drc: remove old debug code
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
d848b60a 24#include <errno.h>
4600ba03 25#include <sys/mman.h>
d148d265 26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
1e212a25 29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef VITA
33#include <psp2/kernel/sysmem.h>
34static int sceBlock;
35#endif
57871462 36
d148d265 37#include "new_dynarec_config.h"
dd79da89 38#include "../psxhle.h" //emulator interface
3d624f89 39#include "emu_if.h" //emulator interface
57871462 40
b14b6a8f 41#ifndef ARRAY_SIZE
42#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
43#endif
44
4600ba03 45//#define DISASM
46//#define assem_debug printf
47//#define inv_debug printf
48#define assem_debug(...)
49#define inv_debug(...)
57871462 50
51#ifdef __i386__
52#include "assem_x86.h"
53#endif
54#ifdef __x86_64__
55#include "assem_x64.h"
56#endif
57#ifdef __arm__
58#include "assem_arm.h"
59#endif
60
61#define MAXBLOCK 4096
62#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 63
b14b6a8f 64// stubs
65enum stub_type {
66 CC_STUB = 1,
67 FP_STUB = 2,
68 LOADB_STUB = 3,
69 LOADH_STUB = 4,
70 LOADW_STUB = 5,
71 LOADD_STUB = 6,
72 LOADBU_STUB = 7,
73 LOADHU_STUB = 8,
74 STOREB_STUB = 9,
75 STOREH_STUB = 10,
76 STOREW_STUB = 11,
77 STORED_STUB = 12,
78 STORELR_STUB = 13,
79 INVCODE_STUB = 14,
80};
81
57871462 82struct regstat
83{
84 signed char regmap_entry[HOST_REGS];
85 signed char regmap[HOST_REGS];
86 uint64_t was32;
87 uint64_t is32;
88 uint64_t wasdirty;
89 uint64_t dirty;
90 uint64_t u;
91 uint64_t uu;
92 u_int wasconst;
93 u_int isconst;
8575a877 94 u_int loadedconst; // host regs that have constants loaded
95 u_int waswritten; // MIPS regs that were used as store base before
57871462 96};
97
de5a60c3 98// note: asm depends on this layout
57871462 99struct ll_entry
100{
101 u_int vaddr;
de5a60c3 102 u_int reg_sv_flags;
57871462 103 void *addr;
104 struct ll_entry *next;
105};
106
df4dc2b1 107struct ht_entry
108{
109 u_int vaddr[2];
110 void *tcaddr[2];
111};
112
b14b6a8f 113struct code_stub
114{
115 enum stub_type type;
116 void *addr;
117 void *retaddr;
118 u_int a;
119 uintptr_t b;
120 uintptr_t c;
121 u_int d;
122 u_int e;
123};
124
e2b5e7aa 125 // used by asm:
126 u_char *out;
df4dc2b1 127 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
e2b5e7aa 128 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
129 struct ll_entry *jump_dirty[4096];
130
131 static struct ll_entry *jump_out[4096];
132 static u_int start;
133 static u_int *source;
134 static char insn[MAXBLOCK][10];
135 static u_char itype[MAXBLOCK];
136 static u_char opcode[MAXBLOCK];
137 static u_char opcode2[MAXBLOCK];
138 static u_char bt[MAXBLOCK];
139 static u_char rs1[MAXBLOCK];
140 static u_char rs2[MAXBLOCK];
141 static u_char rt1[MAXBLOCK];
142 static u_char rt2[MAXBLOCK];
143 static u_char us1[MAXBLOCK];
144 static u_char us2[MAXBLOCK];
145 static u_char dep1[MAXBLOCK];
146 static u_char dep2[MAXBLOCK];
147 static u_char lt1[MAXBLOCK];
bedfea38 148 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
149 static uint64_t gte_rt[MAXBLOCK];
150 static uint64_t gte_unneeded[MAXBLOCK];
ffb0b9e0 151 static u_int smrv[32]; // speculated MIPS register values
152 static u_int smrv_strong; // mask or regs that are likely to have correct values
153 static u_int smrv_weak; // same, but somewhat less likely
154 static u_int smrv_strong_next; // same, but after current insn executes
155 static u_int smrv_weak_next;
e2b5e7aa 156 static int imm[MAXBLOCK];
157 static u_int ba[MAXBLOCK];
158 static char likely[MAXBLOCK];
159 static char is_ds[MAXBLOCK];
160 static char ooo[MAXBLOCK];
161 static uint64_t unneeded_reg[MAXBLOCK];
162 static uint64_t unneeded_reg_upper[MAXBLOCK];
163 static uint64_t branch_unneeded_reg[MAXBLOCK];
164 static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
165 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
956f3129 166 static uint64_t current_constmap[HOST_REGS];
167 static uint64_t constmap[MAXBLOCK][HOST_REGS];
168 static struct regstat regs[MAXBLOCK];
169 static struct regstat branch_regs[MAXBLOCK];
e2b5e7aa 170 static signed char minimum_free_regs[MAXBLOCK];
171 static u_int needed_reg[MAXBLOCK];
172 static u_int wont_dirty[MAXBLOCK];
173 static u_int will_dirty[MAXBLOCK];
174 static int ccadj[MAXBLOCK];
175 static int slen;
df4dc2b1 176 static void *instr_addr[MAXBLOCK];
e2b5e7aa 177 static u_int link_addr[MAXBLOCK][3];
178 static int linkcount;
b14b6a8f 179 static struct code_stub stubs[MAXBLOCK*3];
e2b5e7aa 180 static int stubcount;
181 static u_int literals[1024][2];
182 static int literalcount;
183 static int is_delayslot;
184 static int cop1_usable;
185 static char shadow[1048576] __attribute__((aligned(16)));
186 static void *copy;
187 static int expirep;
188 static u_int stop_after_jal;
a327ad27 189#ifndef RAM_FIXED
190 static u_int ram_offset;
191#else
192 static const u_int ram_offset=0;
193#endif
e2b5e7aa 194
195 int new_dynarec_hacks;
196 int new_dynarec_did_compile;
57871462 197 extern u_char restore_candidate[512];
198 extern int cycle_count;
199
200 /* registers that may be allocated */
201 /* 1-31 gpr */
202#define HIREG 32 // hi
203#define LOREG 33 // lo
204#define FSREG 34 // FPU status (FCSR)
205#define CSREG 35 // Coprocessor status
206#define CCREG 36 // Cycle count
207#define INVCP 37 // Pointer to invalid_code
1edfcc68 208//#define MMREG 38 // Pointer to memory_map
619e5ded 209#define ROREG 39 // ram offset (if rdram!=0x80000000)
210#define TEMPREG 40
211#define FTEMP 40 // FPU temporary register
212#define PTEMP 41 // Prefetch temporary register
1edfcc68 213//#define TLREG 42 // TLB mapping offset
619e5ded 214#define RHASH 43 // Return address hash
215#define RHTBL 44 // Return address hash table address
216#define RTEMP 45 // JR/JALR address register
217#define MAXREG 45
218#define AGEN1 46 // Address generation temporary register
1edfcc68 219//#define AGEN2 47 // Address generation temporary register
220//#define MGEN1 48 // Maptable address generation temporary register
221//#define MGEN2 49 // Maptable address generation temporary register
619e5ded 222#define BTREG 50 // Branch target temporary register
57871462 223
224 /* instruction types */
225#define NOP 0 // No operation
226#define LOAD 1 // Load
227#define STORE 2 // Store
228#define LOADLR 3 // Unaligned load
229#define STORELR 4 // Unaligned store
9f51b4b9 230#define MOV 5 // Move
57871462 231#define ALU 6 // Arithmetic/logic
232#define MULTDIV 7 // Multiply/divide
233#define SHIFT 8 // Shift by register
234#define SHIFTIMM 9// Shift by immediate
235#define IMM16 10 // 16-bit immediate
236#define RJUMP 11 // Unconditional jump to register
237#define UJUMP 12 // Unconditional jump
238#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
239#define SJUMP 14 // Conditional branch (regimm format)
240#define COP0 15 // Coprocessor 0
241#define COP1 16 // Coprocessor 1
242#define C1LS 17 // Coprocessor 1 load/store
243#define FJUMP 18 // Conditional branch (floating point)
244#define FLOAT 19 // Floating point unit
245#define FCONV 20 // Convert integer to float
246#define FCOMP 21 // Floating point compare (sets FSREG)
247#define SYSCALL 22// SYSCALL
248#define OTHER 23 // Other
249#define SPAN 24 // Branch/delay slot spans 2 pages
250#define NI 25 // Not implemented
7139f3c8 251#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 252#define COP2 27 // Coprocessor 2 move
253#define C2LS 28 // Coprocessor 2 load/store
254#define C2OP 29 // Coprocessor 2 operation
1e973cb0 255#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 256
57871462 257 /* branch codes */
258#define TAKEN 1
259#define NOTTAKEN 2
260#define NULLDS 3
261
262// asm linkage
263int new_recompile_block(int addr);
264void *get_addr_ht(u_int vaddr);
265void invalidate_block(u_int block);
266void invalidate_addr(u_int addr);
267void remove_hash(int vaddr);
57871462 268void dyna_linker();
269void dyna_linker_ds();
270void verify_code();
271void verify_code_vm();
272void verify_code_ds();
273void cc_interrupt();
274void fp_exception();
275void fp_exception_ds();
7139f3c8 276void jump_syscall_hle();
7139f3c8 277void jump_hlecall();
1e973cb0 278void jump_intcall();
7139f3c8 279void new_dyna_leave();
57871462 280
57871462 281// Needed by assembler
e2b5e7aa 282static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
283static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
284static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
285static void load_all_regs(signed char i_regmap[]);
286static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
287static void load_regs_entry(int t);
288static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
289
290static int verify_dirty(u_int *ptr);
291static int get_final_value(int hr, int i, int *value);
b14b6a8f 292static void add_stub(enum stub_type type, void *addr, void *retaddr,
293 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
294static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
295 int i, int addr_reg, struct regstat *i_regs, int ccadj, u_int reglist);
e2b5e7aa 296static void add_to_linker(int addr,int target,int ext);
57871462 297
e2b5e7aa 298static int tracedebug=0;
57871462 299
d148d265 300static void mprotect_w_x(void *start, void *end, int is_x)
301{
302#ifdef NO_WRITE_EXEC
1e212a25 303 #if defined(VITA)
304 // *Open* enables write on all memory that was
305 // allocated by sceKernelAllocMemBlockForVM()?
306 if (is_x)
307 sceKernelCloseVMDomain();
308 else
309 sceKernelOpenVMDomain();
310 #else
d148d265 311 u_long mstart = (u_long)start & ~4095ul;
312 u_long mend = (u_long)end;
313 if (mprotect((void *)mstart, mend - mstart,
314 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
315 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
1e212a25 316 #endif
d148d265 317#endif
318}
319
320static void start_tcache_write(void *start, void *end)
321{
322 mprotect_w_x(start, end, 0);
323}
324
325static void end_tcache_write(void *start, void *end)
326{
327#ifdef __arm__
328 size_t len = (char *)end - (char *)start;
329 #if defined(__BLACKBERRY_QNX__)
330 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
331 #elif defined(__MACH__)
332 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
333 #elif defined(VITA)
1e212a25 334 sceKernelSyncVMDomain(sceBlock, start, len);
335 #elif defined(_3DS)
336 ctr_flush_invalidate_cache();
d148d265 337 #else
338 __clear_cache(start, end);
339 #endif
340 (void)len;
341#endif
342
343 mprotect_w_x(start, end, 1);
344}
345
346static void *start_block(void)
347{
348 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
349 if (end > (u_char *)BASE_ADDR + (1<<TARGET_SIZE_2))
350 end = (u_char *)BASE_ADDR + (1<<TARGET_SIZE_2);
351 start_tcache_write(out, end);
352 return out;
353}
354
355static void end_block(void *start)
356{
357 end_tcache_write(start, out);
358}
359
57871462 360//#define DEBUG_CYCLE_COUNT 1
361
b6e87b2b 362#define NO_CYCLE_PENALTY_THR 12
363
4e9dcd7f 364int cycle_multiplier; // 100 for 1.0
365
366static int CLOCK_ADJUST(int x)
367{
368 int s=(x>>31)|1;
369 return (x * cycle_multiplier + s * 50) / 100;
370}
371
94d23bb9 372static u_int get_page(u_int vaddr)
57871462 373{
0ce47d46 374 u_int page=vaddr&~0xe0000000;
375 if (page < 0x1000000)
376 page &= ~0x0e00000; // RAM mirrors
377 page>>=12;
57871462 378 if(page>2048) page=2048+(page&2047);
94d23bb9 379 return page;
380}
381
d25604ca 382// no virtual mem in PCSX
383static u_int get_vpage(u_int vaddr)
384{
385 return get_page(vaddr);
386}
94d23bb9 387
df4dc2b1 388static struct ht_entry *hash_table_get(u_int vaddr)
389{
390 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
391}
392
393static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
394{
395 ht_bin->vaddr[1] = ht_bin->vaddr[0];
396 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
397 ht_bin->vaddr[0] = vaddr;
398 ht_bin->tcaddr[0] = tcaddr;
399}
400
401// some messy ari64's code, seems to rely on unsigned 32bit overflow
402static int doesnt_expire_soon(void *tcaddr)
403{
404 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
405 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
406}
407
94d23bb9 408// Get address from virtual address
409// This is called from the recompiled JR/JALR instructions
410void *get_addr(u_int vaddr)
411{
412 u_int page=get_page(vaddr);
413 u_int vpage=get_vpage(vaddr);
57871462 414 struct ll_entry *head;
415 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
416 head=jump_in[page];
417 while(head!=NULL) {
de5a60c3 418 if(head->vaddr==vaddr) {
57871462 419 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
df4dc2b1 420 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
57871462 421 return head->addr;
422 }
423 head=head->next;
424 }
425 head=jump_dirty[vpage];
426 while(head!=NULL) {
de5a60c3 427 if(head->vaddr==vaddr) {
57871462 428 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
429 // Don't restore blocks which are about to expire from the cache
df4dc2b1 430 if (doesnt_expire_soon(head->addr))
431 if (verify_dirty(head->addr)) {
57871462 432 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
433 invalid_code[vaddr>>12]=0;
9be4ba64 434 inv_code_start=inv_code_end=~0;
57871462 435 if(vpage<2048) {
57871462 436 restore_candidate[vpage>>3]|=1<<(vpage&7);
437 }
438 else restore_candidate[page>>3]|=1<<(page&7);
df4dc2b1 439 struct ht_entry *ht_bin = hash_table_get(vaddr);
440 if (ht_bin->vaddr[0] == vaddr)
441 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
57871462 442 else
df4dc2b1 443 hash_table_add(ht_bin, vaddr, head->addr);
444
57871462 445 return head->addr;
446 }
447 }
448 head=head->next;
449 }
450 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
451 int r=new_recompile_block(vaddr);
452 if(r==0) return get_addr(vaddr);
453 // Execute in unmapped page, generate pagefault execption
454 Status|=2;
455 Cause=(vaddr<<31)|0x8;
456 EPC=(vaddr&1)?vaddr-5:vaddr;
457 BadVAddr=(vaddr&~1);
458 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
459 EntryHi=BadVAddr&0xFFFFE000;
460 return get_addr_ht(0x80000000);
461}
462// Look up address in hash table first
463void *get_addr_ht(u_int vaddr)
464{
465 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
df4dc2b1 466 const struct ht_entry *ht_bin = hash_table_get(vaddr);
467 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
468 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
57871462 469 return get_addr(vaddr);
470}
471
57871462 472void clear_all_regs(signed char regmap[])
473{
474 int hr;
475 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
476}
477
478signed char get_reg(signed char regmap[],int r)
479{
480 int hr;
481 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
482 return -1;
483}
484
485// Find a register that is available for two consecutive cycles
486signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
487{
488 int hr;
489 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
490 return -1;
491}
492
493int count_free_regs(signed char regmap[])
494{
495 int count=0;
496 int hr;
497 for(hr=0;hr<HOST_REGS;hr++)
498 {
499 if(hr!=EXCLUDE_REG) {
500 if(regmap[hr]<0) count++;
501 }
502 }
503 return count;
504}
505
506void dirty_reg(struct regstat *cur,signed char reg)
507{
508 int hr;
509 if(!reg) return;
510 for (hr=0;hr<HOST_REGS;hr++) {
511 if((cur->regmap[hr]&63)==reg) {
512 cur->dirty|=1<<hr;
513 }
514 }
515}
516
517// If we dirty the lower half of a 64 bit register which is now being
518// sign-extended, we need to dump the upper half.
519// Note: Do this only after completion of the instruction, because
520// some instructions may need to read the full 64-bit value even if
521// overwriting it (eg SLTI, DSRA32).
522static void flush_dirty_uppers(struct regstat *cur)
523{
524 int hr,reg;
525 for (hr=0;hr<HOST_REGS;hr++) {
526 if((cur->dirty>>hr)&1) {
527 reg=cur->regmap[hr];
9f51b4b9 528 if(reg>=64)
57871462 529 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
530 }
531 }
532}
533
534void set_const(struct regstat *cur,signed char reg,uint64_t value)
535{
536 int hr;
537 if(!reg) return;
538 for (hr=0;hr<HOST_REGS;hr++) {
539 if(cur->regmap[hr]==reg) {
540 cur->isconst|=1<<hr;
956f3129 541 current_constmap[hr]=value;
57871462 542 }
543 else if((cur->regmap[hr]^64)==reg) {
544 cur->isconst|=1<<hr;
956f3129 545 current_constmap[hr]=value>>32;
57871462 546 }
547 }
548}
549
550void clear_const(struct regstat *cur,signed char reg)
551{
552 int hr;
553 if(!reg) return;
554 for (hr=0;hr<HOST_REGS;hr++) {
555 if((cur->regmap[hr]&63)==reg) {
556 cur->isconst&=~(1<<hr);
557 }
558 }
559}
560
561int is_const(struct regstat *cur,signed char reg)
562{
563 int hr;
79c75f1b 564 if(reg<0) return 0;
57871462 565 if(!reg) return 1;
566 for (hr=0;hr<HOST_REGS;hr++) {
567 if((cur->regmap[hr]&63)==reg) {
568 return (cur->isconst>>hr)&1;
569 }
570 }
571 return 0;
572}
573uint64_t get_const(struct regstat *cur,signed char reg)
574{
575 int hr;
576 if(!reg) return 0;
577 for (hr=0;hr<HOST_REGS;hr++) {
578 if(cur->regmap[hr]==reg) {
956f3129 579 return current_constmap[hr];
57871462 580 }
581 }
c43b5311 582 SysPrintf("Unknown constant in r%d\n",reg);
57871462 583 exit(1);
584}
585
586// Least soon needed registers
587// Look at the next ten instructions and see which registers
588// will be used. Try not to reallocate these.
589void lsn(u_char hsn[], int i, int *preferred_reg)
590{
591 int j;
592 int b=-1;
593 for(j=0;j<9;j++)
594 {
595 if(i+j>=slen) {
596 j=slen-i-1;
597 break;
598 }
599 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
600 {
601 // Don't go past an unconditonal jump
602 j++;
603 break;
604 }
605 }
606 for(;j>=0;j--)
607 {
608 if(rs1[i+j]) hsn[rs1[i+j]]=j;
609 if(rs2[i+j]) hsn[rs2[i+j]]=j;
610 if(rt1[i+j]) hsn[rt1[i+j]]=j;
611 if(rt2[i+j]) hsn[rt2[i+j]]=j;
612 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
613 // Stores can allocate zero
614 hsn[rs1[i+j]]=j;
615 hsn[rs2[i+j]]=j;
616 }
617 // On some architectures stores need invc_ptr
618 #if defined(HOST_IMM8)
b9b61529 619 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 620 hsn[INVCP]=j;
621 }
622 #endif
623 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
624 {
625 hsn[CCREG]=j;
626 b=j;
627 }
628 }
629 if(b>=0)
630 {
631 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
632 {
633 // Follow first branch
634 int t=(ba[i+b]-start)>>2;
635 j=7-b;if(t+j>=slen) j=slen-t-1;
636 for(;j>=0;j--)
637 {
638 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
639 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
640 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
641 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
642 }
643 }
644 // TODO: preferred register based on backward branch
645 }
646 // Delay slot should preferably not overwrite branch conditions or cycle count
647 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
648 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
649 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
650 hsn[CCREG]=1;
651 // ...or hash tables
652 hsn[RHASH]=1;
653 hsn[RHTBL]=1;
654 }
655 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 656 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 657 hsn[FTEMP]=0;
658 }
659 // Load L/R also uses FTEMP as a temporary register
660 if(itype[i]==LOADLR) {
661 hsn[FTEMP]=0;
662 }
b7918751 663 // Also SWL/SWR/SDL/SDR
664 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 665 hsn[FTEMP]=0;
666 }
57871462 667 // Don't remove the miniht registers
668 if(itype[i]==UJUMP||itype[i]==RJUMP)
669 {
670 hsn[RHASH]=0;
671 hsn[RHTBL]=0;
672 }
673}
674
675// We only want to allocate registers if we're going to use them again soon
676int needed_again(int r, int i)
677{
678 int j;
679 int b=-1;
680 int rn=10;
9f51b4b9 681
57871462 682 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
683 {
684 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
685 return 0; // Don't need any registers if exiting the block
686 }
687 for(j=0;j<9;j++)
688 {
689 if(i+j>=slen) {
690 j=slen-i-1;
691 break;
692 }
693 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
694 {
695 // Don't go past an unconditonal jump
696 j++;
697 break;
698 }
1e973cb0 699 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 700 {
701 break;
702 }
703 }
704 for(;j>=1;j--)
705 {
706 if(rs1[i+j]==r) rn=j;
707 if(rs2[i+j]==r) rn=j;
708 if((unneeded_reg[i+j]>>r)&1) rn=10;
709 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
710 {
711 b=j;
712 }
713 }
714 /*
715 if(b>=0)
716 {
717 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
718 {
719 // Follow first branch
720 int o=rn;
721 int t=(ba[i+b]-start)>>2;
722 j=7-b;if(t+j>=slen) j=slen-t-1;
723 for(;j>=0;j--)
724 {
725 if(!((unneeded_reg[t+j]>>r)&1)) {
726 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
727 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
728 }
729 else rn=o;
730 }
731 }
732 }*/
b7217e13 733 if(rn<10) return 1;
581335b0 734 (void)b;
57871462 735 return 0;
736}
737
738// Try to match register allocations at the end of a loop with those
739// at the beginning
740int loop_reg(int i, int r, int hr)
741{
742 int j,k;
743 for(j=0;j<9;j++)
744 {
745 if(i+j>=slen) {
746 j=slen-i-1;
747 break;
748 }
749 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
750 {
751 // Don't go past an unconditonal jump
752 j++;
753 break;
754 }
755 }
756 k=0;
757 if(i>0){
758 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
759 k--;
760 }
761 for(;k<j;k++)
762 {
763 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
764 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
765 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
766 {
767 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
768 {
769 int t=(ba[i+k]-start)>>2;
770 int reg=get_reg(regs[t].regmap_entry,r);
771 if(reg>=0) return reg;
772 //reg=get_reg(regs[t+1].regmap_entry,r);
773 //if(reg>=0) return reg;
774 }
775 }
776 }
777 return hr;
778}
779
780
781// Allocate every register, preserving source/target regs
782void alloc_all(struct regstat *cur,int i)
783{
784 int hr;
9f51b4b9 785
57871462 786 for(hr=0;hr<HOST_REGS;hr++) {
787 if(hr!=EXCLUDE_REG) {
788 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
789 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
790 {
791 cur->regmap[hr]=-1;
792 cur->dirty&=~(1<<hr);
793 }
794 // Don't need zeros
795 if((cur->regmap[hr]&63)==0)
796 {
797 cur->regmap[hr]=-1;
798 cur->dirty&=~(1<<hr);
799 }
800 }
801 }
802}
803
57871462 804#ifdef __i386__
805#include "assem_x86.c"
806#endif
807#ifdef __x86_64__
808#include "assem_x64.c"
809#endif
810#ifdef __arm__
811#include "assem_arm.c"
812#endif
813
814// Add virtual address mapping to linked list
815void ll_add(struct ll_entry **head,int vaddr,void *addr)
816{
817 struct ll_entry *new_entry;
818 new_entry=malloc(sizeof(struct ll_entry));
819 assert(new_entry!=NULL);
820 new_entry->vaddr=vaddr;
de5a60c3 821 new_entry->reg_sv_flags=0;
57871462 822 new_entry->addr=addr;
823 new_entry->next=*head;
824 *head=new_entry;
825}
826
de5a60c3 827void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
57871462 828{
7139f3c8 829 ll_add(head,vaddr,addr);
de5a60c3 830 (*head)->reg_sv_flags=reg_sv_flags;
57871462 831}
832
833// Check if an address is already compiled
834// but don't return addresses which are about to expire from the cache
835void *check_addr(u_int vaddr)
836{
df4dc2b1 837 struct ht_entry *ht_bin = hash_table_get(vaddr);
838 size_t i;
b14b6a8f 839 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
df4dc2b1 840 if (ht_bin->vaddr[i] == vaddr)
841 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
842 if (isclean(ht_bin->tcaddr[i]))
843 return ht_bin->tcaddr[i];
57871462 844 }
94d23bb9 845 u_int page=get_page(vaddr);
57871462 846 struct ll_entry *head;
847 head=jump_in[page];
df4dc2b1 848 while (head != NULL) {
849 if (head->vaddr == vaddr) {
850 if (doesnt_expire_soon(head->addr)) {
57871462 851 // Update existing entry with current address
df4dc2b1 852 if (ht_bin->vaddr[0] == vaddr) {
853 ht_bin->tcaddr[0] = head->addr;
57871462 854 return head->addr;
855 }
df4dc2b1 856 if (ht_bin->vaddr[1] == vaddr) {
857 ht_bin->tcaddr[1] = head->addr;
57871462 858 return head->addr;
859 }
860 // Insert into hash table with low priority.
861 // Don't evict existing entries, as they are probably
862 // addresses that are being accessed frequently.
df4dc2b1 863 if (ht_bin->vaddr[0] == -1) {
864 ht_bin->vaddr[0] = vaddr;
865 ht_bin->tcaddr[0] = head->addr;
866 }
867 else if (ht_bin->vaddr[1] == -1) {
868 ht_bin->vaddr[1] = vaddr;
869 ht_bin->tcaddr[1] = head->addr;
57871462 870 }
871 return head->addr;
872 }
873 }
874 head=head->next;
875 }
876 return 0;
877}
878
879void remove_hash(int vaddr)
880{
881 //printf("remove hash: %x\n",vaddr);
df4dc2b1 882 struct ht_entry *ht_bin = hash_table_get(vaddr);
883 if (ht_bin->vaddr[1] == vaddr) {
884 ht_bin->vaddr[1] = -1;
885 ht_bin->tcaddr[1] = NULL;
57871462 886 }
df4dc2b1 887 if (ht_bin->vaddr[0] == vaddr) {
888 ht_bin->vaddr[0] = ht_bin->vaddr[1];
889 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
890 ht_bin->vaddr[1] = -1;
891 ht_bin->tcaddr[1] = NULL;
57871462 892 }
893}
894
895void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
896{
897 struct ll_entry *next;
898 while(*head) {
9f51b4b9 899 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
57871462 900 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
901 {
902 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
903 remove_hash((*head)->vaddr);
904 next=(*head)->next;
905 free(*head);
906 *head=next;
907 }
908 else
909 {
910 head=&((*head)->next);
911 }
912 }
913}
914
915// Remove all entries from linked list
916void ll_clear(struct ll_entry **head)
917{
918 struct ll_entry *cur;
919 struct ll_entry *next;
581335b0 920 if((cur=*head)) {
57871462 921 *head=0;
922 while(cur) {
923 next=cur->next;
924 free(cur);
925 cur=next;
926 }
927 }
928}
929
930// Dereference the pointers and remove if it matches
d148d265 931static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
57871462 932{
933 while(head) {
934 int ptr=get_pointer(head->addr);
935 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
936 if(((ptr>>shift)==(addr>>shift)) ||
937 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
938 {
5088bb70 939 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
d148d265 940 void *host_addr=find_extjump_insn(head->addr);
dd3a91a1 941 #ifdef __arm__
d148d265 942 mark_clear_cache(host_addr);
dd3a91a1 943 #endif
df4dc2b1 944 set_jump_target(host_addr, head->addr);
57871462 945 }
946 head=head->next;
947 }
948}
949
950// This is called when we write to a compiled block (see do_invstub)
f76eeef9 951void invalidate_page(u_int page)
57871462 952{
57871462 953 struct ll_entry *head;
954 struct ll_entry *next;
955 head=jump_in[page];
956 jump_in[page]=0;
957 while(head!=NULL) {
958 inv_debug("INVALIDATE: %x\n",head->vaddr);
959 remove_hash(head->vaddr);
960 next=head->next;
961 free(head);
962 head=next;
963 }
964 head=jump_out[page];
965 jump_out[page]=0;
966 while(head!=NULL) {
967 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
d148d265 968 void *host_addr=find_extjump_insn(head->addr);
dd3a91a1 969 #ifdef __arm__
d148d265 970 mark_clear_cache(host_addr);
dd3a91a1 971 #endif
df4dc2b1 972 set_jump_target(host_addr, head->addr);
57871462 973 next=head->next;
974 free(head);
975 head=next;
976 }
57871462 977}
9be4ba64 978
979static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 980{
94d23bb9 981 u_int page=get_page(block<<12);
57871462 982 //printf("first=%d last=%d\n",first,last);
f76eeef9 983 invalidate_page(page);
57871462 984 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
985 assert(last<page+5);
986 // Invalidate the adjacent pages if a block crosses a 4K boundary
987 while(first<page) {
988 invalidate_page(first);
989 first++;
990 }
991 for(first=page+1;first<last;first++) {
992 invalidate_page(first);
993 }
dd3a91a1 994 #ifdef __arm__
995 do_clear_cache();
996 #endif
9f51b4b9 997
57871462 998 // Don't trap writes
999 invalid_code[block]=1;
f76eeef9 1000
57871462 1001 #ifdef USE_MINI_HT
1002 memset(mini_ht,-1,sizeof(mini_ht));
1003 #endif
1004}
9be4ba64 1005
1006void invalidate_block(u_int block)
1007{
1008 u_int page=get_page(block<<12);
1009 u_int vpage=get_vpage(block<<12);
1010 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1011 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1012 u_int first,last;
1013 first=last=page;
1014 struct ll_entry *head;
1015 head=jump_dirty[vpage];
1016 //printf("page=%d vpage=%d\n",page,vpage);
1017 while(head!=NULL) {
1018 u_int start,end;
1019 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1020 get_bounds((int)head->addr,&start,&end);
1021 //printf("start: %x end: %x\n",start,end);
4a35de07 1022 if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
9be4ba64 1023 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1024 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1025 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1026 }
1027 }
9be4ba64 1028 }
1029 head=head->next;
1030 }
1031 invalidate_block_range(block,first,last);
1032}
1033
57871462 1034void invalidate_addr(u_int addr)
1035{
9be4ba64 1036 //static int rhits;
1037 // this check is done by the caller
1038 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
d25604ca 1039 u_int page=get_vpage(addr);
9be4ba64 1040 if(page<2048) { // RAM
1041 struct ll_entry *head;
1042 u_int addr_min=~0, addr_max=0;
4a35de07 1043 u_int mask=RAM_SIZE-1;
1044 u_int addr_main=0x80000000|(addr&mask);
9be4ba64 1045 int pg1;
4a35de07 1046 inv_code_start=addr_main&~0xfff;
1047 inv_code_end=addr_main|0xfff;
9be4ba64 1048 pg1=page;
1049 if (pg1>0) {
1050 // must check previous page too because of spans..
1051 pg1--;
1052 inv_code_start-=0x1000;
1053 }
1054 for(;pg1<=page;pg1++) {
1055 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1056 u_int start,end;
1057 get_bounds((int)head->addr,&start,&end);
4a35de07 1058 if(ram_offset) {
1059 start-=ram_offset;
1060 end-=ram_offset;
1061 }
1062 if(start<=addr_main&&addr_main<end) {
9be4ba64 1063 if(start<addr_min) addr_min=start;
1064 if(end>addr_max) addr_max=end;
1065 }
4a35de07 1066 else if(addr_main<start) {
9be4ba64 1067 if(start<inv_code_end)
1068 inv_code_end=start-1;
1069 }
1070 else {
1071 if(end>inv_code_start)
1072 inv_code_start=end;
1073 }
1074 }
1075 }
1076 if (addr_min!=~0) {
1077 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1078 inv_code_start=inv_code_end=~0;
1079 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1080 return;
1081 }
1082 else {
4a35de07 1083 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1084 inv_code_end=(addr&~mask)|(inv_code_end&mask);
d25604ca 1085 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
9be4ba64 1086 return;
d25604ca 1087 }
9be4ba64 1088 }
57871462 1089 invalidate_block(addr>>12);
1090}
9be4ba64 1091
dd3a91a1 1092// This is called when loading a save state.
1093// Anything could have changed, so invalidate everything.
57871462 1094void invalidate_all_pages()
1095{
581335b0 1096 u_int page;
57871462 1097 for(page=0;page<4096;page++)
1098 invalidate_page(page);
1099 for(page=0;page<1048576;page++)
1100 if(!invalid_code[page]) {
1101 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1102 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1103 }
57871462 1104 #ifdef USE_MINI_HT
1105 memset(mini_ht,-1,sizeof(mini_ht));
1106 #endif
57871462 1107}
1108
1109// Add an entry to jump_out after making a link
1110void add_link(u_int vaddr,void *src)
1111{
94d23bb9 1112 u_int page=get_page(vaddr);
57871462 1113 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1114 int *ptr=(int *)(src+4);
1115 assert((*ptr&0x0fff0000)==0x059f0000);
581335b0 1116 (void)ptr;
57871462 1117 ll_add(jump_out+page,vaddr,src);
1118 //int ptr=get_pointer(src);
1119 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1120}
1121
1122// If a code block was found to be unmodified (bit was set in
1123// restore_candidate) and it remains unmodified (bit is clear
1124// in invalid_code) then move the entries for that 4K page from
1125// the dirty list to the clean list.
1126void clean_blocks(u_int page)
1127{
1128 struct ll_entry *head;
1129 inv_debug("INV: clean_blocks page=%d\n",page);
1130 head=jump_dirty[page];
1131 while(head!=NULL) {
1132 if(!invalid_code[head->vaddr>>12]) {
1133 // Don't restore blocks which are about to expire from the cache
df4dc2b1 1134 if (doesnt_expire_soon(head->addr)) {
57871462 1135 u_int start,end;
581335b0 1136 if(verify_dirty(head->addr)) {
57871462 1137 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1138 u_int i;
1139 u_int inv=0;
1140 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1141 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1142 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1143 inv|=invalid_code[i];
1144 }
1145 }
4cb76aa4 1146 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1147 inv=1;
1148 }
1149 if(!inv) {
df4dc2b1 1150 void *clean_addr = get_clean_addr(head->addr);
1151 if (doesnt_expire_soon(clean_addr)) {
57871462 1152 u_int ppage=page;
57871462 1153 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1154 //printf("page=%x, addr=%x\n",page,head->vaddr);
1155 //assert(head->vaddr>>12==(page|0x80000));
de5a60c3 1156 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
df4dc2b1 1157 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1158 if (ht_bin->vaddr[0] == head->vaddr)
1159 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1160 if (ht_bin->vaddr[1] == head->vaddr)
1161 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
57871462 1162 }
1163 }
1164 }
1165 }
1166 }
1167 head=head->next;
1168 }
1169}
1170
1171
1172void mov_alloc(struct regstat *current,int i)
1173{
1174 // Note: Don't need to actually alloc the source registers
1175 if((~current->is32>>rs1[i])&1) {
1176 //alloc_reg64(current,i,rs1[i]);
1177 alloc_reg64(current,i,rt1[i]);
1178 current->is32&=~(1LL<<rt1[i]);
1179 } else {
1180 //alloc_reg(current,i,rs1[i]);
1181 alloc_reg(current,i,rt1[i]);
1182 current->is32|=(1LL<<rt1[i]);
1183 }
1184 clear_const(current,rs1[i]);
1185 clear_const(current,rt1[i]);
1186 dirty_reg(current,rt1[i]);
1187}
1188
1189void shiftimm_alloc(struct regstat *current,int i)
1190{
57871462 1191 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1192 {
1193 if(rt1[i]) {
1194 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1195 else lt1[i]=rs1[i];
1196 alloc_reg(current,i,rt1[i]);
1197 current->is32|=1LL<<rt1[i];
1198 dirty_reg(current,rt1[i]);
dc49e339 1199 if(is_const(current,rs1[i])) {
1200 int v=get_const(current,rs1[i]);
1201 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1202 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1203 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1204 }
1205 else clear_const(current,rt1[i]);
57871462 1206 }
1207 }
dc49e339 1208 else
1209 {
1210 clear_const(current,rs1[i]);
1211 clear_const(current,rt1[i]);
1212 }
1213
57871462 1214 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1215 {
1216 if(rt1[i]) {
1217 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1218 alloc_reg64(current,i,rt1[i]);
1219 current->is32&=~(1LL<<rt1[i]);
1220 dirty_reg(current,rt1[i]);
1221 }
1222 }
1223 if(opcode2[i]==0x3c) // DSLL32
1224 {
1225 if(rt1[i]) {
1226 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1227 alloc_reg64(current,i,rt1[i]);
1228 current->is32&=~(1LL<<rt1[i]);
1229 dirty_reg(current,rt1[i]);
1230 }
1231 }
1232 if(opcode2[i]==0x3e) // DSRL32
1233 {
1234 if(rt1[i]) {
1235 alloc_reg64(current,i,rs1[i]);
1236 if(imm[i]==32) {
1237 alloc_reg64(current,i,rt1[i]);
1238 current->is32&=~(1LL<<rt1[i]);
1239 } else {
1240 alloc_reg(current,i,rt1[i]);
1241 current->is32|=1LL<<rt1[i];
1242 }
1243 dirty_reg(current,rt1[i]);
1244 }
1245 }
1246 if(opcode2[i]==0x3f) // DSRA32
1247 {
1248 if(rt1[i]) {
1249 alloc_reg64(current,i,rs1[i]);
1250 alloc_reg(current,i,rt1[i]);
1251 current->is32|=1LL<<rt1[i];
1252 dirty_reg(current,rt1[i]);
1253 }
1254 }
1255}
1256
1257void shift_alloc(struct regstat *current,int i)
1258{
1259 if(rt1[i]) {
1260 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1261 {
1262 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1263 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1264 alloc_reg(current,i,rt1[i]);
e1190b87 1265 if(rt1[i]==rs2[i]) {
1266 alloc_reg_temp(current,i,-1);
1267 minimum_free_regs[i]=1;
1268 }
57871462 1269 current->is32|=1LL<<rt1[i];
1270 } else { // DSLLV/DSRLV/DSRAV
1271 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1272 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1273 alloc_reg64(current,i,rt1[i]);
1274 current->is32&=~(1LL<<rt1[i]);
1275 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1276 {
57871462 1277 alloc_reg_temp(current,i,-1);
e1190b87 1278 minimum_free_regs[i]=1;
1279 }
57871462 1280 }
1281 clear_const(current,rs1[i]);
1282 clear_const(current,rs2[i]);
1283 clear_const(current,rt1[i]);
1284 dirty_reg(current,rt1[i]);
1285 }
1286}
1287
1288void alu_alloc(struct regstat *current,int i)
1289{
1290 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1291 if(rt1[i]) {
1292 if(rs1[i]&&rs2[i]) {
1293 alloc_reg(current,i,rs1[i]);
1294 alloc_reg(current,i,rs2[i]);
1295 }
1296 else {
1297 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1298 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1299 }
1300 alloc_reg(current,i,rt1[i]);
1301 }
1302 current->is32|=1LL<<rt1[i];
1303 }
1304 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1305 if(rt1[i]) {
1306 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1307 {
1308 alloc_reg64(current,i,rs1[i]);
1309 alloc_reg64(current,i,rs2[i]);
1310 alloc_reg(current,i,rt1[i]);
1311 } else {
1312 alloc_reg(current,i,rs1[i]);
1313 alloc_reg(current,i,rs2[i]);
1314 alloc_reg(current,i,rt1[i]);
1315 }
1316 }
1317 current->is32|=1LL<<rt1[i];
1318 }
1319 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1320 if(rt1[i]) {
1321 if(rs1[i]&&rs2[i]) {
1322 alloc_reg(current,i,rs1[i]);
1323 alloc_reg(current,i,rs2[i]);
1324 }
1325 else
1326 {
1327 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1328 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1329 }
1330 alloc_reg(current,i,rt1[i]);
1331 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1332 {
1333 if(!((current->uu>>rt1[i])&1)) {
1334 alloc_reg64(current,i,rt1[i]);
1335 }
1336 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1337 if(rs1[i]&&rs2[i]) {
1338 alloc_reg64(current,i,rs1[i]);
1339 alloc_reg64(current,i,rs2[i]);
1340 }
1341 else
1342 {
1343 // Is is really worth it to keep 64-bit values in registers?
1344 #ifdef NATIVE_64BIT
1345 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1346 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1347 #endif
1348 }
1349 }
1350 current->is32&=~(1LL<<rt1[i]);
1351 } else {
1352 current->is32|=1LL<<rt1[i];
1353 }
1354 }
1355 }
1356 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1357 if(rt1[i]) {
1358 if(rs1[i]&&rs2[i]) {
1359 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1360 alloc_reg64(current,i,rs1[i]);
1361 alloc_reg64(current,i,rs2[i]);
1362 alloc_reg64(current,i,rt1[i]);
1363 } else {
1364 alloc_reg(current,i,rs1[i]);
1365 alloc_reg(current,i,rs2[i]);
1366 alloc_reg(current,i,rt1[i]);
1367 }
1368 }
1369 else {
1370 alloc_reg(current,i,rt1[i]);
1371 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1372 // DADD used as move, or zeroing
1373 // If we have a 64-bit source, then make the target 64 bits too
1374 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1375 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1376 alloc_reg64(current,i,rt1[i]);
1377 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1378 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1379 alloc_reg64(current,i,rt1[i]);
1380 }
1381 if(opcode2[i]>=0x2e&&rs2[i]) {
1382 // DSUB used as negation - 64-bit result
1383 // If we have a 32-bit register, extend it to 64 bits
1384 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1385 alloc_reg64(current,i,rt1[i]);
1386 }
1387 }
1388 }
1389 if(rs1[i]&&rs2[i]) {
1390 current->is32&=~(1LL<<rt1[i]);
1391 } else if(rs1[i]) {
1392 current->is32&=~(1LL<<rt1[i]);
1393 if((current->is32>>rs1[i])&1)
1394 current->is32|=1LL<<rt1[i];
1395 } else if(rs2[i]) {
1396 current->is32&=~(1LL<<rt1[i]);
1397 if((current->is32>>rs2[i])&1)
1398 current->is32|=1LL<<rt1[i];
1399 } else {
1400 current->is32|=1LL<<rt1[i];
1401 }
1402 }
1403 }
1404 clear_const(current,rs1[i]);
1405 clear_const(current,rs2[i]);
1406 clear_const(current,rt1[i]);
1407 dirty_reg(current,rt1[i]);
1408}
1409
1410void imm16_alloc(struct regstat *current,int i)
1411{
1412 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1413 else lt1[i]=rs1[i];
1414 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1415 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1416 current->is32&=~(1LL<<rt1[i]);
1417 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1418 // TODO: Could preserve the 32-bit flag if the immediate is zero
1419 alloc_reg64(current,i,rt1[i]);
1420 alloc_reg64(current,i,rs1[i]);
1421 }
1422 clear_const(current,rs1[i]);
1423 clear_const(current,rt1[i]);
1424 }
1425 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1426 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1427 current->is32|=1LL<<rt1[i];
1428 clear_const(current,rs1[i]);
1429 clear_const(current,rt1[i]);
1430 }
1431 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1432 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1433 if(rs1[i]!=rt1[i]) {
1434 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1435 alloc_reg64(current,i,rt1[i]);
1436 current->is32&=~(1LL<<rt1[i]);
1437 }
1438 }
1439 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1440 if(is_const(current,rs1[i])) {
1441 int v=get_const(current,rs1[i]);
1442 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1443 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1444 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1445 }
1446 else clear_const(current,rt1[i]);
1447 }
1448 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1449 if(is_const(current,rs1[i])) {
1450 int v=get_const(current,rs1[i]);
1451 set_const(current,rt1[i],v+imm[i]);
1452 }
1453 else clear_const(current,rt1[i]);
1454 current->is32|=1LL<<rt1[i];
1455 }
1456 else {
1457 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1458 current->is32|=1LL<<rt1[i];
1459 }
1460 dirty_reg(current,rt1[i]);
1461}
1462
1463void load_alloc(struct regstat *current,int i)
1464{
1465 clear_const(current,rt1[i]);
1466 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1467 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1468 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1469 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1470 alloc_reg(current,i,rt1[i]);
373d1d07 1471 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1472 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1473 {
1474 current->is32&=~(1LL<<rt1[i]);
1475 alloc_reg64(current,i,rt1[i]);
1476 }
1477 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1478 {
1479 current->is32&=~(1LL<<rt1[i]);
1480 alloc_reg64(current,i,rt1[i]);
1481 alloc_all(current,i);
1482 alloc_reg64(current,i,FTEMP);
e1190b87 1483 minimum_free_regs[i]=HOST_REGS;
57871462 1484 }
1485 else current->is32|=1LL<<rt1[i];
1486 dirty_reg(current,rt1[i]);
57871462 1487 // LWL/LWR need a temporary register for the old value
1488 if(opcode[i]==0x22||opcode[i]==0x26)
1489 {
1490 alloc_reg(current,i,FTEMP);
1491 alloc_reg_temp(current,i,-1);
e1190b87 1492 minimum_free_regs[i]=1;
57871462 1493 }
1494 }
1495 else
1496 {
373d1d07 1497 // Load to r0 or unneeded register (dummy load)
57871462 1498 // but we still need a register to calculate the address
535d208a 1499 if(opcode[i]==0x22||opcode[i]==0x26)
1500 {
1501 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1502 }
57871462 1503 alloc_reg_temp(current,i,-1);
e1190b87 1504 minimum_free_regs[i]=1;
535d208a 1505 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1506 {
1507 alloc_all(current,i);
1508 alloc_reg64(current,i,FTEMP);
e1190b87 1509 minimum_free_regs[i]=HOST_REGS;
535d208a 1510 }
57871462 1511 }
1512}
1513
1514void store_alloc(struct regstat *current,int i)
1515{
1516 clear_const(current,rs2[i]);
1517 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1518 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1519 alloc_reg(current,i,rs2[i]);
1520 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1521 alloc_reg64(current,i,rs2[i]);
1522 if(rs2[i]) alloc_reg(current,i,FTEMP);
1523 }
57871462 1524 #if defined(HOST_IMM8)
1525 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1526 else alloc_reg(current,i,INVCP);
1527 #endif
b7918751 1528 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1529 alloc_reg(current,i,FTEMP);
1530 }
1531 // We need a temporary register for address generation
1532 alloc_reg_temp(current,i,-1);
e1190b87 1533 minimum_free_regs[i]=1;
57871462 1534}
1535
1536void c1ls_alloc(struct regstat *current,int i)
1537{
1538 //clear_const(current,rs1[i]); // FIXME
1539 clear_const(current,rt1[i]);
1540 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1541 alloc_reg(current,i,CSREG); // Status
1542 alloc_reg(current,i,FTEMP);
1543 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1544 alloc_reg64(current,i,FTEMP);
1545 }
57871462 1546 #if defined(HOST_IMM8)
1547 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1548 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1549 alloc_reg(current,i,INVCP);
1550 #endif
1551 // We need a temporary register for address generation
1552 alloc_reg_temp(current,i,-1);
1553}
1554
b9b61529 1555void c2ls_alloc(struct regstat *current,int i)
1556{
1557 clear_const(current,rt1[i]);
1558 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1559 alloc_reg(current,i,FTEMP);
b9b61529 1560 #if defined(HOST_IMM8)
1561 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1edfcc68 1562 if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
b9b61529 1563 alloc_reg(current,i,INVCP);
1564 #endif
1565 // We need a temporary register for address generation
1566 alloc_reg_temp(current,i,-1);
e1190b87 1567 minimum_free_regs[i]=1;
b9b61529 1568}
1569
57871462 1570#ifndef multdiv_alloc
1571void multdiv_alloc(struct regstat *current,int i)
1572{
1573 // case 0x18: MULT
1574 // case 0x19: MULTU
1575 // case 0x1A: DIV
1576 // case 0x1B: DIVU
1577 // case 0x1C: DMULT
1578 // case 0x1D: DMULTU
1579 // case 0x1E: DDIV
1580 // case 0x1F: DDIVU
1581 clear_const(current,rs1[i]);
1582 clear_const(current,rs2[i]);
1583 if(rs1[i]&&rs2[i])
1584 {
1585 if((opcode2[i]&4)==0) // 32-bit
1586 {
1587 current->u&=~(1LL<<HIREG);
1588 current->u&=~(1LL<<LOREG);
1589 alloc_reg(current,i,HIREG);
1590 alloc_reg(current,i,LOREG);
1591 alloc_reg(current,i,rs1[i]);
1592 alloc_reg(current,i,rs2[i]);
1593 current->is32|=1LL<<HIREG;
1594 current->is32|=1LL<<LOREG;
1595 dirty_reg(current,HIREG);
1596 dirty_reg(current,LOREG);
1597 }
1598 else // 64-bit
1599 {
1600 current->u&=~(1LL<<HIREG);
1601 current->u&=~(1LL<<LOREG);
1602 current->uu&=~(1LL<<HIREG);
1603 current->uu&=~(1LL<<LOREG);
1604 alloc_reg64(current,i,HIREG);
1605 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1606 alloc_reg64(current,i,rs1[i]);
1607 alloc_reg64(current,i,rs2[i]);
1608 alloc_all(current,i);
1609 current->is32&=~(1LL<<HIREG);
1610 current->is32&=~(1LL<<LOREG);
1611 dirty_reg(current,HIREG);
1612 dirty_reg(current,LOREG);
e1190b87 1613 minimum_free_regs[i]=HOST_REGS;
57871462 1614 }
1615 }
1616 else
1617 {
1618 // Multiply by zero is zero.
1619 // MIPS does not have a divide by zero exception.
1620 // The result is undefined, we return zero.
1621 alloc_reg(current,i,HIREG);
1622 alloc_reg(current,i,LOREG);
1623 current->is32|=1LL<<HIREG;
1624 current->is32|=1LL<<LOREG;
1625 dirty_reg(current,HIREG);
1626 dirty_reg(current,LOREG);
1627 }
1628}
1629#endif
1630
1631void cop0_alloc(struct regstat *current,int i)
1632{
1633 if(opcode2[i]==0) // MFC0
1634 {
1635 if(rt1[i]) {
1636 clear_const(current,rt1[i]);
1637 alloc_all(current,i);
1638 alloc_reg(current,i,rt1[i]);
1639 current->is32|=1LL<<rt1[i];
1640 dirty_reg(current,rt1[i]);
1641 }
1642 }
1643 else if(opcode2[i]==4) // MTC0
1644 {
1645 if(rs1[i]){
1646 clear_const(current,rs1[i]);
1647 alloc_reg(current,i,rs1[i]);
1648 alloc_all(current,i);
1649 }
1650 else {
1651 alloc_all(current,i); // FIXME: Keep r0
1652 current->u&=~1LL;
1653 alloc_reg(current,i,0);
1654 }
1655 }
1656 else
1657 {
1658 // TLBR/TLBWI/TLBWR/TLBP/ERET
1659 assert(opcode2[i]==0x10);
1660 alloc_all(current,i);
1661 }
e1190b87 1662 minimum_free_regs[i]=HOST_REGS;
57871462 1663}
1664
1665void cop1_alloc(struct regstat *current,int i)
1666{
1667 alloc_reg(current,i,CSREG); // Load status
1668 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1669 {
7de557a6 1670 if(rt1[i]){
1671 clear_const(current,rt1[i]);
1672 if(opcode2[i]==1) {
1673 alloc_reg64(current,i,rt1[i]); // DMFC1
1674 current->is32&=~(1LL<<rt1[i]);
1675 }else{
1676 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1677 current->is32|=1LL<<rt1[i];
1678 }
1679 dirty_reg(current,rt1[i]);
57871462 1680 }
57871462 1681 alloc_reg_temp(current,i,-1);
1682 }
1683 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1684 {
1685 if(rs1[i]){
1686 clear_const(current,rs1[i]);
1687 if(opcode2[i]==5)
1688 alloc_reg64(current,i,rs1[i]); // DMTC1
1689 else
1690 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1691 alloc_reg_temp(current,i,-1);
1692 }
1693 else {
1694 current->u&=~1LL;
1695 alloc_reg(current,i,0);
1696 alloc_reg_temp(current,i,-1);
1697 }
1698 }
e1190b87 1699 minimum_free_regs[i]=1;
57871462 1700}
1701void fconv_alloc(struct regstat *current,int i)
1702{
1703 alloc_reg(current,i,CSREG); // Load status
1704 alloc_reg_temp(current,i,-1);
e1190b87 1705 minimum_free_regs[i]=1;
57871462 1706}
1707void float_alloc(struct regstat *current,int i)
1708{
1709 alloc_reg(current,i,CSREG); // Load status
1710 alloc_reg_temp(current,i,-1);
e1190b87 1711 minimum_free_regs[i]=1;
57871462 1712}
b9b61529 1713void c2op_alloc(struct regstat *current,int i)
1714{
1715 alloc_reg_temp(current,i,-1);
1716}
57871462 1717void fcomp_alloc(struct regstat *current,int i)
1718{
1719 alloc_reg(current,i,CSREG); // Load status
1720 alloc_reg(current,i,FSREG); // Load flags
1721 dirty_reg(current,FSREG); // Flag will be modified
1722 alloc_reg_temp(current,i,-1);
e1190b87 1723 minimum_free_regs[i]=1;
57871462 1724}
1725
1726void syscall_alloc(struct regstat *current,int i)
1727{
1728 alloc_cc(current,i);
1729 dirty_reg(current,CCREG);
1730 alloc_all(current,i);
e1190b87 1731 minimum_free_regs[i]=HOST_REGS;
57871462 1732 current->isconst=0;
1733}
1734
1735void delayslot_alloc(struct regstat *current,int i)
1736{
1737 switch(itype[i]) {
1738 case UJUMP:
1739 case CJUMP:
1740 case SJUMP:
1741 case RJUMP:
1742 case FJUMP:
1743 case SYSCALL:
7139f3c8 1744 case HLECALL:
57871462 1745 case SPAN:
1746 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
c43b5311 1747 SysPrintf("Disabled speculative precompilation\n");
57871462 1748 stop_after_jal=1;
1749 break;
1750 case IMM16:
1751 imm16_alloc(current,i);
1752 break;
1753 case LOAD:
1754 case LOADLR:
1755 load_alloc(current,i);
1756 break;
1757 case STORE:
1758 case STORELR:
1759 store_alloc(current,i);
1760 break;
1761 case ALU:
1762 alu_alloc(current,i);
1763 break;
1764 case SHIFT:
1765 shift_alloc(current,i);
1766 break;
1767 case MULTDIV:
1768 multdiv_alloc(current,i);
1769 break;
1770 case SHIFTIMM:
1771 shiftimm_alloc(current,i);
1772 break;
1773 case MOV:
1774 mov_alloc(current,i);
1775 break;
1776 case COP0:
1777 cop0_alloc(current,i);
1778 break;
1779 case COP1:
b9b61529 1780 case COP2:
57871462 1781 cop1_alloc(current,i);
1782 break;
1783 case C1LS:
1784 c1ls_alloc(current,i);
1785 break;
b9b61529 1786 case C2LS:
1787 c2ls_alloc(current,i);
1788 break;
57871462 1789 case FCONV:
1790 fconv_alloc(current,i);
1791 break;
1792 case FLOAT:
1793 float_alloc(current,i);
1794 break;
1795 case FCOMP:
1796 fcomp_alloc(current,i);
1797 break;
b9b61529 1798 case C2OP:
1799 c2op_alloc(current,i);
1800 break;
57871462 1801 }
1802}
1803
1804// Special case where a branch and delay slot span two pages in virtual memory
1805static void pagespan_alloc(struct regstat *current,int i)
1806{
1807 current->isconst=0;
1808 current->wasconst=0;
1809 regs[i].wasconst=0;
e1190b87 1810 minimum_free_regs[i]=HOST_REGS;
57871462 1811 alloc_all(current,i);
1812 alloc_cc(current,i);
1813 dirty_reg(current,CCREG);
1814 if(opcode[i]==3) // JAL
1815 {
1816 alloc_reg(current,i,31);
1817 dirty_reg(current,31);
1818 }
1819 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1820 {
1821 alloc_reg(current,i,rs1[i]);
5067f341 1822 if (rt1[i]!=0) {
1823 alloc_reg(current,i,rt1[i]);
1824 dirty_reg(current,rt1[i]);
57871462 1825 }
1826 }
1827 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1828 {
1829 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1830 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1831 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1832 {
1833 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1834 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1835 }
1836 }
1837 else
1838 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1839 {
1840 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1841 if(!((current->is32>>rs1[i])&1))
1842 {
1843 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1844 }
1845 }
1846 else
1847 if(opcode[i]==0x11) // BC1
1848 {
1849 alloc_reg(current,i,FSREG);
1850 alloc_reg(current,i,CSREG);
1851 }
1852 //else ...
1853}
1854
b14b6a8f 1855static void add_stub(enum stub_type type, void *addr, void *retaddr,
1856 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
1857{
1858 assert(a < ARRAY_SIZE(stubs));
1859 stubs[stubcount].type = type;
1860 stubs[stubcount].addr = addr;
1861 stubs[stubcount].retaddr = retaddr;
1862 stubs[stubcount].a = a;
1863 stubs[stubcount].b = b;
1864 stubs[stubcount].c = c;
1865 stubs[stubcount].d = d;
1866 stubs[stubcount].e = e;
57871462 1867 stubcount++;
1868}
1869
b14b6a8f 1870static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
1871 int i, int addr_reg, struct regstat *i_regs, int ccadj, u_int reglist)
1872{
1873 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
1874}
1875
57871462 1876// Write out a single register
1877void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1878{
1879 int hr;
1880 for(hr=0;hr<HOST_REGS;hr++) {
1881 if(hr!=EXCLUDE_REG) {
1882 if((regmap[hr]&63)==r) {
1883 if((dirty>>hr)&1) {
1884 if(regmap[hr]<64) {
1885 emit_storereg(r,hr);
57871462 1886 }else{
1887 emit_storereg(r|64,hr);
1888 }
1889 }
1890 }
1891 }
1892 }
1893}
1894
1895int mchecksum()
1896{
57871462 1897 int i;
1898 int sum=0;
1899 for(i=0;i<2097152;i++) {
1900 unsigned int temp=sum;
1901 sum<<=1;
1902 sum|=(~temp)>>31;
1903 sum^=((u_int *)rdram)[i];
1904 }
1905 return sum;
1906}
1907int rchecksum()
1908{
1909 int i;
1910 int sum=0;
1911 for(i=0;i<64;i++)
1912 sum^=((u_int *)reg)[i];
1913 return sum;
1914}
57871462 1915void rlist()
1916{
1917 int i;
1918 printf("TRACE: ");
1919 for(i=0;i<32;i++)
1920 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1921 printf("\n");
57871462 1922}
1923
57871462 1924void alu_assemble(int i,struct regstat *i_regs)
1925{
1926 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1927 if(rt1[i]) {
1928 signed char s1,s2,t;
1929 t=get_reg(i_regs->regmap,rt1[i]);
1930 if(t>=0) {
1931 s1=get_reg(i_regs->regmap,rs1[i]);
1932 s2=get_reg(i_regs->regmap,rs2[i]);
1933 if(rs1[i]&&rs2[i]) {
1934 assert(s1>=0);
1935 assert(s2>=0);
1936 if(opcode2[i]&2) emit_sub(s1,s2,t);
1937 else emit_add(s1,s2,t);
1938 }
1939 else if(rs1[i]) {
1940 if(s1>=0) emit_mov(s1,t);
1941 else emit_loadreg(rs1[i],t);
1942 }
1943 else if(rs2[i]) {
1944 if(s2>=0) {
1945 if(opcode2[i]&2) emit_neg(s2,t);
1946 else emit_mov(s2,t);
1947 }
1948 else {
1949 emit_loadreg(rs2[i],t);
1950 if(opcode2[i]&2) emit_neg(t,t);
1951 }
1952 }
1953 else emit_zeroreg(t);
1954 }
1955 }
1956 }
1957 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1958 if(rt1[i]) {
1959 signed char s1l,s2l,s1h,s2h,tl,th;
1960 tl=get_reg(i_regs->regmap,rt1[i]);
1961 th=get_reg(i_regs->regmap,rt1[i]|64);
1962 if(tl>=0) {
1963 s1l=get_reg(i_regs->regmap,rs1[i]);
1964 s2l=get_reg(i_regs->regmap,rs2[i]);
1965 s1h=get_reg(i_regs->regmap,rs1[i]|64);
1966 s2h=get_reg(i_regs->regmap,rs2[i]|64);
1967 if(rs1[i]&&rs2[i]) {
1968 assert(s1l>=0);
1969 assert(s2l>=0);
1970 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
1971 else emit_adds(s1l,s2l,tl);
1972 if(th>=0) {
1973 #ifdef INVERTED_CARRY
1974 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
1975 #else
1976 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
1977 #endif
1978 else emit_add(s1h,s2h,th);
1979 }
1980 }
1981 else if(rs1[i]) {
1982 if(s1l>=0) emit_mov(s1l,tl);
1983 else emit_loadreg(rs1[i],tl);
1984 if(th>=0) {
1985 if(s1h>=0) emit_mov(s1h,th);
1986 else emit_loadreg(rs1[i]|64,th);
1987 }
1988 }
1989 else if(rs2[i]) {
1990 if(s2l>=0) {
1991 if(opcode2[i]&2) emit_negs(s2l,tl);
1992 else emit_mov(s2l,tl);
1993 }
1994 else {
1995 emit_loadreg(rs2[i],tl);
1996 if(opcode2[i]&2) emit_negs(tl,tl);
1997 }
1998 if(th>=0) {
1999 #ifdef INVERTED_CARRY
2000 if(s2h>=0) emit_mov(s2h,th);
2001 else emit_loadreg(rs2[i]|64,th);
2002 if(opcode2[i]&2) {
2003 emit_adcimm(-1,th); // x86 has inverted carry flag
2004 emit_not(th,th);
2005 }
2006 #else
2007 if(opcode2[i]&2) {
2008 if(s2h>=0) emit_rscimm(s2h,0,th);
2009 else {
2010 emit_loadreg(rs2[i]|64,th);
2011 emit_rscimm(th,0,th);
2012 }
2013 }else{
2014 if(s2h>=0) emit_mov(s2h,th);
2015 else emit_loadreg(rs2[i]|64,th);
2016 }
2017 #endif
2018 }
2019 }
2020 else {
2021 emit_zeroreg(tl);
2022 if(th>=0) emit_zeroreg(th);
2023 }
2024 }
2025 }
2026 }
2027 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2028 if(rt1[i]) {
2029 signed char s1l,s1h,s2l,s2h,t;
2030 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2031 {
2032 t=get_reg(i_regs->regmap,rt1[i]);
2033 //assert(t>=0);
2034 if(t>=0) {
2035 s1l=get_reg(i_regs->regmap,rs1[i]);
2036 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2037 s2l=get_reg(i_regs->regmap,rs2[i]);
2038 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2039 if(rs2[i]==0) // rx<r0
2040 {
2041 assert(s1h>=0);
2042 if(opcode2[i]==0x2a) // SLT
2043 emit_shrimm(s1h,31,t);
2044 else // SLTU (unsigned can not be less than zero)
2045 emit_zeroreg(t);
2046 }
2047 else if(rs1[i]==0) // r0<rx
2048 {
2049 assert(s2h>=0);
2050 if(opcode2[i]==0x2a) // SLT
2051 emit_set_gz64_32(s2h,s2l,t);
2052 else // SLTU (set if not zero)
2053 emit_set_nz64_32(s2h,s2l,t);
2054 }
2055 else {
2056 assert(s1l>=0);assert(s1h>=0);
2057 assert(s2l>=0);assert(s2h>=0);
2058 if(opcode2[i]==0x2a) // SLT
2059 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2060 else // SLTU
2061 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2062 }
2063 }
2064 } else {
2065 t=get_reg(i_regs->regmap,rt1[i]);
2066 //assert(t>=0);
2067 if(t>=0) {
2068 s1l=get_reg(i_regs->regmap,rs1[i]);
2069 s2l=get_reg(i_regs->regmap,rs2[i]);
2070 if(rs2[i]==0) // rx<r0
2071 {
2072 assert(s1l>=0);
2073 if(opcode2[i]==0x2a) // SLT
2074 emit_shrimm(s1l,31,t);
2075 else // SLTU (unsigned can not be less than zero)
2076 emit_zeroreg(t);
2077 }
2078 else if(rs1[i]==0) // r0<rx
2079 {
2080 assert(s2l>=0);
2081 if(opcode2[i]==0x2a) // SLT
2082 emit_set_gz32(s2l,t);
2083 else // SLTU (set if not zero)
2084 emit_set_nz32(s2l,t);
2085 }
2086 else{
2087 assert(s1l>=0);assert(s2l>=0);
2088 if(opcode2[i]==0x2a) // SLT
2089 emit_set_if_less32(s1l,s2l,t);
2090 else // SLTU
2091 emit_set_if_carry32(s1l,s2l,t);
2092 }
2093 }
2094 }
2095 }
2096 }
2097 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2098 if(rt1[i]) {
2099 signed char s1l,s1h,s2l,s2h,th,tl;
2100 tl=get_reg(i_regs->regmap,rt1[i]);
2101 th=get_reg(i_regs->regmap,rt1[i]|64);
2102 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2103 {
2104 assert(tl>=0);
2105 if(tl>=0) {
2106 s1l=get_reg(i_regs->regmap,rs1[i]);
2107 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2108 s2l=get_reg(i_regs->regmap,rs2[i]);
2109 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2110 if(rs1[i]&&rs2[i]) {
2111 assert(s1l>=0);assert(s1h>=0);
2112 assert(s2l>=0);assert(s2h>=0);
2113 if(opcode2[i]==0x24) { // AND
2114 emit_and(s1l,s2l,tl);
2115 emit_and(s1h,s2h,th);
2116 } else
2117 if(opcode2[i]==0x25) { // OR
2118 emit_or(s1l,s2l,tl);
2119 emit_or(s1h,s2h,th);
2120 } else
2121 if(opcode2[i]==0x26) { // XOR
2122 emit_xor(s1l,s2l,tl);
2123 emit_xor(s1h,s2h,th);
2124 } else
2125 if(opcode2[i]==0x27) { // NOR
2126 emit_or(s1l,s2l,tl);
2127 emit_or(s1h,s2h,th);
2128 emit_not(tl,tl);
2129 emit_not(th,th);
2130 }
2131 }
2132 else
2133 {
2134 if(opcode2[i]==0x24) { // AND
2135 emit_zeroreg(tl);
2136 emit_zeroreg(th);
2137 } else
2138 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2139 if(rs1[i]){
2140 if(s1l>=0) emit_mov(s1l,tl);
2141 else emit_loadreg(rs1[i],tl);
2142 if(s1h>=0) emit_mov(s1h,th);
2143 else emit_loadreg(rs1[i]|64,th);
2144 }
2145 else
2146 if(rs2[i]){
2147 if(s2l>=0) emit_mov(s2l,tl);
2148 else emit_loadreg(rs2[i],tl);
2149 if(s2h>=0) emit_mov(s2h,th);
2150 else emit_loadreg(rs2[i]|64,th);
2151 }
2152 else{
2153 emit_zeroreg(tl);
2154 emit_zeroreg(th);
2155 }
2156 } else
2157 if(opcode2[i]==0x27) { // NOR
2158 if(rs1[i]){
2159 if(s1l>=0) emit_not(s1l,tl);
2160 else{
2161 emit_loadreg(rs1[i],tl);
2162 emit_not(tl,tl);
2163 }
2164 if(s1h>=0) emit_not(s1h,th);
2165 else{
2166 emit_loadreg(rs1[i]|64,th);
2167 emit_not(th,th);
2168 }
2169 }
2170 else
2171 if(rs2[i]){
2172 if(s2l>=0) emit_not(s2l,tl);
2173 else{
2174 emit_loadreg(rs2[i],tl);
2175 emit_not(tl,tl);
2176 }
2177 if(s2h>=0) emit_not(s2h,th);
2178 else{
2179 emit_loadreg(rs2[i]|64,th);
2180 emit_not(th,th);
2181 }
2182 }
2183 else {
2184 emit_movimm(-1,tl);
2185 emit_movimm(-1,th);
2186 }
2187 }
2188 }
2189 }
2190 }
2191 else
2192 {
2193 // 32 bit
2194 if(tl>=0) {
2195 s1l=get_reg(i_regs->regmap,rs1[i]);
2196 s2l=get_reg(i_regs->regmap,rs2[i]);
2197 if(rs1[i]&&rs2[i]) {
2198 assert(s1l>=0);
2199 assert(s2l>=0);
2200 if(opcode2[i]==0x24) { // AND
2201 emit_and(s1l,s2l,tl);
2202 } else
2203 if(opcode2[i]==0x25) { // OR
2204 emit_or(s1l,s2l,tl);
2205 } else
2206 if(opcode2[i]==0x26) { // XOR
2207 emit_xor(s1l,s2l,tl);
2208 } else
2209 if(opcode2[i]==0x27) { // NOR
2210 emit_or(s1l,s2l,tl);
2211 emit_not(tl,tl);
2212 }
2213 }
2214 else
2215 {
2216 if(opcode2[i]==0x24) { // AND
2217 emit_zeroreg(tl);
2218 } else
2219 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2220 if(rs1[i]){
2221 if(s1l>=0) emit_mov(s1l,tl);
2222 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2223 }
2224 else
2225 if(rs2[i]){
2226 if(s2l>=0) emit_mov(s2l,tl);
2227 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2228 }
2229 else emit_zeroreg(tl);
2230 } else
2231 if(opcode2[i]==0x27) { // NOR
2232 if(rs1[i]){
2233 if(s1l>=0) emit_not(s1l,tl);
2234 else {
2235 emit_loadreg(rs1[i],tl);
2236 emit_not(tl,tl);
2237 }
2238 }
2239 else
2240 if(rs2[i]){
2241 if(s2l>=0) emit_not(s2l,tl);
2242 else {
2243 emit_loadreg(rs2[i],tl);
2244 emit_not(tl,tl);
2245 }
2246 }
2247 else emit_movimm(-1,tl);
2248 }
2249 }
2250 }
2251 }
2252 }
2253 }
2254}
2255
2256void imm16_assemble(int i,struct regstat *i_regs)
2257{
2258 if (opcode[i]==0x0f) { // LUI
2259 if(rt1[i]) {
2260 signed char t;
2261 t=get_reg(i_regs->regmap,rt1[i]);
2262 //assert(t>=0);
2263 if(t>=0) {
2264 if(!((i_regs->isconst>>t)&1))
2265 emit_movimm(imm[i]<<16,t);
2266 }
2267 }
2268 }
2269 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2270 if(rt1[i]) {
2271 signed char s,t;
2272 t=get_reg(i_regs->regmap,rt1[i]);
2273 s=get_reg(i_regs->regmap,rs1[i]);
2274 if(rs1[i]) {
2275 //assert(t>=0);
2276 //assert(s>=0);
2277 if(t>=0) {
2278 if(!((i_regs->isconst>>t)&1)) {
2279 if(s<0) {
2280 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2281 emit_addimm(t,imm[i],t);
2282 }else{
2283 if(!((i_regs->wasconst>>s)&1))
2284 emit_addimm(s,imm[i],t);
2285 else
2286 emit_movimm(constmap[i][s]+imm[i],t);
2287 }
2288 }
2289 }
2290 } else {
2291 if(t>=0) {
2292 if(!((i_regs->isconst>>t)&1))
2293 emit_movimm(imm[i],t);
2294 }
2295 }
2296 }
2297 }
2298 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2299 if(rt1[i]) {
2300 signed char sh,sl,th,tl;
2301 th=get_reg(i_regs->regmap,rt1[i]|64);
2302 tl=get_reg(i_regs->regmap,rt1[i]);
2303 sh=get_reg(i_regs->regmap,rs1[i]|64);
2304 sl=get_reg(i_regs->regmap,rs1[i]);
2305 if(tl>=0) {
2306 if(rs1[i]) {
2307 assert(sh>=0);
2308 assert(sl>=0);
2309 if(th>=0) {
2310 emit_addimm64_32(sh,sl,imm[i],th,tl);
2311 }
2312 else {
2313 emit_addimm(sl,imm[i],tl);
2314 }
2315 } else {
2316 emit_movimm(imm[i],tl);
2317 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2318 }
2319 }
2320 }
2321 }
2322 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2323 if(rt1[i]) {
2324 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2325 signed char sh,sl,t;
2326 t=get_reg(i_regs->regmap,rt1[i]);
2327 sh=get_reg(i_regs->regmap,rs1[i]|64);
2328 sl=get_reg(i_regs->regmap,rs1[i]);
2329 //assert(t>=0);
2330 if(t>=0) {
2331 if(rs1[i]>0) {
2332 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2333 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2334 if(opcode[i]==0x0a) { // SLTI
2335 if(sl<0) {
2336 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2337 emit_slti32(t,imm[i],t);
2338 }else{
2339 emit_slti32(sl,imm[i],t);
2340 }
2341 }
2342 else { // SLTIU
2343 if(sl<0) {
2344 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2345 emit_sltiu32(t,imm[i],t);
2346 }else{
2347 emit_sltiu32(sl,imm[i],t);
2348 }
2349 }
2350 }else{ // 64-bit
2351 assert(sl>=0);
2352 if(opcode[i]==0x0a) // SLTI
2353 emit_slti64_32(sh,sl,imm[i],t);
2354 else // SLTIU
2355 emit_sltiu64_32(sh,sl,imm[i],t);
2356 }
2357 }else{
2358 // SLTI(U) with r0 is just stupid,
2359 // nonetheless examples can be found
2360 if(opcode[i]==0x0a) // SLTI
2361 if(0<imm[i]) emit_movimm(1,t);
2362 else emit_zeroreg(t);
2363 else // SLTIU
2364 {
2365 if(imm[i]) emit_movimm(1,t);
2366 else emit_zeroreg(t);
2367 }
2368 }
2369 }
2370 }
2371 }
2372 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2373 if(rt1[i]) {
2374 signed char sh,sl,th,tl;
2375 th=get_reg(i_regs->regmap,rt1[i]|64);
2376 tl=get_reg(i_regs->regmap,rt1[i]);
2377 sh=get_reg(i_regs->regmap,rs1[i]|64);
2378 sl=get_reg(i_regs->regmap,rs1[i]);
2379 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2380 if(opcode[i]==0x0c) //ANDI
2381 {
2382 if(rs1[i]) {
2383 if(sl<0) {
2384 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2385 emit_andimm(tl,imm[i],tl);
2386 }else{
2387 if(!((i_regs->wasconst>>sl)&1))
2388 emit_andimm(sl,imm[i],tl);
2389 else
2390 emit_movimm(constmap[i][sl]&imm[i],tl);
2391 }
2392 }
2393 else
2394 emit_zeroreg(tl);
2395 if(th>=0) emit_zeroreg(th);
2396 }
2397 else
2398 {
2399 if(rs1[i]) {
2400 if(sl<0) {
2401 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2402 }
2403 if(th>=0) {
2404 if(sh<0) {
2405 emit_loadreg(rs1[i]|64,th);
2406 }else{
2407 emit_mov(sh,th);
2408 }
2409 }
581335b0 2410 if(opcode[i]==0x0d) { // ORI
2411 if(sl<0) {
2412 emit_orimm(tl,imm[i],tl);
2413 }else{
2414 if(!((i_regs->wasconst>>sl)&1))
2415 emit_orimm(sl,imm[i],tl);
2416 else
2417 emit_movimm(constmap[i][sl]|imm[i],tl);
2418 }
57871462 2419 }
581335b0 2420 if(opcode[i]==0x0e) { // XORI
2421 if(sl<0) {
2422 emit_xorimm(tl,imm[i],tl);
2423 }else{
2424 if(!((i_regs->wasconst>>sl)&1))
2425 emit_xorimm(sl,imm[i],tl);
2426 else
2427 emit_movimm(constmap[i][sl]^imm[i],tl);
2428 }
57871462 2429 }
2430 }
2431 else {
2432 emit_movimm(imm[i],tl);
2433 if(th>=0) emit_zeroreg(th);
2434 }
2435 }
2436 }
2437 }
2438 }
2439}
2440
2441void shiftimm_assemble(int i,struct regstat *i_regs)
2442{
2443 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2444 {
2445 if(rt1[i]) {
2446 signed char s,t;
2447 t=get_reg(i_regs->regmap,rt1[i]);
2448 s=get_reg(i_regs->regmap,rs1[i]);
2449 //assert(t>=0);
dc49e339 2450 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2451 if(rs1[i]==0)
2452 {
2453 emit_zeroreg(t);
2454 }
2455 else
2456 {
2457 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2458 if(imm[i]) {
2459 if(opcode2[i]==0) // SLL
2460 {
2461 emit_shlimm(s<0?t:s,imm[i],t);
2462 }
2463 if(opcode2[i]==2) // SRL
2464 {
2465 emit_shrimm(s<0?t:s,imm[i],t);
2466 }
2467 if(opcode2[i]==3) // SRA
2468 {
2469 emit_sarimm(s<0?t:s,imm[i],t);
2470 }
2471 }else{
2472 // Shift by zero
2473 if(s>=0 && s!=t) emit_mov(s,t);
2474 }
2475 }
2476 }
2477 //emit_storereg(rt1[i],t); //DEBUG
2478 }
2479 }
2480 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2481 {
2482 if(rt1[i]) {
2483 signed char sh,sl,th,tl;
2484 th=get_reg(i_regs->regmap,rt1[i]|64);
2485 tl=get_reg(i_regs->regmap,rt1[i]);
2486 sh=get_reg(i_regs->regmap,rs1[i]|64);
2487 sl=get_reg(i_regs->regmap,rs1[i]);
2488 if(tl>=0) {
2489 if(rs1[i]==0)
2490 {
2491 emit_zeroreg(tl);
2492 if(th>=0) emit_zeroreg(th);
2493 }
2494 else
2495 {
2496 assert(sl>=0);
2497 assert(sh>=0);
2498 if(imm[i]) {
2499 if(opcode2[i]==0x38) // DSLL
2500 {
2501 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2502 emit_shlimm(sl,imm[i],tl);
2503 }
2504 if(opcode2[i]==0x3a) // DSRL
2505 {
2506 emit_shrdimm(sl,sh,imm[i],tl);
2507 if(th>=0) emit_shrimm(sh,imm[i],th);
2508 }
2509 if(opcode2[i]==0x3b) // DSRA
2510 {
2511 emit_shrdimm(sl,sh,imm[i],tl);
2512 if(th>=0) emit_sarimm(sh,imm[i],th);
2513 }
2514 }else{
2515 // Shift by zero
2516 if(sl!=tl) emit_mov(sl,tl);
2517 if(th>=0&&sh!=th) emit_mov(sh,th);
2518 }
2519 }
2520 }
2521 }
2522 }
2523 if(opcode2[i]==0x3c) // DSLL32
2524 {
2525 if(rt1[i]) {
2526 signed char sl,tl,th;
2527 tl=get_reg(i_regs->regmap,rt1[i]);
2528 th=get_reg(i_regs->regmap,rt1[i]|64);
2529 sl=get_reg(i_regs->regmap,rs1[i]);
2530 if(th>=0||tl>=0){
2531 assert(tl>=0);
2532 assert(th>=0);
2533 assert(sl>=0);
2534 emit_mov(sl,th);
2535 emit_zeroreg(tl);
2536 if(imm[i]>32)
2537 {
2538 emit_shlimm(th,imm[i]&31,th);
2539 }
2540 }
2541 }
2542 }
2543 if(opcode2[i]==0x3e) // DSRL32
2544 {
2545 if(rt1[i]) {
2546 signed char sh,tl,th;
2547 tl=get_reg(i_regs->regmap,rt1[i]);
2548 th=get_reg(i_regs->regmap,rt1[i]|64);
2549 sh=get_reg(i_regs->regmap,rs1[i]|64);
2550 if(tl>=0){
2551 assert(sh>=0);
2552 emit_mov(sh,tl);
2553 if(th>=0) emit_zeroreg(th);
2554 if(imm[i]>32)
2555 {
2556 emit_shrimm(tl,imm[i]&31,tl);
2557 }
2558 }
2559 }
2560 }
2561 if(opcode2[i]==0x3f) // DSRA32
2562 {
2563 if(rt1[i]) {
2564 signed char sh,tl;
2565 tl=get_reg(i_regs->regmap,rt1[i]);
2566 sh=get_reg(i_regs->regmap,rs1[i]|64);
2567 if(tl>=0){
2568 assert(sh>=0);
2569 emit_mov(sh,tl);
2570 if(imm[i]>32)
2571 {
2572 emit_sarimm(tl,imm[i]&31,tl);
2573 }
2574 }
2575 }
2576 }
2577}
2578
2579#ifndef shift_assemble
2580void shift_assemble(int i,struct regstat *i_regs)
2581{
2582 printf("Need shift_assemble for this architecture.\n");
2583 exit(1);
2584}
2585#endif
2586
2587void load_assemble(int i,struct regstat *i_regs)
2588{
2589 int s,th,tl,addr,map=-1;
2590 int offset;
b14b6a8f 2591 void *jaddr=0;
5bf843dc 2592 int memtarget=0,c=0;
b1570849 2593 int fastload_reg_override=0;
57871462 2594 u_int hr,reglist=0;
2595 th=get_reg(i_regs->regmap,rt1[i]|64);
2596 tl=get_reg(i_regs->regmap,rt1[i]);
2597 s=get_reg(i_regs->regmap,rs1[i]);
2598 offset=imm[i];
2599 for(hr=0;hr<HOST_REGS;hr++) {
2600 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2601 }
2602 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2603 if(s>=0) {
2604 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2605 if (c) {
2606 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
af4ee1fe 2607 }
57871462 2608 }
57871462 2609 //printf("load_assemble: c=%d\n",c);
2610 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2611 // FIXME: Even if the load is a NOP, we should check for pagefaults...
581335b0 2612 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
f18c0f46 2613 ||rt1[i]==0) {
5bf843dc 2614 // could be FIFO, must perform the read
f18c0f46 2615 // ||dummy read
5bf843dc 2616 assem_debug("(forced read)\n");
2617 tl=get_reg(i_regs->regmap,-1);
2618 assert(tl>=0);
5bf843dc 2619 }
2620 if(offset||s<0||c) addr=tl;
2621 else addr=s;
535d208a 2622 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2623 if(tl>=0) {
2624 //printf("load_assemble: c=%d\n",c);
2625 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2626 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2627 reglist&=~(1<<tl);
2628 if(th>=0) reglist&=~(1<<th);
1edfcc68 2629 if(!c) {
2630 #ifdef RAM_OFFSET
2631 map=get_reg(i_regs->regmap,ROREG);
2632 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2633 #endif
2634 #ifdef R29_HACK
2635 // Strmnnrmn's speed hack
2636 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2637 #endif
2638 {
2639 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
535d208a 2640 }
1edfcc68 2641 }
2642 else if(ram_offset&&memtarget) {
2643 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2644 fastload_reg_override=HOST_TEMPREG;
535d208a 2645 }
2646 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2647 if (opcode[i]==0x20) { // LB
2648 if(!c||memtarget) {
2649 if(!dummy) {
57871462 2650 #ifdef HOST_IMM_ADDR32
2651 if(c)
2652 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2653 else
2654 #endif
2655 {
2656 //emit_xorimm(addr,3,tl);
57871462 2657 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2658 int x=0,a=tl;
2002a1db 2659#ifdef BIG_ENDIAN_MIPS
57871462 2660 if(!c) emit_xorimm(addr,3,tl);
2661 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2662#else
535d208a 2663 if(!c) a=addr;
dadf55f2 2664#endif
b1570849 2665 if(fastload_reg_override) a=fastload_reg_override;
2666
535d208a 2667 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2668 }
57871462 2669 }
535d208a 2670 if(jaddr)
b14b6a8f 2671 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
57871462 2672 }
535d208a 2673 else
2674 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2675 }
2676 if (opcode[i]==0x21) { // LH
2677 if(!c||memtarget) {
2678 if(!dummy) {
57871462 2679 #ifdef HOST_IMM_ADDR32
2680 if(c)
2681 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2682 else
2683 #endif
2684 {
535d208a 2685 int x=0,a=tl;
2002a1db 2686#ifdef BIG_ENDIAN_MIPS
57871462 2687 if(!c) emit_xorimm(addr,2,tl);
2688 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2689#else
535d208a 2690 if(!c) a=addr;
dadf55f2 2691#endif
b1570849 2692 if(fastload_reg_override) a=fastload_reg_override;
57871462 2693 //#ifdef
2694 //emit_movswl_indexed_tlb(x,tl,map,tl);
2695 //else
2696 if(map>=0) {
535d208a 2697 emit_movswl_indexed(x,a,tl);
2698 }else{
a327ad27 2699 #if 1 //def RAM_OFFSET
535d208a 2700 emit_movswl_indexed(x,a,tl);
2701 #else
2702 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2703 #endif
2704 }
57871462 2705 }
57871462 2706 }
535d208a 2707 if(jaddr)
b14b6a8f 2708 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
57871462 2709 }
535d208a 2710 else
2711 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2712 }
2713 if (opcode[i]==0x23) { // LW
2714 if(!c||memtarget) {
2715 if(!dummy) {
dadf55f2 2716 int a=addr;
b1570849 2717 if(fastload_reg_override) a=fastload_reg_override;
57871462 2718 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2719 #ifdef HOST_IMM_ADDR32
2720 if(c)
2721 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2722 else
2723 #endif
dadf55f2 2724 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2725 }
535d208a 2726 if(jaddr)
b14b6a8f 2727 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
57871462 2728 }
535d208a 2729 else
2730 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2731 }
2732 if (opcode[i]==0x24) { // LBU
2733 if(!c||memtarget) {
2734 if(!dummy) {
57871462 2735 #ifdef HOST_IMM_ADDR32
2736 if(c)
2737 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2738 else
2739 #endif
2740 {
2741 //emit_xorimm(addr,3,tl);
57871462 2742 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2743 int x=0,a=tl;
2002a1db 2744#ifdef BIG_ENDIAN_MIPS
57871462 2745 if(!c) emit_xorimm(addr,3,tl);
2746 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2747#else
535d208a 2748 if(!c) a=addr;
dadf55f2 2749#endif
b1570849 2750 if(fastload_reg_override) a=fastload_reg_override;
2751
535d208a 2752 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 2753 }
57871462 2754 }
535d208a 2755 if(jaddr)
b14b6a8f 2756 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
57871462 2757 }
535d208a 2758 else
2759 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2760 }
2761 if (opcode[i]==0x25) { // LHU
2762 if(!c||memtarget) {
2763 if(!dummy) {
57871462 2764 #ifdef HOST_IMM_ADDR32
2765 if(c)
2766 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2767 else
2768 #endif
2769 {
535d208a 2770 int x=0,a=tl;
2002a1db 2771#ifdef BIG_ENDIAN_MIPS
57871462 2772 if(!c) emit_xorimm(addr,2,tl);
2773 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2774#else
535d208a 2775 if(!c) a=addr;
dadf55f2 2776#endif
b1570849 2777 if(fastload_reg_override) a=fastload_reg_override;
57871462 2778 //#ifdef
2779 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2780 //#else
2781 if(map>=0) {
535d208a 2782 emit_movzwl_indexed(x,a,tl);
2783 }else{
a327ad27 2784 #if 1 //def RAM_OFFSET
535d208a 2785 emit_movzwl_indexed(x,a,tl);
2786 #else
2787 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2788 #endif
2789 }
57871462 2790 }
2791 }
535d208a 2792 if(jaddr)
b14b6a8f 2793 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
57871462 2794 }
535d208a 2795 else
2796 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2797 }
2798 if (opcode[i]==0x27) { // LWU
2799 assert(th>=0);
2800 if(!c||memtarget) {
2801 if(!dummy) {
dadf55f2 2802 int a=addr;
b1570849 2803 if(fastload_reg_override) a=fastload_reg_override;
57871462 2804 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2805 #ifdef HOST_IMM_ADDR32
2806 if(c)
2807 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2808 else
2809 #endif
dadf55f2 2810 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2811 }
535d208a 2812 if(jaddr)
b14b6a8f 2813 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
535d208a 2814 }
2815 else {
2816 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 2817 }
535d208a 2818 emit_zeroreg(th);
2819 }
2820 if (opcode[i]==0x37) { // LD
2821 if(!c||memtarget) {
2822 if(!dummy) {
dadf55f2 2823 int a=addr;
b1570849 2824 if(fastload_reg_override) a=fastload_reg_override;
57871462 2825 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2826 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2827 #ifdef HOST_IMM_ADDR32
2828 if(c)
2829 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2830 else
2831 #endif
dadf55f2 2832 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 2833 }
535d208a 2834 if(jaddr)
b14b6a8f 2835 add_stub_r(LOADD_STUB,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
57871462 2836 }
535d208a 2837 else
2838 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 2839 }
535d208a 2840 }
57871462 2841}
2842
2843#ifndef loadlr_assemble
2844void loadlr_assemble(int i,struct regstat *i_regs)
2845{
2846 printf("Need loadlr_assemble for this architecture.\n");
2847 exit(1);
2848}
2849#endif
2850
2851void store_assemble(int i,struct regstat *i_regs)
2852{
2853 int s,th,tl,map=-1;
2854 int addr,temp;
2855 int offset;
b14b6a8f 2856 void *jaddr=0;
2857 enum stub_type type;
666a299d 2858 int memtarget=0,c=0;
57871462 2859 int agr=AGEN1+(i&1);
b1570849 2860 int faststore_reg_override=0;
57871462 2861 u_int hr,reglist=0;
2862 th=get_reg(i_regs->regmap,rs2[i]|64);
2863 tl=get_reg(i_regs->regmap,rs2[i]);
2864 s=get_reg(i_regs->regmap,rs1[i]);
2865 temp=get_reg(i_regs->regmap,agr);
2866 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2867 offset=imm[i];
2868 if(s>=0) {
2869 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2870 if(c) {
2871 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
af4ee1fe 2872 }
57871462 2873 }
2874 assert(tl>=0);
2875 assert(temp>=0);
2876 for(hr=0;hr<HOST_REGS;hr++) {
2877 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2878 }
2879 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2880 if(offset||s<0||c) addr=temp;
2881 else addr=s;
1edfcc68 2882 if(!c) {
2883 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
2884 }
2885 else if(ram_offset&&memtarget) {
2886 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2887 faststore_reg_override=HOST_TEMPREG;
57871462 2888 }
2889
2890 if (opcode[i]==0x28) { // SB
2891 if(!c||memtarget) {
97a238a6 2892 int x=0,a=temp;
2002a1db 2893#ifdef BIG_ENDIAN_MIPS
57871462 2894 if(!c) emit_xorimm(addr,3,temp);
2895 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2896#else
97a238a6 2897 if(!c) a=addr;
dadf55f2 2898#endif
b1570849 2899 if(faststore_reg_override) a=faststore_reg_override;
57871462 2900 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 2901 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 2902 }
2903 type=STOREB_STUB;
2904 }
2905 if (opcode[i]==0x29) { // SH
2906 if(!c||memtarget) {
97a238a6 2907 int x=0,a=temp;
2002a1db 2908#ifdef BIG_ENDIAN_MIPS
57871462 2909 if(!c) emit_xorimm(addr,2,temp);
2910 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2911#else
97a238a6 2912 if(!c) a=addr;
dadf55f2 2913#endif
b1570849 2914 if(faststore_reg_override) a=faststore_reg_override;
57871462 2915 //#ifdef
2916 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
2917 //#else
2918 if(map>=0) {
97a238a6 2919 emit_writehword_indexed(tl,x,a);
57871462 2920 }else
a327ad27 2921 //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
2922 emit_writehword_indexed(tl,x,a);
57871462 2923 }
2924 type=STOREH_STUB;
2925 }
2926 if (opcode[i]==0x2B) { // SW
dadf55f2 2927 if(!c||memtarget) {
2928 int a=addr;
b1570849 2929 if(faststore_reg_override) a=faststore_reg_override;
57871462 2930 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 2931 emit_writeword_indexed_tlb(tl,0,a,map,temp);
2932 }
57871462 2933 type=STOREW_STUB;
2934 }
2935 if (opcode[i]==0x3F) { // SD
2936 if(!c||memtarget) {
dadf55f2 2937 int a=addr;
b1570849 2938 if(faststore_reg_override) a=faststore_reg_override;
57871462 2939 if(rs2[i]) {
2940 assert(th>=0);
2941 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
2942 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 2943 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 2944 }else{
2945 // Store zero
2946 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
2947 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 2948 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 2949 }
2950 }
2951 type=STORED_STUB;
2952 }
b96d3df7 2953 if(jaddr) {
2954 // PCSX store handlers don't check invcode again
2955 reglist|=1<<addr;
b14b6a8f 2956 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
b96d3df7 2957 jaddr=0;
2958 }
1edfcc68 2959 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 2960 if(!c||memtarget) {
2961 #ifdef DESTRUCTIVE_SHIFT
2962 // The x86 shift operation is 'destructive'; it overwrites the
2963 // source register, so we need to make a copy first and use that.
2964 addr=temp;
2965 #endif
2966 #if defined(HOST_IMM8)
2967 int ir=get_reg(i_regs->regmap,INVCP);
2968 assert(ir>=0);
2969 emit_cmpmem_indexedsr12_reg(ir,addr,1);
2970 #else
2971 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
2972 #endif
0bbd1454 2973 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2974 emit_callne(invalidate_addr_reg[addr]);
2975 #else
b14b6a8f 2976 void *jaddr2 = out;
57871462 2977 emit_jne(0);
b14b6a8f 2978 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 2979 #endif
57871462 2980 }
2981 }
7a518516 2982 u_int addr_val=constmap[i][s]+offset;
3eaa7048 2983 if(jaddr) {
b14b6a8f 2984 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj[i],reglist);
3eaa7048 2985 } else if(c&&!memtarget) {
7a518516 2986 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
2987 }
2988 // basic current block modification detection..
2989 // not looking back as that should be in mips cache already
2990 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
c43b5311 2991 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
7a518516 2992 assert(i_regs->regmap==regs[i].regmap); // not delay slot
2993 if(i_regs->regmap==regs[i].regmap) {
2994 load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
2995 wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
2996 emit_movimm(start+i*4+4,0);
2997 emit_writeword(0,(int)&pcaddr);
b14b6a8f 2998 emit_jmp(do_interrupt);
7a518516 2999 }
3eaa7048 3000 }
57871462 3001}
3002
3003void storelr_assemble(int i,struct regstat *i_regs)
3004{
3005 int s,th,tl;
3006 int temp;
581335b0 3007 int temp2=-1;
57871462 3008 int offset;
b14b6a8f 3009 void *jaddr=0;
df4dc2b1 3010 void *case1, *case2, *case3;
3011 void *done0, *done1, *done2;
af4ee1fe 3012 int memtarget=0,c=0;
fab5d06d 3013 int agr=AGEN1+(i&1);
57871462 3014 u_int hr,reglist=0;
3015 th=get_reg(i_regs->regmap,rs2[i]|64);
3016 tl=get_reg(i_regs->regmap,rs2[i]);
3017 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3018 temp=get_reg(i_regs->regmap,agr);
3019 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3020 offset=imm[i];
3021 if(s>=0) {
3022 c=(i_regs->isconst>>s)&1;
af4ee1fe 3023 if(c) {
3024 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
af4ee1fe 3025 }
57871462 3026 }
3027 assert(tl>=0);
3028 for(hr=0;hr<HOST_REGS;hr++) {
3029 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3030 }
535d208a 3031 assert(temp>=0);
1edfcc68 3032 if(!c) {
3033 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3034 if(!offset&&s!=temp) emit_mov(s,temp);
b14b6a8f 3035 jaddr=out;
1edfcc68 3036 emit_jno(0);
3037 }
3038 else
3039 {
3040 if(!memtarget||!rs1[i]) {
b14b6a8f 3041 jaddr=out;
535d208a 3042 emit_jmp(0);
57871462 3043 }
535d208a 3044 }
1edfcc68 3045 #ifdef RAM_OFFSET
3046 int map=get_reg(i_regs->regmap,ROREG);
3047 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3048 #else
9f51b4b9 3049 if((u_int)rdram!=0x80000000)
1edfcc68 3050 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3051 #endif
535d208a 3052
3053 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3054 temp2=get_reg(i_regs->regmap,FTEMP);
3055 if(!rs2[i]) temp2=th=tl;
3056 }
57871462 3057
2002a1db 3058#ifndef BIG_ENDIAN_MIPS
3059 emit_xorimm(temp,3,temp);
3060#endif
535d208a 3061 emit_testimm(temp,2);
df4dc2b1 3062 case2=out;
535d208a 3063 emit_jne(0);
3064 emit_testimm(temp,1);
df4dc2b1 3065 case1=out;
535d208a 3066 emit_jne(0);
3067 // 0
3068 if (opcode[i]==0x2A) { // SWL
3069 emit_writeword_indexed(tl,0,temp);
3070 }
3071 if (opcode[i]==0x2E) { // SWR
3072 emit_writebyte_indexed(tl,3,temp);
3073 }
3074 if (opcode[i]==0x2C) { // SDL
3075 emit_writeword_indexed(th,0,temp);
3076 if(rs2[i]) emit_mov(tl,temp2);
3077 }
3078 if (opcode[i]==0x2D) { // SDR
3079 emit_writebyte_indexed(tl,3,temp);
3080 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3081 }
df4dc2b1 3082 done0=out;
535d208a 3083 emit_jmp(0);
3084 // 1
df4dc2b1 3085 set_jump_target(case1, out);
535d208a 3086 if (opcode[i]==0x2A) { // SWL
3087 // Write 3 msb into three least significant bytes
3088 if(rs2[i]) emit_rorimm(tl,8,tl);
3089 emit_writehword_indexed(tl,-1,temp);
3090 if(rs2[i]) emit_rorimm(tl,16,tl);
3091 emit_writebyte_indexed(tl,1,temp);
3092 if(rs2[i]) emit_rorimm(tl,8,tl);
3093 }
3094 if (opcode[i]==0x2E) { // SWR
3095 // Write two lsb into two most significant bytes
3096 emit_writehword_indexed(tl,1,temp);
3097 }
3098 if (opcode[i]==0x2C) { // SDL
3099 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3100 // Write 3 msb into three least significant bytes
3101 if(rs2[i]) emit_rorimm(th,8,th);
3102 emit_writehword_indexed(th,-1,temp);
3103 if(rs2[i]) emit_rorimm(th,16,th);
3104 emit_writebyte_indexed(th,1,temp);
3105 if(rs2[i]) emit_rorimm(th,8,th);
3106 }
3107 if (opcode[i]==0x2D) { // SDR
3108 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3109 // Write two lsb into two most significant bytes
3110 emit_writehword_indexed(tl,1,temp);
3111 }
df4dc2b1 3112 done1=out;
535d208a 3113 emit_jmp(0);
3114 // 2
df4dc2b1 3115 set_jump_target(case2, out);
535d208a 3116 emit_testimm(temp,1);
df4dc2b1 3117 case3=out;
535d208a 3118 emit_jne(0);
3119 if (opcode[i]==0x2A) { // SWL
3120 // Write two msb into two least significant bytes
3121 if(rs2[i]) emit_rorimm(tl,16,tl);
3122 emit_writehword_indexed(tl,-2,temp);
3123 if(rs2[i]) emit_rorimm(tl,16,tl);
3124 }
3125 if (opcode[i]==0x2E) { // SWR
3126 // Write 3 lsb into three most significant bytes
3127 emit_writebyte_indexed(tl,-1,temp);
3128 if(rs2[i]) emit_rorimm(tl,8,tl);
3129 emit_writehword_indexed(tl,0,temp);
3130 if(rs2[i]) emit_rorimm(tl,24,tl);
3131 }
3132 if (opcode[i]==0x2C) { // SDL
3133 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3134 // Write two msb into two least significant bytes
3135 if(rs2[i]) emit_rorimm(th,16,th);
3136 emit_writehword_indexed(th,-2,temp);
3137 if(rs2[i]) emit_rorimm(th,16,th);
3138 }
3139 if (opcode[i]==0x2D) { // SDR
3140 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3141 // Write 3 lsb into three most significant bytes
3142 emit_writebyte_indexed(tl,-1,temp);
3143 if(rs2[i]) emit_rorimm(tl,8,tl);
3144 emit_writehword_indexed(tl,0,temp);
3145 if(rs2[i]) emit_rorimm(tl,24,tl);
3146 }
df4dc2b1 3147 done2=out;
535d208a 3148 emit_jmp(0);
3149 // 3
df4dc2b1 3150 set_jump_target(case3, out);
535d208a 3151 if (opcode[i]==0x2A) { // SWL
3152 // Write msb into least significant byte
3153 if(rs2[i]) emit_rorimm(tl,24,tl);
3154 emit_writebyte_indexed(tl,-3,temp);
3155 if(rs2[i]) emit_rorimm(tl,8,tl);
3156 }
3157 if (opcode[i]==0x2E) { // SWR
3158 // Write entire word
3159 emit_writeword_indexed(tl,-3,temp);
3160 }
3161 if (opcode[i]==0x2C) { // SDL
3162 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3163 // Write msb into least significant byte
3164 if(rs2[i]) emit_rorimm(th,24,th);
3165 emit_writebyte_indexed(th,-3,temp);
3166 if(rs2[i]) emit_rorimm(th,8,th);
3167 }
3168 if (opcode[i]==0x2D) { // SDR
3169 if(rs2[i]) emit_mov(th,temp2);
3170 // Write entire word
3171 emit_writeword_indexed(tl,-3,temp);
3172 }
df4dc2b1 3173 set_jump_target(done0, out);
3174 set_jump_target(done1, out);
3175 set_jump_target(done2, out);
535d208a 3176 if (opcode[i]==0x2C) { // SDL
3177 emit_testimm(temp,4);
df4dc2b1 3178 done0=out;
57871462 3179 emit_jne(0);
535d208a 3180 emit_andimm(temp,~3,temp);
3181 emit_writeword_indexed(temp2,4,temp);
df4dc2b1 3182 set_jump_target(done0, out);
535d208a 3183 }
3184 if (opcode[i]==0x2D) { // SDR
3185 emit_testimm(temp,4);
df4dc2b1 3186 done0=out;
535d208a 3187 emit_jeq(0);
3188 emit_andimm(temp,~3,temp);
3189 emit_writeword_indexed(temp2,-4,temp);
df4dc2b1 3190 set_jump_target(done0, out);
57871462 3191 }
535d208a 3192 if(!c||!memtarget)
b14b6a8f 3193 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj[i],reglist);
1edfcc68 3194 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
535d208a 3195 #ifdef RAM_OFFSET
3196 int map=get_reg(i_regs->regmap,ROREG);
3197 if(map<0) map=HOST_TEMPREG;
3198 gen_orig_addr_w(temp,map);
3199 #else
57871462 3200 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3201 #endif
57871462 3202 #if defined(HOST_IMM8)
3203 int ir=get_reg(i_regs->regmap,INVCP);
3204 assert(ir>=0);
3205 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3206 #else
3207 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3208 #endif
535d208a 3209 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3210 emit_callne(invalidate_addr_reg[temp]);
3211 #else
b14b6a8f 3212 void *jaddr2 = out;
57871462 3213 emit_jne(0);
b14b6a8f 3214 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3215 #endif
57871462 3216 }
57871462 3217}
3218
3219void c1ls_assemble(int i,struct regstat *i_regs)
3220{
3d624f89 3221 cop1_unusable(i, i_regs);
57871462 3222}
3223
b9b61529 3224void c2ls_assemble(int i,struct regstat *i_regs)
3225{
3226 int s,tl;
3227 int ar;
3228 int offset;
1fd1aceb 3229 int memtarget=0,c=0;
b14b6a8f 3230 void *jaddr2=NULL;
3231 enum stub_type type;
b9b61529 3232 int agr=AGEN1+(i&1);
ffb0b9e0 3233 int fastio_reg_override=0;
b9b61529 3234 u_int hr,reglist=0;
3235 u_int copr=(source[i]>>16)&0x1f;
3236 s=get_reg(i_regs->regmap,rs1[i]);
3237 tl=get_reg(i_regs->regmap,FTEMP);
3238 offset=imm[i];
3239 assert(rs1[i]>0);
3240 assert(tl>=0);
b9b61529 3241
3242 for(hr=0;hr<HOST_REGS;hr++) {
3243 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3244 }
3245 if(i_regs->regmap[HOST_CCREG]==CCREG)
3246 reglist&=~(1<<HOST_CCREG);
3247
3248 // get the address
3249 if (opcode[i]==0x3a) { // SWC2
3250 ar=get_reg(i_regs->regmap,agr);
3251 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3252 reglist|=1<<ar;
3253 } else { // LWC2
3254 ar=tl;
3255 }
1fd1aceb 3256 if(s>=0) c=(i_regs->wasconst>>s)&1;
3257 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3258 if (!offset&&!c&&s>=0) ar=s;
3259 assert(ar>=0);
3260
3261 if (opcode[i]==0x3a) { // SWC2
3262 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3263 type=STOREW_STUB;
b9b61529 3264 }
1fd1aceb 3265 else
b9b61529 3266 type=LOADW_STUB;
1fd1aceb 3267
3268 if(c&&!memtarget) {
b14b6a8f 3269 jaddr2=out;
1fd1aceb 3270 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3271 }
1fd1aceb 3272 else {
3273 if(!c) {
ffb0b9e0 3274 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3275 }
a327ad27 3276 else if(ram_offset&&memtarget) {
3277 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3278 fastio_reg_override=HOST_TEMPREG;
3279 }
1fd1aceb 3280 if (opcode[i]==0x32) { // LWC2
3281 #ifdef HOST_IMM_ADDR32
3282 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3283 else
3284 #endif
ffb0b9e0 3285 int a=ar;
3286 if(fastio_reg_override) a=fastio_reg_override;
3287 emit_readword_indexed(0,a,tl);
1fd1aceb 3288 }
3289 if (opcode[i]==0x3a) { // SWC2
3290 #ifdef DESTRUCTIVE_SHIFT
3291 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3292 #endif
ffb0b9e0 3293 int a=ar;
3294 if(fastio_reg_override) a=fastio_reg_override;
3295 emit_writeword_indexed(tl,0,a);
1fd1aceb 3296 }
b9b61529 3297 }
3298 if(jaddr2)
b14b6a8f 3299 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj[i],reglist);
0ff8c62c 3300 if(opcode[i]==0x3a) // SWC2
3301 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
b9b61529 3302#if defined(HOST_IMM8)
3303 int ir=get_reg(i_regs->regmap,INVCP);
3304 assert(ir>=0);
3305 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3306#else
3307 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3308#endif
0bbd1454 3309 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3310 emit_callne(invalidate_addr_reg[ar]);
3311 #else
b14b6a8f 3312 void *jaddr3 = out;
b9b61529 3313 emit_jne(0);
b14b6a8f 3314 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3315 #endif
b9b61529 3316 }
3317 if (opcode[i]==0x32) { // LWC2
3318 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3319 }
3320}
3321
57871462 3322#ifndef multdiv_assemble
3323void multdiv_assemble(int i,struct regstat *i_regs)
3324{
3325 printf("Need multdiv_assemble for this architecture.\n");
3326 exit(1);
3327}
3328#endif
3329
3330void mov_assemble(int i,struct regstat *i_regs)
3331{
3332 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3333 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3334 if(rt1[i]) {
3335 signed char sh,sl,th,tl;
3336 th=get_reg(i_regs->regmap,rt1[i]|64);
3337 tl=get_reg(i_regs->regmap,rt1[i]);
3338 //assert(tl>=0);
3339 if(tl>=0) {
3340 sh=get_reg(i_regs->regmap,rs1[i]|64);
3341 sl=get_reg(i_regs->regmap,rs1[i]);
3342 if(sl>=0) emit_mov(sl,tl);
3343 else emit_loadreg(rs1[i],tl);
3344 if(th>=0) {
3345 if(sh>=0) emit_mov(sh,th);
3346 else emit_loadreg(rs1[i]|64,th);
3347 }
3348 }
3349 }
3350}
3351
3352#ifndef fconv_assemble
3353void fconv_assemble(int i,struct regstat *i_regs)
3354{
3355 printf("Need fconv_assemble for this architecture.\n");
3356 exit(1);
3357}
3358#endif
3359
3360#if 0
3361void float_assemble(int i,struct regstat *i_regs)
3362{
3363 printf("Need float_assemble for this architecture.\n");
3364 exit(1);
3365}
3366#endif
3367
3368void syscall_assemble(int i,struct regstat *i_regs)
3369{
3370 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3371 assert(ccreg==HOST_CCREG);
3372 assert(!is_delayslot);
581335b0 3373 (void)ccreg;
57871462 3374 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3375 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
b14b6a8f 3376 emit_jmp(jump_syscall_hle); // XXX
7139f3c8 3377}
3378
3379void hlecall_assemble(int i,struct regstat *i_regs)
3380{
41e82ad4 3381 extern void psxNULL();
7139f3c8 3382 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3383 assert(ccreg==HOST_CCREG);
3384 assert(!is_delayslot);
581335b0 3385 (void)ccreg;
7139f3c8 3386 emit_movimm(start+i*4+4,0); // Get PC
dd79da89 3387 uint32_t hleCode = source[i] & 0x03ffffff;
b14b6a8f 3388 if (hleCode >= ARRAY_SIZE(psxHLEt))
dd79da89 3389 emit_movimm((int)psxNULL,1);
3390 else
3391 emit_movimm((int)psxHLEt[hleCode],1);
2573466a 3392 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
b14b6a8f 3393 emit_jmp(jump_hlecall);
57871462 3394}
3395
1e973cb0 3396void intcall_assemble(int i,struct regstat *i_regs)
3397{
3398 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3399 assert(ccreg==HOST_CCREG);
3400 assert(!is_delayslot);
581335b0 3401 (void)ccreg;
1e973cb0 3402 emit_movimm(start+i*4,0); // Get PC
2573466a 3403 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
b14b6a8f 3404 emit_jmp(jump_intcall);
1e973cb0 3405}
3406
57871462 3407void ds_assemble(int i,struct regstat *i_regs)
3408{
ffb0b9e0 3409 speculate_register_values(i);
57871462 3410 is_delayslot=1;
3411 switch(itype[i]) {
3412 case ALU:
3413 alu_assemble(i,i_regs);break;
3414 case IMM16:
3415 imm16_assemble(i,i_regs);break;
3416 case SHIFT:
3417 shift_assemble(i,i_regs);break;
3418 case SHIFTIMM:
3419 shiftimm_assemble(i,i_regs);break;
3420 case LOAD:
3421 load_assemble(i,i_regs);break;
3422 case LOADLR:
3423 loadlr_assemble(i,i_regs);break;
3424 case STORE:
3425 store_assemble(i,i_regs);break;
3426 case STORELR:
3427 storelr_assemble(i,i_regs);break;
3428 case COP0:
3429 cop0_assemble(i,i_regs);break;
3430 case COP1:
3431 cop1_assemble(i,i_regs);break;
3432 case C1LS:
3433 c1ls_assemble(i,i_regs);break;
b9b61529 3434 case COP2:
3435 cop2_assemble(i,i_regs);break;
3436 case C2LS:
3437 c2ls_assemble(i,i_regs);break;
3438 case C2OP:
3439 c2op_assemble(i,i_regs);break;
57871462 3440 case FCONV:
3441 fconv_assemble(i,i_regs);break;
3442 case FLOAT:
3443 float_assemble(i,i_regs);break;
3444 case FCOMP:
3445 fcomp_assemble(i,i_regs);break;
3446 case MULTDIV:
3447 multdiv_assemble(i,i_regs);break;
3448 case MOV:
3449 mov_assemble(i,i_regs);break;
3450 case SYSCALL:
7139f3c8 3451 case HLECALL:
1e973cb0 3452 case INTCALL:
57871462 3453 case SPAN:
3454 case UJUMP:
3455 case RJUMP:
3456 case CJUMP:
3457 case SJUMP:
3458 case FJUMP:
c43b5311 3459 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
57871462 3460 }
3461 is_delayslot=0;
3462}
3463
3464// Is the branch target a valid internal jump?
3465int internal_branch(uint64_t i_is32,int addr)
3466{
3467 if(addr&1) return 0; // Indirect (register) jump
3468 if(addr>=start && addr<start+slen*4-4)
3469 {
71e490c5 3470 //int t=(addr-start)>>2;
57871462 3471 // Delay slots are not valid branch targets
3472 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3473 // 64 -> 32 bit transition requires a recompile
3474 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3475 {
3476 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3477 else printf("optimizable: yes\n");
3478 }*/
3479 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
71e490c5 3480 return 1;
57871462 3481 }
3482 return 0;
3483}
3484
3485#ifndef wb_invalidate
3486void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3487 uint64_t u,uint64_t uu)
3488{
3489 int hr;
3490 for(hr=0;hr<HOST_REGS;hr++) {
3491 if(hr!=EXCLUDE_REG) {
3492 if(pre[hr]!=entry[hr]) {
3493 if(pre[hr]>=0) {
3494 if((dirty>>hr)&1) {
3495 if(get_reg(entry,pre[hr])<0) {
3496 if(pre[hr]<64) {
3497 if(!((u>>pre[hr])&1)) {
3498 emit_storereg(pre[hr],hr);
3499 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3500 emit_sarimm(hr,31,hr);
3501 emit_storereg(pre[hr]|64,hr);
3502 }
3503 }
3504 }else{
3505 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3506 emit_storereg(pre[hr],hr);
3507 }
3508 }
3509 }
3510 }
3511 }
3512 }
3513 }
3514 }
3515 // Move from one register to another (no writeback)
3516 for(hr=0;hr<HOST_REGS;hr++) {
3517 if(hr!=EXCLUDE_REG) {
3518 if(pre[hr]!=entry[hr]) {
3519 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3520 int nr;
3521 if((nr=get_reg(entry,pre[hr]))>=0) {
3522 emit_mov(hr,nr);
3523 }
3524 }
3525 }
3526 }
3527 }
3528}
3529#endif
3530
3531// Load the specified registers
3532// This only loads the registers given as arguments because
3533// we don't want to load things that will be overwritten
3534void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3535{
3536 int hr;
3537 // Load 32-bit regs
3538 for(hr=0;hr<HOST_REGS;hr++) {
3539 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3540 if(entry[hr]!=regmap[hr]) {
3541 if(regmap[hr]==rs1||regmap[hr]==rs2)
3542 {
3543 if(regmap[hr]==0) {
3544 emit_zeroreg(hr);
3545 }
3546 else
3547 {
3548 emit_loadreg(regmap[hr],hr);
3549 }
3550 }
3551 }
3552 }
3553 }
3554 //Load 64-bit regs
3555 for(hr=0;hr<HOST_REGS;hr++) {
3556 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3557 if(entry[hr]!=regmap[hr]) {
3558 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3559 {
3560 assert(regmap[hr]!=64);
3561 if((is32>>(regmap[hr]&63))&1) {
3562 int lr=get_reg(regmap,regmap[hr]-64);
3563 if(lr>=0)
3564 emit_sarimm(lr,31,hr);
3565 else
3566 emit_loadreg(regmap[hr],hr);
3567 }
3568 else
3569 {
3570 emit_loadreg(regmap[hr],hr);
3571 }
3572 }
3573 }
3574 }
3575 }
3576}
3577
3578// Load registers prior to the start of a loop
3579// so that they are not loaded within the loop
3580static void loop_preload(signed char pre[],signed char entry[])
3581{
3582 int hr;
3583 for(hr=0;hr<HOST_REGS;hr++) {
3584 if(hr!=EXCLUDE_REG) {
3585 if(pre[hr]!=entry[hr]) {
3586 if(entry[hr]>=0) {
3587 if(get_reg(pre,entry[hr])<0) {
3588 assem_debug("loop preload:\n");
3589 //printf("loop preload: %d\n",hr);
3590 if(entry[hr]==0) {
3591 emit_zeroreg(hr);
3592 }
3593 else if(entry[hr]<TEMPREG)
3594 {
3595 emit_loadreg(entry[hr],hr);
3596 }
3597 else if(entry[hr]-64<TEMPREG)
3598 {
3599 emit_loadreg(entry[hr],hr);
3600 }
3601 }
3602 }
3603 }
3604 }
3605 }
3606}
3607
3608// Generate address for load/store instruction
b9b61529 3609// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 3610void address_generation(int i,struct regstat *i_regs,signed char entry[])
3611{
b9b61529 3612 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 3613 int ra=-1;
57871462 3614 int agr=AGEN1+(i&1);
57871462 3615 if(itype[i]==LOAD) {
3616 ra=get_reg(i_regs->regmap,rt1[i]);
9f51b4b9 3617 if(ra<0) ra=get_reg(i_regs->regmap,-1);
535d208a 3618 assert(ra>=0);
57871462 3619 }
3620 if(itype[i]==LOADLR) {
3621 ra=get_reg(i_regs->regmap,FTEMP);
3622 }
3623 if(itype[i]==STORE||itype[i]==STORELR) {
3624 ra=get_reg(i_regs->regmap,agr);
3625 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3626 }
b9b61529 3627 if(itype[i]==C1LS||itype[i]==C2LS) {
3628 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 3629 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 3630 else { // SWC1/SDC1/SWC2/SDC2
57871462 3631 ra=get_reg(i_regs->regmap,agr);
3632 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3633 }
3634 }
3635 int rs=get_reg(i_regs->regmap,rs1[i]);
57871462 3636 if(ra>=0) {
3637 int offset=imm[i];
3638 int c=(i_regs->wasconst>>rs)&1;
3639 if(rs1[i]==0) {
3640 // Using r0 as a base address
57871462 3641 if(!entry||entry[ra]!=agr) {
3642 if (opcode[i]==0x22||opcode[i]==0x26) {
3643 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3644 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3645 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3646 }else{
3647 emit_movimm(offset,ra);
3648 }
3649 } // else did it in the previous cycle
3650 }
3651 else if(rs<0) {
3652 if(!entry||entry[ra]!=rs1[i])
3653 emit_loadreg(rs1[i],ra);
3654 //if(!entry||entry[ra]!=rs1[i])
3655 // printf("poor load scheduling!\n");
3656 }
3657 else if(c) {
57871462 3658 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3659 if(!entry||entry[ra]!=agr) {
3660 if (opcode[i]==0x22||opcode[i]==0x26) {
3661 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3662 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3663 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3664 }else{
3665 #ifdef HOST_IMM_ADDR32
1edfcc68 3666 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
57871462 3667 #endif
3668 emit_movimm(constmap[i][rs]+offset,ra);
8575a877 3669 regs[i].loadedconst|=1<<ra;
57871462 3670 }
3671 } // else did it in the previous cycle
3672 } // else load_consts already did it
3673 }
3674 if(offset&&!c&&rs1[i]) {
3675 if(rs>=0) {
3676 emit_addimm(rs,offset,ra);
3677 }else{
3678 emit_addimm(ra,offset,ra);
3679 }
3680 }
3681 }
3682 }
3683 // Preload constants for next instruction
b9b61529 3684 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 3685 int agr,ra;
57871462 3686 // Actual address
3687 agr=AGEN1+((i+1)&1);
3688 ra=get_reg(i_regs->regmap,agr);
3689 if(ra>=0) {
3690 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3691 int offset=imm[i+1];
3692 int c=(regs[i+1].wasconst>>rs)&1;
3693 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3694 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3695 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3696 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3697 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3698 }else{
3699 #ifdef HOST_IMM_ADDR32
1edfcc68 3700 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
57871462 3701 #endif
3702 emit_movimm(constmap[i+1][rs]+offset,ra);
8575a877 3703 regs[i+1].loadedconst|=1<<ra;
57871462 3704 }
3705 }
3706 else if(rs1[i+1]==0) {
3707 // Using r0 as a base address
3708 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3709 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3710 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3711 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3712 }else{
3713 emit_movimm(offset,ra);
3714 }
3715 }
3716 }
3717 }
3718}
3719
e2b5e7aa 3720static int get_final_value(int hr, int i, int *value)
57871462 3721{
3722 int reg=regs[i].regmap[hr];
3723 while(i<slen-1) {
3724 if(regs[i+1].regmap[hr]!=reg) break;
3725 if(!((regs[i+1].isconst>>hr)&1)) break;
3726 if(bt[i+1]) break;
3727 i++;
3728 }
3729 if(i<slen-1) {
3730 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3731 *value=constmap[i][hr];
3732 return 1;
3733 }
3734 if(!bt[i+1]) {
3735 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3736 // Load in delay slot, out-of-order execution
3737 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3738 {
57871462 3739 // Precompute load address
3740 *value=constmap[i][hr]+imm[i+2];
3741 return 1;
3742 }
3743 }
3744 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3745 {
57871462 3746 // Precompute load address
3747 *value=constmap[i][hr]+imm[i+1];
3748 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3749 return 1;
3750 }
3751 }
3752 }
3753 *value=constmap[i][hr];
3754 //printf("c=%x\n",(int)constmap[i][hr]);
3755 if(i==slen-1) return 1;
3756 if(reg<64) {
3757 return !((unneeded_reg[i+1]>>reg)&1);
3758 }else{
3759 return !((unneeded_reg_upper[i+1]>>reg)&1);
3760 }
3761}
3762
3763// Load registers with known constants
3764void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3765{
8575a877 3766 int hr,hr2;
3767 // propagate loaded constant flags
3768 if(i==0||bt[i])
3769 regs[i].loadedconst=0;
3770 else {
3771 for(hr=0;hr<HOST_REGS;hr++) {
3772 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
3773 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
3774 {
3775 regs[i].loadedconst|=1<<hr;
3776 }
3777 }
3778 }
57871462 3779 // Load 32-bit regs
3780 for(hr=0;hr<HOST_REGS;hr++) {
3781 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3782 //if(entry[hr]!=regmap[hr]) {
8575a877 3783 if(!((regs[i].loadedconst>>hr)&1)) {
57871462 3784 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
8575a877 3785 int value,similar=0;
57871462 3786 if(get_final_value(hr,i,&value)) {
8575a877 3787 // see if some other register has similar value
3788 for(hr2=0;hr2<HOST_REGS;hr2++) {
3789 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
3790 if(is_similar_value(value,constmap[i][hr2])) {
3791 similar=1;
3792 break;
3793 }
3794 }
3795 }
3796 if(similar) {
3797 int value2;
3798 if(get_final_value(hr2,i,&value2)) // is this needed?
3799 emit_movimm_from(value2,hr2,value,hr);
3800 else
3801 emit_movimm(value,hr);
3802 }
3803 else if(value==0) {
57871462 3804 emit_zeroreg(hr);
3805 }
3806 else {
3807 emit_movimm(value,hr);
3808 }
3809 }
8575a877 3810 regs[i].loadedconst|=1<<hr;
57871462 3811 }
3812 }
3813 }
3814 }
3815 // Load 64-bit regs
3816 for(hr=0;hr<HOST_REGS;hr++) {
3817 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3818 //if(entry[hr]!=regmap[hr]) {
3819 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3820 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3821 if((is32>>(regmap[hr]&63))&1) {
3822 int lr=get_reg(regmap,regmap[hr]-64);
3823 assert(lr>=0);
3824 emit_sarimm(lr,31,hr);
3825 }
3826 else
3827 {
3828 int value;
3829 if(get_final_value(hr,i,&value)) {
3830 if(value==0) {
3831 emit_zeroreg(hr);
3832 }
3833 else {
3834 emit_movimm(value,hr);
3835 }
3836 }
3837 }
3838 }
3839 }
3840 }
3841 }
3842}
3843void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
3844{
3845 int hr;
3846 // Load 32-bit regs
3847 for(hr=0;hr<HOST_REGS;hr++) {
3848 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3849 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3850 int value=constmap[i][hr];
3851 if(value==0) {
3852 emit_zeroreg(hr);
3853 }
3854 else {
3855 emit_movimm(value,hr);
3856 }
3857 }
3858 }
3859 }
3860 // Load 64-bit regs
3861 for(hr=0;hr<HOST_REGS;hr++) {
3862 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3863 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3864 if((is32>>(regmap[hr]&63))&1) {
3865 int lr=get_reg(regmap,regmap[hr]-64);
3866 assert(lr>=0);
3867 emit_sarimm(lr,31,hr);
3868 }
3869 else
3870 {
3871 int value=constmap[i][hr];
3872 if(value==0) {
3873 emit_zeroreg(hr);
3874 }
3875 else {
3876 emit_movimm(value,hr);
3877 }
3878 }
3879 }
3880 }
3881 }
3882}
3883
3884// Write out all dirty registers (except cycle count)
3885void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
3886{
3887 int hr;
3888 for(hr=0;hr<HOST_REGS;hr++) {
3889 if(hr!=EXCLUDE_REG) {
3890 if(i_regmap[hr]>0) {
3891 if(i_regmap[hr]!=CCREG) {
3892 if((i_dirty>>hr)&1) {
3893 if(i_regmap[hr]<64) {
3894 emit_storereg(i_regmap[hr],hr);
57871462 3895 }else{
3896 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3897 emit_storereg(i_regmap[hr],hr);
3898 }
3899 }
3900 }
3901 }
3902 }
3903 }
3904 }
3905}
3906// Write out dirty registers that we need to reload (pair with load_needed_regs)
3907// This writes the registers not written by store_regs_bt
3908void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
3909{
3910 int hr;
3911 int t=(addr-start)>>2;
3912 for(hr=0;hr<HOST_REGS;hr++) {
3913 if(hr!=EXCLUDE_REG) {
3914 if(i_regmap[hr]>0) {
3915 if(i_regmap[hr]!=CCREG) {
3916 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
3917 if((i_dirty>>hr)&1) {
3918 if(i_regmap[hr]<64) {
3919 emit_storereg(i_regmap[hr],hr);
57871462 3920 }else{
3921 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3922 emit_storereg(i_regmap[hr],hr);
3923 }
3924 }
3925 }
3926 }
3927 }
3928 }
3929 }
3930 }
3931}
3932
3933// Load all registers (except cycle count)
3934void load_all_regs(signed char i_regmap[])
3935{
3936 int hr;
3937 for(hr=0;hr<HOST_REGS;hr++) {
3938 if(hr!=EXCLUDE_REG) {
3939 if(i_regmap[hr]==0) {
3940 emit_zeroreg(hr);
3941 }
3942 else
ea3d2e6e 3943 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 3944 {
3945 emit_loadreg(i_regmap[hr],hr);
3946 }
3947 }
3948 }
3949}
3950
3951// Load all current registers also needed by next instruction
3952void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
3953{
3954 int hr;
3955 for(hr=0;hr<HOST_REGS;hr++) {
3956 if(hr!=EXCLUDE_REG) {
3957 if(get_reg(next_regmap,i_regmap[hr])>=0) {
3958 if(i_regmap[hr]==0) {
3959 emit_zeroreg(hr);
3960 }
3961 else
ea3d2e6e 3962 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 3963 {
3964 emit_loadreg(i_regmap[hr],hr);
3965 }
3966 }
3967 }
3968 }
3969}
3970
3971// Load all regs, storing cycle count if necessary
3972void load_regs_entry(int t)
3973{
3974 int hr;
2573466a 3975 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
3976 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 3977 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
3978 emit_storereg(CCREG,HOST_CCREG);
3979 }
3980 // Load 32-bit regs
3981 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 3982 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 3983 if(regs[t].regmap_entry[hr]==0) {
3984 emit_zeroreg(hr);
3985 }
3986 else if(regs[t].regmap_entry[hr]!=CCREG)
3987 {
3988 emit_loadreg(regs[t].regmap_entry[hr],hr);
3989 }
3990 }
3991 }
3992 // Load 64-bit regs
3993 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 3994 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 3995 assert(regs[t].regmap_entry[hr]!=64);
3996 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
3997 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
3998 if(lr<0) {
3999 emit_loadreg(regs[t].regmap_entry[hr],hr);
4000 }
4001 else
4002 {
4003 emit_sarimm(lr,31,hr);
4004 }
4005 }
4006 else
4007 {
4008 emit_loadreg(regs[t].regmap_entry[hr],hr);
4009 }
4010 }
4011 }
4012}
4013
4014// Store dirty registers prior to branch
4015void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4016{
4017 if(internal_branch(i_is32,addr))
4018 {
4019 int t=(addr-start)>>2;
4020 int hr;
4021 for(hr=0;hr<HOST_REGS;hr++) {
4022 if(hr!=EXCLUDE_REG) {
4023 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4024 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4025 if((i_dirty>>hr)&1) {
4026 if(i_regmap[hr]<64) {
4027 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4028 emit_storereg(i_regmap[hr],hr);
4029 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4030 #ifdef DESTRUCTIVE_WRITEBACK
4031 emit_sarimm(hr,31,hr);
4032 emit_storereg(i_regmap[hr]|64,hr);
4033 #else
4034 emit_sarimm(hr,31,HOST_TEMPREG);
4035 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4036 #endif
4037 }
4038 }
4039 }else{
4040 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4041 emit_storereg(i_regmap[hr],hr);
4042 }
4043 }
4044 }
4045 }
4046 }
4047 }
4048 }
4049 }
4050 else
4051 {
4052 // Branch out of this block, write out all dirty regs
4053 wb_dirtys(i_regmap,i_is32,i_dirty);
4054 }
4055}
4056
4057// Load all needed registers for branch target
4058void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4059{
4060 //if(addr>=start && addr<(start+slen*4))
4061 if(internal_branch(i_is32,addr))
4062 {
4063 int t=(addr-start)>>2;
4064 int hr;
4065 // Store the cycle count before loading something else
4066 if(i_regmap[HOST_CCREG]!=CCREG) {
4067 assert(i_regmap[HOST_CCREG]==-1);
4068 }
4069 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4070 emit_storereg(CCREG,HOST_CCREG);
4071 }
4072 // Load 32-bit regs
4073 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4074 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4075 #ifdef DESTRUCTIVE_WRITEBACK
4076 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4077 #else
4078 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4079 #endif
4080 if(regs[t].regmap_entry[hr]==0) {
4081 emit_zeroreg(hr);
4082 }
4083 else if(regs[t].regmap_entry[hr]!=CCREG)
4084 {
4085 emit_loadreg(regs[t].regmap_entry[hr],hr);
4086 }
4087 }
4088 }
4089 }
4090 //Load 64-bit regs
4091 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4092 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4093 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4094 assert(regs[t].regmap_entry[hr]!=64);
4095 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4096 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4097 if(lr<0) {
4098 emit_loadreg(regs[t].regmap_entry[hr],hr);
4099 }
4100 else
4101 {
4102 emit_sarimm(lr,31,hr);
4103 }
4104 }
4105 else
4106 {
4107 emit_loadreg(regs[t].regmap_entry[hr],hr);
4108 }
4109 }
4110 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4111 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4112 assert(lr>=0);
4113 emit_sarimm(lr,31,hr);
4114 }
4115 }
4116 }
4117 }
4118}
4119
4120int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4121{
4122 if(addr>=start && addr<start+slen*4-4)
4123 {
4124 int t=(addr-start)>>2;
4125 int hr;
4126 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4127 for(hr=0;hr<HOST_REGS;hr++)
4128 {
4129 if(hr!=EXCLUDE_REG)
4130 {
4131 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4132 {
ea3d2e6e 4133 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4134 {
4135 return 0;
4136 }
9f51b4b9 4137 else
57871462 4138 if((i_dirty>>hr)&1)
4139 {
ea3d2e6e 4140 if(i_regmap[hr]<TEMPREG)
57871462 4141 {
4142 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4143 return 0;
4144 }
ea3d2e6e 4145 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4146 {
4147 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4148 return 0;
4149 }
4150 }
4151 }
4152 else // Same register but is it 32-bit or dirty?
4153 if(i_regmap[hr]>=0)
4154 {
4155 if(!((regs[t].dirty>>hr)&1))
4156 {
4157 if((i_dirty>>hr)&1)
4158 {
4159 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4160 {
4161 //printf("%x: dirty no match\n",addr);
4162 return 0;
4163 }
4164 }
4165 }
4166 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4167 {
4168 //printf("%x: is32 no match\n",addr);
4169 return 0;
4170 }
4171 }
4172 }
4173 }
4174 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
57871462 4175 // Delay slots are not valid branch targets
4176 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4177 // Delay slots require additional processing, so do not match
4178 if(is_ds[t]) return 0;
4179 }
4180 else
4181 {
4182 int hr;
4183 for(hr=0;hr<HOST_REGS;hr++)
4184 {
4185 if(hr!=EXCLUDE_REG)
4186 {
4187 if(i_regmap[hr]>=0)
4188 {
4189 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4190 {
4191 if((i_dirty>>hr)&1)
4192 {
4193 return 0;
4194 }
4195 }
4196 }
4197 }
4198 }
4199 }
4200 return 1;
4201}
4202
dd114d7d 4203#ifdef DRC_DBG
4204static void drc_dbg_emit_do_cmp(int i)
4205{
4206 extern void do_insn_cmp();
4207 extern int cycle;
4208 u_int hr,reglist=0;
4209
4210 for(hr=0;hr<HOST_REGS;hr++)
4211 if(regs[i].regmap[hr]>=0) reglist|=1<<hr;
4212 save_regs(reglist);
4213 emit_movimm(start+i*4,0);
4214 emit_writeword(0,(int)&pcaddr);
4215 emit_call((int)do_insn_cmp);
4216 //emit_readword((int)&cycle,0);
4217 //emit_addimm(0,2,0);
4218 //emit_writeword(0,(int)&cycle);
4219 restore_regs(reglist);
4220}
4221#else
4222#define drc_dbg_emit_do_cmp(x)
4223#endif
4224
57871462 4225// Used when a branch jumps into the delay slot of another branch
4226void ds_assemble_entry(int i)
4227{
4228 int t=(ba[i]-start)>>2;
df4dc2b1 4229 if (!instr_addr[t])
4230 instr_addr[t] = out;
57871462 4231 assem_debug("Assemble delay slot at %x\n",ba[i]);
4232 assem_debug("<->\n");
dd114d7d 4233 drc_dbg_emit_do_cmp(t);
57871462 4234 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4235 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4236 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4237 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4238 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4239 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4240 cop1_usable=0;
4241 is_delayslot=0;
4242 switch(itype[t]) {
4243 case ALU:
4244 alu_assemble(t,&regs[t]);break;
4245 case IMM16:
4246 imm16_assemble(t,&regs[t]);break;
4247 case SHIFT:
4248 shift_assemble(t,&regs[t]);break;
4249 case SHIFTIMM:
4250 shiftimm_assemble(t,&regs[t]);break;
4251 case LOAD:
4252 load_assemble(t,&regs[t]);break;
4253 case LOADLR:
4254 loadlr_assemble(t,&regs[t]);break;
4255 case STORE:
4256 store_assemble(t,&regs[t]);break;
4257 case STORELR:
4258 storelr_assemble(t,&regs[t]);break;
4259 case COP0:
4260 cop0_assemble(t,&regs[t]);break;
4261 case COP1:
4262 cop1_assemble(t,&regs[t]);break;
4263 case C1LS:
4264 c1ls_assemble(t,&regs[t]);break;
b9b61529 4265 case COP2:
4266 cop2_assemble(t,&regs[t]);break;
4267 case C2LS:
4268 c2ls_assemble(t,&regs[t]);break;
4269 case C2OP:
4270 c2op_assemble(t,&regs[t]);break;
57871462 4271 case FCONV:
4272 fconv_assemble(t,&regs[t]);break;
4273 case FLOAT:
4274 float_assemble(t,&regs[t]);break;
4275 case FCOMP:
4276 fcomp_assemble(t,&regs[t]);break;
4277 case MULTDIV:
4278 multdiv_assemble(t,&regs[t]);break;
4279 case MOV:
4280 mov_assemble(t,&regs[t]);break;
4281 case SYSCALL:
7139f3c8 4282 case HLECALL:
1e973cb0 4283 case INTCALL:
57871462 4284 case SPAN:
4285 case UJUMP:
4286 case RJUMP:
4287 case CJUMP:
4288 case SJUMP:
4289 case FJUMP:
c43b5311 4290 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
57871462 4291 }
4292 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4293 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4294 if(internal_branch(regs[t].is32,ba[i]+4))
4295 assem_debug("branch: internal\n");
4296 else
4297 assem_debug("branch: external\n");
4298 assert(internal_branch(regs[t].is32,ba[i]+4));
4299 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4300 emit_jmp(0);
4301}
4302
4303void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4304{
4305 int count;
b14b6a8f 4306 void *jaddr;
4307 void *idle=NULL;
b6e87b2b 4308 int t=0;
57871462 4309 if(itype[i]==RJUMP)
4310 {
4311 *adj=0;
4312 }
4313 //if(ba[i]>=start && ba[i]<(start+slen*4))
4314 if(internal_branch(branch_regs[i].is32,ba[i]))
4315 {
b6e87b2b 4316 t=(ba[i]-start)>>2;
57871462 4317 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4318 else *adj=ccadj[t];
4319 }
4320 else
4321 {
4322 *adj=0;
4323 }
4324 count=ccadj[i];
4325 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4326 // Idle loop
4327 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
b14b6a8f 4328 idle=out;
57871462 4329 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4330 emit_andimm(HOST_CCREG,3,HOST_CCREG);
b14b6a8f 4331 jaddr=out;
57871462 4332 emit_jmp(0);
4333 }
4334 else if(*adj==0||invert) {
b6e87b2b 4335 int cycles=CLOCK_ADJUST(count+2);
4336 // faster loop HACK
4337 if (t&&*adj) {
4338 int rel=t-i;
4339 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4340 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4341 }
4342 emit_addimm_and_set_flags(cycles,HOST_CCREG);
b14b6a8f 4343 jaddr=out;
57871462 4344 emit_jns(0);
4345 }
4346 else
4347 {
2573466a 4348 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
b14b6a8f 4349 jaddr=out;
57871462 4350 emit_jns(0);
4351 }
b14b6a8f 4352 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
57871462 4353}
4354
b14b6a8f 4355static void do_ccstub(int n)
57871462 4356{
4357 literal_pool(256);
b14b6a8f 4358 assem_debug("do_ccstub %x\n",start+stubs[n].b*4);
4359 set_jump_target(stubs[n].addr, out);
4360 int i=stubs[n].b;
4361 if(stubs[n].d==NULLDS) {
57871462 4362 // Delay slot instruction is nullified ("likely" branch)
4363 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4364 }
b14b6a8f 4365 else if(stubs[n].d!=TAKEN) {
57871462 4366 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4367 }
4368 else {
4369 if(internal_branch(branch_regs[i].is32,ba[i]))
4370 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4371 }
b14b6a8f 4372 if(stubs[n].c!=-1)
57871462 4373 {
4374 // Save PC as return address
b14b6a8f 4375 emit_movimm(stubs[n].c,EAX);
57871462 4376 emit_writeword(EAX,(int)&pcaddr);
4377 }
4378 else
4379 {
4380 // Return address depends on which way the branch goes
4381 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4382 {
4383 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4384 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4385 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4386 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4387 if(rs1[i]==0)
4388 {
4389 s1l=s2l;s1h=s2h;
4390 s2l=s2h=-1;
4391 }
4392 else if(rs2[i]==0)
4393 {
4394 s2l=s2h=-1;
4395 }
4396 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4397 s1h=s2h=-1;
4398 }
4399 assert(s1l>=0);
4400 #ifdef DESTRUCTIVE_WRITEBACK
4401 if(rs1[i]) {
4402 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4403 emit_loadreg(rs1[i],s1l);
9f51b4b9 4404 }
57871462 4405 else {
4406 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4407 emit_loadreg(rs2[i],s1l);
4408 }
4409 if(s2l>=0)
4410 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4411 emit_loadreg(rs2[i],s2l);
4412 #endif
4413 int hr=0;
5194fb95 4414 int addr=-1,alt=-1,ntaddr=-1;
57871462 4415 while(hr<HOST_REGS)
4416 {
4417 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4418 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4419 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4420 {
4421 addr=hr++;break;
4422 }
4423 hr++;
4424 }
4425 while(hr<HOST_REGS)
4426 {
4427 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4428 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4429 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4430 {
4431 alt=hr++;break;
4432 }
4433 hr++;
4434 }
4435 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4436 {
4437 while(hr<HOST_REGS)
4438 {
4439 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4440 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4441 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4442 {
4443 ntaddr=hr;break;
4444 }
4445 hr++;
4446 }
4447 assert(hr<HOST_REGS);
4448 }
4449 if((opcode[i]&0x2f)==4) // BEQ
4450 {
4451 #ifdef HAVE_CMOV_IMM
4452 if(s1h<0) {
4453 if(s2l>=0) emit_cmp(s1l,s2l);
4454 else emit_test(s1l,s1l);
4455 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4456 }
4457 else
4458 #endif
4459 {
4460 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4461 if(s1h>=0) {
4462 if(s2h>=0) emit_cmp(s1h,s2h);
4463 else emit_test(s1h,s1h);
4464 emit_cmovne_reg(alt,addr);
4465 }
4466 if(s2l>=0) emit_cmp(s1l,s2l);
4467 else emit_test(s1l,s1l);
4468 emit_cmovne_reg(alt,addr);
4469 }
4470 }
4471 if((opcode[i]&0x2f)==5) // BNE
4472 {
4473 #ifdef HAVE_CMOV_IMM
4474 if(s1h<0) {
4475 if(s2l>=0) emit_cmp(s1l,s2l);
4476 else emit_test(s1l,s1l);
4477 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4478 }
4479 else
4480 #endif
4481 {
4482 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4483 if(s1h>=0) {
4484 if(s2h>=0) emit_cmp(s1h,s2h);
4485 else emit_test(s1h,s1h);
4486 emit_cmovne_reg(alt,addr);
4487 }
4488 if(s2l>=0) emit_cmp(s1l,s2l);
4489 else emit_test(s1l,s1l);
4490 emit_cmovne_reg(alt,addr);
4491 }
4492 }
4493 if((opcode[i]&0x2f)==6) // BLEZ
4494 {
4495 //emit_movimm(ba[i],alt);
4496 //emit_movimm(start+i*4+8,addr);
4497 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4498 emit_cmpimm(s1l,1);
4499 if(s1h>=0) emit_mov(addr,ntaddr);
4500 emit_cmovl_reg(alt,addr);
4501 if(s1h>=0) {
4502 emit_test(s1h,s1h);
4503 emit_cmovne_reg(ntaddr,addr);
4504 emit_cmovs_reg(alt,addr);
4505 }
4506 }
4507 if((opcode[i]&0x2f)==7) // BGTZ
4508 {
4509 //emit_movimm(ba[i],addr);
4510 //emit_movimm(start+i*4+8,ntaddr);
4511 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4512 emit_cmpimm(s1l,1);
4513 if(s1h>=0) emit_mov(addr,alt);
4514 emit_cmovl_reg(ntaddr,addr);
4515 if(s1h>=0) {
4516 emit_test(s1h,s1h);
4517 emit_cmovne_reg(alt,addr);
4518 emit_cmovs_reg(ntaddr,addr);
4519 }
4520 }
4521 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4522 {
4523 //emit_movimm(ba[i],alt);
4524 //emit_movimm(start+i*4+8,addr);
4525 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4526 if(s1h>=0) emit_test(s1h,s1h);
4527 else emit_test(s1l,s1l);
4528 emit_cmovs_reg(alt,addr);
4529 }
4530 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4531 {
4532 //emit_movimm(ba[i],addr);
4533 //emit_movimm(start+i*4+8,alt);
4534 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4535 if(s1h>=0) emit_test(s1h,s1h);
4536 else emit_test(s1l,s1l);
4537 emit_cmovs_reg(alt,addr);
4538 }
4539 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4540 if(source[i]&0x10000) // BC1T
4541 {
4542 //emit_movimm(ba[i],alt);
4543 //emit_movimm(start+i*4+8,addr);
4544 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4545 emit_testimm(s1l,0x800000);
4546 emit_cmovne_reg(alt,addr);
4547 }
4548 else // BC1F
4549 {
4550 //emit_movimm(ba[i],addr);
4551 //emit_movimm(start+i*4+8,alt);
4552 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4553 emit_testimm(s1l,0x800000);
4554 emit_cmovne_reg(alt,addr);
4555 }
4556 }
4557 emit_writeword(addr,(int)&pcaddr);
4558 }
4559 else
4560 if(itype[i]==RJUMP)
4561 {
4562 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4563 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4564 r=get_reg(branch_regs[i].regmap,RTEMP);
4565 }
4566 emit_writeword(r,(int)&pcaddr);
4567 }
c43b5311 4568 else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
57871462 4569 }
4570 // Update cycle count
4571 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
b14b6a8f 4572 if(stubs[n].a) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n].a),HOST_CCREG);
57871462 4573 emit_call((int)cc_interrupt);
b14b6a8f 4574 if(stubs[n].a) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n].a),HOST_CCREG);
4575 if(stubs[n].d==TAKEN) {
57871462 4576 if(internal_branch(branch_regs[i].is32,ba[i]))
4577 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4578 else if(itype[i]==RJUMP) {
4579 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4580 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4581 else
4582 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4583 }
b14b6a8f 4584 }else if(stubs[n].d==NOTTAKEN) {
57871462 4585 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4586 else load_all_regs(branch_regs[i].regmap);
b14b6a8f 4587 }else if(stubs[n].d==NULLDS) {
57871462 4588 // Delay slot instruction is nullified ("likely" branch)
4589 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4590 else load_all_regs(regs[i].regmap);
4591 }else{
4592 load_all_regs(branch_regs[i].regmap);
4593 }
b14b6a8f 4594 emit_jmp(stubs[n].retaddr);
57871462 4595}
4596
e2b5e7aa 4597static void add_to_linker(int addr,int target,int ext)
57871462 4598{
4599 link_addr[linkcount][0]=addr;
4600 link_addr[linkcount][1]=target;
9f51b4b9 4601 link_addr[linkcount][2]=ext;
57871462 4602 linkcount++;
4603}
4604
eba830cd 4605static void ujump_assemble_write_ra(int i)
4606{
4607 int rt;
4608 unsigned int return_address;
4609 rt=get_reg(branch_regs[i].regmap,31);
4610 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4611 //assert(rt>=0);
4612 return_address=start+i*4+8;
4613 if(rt>=0) {
4614 #ifdef USE_MINI_HT
4615 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
4616 int temp=-1; // note: must be ds-safe
4617 #ifdef HOST_TEMPREG
4618 temp=HOST_TEMPREG;
4619 #endif
4620 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4621 else emit_movimm(return_address,rt);
4622 }
4623 else
4624 #endif
4625 {
4626 #ifdef REG_PREFETCH
9f51b4b9 4627 if(temp>=0)
eba830cd 4628 {
df4dc2b1 4629 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table_get(return_address),temp);
eba830cd 4630 }
4631 #endif
4632 emit_movimm(return_address,rt); // PC into link register
4633 #ifdef IMM_PREFETCH
df4dc2b1 4634 emit_prefetch(hash_table_get(return_address));
eba830cd 4635 #endif
4636 }
4637 }
4638}
4639
57871462 4640void ujump_assemble(int i,struct regstat *i_regs)
4641{
eba830cd 4642 int ra_done=0;
57871462 4643 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4644 address_generation(i+1,i_regs,regs[i].regmap_entry);
4645 #ifdef REG_PREFETCH
4646 int temp=get_reg(branch_regs[i].regmap,PTEMP);
9f51b4b9 4647 if(rt1[i]==31&&temp>=0)
57871462 4648 {
581335b0 4649 signed char *i_regmap=i_regs->regmap;
57871462 4650 int return_address=start+i*4+8;
9f51b4b9 4651 if(get_reg(branch_regs[i].regmap,31)>0)
df4dc2b1 4652 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table_get(return_address),temp);
57871462 4653 }
4654 #endif
eba830cd 4655 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4656 ujump_assemble_write_ra(i); // writeback ra for DS
4657 ra_done=1;
57871462 4658 }
4ef8f67d 4659 ds_assemble(i+1,i_regs);
4660 uint64_t bc_unneeded=branch_regs[i].u;
4661 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4662 bc_unneeded|=1|(1LL<<rt1[i]);
4663 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4664 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4665 bc_unneeded,bc_unneeded_upper);
4666 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 4667 if(!ra_done&&rt1[i]==31)
4668 ujump_assemble_write_ra(i);
57871462 4669 int cc,adj;
4670 cc=get_reg(branch_regs[i].regmap,CCREG);
4671 assert(cc==HOST_CCREG);
4672 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4673 #ifdef REG_PREFETCH
4674 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4675 #endif
4676 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 4677 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 4678 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4679 if(internal_branch(branch_regs[i].is32,ba[i]))
4680 assem_debug("branch: internal\n");
4681 else
4682 assem_debug("branch: external\n");
4683 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4684 ds_assemble_entry(i);
4685 }
4686 else {
4687 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4688 emit_jmp(0);
4689 }
4690}
4691
eba830cd 4692static void rjump_assemble_write_ra(int i)
4693{
4694 int rt,return_address;
4695 assert(rt1[i+1]!=rt1[i]);
4696 assert(rt2[i+1]!=rt1[i]);
4697 rt=get_reg(branch_regs[i].regmap,rt1[i]);
4698 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4699 assert(rt>=0);
4700 return_address=start+i*4+8;
4701 #ifdef REG_PREFETCH
9f51b4b9 4702 if(temp>=0)
eba830cd 4703 {
df4dc2b1 4704 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table_get(return_address),temp);
eba830cd 4705 }
4706 #endif
4707 emit_movimm(return_address,rt); // PC into link register
4708 #ifdef IMM_PREFETCH
df4dc2b1 4709 emit_prefetch(hash_table_get(return_address));
eba830cd 4710 #endif
4711}
4712
57871462 4713void rjump_assemble(int i,struct regstat *i_regs)
4714{
57871462 4715 int temp;
581335b0 4716 int rs,cc;
eba830cd 4717 int ra_done=0;
57871462 4718 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4719 assert(rs>=0);
4720 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4721 // Delay slot abuse, make a copy of the branch address register
4722 temp=get_reg(branch_regs[i].regmap,RTEMP);
4723 assert(temp>=0);
4724 assert(regs[i].regmap[temp]==RTEMP);
4725 emit_mov(rs,temp);
4726 rs=temp;
4727 }
4728 address_generation(i+1,i_regs,regs[i].regmap_entry);
4729 #ifdef REG_PREFETCH
9f51b4b9 4730 if(rt1[i]==31)
57871462 4731 {
4732 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
581335b0 4733 signed char *i_regmap=i_regs->regmap;
57871462 4734 int return_address=start+i*4+8;
df4dc2b1 4735 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table_get(return_address),temp);
57871462 4736 }
4737 }
4738 #endif
4739 #ifdef USE_MINI_HT
4740 if(rs1[i]==31) {
4741 int rh=get_reg(regs[i].regmap,RHASH);
4742 if(rh>=0) do_preload_rhash(rh);
4743 }
4744 #endif
eba830cd 4745 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4746 rjump_assemble_write_ra(i);
4747 ra_done=1;
57871462 4748 }
d5910d5d 4749 ds_assemble(i+1,i_regs);
4750 uint64_t bc_unneeded=branch_regs[i].u;
4751 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4752 bc_unneeded|=1|(1LL<<rt1[i]);
4753 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4754 bc_unneeded&=~(1LL<<rs1[i]);
4755 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4756 bc_unneeded,bc_unneeded_upper);
4757 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 4758 if(!ra_done&&rt1[i]!=0)
4759 rjump_assemble_write_ra(i);
57871462 4760 cc=get_reg(branch_regs[i].regmap,CCREG);
4761 assert(cc==HOST_CCREG);
581335b0 4762 (void)cc;
57871462 4763 #ifdef USE_MINI_HT
4764 int rh=get_reg(branch_regs[i].regmap,RHASH);
4765 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4766 if(rs1[i]==31) {
4767 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4768 do_preload_rhtbl(ht);
4769 do_rhash(rs,rh);
4770 }
4771 #endif
4772 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4773 #ifdef DESTRUCTIVE_WRITEBACK
4774 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4775 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4776 emit_loadreg(rs1[i],rs);
4777 }
4778 }
4779 #endif
4780 #ifdef REG_PREFETCH
4781 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4782 #endif
4783 #ifdef USE_MINI_HT
4784 if(rs1[i]==31) {
4785 do_miniht_load(ht,rh);
4786 }
4787 #endif
4788 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4789 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4790 //assert(adj==0);
2573466a 4791 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
b14b6a8f 4792 add_stub(CC_STUB,out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
911f2d55 4793 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4794 // special case for RFE
4795 emit_jmp(0);
4796 else
71e490c5 4797 emit_jns(0);
57871462 4798 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4799 #ifdef USE_MINI_HT
4800 if(rs1[i]==31) {
4801 do_miniht_jump(rs,rh,ht);
4802 }
4803 else
4804 #endif
4805 {
57871462 4806 emit_jmp(jump_vaddr_reg[rs]);
4807 }
57871462 4808 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4809 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4810 #endif
4811}
4812
4813void cjump_assemble(int i,struct regstat *i_regs)
4814{
4815 signed char *i_regmap=i_regs->regmap;
4816 int cc;
4817 int match;
4818 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4819 assem_debug("match=%d\n",match);
4820 int s1h,s1l,s2h,s2l;
4821 int prev_cop1_usable=cop1_usable;
4822 int unconditional=0,nop=0;
4823 int only32=0;
57871462 4824 int invert=0;
4825 int internal=internal_branch(branch_regs[i].is32,ba[i]);
4826 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 4827 if(!match) invert=1;
4828 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4829 if(i>(ba[i]-start)>>2) invert=1;
4830 #endif
9f51b4b9 4831
e1190b87 4832 if(ooo[i]) {
57871462 4833 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4834 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4835 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4836 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4837 }
4838 else {
4839 s1l=get_reg(i_regmap,rs1[i]);
4840 s1h=get_reg(i_regmap,rs1[i]|64);
4841 s2l=get_reg(i_regmap,rs2[i]);
4842 s2h=get_reg(i_regmap,rs2[i]|64);
4843 }
4844 if(rs1[i]==0&&rs2[i]==0)
4845 {
4846 if(opcode[i]&1) nop=1;
4847 else unconditional=1;
4848 //assert(opcode[i]!=5);
4849 //assert(opcode[i]!=7);
4850 //assert(opcode[i]!=0x15);
4851 //assert(opcode[i]!=0x17);
4852 }
4853 else if(rs1[i]==0)
4854 {
4855 s1l=s2l;s1h=s2h;
4856 s2l=s2h=-1;
4857 only32=(regs[i].was32>>rs2[i])&1;
4858 }
4859 else if(rs2[i]==0)
4860 {
4861 s2l=s2h=-1;
4862 only32=(regs[i].was32>>rs1[i])&1;
4863 }
4864 else {
4865 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
4866 }
4867
e1190b87 4868 if(ooo[i]) {
57871462 4869 // Out of order execution (delay slot first)
4870 //printf("OOOE\n");
4871 address_generation(i+1,i_regs,regs[i].regmap_entry);
4872 ds_assemble(i+1,i_regs);
4873 int adj;
4874 uint64_t bc_unneeded=branch_regs[i].u;
4875 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4876 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
4877 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
4878 bc_unneeded|=1;
4879 bc_unneeded_upper|=1;
4880 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4881 bc_unneeded,bc_unneeded_upper);
4882 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
4883 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4884 cc=get_reg(branch_regs[i].regmap,CCREG);
4885 assert(cc==HOST_CCREG);
9f51b4b9 4886 if(unconditional)
57871462 4887 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4888 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
4889 //assem_debug("cycle count (adj)\n");
4890 if(unconditional) {
4891 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4892 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 4893 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 4894 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4895 if(internal)
4896 assem_debug("branch: internal\n");
4897 else
4898 assem_debug("branch: external\n");
4899 if(internal&&is_ds[(ba[i]-start)>>2]) {
4900 ds_assemble_entry(i);
4901 }
4902 else {
4903 add_to_linker((int)out,ba[i],internal);
4904 emit_jmp(0);
4905 }
4906 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4907 if(((u_int)out)&7) emit_addnop(0);
4908 #endif
4909 }
4910 }
4911 else if(nop) {
2573466a 4912 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
b14b6a8f 4913 void *jaddr=out;
57871462 4914 emit_jns(0);
b14b6a8f 4915 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
57871462 4916 }
4917 else {
df4dc2b1 4918 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
57871462 4919 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 4920 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 4921 if(!only32)
4922 {
4923 assert(s1h>=0);
4924 if(opcode[i]==4) // BEQ
4925 {
4926 if(s2h>=0) emit_cmp(s1h,s2h);
4927 else emit_test(s1h,s1h);
df4dc2b1 4928 nottaken1=out;
57871462 4929 emit_jne(1);
4930 }
4931 if(opcode[i]==5) // BNE
4932 {
4933 if(s2h>=0) emit_cmp(s1h,s2h);
4934 else emit_test(s1h,s1h);
df4dc2b1 4935 if(invert) taken=out;
57871462 4936 else add_to_linker((int)out,ba[i],internal);
4937 emit_jne(0);
4938 }
4939 if(opcode[i]==6) // BLEZ
4940 {
4941 emit_test(s1h,s1h);
df4dc2b1 4942 if(invert) taken=out;
57871462 4943 else add_to_linker((int)out,ba[i],internal);
4944 emit_js(0);
df4dc2b1 4945 nottaken1=out;
57871462 4946 emit_jne(1);
4947 }
4948 if(opcode[i]==7) // BGTZ
4949 {
4950 emit_test(s1h,s1h);
df4dc2b1 4951 nottaken1=out;
57871462 4952 emit_js(1);
df4dc2b1 4953 if(invert) taken=out;
57871462 4954 else add_to_linker((int)out,ba[i],internal);
4955 emit_jne(0);
4956 }
4957 } // if(!only32)
9f51b4b9 4958
57871462 4959 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4960 assert(s1l>=0);
4961 if(opcode[i]==4) // BEQ
4962 {
4963 if(s2l>=0) emit_cmp(s1l,s2l);
4964 else emit_test(s1l,s1l);
4965 if(invert){
df4dc2b1 4966 nottaken=out;
57871462 4967 emit_jne(1);
4968 }else{
4969 add_to_linker((int)out,ba[i],internal);
4970 emit_jeq(0);
4971 }
4972 }
4973 if(opcode[i]==5) // BNE
4974 {
4975 if(s2l>=0) emit_cmp(s1l,s2l);
4976 else emit_test(s1l,s1l);
4977 if(invert){
df4dc2b1 4978 nottaken=out;
57871462 4979 emit_jeq(1);
4980 }else{
4981 add_to_linker((int)out,ba[i],internal);
4982 emit_jne(0);
4983 }
4984 }
4985 if(opcode[i]==6) // BLEZ
4986 {
4987 emit_cmpimm(s1l,1);
4988 if(invert){
df4dc2b1 4989 nottaken=out;
57871462 4990 emit_jge(1);
4991 }else{
4992 add_to_linker((int)out,ba[i],internal);
4993 emit_jl(0);
4994 }
4995 }
4996 if(opcode[i]==7) // BGTZ
4997 {
4998 emit_cmpimm(s1l,1);
4999 if(invert){
df4dc2b1 5000 nottaken=out;
57871462 5001 emit_jl(1);
5002 }else{
5003 add_to_linker((int)out,ba[i],internal);
5004 emit_jge(0);
5005 }
5006 }
5007 if(invert) {
df4dc2b1 5008 if(taken) set_jump_target(taken, out);
57871462 5009 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5010 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5011 if(adj) {
2573466a 5012 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5013 add_to_linker((int)out,ba[i],internal);
5014 }else{
5015 emit_addnop(13);
5016 add_to_linker((int)out,ba[i],internal*2);
5017 }
5018 emit_jmp(0);
5019 }else
5020 #endif
5021 {
2573466a 5022 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5023 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5024 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5025 if(internal)
5026 assem_debug("branch: internal\n");
5027 else
5028 assem_debug("branch: external\n");
5029 if(internal&&is_ds[(ba[i]-start)>>2]) {
5030 ds_assemble_entry(i);
5031 }
5032 else {
5033 add_to_linker((int)out,ba[i],internal);
5034 emit_jmp(0);
5035 }
5036 }
df4dc2b1 5037 set_jump_target(nottaken, out);
57871462 5038 }
5039
df4dc2b1 5040 if(nottaken1) set_jump_target(nottaken1, out);
57871462 5041 if(adj) {
2573466a 5042 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5043 }
5044 } // (!unconditional)
5045 } // if(ooo)
5046 else
5047 {
5048 // In-order execution (branch first)
5049 //if(likely[i]) printf("IOL\n");
5050 //else
5051 //printf("IOE\n");
df4dc2b1 5052 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
57871462 5053 if(!unconditional&&!nop) {
5054 if(!only32)
5055 {
5056 assert(s1h>=0);
5057 if((opcode[i]&0x2f)==4) // BEQ
5058 {
5059 if(s2h>=0) emit_cmp(s1h,s2h);
5060 else emit_test(s1h,s1h);
df4dc2b1 5061 nottaken1=out;
57871462 5062 emit_jne(2);
5063 }
5064 if((opcode[i]&0x2f)==5) // BNE
5065 {
5066 if(s2h>=0) emit_cmp(s1h,s2h);
5067 else emit_test(s1h,s1h);
df4dc2b1 5068 taken=out;
57871462 5069 emit_jne(1);
5070 }
5071 if((opcode[i]&0x2f)==6) // BLEZ
5072 {
5073 emit_test(s1h,s1h);
df4dc2b1 5074 taken=out;
57871462 5075 emit_js(1);
df4dc2b1 5076 nottaken1=out;
57871462 5077 emit_jne(2);
5078 }
5079 if((opcode[i]&0x2f)==7) // BGTZ
5080 {
5081 emit_test(s1h,s1h);
df4dc2b1 5082 nottaken1=out;
57871462 5083 emit_js(2);
df4dc2b1 5084 taken=out;
57871462 5085 emit_jne(1);
5086 }
5087 } // if(!only32)
9f51b4b9 5088
57871462 5089 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5090 assert(s1l>=0);
5091 if((opcode[i]&0x2f)==4) // BEQ
5092 {
5093 if(s2l>=0) emit_cmp(s1l,s2l);
5094 else emit_test(s1l,s1l);
df4dc2b1 5095 nottaken=out;
57871462 5096 emit_jne(2);
5097 }
5098 if((opcode[i]&0x2f)==5) // BNE
5099 {
5100 if(s2l>=0) emit_cmp(s1l,s2l);
5101 else emit_test(s1l,s1l);
df4dc2b1 5102 nottaken=out;
57871462 5103 emit_jeq(2);
5104 }
5105 if((opcode[i]&0x2f)==6) // BLEZ
5106 {
5107 emit_cmpimm(s1l,1);
df4dc2b1 5108 nottaken=out;
57871462 5109 emit_jge(2);
5110 }
5111 if((opcode[i]&0x2f)==7) // BGTZ
5112 {
5113 emit_cmpimm(s1l,1);
df4dc2b1 5114 nottaken=out;
57871462 5115 emit_jl(2);
5116 }
5117 } // if(!unconditional)
5118 int adj;
5119 uint64_t ds_unneeded=branch_regs[i].u;
5120 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5121 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5122 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5123 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5124 ds_unneeded|=1;
5125 ds_unneeded_upper|=1;
5126 // branch taken
5127 if(!nop) {
df4dc2b1 5128 if(taken) set_jump_target(taken, out);
57871462 5129 assem_debug("1:\n");
5130 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5131 ds_unneeded,ds_unneeded_upper);
5132 // load regs
5133 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5134 address_generation(i+1,&branch_regs[i],0);
5135 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5136 ds_assemble(i+1,&branch_regs[i]);
5137 cc=get_reg(branch_regs[i].regmap,CCREG);
5138 if(cc==-1) {
5139 emit_loadreg(CCREG,cc=HOST_CCREG);
5140 // CHECK: Is the following instruction (fall thru) allocated ok?
5141 }
5142 assert(cc==HOST_CCREG);
5143 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5144 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5145 assem_debug("cycle count (adj)\n");
2573466a 5146 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5147 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5148 if(internal)
5149 assem_debug("branch: internal\n");
5150 else
5151 assem_debug("branch: external\n");
5152 if(internal&&is_ds[(ba[i]-start)>>2]) {
5153 ds_assemble_entry(i);
5154 }
5155 else {
5156 add_to_linker((int)out,ba[i],internal);
5157 emit_jmp(0);
5158 }
5159 }
5160 // branch not taken
5161 cop1_usable=prev_cop1_usable;
5162 if(!unconditional) {
df4dc2b1 5163 if(nottaken1) set_jump_target(nottaken1, out);
5164 set_jump_target(nottaken, out);
57871462 5165 assem_debug("2:\n");
5166 if(!likely[i]) {
5167 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5168 ds_unneeded,ds_unneeded_upper);
5169 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5170 address_generation(i+1,&branch_regs[i],0);
5171 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5172 ds_assemble(i+1,&branch_regs[i]);
5173 }
5174 cc=get_reg(branch_regs[i].regmap,CCREG);
5175 if(cc==-1&&!likely[i]) {
5176 // Cycle count isn't in a register, temporarily load it then write it out
5177 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5178 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
b14b6a8f 5179 void *jaddr=out;
57871462 5180 emit_jns(0);
b14b6a8f 5181 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
57871462 5182 emit_storereg(CCREG,HOST_CCREG);
5183 }
5184 else{
5185 cc=get_reg(i_regmap,CCREG);
5186 assert(cc==HOST_CCREG);
2573466a 5187 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
b14b6a8f 5188 void *jaddr=out;
57871462 5189 emit_jns(0);
b14b6a8f 5190 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
57871462 5191 }
5192 }
5193 }
5194}
5195
5196void sjump_assemble(int i,struct regstat *i_regs)
5197{
5198 signed char *i_regmap=i_regs->regmap;
5199 int cc;
5200 int match;
5201 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5202 assem_debug("smatch=%d\n",match);
5203 int s1h,s1l;
5204 int prev_cop1_usable=cop1_usable;
5205 int unconditional=0,nevertaken=0;
5206 int only32=0;
57871462 5207 int invert=0;
5208 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5209 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5210 if(!match) invert=1;
5211 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5212 if(i>(ba[i]-start)>>2) invert=1;
5213 #endif
5214
5215 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5216 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5217
e1190b87 5218 if(ooo[i]) {
57871462 5219 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5220 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5221 }
5222 else {
5223 s1l=get_reg(i_regmap,rs1[i]);
5224 s1h=get_reg(i_regmap,rs1[i]|64);
5225 }
5226 if(rs1[i]==0)
5227 {
5228 if(opcode2[i]&1) unconditional=1;
5229 else nevertaken=1;
5230 // These are never taken (r0 is never less than zero)
5231 //assert(opcode2[i]!=0);
5232 //assert(opcode2[i]!=2);
5233 //assert(opcode2[i]!=0x10);
5234 //assert(opcode2[i]!=0x12);
5235 }
5236 else {
5237 only32=(regs[i].was32>>rs1[i])&1;
5238 }
5239
e1190b87 5240 if(ooo[i]) {
57871462 5241 // Out of order execution (delay slot first)
5242 //printf("OOOE\n");
5243 address_generation(i+1,i_regs,regs[i].regmap_entry);
5244 ds_assemble(i+1,i_regs);
5245 int adj;
5246 uint64_t bc_unneeded=branch_regs[i].u;
5247 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5248 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5249 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5250 bc_unneeded|=1;
5251 bc_unneeded_upper|=1;
5252 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5253 bc_unneeded,bc_unneeded_upper);
5254 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5255 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5256 if(rt1[i]==31) {
5257 int rt,return_address;
57871462 5258 rt=get_reg(branch_regs[i].regmap,31);
5259 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5260 if(rt>=0) {
5261 // Save the PC even if the branch is not taken
5262 return_address=start+i*4+8;
5263 emit_movimm(return_address,rt); // PC into link register
5264 #ifdef IMM_PREFETCH
df4dc2b1 5265 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
57871462 5266 #endif
5267 }
5268 }
5269 cc=get_reg(branch_regs[i].regmap,CCREG);
5270 assert(cc==HOST_CCREG);
9f51b4b9 5271 if(unconditional)
57871462 5272 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5273 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5274 assem_debug("cycle count (adj)\n");
5275 if(unconditional) {
5276 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5277 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5278 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5279 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5280 if(internal)
5281 assem_debug("branch: internal\n");
5282 else
5283 assem_debug("branch: external\n");
5284 if(internal&&is_ds[(ba[i]-start)>>2]) {
5285 ds_assemble_entry(i);
5286 }
5287 else {
5288 add_to_linker((int)out,ba[i],internal);
5289 emit_jmp(0);
5290 }
5291 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5292 if(((u_int)out)&7) emit_addnop(0);
5293 #endif
5294 }
5295 }
5296 else if(nevertaken) {
2573466a 5297 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
b14b6a8f 5298 void *jaddr=out;
57871462 5299 emit_jns(0);
b14b6a8f 5300 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
57871462 5301 }
5302 else {
df4dc2b1 5303 void *nottaken = NULL;
57871462 5304 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5305 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5306 if(!only32)
5307 {
5308 assert(s1h>=0);
df894a3a 5309 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5310 {
5311 emit_test(s1h,s1h);
5312 if(invert){
df4dc2b1 5313 nottaken=out;
57871462 5314 emit_jns(1);
5315 }else{
5316 add_to_linker((int)out,ba[i],internal);
5317 emit_js(0);
5318 }
5319 }
df894a3a 5320 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5321 {
5322 emit_test(s1h,s1h);
5323 if(invert){
df4dc2b1 5324 nottaken=out;
57871462 5325 emit_js(1);
5326 }else{
5327 add_to_linker((int)out,ba[i],internal);
5328 emit_jns(0);
5329 }
5330 }
5331 } // if(!only32)
5332 else
5333 {
5334 assert(s1l>=0);
df894a3a 5335 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5336 {
5337 emit_test(s1l,s1l);
5338 if(invert){
df4dc2b1 5339 nottaken=out;
57871462 5340 emit_jns(1);
5341 }else{
5342 add_to_linker((int)out,ba[i],internal);
5343 emit_js(0);
5344 }
5345 }
df894a3a 5346 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5347 {
5348 emit_test(s1l,s1l);
5349 if(invert){
df4dc2b1 5350 nottaken=out;
57871462 5351 emit_js(1);
5352 }else{
5353 add_to_linker((int)out,ba[i],internal);
5354 emit_jns(0);
5355 }
5356 }
5357 } // if(!only32)
9f51b4b9 5358
57871462 5359 if(invert) {
5360 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5361 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5362 if(adj) {
2573466a 5363 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5364 add_to_linker((int)out,ba[i],internal);
5365 }else{
5366 emit_addnop(13);
5367 add_to_linker((int)out,ba[i],internal*2);
5368 }
5369 emit_jmp(0);
5370 }else
5371 #endif
5372 {
2573466a 5373 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5374 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5375 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5376 if(internal)
5377 assem_debug("branch: internal\n");
5378 else
5379 assem_debug("branch: external\n");
5380 if(internal&&is_ds[(ba[i]-start)>>2]) {
5381 ds_assemble_entry(i);
5382 }
5383 else {
5384 add_to_linker((int)out,ba[i],internal);
5385 emit_jmp(0);
5386 }
5387 }
df4dc2b1 5388 set_jump_target(nottaken, out);
57871462 5389 }
5390
5391 if(adj) {
2573466a 5392 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5393 }
5394 } // (!unconditional)
5395 } // if(ooo)
5396 else
5397 {
5398 // In-order execution (branch first)
5399 //printf("IOE\n");
df4dc2b1 5400 void *nottaken = NULL;
a6491170 5401 if(rt1[i]==31) {
5402 int rt,return_address;
a6491170 5403 rt=get_reg(branch_regs[i].regmap,31);
5404 if(rt>=0) {
5405 // Save the PC even if the branch is not taken
5406 return_address=start+i*4+8;
5407 emit_movimm(return_address,rt); // PC into link register
5408 #ifdef IMM_PREFETCH
df4dc2b1 5409 emit_prefetch(hash_table_get(return_address));
a6491170 5410 #endif
5411 }
5412 }
57871462 5413 if(!unconditional) {
5414 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5415 if(!only32)
5416 {
5417 assert(s1h>=0);
a6491170 5418 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 5419 {
5420 emit_test(s1h,s1h);
df4dc2b1 5421 nottaken=out;
57871462 5422 emit_jns(1);
5423 }
a6491170 5424 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 5425 {
5426 emit_test(s1h,s1h);
df4dc2b1 5427 nottaken=out;
57871462 5428 emit_js(1);
5429 }
5430 } // if(!only32)
5431 else
5432 {
5433 assert(s1l>=0);
a6491170 5434 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 5435 {
5436 emit_test(s1l,s1l);
df4dc2b1 5437 nottaken=out;
57871462 5438 emit_jns(1);
5439 }
a6491170 5440 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 5441 {
5442 emit_test(s1l,s1l);
df4dc2b1 5443 nottaken=out;
57871462 5444 emit_js(1);
5445 }
5446 }
5447 } // if(!unconditional)
5448 int adj;
5449 uint64_t ds_unneeded=branch_regs[i].u;
5450 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5451 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5452 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5453 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5454 ds_unneeded|=1;
5455 ds_unneeded_upper|=1;
5456 // branch taken
5457 if(!nevertaken) {
5458 //assem_debug("1:\n");
5459 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5460 ds_unneeded,ds_unneeded_upper);
5461 // load regs
5462 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5463 address_generation(i+1,&branch_regs[i],0);
5464 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5465 ds_assemble(i+1,&branch_regs[i]);
5466 cc=get_reg(branch_regs[i].regmap,CCREG);
5467 if(cc==-1) {
5468 emit_loadreg(CCREG,cc=HOST_CCREG);
5469 // CHECK: Is the following instruction (fall thru) allocated ok?
5470 }
5471 assert(cc==HOST_CCREG);
5472 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5473 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5474 assem_debug("cycle count (adj)\n");
2573466a 5475 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5476 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5477 if(internal)
5478 assem_debug("branch: internal\n");
5479 else
5480 assem_debug("branch: external\n");
5481 if(internal&&is_ds[(ba[i]-start)>>2]) {
5482 ds_assemble_entry(i);
5483 }
5484 else {
5485 add_to_linker((int)out,ba[i],internal);
5486 emit_jmp(0);
5487 }
5488 }
5489 // branch not taken
5490 cop1_usable=prev_cop1_usable;
5491 if(!unconditional) {
df4dc2b1 5492 set_jump_target(nottaken, out);
57871462 5493 assem_debug("1:\n");
5494 if(!likely[i]) {
5495 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5496 ds_unneeded,ds_unneeded_upper);
5497 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5498 address_generation(i+1,&branch_regs[i],0);
5499 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5500 ds_assemble(i+1,&branch_regs[i]);
5501 }
5502 cc=get_reg(branch_regs[i].regmap,CCREG);
5503 if(cc==-1&&!likely[i]) {
5504 // Cycle count isn't in a register, temporarily load it then write it out
5505 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5506 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
b14b6a8f 5507 void *jaddr=out;
57871462 5508 emit_jns(0);
b14b6a8f 5509 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
57871462 5510 emit_storereg(CCREG,HOST_CCREG);
5511 }
5512 else{
5513 cc=get_reg(i_regmap,CCREG);
5514 assert(cc==HOST_CCREG);
2573466a 5515 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
b14b6a8f 5516 void *jaddr=out;
57871462 5517 emit_jns(0);
b14b6a8f 5518 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
57871462 5519 }
5520 }
5521 }
5522}
5523
5524void fjump_assemble(int i,struct regstat *i_regs)
5525{
5526 signed char *i_regmap=i_regs->regmap;
5527 int cc;
5528 int match;
5529 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5530 assem_debug("fmatch=%d\n",match);
5531 int fs,cs;
b14b6a8f 5532 void *eaddr;
57871462 5533 int invert=0;
5534 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5535 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5536 if(!match) invert=1;
5537 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5538 if(i>(ba[i]-start)>>2) invert=1;
5539 #endif
5540
e1190b87 5541 if(ooo[i]) {
57871462 5542 fs=get_reg(branch_regs[i].regmap,FSREG);
5543 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5544 }
5545 else {
5546 fs=get_reg(i_regmap,FSREG);
5547 }
5548
5549 // Check cop1 unusable
5550 if(!cop1_usable) {
5551 cs=get_reg(i_regmap,CSREG);
5552 assert(cs>=0);
5553 emit_testimm(cs,0x20000000);
b14b6a8f 5554 eaddr=out;
57871462 5555 emit_jeq(0);
b14b6a8f 5556 add_stub_r(FP_STUB,eaddr,out,i,cs,i_regs,0,0);
57871462 5557 cop1_usable=1;
5558 }
5559
e1190b87 5560 if(ooo[i]) {
57871462 5561 // Out of order execution (delay slot first)
5562 //printf("OOOE\n");
5563 ds_assemble(i+1,i_regs);
5564 int adj;
5565 uint64_t bc_unneeded=branch_regs[i].u;
5566 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5567 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5568 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5569 bc_unneeded|=1;
5570 bc_unneeded_upper|=1;
5571 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5572 bc_unneeded,bc_unneeded_upper);
5573 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5574 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5575 cc=get_reg(branch_regs[i].regmap,CCREG);
5576 assert(cc==HOST_CCREG);
5577 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5578 assem_debug("cycle count (adj)\n");
5579 if(1) {
df4dc2b1 5580 void *nottaken = NULL;
2573466a 5581 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5582 if(1) {
5583 assert(fs>=0);
5584 emit_testimm(fs,0x800000);
5585 if(source[i]&0x10000) // BC1T
5586 {
5587 if(invert){
df4dc2b1 5588 nottaken=out;
57871462 5589 emit_jeq(1);
5590 }else{
5591 add_to_linker((int)out,ba[i],internal);
5592 emit_jne(0);
5593 }
5594 }
5595 else // BC1F
5596 if(invert){
df4dc2b1 5597 nottaken=out;
57871462 5598 emit_jne(1);
5599 }else{
5600 add_to_linker((int)out,ba[i],internal);
5601 emit_jeq(0);
5602 }
5603 {
5604 }
5605 } // if(!only32)
9f51b4b9 5606
57871462 5607 if(invert) {
2573466a 5608 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5609 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5610 else if(match) emit_addnop(13);
5611 #endif
5612 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5613 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5614 if(internal)
5615 assem_debug("branch: internal\n");
5616 else
5617 assem_debug("branch: external\n");
5618 if(internal&&is_ds[(ba[i]-start)>>2]) {
5619 ds_assemble_entry(i);
5620 }
5621 else {
5622 add_to_linker((int)out,ba[i],internal);
5623 emit_jmp(0);
5624 }
df4dc2b1 5625 set_jump_target(nottaken, out);
57871462 5626 }
5627
5628 if(adj) {
2573466a 5629 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5630 }
5631 } // (!unconditional)
5632 } // if(ooo)
5633 else
5634 {
5635 // In-order execution (branch first)
5636 //printf("IOE\n");
df4dc2b1 5637 void *nottaken = NULL;
57871462 5638 if(1) {
5639 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5640 if(1) {
5641 assert(fs>=0);
5642 emit_testimm(fs,0x800000);
5643 if(source[i]&0x10000) // BC1T
5644 {
df4dc2b1 5645 nottaken=out;
57871462 5646 emit_jeq(1);
5647 }
5648 else // BC1F
5649 {
df4dc2b1 5650 nottaken=out;
57871462 5651 emit_jne(1);
5652 }
5653 }
5654 } // if(!unconditional)
5655 int adj;
5656 uint64_t ds_unneeded=branch_regs[i].u;
5657 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5658 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5659 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5660 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5661 ds_unneeded|=1;
5662 ds_unneeded_upper|=1;
5663 // branch taken
5664 //assem_debug("1:\n");
5665 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5666 ds_unneeded,ds_unneeded_upper);
5667 // load regs
5668 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5669 address_generation(i+1,&branch_regs[i],0);
5670 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5671 ds_assemble(i+1,&branch_regs[i]);
5672 cc=get_reg(branch_regs[i].regmap,CCREG);
5673 if(cc==-1) {
5674 emit_loadreg(CCREG,cc=HOST_CCREG);
5675 // CHECK: Is the following instruction (fall thru) allocated ok?
5676 }
5677 assert(cc==HOST_CCREG);
5678 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5679 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5680 assem_debug("cycle count (adj)\n");
2573466a 5681 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5682 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5683 if(internal)
5684 assem_debug("branch: internal\n");
5685 else
5686 assem_debug("branch: external\n");
5687 if(internal&&is_ds[(ba[i]-start)>>2]) {
5688 ds_assemble_entry(i);
5689 }
5690 else {
5691 add_to_linker((int)out,ba[i],internal);
5692 emit_jmp(0);
5693 }
5694
5695 // branch not taken
5696 if(1) { // <- FIXME (don't need this)
df4dc2b1 5697 set_jump_target(nottaken, out);
57871462 5698 assem_debug("1:\n");
5699 if(!likely[i]) {
5700 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5701 ds_unneeded,ds_unneeded_upper);
5702 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5703 address_generation(i+1,&branch_regs[i],0);
5704 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5705 ds_assemble(i+1,&branch_regs[i]);
5706 }
5707 cc=get_reg(branch_regs[i].regmap,CCREG);
5708 if(cc==-1&&!likely[i]) {
5709 // Cycle count isn't in a register, temporarily load it then write it out
5710 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5711 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
b14b6a8f 5712 void *jaddr=out;
57871462 5713 emit_jns(0);
b14b6a8f 5714 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
57871462 5715 emit_storereg(CCREG,HOST_CCREG);
5716 }
5717 else{
5718 cc=get_reg(i_regmap,CCREG);
5719 assert(cc==HOST_CCREG);
2573466a 5720 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
b14b6a8f 5721 void *jaddr=out;
57871462 5722 emit_jns(0);
b14b6a8f 5723 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
57871462 5724 }
5725 }
5726 }
5727}
5728
5729static void pagespan_assemble(int i,struct regstat *i_regs)
5730{
5731 int s1l=get_reg(i_regs->regmap,rs1[i]);
5732 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5733 int s2l=get_reg(i_regs->regmap,rs2[i]);
5734 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
df4dc2b1 5735 void *taken = NULL;
5736 void *nottaken = NULL;
57871462 5737 int unconditional=0;
5738 if(rs1[i]==0)
5739 {
5740 s1l=s2l;s1h=s2h;
5741 s2l=s2h=-1;
5742 }
5743 else if(rs2[i]==0)
5744 {
5745 s2l=s2h=-1;
5746 }
5747 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5748 s1h=s2h=-1;
5749 }
5750 int hr=0;
581335b0 5751 int addr=-1,alt=-1,ntaddr=-1;
57871462 5752 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5753 else {
5754 while(hr<HOST_REGS)
5755 {
5756 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5757 (i_regs->regmap[hr]&63)!=rs1[i] &&
5758 (i_regs->regmap[hr]&63)!=rs2[i] )
5759 {
5760 addr=hr++;break;
5761 }
5762 hr++;
5763 }
5764 }
5765 while(hr<HOST_REGS)
5766 {
5767 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5768 (i_regs->regmap[hr]&63)!=rs1[i] &&
5769 (i_regs->regmap[hr]&63)!=rs2[i] )
5770 {
5771 alt=hr++;break;
5772 }
5773 hr++;
5774 }
5775 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5776 {
5777 while(hr<HOST_REGS)
5778 {
5779 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5780 (i_regs->regmap[hr]&63)!=rs1[i] &&
5781 (i_regs->regmap[hr]&63)!=rs2[i] )
5782 {
5783 ntaddr=hr;break;
5784 }
5785 hr++;
5786 }
5787 }
5788 assert(hr<HOST_REGS);
5789 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5790 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5791 }
2573466a 5792 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5793 if(opcode[i]==2) // J
5794 {
5795 unconditional=1;
5796 }
5797 if(opcode[i]==3) // JAL
5798 {
5799 // TODO: mini_ht
5800 int rt=get_reg(i_regs->regmap,31);
5801 emit_movimm(start+i*4+8,rt);
5802 unconditional=1;
5803 }
5804 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5805 {
5806 emit_mov(s1l,addr);
5807 if(opcode2[i]==9) // JALR
5808 {
5067f341 5809 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 5810 emit_movimm(start+i*4+8,rt);
5811 }
5812 }
5813 if((opcode[i]&0x3f)==4) // BEQ
5814 {
5815 if(rs1[i]==rs2[i])
5816 {
5817 unconditional=1;
5818 }
5819 else
5820 #ifdef HAVE_CMOV_IMM
5821 if(s1h<0) {
5822 if(s2l>=0) emit_cmp(s1l,s2l);
5823 else emit_test(s1l,s1l);
5824 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5825 }
5826 else
5827 #endif
5828 {
5829 assert(s1l>=0);
5830 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5831 if(s1h>=0) {
5832 if(s2h>=0) emit_cmp(s1h,s2h);
5833 else emit_test(s1h,s1h);
5834 emit_cmovne_reg(alt,addr);
5835 }
5836 if(s2l>=0) emit_cmp(s1l,s2l);
5837 else emit_test(s1l,s1l);
5838 emit_cmovne_reg(alt,addr);
5839 }
5840 }
5841 if((opcode[i]&0x3f)==5) // BNE
5842 {
5843 #ifdef HAVE_CMOV_IMM
5844 if(s1h<0) {
5845 if(s2l>=0) emit_cmp(s1l,s2l);
5846 else emit_test(s1l,s1l);
5847 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5848 }
5849 else
5850 #endif
5851 {
5852 assert(s1l>=0);
5853 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5854 if(s1h>=0) {
5855 if(s2h>=0) emit_cmp(s1h,s2h);
5856 else emit_test(s1h,s1h);
5857 emit_cmovne_reg(alt,addr);
5858 }
5859 if(s2l>=0) emit_cmp(s1l,s2l);
5860 else emit_test(s1l,s1l);
5861 emit_cmovne_reg(alt,addr);
5862 }
5863 }
5864 if((opcode[i]&0x3f)==0x14) // BEQL
5865 {
5866 if(s1h>=0) {
5867 if(s2h>=0) emit_cmp(s1h,s2h);
5868 else emit_test(s1h,s1h);
df4dc2b1 5869 nottaken=out;
57871462 5870 emit_jne(0);
5871 }
5872 if(s2l>=0) emit_cmp(s1l,s2l);
5873 else emit_test(s1l,s1l);
df4dc2b1 5874 if(nottaken) set_jump_target(nottaken, out);
5875 nottaken=out;
57871462 5876 emit_jne(0);
5877 }
5878 if((opcode[i]&0x3f)==0x15) // BNEL
5879 {
5880 if(s1h>=0) {
5881 if(s2h>=0) emit_cmp(s1h,s2h);
5882 else emit_test(s1h,s1h);
df4dc2b1 5883 taken=out;
57871462 5884 emit_jne(0);
5885 }
5886 if(s2l>=0) emit_cmp(s1l,s2l);
5887 else emit_test(s1l,s1l);
df4dc2b1 5888 nottaken=out;
57871462 5889 emit_jeq(0);
df4dc2b1 5890 if(taken) set_jump_target(taken, out);
57871462 5891 }
5892 if((opcode[i]&0x3f)==6) // BLEZ
5893 {
5894 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5895 emit_cmpimm(s1l,1);
5896 if(s1h>=0) emit_mov(addr,ntaddr);
5897 emit_cmovl_reg(alt,addr);
5898 if(s1h>=0) {
5899 emit_test(s1h,s1h);
5900 emit_cmovne_reg(ntaddr,addr);
5901 emit_cmovs_reg(alt,addr);
5902 }
5903 }
5904 if((opcode[i]&0x3f)==7) // BGTZ
5905 {
5906 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5907 emit_cmpimm(s1l,1);
5908 if(s1h>=0) emit_mov(addr,alt);
5909 emit_cmovl_reg(ntaddr,addr);
5910 if(s1h>=0) {
5911 emit_test(s1h,s1h);
5912 emit_cmovne_reg(alt,addr);
5913 emit_cmovs_reg(ntaddr,addr);
5914 }
5915 }
5916 if((opcode[i]&0x3f)==0x16) // BLEZL
5917 {
5918 assert((opcode[i]&0x3f)!=0x16);
5919 }
5920 if((opcode[i]&0x3f)==0x17) // BGTZL
5921 {
5922 assert((opcode[i]&0x3f)!=0x17);
5923 }
5924 assert(opcode[i]!=1); // BLTZ/BGEZ
5925
5926 //FIXME: Check CSREG
5927 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5928 if((source[i]&0x30000)==0) // BC1F
5929 {
5930 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5931 emit_testimm(s1l,0x800000);
5932 emit_cmovne_reg(alt,addr);
5933 }
5934 if((source[i]&0x30000)==0x10000) // BC1T
5935 {
5936 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5937 emit_testimm(s1l,0x800000);
5938 emit_cmovne_reg(alt,addr);
5939 }
5940 if((source[i]&0x30000)==0x20000) // BC1FL
5941 {
5942 emit_testimm(s1l,0x800000);
df4dc2b1 5943 nottaken=out;
57871462 5944 emit_jne(0);
5945 }
5946 if((source[i]&0x30000)==0x30000) // BC1TL
5947 {
5948 emit_testimm(s1l,0x800000);
df4dc2b1 5949 nottaken=out;
57871462 5950 emit_jeq(0);
5951 }
5952 }
5953
5954 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5955 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5956 if(likely[i]||unconditional)
5957 {
5958 emit_movimm(ba[i],HOST_BTREG);
5959 }
5960 else if(addr!=HOST_BTREG)
5961 {
5962 emit_mov(addr,HOST_BTREG);
5963 }
5964 void *branch_addr=out;
5965 emit_jmp(0);
5966 int target_addr=start+i*4+5;
5967 void *stub=out;
5968 void *compiled_target_addr=check_addr(target_addr);
5969 emit_extjump_ds((int)branch_addr,target_addr);
5970 if(compiled_target_addr) {
df4dc2b1 5971 set_jump_target(branch_addr, compiled_target_addr);
57871462 5972 add_link(target_addr,stub);
5973 }
df4dc2b1 5974 else set_jump_target(branch_addr, stub);
57871462 5975 if(likely[i]) {
5976 // Not-taken path
df4dc2b1 5977 set_jump_target(nottaken, out);
57871462 5978 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5979 void *branch_addr=out;
5980 emit_jmp(0);
5981 int target_addr=start+i*4+8;
5982 void *stub=out;
5983 void *compiled_target_addr=check_addr(target_addr);
5984 emit_extjump_ds((int)branch_addr,target_addr);
5985 if(compiled_target_addr) {
df4dc2b1 5986 set_jump_target(branch_addr, compiled_target_addr);
57871462 5987 add_link(target_addr,stub);
5988 }
df4dc2b1 5989 else set_jump_target(branch_addr, stub);
57871462 5990 }
5991}
5992
5993// Assemble the delay slot for the above
5994static void pagespan_ds()
5995{
5996 assem_debug("initial delay slot:\n");
5997 u_int vaddr=start+1;
94d23bb9 5998 u_int page=get_page(vaddr);
5999 u_int vpage=get_vpage(vaddr);
57871462 6000 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6001 do_dirty_stub_ds();
6002 ll_add(jump_in+page,vaddr,(void *)out);
6003 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6004 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6005 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6006 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6007 emit_writeword(HOST_BTREG,(int)&branch_target);
6008 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6009 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6010 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6011 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6012 cop1_usable=0;
6013 is_delayslot=0;
6014 switch(itype[0]) {
6015 case ALU:
6016 alu_assemble(0,&regs[0]);break;
6017 case IMM16:
6018 imm16_assemble(0,&regs[0]);break;
6019 case SHIFT:
6020 shift_assemble(0,&regs[0]);break;
6021 case SHIFTIMM:
6022 shiftimm_assemble(0,&regs[0]);break;
6023 case LOAD:
6024 load_assemble(0,&regs[0]);break;
6025 case LOADLR:
6026 loadlr_assemble(0,&regs[0]);break;
6027 case STORE:
6028 store_assemble(0,&regs[0]);break;
6029 case STORELR:
6030 storelr_assemble(0,&regs[0]);break;
6031 case COP0:
6032 cop0_assemble(0,&regs[0]);break;
6033 case COP1:
6034 cop1_assemble(0,&regs[0]);break;
6035 case C1LS:
6036 c1ls_assemble(0,&regs[0]);break;
b9b61529 6037 case COP2:
6038 cop2_assemble(0,&regs[0]);break;
6039 case C2LS:
6040 c2ls_assemble(0,&regs[0]);break;
6041 case C2OP:
6042 c2op_assemble(0,&regs[0]);break;
57871462 6043 case FCONV:
6044 fconv_assemble(0,&regs[0]);break;
6045 case FLOAT:
6046 float_assemble(0,&regs[0]);break;
6047 case FCOMP:
6048 fcomp_assemble(0,&regs[0]);break;
6049 case MULTDIV:
6050 multdiv_assemble(0,&regs[0]);break;
6051 case MOV:
6052 mov_assemble(0,&regs[0]);break;
6053 case SYSCALL:
7139f3c8 6054 case HLECALL:
1e973cb0 6055 case INTCALL:
57871462 6056 case SPAN:
6057 case UJUMP:
6058 case RJUMP:
6059 case CJUMP:
6060 case SJUMP:
6061 case FJUMP:
c43b5311 6062 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
57871462 6063 }
6064 int btaddr=get_reg(regs[0].regmap,BTREG);
6065 if(btaddr<0) {
6066 btaddr=get_reg(regs[0].regmap,-1);
6067 emit_readword((int)&branch_target,btaddr);
6068 }
6069 assert(btaddr!=HOST_CCREG);
6070 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6071#ifdef HOST_IMM8
6072 emit_movimm(start+4,HOST_TEMPREG);
6073 emit_cmp(btaddr,HOST_TEMPREG);
6074#else
6075 emit_cmpimm(btaddr,start+4);
6076#endif
df4dc2b1 6077 void *branch = out;
57871462 6078 emit_jeq(0);
6079 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6080 emit_jmp(jump_vaddr_reg[btaddr]);
df4dc2b1 6081 set_jump_target(branch, out);
57871462 6082 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6083 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6084}
6085
6086// Basic liveness analysis for MIPS registers
6087void unneeded_registers(int istart,int iend,int r)
6088{
6089 int i;
bedfea38 6090 uint64_t u,uu,gte_u,b,bu,gte_bu;
0ff8c62c 6091 uint64_t temp_u,temp_uu,temp_gte_u=0;
57871462 6092 uint64_t tdep;
0ff8c62c 6093 uint64_t gte_u_unknown=0;
6094 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6095 gte_u_unknown=~0ll;
57871462 6096 if(iend==slen-1) {
6097 u=1;uu=1;
0ff8c62c 6098 gte_u=gte_u_unknown;
57871462 6099 }else{
6100 u=unneeded_reg[iend+1];
6101 uu=unneeded_reg_upper[iend+1];
6102 u=1;uu=1;
0ff8c62c 6103 gte_u=gte_unneeded[iend+1];
57871462 6104 }
bedfea38 6105
57871462 6106 for (i=iend;i>=istart;i--)
6107 {
6108 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6109 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6110 {
6111 // If subroutine call, flag return address as a possible branch target
6112 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
9f51b4b9 6113
57871462 6114 if(ba[i]<start || ba[i]>=(start+slen*4))
6115 {
6116 // Branch out of this block, flush all regs
6117 u=1;
6118 uu=1;
0ff8c62c 6119 gte_u=gte_u_unknown;
9f51b4b9 6120 /* Hexagon hack
57871462 6121 if(itype[i]==UJUMP&&rt1[i]==31)
6122 {
6123 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6124 }
6125 if(itype[i]==RJUMP&&rs1[i]==31)
6126 {
6127 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6128 }
4cb76aa4 6129 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6130 if(itype[i]==UJUMP&&rt1[i]==31)
6131 {
6132 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6133 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6134 }
6135 if(itype[i]==RJUMP&&rs1[i]==31)
6136 {
6137 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6138 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6139 }
6140 }*/
6141 branch_unneeded_reg[i]=u;
6142 branch_unneeded_reg_upper[i]=uu;
6143 // Merge in delay slot
6144 tdep=(~uu>>rt1[i+1])&1;
6145 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6146 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6147 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6148 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6149 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6150 u|=1;uu|=1;
bedfea38 6151 gte_u|=gte_rt[i+1];
6152 gte_u&=~gte_rs[i+1];
57871462 6153 // If branch is "likely" (and conditional)
6154 // then we skip the delay slot on the fall-thru path
6155 if(likely[i]) {
6156 if(i<slen-1) {
6157 u&=unneeded_reg[i+2];
6158 uu&=unneeded_reg_upper[i+2];
bedfea38 6159 gte_u&=gte_unneeded[i+2];
57871462 6160 }
6161 else
6162 {
6163 u=1;
6164 uu=1;
0ff8c62c 6165 gte_u=gte_u_unknown;
57871462 6166 }
6167 }
6168 }
6169 else
6170 {
6171 // Internal branch, flag target
6172 bt[(ba[i]-start)>>2]=1;
6173 if(ba[i]<=start+i*4) {
6174 // Backward branch
6175 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6176 {
6177 // Unconditional branch
6178 temp_u=1;temp_uu=1;
bedfea38 6179 temp_gte_u=0;
57871462 6180 } else {
6181 // Conditional branch (not taken case)
6182 temp_u=unneeded_reg[i+2];
6183 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6184 temp_gte_u&=gte_unneeded[i+2];
57871462 6185 }
6186 // Merge in delay slot
6187 tdep=(~temp_uu>>rt1[i+1])&1;
6188 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6189 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6190 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6191 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6192 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6193 temp_u|=1;temp_uu|=1;
bedfea38 6194 temp_gte_u|=gte_rt[i+1];
6195 temp_gte_u&=~gte_rs[i+1];
57871462 6196 // If branch is "likely" (and conditional)
6197 // then we skip the delay slot on the fall-thru path
6198 if(likely[i]) {
6199 if(i<slen-1) {
6200 temp_u&=unneeded_reg[i+2];
6201 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6202 temp_gte_u&=gte_unneeded[i+2];
57871462 6203 }
6204 else
6205 {
6206 temp_u=1;
6207 temp_uu=1;
0ff8c62c 6208 temp_gte_u=gte_u_unknown;
57871462 6209 }
6210 }
6211 tdep=(~temp_uu>>rt1[i])&1;
6212 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6213 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6214 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6215 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6216 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6217 temp_u|=1;temp_uu|=1;
bedfea38 6218 temp_gte_u|=gte_rt[i];
6219 temp_gte_u&=~gte_rs[i];
57871462 6220 unneeded_reg[i]=temp_u;
6221 unneeded_reg_upper[i]=temp_uu;
bedfea38 6222 gte_unneeded[i]=temp_gte_u;
57871462 6223 // Only go three levels deep. This recursion can take an
6224 // excessive amount of time if there are a lot of nested loops.
6225 if(r<2) {
6226 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6227 }else{
6228 unneeded_reg[(ba[i]-start)>>2]=1;
6229 unneeded_reg_upper[(ba[i]-start)>>2]=1;
0ff8c62c 6230 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
57871462 6231 }
6232 } /*else*/ if(1) {
6233 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6234 {
6235 // Unconditional branch
6236 u=unneeded_reg[(ba[i]-start)>>2];
6237 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6238 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6239 branch_unneeded_reg[i]=u;
6240 branch_unneeded_reg_upper[i]=uu;
6241 //u=1;
6242 //uu=1;
6243 //branch_unneeded_reg[i]=u;
6244 //branch_unneeded_reg_upper[i]=uu;
6245 // Merge in delay slot
6246 tdep=(~uu>>rt1[i+1])&1;
6247 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6248 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6249 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6250 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6251 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6252 u|=1;uu|=1;
bedfea38 6253 gte_u|=gte_rt[i+1];
6254 gte_u&=~gte_rs[i+1];
57871462 6255 } else {
6256 // Conditional branch
6257 b=unneeded_reg[(ba[i]-start)>>2];
6258 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6259 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6260 branch_unneeded_reg[i]=b;
6261 branch_unneeded_reg_upper[i]=bu;
6262 //b=1;
6263 //bu=1;
6264 //branch_unneeded_reg[i]=b;
6265 //branch_unneeded_reg_upper[i]=bu;
6266 // Branch delay slot
6267 tdep=(~uu>>rt1[i+1])&1;
6268 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6269 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6270 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6271 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6272 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6273 b|=1;bu|=1;
bedfea38 6274 gte_bu|=gte_rt[i+1];
6275 gte_bu&=~gte_rs[i+1];
57871462 6276 // If branch is "likely" then we skip the
6277 // delay slot on the fall-thru path
6278 if(likely[i]) {
6279 u=b;
6280 uu=bu;
bedfea38 6281 gte_u=gte_bu;
57871462 6282 if(i<slen-1) {
6283 u&=unneeded_reg[i+2];
6284 uu&=unneeded_reg_upper[i+2];
bedfea38 6285 gte_u&=gte_unneeded[i+2];
57871462 6286 //u=1;
6287 //uu=1;
6288 }
6289 } else {
6290 u&=b;
6291 uu&=bu;
bedfea38 6292 gte_u&=gte_bu;
57871462 6293 //u=1;
6294 //uu=1;
6295 }
6296 if(i<slen-1) {
6297 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6298 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6299 //branch_unneeded_reg[i]=1;
6300 //branch_unneeded_reg_upper[i]=1;
6301 } else {
6302 branch_unneeded_reg[i]=1;
6303 branch_unneeded_reg_upper[i]=1;
6304 }
6305 }
6306 }
6307 }
6308 }
1e973cb0 6309 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6310 {
6311 // SYSCALL instruction (software interrupt)
6312 u=1;
6313 uu=1;
6314 }
6315 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6316 {
6317 // ERET instruction (return from interrupt)
6318 u=1;
6319 uu=1;
6320 }
6321 //u=uu=1; // DEBUG
6322 tdep=(~uu>>rt1[i])&1;
6323 // Written registers are unneeded
6324 u|=1LL<<rt1[i];
6325 u|=1LL<<rt2[i];
6326 uu|=1LL<<rt1[i];
6327 uu|=1LL<<rt2[i];
bedfea38 6328 gte_u|=gte_rt[i];
57871462 6329 // Accessed registers are needed
6330 u&=~(1LL<<rs1[i]);
6331 u&=~(1LL<<rs2[i]);
6332 uu&=~(1LL<<us1[i]);
6333 uu&=~(1LL<<us2[i]);
bedfea38 6334 gte_u&=~gte_rs[i];
eaa11918 6335 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
cbbd8dd7 6336 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
57871462 6337 // Source-target dependencies
6338 uu&=~(tdep<<dep1[i]);
6339 uu&=~(tdep<<dep2[i]);
6340 // R0 is always unneeded
6341 u|=1;uu|=1;
6342 // Save it
6343 unneeded_reg[i]=u;
6344 unneeded_reg_upper[i]=uu;
bedfea38 6345 gte_unneeded[i]=gte_u;
57871462 6346 /*
6347 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6348 printf("U:");
6349 int r;
6350 for(r=1;r<=CCREG;r++) {
6351 if((unneeded_reg[i]>>r)&1) {
6352 if(r==HIREG) printf(" HI");
6353 else if(r==LOREG) printf(" LO");
6354 else printf(" r%d",r);
6355 }
6356 }
6357 printf(" UU:");
6358 for(r=1;r<=CCREG;r++) {
6359 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6360 if(r==HIREG) printf(" HI");
6361 else if(r==LOREG) printf(" LO");
6362 else printf(" r%d",r);
6363 }
6364 }
6365 printf("\n");*/
6366 }
252c20fc 6367 for (i=iend;i>=istart;i--)
6368 {
6369 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6370 }
57871462 6371}
6372
71e490c5 6373// Write back dirty registers as soon as we will no longer modify them,
6374// so that we don't end up with lots of writes at the branches.
6375void clean_registers(int istart,int iend,int wr)
57871462 6376{
71e490c5 6377 int i;
6378 int r;
6379 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6380 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6381 if(iend==slen-1) {
6382 will_dirty_i=will_dirty_next=0;
6383 wont_dirty_i=wont_dirty_next=0;
6384 }else{
6385 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6386 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6387 }
6388 for (i=iend;i>=istart;i--)
57871462 6389 {
71e490c5 6390 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
57871462 6391 {
71e490c5 6392 if(ba[i]<start || ba[i]>=(start+slen*4))
57871462 6393 {
71e490c5 6394 // Branch out of this block, flush all regs
6395 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
57871462 6396 {
6397 // Unconditional branch
6398 will_dirty_i=0;
6399 wont_dirty_i=0;
6400 // Merge in delay slot (will dirty)
6401 for(r=0;r<HOST_REGS;r++) {
6402 if(r!=EXCLUDE_REG) {
6403 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6404 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6405 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6406 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6407 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6408 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6409 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6410 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6411 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6412 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6413 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6414 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6415 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6416 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6417 }
6418 }
6419 }
6420 else
6421 {
6422 // Conditional branch
6423 will_dirty_i=0;
6424 wont_dirty_i=wont_dirty_next;
6425 // Merge in delay slot (will dirty)
6426 for(r=0;r<HOST_REGS;r++) {
6427 if(r!=EXCLUDE_REG) {
6428 if(!likely[i]) {
6429 // Might not dirty if likely branch is not taken
6430 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6431 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6432 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6433 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6434 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6435 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6436 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6437 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6438 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6439 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6440 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6441 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6442 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6443 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6444 }
6445 }
6446 }
6447 }
6448 // Merge in delay slot (wont dirty)
6449 for(r=0;r<HOST_REGS;r++) {
6450 if(r!=EXCLUDE_REG) {
6451 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6452 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6453 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6454 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6455 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6456 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6457 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6458 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6459 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6460 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6461 }
6462 }
6463 if(wr) {
6464 #ifndef DESTRUCTIVE_WRITEBACK
6465 branch_regs[i].dirty&=wont_dirty_i;
6466 #endif
6467 branch_regs[i].dirty|=will_dirty_i;
6468 }
6469 }
6470 else
6471 {
6472 // Internal branch
6473 if(ba[i]<=start+i*4) {
6474 // Backward branch
6475 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6476 {
6477 // Unconditional branch
6478 temp_will_dirty=0;
6479 temp_wont_dirty=0;
6480 // Merge in delay slot (will dirty)
6481 for(r=0;r<HOST_REGS;r++) {
6482 if(r!=EXCLUDE_REG) {
6483 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6484 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6485 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6486 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6487 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6488 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6489 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6490 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6491 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6492 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6493 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6494 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6495 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6496 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6497 }
6498 }
6499 } else {
6500 // Conditional branch (not taken case)
6501 temp_will_dirty=will_dirty_next;
6502 temp_wont_dirty=wont_dirty_next;
6503 // Merge in delay slot (will dirty)
6504 for(r=0;r<HOST_REGS;r++) {
6505 if(r!=EXCLUDE_REG) {
6506 if(!likely[i]) {
6507 // Will not dirty if likely branch is not taken
6508 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6509 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6510 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6511 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6512 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6513 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6514 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6515 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6516 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6517 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6518 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6519 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6520 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6521 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6522 }
6523 }
6524 }
6525 }
6526 // Merge in delay slot (wont dirty)
6527 for(r=0;r<HOST_REGS;r++) {
6528 if(r!=EXCLUDE_REG) {
6529 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6530 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6531 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6532 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6533 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6534 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6535 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6536 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6537 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6538 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6539 }
6540 }
6541 // Deal with changed mappings
6542 if(i<iend) {
6543 for(r=0;r<HOST_REGS;r++) {
6544 if(r!=EXCLUDE_REG) {
6545 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6546 temp_will_dirty&=~(1<<r);
6547 temp_wont_dirty&=~(1<<r);
6548 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6549 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6550 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6551 } else {
6552 temp_will_dirty|=1<<r;
6553 temp_wont_dirty|=1<<r;
6554 }
6555 }
6556 }
6557 }
6558 }
6559 if(wr) {
6560 will_dirty[i]=temp_will_dirty;
6561 wont_dirty[i]=temp_wont_dirty;
6562 clean_registers((ba[i]-start)>>2,i-1,0);
6563 }else{
6564 // Limit recursion. It can take an excessive amount
6565 // of time if there are a lot of nested loops.
6566 will_dirty[(ba[i]-start)>>2]=0;
6567 wont_dirty[(ba[i]-start)>>2]=-1;
6568 }
6569 }
6570 /*else*/ if(1)
6571 {
6572 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6573 {
6574 // Unconditional branch
6575 will_dirty_i=0;
6576 wont_dirty_i=0;
6577 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6578 for(r=0;r<HOST_REGS;r++) {
6579 if(r!=EXCLUDE_REG) {
6580 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6581 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6582 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6583 }
e3234ecf 6584 if(branch_regs[i].regmap[r]>=0) {
6585 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6586 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6587 }
57871462 6588 }
6589 }
6590 //}
6591 // Merge in delay slot
6592 for(r=0;r<HOST_REGS;r++) {
6593 if(r!=EXCLUDE_REG) {
6594 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6595 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6596 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6597 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6598 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6599 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6600 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6601 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6602 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6603 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6604 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6605 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6606 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6607 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6608 }
6609 }
6610 } else {
6611 // Conditional branch
6612 will_dirty_i=will_dirty_next;
6613 wont_dirty_i=wont_dirty_next;
6614 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6615 for(r=0;r<HOST_REGS;r++) {
6616 if(r!=EXCLUDE_REG) {
e3234ecf 6617 signed char target_reg=branch_regs[i].regmap[r];
6618 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 6619 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6620 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6621 }
e3234ecf 6622 else if(target_reg>=0) {
6623 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6624 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 6625 }
6626 // Treat delay slot as part of branch too
6627 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6628 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6629 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6630 }
6631 else
6632 {
6633 will_dirty[i+1]&=~(1<<r);
6634 }*/
6635 }
6636 }
6637 //}
6638 // Merge in delay slot
6639 for(r=0;r<HOST_REGS;r++) {
6640 if(r!=EXCLUDE_REG) {
6641 if(!likely[i]) {
6642 // Might not dirty if likely branch is not taken
6643 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6644 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6645 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6646 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6647 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6648 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6649 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6650 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6651 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6652 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6653 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6654 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6655 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6656 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6657 }
6658 }
6659 }
6660 }
e3234ecf 6661 // Merge in delay slot (won't dirty)
57871462 6662 for(r=0;r<HOST_REGS;r++) {
6663 if(r!=EXCLUDE_REG) {
6664 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6665 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6666 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6667 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6668 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6669 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6670 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6671 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6672 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6673 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6674 }
6675 }
6676 if(wr) {
6677 #ifndef DESTRUCTIVE_WRITEBACK
6678 branch_regs[i].dirty&=wont_dirty_i;
6679 #endif
6680 branch_regs[i].dirty|=will_dirty_i;
6681 }
6682 }
6683 }
6684 }
1e973cb0 6685 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6686 {
6687 // SYSCALL instruction (software interrupt)
6688 will_dirty_i=0;
6689 wont_dirty_i=0;
6690 }
6691 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6692 {
6693 // ERET instruction (return from interrupt)
6694 will_dirty_i=0;
6695 wont_dirty_i=0;
6696 }
6697 will_dirty_next=will_dirty_i;
6698 wont_dirty_next=wont_dirty_i;
6699 for(r=0;r<HOST_REGS;r++) {
6700 if(r!=EXCLUDE_REG) {
6701 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6702 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6703 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6704 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6705 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6706 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6707 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6708 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6709 if(i>istart) {
9f51b4b9 6710 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
57871462 6711 {
6712 // Don't store a register immediately after writing it,
6713 // may prevent dual-issue.
6714 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6715 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6716 }
6717 }
6718 }
6719 }
6720 // Save it
6721 will_dirty[i]=will_dirty_i;
6722 wont_dirty[i]=wont_dirty_i;
6723 // Mark registers that won't be dirtied as not dirty
6724 if(wr) {
6725 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6726 for(r=0;r<HOST_REGS;r++) {
6727 if((will_dirty_i>>r)&1) {
6728 printf(" r%d",r);
6729 }
6730 }
6731 printf("\n");*/
6732
6733 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
6734 regs[i].dirty|=will_dirty_i;
6735 #ifndef DESTRUCTIVE_WRITEBACK
6736 regs[i].dirty&=wont_dirty_i;
6737 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6738 {
6739 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6740 for(r=0;r<HOST_REGS;r++) {
6741 if(r!=EXCLUDE_REG) {
6742 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6743 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
581335b0 6744 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
57871462 6745 }
6746 }
6747 }
6748 }
6749 else
6750 {
6751 if(i<iend) {
6752 for(r=0;r<HOST_REGS;r++) {
6753 if(r!=EXCLUDE_REG) {
6754 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6755 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
581335b0 6756 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
57871462 6757 }
6758 }
6759 }
6760 }
6761 #endif
6762 //}
6763 }
6764 // Deal with changed mappings
6765 temp_will_dirty=will_dirty_i;
6766 temp_wont_dirty=wont_dirty_i;
6767 for(r=0;r<HOST_REGS;r++) {
6768 if(r!=EXCLUDE_REG) {
6769 int nr;
6770 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6771 if(wr) {
6772 #ifndef DESTRUCTIVE_WRITEBACK
6773 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6774 #endif
6775 regs[i].wasdirty|=will_dirty_i&(1<<r);
6776 }
6777 }
f776eb14 6778 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 6779 // Register moved to a different register
6780 will_dirty_i&=~(1<<r);
6781 wont_dirty_i&=~(1<<r);
6782 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6783 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6784 if(wr) {
6785 #ifndef DESTRUCTIVE_WRITEBACK
6786 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6787 #endif
6788 regs[i].wasdirty|=will_dirty_i&(1<<r);
6789 }
6790 }
6791 else {
6792 will_dirty_i&=~(1<<r);
6793 wont_dirty_i&=~(1<<r);
6794 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6795 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6796 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6797 } else {
6798 wont_dirty_i|=1<<r;
581335b0 6799 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
57871462 6800 }
6801 }
6802 }
6803 }
6804 }
6805}
6806
4600ba03 6807#ifdef DISASM
57871462 6808 /* disassembly */
6809void disassemble_inst(int i)
6810{
6811 if (bt[i]) printf("*"); else printf(" ");
6812 switch(itype[i]) {
6813 case UJUMP:
6814 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6815 case CJUMP:
6816 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6817 case SJUMP:
6818 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6819 case FJUMP:
6820 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6821 case RJUMP:
74426039 6822 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 6823 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6824 else
6825 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6826 break;
57871462 6827 case SPAN:
6828 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6829 case IMM16:
6830 if(opcode[i]==0xf) //LUI
6831 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6832 else
6833 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6834 break;
6835 case LOAD:
6836 case LOADLR:
6837 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6838 break;
6839 case STORE:
6840 case STORELR:
6841 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6842 break;
6843 case ALU:
6844 case SHIFT:
6845 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6846 break;
6847 case MULTDIV:
6848 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6849 break;
6850 case SHIFTIMM:
6851 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6852 break;
6853 case MOV:
6854 if((opcode2[i]&0x1d)==0x10)
6855 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6856 else if((opcode2[i]&0x1d)==0x11)
6857 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6858 else
6859 printf (" %x: %s\n",start+i*4,insn[i]);
6860 break;
6861 case COP0:
6862 if(opcode2[i]==0)
6863 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6864 else if(opcode2[i]==4)
6865 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6866 else printf (" %x: %s\n",start+i*4,insn[i]);
6867 break;
6868 case COP1:
6869 if(opcode2[i]<3)
6870 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6871 else if(opcode2[i]>3)
6872 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6873 else printf (" %x: %s\n",start+i*4,insn[i]);
6874 break;
b9b61529 6875 case COP2:
6876 if(opcode2[i]<3)
6877 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6878 else if(opcode2[i]>3)
6879 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6880 else printf (" %x: %s\n",start+i*4,insn[i]);
6881 break;
57871462 6882 case C1LS:
6883 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6884 break;
b9b61529 6885 case C2LS:
6886 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6887 break;
1e973cb0 6888 case INTCALL:
6889 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6890 break;
57871462 6891 default:
6892 //printf (" %s %8x\n",insn[i],source[i]);
6893 printf (" %x: %s\n",start+i*4,insn[i]);
6894 }
6895}
4600ba03 6896#else
6897static void disassemble_inst(int i) {}
6898#endif // DISASM
57871462 6899
d848b60a 6900#define DRC_TEST_VAL 0x74657374
6901
6902static int new_dynarec_test(void)
6903{
6904 int (*testfunc)(void) = (void *)out;
d148d265 6905 void *beginning;
d848b60a 6906 int ret;
d148d265 6907
6908 beginning = start_block();
d848b60a 6909 emit_movimm(DRC_TEST_VAL,0); // test
6910 emit_jmpreg(14);
6911 literal_pool(0);
d148d265 6912 end_block(beginning);
d848b60a 6913 SysPrintf("testing if we can run recompiled code..\n");
6914 ret = testfunc();
6915 if (ret == DRC_TEST_VAL)
6916 SysPrintf("test passed.\n");
6917 else
6918 SysPrintf("test failed: %08x\n", ret);
6919 out=(u_char *)BASE_ADDR;
6920 return ret == DRC_TEST_VAL;
6921}
6922
dc990066 6923// clear the state completely, instead of just marking
6924// things invalid like invalidate_all_pages() does
6925void new_dynarec_clear_full()
57871462 6926{
57871462 6927 int n;
35775df7 6928 out=(u_char *)BASE_ADDR;
6929 memset(invalid_code,1,sizeof(invalid_code));
6930 memset(hash_table,0xff,sizeof(hash_table));
57871462 6931 memset(mini_ht,-1,sizeof(mini_ht));
6932 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 6933 memset(shadow,0,sizeof(shadow));
57871462 6934 copy=shadow;
6935 expirep=16384; // Expiry pointer, +2 blocks
6936 pending_exception=0;
6937 literalcount=0;
57871462 6938 stop_after_jal=0;
9be4ba64 6939 inv_code_start=inv_code_end=~0;
57871462 6940 // TLB
dc990066 6941 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6942 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6943 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6944}
6945
6946void new_dynarec_init()
6947{
d848b60a 6948 SysPrintf("Init new dynarec\n");
1e212a25 6949
6950 // allocate/prepare a buffer for translation cache
6951 // see assem_arm.h for some explanation
6952#if defined(BASE_ADDR_FIXED)
6953 if (mmap (translation_cache, 1 << TARGET_SIZE_2,
dc990066 6954 PROT_READ | PROT_WRITE | PROT_EXEC,
186935dc 6955 MAP_PRIVATE | MAP_ANONYMOUS,
1e212a25 6956 -1, 0) != translation_cache) {
6957 SysPrintf("mmap() failed: %s\n", strerror(errno));
6958 SysPrintf("disable BASE_ADDR_FIXED and recompile\n");
6959 abort();
6960 }
6961#elif defined(BASE_ADDR_DYNAMIC)
6962 #ifdef VITA
6963 sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
6964 if (sceBlock < 0)
6965 SysPrintf("sceKernelAllocMemBlockForVM failed\n");
6966 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&translation_cache);
6967 if (ret < 0)
6968 SysPrintf("sceKernelGetMemBlockBase failed\n");
6969 #else
6970 translation_cache = mmap (NULL, 1 << TARGET_SIZE_2,
6971 PROT_READ | PROT_WRITE | PROT_EXEC,
6972 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6973 if (translation_cache == MAP_FAILED) {
d848b60a 6974 SysPrintf("mmap() failed: %s\n", strerror(errno));
1e212a25 6975 abort();
d848b60a 6976 }
1e212a25 6977 #endif
6978#else
6979 #ifndef NO_WRITE_EXEC
bdeade46 6980 // not all systems allow execute in data segment by default
25e52b2c 6981 if (mprotect((void *)BASE_ADDR, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
d848b60a 6982 SysPrintf("mprotect() failed: %s\n", strerror(errno));
1e212a25 6983 #endif
dc990066 6984#endif
1e212a25 6985 out=(u_char *)BASE_ADDR;
2573466a 6986 cycle_multiplier=200;
dc990066 6987 new_dynarec_clear_full();
6988#ifdef HOST_IMM8
6989 // Copy this into local area so we don't have to put it in every literal pool
6990 invc_ptr=invalid_code;
6991#endif
57871462 6992 arch_init();
d848b60a 6993 new_dynarec_test();
a327ad27 6994#ifndef RAM_FIXED
6995 ram_offset=(u_int)rdram-0x80000000;
6996#endif
b105cf4f 6997 if (ram_offset!=0)
c43b5311 6998 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
57871462 6999}
7000
7001void new_dynarec_cleanup()
7002{
7003 int n;
1e212a25 7004#if defined(BASE_ADDR_FIXED) || defined(BASE_ADDR_DYNAMIC)
7005 #ifdef VITA
7006 sceKernelFreeMemBlock(sceBlock);
7007 sceBlock = -1;
7008 #else
7009 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0)
7010 SysPrintf("munmap() failed\n");
bdeade46 7011 #endif
1e212a25 7012#endif
57871462 7013 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7014 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7015 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7016 #ifdef ROM_COPY
c43b5311 7017 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
57871462 7018 #endif
7019}
7020
03f55e6b 7021static u_int *get_source_start(u_int addr, u_int *limit)
57871462 7022{
03f55e6b 7023 if (addr < 0x00200000 ||
7024 (0xa0000000 <= addr && addr < 0xa0200000)) {
7025 // used for BIOS calls mostly?
7026 *limit = (addr&0xa0000000)|0x00200000;
7027 return (u_int *)((u_int)rdram + (addr&0x1fffff));
7028 }
7029 else if (!Config.HLE && (
7030 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7031 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7032 // BIOS
7033 *limit = (addr & 0xfff00000) | 0x80000;
7034 return (u_int *)((u_int)psxR + (addr&0x7ffff));
7035 }
7036 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7037 *limit = (addr & 0x80600000) + 0x00200000;
7038 return (u_int *)((u_int)rdram + (addr&0x1fffff));
7039 }
581335b0 7040 return NULL;
03f55e6b 7041}
7042
7043static u_int scan_for_ret(u_int addr)
7044{
7045 u_int limit = 0;
7046 u_int *mem;
7047
7048 mem = get_source_start(addr, &limit);
7049 if (mem == NULL)
7050 return addr;
7051
7052 if (limit > addr + 0x1000)
7053 limit = addr + 0x1000;
7054 for (; addr < limit; addr += 4, mem++) {
7055 if (*mem == 0x03e00008) // jr $ra
7056 return addr + 8;
57871462 7057 }
581335b0 7058 return addr;
03f55e6b 7059}
7060
7061struct savestate_block {
7062 uint32_t addr;
7063 uint32_t regflags;
7064};
7065
7066static int addr_cmp(const void *p1_, const void *p2_)
7067{
7068 const struct savestate_block *p1 = p1_, *p2 = p2_;
7069 return p1->addr - p2->addr;
7070}
7071
7072int new_dynarec_save_blocks(void *save, int size)
7073{
7074 struct savestate_block *blocks = save;
7075 int maxcount = size / sizeof(blocks[0]);
7076 struct savestate_block tmp_blocks[1024];
7077 struct ll_entry *head;
7078 int p, s, d, o, bcnt;
7079 u_int addr;
7080
7081 o = 0;
b14b6a8f 7082 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
03f55e6b 7083 bcnt = 0;
7084 for (head = jump_in[p]; head != NULL; head = head->next) {
7085 tmp_blocks[bcnt].addr = head->vaddr;
7086 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7087 bcnt++;
7088 }
7089 if (bcnt < 1)
7090 continue;
7091 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7092
7093 addr = tmp_blocks[0].addr;
7094 for (s = d = 0; s < bcnt; s++) {
7095 if (tmp_blocks[s].addr < addr)
7096 continue;
7097 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7098 tmp_blocks[d++] = tmp_blocks[s];
7099 addr = scan_for_ret(tmp_blocks[s].addr);
7100 }
7101
7102 if (o + d > maxcount)
7103 d = maxcount - o;
7104 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7105 o += d;
7106 }
7107
7108 return o * sizeof(blocks[0]);
7109}
7110
7111void new_dynarec_load_blocks(const void *save, int size)
7112{
7113 const struct savestate_block *blocks = save;
7114 int count = size / sizeof(blocks[0]);
7115 u_int regs_save[32];
7116 uint32_t f;
7117 int i, b;
7118
7119 get_addr(psxRegs.pc);
7120
7121 // change GPRs for speculation to at least partially work..
7122 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7123 for (i = 1; i < 32; i++)
7124 psxRegs.GPR.r[i] = 0x80000000;
7125
7126 for (b = 0; b < count; b++) {
7127 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7128 if (f & 1)
7129 psxRegs.GPR.r[i] = 0x1f800000;
7130 }
7131
7132 get_addr(blocks[b].addr);
7133
7134 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7135 if (f & 1)
7136 psxRegs.GPR.r[i] = 0x80000000;
7137 }
7138 }
7139
7140 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7141}
7142
7143int new_recompile_block(int addr)
7144{
7145 u_int pagelimit = 0;
7146 u_int state_rflags = 0;
7147 int i;
7148
1a4301c4 7149 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
57871462 7150 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
9f51b4b9 7151 //if(debug)
57871462 7152 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7153 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
03f55e6b 7154
7155 // this is just for speculation
7156 for (i = 1; i < 32; i++) {
7157 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7158 state_rflags |= 1 << i;
7159 }
7160
57871462 7161 start = (u_int)addr&~3;
7162 //assert(((u_int)addr&1)==0);
2f546f9a 7163 new_dynarec_did_compile=1;
9ad4d757 7164 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 7165 {
7139f3c8 7166 // XXX: is this enough? Maybe check hleSoftCall?
d148d265 7167 void *beginning=start_block();
7139f3c8 7168 u_int page=get_page(start);
d148d265 7169
7139f3c8 7170 invalid_code[start>>12]=0;
7171 emit_movimm(start,0);
7172 emit_writeword(0,(int)&pcaddr);
b14b6a8f 7173 emit_jmp(new_dyna_leave);
15776b68 7174 literal_pool(0);
d148d265 7175 end_block(beginning);
03f55e6b 7176 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7139f3c8 7177 return 0;
7178 }
03f55e6b 7179
7180 source = get_source_start(start, &pagelimit);
7181 if (source == NULL) {
7182 SysPrintf("Compile at bogus memory address: %08x\n", addr);
57871462 7183 exit(1);
7184 }
7185
7186 /* Pass 1: disassemble */
7187 /* Pass 2: register dependencies, branch targets */
7188 /* Pass 3: register allocation */
7189 /* Pass 4: branch dependencies */
7190 /* Pass 5: pre-alloc */
7191 /* Pass 6: optimize clean/dirty state */
7192 /* Pass 7: flag 32-bit registers */
7193 /* Pass 8: assembly */
7194 /* Pass 9: linker */
7195 /* Pass 10: garbage collection / free memory */
7196
03f55e6b 7197 int j;
57871462 7198 int done=0;
7199 unsigned int type,op,op2;
7200
7201 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
9f51b4b9 7202
57871462 7203 /* Pass 1 disassembly */
7204
7205 for(i=0;!done;i++) {
e1190b87 7206 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7207 minimum_free_regs[i]=0;
57871462 7208 opcode[i]=op=source[i]>>26;
7209 switch(op)
7210 {
7211 case 0x00: strcpy(insn[i],"special"); type=NI;
7212 op2=source[i]&0x3f;
7213 switch(op2)
7214 {
7215 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7216 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7217 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7218 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7219 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7220 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7221 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7222 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7223 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7224 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7225 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7226 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7227 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7228 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7229 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 7230 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7231 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7232 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7233 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 7234 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7235 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7236 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7237 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7238 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7239 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7240 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7241 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7242 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7243 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 7244 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7245 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7246 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7247 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7248 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7249 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
71e490c5 7250#if 0
7f2607ea 7251 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7252 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7253 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7254 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7255 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7256 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7257 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7258 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7259 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7260 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7261 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 7262 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7263 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7264 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7265 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7266 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7267 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 7268#endif
57871462 7269 }
7270 break;
7271 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7272 op2=(source[i]>>16)&0x1f;
7273 switch(op2)
7274 {
7275 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7276 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7277 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7278 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7279 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7280 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7281 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7282 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7283 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7284 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7285 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7286 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7287 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7288 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7289 }
7290 break;
7291 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7292 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7293 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7294 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7295 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7296 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7297 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7298 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7299 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7300 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7301 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7302 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7303 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7304 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7305 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7306 op2=(source[i]>>21)&0x1f;
7307 switch(op2)
7308 {
7309 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7310 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7311 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7312 switch(source[i]&0x3f)
7313 {
7314 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7315 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7316 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7317 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 7318 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
71e490c5 7319 //case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
57871462 7320 }
7321 }
7322 break;
7323 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7324 op2=(source[i]>>21)&0x1f;
7325 switch(op2)
7326 {
7327 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7328 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7329 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7330 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7331 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7332 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7333 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7334 switch((source[i]>>16)&0x3)
7335 {
7336 case 0x00: strcpy(insn[i],"BC1F"); break;
7337 case 0x01: strcpy(insn[i],"BC1T"); break;
7338 case 0x02: strcpy(insn[i],"BC1FL"); break;
7339 case 0x03: strcpy(insn[i],"BC1TL"); break;
7340 }
7341 break;
7342 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7343 switch(source[i]&0x3f)
7344 {
7345 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7346 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7347 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7348 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7349 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7350 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7351 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7352 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7353 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7354 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7355 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7356 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7357 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7358 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7359 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7360 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7361 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7362 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7363 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7364 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7365 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7366 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7367 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7368 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7369 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7370 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7371 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7372 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7373 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7374 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7375 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7376 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7377 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7378 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7379 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7380 }
7381 break;
7382 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7383 switch(source[i]&0x3f)
7384 {
7385 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7386 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7387 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7388 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7389 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7390 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7391 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7392 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7393 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7394 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7395 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7396 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7397 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7398 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7399 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7400 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7401 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7402 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7403 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7404 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7405 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7406 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7407 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7408 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7409 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7410 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7411 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7412 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7413 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7414 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7415 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7416 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7417 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7418 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7419 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7420 }
7421 break;
7422 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7423 switch(source[i]&0x3f)
7424 {
7425 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7426 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7427 }
7428 break;
7429 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7430 switch(source[i]&0x3f)
7431 {
7432 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7433 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7434 }
7435 break;
7436 }
7437 break;
71e490c5 7438#if 0
57871462 7439 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7440 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7441 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7442 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7443 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7444 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7445 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7446 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 7447#endif
57871462 7448 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7449 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7450 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7451 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7452 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7453 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7454 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
71e490c5 7455#if 0
57871462 7456 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 7457#endif
57871462 7458 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7459 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7460 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7461 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
71e490c5 7462#if 0
57871462 7463 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7464 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 7465#endif
57871462 7466 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7467 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7468 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7469 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
71e490c5 7470#if 0
57871462 7471 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7472 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7473 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 7474#endif
57871462 7475 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7476 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
71e490c5 7477#if 0
57871462 7478 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7479 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7480 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 7481#endif
b9b61529 7482 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7483 op2=(source[i]>>21)&0x1f;
bedfea38 7484 //if (op2 & 0x10) {
7485 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 7486 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 7487 if (gte_regnames[source[i]&0x3f]!=NULL)
7488 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7489 else
7490 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 7491 type=C2OP;
7492 }
7493 }
7494 else switch(op2)
b9b61529 7495 {
7496 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7497 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7498 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7499 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 7500 }
7501 break;
7502 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7503 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7504 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
90ae6d4e 7505 default: strcpy(insn[i],"???"); type=NI;
c43b5311 7506 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 7507 break;
57871462 7508 }
7509 itype[i]=type;
7510 opcode2[i]=op2;
7511 /* Get registers/immediates */
7512 lt1[i]=0;
7513 us1[i]=0;
7514 us2[i]=0;
7515 dep1[i]=0;
7516 dep2[i]=0;
bedfea38 7517 gte_rs[i]=gte_rt[i]=0;
57871462 7518 switch(type) {
7519 case LOAD:
7520 rs1[i]=(source[i]>>21)&0x1f;
7521 rs2[i]=0;
7522 rt1[i]=(source[i]>>16)&0x1f;
7523 rt2[i]=0;
7524 imm[i]=(short)source[i];
7525 break;
7526 case STORE:
7527 case STORELR:
7528 rs1[i]=(source[i]>>21)&0x1f;
7529 rs2[i]=(source[i]>>16)&0x1f;
7530 rt1[i]=0;
7531 rt2[i]=0;
7532 imm[i]=(short)source[i];
7533 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7534 break;
7535 case LOADLR:
7536 // LWL/LWR only load part of the register,
7537 // therefore the target register must be treated as a source too
7538 rs1[i]=(source[i]>>21)&0x1f;
7539 rs2[i]=(source[i]>>16)&0x1f;
7540 rt1[i]=(source[i]>>16)&0x1f;
7541 rt2[i]=0;
7542 imm[i]=(short)source[i];
7543 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7544 if(op==0x26) dep1[i]=rt1[i]; // LWR
7545 break;
7546 case IMM16:
7547 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7548 else rs1[i]=(source[i]>>21)&0x1f;
7549 rs2[i]=0;
7550 rt1[i]=(source[i]>>16)&0x1f;
7551 rt2[i]=0;
7552 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7553 imm[i]=(unsigned short)source[i];
7554 }else{
7555 imm[i]=(short)source[i];
7556 }
7557 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7558 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7559 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7560 break;
7561 case UJUMP:
7562 rs1[i]=0;
7563 rs2[i]=0;
7564 rt1[i]=0;
7565 rt2[i]=0;
7566 // The JAL instruction writes to r31.
7567 if (op&1) {
7568 rt1[i]=31;
7569 }
7570 rs2[i]=CCREG;
7571 break;
7572 case RJUMP:
7573 rs1[i]=(source[i]>>21)&0x1f;
7574 rs2[i]=0;
7575 rt1[i]=0;
7576 rt2[i]=0;
5067f341 7577 // The JALR instruction writes to rd.
57871462 7578 if (op2&1) {
5067f341 7579 rt1[i]=(source[i]>>11)&0x1f;
57871462 7580 }
7581 rs2[i]=CCREG;
7582 break;
7583 case CJUMP:
7584 rs1[i]=(source[i]>>21)&0x1f;
7585 rs2[i]=(source[i]>>16)&0x1f;
7586 rt1[i]=0;
7587 rt2[i]=0;
7588 if(op&2) { // BGTZ/BLEZ
7589 rs2[i]=0;
7590 }
7591 us1[i]=rs1[i];
7592 us2[i]=rs2[i];
7593 likely[i]=op>>4;
7594 break;
7595 case SJUMP:
7596 rs1[i]=(source[i]>>21)&0x1f;
7597 rs2[i]=CCREG;
7598 rt1[i]=0;
7599 rt2[i]=0;
7600 us1[i]=rs1[i];
7601 if(op2&0x10) { // BxxAL
7602 rt1[i]=31;
7603 // NOTE: If the branch is not taken, r31 is still overwritten
7604 }
7605 likely[i]=(op2&2)>>1;
7606 break;
7607 case FJUMP:
7608 rs1[i]=FSREG;
7609 rs2[i]=CSREG;
7610 rt1[i]=0;
7611 rt2[i]=0;
7612 likely[i]=((source[i])>>17)&1;
7613 break;
7614 case ALU:
7615 rs1[i]=(source[i]>>21)&0x1f; // source
7616 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7617 rt1[i]=(source[i]>>11)&0x1f; // destination
7618 rt2[i]=0;
7619 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7620 us1[i]=rs1[i];us2[i]=rs2[i];
7621 }
7622 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7623 dep1[i]=rs1[i];dep2[i]=rs2[i];
7624 }
7625 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7626 dep1[i]=rs1[i];dep2[i]=rs2[i];
7627 }
7628 break;
7629 case MULTDIV:
7630 rs1[i]=(source[i]>>21)&0x1f; // source
7631 rs2[i]=(source[i]>>16)&0x1f; // divisor
7632 rt1[i]=HIREG;
7633 rt2[i]=LOREG;
7634 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7635 us1[i]=rs1[i];us2[i]=rs2[i];
7636 }
7637 break;
7638 case MOV:
7639 rs1[i]=0;
7640 rs2[i]=0;
7641 rt1[i]=0;
7642 rt2[i]=0;
7643 if(op2==0x10) rs1[i]=HIREG; // MFHI
7644 if(op2==0x11) rt1[i]=HIREG; // MTHI
7645 if(op2==0x12) rs1[i]=LOREG; // MFLO
7646 if(op2==0x13) rt1[i]=LOREG; // MTLO
7647 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7648 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7649 dep1[i]=rs1[i];
7650 break;
7651 case SHIFT:
7652 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7653 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7654 rt1[i]=(source[i]>>11)&0x1f; // destination
7655 rt2[i]=0;
7656 // DSLLV/DSRLV/DSRAV are 64-bit
7657 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7658 break;
7659 case SHIFTIMM:
7660 rs1[i]=(source[i]>>16)&0x1f;
7661 rs2[i]=0;
7662 rt1[i]=(source[i]>>11)&0x1f;
7663 rt2[i]=0;
7664 imm[i]=(source[i]>>6)&0x1f;
7665 // DSxx32 instructions
7666 if(op2>=0x3c) imm[i]|=0x20;
7667 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7668 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7669 break;
7670 case COP0:
7671 rs1[i]=0;
7672 rs2[i]=0;
7673 rt1[i]=0;
7674 rt2[i]=0;
7675 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7676 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7677 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7678 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7679 break;
7680 case COP1:
7681 rs1[i]=0;
7682 rs2[i]=0;
7683 rt1[i]=0;
7684 rt2[i]=0;
7685 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7686 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7687 if(op2==5) us1[i]=rs1[i]; // DMTC1
7688 rs2[i]=CSREG;
7689 break;
bedfea38 7690 case COP2:
7691 rs1[i]=0;
7692 rs2[i]=0;
7693 rt1[i]=0;
7694 rt2[i]=0;
7695 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7696 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7697 rs2[i]=CSREG;
7698 int gr=(source[i]>>11)&0x1F;
7699 switch(op2)
7700 {
7701 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7702 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
0ff8c62c 7703 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
bedfea38 7704 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7705 }
7706 break;
57871462 7707 case C1LS:
7708 rs1[i]=(source[i]>>21)&0x1F;
7709 rs2[i]=CSREG;
7710 rt1[i]=0;
7711 rt2[i]=0;
7712 imm[i]=(short)source[i];
7713 break;
b9b61529 7714 case C2LS:
7715 rs1[i]=(source[i]>>21)&0x1F;
7716 rs2[i]=0;
7717 rt1[i]=0;
7718 rt2[i]=0;
7719 imm[i]=(short)source[i];
bedfea38 7720 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7721 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7722 break;
7723 case C2OP:
7724 rs1[i]=0;
7725 rs2[i]=0;
7726 rt1[i]=0;
7727 rt2[i]=0;
2167bef6 7728 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7729 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7730 gte_rt[i]|=1ll<<63; // every op changes flags
587a5b1c 7731 if((source[i]&0x3f)==GTE_MVMVA) {
7732 int v = (source[i] >> 15) & 3;
7733 gte_rs[i]&=~0xe3fll;
7734 if(v==3) gte_rs[i]|=0xe00ll;
7735 else gte_rs[i]|=3ll<<(v*2);
7736 }
b9b61529 7737 break;
57871462 7738 case FLOAT:
7739 case FCONV:
7740 rs1[i]=0;
7741 rs2[i]=CSREG;
7742 rt1[i]=0;
7743 rt2[i]=0;
7744 break;
7745 case FCOMP:
7746 rs1[i]=FSREG;
7747 rs2[i]=CSREG;
7748 rt1[i]=FSREG;
7749 rt2[i]=0;
7750 break;
7751 case SYSCALL:
7139f3c8 7752 case HLECALL:
1e973cb0 7753 case INTCALL:
57871462 7754 rs1[i]=CCREG;
7755 rs2[i]=0;
7756 rt1[i]=0;
7757 rt2[i]=0;
7758 break;
7759 default:
7760 rs1[i]=0;
7761 rs2[i]=0;
7762 rt1[i]=0;
7763 rt2[i]=0;
7764 }
7765 /* Calculate branch target addresses */
7766 if(type==UJUMP)
7767 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7768 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7769 ba[i]=start+i*4+8; // Ignore never taken branch
7770 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7771 ba[i]=start+i*4+8; // Ignore never taken branch
7772 else if(type==CJUMP||type==SJUMP||type==FJUMP)
7773 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7774 else ba[i]=-1;
3e535354 7775 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
7776 int do_in_intrp=0;
7777 // branch in delay slot?
7778 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7779 // don't handle first branch and call interpreter if it's hit
c43b5311 7780 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
3e535354 7781 do_in_intrp=1;
7782 }
7783 // basic load delay detection
7784 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7785 int t=(ba[i-1]-start)/4;
7786 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7787 // jump target wants DS result - potential load delay effect
c43b5311 7788 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
3e535354 7789 do_in_intrp=1;
7790 bt[t+1]=1; // expected return from interpreter
7791 }
7792 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7793 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7794 // v0 overwrite like this is a sign of trouble, bail out
c43b5311 7795 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
3e535354 7796 do_in_intrp=1;
7797 }
7798 }
3e535354 7799 if(do_in_intrp) {
7800 rs1[i-1]=CCREG;
7801 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 7802 ba[i-1]=-1;
7803 itype[i-1]=INTCALL;
7804 done=2;
3e535354 7805 i--; // don't compile the DS
26869094 7806 }
3e535354 7807 }
3e535354 7808 /* Is this the end of the block? */
7809 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 7810 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 7811 done=2;
57871462 7812 }
7813 else {
7814 if(stop_after_jal) done=1;
7815 // Stop on BREAK
7816 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7817 }
7818 // Don't recompile stuff that's already compiled
7819 if(check_addr(start+i*4+4)) done=1;
7820 // Don't get too close to the limit
7821 if(i>MAXBLOCK/2) done=1;
7822 }
75dec299 7823 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 7824 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7825 if(done==2) {
7826 // Does the block continue due to a branch?
7827 for(j=i-1;j>=0;j--)
7828 {
2a706964 7829 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 7830 if(ba[j]==start+i*4+4) done=j=0;
7831 if(ba[j]==start+i*4+8) done=j=0;
7832 }
7833 }
75dec299 7834 //assert(i<MAXBLOCK-1);
57871462 7835 if(start+i*4==pagelimit-4) done=1;
7836 assert(start+i*4<pagelimit);
7837 if (i==MAXBLOCK-1) done=1;
7838 // Stop if we're compiling junk
7839 if(itype[i]==NI&&opcode[i]==0x11) {
7840 done=stop_after_jal=1;
c43b5311 7841 SysPrintf("Disabled speculative precompilation\n");
57871462 7842 }
7843 }
7844 slen=i;
7845 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
7846 if(start+i*4==pagelimit) {
7847 itype[i-1]=SPAN;
7848 }
7849 }
7850 assert(slen>0);
7851
7852 /* Pass 2 - Register dependencies and branch targets */
7853
7854 unneeded_registers(0,slen-1,0);
9f51b4b9 7855
57871462 7856 /* Pass 3 - Register allocation */
7857
7858 struct regstat current; // Current register allocations/status
7859 current.is32=1;
7860 current.dirty=0;
7861 current.u=unneeded_reg[0];
7862 current.uu=unneeded_reg_upper[0];
7863 clear_all_regs(current.regmap);
7864 alloc_reg(&current,0,CCREG);
7865 dirty_reg(&current,CCREG);
7866 current.isconst=0;
7867 current.wasconst=0;
27727b63 7868 current.waswritten=0;
57871462 7869 int ds=0;
7870 int cc=0;
5194fb95 7871 int hr=-1;
6ebf4adf 7872
57871462 7873 if((u_int)addr&1) {
7874 // First instruction is delay slot
7875 cc=-1;
7876 bt[1]=1;
7877 ds=1;
7878 unneeded_reg[0]=1;
7879 unneeded_reg_upper[0]=1;
7880 current.regmap[HOST_BTREG]=BTREG;
7881 }
9f51b4b9 7882
57871462 7883 for(i=0;i<slen;i++)
7884 {
7885 if(bt[i])
7886 {
7887 int hr;
7888 for(hr=0;hr<HOST_REGS;hr++)
7889 {
7890 // Is this really necessary?
7891 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7892 }
7893 current.isconst=0;
27727b63 7894 current.waswritten=0;
57871462 7895 }
7896 if(i>1)
7897 {
7898 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7899 {
7900 if(rs1[i-2]==0||rs2[i-2]==0)
7901 {
7902 if(rs1[i-2]) {
7903 current.is32|=1LL<<rs1[i-2];
7904 int hr=get_reg(current.regmap,rs1[i-2]|64);
7905 if(hr>=0) current.regmap[hr]=-1;
7906 }
7907 if(rs2[i-2]) {
7908 current.is32|=1LL<<rs2[i-2];
7909 int hr=get_reg(current.regmap,rs2[i-2]|64);
7910 if(hr>=0) current.regmap[hr]=-1;
7911 }
7912 }
7913 }
7914 }
24385cae 7915 current.is32=-1LL;
24385cae 7916
57871462 7917 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7918 regs[i].wasconst=current.isconst;
7919 regs[i].was32=current.is32;
7920 regs[i].wasdirty=current.dirty;
8575a877 7921 regs[i].loadedconst=0;
57871462 7922 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
7923 if(i+1<slen) {
7924 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7925 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
7926 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
7927 current.u|=1;
7928 current.uu|=1;
7929 } else {
7930 current.u=1;
7931 current.uu=1;
7932 }
7933 } else {
7934 if(i+1<slen) {
7935 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7936 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7937 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
7938 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7939 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
7940 current.u|=1;
7941 current.uu|=1;
c43b5311 7942 } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
57871462 7943 }
7944 is_ds[i]=ds;
7945 if(ds) {
7946 ds=0; // Skip delay slot, already allocated as part of branch
7947 // ...but we need to alloc it in case something jumps here
7948 if(i+1<slen) {
7949 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7950 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
7951 }else{
7952 current.u=branch_unneeded_reg[i-1];
7953 current.uu=branch_unneeded_reg_upper[i-1];
7954 }
7955 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7956 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
7957 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
7958 current.u|=1;
7959 current.uu|=1;
7960 struct regstat temp;
7961 memcpy(&temp,&current,sizeof(current));
7962 temp.wasdirty=temp.dirty;
7963 temp.was32=temp.is32;
7964 // TODO: Take into account unconditional branches, as below
7965 delayslot_alloc(&temp,i);
7966 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7967 regs[i].wasdirty=temp.wasdirty;
7968 regs[i].was32=temp.was32;
7969 regs[i].dirty=temp.dirty;
7970 regs[i].is32=temp.is32;
7971 regs[i].isconst=0;
7972 regs[i].wasconst=0;
7973 current.isconst=0;
7974 // Create entry (branch target) regmap
7975 for(hr=0;hr<HOST_REGS;hr++)
7976 {
7977 int r=temp.regmap[hr];
7978 if(r>=0) {
7979 if(r!=regmap_pre[i][hr]) {
7980 regs[i].regmap_entry[hr]=-1;
7981 }
7982 else
7983 {
7984 if(r<64){
7985 if((current.u>>r)&1) {
7986 regs[i].regmap_entry[hr]=-1;
7987 regs[i].regmap[hr]=-1;
7988 //Don't clear regs in the delay slot as the branch might need them
7989 //current.regmap[hr]=-1;
7990 }else
7991 regs[i].regmap_entry[hr]=r;
7992 }
7993 else {
7994 if((current.uu>>(r&63))&1) {
7995 regs[i].regmap_entry[hr]=-1;
7996 regs[i].regmap[hr]=-1;
7997 //Don't clear regs in the delay slot as the branch might need them
7998 //current.regmap[hr]=-1;
7999 }else
8000 regs[i].regmap_entry[hr]=r;
8001 }
8002 }
8003 } else {
8004 // First instruction expects CCREG to be allocated
9f51b4b9 8005 if(i==0&&hr==HOST_CCREG)
57871462 8006 regs[i].regmap_entry[hr]=CCREG;
8007 else
8008 regs[i].regmap_entry[hr]=-1;
8009 }
8010 }
8011 }
8012 else { // Not delay slot
8013 switch(itype[i]) {
8014 case UJUMP:
8015 //current.isconst=0; // DEBUG
8016 //current.wasconst=0; // DEBUG
8017 //regs[i].wasconst=0; // DEBUG
8018 clear_const(&current,rt1[i]);
8019 alloc_cc(&current,i);
8020 dirty_reg(&current,CCREG);
8021 if (rt1[i]==31) {
8022 alloc_reg(&current,i,31);
8023 dirty_reg(&current,31);
4ef8f67d 8024 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8025 //assert(rt1[i+1]!=rt1[i]);
57871462 8026 #ifdef REG_PREFETCH
8027 alloc_reg(&current,i,PTEMP);
8028 #endif
8029 //current.is32|=1LL<<rt1[i];
8030 }
269bb29a 8031 ooo[i]=1;
8032 delayslot_alloc(&current,i+1);
57871462 8033 //current.isconst=0; // DEBUG
8034 ds=1;
8035 //printf("i=%d, isconst=%x\n",i,current.isconst);
8036 break;
8037 case RJUMP:
8038 //current.isconst=0;
8039 //current.wasconst=0;
8040 //regs[i].wasconst=0;
8041 clear_const(&current,rs1[i]);
8042 clear_const(&current,rt1[i]);
8043 alloc_cc(&current,i);
8044 dirty_reg(&current,CCREG);
8045 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8046 alloc_reg(&current,i,rs1[i]);
5067f341 8047 if (rt1[i]!=0) {
8048 alloc_reg(&current,i,rt1[i]);
8049 dirty_reg(&current,rt1[i]);
68b3faee 8050 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 8051 assert(rt1[i+1]!=rt1[i]);
57871462 8052 #ifdef REG_PREFETCH
8053 alloc_reg(&current,i,PTEMP);
8054 #endif
8055 }
8056 #ifdef USE_MINI_HT
8057 if(rs1[i]==31) { // JALR
8058 alloc_reg(&current,i,RHASH);
8059 #ifndef HOST_IMM_ADDR32
8060 alloc_reg(&current,i,RHTBL);
8061 #endif
8062 }
8063 #endif
8064 delayslot_alloc(&current,i+1);
8065 } else {
8066 // The delay slot overwrites our source register,
8067 // allocate a temporary register to hold the old value.
8068 current.isconst=0;
8069 current.wasconst=0;
8070 regs[i].wasconst=0;
8071 delayslot_alloc(&current,i+1);
8072 current.isconst=0;
8073 alloc_reg(&current,i,RTEMP);
8074 }
8075 //current.isconst=0; // DEBUG
e1190b87 8076 ooo[i]=1;
57871462 8077 ds=1;
8078 break;
8079 case CJUMP:
8080 //current.isconst=0;
8081 //current.wasconst=0;
8082 //regs[i].wasconst=0;
8083 clear_const(&current,rs1[i]);
8084 clear_const(&current,rs2[i]);
8085 if((opcode[i]&0x3E)==4) // BEQ/BNE
8086 {
8087 alloc_cc(&current,i);
8088 dirty_reg(&current,CCREG);
8089 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8090 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8091 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8092 {
8093 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8094 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8095 }
8096 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8097 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8098 // The delay slot overwrites one of our conditions.
8099 // Allocate the branch condition registers instead.
57871462 8100 current.isconst=0;
8101 current.wasconst=0;
8102 regs[i].wasconst=0;
8103 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8104 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8105 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8106 {
8107 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8108 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8109 }
8110 }
e1190b87 8111 else
8112 {
8113 ooo[i]=1;
8114 delayslot_alloc(&current,i+1);
8115 }
57871462 8116 }
8117 else
8118 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8119 {
8120 alloc_cc(&current,i);
8121 dirty_reg(&current,CCREG);
8122 alloc_reg(&current,i,rs1[i]);
8123 if(!(current.is32>>rs1[i]&1))
8124 {
8125 alloc_reg64(&current,i,rs1[i]);
8126 }
8127 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8128 // The delay slot overwrites one of our conditions.
8129 // Allocate the branch condition registers instead.
57871462 8130 current.isconst=0;
8131 current.wasconst=0;
8132 regs[i].wasconst=0;
8133 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8134 if(!((current.is32>>rs1[i])&1))
8135 {
8136 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8137 }
8138 }
e1190b87 8139 else
8140 {
8141 ooo[i]=1;
8142 delayslot_alloc(&current,i+1);
8143 }
57871462 8144 }
8145 else
8146 // Don't alloc the delay slot yet because we might not execute it
8147 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8148 {
8149 current.isconst=0;
8150 current.wasconst=0;
8151 regs[i].wasconst=0;
8152 alloc_cc(&current,i);
8153 dirty_reg(&current,CCREG);
8154 alloc_reg(&current,i,rs1[i]);
8155 alloc_reg(&current,i,rs2[i]);
8156 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8157 {
8158 alloc_reg64(&current,i,rs1[i]);
8159 alloc_reg64(&current,i,rs2[i]);
8160 }
8161 }
8162 else
8163 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8164 {
8165 current.isconst=0;
8166 current.wasconst=0;
8167 regs[i].wasconst=0;
8168 alloc_cc(&current,i);
8169 dirty_reg(&current,CCREG);
8170 alloc_reg(&current,i,rs1[i]);
8171 if(!(current.is32>>rs1[i]&1))
8172 {
8173 alloc_reg64(&current,i,rs1[i]);
8174 }
8175 }
8176 ds=1;
8177 //current.isconst=0;
8178 break;
8179 case SJUMP:
8180 //current.isconst=0;
8181 //current.wasconst=0;
8182 //regs[i].wasconst=0;
8183 clear_const(&current,rs1[i]);
8184 clear_const(&current,rt1[i]);
8185 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8186 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8187 {
8188 alloc_cc(&current,i);
8189 dirty_reg(&current,CCREG);
8190 alloc_reg(&current,i,rs1[i]);
8191 if(!(current.is32>>rs1[i]&1))
8192 {
8193 alloc_reg64(&current,i,rs1[i]);
8194 }
8195 if (rt1[i]==31) { // BLTZAL/BGEZAL
8196 alloc_reg(&current,i,31);
8197 dirty_reg(&current,31);
57871462 8198 //#ifdef REG_PREFETCH
8199 //alloc_reg(&current,i,PTEMP);
8200 //#endif
8201 //current.is32|=1LL<<rt1[i];
8202 }
e1190b87 8203 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8204 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 8205 // Allocate the branch condition registers instead.
57871462 8206 current.isconst=0;
8207 current.wasconst=0;
8208 regs[i].wasconst=0;
8209 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8210 if(!((current.is32>>rs1[i])&1))
8211 {
8212 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8213 }
8214 }
e1190b87 8215 else
8216 {
8217 ooo[i]=1;
8218 delayslot_alloc(&current,i+1);
8219 }
57871462 8220 }
8221 else
8222 // Don't alloc the delay slot yet because we might not execute it
8223 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8224 {
8225 current.isconst=0;
8226 current.wasconst=0;
8227 regs[i].wasconst=0;
8228 alloc_cc(&current,i);
8229 dirty_reg(&current,CCREG);
8230 alloc_reg(&current,i,rs1[i]);
8231 if(!(current.is32>>rs1[i]&1))
8232 {
8233 alloc_reg64(&current,i,rs1[i]);
8234 }
8235 }
8236 ds=1;
8237 //current.isconst=0;
8238 break;
8239 case FJUMP:
8240 current.isconst=0;
8241 current.wasconst=0;
8242 regs[i].wasconst=0;
8243 if(likely[i]==0) // BC1F/BC1T
8244 {
8245 // TODO: Theoretically we can run out of registers here on x86.
8246 // The delay slot can allocate up to six, and we need to check
8247 // CSREG before executing the delay slot. Possibly we can drop
8248 // the cycle count and then reload it after checking that the
8249 // FPU is in a usable state, or don't do out-of-order execution.
8250 alloc_cc(&current,i);
8251 dirty_reg(&current,CCREG);
8252 alloc_reg(&current,i,FSREG);
8253 alloc_reg(&current,i,CSREG);
8254 if(itype[i+1]==FCOMP) {
8255 // The delay slot overwrites the branch condition.
8256 // Allocate the branch condition registers instead.
57871462 8257 alloc_cc(&current,i);
8258 dirty_reg(&current,CCREG);
8259 alloc_reg(&current,i,CSREG);
8260 alloc_reg(&current,i,FSREG);
8261 }
8262 else {
e1190b87 8263 ooo[i]=1;
57871462 8264 delayslot_alloc(&current,i+1);
8265 alloc_reg(&current,i+1,CSREG);
8266 }
8267 }
8268 else
8269 // Don't alloc the delay slot yet because we might not execute it
8270 if(likely[i]) // BC1FL/BC1TL
8271 {
8272 alloc_cc(&current,i);
8273 dirty_reg(&current,CCREG);
8274 alloc_reg(&current,i,CSREG);
8275 alloc_reg(&current,i,FSREG);
8276 }
8277 ds=1;
8278 current.isconst=0;
8279 break;
8280 case IMM16:
8281 imm16_alloc(&current,i);
8282 break;
8283 case LOAD:
8284 case LOADLR:
8285 load_alloc(&current,i);
8286 break;
8287 case STORE:
8288 case STORELR:
8289 store_alloc(&current,i);
8290 break;
8291 case ALU:
8292 alu_alloc(&current,i);
8293 break;
8294 case SHIFT:
8295 shift_alloc(&current,i);
8296 break;
8297 case MULTDIV:
8298 multdiv_alloc(&current,i);
8299 break;
8300 case SHIFTIMM:
8301 shiftimm_alloc(&current,i);
8302 break;
8303 case MOV:
8304 mov_alloc(&current,i);
8305 break;
8306 case COP0:
8307 cop0_alloc(&current,i);
8308 break;
8309 case COP1:
b9b61529 8310 case COP2:
57871462 8311 cop1_alloc(&current,i);
8312 break;
8313 case C1LS:
8314 c1ls_alloc(&current,i);
8315 break;
b9b61529 8316 case C2LS:
8317 c2ls_alloc(&current,i);
8318 break;
8319 case C2OP:
8320 c2op_alloc(&current,i);
8321 break;
57871462 8322 case FCONV:
8323 fconv_alloc(&current,i);
8324 break;
8325 case FLOAT:
8326 float_alloc(&current,i);
8327 break;
8328 case FCOMP:
8329 fcomp_alloc(&current,i);
8330 break;
8331 case SYSCALL:
7139f3c8 8332 case HLECALL:
1e973cb0 8333 case INTCALL:
57871462 8334 syscall_alloc(&current,i);
8335 break;
8336 case SPAN:
8337 pagespan_alloc(&current,i);
8338 break;
8339 }
9f51b4b9 8340
57871462 8341 // Drop the upper half of registers that have become 32-bit
8342 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8343 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8344 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8345 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8346 current.uu|=1;
8347 } else {
8348 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8349 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8350 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8351 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8352 current.uu|=1;
8353 }
8354
8355 // Create entry (branch target) regmap
8356 for(hr=0;hr<HOST_REGS;hr++)
8357 {
581335b0 8358 int r,or;
57871462 8359 r=current.regmap[hr];
8360 if(r>=0) {
8361 if(r!=regmap_pre[i][hr]) {
8362 // TODO: delay slot (?)
8363 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8364 if(or<0||(r&63)>=TEMPREG){
8365 regs[i].regmap_entry[hr]=-1;
8366 }
8367 else
8368 {
8369 // Just move it to a different register
8370 regs[i].regmap_entry[hr]=r;
8371 // If it was dirty before, it's still dirty
8372 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8373 }
8374 }
8375 else
8376 {
8377 // Unneeded
8378 if(r==0){
8379 regs[i].regmap_entry[hr]=0;
8380 }
8381 else
8382 if(r<64){
8383 if((current.u>>r)&1) {
8384 regs[i].regmap_entry[hr]=-1;
8385 //regs[i].regmap[hr]=-1;
8386 current.regmap[hr]=-1;
8387 }else
8388 regs[i].regmap_entry[hr]=r;
8389 }
8390 else {
8391 if((current.uu>>(r&63))&1) {
8392 regs[i].regmap_entry[hr]=-1;
8393 //regs[i].regmap[hr]=-1;
8394 current.regmap[hr]=-1;
8395 }else
8396 regs[i].regmap_entry[hr]=r;
8397 }
8398 }
8399 } else {
8400 // Branches expect CCREG to be allocated at the target
9f51b4b9 8401 if(regmap_pre[i][hr]==CCREG)
57871462 8402 regs[i].regmap_entry[hr]=CCREG;
8403 else
8404 regs[i].regmap_entry[hr]=-1;
8405 }
8406 }
8407 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8408 }
27727b63 8409
8410 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8411 current.waswritten|=1<<rs1[i-1];
8412 current.waswritten&=~(1<<rt1[i]);
8413 current.waswritten&=~(1<<rt2[i]);
8414 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8415 current.waswritten&=~(1<<rs1[i]);
8416
57871462 8417 /* Branch post-alloc */
8418 if(i>0)
8419 {
8420 current.was32=current.is32;
8421 current.wasdirty=current.dirty;
8422 switch(itype[i-1]) {
8423 case UJUMP:
8424 memcpy(&branch_regs[i-1],&current,sizeof(current));
8425 branch_regs[i-1].isconst=0;
8426 branch_regs[i-1].wasconst=0;
8427 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8428 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8429 alloc_cc(&branch_regs[i-1],i-1);
8430 dirty_reg(&branch_regs[i-1],CCREG);
8431 if(rt1[i-1]==31) { // JAL
8432 alloc_reg(&branch_regs[i-1],i-1,31);
8433 dirty_reg(&branch_regs[i-1],31);
8434 branch_regs[i-1].is32|=1LL<<31;
8435 }
8436 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 8437 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 8438 break;
8439 case RJUMP:
8440 memcpy(&branch_regs[i-1],&current,sizeof(current));
8441 branch_regs[i-1].isconst=0;
8442 branch_regs[i-1].wasconst=0;
8443 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8444 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8445 alloc_cc(&branch_regs[i-1],i-1);
8446 dirty_reg(&branch_regs[i-1],CCREG);
8447 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 8448 if(rt1[i-1]!=0) { // JALR
8449 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8450 dirty_reg(&branch_regs[i-1],rt1[i-1]);
8451 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 8452 }
8453 #ifdef USE_MINI_HT
8454 if(rs1[i-1]==31) { // JALR
8455 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8456 #ifndef HOST_IMM_ADDR32
8457 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8458 #endif
8459 }
8460 #endif
8461 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 8462 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 8463 break;
8464 case CJUMP:
8465 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8466 {
8467 alloc_cc(&current,i-1);
8468 dirty_reg(&current,CCREG);
8469 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8470 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8471 // The delay slot overwrote one of our conditions
8472 // Delay slot goes after the test (in order)
8473 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8474 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8475 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8476 current.u|=1;
8477 current.uu|=1;
8478 delayslot_alloc(&current,i);
8479 current.isconst=0;
8480 }
8481 else
8482 {
8483 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8484 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8485 // Alloc the branch condition registers
8486 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8487 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8488 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8489 {
8490 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8491 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8492 }
8493 }
8494 memcpy(&branch_regs[i-1],&current,sizeof(current));
8495 branch_regs[i-1].isconst=0;
8496 branch_regs[i-1].wasconst=0;
8497 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 8498 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 8499 }
8500 else
8501 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8502 {
8503 alloc_cc(&current,i-1);
8504 dirty_reg(&current,CCREG);
8505 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8506 // The delay slot overwrote the branch condition
8507 // Delay slot goes after the test (in order)
8508 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8509 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8510 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8511 current.u|=1;
8512 current.uu|=1;
8513 delayslot_alloc(&current,i);
8514 current.isconst=0;
8515 }
8516 else
8517 {
8518 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8519 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8520 // Alloc the branch condition register
8521 alloc_reg(&current,i-1,rs1[i-1]);
8522 if(!(current.is32>>rs1[i-1]&1))
8523 {
8524 alloc_reg64(&current,i-1,rs1[i-1]);
8525 }
8526 }
8527 memcpy(&branch_regs[i-1],&current,sizeof(current));
8528 branch_regs[i-1].isconst=0;
8529 branch_regs[i-1].wasconst=0;
8530 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 8531 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 8532 }
8533 else
8534 // Alloc the delay slot in case the branch is taken
8535 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8536 {
8537 memcpy(&branch_regs[i-1],&current,sizeof(current));
8538 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8539 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8540 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8541 alloc_cc(&branch_regs[i-1],i);
8542 dirty_reg(&branch_regs[i-1],CCREG);
8543 delayslot_alloc(&branch_regs[i-1],i);
8544 branch_regs[i-1].isconst=0;
8545 alloc_reg(&current,i,CCREG); // Not taken path
8546 dirty_reg(&current,CCREG);
8547 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8548 }
8549 else
8550 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8551 {
8552 memcpy(&branch_regs[i-1],&current,sizeof(current));
8553 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8554 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8555 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8556 alloc_cc(&branch_regs[i-1],i);
8557 dirty_reg(&branch_regs[i-1],CCREG);
8558 delayslot_alloc(&branch_regs[i-1],i);
8559 branch_regs[i-1].isconst=0;
8560 alloc_reg(&current,i,CCREG); // Not taken path
8561 dirty_reg(&current,CCREG);
8562 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8563 }
8564 break;
8565 case SJUMP:
8566 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8567 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8568 {
8569 alloc_cc(&current,i-1);
8570 dirty_reg(&current,CCREG);
8571 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8572 // The delay slot overwrote the branch condition
8573 // Delay slot goes after the test (in order)
8574 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8575 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8576 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8577 current.u|=1;
8578 current.uu|=1;
8579 delayslot_alloc(&current,i);
8580 current.isconst=0;
8581 }
8582 else
8583 {
8584 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8585 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8586 // Alloc the branch condition register
8587 alloc_reg(&current,i-1,rs1[i-1]);
8588 if(!(current.is32>>rs1[i-1]&1))
8589 {
8590 alloc_reg64(&current,i-1,rs1[i-1]);
8591 }
8592 }
8593 memcpy(&branch_regs[i-1],&current,sizeof(current));
8594 branch_regs[i-1].isconst=0;
8595 branch_regs[i-1].wasconst=0;
8596 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 8597 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 8598 }
8599 else
8600 // Alloc the delay slot in case the branch is taken
8601 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8602 {
8603 memcpy(&branch_regs[i-1],&current,sizeof(current));
8604 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8605 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8606 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8607 alloc_cc(&branch_regs[i-1],i);
8608 dirty_reg(&branch_regs[i-1],CCREG);
8609 delayslot_alloc(&branch_regs[i-1],i);
8610 branch_regs[i-1].isconst=0;
8611 alloc_reg(&current,i,CCREG); // Not taken path
8612 dirty_reg(&current,CCREG);
8613 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8614 }
8615 // FIXME: BLTZAL/BGEZAL
8616 if(opcode2[i-1]&0x10) { // BxxZAL
8617 alloc_reg(&branch_regs[i-1],i-1,31);
8618 dirty_reg(&branch_regs[i-1],31);
8619 branch_regs[i-1].is32|=1LL<<31;
8620 }
8621 break;
8622 case FJUMP:
8623 if(likely[i-1]==0) // BC1F/BC1T
8624 {
8625 alloc_cc(&current,i-1);
8626 dirty_reg(&current,CCREG);
8627 if(itype[i]==FCOMP) {
8628 // The delay slot overwrote the branch condition
8629 // Delay slot goes after the test (in order)
8630 delayslot_alloc(&current,i);
8631 current.isconst=0;
8632 }
8633 else
8634 {
8635 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8636 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8637 // Alloc the branch condition register
8638 alloc_reg(&current,i-1,FSREG);
8639 }
8640 memcpy(&branch_regs[i-1],&current,sizeof(current));
8641 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8642 }
8643 else // BC1FL/BC1TL
8644 {
8645 // Alloc the delay slot in case the branch is taken
8646 memcpy(&branch_regs[i-1],&current,sizeof(current));
8647 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8648 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8649 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8650 alloc_cc(&branch_regs[i-1],i);
8651 dirty_reg(&branch_regs[i-1],CCREG);
8652 delayslot_alloc(&branch_regs[i-1],i);
8653 branch_regs[i-1].isconst=0;
8654 alloc_reg(&current,i,CCREG); // Not taken path
8655 dirty_reg(&current,CCREG);
8656 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8657 }
8658 break;
8659 }
8660
8661 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8662 {
8663 if(rt1[i-1]==31) // JAL/JALR
8664 {
8665 // Subroutine call will return here, don't alloc any registers
8666 current.is32=1;
8667 current.dirty=0;
8668 clear_all_regs(current.regmap);
8669 alloc_reg(&current,i,CCREG);
8670 dirty_reg(&current,CCREG);
8671 }
8672 else if(i+1<slen)
8673 {
8674 // Internal branch will jump here, match registers to caller
8675 current.is32=0x3FFFFFFFFLL;
8676 current.dirty=0;
8677 clear_all_regs(current.regmap);
8678 alloc_reg(&current,i,CCREG);
8679 dirty_reg(&current,CCREG);
8680 for(j=i-1;j>=0;j--)
8681 {
8682 if(ba[j]==start+i*4+4) {
8683 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8684 current.is32=branch_regs[j].is32;
8685 current.dirty=branch_regs[j].dirty;
8686 break;
8687 }
8688 }
8689 while(j>=0) {
8690 if(ba[j]==start+i*4+4) {
8691 for(hr=0;hr<HOST_REGS;hr++) {
8692 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8693 current.regmap[hr]=-1;
8694 }
8695 current.is32&=branch_regs[j].is32;
8696 current.dirty&=branch_regs[j].dirty;
8697 }
8698 }
8699 j--;
8700 }
8701 }
8702 }
8703 }
8704
8705 // Count cycles in between branches
8706 ccadj[i]=cc;
7139f3c8 8707 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 8708 {
8709 cc=0;
8710 }
71e490c5 8711#if !defined(DRC_DBG)
054175e9 8712 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8713 {
8714 // GTE runs in parallel until accessed, divide by 2 for a rough guess
8715 cc+=gte_cycletab[source[i]&0x3f]/2;
8716 }
b6e87b2b 8717 else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
fb407447 8718 {
8719 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
8720 }
5fdcbb5a 8721 else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8722 {
8723 cc+=4;
8724 }
fb407447 8725 else if(itype[i]==C2LS)
8726 {
8727 cc+=4;
8728 }
8729#endif
57871462 8730 else
8731 {
8732 cc++;
8733 }
8734
8735 flush_dirty_uppers(&current);
8736 if(!is_ds[i]) {
8737 regs[i].is32=current.is32;
8738 regs[i].dirty=current.dirty;
8739 regs[i].isconst=current.isconst;
956f3129 8740 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
57871462 8741 }
8742 for(hr=0;hr<HOST_REGS;hr++) {
8743 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8744 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8745 regs[i].wasconst&=~(1<<hr);
8746 }
8747 }
8748 }
8749 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
27727b63 8750 regs[i].waswritten=current.waswritten;
57871462 8751 }
9f51b4b9 8752
57871462 8753 /* Pass 4 - Cull unused host registers */
9f51b4b9 8754
57871462 8755 uint64_t nr=0;
9f51b4b9 8756
57871462 8757 for (i=slen-1;i>=0;i--)
8758 {
8759 int hr;
8760 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8761 {
8762 if(ba[i]<start || ba[i]>=(start+slen*4))
8763 {
8764 // Branch out of this block, don't need anything
8765 nr=0;
8766 }
8767 else
8768 {
8769 // Internal branch
8770 // Need whatever matches the target
8771 nr=0;
8772 int t=(ba[i]-start)>>2;
8773 for(hr=0;hr<HOST_REGS;hr++)
8774 {
8775 if(regs[i].regmap_entry[hr]>=0) {
8776 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8777 }
8778 }
8779 }
8780 // Conditional branch may need registers for following instructions
8781 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8782 {
8783 if(i<slen-2) {
8784 nr|=needed_reg[i+2];
8785 for(hr=0;hr<HOST_REGS;hr++)
8786 {
8787 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8788 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8789 }
8790 }
8791 }
8792 // Don't need stuff which is overwritten
f5955059 8793 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8794 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 8795 // Merge in delay slot
8796 for(hr=0;hr<HOST_REGS;hr++)
8797 {
8798 if(!likely[i]) {
8799 // These are overwritten unless the branch is "likely"
8800 // and the delay slot is nullified if not taken
8801 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8802 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8803 }
8804 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8805 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8806 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8807 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8808 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8809 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8810 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8811 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8812 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
8813 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8814 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8815 }
8816 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
8817 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8818 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8819 }
b9b61529 8820 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 8821 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8822 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8823 }
8824 }
8825 }
1e973cb0 8826 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 8827 {
8828 // SYSCALL instruction (software interrupt)
8829 nr=0;
8830 }
8831 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8832 {
8833 // ERET instruction (return from interrupt)
8834 nr=0;
8835 }
8836 else // Non-branch
8837 {
8838 if(i<slen-1) {
8839 for(hr=0;hr<HOST_REGS;hr++) {
8840 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8841 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8842 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8843 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8844 }
8845 }
8846 }
8847 for(hr=0;hr<HOST_REGS;hr++)
8848 {
8849 // Overwritten registers are not needed
8850 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8851 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8852 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8853 // Source registers are needed
8854 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8855 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8856 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8857 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8858 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8859 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8860 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8861 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8862 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
8863 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8864 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8865 }
8866 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
8867 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8868 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8869 }
b9b61529 8870 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 8871 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8872 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8873 }
8874 // Don't store a register immediately after writing it,
8875 // may prevent dual-issue.
8876 // But do so if this is a branch target, otherwise we
8877 // might have to load the register before the branch.
8878 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8879 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
8880 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
8881 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8882 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8883 }
8884 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
8885 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
8886 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8887 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8888 }
8889 }
8890 }
8891 // Cycle count is needed at branches. Assume it is needed at the target too.
8892 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
8893 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8894 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8895 }
8896 // Save it
8897 needed_reg[i]=nr;
9f51b4b9 8898
57871462 8899 // Deallocate unneeded registers
8900 for(hr=0;hr<HOST_REGS;hr++)
8901 {
8902 if(!((nr>>hr)&1)) {
8903 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8904 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8905 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8906 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8907 {
8908 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8909 {
8910 if(likely[i]) {
8911 regs[i].regmap[hr]=-1;
8912 regs[i].isconst&=~(1<<hr);
79c75f1b 8913 if(i<slen-2) {
8914 regmap_pre[i+2][hr]=-1;
8915 regs[i+2].wasconst&=~(1<<hr);
8916 }
57871462 8917 }
8918 }
8919 }
8920 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8921 {
8922 int d1=0,d2=0,map=0,temp=0;
8923 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
8924 {
8925 d1=dep1[i+1];
8926 d2=dep2[i+1];
8927 }
b9b61529 8928 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8929 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 8930 map=INVCP;
8931 }
8932 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 8933 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 8934 temp=FTEMP;
8935 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8936 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8937 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8938 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
8939 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
8940 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8941 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8942 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8943 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8944 regs[i].regmap[hr]!=map )
8945 {
8946 regs[i].regmap[hr]=-1;
8947 regs[i].isconst&=~(1<<hr);
8948 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8949 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8950 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8951 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
8952 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
8953 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8954 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8955 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8956 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8957 branch_regs[i].regmap[hr]!=map)
8958 {
8959 branch_regs[i].regmap[hr]=-1;
8960 branch_regs[i].regmap_entry[hr]=-1;
8961 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8962 {
8963 if(!likely[i]&&i<slen-2) {
8964 regmap_pre[i+2][hr]=-1;
79c75f1b 8965 regs[i+2].wasconst&=~(1<<hr);
57871462 8966 }
8967 }
8968 }
8969 }
8970 }
8971 else
8972 {
8973 // Non-branch
8974 if(i>0)
8975 {
8976 int d1=0,d2=0,map=-1,temp=-1;
8977 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
8978 {
8979 d1=dep1[i];
8980 d2=dep2[i];
8981 }
1edfcc68 8982 if(itype[i]==STORE || itype[i]==STORELR ||
b9b61529 8983 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 8984 map=INVCP;
8985 }
8986 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 8987 itype[i]==C1LS || itype[i]==C2LS)
57871462 8988 temp=FTEMP;
8989 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8990 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
8991 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
8992 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
8993 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
8994 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
8995 {
8996 if(i<slen-1&&!is_ds[i]) {
8997 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
8998 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8999 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9000 {
c43b5311 9001 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
57871462 9002 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9003 }
9004 regmap_pre[i+1][hr]=-1;
9005 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 9006 regs[i+1].wasconst&=~(1<<hr);
57871462 9007 }
9008 regs[i].regmap[hr]=-1;
9009 regs[i].isconst&=~(1<<hr);
9010 }
9011 }
9012 }
9013 }
9014 }
9015 }
9f51b4b9 9016
57871462 9017 /* Pass 5 - Pre-allocate registers */
9f51b4b9 9018
57871462 9019 // If a register is allocated during a loop, try to allocate it for the
9020 // entire loop, if possible. This avoids loading/storing registers
9021 // inside of the loop.
9f51b4b9 9022
57871462 9023 signed char f_regmap[HOST_REGS];
9024 clear_all_regs(f_regmap);
9025 for(i=0;i<slen-1;i++)
9026 {
9027 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9028 {
9f51b4b9 9029 if(ba[i]>=start && ba[i]<(start+i*4))
57871462 9030 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9031 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9032 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9033 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 9034 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9035 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 9036 {
9037 int t=(ba[i]-start)>>2;
9038 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 9039 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 9040 for(hr=0;hr<HOST_REGS;hr++)
9041 {
9042 if(regs[i].regmap[hr]>64) {
9043 if(!((regs[i].dirty>>hr)&1))
9044 f_regmap[hr]=regs[i].regmap[hr];
9045 else f_regmap[hr]=-1;
9046 }
b372a952 9047 else if(regs[i].regmap[hr]>=0) {
9048 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9049 // dealloc old register
9050 int n;
9051 for(n=0;n<HOST_REGS;n++)
9052 {
9053 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9054 }
9055 // and alloc new one
9056 f_regmap[hr]=regs[i].regmap[hr];
9057 }
9058 }
57871462 9059 if(branch_regs[i].regmap[hr]>64) {
9060 if(!((branch_regs[i].dirty>>hr)&1))
9061 f_regmap[hr]=branch_regs[i].regmap[hr];
9062 else f_regmap[hr]=-1;
9063 }
b372a952 9064 else if(branch_regs[i].regmap[hr]>=0) {
9065 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9066 // dealloc old register
9067 int n;
9068 for(n=0;n<HOST_REGS;n++)
9069 {
9070 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9071 }
9072 // and alloc new one
9073 f_regmap[hr]=branch_regs[i].regmap[hr];
9074 }
9075 }
e1190b87 9076 if(ooo[i]) {
9f51b4b9 9077 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
e1190b87 9078 f_regmap[hr]=branch_regs[i].regmap[hr];
9079 }else{
9f51b4b9 9080 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 9081 f_regmap[hr]=branch_regs[i].regmap[hr];
9082 }
9083 // Avoid dirty->clean transition
e1190b87 9084 #ifdef DESTRUCTIVE_WRITEBACK
57871462 9085 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 9086 #endif
9087 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9088 // case above, however it's always a good idea. We can't hoist the
9089 // load if the register was already allocated, so there's no point
9090 // wasting time analyzing most of these cases. It only "succeeds"
9091 // when the mapping was different and the load can be replaced with
9092 // a mov, which is of negligible benefit. So such cases are
9093 // skipped below.
57871462 9094 if(f_regmap[hr]>0) {
198df76f 9095 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 9096 int r=f_regmap[hr];
9097 for(j=t;j<=i;j++)
9098 {
9099 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9100 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9101 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9102 if(r>63) {
9103 // NB This can exclude the case where the upper-half
9104 // register is lower numbered than the lower-half
9105 // register. Not sure if it's worth fixing...
9106 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 9107 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 9108 if(regs[j].is32&(1LL<<(r&63))) break;
9109 }
9110 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9111 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9112 int k;
9113 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9114 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9115 if(r>63) {
9116 if(get_reg(regs[i].regmap,r&63)<0) break;
9117 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9118 }
9119 k=i;
9120 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 9121 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9122 //printf("no free regs for store %x\n",start+(k-1)*4);
9123 break;
57871462 9124 }
57871462 9125 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9126 //printf("no-match due to different register\n");
9127 break;
9128 }
9129 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9130 //printf("no-match due to branch\n");
9131 break;
9132 }
9133 // call/ret fast path assumes no registers allocated
198df76f 9134 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 9135 break;
9136 }
9137 if(r>63) {
9138 // NB This can exclude the case where the upper-half
9139 // register is lower numbered than the lower-half
9140 // register. Not sure if it's worth fixing...
9141 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9142 if(regs[k-1].is32&(1LL<<(r&63))) break;
9143 }
9144 k--;
9145 }
9146 if(i<slen-1) {
9147 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9148 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9149 //printf("bad match after branch\n");
9150 break;
9151 }
9152 }
9153 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9154 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9155 while(k<i) {
9156 regs[k].regmap_entry[hr]=f_regmap[hr];
9157 regs[k].regmap[hr]=f_regmap[hr];
9158 regmap_pre[k+1][hr]=f_regmap[hr];
9159 regs[k].wasdirty&=~(1<<hr);
9160 regs[k].dirty&=~(1<<hr);
9161 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9162 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9163 regs[k].wasconst&=~(1<<hr);
9164 regs[k].isconst&=~(1<<hr);
9165 k++;
9166 }
9167 }
9168 else {
9169 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9170 break;
9171 }
9172 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9173 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9174 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9175 regs[i].regmap_entry[hr]=f_regmap[hr];
9176 regs[i].regmap[hr]=f_regmap[hr];
9177 regs[i].wasdirty&=~(1<<hr);
9178 regs[i].dirty&=~(1<<hr);
9179 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9180 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9181 regs[i].wasconst&=~(1<<hr);
9182 regs[i].isconst&=~(1<<hr);
9183 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9184 branch_regs[i].wasdirty&=~(1<<hr);
9185 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9186 branch_regs[i].regmap[hr]=f_regmap[hr];
9187 branch_regs[i].dirty&=~(1<<hr);
9188 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9189 branch_regs[i].wasconst&=~(1<<hr);
9190 branch_regs[i].isconst&=~(1<<hr);
9191 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9192 regmap_pre[i+2][hr]=f_regmap[hr];
9193 regs[i+2].wasdirty&=~(1<<hr);
9194 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9195 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9196 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9197 }
9198 }
9199 }
9200 for(k=t;k<j;k++) {
e1190b87 9201 // Alloc register clean at beginning of loop,
9202 // but may dirty it in pass 6
57871462 9203 regs[k].regmap_entry[hr]=f_regmap[hr];
9204 regs[k].regmap[hr]=f_regmap[hr];
57871462 9205 regs[k].dirty&=~(1<<hr);
9206 regs[k].wasconst&=~(1<<hr);
9207 regs[k].isconst&=~(1<<hr);
e1190b87 9208 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9209 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9210 branch_regs[k].regmap[hr]=f_regmap[hr];
9211 branch_regs[k].dirty&=~(1<<hr);
9212 branch_regs[k].wasconst&=~(1<<hr);
9213 branch_regs[k].isconst&=~(1<<hr);
9214 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9215 regmap_pre[k+2][hr]=f_regmap[hr];
9216 regs[k+2].wasdirty&=~(1<<hr);
9217 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9218 (regs[k+2].was32&(1LL<<f_regmap[hr])));
9219 }
9220 }
9221 else
9222 {
9223 regmap_pre[k+1][hr]=f_regmap[hr];
9224 regs[k+1].wasdirty&=~(1<<hr);
9225 }
57871462 9226 }
9227 if(regs[j].regmap[hr]==f_regmap[hr])
9228 regs[j].regmap_entry[hr]=f_regmap[hr];
9229 break;
9230 }
9231 if(j==i) break;
9232 if(regs[j].regmap[hr]>=0)
9233 break;
9234 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9235 //printf("no-match due to different register\n");
9236 break;
9237 }
9238 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9239 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9240 break;
9241 }
e1190b87 9242 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9243 {
9244 // Stop on unconditional branch
9245 break;
9246 }
9247 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9248 {
9249 if(ooo[j]) {
9f51b4b9 9250 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
e1190b87 9251 break;
9252 }else{
9f51b4b9 9253 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
e1190b87 9254 break;
9255 }
9256 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9257 //printf("no-match due to different register (branch)\n");
57871462 9258 break;
9259 }
9260 }
e1190b87 9261 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9262 //printf("No free regs for store %x\n",start+j*4);
9263 break;
9264 }
57871462 9265 if(f_regmap[hr]>=64) {
9266 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9267 break;
9268 }
9269 else
9270 {
9271 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9272 break;
9273 }
9274 }
9275 }
9276 }
9277 }
9278 }
9279 }
9280 }
9281 }else{
198df76f 9282 // Non branch or undetermined branch target
57871462 9283 for(hr=0;hr<HOST_REGS;hr++)
9284 {
9285 if(hr!=EXCLUDE_REG) {
9286 if(regs[i].regmap[hr]>64) {
9287 if(!((regs[i].dirty>>hr)&1))
9288 f_regmap[hr]=regs[i].regmap[hr];
9289 }
b372a952 9290 else if(regs[i].regmap[hr]>=0) {
9291 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9292 // dealloc old register
9293 int n;
9294 for(n=0;n<HOST_REGS;n++)
9295 {
9296 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9297 }
9298 // and alloc new one
9299 f_regmap[hr]=regs[i].regmap[hr];
9300 }
9301 }
57871462 9302 }
9303 }
9304 // Try to restore cycle count at branch targets
9305 if(bt[i]) {
9306 for(j=i;j<slen-1;j++) {
9307 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 9308 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9309 //printf("no free regs for store %x\n",start+j*4);
9310 break;
57871462 9311 }
57871462 9312 }
9313 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9314 int k=i;
9315 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9316 while(k<j) {
9317 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9318 regs[k].regmap[HOST_CCREG]=CCREG;
9319 regmap_pre[k+1][HOST_CCREG]=CCREG;
9320 regs[k+1].wasdirty|=1<<HOST_CCREG;
9321 regs[k].dirty|=1<<HOST_CCREG;
9322 regs[k].wasconst&=~(1<<HOST_CCREG);
9323 regs[k].isconst&=~(1<<HOST_CCREG);
9324 k++;
9325 }
9f51b4b9 9326 regs[j].regmap_entry[HOST_CCREG]=CCREG;
57871462 9327 }
9328 // Work backwards from the branch target
9329 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9330 {
9331 //printf("Extend backwards\n");
9332 int k;
9333 k=i;
9334 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 9335 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9336 //printf("no free regs for store %x\n",start+(k-1)*4);
9337 break;
57871462 9338 }
57871462 9339 k--;
9340 }
9341 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9342 //printf("Extend CC, %x ->\n",start+k*4);
9343 while(k<=i) {
9344 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9345 regs[k].regmap[HOST_CCREG]=CCREG;
9346 regmap_pre[k+1][HOST_CCREG]=CCREG;
9347 regs[k+1].wasdirty|=1<<HOST_CCREG;
9348 regs[k].dirty|=1<<HOST_CCREG;
9349 regs[k].wasconst&=~(1<<HOST_CCREG);
9350 regs[k].isconst&=~(1<<HOST_CCREG);
9351 k++;
9352 }
9353 }
9354 else {
9355 //printf("Fail Extend CC, %x ->\n",start+k*4);
9356 }
9357 }
9358 }
9359 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9360 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9361 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 9362 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 9363 {
9364 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9365 }
9366 }
9367 }
9f51b4b9 9368
d61de97e 9369 // Cache memory offset or tlb map pointer if a register is available
9370 #ifndef HOST_IMM_ADDR32
9371 #ifndef RAM_OFFSET
1edfcc68 9372 if(0)
d61de97e 9373 #endif
9374 {
9375 int earliest_available[HOST_REGS];
9376 int loop_start[HOST_REGS];
9377 int score[HOST_REGS];
9378 int end[HOST_REGS];
1edfcc68 9379 int reg=ROREG;
d61de97e 9380
9381 // Init
9382 for(hr=0;hr<HOST_REGS;hr++) {
9383 score[hr]=0;earliest_available[hr]=0;
9384 loop_start[hr]=MAXBLOCK;
9385 }
9386 for(i=0;i<slen-1;i++)
9387 {
9388 // Can't do anything if no registers are available
9389 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9390 for(hr=0;hr<HOST_REGS;hr++) {
9391 score[hr]=0;earliest_available[hr]=i+1;
9392 loop_start[hr]=MAXBLOCK;
9393 }
9394 }
9395 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9396 if(!ooo[i]) {
9397 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9398 for(hr=0;hr<HOST_REGS;hr++) {
9399 score[hr]=0;earliest_available[hr]=i+1;
9400 loop_start[hr]=MAXBLOCK;
9401 }
9402 }
198df76f 9403 }else{
9404 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9405 for(hr=0;hr<HOST_REGS;hr++) {
9406 score[hr]=0;earliest_available[hr]=i+1;
9407 loop_start[hr]=MAXBLOCK;
9408 }
9409 }
d61de97e 9410 }
9411 }
9412 // Mark unavailable registers
9413 for(hr=0;hr<HOST_REGS;hr++) {
9414 if(regs[i].regmap[hr]>=0) {
9415 score[hr]=0;earliest_available[hr]=i+1;
9416 loop_start[hr]=MAXBLOCK;
9417 }
9418 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9419 if(branch_regs[i].regmap[hr]>=0) {
9420 score[hr]=0;earliest_available[hr]=i+2;
9421 loop_start[hr]=MAXBLOCK;
9422 }
9423 }
9424 }
9425 // No register allocations after unconditional jumps
9426 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9427 {
9428 for(hr=0;hr<HOST_REGS;hr++) {
9429 score[hr]=0;earliest_available[hr]=i+2;
9430 loop_start[hr]=MAXBLOCK;
9431 }
9432 i++; // Skip delay slot too
9433 //printf("skip delay slot: %x\n",start+i*4);
9434 }
9435 else
9436 // Possible match
9437 if(itype[i]==LOAD||itype[i]==LOADLR||
9438 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9439 for(hr=0;hr<HOST_REGS;hr++) {
9440 if(hr!=EXCLUDE_REG) {
9441 end[hr]=i-1;
9442 for(j=i;j<slen-1;j++) {
9443 if(regs[j].regmap[hr]>=0) break;
9444 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9445 if(branch_regs[j].regmap[hr]>=0) break;
9446 if(ooo[j]) {
9447 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9448 }else{
9449 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9450 }
9451 }
9452 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9453 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9454 int t=(ba[j]-start)>>2;
9455 if(t<j&&t>=earliest_available[hr]) {
198df76f 9456 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9457 // Score a point for hoisting loop invariant
9458 if(t<loop_start[hr]) loop_start[hr]=t;
9459 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
9460 score[hr]++;
9461 end[hr]=j;
9462 }
d61de97e 9463 }
9464 else if(t<j) {
9465 if(regs[t].regmap[hr]==reg) {
9466 // Score a point if the branch target matches this register
9467 score[hr]++;
9468 end[hr]=j;
9469 }
9470 }
9471 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9472 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9473 score[hr]++;
9474 end[hr]=j;
9475 }
9476 }
9477 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9478 {
9479 // Stop on unconditional branch
9480 break;
9481 }
9482 else
9483 if(itype[j]==LOAD||itype[j]==LOADLR||
9484 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9485 score[hr]++;
9486 end[hr]=j;
9487 }
9488 }
9489 }
9490 }
9491 // Find highest score and allocate that register
9492 int maxscore=0;
9493 for(hr=0;hr<HOST_REGS;hr++) {
9494 if(hr!=EXCLUDE_REG) {
9495 if(score[hr]>score[maxscore]) {
9496 maxscore=hr;
9497 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
9498 }
9499 }
9500 }
9501 if(score[maxscore]>1)
9502 {
9503 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9504 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9505 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9506 assert(regs[j].regmap[maxscore]<0);
9507 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9508 regs[j].regmap[maxscore]=reg;
9509 regs[j].dirty&=~(1<<maxscore);
9510 regs[j].wasconst&=~(1<<maxscore);
9511 regs[j].isconst&=~(1<<maxscore);
9512 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9513 branch_regs[j].regmap[maxscore]=reg;
9514 branch_regs[j].wasdirty&=~(1<<maxscore);
9515 branch_regs[j].dirty&=~(1<<maxscore);
9516 branch_regs[j].wasconst&=~(1<<maxscore);
9517 branch_regs[j].isconst&=~(1<<maxscore);
9518 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9519 regmap_pre[j+2][maxscore]=reg;
9520 regs[j+2].wasdirty&=~(1<<maxscore);
9521 }
9522 // loop optimization (loop_preload)
9523 int t=(ba[j]-start)>>2;
198df76f 9524 if(t==loop_start[maxscore]) {
9525 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
9526 regs[t].regmap_entry[maxscore]=reg;
9527 }
d61de97e 9528 }
9529 else
9530 {
9531 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
9532 regmap_pre[j+1][maxscore]=reg;
9533 regs[j+1].wasdirty&=~(1<<maxscore);
9534 }
9535 }
9536 }
9537 i=j-1;
9538 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
9539 for(hr=0;hr<HOST_REGS;hr++) {
9540 score[hr]=0;earliest_available[hr]=i+i;
9541 loop_start[hr]=MAXBLOCK;
9542 }
9543 }
9544 }
9545 }
9546 }
9547 #endif
9f51b4b9 9548
57871462 9549 // This allocates registers (if possible) one instruction prior
9550 // to use, which can avoid a load-use penalty on certain CPUs.
9551 for(i=0;i<slen-1;i++)
9552 {
9553 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9554 {
9555 if(!bt[i+1])
9556 {
b9b61529 9557 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9558 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 9559 {
9560 if(rs1[i+1]) {
9561 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9562 {
9563 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9564 {
9565 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9566 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9567 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9568 regs[i].isconst&=~(1<<hr);
9569 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9570 constmap[i][hr]=constmap[i+1][hr];
9571 regs[i+1].wasdirty&=~(1<<hr);
9572 regs[i].dirty&=~(1<<hr);
9573 }
9574 }
9575 }
9576 if(rs2[i+1]) {
9577 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9578 {
9579 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9580 {
9581 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9582 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9583 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9584 regs[i].isconst&=~(1<<hr);
9585 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9586 constmap[i][hr]=constmap[i+1][hr];
9587 regs[i+1].wasdirty&=~(1<<hr);
9588 regs[i].dirty&=~(1<<hr);
9589 }
9590 }
9591 }
198df76f 9592 // Preload target address for load instruction (non-constant)
57871462 9593 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9594 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9595 {
9596 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9597 {
9598 regs[i].regmap[hr]=rs1[i+1];
9599 regmap_pre[i+1][hr]=rs1[i+1];
9600 regs[i+1].regmap_entry[hr]=rs1[i+1];
9601 regs[i].isconst&=~(1<<hr);
9602 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9603 constmap[i][hr]=constmap[i+1][hr];
9604 regs[i+1].wasdirty&=~(1<<hr);
9605 regs[i].dirty&=~(1<<hr);
9606 }
9607 }
9608 }
9f51b4b9 9609 // Load source into target register
57871462 9610 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9611 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9612 {
9613 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9614 {
9615 regs[i].regmap[hr]=rs1[i+1];
9616 regmap_pre[i+1][hr]=rs1[i+1];
9617 regs[i+1].regmap_entry[hr]=rs1[i+1];
9618 regs[i].isconst&=~(1<<hr);
9619 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9620 constmap[i][hr]=constmap[i+1][hr];
9621 regs[i+1].wasdirty&=~(1<<hr);
9622 regs[i].dirty&=~(1<<hr);
9623 }
9624 }
9625 }
198df76f 9626 // Address for store instruction (non-constant)
b9b61529 9627 if(itype[i+1]==STORE||itype[i+1]==STORELR
9628 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 9629 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9630 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9631 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9632 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9633 assert(hr>=0);
9634 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9635 {
9636 regs[i].regmap[hr]=rs1[i+1];
9637 regmap_pre[i+1][hr]=rs1[i+1];
9638 regs[i+1].regmap_entry[hr]=rs1[i+1];
9639 regs[i].isconst&=~(1<<hr);
9640 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9641 constmap[i][hr]=constmap[i+1][hr];
9642 regs[i+1].wasdirty&=~(1<<hr);
9643 regs[i].dirty&=~(1<<hr);
9644 }
9645 }
9646 }
b9b61529 9647 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 9648 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9649 int nr;
9650 hr=get_reg(regs[i+1].regmap,FTEMP);
9651 assert(hr>=0);
9652 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9653 {
9654 regs[i].regmap[hr]=rs1[i+1];
9655 regmap_pre[i+1][hr]=rs1[i+1];
9656 regs[i+1].regmap_entry[hr]=rs1[i+1];
9657 regs[i].isconst&=~(1<<hr);
9658 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9659 constmap[i][hr]=constmap[i+1][hr];
9660 regs[i+1].wasdirty&=~(1<<hr);
9661 regs[i].dirty&=~(1<<hr);
9662 }
9663 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9664 {
9665 // move it to another register
9666 regs[i+1].regmap[hr]=-1;
9667 regmap_pre[i+2][hr]=-1;
9668 regs[i+1].regmap[nr]=FTEMP;
9669 regmap_pre[i+2][nr]=FTEMP;
9670 regs[i].regmap[nr]=rs1[i+1];
9671 regmap_pre[i+1][nr]=rs1[i+1];
9672 regs[i+1].regmap_entry[nr]=rs1[i+1];
9673 regs[i].isconst&=~(1<<nr);
9674 regs[i+1].isconst&=~(1<<nr);
9675 regs[i].dirty&=~(1<<nr);
9676 regs[i+1].wasdirty&=~(1<<nr);
9677 regs[i+1].dirty&=~(1<<nr);
9678 regs[i+2].wasdirty&=~(1<<nr);
9679 }
9680 }
9681 }
b9b61529 9682 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
9f51b4b9 9683 if(itype[i+1]==LOAD)
57871462 9684 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 9685 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 9686 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 9687 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 9688 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9689 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9690 }
9691 if(hr>=0&&regs[i].regmap[hr]<0) {
9692 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9693 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9694 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9695 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9696 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9697 regs[i].isconst&=~(1<<hr);
9698 regs[i+1].wasdirty&=~(1<<hr);
9699 regs[i].dirty&=~(1<<hr);
9700 }
9701 }
9702 }
9703 }
9704 }
9705 }
9706 }
9f51b4b9 9707
57871462 9708 /* Pass 6 - Optimize clean/dirty state */
9709 clean_registers(0,slen-1,1);
9f51b4b9 9710
57871462 9711 /* Pass 7 - Identify 32-bit registers */
04fd948a 9712 for (i=slen-1;i>=0;i--)
9713 {
9714 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9715 {
9716 // Conditional branch
9717 if((source[i]>>16)!=0x1000&&i<slen-2) {
9718 // Mark this address as a branch target since it may be called
9719 // upon return from interrupt
9720 bt[i+2]=1;
9721 }
9722 }
9723 }
57871462 9724
9725 if(itype[slen-1]==SPAN) {
9726 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9727 }
4600ba03 9728
9729#ifdef DISASM
57871462 9730 /* Debug/disassembly */
57871462 9731 for(i=0;i<slen;i++)
9732 {
9733 printf("U:");
9734 int r;
9735 for(r=1;r<=CCREG;r++) {
9736 if((unneeded_reg[i]>>r)&1) {
9737 if(r==HIREG) printf(" HI");
9738 else if(r==LOREG) printf(" LO");
9739 else printf(" r%d",r);
9740 }
9741 }
57871462 9742 printf("\n");
9743 #if defined(__i386__) || defined(__x86_64__)
9744 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9745 #endif
9746 #ifdef __arm__
9747 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9748 #endif
9749 printf("needs: ");
9750 if(needed_reg[i]&1) printf("eax ");
9751 if((needed_reg[i]>>1)&1) printf("ecx ");
9752 if((needed_reg[i]>>2)&1) printf("edx ");
9753 if((needed_reg[i]>>3)&1) printf("ebx ");
9754 if((needed_reg[i]>>5)&1) printf("ebp ");
9755 if((needed_reg[i]>>6)&1) printf("esi ");
9756 if((needed_reg[i]>>7)&1) printf("edi ");
57871462 9757 printf("\n");
57871462 9758 #if defined(__i386__) || defined(__x86_64__)
9759 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9760 printf("dirty: ");
9761 if(regs[i].wasdirty&1) printf("eax ");
9762 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9763 if((regs[i].wasdirty>>2)&1) printf("edx ");
9764 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9765 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9766 if((regs[i].wasdirty>>6)&1) printf("esi ");
9767 if((regs[i].wasdirty>>7)&1) printf("edi ");
9768 #endif
9769 #ifdef __arm__
9770 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9771 printf("dirty: ");
9772 if(regs[i].wasdirty&1) printf("r0 ");
9773 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9774 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9775 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9776 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9777 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9778 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9779 if((regs[i].wasdirty>>7)&1) printf("r7 ");
9780 if((regs[i].wasdirty>>8)&1) printf("r8 ");
9781 if((regs[i].wasdirty>>9)&1) printf("r9 ");
9782 if((regs[i].wasdirty>>10)&1) printf("r10 ");
9783 if((regs[i].wasdirty>>12)&1) printf("r12 ");
9784 #endif
9785 printf("\n");
9786 disassemble_inst(i);
9787 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9788 #if defined(__i386__) || defined(__x86_64__)
9789 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9790 if(regs[i].dirty&1) printf("eax ");
9791 if((regs[i].dirty>>1)&1) printf("ecx ");
9792 if((regs[i].dirty>>2)&1) printf("edx ");
9793 if((regs[i].dirty>>3)&1) printf("ebx ");
9794 if((regs[i].dirty>>5)&1) printf("ebp ");
9795 if((regs[i].dirty>>6)&1) printf("esi ");
9796 if((regs[i].dirty>>7)&1) printf("edi ");
9797 #endif
9798 #ifdef __arm__
9799 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9800 if(regs[i].dirty&1) printf("r0 ");
9801 if((regs[i].dirty>>1)&1) printf("r1 ");
9802 if((regs[i].dirty>>2)&1) printf("r2 ");
9803 if((regs[i].dirty>>3)&1) printf("r3 ");
9804 if((regs[i].dirty>>4)&1) printf("r4 ");
9805 if((regs[i].dirty>>5)&1) printf("r5 ");
9806 if((regs[i].dirty>>6)&1) printf("r6 ");
9807 if((regs[i].dirty>>7)&1) printf("r7 ");
9808 if((regs[i].dirty>>8)&1) printf("r8 ");
9809 if((regs[i].dirty>>9)&1) printf("r9 ");
9810 if((regs[i].dirty>>10)&1) printf("r10 ");
9811 if((regs[i].dirty>>12)&1) printf("r12 ");
9812 #endif
9813 printf("\n");
9814 if(regs[i].isconst) {
9815 printf("constants: ");
9816 #if defined(__i386__) || defined(__x86_64__)
9817 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
9818 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
9819 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
9820 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
9821 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
9822 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
9823 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
9824 #endif
9825 #ifdef __arm__
9826 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
9827 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
9828 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
9829 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
9830 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
9831 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
9832 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
9833 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
9834 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
9835 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
9836 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
9837 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
9838 #endif
9839 printf("\n");
9840 }
57871462 9841 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9842 #if defined(__i386__) || defined(__x86_64__)
9843 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9844 if(branch_regs[i].dirty&1) printf("eax ");
9845 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9846 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9847 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9848 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9849 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9850 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9851 #endif
9852 #ifdef __arm__
9853 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9854 if(branch_regs[i].dirty&1) printf("r0 ");
9855 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9856 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9857 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9858 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9859 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9860 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9861 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9862 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9863 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9864 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9865 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9866 #endif
57871462 9867 }
9868 }
4600ba03 9869#endif // DISASM
57871462 9870
9871 /* Pass 8 - Assembly */
9872 linkcount=0;stubcount=0;
9873 ds=0;is_delayslot=0;
9874 cop1_usable=0;
9875 uint64_t is32_pre=0;
9876 u_int dirty_pre=0;
d148d265 9877 void *beginning=start_block();
57871462 9878 if((u_int)addr&1) {
9879 ds=1;
9880 pagespan_ds();
9881 }
df4dc2b1 9882 void *instr_addr0_override = NULL;
9ad4d757 9883
9ad4d757 9884 if (start == 0x80030000) {
9885 // nasty hack for fastbios thing
96186eba 9886 // override block entry to this code
df4dc2b1 9887 instr_addr0_override = out;
9ad4d757 9888 emit_movimm(start,0);
96186eba 9889 // abuse io address var as a flag that we
9890 // have already returned here once
9891 emit_readword((int)&address,1);
9ad4d757 9892 emit_writeword(0,(int)&pcaddr);
96186eba 9893 emit_writeword(0,(int)&address);
9ad4d757 9894 emit_cmp(0,1);
9895 emit_jne((int)new_dyna_leave);
9896 }
57871462 9897 for(i=0;i<slen;i++)
9898 {
9899 //if(ds) printf("ds: ");
4600ba03 9900 disassemble_inst(i);
57871462 9901 if(ds) {
9902 ds=0; // Skip delay slot
9903 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
df4dc2b1 9904 instr_addr[i] = NULL;
57871462 9905 } else {
ffb0b9e0 9906 speculate_register_values(i);
57871462 9907 #ifndef DESTRUCTIVE_WRITEBACK
9908 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
9909 {
57871462 9910 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
9911 unneeded_reg[i],unneeded_reg_upper[i]);
9912 }
f776eb14 9913 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
9914 is32_pre=branch_regs[i].is32;
9915 dirty_pre=branch_regs[i].dirty;
9916 }else{
9917 is32_pre=regs[i].is32;
9918 dirty_pre=regs[i].dirty;
9919 }
57871462 9920 #endif
9921 // write back
9922 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
9923 {
9924 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
9925 unneeded_reg[i],unneeded_reg_upper[i]);
9926 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9927 }
9928 // branch target entry point
df4dc2b1 9929 instr_addr[i] = out;
57871462 9930 assem_debug("<->\n");
dd114d7d 9931 drc_dbg_emit_do_cmp(i);
9932
57871462 9933 // load regs
9934 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9935 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
9936 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
9937 address_generation(i,&regs[i],regs[i].regmap_entry);
9938 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
9939 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9940 {
9941 // Load the delay slot registers if necessary
4ef8f67d 9942 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 9943 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 9944 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 9945 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 9946 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 9947 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
9948 }
9949 else if(i+1<slen)
9950 {
9951 // Preload registers for following instruction
9952 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
9953 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
9954 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
9955 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
9956 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
9957 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
9958 }
9959 // TODO: if(is_ooo(i)) address_generation(i+1);
9960 if(itype[i]==CJUMP||itype[i]==FJUMP)
9961 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 9962 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 9963 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
9964 if(bt[i]) cop1_usable=0;
9965 // assemble
9966 switch(itype[i]) {
9967 case ALU:
9968 alu_assemble(i,&regs[i]);break;
9969 case IMM16:
9970 imm16_assemble(i,&regs[i]);break;
9971 case SHIFT:
9972 shift_assemble(i,&regs[i]);break;
9973 case SHIFTIMM:
9974 shiftimm_assemble(i,&regs[i]);break;
9975 case LOAD:
9976 load_assemble(i,&regs[i]);break;
9977 case LOADLR:
9978 loadlr_assemble(i,&regs[i]);break;
9979 case STORE:
9980 store_assemble(i,&regs[i]);break;
9981 case STORELR:
9982 storelr_assemble(i,&regs[i]);break;
9983 case COP0:
9984 cop0_assemble(i,&regs[i]);break;
9985 case COP1:
9986 cop1_assemble(i,&regs[i]);break;
9987 case C1LS:
9988 c1ls_assemble(i,&regs[i]);break;
b9b61529 9989 case COP2:
9990 cop2_assemble(i,&regs[i]);break;
9991 case C2LS:
9992 c2ls_assemble(i,&regs[i]);break;
9993 case C2OP:
9994 c2op_assemble(i,&regs[i]);break;
57871462 9995 case FCONV:
9996 fconv_assemble(i,&regs[i]);break;
9997 case FLOAT:
9998 float_assemble(i,&regs[i]);break;
9999 case FCOMP:
10000 fcomp_assemble(i,&regs[i]);break;
10001 case MULTDIV:
10002 multdiv_assemble(i,&regs[i]);break;
10003 case MOV:
10004 mov_assemble(i,&regs[i]);break;
10005 case SYSCALL:
10006 syscall_assemble(i,&regs[i]);break;
7139f3c8 10007 case HLECALL:
10008 hlecall_assemble(i,&regs[i]);break;
1e973cb0 10009 case INTCALL:
10010 intcall_assemble(i,&regs[i]);break;
57871462 10011 case UJUMP:
10012 ujump_assemble(i,&regs[i]);ds=1;break;
10013 case RJUMP:
10014 rjump_assemble(i,&regs[i]);ds=1;break;
10015 case CJUMP:
10016 cjump_assemble(i,&regs[i]);ds=1;break;
10017 case SJUMP:
10018 sjump_assemble(i,&regs[i]);ds=1;break;
10019 case FJUMP:
10020 fjump_assemble(i,&regs[i]);ds=1;break;
10021 case SPAN:
10022 pagespan_assemble(i,&regs[i]);break;
10023 }
10024 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10025 literal_pool(1024);
10026 else
10027 literal_pool_jumpover(256);
10028 }
10029 }
10030 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10031 // If the block did not end with an unconditional branch,
10032 // add a jump to the next instruction.
10033 if(i>1) {
10034 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10035 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10036 assert(i==slen);
10037 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10038 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10039 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10040 emit_loadreg(CCREG,HOST_CCREG);
2573466a 10041 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 10042 }
10043 else if(!likely[i-2])
10044 {
10045 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10046 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10047 }
10048 else
10049 {
10050 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10051 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10052 }
10053 add_to_linker((int)out,start+i*4,0);
10054 emit_jmp(0);
10055 }
10056 }
10057 else
10058 {
10059 assert(i>0);
10060 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10061 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10062 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10063 emit_loadreg(CCREG,HOST_CCREG);
2573466a 10064 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 10065 add_to_linker((int)out,start+i*4,0);
10066 emit_jmp(0);
10067 }
10068
10069 // TODO: delay slot stubs?
10070 // Stubs
10071 for(i=0;i<stubcount;i++)
10072 {
b14b6a8f 10073 switch(stubs[i].type)
57871462 10074 {
10075 case LOADB_STUB:
10076 case LOADH_STUB:
10077 case LOADW_STUB:
10078 case LOADD_STUB:
10079 case LOADBU_STUB:
10080 case LOADHU_STUB:
10081 do_readstub(i);break;
10082 case STOREB_STUB:
10083 case STOREH_STUB:
10084 case STOREW_STUB:
10085 case STORED_STUB:
10086 do_writestub(i);break;
10087 case CC_STUB:
10088 do_ccstub(i);break;
10089 case INVCODE_STUB:
10090 do_invstub(i);break;
10091 case FP_STUB:
10092 do_cop1stub(i);break;
10093 case STORELR_STUB:
10094 do_unalignedwritestub(i);break;
10095 }
10096 }
10097
9ad4d757 10098 if (instr_addr0_override)
10099 instr_addr[0] = instr_addr0_override;
10100
57871462 10101 /* Pass 9 - Linker */
10102 for(i=0;i<linkcount;i++)
10103 {
10104 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10105 literal_pool(64);
10106 if(!link_addr[i][2])
10107 {
10108 void *stub=out;
10109 void *addr=check_addr(link_addr[i][1]);
10110 emit_extjump(link_addr[i][0],link_addr[i][1]);
10111 if(addr) {
df4dc2b1 10112 set_jump_target(link_addr[i][0], addr);
57871462 10113 add_link(link_addr[i][1],stub);
10114 }
df4dc2b1 10115 else set_jump_target(link_addr[i][0], stub);
57871462 10116 }
10117 else
10118 {
10119 // Internal branch
10120 int target=(link_addr[i][1]-start)>>2;
10121 assert(target>=0&&target<slen);
10122 assert(instr_addr[target]);
10123 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10124 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10125 //#else
10126 set_jump_target(link_addr[i][0],instr_addr[target]);
10127 //#endif
10128 }
10129 }
10130 // External Branch Targets (jump_in)
10131 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10132 for(i=0;i<slen;i++)
10133 {
10134 if(bt[i]||i==0)
10135 {
10136 if(instr_addr[i]) // TODO - delay slots (=null)
10137 {
10138 u_int vaddr=start+i*4;
94d23bb9 10139 u_int page=get_page(vaddr);
10140 u_int vpage=get_vpage(vaddr);
57871462 10141 literal_pool(256);
57871462 10142 {
df4dc2b1 10143 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
57871462 10144 assem_debug("jump_in: %x\n",start+i*4);
df4dc2b1 10145 ll_add(jump_dirty+vpage,vaddr,out);
10146 void *entry_point = do_dirty_stub(i);
10147 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
57871462 10148 // If there was an existing entry in the hash table,
10149 // replace it with the new address.
10150 // Don't add new entries. We'll insert the
10151 // ones that actually get used in check_addr().
df4dc2b1 10152 struct ht_entry *ht_bin = hash_table_get(vaddr);
10153 if (ht_bin->vaddr[0] == vaddr)
10154 ht_bin->tcaddr[0] = entry_point;
10155 if (ht_bin->vaddr[1] == vaddr)
10156 ht_bin->tcaddr[1] = entry_point;
57871462 10157 }
57871462 10158 }
10159 }
10160 }
10161 // Write out the literal pool if necessary
10162 literal_pool(0);
10163 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10164 // Align code
10165 if(((u_int)out)&7) emit_addnop(13);
10166 #endif
d148d265 10167 assert((u_int)out-(u_int)beginning<MAX_OUTPUT_BLOCK_SIZE);
57871462 10168 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10169 memcpy(copy,source,slen*4);
10170 copy+=slen*4;
9f51b4b9 10171
d148d265 10172 end_block(beginning);
9f51b4b9 10173
57871462 10174 // If we're within 256K of the end of the buffer,
10175 // start over from the beginning. (Is 256K enough?)
bdeade46 10176 if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
9f51b4b9 10177
57871462 10178 // Trap writes to any of the pages we compiled
10179 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10180 invalid_code[i]=0;
57871462 10181 }
9be4ba64 10182 inv_code_start=inv_code_end=~0;
71e490c5 10183
b96d3df7 10184 // for PCSX we need to mark all mirrors too
b12c9fb8 10185 if(get_page(start)<(RAM_SIZE>>12))
10186 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 10187 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
10188 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
10189 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9f51b4b9 10190
57871462 10191 /* Pass 10 - Free memory by expiring oldest blocks */
9f51b4b9 10192
bdeade46 10193 int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
57871462 10194 while(expirep!=end)
10195 {
10196 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
df4dc2b1 10197 uintptr_t base=(uintptr_t)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
57871462 10198 inv_debug("EXP: Phase %d\n",expirep);
10199 switch((expirep>>11)&3)
10200 {
10201 case 0:
10202 // Clear jump_in and jump_dirty
10203 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10204 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10205 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10206 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10207 break;
10208 case 1:
10209 // Clear pointers
10210 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10211 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10212 break;
10213 case 2:
10214 // Clear hash table
10215 for(i=0;i<32;i++) {
df4dc2b1 10216 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
10217 if (((uintptr_t)ht_bin->tcaddr[1]>>shift) == (base>>shift) ||
10218 (((uintptr_t)ht_bin->tcaddr[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10219 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
10220 ht_bin->vaddr[1] = -1;
10221 ht_bin->tcaddr[1] = NULL;
10222 }
10223 if (((uintptr_t)ht_bin->tcaddr[0]>>shift) == (base>>shift) ||
10224 (((uintptr_t)ht_bin->tcaddr[0]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10225 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
10226 ht_bin->vaddr[0] = ht_bin->vaddr[1];
10227 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
10228 ht_bin->vaddr[1] = -1;
10229 ht_bin->tcaddr[1] = NULL;
57871462 10230 }
10231 }
10232 break;
10233 case 3:
10234 // Clear jump_out
dd3a91a1 10235 #ifdef __arm__
9f51b4b9 10236 if((expirep&2047)==0)
dd3a91a1 10237 do_clear_cache();
10238 #endif
57871462 10239 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10240 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10241 break;
10242 }
10243 expirep=(expirep+1)&65535;
10244 }
10245 return 0;
10246}
b9b61529 10247
10248// vim:shiftwidth=2:expandtab