3622 #ifdef RAM_OFFSET
3623 int map=get_reg(i_regs->regmap,ROREG);
3624 if(map<0) map=HOST_TEMPREG;
3625 gen_orig_addr_w(temp,map);
3626 #else
57871462 3627 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3628 #endif
57871462 3629 #if defined(HOST_IMM8)
3630 int ir=get_reg(i_regs->regmap,INVCP);
3631 assert(ir>=0);
3632 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3633 #else
3634 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3635 #endif
535d208a 3636 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3637 emit_callne(invalidate_addr_reg[temp]);
3638 #else
57871462 3639 jaddr2=(int)out;
3640 emit_jne(0);
3641 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3642 #endif
57871462 3643 }
3644 /*
3645 emit_pusha();
3646 //save_regs(0x100f);
3647 emit_readword((int)&last_count,ECX);
3648 if(get_reg(i_regs->regmap,CCREG)<0)
3649 emit_loadreg(CCREG,HOST_CCREG);
3650 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3651 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3652 emit_writeword(HOST_CCREG,(int)&Count);
3653 emit_call((int)memdebug);
3654 emit_popa();
3655 //restore_regs(0x100f);
3656 /**/
3657}
3658
3659void c1ls_assemble(int i,struct regstat *i_regs)
3660{
3d624f89 3661#ifndef DISABLE_COP1
57871462 3662 int s,th,tl;
3663 int temp,ar;
3664 int map=-1;
3665 int offset;
3666 int c=0;
3667 int jaddr,jaddr2=0,jaddr3,type;
3668 int agr=AGEN1+(i&1);
3669 u_int hr,reglist=0;
3670 th=get_reg(i_regs->regmap,FTEMP|64);
3671 tl=get_reg(i_regs->regmap,FTEMP);
3672 s=get_reg(i_regs->regmap,rs1[i]);
3673 temp=get_reg(i_regs->regmap,agr);
3674 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3675 offset=imm[i];
3676 assert(tl>=0);
3677 assert(rs1[i]>0);
3678 assert(temp>=0);
3679 for(hr=0;hr<HOST_REGS;hr++) {
3680 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3681 }
3682 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3683 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3684 {
3685 // Loads use a temporary register which we need to save
3686 reglist|=1<<temp;
3687 }
3688 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3689 ar=temp;
3690 else // LWC1/LDC1
3691 ar=tl;
3692 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3693 //else c=(i_regs->wasconst>>s)&1;
3694 if(s>=0) c=(i_regs->wasconst>>s)&1;
3695 // Check cop1 unusable
3696 if(!cop1_usable) {
3697 signed char rs=get_reg(i_regs->regmap,CSREG);
3698 assert(rs>=0);
3699 emit_testimm(rs,0x20000000);
3700 jaddr=(int)out;
3701 emit_jeq(0);
3702 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3703 cop1_usable=1;
3704 }
3705 if (opcode[i]==0x39) { // SWC1 (get float address)
3706 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3707 }
3708 if (opcode[i]==0x3D) { // SDC1 (get double address)
3709 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3710 }
3711 // Generate address + offset
3712 if(!using_tlb) {
3713 if(!c)
4cb76aa4 3714 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3715 }
3716 else
3717 {
3718 map=get_reg(i_regs->regmap,TLREG);
3719 assert(map>=0);
ea3d2e6e 3720 reglist&=~(1<<map);
57871462 3721 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3722 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3723 }
3724 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3725 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3726 }
3727 }
3728 if (opcode[i]==0x39) { // SWC1 (read float)
3729 emit_readword_indexed(0,tl,tl);
3730 }
3731 if (opcode[i]==0x3D) { // SDC1 (read double)
3732 emit_readword_indexed(4,tl,th);
3733 emit_readword_indexed(0,tl,tl);
3734 }
3735 if (opcode[i]==0x31) { // LWC1 (get target address)
3736 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3737 }
3738 if (opcode[i]==0x35) { // LDC1 (get target address)
3739 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3740 }
3741 if(!using_tlb) {
3742 if(!c) {
3743 jaddr2=(int)out;
3744 emit_jno(0);
3745 }
4cb76aa4 3746 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3747 jaddr2=(int)out;
3748 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3749 }
3750 #ifdef DESTRUCTIVE_SHIFT
3751 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3752 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3753 }
3754 #endif
3755 }else{
3756 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3757 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3758 }
3759 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3760 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3761 }
3762 }
3763 if (opcode[i]==0x31) { // LWC1
3764 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3765 //gen_tlb_addr_r(ar,map);
3766 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3767 #ifdef HOST_IMM_ADDR32
3768 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3769 else
3770 #endif
3771 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3772 type=LOADW_STUB;
3773 }
3774 if (opcode[i]==0x35) { // LDC1
3775 assert(th>=0);
3776 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3777 //gen_tlb_addr_r(ar,map);
3778 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3779 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3780 #ifdef HOST_IMM_ADDR32
3781 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3782 else
3783 #endif
3784 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3785 type=LOADD_STUB;
3786 }
3787 if (opcode[i]==0x39) { // SWC1
3788 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3789 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3790 type=STOREW_STUB;
3791 }
3792 if (opcode[i]==0x3D) { // SDC1
3793 assert(th>=0);
3794 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3795 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3796 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3797 type=STORED_STUB;
3798 }
0ff8c62c 3799 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3800 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3801 #ifndef DESTRUCTIVE_SHIFT
3802 temp=offset||c||s<0?ar:s;
3803 #endif
3804 #if defined(HOST_IMM8)
3805 int ir=get_reg(i_regs->regmap,INVCP);
3806 assert(ir>=0);
3807 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3808 #else
3809 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3810 #endif
0bbd1454 3811 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3812 emit_callne(invalidate_addr_reg[temp]);
3813 #else
57871462 3814 jaddr3=(int)out;
3815 emit_jne(0);
3816 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3817 #endif
57871462 3818 }
3819 }
3820 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3821 if (opcode[i]==0x31) { // LWC1 (write float)
3822 emit_writeword_indexed(tl,0,temp);
3823 }
3824 if (opcode[i]==0x35) { // LDC1 (write double)
3825 emit_writeword_indexed(th,4,temp);
3826 emit_writeword_indexed(tl,0,temp);
3827 }
3828 //if(opcode[i]==0x39)
3829 /*if(opcode[i]==0x39||opcode[i]==0x31)
3830 {
3831 emit_pusha();
3832 emit_readword((int)&last_count,ECX);
3833 if(get_reg(i_regs->regmap,CCREG)<0)
3834 emit_loadreg(CCREG,HOST_CCREG);
3835 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3836 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3837 emit_writeword(HOST_CCREG,(int)&Count);
3838 emit_call((int)memdebug);
3839 emit_popa();
3840 }/**/
3d624f89 3841#else
3842 cop1_unusable(i, i_regs);
3843#endif
57871462 3844}
3845
b9b61529 3846void c2ls_assemble(int i,struct regstat *i_regs)
3847{
3848 int s,tl;
3849 int ar;
3850 int offset;
1fd1aceb 3851 int memtarget=0,c=0;
c2e3bd42 3852 int jaddr2=0,jaddr3,type;
b9b61529 3853 int agr=AGEN1+(i&1);
ffb0b9e0 3854 int fastio_reg_override=0;
b9b61529 3855 u_int hr,reglist=0;
3856 u_int copr=(source[i]>>16)&0x1f;
3857 s=get_reg(i_regs->regmap,rs1[i]);
3858 tl=get_reg(i_regs->regmap,FTEMP);
3859 offset=imm[i];
3860 assert(rs1[i]>0);
3861 assert(tl>=0);
3862 assert(!using_tlb);
3863
3864 for(hr=0;hr<HOST_REGS;hr++) {
3865 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3866 }
3867 if(i_regs->regmap[HOST_CCREG]==CCREG)
3868 reglist&=~(1<<HOST_CCREG);
3869
3870 // get the address
3871 if (opcode[i]==0x3a) { // SWC2
3872 ar=get_reg(i_regs->regmap,agr);
3873 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3874 reglist|=1<<ar;
3875 } else { // LWC2
3876 ar=tl;
3877 }
1fd1aceb 3878 if(s>=0) c=(i_regs->wasconst>>s)&1;
3879 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3880 if (!offset&&!c&&s>=0) ar=s;
3881 assert(ar>=0);
3882
3883 if (opcode[i]==0x3a) { // SWC2
3884 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3885 type=STOREW_STUB;
b9b61529 3886 }
1fd1aceb 3887 else
b9b61529 3888 type=LOADW_STUB;
1fd1aceb 3889
3890 if(c&&!memtarget) {
3891 jaddr2=(int)out;
3892 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3893 }
1fd1aceb 3894 else {
3895 if(!c) {
ffb0b9e0 3896 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3897 }
a327ad27 3898 else if(ram_offset&&memtarget) {
3899 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3900 fastio_reg_override=HOST_TEMPREG;
3901 }
1fd1aceb 3902 if (opcode[i]==0x32) { // LWC2
3903 #ifdef HOST_IMM_ADDR32
3904 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3905 else
3906 #endif
ffb0b9e0 3907 int a=ar;
3908 if(fastio_reg_override) a=fastio_reg_override;
3909 emit_readword_indexed(0,a,tl);
1fd1aceb 3910 }
3911 if (opcode[i]==0x3a) { // SWC2
3912 #ifdef DESTRUCTIVE_SHIFT
3913 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3914 #endif
ffb0b9e0 3915 int a=ar;
3916 if(fastio_reg_override) a=fastio_reg_override;
3917 emit_writeword_indexed(tl,0,a);
1fd1aceb 3918 }
b9b61529 3919 }
3920 if(jaddr2)
3921 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
0ff8c62c 3922 if(opcode[i]==0x3a) // SWC2
3923 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
b9b61529 3924#if defined(HOST_IMM8)
3925 int ir=get_reg(i_regs->regmap,INVCP);
3926 assert(ir>=0);
3927 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3928#else
3929 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3930#endif
0bbd1454 3931 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3932 emit_callne(invalidate_addr_reg[ar]);
3933 #else
b9b61529 3934 jaddr3=(int)out;
3935 emit_jne(0);
3936 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3937 #endif
b9b61529 3938 }
3939 if (opcode[i]==0x32) { // LWC2
3940 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3941 }
3942}
3943
57871462 3944#ifndef multdiv_assemble
3945void multdiv_assemble(int i,struct regstat *i_regs)
3946{
3947 printf("Need multdiv_assemble for this architecture.\n");
3948 exit(1);
3949}
3950#endif
3951
3952void mov_assemble(int i,struct regstat *i_regs)
3953{
3954 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3955 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3956 if(rt1[i]) {
3957 signed char sh,sl,th,tl;
3958 th=get_reg(i_regs->regmap,rt1[i]|64);
3959 tl=get_reg(i_regs->regmap,rt1[i]);
3960 //assert(tl>=0);
3961 if(tl>=0) {
3962 sh=get_reg(i_regs->regmap,rs1[i]|64);
3963 sl=get_reg(i_regs->regmap,rs1[i]);
3964 if(sl>=0) emit_mov(sl,tl);
3965 else emit_loadreg(rs1[i],tl);
3966 if(th>=0) {
3967 if(sh>=0) emit_mov(sh,th);
3968 else emit_loadreg(rs1[i]|64,th);
3969 }
3970 }
3971 }
3972}
3973
3974#ifndef fconv_assemble
3975void fconv_assemble(int i,struct regstat *i_regs)
3976{
3977 printf("Need fconv_assemble for this architecture.\n");
3978 exit(1);
3979}
3980#endif
3981
3982#if 0
3983void float_assemble(int i,struct regstat *i_regs)
3984{
3985 printf("Need float_assemble for this architecture.\n");
3986 exit(1);
3987}
3988#endif
3989
3990void syscall_assemble(int i,struct regstat *i_regs)
3991{
3992 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3993 assert(ccreg==HOST_CCREG);
3994 assert(!is_delayslot);
3995 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3996 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3997 emit_jmp((int)jump_syscall_hle); // XXX
3998}
3999
4000void hlecall_assemble(int i,struct regstat *i_regs)
4001{
4002 signed char ccreg=get_reg(i_regs->regmap,CCREG);
4003 assert(ccreg==HOST_CCREG);
4004 assert(!is_delayslot);
4005 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 4006 emit_movimm((int)psxHLEt[source[i]&7],1);
2573466a 4007 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
67ba0fb4 4008 emit_jmp((int)jump_hlecall);
57871462 4009}
4010
1e973cb0 4011void intcall_assemble(int i,struct regstat *i_regs)
4012{
4013 signed char ccreg=get_reg(i_regs->regmap,CCREG);
4014 assert(ccreg==HOST_CCREG);
4015 assert(!is_delayslot);
4016 emit_movimm(start+i*4,0); // Get PC
2573466a 4017 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
1e973cb0 4018 emit_jmp((int)jump_intcall);
4019}
4020
57871462 4021void ds_assemble(int i,struct regstat *i_regs)
4022{
ffb0b9e0 4023 speculate_register_values(i);
57871462 4024 is_delayslot=1;
4025 switch(itype[i]) {
4026 case ALU:
4027 alu_assemble(i,i_regs);break;
4028 case IMM16:
4029 imm16_assemble(i,i_regs);break;
4030 case SHIFT:
4031 shift_assemble(i,i_regs);break;
4032 case SHIFTIMM:
4033 shiftimm_assemble(i,i_regs);break;
4034 case LOAD:
4035 load_assemble(i,i_regs);break;
4036 case LOADLR:
4037 loadlr_assemble(i,i_regs);break;
4038 case STORE:
4039 store_assemble(i,i_regs);break;
4040 case STORELR:
4041 storelr_assemble(i,i_regs);break;
4042 case COP0:
4043 cop0_assemble(i,i_regs);break;
4044 case COP1:
4045 cop1_assemble(i,i_regs);break;
4046 case C1LS:
4047 c1ls_assemble(i,i_regs);break;
b9b61529 4048 case COP2:
4049 cop2_assemble(i,i_regs);break;
4050 case C2LS:
4051 c2ls_assemble(i,i_regs);break;
4052 case C2OP:
4053 c2op_assemble(i,i_regs);break;
57871462 4054 case FCONV:
4055 fconv_assemble(i,i_regs);break;
4056 case FLOAT:
4057 float_assemble(i,i_regs);break;
4058 case FCOMP:
4059 fcomp_assemble(i,i_regs);break;
4060 case MULTDIV:
4061 multdiv_assemble(i,i_regs);break;
4062 case MOV:
4063 mov_assemble(i,i_regs);break;
4064 case SYSCALL:
7139f3c8 4065 case HLECALL:
1e973cb0 4066 case INTCALL:
57871462 4067 case SPAN:
4068 case UJUMP:
4069 case RJUMP:
4070 case CJUMP:
4071 case SJUMP:
4072 case FJUMP:
4073 printf("Jump in the delay slot. This is probably a bug.\n");
4074 }
4075 is_delayslot=0;
4076}
4077
4078// Is the branch target a valid internal jump?
4079int internal_branch(uint64_t i_is32,int addr)
4080{
4081 if(addr&1) return 0; // Indirect (register) jump
4082 if(addr>=start && addr<start+slen*4-4)
4083 {
4084 int t=(addr-start)>>2;
4085 // Delay slots are not valid branch targets
4086 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4087 // 64 -> 32 bit transition requires a recompile
4088 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4089 {
4090 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4091 else printf("optimizable: yes\n");
4092 }*/
4093 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4094#ifndef FORCE32
57871462 4095 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4096 else
4097#endif
4098 return 1;
57871462 4099 }
4100 return 0;
4101}
4102
4103#ifndef wb_invalidate
4104void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4105 uint64_t u,uint64_t uu)
4106{
4107 int hr;
4108 for(hr=0;hr<HOST_REGS;hr++) {
4109 if(hr!=EXCLUDE_REG) {
4110 if(pre[hr]!=entry[hr]) {
4111 if(pre[hr]>=0) {
4112 if((dirty>>hr)&1) {
4113 if(get_reg(entry,pre[hr])<0) {
4114 if(pre[hr]<64) {
4115 if(!((u>>pre[hr])&1)) {
4116 emit_storereg(pre[hr],hr);
4117 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4118 emit_sarimm(hr,31,hr);
4119 emit_storereg(pre[hr]|64,hr);
4120 }
4121 }
4122 }else{
4123 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4124 emit_storereg(pre[hr],hr);
4125 }
4126 }
4127 }
4128 }
4129 }
4130 }
4131 }
4132 }
4133 // Move from one register to another (no writeback)
4134 for(hr=0;hr<HOST_REGS;hr++) {
4135 if(hr!=EXCLUDE_REG) {
4136 if(pre[hr]!=entry[hr]) {
4137 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4138 int nr;
4139 if((nr=get_reg(entry,pre[hr]))>=0) {
4140 emit_mov(hr,nr);
4141 }
4142 }
4143 }
4144 }
4145 }
4146}
4147#endif
4148
4149// Load the specified registers
4150// This only loads the registers given as arguments because
4151// we don't want to load things that will be overwritten
4152void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4153{
4154 int hr;
4155 // Load 32-bit regs
4156 for(hr=0;hr<HOST_REGS;hr++) {
4157 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4158 if(entry[hr]!=regmap[hr]) {
4159 if(regmap[hr]==rs1||regmap[hr]==rs2)
4160 {
4161 if(regmap[hr]==0) {
4162 emit_zeroreg(hr);
4163 }
4164 else
4165 {
4166 emit_loadreg(regmap[hr],hr);
4167 }
4168 }
4169 }
4170 }
4171 }
4172 //Load 64-bit regs
4173 for(hr=0;hr<HOST_REGS;hr++) {
4174 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4175 if(entry[hr]!=regmap[hr]) {
4176 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4177 {
4178 assert(regmap[hr]!=64);
4179 if((is32>>(regmap[hr]&63))&1) {
4180 int lr=get_reg(regmap,regmap[hr]-64);
4181 if(lr>=0)
4182 emit_sarimm(lr,31,hr);
4183 else
4184 emit_loadreg(regmap[hr],hr);
4185 }
4186 else
4187 {
4188 emit_loadreg(regmap[hr],hr);
4189 }
4190 }
4191 }
4192 }
4193 }
4194}
4195
4196// Load registers prior to the start of a loop
4197// so that they are not loaded within the loop
4198static void loop_preload(signed char pre[],signed char entry[])
4199{
4200 int hr;
4201 for(hr=0;hr<HOST_REGS;hr++) {
4202 if(hr!=EXCLUDE_REG) {
4203 if(pre[hr]!=entry[hr]) {
4204 if(entry[hr]>=0) {
4205 if(get_reg(pre,entry[hr])<0) {
4206 assem_debug("loop preload:\n");
4207 //printf("loop preload: %d\n",hr);
4208 if(entry[hr]==0) {
4209 emit_zeroreg(hr);
4210 }
4211 else if(entry[hr]<TEMPREG)
4212 {
4213 emit_loadreg(entry[hr],hr);
4214 }
4215 else if(entry[hr]-64<TEMPREG)
4216 {
4217 emit_loadreg(entry[hr],hr);
4218 }
4219 }
4220 }
4221 }
4222 }
4223 }
4224}
4225
4226// Generate address for load/store instruction
b9b61529 4227// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4228void address_generation(int i,struct regstat *i_regs,signed char entry[])
4229{
b9b61529 4230 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4231 int ra=-1;
57871462 4232 int agr=AGEN1+(i&1);
4233 int mgr=MGEN1+(i&1);
4234 if(itype[i]==LOAD) {
4235 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4236 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4237 assert(ra>=0);
57871462 4238 }
4239 if(itype[i]==LOADLR) {
4240 ra=get_reg(i_regs->regmap,FTEMP);
4241 }
4242 if(itype[i]==STORE||itype[i]==STORELR) {
4243 ra=get_reg(i_regs->regmap,agr);
4244 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4245 }
b9b61529 4246 if(itype[i]==C1LS||itype[i]==C2LS) {
4247 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4248 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4249 else { // SWC1/SDC1/SWC2/SDC2
57871462 4250 ra=get_reg(i_regs->regmap,agr);
4251 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4252 }
4253 }
4254 int rs=get_reg(i_regs->regmap,rs1[i]);
4255 int rm=get_reg(i_regs->regmap,TLREG);
4256 if(ra>=0) {
4257 int offset=imm[i];
4258 int c=(i_regs->wasconst>>rs)&1;
4259 if(rs1[i]==0) {
4260 // Using r0 as a base address
4261 /*if(rm>=0) {
4262 if(!entry||entry[rm]!=mgr) {
4263 generate_map_const(offset,rm);
4264 } // else did it in the previous cycle
4265 }*/
4266 if(!entry||entry[ra]!=agr) {
4267 if (opcode[i]==0x22||opcode[i]==0x26) {
4268 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4269 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4270 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4271 }else{
4272 emit_movimm(offset,ra);
4273 }
4274 } // else did it in the previous cycle
4275 }
4276 else if(rs<0) {
4277 if(!entry||entry[ra]!=rs1[i])
4278 emit_loadreg(rs1[i],ra);
4279 //if(!entry||entry[ra]!=rs1[i])
4280 // printf("poor load scheduling!\n");
4281 }
4282 else if(c) {
63cb0298 4283#ifndef DISABLE_TLB
57871462 4284 if(rm>=0) {
4285 if(!entry||entry[rm]!=mgr) {
b9b61529 4286 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4287 // Stores to memory go thru the mapper to detect self-modifying
4288 // code, loads don't.
4289 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4290 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4291 generate_map_const(constmap[i][rs]+offset,rm);
4292 }else{
4293 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4294 generate_map_const(constmap[i][rs]+offset,rm);
4295 }
4296 }
4297 }
63cb0298 4298#endif
57871462 4299 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4300 if(!entry||entry[ra]!=agr) {
4301 if (opcode[i]==0x22||opcode[i]==0x26) {
4302 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4303 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4304 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4305 }else{
4306 #ifdef HOST_IMM_ADDR32
b9b61529 4307 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4308 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4309 #endif
4310 emit_movimm(constmap[i][rs]+offset,ra);
8575a877 4311 regs[i].loadedconst|=1<<ra;
57871462 4312 }
4313 } // else did it in the previous cycle
4314 } // else load_consts already did it
4315 }
4316 if(offset&&!c&&rs1[i]) {
4317 if(rs>=0) {
4318 emit_addimm(rs,offset,ra);
4319 }else{
4320 emit_addimm(ra,offset,ra);
4321 }
4322 }
4323 }
4324 }
4325 // Preload constants for next instruction
b9b61529 4326 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4327 int agr,ra;
63cb0298 4328 #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
57871462 4329 // Mapper entry
4330 agr=MGEN1+((i+1)&1);
4331 ra=get_reg(i_regs->regmap,agr);
4332 if(ra>=0) {
4333 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4334 int offset=imm[i+1];
4335 int c=(regs[i+1].wasconst>>rs)&1;
4336 if(c) {
b9b61529 4337 if(itype[i+1]==STORE||itype[i+1]==STORELR
4338 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4339 // Stores to memory go thru the mapper to detect self-modifying
4340 // code, loads don't.
4341 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4342 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4343 generate_map_const(constmap[i+1][rs]+offset,ra);
4344 }else{
4345 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4346 generate_map_const(constmap[i+1][rs]+offset,ra);
4347 }
4348 }
4349 /*else if(rs1[i]==0) {
4350 generate_map_const(offset,ra);
4351 }*/
4352 }
4353 #endif
4354 // Actual address
4355 agr=AGEN1+((i+1)&1);
4356 ra=get_reg(i_regs->regmap,agr);
4357 if(ra>=0) {
4358 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4359 int offset=imm[i+1];
4360 int c=(regs[i+1].wasconst>>rs)&1;
4361 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4362 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4363 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4364 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4365 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4366 }else{
4367 #ifdef HOST_IMM_ADDR32
b9b61529 4368 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4369 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4370 #endif
4371 emit_movimm(constmap[i+1][rs]+offset,ra);
8575a877 4372 regs[i+1].loadedconst|=1<<ra;
57871462 4373 }
4374 }
4375 else if(rs1[i+1]==0) {
4376 // Using r0 as a base address
4377 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4378 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4379 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4380 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4381 }else{
4382 emit_movimm(offset,ra);
4383 }
4384 }
4385 }
4386 }
4387}
4388
4389int get_final_value(int hr, int i, int *value)
4390{
4391 int reg=regs[i].regmap[hr];
4392 while(i<slen-1) {
4393 if(regs[i+1].regmap[hr]!=reg) break;
4394 if(!((regs[i+1].isconst>>hr)&1)) break;
4395 if(bt[i+1]) break;
4396 i++;
4397 }
4398 if(i<slen-1) {
4399 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4400 *value=constmap[i][hr];
4401 return 1;
4402 }
4403 if(!bt[i+1]) {
4404 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4405 // Load in delay slot, out-of-order execution
4406 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4407 {
4408 #ifdef HOST_IMM_ADDR32
4409 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4410 #endif
4411 // Precompute load address
4412 *value=constmap[i][hr]+imm[i+2];
4413 return 1;
4414 }
4415 }
4416 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4417 {
4418 #ifdef HOST_IMM_ADDR32
4419 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4420 #endif
4421 // Precompute load address
4422 *value=constmap[i][hr]+imm[i+1];
4423 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4424 return 1;
4425 }
4426 }
4427 }
4428 *value=constmap[i][hr];
4429 //printf("c=%x\n",(int)constmap[i][hr]);
4430 if(i==slen-1) return 1;
4431 if(reg<64) {
4432 return !((unneeded_reg[i+1]>>reg)&1);
4433 }else{
4434 return !((unneeded_reg_upper[i+1]>>reg)&1);
4435 }
4436}
4437
4438// Load registers with known constants
4439void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4440{
8575a877 4441 int hr,hr2;
4442 // propagate loaded constant flags
4443 if(i==0||bt[i])
4444 regs[i].loadedconst=0;
4445 else {
4446 for(hr=0;hr<HOST_REGS;hr++) {
4447 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4448 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4449 {
4450 regs[i].loadedconst|=1<<hr;
4451 }
4452 }
4453 }
57871462 4454 // Load 32-bit regs
4455 for(hr=0;hr<HOST_REGS;hr++) {
4456 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4457 //if(entry[hr]!=regmap[hr]) {
8575a877 4458 if(!((regs[i].loadedconst>>hr)&1)) {
57871462 4459 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
8575a877 4460 int value,similar=0;
57871462 4461 if(get_final_value(hr,i,&value)) {
8575a877 4462 // see if some other register has similar value
4463 for(hr2=0;hr2<HOST_REGS;hr2++) {
4464 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4465 if(is_similar_value(value,constmap[i][hr2])) {
4466 similar=1;
4467 break;
4468 }
4469 }
4470 }
4471 if(similar) {
4472 int value2;
4473 if(get_final_value(hr2,i,&value2)) // is this needed?
4474 emit_movimm_from(value2,hr2,value,hr);
4475 else
4476 emit_movimm(value,hr);
4477 }
4478 else if(value==0) {
57871462 4479 emit_zeroreg(hr);
4480 }
4481 else {
4482 emit_movimm(value,hr);
4483 }
4484 }
8575a877 4485 regs[i].loadedconst|=1<<hr;
57871462 4486 }
4487 }
4488 }
4489 }
4490 // Load 64-bit regs
4491 for(hr=0;hr<HOST_REGS;hr++) {
4492 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4493 //if(entry[hr]!=regmap[hr]) {
4494 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4495 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4496 if((is32>>(regmap[hr]&63))&1) {
4497 int lr=get_reg(regmap,regmap[hr]-64);
4498 assert(lr>=0);
4499 emit_sarimm(lr,31,hr);
4500 }
4501 else
4502 {
4503 int value;
4504 if(get_final_value(hr,i,&value)) {
4505 if(value==0) {
4506 emit_zeroreg(hr);
4507 }
4508 else {
4509 emit_movimm(value,hr);
4510 }
4511 }
4512 }
4513 }
4514 }
4515 }
4516 }
4517}
4518void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4519{
4520 int hr;
4521 // Load 32-bit regs
4522 for(hr=0;hr<HOST_REGS;hr++) {
4523 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4524 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4525 int value=constmap[i][hr];
4526 if(value==0) {
4527 emit_zeroreg(hr);
4528 }
4529 else {
4530 emit_movimm(value,hr);
4531 }
4532 }
4533 }
4534 }
4535 // Load 64-bit regs
4536 for(hr=0;hr<HOST_REGS;hr++) {
4537 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4538 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4539 if((is32>>(regmap[hr]&63))&1) {
4540 int lr=get_reg(regmap,regmap[hr]-64);
4541 assert(lr>=0);
4542 emit_sarimm(lr,31,hr);
4543 }
4544 else
4545 {
4546 int value=constmap[i][hr];
4547 if(value==0) {
4548 emit_zeroreg(hr);
4549 }
4550 else {
4551 emit_movimm(value,hr);
4552 }
4553 }
4554 }
4555 }
4556 }
4557}
4558
4559// Write out all dirty registers (except cycle count)
4560void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4561{
4562 int hr;
4563 for(hr=0;hr<HOST_REGS;hr++) {
4564 if(hr!=EXCLUDE_REG) {
4565 if(i_regmap[hr]>0) {
4566 if(i_regmap[hr]!=CCREG) {
4567 if((i_dirty>>hr)&1) {
4568 if(i_regmap[hr]<64) {
4569 emit_storereg(i_regmap[hr],hr);
24385cae 4570#ifndef FORCE32
57871462 4571 if( ((i_is32>>i_regmap[hr])&1) ) {
4572 #ifdef DESTRUCTIVE_WRITEBACK
4573 emit_sarimm(hr,31,hr);
4574 emit_storereg(i_regmap[hr]|64,hr);
4575 #else
4576 emit_sarimm(hr,31,HOST_TEMPREG);
4577 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4578 #endif
4579 }
24385cae 4580#endif
57871462 4581 }else{
4582 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4583 emit_storereg(i_regmap[hr],hr);
4584 }
4585 }
4586 }
4587 }
4588 }
4589 }
4590 }
4591}
4592// Write out dirty registers that we need to reload (pair with load_needed_regs)
4593// This writes the registers not written by store_regs_bt
4594void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4595{
4596 int hr;
4597 int t=(addr-start)>>2;
4598 for(hr=0;hr<HOST_REGS;hr++) {
4599 if(hr!=EXCLUDE_REG) {
4600 if(i_regmap[hr]>0) {
4601 if(i_regmap[hr]!=CCREG) {
4602 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4603 if((i_dirty>>hr)&1) {
4604 if(i_regmap[hr]<64) {
4605 emit_storereg(i_regmap[hr],hr);
24385cae 4606#ifndef FORCE32
57871462 4607 if( ((i_is32>>i_regmap[hr])&1) ) {
4608 #ifdef DESTRUCTIVE_WRITEBACK
4609 emit_sarimm(hr,31,hr);
4610 emit_storereg(i_regmap[hr]|64,hr);
4611 #else
4612 emit_sarimm(hr,31,HOST_TEMPREG);
4613 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4614 #endif
4615 }
24385cae 4616#endif
57871462 4617 }else{
4618 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4619 emit_storereg(i_regmap[hr],hr);
4620 }
4621 }
4622 }
4623 }
4624 }
4625 }
4626 }
4627 }
4628}
4629
4630// Load all registers (except cycle count)
4631void load_all_regs(signed char i_regmap[])
4632{
4633 int hr;
4634 for(hr=0;hr<HOST_REGS;hr++) {
4635 if(hr!=EXCLUDE_REG) {
4636 if(i_regmap[hr]==0) {
4637 emit_zeroreg(hr);
4638 }
4639 else
ea3d2e6e 4640 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4641 {
4642 emit_loadreg(i_regmap[hr],hr);
4643 }
4644 }
4645 }
4646}
4647
4648// Load all current registers also needed by next instruction
4649void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4650{
4651 int hr;
4652 for(hr=0;hr<HOST_REGS;hr++) {
4653 if(hr!=EXCLUDE_REG) {
4654 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4655 if(i_regmap[hr]==0) {
4656 emit_zeroreg(hr);
4657 }
4658 else
ea3d2e6e 4659 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4660 {
4661 emit_loadreg(i_regmap[hr],hr);
4662 }
4663 }
4664 }
4665 }
4666}
4667
4668// Load all regs, storing cycle count if necessary
4669void load_regs_entry(int t)
4670{
4671 int hr;
2573466a 4672 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4673 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 4674 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4675 emit_storereg(CCREG,HOST_CCREG);
4676 }
4677 // Load 32-bit regs
4678 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4679 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4680 if(regs[t].regmap_entry[hr]==0) {
4681 emit_zeroreg(hr);
4682 }
4683 else if(regs[t].regmap_entry[hr]!=CCREG)
4684 {
4685 emit_loadreg(regs[t].regmap_entry[hr],hr);
4686 }
4687 }
4688 }
4689 // Load 64-bit regs
4690 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4691 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4692 assert(regs[t].regmap_entry[hr]!=64);
4693 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4694 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4695 if(lr<0) {
4696 emit_loadreg(regs[t].regmap_entry[hr],hr);
4697 }
4698 else
4699 {
4700 emit_sarimm(lr,31,hr);
4701 }
4702 }
4703 else
4704 {
4705 emit_loadreg(regs[t].regmap_entry[hr],hr);
4706 }
4707 }
4708 }
4709}
4710
4711// Store dirty registers prior to branch
4712void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4713{
4714 if(internal_branch(i_is32,addr))
4715 {
4716 int t=(addr-start)>>2;
4717 int hr;
4718 for(hr=0;hr<HOST_REGS;hr++) {
4719 if(hr!=EXCLUDE_REG) {
4720 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4721 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4722 if((i_dirty>>hr)&1) {
4723 if(i_regmap[hr]<64) {
4724 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4725 emit_storereg(i_regmap[hr],hr);
4726 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4727 #ifdef DESTRUCTIVE_WRITEBACK
4728 emit_sarimm(hr,31,hr);
4729 emit_storereg(i_regmap[hr]|64,hr);
4730 #else
4731 emit_sarimm(hr,31,HOST_TEMPREG);
4732 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4733 #endif
4734 }
4735 }
4736 }else{
4737 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4738 emit_storereg(i_regmap[hr],hr);
4739 }
4740 }
4741 }
4742 }
4743 }
4744 }
4745 }
4746 }
4747 else
4748 {
4749 // Branch out of this block, write out all dirty regs
4750 wb_dirtys(i_regmap,i_is32,i_dirty);
4751 }
4752}
4753
4754// Load all needed registers for branch target
4755void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4756{
4757 //if(addr>=start && addr<(start+slen*4))
4758 if(internal_branch(i_is32,addr))
4759 {
4760 int t=(addr-start)>>2;
4761 int hr;
4762 // Store the cycle count before loading something else
4763 if(i_regmap[HOST_CCREG]!=CCREG) {
4764 assert(i_regmap[HOST_CCREG]==-1);
4765 }
4766 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4767 emit_storereg(CCREG,HOST_CCREG);
4768 }
4769 // Load 32-bit regs
4770 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4771 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4772 #ifdef DESTRUCTIVE_WRITEBACK
4773 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4774 #else
4775 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4776 #endif
4777 if(regs[t].regmap_entry[hr]==0) {
4778 emit_zeroreg(hr);
4779 }
4780 else if(regs[t].regmap_entry[hr]!=CCREG)
4781 {
4782 emit_loadreg(regs[t].regmap_entry[hr],hr);
4783 }
4784 }
4785 }
4786 }
4787 //Load 64-bit regs
4788 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4789 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4790 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4791 assert(regs[t].regmap_entry[hr]!=64);
4792 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4793 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4794 if(lr<0) {
4795 emit_loadreg(regs[t].regmap_entry[hr],hr);
4796 }
4797 else
4798 {
4799 emit_sarimm(lr,31,hr);
4800 }
4801 }
4802 else
4803 {
4804 emit_loadreg(regs[t].regmap_entry[hr],hr);
4805 }
4806 }
4807 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4808 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4809 assert(lr>=0);
4810 emit_sarimm(lr,31,hr);
4811 }
4812 }
4813 }
4814 }
4815}
4816
4817int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4818{
4819 if(addr>=start && addr<start+slen*4-4)
4820 {
4821 int t=(addr-start)>>2;
4822 int hr;
4823 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4824 for(hr=0;hr<HOST_REGS;hr++)
4825 {
4826 if(hr!=EXCLUDE_REG)
4827 {
4828 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4829 {
ea3d2e6e 4830 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4831 {
4832 return 0;
4833 }
4834 else
4835 if((i_dirty>>hr)&1)
4836 {
ea3d2e6e 4837 if(i_regmap[hr]<TEMPREG)
57871462 4838 {
4839 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4840 return 0;
4841 }
ea3d2e6e 4842 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4843 {
4844 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4845 return 0;
4846 }
4847 }
4848 }
4849 else // Same register but is it 32-bit or dirty?
4850 if(i_regmap[hr]>=0)
4851 {
4852 if(!((regs[t].dirty>>hr)&1))
4853 {
4854 if((i_dirty>>hr)&1)
4855 {
4856 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4857 {
4858 //printf("%x: dirty no match\n",addr);
4859 return 0;
4860 }
4861 }
4862 }
4863 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4864 {
4865 //printf("%x: is32 no match\n",addr);
4866 return 0;
4867 }
4868 }
4869 }
4870 }
4871 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4872#ifndef FORCE32
57871462 4873 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4874#endif
57871462 4875 // Delay slots are not valid branch targets
4876 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4877 // Delay slots require additional processing, so do not match
4878 if(is_ds[t]) return 0;
4879 }
4880 else
4881 {
4882 int hr;
4883 for(hr=0;hr<HOST_REGS;hr++)
4884 {
4885 if(hr!=EXCLUDE_REG)
4886 {
4887 if(i_regmap[hr]>=0)
4888 {
4889 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4890 {
4891 if((i_dirty>>hr)&1)
4892 {
4893 return 0;
4894 }
4895 }
4896 }
4897 }
4898 }
4899 }
4900 return 1;
4901}
4902
4903// Used when a branch jumps into the delay slot of another branch
4904void ds_assemble_entry(int i)
4905{
4906 int t=(ba[i]-start)>>2;
4907 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4908 assem_debug("Assemble delay slot at %x\n",ba[i]);
4909 assem_debug("<->\n");
4910 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4911 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4912 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4913 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4914 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4915 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4916 cop1_usable=0;
4917 is_delayslot=0;
4918 switch(itype[t]) {
4919 case ALU:
4920 alu_assemble(t,&regs[t]);break;
4921 case IMM16:
4922 imm16_assemble(t,&regs[t]);break;
4923 case SHIFT:
4924 shift_assemble(t,&regs[t]);break;
4925 case SHIFTIMM:
4926 shiftimm_assemble(t,&regs[t]);break;
4927 case LOAD:
4928 load_assemble(t,&regs[t]);break;
4929 case LOADLR:
4930 loadlr_assemble(t,&regs[t]);break;
4931 case STORE:
4932 store_assemble(t,&regs[t]);break;
4933 case STORELR:
4934 storelr_assemble(t,&regs[t]);break;
4935 case COP0:
4936 cop0_assemble(t,&regs[t]);break;
4937 case COP1:
4938 cop1_assemble(t,&regs[t]);break;
4939 case C1LS:
4940 c1ls_assemble(t,&regs[t]);break;
b9b61529 4941 case COP2:
4942 cop2_assemble(t,&regs[t]);break;
4943 case C2LS:
4944 c2ls_assemble(t,&regs[t]);break;
4945 case C2OP:
4946 c2op_assemble(t,&regs[t]);break;
57871462 4947 case FCONV:
4948 fconv_assemble(t,&regs[t]);break;
4949 case FLOAT:
4950 float_assemble(t,&regs[t]);break;
4951 case FCOMP:
4952 fcomp_assemble(t,&regs[t]);break;
4953 case MULTDIV:
4954 multdiv_assemble(t,&regs[t]);break;
4955 case MOV:
4956 mov_assemble(t,&regs[t]);break;
4957 case SYSCALL:
7139f3c8 4958 case HLECALL:
1e973cb0 4959 case INTCALL:
57871462 4960 case SPAN:
4961 case UJUMP:
4962 case RJUMP:
4963 case CJUMP:
4964 case SJUMP:
4965 case FJUMP:
4966 printf("Jump in the delay slot. This is probably a bug.\n");
4967 }
4968 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4969 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4970 if(internal_branch(regs[t].is32,ba[i]+4))
4971 assem_debug("branch: internal\n");
4972 else
4973 assem_debug("branch: external\n");
4974 assert(internal_branch(regs[t].is32,ba[i]+4));
4975 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4976 emit_jmp(0);
4977}
4978
4979void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4980{
4981 int count;
4982 int jaddr;
4983 int idle=0;
4984 if(itype[i]==RJUMP)
4985 {
4986 *adj=0;
4987 }
4988 //if(ba[i]>=start && ba[i]<(start+slen*4))
4989 if(internal_branch(branch_regs[i].is32,ba[i]))
4990 {
4991 int t=(ba[i]-start)>>2;
4992 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4993 else *adj=ccadj[t];
4994 }
4995 else
4996 {
4997 *adj=0;
4998 }
4999 count=ccadj[i];
5000 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
5001 // Idle loop
5002 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
5003 idle=(int)out;
5004 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
5005 emit_andimm(HOST_CCREG,3,HOST_CCREG);
5006 jaddr=(int)out;
5007 emit_jmp(0);
5008 }
5009 else if(*adj==0||invert) {
2573466a 5010 emit_addimm_and_set_flags(CLOCK_ADJUST(count+2),HOST_CCREG);
57871462 5011 jaddr=(int)out;
5012 emit_jns(0);
5013 }
5014 else
5015 {
2573466a 5016 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
57871462 5017 jaddr=(int)out;
5018 emit_jns(0);
5019 }
5020 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
5021}
5022
5023void do_ccstub(int n)
5024{
5025 literal_pool(256);
5026 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
5027 set_jump_target(stubs[n][1],(int)out);
5028 int i=stubs[n][4];
5029 if(stubs[n][6]==NULLDS) {
5030 // Delay slot instruction is nullified ("likely" branch)
5031 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5032 }
5033 else if(stubs[n][6]!=TAKEN) {
5034 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
5035 }
5036 else {
5037 if(internal_branch(branch_regs[i].is32,ba[i]))
5038 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5039 }
5040 if(stubs[n][5]!=-1)
5041 {
5042 // Save PC as return address
5043 emit_movimm(stubs[n][5],EAX);
5044 emit_writeword(EAX,(int)&pcaddr);
5045 }
5046 else
5047 {
5048 // Return address depends on which way the branch goes
5049 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5050 {
5051 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5052 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5053 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5054 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5055 if(rs1[i]==0)
5056 {
5057 s1l=s2l;s1h=s2h;
5058 s2l=s2h=-1;
5059 }
5060 else if(rs2[i]==0)
5061 {
5062 s2l=s2h=-1;
5063 }
5064 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5065 s1h=s2h=-1;
5066 }
5067 assert(s1l>=0);
5068 #ifdef DESTRUCTIVE_WRITEBACK
5069 if(rs1[i]) {
5070 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5071 emit_loadreg(rs1[i],s1l);
5072 }
5073 else {
5074 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5075 emit_loadreg(rs2[i],s1l);
5076 }
5077 if(s2l>=0)
5078 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5079 emit_loadreg(rs2[i],s2l);
5080 #endif
5081 int hr=0;
5194fb95 5082 int addr=-1,alt=-1,ntaddr=-1;
57871462 5083 while(hr<HOST_REGS)
5084 {
5085 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5086 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5087 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5088 {
5089 addr=hr++;break;
5090 }
5091 hr++;
5092 }
5093 while(hr<HOST_REGS)
5094 {
5095 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5096 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5097 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5098 {
5099 alt=hr++;break;
5100 }
5101 hr++;
5102 }
5103 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5104 {
5105 while(hr<HOST_REGS)
5106 {
5107 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5108 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5109 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5110 {
5111 ntaddr=hr;break;
5112 }
5113 hr++;
5114 }
5115 assert(hr<HOST_REGS);
5116 }
5117 if((opcode[i]&0x2f)==4) // BEQ
5118 {
5119 #ifdef HAVE_CMOV_IMM
5120 if(s1h<0) {
5121 if(s2l>=0) emit_cmp(s1l,s2l);
5122 else emit_test(s1l,s1l);
5123 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5124 }
5125 else
5126 #endif
5127 {
5128 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5129 if(s1h>=0) {
5130 if(s2h>=0) emit_cmp(s1h,s2h);
5131 else emit_test(s1h,s1h);
5132 emit_cmovne_reg(alt,addr);
5133 }
5134 if(s2l>=0) emit_cmp(s1l,s2l);
5135 else emit_test(s1l,s1l);
5136 emit_cmovne_reg(alt,addr);
5137 }
5138 }
5139 if((opcode[i]&0x2f)==5) // BNE
5140 {
5141 #ifdef HAVE_CMOV_IMM
5142 if(s1h<0) {
5143 if(s2l>=0) emit_cmp(s1l,s2l);
5144 else emit_test(s1l,s1l);
5145 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5146 }
5147 else
5148 #endif
5149 {
5150 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5151 if(s1h>=0) {
5152 if(s2h>=0) emit_cmp(s1h,s2h);
5153 else emit_test(s1h,s1h);
5154 emit_cmovne_reg(alt,addr);
5155 }
5156 if(s2l>=0) emit_cmp(s1l,s2l);
5157 else emit_test(s1l,s1l);
5158 emit_cmovne_reg(alt,addr);
5159 }
5160 }
5161 if((opcode[i]&0x2f)==6) // BLEZ
5162 {
5163 //emit_movimm(ba[i],alt);
5164 //emit_movimm(start+i*4+8,addr);
5165 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5166 emit_cmpimm(s1l,1);
5167 if(s1h>=0) emit_mov(addr,ntaddr);
5168 emit_cmovl_reg(alt,addr);
5169 if(s1h>=0) {
5170 emit_test(s1h,s1h);
5171 emit_cmovne_reg(ntaddr,addr);
5172 emit_cmovs_reg(alt,addr);
5173 }
5174 }
5175 if((opcode[i]&0x2f)==7) // BGTZ
5176 {
5177 //emit_movimm(ba[i],addr);
5178 //emit_movimm(start+i*4+8,ntaddr);
5179 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5180 emit_cmpimm(s1l,1);
5181 if(s1h>=0) emit_mov(addr,alt);
5182 emit_cmovl_reg(ntaddr,addr);
5183 if(s1h>=0) {
5184 emit_test(s1h,s1h);
5185 emit_cmovne_reg(alt,addr);
5186 emit_cmovs_reg(ntaddr,addr);
5187 }
5188 }
5189 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5190 {
5191 //emit_movimm(ba[i],alt);
5192 //emit_movimm(start+i*4+8,addr);
5193 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5194 if(s1h>=0) emit_test(s1h,s1h);
5195 else emit_test(s1l,s1l);
5196 emit_cmovs_reg(alt,addr);
5197 }
5198 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5199 {
5200 //emit_movimm(ba[i],addr);
5201 //emit_movimm(start+i*4+8,alt);
5202 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5203 if(s1h>=0) emit_test(s1h,s1h);
5204 else emit_test(s1l,s1l);
5205 emit_cmovs_reg(alt,addr);
5206 }
5207 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5208 if(source[i]&0x10000) // BC1T
5209 {
5210 //emit_movimm(ba[i],alt);
5211 //emit_movimm(start+i*4+8,addr);
5212 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5213 emit_testimm(s1l,0x800000);
5214 emit_cmovne_reg(alt,addr);
5215 }
5216 else // BC1F
5217 {
5218 //emit_movimm(ba[i],addr);
5219 //emit_movimm(start+i*4+8,alt);
5220 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5221 emit_testimm(s1l,0x800000);
5222 emit_cmovne_reg(alt,addr);
5223 }
5224 }
5225 emit_writeword(addr,(int)&pcaddr);
5226 }
5227 else
5228 if(itype[i]==RJUMP)
5229 {
5230 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5231 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5232 r=get_reg(branch_regs[i].regmap,RTEMP);
5233 }
5234 emit_writeword(r,(int)&pcaddr);
5235 }
5236 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5237 }
5238 // Update cycle count
5239 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
2573466a 5240 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5241 emit_call((int)cc_interrupt);
2573466a 5242 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5243 if(stubs[n][6]==TAKEN) {
5244 if(internal_branch(branch_regs[i].is32,ba[i]))
5245 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5246 else if(itype[i]==RJUMP) {
5247 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5248 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5249 else
5250 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5251 }
5252 }else if(stubs[n][6]==NOTTAKEN) {
5253 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5254 else load_all_regs(branch_regs[i].regmap);
5255 }else if(stubs[n][6]==NULLDS) {
5256 // Delay slot instruction is nullified ("likely" branch)
5257 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5258 else load_all_regs(regs[i].regmap);
5259 }else{
5260 load_all_regs(branch_regs[i].regmap);
5261 }
5262 emit_jmp(stubs[n][2]); // return address
5263
5264 /* This works but uses a lot of memory...
5265 emit_readword((int)&last_count,ECX);
5266 emit_add(HOST_CCREG,ECX,EAX);
5267 emit_writeword(EAX,(int)&Count);
5268 emit_call((int)gen_interupt);
5269 emit_readword((int)&Count,HOST_CCREG);
5270 emit_readword((int)&next_interupt,EAX);
5271 emit_readword((int)&pending_exception,EBX);
5272 emit_writeword(EAX,(int)&last_count);
5273 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5274 emit_test(EBX,EBX);
5275 int jne_instr=(int)out;
5276 emit_jne(0);
5277 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5278 load_all_regs(branch_regs[i].regmap);
5279 emit_jmp(stubs[n][2]); // return address
5280 set_jump_target(jne_instr,(int)out);
5281 emit_readword((int)&pcaddr,EAX);
5282 // Call get_addr_ht instead of doing the hash table here.
5283 // This code is executed infrequently and takes up a lot of space
5284 // so smaller is better.
5285 emit_storereg(CCREG,HOST_CCREG);
5286 emit_pushreg(EAX);
5287 emit_call((int)get_addr_ht);
5288 emit_loadreg(CCREG,HOST_CCREG);
5289 emit_addimm(ESP,4,ESP);
5290 emit_jmpreg(EAX);*/
5291}
5292
5293add_to_linker(int addr,int target,int ext)
5294{
5295 link_addr[linkcount][0]=addr;
5296 link_addr[linkcount][1]=target;
5297 link_addr[linkcount][2]=ext;
5298 linkcount++;
5299}
5300
eba830cd 5301static void ujump_assemble_write_ra(int i)
5302{
5303 int rt;
5304 unsigned int return_address;
5305 rt=get_reg(branch_regs[i].regmap,31);
5306 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5307 //assert(rt>=0);
5308 return_address=start+i*4+8;
5309 if(rt>=0) {
5310 #ifdef USE_MINI_HT
5311 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5312 int temp=-1; // note: must be ds-safe
5313 #ifdef HOST_TEMPREG
5314 temp=HOST_TEMPREG;
5315 #endif
5316 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5317 else emit_movimm(return_address,rt);
5318 }
5319 else
5320 #endif
5321 {
5322 #ifdef REG_PREFETCH
5323 if(temp>=0)
5324 {
5325 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5326 }
5327 #endif
5328 emit_movimm(return_address,rt); // PC into link register
5329 #ifdef IMM_PREFETCH
5330 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5331 #endif
5332 }
5333 }
5334}
5335
57871462 5336void ujump_assemble(int i,struct regstat *i_regs)
5337{
5338 signed char *i_regmap=i_regs->regmap;
eba830cd 5339 int ra_done=0;
57871462 5340 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5341 address_generation(i+1,i_regs,regs[i].regmap_entry);
5342 #ifdef REG_PREFETCH
5343 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5344 if(rt1[i]==31&&temp>=0)
5345 {
5346 int return_address=start+i*4+8;
5347 if(get_reg(branch_regs[i].regmap,31)>0)
5348 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5349 }
5350 #endif
eba830cd 5351 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5352 ujump_assemble_write_ra(i); // writeback ra for DS
5353 ra_done=1;
57871462 5354 }
4ef8f67d 5355 ds_assemble(i+1,i_regs);
5356 uint64_t bc_unneeded=branch_regs[i].u;
5357 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5358 bc_unneeded|=1|(1LL<<rt1[i]);
5359 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5360 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5361 bc_unneeded,bc_unneeded_upper);
5362 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5363 if(!ra_done&&rt1[i]==31)
5364 ujump_assemble_write_ra(i);
57871462 5365 int cc,adj;
5366 cc=get_reg(branch_regs[i].regmap,CCREG);
5367 assert(cc==HOST_CCREG);
5368 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5369 #ifdef REG_PREFETCH
5370 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5371 #endif
5372 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 5373 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5374 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5375 if(internal_branch(branch_regs[i].is32,ba[i]))
5376 assem_debug("branch: internal\n");
5377 else
5378 assem_debug("branch: external\n");
5379 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5380 ds_assemble_entry(i);
5381 }
5382 else {
5383 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5384 emit_jmp(0);
5385 }
5386}
5387
eba830cd 5388static void rjump_assemble_write_ra(int i)
5389{
5390 int rt,return_address;
5391 assert(rt1[i+1]!=rt1[i]);
5392 assert(rt2[i+1]!=rt1[i]);
5393 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5394 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5395 assert(rt>=0);
5396 return_address=start+i*4+8;
5397 #ifdef REG_PREFETCH
5398 if(temp>=0)
5399 {
5400 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5401 }
5402 #endif
5403 emit_movimm(return_address,rt); // PC into link register
5404 #ifdef IMM_PREFETCH
5405 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5406 #endif
5407}
5408
57871462 5409void rjump_assemble(int i,struct regstat *i_regs)
5410{
5411 signed char *i_regmap=i_regs->regmap;
5412 int temp;
5413 int rs,cc,adj;
eba830cd 5414 int ra_done=0;
57871462 5415 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5416 assert(rs>=0);
5417 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5418 // Delay slot abuse, make a copy of the branch address register
5419 temp=get_reg(branch_regs[i].regmap,RTEMP);
5420 assert(temp>=0);
5421 assert(regs[i].regmap[temp]==RTEMP);
5422 emit_mov(rs,temp);
5423 rs=temp;
5424 }
5425 address_generation(i+1,i_regs,regs[i].regmap_entry);
5426 #ifdef REG_PREFETCH
5427 if(rt1[i]==31)
5428 {
5429 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5430 int return_address=start+i*4+8;
5431 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5432 }
5433 }
5434 #endif
5435 #ifdef USE_MINI_HT
5436 if(rs1[i]==31) {
5437 int rh=get_reg(regs[i].regmap,RHASH);
5438 if(rh>=0) do_preload_rhash(rh);
5439 }
5440 #endif
eba830cd 5441 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5442 rjump_assemble_write_ra(i);
5443 ra_done=1;
57871462 5444 }
d5910d5d 5445 ds_assemble(i+1,i_regs);
5446 uint64_t bc_unneeded=branch_regs[i].u;
5447 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5448 bc_unneeded|=1|(1LL<<rt1[i]);
5449 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5450 bc_unneeded&=~(1LL<<rs1[i]);
5451 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5452 bc_unneeded,bc_unneeded_upper);
5453 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5454 if(!ra_done&&rt1[i]!=0)
5455 rjump_assemble_write_ra(i);
57871462 5456 cc=get_reg(branch_regs[i].regmap,CCREG);
5457 assert(cc==HOST_CCREG);
5458 #ifdef USE_MINI_HT
5459 int rh=get_reg(branch_regs[i].regmap,RHASH);
5460 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5461 if(rs1[i]==31) {
5462 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5463 do_preload_rhtbl(ht);
5464 do_rhash(rs,rh);
5465 }
5466 #endif
5467 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5468 #ifdef DESTRUCTIVE_WRITEBACK
5469 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5470 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5471 emit_loadreg(rs1[i],rs);
5472 }
5473 }
5474 #endif
5475 #ifdef REG_PREFETCH
5476 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5477 #endif
5478 #ifdef USE_MINI_HT
5479 if(rs1[i]==31) {
5480 do_miniht_load(ht,rh);
5481 }
5482 #endif
5483 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5484 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5485 //assert(adj==0);
2573466a 5486 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5487 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
911f2d55 5488#ifdef PCSX
5489 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5490 // special case for RFE
5491 emit_jmp(0);
5492 else
5493#endif
57871462 5494 emit_jns(0);
5495 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5496 #ifdef USE_MINI_HT
5497 if(rs1[i]==31) {
5498 do_miniht_jump(rs,rh,ht);
5499 }
5500 else
5501 #endif
5502 {
5503 //if(rs!=EAX) emit_mov(rs,EAX);
5504 //emit_jmp((int)jump_vaddr_eax);
5505 emit_jmp(jump_vaddr_reg[rs]);
5506 }
5507 /* Check hash table
5508 temp=!rs;
5509 emit_mov(rs,temp);
5510 emit_shrimm(rs,16,rs);
5511 emit_xor(temp,rs,rs);
5512 emit_movzwl_reg(rs,rs);
5513 emit_shlimm(rs,4,rs);
5514 emit_cmpmem_indexed((int)hash_table,rs,temp);
5515 emit_jne((int)out+14);
5516 emit_readword_indexed((int)hash_table+4,rs,rs);
5517 emit_jmpreg(rs);
5518 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5519 emit_addimm_no_flags(8,rs);
5520 emit_jeq((int)out-17);
5521 // No hit on hash table, call compiler
5522 emit_pushreg(temp);
5523//DEBUG >
5524#ifdef DEBUG_CYCLE_COUNT
5525 emit_readword((int)&last_count,ECX);
5526 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5527 emit_readword((int)&next_interupt,ECX);
5528 emit_writeword(HOST_CCREG,(int)&Count);
5529 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5530 emit_writeword(ECX,(int)&last_count);
5531#endif
5532//DEBUG <
5533 emit_storereg(CCREG,HOST_CCREG);
5534 emit_call((int)get_addr);
5535 emit_loadreg(CCREG,HOST_CCREG);
5536 emit_addimm(ESP,4,ESP);
5537 emit_jmpreg(EAX);*/
5538 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5539 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5540 #endif
5541}
5542
5543void cjump_assemble(int i,struct regstat *i_regs)
5544{
5545 signed char *i_regmap=i_regs->regmap;
5546 int cc;
5547 int match;
5548 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5549 assem_debug("match=%d\n",match);
5550 int s1h,s1l,s2h,s2l;
5551 int prev_cop1_usable=cop1_usable;
5552 int unconditional=0,nop=0;
5553 int only32=0;
57871462 5554 int invert=0;
5555 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5556 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5557 if(!match) invert=1;
5558 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5559 if(i>(ba[i]-start)>>2) invert=1;
5560 #endif
e1190b87 5561
5562 if(ooo[i]) {
57871462 5563 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5564 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5565 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5566 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5567 }
5568 else {
5569 s1l=get_reg(i_regmap,rs1[i]);
5570 s1h=get_reg(i_regmap,rs1[i]|64);
5571 s2l=get_reg(i_regmap,rs2[i]);
5572 s2h=get_reg(i_regmap,rs2[i]|64);
5573 }
5574 if(rs1[i]==0&&rs2[i]==0)
5575 {
5576 if(opcode[i]&1) nop=1;
5577 else unconditional=1;
5578 //assert(opcode[i]!=5);
5579 //assert(opcode[i]!=7);
5580 //assert(opcode[i]!=0x15);
5581 //assert(opcode[i]!=0x17);
5582 }
5583 else if(rs1[i]==0)
5584 {
5585 s1l=s2l;s1h=s2h;
5586 s2l=s2h=-1;
5587 only32=(regs[i].was32>>rs2[i])&1;
5588 }
5589 else if(rs2[i]==0)
5590 {
5591 s2l=s2h=-1;
5592 only32=(regs[i].was32>>rs1[i])&1;
5593 }
5594 else {
5595 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5596 }
5597
e1190b87 5598 if(ooo[i]) {
57871462 5599 // Out of order execution (delay slot first)
5600 //printf("OOOE\n");
5601 address_generation(i+1,i_regs,regs[i].regmap_entry);
5602 ds_assemble(i+1,i_regs);
5603 int adj;
5604 uint64_t bc_unneeded=branch_regs[i].u;
5605 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5606 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5607 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5608 bc_unneeded|=1;
5609 bc_unneeded_upper|=1;
5610 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5611 bc_unneeded,bc_unneeded_upper);
5612 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5613 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5614 cc=get_reg(branch_regs[i].regmap,CCREG);
5615 assert(cc==HOST_CCREG);
5616 if(unconditional)
5617 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5618 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5619 //assem_debug("cycle count (adj)\n");
5620 if(unconditional) {
5621 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5622 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5623 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5624 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5625 if(internal)
5626 assem_debug("branch: internal\n");
5627 else
5628 assem_debug("branch: external\n");
5629 if(internal&&is_ds[(ba[i]-start)>>2]) {
5630 ds_assemble_entry(i);
5631 }
5632 else {
5633 add_to_linker((int)out,ba[i],internal);
5634 emit_jmp(0);
5635 }
5636 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5637 if(((u_int)out)&7) emit_addnop(0);
5638 #endif
5639 }
5640 }
5641 else if(nop) {
2573466a 5642 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5643 int jaddr=(int)out;
5644 emit_jns(0);
5645 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5646 }
5647 else {
5648 int taken=0,nottaken=0,nottaken1=0;
5649 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5650 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5651 if(!only32)
5652 {
5653 assert(s1h>=0);
5654 if(opcode[i]==4) // BEQ
5655 {
5656 if(s2h>=0) emit_cmp(s1h,s2h);
5657 else emit_test(s1h,s1h);
5658 nottaken1=(int)out;
5659 emit_jne(1);
5660 }
5661 if(opcode[i]==5) // BNE
5662 {
5663 if(s2h>=0) emit_cmp(s1h,s2h);
5664 else emit_test(s1h,s1h);
5665 if(invert) taken=(int)out;
5666 else add_to_linker((int)out,ba[i],internal);
5667 emit_jne(0);
5668 }
5669 if(opcode[i]==6) // BLEZ
5670 {
5671 emit_test(s1h,s1h);
5672 if(invert) taken=(int)out;
5673 else add_to_linker((int)out,ba[i],internal);
5674 emit_js(0);
5675 nottaken1=(int)out;
5676 emit_jne(1);
5677 }
5678 if(opcode[i]==7) // BGTZ
5679 {
5680 emit_test(s1h,s1h);
5681 nottaken1=(int)out;
5682 emit_js(1);
5683 if(invert) taken=(int)out;
5684 else add_to_linker((int)out,ba[i],internal);
5685 emit_jne(0);
5686 }
5687 } // if(!only32)
5688
5689 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5690 assert(s1l>=0);
5691 if(opcode[i]==4) // BEQ
5692 {
5693 if(s2l>=0) emit_cmp(s1l,s2l);
5694 else emit_test(s1l,s1l);
5695 if(invert){
5696 nottaken=(int)out;
5697 emit_jne(1);
5698 }else{
5699 add_to_linker((int)out,ba[i],internal);
5700 emit_jeq(0);
5701 }
5702 }
5703 if(opcode[i]==5) // BNE
5704 {
5705 if(s2l>=0) emit_cmp(s1l,s2l);
5706 else emit_test(s1l,s1l);
5707 if(invert){
5708 nottaken=(int)out;
5709 emit_jeq(1);
5710 }else{
5711 add_to_linker((int)out,ba[i],internal);
5712 emit_jne(0);
5713 }
5714 }
5715 if(opcode[i]==6) // BLEZ
5716 {
5717 emit_cmpimm(s1l,1);
5718 if(invert){
5719 nottaken=(int)out;
5720 emit_jge(1);
5721 }else{
5722 add_to_linker((int)out,ba[i],internal);
5723 emit_jl(0);
5724 }
5725 }
5726 if(opcode[i]==7) // BGTZ
5727 {
5728 emit_cmpimm(s1l,1);
5729 if(invert){
5730 nottaken=(int)out;
5731 emit_jl(1);
5732 }else{
5733 add_to_linker((int)out,ba[i],internal);
5734 emit_jge(0);
5735 }
5736 }
5737 if(invert) {
5738 if(taken) set_jump_target(taken,(int)out);
5739 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5740 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5741 if(adj) {
2573466a 5742 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5743 add_to_linker((int)out,ba[i],internal);
5744 }else{
5745 emit_addnop(13);
5746 add_to_linker((int)out,ba[i],internal*2);
5747 }
5748 emit_jmp(0);
5749 }else
5750 #endif
5751 {
2573466a 5752 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5753 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5754 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5755 if(internal)
5756 assem_debug("branch: internal\n");
5757 else
5758 assem_debug("branch: external\n");
5759 if(internal&&is_ds[(ba[i]-start)>>2]) {
5760 ds_assemble_entry(i);
5761 }
5762 else {
5763 add_to_linker((int)out,ba[i],internal);
5764 emit_jmp(0);
5765 }
5766 }
5767 set_jump_target(nottaken,(int)out);
5768 }
5769
5770 if(nottaken1) set_jump_target(nottaken1,(int)out);
5771 if(adj) {
2573466a 5772 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5773 }
5774 } // (!unconditional)
5775 } // if(ooo)
5776 else
5777 {
5778 // In-order execution (branch first)
5779 //if(likely[i]) printf("IOL\n");
5780 //else
5781 //printf("IOE\n");
5782 int taken=0,nottaken=0,nottaken1=0;
5783 if(!unconditional&&!nop) {
5784 if(!only32)
5785 {
5786 assert(s1h>=0);
5787 if((opcode[i]&0x2f)==4) // BEQ
5788 {
5789 if(s2h>=0) emit_cmp(s1h,s2h);
5790 else emit_test(s1h,s1h);
5791 nottaken1=(int)out;
5792 emit_jne(2);
5793 }
5794 if((opcode[i]&0x2f)==5) // BNE
5795 {
5796 if(s2h>=0) emit_cmp(s1h,s2h);
5797 else emit_test(s1h,s1h);
5798 taken=(int)out;
5799 emit_jne(1);
5800 }
5801 if((opcode[i]&0x2f)==6) // BLEZ
5802 {
5803 emit_test(s1h,s1h);
5804 taken=(int)out;
5805 emit_js(1);
5806 nottaken1=(int)out;
5807 emit_jne(2);
5808 }
5809 if((opcode[i]&0x2f)==7) // BGTZ
5810 {
5811 emit_test(s1h,s1h);
5812 nottaken1=(int)out;
5813 emit_js(2);
5814 taken=(int)out;
5815 emit_jne(1);
5816 }
5817 } // if(!only32)
5818
5819 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5820 assert(s1l>=0);
5821 if((opcode[i]&0x2f)==4) // BEQ
5822 {
5823 if(s2l>=0) emit_cmp(s1l,s2l);
5824 else emit_test(s1l,s1l);
5825 nottaken=(int)out;
5826 emit_jne(2);
5827 }
5828 if((opcode[i]&0x2f)==5) // BNE
5829 {
5830 if(s2l>=0) emit_cmp(s1l,s2l);
5831 else emit_test(s1l,s1l);
5832 nottaken=(int)out;
5833 emit_jeq(2);
5834 }
5835 if((opcode[i]&0x2f)==6) // BLEZ
5836 {
5837 emit_cmpimm(s1l,1);
5838 nottaken=(int)out;
5839 emit_jge(2);
5840 }
5841 if((opcode[i]&0x2f)==7) // BGTZ
5842 {
5843 emit_cmpimm(s1l,1);
5844 nottaken=(int)out;
5845 emit_jl(2);
5846 }
5847 } // if(!unconditional)
5848 int adj;
5849 uint64_t ds_unneeded=branch_regs[i].u;
5850 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5851 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5852 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5853 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5854 ds_unneeded|=1;
5855 ds_unneeded_upper|=1;
5856 // branch taken
5857 if(!nop) {
5858 if(taken) set_jump_target(taken,(int)out);
5859 assem_debug("1:\n");
5860 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5861 ds_unneeded,ds_unneeded_upper);
5862 // load regs
5863 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5864 address_generation(i+1,&branch_regs[i],0);
5865 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5866 ds_assemble(i+1,&branch_regs[i]);
5867 cc=get_reg(branch_regs[i].regmap,CCREG);
5868 if(cc==-1) {
5869 emit_loadreg(CCREG,cc=HOST_CCREG);
5870 // CHECK: Is the following instruction (fall thru) allocated ok?
5871 }
5872 assert(cc==HOST_CCREG);
5873 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5874 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5875 assem_debug("cycle count (adj)\n");
2573466a 5876 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5877 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5878 if(internal)
5879 assem_debug("branch: internal\n");
5880 else
5881 assem_debug("branch: external\n");
5882 if(internal&&is_ds[(ba[i]-start)>>2]) {
5883 ds_assemble_entry(i);
5884 }
5885 else {
5886 add_to_linker((int)out,ba[i],internal);
5887 emit_jmp(0);
5888 }
5889 }
5890 // branch not taken
5891 cop1_usable=prev_cop1_usable;
5892 if(!unconditional) {
5893 if(nottaken1) set_jump_target(nottaken1,(int)out);
5894 set_jump_target(nottaken,(int)out);
5895 assem_debug("2:\n");
5896 if(!likely[i]) {
5897 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5898 ds_unneeded,ds_unneeded_upper);
5899 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5900 address_generation(i+1,&branch_regs[i],0);
5901 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5902 ds_assemble(i+1,&branch_regs[i]);
5903 }
5904 cc=get_reg(branch_regs[i].regmap,CCREG);
5905 if(cc==-1&&!likely[i]) {
5906 // Cycle count isn't in a register, temporarily load it then write it out
5907 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5908 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5909 int jaddr=(int)out;
5910 emit_jns(0);
5911 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5912 emit_storereg(CCREG,HOST_CCREG);
5913 }
5914 else{
5915 cc=get_reg(i_regmap,CCREG);
5916 assert(cc==HOST_CCREG);
2573466a 5917 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5918 int jaddr=(int)out;
5919 emit_jns(0);
5920 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5921 }
5922 }
5923 }
5924}
5925
5926void sjump_assemble(int i,struct regstat *i_regs)
5927{
5928 signed char *i_regmap=i_regs->regmap;
5929 int cc;
5930 int match;
5931 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5932 assem_debug("smatch=%d\n",match);
5933 int s1h,s1l;
5934 int prev_cop1_usable=cop1_usable;
5935 int unconditional=0,nevertaken=0;
5936 int only32=0;
57871462 5937 int invert=0;
5938 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5939 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5940 if(!match) invert=1;
5941 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5942 if(i>(ba[i]-start)>>2) invert=1;
5943 #endif
5944
5945 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5946 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5947
e1190b87 5948 if(ooo[i]) {
57871462 5949 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5950 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5951 }
5952 else {
5953 s1l=get_reg(i_regmap,rs1[i]);
5954 s1h=get_reg(i_regmap,rs1[i]|64);
5955 }
5956 if(rs1[i]==0)
5957 {
5958 if(opcode2[i]&1) unconditional=1;
5959 else nevertaken=1;
5960 // These are never taken (r0 is never less than zero)
5961 //assert(opcode2[i]!=0);
5962 //assert(opcode2[i]!=2);
5963 //assert(opcode2[i]!=0x10);
5964 //assert(opcode2[i]!=0x12);
5965 }
5966 else {
5967 only32=(regs[i].was32>>rs1[i])&1;
5968 }
5969
e1190b87 5970 if(ooo[i]) {
57871462 5971 // Out of order execution (delay slot first)
5972 //printf("OOOE\n");
5973 address_generation(i+1,i_regs,regs[i].regmap_entry);
5974 ds_assemble(i+1,i_regs);
5975 int adj;
5976 uint64_t bc_unneeded=branch_regs[i].u;
5977 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5978 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5979 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5980 bc_unneeded|=1;
5981 bc_unneeded_upper|=1;
5982 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5983 bc_unneeded,bc_unneeded_upper);
5984 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5985 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5986 if(rt1[i]==31) {
5987 int rt,return_address;
57871462 5988 rt=get_reg(branch_regs[i].regmap,31);
5989 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5990 if(rt>=0) {
5991 // Save the PC even if the branch is not taken
5992 return_address=start+i*4+8;
5993 emit_movimm(return_address,rt); // PC into link register
5994 #ifdef IMM_PREFETCH
5995 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5996 #endif
5997 }
5998 }
5999 cc=get_reg(branch_regs[i].regmap,CCREG);
6000 assert(cc==HOST_CCREG);
6001 if(unconditional)
6002 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6003 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
6004 assem_debug("cycle count (adj)\n");
6005 if(unconditional) {
6006 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
6007 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 6008 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6009 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6010 if(internal)
6011 assem_debug("branch: internal\n");
6012 else
6013 assem_debug("branch: external\n");
6014 if(internal&&is_ds[(ba[i]-start)>>2]) {
6015 ds_assemble_entry(i);
6016 }
6017 else {
6018 add_to_linker((int)out,ba[i],internal);
6019 emit_jmp(0);
6020 }
6021 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6022 if(((u_int)out)&7) emit_addnop(0);
6023 #endif
6024 }
6025 }
6026 else if(nevertaken) {
2573466a 6027 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6028 int jaddr=(int)out;
6029 emit_jns(0);
6030 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6031 }
6032 else {
6033 int nottaken=0;
6034 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 6035 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6036 if(!only32)
6037 {
6038 assert(s1h>=0);
df894a3a 6039 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6040 {
6041 emit_test(s1h,s1h);
6042 if(invert){
6043 nottaken=(int)out;
6044 emit_jns(1);
6045 }else{
6046 add_to_linker((int)out,ba[i],internal);
6047 emit_js(0);
6048 }
6049 }
df894a3a 6050 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6051 {
6052 emit_test(s1h,s1h);
6053 if(invert){
6054 nottaken=(int)out;
6055 emit_js(1);
6056 }else{
6057 add_to_linker((int)out,ba[i],internal);
6058 emit_jns(0);
6059 }
6060 }
6061 } // if(!only32)
6062 else
6063 {
6064 assert(s1l>=0);
df894a3a 6065 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6066 {
6067 emit_test(s1l,s1l);
6068 if(invert){
6069 nottaken=(int)out;
6070 emit_jns(1);
6071 }else{
6072 add_to_linker((int)out,ba[i],internal);
6073 emit_js(0);
6074 }
6075 }
df894a3a 6076 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6077 {
6078 emit_test(s1l,s1l);
6079 if(invert){
6080 nottaken=(int)out;
6081 emit_js(1);
6082 }else{
6083 add_to_linker((int)out,ba[i],internal);
6084 emit_jns(0);
6085 }
6086 }
6087 } // if(!only32)
6088
6089 if(invert) {
6090 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6091 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6092 if(adj) {
2573466a 6093 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6094 add_to_linker((int)out,ba[i],internal);
6095 }else{
6096 emit_addnop(13);
6097 add_to_linker((int)out,ba[i],internal*2);
6098 }
6099 emit_jmp(0);
6100 }else
6101 #endif
6102 {
2573466a 6103 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6104 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6105 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6106 if(internal)
6107 assem_debug("branch: internal\n");
6108 else
6109 assem_debug("branch: external\n");
6110 if(internal&&is_ds[(ba[i]-start)>>2]) {
6111 ds_assemble_entry(i);
6112 }
6113 else {
6114 add_to_linker((int)out,ba[i],internal);
6115 emit_jmp(0);
6116 }
6117 }
6118 set_jump_target(nottaken,(int)out);
6119 }
6120
6121 if(adj) {
2573466a 6122 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6123 }
6124 } // (!unconditional)
6125 } // if(ooo)
6126 else
6127 {
6128 // In-order execution (branch first)
6129 //printf("IOE\n");
6130 int nottaken=0;
a6491170 6131 if(rt1[i]==31) {
6132 int rt,return_address;
a6491170 6133 rt=get_reg(branch_regs[i].regmap,31);
6134 if(rt>=0) {
6135 // Save the PC even if the branch is not taken
6136 return_address=start+i*4+8;
6137 emit_movimm(return_address,rt); // PC into link register
6138 #ifdef IMM_PREFETCH
6139 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6140 #endif
6141 }
6142 }
57871462 6143 if(!unconditional) {
6144 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6145 if(!only32)
6146 {
6147 assert(s1h>=0);
a6491170 6148 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6149 {
6150 emit_test(s1h,s1h);
6151 nottaken=(int)out;
6152 emit_jns(1);
6153 }
a6491170 6154 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6155 {
6156 emit_test(s1h,s1h);
6157 nottaken=(int)out;
6158 emit_js(1);
6159 }
6160 } // if(!only32)
6161 else
6162 {
6163 assert(s1l>=0);
a6491170 6164 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6165 {
6166 emit_test(s1l,s1l);
6167 nottaken=(int)out;
6168 emit_jns(1);
6169 }
a6491170 6170 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6171 {
6172 emit_test(s1l,s1l);
6173 nottaken=(int)out;
6174 emit_js(1);
6175 }
6176 }
6177 } // if(!unconditional)
6178 int adj;
6179 uint64_t ds_unneeded=branch_regs[i].u;
6180 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6181 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6182 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6183 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6184 ds_unneeded|=1;
6185 ds_unneeded_upper|=1;
6186 // branch taken
6187 if(!nevertaken) {
6188 //assem_debug("1:\n");
6189 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6190 ds_unneeded,ds_unneeded_upper);
6191 // load regs
6192 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6193 address_generation(i+1,&branch_regs[i],0);
6194 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6195 ds_assemble(i+1,&branch_regs[i]);
6196 cc=get_reg(branch_regs[i].regmap,CCREG);
6197 if(cc==-1) {
6198 emit_loadreg(CCREG,cc=HOST_CCREG);
6199 // CHECK: Is the following instruction (fall thru) allocated ok?
6200 }
6201 assert(cc==HOST_CCREG);
6202 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6203 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6204 assem_debug("cycle count (adj)\n");
2573466a 6205 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6206 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6207 if(internal)
6208 assem_debug("branch: internal\n");
6209 else
6210 assem_debug("branch: external\n");
6211 if(internal&&is_ds[(ba[i]-start)>>2]) {
6212 ds_assemble_entry(i);
6213 }
6214 else {
6215 add_to_linker((int)out,ba[i],internal);
6216 emit_jmp(0);
6217 }
6218 }
6219 // branch not taken
6220 cop1_usable=prev_cop1_usable;
6221 if(!unconditional) {
6222 set_jump_target(nottaken,(int)out);
6223 assem_debug("1:\n");
6224 if(!likely[i]) {
6225 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6226 ds_unneeded,ds_unneeded_upper);
6227 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6228 address_generation(i+1,&branch_regs[i],0);
6229 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6230 ds_assemble(i+1,&branch_regs[i]);
6231 }
6232 cc=get_reg(branch_regs[i].regmap,CCREG);
6233 if(cc==-1&&!likely[i]) {
6234 // Cycle count isn't in a register, temporarily load it then write it out
6235 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6236 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6237 int jaddr=(int)out;
6238 emit_jns(0);
6239 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6240 emit_storereg(CCREG,HOST_CCREG);
6241 }
6242 else{
6243 cc=get_reg(i_regmap,CCREG);
6244 assert(cc==HOST_CCREG);
2573466a 6245 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6246 int jaddr=(int)out;
6247 emit_jns(0);
6248 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6249 }
6250 }
6251 }
6252}
6253
6254void fjump_assemble(int i,struct regstat *i_regs)
6255{
6256 signed char *i_regmap=i_regs->regmap;
6257 int cc;
6258 int match;
6259 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6260 assem_debug("fmatch=%d\n",match);
6261 int fs,cs;
6262 int eaddr;
57871462 6263 int invert=0;
6264 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6265 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6266 if(!match) invert=1;
6267 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6268 if(i>(ba[i]-start)>>2) invert=1;
6269 #endif
6270
e1190b87 6271 if(ooo[i]) {
57871462 6272 fs=get_reg(branch_regs[i].regmap,FSREG);
6273 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6274 }
6275 else {
6276 fs=get_reg(i_regmap,FSREG);
6277 }
6278
6279 // Check cop1 unusable
6280 if(!cop1_usable) {
6281 cs=get_reg(i_regmap,CSREG);
6282 assert(cs>=0);
6283 emit_testimm(cs,0x20000000);
6284 eaddr=(int)out;
6285 emit_jeq(0);
6286 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6287 cop1_usable=1;
6288 }
6289
e1190b87 6290 if(ooo[i]) {
57871462 6291 // Out of order execution (delay slot first)
6292 //printf("OOOE\n");
6293 ds_assemble(i+1,i_regs);
6294 int adj;
6295 uint64_t bc_unneeded=branch_regs[i].u;
6296 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6297 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6298 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6299 bc_unneeded|=1;
6300 bc_unneeded_upper|=1;
6301 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6302 bc_unneeded,bc_unneeded_upper);
6303 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6304 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6305 cc=get_reg(branch_regs[i].regmap,CCREG);
6306 assert(cc==HOST_CCREG);
6307 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6308 assem_debug("cycle count (adj)\n");
6309 if(1) {
6310 int nottaken=0;
2573466a 6311 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6312 if(1) {
6313 assert(fs>=0);
6314 emit_testimm(fs,0x800000);
6315 if(source[i]&0x10000) // BC1T
6316 {
6317 if(invert){
6318 nottaken=(int)out;
6319 emit_jeq(1);
6320 }else{
6321 add_to_linker((int)out,ba[i],internal);
6322 emit_jne(0);
6323 }
6324 }
6325 else // BC1F
6326 if(invert){
6327 nottaken=(int)out;
6328 emit_jne(1);
6329 }else{
6330 add_to_linker((int)out,ba[i],internal);
6331 emit_jeq(0);
6332 }
6333 {
6334 }
6335 } // if(!only32)
6336
6337 if(invert) {
2573466a 6338 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6339 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6340 else if(match) emit_addnop(13);
6341 #endif
6342 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6343 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6344 if(internal)
6345 assem_debug("branch: internal\n");
6346 else
6347 assem_debug("branch: external\n");
6348 if(internal&&is_ds[(ba[i]-start)>>2]) {
6349 ds_assemble_entry(i);
6350 }
6351 else {
6352 add_to_linker((int)out,ba[i],internal);
6353 emit_jmp(0);
6354 }
6355 set_jump_target(nottaken,(int)out);
6356 }
6357
6358 if(adj) {
2573466a 6359 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6360 }
6361 } // (!unconditional)
6362 } // if(ooo)
6363 else
6364 {
6365 // In-order execution (branch first)
6366 //printf("IOE\n");
6367 int nottaken=0;
6368 if(1) {
6369 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6370 if(1) {
6371 assert(fs>=0);
6372 emit_testimm(fs,0x800000);
6373 if(source[i]&0x10000) // BC1T
6374 {
6375 nottaken=(int)out;
6376 emit_jeq(1);
6377 }
6378 else // BC1F
6379 {
6380 nottaken=(int)out;
6381 emit_jne(1);
6382 }
6383 }
6384 } // if(!unconditional)
6385 int adj;
6386 uint64_t ds_unneeded=branch_regs[i].u;
6387 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6388 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6389 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6390 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6391 ds_unneeded|=1;
6392 ds_unneeded_upper|=1;
6393 // branch taken
6394 //assem_debug("1:\n");
6395 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6396 ds_unneeded,ds_unneeded_upper);
6397 // load regs
6398 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6399 address_generation(i+1,&branch_regs[i],0);
6400 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6401 ds_assemble(i+1,&branch_regs[i]);
6402 cc=get_reg(branch_regs[i].regmap,CCREG);
6403 if(cc==-1) {
6404 emit_loadreg(CCREG,cc=HOST_CCREG);
6405 // CHECK: Is the following instruction (fall thru) allocated ok?
6406 }
6407 assert(cc==HOST_CCREG);
6408 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6409 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6410 assem_debug("cycle count (adj)\n");
2573466a 6411 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6412 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6413 if(internal)
6414 assem_debug("branch: internal\n");
6415 else
6416 assem_debug("branch: external\n");
6417 if(internal&&is_ds[(ba[i]-start)>>2]) {
6418 ds_assemble_entry(i);
6419 }
6420 else {
6421 add_to_linker((int)out,ba[i],internal);
6422 emit_jmp(0);
6423 }
6424
6425 // branch not taken
6426 if(1) { // <- FIXME (don't need this)
6427 set_jump_target(nottaken,(int)out);
6428 assem_debug("1:\n");
6429 if(!likely[i]) {
6430 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6431 ds_unneeded,ds_unneeded_upper);
6432 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6433 address_generation(i+1,&branch_regs[i],0);
6434 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6435 ds_assemble(i+1,&branch_regs[i]);
6436 }
6437 cc=get_reg(branch_regs[i].regmap,CCREG);
6438 if(cc==-1&&!likely[i]) {
6439 // Cycle count isn't in a register, temporarily load it then write it out
6440 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6441 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6442 int jaddr=(int)out;
6443 emit_jns(0);
6444 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6445 emit_storereg(CCREG,HOST_CCREG);
6446 }
6447 else{
6448 cc=get_reg(i_regmap,CCREG);
6449 assert(cc==HOST_CCREG);
2573466a 6450 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6451 int jaddr=(int)out;
6452 emit_jns(0);
6453 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6454 }
6455 }
6456 }
6457}
6458
6459static void pagespan_assemble(int i,struct regstat *i_regs)
6460{
6461 int s1l=get_reg(i_regs->regmap,rs1[i]);
6462 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6463 int s2l=get_reg(i_regs->regmap,rs2[i]);
6464 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6465 void *nt_branch=NULL;
6466 int taken=0;
6467 int nottaken=0;
6468 int unconditional=0;
6469 if(rs1[i]==0)
6470 {
6471 s1l=s2l;s1h=s2h;
6472 s2l=s2h=-1;
6473 }
6474 else if(rs2[i]==0)
6475 {
6476 s2l=s2h=-1;
6477 }
6478 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6479 s1h=s2h=-1;
6480 }
6481 int hr=0;
6482 int addr,alt,ntaddr;
6483 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6484 else {
6485 while(hr<HOST_REGS)
6486 {
6487 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6488 (i_regs->regmap[hr]&63)!=rs1[i] &&
6489 (i_regs->regmap[hr]&63)!=rs2[i] )
6490 {
6491 addr=hr++;break;
6492 }
6493 hr++;
6494 }
6495 }
6496 while(hr<HOST_REGS)
6497 {
6498 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6499 (i_regs->regmap[hr]&63)!=rs1[i] &&
6500 (i_regs->regmap[hr]&63)!=rs2[i] )
6501 {
6502 alt=hr++;break;
6503 }
6504 hr++;
6505 }
6506 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6507 {
6508 while(hr<HOST_REGS)
6509 {
6510 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6511 (i_regs->regmap[hr]&63)!=rs1[i] &&
6512 (i_regs->regmap[hr]&63)!=rs2[i] )
6513 {
6514 ntaddr=hr;break;
6515 }
6516 hr++;
6517 }
6518 }
6519 assert(hr<HOST_REGS);
6520 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6521 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6522 }
2573466a 6523 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6524 if(opcode[i]==2) // J
6525 {
6526 unconditional=1;
6527 }
6528 if(opcode[i]==3) // JAL
6529 {
6530 // TODO: mini_ht
6531 int rt=get_reg(i_regs->regmap,31);
6532 emit_movimm(start+i*4+8,rt);
6533 unconditional=1;
6534 }
6535 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6536 {
6537 emit_mov(s1l,addr);
6538 if(opcode2[i]==9) // JALR
6539 {
5067f341 6540 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6541 emit_movimm(start+i*4+8,rt);
6542 }
6543 }
6544 if((opcode[i]&0x3f)==4) // BEQ
6545 {
6546 if(rs1[i]==rs2[i])
6547 {
6548 unconditional=1;
6549 }
6550 else
6551 #ifdef HAVE_CMOV_IMM
6552 if(s1h<0) {
6553 if(s2l>=0) emit_cmp(s1l,s2l);
6554 else emit_test(s1l,s1l);
6555 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6556 }
6557 else
6558 #endif
6559 {
6560 assert(s1l>=0);
6561 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6562 if(s1h>=0) {
6563 if(s2h>=0) emit_cmp(s1h,s2h);
6564 else emit_test(s1h,s1h);
6565 emit_cmovne_reg(alt,addr);
6566 }
6567 if(s2l>=0) emit_cmp(s1l,s2l);
6568 else emit_test(s1l,s1l);
6569 emit_cmovne_reg(alt,addr);
6570 }
6571 }
6572 if((opcode[i]&0x3f)==5) // BNE
6573 {
6574 #ifdef HAVE_CMOV_IMM
6575 if(s1h<0) {
6576 if(s2l>=0) emit_cmp(s1l,s2l);
6577 else emit_test(s1l,s1l);
6578 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6579 }
6580 else
6581 #endif
6582 {
6583 assert(s1l>=0);
6584 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6585 if(s1h>=0) {
6586 if(s2h>=0) emit_cmp(s1h,s2h);
6587 else emit_test(s1h,s1h);
6588 emit_cmovne_reg(alt,addr);
6589 }
6590 if(s2l>=0) emit_cmp(s1l,s2l);
6591 else emit_test(s1l,s1l);
6592 emit_cmovne_reg(alt,addr);
6593 }
6594 }
6595 if((opcode[i]&0x3f)==0x14) // BEQL
6596 {
6597 if(s1h>=0) {
6598 if(s2h>=0) emit_cmp(s1h,s2h);
6599 else emit_test(s1h,s1h);
6600 nottaken=(int)out;
6601 emit_jne(0);
6602 }
6603 if(s2l>=0) emit_cmp(s1l,s2l);
6604 else emit_test(s1l,s1l);
6605 if(nottaken) set_jump_target(nottaken,(int)out);
6606 nottaken=(int)out;
6607 emit_jne(0);
6608 }
6609 if((opcode[i]&0x3f)==0x15) // BNEL
6610 {
6611 if(s1h>=0) {
6612 if(s2h>=0) emit_cmp(s1h,s2h);
6613 else emit_test(s1h,s1h);
6614 taken=(int)out;
6615 emit_jne(0);
6616 }
6617 if(s2l>=0) emit_cmp(s1l,s2l);
6618 else emit_test(s1l,s1l);
6619 nottaken=(int)out;
6620 emit_jeq(0);
6621 if(taken) set_jump_target(taken,(int)out);
6622 }
6623 if((opcode[i]&0x3f)==6) // BLEZ
6624 {
6625 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6626 emit_cmpimm(s1l,1);
6627 if(s1h>=0) emit_mov(addr,ntaddr);
6628 emit_cmovl_reg(alt,addr);
6629 if(s1h>=0) {
6630 emit_test(s1h,s1h);
6631 emit_cmovne_reg(ntaddr,addr);
6632 emit_cmovs_reg(alt,addr);
6633 }
6634 }
6635 if((opcode[i]&0x3f)==7) // BGTZ
6636 {
6637 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6638 emit_cmpimm(s1l,1);
6639 if(s1h>=0) emit_mov(addr,alt);
6640 emit_cmovl_reg(ntaddr,addr);
6641 if(s1h>=0) {
6642 emit_test(s1h,s1h);
6643 emit_cmovne_reg(alt,addr);
6644 emit_cmovs_reg(ntaddr,addr);
6645 }
6646 }
6647 if((opcode[i]&0x3f)==0x16) // BLEZL
6648 {
6649 assert((opcode[i]&0x3f)!=0x16);
6650 }
6651 if((opcode[i]&0x3f)==0x17) // BGTZL
6652 {
6653 assert((opcode[i]&0x3f)!=0x17);
6654 }
6655 assert(opcode[i]!=1); // BLTZ/BGEZ
6656
6657 //FIXME: Check CSREG
6658 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6659 if((source[i]&0x30000)==0) // BC1F
6660 {
6661 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6662 emit_testimm(s1l,0x800000);
6663 emit_cmovne_reg(alt,addr);
6664 }
6665 if((source[i]&0x30000)==0x10000) // BC1T
6666 {
6667 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6668 emit_testimm(s1l,0x800000);
6669 emit_cmovne_reg(alt,addr);
6670 }
6671 if((source[i]&0x30000)==0x20000) // BC1FL
6672 {
6673 emit_testimm(s1l,0x800000);
6674 nottaken=(int)out;
6675 emit_jne(0);
6676 }
6677 if((source[i]&0x30000)==0x30000) // BC1TL
6678 {
6679 emit_testimm(s1l,0x800000);
6680 nottaken=(int)out;
6681 emit_jeq(0);
6682 }
6683 }
6684
6685 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6686 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6687 if(likely[i]||unconditional)
6688 {
6689 emit_movimm(ba[i],HOST_BTREG);
6690 }
6691 else if(addr!=HOST_BTREG)
6692 {
6693 emit_mov(addr,HOST_BTREG);
6694 }
6695 void *branch_addr=out;
6696 emit_jmp(0);
6697 int target_addr=start+i*4+5;
6698 void *stub=out;
6699 void *compiled_target_addr=check_addr(target_addr);
6700 emit_extjump_ds((int)branch_addr,target_addr);
6701 if(compiled_target_addr) {
6702 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6703 add_link(target_addr,stub);
6704 }
6705 else set_jump_target((int)branch_addr,(int)stub);
6706 if(likely[i]) {
6707 // Not-taken path
6708 set_jump_target((int)nottaken,(int)out);
6709 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6710 void *branch_addr=out;
6711 emit_jmp(0);
6712 int target_addr=start+i*4+8;
6713 void *stub=out;
6714 void *compiled_target_addr=check_addr(target_addr);
6715 emit_extjump_ds((int)branch_addr,target_addr);
6716 if(compiled_target_addr) {
6717 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6718 add_link(target_addr,stub);
6719 }
6720 else set_jump_target((int)branch_addr,(int)stub);
6721 }
6722}
6723
6724// Assemble the delay slot for the above
6725static void pagespan_ds()
6726{
6727 assem_debug("initial delay slot:\n");
6728 u_int vaddr=start+1;
94d23bb9 6729 u_int page=get_page(vaddr);
6730 u_int vpage=get_vpage(vaddr);
57871462 6731 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6732 do_dirty_stub_ds();
6733 ll_add(jump_in+page,vaddr,(void *)out);
6734 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6735 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6736 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6737 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6738 emit_writeword(HOST_BTREG,(int)&branch_target);
6739 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6740 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6741 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6742 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6743 cop1_usable=0;
6744 is_delayslot=0;
6745 switch(itype[0]) {
6746 case ALU:
6747 alu_assemble(0,&regs[0]);break;
6748 case IMM16:
6749 imm16_assemble(0,&regs[0]);break;
6750 case SHIFT:
6751 shift_assemble(0,&regs[0]);break;
6752 case SHIFTIMM:
6753 shiftimm_assemble(0,&regs[0]);break;
6754 case LOAD:
6755 load_assemble(0,&regs[0]);break;
6756 case LOADLR:
6757 loadlr_assemble(0,&regs[0]);break;
6758 case STORE:
6759 store_assemble(0,&regs[0]);break;
6760 case STORELR:
6761 storelr_assemble(0,&regs[0]);break;
6762 case COP0:
6763 cop0_assemble(0,&regs[0]);break;
6764 case COP1:
6765 cop1_assemble(0,&regs[0]);break;
6766 case C1LS:
6767 c1ls_assemble(0,&regs[0]);break;
b9b61529 6768 case COP2:
6769 cop2_assemble(0,&regs[0]);break;
6770 case C2LS:
6771 c2ls_assemble(0,&regs[0]);break;
6772 case C2OP:
6773 c2op_assemble(0,&regs[0]);break;
57871462 6774 case FCONV:
6775 fconv_assemble(0,&regs[0]);break;
6776 case FLOAT:
6777 float_assemble(0,&regs[0]);break;
6778 case FCOMP:
6779 fcomp_assemble(0,&regs[0]);break;
6780 case MULTDIV:
6781 multdiv_assemble(0,&regs[0]);break;
6782 case MOV:
6783 mov_assemble(0,&regs[0]);break;
6784 case SYSCALL:
7139f3c8 6785 case HLECALL:
1e973cb0 6786 case INTCALL:
57871462 6787 case SPAN:
6788 case UJUMP:
6789 case RJUMP:
6790 case CJUMP:
6791 case SJUMP:
6792 case FJUMP:
6793 printf("Jump in the delay slot. This is probably a bug.\n");
6794 }
6795 int btaddr=get_reg(regs[0].regmap,BTREG);
6796 if(btaddr<0) {
6797 btaddr=get_reg(regs[0].regmap,-1);
6798 emit_readword((int)&branch_target,btaddr);
6799 }
6800 assert(btaddr!=HOST_CCREG);
6801 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6802#ifdef HOST_IMM8
6803 emit_movimm(start+4,HOST_TEMPREG);
6804 emit_cmp(btaddr,HOST_TEMPREG);
6805#else
6806 emit_cmpimm(btaddr,start+4);
6807#endif
6808 int branch=(int)out;
6809 emit_jeq(0);
6810 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6811 emit_jmp(jump_vaddr_reg[btaddr]);
6812 set_jump_target(branch,(int)out);
6813 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6814 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6815}
6816
6817// Basic liveness analysis for MIPS registers
6818void unneeded_registers(int istart,int iend,int r)
6819{
6820 int i;
bedfea38 6821 uint64_t u,uu,gte_u,b,bu,gte_bu;
0ff8c62c 6822 uint64_t temp_u,temp_uu,temp_gte_u=0;
57871462 6823 uint64_t tdep;
0ff8c62c 6824 uint64_t gte_u_unknown=0;
6825 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6826 gte_u_unknown=~0ll;
57871462 6827 if(iend==slen-1) {
6828 u=1;uu=1;
0ff8c62c 6829 gte_u=gte_u_unknown;
57871462 6830 }else{
6831 u=unneeded_reg[iend+1];
6832 uu=unneeded_reg_upper[iend+1];
6833 u=1;uu=1;
0ff8c62c 6834 gte_u=gte_unneeded[iend+1];
57871462 6835 }
bedfea38 6836
57871462 6837 for (i=iend;i>=istart;i--)
6838 {
6839 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6840 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6841 {
6842 // If subroutine call, flag return address as a possible branch target
6843 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6844
6845 if(ba[i]<start || ba[i]>=(start+slen*4))
6846 {
6847 // Branch out of this block, flush all regs
6848 u=1;
6849 uu=1;
0ff8c62c 6850 gte_u=gte_u_unknown;
57871462 6851 /* Hexagon hack
6852 if(itype[i]==UJUMP&&rt1[i]==31)
6853 {
6854 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6855 }
6856 if(itype[i]==RJUMP&&rs1[i]==31)
6857 {
6858 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6859 }
4cb76aa4 6860 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6861 if(itype[i]==UJUMP&&rt1[i]==31)
6862 {
6863 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6864 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6865 }
6866 if(itype[i]==RJUMP&&rs1[i]==31)
6867 {
6868 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6869 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6870 }
6871 }*/
6872 branch_unneeded_reg[i]=u;
6873 branch_unneeded_reg_upper[i]=uu;
6874 // Merge in delay slot
6875 tdep=(~uu>>rt1[i+1])&1;
6876 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6877 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6878 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6879 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6880 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6881 u|=1;uu|=1;
bedfea38 6882 gte_u|=gte_rt[i+1];
6883 gte_u&=~gte_rs[i+1];
57871462 6884 // If branch is "likely" (and conditional)
6885 // then we skip the delay slot on the fall-thru path
6886 if(likely[i]) {
6887 if(i<slen-1) {
6888 u&=unneeded_reg[i+2];
6889 uu&=unneeded_reg_upper[i+2];
bedfea38 6890 gte_u&=gte_unneeded[i+2];
57871462 6891 }
6892 else
6893 {
6894 u=1;
6895 uu=1;
0ff8c62c 6896 gte_u=gte_u_unknown;
57871462 6897 }
6898 }
6899 }
6900 else
6901 {
6902 // Internal branch, flag target
6903 bt[(ba[i]-start)>>2]=1;
6904 if(ba[i]<=start+i*4) {
6905 // Backward branch
6906 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6907 {
6908 // Unconditional branch
6909 temp_u=1;temp_uu=1;
bedfea38 6910 temp_gte_u=0;
57871462 6911 } else {
6912 // Conditional branch (not taken case)
6913 temp_u=unneeded_reg[i+2];
6914 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6915 temp_gte_u&=gte_unneeded[i+2];
57871462 6916 }
6917 // Merge in delay slot
6918 tdep=(~temp_uu>>rt1[i+1])&1;
6919 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6920 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6921 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6922 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6923 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6924 temp_u|=1;temp_uu|=1;
bedfea38 6925 temp_gte_u|=gte_rt[i+1];
6926 temp_gte_u&=~gte_rs[i+1];
57871462 6927 // If branch is "likely" (and conditional)
6928 // then we skip the delay slot on the fall-thru path
6929 if(likely[i]) {
6930 if(i<slen-1) {
6931 temp_u&=unneeded_reg[i+2];
6932 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6933 temp_gte_u&=gte_unneeded[i+2];
57871462 6934 }
6935 else
6936 {
6937 temp_u=1;
6938 temp_uu=1;
0ff8c62c 6939 temp_gte_u=gte_u_unknown;
57871462 6940 }
6941 }
6942 tdep=(~temp_uu>>rt1[i])&1;
6943 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6944 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6945 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6946 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6947 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6948 temp_u|=1;temp_uu|=1;
bedfea38 6949 temp_gte_u|=gte_rt[i];
6950 temp_gte_u&=~gte_rs[i];
57871462 6951 unneeded_reg[i]=temp_u;
6952 unneeded_reg_upper[i]=temp_uu;
bedfea38 6953 gte_unneeded[i]=temp_gte_u;
57871462 6954 // Only go three levels deep. This recursion can take an
6955 // excessive amount of time if there are a lot of nested loops.
6956 if(r<2) {
6957 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6958 }else{
6959 unneeded_reg[(ba[i]-start)>>2]=1;
6960 unneeded_reg_upper[(ba[i]-start)>>2]=1;
0ff8c62c 6961 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
57871462 6962 }
6963 } /*else*/ if(1) {
6964 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6965 {
6966 // Unconditional branch
6967 u=unneeded_reg[(ba[i]-start)>>2];
6968 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6969 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6970 branch_unneeded_reg[i]=u;
6971 branch_unneeded_reg_upper[i]=uu;
6972 //u=1;
6973 //uu=1;
6974 //branch_unneeded_reg[i]=u;
6975 //branch_unneeded_reg_upper[i]=uu;
6976 // Merge in delay slot
6977 tdep=(~uu>>rt1[i+1])&1;
6978 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6979 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6980 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6981 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6982 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6983 u|=1;uu|=1;
bedfea38 6984 gte_u|=gte_rt[i+1];
6985 gte_u&=~gte_rs[i+1];
57871462 6986 } else {
6987 // Conditional branch
6988 b=unneeded_reg[(ba[i]-start)>>2];
6989 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6990 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6991 branch_unneeded_reg[i]=b;
6992 branch_unneeded_reg_upper[i]=bu;
6993 //b=1;
6994 //bu=1;
6995 //branch_unneeded_reg[i]=b;
6996 //branch_unneeded_reg_upper[i]=bu;
6997 // Branch delay slot
6998 tdep=(~uu>>rt1[i+1])&1;
6999 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7000 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7001 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7002 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7003 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
7004 b|=1;bu|=1;
bedfea38 7005 gte_bu|=gte_rt[i+1];
7006 gte_bu&=~gte_rs[i+1];
57871462 7007 // If branch is "likely" then we skip the
7008 // delay slot on the fall-thru path
7009 if(likely[i]) {
7010 u=b;
7011 uu=bu;
bedfea38 7012 gte_u=gte_bu;
57871462 7013 if(i<slen-1) {
7014 u&=unneeded_reg[i+2];
7015 uu&=unneeded_reg_upper[i+2];
bedfea38 7016 gte_u&=gte_unneeded[i+2];
57871462 7017 //u=1;
7018 //uu=1;
7019 }
7020 } else {
7021 u&=b;
7022 uu&=bu;
bedfea38 7023 gte_u&=gte_bu;
57871462 7024 //u=1;
7025 //uu=1;
7026 }
7027 if(i<slen-1) {
7028 branch_unneeded_reg[i]&=unneeded_reg[i+2];
7029 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
7030 //branch_unneeded_reg[i]=1;
7031 //branch_unneeded_reg_upper[i]=1;
7032 } else {
7033 branch_unneeded_reg[i]=1;
7034 branch_unneeded_reg_upper[i]=1;
7035 }
7036 }
7037 }
7038 }
7039 }
1e973cb0 7040 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7041 {
7042 // SYSCALL instruction (software interrupt)
7043 u=1;
7044 uu=1;
7045 }
7046 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7047 {
7048 // ERET instruction (return from interrupt)
7049 u=1;
7050 uu=1;
7051 }
7052 //u=uu=1; // DEBUG
7053 tdep=(~uu>>rt1[i])&1;
7054 // Written registers are unneeded
7055 u|=1LL<<rt1[i];
7056 u|=1LL<<rt2[i];
7057 uu|=1LL<<rt1[i];
7058 uu|=1LL<<rt2[i];
bedfea38 7059 gte_u|=gte_rt[i];
57871462 7060 // Accessed registers are needed
7061 u&=~(1LL<<rs1[i]);
7062 u&=~(1LL<<rs2[i]);
7063 uu&=~(1LL<<us1[i]);
7064 uu&=~(1LL<<us2[i]);
bedfea38 7065 gte_u&=~gte_rs[i];
eaa11918 7066 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
cbbd8dd7 7067 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
57871462 7068 // Source-target dependencies
7069 uu&=~(tdep<<dep1[i]);
7070 uu&=~(tdep<<dep2[i]);
7071 // R0 is always unneeded
7072 u|=1;uu|=1;
7073 // Save it
7074 unneeded_reg[i]=u;
7075 unneeded_reg_upper[i]=uu;
bedfea38 7076 gte_unneeded[i]=gte_u;
57871462 7077 /*
7078 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7079 printf("U:");
7080 int r;
7081 for(r=1;r<=CCREG;r++) {
7082 if((unneeded_reg[i]>>r)&1) {
7083 if(r==HIREG) printf(" HI");
7084 else if(r==LOREG) printf(" LO");
7085 else printf(" r%d",r);
7086 }
7087 }
7088 printf(" UU:");
7089 for(r=1;r<=CCREG;r++) {
7090 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7091 if(r==HIREG) printf(" HI");
7092 else if(r==LOREG) printf(" LO");
7093 else printf(" r%d",r);
7094 }
7095 }
7096 printf("\n");*/
7097 }
252c20fc 7098#ifdef FORCE32
7099 for (i=iend;i>=istart;i--)
7100 {
7101 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7102 }
7103#endif
57871462 7104}
7105
7106// Identify registers which are likely to contain 32-bit values
7107// This is used to predict whether any branches will jump to a
7108// location with 64-bit values in registers.
7109static void provisional_32bit()
7110{
7111 int i,j;
7112 uint64_t is32=1;
7113 uint64_t lastbranch=1;
7114
7115 for(i=0;i<slen;i++)
7116 {
7117 if(i>0) {
7118 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7119 if(i>1) is32=lastbranch;
7120 else is32=1;
7121 }
7122 }
7123 if(i>1)
7124 {
7125 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7126 if(likely[i-2]) {
7127 if(i>2) is32=lastbranch;
7128 else is32=1;
7129 }
7130 }
7131 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7132 {
7133 if(rs1[i-2]==0||rs2[i-2]==0)
7134 {
7135 if(rs1[i-2]) {
7136 is32|=1LL<<rs1[i-2];
7137 }
7138 if(rs2[i-2]) {
7139 is32|=1LL<<rs2[i-2];
7140 }
7141 }
7142 }
7143 }
7144 // If something jumps here with 64-bit values
7145 // then promote those registers to 64 bits
7146 if(bt[i])
7147 {
7148 uint64_t temp_is32=is32;
7149 for(j=i-1;j>=0;j--)
7150 {
7151 if(ba[j]==start+i*4)
7152 //temp_is32&=branch_regs[j].is32;
7153 temp_is32&=p32[j];
7154 }
7155 for(j=i;j<slen;j++)
7156 {
7157 if(ba[j]==start+i*4)
7158 temp_is32=1;
7159 }
7160 is32=temp_is32;
7161 }
7162 int type=itype[i];
7163 int op=opcode[i];
7164 int op2=opcode2[i];
7165 int rt=rt1[i];
7166 int s1=rs1[i];
7167 int s2=rs2[i];
7168 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7169 // Branches don't write registers, consider the delay slot instead.
7170 type=itype[i+1];
7171 op=opcode[i+1];
7172 op2=opcode2[i+1];
7173 rt=rt1[i+1];
7174 s1=rs1[i+1];
7175 s2=rs2[i+1];
7176 lastbranch=is32;
7177 }
7178 switch(type) {
7179 case LOAD:
7180 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7181 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7182 is32&=~(1LL<<rt);
7183 else
7184 is32|=1LL<<rt;
7185 break;
7186 case STORE:
7187 case STORELR:
7188 break;
7189 case LOADLR:
7190 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7191 if(op==0x22) is32|=1LL<<rt; // LWL
7192 break;
7193 case IMM16:
7194 if (op==0x08||op==0x09|| // ADDI/ADDIU
7195 op==0x0a||op==0x0b|| // SLTI/SLTIU
7196 op==0x0c|| // ANDI
7197 op==0x0f) // LUI
7198 {
7199 is32|=1LL<<rt;
7200 }
7201 if(op==0x18||op==0x19) { // DADDI/DADDIU
7202 is32&=~(1LL<<rt);
7203 //if(imm[i]==0)
7204 // is32|=((is32>>s1)&1LL)<<rt;
7205 }
7206 if(op==0x0d||op==0x0e) { // ORI/XORI
7207 uint64_t sr=((is32>>s1)&1LL);
7208 is32&=~(1LL<<rt);
7209 is32|=sr<<rt;
7210 }
7211 break;
7212 case UJUMP:
7213 break;
7214 case RJUMP:
7215 break;
7216 case CJUMP:
7217 break;
7218 case SJUMP:
7219 break;
7220 case FJUMP:
7221 break;
7222 case ALU:
7223 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7224 is32|=1LL<<rt;
7225 }
7226 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7227 is32|=1LL<<rt;
7228 }
7229 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7230 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7231 is32&=~(1LL<<rt);
7232 is32|=sr<<rt;
7233 }
7234 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7235 if(s1==0&&s2==0) {
7236 is32|=1LL<<rt;
7237 }
7238 else if(s2==0) {
7239 uint64_t sr=((is32>>s1)&1LL);
7240 is32&=~(1LL<<rt);
7241 is32|=sr<<rt;
7242 }
7243 else if(s1==0) {
7244 uint64_t sr=((is32>>s2)&1LL);
7245 is32&=~(1LL<<rt);
7246 is32|=sr<<rt;
7247 }
7248 else {
7249 is32&=~(1LL<<rt);
7250 }
7251 }
7252 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7253 if(s1==0&&s2==0) {
7254 is32|=1LL<<rt;
7255 }
7256 else if(s2==0) {
7257 uint64_t sr=((is32>>s1)&1LL);
7258 is32&=~(1LL<<rt);
7259 is32|=sr<<rt;
7260 }
7261 else {
7262 is32&=~(1LL<<rt);
7263 }
7264 }
7265 break;
7266 case MULTDIV:
7267 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7268 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7269 }
7270 else {
7271 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7272 }
7273 break;
7274 case MOV:
7275 {
7276 uint64_t sr=((is32>>s1)&1LL);
7277 is32&=~(1LL<<rt);
7278 is32|=sr<<rt;
7279 }
7280 break;
7281 case SHIFT:
7282 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7283 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7284 break;
7285 case SHIFTIMM:
7286 is32|=1LL<<rt;
7287 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7288 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7289 break;
7290 case COP0:
7291 if(op2==0) is32|=1LL<<rt; // MFC0
7292 break;
7293 case COP1:
b9b61529 7294 case COP2:
57871462 7295 if(op2==0) is32|=1LL<<rt; // MFC1
7296 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7297 if(op2==2) is32|=1LL<<rt; // CFC1
7298 break;
7299 case C1LS:
b9b61529 7300 case C2LS:
57871462 7301 break;
7302 case FLOAT:
7303 case FCONV:
7304 break;
7305 case FCOMP:
7306 break;
b9b61529 7307 case C2OP:
57871462 7308 case SYSCALL:
7139f3c8 7309 case HLECALL:
57871462 7310 break;
7311 default:
7312 break;
7313 }
7314 is32|=1;
7315 p32[i]=is32;
7316
7317 if(i>0)
7318 {
7319 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7320 {
7321 if(rt1[i-1]==31) // JAL/JALR
7322 {
7323 // Subroutine call will return here, don't alloc any registers
7324 is32=1;
7325 }
7326 else if(i+1<slen)
7327 {
7328 // Internal branch will jump here, match registers to caller
7329 is32=0x3FFFFFFFFLL;
7330 }
7331 }
7332 }
7333 }
7334}
7335
7336// Identify registers which may be assumed to contain 32-bit values
7337// and where optimizations will rely on this.
7338// This is used to determine whether backward branches can safely
7339// jump to a location with 64-bit values in registers.
7340static void provisional_r32()
7341{
7342 u_int r32=0;
7343 int i;
7344
7345 for (i=slen-1;i>=0;i--)
7346 {
7347 int hr;
7348 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7349 {
7350 if(ba[i]<start || ba[i]>=(start+slen*4))
7351 {
7352 // Branch out of this block, don't need anything
7353 r32=0;
7354 }
7355 else
7356 {
7357 // Internal branch
7358 // Need whatever matches the target
7359 // (and doesn't get overwritten by the delay slot instruction)
7360 r32=0;
7361 int t=(ba[i]-start)>>2;
7362 if(ba[i]>start+i*4) {
7363 // Forward branch
7364 //if(!(requires_32bit[t]&~regs[i].was32))
7365 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7366 if(!(pr32[t]&~regs[i].was32))
7367 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7368 }else{
7369 // Backward branch
7370 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7371 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7372 }
7373 }
7374 // Conditional branch may need registers for following instructions
7375 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7376 {
7377 if(i<slen-2) {
7378 //r32|=requires_32bit[i+2];
7379 r32|=pr32[i+2];
7380 r32&=regs[i].was32;
7381 // Mark this address as a branch target since it may be called
7382 // upon return from interrupt
7383 //bt[i+2]=1;
7384 }
7385 }
7386 // Merge in delay slot
7387 if(!likely[i]) {
7388 // These are overwritten unless the branch is "likely"
7389 // and the delay slot is nullified if not taken
7390 r32&=~(1LL<<rt1[i+1]);
7391 r32&=~(1LL<<rt2[i+1]);
7392 }
7393 // Assume these are needed (delay slot)
7394 if(us1[i+1]>0)
7395 {
7396 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7397 }
7398 if(us2[i+1]>0)
7399 {
7400 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7401 }
7402 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7403 {
7404 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7405 }
7406 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7407 {
7408 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7409 }
7410 }
1e973cb0 7411 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7412 {
7413 // SYSCALL instruction (software interrupt)
7414 r32=0;
7415 }
7416 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7417 {
7418 // ERET instruction (return from interrupt)
7419 r32=0;
7420 }
7421 // Check 32 bits
7422 r32&=~(1LL<<rt1[i]);
7423 r32&=~(1LL<<rt2[i]);
7424 if(us1[i]>0)
7425 {
7426 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7427 }
7428 if(us2[i]>0)
7429 {
7430 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7431 }
7432 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7433 {
7434 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7435 }
7436 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7437 {
7438 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7439 }
7440 //requires_32bit[i]=r32;
7441 pr32[i]=r32;
7442
7443 // Dirty registers which are 32-bit, require 32-bit input
7444 // as they will be written as 32-bit values
7445 for(hr=0;hr<HOST_REGS;hr++)
7446 {
7447 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7448 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7449 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7450 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7451 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7452 }
7453 }
7454 }
7455 }
7456}
7457
7458// Write back dirty registers as soon as we will no longer modify them,
7459// so that we don't end up with lots of writes at the branches.
7460void clean_registers(int istart,int iend,int wr)
7461{
7462 int i;
7463 int r;
7464 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7465 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7466 if(iend==slen-1) {
7467 will_dirty_i=will_dirty_next=0;
7468 wont_dirty_i=wont_dirty_next=0;
7469 }else{
7470 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7471 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7472 }
7473 for (i=iend;i>=istart;i--)
7474 {
7475 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7476 {
7477 if(ba[i]<start || ba[i]>=(start+slen*4))
7478 {
7479 // Branch out of this block, flush all regs
7480 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7481 {
7482 // Unconditional branch
7483 will_dirty_i=0;
7484 wont_dirty_i=0;
7485 // Merge in delay slot (will dirty)
7486 for(r=0;r<HOST_REGS;r++) {
7487 if(r!=EXCLUDE_REG) {
7488 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7489 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7490 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7491 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7492 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7493 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7494 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7495 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7496 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7497 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7498 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7499 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7500 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7501 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7502 }
7503 }
7504 }
7505 else
7506 {
7507 // Conditional branch
7508 will_dirty_i=0;
7509 wont_dirty_i=wont_dirty_next;
7510 // Merge in delay slot (will dirty)
7511 for(r=0;r<HOST_REGS;r++) {
7512 if(r!=EXCLUDE_REG) {
7513 if(!likely[i]) {
7514 // Might not dirty if likely branch is not taken
7515 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7516 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7517 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7518 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7519 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7520 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7521 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7522 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7523 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7524 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7525 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7526 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7527 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7528 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7529 }
7530 }
7531 }
7532 }
7533 // Merge in delay slot (wont dirty)
7534 for(r=0;r<HOST_REGS;r++) {
7535 if(r!=EXCLUDE_REG) {
7536 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7537 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7538 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7539 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7540 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7541 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7542 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7543 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7544 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7545 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7546 }
7547 }
7548 if(wr) {
7549 #ifndef DESTRUCTIVE_WRITEBACK
7550 branch_regs[i].dirty&=wont_dirty_i;
7551 #endif
7552 branch_regs[i].dirty|=will_dirty_i;
7553 }
7554 }
7555 else
7556 {
7557 // Internal branch
7558 if(ba[i]<=start+i*4) {
7559 // Backward branch
7560 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7561 {
7562 // Unconditional branch
7563 temp_will_dirty=0;
7564 temp_wont_dirty=0;
7565 // Merge in delay slot (will dirty)
7566 for(r=0;r<HOST_REGS;r++) {
7567 if(r!=EXCLUDE_REG) {
7568 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7569 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7570 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7571 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7572 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7573 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7574 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7575 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7576 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7577 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7578 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7579 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7580 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7581 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7582 }
7583 }
7584 } else {
7585 // Conditional branch (not taken case)
7586 temp_will_dirty=will_dirty_next;
7587 temp_wont_dirty=wont_dirty_next;
7588 // Merge in delay slot (will dirty)
7589 for(r=0;r<HOST_REGS;r++) {
7590 if(r!=EXCLUDE_REG) {
7591 if(!likely[i]) {
7592 // Will not dirty if likely branch is not taken
7593 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7594 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7595 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7596 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7597 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7598 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7599 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7600 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7601 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7602 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7603 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7604 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7605 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7606 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7607 }
7608 }
7609 }
7610 }
7611 // Merge in delay slot (wont dirty)
7612 for(r=0;r<HOST_REGS;r++) {
7613 if(r!=EXCLUDE_REG) {
7614 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7615 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7616 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7617 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7618 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7619 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7620 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7621 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7622 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7623 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7624 }
7625 }
7626 // Deal with changed mappings
7627 if(i<iend) {
7628 for(r=0;r<HOST_REGS;r++) {
7629 if(r!=EXCLUDE_REG) {
7630 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7631 temp_will_dirty&=~(1<<r);
7632 temp_wont_dirty&=~(1<<r);
7633 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7634 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7635 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7636 } else {
7637 temp_will_dirty|=1<<r;
7638 temp_wont_dirty|=1<<r;
7639 }
7640 }
7641 }
7642 }
7643 }
7644 if(wr) {
7645 will_dirty[i]=temp_will_dirty;
7646 wont_dirty[i]=temp_wont_dirty;
7647 clean_registers((ba[i]-start)>>2,i-1,0);
7648 }else{
7649 // Limit recursion. It can take an excessive amount
7650 // of time if there are a lot of nested loops.
7651 will_dirty[(ba[i]-start)>>2]=0;
7652 wont_dirty[(ba[i]-start)>>2]=-1;
7653 }
7654 }
7655 /*else*/ if(1)
7656 {
7657 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7658 {
7659 // Unconditional branch
7660 will_dirty_i=0;
7661 wont_dirty_i=0;
7662 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7663 for(r=0;r<HOST_REGS;r++) {
7664 if(r!=EXCLUDE_REG) {
7665 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7666 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7667 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7668 }
e3234ecf 7669 if(branch_regs[i].regmap[r]>=0) {
7670 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7671 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7672 }
57871462 7673 }
7674 }
7675 //}
7676 // Merge in delay slot
7677 for(r=0;r<HOST_REGS;r++) {
7678 if(r!=EXCLUDE_REG) {
7679 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7680 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7681 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7682 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7683 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7684 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7685 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7686 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7687 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7688 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7689 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7690 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7691 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7692 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7693 }
7694 }
7695 } else {
7696 // Conditional branch
7697 will_dirty_i=will_dirty_next;
7698 wont_dirty_i=wont_dirty_next;
7699 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7700 for(r=0;r<HOST_REGS;r++) {
7701 if(r!=EXCLUDE_REG) {
e3234ecf 7702 signed char target_reg=branch_regs[i].regmap[r];
7703 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7704 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7705 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7706 }
e3234ecf 7707 else if(target_reg>=0) {
7708 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7709 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7710 }
7711 // Treat delay slot as part of branch too
7712 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7713 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7714 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7715 }
7716 else
7717 {
7718 will_dirty[i+1]&=~(1<<r);
7719 }*/
7720 }
7721 }
7722 //}
7723 // Merge in delay slot
7724 for(r=0;r<HOST_REGS;r++) {
7725 if(r!=EXCLUDE_REG) {
7726 if(!likely[i]) {
7727 // Might not dirty if likely branch is not taken
7728 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7729 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7730 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7731 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7732 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7733 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7734 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7735 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7736 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7737 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7738 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7739 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7740 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7741 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7742 }
7743 }
7744 }
7745 }
e3234ecf 7746 // Merge in delay slot (won't dirty)
57871462 7747 for(r=0;r<HOST_REGS;r++) {
7748 if(r!=EXCLUDE_REG) {
7749 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7750 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7751 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7752 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7753 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7754 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7755 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7756 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7757 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7758 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7759 }
7760 }
7761 if(wr) {
7762 #ifndef DESTRUCTIVE_WRITEBACK
7763 branch_regs[i].dirty&=wont_dirty_i;
7764 #endif
7765 branch_regs[i].dirty|=will_dirty_i;
7766 }
7767 }
7768 }
7769 }
1e973cb0 7770 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7771 {
7772 // SYSCALL instruction (software interrupt)
7773 will_dirty_i=0;
7774 wont_dirty_i=0;
7775 }
7776 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7777 {
7778 // ERET instruction (return from interrupt)
7779 will_dirty_i=0;
7780 wont_dirty_i=0;
7781 }
7782 will_dirty_next=will_dirty_i;
7783 wont_dirty_next=wont_dirty_i;
7784 for(r=0;r<HOST_REGS;r++) {
7785 if(r!=EXCLUDE_REG) {
7786 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7787 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7788 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7789 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7790 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7791 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7792 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7793 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7794 if(i>istart) {
7795 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7796 {
7797 // Don't store a register immediately after writing it,
7798 // may prevent dual-issue.
7799 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7800 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7801 }
7802 }
7803 }
7804 }
7805 // Save it
7806 will_dirty[i]=will_dirty_i;
7807 wont_dirty[i]=wont_dirty_i;
7808 // Mark registers that won't be dirtied as not dirty
7809 if(wr) {
7810 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7811 for(r=0;r<HOST_REGS;r++) {
7812 if((will_dirty_i>>r)&1) {
7813 printf(" r%d",r);
7814 }
7815 }
7816 printf("\n");*/
7817
7818 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7819 regs[i].dirty|=will_dirty_i;
7820 #ifndef DESTRUCTIVE_WRITEBACK
7821 regs[i].dirty&=wont_dirty_i;
7822 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7823 {
7824 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7825 for(r=0;r<HOST_REGS;r++) {
7826 if(r!=EXCLUDE_REG) {
7827 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7828 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7829 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7830 }
7831 }
7832 }
7833 }
7834 else
7835 {
7836 if(i<iend) {
7837 for(r=0;r<HOST_REGS;r++) {
7838 if(r!=EXCLUDE_REG) {
7839 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7840 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7841 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7842 }
7843 }
7844 }
7845 }
7846 #endif
7847 //}
7848 }
7849 // Deal with changed mappings
7850 temp_will_dirty=will_dirty_i;
7851 temp_wont_dirty=wont_dirty_i;
7852 for(r=0;r<HOST_REGS;r++) {
7853 if(r!=EXCLUDE_REG) {
7854 int nr;
7855 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7856 if(wr) {
7857 #ifndef DESTRUCTIVE_WRITEBACK
7858 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7859 #endif
7860 regs[i].wasdirty|=will_dirty_i&(1<<r);
7861 }
7862 }
f776eb14 7863 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7864 // Register moved to a different register
7865 will_dirty_i&=~(1<<r);
7866 wont_dirty_i&=~(1<<r);
7867 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7868 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7869 if(wr) {
7870 #ifndef DESTRUCTIVE_WRITEBACK
7871 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7872 #endif
7873 regs[i].wasdirty|=will_dirty_i&(1<<r);
7874 }
7875 }
7876 else {
7877 will_dirty_i&=~(1<<r);
7878 wont_dirty_i&=~(1<<r);
7879 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7880 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7881 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7882 } else {
7883 wont_dirty_i|=1<<r;
7884 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7885 }
7886 }
7887 }
7888 }
7889 }
7890}
7891
4600ba03 7892#ifdef DISASM
57871462 7893 /* disassembly */
7894void disassemble_inst(int i)
7895{
7896 if (bt[i]) printf("*"); else printf(" ");
7897 switch(itype[i]) {
7898 case UJUMP:
7899 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7900 case CJUMP:
7901 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7902 case SJUMP:
7903 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7904 case FJUMP:
7905 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7906 case RJUMP:
74426039 7907 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7908 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7909 else
7910 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7911 break;
57871462 7912 case SPAN:
7913 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7914 case IMM16:
7915 if(opcode[i]==0xf) //LUI
7916 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7917 else
7918 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7919 break;
7920 case LOAD:
7921 case LOADLR:
7922 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7923 break;
7924 case STORE:
7925 case STORELR:
7926 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7927 break;
7928 case ALU:
7929 case SHIFT:
7930 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7931 break;
7932 case MULTDIV:
7933 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7934 break;
7935 case SHIFTIMM:
7936 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7937 break;
7938 case MOV:
7939 if((opcode2[i]&0x1d)==0x10)
7940 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7941 else if((opcode2[i]&0x1d)==0x11)
7942 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7943 else
7944 printf (" %x: %s\n",start+i*4,insn[i]);
7945 break;
7946 case COP0:
7947 if(opcode2[i]==0)
7948 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7949 else if(opcode2[i]==4)
7950 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7951 else printf (" %x: %s\n",start+i*4,insn[i]);
7952 break;
7953 case COP1:
7954 if(opcode2[i]<3)
7955 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7956 else if(opcode2[i]>3)
7957 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7958 else printf (" %x: %s\n",start+i*4,insn[i]);
7959 break;
b9b61529 7960 case COP2:
7961 if(opcode2[i]<3)
7962 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7963 else if(opcode2[i]>3)
7964 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7965 else printf (" %x: %s\n",start+i*4,insn[i]);
7966 break;
57871462 7967 case C1LS:
7968 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7969 break;
b9b61529 7970 case C2LS:
7971 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7972 break;
1e973cb0 7973 case INTCALL:
7974 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7975 break;
57871462 7976 default:
7977 //printf (" %s %8x\n",insn[i],source[i]);
7978 printf (" %x: %s\n",start+i*4,insn[i]);
7979 }
7980}
4600ba03 7981#else
7982static void disassemble_inst(int i) {}
7983#endif // DISASM
57871462 7984
dc990066 7985// clear the state completely, instead of just marking
7986// things invalid like invalidate_all_pages() does
7987void new_dynarec_clear_full()
57871462 7988{
57871462 7989 int n;
35775df7 7990 out=(u_char *)BASE_ADDR;
7991 memset(invalid_code,1,sizeof(invalid_code));
7992 memset(hash_table,0xff,sizeof(hash_table));
57871462 7993 memset(mini_ht,-1,sizeof(mini_ht));
7994 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7995 memset(shadow,0,sizeof(shadow));
57871462 7996 copy=shadow;
7997 expirep=16384; // Expiry pointer, +2 blocks
7998 pending_exception=0;
7999 literalcount=0;
57871462 8000 stop_after_jal=0;
9be4ba64 8001 inv_code_start=inv_code_end=~0;
57871462 8002 // TLB
af4ee1fe 8003#ifndef DISABLE_TLB
57871462 8004 using_tlb=0;
8005 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
8006 memory_map[n]=-1;
8007 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
8008 memory_map[n]=((u_int)rdram-0x80000000)>>2;
8009 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
8010 memory_map[n]=-1;
63cb0298 8011#endif
dc990066 8012 for(n=0;n<4096;n++) ll_clear(jump_in+n);
8013 for(n=0;n<4096;n++) ll_clear(jump_out+n);
8014 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8015}
8016
8017void new_dynarec_init()
8018{
8019 printf("Init new dynarec\n");
8020 out=(u_char *)BASE_ADDR;
a327ad27 8021#if BASE_ADDR_FIXED
dc990066 8022 if (mmap (out, 1<<TARGET_SIZE_2,
8023 PROT_READ | PROT_WRITE | PROT_EXEC,
8024 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
8025 -1, 0) <= 0) {printf("mmap() failed\n");}
bdeade46 8026#else
8027 // not all systems allow execute in data segment by default
8028 if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
8029 printf("mprotect() failed\n");
8030#endif
dc990066 8031#ifdef MUPEN64
8032 rdword=&readmem_dword;
8033 fake_pc.f.r.rs=&readmem_dword;
8034 fake_pc.f.r.rt=&readmem_dword;
8035 fake_pc.f.r.rd=&readmem_dword;
8036#endif
8037 int n;
2573466a 8038 cycle_multiplier=200;
dc990066 8039 new_dynarec_clear_full();
8040#ifdef HOST_IMM8
8041 // Copy this into local area so we don't have to put it in every literal pool
8042 invc_ptr=invalid_code;
8043#endif
24385cae 8044#ifdef MUPEN64
57871462 8045 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8046 writemem[n] = write_nomem_new;
8047 writememb[n] = write_nomemb_new;
8048 writememh[n] = write_nomemh_new;
24385cae 8049#ifndef FORCE32
57871462 8050 writememd[n] = write_nomemd_new;
24385cae 8051#endif
57871462 8052 readmem[n] = read_nomem_new;
8053 readmemb[n] = read_nomemb_new;
8054 readmemh[n] = read_nomemh_new;
24385cae 8055#ifndef FORCE32
57871462 8056 readmemd[n] = read_nomemd_new;
24385cae 8057#endif
57871462 8058 }
8059 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8060 writemem[n] = write_rdram_new;
8061 writememb[n] = write_rdramb_new;
8062 writememh[n] = write_rdramh_new;
24385cae 8063#ifndef FORCE32
57871462 8064 writememd[n] = write_rdramd_new;
24385cae 8065#endif
57871462 8066 }
8067 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8068 writemem[n] = write_nomem_new;
8069 writememb[n] = write_nomemb_new;
8070 writememh[n] = write_nomemh_new;
24385cae 8071#ifndef FORCE32
57871462 8072 writememd[n] = write_nomemd_new;
24385cae 8073#endif
57871462 8074 readmem[n] = read_nomem_new;
8075 readmemb[n] = read_nomemb_new;
8076 readmemh[n] = read_nomemh_new;
24385cae 8077#ifndef FORCE32
57871462 8078 readmemd[n] = read_nomemd_new;
24385cae 8079#endif
57871462 8080 }
24385cae 8081#endif
57871462 8082 tlb_hacks();
8083 arch_init();
a327ad27 8084#ifndef RAM_FIXED
8085 ram_offset=(u_int)rdram-0x80000000;
8086#endif
b105cf4f 8087 if (ram_offset!=0)
8088 printf("warning: RAM is not directly mapped, performance will suffer\n");
57871462 8089}
8090
8091void new_dynarec_cleanup()
8092{
8093 int n;
a327ad27 8094 #if BASE_ADDR_FIXED
57871462 8095 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
bdeade46 8096 #endif
57871462 8097 for(n=0;n<4096;n++) ll_clear(jump_in+n);
8098 for(n=0;n<4096;n++) ll_clear(jump_out+n);
8099 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8100 #ifdef ROM_COPY
8101 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
8102 #endif
8103}
8104
8105int new_recompile_block(int addr)
8106{
8107/*
8108 if(addr==0x800cd050) {
8109 int block;
8110 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8111 int n;
8112 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8113 }
8114*/
8115 //if(Count==365117028) tracedebug=1;
8116 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8117 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8118 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8119 //if(debug)
8120 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8121 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8122 /*if(Count>=312978186) {
8123 rlist();
8124 }*/
8125 //rlist();
8126 start = (u_int)addr&~3;
8127 //assert(((u_int)addr&1)==0);
2f546f9a 8128 new_dynarec_did_compile=1;
7139f3c8 8129#ifdef PCSX
9ad4d757 8130 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8131 {
7139f3c8 8132 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8133 u_int beginning=(u_int)out;
7139f3c8 8134 u_int page=get_page(start);
7139f3c8 8135 invalid_code[start>>12]=0;
8136 emit_movimm(start,0);
8137 emit_writeword(0,(int)&pcaddr);
bb5285ef 8138 emit_jmp((int)new_dyna_leave);
15776b68 8139 literal_pool(0);
bb5285ef 8140#ifdef __arm__
8141 __clear_cache((void *)beginning,out);
8142#endif
9ad4d757 8143 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8144 return 0;
8145 }
560e4a12 8146 else if ((u_int)addr < 0x00200000 ||
8147 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8148 // used for BIOS calls mostly?
560e4a12 8149 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8150 pagelimit = (addr&0xa0000000)|0x00200000;
8151 }
8152 else if (!Config.HLE && (
8153/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8154 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8155 // BIOS
8156 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8157 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8158 }
8159 else
8160#endif
3d624f89 8161#ifdef MUPEN64
57871462 8162 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8163 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8164 pagelimit = 0xa4001000;
8165 }
3d624f89 8166 else
8167#endif
4cb76aa4 8168 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8169 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8170 pagelimit = 0x80000000+RAM_SIZE;
57871462 8171 }
90ae6d4e 8172#ifndef DISABLE_TLB
57871462 8173 else if ((signed int)addr >= (signed int)0xC0000000) {
8174 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8175 //if(tlb_LUT_r[start>>12])
8176 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8177 if((signed int)memory_map[start>>12]>=0) {
8178 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8179 pagelimit=(start+4096)&0xFFFFF000;
8180 int map=memory_map[start>>12];
8181 int i;
8182 for(i=0;i<5;i++) {
8183 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8184 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8185 }
8186 assem_debug("pagelimit=%x\n",pagelimit);
8187 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8188 }
8189 else {
8190 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8191 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8192 return -1; // Caller will invoke exception handler
57871462 8193 }
8194 //printf("source= %x\n",(int)source);
8195 }
90ae6d4e 8196#endif
57871462 8197 else {
8198 printf("Compile at bogus memory address: %x \n", (int)addr);
8199 exit(1);
8200 }
8201
8202 /* Pass 1: disassemble */
8203 /* Pass 2: register dependencies, branch targets */
8204 /* Pass 3: register allocation */
8205 /* Pass 4: branch dependencies */
8206 /* Pass 5: pre-alloc */
8207 /* Pass 6: optimize clean/dirty state */
8208 /* Pass 7: flag 32-bit registers */
8209 /* Pass 8: assembly */
8210 /* Pass 9: linker */
8211 /* Pass 10: garbage collection / free memory */
8212
8213 int i,j;
8214 int done=0;
8215 unsigned int type,op,op2;
8216
8217 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8218
8219 /* Pass 1 disassembly */
8220
8221 for(i=0;!done;i++) {
e1190b87 8222 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8223 minimum_free_regs[i]=0;
57871462 8224 opcode[i]=op=source[i]>>26;
8225 switch(op)
8226 {
8227 case 0x00: strcpy(insn[i],"special"); type=NI;
8228 op2=source[i]&0x3f;
8229 switch(op2)
8230 {
8231 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8232 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8233 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8234 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8235 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8236 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8237 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8238 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8239 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8240 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8241 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8242 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8243 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8244 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8245 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8246 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8247 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8248 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8249 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8250 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8251 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8252 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8253 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8254 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8255 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8256 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8257 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8258 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8259 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8260 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8261 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8262 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8263 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8264 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8265 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8266#ifndef FORCE32
8267 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8268 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8269 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8270 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8271 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8272 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8273 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8274 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8275 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8276 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8277 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8278 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8279 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8280 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8281 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8282 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8283 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8284#endif
57871462 8285 }
8286 break;
8287 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8288 op2=(source[i]>>16)&0x1f;
8289 switch(op2)
8290 {
8291 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8292 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8293 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8294 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8295 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8296 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8297 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8298 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8299 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8300 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8301 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8302 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8303 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8304 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8305 }
8306 break;
8307 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8308 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8309 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8310 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8311 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8312 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8313 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8314 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8315 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8316 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8317 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8318 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8319 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8320 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8321 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8322 op2=(source[i]>>21)&0x1f;
8323 switch(op2)
8324 {
8325 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8326 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8327 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8328 switch(source[i]&0x3f)
8329 {
8330 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8331 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8332 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8333 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8334#ifdef PCSX
8335 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8336#else
57871462 8337 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8338#endif
57871462 8339 }
8340 }
8341 break;
8342 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8343 op2=(source[i]>>21)&0x1f;
8344 switch(op2)
8345 {
8346 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8347 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8348 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8349 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8350 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8351 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8352 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8353 switch((source[i]>>16)&0x3)
8354 {
8355 case 0x00: strcpy(insn[i],"BC1F"); break;
8356 case 0x01: strcpy(insn[i],"BC1T"); break;
8357 case 0x02: strcpy(insn[i],"BC1FL"); break;
8358 case 0x03: strcpy(insn[i],"BC1TL"); break;
8359 }
8360 break;
8361 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8362 switch(source[i]&0x3f)
8363 {
8364 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8365 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8366 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8367 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8368 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8369 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8370 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8371 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8372 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8373 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8374 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8375 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8376 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8377 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8378 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8379 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8380 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8381 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8382 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8383 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8384 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8385 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8386 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8387 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8388 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8389 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8390 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8391 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8392 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8393 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8394 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8395 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8396 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8397 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8398 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8399 }
8400 break;
8401 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8402 switch(source[i]&0x3f)
8403 {
8404 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8405 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8406 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8407 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8408 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8409 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8410 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8411 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8412 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8413 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8414 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8415 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8416 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8417 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8418 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8419 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8420 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8421 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8422 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8423 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8424 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8425 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8426 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8427 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8428 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8429 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8430 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8431 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8432 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8433 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8434 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8435 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8436 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8437 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8438 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8439 }
8440 break;
8441 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8442 switch(source[i]&0x3f)
8443 {
8444 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8445 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8446 }
8447 break;
8448 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8449 switch(source[i]&0x3f)
8450 {
8451 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8452 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8453 }
8454 break;
8455 }
8456 break;
909168d6 8457#ifndef FORCE32
57871462 8458 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8459 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8460 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8461 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8462 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8463 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8464 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8465 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8466#endif
57871462 8467 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8468 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8469 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8470 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8471 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8472 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8473 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8474#ifndef FORCE32
57871462 8475 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8476#endif
57871462 8477 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8478 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8479 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8480 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8481#ifndef FORCE32
57871462 8482 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8483 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8484#endif
57871462 8485 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8486 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8487 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8488 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8489#ifndef FORCE32
57871462 8490 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8491 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8492 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8493#endif
57871462 8494 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8495 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8496#ifndef FORCE32
57871462 8497 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8498 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8499 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8500#endif
b9b61529 8501#ifdef PCSX
8502 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8503 op2=(source[i]>>21)&0x1f;
bedfea38 8504 //if (op2 & 0x10) {
8505 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8506 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8507 if (gte_regnames[source[i]&0x3f]!=NULL)
8508 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8509 else
8510 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8511 type=C2OP;
8512 }
8513 }
8514 else switch(op2)
b9b61529 8515 {
8516 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8517 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8518 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8519 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8520 }
8521 break;
8522 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8523 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8524 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8525#endif
90ae6d4e 8526 default: strcpy(insn[i],"???"); type=NI;
75dec299 8527 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8528 break;
57871462 8529 }
8530 itype[i]=type;
8531 opcode2[i]=op2;
8532 /* Get registers/immediates */
8533 lt1[i]=0;
8534 us1[i]=0;
8535 us2[i]=0;
8536 dep1[i]=0;
8537 dep2[i]=0;
bedfea38 8538 gte_rs[i]=gte_rt[i]=0;
57871462 8539 switch(type) {
8540 case LOAD:
8541 rs1[i]=(source[i]>>21)&0x1f;
8542 rs2[i]=0;
8543 rt1[i]=(source[i]>>16)&0x1f;
8544 rt2[i]=0;
8545 imm[i]=(short)source[i];
8546 break;
8547 case STORE:
8548 case STORELR:
8549 rs1[i]=(source[i]>>21)&0x1f;
8550 rs2[i]=(source[i]>>16)&0x1f;
8551 rt1[i]=0;
8552 rt2[i]=0;
8553 imm[i]=(short)source[i];
8554 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8555 break;
8556 case LOADLR:
8557 // LWL/LWR only load part of the register,
8558 // therefore the target register must be treated as a source too
8559 rs1[i]=(source[i]>>21)&0x1f;
8560 rs2[i]=(source[i]>>16)&0x1f;
8561 rt1[i]=(source[i]>>16)&0x1f;
8562 rt2[i]=0;
8563 imm[i]=(short)source[i];
8564 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8565 if(op==0x26) dep1[i]=rt1[i]; // LWR
8566 break;
8567 case IMM16:
8568 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8569 else rs1[i]=(source[i]>>21)&0x1f;
8570 rs2[i]=0;
8571 rt1[i]=(source[i]>>16)&0x1f;
8572 rt2[i]=0;
8573 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8574 imm[i]=(unsigned short)source[i];
8575 }else{
8576 imm[i]=(short)source[i];
8577 }
8578 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8579 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8580 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8581 break;
8582 case UJUMP:
8583 rs1[i]=0;
8584 rs2[i]=0;
8585 rt1[i]=0;
8586 rt2[i]=0;
8587 // The JAL instruction writes to r31.
8588 if (op&1) {
8589 rt1[i]=31;
8590 }
8591 rs2[i]=CCREG;
8592 break;
8593 case RJUMP:
8594 rs1[i]=(source[i]>>21)&0x1f;
8595 rs2[i]=0;
8596 rt1[i]=0;
8597 rt2[i]=0;
5067f341 8598 // The JALR instruction writes to rd.
57871462 8599 if (op2&1) {
5067f341 8600 rt1[i]=(source[i]>>11)&0x1f;
57871462 8601 }
8602 rs2[i]=CCREG;
8603 break;
8604 case CJUMP:
8605 rs1[i]=(source[i]>>21)&0x1f;
8606 rs2[i]=(source[i]>>16)&0x1f;
8607 rt1[i]=0;
8608 rt2[i]=0;
8609 if(op&2) { // BGTZ/BLEZ
8610 rs2[i]=0;
8611 }
8612 us1[i]=rs1[i];
8613 us2[i]=rs2[i];
8614 likely[i]=op>>4;
8615 break;
8616 case SJUMP:
8617 rs1[i]=(source[i]>>21)&0x1f;
8618 rs2[i]=CCREG;
8619 rt1[i]=0;
8620 rt2[i]=0;
8621 us1[i]=rs1[i];
8622 if(op2&0x10) { // BxxAL
8623 rt1[i]=31;
8624 // NOTE: If the branch is not taken, r31 is still overwritten
8625 }
8626 likely[i]=(op2&2)>>1;
8627 break;
8628 case FJUMP:
8629 rs1[i]=FSREG;
8630 rs2[i]=CSREG;
8631 rt1[i]=0;
8632 rt2[i]=0;
8633 likely[i]=((source[i])>>17)&1;
8634 break;
8635 case ALU:
8636 rs1[i]=(source[i]>>21)&0x1f; // source
8637 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8638 rt1[i]=(source[i]>>11)&0x1f; // destination
8639 rt2[i]=0;
8640 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8641 us1[i]=rs1[i];us2[i]=rs2[i];
8642 }
8643 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8644 dep1[i]=rs1[i];dep2[i]=rs2[i];
8645 }
8646 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8647 dep1[i]=rs1[i];dep2[i]=rs2[i];
8648 }
8649 break;
8650 case MULTDIV:
8651 rs1[i]=(source[i]>>21)&0x1f; // source
8652 rs2[i]=(source[i]>>16)&0x1f; // divisor
8653 rt1[i]=HIREG;
8654 rt2[i]=LOREG;
8655 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8656 us1[i]=rs1[i];us2[i]=rs2[i];
8657 }
8658 break;
8659 case MOV:
8660 rs1[i]=0;
8661 rs2[i]=0;
8662 rt1[i]=0;
8663 rt2[i]=0;
8664 if(op2==0x10) rs1[i]=HIREG; // MFHI
8665 if(op2==0x11) rt1[i]=HIREG; // MTHI
8666 if(op2==0x12) rs1[i]=LOREG; // MFLO
8667 if(op2==0x13) rt1[i]=LOREG; // MTLO
8668 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8669 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8670 dep1[i]=rs1[i];
8671 break;
8672 case SHIFT:
8673 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8674 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8675 rt1[i]=(source[i]>>11)&0x1f; // destination
8676 rt2[i]=0;
8677 // DSLLV/DSRLV/DSRAV are 64-bit
8678 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8679 break;
8680 case SHIFTIMM:
8681 rs1[i]=(source[i]>>16)&0x1f;
8682 rs2[i]=0;
8683 rt1[i]=(source[i]>>11)&0x1f;
8684 rt2[i]=0;
8685 imm[i]=(source[i]>>6)&0x1f;
8686 // DSxx32 instructions
8687 if(op2>=0x3c) imm[i]|=0x20;
8688 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8689 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8690 break;
8691 case COP0:
8692 rs1[i]=0;
8693 rs2[i]=0;
8694 rt1[i]=0;
8695 rt2[i]=0;
8696 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8697 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8698 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8699 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8700 break;
8701 case COP1:
8702 rs1[i]=0;
8703 rs2[i]=0;
8704 rt1[i]=0;
8705 rt2[i]=0;
8706 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8707 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8708 if(op2==5) us1[i]=rs1[i]; // DMTC1
8709 rs2[i]=CSREG;
8710 break;
bedfea38 8711 case COP2:
8712 rs1[i]=0;
8713 rs2[i]=0;
8714 rt1[i]=0;
8715 rt2[i]=0;
8716 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8717 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8718 rs2[i]=CSREG;
8719 int gr=(source[i]>>11)&0x1F;
8720 switch(op2)
8721 {
8722 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8723 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
0ff8c62c 8724 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
bedfea38 8725 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8726 }
8727 break;
57871462 8728 case C1LS:
8729 rs1[i]=(source[i]>>21)&0x1F;
8730 rs2[i]=CSREG;
8731 rt1[i]=0;
8732 rt2[i]=0;
8733 imm[i]=(short)source[i];
8734 break;
b9b61529 8735 case C2LS:
8736 rs1[i]=(source[i]>>21)&0x1F;
8737 rs2[i]=0;
8738 rt1[i]=0;
8739 rt2[i]=0;
8740 imm[i]=(short)source[i];
bedfea38 8741 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8742 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8743 break;
8744 case C2OP:
8745 rs1[i]=0;
8746 rs2[i]=0;
8747 rt1[i]=0;
8748 rt2[i]=0;
2167bef6 8749 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8750 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8751 gte_rt[i]|=1ll<<63; // every op changes flags
587a5b1c 8752 if((source[i]&0x3f)==GTE_MVMVA) {
8753 int v = (source[i] >> 15) & 3;
8754 gte_rs[i]&=~0xe3fll;
8755 if(v==3) gte_rs[i]|=0xe00ll;
8756 else gte_rs[i]|=3ll<<(v*2);
8757 }
b9b61529 8758 break;
57871462 8759 case FLOAT:
8760 case FCONV:
8761 rs1[i]=0;
8762 rs2[i]=CSREG;
8763 rt1[i]=0;
8764 rt2[i]=0;
8765 break;
8766 case FCOMP:
8767 rs1[i]=FSREG;
8768 rs2[i]=CSREG;
8769 rt1[i]=FSREG;
8770 rt2[i]=0;
8771 break;
8772 case SYSCALL:
7139f3c8 8773 case HLECALL:
1e973cb0 8774 case INTCALL:
57871462 8775 rs1[i]=CCREG;
8776 rs2[i]=0;
8777 rt1[i]=0;
8778 rt2[i]=0;
8779 break;
8780 default:
8781 rs1[i]=0;
8782 rs2[i]=0;
8783 rt1[i]=0;
8784 rt2[i]=0;
8785 }
8786 /* Calculate branch target addresses */
8787 if(type==UJUMP)
8788 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8789 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8790 ba[i]=start+i*4+8; // Ignore never taken branch
8791 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8792 ba[i]=start+i*4+8; // Ignore never taken branch
8793 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8794 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8795 else ba[i]=-1;
26869094 8796#ifdef PCSX
3e535354 8797 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8798 int do_in_intrp=0;
8799 // branch in delay slot?
8800 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8801 // don't handle first branch and call interpreter if it's hit
8802 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8803 do_in_intrp=1;
8804 }
8805 // basic load delay detection
8806 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8807 int t=(ba[i-1]-start)/4;
8808 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8809 // jump target wants DS result - potential load delay effect
8810 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8811 do_in_intrp=1;
8812 bt[t+1]=1; // expected return from interpreter
8813 }
8814 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8815 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8816 // v0 overwrite like this is a sign of trouble, bail out
8817 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8818 do_in_intrp=1;
8819 }
8820 }
3e535354 8821 if(do_in_intrp) {
8822 rs1[i-1]=CCREG;
8823 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8824 ba[i-1]=-1;
8825 itype[i-1]=INTCALL;
8826 done=2;
3e535354 8827 i--; // don't compile the DS
26869094 8828 }
3e535354 8829 }
26869094 8830#endif
3e535354 8831 /* Is this the end of the block? */
8832 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8833 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8834 done=2;
57871462 8835 }
8836 else {
8837 if(stop_after_jal) done=1;
8838 // Stop on BREAK
8839 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8840 }
8841 // Don't recompile stuff that's already compiled
8842 if(check_addr(start+i*4+4)) done=1;
8843 // Don't get too close to the limit
8844 if(i>MAXBLOCK/2) done=1;
8845 }
75dec299 8846 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8847 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8848 if(done==2) {
8849 // Does the block continue due to a branch?
8850 for(j=i-1;j>=0;j--)
8851 {
2a706964 8852 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8853 if(ba[j]==start+i*4+4) done=j=0;
8854 if(ba[j]==start+i*4+8) done=j=0;
8855 }
8856 }
75dec299 8857 //assert(i<MAXBLOCK-1);
57871462 8858 if(start+i*4==pagelimit-4) done=1;
8859 assert(start+i*4<pagelimit);
8860 if (i==MAXBLOCK-1) done=1;
8861 // Stop if we're compiling junk
8862 if(itype[i]==NI&&opcode[i]==0x11) {
8863 done=stop_after_jal=1;
8864 printf("Disabled speculative precompilation\n");
8865 }
8866 }
8867 slen=i;
8868 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8869 if(start+i*4==pagelimit) {
8870 itype[i-1]=SPAN;
8871 }
8872 }
8873 assert(slen>0);
8874
8875 /* Pass 2 - Register dependencies and branch targets */
8876
8877 unneeded_registers(0,slen-1,0);
8878
8879 /* Pass 3 - Register allocation */
8880
8881 struct regstat current; // Current register allocations/status
8882 current.is32=1;
8883 current.dirty=0;
8884 current.u=unneeded_reg[0];
8885 current.uu=unneeded_reg_upper[0];
8886 clear_all_regs(current.regmap);
8887 alloc_reg(&current,0,CCREG);
8888 dirty_reg(&current,CCREG);
8889 current.isconst=0;
8890 current.wasconst=0;
27727b63 8891 current.waswritten=0;
57871462 8892 int ds=0;
8893 int cc=0;
5194fb95 8894 int hr=-1;
6ebf4adf 8895
8896#ifndef FORCE32
57871462 8897 provisional_32bit();
6ebf4adf 8898#endif
57871462 8899 if((u_int)addr&1) {
8900 // First instruction is delay slot
8901 cc=-1;
8902 bt[1]=1;
8903 ds=1;
8904 unneeded_reg[0]=1;
8905 unneeded_reg_upper[0]=1;
8906 current.regmap[HOST_BTREG]=BTREG;
8907 }
8908
8909 for(i=0;i<slen;i++)
8910 {
8911 if(bt[i])
8912 {
8913 int hr;
8914 for(hr=0;hr<HOST_REGS;hr++)
8915 {
8916 // Is this really necessary?
8917 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8918 }
8919 current.isconst=0;
27727b63 8920 current.waswritten=0;
57871462 8921 }
8922 if(i>1)
8923 {
8924 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8925 {
8926 if(rs1[i-2]==0||rs2[i-2]==0)
8927 {
8928 if(rs1[i-2]) {
8929 current.is32|=1LL<<rs1[i-2];
8930 int hr=get_reg(current.regmap,rs1[i-2]|64);
8931 if(hr>=0) current.regmap[hr]=-1;
8932 }
8933 if(rs2[i-2]) {
8934 current.is32|=1LL<<rs2[i-2];
8935 int hr=get_reg(current.regmap,rs2[i-2]|64);
8936 if(hr>=0) current.regmap[hr]=-1;
8937 }
8938 }
8939 }
8940 }
6ebf4adf 8941#ifndef FORCE32
57871462 8942 // If something jumps here with 64-bit values
8943 // then promote those registers to 64 bits
8944 if(bt[i])
8945 {
8946 uint64_t temp_is32=current.is32;
8947 for(j=i-1;j>=0;j--)
8948 {
8949 if(ba[j]==start+i*4)
8950 temp_is32&=branch_regs[j].is32;
8951 }
8952 for(j=i;j<slen;j++)
8953 {
8954 if(ba[j]==start+i*4)
8955 //temp_is32=1;
8956 temp_is32&=p32[j];
8957 }
8958 if(temp_is32!=current.is32) {
8959 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8960 #ifndef DESTRUCTIVE_WRITEBACK
8961 if(ds)
8962 #endif
57871462 8963 for(hr=0;hr<HOST_REGS;hr++)
8964 {
8965 int r=current.regmap[hr];
8966 if(r>0&&r<64)
8967 {
8968 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8969 temp_is32|=1LL<<r;
8970 //printf("restore %d\n",r);
8971 }
8972 }
8973 }
57871462 8974 current.is32=temp_is32;
8975 }
8976 }
6ebf4adf 8977#else
24385cae 8978 current.is32=-1LL;
8979#endif
8980
57871462 8981 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8982 regs[i].wasconst=current.isconst;
8983 regs[i].was32=current.is32;
8984 regs[i].wasdirty=current.dirty;
8575a877 8985 regs[i].loadedconst=0;
6ebf4adf 8986 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8987 // To change a dirty register from 32 to 64 bits, we must write
8988 // it out during the previous cycle (for branches, 2 cycles)
8989 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8990 {
8991 uint64_t temp_is32=current.is32;
8992 for(j=i-1;j>=0;j--)
8993 {
8994 if(ba[j]==start+i*4+4)
8995 temp_is32&=branch_regs[j].is32;
8996 }
8997 for(j=i;j<slen;j++)
8998 {
8999 if(ba[j]==start+i*4+4)
9000 //temp_is32=1;
9001 temp_is32&=p32[j];
9002 }
9003 if(temp_is32!=current.is32) {
9004 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9005 for(hr=0;hr<HOST_REGS;hr++)
9006 {
9007 int r=current.regmap[hr];
9008 if(r>0)
9009 {
9010 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9011 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
9012 {
9013 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
9014 {
9015 //printf("dump %d/r%d\n",hr,r);
9016 current.regmap[hr]=-1;
9017 if(get_reg(current.regmap,r|64)>=0)
9018 current.regmap[get_reg(current.regmap,r|64)]=-1;
9019 }
9020 }
9021 }
9022 }
9023 }
9024 }
9025 }
9026 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
9027 {
9028 uint64_t temp_is32=current.is32;
9029 for(j=i-1;j>=0;j--)
9030 {
9031 if(ba[j]==start+i*4+8)
9032 temp_is32&=branch_regs[j].is32;
9033 }
9034 for(j=i;j<slen;j++)
9035 {
9036 if(ba[j]==start+i*4+8)
9037 //temp_is32=1;
9038 temp_is32&=p32[j];
9039 }
9040 if(temp_is32!=current.is32) {
9041 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9042 for(hr=0;hr<HOST_REGS;hr++)
9043 {
9044 int r=current.regmap[hr];
9045 if(r>0)
9046 {
9047 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9048 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
9049 {
9050 //printf("dump %d/r%d\n",hr,r);
9051 current.regmap[hr]=-1;
9052 if(get_reg(current.regmap,r|64)>=0)
9053 current.regmap[get_reg(current.regmap,r|64)]=-1;
9054 }
9055 }
9056 }
9057 }
9058 }
9059 }
9060 #endif
9061 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9062 if(i+1<slen) {
9063 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9064 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9065 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9066 current.u|=1;
9067 current.uu|=1;
9068 } else {
9069 current.u=1;
9070 current.uu=1;
9071 }
9072 } else {
9073 if(i+1<slen) {
9074 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9075 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9076 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9077 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9078 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9079 current.u|=1;
9080 current.uu|=1;
9081 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
9082 }
9083 is_ds[i]=ds;
9084 if(ds) {
9085 ds=0; // Skip delay slot, already allocated as part of branch
9086 // ...but we need to alloc it in case something jumps here
9087 if(i+1<slen) {
9088 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9089 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9090 }else{
9091 current.u=branch_unneeded_reg[i-1];
9092 current.uu=branch_unneeded_reg_upper[i-1];
9093 }
9094 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9095 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9096 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9097 current.u|=1;
9098 current.uu|=1;
9099 struct regstat temp;
9100 memcpy(&temp,&current,sizeof(current));
9101 temp.wasdirty=temp.dirty;
9102 temp.was32=temp.is32;
9103 // TODO: Take into account unconditional branches, as below
9104 delayslot_alloc(&temp,i);
9105 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9106 regs[i].wasdirty=temp.wasdirty;
9107 regs[i].was32=temp.was32;
9108 regs[i].dirty=temp.dirty;
9109 regs[i].is32=temp.is32;
9110 regs[i].isconst=0;
9111 regs[i].wasconst=0;
9112 current.isconst=0;
9113 // Create entry (branch target) regmap
9114 for(hr=0;hr<HOST_REGS;hr++)
9115 {
9116 int r=temp.regmap[hr];
9117 if(r>=0) {
9118 if(r!=regmap_pre[i][hr]) {
9119 regs[i].regmap_entry[hr]=-1;
9120 }
9121 else
9122 {
9123 if(r<64){
9124 if((current.u>>r)&1) {
9125 regs[i].regmap_entry[hr]=-1;
9126 regs[i].regmap[hr]=-1;
9127 //Don't clear regs in the delay slot as the branch might need them
9128 //current.regmap[hr]=-1;
9129 }else
9130 regs[i].regmap_entry[hr]=r;
9131 }
9132 else {
9133 if((current.uu>>(r&63))&1) {
9134 regs[i].regmap_entry[hr]=-1;
9135 regs[i].regmap[hr]=-1;
9136 //Don't clear regs in the delay slot as the branch might need them
9137 //current.regmap[hr]=-1;
9138 }else
9139 regs[i].regmap_entry[hr]=r;
9140 }
9141 }
9142 } else {
9143 // First instruction expects CCREG to be allocated
9144 if(i==0&&hr==HOST_CCREG)
9145 regs[i].regmap_entry[hr]=CCREG;
9146 else
9147 regs[i].regmap_entry[hr]=-1;
9148 }
9149 }
9150 }
9151 else { // Not delay slot
9152 switch(itype[i]) {
9153 case UJUMP:
9154 //current.isconst=0; // DEBUG
9155 //current.wasconst=0; // DEBUG
9156 //regs[i].wasconst=0; // DEBUG
9157 clear_const(&current,rt1[i]);
9158 alloc_cc(&current,i);
9159 dirty_reg(&current,CCREG);
9160 if (rt1[i]==31) {
9161 alloc_reg(&current,i,31);
9162 dirty_reg(&current,31);
4ef8f67d 9163 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9164 //assert(rt1[i+1]!=rt1[i]);
57871462 9165 #ifdef REG_PREFETCH
9166 alloc_reg(&current,i,PTEMP);
9167 #endif
9168 //current.is32|=1LL<<rt1[i];
9169 }
269bb29a 9170 ooo[i]=1;
9171 delayslot_alloc(&current,i+1);
57871462 9172 //current.isconst=0; // DEBUG
9173 ds=1;
9174 //printf("i=%d, isconst=%x\n",i,current.isconst);
9175 break;
9176 case RJUMP:
9177 //current.isconst=0;
9178 //current.wasconst=0;
9179 //regs[i].wasconst=0;
9180 clear_const(&current,rs1[i]);
9181 clear_const(&current,rt1[i]);
9182 alloc_cc(&current,i);
9183 dirty_reg(&current,CCREG);
9184 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9185 alloc_reg(&current,i,rs1[i]);
5067f341 9186 if (rt1[i]!=0) {
9187 alloc_reg(&current,i,rt1[i]);
9188 dirty_reg(&current,rt1[i]);
68b3faee 9189 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9190 assert(rt1[i+1]!=rt1[i]);
57871462 9191 #ifdef REG_PREFETCH
9192 alloc_reg(&current,i,PTEMP);
9193 #endif
9194 }
9195 #ifdef USE_MINI_HT
9196 if(rs1[i]==31) { // JALR
9197 alloc_reg(&current,i,RHASH);
9198 #ifndef HOST_IMM_ADDR32
9199 alloc_reg(&current,i,RHTBL);
9200 #endif
9201 }
9202 #endif
9203 delayslot_alloc(&current,i+1);
9204 } else {
9205 // The delay slot overwrites our source register,
9206 // allocate a temporary register to hold the old value.
9207 current.isconst=0;
9208 current.wasconst=0;
9209 regs[i].wasconst=0;
9210 delayslot_alloc(&current,i+1);
9211 current.isconst=0;
9212 alloc_reg(&current,i,RTEMP);
9213 }
9214 //current.isconst=0; // DEBUG
e1190b87 9215 ooo[i]=1;
57871462 9216 ds=1;
9217 break;
9218 case CJUMP:
9219 //current.isconst=0;
9220 //current.wasconst=0;
9221 //regs[i].wasconst=0;
9222 clear_const(&current,rs1[i]);
9223 clear_const(&current,rs2[i]);
9224 if((opcode[i]&0x3E)==4) // BEQ/BNE
9225 {
9226 alloc_cc(&current,i);
9227 dirty_reg(&current,CCREG);
9228 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9229 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9230 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9231 {
9232 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9233 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9234 }
9235 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9236 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9237 // The delay slot overwrites one of our conditions.
9238 // Allocate the branch condition registers instead.
57871462 9239 current.isconst=0;
9240 current.wasconst=0;
9241 regs[i].wasconst=0;
9242 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9243 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9244 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9245 {
9246 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9247 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9248 }
9249 }
e1190b87 9250 else
9251 {
9252 ooo[i]=1;
9253 delayslot_alloc(&current,i+1);
9254 }
57871462 9255 }
9256 else
9257 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9258 {
9259 alloc_cc(&current,i);
9260 dirty_reg(&current,CCREG);
9261 alloc_reg(&current,i,rs1[i]);
9262 if(!(current.is32>>rs1[i]&1))
9263 {
9264 alloc_reg64(&current,i,rs1[i]);
9265 }
9266 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9267 // The delay slot overwrites one of our conditions.
9268 // Allocate the branch condition registers instead.
57871462 9269 current.isconst=0;
9270 current.wasconst=0;
9271 regs[i].wasconst=0;
9272 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9273 if(!((current.is32>>rs1[i])&1))
9274 {
9275 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9276 }
9277 }
e1190b87 9278 else
9279 {
9280 ooo[i]=1;
9281 delayslot_alloc(&current,i+1);
9282 }
57871462 9283 }
9284 else
9285 // Don't alloc the delay slot yet because we might not execute it
9286 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9287 {
9288 current.isconst=0;
9289 current.wasconst=0;
9290 regs[i].wasconst=0;
9291 alloc_cc(&current,i);
9292 dirty_reg(&current,CCREG);
9293 alloc_reg(&current,i,rs1[i]);
9294 alloc_reg(&current,i,rs2[i]);
9295 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9296 {
9297 alloc_reg64(&current,i,rs1[i]);
9298 alloc_reg64(&current,i,rs2[i]);
9299 }
9300 }
9301 else
9302 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9303 {
9304 current.isconst=0;
9305 current.wasconst=0;
9306 regs[i].wasconst=0;
9307 alloc_cc(&current,i);
9308 dirty_reg(&current,CCREG);
9309 alloc_reg(&current,i,rs1[i]);
9310 if(!(current.is32>>rs1[i]&1))
9311 {
9312 alloc_reg64(&current,i,rs1[i]);
9313 }
9314 }
9315 ds=1;
9316 //current.isconst=0;
9317 break;
9318 case SJUMP:
9319 //current.isconst=0;
9320 //current.wasconst=0;
9321 //regs[i].wasconst=0;
9322 clear_const(&current,rs1[i]);
9323 clear_const(&current,rt1[i]);
9324 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9325 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9326 {
9327 alloc_cc(&current,i);
9328 dirty_reg(&current,CCREG);
9329 alloc_reg(&current,i,rs1[i]);
9330 if(!(current.is32>>rs1[i]&1))
9331 {
9332 alloc_reg64(&current,i,rs1[i]);
9333 }
9334 if (rt1[i]==31) { // BLTZAL/BGEZAL
9335 alloc_reg(&current,i,31);
9336 dirty_reg(&current,31);
57871462 9337 //#ifdef REG_PREFETCH
9338 //alloc_reg(&current,i,PTEMP);
9339 //#endif
9340 //current.is32|=1LL<<rt1[i];
9341 }
e1190b87 9342 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9343 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9344 // Allocate the branch condition registers instead.
57871462 9345 current.isconst=0;
9346 current.wasconst=0;
9347 regs[i].wasconst=0;
9348 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9349 if(!((current.is32>>rs1[i])&1))
9350 {
9351 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9352 }
9353 }
e1190b87 9354 else
9355 {
9356 ooo[i]=1;
9357 delayslot_alloc(&current,i+1);
9358 }
57871462 9359 }
9360 else
9361 // Don't alloc the delay slot yet because we might not execute it
9362 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9363 {
9364 current.isconst=0;
9365 current.wasconst=0;
9366 regs[i].wasconst=0;
9367 alloc_cc(&current,i);
9368 dirty_reg(&current,CCREG);
9369 alloc_reg(&current,i,rs1[i]);
9370 if(!(current.is32>>rs1[i]&1))
9371 {
9372 alloc_reg64(&current,i,rs1[i]);
9373 }
9374 }
9375 ds=1;
9376 //current.isconst=0;
9377 break;
9378 case FJUMP:
9379 current.isconst=0;
9380 current.wasconst=0;
9381 regs[i].wasconst=0;
9382 if(likely[i]==0) // BC1F/BC1T
9383 {
9384 // TODO: Theoretically we can run out of registers here on x86.
9385 // The delay slot can allocate up to six, and we need to check
9386 // CSREG before executing the delay slot. Possibly we can drop
9387 // the cycle count and then reload it after checking that the
9388 // FPU is in a usable state, or don't do out-of-order execution.
9389 alloc_cc(&current,i);
9390 dirty_reg(&current,CCREG);
9391 alloc_reg(&current,i,FSREG);
9392 alloc_reg(&current,i,CSREG);
9393 if(itype[i+1]==FCOMP) {
9394 // The delay slot overwrites the branch condition.
9395 // Allocate the branch condition registers instead.
57871462 9396 alloc_cc(&current,i);
9397 dirty_reg(&current,CCREG);
9398 alloc_reg(&current,i,CSREG);
9399 alloc_reg(&current,i,FSREG);
9400 }
9401 else {
e1190b87 9402 ooo[i]=1;
57871462 9403 delayslot_alloc(&current,i+1);
9404 alloc_reg(&current,i+1,CSREG);
9405 }
9406 }
9407 else
9408 // Don't alloc the delay slot yet because we might not execute it
9409 if(likely[i]) // BC1FL/BC1TL
9410 {
9411 alloc_cc(&current,i);
9412 dirty_reg(&current,CCREG);
9413 alloc_reg(&current,i,CSREG);
9414 alloc_reg(&current,i,FSREG);
9415 }
9416 ds=1;
9417 current.isconst=0;
9418 break;
9419 case IMM16:
9420 imm16_alloc(&current,i);
9421 break;
9422 case LOAD:
9423 case LOADLR:
9424 load_alloc(&current,i);
9425 break;
9426 case STORE:
9427 case STORELR:
9428 store_alloc(&current,i);
9429 break;
9430 case ALU:
9431 alu_alloc(&current,i);
9432 break;
9433 case SHIFT:
9434 shift_alloc(&current,i);
9435 break;
9436 case MULTDIV:
9437 multdiv_alloc(&current,i);
9438 break;
9439 case SHIFTIMM:
9440 shiftimm_alloc(&current,i);
9441 break;
9442 case MOV:
9443 mov_alloc(&current,i);
9444 break;
9445 case COP0:
9446 cop0_alloc(&current,i);
9447 break;
9448 case COP1:
b9b61529 9449 case COP2:
57871462 9450 cop1_alloc(&current,i);
9451 break;
9452 case C1LS:
9453 c1ls_alloc(&current,i);
9454 break;
b9b61529 9455 case C2LS:
9456 c2ls_alloc(&current,i);
9457 break;
9458 case C2OP:
9459 c2op_alloc(&current,i);
9460 break;
57871462 9461 case FCONV:
9462 fconv_alloc(&current,i);
9463 break;
9464 case FLOAT:
9465 float_alloc(&current,i);
9466 break;
9467 case FCOMP:
9468 fcomp_alloc(&current,i);
9469 break;
9470 case SYSCALL:
7139f3c8 9471 case HLECALL:
1e973cb0 9472 case INTCALL:
57871462 9473 syscall_alloc(&current,i);
9474 break;
9475 case SPAN:
9476 pagespan_alloc(&current,i);
9477 break;
9478 }
9479
9480 // Drop the upper half of registers that have become 32-bit
9481 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9482 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9483 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9484 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9485 current.uu|=1;
9486 } else {
9487 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9488 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9489 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9490 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9491 current.uu|=1;
9492 }
9493
9494 // Create entry (branch target) regmap
9495 for(hr=0;hr<HOST_REGS;hr++)
9496 {
9497 int r,or,er;
9498 r=current.regmap[hr];
9499 if(r>=0) {
9500 if(r!=regmap_pre[i][hr]) {
9501 // TODO: delay slot (?)
9502 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9503 if(or<0||(r&63)>=TEMPREG){
9504 regs[i].regmap_entry[hr]=-1;
9505 }
9506 else
9507 {
9508 // Just move it to a different register
9509 regs[i].regmap_entry[hr]=r;
9510 // If it was dirty before, it's still dirty
9511 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9512 }
9513 }
9514 else
9515 {
9516 // Unneeded
9517 if(r==0){
9518 regs[i].regmap_entry[hr]=0;
9519 }
9520 else
9521 if(r<64){
9522 if((current.u>>r)&1) {
9523 regs[i].regmap_entry[hr]=-1;
9524 //regs[i].regmap[hr]=-1;
9525 current.regmap[hr]=-1;
9526 }else
9527 regs[i].regmap_entry[hr]=r;
9528 }
9529 else {
9530 if((current.uu>>(r&63))&1) {
9531 regs[i].regmap_entry[hr]=-1;
9532 //regs[i].regmap[hr]=-1;
9533 current.regmap[hr]=-1;
9534 }else
9535 regs[i].regmap_entry[hr]=r;
9536 }
9537 }
9538 } else {
9539 // Branches expect CCREG to be allocated at the target
9540 if(regmap_pre[i][hr]==CCREG)
9541 regs[i].regmap_entry[hr]=CCREG;
9542 else
9543 regs[i].regmap_entry[hr]=-1;
9544 }
9545 }
9546 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9547 }
27727b63 9548
9549 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9550 current.waswritten|=1<<rs1[i-1];
9551 current.waswritten&=~(1<<rt1[i]);
9552 current.waswritten&=~(1<<rt2[i]);
9553 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9554 current.waswritten&=~(1<<rs1[i]);
9555
57871462 9556 /* Branch post-alloc */
9557 if(i>0)
9558 {
9559 current.was32=current.is32;
9560 current.wasdirty=current.dirty;
9561 switch(itype[i-1]) {
9562 case UJUMP:
9563 memcpy(&branch_regs[i-1],&current,sizeof(current));
9564 branch_regs[i-1].isconst=0;
9565 branch_regs[i-1].wasconst=0;
9566 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9567 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9568 alloc_cc(&branch_regs[i-1],i-1);
9569 dirty_reg(&branch_regs[i-1],CCREG);
9570 if(rt1[i-1]==31) { // JAL
9571 alloc_reg(&branch_regs[i-1],i-1,31);
9572 dirty_reg(&branch_regs[i-1],31);
9573 branch_regs[i-1].is32|=1LL<<31;
9574 }
9575 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 9576 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9577 break;
9578 case RJUMP:
9579 memcpy(&branch_regs[i-1],&current,sizeof(current));
9580 branch_regs[i-1].isconst=0;
9581 branch_regs[i-1].wasconst=0;
9582 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9583 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9584 alloc_cc(&branch_regs[i-1],i-1);
9585 dirty_reg(&branch_regs[i-1],CCREG);
9586 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9587 if(rt1[i-1]!=0) { // JALR
9588 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9589 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9590 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9591 }
9592 #ifdef USE_MINI_HT
9593 if(rs1[i-1]==31) { // JALR
9594 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9595 #ifndef HOST_IMM_ADDR32
9596 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9597 #endif
9598 }
9599 #endif
9600 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 9601 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9602 break;
9603 case CJUMP:
9604 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9605 {
9606 alloc_cc(&current,i-1);
9607 dirty_reg(&current,CCREG);
9608 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9609 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9610 // The delay slot overwrote one of our conditions
9611 // Delay slot goes after the test (in order)
9612 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9613 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9614 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9615 current.u|=1;
9616 current.uu|=1;
9617 delayslot_alloc(&current,i);
9618 current.isconst=0;
9619 }
9620 else
9621 {
9622 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9623 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9624 // Alloc the branch condition registers
9625 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9626 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9627 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9628 {
9629 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9630 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9631 }
9632 }
9633 memcpy(&branch_regs[i-1],&current,sizeof(current));
9634 branch_regs[i-1].isconst=0;
9635 branch_regs[i-1].wasconst=0;
9636 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9637 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9638 }
9639 else
9640 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9641 {
9642 alloc_cc(&current,i-1);
9643 dirty_reg(&current,CCREG);
9644 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9645 // The delay slot overwrote the branch condition
9646 // Delay slot goes after the test (in order)
9647 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9648 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9649 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9650 current.u|=1;
9651 current.uu|=1;
9652 delayslot_alloc(&current,i);
9653 current.isconst=0;
9654 }
9655 else
9656 {
9657 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9658 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9659 // Alloc the branch condition register
9660 alloc_reg(&current,i-1,rs1[i-1]);
9661 if(!(current.is32>>rs1[i-1]&1))
9662 {
9663 alloc_reg64(&current,i-1,rs1[i-1]);
9664 }
9665 }
9666 memcpy(&branch_regs[i-1],&current,sizeof(current));
9667 branch_regs[i-1].isconst=0;
9668 branch_regs[i-1].wasconst=0;
9669 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9670 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9671 }
9672 else
9673 // Alloc the delay slot in case the branch is taken
9674 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9675 {
9676 memcpy(&branch_regs[i-1],&current,sizeof(current));
9677 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9678 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9679 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9680 alloc_cc(&branch_regs[i-1],i);
9681 dirty_reg(&branch_regs[i-1],CCREG);
9682 delayslot_alloc(&branch_regs[i-1],i);
9683 branch_regs[i-1].isconst=0;
9684 alloc_reg(&current,i,CCREG); // Not taken path
9685 dirty_reg(&current,CCREG);
9686 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9687 }
9688 else
9689 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9690 {
9691 memcpy(&branch_regs[i-1],&current,sizeof(current));
9692 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9693 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9694 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9695 alloc_cc(&branch_regs[i-1],i);
9696 dirty_reg(&branch_regs[i-1],CCREG);
9697 delayslot_alloc(&branch_regs[i-1],i);
9698 branch_regs[i-1].isconst=0;
9699 alloc_reg(&current,i,CCREG); // Not taken path
9700 dirty_reg(&current,CCREG);
9701 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9702 }
9703 break;
9704 case SJUMP:
9705 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9706 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9707 {
9708 alloc_cc(&current,i-1);
9709 dirty_reg(&current,CCREG);
9710 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9711 // The delay slot overwrote the branch condition
9712 // Delay slot goes after the test (in order)
9713 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9714 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9715 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9716 current.u|=1;
9717 current.uu|=1;
9718 delayslot_alloc(&current,i);
9719 current.isconst=0;
9720 }
9721 else
9722 {
9723 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9724 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9725 // Alloc the branch condition register
9726 alloc_reg(&current,i-1,rs1[i-1]);
9727 if(!(current.is32>>rs1[i-1]&1))
9728 {
9729 alloc_reg64(&current,i-1,rs1[i-1]);
9730 }
9731 }
9732 memcpy(&branch_regs[i-1],&current,sizeof(current));
9733 branch_regs[i-1].isconst=0;
9734 branch_regs[i-1].wasconst=0;
9735 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9736 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9737 }
9738 else
9739 // Alloc the delay slot in case the branch is taken
9740 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9741 {
9742 memcpy(&branch_regs[i-1],&current,sizeof(current));
9743 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9744 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9745 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9746 alloc_cc(&branch_regs[i-1],i);
9747 dirty_reg(&branch_regs[i-1],CCREG);
9748 delayslot_alloc(&branch_regs[i-1],i);
9749 branch_regs[i-1].isconst=0;
9750 alloc_reg(&current,i,CCREG); // Not taken path
9751 dirty_reg(&current,CCREG);
9752 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9753 }
9754 // FIXME: BLTZAL/BGEZAL
9755 if(opcode2[i-1]&0x10) { // BxxZAL
9756 alloc_reg(&branch_regs[i-1],i-1,31);
9757 dirty_reg(&branch_regs[i-1],31);
9758 branch_regs[i-1].is32|=1LL<<31;
9759 }
9760 break;
9761 case FJUMP:
9762 if(likely[i-1]==0) // BC1F/BC1T
9763 {
9764 alloc_cc(&current,i-1);
9765 dirty_reg(&current,CCREG);
9766 if(itype[i]==FCOMP) {
9767 // The delay slot overwrote the branch condition
9768 // Delay slot goes after the test (in order)
9769 delayslot_alloc(&current,i);
9770 current.isconst=0;
9771 }
9772 else
9773 {
9774 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9775 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9776 // Alloc the branch condition register
9777 alloc_reg(&current,i-1,FSREG);
9778 }
9779 memcpy(&branch_regs[i-1],&current,sizeof(current));
9780 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9781 }
9782 else // BC1FL/BC1TL
9783 {
9784 // Alloc the delay slot in case the branch is taken
9785 memcpy(&branch_regs[i-1],&current,sizeof(current));
9786 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9787 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9788 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9789 alloc_cc(&branch_regs[i-1],i);
9790 dirty_reg(&branch_regs[i-1],CCREG);
9791 delayslot_alloc(&branch_regs[i-1],i);
9792 branch_regs[i-1].isconst=0;
9793 alloc_reg(&current,i,CCREG); // Not taken path
9794 dirty_reg(&current,CCREG);
9795 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9796 }
9797 break;
9798 }
9799
9800 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9801 {
9802 if(rt1[i-1]==31) // JAL/JALR
9803 {
9804 // Subroutine call will return here, don't alloc any registers
9805 current.is32=1;
9806 current.dirty=0;
9807 clear_all_regs(current.regmap);
9808 alloc_reg(&current,i,CCREG);
9809 dirty_reg(&current,CCREG);
9810 }
9811 else if(i+1<slen)
9812 {
9813 // Internal branch will jump here, match registers to caller
9814 current.is32=0x3FFFFFFFFLL;
9815 current.dirty=0;
9816 clear_all_regs(current.regmap);
9817 alloc_reg(&current,i,CCREG);
9818 dirty_reg(&current,CCREG);
9819 for(j=i-1;j>=0;j--)
9820 {
9821 if(ba[j]==start+i*4+4) {
9822 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9823 current.is32=branch_regs[j].is32;
9824 current.dirty=branch_regs[j].dirty;
9825 break;
9826 }
9827 }
9828 while(j>=0) {
9829 if(ba[j]==start+i*4+4) {
9830 for(hr=0;hr<HOST_REGS;hr++) {
9831 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9832 current.regmap[hr]=-1;
9833 }
9834 current.is32&=branch_regs[j].is32;
9835 current.dirty&=branch_regs[j].dirty;
9836 }
9837 }
9838 j--;
9839 }
9840 }
9841 }
9842 }
9843
9844 // Count cycles in between branches
9845 ccadj[i]=cc;
7139f3c8 9846 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9847 {
9848 cc=0;
9849 }
19776aef 9850#if defined(PCSX) && !defined(DRC_DBG)
054175e9 9851 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9852 {
9853 // GTE runs in parallel until accessed, divide by 2 for a rough guess
9854 cc+=gte_cycletab[source[i]&0x3f]/2;
9855 }
fb407447 9856 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9857 {
9858 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9859 }
9860 else if(itype[i]==C2LS)
9861 {
9862 cc+=4;
9863 }
9864#endif
57871462 9865 else
9866 {
9867 cc++;
9868 }
9869
9870 flush_dirty_uppers(&current);
9871 if(!is_ds[i]) {
9872 regs[i].is32=current.is32;
9873 regs[i].dirty=current.dirty;
9874 regs[i].isconst=current.isconst;
956f3129 9875 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
57871462 9876 }
9877 for(hr=0;hr<HOST_REGS;hr++) {
9878 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9879 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9880 regs[i].wasconst&=~(1<<hr);
9881 }
9882 }
9883 }
9884 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
27727b63 9885 regs[i].waswritten=current.waswritten;
57871462 9886 }
9887
9888 /* Pass 4 - Cull unused host registers */
9889
9890 uint64_t nr=0;
9891
9892 for (i=slen-1;i>=0;i--)
9893 {
9894 int hr;
9895 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9896 {
9897 if(ba[i]<start || ba[i]>=(start+slen*4))
9898 {
9899 // Branch out of this block, don't need anything
9900 nr=0;
9901 }
9902 else
9903 {
9904 // Internal branch
9905 // Need whatever matches the target
9906 nr=0;
9907 int t=(ba[i]-start)>>2;
9908 for(hr=0;hr<HOST_REGS;hr++)
9909 {
9910 if(regs[i].regmap_entry[hr]>=0) {
9911 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9912 }
9913 }
9914 }
9915 // Conditional branch may need registers for following instructions
9916 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9917 {
9918 if(i<slen-2) {
9919 nr|=needed_reg[i+2];
9920 for(hr=0;hr<HOST_REGS;hr++)
9921 {
9922 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9923 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9924 }
9925 }
9926 }
9927 // Don't need stuff which is overwritten
f5955059 9928 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9929 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9930 // Merge in delay slot
9931 for(hr=0;hr<HOST_REGS;hr++)
9932 {
9933 if(!likely[i]) {
9934 // These are overwritten unless the branch is "likely"
9935 // and the delay slot is nullified if not taken
9936 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9937 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9938 }
9939 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9940 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9941 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9942 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9943 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9944 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9945 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9946 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9947 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9948 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9949 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9950 }
9951 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9952 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9953 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9954 }
b9b61529 9955 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9956 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9957 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9958 }
9959 }
9960 }
1e973cb0 9961 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9962 {
9963 // SYSCALL instruction (software interrupt)
9964 nr=0;
9965 }
9966 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9967 {
9968 // ERET instruction (return from interrupt)
9969 nr=0;
9970 }
9971 else // Non-branch
9972 {
9973 if(i<slen-1) {
9974 for(hr=0;hr<HOST_REGS;hr++) {
9975 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9976 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9977 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9978 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9979 }
9980 }
9981 }
9982 for(hr=0;hr<HOST_REGS;hr++)
9983 {
9984 // Overwritten registers are not needed
9985 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9986 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9987 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9988 // Source registers are needed
9989 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9990 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9991 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9992 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9993 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9994 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9995 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9996 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9997 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9998 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9999 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10000 }
10001 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
10002 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10003 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10004 }
b9b61529 10005 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 10006 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
10007 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
10008 }
10009 // Don't store a register immediately after writing it,
10010 // may prevent dual-issue.
10011 // But do so if this is a branch target, otherwise we
10012 // might have to load the register before the branch.
10013 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
10014 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
10015 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
10016 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10017 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10018 }
10019 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
10020 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
10021 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10022 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10023 }
10024 }
10025 }
10026 // Cycle count is needed at branches. Assume it is needed at the target too.
10027 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
10028 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10029 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10030 }
10031 // Save it
10032 needed_reg[i]=nr;
10033
10034 // Deallocate unneeded registers
10035 for(hr=0;hr<HOST_REGS;hr++)
10036 {
10037 if(!((nr>>hr)&1)) {
10038 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
10039 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10040 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10041 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
10042 {
10043 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10044 {
10045 if(likely[i]) {
10046 regs[i].regmap[hr]=-1;
10047 regs[i].isconst&=~(1<<hr);
79c75f1b 10048 if(i<slen-2) {
10049 regmap_pre[i+2][hr]=-1;
10050 regs[i+2].wasconst&=~(1<<hr);
10051 }
57871462 10052 }
10053 }
10054 }
10055 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10056 {
10057 int d1=0,d2=0,map=0,temp=0;
10058 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10059 {
10060 d1=dep1[i+1];
10061 d2=dep2[i+1];
10062 }
10063 if(using_tlb) {
10064 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10065 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 10066 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10067 map=TLREG;
10068 } else
b9b61529 10069 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10070 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10071 map=INVCP;
10072 }
10073 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 10074 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10075 temp=FTEMP;
10076 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10077 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10078 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10079 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10080 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10081 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10082 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10083 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10084 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10085 regs[i].regmap[hr]!=map )
10086 {
10087 regs[i].regmap[hr]=-1;
10088 regs[i].isconst&=~(1<<hr);
10089 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10090 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10091 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10092 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10093 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10094 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10095 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10096 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10097 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10098 branch_regs[i].regmap[hr]!=map)
10099 {
10100 branch_regs[i].regmap[hr]=-1;
10101 branch_regs[i].regmap_entry[hr]=-1;
10102 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10103 {
10104 if(!likely[i]&&i<slen-2) {
10105 regmap_pre[i+2][hr]=-1;
79c75f1b 10106 regs[i+2].wasconst&=~(1<<hr);
57871462 10107 }
10108 }
10109 }
10110 }
10111 }
10112 else
10113 {
10114 // Non-branch
10115 if(i>0)
10116 {
10117 int d1=0,d2=0,map=-1,temp=-1;
10118 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10119 {
10120 d1=dep1[i];
10121 d2=dep2[i];
10122 }
10123 if(using_tlb) {
10124 if(itype[i]==LOAD || itype[i]==LOADLR ||
10125 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 10126 itype[i]==C1LS || itype[i]==C2LS)
57871462 10127 map=TLREG;
b9b61529 10128 } else if(itype[i]==STORE || itype[i]==STORELR ||
10129 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10130 map=INVCP;
10131 }
10132 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10133 itype[i]==C1LS || itype[i]==C2LS)
57871462 10134 temp=FTEMP;
10135 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10136 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10137 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10138 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10139 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10140 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10141 {
10142 if(i<slen-1&&!is_ds[i]) {
10143 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10144 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10145 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10146 {
10147 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10148 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10149 }
10150 regmap_pre[i+1][hr]=-1;
10151 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10152 regs[i+1].wasconst&=~(1<<hr);
57871462 10153 }
10154 regs[i].regmap[hr]=-1;
10155 regs[i].isconst&=~(1<<hr);
10156 }
10157 }
10158 }
10159 }
10160 }
10161 }
10162
10163 /* Pass 5 - Pre-allocate registers */
10164
10165 // If a register is allocated during a loop, try to allocate it for the
10166 // entire loop, if possible. This avoids loading/storing registers
10167 // inside of the loop.
198df76f 10168
57871462 10169 signed char f_regmap[HOST_REGS];
10170 clear_all_regs(f_regmap);
10171 for(i=0;i<slen-1;i++)
10172 {
10173 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10174 {
10175 if(ba[i]>=start && ba[i]<(start+i*4))
10176 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10177 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10178 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10179 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10180 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10181 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10182 {
10183 int t=(ba[i]-start)>>2;
10184 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10185 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10186 for(hr=0;hr<HOST_REGS;hr++)
10187 {
10188 if(regs[i].regmap[hr]>64) {
10189 if(!((regs[i].dirty>>hr)&1))
10190 f_regmap[hr]=regs[i].regmap[hr];
10191 else f_regmap[hr]=-1;
10192 }
b372a952 10193 else if(regs[i].regmap[hr]>=0) {
10194 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10195 // dealloc old register
10196 int n;
10197 for(n=0;n<HOST_REGS;n++)
10198 {
10199 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10200 }
10201 // and alloc new one
10202 f_regmap[hr]=regs[i].regmap[hr];
10203 }
10204 }
57871462 10205 if(branch_regs[i].regmap[hr]>64) {
10206 if(!((branch_regs[i].dirty>>hr)&1))
10207 f_regmap[hr]=branch_regs[i].regmap[hr];
10208 else f_regmap[hr]=-1;
10209 }
b372a952 10210 else if(branch_regs[i].regmap[hr]>=0) {
10211 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10212 // dealloc old register
10213 int n;
10214 for(n=0;n<HOST_REGS;n++)
10215 {
10216 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10217 }
10218 // and alloc new one
10219 f_regmap[hr]=branch_regs[i].regmap[hr];
10220 }
10221 }
e1190b87 10222 if(ooo[i]) {
10223 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10224 f_regmap[hr]=branch_regs[i].regmap[hr];
10225 }else{
10226 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10227 f_regmap[hr]=branch_regs[i].regmap[hr];
10228 }
10229 // Avoid dirty->clean transition
e1190b87 10230 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10231 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10232 #endif
10233 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10234 // case above, however it's always a good idea. We can't hoist the
10235 // load if the register was already allocated, so there's no point
10236 // wasting time analyzing most of these cases. It only "succeeds"
10237 // when the mapping was different and the load can be replaced with
10238 // a mov, which is of negligible benefit. So such cases are
10239 // skipped below.
57871462 10240 if(f_regmap[hr]>0) {
198df76f 10241 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10242 int r=f_regmap[hr];
10243 for(j=t;j<=i;j++)
10244 {
10245 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10246 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10247 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10248 if(r>63) {
10249 // NB This can exclude the case where the upper-half
10250 // register is lower numbered than the lower-half
10251 // register. Not sure if it's worth fixing...
10252 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10253 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10254 if(regs[j].is32&(1LL<<(r&63))) break;
10255 }
10256 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10257 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10258 int k;
10259 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10260 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10261 if(r>63) {
10262 if(get_reg(regs[i].regmap,r&63)<0) break;
10263 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10264 }
10265 k=i;
10266 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10267 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10268 //printf("no free regs for store %x\n",start+(k-1)*4);
10269 break;
57871462 10270 }
57871462 10271 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10272 //printf("no-match due to different register\n");
10273 break;
10274 }
10275 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10276 //printf("no-match due to branch\n");
10277 break;
10278 }
10279 // call/ret fast path assumes no registers allocated
198df76f 10280 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10281 break;
10282 }
10283 if(r>63) {
10284 // NB This can exclude the case where the upper-half
10285 // register is lower numbered than the lower-half
10286 // register. Not sure if it's worth fixing...
10287 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10288 if(regs[k-1].is32&(1LL<<(r&63))) break;
10289 }
10290 k--;
10291 }
10292 if(i<slen-1) {
10293 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10294 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10295 //printf("bad match after branch\n");
10296 break;
10297 }
10298 }
10299 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10300 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10301 while(k<i) {
10302 regs[k].regmap_entry[hr]=f_regmap[hr];
10303 regs[k].regmap[hr]=f_regmap[hr];
10304 regmap_pre[k+1][hr]=f_regmap[hr];
10305 regs[k].wasdirty&=~(1<<hr);
10306 regs[k].dirty&=~(1<<hr);
10307 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10308 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10309 regs[k].wasconst&=~(1<<hr);
10310 regs[k].isconst&=~(1<<hr);
10311 k++;
10312 }
10313 }
10314 else {
10315 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10316 break;
10317 }
10318 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10319 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10320 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10321 regs[i].regmap_entry[hr]=f_regmap[hr];
10322 regs[i].regmap[hr]=f_regmap[hr];
10323 regs[i].wasdirty&=~(1<<hr);
10324 regs[i].dirty&=~(1<<hr);
10325 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10326 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10327 regs[i].wasconst&=~(1<<hr);
10328 regs[i].isconst&=~(1<<hr);
10329 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10330 branch_regs[i].wasdirty&=~(1<<hr);
10331 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10332 branch_regs[i].regmap[hr]=f_regmap[hr];
10333 branch_regs[i].dirty&=~(1<<hr);
10334 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10335 branch_regs[i].wasconst&=~(1<<hr);
10336 branch_regs[i].isconst&=~(1<<hr);
10337 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10338 regmap_pre[i+2][hr]=f_regmap[hr];
10339 regs[i+2].wasdirty&=~(1<<hr);
10340 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10341 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10342 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10343 }
10344 }
10345 }
10346 for(k=t;k<j;k++) {
e1190b87 10347 // Alloc register clean at beginning of loop,
10348 // but may dirty it in pass 6
57871462 10349 regs[k].regmap_entry[hr]=f_regmap[hr];
10350 regs[k].regmap[hr]=f_regmap[hr];
57871462 10351 regs[k].dirty&=~(1<<hr);
10352 regs[k].wasconst&=~(1<<hr);
10353 regs[k].isconst&=~(1<<hr);
e1190b87 10354 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10355 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10356 branch_regs[k].regmap[hr]=f_regmap[hr];
10357 branch_regs[k].dirty&=~(1<<hr);
10358 branch_regs[k].wasconst&=~(1<<hr);
10359 branch_regs[k].isconst&=~(1<<hr);
10360 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10361 regmap_pre[k+2][hr]=f_regmap[hr];
10362 regs[k+2].wasdirty&=~(1<<hr);
10363 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10364 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10365 }
10366 }
10367 else
10368 {
10369 regmap_pre[k+1][hr]=f_regmap[hr];
10370 regs[k+1].wasdirty&=~(1<<hr);
10371 }
57871462 10372 }
10373 if(regs[j].regmap[hr]==f_regmap[hr])
10374 regs[j].regmap_entry[hr]=f_regmap[hr];
10375 break;
10376 }
10377 if(j==i) break;
10378 if(regs[j].regmap[hr]>=0)
10379 break;
10380 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10381 //printf("no-match due to different register\n");
10382 break;
10383 }
10384 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10385 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10386 break;
10387 }
e1190b87 10388 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10389 {
10390 // Stop on unconditional branch
10391 break;
10392 }
10393 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10394 {
10395 if(ooo[j]) {
10396 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10397 break;
10398 }else{
10399 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10400 break;
10401 }
10402 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10403 //printf("no-match due to different register (branch)\n");
57871462 10404 break;
10405 }
10406 }
e1190b87 10407 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10408 //printf("No free regs for store %x\n",start+j*4);
10409 break;
10410 }
57871462 10411 if(f_regmap[hr]>=64) {
10412 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10413 break;
10414 }
10415 else
10416 {
10417 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10418 break;
10419 }
10420 }
10421 }
10422 }
10423 }
10424 }
10425 }
10426 }
10427 }else{
198df76f 10428 // Non branch or undetermined branch target
57871462 10429 for(hr=0;hr<HOST_REGS;hr++)
10430 {
10431 if(hr!=EXCLUDE_REG) {
10432 if(regs[i].regmap[hr]>64) {
10433 if(!((regs[i].dirty>>hr)&1))
10434 f_regmap[hr]=regs[i].regmap[hr];
10435 }
b372a952 10436 else if(regs[i].regmap[hr]>=0) {
10437 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10438 // dealloc old register
10439 int n;
10440 for(n=0;n<HOST_REGS;n++)
10441 {
10442 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10443 }
10444 // and alloc new one
10445 f_regmap[hr]=regs[i].regmap[hr];
10446 }
10447 }
57871462 10448 }
10449 }
10450 // Try to restore cycle count at branch targets
10451 if(bt[i]) {
10452 for(j=i;j<slen-1;j++) {
10453 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10454 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10455 //printf("no free regs for store %x\n",start+j*4);
10456 break;
57871462 10457 }
57871462 10458 }
10459 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10460 int k=i;
10461 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10462 while(k<j) {
10463 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10464 regs[k].regmap[HOST_CCREG]=CCREG;
10465 regmap_pre[k+1][HOST_CCREG]=CCREG;
10466 regs[k+1].wasdirty|=1<<HOST_CCREG;
10467 regs[k].dirty|=1<<HOST_CCREG;
10468 regs[k].wasconst&=~(1<<HOST_CCREG);
10469 regs[k].isconst&=~(1<<HOST_CCREG);
10470 k++;
10471 }
10472 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10473 }
10474 // Work backwards from the branch target
10475 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10476 {
10477 //printf("Extend backwards\n");
10478 int k;
10479 k=i;
10480 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10481 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10482 //printf("no free regs for store %x\n",start+(k-1)*4);
10483 break;
57871462 10484 }
57871462 10485 k--;
10486 }
10487 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10488 //printf("Extend CC, %x ->\n",start+k*4);
10489 while(k<=i) {
10490 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10491 regs[k].regmap[HOST_CCREG]=CCREG;
10492 regmap_pre[k+1][HOST_CCREG]=CCREG;
10493 regs[k+1].wasdirty|=1<<HOST_CCREG;
10494 regs[k].dirty|=1<<HOST_CCREG;
10495 regs[k].wasconst&=~(1<<HOST_CCREG);
10496 regs[k].isconst&=~(1<<HOST_CCREG);
10497 k++;
10498 }
10499 }
10500 else {
10501 //printf("Fail Extend CC, %x ->\n",start+k*4);
10502 }
10503 }
10504 }
10505 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10506 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10507 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10508 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10509 {
10510 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10511 }
10512 }
10513 }
10514
d61de97e 10515 // Cache memory offset or tlb map pointer if a register is available
10516 #ifndef HOST_IMM_ADDR32
10517 #ifndef RAM_OFFSET
10518 if(using_tlb)
10519 #endif
10520 {
10521 int earliest_available[HOST_REGS];
10522 int loop_start[HOST_REGS];
10523 int score[HOST_REGS];
10524 int end[HOST_REGS];
10525 int reg=using_tlb?MMREG:ROREG;
10526
10527 // Init
10528 for(hr=0;hr<HOST_REGS;hr++) {
10529 score[hr]=0;earliest_available[hr]=0;
10530 loop_start[hr]=MAXBLOCK;
10531 }
10532 for(i=0;i<slen-1;i++)
10533 {
10534 // Can't do anything if no registers are available
10535 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10536 for(hr=0;hr<HOST_REGS;hr++) {
10537 score[hr]=0;earliest_available[hr]=i+1;
10538 loop_start[hr]=MAXBLOCK;
10539 }
10540 }
10541 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10542 if(!ooo[i]) {
10543 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10544 for(hr=0;hr<HOST_REGS;hr++) {
10545 score[hr]=0;earliest_available[hr]=i+1;
10546 loop_start[hr]=MAXBLOCK;
10547 }
10548 }
198df76f 10549 }else{
10550 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10551 for(hr=0;hr<HOST_REGS;hr++) {
10552 score[hr]=0;earliest_available[hr]=i+1;
10553 loop_start[hr]=MAXBLOCK;
10554 }
10555 }
d61de97e 10556 }
10557 }
10558 // Mark unavailable registers
10559 for(hr=0;hr<HOST_REGS;hr++) {
10560 if(regs[i].regmap[hr]>=0) {
10561 score[hr]=0;earliest_available[hr]=i+1;
10562 loop_start[hr]=MAXBLOCK;
10563 }
10564 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10565 if(branch_regs[i].regmap[hr]>=0) {
10566 score[hr]=0;earliest_available[hr]=i+2;
10567 loop_start[hr]=MAXBLOCK;
10568 }
10569 }
10570 }
10571 // No register allocations after unconditional jumps
10572 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10573 {
10574 for(hr=0;hr<HOST_REGS;hr++) {
10575 score[hr]=0;earliest_available[hr]=i+2;
10576 loop_start[hr]=MAXBLOCK;
10577 }
10578 i++; // Skip delay slot too
10579 //printf("skip delay slot: %x\n",start+i*4);
10580 }
10581 else
10582 // Possible match
10583 if(itype[i]==LOAD||itype[i]==LOADLR||
10584 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10585 for(hr=0;hr<HOST_REGS;hr++) {
10586 if(hr!=EXCLUDE_REG) {
10587 end[hr]=i-1;
10588 for(j=i;j<slen-1;j++) {
10589 if(regs[j].regmap[hr]>=0) break;
10590 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10591 if(branch_regs[j].regmap[hr]>=0) break;
10592 if(ooo[j]) {
10593 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10594 }else{
10595 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10596 }
10597 }
10598 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10599 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10600 int t=(ba[j]-start)>>2;
10601 if(t<j&&t>=earliest_available[hr]) {
198df76f 10602 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10603 // Score a point for hoisting loop invariant
10604 if(t<loop_start[hr]) loop_start[hr]=t;
10605 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10606 score[hr]++;
10607 end[hr]=j;
10608 }
d61de97e 10609 }
10610 else if(t<j) {
10611 if(regs[t].regmap[hr]==reg) {
10612 // Score a point if the branch target matches this register
10613 score[hr]++;
10614 end[hr]=j;
10615 }
10616 }
10617 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10618 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10619 score[hr]++;
10620 end[hr]=j;
10621 }
10622 }
10623 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10624 {
10625 // Stop on unconditional branch
10626 break;
10627 }
10628 else
10629 if(itype[j]==LOAD||itype[j]==LOADLR||
10630 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10631 score[hr]++;
10632 end[hr]=j;
10633 }
10634 }
10635 }
10636 }
10637 // Find highest score and allocate that register
10638 int maxscore=0;
10639 for(hr=0;hr<HOST_REGS;hr++) {
10640 if(hr!=EXCLUDE_REG) {
10641 if(score[hr]>score[maxscore]) {
10642 maxscore=hr;
10643 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10644 }
10645 }
10646 }
10647 if(score[maxscore]>1)
10648 {
10649 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10650 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10651 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10652 assert(regs[j].regmap[maxscore]<0);
10653 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10654 regs[j].regmap[maxscore]=reg;
10655 regs[j].dirty&=~(1<<maxscore);
10656 regs[j].wasconst&=~(1<<maxscore);
10657 regs[j].isconst&=~(1<<maxscore);
10658 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10659 branch_regs[j].regmap[maxscore]=reg;
10660 branch_regs[j].wasdirty&=~(1<<maxscore);
10661 branch_regs[j].dirty&=~(1<<maxscore);
10662 branch_regs[j].wasconst&=~(1<<maxscore);
10663 branch_regs[j].isconst&=~(1<<maxscore);
10664 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10665 regmap_pre[j+2][maxscore]=reg;
10666 regs[j+2].wasdirty&=~(1<<maxscore);
10667 }
10668 // loop optimization (loop_preload)
10669 int t=(ba[j]-start)>>2;
198df76f 10670 if(t==loop_start[maxscore]) {
10671 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10672 regs[t].regmap_entry[maxscore]=reg;
10673 }
d61de97e 10674 }
10675 else
10676 {
10677 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10678 regmap_pre[j+1][maxscore]=reg;
10679 regs[j+1].wasdirty&=~(1<<maxscore);
10680 }
10681 }
10682 }
10683 i=j-1;
10684 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10685 for(hr=0;hr<HOST_REGS;hr++) {
10686 score[hr]=0;earliest_available[hr]=i+i;
10687 loop_start[hr]=MAXBLOCK;
10688 }
10689 }
10690 }
10691 }
10692 }
10693 #endif
10694
57871462 10695 // This allocates registers (if possible) one instruction prior
10696 // to use, which can avoid a load-use penalty on certain CPUs.
10697 for(i=0;i<slen-1;i++)
10698 {
10699 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10700 {
10701 if(!bt[i+1])
10702 {
b9b61529 10703 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10704 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10705 {
10706 if(rs1[i+1]) {
10707 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10708 {
10709 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10710 {
10711 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10712 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10713 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10714 regs[i].isconst&=~(1<<hr);
10715 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10716 constmap[i][hr]=constmap[i+1][hr];
10717 regs[i+1].wasdirty&=~(1<<hr);
10718 regs[i].dirty&=~(1<<hr);
10719 }
10720 }
10721 }
10722 if(rs2[i+1]) {
10723 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10724 {
10725 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10726 {
10727 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10728 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10729 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10730 regs[i].isconst&=~(1<<hr);
10731 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10732 constmap[i][hr]=constmap[i+1][hr];
10733 regs[i+1].wasdirty&=~(1<<hr);
10734 regs[i].dirty&=~(1<<hr);
10735 }
10736 }
10737 }
198df76f 10738 // Preload target address for load instruction (non-constant)
57871462 10739 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10740 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10741 {
10742 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10743 {
10744 regs[i].regmap[hr]=rs1[i+1];
10745 regmap_pre[i+1][hr]=rs1[i+1];
10746 regs[i+1].regmap_entry[hr]=rs1[i+1];
10747 regs[i].isconst&=~(1<<hr);
10748 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10749 constmap[i][hr]=constmap[i+1][hr];
10750 regs[i+1].wasdirty&=~(1<<hr);
10751 regs[i].dirty&=~(1<<hr);
10752 }
10753 }
10754 }
198df76f 10755 // Load source into target register
57871462 10756 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10757 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10758 {
10759 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10760 {
10761 regs[i].regmap[hr]=rs1[i+1];
10762 regmap_pre[i+1][hr]=rs1[i+1];
10763 regs[i+1].regmap_entry[hr]=rs1[i+1];
10764 regs[i].isconst&=~(1<<hr);
10765 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10766 constmap[i][hr]=constmap[i+1][hr];
10767 regs[i+1].wasdirty&=~(1<<hr);
10768 regs[i].dirty&=~(1<<hr);
10769 }
10770 }
10771 }
198df76f 10772 // Preload map address
57871462 10773 #ifndef HOST_IMM_ADDR32
b9b61529 10774 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10775 hr=get_reg(regs[i+1].regmap,TLREG);
10776 if(hr>=0) {
10777 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10778 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10779 int nr;
10780 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10781 {
10782 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10783 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10784 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10785 regs[i].isconst&=~(1<<hr);
10786 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10787 constmap[i][hr]=constmap[i+1][hr];
10788 regs[i+1].wasdirty&=~(1<<hr);
10789 regs[i].dirty&=~(1<<hr);
10790 }
10791 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10792 {
10793 // move it to another register
10794 regs[i+1].regmap[hr]=-1;
10795 regmap_pre[i+2][hr]=-1;
10796 regs[i+1].regmap[nr]=TLREG;
10797 regmap_pre[i+2][nr]=TLREG;
10798 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10799 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10800 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10801 regs[i].isconst&=~(1<<nr);
10802 regs[i+1].isconst&=~(1<<nr);
10803 regs[i].dirty&=~(1<<nr);
10804 regs[i+1].wasdirty&=~(1<<nr);
10805 regs[i+1].dirty&=~(1<<nr);
10806 regs[i+2].wasdirty&=~(1<<nr);
10807 }
10808 }
10809 }
10810 }
10811 #endif
198df76f 10812 // Address for store instruction (non-constant)
b9b61529 10813 if(itype[i+1]==STORE||itype[i+1]==STORELR
10814 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10815 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10816 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10817 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10818 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10819 assert(hr>=0);
10820 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10821 {
10822 regs[i].regmap[hr]=rs1[i+1];
10823 regmap_pre[i+1][hr]=rs1[i+1];
10824 regs[i+1].regmap_entry[hr]=rs1[i+1];
10825 regs[i].isconst&=~(1<<hr);
10826 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10827 constmap[i][hr]=constmap[i+1][hr];
10828 regs[i+1].wasdirty&=~(1<<hr);
10829 regs[i].dirty&=~(1<<hr);
10830 }
10831 }
10832 }
b9b61529 10833 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10834 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10835 int nr;
10836 hr=get_reg(regs[i+1].regmap,FTEMP);
10837 assert(hr>=0);
10838 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10839 {
10840 regs[i].regmap[hr]=rs1[i+1];
10841 regmap_pre[i+1][hr]=rs1[i+1];
10842 regs[i+1].regmap_entry[hr]=rs1[i+1];
10843 regs[i].isconst&=~(1<<hr);
10844 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10845 constmap[i][hr]=constmap[i+1][hr];
10846 regs[i+1].wasdirty&=~(1<<hr);
10847 regs[i].dirty&=~(1<<hr);
10848 }
10849 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10850 {
10851 // move it to another register
10852 regs[i+1].regmap[hr]=-1;
10853 regmap_pre[i+2][hr]=-1;
10854 regs[i+1].regmap[nr]=FTEMP;
10855 regmap_pre[i+2][nr]=FTEMP;
10856 regs[i].regmap[nr]=rs1[i+1];
10857 regmap_pre[i+1][nr]=rs1[i+1];
10858 regs[i+1].regmap_entry[nr]=rs1[i+1];
10859 regs[i].isconst&=~(1<<nr);
10860 regs[i+1].isconst&=~(1<<nr);
10861 regs[i].dirty&=~(1<<nr);
10862 regs[i+1].wasdirty&=~(1<<nr);
10863 regs[i+1].dirty&=~(1<<nr);
10864 regs[i+2].wasdirty&=~(1<<nr);
10865 }
10866 }
10867 }
b9b61529 10868 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10869 if(itype[i+1]==LOAD)
10870 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10871 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10872 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10873 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10874 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10875 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10876 }
10877 if(hr>=0&&regs[i].regmap[hr]<0) {
10878 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10879 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10880 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10881 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10882 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10883 regs[i].isconst&=~(1<<hr);
10884 regs[i+1].wasdirty&=~(1<<hr);
10885 regs[i].dirty&=~(1<<hr);
10886 }
10887 }
10888 }
10889 }
10890 }
10891 }
10892 }
10893
10894 /* Pass 6 - Optimize clean/dirty state */
10895 clean_registers(0,slen-1,1);
10896
10897 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10898#ifndef FORCE32
57871462 10899 provisional_r32();
10900
10901 u_int r32=0;
10902
10903 for (i=slen-1;i>=0;i--)
10904 {
10905 int hr;
10906 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10907 {
10908 if(ba[i]<start || ba[i]>=(start+slen*4))
10909 {
10910 // Branch out of this block, don't need anything
10911 r32=0;
10912 }
10913 else
10914 {
10915 // Internal branch
10916 // Need whatever matches the target
10917 // (and doesn't get overwritten by the delay slot instruction)
10918 r32=0;
10919 int t=(ba[i]-start)>>2;
10920 if(ba[i]>start+i*4) {
10921 // Forward branch
10922 if(!(requires_32bit[t]&~regs[i].was32))
10923 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10924 }else{
10925 // Backward branch
10926 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10927 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10928 if(!(pr32[t]&~regs[i].was32))
10929 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10930 }
10931 }
10932 // Conditional branch may need registers for following instructions
10933 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10934 {
10935 if(i<slen-2) {
10936 r32|=requires_32bit[i+2];
10937 r32&=regs[i].was32;
10938 // Mark this address as a branch target since it may be called
10939 // upon return from interrupt
10940 bt[i+2]=1;
10941 }
10942 }
10943 // Merge in delay slot
10944 if(!likely[i]) {
10945 // These are overwritten unless the branch is "likely"
10946 // and the delay slot is nullified if not taken
10947 r32&=~(1LL<<rt1[i+1]);
10948 r32&=~(1LL<<rt2[i+1]);
10949 }
10950 // Assume these are needed (delay slot)
10951 if(us1[i+1]>0)
10952 {
10953 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10954 }
10955 if(us2[i+1]>0)
10956 {
10957 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10958 }
10959 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10960 {
10961 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10962 }
10963 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10964 {
10965 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10966 }
10967 }
1e973cb0 10968 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10969 {
10970 // SYSCALL instruction (software interrupt)
10971 r32=0;
10972 }
10973 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10974 {
10975 // ERET instruction (return from interrupt)
10976 r32=0;
10977 }
10978 // Check 32 bits
10979 r32&=~(1LL<<rt1[i]);
10980 r32&=~(1LL<<rt2[i]);
10981 if(us1[i]>0)
10982 {
10983 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10984 }
10985 if(us2[i]>0)
10986 {
10987 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10988 }
10989 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10990 {
10991 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10992 }
10993 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10994 {
10995 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10996 }
10997 requires_32bit[i]=r32;
10998
10999 // Dirty registers which are 32-bit, require 32-bit input
11000 // as they will be written as 32-bit values
11001 for(hr=0;hr<HOST_REGS;hr++)
11002 {
11003 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
11004 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
11005 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
11006 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
11007 }
11008 }
11009 }
11010 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
11011 }
04fd948a 11012#else
11013 for (i=slen-1;i>=0;i--)
11014 {
11015 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11016 {
11017 // Conditional branch
11018 if((source[i]>>16)!=0x1000&&i<slen-2) {
11019 // Mark this address as a branch target since it may be called
11020 // upon return from interrupt
11021 bt[i+2]=1;
11022 }
11023 }
11024 }
a28c6ce8 11025#endif
57871462 11026
11027 if(itype[slen-1]==SPAN) {
11028 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
11029 }
4600ba03 11030
11031#ifdef DISASM
57871462 11032 /* Debug/disassembly */
57871462 11033 for(i=0;i<slen;i++)
11034 {
11035 printf("U:");
11036 int r;
11037 for(r=1;r<=CCREG;r++) {
11038 if((unneeded_reg[i]>>r)&1) {
11039 if(r==HIREG) printf(" HI");
11040 else if(r==LOREG) printf(" LO");
11041 else printf(" r%d",r);
11042 }
11043 }
90ae6d4e 11044#ifndef FORCE32
57871462 11045 printf(" UU:");
11046 for(r=1;r<=CCREG;r++) {
11047 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
11048 if(r==HIREG) printf(" HI");
11049 else if(r==LOREG) printf(" LO");
11050 else printf(" r%d",r);
11051 }
11052 }
11053 printf(" 32:");
11054 for(r=0;r<=CCREG;r++) {
11055 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11056 if((regs[i].was32>>r)&1) {
11057 if(r==CCREG) printf(" CC");
11058 else if(r==HIREG) printf(" HI");
11059 else if(r==LOREG) printf(" LO");
11060 else printf(" r%d",r);
11061 }
11062 }
90ae6d4e 11063#endif
57871462 11064 printf("\n");
11065 #if defined(__i386__) || defined(__x86_64__)
11066 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11067 #endif
11068 #ifdef __arm__
11069 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11070 #endif
11071 printf("needs: ");
11072 if(needed_reg[i]&1) printf("eax ");
11073 if((needed_reg[i]>>1)&1) printf("ecx ");
11074 if((needed_reg[i]>>2)&1) printf("edx ");
11075 if((needed_reg[i]>>3)&1) printf("ebx ");
11076 if((needed_reg[i]>>5)&1) printf("ebp ");
11077 if((needed_reg[i]>>6)&1) printf("esi ");
11078 if((needed_reg[i]>>7)&1) printf("edi ");
11079 printf("r:");
11080 for(r=0;r<=CCREG;r++) {
11081 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11082 if((requires_32bit[i]>>r)&1) {
11083 if(r==CCREG) printf(" CC");
11084 else if(r==HIREG) printf(" HI");
11085 else if(r==LOREG) printf(" LO");
11086 else printf(" r%d",r);
11087 }
11088 }
11089 printf("\n");
11090 /*printf("pr:");
11091 for(r=0;r<=CCREG;r++) {
11092 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11093 if((pr32[i]>>r)&1) {
11094 if(r==CCREG) printf(" CC");
11095 else if(r==HIREG) printf(" HI");
11096 else if(r==LOREG) printf(" LO");
11097 else printf(" r%d",r);
11098 }
11099 }
11100 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11101 printf("\n");*/
11102 #if defined(__i386__) || defined(__x86_64__)
11103 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11104 printf("dirty: ");
11105 if(regs[i].wasdirty&1) printf("eax ");
11106 if((regs[i].wasdirty>>1)&1) printf("ecx ");
11107 if((regs[i].wasdirty>>2)&1) printf("edx ");
11108 if((regs[i].wasdirty>>3)&1) printf("ebx ");
11109 if((regs[i].wasdirty>>5)&1) printf("ebp ");
11110 if((regs[i].wasdirty>>6)&1) printf("esi ");
11111 if((regs[i].wasdirty>>7)&1) printf("edi ");
11112 #endif
11113 #ifdef __arm__
11114 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11115 printf("dirty: ");
11116 if(regs[i].wasdirty&1) printf("r0 ");
11117 if((regs[i].wasdirty>>1)&1) printf("r1 ");
11118 if((regs[i].wasdirty>>2)&1) printf("r2 ");
11119 if((regs[i].wasdirty>>3)&1) printf("r3 ");
11120 if((regs[i].wasdirty>>4)&1) printf("r4 ");
11121 if((regs[i].wasdirty>>5)&1) printf("r5 ");
11122 if((regs[i].wasdirty>>6)&1) printf("r6 ");
11123 if((regs[i].wasdirty>>7)&1) printf("r7 ");
11124 if((regs[i].wasdirty>>8)&1) printf("r8 ");
11125 if((regs[i].wasdirty>>9)&1) printf("r9 ");
11126 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11127 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11128 #endif
11129 printf("\n");
11130 disassemble_inst(i);
11131 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11132 #if defined(__i386__) || defined(__x86_64__)
11133 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11134 if(regs[i].dirty&1) printf("eax ");
11135 if((regs[i].dirty>>1)&1) printf("ecx ");
11136 if((regs[i].dirty>>2)&1) printf("edx ");
11137 if((regs[i].dirty>>3)&1) printf("ebx ");
11138 if((regs[i].dirty>>5)&1) printf("ebp ");
11139 if((regs[i].dirty>>6)&1) printf("esi ");
11140 if((regs[i].dirty>>7)&1) printf("edi ");
11141 #endif
11142 #ifdef __arm__
11143 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11144 if(regs[i].dirty&1) printf("r0 ");
11145 if((regs[i].dirty>>1)&1) printf("r1 ");
11146 if((regs[i].dirty>>2)&1) printf("r2 ");
11147 if((regs[i].dirty>>3)&1) printf("r3 ");
11148 if((regs[i].dirty>>4)&1) printf("r4 ");
11149 if((regs[i].dirty>>5)&1) printf("r5 ");
11150 if((regs[i].dirty>>6)&1) printf("r6 ");
11151 if((regs[i].dirty>>7)&1) printf("r7 ");
11152 if((regs[i].dirty>>8)&1) printf("r8 ");
11153 if((regs[i].dirty>>9)&1) printf("r9 ");
11154 if((regs[i].dirty>>10)&1) printf("r10 ");
11155 if((regs[i].dirty>>12)&1) printf("r12 ");
11156 #endif
11157 printf("\n");
11158 if(regs[i].isconst) {
11159 printf("constants: ");
11160 #if defined(__i386__) || defined(__x86_64__)
11161 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11162 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11163 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11164 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11165 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11166 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11167 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11168 #endif
11169 #ifdef __arm__
11170 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11171 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11172 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11173 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11174 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11175 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11176 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11177 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11178 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11179 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11180 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11181 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11182 #endif
11183 printf("\n");
11184 }
90ae6d4e 11185#ifndef FORCE32
57871462 11186 printf(" 32:");
11187 for(r=0;r<=CCREG;r++) {
11188 if((regs[i].is32>>r)&1) {
11189 if(r==CCREG) printf(" CC");
11190 else if(r==HIREG) printf(" HI");
11191 else if(r==LOREG) printf(" LO");
11192 else printf(" r%d",r);
11193 }
11194 }
11195 printf("\n");
90ae6d4e 11196#endif
57871462 11197 /*printf(" p32:");
11198 for(r=0;r<=CCREG;r++) {
11199 if((p32[i]>>r)&1) {
11200 if(r==CCREG) printf(" CC");
11201 else if(r==HIREG) printf(" HI");
11202 else if(r==LOREG) printf(" LO");
11203 else printf(" r%d",r);
11204 }
11205 }
11206 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11207 else printf("\n");*/
11208 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11209 #if defined(__i386__) || defined(__x86_64__)
11210 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11211 if(branch_regs[i].dirty&1) printf("eax ");
11212 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11213 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11214 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11215 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11216 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11217 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11218 #endif
11219 #ifdef __arm__
11220 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11221 if(branch_regs[i].dirty&1) printf("r0 ");
11222 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11223 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11224 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11225 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11226 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11227 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11228 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11229 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11230 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11231 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11232 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11233 #endif
90ae6d4e 11234#ifndef FORCE32
57871462 11235 printf(" 32:");
11236 for(r=0;r<=CCREG;r++) {
11237 if((branch_regs[i].is32>>r)&1) {
11238 if(r==CCREG) printf(" CC");
11239 else if(r==HIREG) printf(" HI");
11240 else if(r==LOREG) printf(" LO");
11241 else printf(" r%d",r);
11242 }
11243 }
11244 printf("\n");
90ae6d4e 11245#endif
57871462 11246 }
11247 }
4600ba03 11248#endif // DISASM
57871462 11249
11250 /* Pass 8 - Assembly */
11251 linkcount=0;stubcount=0;
11252 ds=0;is_delayslot=0;
11253 cop1_usable=0;
11254 uint64_t is32_pre=0;
11255 u_int dirty_pre=0;
11256 u_int beginning=(u_int)out;
11257 if((u_int)addr&1) {
11258 ds=1;
11259 pagespan_ds();
11260 }
9ad4d757 11261 u_int instr_addr0_override=0;
11262
11263#ifdef PCSX
11264 if (start == 0x80030000) {
11265 // nasty hack for fastbios thing
96186eba 11266 // override block entry to this code
9ad4d757 11267 instr_addr0_override=(u_int)out;
11268 emit_movimm(start,0);
96186eba 11269 // abuse io address var as a flag that we
11270 // have already returned here once
11271 emit_readword((int)&address,1);
9ad4d757 11272 emit_writeword(0,(int)&pcaddr);
96186eba 11273 emit_writeword(0,(int)&address);
9ad4d757 11274 emit_cmp(0,1);
11275 emit_jne((int)new_dyna_leave);
11276 }
11277#endif
57871462 11278 for(i=0;i<slen;i++)
11279 {
11280 //if(ds) printf("ds: ");
4600ba03 11281 disassemble_inst(i);
57871462 11282 if(ds) {
11283 ds=0; // Skip delay slot
11284 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11285 instr_addr[i]=0;
11286 } else {
ffb0b9e0 11287 speculate_register_values(i);
57871462 11288 #ifndef DESTRUCTIVE_WRITEBACK
11289 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11290 {
11291 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11292 unneeded_reg[i],unneeded_reg_upper[i]);
11293 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11294 unneeded_reg[i],unneeded_reg_upper[i]);
11295 }
f776eb14 11296 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11297 is32_pre=branch_regs[i].is32;
11298 dirty_pre=branch_regs[i].dirty;
11299 }else{
11300 is32_pre=regs[i].is32;
11301 dirty_pre=regs[i].dirty;
11302 }
57871462 11303 #endif
11304 // write back
11305 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11306 {
11307 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11308 unneeded_reg[i],unneeded_reg_upper[i]);
11309 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11310 }
11311 // branch target entry point
11312 instr_addr[i]=(u_int)out;
11313 assem_debug("<->\n");
11314 // load regs
11315 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11316 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11317 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11318 address_generation(i,&regs[i],regs[i].regmap_entry);
11319 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11320 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11321 {
11322 // Load the delay slot registers if necessary
4ef8f67d 11323 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11324 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11325 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11326 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11327 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11328 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11329 }
11330 else if(i+1<slen)
11331 {
11332 // Preload registers for following instruction
11333 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11334 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11335 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11336 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11337 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11338 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11339 }
11340 // TODO: if(is_ooo(i)) address_generation(i+1);
11341 if(itype[i]==CJUMP||itype[i]==FJUMP)
11342 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11343 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11344 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11345 if(bt[i]) cop1_usable=0;
11346 // assemble
11347 switch(itype[i]) {
11348 case ALU:
11349 alu_assemble(i,&regs[i]);break;
11350 case IMM16:
11351 imm16_assemble(i,&regs[i]);break;
11352 case SHIFT:
11353 shift_assemble(i,&regs[i]);break;
11354 case SHIFTIMM:
11355 shiftimm_assemble(i,&regs[i]);break;
11356 case LOAD:
11357 load_assemble(i,&regs[i]);break;
11358 case LOADLR:
11359 loadlr_assemble(i,&regs[i]);break;
11360 case STORE:
11361 store_assemble(i,&regs[i]);break;
11362 case STORELR:
11363 storelr_assemble(i,&regs[i]);break;
11364 case COP0:
11365 cop0_assemble(i,&regs[i]);break;
11366 case COP1:
11367 cop1_assemble(i,&regs[i]);break;
11368 case C1LS:
11369 c1ls_assemble(i,&regs[i]);break;
b9b61529 11370 case COP2:
11371 cop2_assemble(i,&regs[i]);break;
11372 case C2LS:
11373 c2ls_assemble(i,&regs[i]);break;
11374 case C2OP:
11375 c2op_assemble(i,&regs[i]);break;
57871462 11376 case FCONV:
11377 fconv_assemble(i,&regs[i]);break;
11378 case FLOAT:
11379 float_assemble(i,&regs[i]);break;
11380 case FCOMP:
11381 fcomp_assemble(i,&regs[i]);break;
11382 case MULTDIV:
11383 multdiv_assemble(i,&regs[i]);break;
11384 case MOV:
11385 mov_assemble(i,&regs[i]);break;
11386 case SYSCALL:
11387 syscall_assemble(i,&regs[i]);break;
7139f3c8 11388 case HLECALL:
11389 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11390 case INTCALL:
11391 intcall_assemble(i,&regs[i]);break;
57871462 11392 case UJUMP:
11393 ujump_assemble(i,&regs[i]);ds=1;break;
11394 case RJUMP:
11395 rjump_assemble(i,&regs[i]);ds=1;break;
11396 case CJUMP:
11397 cjump_assemble(i,&regs[i]);ds=1;break;
11398 case SJUMP:
11399 sjump_assemble(i,&regs[i]);ds=1;break;
11400 case FJUMP:
11401 fjump_assemble(i,&regs[i]);ds=1;break;
11402 case SPAN:
11403 pagespan_assemble(i,&regs[i]);break;
11404 }
11405 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11406 literal_pool(1024);
11407 else
11408 literal_pool_jumpover(256);
11409 }
11410 }
11411 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11412 // If the block did not end with an unconditional branch,
11413 // add a jump to the next instruction.
11414 if(i>1) {
11415 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11416 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11417 assert(i==slen);
11418 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11419 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11420 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11421 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11422 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11423 }
11424 else if(!likely[i-2])
11425 {
11426 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11427 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11428 }
11429 else
11430 {
11431 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11432 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11433 }
11434 add_to_linker((int)out,start+i*4,0);
11435 emit_jmp(0);
11436 }
11437 }
11438 else
11439 {
11440 assert(i>0);
11441 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11442 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11443 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11444 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11445 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11446 add_to_linker((int)out,start+i*4,0);
11447 emit_jmp(0);
11448 }
11449
11450 // TODO: delay slot stubs?
11451 // Stubs
11452 for(i=0;i<stubcount;i++)
11453 {
11454 switch(stubs[i][0])
11455 {
11456 case LOADB_STUB:
11457 case LOADH_STUB:
11458 case LOADW_STUB:
11459 case LOADD_STUB:
11460 case LOADBU_STUB:
11461 case LOADHU_STUB:
11462 do_readstub(i);break;
11463 case STOREB_STUB:
11464 case STOREH_STUB:
11465 case STOREW_STUB:
11466 case STORED_STUB:
11467 do_writestub(i);break;
11468 case CC_STUB:
11469 do_ccstub(i);break;
11470 case INVCODE_STUB:
11471 do_invstub(i);break;
11472 case FP_STUB:
11473 do_cop1stub(i);break;
11474 case STORELR_STUB:
11475 do_unalignedwritestub(i);break;
11476 }
11477 }
11478
9ad4d757 11479 if (instr_addr0_override)
11480 instr_addr[0] = instr_addr0_override;
11481
57871462 11482 /* Pass 9 - Linker */
11483 for(i=0;i<linkcount;i++)
11484 {
11485 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11486 literal_pool(64);
11487 if(!link_addr[i][2])
11488 {
11489 void *stub=out;
11490 void *addr=check_addr(link_addr[i][1]);
11491 emit_extjump(link_addr[i][0],link_addr[i][1]);
11492 if(addr) {
11493 set_jump_target(link_addr[i][0],(int)addr);
11494 add_link(link_addr[i][1],stub);
11495 }
11496 else set_jump_target(link_addr[i][0],(int)stub);
11497 }
11498 else
11499 {
11500 // Internal branch
11501 int target=(link_addr[i][1]-start)>>2;
11502 assert(target>=0&&target<slen);
11503 assert(instr_addr[target]);
11504 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11505 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11506 //#else
11507 set_jump_target(link_addr[i][0],instr_addr[target]);
11508 //#endif
11509 }
11510 }
11511 // External Branch Targets (jump_in)
11512 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11513 for(i=0;i<slen;i++)
11514 {
11515 if(bt[i]||i==0)
11516 {
11517 if(instr_addr[i]) // TODO - delay slots (=null)
11518 {
11519 u_int vaddr=start+i*4;
94d23bb9 11520 u_int page=get_page(vaddr);
11521 u_int vpage=get_vpage(vaddr);
57871462 11522 literal_pool(256);
11523 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11524#ifndef FORCE32
57871462 11525 if(!requires_32bit[i])
a28c6ce8 11526#else
11527 if(1)
11528#endif
57871462 11529 {
11530 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11531 assem_debug("jump_in: %x\n",start+i*4);
11532 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11533 int entry_point=do_dirty_stub(i);
11534 ll_add(jump_in+page,vaddr,(void *)entry_point);
11535 // If there was an existing entry in the hash table,
11536 // replace it with the new address.
11537 // Don't add new entries. We'll insert the
11538 // ones that actually get used in check_addr().
11539 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11540 if(ht_bin[0]==vaddr) {
11541 ht_bin[1]=entry_point;
11542 }
11543 if(ht_bin[2]==vaddr) {
11544 ht_bin[3]=entry_point;
11545 }
11546 }
11547 else
11548 {
11549 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11550 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11551 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11552 //int entry_point=(int)out;
11553 ////assem_debug("entry_point: %x\n",entry_point);
11554 //load_regs_entry(i);
11555 //if(entry_point==(int)out)
11556 // entry_point=instr_addr[i];
11557 //else
11558 // emit_jmp(instr_addr[i]);
11559 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11560 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11561 int entry_point=do_dirty_stub(i);
11562 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11563 }
11564 }
11565 }
11566 }
11567 // Write out the literal pool if necessary
11568 literal_pool(0);
11569 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11570 // Align code
11571 if(((u_int)out)&7) emit_addnop(13);
11572 #endif
11573 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11574 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11575 memcpy(copy,source,slen*4);
11576 copy+=slen*4;
11577
11578 #ifdef __arm__
11579 __clear_cache((void *)beginning,out);
11580 #endif
11581
11582 // If we're within 256K of the end of the buffer,
11583 // start over from the beginning. (Is 256K enough?)
bdeade46 11584 if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
57871462 11585
11586 // Trap writes to any of the pages we compiled
11587 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11588 invalid_code[i]=0;
90ae6d4e 11589#ifndef DISABLE_TLB
57871462 11590 memory_map[i]|=0x40000000;
11591 if((signed int)start>=(signed int)0xC0000000) {
11592 assert(using_tlb);
11593 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11594 invalid_code[j]=0;
11595 memory_map[j]|=0x40000000;
11596 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11597 }
90ae6d4e 11598#endif
57871462 11599 }
9be4ba64 11600 inv_code_start=inv_code_end=~0;
b12c9fb8 11601#ifdef PCSX
b96d3df7 11602 // for PCSX we need to mark all mirrors too
b12c9fb8 11603 if(get_page(start)<(RAM_SIZE>>12))
11604 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11605 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11606 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11607 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11608#endif
57871462 11609
11610 /* Pass 10 - Free memory by expiring oldest blocks */
11611
bdeade46 11612 int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
57871462 11613 while(expirep!=end)
11614 {
11615 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
bdeade46 11616 int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
57871462 11617 inv_debug("EXP: Phase %d\n",expirep);
11618 switch((expirep>>11)&3)
11619 {
11620 case 0:
11621 // Clear jump_in and jump_dirty
11622 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11623 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11624 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11625 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11626 break;
11627 case 1:
11628 // Clear pointers
11629 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11630 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11631 break;
11632 case 2:
11633 // Clear hash table
11634 for(i=0;i<32;i++) {
11635 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11636 if((ht_bin[3]>>shift)==(base>>shift) ||
11637 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11638 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11639 ht_bin[2]=ht_bin[3]=-1;
11640 }
11641 if((ht_bin[1]>>shift)==(base>>shift) ||
11642 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11643 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11644 ht_bin[0]=ht_bin[2];
11645 ht_bin[1]=ht_bin[3];
11646 ht_bin[2]=ht_bin[3]=-1;
11647 }
11648 }
11649 break;
11650 case 3:
11651 // Clear jump_out
dd3a91a1 11652 #ifdef __arm__
11653 if((expirep&2047)==0)
11654 do_clear_cache();
11655 #endif
57871462 11656 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11657 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11658 break;
11659 }
11660 expirep=(expirep+1)&65535;
11661 }
11662 return 0;
11663}
b9b61529 11664
11665// vim:shiftwidth=2:expandtab