drc: replace unused reg32 with new reg_sv_flags
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
d848b60a 24#include <errno.h>
4600ba03 25#include <sys/mman.h>
57871462 26
3d624f89 27#include "emu_if.h" //emulator interface
57871462 28
4600ba03 29//#define DISASM
30//#define assem_debug printf
31//#define inv_debug printf
32#define assem_debug(...)
33#define inv_debug(...)
57871462 34
35#ifdef __i386__
36#include "assem_x86.h"
37#endif
38#ifdef __x86_64__
39#include "assem_x64.h"
40#endif
41#ifdef __arm__
42#include "assem_arm.h"
43#endif
44
f23d3386 45#ifdef __BLACKBERRY_QNX__
a4874585
C
46#undef __clear_cache
47#define __clear_cache(start,end) msync(start, (size_t)((void*)end - (void*)start), MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
c7b746f0 48#elif defined(__MACH__)
49#include <libkern/OSCacheControl.h>
50#define __clear_cache mach_clear_cache
51static void __clear_cache(void *start, void *end) {
52 size_t len = (char *)end - (char *)start;
53 sys_dcache_flush(start, len);
54 sys_icache_invalidate(start, len);
55}
f23d3386 56#endif
a4874585 57
57871462 58#define MAXBLOCK 4096
59#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 60
57871462 61struct regstat
62{
63 signed char regmap_entry[HOST_REGS];
64 signed char regmap[HOST_REGS];
65 uint64_t was32;
66 uint64_t is32;
67 uint64_t wasdirty;
68 uint64_t dirty;
69 uint64_t u;
70 uint64_t uu;
71 u_int wasconst;
72 u_int isconst;
8575a877 73 u_int loadedconst; // host regs that have constants loaded
74 u_int waswritten; // MIPS regs that were used as store base before
57871462 75};
76
de5a60c3 77// note: asm depends on this layout
57871462 78struct ll_entry
79{
80 u_int vaddr;
de5a60c3 81 u_int reg_sv_flags;
57871462 82 void *addr;
83 struct ll_entry *next;
84};
85
86 u_int start;
87 u_int *source;
88 u_int pagelimit;
89 char insn[MAXBLOCK][10];
90 u_char itype[MAXBLOCK];
91 u_char opcode[MAXBLOCK];
92 u_char opcode2[MAXBLOCK];
93 u_char bt[MAXBLOCK];
94 u_char rs1[MAXBLOCK];
95 u_char rs2[MAXBLOCK];
96 u_char rt1[MAXBLOCK];
97 u_char rt2[MAXBLOCK];
98 u_char us1[MAXBLOCK];
99 u_char us2[MAXBLOCK];
100 u_char dep1[MAXBLOCK];
101 u_char dep2[MAXBLOCK];
102 u_char lt1[MAXBLOCK];
bedfea38 103 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
104 static uint64_t gte_rt[MAXBLOCK];
105 static uint64_t gte_unneeded[MAXBLOCK];
ffb0b9e0 106 static u_int smrv[32]; // speculated MIPS register values
107 static u_int smrv_strong; // mask or regs that are likely to have correct values
108 static u_int smrv_weak; // same, but somewhat less likely
109 static u_int smrv_strong_next; // same, but after current insn executes
110 static u_int smrv_weak_next;
57871462 111 int imm[MAXBLOCK];
112 u_int ba[MAXBLOCK];
113 char likely[MAXBLOCK];
114 char is_ds[MAXBLOCK];
e1190b87 115 char ooo[MAXBLOCK];
57871462 116 uint64_t unneeded_reg[MAXBLOCK];
117 uint64_t unneeded_reg_upper[MAXBLOCK];
118 uint64_t branch_unneeded_reg[MAXBLOCK];
119 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
120 uint64_t p32[MAXBLOCK];
121 uint64_t pr32[MAXBLOCK];
122 signed char regmap_pre[MAXBLOCK][HOST_REGS];
956f3129 123 static uint64_t current_constmap[HOST_REGS];
124 static uint64_t constmap[MAXBLOCK][HOST_REGS];
125 static struct regstat regs[MAXBLOCK];
126 static struct regstat branch_regs[MAXBLOCK];
e1190b87 127 signed char minimum_free_regs[MAXBLOCK];
57871462 128 u_int needed_reg[MAXBLOCK];
129 uint64_t requires_32bit[MAXBLOCK];
130 u_int wont_dirty[MAXBLOCK];
131 u_int will_dirty[MAXBLOCK];
132 int ccadj[MAXBLOCK];
133 int slen;
134 u_int instr_addr[MAXBLOCK];
135 u_int link_addr[MAXBLOCK][3];
136 int linkcount;
137 u_int stubs[MAXBLOCK*3][8];
138 int stubcount;
139 u_int literals[1024][2];
140 int literalcount;
141 int is_delayslot;
142 int cop1_usable;
143 u_char *out;
de5a60c3 144 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
57871462 145 struct ll_entry *jump_out[4096];
146 struct ll_entry *jump_dirty[4096];
147 u_int hash_table[65536][4] __attribute__((aligned(16)));
148 char shadow[1048576] __attribute__((aligned(16)));
149 void *copy;
150 int expirep;
af4ee1fe 151#ifndef PCSX
57871462 152 u_int using_tlb;
af4ee1fe 153#else
154 static const u_int using_tlb=0;
155#endif
2f546f9a 156 int new_dynarec_did_compile;
0ff8c62c 157 int new_dynarec_hacks;
57871462 158 u_int stop_after_jal;
a327ad27 159#ifndef RAM_FIXED
160 static u_int ram_offset;
161#else
162 static const u_int ram_offset=0;
163#endif
57871462 164 extern u_char restore_candidate[512];
165 extern int cycle_count;
166
167 /* registers that may be allocated */
168 /* 1-31 gpr */
169#define HIREG 32 // hi
170#define LOREG 33 // lo
171#define FSREG 34 // FPU status (FCSR)
172#define CSREG 35 // Coprocessor status
173#define CCREG 36 // Cycle count
174#define INVCP 37 // Pointer to invalid_code
619e5ded 175#define MMREG 38 // Pointer to memory_map
176#define ROREG 39 // ram offset (if rdram!=0x80000000)
177#define TEMPREG 40
178#define FTEMP 40 // FPU temporary register
179#define PTEMP 41 // Prefetch temporary register
180#define TLREG 42 // TLB mapping offset
181#define RHASH 43 // Return address hash
182#define RHTBL 44 // Return address hash table address
183#define RTEMP 45 // JR/JALR address register
184#define MAXREG 45
185#define AGEN1 46 // Address generation temporary register
186#define AGEN2 47 // Address generation temporary register
187#define MGEN1 48 // Maptable address generation temporary register
188#define MGEN2 49 // Maptable address generation temporary register
189#define BTREG 50 // Branch target temporary register
57871462 190
191 /* instruction types */
192#define NOP 0 // No operation
193#define LOAD 1 // Load
194#define STORE 2 // Store
195#define LOADLR 3 // Unaligned load
196#define STORELR 4 // Unaligned store
197#define MOV 5 // Move
198#define ALU 6 // Arithmetic/logic
199#define MULTDIV 7 // Multiply/divide
200#define SHIFT 8 // Shift by register
201#define SHIFTIMM 9// Shift by immediate
202#define IMM16 10 // 16-bit immediate
203#define RJUMP 11 // Unconditional jump to register
204#define UJUMP 12 // Unconditional jump
205#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
206#define SJUMP 14 // Conditional branch (regimm format)
207#define COP0 15 // Coprocessor 0
208#define COP1 16 // Coprocessor 1
209#define C1LS 17 // Coprocessor 1 load/store
210#define FJUMP 18 // Conditional branch (floating point)
211#define FLOAT 19 // Floating point unit
212#define FCONV 20 // Convert integer to float
213#define FCOMP 21 // Floating point compare (sets FSREG)
214#define SYSCALL 22// SYSCALL
215#define OTHER 23 // Other
216#define SPAN 24 // Branch/delay slot spans 2 pages
217#define NI 25 // Not implemented
7139f3c8 218#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 219#define COP2 27 // Coprocessor 2 move
220#define C2LS 28 // Coprocessor 2 load/store
221#define C2OP 29 // Coprocessor 2 operation
1e973cb0 222#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 223
224 /* stubs */
225#define CC_STUB 1
226#define FP_STUB 2
227#define LOADB_STUB 3
228#define LOADH_STUB 4
229#define LOADW_STUB 5
230#define LOADD_STUB 6
231#define LOADBU_STUB 7
232#define LOADHU_STUB 8
233#define STOREB_STUB 9
234#define STOREH_STUB 10
235#define STOREW_STUB 11
236#define STORED_STUB 12
237#define STORELR_STUB 13
238#define INVCODE_STUB 14
239
240 /* branch codes */
241#define TAKEN 1
242#define NOTTAKEN 2
243#define NULLDS 3
244
245// asm linkage
246int new_recompile_block(int addr);
247void *get_addr_ht(u_int vaddr);
248void invalidate_block(u_int block);
249void invalidate_addr(u_int addr);
250void remove_hash(int vaddr);
251void jump_vaddr();
252void dyna_linker();
253void dyna_linker_ds();
254void verify_code();
255void verify_code_vm();
256void verify_code_ds();
257void cc_interrupt();
258void fp_exception();
259void fp_exception_ds();
260void jump_syscall();
7139f3c8 261void jump_syscall_hle();
57871462 262void jump_eret();
7139f3c8 263void jump_hlecall();
1e973cb0 264void jump_intcall();
7139f3c8 265void new_dyna_leave();
57871462 266
267// TLB
268void TLBWI_new();
269void TLBWR_new();
270void read_nomem_new();
271void read_nomemb_new();
272void read_nomemh_new();
273void read_nomemd_new();
274void write_nomem_new();
275void write_nomemb_new();
276void write_nomemh_new();
277void write_nomemd_new();
278void write_rdram_new();
279void write_rdramb_new();
280void write_rdramh_new();
281void write_rdramd_new();
282extern u_int memory_map[1048576];
283
284// Needed by assembler
285void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
286void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
287void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
288void load_all_regs(signed char i_regmap[]);
289void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
290void load_regs_entry(int t);
291void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
292
293int tracedebug=0;
294
295//#define DEBUG_CYCLE_COUNT 1
296
b6e87b2b 297#define NO_CYCLE_PENALTY_THR 12
298
4e9dcd7f 299int cycle_multiplier; // 100 for 1.0
300
301static int CLOCK_ADJUST(int x)
302{
303 int s=(x>>31)|1;
304 return (x * cycle_multiplier + s * 50) / 100;
305}
306
94d23bb9 307static void tlb_hacks()
57871462 308{
94d23bb9 309#ifndef DISABLE_TLB
57871462 310 // Goldeneye hack
311 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
312 {
313 u_int addr;
314 int n;
315 switch (ROM_HEADER->Country_code&0xFF)
316 {
317 case 0x45: // U
318 addr=0x34b30;
319 break;
320 case 0x4A: // J
321 addr=0x34b70;
322 break;
323 case 0x50: // E
324 addr=0x329f0;
325 break;
326 default:
327 // Unknown country code
328 addr=0;
329 break;
330 }
331 u_int rom_addr=(u_int)rom;
332 #ifdef ROM_COPY
333 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
334 // in the lower 4G of memory to use this hack. Copy it if necessary.
335 if((void *)rom>(void *)0xffffffff) {
336 munmap(ROM_COPY, 67108864);
337 if(mmap(ROM_COPY, 12582912,
338 PROT_READ | PROT_WRITE,
339 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
340 -1, 0) <= 0) {printf("mmap() failed\n");}
341 memcpy(ROM_COPY,rom,12582912);
342 rom_addr=(u_int)ROM_COPY;
343 }
344 #endif
345 if(addr) {
346 for(n=0x7F000;n<0x80000;n++) {
347 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
348 }
349 }
350 }
94d23bb9 351#endif
57871462 352}
353
94d23bb9 354static u_int get_page(u_int vaddr)
57871462 355{
0ce47d46 356#ifndef PCSX
57871462 357 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 358#else
359 u_int page=vaddr&~0xe0000000;
360 if (page < 0x1000000)
361 page &= ~0x0e00000; // RAM mirrors
362 page>>=12;
363#endif
94d23bb9 364#ifndef DISABLE_TLB
57871462 365 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 366#endif
57871462 367 if(page>2048) page=2048+(page&2047);
94d23bb9 368 return page;
369}
370
d25604ca 371#ifndef PCSX
94d23bb9 372static u_int get_vpage(u_int vaddr)
373{
374 u_int vpage=(vaddr^0x80000000)>>12;
375#ifndef DISABLE_TLB
57871462 376 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 377#endif
57871462 378 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 379 return vpage;
380}
d25604ca 381#else
382// no virtual mem in PCSX
383static u_int get_vpage(u_int vaddr)
384{
385 return get_page(vaddr);
386}
387#endif
94d23bb9 388
389// Get address from virtual address
390// This is called from the recompiled JR/JALR instructions
391void *get_addr(u_int vaddr)
392{
393 u_int page=get_page(vaddr);
394 u_int vpage=get_vpage(vaddr);
57871462 395 struct ll_entry *head;
396 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
397 head=jump_in[page];
398 while(head!=NULL) {
de5a60c3 399 if(head->vaddr==vaddr) {
57871462 400 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
401 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402 ht_bin[3]=ht_bin[1];
403 ht_bin[2]=ht_bin[0];
404 ht_bin[1]=(int)head->addr;
405 ht_bin[0]=vaddr;
406 return head->addr;
407 }
408 head=head->next;
409 }
410 head=jump_dirty[vpage];
411 while(head!=NULL) {
de5a60c3 412 if(head->vaddr==vaddr) {
57871462 413 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
414 // Don't restore blocks which are about to expire from the cache
415 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
416 if(verify_dirty(head->addr)) {
417 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
418 invalid_code[vaddr>>12]=0;
9be4ba64 419 inv_code_start=inv_code_end=~0;
63cb0298 420#ifndef DISABLE_TLB
57871462 421 memory_map[vaddr>>12]|=0x40000000;
63cb0298 422#endif
57871462 423 if(vpage<2048) {
94d23bb9 424#ifndef DISABLE_TLB
57871462 425 if(tlb_LUT_r[vaddr>>12]) {
426 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
427 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
428 }
94d23bb9 429#endif
57871462 430 restore_candidate[vpage>>3]|=1<<(vpage&7);
431 }
432 else restore_candidate[page>>3]|=1<<(page&7);
433 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434 if(ht_bin[0]==vaddr) {
435 ht_bin[1]=(int)head->addr; // Replace existing entry
436 }
437 else
438 {
439 ht_bin[3]=ht_bin[1];
440 ht_bin[2]=ht_bin[0];
441 ht_bin[1]=(int)head->addr;
442 ht_bin[0]=vaddr;
443 }
444 return head->addr;
445 }
446 }
447 head=head->next;
448 }
449 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
450 int r=new_recompile_block(vaddr);
451 if(r==0) return get_addr(vaddr);
452 // Execute in unmapped page, generate pagefault execption
453 Status|=2;
454 Cause=(vaddr<<31)|0x8;
455 EPC=(vaddr&1)?vaddr-5:vaddr;
456 BadVAddr=(vaddr&~1);
457 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
458 EntryHi=BadVAddr&0xFFFFE000;
459 return get_addr_ht(0x80000000);
460}
461// Look up address in hash table first
462void *get_addr_ht(u_int vaddr)
463{
464 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
465 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
466 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
467 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
468 return get_addr(vaddr);
469}
470
57871462 471void clear_all_regs(signed char regmap[])
472{
473 int hr;
474 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
475}
476
477signed char get_reg(signed char regmap[],int r)
478{
479 int hr;
480 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
481 return -1;
482}
483
484// Find a register that is available for two consecutive cycles
485signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
486{
487 int hr;
488 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
489 return -1;
490}
491
492int count_free_regs(signed char regmap[])
493{
494 int count=0;
495 int hr;
496 for(hr=0;hr<HOST_REGS;hr++)
497 {
498 if(hr!=EXCLUDE_REG) {
499 if(regmap[hr]<0) count++;
500 }
501 }
502 return count;
503}
504
505void dirty_reg(struct regstat *cur,signed char reg)
506{
507 int hr;
508 if(!reg) return;
509 for (hr=0;hr<HOST_REGS;hr++) {
510 if((cur->regmap[hr]&63)==reg) {
511 cur->dirty|=1<<hr;
512 }
513 }
514}
515
516// If we dirty the lower half of a 64 bit register which is now being
517// sign-extended, we need to dump the upper half.
518// Note: Do this only after completion of the instruction, because
519// some instructions may need to read the full 64-bit value even if
520// overwriting it (eg SLTI, DSRA32).
521static void flush_dirty_uppers(struct regstat *cur)
522{
523 int hr,reg;
524 for (hr=0;hr<HOST_REGS;hr++) {
525 if((cur->dirty>>hr)&1) {
526 reg=cur->regmap[hr];
527 if(reg>=64)
528 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
529 }
530 }
531}
532
533void set_const(struct regstat *cur,signed char reg,uint64_t value)
534{
535 int hr;
536 if(!reg) return;
537 for (hr=0;hr<HOST_REGS;hr++) {
538 if(cur->regmap[hr]==reg) {
539 cur->isconst|=1<<hr;
956f3129 540 current_constmap[hr]=value;
57871462 541 }
542 else if((cur->regmap[hr]^64)==reg) {
543 cur->isconst|=1<<hr;
956f3129 544 current_constmap[hr]=value>>32;
57871462 545 }
546 }
547}
548
549void clear_const(struct regstat *cur,signed char reg)
550{
551 int hr;
552 if(!reg) return;
553 for (hr=0;hr<HOST_REGS;hr++) {
554 if((cur->regmap[hr]&63)==reg) {
555 cur->isconst&=~(1<<hr);
556 }
557 }
558}
559
560int is_const(struct regstat *cur,signed char reg)
561{
562 int hr;
79c75f1b 563 if(reg<0) return 0;
57871462 564 if(!reg) return 1;
565 for (hr=0;hr<HOST_REGS;hr++) {
566 if((cur->regmap[hr]&63)==reg) {
567 return (cur->isconst>>hr)&1;
568 }
569 }
570 return 0;
571}
572uint64_t get_const(struct regstat *cur,signed char reg)
573{
574 int hr;
575 if(!reg) return 0;
576 for (hr=0;hr<HOST_REGS;hr++) {
577 if(cur->regmap[hr]==reg) {
956f3129 578 return current_constmap[hr];
57871462 579 }
580 }
c43b5311 581 SysPrintf("Unknown constant in r%d\n",reg);
57871462 582 exit(1);
583}
584
585// Least soon needed registers
586// Look at the next ten instructions and see which registers
587// will be used. Try not to reallocate these.
588void lsn(u_char hsn[], int i, int *preferred_reg)
589{
590 int j;
591 int b=-1;
592 for(j=0;j<9;j++)
593 {
594 if(i+j>=slen) {
595 j=slen-i-1;
596 break;
597 }
598 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
599 {
600 // Don't go past an unconditonal jump
601 j++;
602 break;
603 }
604 }
605 for(;j>=0;j--)
606 {
607 if(rs1[i+j]) hsn[rs1[i+j]]=j;
608 if(rs2[i+j]) hsn[rs2[i+j]]=j;
609 if(rt1[i+j]) hsn[rt1[i+j]]=j;
610 if(rt2[i+j]) hsn[rt2[i+j]]=j;
611 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
612 // Stores can allocate zero
613 hsn[rs1[i+j]]=j;
614 hsn[rs2[i+j]]=j;
615 }
616 // On some architectures stores need invc_ptr
617 #if defined(HOST_IMM8)
b9b61529 618 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 619 hsn[INVCP]=j;
620 }
621 #endif
622 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
623 {
624 hsn[CCREG]=j;
625 b=j;
626 }
627 }
628 if(b>=0)
629 {
630 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
631 {
632 // Follow first branch
633 int t=(ba[i+b]-start)>>2;
634 j=7-b;if(t+j>=slen) j=slen-t-1;
635 for(;j>=0;j--)
636 {
637 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
638 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
639 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
640 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
641 }
642 }
643 // TODO: preferred register based on backward branch
644 }
645 // Delay slot should preferably not overwrite branch conditions or cycle count
646 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
647 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
648 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
649 hsn[CCREG]=1;
650 // ...or hash tables
651 hsn[RHASH]=1;
652 hsn[RHTBL]=1;
653 }
654 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 655 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 656 hsn[FTEMP]=0;
657 }
658 // Load L/R also uses FTEMP as a temporary register
659 if(itype[i]==LOADLR) {
660 hsn[FTEMP]=0;
661 }
b7918751 662 // Also SWL/SWR/SDL/SDR
663 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 664 hsn[FTEMP]=0;
665 }
666 // Don't remove the TLB registers either
b9b61529 667 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 668 hsn[TLREG]=0;
669 }
670 // Don't remove the miniht registers
671 if(itype[i]==UJUMP||itype[i]==RJUMP)
672 {
673 hsn[RHASH]=0;
674 hsn[RHTBL]=0;
675 }
676}
677
678// We only want to allocate registers if we're going to use them again soon
679int needed_again(int r, int i)
680{
681 int j;
682 int b=-1;
683 int rn=10;
57871462 684
685 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
686 {
687 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
688 return 0; // Don't need any registers if exiting the block
689 }
690 for(j=0;j<9;j++)
691 {
692 if(i+j>=slen) {
693 j=slen-i-1;
694 break;
695 }
696 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
697 {
698 // Don't go past an unconditonal jump
699 j++;
700 break;
701 }
1e973cb0 702 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 703 {
704 break;
705 }
706 }
707 for(;j>=1;j--)
708 {
709 if(rs1[i+j]==r) rn=j;
710 if(rs2[i+j]==r) rn=j;
711 if((unneeded_reg[i+j]>>r)&1) rn=10;
712 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
713 {
714 b=j;
715 }
716 }
717 /*
718 if(b>=0)
719 {
720 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
721 {
722 // Follow first branch
723 int o=rn;
724 int t=(ba[i+b]-start)>>2;
725 j=7-b;if(t+j>=slen) j=slen-t-1;
726 for(;j>=0;j--)
727 {
728 if(!((unneeded_reg[t+j]>>r)&1)) {
729 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
730 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
731 }
732 else rn=o;
733 }
734 }
735 }*/
b7217e13 736 if(rn<10) return 1;
57871462 737 return 0;
738}
739
740// Try to match register allocations at the end of a loop with those
741// at the beginning
742int loop_reg(int i, int r, int hr)
743{
744 int j,k;
745 for(j=0;j<9;j++)
746 {
747 if(i+j>=slen) {
748 j=slen-i-1;
749 break;
750 }
751 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
752 {
753 // Don't go past an unconditonal jump
754 j++;
755 break;
756 }
757 }
758 k=0;
759 if(i>0){
760 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
761 k--;
762 }
763 for(;k<j;k++)
764 {
765 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
766 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
767 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
768 {
769 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
770 {
771 int t=(ba[i+k]-start)>>2;
772 int reg=get_reg(regs[t].regmap_entry,r);
773 if(reg>=0) return reg;
774 //reg=get_reg(regs[t+1].regmap_entry,r);
775 //if(reg>=0) return reg;
776 }
777 }
778 }
779 return hr;
780}
781
782
783// Allocate every register, preserving source/target regs
784void alloc_all(struct regstat *cur,int i)
785{
786 int hr;
787
788 for(hr=0;hr<HOST_REGS;hr++) {
789 if(hr!=EXCLUDE_REG) {
790 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
791 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
792 {
793 cur->regmap[hr]=-1;
794 cur->dirty&=~(1<<hr);
795 }
796 // Don't need zeros
797 if((cur->regmap[hr]&63)==0)
798 {
799 cur->regmap[hr]=-1;
800 cur->dirty&=~(1<<hr);
801 }
802 }
803 }
804}
805
4600ba03 806#ifndef FORCE32
57871462 807void div64(int64_t dividend,int64_t divisor)
808{
809 lo=dividend/divisor;
810 hi=dividend%divisor;
811 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
812 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
813}
814void divu64(uint64_t dividend,uint64_t divisor)
815{
816 lo=dividend/divisor;
817 hi=dividend%divisor;
818 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
819 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
820}
821
822void mult64(uint64_t m1,uint64_t m2)
823{
824 unsigned long long int op1, op2, op3, op4;
825 unsigned long long int result1, result2, result3, result4;
826 unsigned long long int temp1, temp2, temp3, temp4;
827 int sign = 0;
828
829 if (m1 < 0)
830 {
831 op2 = -m1;
832 sign = 1 - sign;
833 }
834 else op2 = m1;
835 if (m2 < 0)
836 {
837 op4 = -m2;
838 sign = 1 - sign;
839 }
840 else op4 = m2;
841
842 op1 = op2 & 0xFFFFFFFF;
843 op2 = (op2 >> 32) & 0xFFFFFFFF;
844 op3 = op4 & 0xFFFFFFFF;
845 op4 = (op4 >> 32) & 0xFFFFFFFF;
846
847 temp1 = op1 * op3;
848 temp2 = (temp1 >> 32) + op1 * op4;
849 temp3 = op2 * op3;
850 temp4 = (temp3 >> 32) + op2 * op4;
851
852 result1 = temp1 & 0xFFFFFFFF;
853 result2 = temp2 + (temp3 & 0xFFFFFFFF);
854 result3 = (result2 >> 32) + temp4;
855 result4 = (result3 >> 32);
856
857 lo = result1 | (result2 << 32);
858 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
859 if (sign)
860 {
861 hi = ~hi;
862 if (!lo) hi++;
863 else lo = ~lo + 1;
864 }
865}
866
867void multu64(uint64_t m1,uint64_t m2)
868{
869 unsigned long long int op1, op2, op3, op4;
870 unsigned long long int result1, result2, result3, result4;
871 unsigned long long int temp1, temp2, temp3, temp4;
872
873 op1 = m1 & 0xFFFFFFFF;
874 op2 = (m1 >> 32) & 0xFFFFFFFF;
875 op3 = m2 & 0xFFFFFFFF;
876 op4 = (m2 >> 32) & 0xFFFFFFFF;
877
878 temp1 = op1 * op3;
879 temp2 = (temp1 >> 32) + op1 * op4;
880 temp3 = op2 * op3;
881 temp4 = (temp3 >> 32) + op2 * op4;
882
883 result1 = temp1 & 0xFFFFFFFF;
884 result2 = temp2 + (temp3 & 0xFFFFFFFF);
885 result3 = (result2 >> 32) + temp4;
886 result4 = (result3 >> 32);
887
888 lo = result1 | (result2 << 32);
889 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
890
891 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
892 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
893}
894
895uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
896{
897 if(bits) {
898 original<<=64-bits;
899 original>>=64-bits;
900 loaded<<=bits;
901 original|=loaded;
902 }
903 else original=loaded;
904 return original;
905}
906uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
907{
908 if(bits^56) {
909 original>>=64-(bits^56);
910 original<<=64-(bits^56);
911 loaded>>=bits^56;
912 original|=loaded;
913 }
914 else original=loaded;
915 return original;
916}
4600ba03 917#endif
57871462 918
919#ifdef __i386__
920#include "assem_x86.c"
921#endif
922#ifdef __x86_64__
923#include "assem_x64.c"
924#endif
925#ifdef __arm__
926#include "assem_arm.c"
927#endif
928
929// Add virtual address mapping to linked list
930void ll_add(struct ll_entry **head,int vaddr,void *addr)
931{
932 struct ll_entry *new_entry;
933 new_entry=malloc(sizeof(struct ll_entry));
934 assert(new_entry!=NULL);
935 new_entry->vaddr=vaddr;
de5a60c3 936 new_entry->reg_sv_flags=0;
57871462 937 new_entry->addr=addr;
938 new_entry->next=*head;
939 *head=new_entry;
940}
941
de5a60c3 942void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
57871462 943{
7139f3c8 944 ll_add(head,vaddr,addr);
de5a60c3 945 (*head)->reg_sv_flags=reg_sv_flags;
57871462 946}
947
948// Check if an address is already compiled
949// but don't return addresses which are about to expire from the cache
950void *check_addr(u_int vaddr)
951{
952 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
953 if(ht_bin[0]==vaddr) {
954 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
955 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
956 }
957 if(ht_bin[2]==vaddr) {
958 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
959 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
960 }
94d23bb9 961 u_int page=get_page(vaddr);
57871462 962 struct ll_entry *head;
963 head=jump_in[page];
964 while(head!=NULL) {
de5a60c3 965 if(head->vaddr==vaddr) {
57871462 966 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
967 // Update existing entry with current address
968 if(ht_bin[0]==vaddr) {
969 ht_bin[1]=(int)head->addr;
970 return head->addr;
971 }
972 if(ht_bin[2]==vaddr) {
973 ht_bin[3]=(int)head->addr;
974 return head->addr;
975 }
976 // Insert into hash table with low priority.
977 // Don't evict existing entries, as they are probably
978 // addresses that are being accessed frequently.
979 if(ht_bin[0]==-1) {
980 ht_bin[1]=(int)head->addr;
981 ht_bin[0]=vaddr;
982 }else if(ht_bin[2]==-1) {
983 ht_bin[3]=(int)head->addr;
984 ht_bin[2]=vaddr;
985 }
986 return head->addr;
987 }
988 }
989 head=head->next;
990 }
991 return 0;
992}
993
994void remove_hash(int vaddr)
995{
996 //printf("remove hash: %x\n",vaddr);
997 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
998 if(ht_bin[2]==vaddr) {
999 ht_bin[2]=ht_bin[3]=-1;
1000 }
1001 if(ht_bin[0]==vaddr) {
1002 ht_bin[0]=ht_bin[2];
1003 ht_bin[1]=ht_bin[3];
1004 ht_bin[2]=ht_bin[3]=-1;
1005 }
1006}
1007
1008void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1009{
1010 struct ll_entry *next;
1011 while(*head) {
1012 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1013 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1014 {
1015 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1016 remove_hash((*head)->vaddr);
1017 next=(*head)->next;
1018 free(*head);
1019 *head=next;
1020 }
1021 else
1022 {
1023 head=&((*head)->next);
1024 }
1025 }
1026}
1027
1028// Remove all entries from linked list
1029void ll_clear(struct ll_entry **head)
1030{
1031 struct ll_entry *cur;
1032 struct ll_entry *next;
1033 if(cur=*head) {
1034 *head=0;
1035 while(cur) {
1036 next=cur->next;
1037 free(cur);
1038 cur=next;
1039 }
1040 }
1041}
1042
1043// Dereference the pointers and remove if it matches
1044void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1045{
1046 while(head) {
1047 int ptr=get_pointer(head->addr);
1048 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1049 if(((ptr>>shift)==(addr>>shift)) ||
1050 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1051 {
5088bb70 1052 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1053 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1054 #ifdef __arm__
1055 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1056 #endif
57871462 1057 }
1058 head=head->next;
1059 }
1060}
1061
1062// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1063void invalidate_page(u_int page)
57871462 1064{
57871462 1065 struct ll_entry *head;
1066 struct ll_entry *next;
1067 head=jump_in[page];
1068 jump_in[page]=0;
1069 while(head!=NULL) {
1070 inv_debug("INVALIDATE: %x\n",head->vaddr);
1071 remove_hash(head->vaddr);
1072 next=head->next;
1073 free(head);
1074 head=next;
1075 }
1076 head=jump_out[page];
1077 jump_out[page]=0;
1078 while(head!=NULL) {
1079 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1080 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1081 #ifdef __arm__
1082 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1083 #endif
57871462 1084 next=head->next;
1085 free(head);
1086 head=next;
1087 }
57871462 1088}
9be4ba64 1089
1090static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1091{
94d23bb9 1092 u_int page=get_page(block<<12);
57871462 1093 //printf("first=%d last=%d\n",first,last);
f76eeef9 1094 invalidate_page(page);
57871462 1095 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1096 assert(last<page+5);
1097 // Invalidate the adjacent pages if a block crosses a 4K boundary
1098 while(first<page) {
1099 invalidate_page(first);
1100 first++;
1101 }
1102 for(first=page+1;first<last;first++) {
1103 invalidate_page(first);
1104 }
dd3a91a1 1105 #ifdef __arm__
1106 do_clear_cache();
1107 #endif
57871462 1108
1109 // Don't trap writes
1110 invalid_code[block]=1;
94d23bb9 1111#ifndef DISABLE_TLB
57871462 1112 // If there is a valid TLB entry for this page, remove write protect
1113 if(tlb_LUT_w[block]) {
1114 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1115 // CHECK: Is this right?
1116 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1117 u_int real_block=tlb_LUT_w[block]>>12;
1118 invalid_code[real_block]=1;
1119 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1120 }
1121 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1122#endif
f76eeef9 1123
57871462 1124 #ifdef USE_MINI_HT
1125 memset(mini_ht,-1,sizeof(mini_ht));
1126 #endif
1127}
9be4ba64 1128
1129void invalidate_block(u_int block)
1130{
1131 u_int page=get_page(block<<12);
1132 u_int vpage=get_vpage(block<<12);
1133 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1134 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1135 u_int first,last;
1136 first=last=page;
1137 struct ll_entry *head;
1138 head=jump_dirty[vpage];
1139 //printf("page=%d vpage=%d\n",page,vpage);
1140 while(head!=NULL) {
1141 u_int start,end;
1142 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1143 get_bounds((int)head->addr,&start,&end);
1144 //printf("start: %x end: %x\n",start,end);
4a35de07 1145 if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
9be4ba64 1146 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1147 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1148 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1149 }
1150 }
1151#ifndef DISABLE_TLB
1152 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1153 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1154 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1155 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1156 }
1157 }
1158#endif
1159 }
1160 head=head->next;
1161 }
1162 invalidate_block_range(block,first,last);
1163}
1164
57871462 1165void invalidate_addr(u_int addr)
1166{
9be4ba64 1167#ifdef PCSX
1168 //static int rhits;
1169 // this check is done by the caller
1170 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
d25604ca 1171 u_int page=get_vpage(addr);
9be4ba64 1172 if(page<2048) { // RAM
1173 struct ll_entry *head;
1174 u_int addr_min=~0, addr_max=0;
4a35de07 1175 u_int mask=RAM_SIZE-1;
1176 u_int addr_main=0x80000000|(addr&mask);
9be4ba64 1177 int pg1;
4a35de07 1178 inv_code_start=addr_main&~0xfff;
1179 inv_code_end=addr_main|0xfff;
9be4ba64 1180 pg1=page;
1181 if (pg1>0) {
1182 // must check previous page too because of spans..
1183 pg1--;
1184 inv_code_start-=0x1000;
1185 }
1186 for(;pg1<=page;pg1++) {
1187 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1188 u_int start,end;
1189 get_bounds((int)head->addr,&start,&end);
4a35de07 1190 if(ram_offset) {
1191 start-=ram_offset;
1192 end-=ram_offset;
1193 }
1194 if(start<=addr_main&&addr_main<end) {
9be4ba64 1195 if(start<addr_min) addr_min=start;
1196 if(end>addr_max) addr_max=end;
1197 }
4a35de07 1198 else if(addr_main<start) {
9be4ba64 1199 if(start<inv_code_end)
1200 inv_code_end=start-1;
1201 }
1202 else {
1203 if(end>inv_code_start)
1204 inv_code_start=end;
1205 }
1206 }
1207 }
1208 if (addr_min!=~0) {
1209 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1210 inv_code_start=inv_code_end=~0;
1211 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1212 return;
1213 }
1214 else {
4a35de07 1215 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1216 inv_code_end=(addr&~mask)|(inv_code_end&mask);
d25604ca 1217 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
9be4ba64 1218 return;
d25604ca 1219 }
9be4ba64 1220 }
1221#endif
57871462 1222 invalidate_block(addr>>12);
1223}
9be4ba64 1224
dd3a91a1 1225// This is called when loading a save state.
1226// Anything could have changed, so invalidate everything.
57871462 1227void invalidate_all_pages()
1228{
1229 u_int page,n;
1230 for(page=0;page<4096;page++)
1231 invalidate_page(page);
1232 for(page=0;page<1048576;page++)
1233 if(!invalid_code[page]) {
1234 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1235 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1236 }
1237 #ifdef __arm__
1238 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1239 #endif
1240 #ifdef USE_MINI_HT
1241 memset(mini_ht,-1,sizeof(mini_ht));
1242 #endif
94d23bb9 1243 #ifndef DISABLE_TLB
57871462 1244 // TLB
1245 for(page=0;page<0x100000;page++) {
1246 if(tlb_LUT_r[page]) {
1247 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1248 if(!tlb_LUT_w[page]||!invalid_code[page])
1249 memory_map[page]|=0x40000000; // Write protect
1250 }
1251 else memory_map[page]=-1;
1252 if(page==0x80000) page=0xC0000;
1253 }
1254 tlb_hacks();
94d23bb9 1255 #endif
57871462 1256}
1257
1258// Add an entry to jump_out after making a link
1259void add_link(u_int vaddr,void *src)
1260{
94d23bb9 1261 u_int page=get_page(vaddr);
57871462 1262 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1263 int *ptr=(int *)(src+4);
1264 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1265 ll_add(jump_out+page,vaddr,src);
1266 //int ptr=get_pointer(src);
1267 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1268}
1269
1270// If a code block was found to be unmodified (bit was set in
1271// restore_candidate) and it remains unmodified (bit is clear
1272// in invalid_code) then move the entries for that 4K page from
1273// the dirty list to the clean list.
1274void clean_blocks(u_int page)
1275{
1276 struct ll_entry *head;
1277 inv_debug("INV: clean_blocks page=%d\n",page);
1278 head=jump_dirty[page];
1279 while(head!=NULL) {
1280 if(!invalid_code[head->vaddr>>12]) {
1281 // Don't restore blocks which are about to expire from the cache
1282 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1283 u_int start,end;
1284 if(verify_dirty((int)head->addr)) {
1285 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1286 u_int i;
1287 u_int inv=0;
1288 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1289 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1290 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1291 inv|=invalid_code[i];
1292 }
1293 }
63cb0298 1294#ifndef DISABLE_TLB
57871462 1295 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1296 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1297 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1298 if(addr<start||addr>=end) inv=1;
1299 }
63cb0298 1300#endif
4cb76aa4 1301 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1302 inv=1;
1303 }
1304 if(!inv) {
1305 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1306 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1307 u_int ppage=page;
94d23bb9 1308#ifndef DISABLE_TLB
57871462 1309 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1310#endif
57871462 1311 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1312 //printf("page=%x, addr=%x\n",page,head->vaddr);
1313 //assert(head->vaddr>>12==(page|0x80000));
de5a60c3 1314 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
57871462 1315 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
de5a60c3 1316 if(ht_bin[0]==head->vaddr) {
1317 ht_bin[1]=(int)clean_addr; // Replace existing entry
1318 }
1319 if(ht_bin[2]==head->vaddr) {
1320 ht_bin[3]=(int)clean_addr; // Replace existing entry
57871462 1321 }
1322 }
1323 }
1324 }
1325 }
1326 }
1327 head=head->next;
1328 }
1329}
1330
1331
1332void mov_alloc(struct regstat *current,int i)
1333{
1334 // Note: Don't need to actually alloc the source registers
1335 if((~current->is32>>rs1[i])&1) {
1336 //alloc_reg64(current,i,rs1[i]);
1337 alloc_reg64(current,i,rt1[i]);
1338 current->is32&=~(1LL<<rt1[i]);
1339 } else {
1340 //alloc_reg(current,i,rs1[i]);
1341 alloc_reg(current,i,rt1[i]);
1342 current->is32|=(1LL<<rt1[i]);
1343 }
1344 clear_const(current,rs1[i]);
1345 clear_const(current,rt1[i]);
1346 dirty_reg(current,rt1[i]);
1347}
1348
1349void shiftimm_alloc(struct regstat *current,int i)
1350{
57871462 1351 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1352 {
1353 if(rt1[i]) {
1354 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1355 else lt1[i]=rs1[i];
1356 alloc_reg(current,i,rt1[i]);
1357 current->is32|=1LL<<rt1[i];
1358 dirty_reg(current,rt1[i]);
dc49e339 1359 if(is_const(current,rs1[i])) {
1360 int v=get_const(current,rs1[i]);
1361 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1362 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1363 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1364 }
1365 else clear_const(current,rt1[i]);
57871462 1366 }
1367 }
dc49e339 1368 else
1369 {
1370 clear_const(current,rs1[i]);
1371 clear_const(current,rt1[i]);
1372 }
1373
57871462 1374 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1375 {
1376 if(rt1[i]) {
1377 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1378 alloc_reg64(current,i,rt1[i]);
1379 current->is32&=~(1LL<<rt1[i]);
1380 dirty_reg(current,rt1[i]);
1381 }
1382 }
1383 if(opcode2[i]==0x3c) // DSLL32
1384 {
1385 if(rt1[i]) {
1386 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1387 alloc_reg64(current,i,rt1[i]);
1388 current->is32&=~(1LL<<rt1[i]);
1389 dirty_reg(current,rt1[i]);
1390 }
1391 }
1392 if(opcode2[i]==0x3e) // DSRL32
1393 {
1394 if(rt1[i]) {
1395 alloc_reg64(current,i,rs1[i]);
1396 if(imm[i]==32) {
1397 alloc_reg64(current,i,rt1[i]);
1398 current->is32&=~(1LL<<rt1[i]);
1399 } else {
1400 alloc_reg(current,i,rt1[i]);
1401 current->is32|=1LL<<rt1[i];
1402 }
1403 dirty_reg(current,rt1[i]);
1404 }
1405 }
1406 if(opcode2[i]==0x3f) // DSRA32
1407 {
1408 if(rt1[i]) {
1409 alloc_reg64(current,i,rs1[i]);
1410 alloc_reg(current,i,rt1[i]);
1411 current->is32|=1LL<<rt1[i];
1412 dirty_reg(current,rt1[i]);
1413 }
1414 }
1415}
1416
1417void shift_alloc(struct regstat *current,int i)
1418{
1419 if(rt1[i]) {
1420 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1421 {
1422 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1423 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1424 alloc_reg(current,i,rt1[i]);
e1190b87 1425 if(rt1[i]==rs2[i]) {
1426 alloc_reg_temp(current,i,-1);
1427 minimum_free_regs[i]=1;
1428 }
57871462 1429 current->is32|=1LL<<rt1[i];
1430 } else { // DSLLV/DSRLV/DSRAV
1431 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1432 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1433 alloc_reg64(current,i,rt1[i]);
1434 current->is32&=~(1LL<<rt1[i]);
1435 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1436 {
57871462 1437 alloc_reg_temp(current,i,-1);
e1190b87 1438 minimum_free_regs[i]=1;
1439 }
57871462 1440 }
1441 clear_const(current,rs1[i]);
1442 clear_const(current,rs2[i]);
1443 clear_const(current,rt1[i]);
1444 dirty_reg(current,rt1[i]);
1445 }
1446}
1447
1448void alu_alloc(struct regstat *current,int i)
1449{
1450 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1451 if(rt1[i]) {
1452 if(rs1[i]&&rs2[i]) {
1453 alloc_reg(current,i,rs1[i]);
1454 alloc_reg(current,i,rs2[i]);
1455 }
1456 else {
1457 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1458 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1459 }
1460 alloc_reg(current,i,rt1[i]);
1461 }
1462 current->is32|=1LL<<rt1[i];
1463 }
1464 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1465 if(rt1[i]) {
1466 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1467 {
1468 alloc_reg64(current,i,rs1[i]);
1469 alloc_reg64(current,i,rs2[i]);
1470 alloc_reg(current,i,rt1[i]);
1471 } else {
1472 alloc_reg(current,i,rs1[i]);
1473 alloc_reg(current,i,rs2[i]);
1474 alloc_reg(current,i,rt1[i]);
1475 }
1476 }
1477 current->is32|=1LL<<rt1[i];
1478 }
1479 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1480 if(rt1[i]) {
1481 if(rs1[i]&&rs2[i]) {
1482 alloc_reg(current,i,rs1[i]);
1483 alloc_reg(current,i,rs2[i]);
1484 }
1485 else
1486 {
1487 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1488 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1489 }
1490 alloc_reg(current,i,rt1[i]);
1491 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1492 {
1493 if(!((current->uu>>rt1[i])&1)) {
1494 alloc_reg64(current,i,rt1[i]);
1495 }
1496 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1497 if(rs1[i]&&rs2[i]) {
1498 alloc_reg64(current,i,rs1[i]);
1499 alloc_reg64(current,i,rs2[i]);
1500 }
1501 else
1502 {
1503 // Is is really worth it to keep 64-bit values in registers?
1504 #ifdef NATIVE_64BIT
1505 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1506 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1507 #endif
1508 }
1509 }
1510 current->is32&=~(1LL<<rt1[i]);
1511 } else {
1512 current->is32|=1LL<<rt1[i];
1513 }
1514 }
1515 }
1516 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1517 if(rt1[i]) {
1518 if(rs1[i]&&rs2[i]) {
1519 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1520 alloc_reg64(current,i,rs1[i]);
1521 alloc_reg64(current,i,rs2[i]);
1522 alloc_reg64(current,i,rt1[i]);
1523 } else {
1524 alloc_reg(current,i,rs1[i]);
1525 alloc_reg(current,i,rs2[i]);
1526 alloc_reg(current,i,rt1[i]);
1527 }
1528 }
1529 else {
1530 alloc_reg(current,i,rt1[i]);
1531 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1532 // DADD used as move, or zeroing
1533 // If we have a 64-bit source, then make the target 64 bits too
1534 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1535 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1536 alloc_reg64(current,i,rt1[i]);
1537 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1538 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1539 alloc_reg64(current,i,rt1[i]);
1540 }
1541 if(opcode2[i]>=0x2e&&rs2[i]) {
1542 // DSUB used as negation - 64-bit result
1543 // If we have a 32-bit register, extend it to 64 bits
1544 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1545 alloc_reg64(current,i,rt1[i]);
1546 }
1547 }
1548 }
1549 if(rs1[i]&&rs2[i]) {
1550 current->is32&=~(1LL<<rt1[i]);
1551 } else if(rs1[i]) {
1552 current->is32&=~(1LL<<rt1[i]);
1553 if((current->is32>>rs1[i])&1)
1554 current->is32|=1LL<<rt1[i];
1555 } else if(rs2[i]) {
1556 current->is32&=~(1LL<<rt1[i]);
1557 if((current->is32>>rs2[i])&1)
1558 current->is32|=1LL<<rt1[i];
1559 } else {
1560 current->is32|=1LL<<rt1[i];
1561 }
1562 }
1563 }
1564 clear_const(current,rs1[i]);
1565 clear_const(current,rs2[i]);
1566 clear_const(current,rt1[i]);
1567 dirty_reg(current,rt1[i]);
1568}
1569
1570void imm16_alloc(struct regstat *current,int i)
1571{
1572 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1573 else lt1[i]=rs1[i];
1574 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1575 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1576 current->is32&=~(1LL<<rt1[i]);
1577 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1578 // TODO: Could preserve the 32-bit flag if the immediate is zero
1579 alloc_reg64(current,i,rt1[i]);
1580 alloc_reg64(current,i,rs1[i]);
1581 }
1582 clear_const(current,rs1[i]);
1583 clear_const(current,rt1[i]);
1584 }
1585 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1586 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1587 current->is32|=1LL<<rt1[i];
1588 clear_const(current,rs1[i]);
1589 clear_const(current,rt1[i]);
1590 }
1591 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1592 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1593 if(rs1[i]!=rt1[i]) {
1594 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1595 alloc_reg64(current,i,rt1[i]);
1596 current->is32&=~(1LL<<rt1[i]);
1597 }
1598 }
1599 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1600 if(is_const(current,rs1[i])) {
1601 int v=get_const(current,rs1[i]);
1602 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1603 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1604 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1605 }
1606 else clear_const(current,rt1[i]);
1607 }
1608 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1609 if(is_const(current,rs1[i])) {
1610 int v=get_const(current,rs1[i]);
1611 set_const(current,rt1[i],v+imm[i]);
1612 }
1613 else clear_const(current,rt1[i]);
1614 current->is32|=1LL<<rt1[i];
1615 }
1616 else {
1617 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1618 current->is32|=1LL<<rt1[i];
1619 }
1620 dirty_reg(current,rt1[i]);
1621}
1622
1623void load_alloc(struct regstat *current,int i)
1624{
1625 clear_const(current,rt1[i]);
1626 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1627 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1628 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1629 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1630 alloc_reg(current,i,rt1[i]);
373d1d07 1631 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1632 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1633 {
1634 current->is32&=~(1LL<<rt1[i]);
1635 alloc_reg64(current,i,rt1[i]);
1636 }
1637 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1638 {
1639 current->is32&=~(1LL<<rt1[i]);
1640 alloc_reg64(current,i,rt1[i]);
1641 alloc_all(current,i);
1642 alloc_reg64(current,i,FTEMP);
e1190b87 1643 minimum_free_regs[i]=HOST_REGS;
57871462 1644 }
1645 else current->is32|=1LL<<rt1[i];
1646 dirty_reg(current,rt1[i]);
1647 // If using TLB, need a register for pointer to the mapping table
1648 if(using_tlb) alloc_reg(current,i,TLREG);
1649 // LWL/LWR need a temporary register for the old value
1650 if(opcode[i]==0x22||opcode[i]==0x26)
1651 {
1652 alloc_reg(current,i,FTEMP);
1653 alloc_reg_temp(current,i,-1);
e1190b87 1654 minimum_free_regs[i]=1;
57871462 1655 }
1656 }
1657 else
1658 {
373d1d07 1659 // Load to r0 or unneeded register (dummy load)
57871462 1660 // but we still need a register to calculate the address
535d208a 1661 if(opcode[i]==0x22||opcode[i]==0x26)
1662 {
1663 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1664 }
373d1d07 1665 // If using TLB, need a register for pointer to the mapping table
1666 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1667 alloc_reg_temp(current,i,-1);
e1190b87 1668 minimum_free_regs[i]=1;
535d208a 1669 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1670 {
1671 alloc_all(current,i);
1672 alloc_reg64(current,i,FTEMP);
e1190b87 1673 minimum_free_regs[i]=HOST_REGS;
535d208a 1674 }
57871462 1675 }
1676}
1677
1678void store_alloc(struct regstat *current,int i)
1679{
1680 clear_const(current,rs2[i]);
1681 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1682 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1683 alloc_reg(current,i,rs2[i]);
1684 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1685 alloc_reg64(current,i,rs2[i]);
1686 if(rs2[i]) alloc_reg(current,i,FTEMP);
1687 }
1688 // If using TLB, need a register for pointer to the mapping table
1689 if(using_tlb) alloc_reg(current,i,TLREG);
1690 #if defined(HOST_IMM8)
1691 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1692 else alloc_reg(current,i,INVCP);
1693 #endif
b7918751 1694 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1695 alloc_reg(current,i,FTEMP);
1696 }
1697 // We need a temporary register for address generation
1698 alloc_reg_temp(current,i,-1);
e1190b87 1699 minimum_free_regs[i]=1;
57871462 1700}
1701
1702void c1ls_alloc(struct regstat *current,int i)
1703{
1704 //clear_const(current,rs1[i]); // FIXME
1705 clear_const(current,rt1[i]);
1706 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1707 alloc_reg(current,i,CSREG); // Status
1708 alloc_reg(current,i,FTEMP);
1709 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1710 alloc_reg64(current,i,FTEMP);
1711 }
1712 // If using TLB, need a register for pointer to the mapping table
1713 if(using_tlb) alloc_reg(current,i,TLREG);
1714 #if defined(HOST_IMM8)
1715 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1716 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1717 alloc_reg(current,i,INVCP);
1718 #endif
1719 // We need a temporary register for address generation
1720 alloc_reg_temp(current,i,-1);
1721}
1722
b9b61529 1723void c2ls_alloc(struct regstat *current,int i)
1724{
1725 clear_const(current,rt1[i]);
1726 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1727 alloc_reg(current,i,FTEMP);
1728 // If using TLB, need a register for pointer to the mapping table
1729 if(using_tlb) alloc_reg(current,i,TLREG);
1730 #if defined(HOST_IMM8)
1731 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1732 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1733 alloc_reg(current,i,INVCP);
1734 #endif
1735 // We need a temporary register for address generation
1736 alloc_reg_temp(current,i,-1);
e1190b87 1737 minimum_free_regs[i]=1;
b9b61529 1738}
1739
57871462 1740#ifndef multdiv_alloc
1741void multdiv_alloc(struct regstat *current,int i)
1742{
1743 // case 0x18: MULT
1744 // case 0x19: MULTU
1745 // case 0x1A: DIV
1746 // case 0x1B: DIVU
1747 // case 0x1C: DMULT
1748 // case 0x1D: DMULTU
1749 // case 0x1E: DDIV
1750 // case 0x1F: DDIVU
1751 clear_const(current,rs1[i]);
1752 clear_const(current,rs2[i]);
1753 if(rs1[i]&&rs2[i])
1754 {
1755 if((opcode2[i]&4)==0) // 32-bit
1756 {
1757 current->u&=~(1LL<<HIREG);
1758 current->u&=~(1LL<<LOREG);
1759 alloc_reg(current,i,HIREG);
1760 alloc_reg(current,i,LOREG);
1761 alloc_reg(current,i,rs1[i]);
1762 alloc_reg(current,i,rs2[i]);
1763 current->is32|=1LL<<HIREG;
1764 current->is32|=1LL<<LOREG;
1765 dirty_reg(current,HIREG);
1766 dirty_reg(current,LOREG);
1767 }
1768 else // 64-bit
1769 {
1770 current->u&=~(1LL<<HIREG);
1771 current->u&=~(1LL<<LOREG);
1772 current->uu&=~(1LL<<HIREG);
1773 current->uu&=~(1LL<<LOREG);
1774 alloc_reg64(current,i,HIREG);
1775 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1776 alloc_reg64(current,i,rs1[i]);
1777 alloc_reg64(current,i,rs2[i]);
1778 alloc_all(current,i);
1779 current->is32&=~(1LL<<HIREG);
1780 current->is32&=~(1LL<<LOREG);
1781 dirty_reg(current,HIREG);
1782 dirty_reg(current,LOREG);
e1190b87 1783 minimum_free_regs[i]=HOST_REGS;
57871462 1784 }
1785 }
1786 else
1787 {
1788 // Multiply by zero is zero.
1789 // MIPS does not have a divide by zero exception.
1790 // The result is undefined, we return zero.
1791 alloc_reg(current,i,HIREG);
1792 alloc_reg(current,i,LOREG);
1793 current->is32|=1LL<<HIREG;
1794 current->is32|=1LL<<LOREG;
1795 dirty_reg(current,HIREG);
1796 dirty_reg(current,LOREG);
1797 }
1798}
1799#endif
1800
1801void cop0_alloc(struct regstat *current,int i)
1802{
1803 if(opcode2[i]==0) // MFC0
1804 {
1805 if(rt1[i]) {
1806 clear_const(current,rt1[i]);
1807 alloc_all(current,i);
1808 alloc_reg(current,i,rt1[i]);
1809 current->is32|=1LL<<rt1[i];
1810 dirty_reg(current,rt1[i]);
1811 }
1812 }
1813 else if(opcode2[i]==4) // MTC0
1814 {
1815 if(rs1[i]){
1816 clear_const(current,rs1[i]);
1817 alloc_reg(current,i,rs1[i]);
1818 alloc_all(current,i);
1819 }
1820 else {
1821 alloc_all(current,i); // FIXME: Keep r0
1822 current->u&=~1LL;
1823 alloc_reg(current,i,0);
1824 }
1825 }
1826 else
1827 {
1828 // TLBR/TLBWI/TLBWR/TLBP/ERET
1829 assert(opcode2[i]==0x10);
1830 alloc_all(current,i);
1831 }
e1190b87 1832 minimum_free_regs[i]=HOST_REGS;
57871462 1833}
1834
1835void cop1_alloc(struct regstat *current,int i)
1836{
1837 alloc_reg(current,i,CSREG); // Load status
1838 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1839 {
7de557a6 1840 if(rt1[i]){
1841 clear_const(current,rt1[i]);
1842 if(opcode2[i]==1) {
1843 alloc_reg64(current,i,rt1[i]); // DMFC1
1844 current->is32&=~(1LL<<rt1[i]);
1845 }else{
1846 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1847 current->is32|=1LL<<rt1[i];
1848 }
1849 dirty_reg(current,rt1[i]);
57871462 1850 }
57871462 1851 alloc_reg_temp(current,i,-1);
1852 }
1853 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1854 {
1855 if(rs1[i]){
1856 clear_const(current,rs1[i]);
1857 if(opcode2[i]==5)
1858 alloc_reg64(current,i,rs1[i]); // DMTC1
1859 else
1860 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1861 alloc_reg_temp(current,i,-1);
1862 }
1863 else {
1864 current->u&=~1LL;
1865 alloc_reg(current,i,0);
1866 alloc_reg_temp(current,i,-1);
1867 }
1868 }
e1190b87 1869 minimum_free_regs[i]=1;
57871462 1870}
1871void fconv_alloc(struct regstat *current,int i)
1872{
1873 alloc_reg(current,i,CSREG); // Load status
1874 alloc_reg_temp(current,i,-1);
e1190b87 1875 minimum_free_regs[i]=1;
57871462 1876}
1877void float_alloc(struct regstat *current,int i)
1878{
1879 alloc_reg(current,i,CSREG); // Load status
1880 alloc_reg_temp(current,i,-1);
e1190b87 1881 minimum_free_regs[i]=1;
57871462 1882}
b9b61529 1883void c2op_alloc(struct regstat *current,int i)
1884{
1885 alloc_reg_temp(current,i,-1);
1886}
57871462 1887void fcomp_alloc(struct regstat *current,int i)
1888{
1889 alloc_reg(current,i,CSREG); // Load status
1890 alloc_reg(current,i,FSREG); // Load flags
1891 dirty_reg(current,FSREG); // Flag will be modified
1892 alloc_reg_temp(current,i,-1);
e1190b87 1893 minimum_free_regs[i]=1;
57871462 1894}
1895
1896void syscall_alloc(struct regstat *current,int i)
1897{
1898 alloc_cc(current,i);
1899 dirty_reg(current,CCREG);
1900 alloc_all(current,i);
e1190b87 1901 minimum_free_regs[i]=HOST_REGS;
57871462 1902 current->isconst=0;
1903}
1904
1905void delayslot_alloc(struct regstat *current,int i)
1906{
1907 switch(itype[i]) {
1908 case UJUMP:
1909 case CJUMP:
1910 case SJUMP:
1911 case RJUMP:
1912 case FJUMP:
1913 case SYSCALL:
7139f3c8 1914 case HLECALL:
57871462 1915 case SPAN:
1916 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
c43b5311 1917 SysPrintf("Disabled speculative precompilation\n");
57871462 1918 stop_after_jal=1;
1919 break;
1920 case IMM16:
1921 imm16_alloc(current,i);
1922 break;
1923 case LOAD:
1924 case LOADLR:
1925 load_alloc(current,i);
1926 break;
1927 case STORE:
1928 case STORELR:
1929 store_alloc(current,i);
1930 break;
1931 case ALU:
1932 alu_alloc(current,i);
1933 break;
1934 case SHIFT:
1935 shift_alloc(current,i);
1936 break;
1937 case MULTDIV:
1938 multdiv_alloc(current,i);
1939 break;
1940 case SHIFTIMM:
1941 shiftimm_alloc(current,i);
1942 break;
1943 case MOV:
1944 mov_alloc(current,i);
1945 break;
1946 case COP0:
1947 cop0_alloc(current,i);
1948 break;
1949 case COP1:
b9b61529 1950 case COP2:
57871462 1951 cop1_alloc(current,i);
1952 break;
1953 case C1LS:
1954 c1ls_alloc(current,i);
1955 break;
b9b61529 1956 case C2LS:
1957 c2ls_alloc(current,i);
1958 break;
57871462 1959 case FCONV:
1960 fconv_alloc(current,i);
1961 break;
1962 case FLOAT:
1963 float_alloc(current,i);
1964 break;
1965 case FCOMP:
1966 fcomp_alloc(current,i);
1967 break;
b9b61529 1968 case C2OP:
1969 c2op_alloc(current,i);
1970 break;
57871462 1971 }
1972}
1973
1974// Special case where a branch and delay slot span two pages in virtual memory
1975static void pagespan_alloc(struct regstat *current,int i)
1976{
1977 current->isconst=0;
1978 current->wasconst=0;
1979 regs[i].wasconst=0;
e1190b87 1980 minimum_free_regs[i]=HOST_REGS;
57871462 1981 alloc_all(current,i);
1982 alloc_cc(current,i);
1983 dirty_reg(current,CCREG);
1984 if(opcode[i]==3) // JAL
1985 {
1986 alloc_reg(current,i,31);
1987 dirty_reg(current,31);
1988 }
1989 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1990 {
1991 alloc_reg(current,i,rs1[i]);
5067f341 1992 if (rt1[i]!=0) {
1993 alloc_reg(current,i,rt1[i]);
1994 dirty_reg(current,rt1[i]);
57871462 1995 }
1996 }
1997 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1998 {
1999 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2000 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2001 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2002 {
2003 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2004 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2005 }
2006 }
2007 else
2008 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2009 {
2010 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2011 if(!((current->is32>>rs1[i])&1))
2012 {
2013 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2014 }
2015 }
2016 else
2017 if(opcode[i]==0x11) // BC1
2018 {
2019 alloc_reg(current,i,FSREG);
2020 alloc_reg(current,i,CSREG);
2021 }
2022 //else ...
2023}
2024
2025add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2026{
2027 stubs[stubcount][0]=type;
2028 stubs[stubcount][1]=addr;
2029 stubs[stubcount][2]=retaddr;
2030 stubs[stubcount][3]=a;
2031 stubs[stubcount][4]=b;
2032 stubs[stubcount][5]=c;
2033 stubs[stubcount][6]=d;
2034 stubs[stubcount][7]=e;
2035 stubcount++;
2036}
2037
2038// Write out a single register
2039void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2040{
2041 int hr;
2042 for(hr=0;hr<HOST_REGS;hr++) {
2043 if(hr!=EXCLUDE_REG) {
2044 if((regmap[hr]&63)==r) {
2045 if((dirty>>hr)&1) {
2046 if(regmap[hr]<64) {
2047 emit_storereg(r,hr);
24385cae 2048#ifndef FORCE32
57871462 2049 if((is32>>regmap[hr])&1) {
2050 emit_sarimm(hr,31,hr);
2051 emit_storereg(r|64,hr);
2052 }
24385cae 2053#endif
57871462 2054 }else{
2055 emit_storereg(r|64,hr);
2056 }
2057 }
2058 }
2059 }
2060 }
2061}
2062
2063int mchecksum()
2064{
2065 //if(!tracedebug) return 0;
2066 int i;
2067 int sum=0;
2068 for(i=0;i<2097152;i++) {
2069 unsigned int temp=sum;
2070 sum<<=1;
2071 sum|=(~temp)>>31;
2072 sum^=((u_int *)rdram)[i];
2073 }
2074 return sum;
2075}
2076int rchecksum()
2077{
2078 int i;
2079 int sum=0;
2080 for(i=0;i<64;i++)
2081 sum^=((u_int *)reg)[i];
2082 return sum;
2083}
57871462 2084void rlist()
2085{
2086 int i;
2087 printf("TRACE: ");
2088 for(i=0;i<32;i++)
2089 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2090 printf("\n");
3d624f89 2091#ifndef DISABLE_COP1
57871462 2092 printf("TRACE: ");
2093 for(i=0;i<32;i++)
2094 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2095 printf("\n");
3d624f89 2096#endif
57871462 2097}
2098
2099void enabletrace()
2100{
2101 tracedebug=1;
2102}
2103
2104void memdebug(int i)
2105{
2106 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2107 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2108 //rlist();
2109 //if(tracedebug) {
2110 //if(Count>=-2084597794) {
2111 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2112 //if(0) {
2113 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2114 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2115 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2116 rlist();
2117 #ifdef __i386__
2118 printf("TRACE: %x\n",(&i)[-1]);
2119 #endif
2120 #ifdef __arm__
2121 int j;
2122 printf("TRACE: %x \n",(&j)[10]);
2123 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2124 #endif
2125 //fflush(stdout);
2126 }
2127 //printf("TRACE: %x\n",(&i)[-1]);
2128}
2129
2130void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2131{
2132 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2133}
2134
2135void alu_assemble(int i,struct regstat *i_regs)
2136{
2137 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2138 if(rt1[i]) {
2139 signed char s1,s2,t;
2140 t=get_reg(i_regs->regmap,rt1[i]);
2141 if(t>=0) {
2142 s1=get_reg(i_regs->regmap,rs1[i]);
2143 s2=get_reg(i_regs->regmap,rs2[i]);
2144 if(rs1[i]&&rs2[i]) {
2145 assert(s1>=0);
2146 assert(s2>=0);
2147 if(opcode2[i]&2) emit_sub(s1,s2,t);
2148 else emit_add(s1,s2,t);
2149 }
2150 else if(rs1[i]) {
2151 if(s1>=0) emit_mov(s1,t);
2152 else emit_loadreg(rs1[i],t);
2153 }
2154 else if(rs2[i]) {
2155 if(s2>=0) {
2156 if(opcode2[i]&2) emit_neg(s2,t);
2157 else emit_mov(s2,t);
2158 }
2159 else {
2160 emit_loadreg(rs2[i],t);
2161 if(opcode2[i]&2) emit_neg(t,t);
2162 }
2163 }
2164 else emit_zeroreg(t);
2165 }
2166 }
2167 }
2168 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2169 if(rt1[i]) {
2170 signed char s1l,s2l,s1h,s2h,tl,th;
2171 tl=get_reg(i_regs->regmap,rt1[i]);
2172 th=get_reg(i_regs->regmap,rt1[i]|64);
2173 if(tl>=0) {
2174 s1l=get_reg(i_regs->regmap,rs1[i]);
2175 s2l=get_reg(i_regs->regmap,rs2[i]);
2176 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2177 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2178 if(rs1[i]&&rs2[i]) {
2179 assert(s1l>=0);
2180 assert(s2l>=0);
2181 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2182 else emit_adds(s1l,s2l,tl);
2183 if(th>=0) {
2184 #ifdef INVERTED_CARRY
2185 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2186 #else
2187 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2188 #endif
2189 else emit_add(s1h,s2h,th);
2190 }
2191 }
2192 else if(rs1[i]) {
2193 if(s1l>=0) emit_mov(s1l,tl);
2194 else emit_loadreg(rs1[i],tl);
2195 if(th>=0) {
2196 if(s1h>=0) emit_mov(s1h,th);
2197 else emit_loadreg(rs1[i]|64,th);
2198 }
2199 }
2200 else if(rs2[i]) {
2201 if(s2l>=0) {
2202 if(opcode2[i]&2) emit_negs(s2l,tl);
2203 else emit_mov(s2l,tl);
2204 }
2205 else {
2206 emit_loadreg(rs2[i],tl);
2207 if(opcode2[i]&2) emit_negs(tl,tl);
2208 }
2209 if(th>=0) {
2210 #ifdef INVERTED_CARRY
2211 if(s2h>=0) emit_mov(s2h,th);
2212 else emit_loadreg(rs2[i]|64,th);
2213 if(opcode2[i]&2) {
2214 emit_adcimm(-1,th); // x86 has inverted carry flag
2215 emit_not(th,th);
2216 }
2217 #else
2218 if(opcode2[i]&2) {
2219 if(s2h>=0) emit_rscimm(s2h,0,th);
2220 else {
2221 emit_loadreg(rs2[i]|64,th);
2222 emit_rscimm(th,0,th);
2223 }
2224 }else{
2225 if(s2h>=0) emit_mov(s2h,th);
2226 else emit_loadreg(rs2[i]|64,th);
2227 }
2228 #endif
2229 }
2230 }
2231 else {
2232 emit_zeroreg(tl);
2233 if(th>=0) emit_zeroreg(th);
2234 }
2235 }
2236 }
2237 }
2238 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2239 if(rt1[i]) {
2240 signed char s1l,s1h,s2l,s2h,t;
2241 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2242 {
2243 t=get_reg(i_regs->regmap,rt1[i]);
2244 //assert(t>=0);
2245 if(t>=0) {
2246 s1l=get_reg(i_regs->regmap,rs1[i]);
2247 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2248 s2l=get_reg(i_regs->regmap,rs2[i]);
2249 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2250 if(rs2[i]==0) // rx<r0
2251 {
2252 assert(s1h>=0);
2253 if(opcode2[i]==0x2a) // SLT
2254 emit_shrimm(s1h,31,t);
2255 else // SLTU (unsigned can not be less than zero)
2256 emit_zeroreg(t);
2257 }
2258 else if(rs1[i]==0) // r0<rx
2259 {
2260 assert(s2h>=0);
2261 if(opcode2[i]==0x2a) // SLT
2262 emit_set_gz64_32(s2h,s2l,t);
2263 else // SLTU (set if not zero)
2264 emit_set_nz64_32(s2h,s2l,t);
2265 }
2266 else {
2267 assert(s1l>=0);assert(s1h>=0);
2268 assert(s2l>=0);assert(s2h>=0);
2269 if(opcode2[i]==0x2a) // SLT
2270 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2271 else // SLTU
2272 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2273 }
2274 }
2275 } else {
2276 t=get_reg(i_regs->regmap,rt1[i]);
2277 //assert(t>=0);
2278 if(t>=0) {
2279 s1l=get_reg(i_regs->regmap,rs1[i]);
2280 s2l=get_reg(i_regs->regmap,rs2[i]);
2281 if(rs2[i]==0) // rx<r0
2282 {
2283 assert(s1l>=0);
2284 if(opcode2[i]==0x2a) // SLT
2285 emit_shrimm(s1l,31,t);
2286 else // SLTU (unsigned can not be less than zero)
2287 emit_zeroreg(t);
2288 }
2289 else if(rs1[i]==0) // r0<rx
2290 {
2291 assert(s2l>=0);
2292 if(opcode2[i]==0x2a) // SLT
2293 emit_set_gz32(s2l,t);
2294 else // SLTU (set if not zero)
2295 emit_set_nz32(s2l,t);
2296 }
2297 else{
2298 assert(s1l>=0);assert(s2l>=0);
2299 if(opcode2[i]==0x2a) // SLT
2300 emit_set_if_less32(s1l,s2l,t);
2301 else // SLTU
2302 emit_set_if_carry32(s1l,s2l,t);
2303 }
2304 }
2305 }
2306 }
2307 }
2308 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2309 if(rt1[i]) {
2310 signed char s1l,s1h,s2l,s2h,th,tl;
2311 tl=get_reg(i_regs->regmap,rt1[i]);
2312 th=get_reg(i_regs->regmap,rt1[i]|64);
2313 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2314 {
2315 assert(tl>=0);
2316 if(tl>=0) {
2317 s1l=get_reg(i_regs->regmap,rs1[i]);
2318 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2319 s2l=get_reg(i_regs->regmap,rs2[i]);
2320 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2321 if(rs1[i]&&rs2[i]) {
2322 assert(s1l>=0);assert(s1h>=0);
2323 assert(s2l>=0);assert(s2h>=0);
2324 if(opcode2[i]==0x24) { // AND
2325 emit_and(s1l,s2l,tl);
2326 emit_and(s1h,s2h,th);
2327 } else
2328 if(opcode2[i]==0x25) { // OR
2329 emit_or(s1l,s2l,tl);
2330 emit_or(s1h,s2h,th);
2331 } else
2332 if(opcode2[i]==0x26) { // XOR
2333 emit_xor(s1l,s2l,tl);
2334 emit_xor(s1h,s2h,th);
2335 } else
2336 if(opcode2[i]==0x27) { // NOR
2337 emit_or(s1l,s2l,tl);
2338 emit_or(s1h,s2h,th);
2339 emit_not(tl,tl);
2340 emit_not(th,th);
2341 }
2342 }
2343 else
2344 {
2345 if(opcode2[i]==0x24) { // AND
2346 emit_zeroreg(tl);
2347 emit_zeroreg(th);
2348 } else
2349 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2350 if(rs1[i]){
2351 if(s1l>=0) emit_mov(s1l,tl);
2352 else emit_loadreg(rs1[i],tl);
2353 if(s1h>=0) emit_mov(s1h,th);
2354 else emit_loadreg(rs1[i]|64,th);
2355 }
2356 else
2357 if(rs2[i]){
2358 if(s2l>=0) emit_mov(s2l,tl);
2359 else emit_loadreg(rs2[i],tl);
2360 if(s2h>=0) emit_mov(s2h,th);
2361 else emit_loadreg(rs2[i]|64,th);
2362 }
2363 else{
2364 emit_zeroreg(tl);
2365 emit_zeroreg(th);
2366 }
2367 } else
2368 if(opcode2[i]==0x27) { // NOR
2369 if(rs1[i]){
2370 if(s1l>=0) emit_not(s1l,tl);
2371 else{
2372 emit_loadreg(rs1[i],tl);
2373 emit_not(tl,tl);
2374 }
2375 if(s1h>=0) emit_not(s1h,th);
2376 else{
2377 emit_loadreg(rs1[i]|64,th);
2378 emit_not(th,th);
2379 }
2380 }
2381 else
2382 if(rs2[i]){
2383 if(s2l>=0) emit_not(s2l,tl);
2384 else{
2385 emit_loadreg(rs2[i],tl);
2386 emit_not(tl,tl);
2387 }
2388 if(s2h>=0) emit_not(s2h,th);
2389 else{
2390 emit_loadreg(rs2[i]|64,th);
2391 emit_not(th,th);
2392 }
2393 }
2394 else {
2395 emit_movimm(-1,tl);
2396 emit_movimm(-1,th);
2397 }
2398 }
2399 }
2400 }
2401 }
2402 else
2403 {
2404 // 32 bit
2405 if(tl>=0) {
2406 s1l=get_reg(i_regs->regmap,rs1[i]);
2407 s2l=get_reg(i_regs->regmap,rs2[i]);
2408 if(rs1[i]&&rs2[i]) {
2409 assert(s1l>=0);
2410 assert(s2l>=0);
2411 if(opcode2[i]==0x24) { // AND
2412 emit_and(s1l,s2l,tl);
2413 } else
2414 if(opcode2[i]==0x25) { // OR
2415 emit_or(s1l,s2l,tl);
2416 } else
2417 if(opcode2[i]==0x26) { // XOR
2418 emit_xor(s1l,s2l,tl);
2419 } else
2420 if(opcode2[i]==0x27) { // NOR
2421 emit_or(s1l,s2l,tl);
2422 emit_not(tl,tl);
2423 }
2424 }
2425 else
2426 {
2427 if(opcode2[i]==0x24) { // AND
2428 emit_zeroreg(tl);
2429 } else
2430 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2431 if(rs1[i]){
2432 if(s1l>=0) emit_mov(s1l,tl);
2433 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2434 }
2435 else
2436 if(rs2[i]){
2437 if(s2l>=0) emit_mov(s2l,tl);
2438 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2439 }
2440 else emit_zeroreg(tl);
2441 } else
2442 if(opcode2[i]==0x27) { // NOR
2443 if(rs1[i]){
2444 if(s1l>=0) emit_not(s1l,tl);
2445 else {
2446 emit_loadreg(rs1[i],tl);
2447 emit_not(tl,tl);
2448 }
2449 }
2450 else
2451 if(rs2[i]){
2452 if(s2l>=0) emit_not(s2l,tl);
2453 else {
2454 emit_loadreg(rs2[i],tl);
2455 emit_not(tl,tl);
2456 }
2457 }
2458 else emit_movimm(-1,tl);
2459 }
2460 }
2461 }
2462 }
2463 }
2464 }
2465}
2466
2467void imm16_assemble(int i,struct regstat *i_regs)
2468{
2469 if (opcode[i]==0x0f) { // LUI
2470 if(rt1[i]) {
2471 signed char t;
2472 t=get_reg(i_regs->regmap,rt1[i]);
2473 //assert(t>=0);
2474 if(t>=0) {
2475 if(!((i_regs->isconst>>t)&1))
2476 emit_movimm(imm[i]<<16,t);
2477 }
2478 }
2479 }
2480 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2481 if(rt1[i]) {
2482 signed char s,t;
2483 t=get_reg(i_regs->regmap,rt1[i]);
2484 s=get_reg(i_regs->regmap,rs1[i]);
2485 if(rs1[i]) {
2486 //assert(t>=0);
2487 //assert(s>=0);
2488 if(t>=0) {
2489 if(!((i_regs->isconst>>t)&1)) {
2490 if(s<0) {
2491 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2492 emit_addimm(t,imm[i],t);
2493 }else{
2494 if(!((i_regs->wasconst>>s)&1))
2495 emit_addimm(s,imm[i],t);
2496 else
2497 emit_movimm(constmap[i][s]+imm[i],t);
2498 }
2499 }
2500 }
2501 } else {
2502 if(t>=0) {
2503 if(!((i_regs->isconst>>t)&1))
2504 emit_movimm(imm[i],t);
2505 }
2506 }
2507 }
2508 }
2509 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2510 if(rt1[i]) {
2511 signed char sh,sl,th,tl;
2512 th=get_reg(i_regs->regmap,rt1[i]|64);
2513 tl=get_reg(i_regs->regmap,rt1[i]);
2514 sh=get_reg(i_regs->regmap,rs1[i]|64);
2515 sl=get_reg(i_regs->regmap,rs1[i]);
2516 if(tl>=0) {
2517 if(rs1[i]) {
2518 assert(sh>=0);
2519 assert(sl>=0);
2520 if(th>=0) {
2521 emit_addimm64_32(sh,sl,imm[i],th,tl);
2522 }
2523 else {
2524 emit_addimm(sl,imm[i],tl);
2525 }
2526 } else {
2527 emit_movimm(imm[i],tl);
2528 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2529 }
2530 }
2531 }
2532 }
2533 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2534 if(rt1[i]) {
2535 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2536 signed char sh,sl,t;
2537 t=get_reg(i_regs->regmap,rt1[i]);
2538 sh=get_reg(i_regs->regmap,rs1[i]|64);
2539 sl=get_reg(i_regs->regmap,rs1[i]);
2540 //assert(t>=0);
2541 if(t>=0) {
2542 if(rs1[i]>0) {
2543 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2544 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2545 if(opcode[i]==0x0a) { // SLTI
2546 if(sl<0) {
2547 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2548 emit_slti32(t,imm[i],t);
2549 }else{
2550 emit_slti32(sl,imm[i],t);
2551 }
2552 }
2553 else { // SLTIU
2554 if(sl<0) {
2555 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2556 emit_sltiu32(t,imm[i],t);
2557 }else{
2558 emit_sltiu32(sl,imm[i],t);
2559 }
2560 }
2561 }else{ // 64-bit
2562 assert(sl>=0);
2563 if(opcode[i]==0x0a) // SLTI
2564 emit_slti64_32(sh,sl,imm[i],t);
2565 else // SLTIU
2566 emit_sltiu64_32(sh,sl,imm[i],t);
2567 }
2568 }else{
2569 // SLTI(U) with r0 is just stupid,
2570 // nonetheless examples can be found
2571 if(opcode[i]==0x0a) // SLTI
2572 if(0<imm[i]) emit_movimm(1,t);
2573 else emit_zeroreg(t);
2574 else // SLTIU
2575 {
2576 if(imm[i]) emit_movimm(1,t);
2577 else emit_zeroreg(t);
2578 }
2579 }
2580 }
2581 }
2582 }
2583 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2584 if(rt1[i]) {
2585 signed char sh,sl,th,tl;
2586 th=get_reg(i_regs->regmap,rt1[i]|64);
2587 tl=get_reg(i_regs->regmap,rt1[i]);
2588 sh=get_reg(i_regs->regmap,rs1[i]|64);
2589 sl=get_reg(i_regs->regmap,rs1[i]);
2590 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2591 if(opcode[i]==0x0c) //ANDI
2592 {
2593 if(rs1[i]) {
2594 if(sl<0) {
2595 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2596 emit_andimm(tl,imm[i],tl);
2597 }else{
2598 if(!((i_regs->wasconst>>sl)&1))
2599 emit_andimm(sl,imm[i],tl);
2600 else
2601 emit_movimm(constmap[i][sl]&imm[i],tl);
2602 }
2603 }
2604 else
2605 emit_zeroreg(tl);
2606 if(th>=0) emit_zeroreg(th);
2607 }
2608 else
2609 {
2610 if(rs1[i]) {
2611 if(sl<0) {
2612 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2613 }
2614 if(th>=0) {
2615 if(sh<0) {
2616 emit_loadreg(rs1[i]|64,th);
2617 }else{
2618 emit_mov(sh,th);
2619 }
2620 }
2621 if(opcode[i]==0x0d) //ORI
2622 if(sl<0) {
2623 emit_orimm(tl,imm[i],tl);
2624 }else{
2625 if(!((i_regs->wasconst>>sl)&1))
2626 emit_orimm(sl,imm[i],tl);
2627 else
2628 emit_movimm(constmap[i][sl]|imm[i],tl);
2629 }
2630 if(opcode[i]==0x0e) //XORI
2631 if(sl<0) {
2632 emit_xorimm(tl,imm[i],tl);
2633 }else{
2634 if(!((i_regs->wasconst>>sl)&1))
2635 emit_xorimm(sl,imm[i],tl);
2636 else
2637 emit_movimm(constmap[i][sl]^imm[i],tl);
2638 }
2639 }
2640 else {
2641 emit_movimm(imm[i],tl);
2642 if(th>=0) emit_zeroreg(th);
2643 }
2644 }
2645 }
2646 }
2647 }
2648}
2649
2650void shiftimm_assemble(int i,struct regstat *i_regs)
2651{
2652 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2653 {
2654 if(rt1[i]) {
2655 signed char s,t;
2656 t=get_reg(i_regs->regmap,rt1[i]);
2657 s=get_reg(i_regs->regmap,rs1[i]);
2658 //assert(t>=0);
dc49e339 2659 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2660 if(rs1[i]==0)
2661 {
2662 emit_zeroreg(t);
2663 }
2664 else
2665 {
2666 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2667 if(imm[i]) {
2668 if(opcode2[i]==0) // SLL
2669 {
2670 emit_shlimm(s<0?t:s,imm[i],t);
2671 }
2672 if(opcode2[i]==2) // SRL
2673 {
2674 emit_shrimm(s<0?t:s,imm[i],t);
2675 }
2676 if(opcode2[i]==3) // SRA
2677 {
2678 emit_sarimm(s<0?t:s,imm[i],t);
2679 }
2680 }else{
2681 // Shift by zero
2682 if(s>=0 && s!=t) emit_mov(s,t);
2683 }
2684 }
2685 }
2686 //emit_storereg(rt1[i],t); //DEBUG
2687 }
2688 }
2689 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2690 {
2691 if(rt1[i]) {
2692 signed char sh,sl,th,tl;
2693 th=get_reg(i_regs->regmap,rt1[i]|64);
2694 tl=get_reg(i_regs->regmap,rt1[i]);
2695 sh=get_reg(i_regs->regmap,rs1[i]|64);
2696 sl=get_reg(i_regs->regmap,rs1[i]);
2697 if(tl>=0) {
2698 if(rs1[i]==0)
2699 {
2700 emit_zeroreg(tl);
2701 if(th>=0) emit_zeroreg(th);
2702 }
2703 else
2704 {
2705 assert(sl>=0);
2706 assert(sh>=0);
2707 if(imm[i]) {
2708 if(opcode2[i]==0x38) // DSLL
2709 {
2710 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2711 emit_shlimm(sl,imm[i],tl);
2712 }
2713 if(opcode2[i]==0x3a) // DSRL
2714 {
2715 emit_shrdimm(sl,sh,imm[i],tl);
2716 if(th>=0) emit_shrimm(sh,imm[i],th);
2717 }
2718 if(opcode2[i]==0x3b) // DSRA
2719 {
2720 emit_shrdimm(sl,sh,imm[i],tl);
2721 if(th>=0) emit_sarimm(sh,imm[i],th);
2722 }
2723 }else{
2724 // Shift by zero
2725 if(sl!=tl) emit_mov(sl,tl);
2726 if(th>=0&&sh!=th) emit_mov(sh,th);
2727 }
2728 }
2729 }
2730 }
2731 }
2732 if(opcode2[i]==0x3c) // DSLL32
2733 {
2734 if(rt1[i]) {
2735 signed char sl,tl,th;
2736 tl=get_reg(i_regs->regmap,rt1[i]);
2737 th=get_reg(i_regs->regmap,rt1[i]|64);
2738 sl=get_reg(i_regs->regmap,rs1[i]);
2739 if(th>=0||tl>=0){
2740 assert(tl>=0);
2741 assert(th>=0);
2742 assert(sl>=0);
2743 emit_mov(sl,th);
2744 emit_zeroreg(tl);
2745 if(imm[i]>32)
2746 {
2747 emit_shlimm(th,imm[i]&31,th);
2748 }
2749 }
2750 }
2751 }
2752 if(opcode2[i]==0x3e) // DSRL32
2753 {
2754 if(rt1[i]) {
2755 signed char sh,tl,th;
2756 tl=get_reg(i_regs->regmap,rt1[i]);
2757 th=get_reg(i_regs->regmap,rt1[i]|64);
2758 sh=get_reg(i_regs->regmap,rs1[i]|64);
2759 if(tl>=0){
2760 assert(sh>=0);
2761 emit_mov(sh,tl);
2762 if(th>=0) emit_zeroreg(th);
2763 if(imm[i]>32)
2764 {
2765 emit_shrimm(tl,imm[i]&31,tl);
2766 }
2767 }
2768 }
2769 }
2770 if(opcode2[i]==0x3f) // DSRA32
2771 {
2772 if(rt1[i]) {
2773 signed char sh,tl;
2774 tl=get_reg(i_regs->regmap,rt1[i]);
2775 sh=get_reg(i_regs->regmap,rs1[i]|64);
2776 if(tl>=0){
2777 assert(sh>=0);
2778 emit_mov(sh,tl);
2779 if(imm[i]>32)
2780 {
2781 emit_sarimm(tl,imm[i]&31,tl);
2782 }
2783 }
2784 }
2785 }
2786}
2787
2788#ifndef shift_assemble
2789void shift_assemble(int i,struct regstat *i_regs)
2790{
2791 printf("Need shift_assemble for this architecture.\n");
2792 exit(1);
2793}
2794#endif
2795
2796void load_assemble(int i,struct regstat *i_regs)
2797{
2798 int s,th,tl,addr,map=-1;
2799 int offset;
2800 int jaddr=0;
5bf843dc 2801 int memtarget=0,c=0;
b1570849 2802 int fastload_reg_override=0;
57871462 2803 u_int hr,reglist=0;
2804 th=get_reg(i_regs->regmap,rt1[i]|64);
2805 tl=get_reg(i_regs->regmap,rt1[i]);
2806 s=get_reg(i_regs->regmap,rs1[i]);
2807 offset=imm[i];
2808 for(hr=0;hr<HOST_REGS;hr++) {
2809 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2810 }
2811 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2812 if(s>=0) {
2813 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2814 if (c) {
2815 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2816 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2817 }
57871462 2818 }
57871462 2819 //printf("load_assemble: c=%d\n",c);
2820 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2821 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2822#ifdef PCSX
f18c0f46 2823 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2824 ||rt1[i]==0) {
5bf843dc 2825 // could be FIFO, must perform the read
f18c0f46 2826 // ||dummy read
5bf843dc 2827 assem_debug("(forced read)\n");
2828 tl=get_reg(i_regs->regmap,-1);
2829 assert(tl>=0);
5bf843dc 2830 }
f18c0f46 2831#endif
5bf843dc 2832 if(offset||s<0||c) addr=tl;
2833 else addr=s;
535d208a 2834 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2835 if(tl>=0) {
2836 //printf("load_assemble: c=%d\n",c);
2837 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2838 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2839 reglist&=~(1<<tl);
2840 if(th>=0) reglist&=~(1<<th);
2841 if(!using_tlb) {
2842 if(!c) {
2843 #ifdef RAM_OFFSET
2844 map=get_reg(i_regs->regmap,ROREG);
2845 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2846 #endif
57871462 2847//#define R29_HACK 1
535d208a 2848 #ifdef R29_HACK
2849 // Strmnnrmn's speed hack
2850 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2851 #endif
2852 {
ffb0b9e0 2853 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
57871462 2854 }
535d208a 2855 }
a327ad27 2856 else if(ram_offset&&memtarget) {
2857 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2858 fastload_reg_override=HOST_TEMPREG;
2859 }
535d208a 2860 }else{ // using tlb
2861 int x=0;
2862 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2863 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2864 map=get_reg(i_regs->regmap,TLREG);
2865 assert(map>=0);
ea3d2e6e 2866 reglist&=~(1<<map);
535d208a 2867 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2868 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2869 }
2870 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2871 if (opcode[i]==0x20) { // LB
2872 if(!c||memtarget) {
2873 if(!dummy) {
57871462 2874 #ifdef HOST_IMM_ADDR32
2875 if(c)
2876 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2877 else
2878 #endif
2879 {
2880 //emit_xorimm(addr,3,tl);
2881 //gen_tlb_addr_r(tl,map);
2882 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2883 int x=0,a=tl;
2002a1db 2884#ifdef BIG_ENDIAN_MIPS
57871462 2885 if(!c) emit_xorimm(addr,3,tl);
2886 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2887#else
535d208a 2888 if(!c) a=addr;
dadf55f2 2889#endif
b1570849 2890 if(fastload_reg_override) a=fastload_reg_override;
2891
535d208a 2892 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2893 }
57871462 2894 }
535d208a 2895 if(jaddr)
2896 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2897 }
535d208a 2898 else
2899 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2900 }
2901 if (opcode[i]==0x21) { // LH
2902 if(!c||memtarget) {
2903 if(!dummy) {
57871462 2904 #ifdef HOST_IMM_ADDR32
2905 if(c)
2906 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2907 else
2908 #endif
2909 {
535d208a 2910 int x=0,a=tl;
2002a1db 2911#ifdef BIG_ENDIAN_MIPS
57871462 2912 if(!c) emit_xorimm(addr,2,tl);
2913 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2914#else
535d208a 2915 if(!c) a=addr;
dadf55f2 2916#endif
b1570849 2917 if(fastload_reg_override) a=fastload_reg_override;
57871462 2918 //#ifdef
2919 //emit_movswl_indexed_tlb(x,tl,map,tl);
2920 //else
2921 if(map>=0) {
535d208a 2922 gen_tlb_addr_r(a,map);
2923 emit_movswl_indexed(x,a,tl);
2924 }else{
a327ad27 2925 #if 1 //def RAM_OFFSET
535d208a 2926 emit_movswl_indexed(x,a,tl);
2927 #else
2928 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2929 #endif
2930 }
57871462 2931 }
57871462 2932 }
535d208a 2933 if(jaddr)
2934 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2935 }
535d208a 2936 else
2937 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2938 }
2939 if (opcode[i]==0x23) { // LW
2940 if(!c||memtarget) {
2941 if(!dummy) {
dadf55f2 2942 int a=addr;
b1570849 2943 if(fastload_reg_override) a=fastload_reg_override;
57871462 2944 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2945 #ifdef HOST_IMM_ADDR32
2946 if(c)
2947 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2948 else
2949 #endif
dadf55f2 2950 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2951 }
535d208a 2952 if(jaddr)
2953 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2954 }
535d208a 2955 else
2956 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2957 }
2958 if (opcode[i]==0x24) { // LBU
2959 if(!c||memtarget) {
2960 if(!dummy) {
57871462 2961 #ifdef HOST_IMM_ADDR32
2962 if(c)
2963 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2964 else
2965 #endif
2966 {
2967 //emit_xorimm(addr,3,tl);
2968 //gen_tlb_addr_r(tl,map);
2969 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2970 int x=0,a=tl;
2002a1db 2971#ifdef BIG_ENDIAN_MIPS
57871462 2972 if(!c) emit_xorimm(addr,3,tl);
2973 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2974#else
535d208a 2975 if(!c) a=addr;
dadf55f2 2976#endif
b1570849 2977 if(fastload_reg_override) a=fastload_reg_override;
2978
535d208a 2979 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 2980 }
57871462 2981 }
535d208a 2982 if(jaddr)
2983 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2984 }
535d208a 2985 else
2986 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2987 }
2988 if (opcode[i]==0x25) { // LHU
2989 if(!c||memtarget) {
2990 if(!dummy) {
57871462 2991 #ifdef HOST_IMM_ADDR32
2992 if(c)
2993 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2994 else
2995 #endif
2996 {
535d208a 2997 int x=0,a=tl;
2002a1db 2998#ifdef BIG_ENDIAN_MIPS
57871462 2999 if(!c) emit_xorimm(addr,2,tl);
3000 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3001#else
535d208a 3002 if(!c) a=addr;
dadf55f2 3003#endif
b1570849 3004 if(fastload_reg_override) a=fastload_reg_override;
57871462 3005 //#ifdef
3006 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3007 //#else
3008 if(map>=0) {
535d208a 3009 gen_tlb_addr_r(a,map);
3010 emit_movzwl_indexed(x,a,tl);
3011 }else{
a327ad27 3012 #if 1 //def RAM_OFFSET
535d208a 3013 emit_movzwl_indexed(x,a,tl);
3014 #else
3015 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3016 #endif
3017 }
57871462 3018 }
3019 }
535d208a 3020 if(jaddr)
3021 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3022 }
535d208a 3023 else
3024 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3025 }
3026 if (opcode[i]==0x27) { // LWU
3027 assert(th>=0);
3028 if(!c||memtarget) {
3029 if(!dummy) {
dadf55f2 3030 int a=addr;
b1570849 3031 if(fastload_reg_override) a=fastload_reg_override;
57871462 3032 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3033 #ifdef HOST_IMM_ADDR32
3034 if(c)
3035 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3036 else
3037 #endif
dadf55f2 3038 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3039 }
535d208a 3040 if(jaddr)
3041 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3042 }
3043 else {
3044 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3045 }
535d208a 3046 emit_zeroreg(th);
3047 }
3048 if (opcode[i]==0x37) { // LD
3049 if(!c||memtarget) {
3050 if(!dummy) {
dadf55f2 3051 int a=addr;
b1570849 3052 if(fastload_reg_override) a=fastload_reg_override;
57871462 3053 //gen_tlb_addr_r(tl,map);
3054 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3055 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3056 #ifdef HOST_IMM_ADDR32
3057 if(c)
3058 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3059 else
3060 #endif
dadf55f2 3061 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3062 }
535d208a 3063 if(jaddr)
3064 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3065 }
535d208a 3066 else
3067 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3068 }
535d208a 3069 }
3070 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3071 //if(opcode[i]==0x23)
3072 //if(opcode[i]==0x24)
3073 //if(opcode[i]==0x23||opcode[i]==0x24)
3074 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3075 {
3076 //emit_pusha();
3077 save_regs(0x100f);
3078 emit_readword((int)&last_count,ECX);
3079 #ifdef __i386__
3080 if(get_reg(i_regs->regmap,CCREG)<0)
3081 emit_loadreg(CCREG,HOST_CCREG);
3082 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3083 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3084 emit_writeword(HOST_CCREG,(int)&Count);
3085 #endif
3086 #ifdef __arm__
3087 if(get_reg(i_regs->regmap,CCREG)<0)
3088 emit_loadreg(CCREG,0);
3089 else
3090 emit_mov(HOST_CCREG,0);
3091 emit_add(0,ECX,0);
3092 emit_addimm(0,2*ccadj[i],0);
3093 emit_writeword(0,(int)&Count);
3094 #endif
3095 emit_call((int)memdebug);
3096 //emit_popa();
3097 restore_regs(0x100f);
3098 }/**/
3099}
3100
3101#ifndef loadlr_assemble
3102void loadlr_assemble(int i,struct regstat *i_regs)
3103{
3104 printf("Need loadlr_assemble for this architecture.\n");
3105 exit(1);
3106}
3107#endif
3108
3109void store_assemble(int i,struct regstat *i_regs)
3110{
3111 int s,th,tl,map=-1;
3112 int addr,temp;
3113 int offset;
3114 int jaddr=0,jaddr2,type;
666a299d 3115 int memtarget=0,c=0;
57871462 3116 int agr=AGEN1+(i&1);
b1570849 3117 int faststore_reg_override=0;
57871462 3118 u_int hr,reglist=0;
3119 th=get_reg(i_regs->regmap,rs2[i]|64);
3120 tl=get_reg(i_regs->regmap,rs2[i]);
3121 s=get_reg(i_regs->regmap,rs1[i]);
3122 temp=get_reg(i_regs->regmap,agr);
3123 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3124 offset=imm[i];
3125 if(s>=0) {
3126 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3127 if(c) {
3128 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3129 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3130 }
57871462 3131 }
3132 assert(tl>=0);
3133 assert(temp>=0);
3134 for(hr=0;hr<HOST_REGS;hr++) {
3135 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3136 }
3137 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3138 if(offset||s<0||c) addr=temp;
3139 else addr=s;
3140 if(!using_tlb) {
3141 if(!c) {
ffb0b9e0 3142 #ifndef PCSX
57871462 3143 #ifdef R29_HACK
3144 // Strmnnrmn's speed hack
4cb76aa4 3145 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3146 #endif
4cb76aa4 3147 emit_cmpimm(addr,RAM_SIZE);
57871462 3148 #ifdef DESTRUCTIVE_SHIFT
3149 if(s==addr) emit_mov(s,temp);
3150 #endif
3151 #ifdef R29_HACK
dadf55f2 3152 memtarget=1;
4cb76aa4 3153 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3154 #endif
3155 {
3156 jaddr=(int)out;
3157 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3158 // Hint to branch predictor that the branch is unlikely to be taken
3159 if(rs1[i]>=28)
3160 emit_jno_unlikely(0);
3161 else
3162 #endif
3163 emit_jno(0);
3164 }
ffb0b9e0 3165 #else
3166 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3167 #endif
57871462 3168 }
a327ad27 3169 else if(ram_offset&&memtarget) {
3170 emit_addimm(addr,ram_offset,HOST_TEMPREG);
3171 faststore_reg_override=HOST_TEMPREG;
3172 }
57871462 3173 }else{ // using tlb
3174 int x=0;
3175 if (opcode[i]==0x28) x=3; // SB
3176 if (opcode[i]==0x29) x=2; // SH
3177 map=get_reg(i_regs->regmap,TLREG);
3178 assert(map>=0);
ea3d2e6e 3179 reglist&=~(1<<map);
57871462 3180 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3181 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3182 }
3183
3184 if (opcode[i]==0x28) { // SB
3185 if(!c||memtarget) {
97a238a6 3186 int x=0,a=temp;
2002a1db 3187#ifdef BIG_ENDIAN_MIPS
57871462 3188 if(!c) emit_xorimm(addr,3,temp);
3189 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3190#else
97a238a6 3191 if(!c) a=addr;
dadf55f2 3192#endif
b1570849 3193 if(faststore_reg_override) a=faststore_reg_override;
57871462 3194 //gen_tlb_addr_w(temp,map);
3195 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3196 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3197 }
3198 type=STOREB_STUB;
3199 }
3200 if (opcode[i]==0x29) { // SH
3201 if(!c||memtarget) {
97a238a6 3202 int x=0,a=temp;
2002a1db 3203#ifdef BIG_ENDIAN_MIPS
57871462 3204 if(!c) emit_xorimm(addr,2,temp);
3205 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3206#else
97a238a6 3207 if(!c) a=addr;
dadf55f2 3208#endif
b1570849 3209 if(faststore_reg_override) a=faststore_reg_override;
57871462 3210 //#ifdef
3211 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3212 //#else
3213 if(map>=0) {
97a238a6 3214 gen_tlb_addr_w(a,map);
3215 emit_writehword_indexed(tl,x,a);
57871462 3216 }else
a327ad27 3217 //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3218 emit_writehword_indexed(tl,x,a);
57871462 3219 }
3220 type=STOREH_STUB;
3221 }
3222 if (opcode[i]==0x2B) { // SW
dadf55f2 3223 if(!c||memtarget) {
3224 int a=addr;
b1570849 3225 if(faststore_reg_override) a=faststore_reg_override;
57871462 3226 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3227 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3228 }
57871462 3229 type=STOREW_STUB;
3230 }
3231 if (opcode[i]==0x3F) { // SD
3232 if(!c||memtarget) {
dadf55f2 3233 int a=addr;
b1570849 3234 if(faststore_reg_override) a=faststore_reg_override;
57871462 3235 if(rs2[i]) {
3236 assert(th>=0);
3237 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3238 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3239 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3240 }else{
3241 // Store zero
3242 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3243 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3244 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3245 }
3246 }
3247 type=STORED_STUB;
3248 }
b96d3df7 3249#ifdef PCSX
3250 if(jaddr) {
3251 // PCSX store handlers don't check invcode again
3252 reglist|=1<<addr;
3253 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3254 jaddr=0;
3255 }
3256#endif
0ff8c62c 3257 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3258 if(!c||memtarget) {
3259 #ifdef DESTRUCTIVE_SHIFT
3260 // The x86 shift operation is 'destructive'; it overwrites the
3261 // source register, so we need to make a copy first and use that.
3262 addr=temp;
3263 #endif
3264 #if defined(HOST_IMM8)
3265 int ir=get_reg(i_regs->regmap,INVCP);
3266 assert(ir>=0);
3267 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3268 #else
3269 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3270 #endif
0bbd1454 3271 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3272 emit_callne(invalidate_addr_reg[addr]);
3273 #else
57871462 3274 jaddr2=(int)out;
3275 emit_jne(0);
3276 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3277 #endif
57871462 3278 }
3279 }
7a518516 3280 u_int addr_val=constmap[i][s]+offset;
3eaa7048 3281 if(jaddr) {
3282 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3283 } else if(c&&!memtarget) {
7a518516 3284 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3285 }
3286 // basic current block modification detection..
3287 // not looking back as that should be in mips cache already
3288 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
c43b5311 3289 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
7a518516 3290 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3291 if(i_regs->regmap==regs[i].regmap) {
3292 load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3293 wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3294 emit_movimm(start+i*4+4,0);
3295 emit_writeword(0,(int)&pcaddr);
3296 emit_jmp((int)do_interrupt);
3297 }
3eaa7048 3298 }
57871462 3299 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3300 //if(opcode[i]==0x2B || opcode[i]==0x28)
3301 //if(opcode[i]==0x2B || opcode[i]==0x29)
3302 //if(opcode[i]==0x2B)
3303 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3304 {
28d74ee8 3305 #ifdef __i386__
3306 emit_pusha();
3307 #endif
3308 #ifdef __arm__
57871462 3309 save_regs(0x100f);
28d74ee8 3310 #endif
57871462 3311 emit_readword((int)&last_count,ECX);
3312 #ifdef __i386__
3313 if(get_reg(i_regs->regmap,CCREG)<0)
3314 emit_loadreg(CCREG,HOST_CCREG);
3315 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3316 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3317 emit_writeword(HOST_CCREG,(int)&Count);
3318 #endif
3319 #ifdef __arm__
3320 if(get_reg(i_regs->regmap,CCREG)<0)
3321 emit_loadreg(CCREG,0);
3322 else
3323 emit_mov(HOST_CCREG,0);
3324 emit_add(0,ECX,0);
3325 emit_addimm(0,2*ccadj[i],0);
3326 emit_writeword(0,(int)&Count);
3327 #endif
3328 emit_call((int)memdebug);
28d74ee8 3329 #ifdef __i386__
3330 emit_popa();
3331 #endif
3332 #ifdef __arm__
57871462 3333 restore_regs(0x100f);
28d74ee8 3334 #endif
57871462 3335 }/**/
3336}
3337
3338void storelr_assemble(int i,struct regstat *i_regs)
3339{
3340 int s,th,tl;
3341 int temp;
3342 int temp2;
3343 int offset;
3344 int jaddr=0,jaddr2;
3345 int case1,case2,case3;
3346 int done0,done1,done2;
af4ee1fe 3347 int memtarget=0,c=0;
fab5d06d 3348 int agr=AGEN1+(i&1);
57871462 3349 u_int hr,reglist=0;
3350 th=get_reg(i_regs->regmap,rs2[i]|64);
3351 tl=get_reg(i_regs->regmap,rs2[i]);
3352 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3353 temp=get_reg(i_regs->regmap,agr);
3354 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3355 offset=imm[i];
3356 if(s>=0) {
3357 c=(i_regs->isconst>>s)&1;
af4ee1fe 3358 if(c) {
3359 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3360 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3361 }
57871462 3362 }
3363 assert(tl>=0);
3364 for(hr=0;hr<HOST_REGS;hr++) {
3365 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3366 }
535d208a 3367 assert(temp>=0);
3368 if(!using_tlb) {
3369 if(!c) {
3370 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3371 if(!offset&&s!=temp) emit_mov(s,temp);
3372 jaddr=(int)out;
3373 emit_jno(0);
3374 }
3375 else
3376 {
3377 if(!memtarget||!rs1[i]) {
57871462 3378 jaddr=(int)out;
3379 emit_jmp(0);
3380 }
57871462 3381 }
535d208a 3382 #ifdef RAM_OFFSET
3383 int map=get_reg(i_regs->regmap,ROREG);
3384 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3385 gen_tlb_addr_w(temp,map);
3386 #else
3387 if((u_int)rdram!=0x80000000)
3388 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3389 #endif
3390 }else{ // using tlb
3391 int map=get_reg(i_regs->regmap,TLREG);
3392 assert(map>=0);
ea3d2e6e 3393 reglist&=~(1<<map);
535d208a 3394 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3395 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3396 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3397 if(!jaddr&&!memtarget) {
3398 jaddr=(int)out;
3399 emit_jmp(0);
57871462 3400 }
535d208a 3401 gen_tlb_addr_w(temp,map);
3402 }
3403
3404 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3405 temp2=get_reg(i_regs->regmap,FTEMP);
3406 if(!rs2[i]) temp2=th=tl;
3407 }
57871462 3408
2002a1db 3409#ifndef BIG_ENDIAN_MIPS
3410 emit_xorimm(temp,3,temp);
3411#endif
535d208a 3412 emit_testimm(temp,2);
3413 case2=(int)out;
3414 emit_jne(0);
3415 emit_testimm(temp,1);
3416 case1=(int)out;
3417 emit_jne(0);
3418 // 0
3419 if (opcode[i]==0x2A) { // SWL
3420 emit_writeword_indexed(tl,0,temp);
3421 }
3422 if (opcode[i]==0x2E) { // SWR
3423 emit_writebyte_indexed(tl,3,temp);
3424 }
3425 if (opcode[i]==0x2C) { // SDL
3426 emit_writeword_indexed(th,0,temp);
3427 if(rs2[i]) emit_mov(tl,temp2);
3428 }
3429 if (opcode[i]==0x2D) { // SDR
3430 emit_writebyte_indexed(tl,3,temp);
3431 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3432 }
3433 done0=(int)out;
3434 emit_jmp(0);
3435 // 1
3436 set_jump_target(case1,(int)out);
3437 if (opcode[i]==0x2A) { // SWL
3438 // Write 3 msb into three least significant bytes
3439 if(rs2[i]) emit_rorimm(tl,8,tl);
3440 emit_writehword_indexed(tl,-1,temp);
3441 if(rs2[i]) emit_rorimm(tl,16,tl);
3442 emit_writebyte_indexed(tl,1,temp);
3443 if(rs2[i]) emit_rorimm(tl,8,tl);
3444 }
3445 if (opcode[i]==0x2E) { // SWR
3446 // Write two lsb into two most significant bytes
3447 emit_writehword_indexed(tl,1,temp);
3448 }
3449 if (opcode[i]==0x2C) { // SDL
3450 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3451 // Write 3 msb into three least significant bytes
3452 if(rs2[i]) emit_rorimm(th,8,th);
3453 emit_writehword_indexed(th,-1,temp);
3454 if(rs2[i]) emit_rorimm(th,16,th);
3455 emit_writebyte_indexed(th,1,temp);
3456 if(rs2[i]) emit_rorimm(th,8,th);
3457 }
3458 if (opcode[i]==0x2D) { // SDR
3459 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3460 // Write two lsb into two most significant bytes
3461 emit_writehword_indexed(tl,1,temp);
3462 }
3463 done1=(int)out;
3464 emit_jmp(0);
3465 // 2
3466 set_jump_target(case2,(int)out);
3467 emit_testimm(temp,1);
3468 case3=(int)out;
3469 emit_jne(0);
3470 if (opcode[i]==0x2A) { // SWL
3471 // Write two msb into two least significant bytes
3472 if(rs2[i]) emit_rorimm(tl,16,tl);
3473 emit_writehword_indexed(tl,-2,temp);
3474 if(rs2[i]) emit_rorimm(tl,16,tl);
3475 }
3476 if (opcode[i]==0x2E) { // SWR
3477 // Write 3 lsb into three most significant bytes
3478 emit_writebyte_indexed(tl,-1,temp);
3479 if(rs2[i]) emit_rorimm(tl,8,tl);
3480 emit_writehword_indexed(tl,0,temp);
3481 if(rs2[i]) emit_rorimm(tl,24,tl);
3482 }
3483 if (opcode[i]==0x2C) { // SDL
3484 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3485 // Write two msb into two least significant bytes
3486 if(rs2[i]) emit_rorimm(th,16,th);
3487 emit_writehword_indexed(th,-2,temp);
3488 if(rs2[i]) emit_rorimm(th,16,th);
3489 }
3490 if (opcode[i]==0x2D) { // SDR
3491 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3492 // Write 3 lsb into three most significant bytes
3493 emit_writebyte_indexed(tl,-1,temp);
3494 if(rs2[i]) emit_rorimm(tl,8,tl);
3495 emit_writehword_indexed(tl,0,temp);
3496 if(rs2[i]) emit_rorimm(tl,24,tl);
3497 }
3498 done2=(int)out;
3499 emit_jmp(0);
3500 // 3
3501 set_jump_target(case3,(int)out);
3502 if (opcode[i]==0x2A) { // SWL
3503 // Write msb into least significant byte
3504 if(rs2[i]) emit_rorimm(tl,24,tl);
3505 emit_writebyte_indexed(tl,-3,temp);
3506 if(rs2[i]) emit_rorimm(tl,8,tl);
3507 }
3508 if (opcode[i]==0x2E) { // SWR
3509 // Write entire word
3510 emit_writeword_indexed(tl,-3,temp);
3511 }
3512 if (opcode[i]==0x2C) { // SDL
3513 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3514 // Write msb into least significant byte
3515 if(rs2[i]) emit_rorimm(th,24,th);
3516 emit_writebyte_indexed(th,-3,temp);
3517 if(rs2[i]) emit_rorimm(th,8,th);
3518 }
3519 if (opcode[i]==0x2D) { // SDR
3520 if(rs2[i]) emit_mov(th,temp2);
3521 // Write entire word
3522 emit_writeword_indexed(tl,-3,temp);
3523 }
3524 set_jump_target(done0,(int)out);
3525 set_jump_target(done1,(int)out);
3526 set_jump_target(done2,(int)out);
3527 if (opcode[i]==0x2C) { // SDL
3528 emit_testimm(temp,4);
57871462 3529 done0=(int)out;
57871462 3530 emit_jne(0);
535d208a 3531 emit_andimm(temp,~3,temp);
3532 emit_writeword_indexed(temp2,4,temp);
3533 set_jump_target(done0,(int)out);
3534 }
3535 if (opcode[i]==0x2D) { // SDR
3536 emit_testimm(temp,4);
3537 done0=(int)out;
3538 emit_jeq(0);
3539 emit_andimm(temp,~3,temp);
3540 emit_writeword_indexed(temp2,-4,temp);
57871462 3541 set_jump_target(done0,(int)out);
57871462 3542 }
535d208a 3543 if(!c||!memtarget)
3544 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
0ff8c62c 3545 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
535d208a 3546 #ifdef RAM_OFFSET
3547 int map=get_reg(i_regs->regmap,ROREG);
3548 if(map<0) map=HOST_TEMPREG;
3549 gen_orig_addr_w(temp,map);
3550 #else
57871462 3551 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3552 #endif
57871462 3553 #if defined(HOST_IMM8)
3554 int ir=get_reg(i_regs->regmap,INVCP);
3555 assert(ir>=0);
3556 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3557 #else
3558 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3559 #endif
535d208a 3560 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3561 emit_callne(invalidate_addr_reg[temp]);
3562 #else
57871462 3563 jaddr2=(int)out;
3564 emit_jne(0);
3565 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3566 #endif
57871462 3567 }
3568 /*
3569 emit_pusha();
3570 //save_regs(0x100f);
3571 emit_readword((int)&last_count,ECX);
3572 if(get_reg(i_regs->regmap,CCREG)<0)
3573 emit_loadreg(CCREG,HOST_CCREG);
3574 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3575 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3576 emit_writeword(HOST_CCREG,(int)&Count);
3577 emit_call((int)memdebug);
3578 emit_popa();
3579 //restore_regs(0x100f);
3580 /**/
3581}
3582
3583void c1ls_assemble(int i,struct regstat *i_regs)
3584{
3d624f89 3585#ifndef DISABLE_COP1
57871462 3586 int s,th,tl;
3587 int temp,ar;
3588 int map=-1;
3589 int offset;
3590 int c=0;
3591 int jaddr,jaddr2=0,jaddr3,type;
3592 int agr=AGEN1+(i&1);
3593 u_int hr,reglist=0;
3594 th=get_reg(i_regs->regmap,FTEMP|64);
3595 tl=get_reg(i_regs->regmap,FTEMP);
3596 s=get_reg(i_regs->regmap,rs1[i]);
3597 temp=get_reg(i_regs->regmap,agr);
3598 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3599 offset=imm[i];
3600 assert(tl>=0);
3601 assert(rs1[i]>0);
3602 assert(temp>=0);
3603 for(hr=0;hr<HOST_REGS;hr++) {
3604 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3605 }
3606 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3607 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3608 {
3609 // Loads use a temporary register which we need to save
3610 reglist|=1<<temp;
3611 }
3612 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3613 ar=temp;
3614 else // LWC1/LDC1
3615 ar=tl;
3616 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3617 //else c=(i_regs->wasconst>>s)&1;
3618 if(s>=0) c=(i_regs->wasconst>>s)&1;
3619 // Check cop1 unusable
3620 if(!cop1_usable) {
3621 signed char rs=get_reg(i_regs->regmap,CSREG);
3622 assert(rs>=0);
3623 emit_testimm(rs,0x20000000);
3624 jaddr=(int)out;
3625 emit_jeq(0);
3626 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3627 cop1_usable=1;
3628 }
3629 if (opcode[i]==0x39) { // SWC1 (get float address)
3630 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3631 }
3632 if (opcode[i]==0x3D) { // SDC1 (get double address)
3633 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3634 }
3635 // Generate address + offset
3636 if(!using_tlb) {
3637 if(!c)
4cb76aa4 3638 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3639 }
3640 else
3641 {
3642 map=get_reg(i_regs->regmap,TLREG);
3643 assert(map>=0);
ea3d2e6e 3644 reglist&=~(1<<map);
57871462 3645 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3646 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3647 }
3648 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3649 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3650 }
3651 }
3652 if (opcode[i]==0x39) { // SWC1 (read float)
3653 emit_readword_indexed(0,tl,tl);
3654 }
3655 if (opcode[i]==0x3D) { // SDC1 (read double)
3656 emit_readword_indexed(4,tl,th);
3657 emit_readword_indexed(0,tl,tl);
3658 }
3659 if (opcode[i]==0x31) { // LWC1 (get target address)
3660 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3661 }
3662 if (opcode[i]==0x35) { // LDC1 (get target address)
3663 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3664 }
3665 if(!using_tlb) {
3666 if(!c) {
3667 jaddr2=(int)out;
3668 emit_jno(0);
3669 }
4cb76aa4 3670 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3671 jaddr2=(int)out;
3672 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3673 }
3674 #ifdef DESTRUCTIVE_SHIFT
3675 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3676 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3677 }
3678 #endif
3679 }else{
3680 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3681 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3682 }
3683 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3684 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3685 }
3686 }
3687 if (opcode[i]==0x31) { // LWC1
3688 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3689 //gen_tlb_addr_r(ar,map);
3690 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3691 #ifdef HOST_IMM_ADDR32
3692 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3693 else
3694 #endif
3695 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3696 type=LOADW_STUB;
3697 }
3698 if (opcode[i]==0x35) { // LDC1
3699 assert(th>=0);
3700 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3701 //gen_tlb_addr_r(ar,map);
3702 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3703 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3704 #ifdef HOST_IMM_ADDR32
3705 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3706 else
3707 #endif
3708 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3709 type=LOADD_STUB;
3710 }
3711 if (opcode[i]==0x39) { // SWC1
3712 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3713 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3714 type=STOREW_STUB;
3715 }
3716 if (opcode[i]==0x3D) { // SDC1
3717 assert(th>=0);
3718 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3719 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3720 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3721 type=STORED_STUB;
3722 }
0ff8c62c 3723 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3724 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3725 #ifndef DESTRUCTIVE_SHIFT
3726 temp=offset||c||s<0?ar:s;
3727 #endif
3728 #if defined(HOST_IMM8)
3729 int ir=get_reg(i_regs->regmap,INVCP);
3730 assert(ir>=0);
3731 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3732 #else
3733 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3734 #endif
0bbd1454 3735 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3736 emit_callne(invalidate_addr_reg[temp]);
3737 #else
57871462 3738 jaddr3=(int)out;
3739 emit_jne(0);
3740 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3741 #endif
57871462 3742 }
3743 }
3744 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3745 if (opcode[i]==0x31) { // LWC1 (write float)
3746 emit_writeword_indexed(tl,0,temp);
3747 }
3748 if (opcode[i]==0x35) { // LDC1 (write double)
3749 emit_writeword_indexed(th,4,temp);
3750 emit_writeword_indexed(tl,0,temp);
3751 }
3752 //if(opcode[i]==0x39)
3753 /*if(opcode[i]==0x39||opcode[i]==0x31)
3754 {
3755 emit_pusha();
3756 emit_readword((int)&last_count,ECX);
3757 if(get_reg(i_regs->regmap,CCREG)<0)
3758 emit_loadreg(CCREG,HOST_CCREG);
3759 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3760 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3761 emit_writeword(HOST_CCREG,(int)&Count);
3762 emit_call((int)memdebug);
3763 emit_popa();
3764 }/**/
3d624f89 3765#else
3766 cop1_unusable(i, i_regs);
3767#endif
57871462 3768}
3769
b9b61529 3770void c2ls_assemble(int i,struct regstat *i_regs)
3771{
3772 int s,tl;
3773 int ar;
3774 int offset;
1fd1aceb 3775 int memtarget=0,c=0;
c2e3bd42 3776 int jaddr2=0,jaddr3,type;
b9b61529 3777 int agr=AGEN1+(i&1);
ffb0b9e0 3778 int fastio_reg_override=0;
b9b61529 3779 u_int hr,reglist=0;
3780 u_int copr=(source[i]>>16)&0x1f;
3781 s=get_reg(i_regs->regmap,rs1[i]);
3782 tl=get_reg(i_regs->regmap,FTEMP);
3783 offset=imm[i];
3784 assert(rs1[i]>0);
3785 assert(tl>=0);
3786 assert(!using_tlb);
3787
3788 for(hr=0;hr<HOST_REGS;hr++) {
3789 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3790 }
3791 if(i_regs->regmap[HOST_CCREG]==CCREG)
3792 reglist&=~(1<<HOST_CCREG);
3793
3794 // get the address
3795 if (opcode[i]==0x3a) { // SWC2
3796 ar=get_reg(i_regs->regmap,agr);
3797 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3798 reglist|=1<<ar;
3799 } else { // LWC2
3800 ar=tl;
3801 }
1fd1aceb 3802 if(s>=0) c=(i_regs->wasconst>>s)&1;
3803 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3804 if (!offset&&!c&&s>=0) ar=s;
3805 assert(ar>=0);
3806
3807 if (opcode[i]==0x3a) { // SWC2
3808 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3809 type=STOREW_STUB;
b9b61529 3810 }
1fd1aceb 3811 else
b9b61529 3812 type=LOADW_STUB;
1fd1aceb 3813
3814 if(c&&!memtarget) {
3815 jaddr2=(int)out;
3816 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3817 }
1fd1aceb 3818 else {
3819 if(!c) {
ffb0b9e0 3820 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3821 }
a327ad27 3822 else if(ram_offset&&memtarget) {
3823 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3824 fastio_reg_override=HOST_TEMPREG;
3825 }
1fd1aceb 3826 if (opcode[i]==0x32) { // LWC2
3827 #ifdef HOST_IMM_ADDR32
3828 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3829 else
3830 #endif
ffb0b9e0 3831 int a=ar;
3832 if(fastio_reg_override) a=fastio_reg_override;
3833 emit_readword_indexed(0,a,tl);
1fd1aceb 3834 }
3835 if (opcode[i]==0x3a) { // SWC2
3836 #ifdef DESTRUCTIVE_SHIFT
3837 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3838 #endif
ffb0b9e0 3839 int a=ar;
3840 if(fastio_reg_override) a=fastio_reg_override;
3841 emit_writeword_indexed(tl,0,a);
1fd1aceb 3842 }
b9b61529 3843 }
3844 if(jaddr2)
3845 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
0ff8c62c 3846 if(opcode[i]==0x3a) // SWC2
3847 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
b9b61529 3848#if defined(HOST_IMM8)
3849 int ir=get_reg(i_regs->regmap,INVCP);
3850 assert(ir>=0);
3851 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3852#else
3853 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3854#endif
0bbd1454 3855 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3856 emit_callne(invalidate_addr_reg[ar]);
3857 #else
b9b61529 3858 jaddr3=(int)out;
3859 emit_jne(0);
3860 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3861 #endif
b9b61529 3862 }
3863 if (opcode[i]==0x32) { // LWC2
3864 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3865 }
3866}
3867
57871462 3868#ifndef multdiv_assemble
3869void multdiv_assemble(int i,struct regstat *i_regs)
3870{
3871 printf("Need multdiv_assemble for this architecture.\n");
3872 exit(1);
3873}
3874#endif
3875
3876void mov_assemble(int i,struct regstat *i_regs)
3877{
3878 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3879 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3880 if(rt1[i]) {
3881 signed char sh,sl,th,tl;
3882 th=get_reg(i_regs->regmap,rt1[i]|64);
3883 tl=get_reg(i_regs->regmap,rt1[i]);
3884 //assert(tl>=0);
3885 if(tl>=0) {
3886 sh=get_reg(i_regs->regmap,rs1[i]|64);
3887 sl=get_reg(i_regs->regmap,rs1[i]);
3888 if(sl>=0) emit_mov(sl,tl);
3889 else emit_loadreg(rs1[i],tl);
3890 if(th>=0) {
3891 if(sh>=0) emit_mov(sh,th);
3892 else emit_loadreg(rs1[i]|64,th);
3893 }
3894 }
3895 }
3896}
3897
3898#ifndef fconv_assemble
3899void fconv_assemble(int i,struct regstat *i_regs)
3900{
3901 printf("Need fconv_assemble for this architecture.\n");
3902 exit(1);
3903}
3904#endif
3905
3906#if 0
3907void float_assemble(int i,struct regstat *i_regs)
3908{
3909 printf("Need float_assemble for this architecture.\n");
3910 exit(1);
3911}
3912#endif
3913
3914void syscall_assemble(int i,struct regstat *i_regs)
3915{
3916 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3917 assert(ccreg==HOST_CCREG);
3918 assert(!is_delayslot);
3919 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3920 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3921 emit_jmp((int)jump_syscall_hle); // XXX
3922}
3923
3924void hlecall_assemble(int i,struct regstat *i_regs)
3925{
3926 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3927 assert(ccreg==HOST_CCREG);
3928 assert(!is_delayslot);
3929 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3930 emit_movimm((int)psxHLEt[source[i]&7],1);
2573466a 3931 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
67ba0fb4 3932 emit_jmp((int)jump_hlecall);
57871462 3933}
3934
1e973cb0 3935void intcall_assemble(int i,struct regstat *i_regs)
3936{
3937 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3938 assert(ccreg==HOST_CCREG);
3939 assert(!is_delayslot);
3940 emit_movimm(start+i*4,0); // Get PC
2573466a 3941 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
1e973cb0 3942 emit_jmp((int)jump_intcall);
3943}
3944
57871462 3945void ds_assemble(int i,struct regstat *i_regs)
3946{
ffb0b9e0 3947 speculate_register_values(i);
57871462 3948 is_delayslot=1;
3949 switch(itype[i]) {
3950 case ALU:
3951 alu_assemble(i,i_regs);break;
3952 case IMM16:
3953 imm16_assemble(i,i_regs);break;
3954 case SHIFT:
3955 shift_assemble(i,i_regs);break;
3956 case SHIFTIMM:
3957 shiftimm_assemble(i,i_regs);break;
3958 case LOAD:
3959 load_assemble(i,i_regs);break;
3960 case LOADLR:
3961 loadlr_assemble(i,i_regs);break;
3962 case STORE:
3963 store_assemble(i,i_regs);break;
3964 case STORELR:
3965 storelr_assemble(i,i_regs);break;
3966 case COP0:
3967 cop0_assemble(i,i_regs);break;
3968 case COP1:
3969 cop1_assemble(i,i_regs);break;
3970 case C1LS:
3971 c1ls_assemble(i,i_regs);break;
b9b61529 3972 case COP2:
3973 cop2_assemble(i,i_regs);break;
3974 case C2LS:
3975 c2ls_assemble(i,i_regs);break;
3976 case C2OP:
3977 c2op_assemble(i,i_regs);break;
57871462 3978 case FCONV:
3979 fconv_assemble(i,i_regs);break;
3980 case FLOAT:
3981 float_assemble(i,i_regs);break;
3982 case FCOMP:
3983 fcomp_assemble(i,i_regs);break;
3984 case MULTDIV:
3985 multdiv_assemble(i,i_regs);break;
3986 case MOV:
3987 mov_assemble(i,i_regs);break;
3988 case SYSCALL:
7139f3c8 3989 case HLECALL:
1e973cb0 3990 case INTCALL:
57871462 3991 case SPAN:
3992 case UJUMP:
3993 case RJUMP:
3994 case CJUMP:
3995 case SJUMP:
3996 case FJUMP:
c43b5311 3997 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
57871462 3998 }
3999 is_delayslot=0;
4000}
4001
4002// Is the branch target a valid internal jump?
4003int internal_branch(uint64_t i_is32,int addr)
4004{
4005 if(addr&1) return 0; // Indirect (register) jump
4006 if(addr>=start && addr<start+slen*4-4)
4007 {
4008 int t=(addr-start)>>2;
4009 // Delay slots are not valid branch targets
4010 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4011 // 64 -> 32 bit transition requires a recompile
4012 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4013 {
4014 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4015 else printf("optimizable: yes\n");
4016 }*/
4017 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4018#ifndef FORCE32
57871462 4019 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4020 else
4021#endif
4022 return 1;
57871462 4023 }
4024 return 0;
4025}
4026
4027#ifndef wb_invalidate
4028void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4029 uint64_t u,uint64_t uu)
4030{
4031 int hr;
4032 for(hr=0;hr<HOST_REGS;hr++) {
4033 if(hr!=EXCLUDE_REG) {
4034 if(pre[hr]!=entry[hr]) {
4035 if(pre[hr]>=0) {
4036 if((dirty>>hr)&1) {
4037 if(get_reg(entry,pre[hr])<0) {
4038 if(pre[hr]<64) {
4039 if(!((u>>pre[hr])&1)) {
4040 emit_storereg(pre[hr],hr);
4041 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4042 emit_sarimm(hr,31,hr);
4043 emit_storereg(pre[hr]|64,hr);
4044 }
4045 }
4046 }else{
4047 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4048 emit_storereg(pre[hr],hr);
4049 }
4050 }
4051 }
4052 }
4053 }
4054 }
4055 }
4056 }
4057 // Move from one register to another (no writeback)
4058 for(hr=0;hr<HOST_REGS;hr++) {
4059 if(hr!=EXCLUDE_REG) {
4060 if(pre[hr]!=entry[hr]) {
4061 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4062 int nr;
4063 if((nr=get_reg(entry,pre[hr]))>=0) {
4064 emit_mov(hr,nr);
4065 }
4066 }
4067 }
4068 }
4069 }
4070}
4071#endif
4072
4073// Load the specified registers
4074// This only loads the registers given as arguments because
4075// we don't want to load things that will be overwritten
4076void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4077{
4078 int hr;
4079 // Load 32-bit regs
4080 for(hr=0;hr<HOST_REGS;hr++) {
4081 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4082 if(entry[hr]!=regmap[hr]) {
4083 if(regmap[hr]==rs1||regmap[hr]==rs2)
4084 {
4085 if(regmap[hr]==0) {
4086 emit_zeroreg(hr);
4087 }
4088 else
4089 {
4090 emit_loadreg(regmap[hr],hr);
4091 }
4092 }
4093 }
4094 }
4095 }
4096 //Load 64-bit regs
4097 for(hr=0;hr<HOST_REGS;hr++) {
4098 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4099 if(entry[hr]!=regmap[hr]) {
4100 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4101 {
4102 assert(regmap[hr]!=64);
4103 if((is32>>(regmap[hr]&63))&1) {
4104 int lr=get_reg(regmap,regmap[hr]-64);
4105 if(lr>=0)
4106 emit_sarimm(lr,31,hr);
4107 else
4108 emit_loadreg(regmap[hr],hr);
4109 }
4110 else
4111 {
4112 emit_loadreg(regmap[hr],hr);
4113 }
4114 }
4115 }
4116 }
4117 }
4118}
4119
4120// Load registers prior to the start of a loop
4121// so that they are not loaded within the loop
4122static void loop_preload(signed char pre[],signed char entry[])
4123{
4124 int hr;
4125 for(hr=0;hr<HOST_REGS;hr++) {
4126 if(hr!=EXCLUDE_REG) {
4127 if(pre[hr]!=entry[hr]) {
4128 if(entry[hr]>=0) {
4129 if(get_reg(pre,entry[hr])<0) {
4130 assem_debug("loop preload:\n");
4131 //printf("loop preload: %d\n",hr);
4132 if(entry[hr]==0) {
4133 emit_zeroreg(hr);
4134 }
4135 else if(entry[hr]<TEMPREG)
4136 {
4137 emit_loadreg(entry[hr],hr);
4138 }
4139 else if(entry[hr]-64<TEMPREG)
4140 {
4141 emit_loadreg(entry[hr],hr);
4142 }
4143 }
4144 }
4145 }
4146 }
4147 }
4148}
4149
4150// Generate address for load/store instruction
b9b61529 4151// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4152void address_generation(int i,struct regstat *i_regs,signed char entry[])
4153{
b9b61529 4154 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4155 int ra=-1;
57871462 4156 int agr=AGEN1+(i&1);
4157 int mgr=MGEN1+(i&1);
4158 if(itype[i]==LOAD) {
4159 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4160 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4161 assert(ra>=0);
57871462 4162 }
4163 if(itype[i]==LOADLR) {
4164 ra=get_reg(i_regs->regmap,FTEMP);
4165 }
4166 if(itype[i]==STORE||itype[i]==STORELR) {
4167 ra=get_reg(i_regs->regmap,agr);
4168 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4169 }
b9b61529 4170 if(itype[i]==C1LS||itype[i]==C2LS) {
4171 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4172 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4173 else { // SWC1/SDC1/SWC2/SDC2
57871462 4174 ra=get_reg(i_regs->regmap,agr);
4175 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4176 }
4177 }
4178 int rs=get_reg(i_regs->regmap,rs1[i]);
4179 int rm=get_reg(i_regs->regmap,TLREG);
4180 if(ra>=0) {
4181 int offset=imm[i];
4182 int c=(i_regs->wasconst>>rs)&1;
4183 if(rs1[i]==0) {
4184 // Using r0 as a base address
4185 /*if(rm>=0) {
4186 if(!entry||entry[rm]!=mgr) {
4187 generate_map_const(offset,rm);
4188 } // else did it in the previous cycle
4189 }*/
4190 if(!entry||entry[ra]!=agr) {
4191 if (opcode[i]==0x22||opcode[i]==0x26) {
4192 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4193 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4194 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4195 }else{
4196 emit_movimm(offset,ra);
4197 }
4198 } // else did it in the previous cycle
4199 }
4200 else if(rs<0) {
4201 if(!entry||entry[ra]!=rs1[i])
4202 emit_loadreg(rs1[i],ra);
4203 //if(!entry||entry[ra]!=rs1[i])
4204 // printf("poor load scheduling!\n");
4205 }
4206 else if(c) {
63cb0298 4207#ifndef DISABLE_TLB
57871462 4208 if(rm>=0) {
4209 if(!entry||entry[rm]!=mgr) {
b9b61529 4210 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4211 // Stores to memory go thru the mapper to detect self-modifying
4212 // code, loads don't.
4213 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4214 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4215 generate_map_const(constmap[i][rs]+offset,rm);
4216 }else{
4217 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4218 generate_map_const(constmap[i][rs]+offset,rm);
4219 }
4220 }
4221 }
63cb0298 4222#endif
57871462 4223 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4224 if(!entry||entry[ra]!=agr) {
4225 if (opcode[i]==0x22||opcode[i]==0x26) {
4226 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4227 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4228 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4229 }else{
4230 #ifdef HOST_IMM_ADDR32
b9b61529 4231 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4232 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4233 #endif
4234 emit_movimm(constmap[i][rs]+offset,ra);
8575a877 4235 regs[i].loadedconst|=1<<ra;
57871462 4236 }
4237 } // else did it in the previous cycle
4238 } // else load_consts already did it
4239 }
4240 if(offset&&!c&&rs1[i]) {
4241 if(rs>=0) {
4242 emit_addimm(rs,offset,ra);
4243 }else{
4244 emit_addimm(ra,offset,ra);
4245 }
4246 }
4247 }
4248 }
4249 // Preload constants for next instruction
b9b61529 4250 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4251 int agr,ra;
63cb0298 4252 #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
57871462 4253 // Mapper entry
4254 agr=MGEN1+((i+1)&1);
4255 ra=get_reg(i_regs->regmap,agr);
4256 if(ra>=0) {
4257 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4258 int offset=imm[i+1];
4259 int c=(regs[i+1].wasconst>>rs)&1;
4260 if(c) {
b9b61529 4261 if(itype[i+1]==STORE||itype[i+1]==STORELR
4262 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4263 // Stores to memory go thru the mapper to detect self-modifying
4264 // code, loads don't.
4265 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4266 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4267 generate_map_const(constmap[i+1][rs]+offset,ra);
4268 }else{
4269 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4270 generate_map_const(constmap[i+1][rs]+offset,ra);
4271 }
4272 }
4273 /*else if(rs1[i]==0) {
4274 generate_map_const(offset,ra);
4275 }*/
4276 }
4277 #endif
4278 // Actual address
4279 agr=AGEN1+((i+1)&1);
4280 ra=get_reg(i_regs->regmap,agr);
4281 if(ra>=0) {
4282 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4283 int offset=imm[i+1];
4284 int c=(regs[i+1].wasconst>>rs)&1;
4285 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4286 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4287 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4288 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4289 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4290 }else{
4291 #ifdef HOST_IMM_ADDR32
b9b61529 4292 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4293 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4294 #endif
4295 emit_movimm(constmap[i+1][rs]+offset,ra);
8575a877 4296 regs[i+1].loadedconst|=1<<ra;
57871462 4297 }
4298 }
4299 else if(rs1[i+1]==0) {
4300 // Using r0 as a base address
4301 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4302 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4303 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4304 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4305 }else{
4306 emit_movimm(offset,ra);
4307 }
4308 }
4309 }
4310 }
4311}
4312
4313int get_final_value(int hr, int i, int *value)
4314{
4315 int reg=regs[i].regmap[hr];
4316 while(i<slen-1) {
4317 if(regs[i+1].regmap[hr]!=reg) break;
4318 if(!((regs[i+1].isconst>>hr)&1)) break;
4319 if(bt[i+1]) break;
4320 i++;
4321 }
4322 if(i<slen-1) {
4323 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4324 *value=constmap[i][hr];
4325 return 1;
4326 }
4327 if(!bt[i+1]) {
4328 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4329 // Load in delay slot, out-of-order execution
4330 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4331 {
4332 #ifdef HOST_IMM_ADDR32
4333 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4334 #endif
4335 // Precompute load address
4336 *value=constmap[i][hr]+imm[i+2];
4337 return 1;
4338 }
4339 }
4340 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4341 {
4342 #ifdef HOST_IMM_ADDR32
4343 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4344 #endif
4345 // Precompute load address
4346 *value=constmap[i][hr]+imm[i+1];
4347 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4348 return 1;
4349 }
4350 }
4351 }
4352 *value=constmap[i][hr];
4353 //printf("c=%x\n",(int)constmap[i][hr]);
4354 if(i==slen-1) return 1;
4355 if(reg<64) {
4356 return !((unneeded_reg[i+1]>>reg)&1);
4357 }else{
4358 return !((unneeded_reg_upper[i+1]>>reg)&1);
4359 }
4360}
4361
4362// Load registers with known constants
4363void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4364{
8575a877 4365 int hr,hr2;
4366 // propagate loaded constant flags
4367 if(i==0||bt[i])
4368 regs[i].loadedconst=0;
4369 else {
4370 for(hr=0;hr<HOST_REGS;hr++) {
4371 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4372 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4373 {
4374 regs[i].loadedconst|=1<<hr;
4375 }
4376 }
4377 }
57871462 4378 // Load 32-bit regs
4379 for(hr=0;hr<HOST_REGS;hr++) {
4380 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4381 //if(entry[hr]!=regmap[hr]) {
8575a877 4382 if(!((regs[i].loadedconst>>hr)&1)) {
57871462 4383 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
8575a877 4384 int value,similar=0;
57871462 4385 if(get_final_value(hr,i,&value)) {
8575a877 4386 // see if some other register has similar value
4387 for(hr2=0;hr2<HOST_REGS;hr2++) {
4388 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4389 if(is_similar_value(value,constmap[i][hr2])) {
4390 similar=1;
4391 break;
4392 }
4393 }
4394 }
4395 if(similar) {
4396 int value2;
4397 if(get_final_value(hr2,i,&value2)) // is this needed?
4398 emit_movimm_from(value2,hr2,value,hr);
4399 else
4400 emit_movimm(value,hr);
4401 }
4402 else if(value==0) {
57871462 4403 emit_zeroreg(hr);
4404 }
4405 else {
4406 emit_movimm(value,hr);
4407 }
4408 }
8575a877 4409 regs[i].loadedconst|=1<<hr;
57871462 4410 }
4411 }
4412 }
4413 }
4414 // Load 64-bit regs
4415 for(hr=0;hr<HOST_REGS;hr++) {
4416 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4417 //if(entry[hr]!=regmap[hr]) {
4418 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4419 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4420 if((is32>>(regmap[hr]&63))&1) {
4421 int lr=get_reg(regmap,regmap[hr]-64);
4422 assert(lr>=0);
4423 emit_sarimm(lr,31,hr);
4424 }
4425 else
4426 {
4427 int value;
4428 if(get_final_value(hr,i,&value)) {
4429 if(value==0) {
4430 emit_zeroreg(hr);
4431 }
4432 else {
4433 emit_movimm(value,hr);
4434 }
4435 }
4436 }
4437 }
4438 }
4439 }
4440 }
4441}
4442void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4443{
4444 int hr;
4445 // Load 32-bit regs
4446 for(hr=0;hr<HOST_REGS;hr++) {
4447 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4448 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4449 int value=constmap[i][hr];
4450 if(value==0) {
4451 emit_zeroreg(hr);
4452 }
4453 else {
4454 emit_movimm(value,hr);
4455 }
4456 }
4457 }
4458 }
4459 // Load 64-bit regs
4460 for(hr=0;hr<HOST_REGS;hr++) {
4461 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4462 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4463 if((is32>>(regmap[hr]&63))&1) {
4464 int lr=get_reg(regmap,regmap[hr]-64);
4465 assert(lr>=0);
4466 emit_sarimm(lr,31,hr);
4467 }
4468 else
4469 {
4470 int value=constmap[i][hr];
4471 if(value==0) {
4472 emit_zeroreg(hr);
4473 }
4474 else {
4475 emit_movimm(value,hr);
4476 }
4477 }
4478 }
4479 }
4480 }
4481}
4482
4483// Write out all dirty registers (except cycle count)
4484void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4485{
4486 int hr;
4487 for(hr=0;hr<HOST_REGS;hr++) {
4488 if(hr!=EXCLUDE_REG) {
4489 if(i_regmap[hr]>0) {
4490 if(i_regmap[hr]!=CCREG) {
4491 if((i_dirty>>hr)&1) {
4492 if(i_regmap[hr]<64) {
4493 emit_storereg(i_regmap[hr],hr);
24385cae 4494#ifndef FORCE32
57871462 4495 if( ((i_is32>>i_regmap[hr])&1) ) {
4496 #ifdef DESTRUCTIVE_WRITEBACK
4497 emit_sarimm(hr,31,hr);
4498 emit_storereg(i_regmap[hr]|64,hr);
4499 #else
4500 emit_sarimm(hr,31,HOST_TEMPREG);
4501 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4502 #endif
4503 }
24385cae 4504#endif
57871462 4505 }else{
4506 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4507 emit_storereg(i_regmap[hr],hr);
4508 }
4509 }
4510 }
4511 }
4512 }
4513 }
4514 }
4515}
4516// Write out dirty registers that we need to reload (pair with load_needed_regs)
4517// This writes the registers not written by store_regs_bt
4518void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4519{
4520 int hr;
4521 int t=(addr-start)>>2;
4522 for(hr=0;hr<HOST_REGS;hr++) {
4523 if(hr!=EXCLUDE_REG) {
4524 if(i_regmap[hr]>0) {
4525 if(i_regmap[hr]!=CCREG) {
4526 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4527 if((i_dirty>>hr)&1) {
4528 if(i_regmap[hr]<64) {
4529 emit_storereg(i_regmap[hr],hr);
24385cae 4530#ifndef FORCE32
57871462 4531 if( ((i_is32>>i_regmap[hr])&1) ) {
4532 #ifdef DESTRUCTIVE_WRITEBACK
4533 emit_sarimm(hr,31,hr);
4534 emit_storereg(i_regmap[hr]|64,hr);
4535 #else
4536 emit_sarimm(hr,31,HOST_TEMPREG);
4537 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4538 #endif
4539 }
24385cae 4540#endif
57871462 4541 }else{
4542 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4543 emit_storereg(i_regmap[hr],hr);
4544 }
4545 }
4546 }
4547 }
4548 }
4549 }
4550 }
4551 }
4552}
4553
4554// Load all registers (except cycle count)
4555void load_all_regs(signed char i_regmap[])
4556{
4557 int hr;
4558 for(hr=0;hr<HOST_REGS;hr++) {
4559 if(hr!=EXCLUDE_REG) {
4560 if(i_regmap[hr]==0) {
4561 emit_zeroreg(hr);
4562 }
4563 else
ea3d2e6e 4564 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4565 {
4566 emit_loadreg(i_regmap[hr],hr);
4567 }
4568 }
4569 }
4570}
4571
4572// Load all current registers also needed by next instruction
4573void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4574{
4575 int hr;
4576 for(hr=0;hr<HOST_REGS;hr++) {
4577 if(hr!=EXCLUDE_REG) {
4578 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4579 if(i_regmap[hr]==0) {
4580 emit_zeroreg(hr);
4581 }
4582 else
ea3d2e6e 4583 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4584 {
4585 emit_loadreg(i_regmap[hr],hr);
4586 }
4587 }
4588 }
4589 }
4590}
4591
4592// Load all regs, storing cycle count if necessary
4593void load_regs_entry(int t)
4594{
4595 int hr;
2573466a 4596 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4597 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 4598 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4599 emit_storereg(CCREG,HOST_CCREG);
4600 }
4601 // Load 32-bit regs
4602 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4603 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4604 if(regs[t].regmap_entry[hr]==0) {
4605 emit_zeroreg(hr);
4606 }
4607 else if(regs[t].regmap_entry[hr]!=CCREG)
4608 {
4609 emit_loadreg(regs[t].regmap_entry[hr],hr);
4610 }
4611 }
4612 }
4613 // Load 64-bit regs
4614 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4615 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4616 assert(regs[t].regmap_entry[hr]!=64);
4617 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4618 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4619 if(lr<0) {
4620 emit_loadreg(regs[t].regmap_entry[hr],hr);
4621 }
4622 else
4623 {
4624 emit_sarimm(lr,31,hr);
4625 }
4626 }
4627 else
4628 {
4629 emit_loadreg(regs[t].regmap_entry[hr],hr);
4630 }
4631 }
4632 }
4633}
4634
4635// Store dirty registers prior to branch
4636void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4637{
4638 if(internal_branch(i_is32,addr))
4639 {
4640 int t=(addr-start)>>2;
4641 int hr;
4642 for(hr=0;hr<HOST_REGS;hr++) {
4643 if(hr!=EXCLUDE_REG) {
4644 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4645 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4646 if((i_dirty>>hr)&1) {
4647 if(i_regmap[hr]<64) {
4648 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4649 emit_storereg(i_regmap[hr],hr);
4650 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4651 #ifdef DESTRUCTIVE_WRITEBACK
4652 emit_sarimm(hr,31,hr);
4653 emit_storereg(i_regmap[hr]|64,hr);
4654 #else
4655 emit_sarimm(hr,31,HOST_TEMPREG);
4656 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4657 #endif
4658 }
4659 }
4660 }else{
4661 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4662 emit_storereg(i_regmap[hr],hr);
4663 }
4664 }
4665 }
4666 }
4667 }
4668 }
4669 }
4670 }
4671 else
4672 {
4673 // Branch out of this block, write out all dirty regs
4674 wb_dirtys(i_regmap,i_is32,i_dirty);
4675 }
4676}
4677
4678// Load all needed registers for branch target
4679void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4680{
4681 //if(addr>=start && addr<(start+slen*4))
4682 if(internal_branch(i_is32,addr))
4683 {
4684 int t=(addr-start)>>2;
4685 int hr;
4686 // Store the cycle count before loading something else
4687 if(i_regmap[HOST_CCREG]!=CCREG) {
4688 assert(i_regmap[HOST_CCREG]==-1);
4689 }
4690 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4691 emit_storereg(CCREG,HOST_CCREG);
4692 }
4693 // Load 32-bit regs
4694 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4695 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4696 #ifdef DESTRUCTIVE_WRITEBACK
4697 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4698 #else
4699 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4700 #endif
4701 if(regs[t].regmap_entry[hr]==0) {
4702 emit_zeroreg(hr);
4703 }
4704 else if(regs[t].regmap_entry[hr]!=CCREG)
4705 {
4706 emit_loadreg(regs[t].regmap_entry[hr],hr);
4707 }
4708 }
4709 }
4710 }
4711 //Load 64-bit regs
4712 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4713 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4714 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4715 assert(regs[t].regmap_entry[hr]!=64);
4716 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4717 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4718 if(lr<0) {
4719 emit_loadreg(regs[t].regmap_entry[hr],hr);
4720 }
4721 else
4722 {
4723 emit_sarimm(lr,31,hr);
4724 }
4725 }
4726 else
4727 {
4728 emit_loadreg(regs[t].regmap_entry[hr],hr);
4729 }
4730 }
4731 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4732 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4733 assert(lr>=0);
4734 emit_sarimm(lr,31,hr);
4735 }
4736 }
4737 }
4738 }
4739}
4740
4741int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4742{
4743 if(addr>=start && addr<start+slen*4-4)
4744 {
4745 int t=(addr-start)>>2;
4746 int hr;
4747 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4748 for(hr=0;hr<HOST_REGS;hr++)
4749 {
4750 if(hr!=EXCLUDE_REG)
4751 {
4752 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4753 {
ea3d2e6e 4754 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4755 {
4756 return 0;
4757 }
4758 else
4759 if((i_dirty>>hr)&1)
4760 {
ea3d2e6e 4761 if(i_regmap[hr]<TEMPREG)
57871462 4762 {
4763 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4764 return 0;
4765 }
ea3d2e6e 4766 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4767 {
4768 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4769 return 0;
4770 }
4771 }
4772 }
4773 else // Same register but is it 32-bit or dirty?
4774 if(i_regmap[hr]>=0)
4775 {
4776 if(!((regs[t].dirty>>hr)&1))
4777 {
4778 if((i_dirty>>hr)&1)
4779 {
4780 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4781 {
4782 //printf("%x: dirty no match\n",addr);
4783 return 0;
4784 }
4785 }
4786 }
4787 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4788 {
4789 //printf("%x: is32 no match\n",addr);
4790 return 0;
4791 }
4792 }
4793 }
4794 }
4795 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4796#ifndef FORCE32
57871462 4797 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4798#endif
57871462 4799 // Delay slots are not valid branch targets
4800 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4801 // Delay slots require additional processing, so do not match
4802 if(is_ds[t]) return 0;
4803 }
4804 else
4805 {
4806 int hr;
4807 for(hr=0;hr<HOST_REGS;hr++)
4808 {
4809 if(hr!=EXCLUDE_REG)
4810 {
4811 if(i_regmap[hr]>=0)
4812 {
4813 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4814 {
4815 if((i_dirty>>hr)&1)
4816 {
4817 return 0;
4818 }
4819 }
4820 }
4821 }
4822 }
4823 }
4824 return 1;
4825}
4826
4827// Used when a branch jumps into the delay slot of another branch
4828void ds_assemble_entry(int i)
4829{
4830 int t=(ba[i]-start)>>2;
4831 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4832 assem_debug("Assemble delay slot at %x\n",ba[i]);
4833 assem_debug("<->\n");
4834 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4835 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4836 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4837 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4838 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4839 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4840 cop1_usable=0;
4841 is_delayslot=0;
4842 switch(itype[t]) {
4843 case ALU:
4844 alu_assemble(t,&regs[t]);break;
4845 case IMM16:
4846 imm16_assemble(t,&regs[t]);break;
4847 case SHIFT:
4848 shift_assemble(t,&regs[t]);break;
4849 case SHIFTIMM:
4850 shiftimm_assemble(t,&regs[t]);break;
4851 case LOAD:
4852 load_assemble(t,&regs[t]);break;
4853 case LOADLR:
4854 loadlr_assemble(t,&regs[t]);break;
4855 case STORE:
4856 store_assemble(t,&regs[t]);break;
4857 case STORELR:
4858 storelr_assemble(t,&regs[t]);break;
4859 case COP0:
4860 cop0_assemble(t,&regs[t]);break;
4861 case COP1:
4862 cop1_assemble(t,&regs[t]);break;
4863 case C1LS:
4864 c1ls_assemble(t,&regs[t]);break;
b9b61529 4865 case COP2:
4866 cop2_assemble(t,&regs[t]);break;
4867 case C2LS:
4868 c2ls_assemble(t,&regs[t]);break;
4869 case C2OP:
4870 c2op_assemble(t,&regs[t]);break;
57871462 4871 case FCONV:
4872 fconv_assemble(t,&regs[t]);break;
4873 case FLOAT:
4874 float_assemble(t,&regs[t]);break;
4875 case FCOMP:
4876 fcomp_assemble(t,&regs[t]);break;
4877 case MULTDIV:
4878 multdiv_assemble(t,&regs[t]);break;
4879 case MOV:
4880 mov_assemble(t,&regs[t]);break;
4881 case SYSCALL:
7139f3c8 4882 case HLECALL:
1e973cb0 4883 case INTCALL:
57871462 4884 case SPAN:
4885 case UJUMP:
4886 case RJUMP:
4887 case CJUMP:
4888 case SJUMP:
4889 case FJUMP:
c43b5311 4890 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
57871462 4891 }
4892 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4893 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4894 if(internal_branch(regs[t].is32,ba[i]+4))
4895 assem_debug("branch: internal\n");
4896 else
4897 assem_debug("branch: external\n");
4898 assert(internal_branch(regs[t].is32,ba[i]+4));
4899 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4900 emit_jmp(0);
4901}
4902
4903void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4904{
4905 int count;
4906 int jaddr;
4907 int idle=0;
b6e87b2b 4908 int t=0;
57871462 4909 if(itype[i]==RJUMP)
4910 {
4911 *adj=0;
4912 }
4913 //if(ba[i]>=start && ba[i]<(start+slen*4))
4914 if(internal_branch(branch_regs[i].is32,ba[i]))
4915 {
b6e87b2b 4916 t=(ba[i]-start)>>2;
57871462 4917 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4918 else *adj=ccadj[t];
4919 }
4920 else
4921 {
4922 *adj=0;
4923 }
4924 count=ccadj[i];
4925 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4926 // Idle loop
4927 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4928 idle=(int)out;
4929 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4930 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4931 jaddr=(int)out;
4932 emit_jmp(0);
4933 }
4934 else if(*adj==0||invert) {
b6e87b2b 4935 int cycles=CLOCK_ADJUST(count+2);
4936 // faster loop HACK
4937 if (t&&*adj) {
4938 int rel=t-i;
4939 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4940 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4941 }
4942 emit_addimm_and_set_flags(cycles,HOST_CCREG);
57871462 4943 jaddr=(int)out;
4944 emit_jns(0);
4945 }
4946 else
4947 {
2573466a 4948 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
57871462 4949 jaddr=(int)out;
4950 emit_jns(0);
4951 }
4952 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4953}
4954
4955void do_ccstub(int n)
4956{
4957 literal_pool(256);
4958 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4959 set_jump_target(stubs[n][1],(int)out);
4960 int i=stubs[n][4];
4961 if(stubs[n][6]==NULLDS) {
4962 // Delay slot instruction is nullified ("likely" branch)
4963 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4964 }
4965 else if(stubs[n][6]!=TAKEN) {
4966 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4967 }
4968 else {
4969 if(internal_branch(branch_regs[i].is32,ba[i]))
4970 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4971 }
4972 if(stubs[n][5]!=-1)
4973 {
4974 // Save PC as return address
4975 emit_movimm(stubs[n][5],EAX);
4976 emit_writeword(EAX,(int)&pcaddr);
4977 }
4978 else
4979 {
4980 // Return address depends on which way the branch goes
4981 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4982 {
4983 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4984 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4985 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4986 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4987 if(rs1[i]==0)
4988 {
4989 s1l=s2l;s1h=s2h;
4990 s2l=s2h=-1;
4991 }
4992 else if(rs2[i]==0)
4993 {
4994 s2l=s2h=-1;
4995 }
4996 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4997 s1h=s2h=-1;
4998 }
4999 assert(s1l>=0);
5000 #ifdef DESTRUCTIVE_WRITEBACK
5001 if(rs1[i]) {
5002 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5003 emit_loadreg(rs1[i],s1l);
5004 }
5005 else {
5006 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5007 emit_loadreg(rs2[i],s1l);
5008 }
5009 if(s2l>=0)
5010 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5011 emit_loadreg(rs2[i],s2l);
5012 #endif
5013 int hr=0;
5194fb95 5014 int addr=-1,alt=-1,ntaddr=-1;
57871462 5015 while(hr<HOST_REGS)
5016 {
5017 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5018 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5019 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5020 {
5021 addr=hr++;break;
5022 }
5023 hr++;
5024 }
5025 while(hr<HOST_REGS)
5026 {
5027 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5028 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5029 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5030 {
5031 alt=hr++;break;
5032 }
5033 hr++;
5034 }
5035 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5036 {
5037 while(hr<HOST_REGS)
5038 {
5039 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5040 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5041 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5042 {
5043 ntaddr=hr;break;
5044 }
5045 hr++;
5046 }
5047 assert(hr<HOST_REGS);
5048 }
5049 if((opcode[i]&0x2f)==4) // BEQ
5050 {
5051 #ifdef HAVE_CMOV_IMM
5052 if(s1h<0) {
5053 if(s2l>=0) emit_cmp(s1l,s2l);
5054 else emit_test(s1l,s1l);
5055 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5056 }
5057 else
5058 #endif
5059 {
5060 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5061 if(s1h>=0) {
5062 if(s2h>=0) emit_cmp(s1h,s2h);
5063 else emit_test(s1h,s1h);
5064 emit_cmovne_reg(alt,addr);
5065 }
5066 if(s2l>=0) emit_cmp(s1l,s2l);
5067 else emit_test(s1l,s1l);
5068 emit_cmovne_reg(alt,addr);
5069 }
5070 }
5071 if((opcode[i]&0x2f)==5) // BNE
5072 {
5073 #ifdef HAVE_CMOV_IMM
5074 if(s1h<0) {
5075 if(s2l>=0) emit_cmp(s1l,s2l);
5076 else emit_test(s1l,s1l);
5077 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5078 }
5079 else
5080 #endif
5081 {
5082 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5083 if(s1h>=0) {
5084 if(s2h>=0) emit_cmp(s1h,s2h);
5085 else emit_test(s1h,s1h);
5086 emit_cmovne_reg(alt,addr);
5087 }
5088 if(s2l>=0) emit_cmp(s1l,s2l);
5089 else emit_test(s1l,s1l);
5090 emit_cmovne_reg(alt,addr);
5091 }
5092 }
5093 if((opcode[i]&0x2f)==6) // BLEZ
5094 {
5095 //emit_movimm(ba[i],alt);
5096 //emit_movimm(start+i*4+8,addr);
5097 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5098 emit_cmpimm(s1l,1);
5099 if(s1h>=0) emit_mov(addr,ntaddr);
5100 emit_cmovl_reg(alt,addr);
5101 if(s1h>=0) {
5102 emit_test(s1h,s1h);
5103 emit_cmovne_reg(ntaddr,addr);
5104 emit_cmovs_reg(alt,addr);
5105 }
5106 }
5107 if((opcode[i]&0x2f)==7) // BGTZ
5108 {
5109 //emit_movimm(ba[i],addr);
5110 //emit_movimm(start+i*4+8,ntaddr);
5111 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5112 emit_cmpimm(s1l,1);
5113 if(s1h>=0) emit_mov(addr,alt);
5114 emit_cmovl_reg(ntaddr,addr);
5115 if(s1h>=0) {
5116 emit_test(s1h,s1h);
5117 emit_cmovne_reg(alt,addr);
5118 emit_cmovs_reg(ntaddr,addr);
5119 }
5120 }
5121 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5122 {
5123 //emit_movimm(ba[i],alt);
5124 //emit_movimm(start+i*4+8,addr);
5125 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5126 if(s1h>=0) emit_test(s1h,s1h);
5127 else emit_test(s1l,s1l);
5128 emit_cmovs_reg(alt,addr);
5129 }
5130 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5131 {
5132 //emit_movimm(ba[i],addr);
5133 //emit_movimm(start+i*4+8,alt);
5134 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5135 if(s1h>=0) emit_test(s1h,s1h);
5136 else emit_test(s1l,s1l);
5137 emit_cmovs_reg(alt,addr);
5138 }
5139 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5140 if(source[i]&0x10000) // BC1T
5141 {
5142 //emit_movimm(ba[i],alt);
5143 //emit_movimm(start+i*4+8,addr);
5144 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5145 emit_testimm(s1l,0x800000);
5146 emit_cmovne_reg(alt,addr);
5147 }
5148 else // BC1F
5149 {
5150 //emit_movimm(ba[i],addr);
5151 //emit_movimm(start+i*4+8,alt);
5152 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5153 emit_testimm(s1l,0x800000);
5154 emit_cmovne_reg(alt,addr);
5155 }
5156 }
5157 emit_writeword(addr,(int)&pcaddr);
5158 }
5159 else
5160 if(itype[i]==RJUMP)
5161 {
5162 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5163 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5164 r=get_reg(branch_regs[i].regmap,RTEMP);
5165 }
5166 emit_writeword(r,(int)&pcaddr);
5167 }
c43b5311 5168 else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
57871462 5169 }
5170 // Update cycle count
5171 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
2573466a 5172 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5173 emit_call((int)cc_interrupt);
2573466a 5174 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5175 if(stubs[n][6]==TAKEN) {
5176 if(internal_branch(branch_regs[i].is32,ba[i]))
5177 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5178 else if(itype[i]==RJUMP) {
5179 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5180 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5181 else
5182 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5183 }
5184 }else if(stubs[n][6]==NOTTAKEN) {
5185 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5186 else load_all_regs(branch_regs[i].regmap);
5187 }else if(stubs[n][6]==NULLDS) {
5188 // Delay slot instruction is nullified ("likely" branch)
5189 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5190 else load_all_regs(regs[i].regmap);
5191 }else{
5192 load_all_regs(branch_regs[i].regmap);
5193 }
5194 emit_jmp(stubs[n][2]); // return address
5195
5196 /* This works but uses a lot of memory...
5197 emit_readword((int)&last_count,ECX);
5198 emit_add(HOST_CCREG,ECX,EAX);
5199 emit_writeword(EAX,(int)&Count);
5200 emit_call((int)gen_interupt);
5201 emit_readword((int)&Count,HOST_CCREG);
5202 emit_readword((int)&next_interupt,EAX);
5203 emit_readword((int)&pending_exception,EBX);
5204 emit_writeword(EAX,(int)&last_count);
5205 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5206 emit_test(EBX,EBX);
5207 int jne_instr=(int)out;
5208 emit_jne(0);
5209 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5210 load_all_regs(branch_regs[i].regmap);
5211 emit_jmp(stubs[n][2]); // return address
5212 set_jump_target(jne_instr,(int)out);
5213 emit_readword((int)&pcaddr,EAX);
5214 // Call get_addr_ht instead of doing the hash table here.
5215 // This code is executed infrequently and takes up a lot of space
5216 // so smaller is better.
5217 emit_storereg(CCREG,HOST_CCREG);
5218 emit_pushreg(EAX);
5219 emit_call((int)get_addr_ht);
5220 emit_loadreg(CCREG,HOST_CCREG);
5221 emit_addimm(ESP,4,ESP);
5222 emit_jmpreg(EAX);*/
5223}
5224
5225add_to_linker(int addr,int target,int ext)
5226{
5227 link_addr[linkcount][0]=addr;
5228 link_addr[linkcount][1]=target;
5229 link_addr[linkcount][2]=ext;
5230 linkcount++;
5231}
5232
eba830cd 5233static void ujump_assemble_write_ra(int i)
5234{
5235 int rt;
5236 unsigned int return_address;
5237 rt=get_reg(branch_regs[i].regmap,31);
5238 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5239 //assert(rt>=0);
5240 return_address=start+i*4+8;
5241 if(rt>=0) {
5242 #ifdef USE_MINI_HT
5243 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5244 int temp=-1; // note: must be ds-safe
5245 #ifdef HOST_TEMPREG
5246 temp=HOST_TEMPREG;
5247 #endif
5248 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5249 else emit_movimm(return_address,rt);
5250 }
5251 else
5252 #endif
5253 {
5254 #ifdef REG_PREFETCH
5255 if(temp>=0)
5256 {
5257 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5258 }
5259 #endif
5260 emit_movimm(return_address,rt); // PC into link register
5261 #ifdef IMM_PREFETCH
5262 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5263 #endif
5264 }
5265 }
5266}
5267
57871462 5268void ujump_assemble(int i,struct regstat *i_regs)
5269{
5270 signed char *i_regmap=i_regs->regmap;
eba830cd 5271 int ra_done=0;
57871462 5272 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5273 address_generation(i+1,i_regs,regs[i].regmap_entry);
5274 #ifdef REG_PREFETCH
5275 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5276 if(rt1[i]==31&&temp>=0)
5277 {
5278 int return_address=start+i*4+8;
5279 if(get_reg(branch_regs[i].regmap,31)>0)
5280 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5281 }
5282 #endif
eba830cd 5283 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5284 ujump_assemble_write_ra(i); // writeback ra for DS
5285 ra_done=1;
57871462 5286 }
4ef8f67d 5287 ds_assemble(i+1,i_regs);
5288 uint64_t bc_unneeded=branch_regs[i].u;
5289 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5290 bc_unneeded|=1|(1LL<<rt1[i]);
5291 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5292 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5293 bc_unneeded,bc_unneeded_upper);
5294 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5295 if(!ra_done&&rt1[i]==31)
5296 ujump_assemble_write_ra(i);
57871462 5297 int cc,adj;
5298 cc=get_reg(branch_regs[i].regmap,CCREG);
5299 assert(cc==HOST_CCREG);
5300 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5301 #ifdef REG_PREFETCH
5302 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5303 #endif
5304 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 5305 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5306 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5307 if(internal_branch(branch_regs[i].is32,ba[i]))
5308 assem_debug("branch: internal\n");
5309 else
5310 assem_debug("branch: external\n");
5311 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5312 ds_assemble_entry(i);
5313 }
5314 else {
5315 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5316 emit_jmp(0);
5317 }
5318}
5319
eba830cd 5320static void rjump_assemble_write_ra(int i)
5321{
5322 int rt,return_address;
5323 assert(rt1[i+1]!=rt1[i]);
5324 assert(rt2[i+1]!=rt1[i]);
5325 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5326 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5327 assert(rt>=0);
5328 return_address=start+i*4+8;
5329 #ifdef REG_PREFETCH
5330 if(temp>=0)
5331 {
5332 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5333 }
5334 #endif
5335 emit_movimm(return_address,rt); // PC into link register
5336 #ifdef IMM_PREFETCH
5337 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5338 #endif
5339}
5340
57871462 5341void rjump_assemble(int i,struct regstat *i_regs)
5342{
5343 signed char *i_regmap=i_regs->regmap;
5344 int temp;
5345 int rs,cc,adj;
eba830cd 5346 int ra_done=0;
57871462 5347 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5348 assert(rs>=0);
5349 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5350 // Delay slot abuse, make a copy of the branch address register
5351 temp=get_reg(branch_regs[i].regmap,RTEMP);
5352 assert(temp>=0);
5353 assert(regs[i].regmap[temp]==RTEMP);
5354 emit_mov(rs,temp);
5355 rs=temp;
5356 }
5357 address_generation(i+1,i_regs,regs[i].regmap_entry);
5358 #ifdef REG_PREFETCH
5359 if(rt1[i]==31)
5360 {
5361 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5362 int return_address=start+i*4+8;
5363 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5364 }
5365 }
5366 #endif
5367 #ifdef USE_MINI_HT
5368 if(rs1[i]==31) {
5369 int rh=get_reg(regs[i].regmap,RHASH);
5370 if(rh>=0) do_preload_rhash(rh);
5371 }
5372 #endif
eba830cd 5373 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5374 rjump_assemble_write_ra(i);
5375 ra_done=1;
57871462 5376 }
d5910d5d 5377 ds_assemble(i+1,i_regs);
5378 uint64_t bc_unneeded=branch_regs[i].u;
5379 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5380 bc_unneeded|=1|(1LL<<rt1[i]);
5381 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5382 bc_unneeded&=~(1LL<<rs1[i]);
5383 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5384 bc_unneeded,bc_unneeded_upper);
5385 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5386 if(!ra_done&&rt1[i]!=0)
5387 rjump_assemble_write_ra(i);
57871462 5388 cc=get_reg(branch_regs[i].regmap,CCREG);
5389 assert(cc==HOST_CCREG);
5390 #ifdef USE_MINI_HT
5391 int rh=get_reg(branch_regs[i].regmap,RHASH);
5392 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5393 if(rs1[i]==31) {
5394 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5395 do_preload_rhtbl(ht);
5396 do_rhash(rs,rh);
5397 }
5398 #endif
5399 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5400 #ifdef DESTRUCTIVE_WRITEBACK
5401 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5402 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5403 emit_loadreg(rs1[i],rs);
5404 }
5405 }
5406 #endif
5407 #ifdef REG_PREFETCH
5408 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5409 #endif
5410 #ifdef USE_MINI_HT
5411 if(rs1[i]==31) {
5412 do_miniht_load(ht,rh);
5413 }
5414 #endif
5415 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5416 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5417 //assert(adj==0);
2573466a 5418 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5419 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
911f2d55 5420#ifdef PCSX
5421 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5422 // special case for RFE
5423 emit_jmp(0);
5424 else
5425#endif
57871462 5426 emit_jns(0);
5427 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5428 #ifdef USE_MINI_HT
5429 if(rs1[i]==31) {
5430 do_miniht_jump(rs,rh,ht);
5431 }
5432 else
5433 #endif
5434 {
5435 //if(rs!=EAX) emit_mov(rs,EAX);
5436 //emit_jmp((int)jump_vaddr_eax);
5437 emit_jmp(jump_vaddr_reg[rs]);
5438 }
5439 /* Check hash table
5440 temp=!rs;
5441 emit_mov(rs,temp);
5442 emit_shrimm(rs,16,rs);
5443 emit_xor(temp,rs,rs);
5444 emit_movzwl_reg(rs,rs);
5445 emit_shlimm(rs,4,rs);
5446 emit_cmpmem_indexed((int)hash_table,rs,temp);
5447 emit_jne((int)out+14);
5448 emit_readword_indexed((int)hash_table+4,rs,rs);
5449 emit_jmpreg(rs);
5450 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5451 emit_addimm_no_flags(8,rs);
5452 emit_jeq((int)out-17);
5453 // No hit on hash table, call compiler
5454 emit_pushreg(temp);
5455//DEBUG >
5456#ifdef DEBUG_CYCLE_COUNT
5457 emit_readword((int)&last_count,ECX);
5458 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5459 emit_readword((int)&next_interupt,ECX);
5460 emit_writeword(HOST_CCREG,(int)&Count);
5461 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5462 emit_writeword(ECX,(int)&last_count);
5463#endif
5464//DEBUG <
5465 emit_storereg(CCREG,HOST_CCREG);
5466 emit_call((int)get_addr);
5467 emit_loadreg(CCREG,HOST_CCREG);
5468 emit_addimm(ESP,4,ESP);
5469 emit_jmpreg(EAX);*/
5470 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5471 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5472 #endif
5473}
5474
5475void cjump_assemble(int i,struct regstat *i_regs)
5476{
5477 signed char *i_regmap=i_regs->regmap;
5478 int cc;
5479 int match;
5480 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5481 assem_debug("match=%d\n",match);
5482 int s1h,s1l,s2h,s2l;
5483 int prev_cop1_usable=cop1_usable;
5484 int unconditional=0,nop=0;
5485 int only32=0;
57871462 5486 int invert=0;
5487 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5488 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5489 if(!match) invert=1;
5490 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5491 if(i>(ba[i]-start)>>2) invert=1;
5492 #endif
e1190b87 5493
5494 if(ooo[i]) {
57871462 5495 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5496 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5497 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5498 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5499 }
5500 else {
5501 s1l=get_reg(i_regmap,rs1[i]);
5502 s1h=get_reg(i_regmap,rs1[i]|64);
5503 s2l=get_reg(i_regmap,rs2[i]);
5504 s2h=get_reg(i_regmap,rs2[i]|64);
5505 }
5506 if(rs1[i]==0&&rs2[i]==0)
5507 {
5508 if(opcode[i]&1) nop=1;
5509 else unconditional=1;
5510 //assert(opcode[i]!=5);
5511 //assert(opcode[i]!=7);
5512 //assert(opcode[i]!=0x15);
5513 //assert(opcode[i]!=0x17);
5514 }
5515 else if(rs1[i]==0)
5516 {
5517 s1l=s2l;s1h=s2h;
5518 s2l=s2h=-1;
5519 only32=(regs[i].was32>>rs2[i])&1;
5520 }
5521 else if(rs2[i]==0)
5522 {
5523 s2l=s2h=-1;
5524 only32=(regs[i].was32>>rs1[i])&1;
5525 }
5526 else {
5527 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5528 }
5529
e1190b87 5530 if(ooo[i]) {
57871462 5531 // Out of order execution (delay slot first)
5532 //printf("OOOE\n");
5533 address_generation(i+1,i_regs,regs[i].regmap_entry);
5534 ds_assemble(i+1,i_regs);
5535 int adj;
5536 uint64_t bc_unneeded=branch_regs[i].u;
5537 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5538 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5539 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5540 bc_unneeded|=1;
5541 bc_unneeded_upper|=1;
5542 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5543 bc_unneeded,bc_unneeded_upper);
5544 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5545 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5546 cc=get_reg(branch_regs[i].regmap,CCREG);
5547 assert(cc==HOST_CCREG);
5548 if(unconditional)
5549 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5550 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5551 //assem_debug("cycle count (adj)\n");
5552 if(unconditional) {
5553 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5554 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5555 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5556 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5557 if(internal)
5558 assem_debug("branch: internal\n");
5559 else
5560 assem_debug("branch: external\n");
5561 if(internal&&is_ds[(ba[i]-start)>>2]) {
5562 ds_assemble_entry(i);
5563 }
5564 else {
5565 add_to_linker((int)out,ba[i],internal);
5566 emit_jmp(0);
5567 }
5568 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5569 if(((u_int)out)&7) emit_addnop(0);
5570 #endif
5571 }
5572 }
5573 else if(nop) {
2573466a 5574 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5575 int jaddr=(int)out;
5576 emit_jns(0);
5577 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5578 }
5579 else {
5580 int taken=0,nottaken=0,nottaken1=0;
5581 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5582 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5583 if(!only32)
5584 {
5585 assert(s1h>=0);
5586 if(opcode[i]==4) // BEQ
5587 {
5588 if(s2h>=0) emit_cmp(s1h,s2h);
5589 else emit_test(s1h,s1h);
5590 nottaken1=(int)out;
5591 emit_jne(1);
5592 }
5593 if(opcode[i]==5) // BNE
5594 {
5595 if(s2h>=0) emit_cmp(s1h,s2h);
5596 else emit_test(s1h,s1h);
5597 if(invert) taken=(int)out;
5598 else add_to_linker((int)out,ba[i],internal);
5599 emit_jne(0);
5600 }
5601 if(opcode[i]==6) // BLEZ
5602 {
5603 emit_test(s1h,s1h);
5604 if(invert) taken=(int)out;
5605 else add_to_linker((int)out,ba[i],internal);
5606 emit_js(0);
5607 nottaken1=(int)out;
5608 emit_jne(1);
5609 }
5610 if(opcode[i]==7) // BGTZ
5611 {
5612 emit_test(s1h,s1h);
5613 nottaken1=(int)out;
5614 emit_js(1);
5615 if(invert) taken=(int)out;
5616 else add_to_linker((int)out,ba[i],internal);
5617 emit_jne(0);
5618 }
5619 } // if(!only32)
5620
5621 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5622 assert(s1l>=0);
5623 if(opcode[i]==4) // BEQ
5624 {
5625 if(s2l>=0) emit_cmp(s1l,s2l);
5626 else emit_test(s1l,s1l);
5627 if(invert){
5628 nottaken=(int)out;
5629 emit_jne(1);
5630 }else{
5631 add_to_linker((int)out,ba[i],internal);
5632 emit_jeq(0);
5633 }
5634 }
5635 if(opcode[i]==5) // BNE
5636 {
5637 if(s2l>=0) emit_cmp(s1l,s2l);
5638 else emit_test(s1l,s1l);
5639 if(invert){
5640 nottaken=(int)out;
5641 emit_jeq(1);
5642 }else{
5643 add_to_linker((int)out,ba[i],internal);
5644 emit_jne(0);
5645 }
5646 }
5647 if(opcode[i]==6) // BLEZ
5648 {
5649 emit_cmpimm(s1l,1);
5650 if(invert){
5651 nottaken=(int)out;
5652 emit_jge(1);
5653 }else{
5654 add_to_linker((int)out,ba[i],internal);
5655 emit_jl(0);
5656 }
5657 }
5658 if(opcode[i]==7) // BGTZ
5659 {
5660 emit_cmpimm(s1l,1);
5661 if(invert){
5662 nottaken=(int)out;
5663 emit_jl(1);
5664 }else{
5665 add_to_linker((int)out,ba[i],internal);
5666 emit_jge(0);
5667 }
5668 }
5669 if(invert) {
5670 if(taken) set_jump_target(taken,(int)out);
5671 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5672 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5673 if(adj) {
2573466a 5674 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5675 add_to_linker((int)out,ba[i],internal);
5676 }else{
5677 emit_addnop(13);
5678 add_to_linker((int)out,ba[i],internal*2);
5679 }
5680 emit_jmp(0);
5681 }else
5682 #endif
5683 {
2573466a 5684 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5685 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5686 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5687 if(internal)
5688 assem_debug("branch: internal\n");
5689 else
5690 assem_debug("branch: external\n");
5691 if(internal&&is_ds[(ba[i]-start)>>2]) {
5692 ds_assemble_entry(i);
5693 }
5694 else {
5695 add_to_linker((int)out,ba[i],internal);
5696 emit_jmp(0);
5697 }
5698 }
5699 set_jump_target(nottaken,(int)out);
5700 }
5701
5702 if(nottaken1) set_jump_target(nottaken1,(int)out);
5703 if(adj) {
2573466a 5704 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5705 }
5706 } // (!unconditional)
5707 } // if(ooo)
5708 else
5709 {
5710 // In-order execution (branch first)
5711 //if(likely[i]) printf("IOL\n");
5712 //else
5713 //printf("IOE\n");
5714 int taken=0,nottaken=0,nottaken1=0;
5715 if(!unconditional&&!nop) {
5716 if(!only32)
5717 {
5718 assert(s1h>=0);
5719 if((opcode[i]&0x2f)==4) // BEQ
5720 {
5721 if(s2h>=0) emit_cmp(s1h,s2h);
5722 else emit_test(s1h,s1h);
5723 nottaken1=(int)out;
5724 emit_jne(2);
5725 }
5726 if((opcode[i]&0x2f)==5) // BNE
5727 {
5728 if(s2h>=0) emit_cmp(s1h,s2h);
5729 else emit_test(s1h,s1h);
5730 taken=(int)out;
5731 emit_jne(1);
5732 }
5733 if((opcode[i]&0x2f)==6) // BLEZ
5734 {
5735 emit_test(s1h,s1h);
5736 taken=(int)out;
5737 emit_js(1);
5738 nottaken1=(int)out;
5739 emit_jne(2);
5740 }
5741 if((opcode[i]&0x2f)==7) // BGTZ
5742 {
5743 emit_test(s1h,s1h);
5744 nottaken1=(int)out;
5745 emit_js(2);
5746 taken=(int)out;
5747 emit_jne(1);
5748 }
5749 } // if(!only32)
5750
5751 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5752 assert(s1l>=0);
5753 if((opcode[i]&0x2f)==4) // BEQ
5754 {
5755 if(s2l>=0) emit_cmp(s1l,s2l);
5756 else emit_test(s1l,s1l);
5757 nottaken=(int)out;
5758 emit_jne(2);
5759 }
5760 if((opcode[i]&0x2f)==5) // BNE
5761 {
5762 if(s2l>=0) emit_cmp(s1l,s2l);
5763 else emit_test(s1l,s1l);
5764 nottaken=(int)out;
5765 emit_jeq(2);
5766 }
5767 if((opcode[i]&0x2f)==6) // BLEZ
5768 {
5769 emit_cmpimm(s1l,1);
5770 nottaken=(int)out;
5771 emit_jge(2);
5772 }
5773 if((opcode[i]&0x2f)==7) // BGTZ
5774 {
5775 emit_cmpimm(s1l,1);
5776 nottaken=(int)out;
5777 emit_jl(2);
5778 }
5779 } // if(!unconditional)
5780 int adj;
5781 uint64_t ds_unneeded=branch_regs[i].u;
5782 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5783 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5784 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5785 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5786 ds_unneeded|=1;
5787 ds_unneeded_upper|=1;
5788 // branch taken
5789 if(!nop) {
5790 if(taken) set_jump_target(taken,(int)out);
5791 assem_debug("1:\n");
5792 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5793 ds_unneeded,ds_unneeded_upper);
5794 // load regs
5795 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5796 address_generation(i+1,&branch_regs[i],0);
5797 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5798 ds_assemble(i+1,&branch_regs[i]);
5799 cc=get_reg(branch_regs[i].regmap,CCREG);
5800 if(cc==-1) {
5801 emit_loadreg(CCREG,cc=HOST_CCREG);
5802 // CHECK: Is the following instruction (fall thru) allocated ok?
5803 }
5804 assert(cc==HOST_CCREG);
5805 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5806 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5807 assem_debug("cycle count (adj)\n");
2573466a 5808 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5809 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5810 if(internal)
5811 assem_debug("branch: internal\n");
5812 else
5813 assem_debug("branch: external\n");
5814 if(internal&&is_ds[(ba[i]-start)>>2]) {
5815 ds_assemble_entry(i);
5816 }
5817 else {
5818 add_to_linker((int)out,ba[i],internal);
5819 emit_jmp(0);
5820 }
5821 }
5822 // branch not taken
5823 cop1_usable=prev_cop1_usable;
5824 if(!unconditional) {
5825 if(nottaken1) set_jump_target(nottaken1,(int)out);
5826 set_jump_target(nottaken,(int)out);
5827 assem_debug("2:\n");
5828 if(!likely[i]) {
5829 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5830 ds_unneeded,ds_unneeded_upper);
5831 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5832 address_generation(i+1,&branch_regs[i],0);
5833 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5834 ds_assemble(i+1,&branch_regs[i]);
5835 }
5836 cc=get_reg(branch_regs[i].regmap,CCREG);
5837 if(cc==-1&&!likely[i]) {
5838 // Cycle count isn't in a register, temporarily load it then write it out
5839 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5840 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5841 int jaddr=(int)out;
5842 emit_jns(0);
5843 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5844 emit_storereg(CCREG,HOST_CCREG);
5845 }
5846 else{
5847 cc=get_reg(i_regmap,CCREG);
5848 assert(cc==HOST_CCREG);
2573466a 5849 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5850 int jaddr=(int)out;
5851 emit_jns(0);
5852 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5853 }
5854 }
5855 }
5856}
5857
5858void sjump_assemble(int i,struct regstat *i_regs)
5859{
5860 signed char *i_regmap=i_regs->regmap;
5861 int cc;
5862 int match;
5863 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5864 assem_debug("smatch=%d\n",match);
5865 int s1h,s1l;
5866 int prev_cop1_usable=cop1_usable;
5867 int unconditional=0,nevertaken=0;
5868 int only32=0;
57871462 5869 int invert=0;
5870 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5871 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5872 if(!match) invert=1;
5873 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5874 if(i>(ba[i]-start)>>2) invert=1;
5875 #endif
5876
5877 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5878 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5879
e1190b87 5880 if(ooo[i]) {
57871462 5881 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5882 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5883 }
5884 else {
5885 s1l=get_reg(i_regmap,rs1[i]);
5886 s1h=get_reg(i_regmap,rs1[i]|64);
5887 }
5888 if(rs1[i]==0)
5889 {
5890 if(opcode2[i]&1) unconditional=1;
5891 else nevertaken=1;
5892 // These are never taken (r0 is never less than zero)
5893 //assert(opcode2[i]!=0);
5894 //assert(opcode2[i]!=2);
5895 //assert(opcode2[i]!=0x10);
5896 //assert(opcode2[i]!=0x12);
5897 }
5898 else {
5899 only32=(regs[i].was32>>rs1[i])&1;
5900 }
5901
e1190b87 5902 if(ooo[i]) {
57871462 5903 // Out of order execution (delay slot first)
5904 //printf("OOOE\n");
5905 address_generation(i+1,i_regs,regs[i].regmap_entry);
5906 ds_assemble(i+1,i_regs);
5907 int adj;
5908 uint64_t bc_unneeded=branch_regs[i].u;
5909 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5910 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5911 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5912 bc_unneeded|=1;
5913 bc_unneeded_upper|=1;
5914 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5915 bc_unneeded,bc_unneeded_upper);
5916 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5917 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5918 if(rt1[i]==31) {
5919 int rt,return_address;
57871462 5920 rt=get_reg(branch_regs[i].regmap,31);
5921 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5922 if(rt>=0) {
5923 // Save the PC even if the branch is not taken
5924 return_address=start+i*4+8;
5925 emit_movimm(return_address,rt); // PC into link register
5926 #ifdef IMM_PREFETCH
5927 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5928 #endif
5929 }
5930 }
5931 cc=get_reg(branch_regs[i].regmap,CCREG);
5932 assert(cc==HOST_CCREG);
5933 if(unconditional)
5934 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5935 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5936 assem_debug("cycle count (adj)\n");
5937 if(unconditional) {
5938 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5939 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5940 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5941 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5942 if(internal)
5943 assem_debug("branch: internal\n");
5944 else
5945 assem_debug("branch: external\n");
5946 if(internal&&is_ds[(ba[i]-start)>>2]) {
5947 ds_assemble_entry(i);
5948 }
5949 else {
5950 add_to_linker((int)out,ba[i],internal);
5951 emit_jmp(0);
5952 }
5953 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5954 if(((u_int)out)&7) emit_addnop(0);
5955 #endif
5956 }
5957 }
5958 else if(nevertaken) {
2573466a 5959 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5960 int jaddr=(int)out;
5961 emit_jns(0);
5962 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5963 }
5964 else {
5965 int nottaken=0;
5966 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5967 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5968 if(!only32)
5969 {
5970 assert(s1h>=0);
df894a3a 5971 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5972 {
5973 emit_test(s1h,s1h);
5974 if(invert){
5975 nottaken=(int)out;
5976 emit_jns(1);
5977 }else{
5978 add_to_linker((int)out,ba[i],internal);
5979 emit_js(0);
5980 }
5981 }
df894a3a 5982 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5983 {
5984 emit_test(s1h,s1h);
5985 if(invert){
5986 nottaken=(int)out;
5987 emit_js(1);
5988 }else{
5989 add_to_linker((int)out,ba[i],internal);
5990 emit_jns(0);
5991 }
5992 }
5993 } // if(!only32)
5994 else
5995 {
5996 assert(s1l>=0);
df894a3a 5997 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5998 {
5999 emit_test(s1l,s1l);
6000 if(invert){
6001 nottaken=(int)out;
6002 emit_jns(1);
6003 }else{
6004 add_to_linker((int)out,ba[i],internal);
6005 emit_js(0);
6006 }
6007 }
df894a3a 6008 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6009 {
6010 emit_test(s1l,s1l);
6011 if(invert){
6012 nottaken=(int)out;
6013 emit_js(1);
6014 }else{
6015 add_to_linker((int)out,ba[i],internal);
6016 emit_jns(0);
6017 }
6018 }
6019 } // if(!only32)
6020
6021 if(invert) {
6022 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6023 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6024 if(adj) {
2573466a 6025 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6026 add_to_linker((int)out,ba[i],internal);
6027 }else{
6028 emit_addnop(13);
6029 add_to_linker((int)out,ba[i],internal*2);
6030 }
6031 emit_jmp(0);
6032 }else
6033 #endif
6034 {
2573466a 6035 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6036 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6037 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6038 if(internal)
6039 assem_debug("branch: internal\n");
6040 else
6041 assem_debug("branch: external\n");
6042 if(internal&&is_ds[(ba[i]-start)>>2]) {
6043 ds_assemble_entry(i);
6044 }
6045 else {
6046 add_to_linker((int)out,ba[i],internal);
6047 emit_jmp(0);
6048 }
6049 }
6050 set_jump_target(nottaken,(int)out);
6051 }
6052
6053 if(adj) {
2573466a 6054 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6055 }
6056 } // (!unconditional)
6057 } // if(ooo)
6058 else
6059 {
6060 // In-order execution (branch first)
6061 //printf("IOE\n");
6062 int nottaken=0;
a6491170 6063 if(rt1[i]==31) {
6064 int rt,return_address;
a6491170 6065 rt=get_reg(branch_regs[i].regmap,31);
6066 if(rt>=0) {
6067 // Save the PC even if the branch is not taken
6068 return_address=start+i*4+8;
6069 emit_movimm(return_address,rt); // PC into link register
6070 #ifdef IMM_PREFETCH
6071 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6072 #endif
6073 }
6074 }
57871462 6075 if(!unconditional) {
6076 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6077 if(!only32)
6078 {
6079 assert(s1h>=0);
a6491170 6080 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6081 {
6082 emit_test(s1h,s1h);
6083 nottaken=(int)out;
6084 emit_jns(1);
6085 }
a6491170 6086 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6087 {
6088 emit_test(s1h,s1h);
6089 nottaken=(int)out;
6090 emit_js(1);
6091 }
6092 } // if(!only32)
6093 else
6094 {
6095 assert(s1l>=0);
a6491170 6096 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6097 {
6098 emit_test(s1l,s1l);
6099 nottaken=(int)out;
6100 emit_jns(1);
6101 }
a6491170 6102 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6103 {
6104 emit_test(s1l,s1l);
6105 nottaken=(int)out;
6106 emit_js(1);
6107 }
6108 }
6109 } // if(!unconditional)
6110 int adj;
6111 uint64_t ds_unneeded=branch_regs[i].u;
6112 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6113 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6114 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6115 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6116 ds_unneeded|=1;
6117 ds_unneeded_upper|=1;
6118 // branch taken
6119 if(!nevertaken) {
6120 //assem_debug("1:\n");
6121 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6122 ds_unneeded,ds_unneeded_upper);
6123 // load regs
6124 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6125 address_generation(i+1,&branch_regs[i],0);
6126 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6127 ds_assemble(i+1,&branch_regs[i]);
6128 cc=get_reg(branch_regs[i].regmap,CCREG);
6129 if(cc==-1) {
6130 emit_loadreg(CCREG,cc=HOST_CCREG);
6131 // CHECK: Is the following instruction (fall thru) allocated ok?
6132 }
6133 assert(cc==HOST_CCREG);
6134 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6135 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6136 assem_debug("cycle count (adj)\n");
2573466a 6137 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6138 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6139 if(internal)
6140 assem_debug("branch: internal\n");
6141 else
6142 assem_debug("branch: external\n");
6143 if(internal&&is_ds[(ba[i]-start)>>2]) {
6144 ds_assemble_entry(i);
6145 }
6146 else {
6147 add_to_linker((int)out,ba[i],internal);
6148 emit_jmp(0);
6149 }
6150 }
6151 // branch not taken
6152 cop1_usable=prev_cop1_usable;
6153 if(!unconditional) {
6154 set_jump_target(nottaken,(int)out);
6155 assem_debug("1:\n");
6156 if(!likely[i]) {
6157 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6158 ds_unneeded,ds_unneeded_upper);
6159 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6160 address_generation(i+1,&branch_regs[i],0);
6161 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6162 ds_assemble(i+1,&branch_regs[i]);
6163 }
6164 cc=get_reg(branch_regs[i].regmap,CCREG);
6165 if(cc==-1&&!likely[i]) {
6166 // Cycle count isn't in a register, temporarily load it then write it out
6167 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6168 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6169 int jaddr=(int)out;
6170 emit_jns(0);
6171 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6172 emit_storereg(CCREG,HOST_CCREG);
6173 }
6174 else{
6175 cc=get_reg(i_regmap,CCREG);
6176 assert(cc==HOST_CCREG);
2573466a 6177 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6178 int jaddr=(int)out;
6179 emit_jns(0);
6180 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6181 }
6182 }
6183 }
6184}
6185
6186void fjump_assemble(int i,struct regstat *i_regs)
6187{
6188 signed char *i_regmap=i_regs->regmap;
6189 int cc;
6190 int match;
6191 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6192 assem_debug("fmatch=%d\n",match);
6193 int fs,cs;
6194 int eaddr;
57871462 6195 int invert=0;
6196 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6197 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6198 if(!match) invert=1;
6199 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6200 if(i>(ba[i]-start)>>2) invert=1;
6201 #endif
6202
e1190b87 6203 if(ooo[i]) {
57871462 6204 fs=get_reg(branch_regs[i].regmap,FSREG);
6205 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6206 }
6207 else {
6208 fs=get_reg(i_regmap,FSREG);
6209 }
6210
6211 // Check cop1 unusable
6212 if(!cop1_usable) {
6213 cs=get_reg(i_regmap,CSREG);
6214 assert(cs>=0);
6215 emit_testimm(cs,0x20000000);
6216 eaddr=(int)out;
6217 emit_jeq(0);
6218 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6219 cop1_usable=1;
6220 }
6221
e1190b87 6222 if(ooo[i]) {
57871462 6223 // Out of order execution (delay slot first)
6224 //printf("OOOE\n");
6225 ds_assemble(i+1,i_regs);
6226 int adj;
6227 uint64_t bc_unneeded=branch_regs[i].u;
6228 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6229 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6230 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6231 bc_unneeded|=1;
6232 bc_unneeded_upper|=1;
6233 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6234 bc_unneeded,bc_unneeded_upper);
6235 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6236 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6237 cc=get_reg(branch_regs[i].regmap,CCREG);
6238 assert(cc==HOST_CCREG);
6239 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6240 assem_debug("cycle count (adj)\n");
6241 if(1) {
6242 int nottaken=0;
2573466a 6243 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6244 if(1) {
6245 assert(fs>=0);
6246 emit_testimm(fs,0x800000);
6247 if(source[i]&0x10000) // BC1T
6248 {
6249 if(invert){
6250 nottaken=(int)out;
6251 emit_jeq(1);
6252 }else{
6253 add_to_linker((int)out,ba[i],internal);
6254 emit_jne(0);
6255 }
6256 }
6257 else // BC1F
6258 if(invert){
6259 nottaken=(int)out;
6260 emit_jne(1);
6261 }else{
6262 add_to_linker((int)out,ba[i],internal);
6263 emit_jeq(0);
6264 }
6265 {
6266 }
6267 } // if(!only32)
6268
6269 if(invert) {
2573466a 6270 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6271 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6272 else if(match) emit_addnop(13);
6273 #endif
6274 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6275 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6276 if(internal)
6277 assem_debug("branch: internal\n");
6278 else
6279 assem_debug("branch: external\n");
6280 if(internal&&is_ds[(ba[i]-start)>>2]) {
6281 ds_assemble_entry(i);
6282 }
6283 else {
6284 add_to_linker((int)out,ba[i],internal);
6285 emit_jmp(0);
6286 }
6287 set_jump_target(nottaken,(int)out);
6288 }
6289
6290 if(adj) {
2573466a 6291 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6292 }
6293 } // (!unconditional)
6294 } // if(ooo)
6295 else
6296 {
6297 // In-order execution (branch first)
6298 //printf("IOE\n");
6299 int nottaken=0;
6300 if(1) {
6301 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6302 if(1) {
6303 assert(fs>=0);
6304 emit_testimm(fs,0x800000);
6305 if(source[i]&0x10000) // BC1T
6306 {
6307 nottaken=(int)out;
6308 emit_jeq(1);
6309 }
6310 else // BC1F
6311 {
6312 nottaken=(int)out;
6313 emit_jne(1);
6314 }
6315 }
6316 } // if(!unconditional)
6317 int adj;
6318 uint64_t ds_unneeded=branch_regs[i].u;
6319 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6320 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6321 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6322 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6323 ds_unneeded|=1;
6324 ds_unneeded_upper|=1;
6325 // branch taken
6326 //assem_debug("1:\n");
6327 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6328 ds_unneeded,ds_unneeded_upper);
6329 // load regs
6330 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6331 address_generation(i+1,&branch_regs[i],0);
6332 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6333 ds_assemble(i+1,&branch_regs[i]);
6334 cc=get_reg(branch_regs[i].regmap,CCREG);
6335 if(cc==-1) {
6336 emit_loadreg(CCREG,cc=HOST_CCREG);
6337 // CHECK: Is the following instruction (fall thru) allocated ok?
6338 }
6339 assert(cc==HOST_CCREG);
6340 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6341 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6342 assem_debug("cycle count (adj)\n");
2573466a 6343 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6344 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6345 if(internal)
6346 assem_debug("branch: internal\n");
6347 else
6348 assem_debug("branch: external\n");
6349 if(internal&&is_ds[(ba[i]-start)>>2]) {
6350 ds_assemble_entry(i);
6351 }
6352 else {
6353 add_to_linker((int)out,ba[i],internal);
6354 emit_jmp(0);
6355 }
6356
6357 // branch not taken
6358 if(1) { // <- FIXME (don't need this)
6359 set_jump_target(nottaken,(int)out);
6360 assem_debug("1:\n");
6361 if(!likely[i]) {
6362 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6363 ds_unneeded,ds_unneeded_upper);
6364 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6365 address_generation(i+1,&branch_regs[i],0);
6366 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6367 ds_assemble(i+1,&branch_regs[i]);
6368 }
6369 cc=get_reg(branch_regs[i].regmap,CCREG);
6370 if(cc==-1&&!likely[i]) {
6371 // Cycle count isn't in a register, temporarily load it then write it out
6372 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6373 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6374 int jaddr=(int)out;
6375 emit_jns(0);
6376 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6377 emit_storereg(CCREG,HOST_CCREG);
6378 }
6379 else{
6380 cc=get_reg(i_regmap,CCREG);
6381 assert(cc==HOST_CCREG);
2573466a 6382 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6383 int jaddr=(int)out;
6384 emit_jns(0);
6385 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6386 }
6387 }
6388 }
6389}
6390
6391static void pagespan_assemble(int i,struct regstat *i_regs)
6392{
6393 int s1l=get_reg(i_regs->regmap,rs1[i]);
6394 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6395 int s2l=get_reg(i_regs->regmap,rs2[i]);
6396 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6397 void *nt_branch=NULL;
6398 int taken=0;
6399 int nottaken=0;
6400 int unconditional=0;
6401 if(rs1[i]==0)
6402 {
6403 s1l=s2l;s1h=s2h;
6404 s2l=s2h=-1;
6405 }
6406 else if(rs2[i]==0)
6407 {
6408 s2l=s2h=-1;
6409 }
6410 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6411 s1h=s2h=-1;
6412 }
6413 int hr=0;
6414 int addr,alt,ntaddr;
6415 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6416 else {
6417 while(hr<HOST_REGS)
6418 {
6419 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6420 (i_regs->regmap[hr]&63)!=rs1[i] &&
6421 (i_regs->regmap[hr]&63)!=rs2[i] )
6422 {
6423 addr=hr++;break;
6424 }
6425 hr++;
6426 }
6427 }
6428 while(hr<HOST_REGS)
6429 {
6430 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6431 (i_regs->regmap[hr]&63)!=rs1[i] &&
6432 (i_regs->regmap[hr]&63)!=rs2[i] )
6433 {
6434 alt=hr++;break;
6435 }
6436 hr++;
6437 }
6438 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6439 {
6440 while(hr<HOST_REGS)
6441 {
6442 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6443 (i_regs->regmap[hr]&63)!=rs1[i] &&
6444 (i_regs->regmap[hr]&63)!=rs2[i] )
6445 {
6446 ntaddr=hr;break;
6447 }
6448 hr++;
6449 }
6450 }
6451 assert(hr<HOST_REGS);
6452 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6453 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6454 }
2573466a 6455 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6456 if(opcode[i]==2) // J
6457 {
6458 unconditional=1;
6459 }
6460 if(opcode[i]==3) // JAL
6461 {
6462 // TODO: mini_ht
6463 int rt=get_reg(i_regs->regmap,31);
6464 emit_movimm(start+i*4+8,rt);
6465 unconditional=1;
6466 }
6467 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6468 {
6469 emit_mov(s1l,addr);
6470 if(opcode2[i]==9) // JALR
6471 {
5067f341 6472 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6473 emit_movimm(start+i*4+8,rt);
6474 }
6475 }
6476 if((opcode[i]&0x3f)==4) // BEQ
6477 {
6478 if(rs1[i]==rs2[i])
6479 {
6480 unconditional=1;
6481 }
6482 else
6483 #ifdef HAVE_CMOV_IMM
6484 if(s1h<0) {
6485 if(s2l>=0) emit_cmp(s1l,s2l);
6486 else emit_test(s1l,s1l);
6487 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6488 }
6489 else
6490 #endif
6491 {
6492 assert(s1l>=0);
6493 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6494 if(s1h>=0) {
6495 if(s2h>=0) emit_cmp(s1h,s2h);
6496 else emit_test(s1h,s1h);
6497 emit_cmovne_reg(alt,addr);
6498 }
6499 if(s2l>=0) emit_cmp(s1l,s2l);
6500 else emit_test(s1l,s1l);
6501 emit_cmovne_reg(alt,addr);
6502 }
6503 }
6504 if((opcode[i]&0x3f)==5) // BNE
6505 {
6506 #ifdef HAVE_CMOV_IMM
6507 if(s1h<0) {
6508 if(s2l>=0) emit_cmp(s1l,s2l);
6509 else emit_test(s1l,s1l);
6510 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6511 }
6512 else
6513 #endif
6514 {
6515 assert(s1l>=0);
6516 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6517 if(s1h>=0) {
6518 if(s2h>=0) emit_cmp(s1h,s2h);
6519 else emit_test(s1h,s1h);
6520 emit_cmovne_reg(alt,addr);
6521 }
6522 if(s2l>=0) emit_cmp(s1l,s2l);
6523 else emit_test(s1l,s1l);
6524 emit_cmovne_reg(alt,addr);
6525 }
6526 }
6527 if((opcode[i]&0x3f)==0x14) // BEQL
6528 {
6529 if(s1h>=0) {
6530 if(s2h>=0) emit_cmp(s1h,s2h);
6531 else emit_test(s1h,s1h);
6532 nottaken=(int)out;
6533 emit_jne(0);
6534 }
6535 if(s2l>=0) emit_cmp(s1l,s2l);
6536 else emit_test(s1l,s1l);
6537 if(nottaken) set_jump_target(nottaken,(int)out);
6538 nottaken=(int)out;
6539 emit_jne(0);
6540 }
6541 if((opcode[i]&0x3f)==0x15) // BNEL
6542 {
6543 if(s1h>=0) {
6544 if(s2h>=0) emit_cmp(s1h,s2h);
6545 else emit_test(s1h,s1h);
6546 taken=(int)out;
6547 emit_jne(0);
6548 }
6549 if(s2l>=0) emit_cmp(s1l,s2l);
6550 else emit_test(s1l,s1l);
6551 nottaken=(int)out;
6552 emit_jeq(0);
6553 if(taken) set_jump_target(taken,(int)out);
6554 }
6555 if((opcode[i]&0x3f)==6) // BLEZ
6556 {
6557 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6558 emit_cmpimm(s1l,1);
6559 if(s1h>=0) emit_mov(addr,ntaddr);
6560 emit_cmovl_reg(alt,addr);
6561 if(s1h>=0) {
6562 emit_test(s1h,s1h);
6563 emit_cmovne_reg(ntaddr,addr);
6564 emit_cmovs_reg(alt,addr);
6565 }
6566 }
6567 if((opcode[i]&0x3f)==7) // BGTZ
6568 {
6569 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6570 emit_cmpimm(s1l,1);
6571 if(s1h>=0) emit_mov(addr,alt);
6572 emit_cmovl_reg(ntaddr,addr);
6573 if(s1h>=0) {
6574 emit_test(s1h,s1h);
6575 emit_cmovne_reg(alt,addr);
6576 emit_cmovs_reg(ntaddr,addr);
6577 }
6578 }
6579 if((opcode[i]&0x3f)==0x16) // BLEZL
6580 {
6581 assert((opcode[i]&0x3f)!=0x16);
6582 }
6583 if((opcode[i]&0x3f)==0x17) // BGTZL
6584 {
6585 assert((opcode[i]&0x3f)!=0x17);
6586 }
6587 assert(opcode[i]!=1); // BLTZ/BGEZ
6588
6589 //FIXME: Check CSREG
6590 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6591 if((source[i]&0x30000)==0) // BC1F
6592 {
6593 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6594 emit_testimm(s1l,0x800000);
6595 emit_cmovne_reg(alt,addr);
6596 }
6597 if((source[i]&0x30000)==0x10000) // BC1T
6598 {
6599 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6600 emit_testimm(s1l,0x800000);
6601 emit_cmovne_reg(alt,addr);
6602 }
6603 if((source[i]&0x30000)==0x20000) // BC1FL
6604 {
6605 emit_testimm(s1l,0x800000);
6606 nottaken=(int)out;
6607 emit_jne(0);
6608 }
6609 if((source[i]&0x30000)==0x30000) // BC1TL
6610 {
6611 emit_testimm(s1l,0x800000);
6612 nottaken=(int)out;
6613 emit_jeq(0);
6614 }
6615 }
6616
6617 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6618 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6619 if(likely[i]||unconditional)
6620 {
6621 emit_movimm(ba[i],HOST_BTREG);
6622 }
6623 else if(addr!=HOST_BTREG)
6624 {
6625 emit_mov(addr,HOST_BTREG);
6626 }
6627 void *branch_addr=out;
6628 emit_jmp(0);
6629 int target_addr=start+i*4+5;
6630 void *stub=out;
6631 void *compiled_target_addr=check_addr(target_addr);
6632 emit_extjump_ds((int)branch_addr,target_addr);
6633 if(compiled_target_addr) {
6634 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6635 add_link(target_addr,stub);
6636 }
6637 else set_jump_target((int)branch_addr,(int)stub);
6638 if(likely[i]) {
6639 // Not-taken path
6640 set_jump_target((int)nottaken,(int)out);
6641 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6642 void *branch_addr=out;
6643 emit_jmp(0);
6644 int target_addr=start+i*4+8;
6645 void *stub=out;
6646 void *compiled_target_addr=check_addr(target_addr);
6647 emit_extjump_ds((int)branch_addr,target_addr);
6648 if(compiled_target_addr) {
6649 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6650 add_link(target_addr,stub);
6651 }
6652 else set_jump_target((int)branch_addr,(int)stub);
6653 }
6654}
6655
6656// Assemble the delay slot for the above
6657static void pagespan_ds()
6658{
6659 assem_debug("initial delay slot:\n");
6660 u_int vaddr=start+1;
94d23bb9 6661 u_int page=get_page(vaddr);
6662 u_int vpage=get_vpage(vaddr);
57871462 6663 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6664 do_dirty_stub_ds();
6665 ll_add(jump_in+page,vaddr,(void *)out);
6666 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6667 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6668 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6669 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6670 emit_writeword(HOST_BTREG,(int)&branch_target);
6671 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6672 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6673 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6674 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6675 cop1_usable=0;
6676 is_delayslot=0;
6677 switch(itype[0]) {
6678 case ALU:
6679 alu_assemble(0,&regs[0]);break;
6680 case IMM16:
6681 imm16_assemble(0,&regs[0]);break;
6682 case SHIFT:
6683 shift_assemble(0,&regs[0]);break;
6684 case SHIFTIMM:
6685 shiftimm_assemble(0,&regs[0]);break;
6686 case LOAD:
6687 load_assemble(0,&regs[0]);break;
6688 case LOADLR:
6689 loadlr_assemble(0,&regs[0]);break;
6690 case STORE:
6691 store_assemble(0,&regs[0]);break;
6692 case STORELR:
6693 storelr_assemble(0,&regs[0]);break;
6694 case COP0:
6695 cop0_assemble(0,&regs[0]);break;
6696 case COP1:
6697 cop1_assemble(0,&regs[0]);break;
6698 case C1LS:
6699 c1ls_assemble(0,&regs[0]);break;
b9b61529 6700 case COP2:
6701 cop2_assemble(0,&regs[0]);break;
6702 case C2LS:
6703 c2ls_assemble(0,&regs[0]);break;
6704 case C2OP:
6705 c2op_assemble(0,&regs[0]);break;
57871462 6706 case FCONV:
6707 fconv_assemble(0,&regs[0]);break;
6708 case FLOAT:
6709 float_assemble(0,&regs[0]);break;
6710 case FCOMP:
6711 fcomp_assemble(0,&regs[0]);break;
6712 case MULTDIV:
6713 multdiv_assemble(0,&regs[0]);break;
6714 case MOV:
6715 mov_assemble(0,&regs[0]);break;
6716 case SYSCALL:
7139f3c8 6717 case HLECALL:
1e973cb0 6718 case INTCALL:
57871462 6719 case SPAN:
6720 case UJUMP:
6721 case RJUMP:
6722 case CJUMP:
6723 case SJUMP:
6724 case FJUMP:
c43b5311 6725 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
57871462 6726 }
6727 int btaddr=get_reg(regs[0].regmap,BTREG);
6728 if(btaddr<0) {
6729 btaddr=get_reg(regs[0].regmap,-1);
6730 emit_readword((int)&branch_target,btaddr);
6731 }
6732 assert(btaddr!=HOST_CCREG);
6733 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6734#ifdef HOST_IMM8
6735 emit_movimm(start+4,HOST_TEMPREG);
6736 emit_cmp(btaddr,HOST_TEMPREG);
6737#else
6738 emit_cmpimm(btaddr,start+4);
6739#endif
6740 int branch=(int)out;
6741 emit_jeq(0);
6742 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6743 emit_jmp(jump_vaddr_reg[btaddr]);
6744 set_jump_target(branch,(int)out);
6745 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6746 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6747}
6748
6749// Basic liveness analysis for MIPS registers
6750void unneeded_registers(int istart,int iend,int r)
6751{
6752 int i;
bedfea38 6753 uint64_t u,uu,gte_u,b,bu,gte_bu;
0ff8c62c 6754 uint64_t temp_u,temp_uu,temp_gte_u=0;
57871462 6755 uint64_t tdep;
0ff8c62c 6756 uint64_t gte_u_unknown=0;
6757 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6758 gte_u_unknown=~0ll;
57871462 6759 if(iend==slen-1) {
6760 u=1;uu=1;
0ff8c62c 6761 gte_u=gte_u_unknown;
57871462 6762 }else{
6763 u=unneeded_reg[iend+1];
6764 uu=unneeded_reg_upper[iend+1];
6765 u=1;uu=1;
0ff8c62c 6766 gte_u=gte_unneeded[iend+1];
57871462 6767 }
bedfea38 6768
57871462 6769 for (i=iend;i>=istart;i--)
6770 {
6771 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6772 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6773 {
6774 // If subroutine call, flag return address as a possible branch target
6775 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6776
6777 if(ba[i]<start || ba[i]>=(start+slen*4))
6778 {
6779 // Branch out of this block, flush all regs
6780 u=1;
6781 uu=1;
0ff8c62c 6782 gte_u=gte_u_unknown;
57871462 6783 /* Hexagon hack
6784 if(itype[i]==UJUMP&&rt1[i]==31)
6785 {
6786 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6787 }
6788 if(itype[i]==RJUMP&&rs1[i]==31)
6789 {
6790 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6791 }
4cb76aa4 6792 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6793 if(itype[i]==UJUMP&&rt1[i]==31)
6794 {
6795 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6796 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6797 }
6798 if(itype[i]==RJUMP&&rs1[i]==31)
6799 {
6800 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6801 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6802 }
6803 }*/
6804 branch_unneeded_reg[i]=u;
6805 branch_unneeded_reg_upper[i]=uu;
6806 // Merge in delay slot
6807 tdep=(~uu>>rt1[i+1])&1;
6808 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6809 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6810 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6811 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6812 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6813 u|=1;uu|=1;
bedfea38 6814 gte_u|=gte_rt[i+1];
6815 gte_u&=~gte_rs[i+1];
57871462 6816 // If branch is "likely" (and conditional)
6817 // then we skip the delay slot on the fall-thru path
6818 if(likely[i]) {
6819 if(i<slen-1) {
6820 u&=unneeded_reg[i+2];
6821 uu&=unneeded_reg_upper[i+2];
bedfea38 6822 gte_u&=gte_unneeded[i+2];
57871462 6823 }
6824 else
6825 {
6826 u=1;
6827 uu=1;
0ff8c62c 6828 gte_u=gte_u_unknown;
57871462 6829 }
6830 }
6831 }
6832 else
6833 {
6834 // Internal branch, flag target
6835 bt[(ba[i]-start)>>2]=1;
6836 if(ba[i]<=start+i*4) {
6837 // Backward branch
6838 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6839 {
6840 // Unconditional branch
6841 temp_u=1;temp_uu=1;
bedfea38 6842 temp_gte_u=0;
57871462 6843 } else {
6844 // Conditional branch (not taken case)
6845 temp_u=unneeded_reg[i+2];
6846 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6847 temp_gte_u&=gte_unneeded[i+2];
57871462 6848 }
6849 // Merge in delay slot
6850 tdep=(~temp_uu>>rt1[i+1])&1;
6851 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6852 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6853 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6854 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6855 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6856 temp_u|=1;temp_uu|=1;
bedfea38 6857 temp_gte_u|=gte_rt[i+1];
6858 temp_gte_u&=~gte_rs[i+1];
57871462 6859 // If branch is "likely" (and conditional)
6860 // then we skip the delay slot on the fall-thru path
6861 if(likely[i]) {
6862 if(i<slen-1) {
6863 temp_u&=unneeded_reg[i+2];
6864 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6865 temp_gte_u&=gte_unneeded[i+2];
57871462 6866 }
6867 else
6868 {
6869 temp_u=1;
6870 temp_uu=1;
0ff8c62c 6871 temp_gte_u=gte_u_unknown;
57871462 6872 }
6873 }
6874 tdep=(~temp_uu>>rt1[i])&1;
6875 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6876 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6877 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6878 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6879 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6880 temp_u|=1;temp_uu|=1;
bedfea38 6881 temp_gte_u|=gte_rt[i];
6882 temp_gte_u&=~gte_rs[i];
57871462 6883 unneeded_reg[i]=temp_u;
6884 unneeded_reg_upper[i]=temp_uu;
bedfea38 6885 gte_unneeded[i]=temp_gte_u;
57871462 6886 // Only go three levels deep. This recursion can take an
6887 // excessive amount of time if there are a lot of nested loops.
6888 if(r<2) {
6889 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6890 }else{
6891 unneeded_reg[(ba[i]-start)>>2]=1;
6892 unneeded_reg_upper[(ba[i]-start)>>2]=1;
0ff8c62c 6893 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
57871462 6894 }
6895 } /*else*/ if(1) {
6896 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6897 {
6898 // Unconditional branch
6899 u=unneeded_reg[(ba[i]-start)>>2];
6900 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6901 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6902 branch_unneeded_reg[i]=u;
6903 branch_unneeded_reg_upper[i]=uu;
6904 //u=1;
6905 //uu=1;
6906 //branch_unneeded_reg[i]=u;
6907 //branch_unneeded_reg_upper[i]=uu;
6908 // Merge in delay slot
6909 tdep=(~uu>>rt1[i+1])&1;
6910 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6911 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6912 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6913 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6914 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6915 u|=1;uu|=1;
bedfea38 6916 gte_u|=gte_rt[i+1];
6917 gte_u&=~gte_rs[i+1];
57871462 6918 } else {
6919 // Conditional branch
6920 b=unneeded_reg[(ba[i]-start)>>2];
6921 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6922 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6923 branch_unneeded_reg[i]=b;
6924 branch_unneeded_reg_upper[i]=bu;
6925 //b=1;
6926 //bu=1;
6927 //branch_unneeded_reg[i]=b;
6928 //branch_unneeded_reg_upper[i]=bu;
6929 // Branch delay slot
6930 tdep=(~uu>>rt1[i+1])&1;
6931 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6932 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6933 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6934 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6935 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6936 b|=1;bu|=1;
bedfea38 6937 gte_bu|=gte_rt[i+1];
6938 gte_bu&=~gte_rs[i+1];
57871462 6939 // If branch is "likely" then we skip the
6940 // delay slot on the fall-thru path
6941 if(likely[i]) {
6942 u=b;
6943 uu=bu;
bedfea38 6944 gte_u=gte_bu;
57871462 6945 if(i<slen-1) {
6946 u&=unneeded_reg[i+2];
6947 uu&=unneeded_reg_upper[i+2];
bedfea38 6948 gte_u&=gte_unneeded[i+2];
57871462 6949 //u=1;
6950 //uu=1;
6951 }
6952 } else {
6953 u&=b;
6954 uu&=bu;
bedfea38 6955 gte_u&=gte_bu;
57871462 6956 //u=1;
6957 //uu=1;
6958 }
6959 if(i<slen-1) {
6960 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6961 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6962 //branch_unneeded_reg[i]=1;
6963 //branch_unneeded_reg_upper[i]=1;
6964 } else {
6965 branch_unneeded_reg[i]=1;
6966 branch_unneeded_reg_upper[i]=1;
6967 }
6968 }
6969 }
6970 }
6971 }
1e973cb0 6972 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6973 {
6974 // SYSCALL instruction (software interrupt)
6975 u=1;
6976 uu=1;
6977 }
6978 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6979 {
6980 // ERET instruction (return from interrupt)
6981 u=1;
6982 uu=1;
6983 }
6984 //u=uu=1; // DEBUG
6985 tdep=(~uu>>rt1[i])&1;
6986 // Written registers are unneeded
6987 u|=1LL<<rt1[i];
6988 u|=1LL<<rt2[i];
6989 uu|=1LL<<rt1[i];
6990 uu|=1LL<<rt2[i];
bedfea38 6991 gte_u|=gte_rt[i];
57871462 6992 // Accessed registers are needed
6993 u&=~(1LL<<rs1[i]);
6994 u&=~(1LL<<rs2[i]);
6995 uu&=~(1LL<<us1[i]);
6996 uu&=~(1LL<<us2[i]);
bedfea38 6997 gte_u&=~gte_rs[i];
eaa11918 6998 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
cbbd8dd7 6999 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
57871462 7000 // Source-target dependencies
7001 uu&=~(tdep<<dep1[i]);
7002 uu&=~(tdep<<dep2[i]);
7003 // R0 is always unneeded
7004 u|=1;uu|=1;
7005 // Save it
7006 unneeded_reg[i]=u;
7007 unneeded_reg_upper[i]=uu;
bedfea38 7008 gte_unneeded[i]=gte_u;
57871462 7009 /*
7010 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7011 printf("U:");
7012 int r;
7013 for(r=1;r<=CCREG;r++) {
7014 if((unneeded_reg[i]>>r)&1) {
7015 if(r==HIREG) printf(" HI");
7016 else if(r==LOREG) printf(" LO");
7017 else printf(" r%d",r);
7018 }
7019 }
7020 printf(" UU:");
7021 for(r=1;r<=CCREG;r++) {
7022 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7023 if(r==HIREG) printf(" HI");
7024 else if(r==LOREG) printf(" LO");
7025 else printf(" r%d",r);
7026 }
7027 }
7028 printf("\n");*/
7029 }
252c20fc 7030#ifdef FORCE32
7031 for (i=iend;i>=istart;i--)
7032 {
7033 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7034 }
7035#endif
57871462 7036}
7037
7038// Identify registers which are likely to contain 32-bit values
7039// This is used to predict whether any branches will jump to a
7040// location with 64-bit values in registers.
7041static void provisional_32bit()
7042{
7043 int i,j;
7044 uint64_t is32=1;
7045 uint64_t lastbranch=1;
7046
7047 for(i=0;i<slen;i++)
7048 {
7049 if(i>0) {
7050 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7051 if(i>1) is32=lastbranch;
7052 else is32=1;
7053 }
7054 }
7055 if(i>1)
7056 {
7057 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7058 if(likely[i-2]) {
7059 if(i>2) is32=lastbranch;
7060 else is32=1;
7061 }
7062 }
7063 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7064 {
7065 if(rs1[i-2]==0||rs2[i-2]==0)
7066 {
7067 if(rs1[i-2]) {
7068 is32|=1LL<<rs1[i-2];
7069 }
7070 if(rs2[i-2]) {
7071 is32|=1LL<<rs2[i-2];
7072 }
7073 }
7074 }
7075 }
7076 // If something jumps here with 64-bit values
7077 // then promote those registers to 64 bits
7078 if(bt[i])
7079 {
7080 uint64_t temp_is32=is32;
7081 for(j=i-1;j>=0;j--)
7082 {
7083 if(ba[j]==start+i*4)
7084 //temp_is32&=branch_regs[j].is32;
7085 temp_is32&=p32[j];
7086 }
7087 for(j=i;j<slen;j++)
7088 {
7089 if(ba[j]==start+i*4)
7090 temp_is32=1;
7091 }
7092 is32=temp_is32;
7093 }
7094 int type=itype[i];
7095 int op=opcode[i];
7096 int op2=opcode2[i];
7097 int rt=rt1[i];
7098 int s1=rs1[i];
7099 int s2=rs2[i];
7100 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7101 // Branches don't write registers, consider the delay slot instead.
7102 type=itype[i+1];
7103 op=opcode[i+1];
7104 op2=opcode2[i+1];
7105 rt=rt1[i+1];
7106 s1=rs1[i+1];
7107 s2=rs2[i+1];
7108 lastbranch=is32;
7109 }
7110 switch(type) {
7111 case LOAD:
7112 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7113 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7114 is32&=~(1LL<<rt);
7115 else
7116 is32|=1LL<<rt;
7117 break;
7118 case STORE:
7119 case STORELR:
7120 break;
7121 case LOADLR:
7122 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7123 if(op==0x22) is32|=1LL<<rt; // LWL
7124 break;
7125 case IMM16:
7126 if (op==0x08||op==0x09|| // ADDI/ADDIU
7127 op==0x0a||op==0x0b|| // SLTI/SLTIU
7128 op==0x0c|| // ANDI
7129 op==0x0f) // LUI
7130 {
7131 is32|=1LL<<rt;
7132 }
7133 if(op==0x18||op==0x19) { // DADDI/DADDIU
7134 is32&=~(1LL<<rt);
7135 //if(imm[i]==0)
7136 // is32|=((is32>>s1)&1LL)<<rt;
7137 }
7138 if(op==0x0d||op==0x0e) { // ORI/XORI
7139 uint64_t sr=((is32>>s1)&1LL);
7140 is32&=~(1LL<<rt);
7141 is32|=sr<<rt;
7142 }
7143 break;
7144 case UJUMP:
7145 break;
7146 case RJUMP:
7147 break;
7148 case CJUMP:
7149 break;
7150 case SJUMP:
7151 break;
7152 case FJUMP:
7153 break;
7154 case ALU:
7155 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7156 is32|=1LL<<rt;
7157 }
7158 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7159 is32|=1LL<<rt;
7160 }
7161 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7162 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7163 is32&=~(1LL<<rt);
7164 is32|=sr<<rt;
7165 }
7166 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7167 if(s1==0&&s2==0) {
7168 is32|=1LL<<rt;
7169 }
7170 else if(s2==0) {
7171 uint64_t sr=((is32>>s1)&1LL);
7172 is32&=~(1LL<<rt);
7173 is32|=sr<<rt;
7174 }
7175 else if(s1==0) {
7176 uint64_t sr=((is32>>s2)&1LL);
7177 is32&=~(1LL<<rt);
7178 is32|=sr<<rt;
7179 }
7180 else {
7181 is32&=~(1LL<<rt);
7182 }
7183 }
7184 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7185 if(s1==0&&s2==0) {
7186 is32|=1LL<<rt;
7187 }
7188 else if(s2==0) {
7189 uint64_t sr=((is32>>s1)&1LL);
7190 is32&=~(1LL<<rt);
7191 is32|=sr<<rt;
7192 }
7193 else {
7194 is32&=~(1LL<<rt);
7195 }
7196 }
7197 break;
7198 case MULTDIV:
7199 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7200 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7201 }
7202 else {
7203 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7204 }
7205 break;
7206 case MOV:
7207 {
7208 uint64_t sr=((is32>>s1)&1LL);
7209 is32&=~(1LL<<rt);
7210 is32|=sr<<rt;
7211 }
7212 break;
7213 case SHIFT:
7214 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7215 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7216 break;
7217 case SHIFTIMM:
7218 is32|=1LL<<rt;
7219 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7220 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7221 break;
7222 case COP0:
7223 if(op2==0) is32|=1LL<<rt; // MFC0
7224 break;
7225 case COP1:
b9b61529 7226 case COP2:
57871462 7227 if(op2==0) is32|=1LL<<rt; // MFC1
7228 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7229 if(op2==2) is32|=1LL<<rt; // CFC1
7230 break;
7231 case C1LS:
b9b61529 7232 case C2LS:
57871462 7233 break;
7234 case FLOAT:
7235 case FCONV:
7236 break;
7237 case FCOMP:
7238 break;
b9b61529 7239 case C2OP:
57871462 7240 case SYSCALL:
7139f3c8 7241 case HLECALL:
57871462 7242 break;
7243 default:
7244 break;
7245 }
7246 is32|=1;
7247 p32[i]=is32;
7248
7249 if(i>0)
7250 {
7251 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7252 {
7253 if(rt1[i-1]==31) // JAL/JALR
7254 {
7255 // Subroutine call will return here, don't alloc any registers
7256 is32=1;
7257 }
7258 else if(i+1<slen)
7259 {
7260 // Internal branch will jump here, match registers to caller
7261 is32=0x3FFFFFFFFLL;
7262 }
7263 }
7264 }
7265 }
7266}
7267
7268// Identify registers which may be assumed to contain 32-bit values
7269// and where optimizations will rely on this.
7270// This is used to determine whether backward branches can safely
7271// jump to a location with 64-bit values in registers.
7272static void provisional_r32()
7273{
7274 u_int r32=0;
7275 int i;
7276
7277 for (i=slen-1;i>=0;i--)
7278 {
7279 int hr;
7280 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7281 {
7282 if(ba[i]<start || ba[i]>=(start+slen*4))
7283 {
7284 // Branch out of this block, don't need anything
7285 r32=0;
7286 }
7287 else
7288 {
7289 // Internal branch
7290 // Need whatever matches the target
7291 // (and doesn't get overwritten by the delay slot instruction)
7292 r32=0;
7293 int t=(ba[i]-start)>>2;
7294 if(ba[i]>start+i*4) {
7295 // Forward branch
7296 //if(!(requires_32bit[t]&~regs[i].was32))
7297 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7298 if(!(pr32[t]&~regs[i].was32))
7299 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7300 }else{
7301 // Backward branch
7302 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7303 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7304 }
7305 }
7306 // Conditional branch may need registers for following instructions
7307 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7308 {
7309 if(i<slen-2) {
7310 //r32|=requires_32bit[i+2];
7311 r32|=pr32[i+2];
7312 r32&=regs[i].was32;
7313 // Mark this address as a branch target since it may be called
7314 // upon return from interrupt
7315 //bt[i+2]=1;
7316 }
7317 }
7318 // Merge in delay slot
7319 if(!likely[i]) {
7320 // These are overwritten unless the branch is "likely"
7321 // and the delay slot is nullified if not taken
7322 r32&=~(1LL<<rt1[i+1]);
7323 r32&=~(1LL<<rt2[i+1]);
7324 }
7325 // Assume these are needed (delay slot)
7326 if(us1[i+1]>0)
7327 {
7328 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7329 }
7330 if(us2[i+1]>0)
7331 {
7332 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7333 }
7334 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7335 {
7336 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7337 }
7338 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7339 {
7340 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7341 }
7342 }
1e973cb0 7343 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7344 {
7345 // SYSCALL instruction (software interrupt)
7346 r32=0;
7347 }
7348 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7349 {
7350 // ERET instruction (return from interrupt)
7351 r32=0;
7352 }
7353 // Check 32 bits
7354 r32&=~(1LL<<rt1[i]);
7355 r32&=~(1LL<<rt2[i]);
7356 if(us1[i]>0)
7357 {
7358 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7359 }
7360 if(us2[i]>0)
7361 {
7362 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7363 }
7364 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7365 {
7366 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7367 }
7368 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7369 {
7370 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7371 }
7372 //requires_32bit[i]=r32;
7373 pr32[i]=r32;
7374
7375 // Dirty registers which are 32-bit, require 32-bit input
7376 // as they will be written as 32-bit values
7377 for(hr=0;hr<HOST_REGS;hr++)
7378 {
7379 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7380 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7381 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7382 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7383 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7384 }
7385 }
7386 }
7387 }
7388}
7389
7390// Write back dirty registers as soon as we will no longer modify them,
7391// so that we don't end up with lots of writes at the branches.
7392void clean_registers(int istart,int iend,int wr)
7393{
7394 int i;
7395 int r;
7396 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7397 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7398 if(iend==slen-1) {
7399 will_dirty_i=will_dirty_next=0;
7400 wont_dirty_i=wont_dirty_next=0;
7401 }else{
7402 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7403 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7404 }
7405 for (i=iend;i>=istart;i--)
7406 {
7407 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7408 {
7409 if(ba[i]<start || ba[i]>=(start+slen*4))
7410 {
7411 // Branch out of this block, flush all regs
7412 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7413 {
7414 // Unconditional branch
7415 will_dirty_i=0;
7416 wont_dirty_i=0;
7417 // Merge in delay slot (will dirty)
7418 for(r=0;r<HOST_REGS;r++) {
7419 if(r!=EXCLUDE_REG) {
7420 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7421 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7422 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7423 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7424 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7425 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7426 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7427 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7428 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7429 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7430 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7431 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7432 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7433 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7434 }
7435 }
7436 }
7437 else
7438 {
7439 // Conditional branch
7440 will_dirty_i=0;
7441 wont_dirty_i=wont_dirty_next;
7442 // Merge in delay slot (will dirty)
7443 for(r=0;r<HOST_REGS;r++) {
7444 if(r!=EXCLUDE_REG) {
7445 if(!likely[i]) {
7446 // Might not dirty if likely branch is not taken
7447 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7448 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7449 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7450 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7451 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7452 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7453 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7454 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7455 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7456 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7457 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7458 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7459 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7460 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7461 }
7462 }
7463 }
7464 }
7465 // Merge in delay slot (wont dirty)
7466 for(r=0;r<HOST_REGS;r++) {
7467 if(r!=EXCLUDE_REG) {
7468 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7469 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7470 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7471 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7472 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7473 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7474 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7475 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7476 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7477 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7478 }
7479 }
7480 if(wr) {
7481 #ifndef DESTRUCTIVE_WRITEBACK
7482 branch_regs[i].dirty&=wont_dirty_i;
7483 #endif
7484 branch_regs[i].dirty|=will_dirty_i;
7485 }
7486 }
7487 else
7488 {
7489 // Internal branch
7490 if(ba[i]<=start+i*4) {
7491 // Backward branch
7492 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7493 {
7494 // Unconditional branch
7495 temp_will_dirty=0;
7496 temp_wont_dirty=0;
7497 // Merge in delay slot (will dirty)
7498 for(r=0;r<HOST_REGS;r++) {
7499 if(r!=EXCLUDE_REG) {
7500 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7501 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7502 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7503 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7504 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7505 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7506 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7507 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7508 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7509 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7510 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7511 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7512 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7513 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7514 }
7515 }
7516 } else {
7517 // Conditional branch (not taken case)
7518 temp_will_dirty=will_dirty_next;
7519 temp_wont_dirty=wont_dirty_next;
7520 // Merge in delay slot (will dirty)
7521 for(r=0;r<HOST_REGS;r++) {
7522 if(r!=EXCLUDE_REG) {
7523 if(!likely[i]) {
7524 // Will not dirty if likely branch is not taken
7525 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7526 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7527 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7528 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7529 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7530 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7531 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7532 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7533 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7534 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7535 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7536 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7537 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7538 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7539 }
7540 }
7541 }
7542 }
7543 // Merge in delay slot (wont dirty)
7544 for(r=0;r<HOST_REGS;r++) {
7545 if(r!=EXCLUDE_REG) {
7546 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7547 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7548 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7549 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7550 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7551 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7552 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7553 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7554 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7555 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7556 }
7557 }
7558 // Deal with changed mappings
7559 if(i<iend) {
7560 for(r=0;r<HOST_REGS;r++) {
7561 if(r!=EXCLUDE_REG) {
7562 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7563 temp_will_dirty&=~(1<<r);
7564 temp_wont_dirty&=~(1<<r);
7565 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7566 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7567 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7568 } else {
7569 temp_will_dirty|=1<<r;
7570 temp_wont_dirty|=1<<r;
7571 }
7572 }
7573 }
7574 }
7575 }
7576 if(wr) {
7577 will_dirty[i]=temp_will_dirty;
7578 wont_dirty[i]=temp_wont_dirty;
7579 clean_registers((ba[i]-start)>>2,i-1,0);
7580 }else{
7581 // Limit recursion. It can take an excessive amount
7582 // of time if there are a lot of nested loops.
7583 will_dirty[(ba[i]-start)>>2]=0;
7584 wont_dirty[(ba[i]-start)>>2]=-1;
7585 }
7586 }
7587 /*else*/ if(1)
7588 {
7589 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7590 {
7591 // Unconditional branch
7592 will_dirty_i=0;
7593 wont_dirty_i=0;
7594 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7595 for(r=0;r<HOST_REGS;r++) {
7596 if(r!=EXCLUDE_REG) {
7597 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7598 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7599 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7600 }
e3234ecf 7601 if(branch_regs[i].regmap[r]>=0) {
7602 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7603 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7604 }
57871462 7605 }
7606 }
7607 //}
7608 // Merge in delay slot
7609 for(r=0;r<HOST_REGS;r++) {
7610 if(r!=EXCLUDE_REG) {
7611 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7612 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7613 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7614 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7615 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7616 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7617 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7618 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7619 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7620 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7621 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7622 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7623 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7624 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7625 }
7626 }
7627 } else {
7628 // Conditional branch
7629 will_dirty_i=will_dirty_next;
7630 wont_dirty_i=wont_dirty_next;
7631 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7632 for(r=0;r<HOST_REGS;r++) {
7633 if(r!=EXCLUDE_REG) {
e3234ecf 7634 signed char target_reg=branch_regs[i].regmap[r];
7635 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7636 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7637 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7638 }
e3234ecf 7639 else if(target_reg>=0) {
7640 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7641 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7642 }
7643 // Treat delay slot as part of branch too
7644 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7645 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7646 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7647 }
7648 else
7649 {
7650 will_dirty[i+1]&=~(1<<r);
7651 }*/
7652 }
7653 }
7654 //}
7655 // Merge in delay slot
7656 for(r=0;r<HOST_REGS;r++) {
7657 if(r!=EXCLUDE_REG) {
7658 if(!likely[i]) {
7659 // Might not dirty if likely branch is not taken
7660 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7661 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7662 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7663 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7664 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7665 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7666 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7667 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7668 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7669 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7670 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7671 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7672 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7673 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7674 }
7675 }
7676 }
7677 }
e3234ecf 7678 // Merge in delay slot (won't dirty)
57871462 7679 for(r=0;r<HOST_REGS;r++) {
7680 if(r!=EXCLUDE_REG) {
7681 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7682 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7683 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7684 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7685 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7686 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7687 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7688 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7689 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7690 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7691 }
7692 }
7693 if(wr) {
7694 #ifndef DESTRUCTIVE_WRITEBACK
7695 branch_regs[i].dirty&=wont_dirty_i;
7696 #endif
7697 branch_regs[i].dirty|=will_dirty_i;
7698 }
7699 }
7700 }
7701 }
1e973cb0 7702 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7703 {
7704 // SYSCALL instruction (software interrupt)
7705 will_dirty_i=0;
7706 wont_dirty_i=0;
7707 }
7708 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7709 {
7710 // ERET instruction (return from interrupt)
7711 will_dirty_i=0;
7712 wont_dirty_i=0;
7713 }
7714 will_dirty_next=will_dirty_i;
7715 wont_dirty_next=wont_dirty_i;
7716 for(r=0;r<HOST_REGS;r++) {
7717 if(r!=EXCLUDE_REG) {
7718 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7719 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7720 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7721 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7722 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7723 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7724 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7725 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7726 if(i>istart) {
7727 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7728 {
7729 // Don't store a register immediately after writing it,
7730 // may prevent dual-issue.
7731 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7732 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7733 }
7734 }
7735 }
7736 }
7737 // Save it
7738 will_dirty[i]=will_dirty_i;
7739 wont_dirty[i]=wont_dirty_i;
7740 // Mark registers that won't be dirtied as not dirty
7741 if(wr) {
7742 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7743 for(r=0;r<HOST_REGS;r++) {
7744 if((will_dirty_i>>r)&1) {
7745 printf(" r%d",r);
7746 }
7747 }
7748 printf("\n");*/
7749
7750 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7751 regs[i].dirty|=will_dirty_i;
7752 #ifndef DESTRUCTIVE_WRITEBACK
7753 regs[i].dirty&=wont_dirty_i;
7754 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7755 {
7756 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7757 for(r=0;r<HOST_REGS;r++) {
7758 if(r!=EXCLUDE_REG) {
7759 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7760 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7761 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7762 }
7763 }
7764 }
7765 }
7766 else
7767 {
7768 if(i<iend) {
7769 for(r=0;r<HOST_REGS;r++) {
7770 if(r!=EXCLUDE_REG) {
7771 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7772 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7773 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7774 }
7775 }
7776 }
7777 }
7778 #endif
7779 //}
7780 }
7781 // Deal with changed mappings
7782 temp_will_dirty=will_dirty_i;
7783 temp_wont_dirty=wont_dirty_i;
7784 for(r=0;r<HOST_REGS;r++) {
7785 if(r!=EXCLUDE_REG) {
7786 int nr;
7787 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7788 if(wr) {
7789 #ifndef DESTRUCTIVE_WRITEBACK
7790 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7791 #endif
7792 regs[i].wasdirty|=will_dirty_i&(1<<r);
7793 }
7794 }
f776eb14 7795 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7796 // Register moved to a different register
7797 will_dirty_i&=~(1<<r);
7798 wont_dirty_i&=~(1<<r);
7799 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7800 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7801 if(wr) {
7802 #ifndef DESTRUCTIVE_WRITEBACK
7803 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7804 #endif
7805 regs[i].wasdirty|=will_dirty_i&(1<<r);
7806 }
7807 }
7808 else {
7809 will_dirty_i&=~(1<<r);
7810 wont_dirty_i&=~(1<<r);
7811 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7812 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7813 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7814 } else {
7815 wont_dirty_i|=1<<r;
7816 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7817 }
7818 }
7819 }
7820 }
7821 }
7822}
7823
4600ba03 7824#ifdef DISASM
57871462 7825 /* disassembly */
7826void disassemble_inst(int i)
7827{
7828 if (bt[i]) printf("*"); else printf(" ");
7829 switch(itype[i]) {
7830 case UJUMP:
7831 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7832 case CJUMP:
7833 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7834 case SJUMP:
7835 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7836 case FJUMP:
7837 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7838 case RJUMP:
74426039 7839 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7840 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7841 else
7842 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7843 break;
57871462 7844 case SPAN:
7845 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7846 case IMM16:
7847 if(opcode[i]==0xf) //LUI
7848 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7849 else
7850 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7851 break;
7852 case LOAD:
7853 case LOADLR:
7854 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7855 break;
7856 case STORE:
7857 case STORELR:
7858 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7859 break;
7860 case ALU:
7861 case SHIFT:
7862 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7863 break;
7864 case MULTDIV:
7865 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7866 break;
7867 case SHIFTIMM:
7868 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7869 break;
7870 case MOV:
7871 if((opcode2[i]&0x1d)==0x10)
7872 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7873 else if((opcode2[i]&0x1d)==0x11)
7874 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7875 else
7876 printf (" %x: %s\n",start+i*4,insn[i]);
7877 break;
7878 case COP0:
7879 if(opcode2[i]==0)
7880 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7881 else if(opcode2[i]==4)
7882 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7883 else printf (" %x: %s\n",start+i*4,insn[i]);
7884 break;
7885 case COP1:
7886 if(opcode2[i]<3)
7887 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7888 else if(opcode2[i]>3)
7889 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7890 else printf (" %x: %s\n",start+i*4,insn[i]);
7891 break;
b9b61529 7892 case COP2:
7893 if(opcode2[i]<3)
7894 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7895 else if(opcode2[i]>3)
7896 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7897 else printf (" %x: %s\n",start+i*4,insn[i]);
7898 break;
57871462 7899 case C1LS:
7900 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7901 break;
b9b61529 7902 case C2LS:
7903 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7904 break;
1e973cb0 7905 case INTCALL:
7906 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7907 break;
57871462 7908 default:
7909 //printf (" %s %8x\n",insn[i],source[i]);
7910 printf (" %x: %s\n",start+i*4,insn[i]);
7911 }
7912}
4600ba03 7913#else
7914static void disassemble_inst(int i) {}
7915#endif // DISASM
57871462 7916
d848b60a 7917#define DRC_TEST_VAL 0x74657374
7918
7919static int new_dynarec_test(void)
7920{
7921 int (*testfunc)(void) = (void *)out;
7922 int ret;
7923 emit_movimm(DRC_TEST_VAL,0); // test
7924 emit_jmpreg(14);
7925 literal_pool(0);
7926#ifdef __arm__
7927 __clear_cache((void *)testfunc, out);
7928#endif
7929 SysPrintf("testing if we can run recompiled code..\n");
7930 ret = testfunc();
7931 if (ret == DRC_TEST_VAL)
7932 SysPrintf("test passed.\n");
7933 else
7934 SysPrintf("test failed: %08x\n", ret);
7935 out=(u_char *)BASE_ADDR;
7936 return ret == DRC_TEST_VAL;
7937}
7938
dc990066 7939// clear the state completely, instead of just marking
7940// things invalid like invalidate_all_pages() does
7941void new_dynarec_clear_full()
57871462 7942{
57871462 7943 int n;
35775df7 7944 out=(u_char *)BASE_ADDR;
7945 memset(invalid_code,1,sizeof(invalid_code));
7946 memset(hash_table,0xff,sizeof(hash_table));
57871462 7947 memset(mini_ht,-1,sizeof(mini_ht));
7948 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7949 memset(shadow,0,sizeof(shadow));
57871462 7950 copy=shadow;
7951 expirep=16384; // Expiry pointer, +2 blocks
7952 pending_exception=0;
7953 literalcount=0;
57871462 7954 stop_after_jal=0;
9be4ba64 7955 inv_code_start=inv_code_end=~0;
57871462 7956 // TLB
af4ee1fe 7957#ifndef DISABLE_TLB
57871462 7958 using_tlb=0;
7959 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7960 memory_map[n]=-1;
7961 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7962 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7963 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7964 memory_map[n]=-1;
63cb0298 7965#endif
dc990066 7966 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7967 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7968 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7969}
7970
7971void new_dynarec_init()
7972{
d848b60a 7973 SysPrintf("Init new dynarec\n");
dc990066 7974 out=(u_char *)BASE_ADDR;
a327ad27 7975#if BASE_ADDR_FIXED
dc990066 7976 if (mmap (out, 1<<TARGET_SIZE_2,
7977 PROT_READ | PROT_WRITE | PROT_EXEC,
7978 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
d848b60a 7979 -1, 0) <= 0) {
7980 SysPrintf("mmap() failed: %s\n", strerror(errno));
7981 }
bdeade46 7982#else
7983 // not all systems allow execute in data segment by default
7984 if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
d848b60a 7985 SysPrintf("mprotect() failed: %s\n", strerror(errno));
bdeade46 7986#endif
dc990066 7987#ifdef MUPEN64
7988 rdword=&readmem_dword;
7989 fake_pc.f.r.rs=&readmem_dword;
7990 fake_pc.f.r.rt=&readmem_dword;
7991 fake_pc.f.r.rd=&readmem_dword;
7992#endif
7993 int n;
2573466a 7994 cycle_multiplier=200;
dc990066 7995 new_dynarec_clear_full();
7996#ifdef HOST_IMM8
7997 // Copy this into local area so we don't have to put it in every literal pool
7998 invc_ptr=invalid_code;
7999#endif
24385cae 8000#ifdef MUPEN64
57871462 8001 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8002 writemem[n] = write_nomem_new;
8003 writememb[n] = write_nomemb_new;
8004 writememh[n] = write_nomemh_new;
24385cae 8005#ifndef FORCE32
57871462 8006 writememd[n] = write_nomemd_new;
24385cae 8007#endif
57871462 8008 readmem[n] = read_nomem_new;
8009 readmemb[n] = read_nomemb_new;
8010 readmemh[n] = read_nomemh_new;
24385cae 8011#ifndef FORCE32
57871462 8012 readmemd[n] = read_nomemd_new;
24385cae 8013#endif
57871462 8014 }
8015 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8016 writemem[n] = write_rdram_new;
8017 writememb[n] = write_rdramb_new;
8018 writememh[n] = write_rdramh_new;
24385cae 8019#ifndef FORCE32
57871462 8020 writememd[n] = write_rdramd_new;
24385cae 8021#endif
57871462 8022 }
8023 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8024 writemem[n] = write_nomem_new;
8025 writememb[n] = write_nomemb_new;
8026 writememh[n] = write_nomemh_new;
24385cae 8027#ifndef FORCE32
57871462 8028 writememd[n] = write_nomemd_new;
24385cae 8029#endif
57871462 8030 readmem[n] = read_nomem_new;
8031 readmemb[n] = read_nomemb_new;
8032 readmemh[n] = read_nomemh_new;
24385cae 8033#ifndef FORCE32
57871462 8034 readmemd[n] = read_nomemd_new;
24385cae 8035#endif
57871462 8036 }
24385cae 8037#endif
57871462 8038 tlb_hacks();
8039 arch_init();
d848b60a 8040 new_dynarec_test();
a327ad27 8041#ifndef RAM_FIXED
8042 ram_offset=(u_int)rdram-0x80000000;
8043#endif
b105cf4f 8044 if (ram_offset!=0)
c43b5311 8045 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
57871462 8046}
8047
8048void new_dynarec_cleanup()
8049{
8050 int n;
a327ad27 8051 #if BASE_ADDR_FIXED
c43b5311 8052 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {SysPrintf("munmap() failed\n");}
bdeade46 8053 #endif
57871462 8054 for(n=0;n<4096;n++) ll_clear(jump_in+n);
8055 for(n=0;n<4096;n++) ll_clear(jump_out+n);
8056 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8057 #ifdef ROM_COPY
c43b5311 8058 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
57871462 8059 #endif
8060}
8061
8062int new_recompile_block(int addr)
8063{
8064/*
8065 if(addr==0x800cd050) {
8066 int block;
8067 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8068 int n;
8069 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8070 }
8071*/
8072 //if(Count==365117028) tracedebug=1;
8073 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8074 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8075 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8076 //if(debug)
8077 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8078 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8079 /*if(Count>=312978186) {
8080 rlist();
8081 }*/
8082 //rlist();
8083 start = (u_int)addr&~3;
8084 //assert(((u_int)addr&1)==0);
2f546f9a 8085 new_dynarec_did_compile=1;
7139f3c8 8086#ifdef PCSX
9ad4d757 8087 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8088 {
7139f3c8 8089 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8090 u_int beginning=(u_int)out;
7139f3c8 8091 u_int page=get_page(start);
7139f3c8 8092 invalid_code[start>>12]=0;
8093 emit_movimm(start,0);
8094 emit_writeword(0,(int)&pcaddr);
bb5285ef 8095 emit_jmp((int)new_dyna_leave);
15776b68 8096 literal_pool(0);
bb5285ef 8097#ifdef __arm__
8098 __clear_cache((void *)beginning,out);
8099#endif
9ad4d757 8100 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8101 return 0;
8102 }
560e4a12 8103 else if ((u_int)addr < 0x00200000 ||
8104 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8105 // used for BIOS calls mostly?
560e4a12 8106 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8107 pagelimit = (addr&0xa0000000)|0x00200000;
8108 }
8109 else if (!Config.HLE && (
8110/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8111 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8112 // BIOS
8113 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8114 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8115 }
8116 else
8117#endif
3d624f89 8118#ifdef MUPEN64
57871462 8119 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8120 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8121 pagelimit = 0xa4001000;
8122 }
3d624f89 8123 else
8124#endif
4cb76aa4 8125 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8126 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8127 pagelimit = 0x80000000+RAM_SIZE;
57871462 8128 }
90ae6d4e 8129#ifndef DISABLE_TLB
57871462 8130 else if ((signed int)addr >= (signed int)0xC0000000) {
8131 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8132 //if(tlb_LUT_r[start>>12])
8133 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8134 if((signed int)memory_map[start>>12]>=0) {
8135 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8136 pagelimit=(start+4096)&0xFFFFF000;
8137 int map=memory_map[start>>12];
8138 int i;
8139 for(i=0;i<5;i++) {
8140 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8141 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8142 }
8143 assem_debug("pagelimit=%x\n",pagelimit);
8144 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8145 }
8146 else {
8147 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8148 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8149 return -1; // Caller will invoke exception handler
57871462 8150 }
8151 //printf("source= %x\n",(int)source);
8152 }
90ae6d4e 8153#endif
57871462 8154 else {
c43b5311 8155 SysPrintf("Compile at bogus memory address: %x \n", (int)addr);
57871462 8156 exit(1);
8157 }
8158
8159 /* Pass 1: disassemble */
8160 /* Pass 2: register dependencies, branch targets */
8161 /* Pass 3: register allocation */
8162 /* Pass 4: branch dependencies */
8163 /* Pass 5: pre-alloc */
8164 /* Pass 6: optimize clean/dirty state */
8165 /* Pass 7: flag 32-bit registers */
8166 /* Pass 8: assembly */
8167 /* Pass 9: linker */
8168 /* Pass 10: garbage collection / free memory */
8169
8170 int i,j;
8171 int done=0;
8172 unsigned int type,op,op2;
8173
8174 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8175
8176 /* Pass 1 disassembly */
8177
8178 for(i=0;!done;i++) {
e1190b87 8179 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8180 minimum_free_regs[i]=0;
57871462 8181 opcode[i]=op=source[i]>>26;
8182 switch(op)
8183 {
8184 case 0x00: strcpy(insn[i],"special"); type=NI;
8185 op2=source[i]&0x3f;
8186 switch(op2)
8187 {
8188 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8189 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8190 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8191 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8192 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8193 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8194 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8195 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8196 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8197 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8198 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8199 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8200 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8201 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8202 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8203 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8204 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8205 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8206 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8207 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8208 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8209 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8210 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8211 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8212 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8213 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8214 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8215 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8216 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8217 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8218 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8219 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8220 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8221 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8222 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8223#ifndef FORCE32
8224 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8225 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8226 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8227 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8228 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8229 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8230 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8231 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8232 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8233 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8234 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8235 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8236 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8237 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8238 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8239 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8240 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8241#endif
57871462 8242 }
8243 break;
8244 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8245 op2=(source[i]>>16)&0x1f;
8246 switch(op2)
8247 {
8248 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8249 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8250 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8251 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8252 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8253 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8254 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8255 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8256 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8257 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8258 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8259 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8260 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8261 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8262 }
8263 break;
8264 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8265 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8266 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8267 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8268 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8269 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8270 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8271 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8272 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8273 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8274 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8275 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8276 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8277 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8278 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8279 op2=(source[i]>>21)&0x1f;
8280 switch(op2)
8281 {
8282 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8283 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8284 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8285 switch(source[i]&0x3f)
8286 {
8287 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8288 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8289 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8290 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8291#ifdef PCSX
8292 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8293#else
57871462 8294 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8295#endif
57871462 8296 }
8297 }
8298 break;
8299 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8300 op2=(source[i]>>21)&0x1f;
8301 switch(op2)
8302 {
8303 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8304 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8305 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8306 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8307 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8308 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8309 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8310 switch((source[i]>>16)&0x3)
8311 {
8312 case 0x00: strcpy(insn[i],"BC1F"); break;
8313 case 0x01: strcpy(insn[i],"BC1T"); break;
8314 case 0x02: strcpy(insn[i],"BC1FL"); break;
8315 case 0x03: strcpy(insn[i],"BC1TL"); break;
8316 }
8317 break;
8318 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8319 switch(source[i]&0x3f)
8320 {
8321 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8322 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8323 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8324 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8325 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8326 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8327 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8328 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8329 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8330 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8331 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8332 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8333 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8334 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8335 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8336 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8337 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8338 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8339 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8340 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8341 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8342 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8343 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8344 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8345 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8346 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8347 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8348 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8349 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8350 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8351 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8352 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8353 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8354 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8355 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8356 }
8357 break;
8358 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8359 switch(source[i]&0x3f)
8360 {
8361 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8362 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8363 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8364 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8365 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8366 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8367 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8368 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8369 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8370 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8371 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8372 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8373 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8374 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8375 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8376 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8377 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8378 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8379 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8380 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8381 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8382 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8383 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8384 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8385 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8386 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8387 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8388 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8389 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8390 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8391 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8392 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8393 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8394 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8395 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8396 }
8397 break;
8398 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8399 switch(source[i]&0x3f)
8400 {
8401 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8402 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8403 }
8404 break;
8405 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8406 switch(source[i]&0x3f)
8407 {
8408 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8409 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8410 }
8411 break;
8412 }
8413 break;
909168d6 8414#ifndef FORCE32
57871462 8415 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8416 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8417 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8418 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8419 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8420 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8421 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8422 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8423#endif
57871462 8424 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8425 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8426 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8427 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8428 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8429 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8430 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8431#ifndef FORCE32
57871462 8432 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8433#endif
57871462 8434 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8435 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8436 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8437 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8438#ifndef FORCE32
57871462 8439 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8440 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8441#endif
57871462 8442 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8443 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8444 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8445 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8446#ifndef FORCE32
57871462 8447 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8448 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8449 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8450#endif
57871462 8451 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8452 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8453#ifndef FORCE32
57871462 8454 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8455 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8456 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8457#endif
b9b61529 8458#ifdef PCSX
8459 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8460 op2=(source[i]>>21)&0x1f;
bedfea38 8461 //if (op2 & 0x10) {
8462 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8463 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8464 if (gte_regnames[source[i]&0x3f]!=NULL)
8465 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8466 else
8467 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8468 type=C2OP;
8469 }
8470 }
8471 else switch(op2)
b9b61529 8472 {
8473 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8474 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8475 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8476 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8477 }
8478 break;
8479 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8480 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8481 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8482#endif
90ae6d4e 8483 default: strcpy(insn[i],"???"); type=NI;
c43b5311 8484 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8485 break;
57871462 8486 }
8487 itype[i]=type;
8488 opcode2[i]=op2;
8489 /* Get registers/immediates */
8490 lt1[i]=0;
8491 us1[i]=0;
8492 us2[i]=0;
8493 dep1[i]=0;
8494 dep2[i]=0;
bedfea38 8495 gte_rs[i]=gte_rt[i]=0;
57871462 8496 switch(type) {
8497 case LOAD:
8498 rs1[i]=(source[i]>>21)&0x1f;
8499 rs2[i]=0;
8500 rt1[i]=(source[i]>>16)&0x1f;
8501 rt2[i]=0;
8502 imm[i]=(short)source[i];
8503 break;
8504 case STORE:
8505 case STORELR:
8506 rs1[i]=(source[i]>>21)&0x1f;
8507 rs2[i]=(source[i]>>16)&0x1f;
8508 rt1[i]=0;
8509 rt2[i]=0;
8510 imm[i]=(short)source[i];
8511 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8512 break;
8513 case LOADLR:
8514 // LWL/LWR only load part of the register,
8515 // therefore the target register must be treated as a source too
8516 rs1[i]=(source[i]>>21)&0x1f;
8517 rs2[i]=(source[i]>>16)&0x1f;
8518 rt1[i]=(source[i]>>16)&0x1f;
8519 rt2[i]=0;
8520 imm[i]=(short)source[i];
8521 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8522 if(op==0x26) dep1[i]=rt1[i]; // LWR
8523 break;
8524 case IMM16:
8525 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8526 else rs1[i]=(source[i]>>21)&0x1f;
8527 rs2[i]=0;
8528 rt1[i]=(source[i]>>16)&0x1f;
8529 rt2[i]=0;
8530 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8531 imm[i]=(unsigned short)source[i];
8532 }else{
8533 imm[i]=(short)source[i];
8534 }
8535 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8536 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8537 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8538 break;
8539 case UJUMP:
8540 rs1[i]=0;
8541 rs2[i]=0;
8542 rt1[i]=0;
8543 rt2[i]=0;
8544 // The JAL instruction writes to r31.
8545 if (op&1) {
8546 rt1[i]=31;
8547 }
8548 rs2[i]=CCREG;
8549 break;
8550 case RJUMP:
8551 rs1[i]=(source[i]>>21)&0x1f;
8552 rs2[i]=0;
8553 rt1[i]=0;
8554 rt2[i]=0;
5067f341 8555 // The JALR instruction writes to rd.
57871462 8556 if (op2&1) {
5067f341 8557 rt1[i]=(source[i]>>11)&0x1f;
57871462 8558 }
8559 rs2[i]=CCREG;
8560 break;
8561 case CJUMP:
8562 rs1[i]=(source[i]>>21)&0x1f;
8563 rs2[i]=(source[i]>>16)&0x1f;
8564 rt1[i]=0;
8565 rt2[i]=0;
8566 if(op&2) { // BGTZ/BLEZ
8567 rs2[i]=0;
8568 }
8569 us1[i]=rs1[i];
8570 us2[i]=rs2[i];
8571 likely[i]=op>>4;
8572 break;
8573 case SJUMP:
8574 rs1[i]=(source[i]>>21)&0x1f;
8575 rs2[i]=CCREG;
8576 rt1[i]=0;
8577 rt2[i]=0;
8578 us1[i]=rs1[i];
8579 if(op2&0x10) { // BxxAL
8580 rt1[i]=31;
8581 // NOTE: If the branch is not taken, r31 is still overwritten
8582 }
8583 likely[i]=(op2&2)>>1;
8584 break;
8585 case FJUMP:
8586 rs1[i]=FSREG;
8587 rs2[i]=CSREG;
8588 rt1[i]=0;
8589 rt2[i]=0;
8590 likely[i]=((source[i])>>17)&1;
8591 break;
8592 case ALU:
8593 rs1[i]=(source[i]>>21)&0x1f; // source
8594 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8595 rt1[i]=(source[i]>>11)&0x1f; // destination
8596 rt2[i]=0;
8597 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8598 us1[i]=rs1[i];us2[i]=rs2[i];
8599 }
8600 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8601 dep1[i]=rs1[i];dep2[i]=rs2[i];
8602 }
8603 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8604 dep1[i]=rs1[i];dep2[i]=rs2[i];
8605 }
8606 break;
8607 case MULTDIV:
8608 rs1[i]=(source[i]>>21)&0x1f; // source
8609 rs2[i]=(source[i]>>16)&0x1f; // divisor
8610 rt1[i]=HIREG;
8611 rt2[i]=LOREG;
8612 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8613 us1[i]=rs1[i];us2[i]=rs2[i];
8614 }
8615 break;
8616 case MOV:
8617 rs1[i]=0;
8618 rs2[i]=0;
8619 rt1[i]=0;
8620 rt2[i]=0;
8621 if(op2==0x10) rs1[i]=HIREG; // MFHI
8622 if(op2==0x11) rt1[i]=HIREG; // MTHI
8623 if(op2==0x12) rs1[i]=LOREG; // MFLO
8624 if(op2==0x13) rt1[i]=LOREG; // MTLO
8625 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8626 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8627 dep1[i]=rs1[i];
8628 break;
8629 case SHIFT:
8630 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8631 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8632 rt1[i]=(source[i]>>11)&0x1f; // destination
8633 rt2[i]=0;
8634 // DSLLV/DSRLV/DSRAV are 64-bit
8635 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8636 break;
8637 case SHIFTIMM:
8638 rs1[i]=(source[i]>>16)&0x1f;
8639 rs2[i]=0;
8640 rt1[i]=(source[i]>>11)&0x1f;
8641 rt2[i]=0;
8642 imm[i]=(source[i]>>6)&0x1f;
8643 // DSxx32 instructions
8644 if(op2>=0x3c) imm[i]|=0x20;
8645 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8646 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8647 break;
8648 case COP0:
8649 rs1[i]=0;
8650 rs2[i]=0;
8651 rt1[i]=0;
8652 rt2[i]=0;
8653 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8654 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8655 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8656 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8657 break;
8658 case COP1:
8659 rs1[i]=0;
8660 rs2[i]=0;
8661 rt1[i]=0;
8662 rt2[i]=0;
8663 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8664 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8665 if(op2==5) us1[i]=rs1[i]; // DMTC1
8666 rs2[i]=CSREG;
8667 break;
bedfea38 8668 case COP2:
8669 rs1[i]=0;
8670 rs2[i]=0;
8671 rt1[i]=0;
8672 rt2[i]=0;
8673 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8674 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8675 rs2[i]=CSREG;
8676 int gr=(source[i]>>11)&0x1F;
8677 switch(op2)
8678 {
8679 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8680 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
0ff8c62c 8681 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
bedfea38 8682 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8683 }
8684 break;
57871462 8685 case C1LS:
8686 rs1[i]=(source[i]>>21)&0x1F;
8687 rs2[i]=CSREG;
8688 rt1[i]=0;
8689 rt2[i]=0;
8690 imm[i]=(short)source[i];
8691 break;
b9b61529 8692 case C2LS:
8693 rs1[i]=(source[i]>>21)&0x1F;
8694 rs2[i]=0;
8695 rt1[i]=0;
8696 rt2[i]=0;
8697 imm[i]=(short)source[i];
bedfea38 8698 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8699 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8700 break;
8701 case C2OP:
8702 rs1[i]=0;
8703 rs2[i]=0;
8704 rt1[i]=0;
8705 rt2[i]=0;
2167bef6 8706 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8707 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8708 gte_rt[i]|=1ll<<63; // every op changes flags
587a5b1c 8709 if((source[i]&0x3f)==GTE_MVMVA) {
8710 int v = (source[i] >> 15) & 3;
8711 gte_rs[i]&=~0xe3fll;
8712 if(v==3) gte_rs[i]|=0xe00ll;
8713 else gte_rs[i]|=3ll<<(v*2);
8714 }
b9b61529 8715 break;
57871462 8716 case FLOAT:
8717 case FCONV:
8718 rs1[i]=0;
8719 rs2[i]=CSREG;
8720 rt1[i]=0;
8721 rt2[i]=0;
8722 break;
8723 case FCOMP:
8724 rs1[i]=FSREG;
8725 rs2[i]=CSREG;
8726 rt1[i]=FSREG;
8727 rt2[i]=0;
8728 break;
8729 case SYSCALL:
7139f3c8 8730 case HLECALL:
1e973cb0 8731 case INTCALL:
57871462 8732 rs1[i]=CCREG;
8733 rs2[i]=0;
8734 rt1[i]=0;
8735 rt2[i]=0;
8736 break;
8737 default:
8738 rs1[i]=0;
8739 rs2[i]=0;
8740 rt1[i]=0;
8741 rt2[i]=0;
8742 }
8743 /* Calculate branch target addresses */
8744 if(type==UJUMP)
8745 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8746 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8747 ba[i]=start+i*4+8; // Ignore never taken branch
8748 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8749 ba[i]=start+i*4+8; // Ignore never taken branch
8750 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8751 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8752 else ba[i]=-1;
26869094 8753#ifdef PCSX
3e535354 8754 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8755 int do_in_intrp=0;
8756 // branch in delay slot?
8757 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8758 // don't handle first branch and call interpreter if it's hit
c43b5311 8759 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
3e535354 8760 do_in_intrp=1;
8761 }
8762 // basic load delay detection
8763 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8764 int t=(ba[i-1]-start)/4;
8765 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8766 // jump target wants DS result - potential load delay effect
c43b5311 8767 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
3e535354 8768 do_in_intrp=1;
8769 bt[t+1]=1; // expected return from interpreter
8770 }
8771 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8772 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8773 // v0 overwrite like this is a sign of trouble, bail out
c43b5311 8774 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
3e535354 8775 do_in_intrp=1;
8776 }
8777 }
3e535354 8778 if(do_in_intrp) {
8779 rs1[i-1]=CCREG;
8780 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8781 ba[i-1]=-1;
8782 itype[i-1]=INTCALL;
8783 done=2;
3e535354 8784 i--; // don't compile the DS
26869094 8785 }
3e535354 8786 }
26869094 8787#endif
3e535354 8788 /* Is this the end of the block? */
8789 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8790 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8791 done=2;
57871462 8792 }
8793 else {
8794 if(stop_after_jal) done=1;
8795 // Stop on BREAK
8796 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8797 }
8798 // Don't recompile stuff that's already compiled
8799 if(check_addr(start+i*4+4)) done=1;
8800 // Don't get too close to the limit
8801 if(i>MAXBLOCK/2) done=1;
8802 }
75dec299 8803 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8804 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8805 if(done==2) {
8806 // Does the block continue due to a branch?
8807 for(j=i-1;j>=0;j--)
8808 {
2a706964 8809 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8810 if(ba[j]==start+i*4+4) done=j=0;
8811 if(ba[j]==start+i*4+8) done=j=0;
8812 }
8813 }
75dec299 8814 //assert(i<MAXBLOCK-1);
57871462 8815 if(start+i*4==pagelimit-4) done=1;
8816 assert(start+i*4<pagelimit);
8817 if (i==MAXBLOCK-1) done=1;
8818 // Stop if we're compiling junk
8819 if(itype[i]==NI&&opcode[i]==0x11) {
8820 done=stop_after_jal=1;
c43b5311 8821 SysPrintf("Disabled speculative precompilation\n");
57871462 8822 }
8823 }
8824 slen=i;
8825 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8826 if(start+i*4==pagelimit) {
8827 itype[i-1]=SPAN;
8828 }
8829 }
8830 assert(slen>0);
8831
8832 /* Pass 2 - Register dependencies and branch targets */
8833
8834 unneeded_registers(0,slen-1,0);
8835
8836 /* Pass 3 - Register allocation */
8837
8838 struct regstat current; // Current register allocations/status
8839 current.is32=1;
8840 current.dirty=0;
8841 current.u=unneeded_reg[0];
8842 current.uu=unneeded_reg_upper[0];
8843 clear_all_regs(current.regmap);
8844 alloc_reg(&current,0,CCREG);
8845 dirty_reg(&current,CCREG);
8846 current.isconst=0;
8847 current.wasconst=0;
27727b63 8848 current.waswritten=0;
57871462 8849 int ds=0;
8850 int cc=0;
5194fb95 8851 int hr=-1;
6ebf4adf 8852
8853#ifndef FORCE32
57871462 8854 provisional_32bit();
6ebf4adf 8855#endif
57871462 8856 if((u_int)addr&1) {
8857 // First instruction is delay slot
8858 cc=-1;
8859 bt[1]=1;
8860 ds=1;
8861 unneeded_reg[0]=1;
8862 unneeded_reg_upper[0]=1;
8863 current.regmap[HOST_BTREG]=BTREG;
8864 }
8865
8866 for(i=0;i<slen;i++)
8867 {
8868 if(bt[i])
8869 {
8870 int hr;
8871 for(hr=0;hr<HOST_REGS;hr++)
8872 {
8873 // Is this really necessary?
8874 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8875 }
8876 current.isconst=0;
27727b63 8877 current.waswritten=0;
57871462 8878 }
8879 if(i>1)
8880 {
8881 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8882 {
8883 if(rs1[i-2]==0||rs2[i-2]==0)
8884 {
8885 if(rs1[i-2]) {
8886 current.is32|=1LL<<rs1[i-2];
8887 int hr=get_reg(current.regmap,rs1[i-2]|64);
8888 if(hr>=0) current.regmap[hr]=-1;
8889 }
8890 if(rs2[i-2]) {
8891 current.is32|=1LL<<rs2[i-2];
8892 int hr=get_reg(current.regmap,rs2[i-2]|64);
8893 if(hr>=0) current.regmap[hr]=-1;
8894 }
8895 }
8896 }
8897 }
6ebf4adf 8898#ifndef FORCE32
57871462 8899 // If something jumps here with 64-bit values
8900 // then promote those registers to 64 bits
8901 if(bt[i])
8902 {
8903 uint64_t temp_is32=current.is32;
8904 for(j=i-1;j>=0;j--)
8905 {
8906 if(ba[j]==start+i*4)
8907 temp_is32&=branch_regs[j].is32;
8908 }
8909 for(j=i;j<slen;j++)
8910 {
8911 if(ba[j]==start+i*4)
8912 //temp_is32=1;
8913 temp_is32&=p32[j];
8914 }
8915 if(temp_is32!=current.is32) {
8916 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8917 #ifndef DESTRUCTIVE_WRITEBACK
8918 if(ds)
8919 #endif
57871462 8920 for(hr=0;hr<HOST_REGS;hr++)
8921 {
8922 int r=current.regmap[hr];
8923 if(r>0&&r<64)
8924 {
8925 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8926 temp_is32|=1LL<<r;
8927 //printf("restore %d\n",r);
8928 }
8929 }
8930 }
57871462 8931 current.is32=temp_is32;
8932 }
8933 }
6ebf4adf 8934#else
24385cae 8935 current.is32=-1LL;
8936#endif
8937
57871462 8938 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8939 regs[i].wasconst=current.isconst;
8940 regs[i].was32=current.is32;
8941 regs[i].wasdirty=current.dirty;
8575a877 8942 regs[i].loadedconst=0;
6ebf4adf 8943 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8944 // To change a dirty register from 32 to 64 bits, we must write
8945 // it out during the previous cycle (for branches, 2 cycles)
8946 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8947 {
8948 uint64_t temp_is32=current.is32;
8949 for(j=i-1;j>=0;j--)
8950 {
8951 if(ba[j]==start+i*4+4)
8952 temp_is32&=branch_regs[j].is32;
8953 }
8954 for(j=i;j<slen;j++)
8955 {
8956 if(ba[j]==start+i*4+4)
8957 //temp_is32=1;
8958 temp_is32&=p32[j];
8959 }
8960 if(temp_is32!=current.is32) {
8961 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8962 for(hr=0;hr<HOST_REGS;hr++)
8963 {
8964 int r=current.regmap[hr];
8965 if(r>0)
8966 {
8967 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8968 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8969 {
8970 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8971 {
8972 //printf("dump %d/r%d\n",hr,r);
8973 current.regmap[hr]=-1;
8974 if(get_reg(current.regmap,r|64)>=0)
8975 current.regmap[get_reg(current.regmap,r|64)]=-1;
8976 }
8977 }
8978 }
8979 }
8980 }
8981 }
8982 }
8983 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8984 {
8985 uint64_t temp_is32=current.is32;
8986 for(j=i-1;j>=0;j--)
8987 {
8988 if(ba[j]==start+i*4+8)
8989 temp_is32&=branch_regs[j].is32;
8990 }
8991 for(j=i;j<slen;j++)
8992 {
8993 if(ba[j]==start+i*4+8)
8994 //temp_is32=1;
8995 temp_is32&=p32[j];
8996 }
8997 if(temp_is32!=current.is32) {
8998 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8999 for(hr=0;hr<HOST_REGS;hr++)
9000 {
9001 int r=current.regmap[hr];
9002 if(r>0)
9003 {
9004 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9005 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
9006 {
9007 //printf("dump %d/r%d\n",hr,r);
9008 current.regmap[hr]=-1;
9009 if(get_reg(current.regmap,r|64)>=0)
9010 current.regmap[get_reg(current.regmap,r|64)]=-1;
9011 }
9012 }
9013 }
9014 }
9015 }
9016 }
9017 #endif
9018 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9019 if(i+1<slen) {
9020 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9021 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9022 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9023 current.u|=1;
9024 current.uu|=1;
9025 } else {
9026 current.u=1;
9027 current.uu=1;
9028 }
9029 } else {
9030 if(i+1<slen) {
9031 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9032 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9033 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9034 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9035 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9036 current.u|=1;
9037 current.uu|=1;
c43b5311 9038 } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
57871462 9039 }
9040 is_ds[i]=ds;
9041 if(ds) {
9042 ds=0; // Skip delay slot, already allocated as part of branch
9043 // ...but we need to alloc it in case something jumps here
9044 if(i+1<slen) {
9045 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9046 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9047 }else{
9048 current.u=branch_unneeded_reg[i-1];
9049 current.uu=branch_unneeded_reg_upper[i-1];
9050 }
9051 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9052 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9053 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9054 current.u|=1;
9055 current.uu|=1;
9056 struct regstat temp;
9057 memcpy(&temp,&current,sizeof(current));
9058 temp.wasdirty=temp.dirty;
9059 temp.was32=temp.is32;
9060 // TODO: Take into account unconditional branches, as below
9061 delayslot_alloc(&temp,i);
9062 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9063 regs[i].wasdirty=temp.wasdirty;
9064 regs[i].was32=temp.was32;
9065 regs[i].dirty=temp.dirty;
9066 regs[i].is32=temp.is32;
9067 regs[i].isconst=0;
9068 regs[i].wasconst=0;
9069 current.isconst=0;
9070 // Create entry (branch target) regmap
9071 for(hr=0;hr<HOST_REGS;hr++)
9072 {
9073 int r=temp.regmap[hr];
9074 if(r>=0) {
9075 if(r!=regmap_pre[i][hr]) {
9076 regs[i].regmap_entry[hr]=-1;
9077 }
9078 else
9079 {
9080 if(r<64){
9081 if((current.u>>r)&1) {
9082 regs[i].regmap_entry[hr]=-1;
9083 regs[i].regmap[hr]=-1;
9084 //Don't clear regs in the delay slot as the branch might need them
9085 //current.regmap[hr]=-1;
9086 }else
9087 regs[i].regmap_entry[hr]=r;
9088 }
9089 else {
9090 if((current.uu>>(r&63))&1) {
9091 regs[i].regmap_entry[hr]=-1;
9092 regs[i].regmap[hr]=-1;
9093 //Don't clear regs in the delay slot as the branch might need them
9094 //current.regmap[hr]=-1;
9095 }else
9096 regs[i].regmap_entry[hr]=r;
9097 }
9098 }
9099 } else {
9100 // First instruction expects CCREG to be allocated
9101 if(i==0&&hr==HOST_CCREG)
9102 regs[i].regmap_entry[hr]=CCREG;
9103 else
9104 regs[i].regmap_entry[hr]=-1;
9105 }
9106 }
9107 }
9108 else { // Not delay slot
9109 switch(itype[i]) {
9110 case UJUMP:
9111 //current.isconst=0; // DEBUG
9112 //current.wasconst=0; // DEBUG
9113 //regs[i].wasconst=0; // DEBUG
9114 clear_const(&current,rt1[i]);
9115 alloc_cc(&current,i);
9116 dirty_reg(&current,CCREG);
9117 if (rt1[i]==31) {
9118 alloc_reg(&current,i,31);
9119 dirty_reg(&current,31);
4ef8f67d 9120 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9121 //assert(rt1[i+1]!=rt1[i]);
57871462 9122 #ifdef REG_PREFETCH
9123 alloc_reg(&current,i,PTEMP);
9124 #endif
9125 //current.is32|=1LL<<rt1[i];
9126 }
269bb29a 9127 ooo[i]=1;
9128 delayslot_alloc(&current,i+1);
57871462 9129 //current.isconst=0; // DEBUG
9130 ds=1;
9131 //printf("i=%d, isconst=%x\n",i,current.isconst);
9132 break;
9133 case RJUMP:
9134 //current.isconst=0;
9135 //current.wasconst=0;
9136 //regs[i].wasconst=0;
9137 clear_const(&current,rs1[i]);
9138 clear_const(&current,rt1[i]);
9139 alloc_cc(&current,i);
9140 dirty_reg(&current,CCREG);
9141 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9142 alloc_reg(&current,i,rs1[i]);
5067f341 9143 if (rt1[i]!=0) {
9144 alloc_reg(&current,i,rt1[i]);
9145 dirty_reg(&current,rt1[i]);
68b3faee 9146 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9147 assert(rt1[i+1]!=rt1[i]);
57871462 9148 #ifdef REG_PREFETCH
9149 alloc_reg(&current,i,PTEMP);
9150 #endif
9151 }
9152 #ifdef USE_MINI_HT
9153 if(rs1[i]==31) { // JALR
9154 alloc_reg(&current,i,RHASH);
9155 #ifndef HOST_IMM_ADDR32
9156 alloc_reg(&current,i,RHTBL);
9157 #endif
9158 }
9159 #endif
9160 delayslot_alloc(&current,i+1);
9161 } else {
9162 // The delay slot overwrites our source register,
9163 // allocate a temporary register to hold the old value.
9164 current.isconst=0;
9165 current.wasconst=0;
9166 regs[i].wasconst=0;
9167 delayslot_alloc(&current,i+1);
9168 current.isconst=0;
9169 alloc_reg(&current,i,RTEMP);
9170 }
9171 //current.isconst=0; // DEBUG
e1190b87 9172 ooo[i]=1;
57871462 9173 ds=1;
9174 break;
9175 case CJUMP:
9176 //current.isconst=0;
9177 //current.wasconst=0;
9178 //regs[i].wasconst=0;
9179 clear_const(&current,rs1[i]);
9180 clear_const(&current,rs2[i]);
9181 if((opcode[i]&0x3E)==4) // BEQ/BNE
9182 {
9183 alloc_cc(&current,i);
9184 dirty_reg(&current,CCREG);
9185 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9186 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9187 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9188 {
9189 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9190 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9191 }
9192 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9193 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9194 // The delay slot overwrites one of our conditions.
9195 // Allocate the branch condition registers instead.
57871462 9196 current.isconst=0;
9197 current.wasconst=0;
9198 regs[i].wasconst=0;
9199 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9200 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9201 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9202 {
9203 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9204 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9205 }
9206 }
e1190b87 9207 else
9208 {
9209 ooo[i]=1;
9210 delayslot_alloc(&current,i+1);
9211 }
57871462 9212 }
9213 else
9214 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9215 {
9216 alloc_cc(&current,i);
9217 dirty_reg(&current,CCREG);
9218 alloc_reg(&current,i,rs1[i]);
9219 if(!(current.is32>>rs1[i]&1))
9220 {
9221 alloc_reg64(&current,i,rs1[i]);
9222 }
9223 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9224 // The delay slot overwrites one of our conditions.
9225 // Allocate the branch condition registers instead.
57871462 9226 current.isconst=0;
9227 current.wasconst=0;
9228 regs[i].wasconst=0;
9229 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9230 if(!((current.is32>>rs1[i])&1))
9231 {
9232 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9233 }
9234 }
e1190b87 9235 else
9236 {
9237 ooo[i]=1;
9238 delayslot_alloc(&current,i+1);
9239 }
57871462 9240 }
9241 else
9242 // Don't alloc the delay slot yet because we might not execute it
9243 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9244 {
9245 current.isconst=0;
9246 current.wasconst=0;
9247 regs[i].wasconst=0;
9248 alloc_cc(&current,i);
9249 dirty_reg(&current,CCREG);
9250 alloc_reg(&current,i,rs1[i]);
9251 alloc_reg(&current,i,rs2[i]);
9252 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9253 {
9254 alloc_reg64(&current,i,rs1[i]);
9255 alloc_reg64(&current,i,rs2[i]);
9256 }
9257 }
9258 else
9259 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9260 {
9261 current.isconst=0;
9262 current.wasconst=0;
9263 regs[i].wasconst=0;
9264 alloc_cc(&current,i);
9265 dirty_reg(&current,CCREG);
9266 alloc_reg(&current,i,rs1[i]);
9267 if(!(current.is32>>rs1[i]&1))
9268 {
9269 alloc_reg64(&current,i,rs1[i]);
9270 }
9271 }
9272 ds=1;
9273 //current.isconst=0;
9274 break;
9275 case SJUMP:
9276 //current.isconst=0;
9277 //current.wasconst=0;
9278 //regs[i].wasconst=0;
9279 clear_const(&current,rs1[i]);
9280 clear_const(&current,rt1[i]);
9281 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9282 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9283 {
9284 alloc_cc(&current,i);
9285 dirty_reg(&current,CCREG);
9286 alloc_reg(&current,i,rs1[i]);
9287 if(!(current.is32>>rs1[i]&1))
9288 {
9289 alloc_reg64(&current,i,rs1[i]);
9290 }
9291 if (rt1[i]==31) { // BLTZAL/BGEZAL
9292 alloc_reg(&current,i,31);
9293 dirty_reg(&current,31);
57871462 9294 //#ifdef REG_PREFETCH
9295 //alloc_reg(&current,i,PTEMP);
9296 //#endif
9297 //current.is32|=1LL<<rt1[i];
9298 }
e1190b87 9299 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9300 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9301 // Allocate the branch condition registers instead.
57871462 9302 current.isconst=0;
9303 current.wasconst=0;
9304 regs[i].wasconst=0;
9305 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9306 if(!((current.is32>>rs1[i])&1))
9307 {
9308 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9309 }
9310 }
e1190b87 9311 else
9312 {
9313 ooo[i]=1;
9314 delayslot_alloc(&current,i+1);
9315 }
57871462 9316 }
9317 else
9318 // Don't alloc the delay slot yet because we might not execute it
9319 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9320 {
9321 current.isconst=0;
9322 current.wasconst=0;
9323 regs[i].wasconst=0;
9324 alloc_cc(&current,i);
9325 dirty_reg(&current,CCREG);
9326 alloc_reg(&current,i,rs1[i]);
9327 if(!(current.is32>>rs1[i]&1))
9328 {
9329 alloc_reg64(&current,i,rs1[i]);
9330 }
9331 }
9332 ds=1;
9333 //current.isconst=0;
9334 break;
9335 case FJUMP:
9336 current.isconst=0;
9337 current.wasconst=0;
9338 regs[i].wasconst=0;
9339 if(likely[i]==0) // BC1F/BC1T
9340 {
9341 // TODO: Theoretically we can run out of registers here on x86.
9342 // The delay slot can allocate up to six, and we need to check
9343 // CSREG before executing the delay slot. Possibly we can drop
9344 // the cycle count and then reload it after checking that the
9345 // FPU is in a usable state, or don't do out-of-order execution.
9346 alloc_cc(&current,i);
9347 dirty_reg(&current,CCREG);
9348 alloc_reg(&current,i,FSREG);
9349 alloc_reg(&current,i,CSREG);
9350 if(itype[i+1]==FCOMP) {
9351 // The delay slot overwrites the branch condition.
9352 // Allocate the branch condition registers instead.
57871462 9353 alloc_cc(&current,i);
9354 dirty_reg(&current,CCREG);
9355 alloc_reg(&current,i,CSREG);
9356 alloc_reg(&current,i,FSREG);
9357 }
9358 else {
e1190b87 9359 ooo[i]=1;
57871462 9360 delayslot_alloc(&current,i+1);
9361 alloc_reg(&current,i+1,CSREG);
9362 }
9363 }
9364 else
9365 // Don't alloc the delay slot yet because we might not execute it
9366 if(likely[i]) // BC1FL/BC1TL
9367 {
9368 alloc_cc(&current,i);
9369 dirty_reg(&current,CCREG);
9370 alloc_reg(&current,i,CSREG);
9371 alloc_reg(&current,i,FSREG);
9372 }
9373 ds=1;
9374 current.isconst=0;
9375 break;
9376 case IMM16:
9377 imm16_alloc(&current,i);
9378 break;
9379 case LOAD:
9380 case LOADLR:
9381 load_alloc(&current,i);
9382 break;
9383 case STORE:
9384 case STORELR:
9385 store_alloc(&current,i);
9386 break;
9387 case ALU:
9388 alu_alloc(&current,i);
9389 break;
9390 case SHIFT:
9391 shift_alloc(&current,i);
9392 break;
9393 case MULTDIV:
9394 multdiv_alloc(&current,i);
9395 break;
9396 case SHIFTIMM:
9397 shiftimm_alloc(&current,i);
9398 break;
9399 case MOV:
9400 mov_alloc(&current,i);
9401 break;
9402 case COP0:
9403 cop0_alloc(&current,i);
9404 break;
9405 case COP1:
b9b61529 9406 case COP2:
57871462 9407 cop1_alloc(&current,i);
9408 break;
9409 case C1LS:
9410 c1ls_alloc(&current,i);
9411 break;
b9b61529 9412 case C2LS:
9413 c2ls_alloc(&current,i);
9414 break;
9415 case C2OP:
9416 c2op_alloc(&current,i);
9417 break;
57871462 9418 case FCONV:
9419 fconv_alloc(&current,i);
9420 break;
9421 case FLOAT:
9422 float_alloc(&current,i);
9423 break;
9424 case FCOMP:
9425 fcomp_alloc(&current,i);
9426 break;
9427 case SYSCALL:
7139f3c8 9428 case HLECALL:
1e973cb0 9429 case INTCALL:
57871462 9430 syscall_alloc(&current,i);
9431 break;
9432 case SPAN:
9433 pagespan_alloc(&current,i);
9434 break;
9435 }
9436
9437 // Drop the upper half of registers that have become 32-bit
9438 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9439 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9440 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9441 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9442 current.uu|=1;
9443 } else {
9444 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9445 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9446 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9447 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9448 current.uu|=1;
9449 }
9450
9451 // Create entry (branch target) regmap
9452 for(hr=0;hr<HOST_REGS;hr++)
9453 {
9454 int r,or,er;
9455 r=current.regmap[hr];
9456 if(r>=0) {
9457 if(r!=regmap_pre[i][hr]) {
9458 // TODO: delay slot (?)
9459 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9460 if(or<0||(r&63)>=TEMPREG){
9461 regs[i].regmap_entry[hr]=-1;
9462 }
9463 else
9464 {
9465 // Just move it to a different register
9466 regs[i].regmap_entry[hr]=r;
9467 // If it was dirty before, it's still dirty
9468 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9469 }
9470 }
9471 else
9472 {
9473 // Unneeded
9474 if(r==0){
9475 regs[i].regmap_entry[hr]=0;
9476 }
9477 else
9478 if(r<64){
9479 if((current.u>>r)&1) {
9480 regs[i].regmap_entry[hr]=-1;
9481 //regs[i].regmap[hr]=-1;
9482 current.regmap[hr]=-1;
9483 }else
9484 regs[i].regmap_entry[hr]=r;
9485 }
9486 else {
9487 if((current.uu>>(r&63))&1) {
9488 regs[i].regmap_entry[hr]=-1;
9489 //regs[i].regmap[hr]=-1;
9490 current.regmap[hr]=-1;
9491 }else
9492 regs[i].regmap_entry[hr]=r;
9493 }
9494 }
9495 } else {
9496 // Branches expect CCREG to be allocated at the target
9497 if(regmap_pre[i][hr]==CCREG)
9498 regs[i].regmap_entry[hr]=CCREG;
9499 else
9500 regs[i].regmap_entry[hr]=-1;
9501 }
9502 }
9503 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9504 }
27727b63 9505
9506 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9507 current.waswritten|=1<<rs1[i-1];
9508 current.waswritten&=~(1<<rt1[i]);
9509 current.waswritten&=~(1<<rt2[i]);
9510 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9511 current.waswritten&=~(1<<rs1[i]);
9512
57871462 9513 /* Branch post-alloc */
9514 if(i>0)
9515 {
9516 current.was32=current.is32;
9517 current.wasdirty=current.dirty;
9518 switch(itype[i-1]) {
9519 case UJUMP:
9520 memcpy(&branch_regs[i-1],&current,sizeof(current));
9521 branch_regs[i-1].isconst=0;
9522 branch_regs[i-1].wasconst=0;
9523 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9524 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9525 alloc_cc(&branch_regs[i-1],i-1);
9526 dirty_reg(&branch_regs[i-1],CCREG);
9527 if(rt1[i-1]==31) { // JAL
9528 alloc_reg(&branch_regs[i-1],i-1,31);
9529 dirty_reg(&branch_regs[i-1],31);
9530 branch_regs[i-1].is32|=1LL<<31;
9531 }
9532 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 9533 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9534 break;
9535 case RJUMP:
9536 memcpy(&branch_regs[i-1],&current,sizeof(current));
9537 branch_regs[i-1].isconst=0;
9538 branch_regs[i-1].wasconst=0;
9539 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9540 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9541 alloc_cc(&branch_regs[i-1],i-1);
9542 dirty_reg(&branch_regs[i-1],CCREG);
9543 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9544 if(rt1[i-1]!=0) { // JALR
9545 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9546 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9547 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9548 }
9549 #ifdef USE_MINI_HT
9550 if(rs1[i-1]==31) { // JALR
9551 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9552 #ifndef HOST_IMM_ADDR32
9553 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9554 #endif
9555 }
9556 #endif
9557 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 9558 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9559 break;
9560 case CJUMP:
9561 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9562 {
9563 alloc_cc(&current,i-1);
9564 dirty_reg(&current,CCREG);
9565 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9566 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9567 // The delay slot overwrote one of our conditions
9568 // Delay slot goes after the test (in order)
9569 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9570 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9571 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9572 current.u|=1;
9573 current.uu|=1;
9574 delayslot_alloc(&current,i);
9575 current.isconst=0;
9576 }
9577 else
9578 {
9579 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9580 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9581 // Alloc the branch condition registers
9582 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9583 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9584 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9585 {
9586 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9587 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9588 }
9589 }
9590 memcpy(&branch_regs[i-1],&current,sizeof(current));
9591 branch_regs[i-1].isconst=0;
9592 branch_regs[i-1].wasconst=0;
9593 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9594 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9595 }
9596 else
9597 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9598 {
9599 alloc_cc(&current,i-1);
9600 dirty_reg(&current,CCREG);
9601 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9602 // The delay slot overwrote the branch condition
9603 // Delay slot goes after the test (in order)
9604 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9605 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9606 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9607 current.u|=1;
9608 current.uu|=1;
9609 delayslot_alloc(&current,i);
9610 current.isconst=0;
9611 }
9612 else
9613 {
9614 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9615 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9616 // Alloc the branch condition register
9617 alloc_reg(&current,i-1,rs1[i-1]);
9618 if(!(current.is32>>rs1[i-1]&1))
9619 {
9620 alloc_reg64(&current,i-1,rs1[i-1]);
9621 }
9622 }
9623 memcpy(&branch_regs[i-1],&current,sizeof(current));
9624 branch_regs[i-1].isconst=0;
9625 branch_regs[i-1].wasconst=0;
9626 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9627 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9628 }
9629 else
9630 // Alloc the delay slot in case the branch is taken
9631 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9632 {
9633 memcpy(&branch_regs[i-1],&current,sizeof(current));
9634 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9635 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9636 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9637 alloc_cc(&branch_regs[i-1],i);
9638 dirty_reg(&branch_regs[i-1],CCREG);
9639 delayslot_alloc(&branch_regs[i-1],i);
9640 branch_regs[i-1].isconst=0;
9641 alloc_reg(&current,i,CCREG); // Not taken path
9642 dirty_reg(&current,CCREG);
9643 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9644 }
9645 else
9646 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9647 {
9648 memcpy(&branch_regs[i-1],&current,sizeof(current));
9649 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9650 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9651 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9652 alloc_cc(&branch_regs[i-1],i);
9653 dirty_reg(&branch_regs[i-1],CCREG);
9654 delayslot_alloc(&branch_regs[i-1],i);
9655 branch_regs[i-1].isconst=0;
9656 alloc_reg(&current,i,CCREG); // Not taken path
9657 dirty_reg(&current,CCREG);
9658 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9659 }
9660 break;
9661 case SJUMP:
9662 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9663 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9664 {
9665 alloc_cc(&current,i-1);
9666 dirty_reg(&current,CCREG);
9667 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9668 // The delay slot overwrote the branch condition
9669 // Delay slot goes after the test (in order)
9670 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9671 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9672 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9673 current.u|=1;
9674 current.uu|=1;
9675 delayslot_alloc(&current,i);
9676 current.isconst=0;
9677 }
9678 else
9679 {
9680 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9681 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9682 // Alloc the branch condition register
9683 alloc_reg(&current,i-1,rs1[i-1]);
9684 if(!(current.is32>>rs1[i-1]&1))
9685 {
9686 alloc_reg64(&current,i-1,rs1[i-1]);
9687 }
9688 }
9689 memcpy(&branch_regs[i-1],&current,sizeof(current));
9690 branch_regs[i-1].isconst=0;
9691 branch_regs[i-1].wasconst=0;
9692 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9693 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9694 }
9695 else
9696 // Alloc the delay slot in case the branch is taken
9697 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9698 {
9699 memcpy(&branch_regs[i-1],&current,sizeof(current));
9700 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9701 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9702 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9703 alloc_cc(&branch_regs[i-1],i);
9704 dirty_reg(&branch_regs[i-1],CCREG);
9705 delayslot_alloc(&branch_regs[i-1],i);
9706 branch_regs[i-1].isconst=0;
9707 alloc_reg(&current,i,CCREG); // Not taken path
9708 dirty_reg(&current,CCREG);
9709 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9710 }
9711 // FIXME: BLTZAL/BGEZAL
9712 if(opcode2[i-1]&0x10) { // BxxZAL
9713 alloc_reg(&branch_regs[i-1],i-1,31);
9714 dirty_reg(&branch_regs[i-1],31);
9715 branch_regs[i-1].is32|=1LL<<31;
9716 }
9717 break;
9718 case FJUMP:
9719 if(likely[i-1]==0) // BC1F/BC1T
9720 {
9721 alloc_cc(&current,i-1);
9722 dirty_reg(&current,CCREG);
9723 if(itype[i]==FCOMP) {
9724 // The delay slot overwrote the branch condition
9725 // Delay slot goes after the test (in order)
9726 delayslot_alloc(&current,i);
9727 current.isconst=0;
9728 }
9729 else
9730 {
9731 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9732 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9733 // Alloc the branch condition register
9734 alloc_reg(&current,i-1,FSREG);
9735 }
9736 memcpy(&branch_regs[i-1],&current,sizeof(current));
9737 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9738 }
9739 else // BC1FL/BC1TL
9740 {
9741 // Alloc the delay slot in case the branch is taken
9742 memcpy(&branch_regs[i-1],&current,sizeof(current));
9743 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9744 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9745 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9746 alloc_cc(&branch_regs[i-1],i);
9747 dirty_reg(&branch_regs[i-1],CCREG);
9748 delayslot_alloc(&branch_regs[i-1],i);
9749 branch_regs[i-1].isconst=0;
9750 alloc_reg(&current,i,CCREG); // Not taken path
9751 dirty_reg(&current,CCREG);
9752 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9753 }
9754 break;
9755 }
9756
9757 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9758 {
9759 if(rt1[i-1]==31) // JAL/JALR
9760 {
9761 // Subroutine call will return here, don't alloc any registers
9762 current.is32=1;
9763 current.dirty=0;
9764 clear_all_regs(current.regmap);
9765 alloc_reg(&current,i,CCREG);
9766 dirty_reg(&current,CCREG);
9767 }
9768 else if(i+1<slen)
9769 {
9770 // Internal branch will jump here, match registers to caller
9771 current.is32=0x3FFFFFFFFLL;
9772 current.dirty=0;
9773 clear_all_regs(current.regmap);
9774 alloc_reg(&current,i,CCREG);
9775 dirty_reg(&current,CCREG);
9776 for(j=i-1;j>=0;j--)
9777 {
9778 if(ba[j]==start+i*4+4) {
9779 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9780 current.is32=branch_regs[j].is32;
9781 current.dirty=branch_regs[j].dirty;
9782 break;
9783 }
9784 }
9785 while(j>=0) {
9786 if(ba[j]==start+i*4+4) {
9787 for(hr=0;hr<HOST_REGS;hr++) {
9788 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9789 current.regmap[hr]=-1;
9790 }
9791 current.is32&=branch_regs[j].is32;
9792 current.dirty&=branch_regs[j].dirty;
9793 }
9794 }
9795 j--;
9796 }
9797 }
9798 }
9799 }
9800
9801 // Count cycles in between branches
9802 ccadj[i]=cc;
7139f3c8 9803 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9804 {
9805 cc=0;
9806 }
19776aef 9807#if defined(PCSX) && !defined(DRC_DBG)
054175e9 9808 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9809 {
9810 // GTE runs in parallel until accessed, divide by 2 for a rough guess
9811 cc+=gte_cycletab[source[i]&0x3f]/2;
9812 }
b6e87b2b 9813 else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
fb407447 9814 {
9815 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9816 }
9817 else if(itype[i]==C2LS)
9818 {
9819 cc+=4;
9820 }
9821#endif
57871462 9822 else
9823 {
9824 cc++;
9825 }
9826
9827 flush_dirty_uppers(&current);
9828 if(!is_ds[i]) {
9829 regs[i].is32=current.is32;
9830 regs[i].dirty=current.dirty;
9831 regs[i].isconst=current.isconst;
956f3129 9832 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
57871462 9833 }
9834 for(hr=0;hr<HOST_REGS;hr++) {
9835 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9836 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9837 regs[i].wasconst&=~(1<<hr);
9838 }
9839 }
9840 }
9841 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
27727b63 9842 regs[i].waswritten=current.waswritten;
57871462 9843 }
9844
9845 /* Pass 4 - Cull unused host registers */
9846
9847 uint64_t nr=0;
9848
9849 for (i=slen-1;i>=0;i--)
9850 {
9851 int hr;
9852 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9853 {
9854 if(ba[i]<start || ba[i]>=(start+slen*4))
9855 {
9856 // Branch out of this block, don't need anything
9857 nr=0;
9858 }
9859 else
9860 {
9861 // Internal branch
9862 // Need whatever matches the target
9863 nr=0;
9864 int t=(ba[i]-start)>>2;
9865 for(hr=0;hr<HOST_REGS;hr++)
9866 {
9867 if(regs[i].regmap_entry[hr]>=0) {
9868 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9869 }
9870 }
9871 }
9872 // Conditional branch may need registers for following instructions
9873 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9874 {
9875 if(i<slen-2) {
9876 nr|=needed_reg[i+2];
9877 for(hr=0;hr<HOST_REGS;hr++)
9878 {
9879 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9880 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9881 }
9882 }
9883 }
9884 // Don't need stuff which is overwritten
f5955059 9885 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9886 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9887 // Merge in delay slot
9888 for(hr=0;hr<HOST_REGS;hr++)
9889 {
9890 if(!likely[i]) {
9891 // These are overwritten unless the branch is "likely"
9892 // and the delay slot is nullified if not taken
9893 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9894 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9895 }
9896 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9897 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9898 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9899 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9900 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9901 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9902 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9903 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9904 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9905 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9906 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9907 }
9908 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9909 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9910 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9911 }
b9b61529 9912 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9913 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9914 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9915 }
9916 }
9917 }
1e973cb0 9918 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9919 {
9920 // SYSCALL instruction (software interrupt)
9921 nr=0;
9922 }
9923 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9924 {
9925 // ERET instruction (return from interrupt)
9926 nr=0;
9927 }
9928 else // Non-branch
9929 {
9930 if(i<slen-1) {
9931 for(hr=0;hr<HOST_REGS;hr++) {
9932 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9933 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9934 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9935 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9936 }
9937 }
9938 }
9939 for(hr=0;hr<HOST_REGS;hr++)
9940 {
9941 // Overwritten registers are not needed
9942 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9943 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9944 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9945 // Source registers are needed
9946 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9947 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9948 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9949 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9950 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9951 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9952 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9953 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9954 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9955 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9956 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9957 }
9958 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9959 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9960 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9961 }
b9b61529 9962 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9963 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9964 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9965 }
9966 // Don't store a register immediately after writing it,
9967 // may prevent dual-issue.
9968 // But do so if this is a branch target, otherwise we
9969 // might have to load the register before the branch.
9970 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9971 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9972 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9973 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9974 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9975 }
9976 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9977 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9978 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9979 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9980 }
9981 }
9982 }
9983 // Cycle count is needed at branches. Assume it is needed at the target too.
9984 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9985 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9986 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9987 }
9988 // Save it
9989 needed_reg[i]=nr;
9990
9991 // Deallocate unneeded registers
9992 for(hr=0;hr<HOST_REGS;hr++)
9993 {
9994 if(!((nr>>hr)&1)) {
9995 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9996 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9997 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9998 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9999 {
10000 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10001 {
10002 if(likely[i]) {
10003 regs[i].regmap[hr]=-1;
10004 regs[i].isconst&=~(1<<hr);
79c75f1b 10005 if(i<slen-2) {
10006 regmap_pre[i+2][hr]=-1;
10007 regs[i+2].wasconst&=~(1<<hr);
10008 }
57871462 10009 }
10010 }
10011 }
10012 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10013 {
10014 int d1=0,d2=0,map=0,temp=0;
10015 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10016 {
10017 d1=dep1[i+1];
10018 d2=dep2[i+1];
10019 }
10020 if(using_tlb) {
10021 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10022 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 10023 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10024 map=TLREG;
10025 } else
b9b61529 10026 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10027 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10028 map=INVCP;
10029 }
10030 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 10031 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10032 temp=FTEMP;
10033 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10034 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10035 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10036 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10037 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10038 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10039 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10040 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10041 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10042 regs[i].regmap[hr]!=map )
10043 {
10044 regs[i].regmap[hr]=-1;
10045 regs[i].isconst&=~(1<<hr);
10046 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10047 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10048 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10049 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10050 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10051 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10052 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10053 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10054 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10055 branch_regs[i].regmap[hr]!=map)
10056 {
10057 branch_regs[i].regmap[hr]=-1;
10058 branch_regs[i].regmap_entry[hr]=-1;
10059 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10060 {
10061 if(!likely[i]&&i<slen-2) {
10062 regmap_pre[i+2][hr]=-1;
79c75f1b 10063 regs[i+2].wasconst&=~(1<<hr);
57871462 10064 }
10065 }
10066 }
10067 }
10068 }
10069 else
10070 {
10071 // Non-branch
10072 if(i>0)
10073 {
10074 int d1=0,d2=0,map=-1,temp=-1;
10075 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10076 {
10077 d1=dep1[i];
10078 d2=dep2[i];
10079 }
10080 if(using_tlb) {
10081 if(itype[i]==LOAD || itype[i]==LOADLR ||
10082 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 10083 itype[i]==C1LS || itype[i]==C2LS)
57871462 10084 map=TLREG;
b9b61529 10085 } else if(itype[i]==STORE || itype[i]==STORELR ||
10086 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10087 map=INVCP;
10088 }
10089 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10090 itype[i]==C1LS || itype[i]==C2LS)
57871462 10091 temp=FTEMP;
10092 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10093 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10094 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10095 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10096 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10097 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10098 {
10099 if(i<slen-1&&!is_ds[i]) {
10100 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10101 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10102 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10103 {
c43b5311 10104 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
57871462 10105 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10106 }
10107 regmap_pre[i+1][hr]=-1;
10108 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10109 regs[i+1].wasconst&=~(1<<hr);
57871462 10110 }
10111 regs[i].regmap[hr]=-1;
10112 regs[i].isconst&=~(1<<hr);
10113 }
10114 }
10115 }
10116 }
10117 }
10118 }
10119
10120 /* Pass 5 - Pre-allocate registers */
10121
10122 // If a register is allocated during a loop, try to allocate it for the
10123 // entire loop, if possible. This avoids loading/storing registers
10124 // inside of the loop.
198df76f 10125
57871462 10126 signed char f_regmap[HOST_REGS];
10127 clear_all_regs(f_regmap);
10128 for(i=0;i<slen-1;i++)
10129 {
10130 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10131 {
10132 if(ba[i]>=start && ba[i]<(start+i*4))
10133 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10134 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10135 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10136 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10137 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10138 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10139 {
10140 int t=(ba[i]-start)>>2;
10141 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10142 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10143 for(hr=0;hr<HOST_REGS;hr++)
10144 {
10145 if(regs[i].regmap[hr]>64) {
10146 if(!((regs[i].dirty>>hr)&1))
10147 f_regmap[hr]=regs[i].regmap[hr];
10148 else f_regmap[hr]=-1;
10149 }
b372a952 10150 else if(regs[i].regmap[hr]>=0) {
10151 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10152 // dealloc old register
10153 int n;
10154 for(n=0;n<HOST_REGS;n++)
10155 {
10156 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10157 }
10158 // and alloc new one
10159 f_regmap[hr]=regs[i].regmap[hr];
10160 }
10161 }
57871462 10162 if(branch_regs[i].regmap[hr]>64) {
10163 if(!((branch_regs[i].dirty>>hr)&1))
10164 f_regmap[hr]=branch_regs[i].regmap[hr];
10165 else f_regmap[hr]=-1;
10166 }
b372a952 10167 else if(branch_regs[i].regmap[hr]>=0) {
10168 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10169 // dealloc old register
10170 int n;
10171 for(n=0;n<HOST_REGS;n++)
10172 {
10173 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10174 }
10175 // and alloc new one
10176 f_regmap[hr]=branch_regs[i].regmap[hr];
10177 }
10178 }
e1190b87 10179 if(ooo[i]) {
10180 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10181 f_regmap[hr]=branch_regs[i].regmap[hr];
10182 }else{
10183 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10184 f_regmap[hr]=branch_regs[i].regmap[hr];
10185 }
10186 // Avoid dirty->clean transition
e1190b87 10187 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10188 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10189 #endif
10190 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10191 // case above, however it's always a good idea. We can't hoist the
10192 // load if the register was already allocated, so there's no point
10193 // wasting time analyzing most of these cases. It only "succeeds"
10194 // when the mapping was different and the load can be replaced with
10195 // a mov, which is of negligible benefit. So such cases are
10196 // skipped below.
57871462 10197 if(f_regmap[hr]>0) {
198df76f 10198 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10199 int r=f_regmap[hr];
10200 for(j=t;j<=i;j++)
10201 {
10202 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10203 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10204 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10205 if(r>63) {
10206 // NB This can exclude the case where the upper-half
10207 // register is lower numbered than the lower-half
10208 // register. Not sure if it's worth fixing...
10209 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10210 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10211 if(regs[j].is32&(1LL<<(r&63))) break;
10212 }
10213 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10214 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10215 int k;
10216 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10217 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10218 if(r>63) {
10219 if(get_reg(regs[i].regmap,r&63)<0) break;
10220 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10221 }
10222 k=i;
10223 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10224 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10225 //printf("no free regs for store %x\n",start+(k-1)*4);
10226 break;
57871462 10227 }
57871462 10228 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10229 //printf("no-match due to different register\n");
10230 break;
10231 }
10232 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10233 //printf("no-match due to branch\n");
10234 break;
10235 }
10236 // call/ret fast path assumes no registers allocated
198df76f 10237 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10238 break;
10239 }
10240 if(r>63) {
10241 // NB This can exclude the case where the upper-half
10242 // register is lower numbered than the lower-half
10243 // register. Not sure if it's worth fixing...
10244 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10245 if(regs[k-1].is32&(1LL<<(r&63))) break;
10246 }
10247 k--;
10248 }
10249 if(i<slen-1) {
10250 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10251 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10252 //printf("bad match after branch\n");
10253 break;
10254 }
10255 }
10256 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10257 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10258 while(k<i) {
10259 regs[k].regmap_entry[hr]=f_regmap[hr];
10260 regs[k].regmap[hr]=f_regmap[hr];
10261 regmap_pre[k+1][hr]=f_regmap[hr];
10262 regs[k].wasdirty&=~(1<<hr);
10263 regs[k].dirty&=~(1<<hr);
10264 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10265 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10266 regs[k].wasconst&=~(1<<hr);
10267 regs[k].isconst&=~(1<<hr);
10268 k++;
10269 }
10270 }
10271 else {
10272 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10273 break;
10274 }
10275 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10276 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10277 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10278 regs[i].regmap_entry[hr]=f_regmap[hr];
10279 regs[i].regmap[hr]=f_regmap[hr];
10280 regs[i].wasdirty&=~(1<<hr);
10281 regs[i].dirty&=~(1<<hr);
10282 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10283 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10284 regs[i].wasconst&=~(1<<hr);
10285 regs[i].isconst&=~(1<<hr);
10286 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10287 branch_regs[i].wasdirty&=~(1<<hr);
10288 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10289 branch_regs[i].regmap[hr]=f_regmap[hr];
10290 branch_regs[i].dirty&=~(1<<hr);
10291 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10292 branch_regs[i].wasconst&=~(1<<hr);
10293 branch_regs[i].isconst&=~(1<<hr);
10294 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10295 regmap_pre[i+2][hr]=f_regmap[hr];
10296 regs[i+2].wasdirty&=~(1<<hr);
10297 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10298 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10299 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10300 }
10301 }
10302 }
10303 for(k=t;k<j;k++) {
e1190b87 10304 // Alloc register clean at beginning of loop,
10305 // but may dirty it in pass 6
57871462 10306 regs[k].regmap_entry[hr]=f_regmap[hr];
10307 regs[k].regmap[hr]=f_regmap[hr];
57871462 10308 regs[k].dirty&=~(1<<hr);
10309 regs[k].wasconst&=~(1<<hr);
10310 regs[k].isconst&=~(1<<hr);
e1190b87 10311 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10312 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10313 branch_regs[k].regmap[hr]=f_regmap[hr];
10314 branch_regs[k].dirty&=~(1<<hr);
10315 branch_regs[k].wasconst&=~(1<<hr);
10316 branch_regs[k].isconst&=~(1<<hr);
10317 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10318 regmap_pre[k+2][hr]=f_regmap[hr];
10319 regs[k+2].wasdirty&=~(1<<hr);
10320 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10321 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10322 }
10323 }
10324 else
10325 {
10326 regmap_pre[k+1][hr]=f_regmap[hr];
10327 regs[k+1].wasdirty&=~(1<<hr);
10328 }
57871462 10329 }
10330 if(regs[j].regmap[hr]==f_regmap[hr])
10331 regs[j].regmap_entry[hr]=f_regmap[hr];
10332 break;
10333 }
10334 if(j==i) break;
10335 if(regs[j].regmap[hr]>=0)
10336 break;
10337 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10338 //printf("no-match due to different register\n");
10339 break;
10340 }
10341 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10342 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10343 break;
10344 }
e1190b87 10345 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10346 {
10347 // Stop on unconditional branch
10348 break;
10349 }
10350 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10351 {
10352 if(ooo[j]) {
10353 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10354 break;
10355 }else{
10356 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10357 break;
10358 }
10359 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10360 //printf("no-match due to different register (branch)\n");
57871462 10361 break;
10362 }
10363 }
e1190b87 10364 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10365 //printf("No free regs for store %x\n",start+j*4);
10366 break;
10367 }
57871462 10368 if(f_regmap[hr]>=64) {
10369 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10370 break;
10371 }
10372 else
10373 {
10374 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10375 break;
10376 }
10377 }
10378 }
10379 }
10380 }
10381 }
10382 }
10383 }
10384 }else{
198df76f 10385 // Non branch or undetermined branch target
57871462 10386 for(hr=0;hr<HOST_REGS;hr++)
10387 {
10388 if(hr!=EXCLUDE_REG) {
10389 if(regs[i].regmap[hr]>64) {
10390 if(!((regs[i].dirty>>hr)&1))
10391 f_regmap[hr]=regs[i].regmap[hr];
10392 }
b372a952 10393 else if(regs[i].regmap[hr]>=0) {
10394 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10395 // dealloc old register
10396 int n;
10397 for(n=0;n<HOST_REGS;n++)
10398 {
10399 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10400 }
10401 // and alloc new one
10402 f_regmap[hr]=regs[i].regmap[hr];
10403 }
10404 }
57871462 10405 }
10406 }
10407 // Try to restore cycle count at branch targets
10408 if(bt[i]) {
10409 for(j=i;j<slen-1;j++) {
10410 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10411 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10412 //printf("no free regs for store %x\n",start+j*4);
10413 break;
57871462 10414 }
57871462 10415 }
10416 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10417 int k=i;
10418 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10419 while(k<j) {
10420 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10421 regs[k].regmap[HOST_CCREG]=CCREG;
10422 regmap_pre[k+1][HOST_CCREG]=CCREG;
10423 regs[k+1].wasdirty|=1<<HOST_CCREG;
10424 regs[k].dirty|=1<<HOST_CCREG;
10425 regs[k].wasconst&=~(1<<HOST_CCREG);
10426 regs[k].isconst&=~(1<<HOST_CCREG);
10427 k++;
10428 }
10429 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10430 }
10431 // Work backwards from the branch target
10432 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10433 {
10434 //printf("Extend backwards\n");
10435 int k;
10436 k=i;
10437 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10438 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10439 //printf("no free regs for store %x\n",start+(k-1)*4);
10440 break;
57871462 10441 }
57871462 10442 k--;
10443 }
10444 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10445 //printf("Extend CC, %x ->\n",start+k*4);
10446 while(k<=i) {
10447 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10448 regs[k].regmap[HOST_CCREG]=CCREG;
10449 regmap_pre[k+1][HOST_CCREG]=CCREG;
10450 regs[k+1].wasdirty|=1<<HOST_CCREG;
10451 regs[k].dirty|=1<<HOST_CCREG;
10452 regs[k].wasconst&=~(1<<HOST_CCREG);
10453 regs[k].isconst&=~(1<<HOST_CCREG);
10454 k++;
10455 }
10456 }
10457 else {
10458 //printf("Fail Extend CC, %x ->\n",start+k*4);
10459 }
10460 }
10461 }
10462 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10463 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10464 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10465 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10466 {
10467 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10468 }
10469 }
10470 }
10471
d61de97e 10472 // Cache memory offset or tlb map pointer if a register is available
10473 #ifndef HOST_IMM_ADDR32
10474 #ifndef RAM_OFFSET
10475 if(using_tlb)
10476 #endif
10477 {
10478 int earliest_available[HOST_REGS];
10479 int loop_start[HOST_REGS];
10480 int score[HOST_REGS];
10481 int end[HOST_REGS];
10482 int reg=using_tlb?MMREG:ROREG;
10483
10484 // Init
10485 for(hr=0;hr<HOST_REGS;hr++) {
10486 score[hr]=0;earliest_available[hr]=0;
10487 loop_start[hr]=MAXBLOCK;
10488 }
10489 for(i=0;i<slen-1;i++)
10490 {
10491 // Can't do anything if no registers are available
10492 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10493 for(hr=0;hr<HOST_REGS;hr++) {
10494 score[hr]=0;earliest_available[hr]=i+1;
10495 loop_start[hr]=MAXBLOCK;
10496 }
10497 }
10498 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10499 if(!ooo[i]) {
10500 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10501 for(hr=0;hr<HOST_REGS;hr++) {
10502 score[hr]=0;earliest_available[hr]=i+1;
10503 loop_start[hr]=MAXBLOCK;
10504 }
10505 }
198df76f 10506 }else{
10507 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10508 for(hr=0;hr<HOST_REGS;hr++) {
10509 score[hr]=0;earliest_available[hr]=i+1;
10510 loop_start[hr]=MAXBLOCK;
10511 }
10512 }
d61de97e 10513 }
10514 }
10515 // Mark unavailable registers
10516 for(hr=0;hr<HOST_REGS;hr++) {
10517 if(regs[i].regmap[hr]>=0) {
10518 score[hr]=0;earliest_available[hr]=i+1;
10519 loop_start[hr]=MAXBLOCK;
10520 }
10521 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10522 if(branch_regs[i].regmap[hr]>=0) {
10523 score[hr]=0;earliest_available[hr]=i+2;
10524 loop_start[hr]=MAXBLOCK;
10525 }
10526 }
10527 }
10528 // No register allocations after unconditional jumps
10529 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10530 {
10531 for(hr=0;hr<HOST_REGS;hr++) {
10532 score[hr]=0;earliest_available[hr]=i+2;
10533 loop_start[hr]=MAXBLOCK;
10534 }
10535 i++; // Skip delay slot too
10536 //printf("skip delay slot: %x\n",start+i*4);
10537 }
10538 else
10539 // Possible match
10540 if(itype[i]==LOAD||itype[i]==LOADLR||
10541 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10542 for(hr=0;hr<HOST_REGS;hr++) {
10543 if(hr!=EXCLUDE_REG) {
10544 end[hr]=i-1;
10545 for(j=i;j<slen-1;j++) {
10546 if(regs[j].regmap[hr]>=0) break;
10547 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10548 if(branch_regs[j].regmap[hr]>=0) break;
10549 if(ooo[j]) {
10550 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10551 }else{
10552 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10553 }
10554 }
10555 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10556 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10557 int t=(ba[j]-start)>>2;
10558 if(t<j&&t>=earliest_available[hr]) {
198df76f 10559 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10560 // Score a point for hoisting loop invariant
10561 if(t<loop_start[hr]) loop_start[hr]=t;
10562 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10563 score[hr]++;
10564 end[hr]=j;
10565 }
d61de97e 10566 }
10567 else if(t<j) {
10568 if(regs[t].regmap[hr]==reg) {
10569 // Score a point if the branch target matches this register
10570 score[hr]++;
10571 end[hr]=j;
10572 }
10573 }
10574 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10575 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10576 score[hr]++;
10577 end[hr]=j;
10578 }
10579 }
10580 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10581 {
10582 // Stop on unconditional branch
10583 break;
10584 }
10585 else
10586 if(itype[j]==LOAD||itype[j]==LOADLR||
10587 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10588 score[hr]++;
10589 end[hr]=j;
10590 }
10591 }
10592 }
10593 }
10594 // Find highest score and allocate that register
10595 int maxscore=0;
10596 for(hr=0;hr<HOST_REGS;hr++) {
10597 if(hr!=EXCLUDE_REG) {
10598 if(score[hr]>score[maxscore]) {
10599 maxscore=hr;
10600 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10601 }
10602 }
10603 }
10604 if(score[maxscore]>1)
10605 {
10606 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10607 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10608 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10609 assert(regs[j].regmap[maxscore]<0);
10610 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10611 regs[j].regmap[maxscore]=reg;
10612 regs[j].dirty&=~(1<<maxscore);
10613 regs[j].wasconst&=~(1<<maxscore);
10614 regs[j].isconst&=~(1<<maxscore);
10615 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10616 branch_regs[j].regmap[maxscore]=reg;
10617 branch_regs[j].wasdirty&=~(1<<maxscore);
10618 branch_regs[j].dirty&=~(1<<maxscore);
10619 branch_regs[j].wasconst&=~(1<<maxscore);
10620 branch_regs[j].isconst&=~(1<<maxscore);
10621 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10622 regmap_pre[j+2][maxscore]=reg;
10623 regs[j+2].wasdirty&=~(1<<maxscore);
10624 }
10625 // loop optimization (loop_preload)
10626 int t=(ba[j]-start)>>2;
198df76f 10627 if(t==loop_start[maxscore]) {
10628 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10629 regs[t].regmap_entry[maxscore]=reg;
10630 }
d61de97e 10631 }
10632 else
10633 {
10634 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10635 regmap_pre[j+1][maxscore]=reg;
10636 regs[j+1].wasdirty&=~(1<<maxscore);
10637 }
10638 }
10639 }
10640 i=j-1;
10641 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10642 for(hr=0;hr<HOST_REGS;hr++) {
10643 score[hr]=0;earliest_available[hr]=i+i;
10644 loop_start[hr]=MAXBLOCK;
10645 }
10646 }
10647 }
10648 }
10649 }
10650 #endif
10651
57871462 10652 // This allocates registers (if possible) one instruction prior
10653 // to use, which can avoid a load-use penalty on certain CPUs.
10654 for(i=0;i<slen-1;i++)
10655 {
10656 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10657 {
10658 if(!bt[i+1])
10659 {
b9b61529 10660 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10661 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10662 {
10663 if(rs1[i+1]) {
10664 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10665 {
10666 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10667 {
10668 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10669 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10670 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10671 regs[i].isconst&=~(1<<hr);
10672 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10673 constmap[i][hr]=constmap[i+1][hr];
10674 regs[i+1].wasdirty&=~(1<<hr);
10675 regs[i].dirty&=~(1<<hr);
10676 }
10677 }
10678 }
10679 if(rs2[i+1]) {
10680 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10681 {
10682 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10683 {
10684 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10685 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10686 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10687 regs[i].isconst&=~(1<<hr);
10688 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10689 constmap[i][hr]=constmap[i+1][hr];
10690 regs[i+1].wasdirty&=~(1<<hr);
10691 regs[i].dirty&=~(1<<hr);
10692 }
10693 }
10694 }
198df76f 10695 // Preload target address for load instruction (non-constant)
57871462 10696 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10697 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10698 {
10699 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10700 {
10701 regs[i].regmap[hr]=rs1[i+1];
10702 regmap_pre[i+1][hr]=rs1[i+1];
10703 regs[i+1].regmap_entry[hr]=rs1[i+1];
10704 regs[i].isconst&=~(1<<hr);
10705 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10706 constmap[i][hr]=constmap[i+1][hr];
10707 regs[i+1].wasdirty&=~(1<<hr);
10708 regs[i].dirty&=~(1<<hr);
10709 }
10710 }
10711 }
198df76f 10712 // Load source into target register
57871462 10713 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10714 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10715 {
10716 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10717 {
10718 regs[i].regmap[hr]=rs1[i+1];
10719 regmap_pre[i+1][hr]=rs1[i+1];
10720 regs[i+1].regmap_entry[hr]=rs1[i+1];
10721 regs[i].isconst&=~(1<<hr);
10722 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10723 constmap[i][hr]=constmap[i+1][hr];
10724 regs[i+1].wasdirty&=~(1<<hr);
10725 regs[i].dirty&=~(1<<hr);
10726 }
10727 }
10728 }
198df76f 10729 // Preload map address
57871462 10730 #ifndef HOST_IMM_ADDR32
b9b61529 10731 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10732 hr=get_reg(regs[i+1].regmap,TLREG);
10733 if(hr>=0) {
10734 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10735 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10736 int nr;
10737 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10738 {
10739 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10740 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10741 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10742 regs[i].isconst&=~(1<<hr);
10743 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10744 constmap[i][hr]=constmap[i+1][hr];
10745 regs[i+1].wasdirty&=~(1<<hr);
10746 regs[i].dirty&=~(1<<hr);
10747 }
10748 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10749 {
10750 // move it to another register
10751 regs[i+1].regmap[hr]=-1;
10752 regmap_pre[i+2][hr]=-1;
10753 regs[i+1].regmap[nr]=TLREG;
10754 regmap_pre[i+2][nr]=TLREG;
10755 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10756 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10757 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10758 regs[i].isconst&=~(1<<nr);
10759 regs[i+1].isconst&=~(1<<nr);
10760 regs[i].dirty&=~(1<<nr);
10761 regs[i+1].wasdirty&=~(1<<nr);
10762 regs[i+1].dirty&=~(1<<nr);
10763 regs[i+2].wasdirty&=~(1<<nr);
10764 }
10765 }
10766 }
10767 }
10768 #endif
198df76f 10769 // Address for store instruction (non-constant)
b9b61529 10770 if(itype[i+1]==STORE||itype[i+1]==STORELR
10771 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10772 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10773 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10774 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10775 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10776 assert(hr>=0);
10777 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10778 {
10779 regs[i].regmap[hr]=rs1[i+1];
10780 regmap_pre[i+1][hr]=rs1[i+1];
10781 regs[i+1].regmap_entry[hr]=rs1[i+1];
10782 regs[i].isconst&=~(1<<hr);
10783 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10784 constmap[i][hr]=constmap[i+1][hr];
10785 regs[i+1].wasdirty&=~(1<<hr);
10786 regs[i].dirty&=~(1<<hr);
10787 }
10788 }
10789 }
b9b61529 10790 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10791 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10792 int nr;
10793 hr=get_reg(regs[i+1].regmap,FTEMP);
10794 assert(hr>=0);
10795 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10796 {
10797 regs[i].regmap[hr]=rs1[i+1];
10798 regmap_pre[i+1][hr]=rs1[i+1];
10799 regs[i+1].regmap_entry[hr]=rs1[i+1];
10800 regs[i].isconst&=~(1<<hr);
10801 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10802 constmap[i][hr]=constmap[i+1][hr];
10803 regs[i+1].wasdirty&=~(1<<hr);
10804 regs[i].dirty&=~(1<<hr);
10805 }
10806 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10807 {
10808 // move it to another register
10809 regs[i+1].regmap[hr]=-1;
10810 regmap_pre[i+2][hr]=-1;
10811 regs[i+1].regmap[nr]=FTEMP;
10812 regmap_pre[i+2][nr]=FTEMP;
10813 regs[i].regmap[nr]=rs1[i+1];
10814 regmap_pre[i+1][nr]=rs1[i+1];
10815 regs[i+1].regmap_entry[nr]=rs1[i+1];
10816 regs[i].isconst&=~(1<<nr);
10817 regs[i+1].isconst&=~(1<<nr);
10818 regs[i].dirty&=~(1<<nr);
10819 regs[i+1].wasdirty&=~(1<<nr);
10820 regs[i+1].dirty&=~(1<<nr);
10821 regs[i+2].wasdirty&=~(1<<nr);
10822 }
10823 }
10824 }
b9b61529 10825 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10826 if(itype[i+1]==LOAD)
10827 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10828 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10829 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10830 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10831 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10832 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10833 }
10834 if(hr>=0&&regs[i].regmap[hr]<0) {
10835 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10836 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10837 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10838 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10839 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10840 regs[i].isconst&=~(1<<hr);
10841 regs[i+1].wasdirty&=~(1<<hr);
10842 regs[i].dirty&=~(1<<hr);
10843 }
10844 }
10845 }
10846 }
10847 }
10848 }
10849 }
10850
10851 /* Pass 6 - Optimize clean/dirty state */
10852 clean_registers(0,slen-1,1);
10853
10854 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10855#ifndef FORCE32
57871462 10856 provisional_r32();
10857
10858 u_int r32=0;
10859
10860 for (i=slen-1;i>=0;i--)
10861 {
10862 int hr;
10863 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10864 {
10865 if(ba[i]<start || ba[i]>=(start+slen*4))
10866 {
10867 // Branch out of this block, don't need anything
10868 r32=0;
10869 }
10870 else
10871 {
10872 // Internal branch
10873 // Need whatever matches the target
10874 // (and doesn't get overwritten by the delay slot instruction)
10875 r32=0;
10876 int t=(ba[i]-start)>>2;
10877 if(ba[i]>start+i*4) {
10878 // Forward branch
10879 if(!(requires_32bit[t]&~regs[i].was32))
10880 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10881 }else{
10882 // Backward branch
10883 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10884 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10885 if(!(pr32[t]&~regs[i].was32))
10886 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10887 }
10888 }
10889 // Conditional branch may need registers for following instructions
10890 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10891 {
10892 if(i<slen-2) {
10893 r32|=requires_32bit[i+2];
10894 r32&=regs[i].was32;
10895 // Mark this address as a branch target since it may be called
10896 // upon return from interrupt
10897 bt[i+2]=1;
10898 }
10899 }
10900 // Merge in delay slot
10901 if(!likely[i]) {
10902 // These are overwritten unless the branch is "likely"
10903 // and the delay slot is nullified if not taken
10904 r32&=~(1LL<<rt1[i+1]);
10905 r32&=~(1LL<<rt2[i+1]);
10906 }
10907 // Assume these are needed (delay slot)
10908 if(us1[i+1]>0)
10909 {
10910 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10911 }
10912 if(us2[i+1]>0)
10913 {
10914 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10915 }
10916 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10917 {
10918 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10919 }
10920 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10921 {
10922 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10923 }
10924 }
1e973cb0 10925 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10926 {
10927 // SYSCALL instruction (software interrupt)
10928 r32=0;
10929 }
10930 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10931 {
10932 // ERET instruction (return from interrupt)
10933 r32=0;
10934 }
10935 // Check 32 bits
10936 r32&=~(1LL<<rt1[i]);
10937 r32&=~(1LL<<rt2[i]);
10938 if(us1[i]>0)
10939 {
10940 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10941 }
10942 if(us2[i]>0)
10943 {
10944 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10945 }
10946 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10947 {
10948 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10949 }
10950 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10951 {
10952 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10953 }
10954 requires_32bit[i]=r32;
10955
10956 // Dirty registers which are 32-bit, require 32-bit input
10957 // as they will be written as 32-bit values
10958 for(hr=0;hr<HOST_REGS;hr++)
10959 {
10960 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10961 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10962 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10963 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10964 }
10965 }
10966 }
10967 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10968 }
04fd948a 10969#else
10970 for (i=slen-1;i>=0;i--)
10971 {
10972 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10973 {
10974 // Conditional branch
10975 if((source[i]>>16)!=0x1000&&i<slen-2) {
10976 // Mark this address as a branch target since it may be called
10977 // upon return from interrupt
10978 bt[i+2]=1;
10979 }
10980 }
10981 }
a28c6ce8 10982#endif
57871462 10983
10984 if(itype[slen-1]==SPAN) {
10985 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10986 }
4600ba03 10987
10988#ifdef DISASM
57871462 10989 /* Debug/disassembly */
57871462 10990 for(i=0;i<slen;i++)
10991 {
10992 printf("U:");
10993 int r;
10994 for(r=1;r<=CCREG;r++) {
10995 if((unneeded_reg[i]>>r)&1) {
10996 if(r==HIREG) printf(" HI");
10997 else if(r==LOREG) printf(" LO");
10998 else printf(" r%d",r);
10999 }
11000 }
90ae6d4e 11001#ifndef FORCE32
57871462 11002 printf(" UU:");
11003 for(r=1;r<=CCREG;r++) {
11004 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
11005 if(r==HIREG) printf(" HI");
11006 else if(r==LOREG) printf(" LO");
11007 else printf(" r%d",r);
11008 }
11009 }
11010 printf(" 32:");
11011 for(r=0;r<=CCREG;r++) {
11012 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11013 if((regs[i].was32>>r)&1) {
11014 if(r==CCREG) printf(" CC");
11015 else if(r==HIREG) printf(" HI");
11016 else if(r==LOREG) printf(" LO");
11017 else printf(" r%d",r);
11018 }
11019 }
90ae6d4e 11020#endif
57871462 11021 printf("\n");
11022 #if defined(__i386__) || defined(__x86_64__)
11023 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11024 #endif
11025 #ifdef __arm__
11026 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11027 #endif
11028 printf("needs: ");
11029 if(needed_reg[i]&1) printf("eax ");
11030 if((needed_reg[i]>>1)&1) printf("ecx ");
11031 if((needed_reg[i]>>2)&1) printf("edx ");
11032 if((needed_reg[i]>>3)&1) printf("ebx ");
11033 if((needed_reg[i]>>5)&1) printf("ebp ");
11034 if((needed_reg[i]>>6)&1) printf("esi ");
11035 if((needed_reg[i]>>7)&1) printf("edi ");
11036 printf("r:");
11037 for(r=0;r<=CCREG;r++) {
11038 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11039 if((requires_32bit[i]>>r)&1) {
11040 if(r==CCREG) printf(" CC");
11041 else if(r==HIREG) printf(" HI");
11042 else if(r==LOREG) printf(" LO");
11043 else printf(" r%d",r);
11044 }
11045 }
11046 printf("\n");
11047 /*printf("pr:");
11048 for(r=0;r<=CCREG;r++) {
11049 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11050 if((pr32[i]>>r)&1) {
11051 if(r==CCREG) printf(" CC");
11052 else if(r==HIREG) printf(" HI");
11053 else if(r==LOREG) printf(" LO");
11054 else printf(" r%d",r);
11055 }
11056 }
11057 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11058 printf("\n");*/
11059 #if defined(__i386__) || defined(__x86_64__)
11060 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11061 printf("dirty: ");
11062 if(regs[i].wasdirty&1) printf("eax ");
11063 if((regs[i].wasdirty>>1)&1) printf("ecx ");
11064 if((regs[i].wasdirty>>2)&1) printf("edx ");
11065 if((regs[i].wasdirty>>3)&1) printf("ebx ");
11066 if((regs[i].wasdirty>>5)&1) printf("ebp ");
11067 if((regs[i].wasdirty>>6)&1) printf("esi ");
11068 if((regs[i].wasdirty>>7)&1) printf("edi ");
11069 #endif
11070 #ifdef __arm__
11071 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11072 printf("dirty: ");
11073 if(regs[i].wasdirty&1) printf("r0 ");
11074 if((regs[i].wasdirty>>1)&1) printf("r1 ");
11075 if((regs[i].wasdirty>>2)&1) printf("r2 ");
11076 if((regs[i].wasdirty>>3)&1) printf("r3 ");
11077 if((regs[i].wasdirty>>4)&1) printf("r4 ");
11078 if((regs[i].wasdirty>>5)&1) printf("r5 ");
11079 if((regs[i].wasdirty>>6)&1) printf("r6 ");
11080 if((regs[i].wasdirty>>7)&1) printf("r7 ");
11081 if((regs[i].wasdirty>>8)&1) printf("r8 ");
11082 if((regs[i].wasdirty>>9)&1) printf("r9 ");
11083 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11084 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11085 #endif
11086 printf("\n");
11087 disassemble_inst(i);
11088 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11089 #if defined(__i386__) || defined(__x86_64__)
11090 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11091 if(regs[i].dirty&1) printf("eax ");
11092 if((regs[i].dirty>>1)&1) printf("ecx ");
11093 if((regs[i].dirty>>2)&1) printf("edx ");
11094 if((regs[i].dirty>>3)&1) printf("ebx ");
11095 if((regs[i].dirty>>5)&1) printf("ebp ");
11096 if((regs[i].dirty>>6)&1) printf("esi ");
11097 if((regs[i].dirty>>7)&1) printf("edi ");
11098 #endif
11099 #ifdef __arm__
11100 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11101 if(regs[i].dirty&1) printf("r0 ");
11102 if((regs[i].dirty>>1)&1) printf("r1 ");
11103 if((regs[i].dirty>>2)&1) printf("r2 ");
11104 if((regs[i].dirty>>3)&1) printf("r3 ");
11105 if((regs[i].dirty>>4)&1) printf("r4 ");
11106 if((regs[i].dirty>>5)&1) printf("r5 ");
11107 if((regs[i].dirty>>6)&1) printf("r6 ");
11108 if((regs[i].dirty>>7)&1) printf("r7 ");
11109 if((regs[i].dirty>>8)&1) printf("r8 ");
11110 if((regs[i].dirty>>9)&1) printf("r9 ");
11111 if((regs[i].dirty>>10)&1) printf("r10 ");
11112 if((regs[i].dirty>>12)&1) printf("r12 ");
11113 #endif
11114 printf("\n");
11115 if(regs[i].isconst) {
11116 printf("constants: ");
11117 #if defined(__i386__) || defined(__x86_64__)
11118 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11119 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11120 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11121 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11122 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11123 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11124 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11125 #endif
11126 #ifdef __arm__
11127 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11128 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11129 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11130 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11131 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11132 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11133 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11134 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11135 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11136 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11137 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11138 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11139 #endif
11140 printf("\n");
11141 }
90ae6d4e 11142#ifndef FORCE32
57871462 11143 printf(" 32:");
11144 for(r=0;r<=CCREG;r++) {
11145 if((regs[i].is32>>r)&1) {
11146 if(r==CCREG) printf(" CC");
11147 else if(r==HIREG) printf(" HI");
11148 else if(r==LOREG) printf(" LO");
11149 else printf(" r%d",r);
11150 }
11151 }
11152 printf("\n");
90ae6d4e 11153#endif
57871462 11154 /*printf(" p32:");
11155 for(r=0;r<=CCREG;r++) {
11156 if((p32[i]>>r)&1) {
11157 if(r==CCREG) printf(" CC");
11158 else if(r==HIREG) printf(" HI");
11159 else if(r==LOREG) printf(" LO");
11160 else printf(" r%d",r);
11161 }
11162 }
11163 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11164 else printf("\n");*/
11165 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11166 #if defined(__i386__) || defined(__x86_64__)
11167 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11168 if(branch_regs[i].dirty&1) printf("eax ");
11169 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11170 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11171 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11172 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11173 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11174 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11175 #endif
11176 #ifdef __arm__
11177 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11178 if(branch_regs[i].dirty&1) printf("r0 ");
11179 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11180 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11181 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11182 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11183 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11184 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11185 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11186 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11187 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11188 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11189 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11190 #endif
90ae6d4e 11191#ifndef FORCE32
57871462 11192 printf(" 32:");
11193 for(r=0;r<=CCREG;r++) {
11194 if((branch_regs[i].is32>>r)&1) {
11195 if(r==CCREG) printf(" CC");
11196 else if(r==HIREG) printf(" HI");
11197 else if(r==LOREG) printf(" LO");
11198 else printf(" r%d",r);
11199 }
11200 }
11201 printf("\n");
90ae6d4e 11202#endif
57871462 11203 }
11204 }
4600ba03 11205#endif // DISASM
57871462 11206
11207 /* Pass 8 - Assembly */
11208 linkcount=0;stubcount=0;
11209 ds=0;is_delayslot=0;
11210 cop1_usable=0;
11211 uint64_t is32_pre=0;
11212 u_int dirty_pre=0;
11213 u_int beginning=(u_int)out;
11214 if((u_int)addr&1) {
11215 ds=1;
11216 pagespan_ds();
11217 }
9ad4d757 11218 u_int instr_addr0_override=0;
11219
11220#ifdef PCSX
11221 if (start == 0x80030000) {
11222 // nasty hack for fastbios thing
96186eba 11223 // override block entry to this code
9ad4d757 11224 instr_addr0_override=(u_int)out;
11225 emit_movimm(start,0);
96186eba 11226 // abuse io address var as a flag that we
11227 // have already returned here once
11228 emit_readword((int)&address,1);
9ad4d757 11229 emit_writeword(0,(int)&pcaddr);
96186eba 11230 emit_writeword(0,(int)&address);
9ad4d757 11231 emit_cmp(0,1);
11232 emit_jne((int)new_dyna_leave);
11233 }
11234#endif
57871462 11235 for(i=0;i<slen;i++)
11236 {
11237 //if(ds) printf("ds: ");
4600ba03 11238 disassemble_inst(i);
57871462 11239 if(ds) {
11240 ds=0; // Skip delay slot
11241 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11242 instr_addr[i]=0;
11243 } else {
ffb0b9e0 11244 speculate_register_values(i);
57871462 11245 #ifndef DESTRUCTIVE_WRITEBACK
11246 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11247 {
11248 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11249 unneeded_reg[i],unneeded_reg_upper[i]);
11250 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11251 unneeded_reg[i],unneeded_reg_upper[i]);
11252 }
f776eb14 11253 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11254 is32_pre=branch_regs[i].is32;
11255 dirty_pre=branch_regs[i].dirty;
11256 }else{
11257 is32_pre=regs[i].is32;
11258 dirty_pre=regs[i].dirty;
11259 }
57871462 11260 #endif
11261 // write back
11262 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11263 {
11264 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11265 unneeded_reg[i],unneeded_reg_upper[i]);
11266 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11267 }
11268 // branch target entry point
11269 instr_addr[i]=(u_int)out;
11270 assem_debug("<->\n");
11271 // load regs
11272 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11273 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11274 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11275 address_generation(i,&regs[i],regs[i].regmap_entry);
11276 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11277 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11278 {
11279 // Load the delay slot registers if necessary
4ef8f67d 11280 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11281 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11282 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11283 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11284 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11285 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11286 }
11287 else if(i+1<slen)
11288 {
11289 // Preload registers for following instruction
11290 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11291 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11292 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11293 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11294 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11295 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11296 }
11297 // TODO: if(is_ooo(i)) address_generation(i+1);
11298 if(itype[i]==CJUMP||itype[i]==FJUMP)
11299 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11300 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11301 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11302 if(bt[i]) cop1_usable=0;
11303 // assemble
11304 switch(itype[i]) {
11305 case ALU:
11306 alu_assemble(i,&regs[i]);break;
11307 case IMM16:
11308 imm16_assemble(i,&regs[i]);break;
11309 case SHIFT:
11310 shift_assemble(i,&regs[i]);break;
11311 case SHIFTIMM:
11312 shiftimm_assemble(i,&regs[i]);break;
11313 case LOAD:
11314 load_assemble(i,&regs[i]);break;
11315 case LOADLR:
11316 loadlr_assemble(i,&regs[i]);break;
11317 case STORE:
11318 store_assemble(i,&regs[i]);break;
11319 case STORELR:
11320 storelr_assemble(i,&regs[i]);break;
11321 case COP0:
11322 cop0_assemble(i,&regs[i]);break;
11323 case COP1:
11324 cop1_assemble(i,&regs[i]);break;
11325 case C1LS:
11326 c1ls_assemble(i,&regs[i]);break;
b9b61529 11327 case COP2:
11328 cop2_assemble(i,&regs[i]);break;
11329 case C2LS:
11330 c2ls_assemble(i,&regs[i]);break;
11331 case C2OP:
11332 c2op_assemble(i,&regs[i]);break;
57871462 11333 case FCONV:
11334 fconv_assemble(i,&regs[i]);break;
11335 case FLOAT:
11336 float_assemble(i,&regs[i]);break;
11337 case FCOMP:
11338 fcomp_assemble(i,&regs[i]);break;
11339 case MULTDIV:
11340 multdiv_assemble(i,&regs[i]);break;
11341 case MOV:
11342 mov_assemble(i,&regs[i]);break;
11343 case SYSCALL:
11344 syscall_assemble(i,&regs[i]);break;
7139f3c8 11345 case HLECALL:
11346 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11347 case INTCALL:
11348 intcall_assemble(i,&regs[i]);break;
57871462 11349 case UJUMP:
11350 ujump_assemble(i,&regs[i]);ds=1;break;
11351 case RJUMP:
11352 rjump_assemble(i,&regs[i]);ds=1;break;
11353 case CJUMP:
11354 cjump_assemble(i,&regs[i]);ds=1;break;
11355 case SJUMP:
11356 sjump_assemble(i,&regs[i]);ds=1;break;
11357 case FJUMP:
11358 fjump_assemble(i,&regs[i]);ds=1;break;
11359 case SPAN:
11360 pagespan_assemble(i,&regs[i]);break;
11361 }
11362 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11363 literal_pool(1024);
11364 else
11365 literal_pool_jumpover(256);
11366 }
11367 }
11368 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11369 // If the block did not end with an unconditional branch,
11370 // add a jump to the next instruction.
11371 if(i>1) {
11372 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11373 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11374 assert(i==slen);
11375 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11376 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11377 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11378 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11379 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11380 }
11381 else if(!likely[i-2])
11382 {
11383 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11384 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11385 }
11386 else
11387 {
11388 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11389 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11390 }
11391 add_to_linker((int)out,start+i*4,0);
11392 emit_jmp(0);
11393 }
11394 }
11395 else
11396 {
11397 assert(i>0);
11398 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11399 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11400 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11401 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11402 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11403 add_to_linker((int)out,start+i*4,0);
11404 emit_jmp(0);
11405 }
11406
11407 // TODO: delay slot stubs?
11408 // Stubs
11409 for(i=0;i<stubcount;i++)
11410 {
11411 switch(stubs[i][0])
11412 {
11413 case LOADB_STUB:
11414 case LOADH_STUB:
11415 case LOADW_STUB:
11416 case LOADD_STUB:
11417 case LOADBU_STUB:
11418 case LOADHU_STUB:
11419 do_readstub(i);break;
11420 case STOREB_STUB:
11421 case STOREH_STUB:
11422 case STOREW_STUB:
11423 case STORED_STUB:
11424 do_writestub(i);break;
11425 case CC_STUB:
11426 do_ccstub(i);break;
11427 case INVCODE_STUB:
11428 do_invstub(i);break;
11429 case FP_STUB:
11430 do_cop1stub(i);break;
11431 case STORELR_STUB:
11432 do_unalignedwritestub(i);break;
11433 }
11434 }
11435
9ad4d757 11436 if (instr_addr0_override)
11437 instr_addr[0] = instr_addr0_override;
11438
57871462 11439 /* Pass 9 - Linker */
11440 for(i=0;i<linkcount;i++)
11441 {
11442 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11443 literal_pool(64);
11444 if(!link_addr[i][2])
11445 {
11446 void *stub=out;
11447 void *addr=check_addr(link_addr[i][1]);
11448 emit_extjump(link_addr[i][0],link_addr[i][1]);
11449 if(addr) {
11450 set_jump_target(link_addr[i][0],(int)addr);
11451 add_link(link_addr[i][1],stub);
11452 }
11453 else set_jump_target(link_addr[i][0],(int)stub);
11454 }
11455 else
11456 {
11457 // Internal branch
11458 int target=(link_addr[i][1]-start)>>2;
11459 assert(target>=0&&target<slen);
11460 assert(instr_addr[target]);
11461 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11462 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11463 //#else
11464 set_jump_target(link_addr[i][0],instr_addr[target]);
11465 //#endif
11466 }
11467 }
11468 // External Branch Targets (jump_in)
11469 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11470 for(i=0;i<slen;i++)
11471 {
11472 if(bt[i]||i==0)
11473 {
11474 if(instr_addr[i]) // TODO - delay slots (=null)
11475 {
11476 u_int vaddr=start+i*4;
94d23bb9 11477 u_int page=get_page(vaddr);
11478 u_int vpage=get_vpage(vaddr);
57871462 11479 literal_pool(256);
57871462 11480 {
11481 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11482 assem_debug("jump_in: %x\n",start+i*4);
11483 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11484 int entry_point=do_dirty_stub(i);
11485 ll_add(jump_in+page,vaddr,(void *)entry_point);
11486 // If there was an existing entry in the hash table,
11487 // replace it with the new address.
11488 // Don't add new entries. We'll insert the
11489 // ones that actually get used in check_addr().
11490 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11491 if(ht_bin[0]==vaddr) {
11492 ht_bin[1]=entry_point;
11493 }
11494 if(ht_bin[2]==vaddr) {
11495 ht_bin[3]=entry_point;
11496 }
11497 }
57871462 11498 }
11499 }
11500 }
11501 // Write out the literal pool if necessary
11502 literal_pool(0);
11503 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11504 // Align code
11505 if(((u_int)out)&7) emit_addnop(13);
11506 #endif
11507 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11508 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11509 memcpy(copy,source,slen*4);
11510 copy+=slen*4;
11511
11512 #ifdef __arm__
11513 __clear_cache((void *)beginning,out);
11514 #endif
11515
11516 // If we're within 256K of the end of the buffer,
11517 // start over from the beginning. (Is 256K enough?)
bdeade46 11518 if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
57871462 11519
11520 // Trap writes to any of the pages we compiled
11521 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11522 invalid_code[i]=0;
90ae6d4e 11523#ifndef DISABLE_TLB
57871462 11524 memory_map[i]|=0x40000000;
11525 if((signed int)start>=(signed int)0xC0000000) {
11526 assert(using_tlb);
11527 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11528 invalid_code[j]=0;
11529 memory_map[j]|=0x40000000;
11530 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11531 }
90ae6d4e 11532#endif
57871462 11533 }
9be4ba64 11534 inv_code_start=inv_code_end=~0;
b12c9fb8 11535#ifdef PCSX
b96d3df7 11536 // for PCSX we need to mark all mirrors too
b12c9fb8 11537 if(get_page(start)<(RAM_SIZE>>12))
11538 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11539 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11540 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11541 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11542#endif
57871462 11543
11544 /* Pass 10 - Free memory by expiring oldest blocks */
11545
bdeade46 11546 int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
57871462 11547 while(expirep!=end)
11548 {
11549 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
bdeade46 11550 int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
57871462 11551 inv_debug("EXP: Phase %d\n",expirep);
11552 switch((expirep>>11)&3)
11553 {
11554 case 0:
11555 // Clear jump_in and jump_dirty
11556 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11557 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11558 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11559 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11560 break;
11561 case 1:
11562 // Clear pointers
11563 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11564 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11565 break;
11566 case 2:
11567 // Clear hash table
11568 for(i=0;i<32;i++) {
11569 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11570 if((ht_bin[3]>>shift)==(base>>shift) ||
11571 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11572 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11573 ht_bin[2]=ht_bin[3]=-1;
11574 }
11575 if((ht_bin[1]>>shift)==(base>>shift) ||
11576 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11577 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11578 ht_bin[0]=ht_bin[2];
11579 ht_bin[1]=ht_bin[3];
11580 ht_bin[2]=ht_bin[3]=-1;
11581 }
11582 }
11583 break;
11584 case 3:
11585 // Clear jump_out
dd3a91a1 11586 #ifdef __arm__
11587 if((expirep&2047)==0)
11588 do_clear_cache();
11589 #endif
57871462 11590 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11591 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11592 break;
11593 }
11594 expirep=(expirep+1)&65535;
11595 }
11596 return 0;
11597}
b9b61529 11598
11599// vim:shiftwidth=2:expandtab